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Introduction

Financial volatility, dynamic correlations,

and macroeconomic fundamentals

After more than 25 years of

research on volatility, the central

unsolved problem is the relation

between the state of the economy

and aggregate financial volatility.

Engle and Rangel (2008, p. 1187)

Some general remarks on financial volatility

Volatility lies at the core of financial risk and plays a crucial role in many financial

applications, such as the pricing of financial derivatives, portfolio selection, and risk

management. It is closely tracked by private and institutional investors, central

bankers, financial regulators, and policy makers. For instance, an estimate of the

volatility of an asset is a crucial input for determining capital requirements that

are imposed on banks by the so-called Basel accords. Furthermore, policy institu-

tions around the world constantly monitor risk developments across different asset

classes, comprising equity, government bond, corporate bond, commoditiy, and FX

markets.1

1Both the ECB and the IMF report heat maps with red, yellow, and green colors indicating
high, medium, and low volatility estimates across different markets in the bi-annual Financial
Stability Review and Global Financial Stability Report report, respectively. In addition, in its
September 2015 meeting, the Federal Open Market Committee - the principal decision-making
body within the Federal Reserve System - explicitly took into account the (increasing) level of



2 Introduction

During the last couple of years, volatility indices, most notably the Volatility

Index (VIX) published by the Chicago Board Options Exchange (CBOE), which is a

measure of the implied volatility of S&P 500 index options, have drawn considerable

attention. The VIX represents a measure of the market’s expectation of stock market

volatility over the next 30-days period. Since it can be viewed as representing

investors’ sentiments, it is often referred to as the fear index. More recently, volatility

itself has been considered as an asset class and the number of financial instruments

based on volatility indices has increased dramatically.2

The accurate modeling of time variation in co-volatilities or correlations between

single assets as well as (international) asset markets has become just as important.

Models of dynamic correlations are applied both on a small scale (e.g., in portfolio

allocation) and on a large scale (e.g., for systemic risk measures).

This thesis contributes to the volatility literature by investing several relevant

aspects of both financial volatility as well as dynamic correlations and the determi-

nation of their macroeconomic fundamentals in the framework of GARCH-MIDAS

models - a particular class of volatility models from the ARCH universe.

The ARCH model and its extensions

The ARCH (AutoRegressive Conditional Heteroskedasticity) model was first intro-

duced by Robert F. Engle in 1982. The economic literature at that time considered

conditional heteroskedasticity in the cross-section, but did not regard it as a time-

series phenomenon. Twenty years later, Engle was awarded the Sveriges Riksbank

Prize in Economic Sciences in Memory of Alfred Nobel (2003, shared with Clive

Granger) in recognition of his work on “methods of analyzing economic time series

with time-varying volatility (ARCH)”.

Though its first application in Engle (1982) was on UK inflation, the great success

of the ARCH model and its Generalized version, the GARCH model suggested by

Bollerslev (1986), lies in applications to equity and exchange markets. These models

have been so popular since they are able to capture the main stylized facts of financial

return series, which are characterized by fat tails and volatility clustering. The

tendency of financial volatility to cluster had already been observed by Mandelbrot

stock market volatility in its monetary policy decision-making process.

2The financial industry has already passed on to a higher, i.e. fourth, moment of asset returns
and provides options on the VVIX, see “Double the fun with the VIX on the VIX ” on www.cboe.

com.

www.cboe.com
www.cboe.com


3

(1963, p. 418) who noted that “large changes tend to be followed by large changes -

of either sign - and small changes tend to be followed by small changes”.

Ever since its introduction, the number of GARCH model extensions has liter-

ally exploded, as has the range of its applications. Yet, the simple GARCH(1,1)

remains the benchmark volatility model against which any model extension has to

compete.3 An (almost) exhaustive listing of GARCH model extensions and variants

is provided in the ARCH Glossary of Bollerslev (2008).4 Extensions and applications

of the GARCH model are presented in several survey chapters of the handbooks by

Andersen et al. (2009) and Bauwens et al. (2012).

On the economic sources of financial volatility

The analysis of the economic fundamentals of financial volatility goes back to Officer

(1976), who considered the variability of the market factor of the New York Stock

Exchange, and Schwert (1989) who raised the question “Why does stock market

volatility vary over time?”. In his analysis, Schwert (1989) considers monthly stock

return data spanning from 1857 to 1987 and its relation to real and nominal macroe-

conomic volatility, the level of economic activity, as well as financial leverage. The

counter-cyclical behavior of stock market volatility has generally been acknowledged

ever since, i.e. volatility is found to be high during recession and crisis periods and

low during economic expansions. However, the link has often seemed unreasonably

weak.

In general, fluctuations in asset prices can be rationalized economically by re-

lating them to fluctuations in the arrival and content of news. According to basic

financial theory, the price of an asset should reflect the expected present value of

its future income flows. This has been formalized in the framework of Campbell

(1991) and Campbell and Shiller (1988). Changes in the asset price are then due

3In an extensive forecast comparison study of volatility models on exchange rates and stock
returns, Hansen and Lunde (2005) ask “Does anything beat a GARCH(1,1)?” They find no evi-
dence that the model is outperformed by more sophisticated models for exchange rates. In case of
stock returns, it is outperformed only by asymmetric models that account for the leverage effect,
such as the GJR-GARCH model (Glosten et al., 1993).

4“The alphabet soup of volatility models continually amazes” even its inventor (Engle 2002,
p. 426). A contest on what other anacronyms ARCH might stand for, spured the following (not
to be taken seriously) list of alternatives:
Anything Really Can Happen; Another Risk Can’t Hurt; Another Really Cute Hunch; All Reality
Comes Here; Applied Research Can Help; Another Rather Crazy Hypothesis; Almost Right Con-
jected Heuristic; And Robert Can Hit; All Risks Compensate Highly...culminating in the YAARCH,
the Yet Another ARCH model proposed by the economist Figlewski.

Excerpt from: http://englenobel.blogs.com/

http://englenobel.blogs.com/
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to changes in the expectations of investors about these future income streams and

these expectations are modified with new information flowing in. Consequently, the

volatility of an asset changes over time, since both the content and the arrival rate

of news fluctuates over time. The same news may have a different impact on asset

prices depending on the general state of the macroeconomy. Furthermore, both the

horizon and the persistence of its impact may vary over time.

The last financial crisis and the subsequent great recession have revealed the need

for a better understanding of the interaction between risks in financial markets

and general economic conditions.5 This has put the analysis of such macro finance

links back on the research agenda, see, e.g., Asgharian et al. (2013), Campbell and

Diebold (2009), Christiansen et al. (2012), Corradi et al. (2013), Dorion (2013),

Engle et al. (2013), Engle and Rangel (2008), and Paye (2012).

In particular, the crisis has revealed fatal consequences of short-sighted risk man-

agement and has spured new research on long-term financial risks and systemic risk

measures. In his paper “How to forecast a crisis”, Engle concludes that “the cri-

sis was predictable using familiar time series models, but only at short horizons”

(Engle, 2010, p. 1). Furthermore, he stresses that long-term financial risk measures

need to incorporate the “risk that risk will change”, Engle (2009). The new focus

on the long-term evolvement of financial risks and their link to economic fundamen-

tals naturally extends the time span of the financial and economic series considered.

When analyzing long time series spanning several years or decades, structural breaks

become an important issue. Hence, a large part of the literature on GARCH model

extensions has focused on developing more flexible models, allowing in particular

for changing parameters. There are various alternative approaches to do so, but we

will focus on one particular class of GARCH models in this dissertation.

The quote from Engel and Rangel (2008, p. 1187) preceding this introduction re-

sumes as follows: “The number of models that have been developed to predict volatil-

ity based on time series information is astronomical, but the models that incorporate

economic variables are hard to find”. In their paper, Engle and Rangel (2008) pro-

pose a new GARCH model, called spline-GARCH, that fills this gap and is closely

related to the GARCH-MIDAS component model, which will be the starting point

of this dissertation.

5The financial crisis of 2007-08 is considered by many economists to have been the worst
financial crisis since the Great Depression of the 1930s and has seen unprecedented high levels of
financial volatility. These were only surpassed by the (short-lived) 1987 stock market crash. For
instance, the VIX reached an intraday high of 89.53 on October 24, 2008, whereas its average value
since 1990 has been just below 20.
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The GARCH-MIDAS and DCC-MIDAS component models

The GARCH-MIDAS model introduced in Engle et al. (2013) is a two component

volatility specification in the spirit of the models in Ding and Granger (1996), Engle

and Lee (1999), and more recently Bauwens and Storti (2009) as well as Amado

and Teräsvirta (2013, 2014, 2015). The model separates short-run fluctuations in

volatility from slowly evolving long-term developments. The underlying motivation

of these component models is the observation that “volatility is not just volatility”

(Engle et al., 2013, p. 776), but consists of different components, which ought to be

modeled separately. By introducing a time-varying unconditional variance, both the

spline-GARCH and the GARCH-MIDAS models relax the assumption that volatility

mean reverts to a constant level, which generally underlies many GARCH models

and the early component models. In both models, the short-term component is

specified as a unit variance GARCH process, which represents day-to-day clustering

of volatility, evolving around a long-term trend component. The two models differ

only in the specification of the long-term component.

The spline-GARCH model allows the unconditional variance to change smoothly

as a function of time (similar to the model of Amado and Taräsvirta, 2012) via a non-

parametric exponential quadratic spline. In this model, both volatility components

are modeled at the same (high) frequency and the long-term component can only

be linked to (low frequency) explanatory macroeconomic variables in a two-step

approach. Engle and Rangel (2008) first transform the estimated daily long-term

component to a lower frequency, which is then regressed on a set of explanatory

variables. In a cross-sectional study comprising equity markets across 50 countries,

they show that the long-term component behaves counter-cyclically.

The GARCH-MIDAS model combines the non-stationary volatility model of the

spline-GARCH with the MIxed Frequency DAta Sampling (MIDAS) approach intro-

duced in Ghysels et al. (2005) and allows to directly link macro economic variables

of lower frequency to the long-term volatility component. The central feature of the

MIDAS regression (or MIDAS filter) approach is a flexible weighting function that

allows to combine data of high and low frequency in a very simple and parsimonious

way. The GARCH-MIDAS model applies a beta weighting scheme to link (daily)

high frequency financial return data to (monthly / quarterly) low-frequency macroe-

conomic variables, but there also exist other parsimonious weighting schemes, see

Ghysels et al. (2007) for more details. In this model, forecasts of volatility (in par-

ticular at longer horizons) are mainly determined by the secular component, since



6 Introduction

forecasts of the short-run volatility component converge to unity. In their empirical

analysis, Engle et al. (2013) consider an extended version of the Schwert (1987) data

set (spanning from 1890 to 2010) and link the long-term component to the level and

variance of industrial production growth and inflation.

Asymptotic results for the general GARCH-MIDAS model are not yet available,

but Wang and Ghysels (2015) establish the asymptotic normality of the quasi-

maximum likelihood estimator for a GARCH-MIDAS model including rolling win-

dows of realized volatility as explanatory variable. Conrad and Schienle (2015)

present a misspecification test based on the Lagrange multiplier principle and derive

its asymptotic properties for testing the null hypothesis that the variable included

in the long-term component has no explanatory power.

A multivariate version of the component model is presented in Colacito et al. (2011),

who extend the Engle (2002) DCC model by introducing a short- and a long-term

in the correlation specification in a similar way as in the GARCH-MIDAS model.

In contrast to the latter, the original DCC-MIDAS specification by Colacito et

al. (2011), relates the secular correlation component to lags of realized volatilities

only.

This dissertation will focus on empirical applications of the GARCH- and DCC-

MIDAS component models. It should be noted however, that these models remain

reduced-form models, which are not directly linked to any structural model of the

macroeconomy. Still, the new models present a feasible approach to relate finan-

cial volatility to macroeconomic fundamentals and have been widely applied during

recent years, see Asgharian et al. (2013, 2015), Boffelli and Urga (2014), Dorion

(2013), Opschoor et al. (2014), amongst others.
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Outline of the thesis

This dissertation consists of four research articles that deal with different aspects of

the modeling of financial volatility and dynamic correlations. They all focus on the

U.S. stock market and its link to macroeconomic fundamentals by applying MIDAS

techniques. The contributions of the articles are of theoretical, methodological, and

empirical nature. Each chapter is self-contained and can be read independently.

Chapter 1 and 2 consider GARCH-MIDAS component models and the relation-

ship between long-term financial volatility and the stance of the macroeconomy.

Both chapters are joint work with my first supervisor Christian Conrad and have

been published in the Journal of Applied Econometrics and in Economics Letters.

Chapter 3 is single-authored and presents a new GARCH model that links time-

varying volatility persistence to explanatory variables. Finally, Chapter 4 applies

the multivariate DCC-MIDAS model to returns on the stock and the oil market and

analyzes their relation to macroeconomic fundamentals. It is written jointly with

Christian Conrad and my former colleague Daniel Rittler and has been published

in the Journal of Empirical Finance.6

In the following, I will outline the main results and contributions of each chapter.

Chapter 1: Anticipating Long-Term Stock Market Volatility

In Chapter 1, we revisit the link between long-term financial volatility and the

general macroeconomic environment using GARCH-MIDAS component models. We

focus particularly on the lead-lag relationship between macroeconomic variables and

volatility and on the role expectations concerning current and future macroeconomic

developments play in predicting volatility.

We present an extensive analysis of the U.S. stock market for the 1969 to 2011

period and consider a variety of measures of economic activity, inflation rates, and

interest rates, and combine first release data with expectations from the Survey of

Professional Forecasters (SPF). We consider various specifications of the GARCH-

MIDAS model. We either let the long-term volatility component be determined

by a weighted average of lagged values of the explanatory variable, corresponding

to a one-sided filter, or we combine lagged and future realizations or expectations

thereof, corresponding to a two-sided filter. Applying the MIDAS techniques allows

6A previous version of this chapter has been part of the Ph.D. dissertation “The Carbon
Market, Oil, and the Macroeconomy” (2012) of Daniel Rittler at the Fakultät für Wirtschafts- und
Sozialwissenschaften der Ruprecht-Karls-Universität Heidelberg.
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us to directly combine daily stock return data with quarterly macroeconomic data.

This chapter extends the empirical analysis in Engle et al. (2013) in several im-

portant ways and our main results may be summarized as follows. First of all, we

confirm the counter-cyclical behavior of long-term financial volatility for a broad set

of macro variables. Secondly, we identify several leading variables with respect to

stock market volatility. For variables such as housing starts growth and the term

spread, the optimal weighting scheme in the MIDAS filter is not strictly decreasing,

but rather hump-shaped. These two variables perform best in terms of variance

ratios (V Rs), which measure the fraction of the variation in expected volatility that

can be explained by the respective variable. In particular, the term spread specifica-

tion indicates increasing financial risks well ahead of the recent financial crisis and

clearly anticipates the build-up of financial risks. Our finding that the term spread

and housing starts are leading with respect to long-term volatility is economically

plausible, since these two variables are generally considered as leading indicators for

the business cycle (see, e.g., Estrella and Mishkin, 1998, and Kydland et al. 2012).

On the other hand, unemployment rate changes, industrial production growth, and

real GDP growth are found to be coincident/lagging with respect to stock market

volatility, since their optimal weighting scheme is a strictly decreasing one. Yet, we

demonstrate that the performance for these variables can be improved by using a

feasible two-sided filter, that is one which combines lagged realizations with expec-

tations of future realizations. In theses cases, switching from one-sided to two-sided

filters, leads to sizable increases in the V Rs. For the GARCH-MIDAS model that

includes past realized volatilities as explanatory variable, we find that the long-term

volatility component is mainly dominated by the 1987 stock market crash, and to

a lesser extend by the last financial crisis. It hardly varies though during the other

recession periods. We also consider model specifications, which include both realized

volatilities and a macro variable in the long-term component. Even if we control

for realized volatility, we still find significant effects of the macro variables on long-

term volatility and the variables mentioned previously are still leading with respect

to long-term volatility. This demonstrates that many of the variables considered

contain information on stock market risks beyond that contained in past realized

volatilities.

In an out-of-sample forecasting exercise, we find further evidence for the pre-

dictive power of macroeconomic variables. For most variables, we find significant

improvements in forecasting performance over the benchmark model that includes

lagged realized volatilities and the gains are particularly large for longer forecasting
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horizons.

The chapter concludes with some extensions and robustness checks. In particular,

we analyze how long-term volatility is related to the uncertainty about macroeco-

nomic fundamentals. Schwert (1989) and later Engle and Rangel (2008) and Engle

et al. (2013) measure the volatility of a macro variable by the squared residual of a

simple autoregressive model with seasonal dummies. We show that survey based ex-

ante uncertainty measures are more appropriate than such ex-post regression based

volatility proxies. As an ex-ante measure, we consider the disagreement among the

SPF forecasters as implied by the interquartile range of the individual point fore-

casts. We find that higher dispersion in expectations increases long-term volatility

and more importantly that the ex-ante uncertainty measures are more informative

than the ex-post measures of macro volatility, although the V Rs of the disagreement

specifications are generally lower than the ones of the level specifications. Finally,

we argue that our results complement recent research on the determinants of the sec-

ular component of financial volatility in Christiansen et al. (2012) and Paye (2012).

These papers consider predictive regressions, where current realized volatility (or

a transformation thereof) is regressed on its lagged value(s) and the lag(s) of an

explanatory variable. They typically find only weak evidence on the relevance of

macro variables in predicting volatility. We find much more promising evidence

when considering a slightly different version of the predictive regression, which in-

cludes the long-term volatility component obtained from a GARCH-MIDAS model

with a macro variable instead of a single lag of the variable. We conclude that these

long-term volatility components parsimoniously summarize the information on the

lead-lag-structure between a specific macro variable and financial volatility

Chapter 2: The Variance Risk Premium and Fundamental Uncertainty

The insights from Chapter 1 on long-term financial volatility and its macroeconomic

determinants are applied to the modeling of the variance risk premium (V RP ). The

chapter builds on recent findings in Bollerslev et al. (2009, 2012, 2014), Bekaert and

Hoerova (2014), and others that strongly suggest that the V RP predicts medium-

term aggregate stock market returns. This can be rationalized by the close relation

of the V RP to economic uncertainty and aggregate risk aversion. Bollerslev et

al. (2009) present a stylized self-contained general equilibrium model and argue

that expected returns are positively related to the volatility of consumption growth

volatility (vol-of-vol or fundamental uncertainty). The expected V RP is defined as
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the difference between the ex-ante risk-neutral expectation of future stock market

variation and the statistical expectation of the realized variance. The risk-neutral

expected variation is well approximated by the (squared) V IX, a model-free option

implied variance measure, but the expected realized variance has to be estimated.

However, a typical approach is to simply assume that the realized variance follows

a martingale sequence.

The contribution of Chapter 2 is twofold. First, we propose a new measure of

the V RP that is based on variance forecasts from the GARCH-MIDAS component

model. This new proxy explicitly takes into account macroeconomic uncertainty

via the long-run volatility component. In our empirical analysis, we consider the

same financial return data set as in Chapter 1, but focus on monthly macroeconomic

variables. We construct the V RP based on out-of-sample variance forecasts of the

GARCH-MIDAS models. We consider monthly return predictability regressions

and show that the new V RP measure has considerably stronger predictive power

for stock returns than conventional measures of the V RP . Second, we argue that the

strong predictive power stems from the fact that the long-term volatility component

effectively isolates the fundamental uncertainty factor that drives the V RP .

Chapter 3: Time-Varying Volatility Persistence in a GARCH-MIDAS

Framework

In Chapter 3, we take a different perspective on financial volatility modeling by

considering time variation in volatility persistence. We suggest a new GARCH model

with time-varying persistence (TVP) that is governed by an explanatory variable.

We motivate the new model by showing that persistence in squared financial returns,

as measured by the speed of decay of their autocorrelation function, varies over time

and is high (low) during periods of high (low) realized volatility and weak (strong)

business conditions.

In the standard (stationary) GARCH(1,1) model, volatility persistence is deter-

mined by the ARCH and GARCH parameters and thus remains constant over time.

Estimations of the model on (long) financial return series typically indicate high

persistence, i.e. the sum of the two parameters is found to be close to one. However,

as already argued by Diebold (1986) and Lamoureux and Lastrapes (1990), and then

formalized by Hillebrand (2005), volatility persistence will be over estimated in case

there are structural breaks in the model parameters that are not accounted for. This

has motivated a large body of literature on GARCH models with time-varying pa-
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rameters. We add to this literature and extend the asymmetric GJR-GARCH model

in Glosten et al. (1993) by introducing time variation in persistence through smooth

transitions in the GARCH coefficient. The novelty of the model lies in letting the

transition between different persistence regimes be governed by an explanatory vari-

able in the spirit of the GARCH-MIDAS model. We refer to the new model as the

TVP-GARCH-MIDAS model. It nests the standard GJR-GARCH model in case

the variable has no explanatory power. In standard smooth transition type GARCH

models, the transition has typically been governed by the lagged squared shock (see

Hagerud, 1997, González-Rivera, 1998, Lundbergh and Teräsvirta, 1998, and An-

derson et al., 1999) or the lagged conditional variance (Lanne and Saikkonen, 2005).

Applying MIDAS techniques now allows us to link the transition to the history of an

explanatory variable, i.e. to the weighted average of potentially many of its lagged

values, in a parsimonious way. This approach yields a reasonably smooth measure

of time-varying persistence of volatility.

After introducing the TVP-GARCH-MIDAS model, we derive a misspecification

test based on the Lagrange multiplier principle, which has the advantage that it

requires estimation of the model under the null only. We examine its finite sam-

ple size and power properties in a Monte-Carlo simulation study. The empirical

size of the test is found to be close to the nominal size for normally distributed

errors. In order to investigate power properties of the test, we consider two different

TVP-GARCH-MIDAS model specifications, which include (smoothed versions) of

realized volatility and the VIX. We find high power in case of reasonably smooth

and pronounced time variation in persistence.

The second part of Chapter 3 presents an empirical application of the new model

to the U.S. stock market and considers an extended version of the data set from

Chapters 1 and 2. As explanatory variables, we include daily realized volatilities

and the ADS business conditions index. The model estimations confirm the intu-

ition from our motivation and we find increasing (decreasing) persistence for high

(low) realized volatilities and weak (strong) business conditions. The model with

realized volatility generates stronger time variation over a greater range of persis-

tence compared to the model including the ADS. However, both models imply a

lower persistence than the GJR-GARCH model on average. In an out-of-sample

forecast evaluation, we provide evidence that the new TVP-GARCH-MIDAS model

with realized volatility yields significant gains in forecasting performance over the

GJR-GARCH model across horizons varying from one day to one quarter. In par-

ticular, we demonstrate that the model with realized volatility captures the average
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level of persistence of volatility particularly well during periods of very low and high

volatility.

Chapter 4: On the Macroeconomic Determinants of Long-Term Volatilities

and Correlations in U.S. Stock and Crude Oil Markets

Chapter 4 considers a multivariate extension of the GARCH-MIDAS model and its

application to dynamic correlation between returns on the U.S. stock market and

the oil market.

Based on the presumption that exogenous oil supply shocks are causal for reces-

sions and periods of low growth (see the seminal articles by Hamilton, 1983, 1985,

2003), several empirical studies have analyzed the relationship between oil prices

and stock market returns, yielding however conflicting evidence, see among oth-

ers, Jones and Kaul (1996), Wei (2003), Nandha and Faff (2008), Miller and Ratti

(2009). Results from regressing stock returns on oil price changes may be mislead-

ing though, as argued in Kilian and Park (2009), due to reverse causality from the

U.S. economy to the oil price. Additionally, they argue that the sign of a stock price

response to changes in oil price depends on the type of the underlying shock and

may change over time. Indeed, Filis et al. (2011) confirm for several oil-exporting

and oil-importing countries that the oil-stock correlations vary over time.

The main contribution of this chapter is the identification of a counter-cyclical

relation between the long-term correlation component and macroeconomic condi-

tions, which is driven by the same variables that also anticipate changes in both

financial and oil long-term volatility. In particular, we provide first evidence on the

link between macroeconomic conditions and the daily oil-stock correlation.

We first present a modification of the DCC-MIDAS component model introduced

in Colacito et al. (2011) that allows to directly incorporate information on the

macroeconomic development in the long-term correlation component. Our empiri-

cal analysis covers the 1993 to 2011 period and combines daily stock returns and oil

return data with monthly macroeconomic data. More precisely, we consider vari-

ables measuring the current stance of the economy, such as industrial production

growth, non-farm payrolls growth, and changes in the unemployment rate, as well

as two forward looking indicators, the leading index and the national activity in-

dex. To begin with, we look separately at the macroeconomic determinants of the

long-term volatility components for the stock and the oil market. We confirm the

counter-cyclical behavior of the financial volatility component, which we analyzed in
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depth in Chapter 1. More importantly, we also find convincing evidence for a simi-

lar counter-cyclical relationship for the oil market. Previous studies such as Barsky

and Kilian (2004) and Kilian (2008, 2009) have established reverse causality from

the U.S. economy to the oil price and our findings now extend these results to the

volatility of oil prices. Interestingly, both long-term volatility components respond

to the same macroeconomic information.

In a next step, we show that changes in the long-term oil-stock correlation can be

anticipated by the same macroeconomic variables that drive the long-term volatili-

ties and find that the oil-stock correlation varies in a counter-cyclical way as well.

The model estimates imply a positive long-term correlation component during re-

cessions (or the beginning of expansions with growth still below trend), whereas

the correlation decreases or turns negative during periods of strong growth above

trend. This can be rationalized economically as follows. During recession periods,

a simultaneous drop in oil and stock prices will induce a positive correlation. At

the beginning of an economic recovery, increasing oil prices will at first not have a

negative effect on the stock market. As argued in Kilian and Park (2009), there will

typically be positive short-run effects of an unexpected increase in global demand

on oil and stock prices. However, the negative effect of increasing oil prices will

dominate in the long-run and in the course of an expansion, the oil-stock correlation

will decrease again or even turn negative.

The counter-cyclical nature of the long-term correlation component implies that

the sign of the oil-stock correlation critically depends on the state of the macroe-

conomy. This reinforces the argument made in Kilian and Park (2009) that simple

regressions of stock returns on oil price changes may be very misleading.

In our model, the evolution of the long-term correlation component is purely

driven by macroeconomic variables, which represent U.S. (or at least to some extent

global) aggregate demand. As a consequence, deviations of the short-term compo-

nent from the long-run trend must be related to other factors the affect the stock

and/or oil market. In case of the oil market, typical factors would be either oil-

specific (i.e. precautionary or speculative) demand shocks or supply shocks. Indeed,

temporary deviations can be related to particular oil-related events, such as the

Venezuelan oil supply crisis, the second Iraq war, and the Libyan crisis and political

turmoil in North Africa. Since most of these deviations occur for relatively short pe-

riods, we consider this being further evidence that the oil-stock correlation is largely

determined by U.S. economic activity and global aggregate demand, in line with

Hamilton (2008), Kilian (2009), and Kilian and Murphy (2014).
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The chapter concludes with some evidence on the potential benefits of accounting

for time variation in the oil-stock correlation in a portfolio application. Our results

suggest that including macro fundamentals in the conditional correlation specifi-

cation in the DCC-MIDAS model leads to significantly lower portfolio variances

compared to the standard DCC model.



1
Anticipating Long-Term Stock

Market Volatility

We investigate the relationship between long-term U.S. stock market risks and the

macroeconomic environment using a two component GARCH-MIDAS model. Our

results show that macroeconomic variables are important determinants of the secular

component of stock market volatility. Among the various macro variables in our

dataset the term spread, housing starts, corporate profits, and the unemployment

rate have the highest predictive ability for long-term stock market volatility. While

the term spread and housing starts are leading variables with respect to stock market

volatility, for industrial production and the unemployment rate expectations data

from the Survey of Professional Forecasters regarding the future development are

most informative.

This chapter was published as: Conrad, C., and K. Loch (2014). “Anticipating Long-Term
Stock Market Volatility.” Journal of Applied Econometrics, forthcoming.
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1.1 Introduction

Although the question as to whether measures of economic activity actually antic-

ipate changes in stock market volatility dates back to Officer (1973) and Schwert

(1989), the last financial crisis has put this issue back into the spotlight. Recent

examples are Asgharian et al. (2013), Campbell and Diebold (2009), Christiansen

et al. (2012), Corradi et al. (2013), Dorion (2013), and Paye (2012). This paper

complements the recent literature by employing the GARCH-MIDAS framework

suggested in Engle et al. (2013), which enables us to directly identify the effect of

the macroeconomic environment on the secular component of stock market volatil-

ity. Our contribution is twofold. First, we provide a detailed exploration of the

lead-lag relationship between macroeconomic variables and volatility and, second,

we analyze the role of expectations concerning current and future macro develop-

ments in predicting volatility. We shall see that both issues are key to enhancing our

understanding of the link between macroeconomic conditions and financial volatility.

The GARCH-MIDAS model is a two component volatility specification in the

spirit of Ding and Granger (1996), Engle and Lee (1999), and more recently Bauwens

and Storti (2009) and Amado and Teräsvirta (2013 and 2014), and separates short-

run fluctuations in volatility from long-term developments. Similarly, as in the

Engle and Rangel (2008) Spline-GARCH model, the short-term component is spec-

ified as a unit GARCH process evolving around a long-term trend component that

reflects macroeconomic conditions. In comparison to the Spline-GARCH model, the

GARCH-MIDAS has the advantage that it allows us to directly incorporate infor-

mation on the macroeconomic environment into the long-term component. Using

a flexible Beta weighting scheme, long-term volatility of daily stock returns is ex-

pressed as a weighted average of either lagged (one-sided filter) or lagged and future

(two-sided filter) values of lower frequency macroeconomic variables. While most of

the literature on volatility modeling exclusively focuses on the GARCH component,

within the GARCH-MIDAS framework the log GARCH component can be thought

of as the residual of a regression of the log conditional variance on macroeconomic

explanatory variables (see Engle et al., 2013, p.781). Within this new framework, we

identify specific economic variables that anticipate changes in long-term volatility.

Our analysis covers U.S. data for the 1969 to 2011 period and provides a detailed

analysis of the lead-lag relationship between macroeconomic variables and stock

market volatility. For this purpose, we consider a variety of measures of economic

activity, as well as inflation and interest rate developments. Furthermore, in order
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to obtain a realistic picture of the macroeconomic variables’ ability to anticipate

changes in stock market volatility in real-time, we employ first release instead of

revised data. Finally, combining first release data with expectations from the Survey

of Professional Forecasters (SPF) allows us to estimate feasible two-sided filters.

Our main results can be summarized as follows. First, we reconfirm the counter-

cyclical behavior of stock market volatility – this was first observed in Schwert (1989)

– for a broad set of macro variables.

Second, we identify several leading variables with respect to stock market volatil-

ity. That is, the optimal (one-sided) weighting schemes for these variables do not

decay from the beginning but are rather hump-shaped. Among these leading vari-

ables, the term spread and housing starts perform best in terms of variance ratios,

which measure the fraction of the variation in expected quarterly volatility that can

be attributed to the respective macro variable. In particular, the long-term com-

ponent based on the term spread increases before all the recessions in our sample.

The term spread specification clearly indicates increasing stock market risks well

in advance of the recent financial crisis. The close relationship between the term

spread, housing starts and stock market volatility is not surprising given that both

variables are commonly considered as leading indicators for the business cycle (see,

e.g. Estrella and Mishkin, 1998, and Kydland et al., 2012).

Third, we find that the performance of some variables, whose weights strictly de-

crease in the one-sided filter, can be improved by using a feasible two-sided filter

– one which combines first release data with SPF expectations about the future.

These variables can be described as coincident/lagging with respect to stock market

volatility. Specifically, for industrial production, the unemployment rate, and real

GDP, the feasible two-sided filters are preferred to their one-sided counterparts. The

results for these variables suggest that – besides the current state of the macroecon-

omy – expectations about future macroeconomic conditions are important drivers

of stock market volatility. This interpretation is very much in line with Campbell

and Diebold’s (2009, p.275) conclusion that expected business conditions forecast

future volatility because they are “linked to perceived systematic risk and expected

returns”.

Fourth, an out-of-sample forecast evaluation provides further evidence for the

predictive power of macroeconomic variables. That is, for most macro variables we

find significant improvements in forecasting performance over the benchmark model

that includes lagged realized volatilities. Modeling the long-term component as a

function of the macroeconomic environment pays off particularly when it comes to
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long-term forecasting.

Finally, it is important to highlight that our results complement the recent findings

in Asgharian et al. (2013) and Dorion (2013). The former study focuses on the

predictive ability of GARCH-MIDAS models that are based on the first two principal

components of several macro variables and the latter applies the GARCH-MIDAS

framework in the context of option pricing. While our main focus lies on the macro

variable specific lead-lag-structure and the potential gains from using unrestricted

one- and feasible two-sided filters, both Asgharian et al. (2013) and Dorion (2013)

exclusively employ one-sided filters with restricted weighting schemes.

The remainder of this article is organized as follows. Section 1.2 introduces the

GARCH-MIDAS component model. The data and empirical results are presented

in Sections 1.3 and 1.4. Finally, Section 1.5 concludes the article. Various additional

tables and figures are available in an online Supplementary Appendix.

1.2 The GARCH-MIDAS model

The present value models of Campbell (1991) and Campbell and Shiller (1988)

illustrate that unexpected returns can be associated with news that leads to revisions

in the discounted sum of future expected dividends and returns. Specifically, the

same news can have a small or large impact on unexpected returns depending on

whether it affects expectations over short or long horizons. The volatility component

models considered in this article capture this idea by relating the size of the new’s

impact to variables that describe the state of the macroeconomy and, hence, carry

information about expected future cash flows. For example, Engle and Rangel (2008)

assume that daily unexpected returns can be described by a two component volatility

model, i.e.

ri − E [ri|Fi−1] =
√
giτiZi, (1.1)

where ri are daily log returns, Fi is the information set available at day i, Zi
iid∼ (0, 1),

gi is a unit GARCH process and τi is an exponential spline function. While the

short-term volatility component gi represents the well-known day-to-day clustering

of volatility, the smooth long-term component τi reflects the state of the macroe-

conomy. Hence, Eq. (1.1) illustrates how the same piece of news can have strong or

weak effects on unexpected returns depending on the level of τi.

The drawback of the Spline-GARCH is that it is not straightforward to incorporate

information on the macroeconomy into the long-term component, since the macro
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variables are typically observed at a lower frequency than the daily returns. Engle

and Rangel (2008) opt for a two-step strategy. In a first step, they estimate the

model at a daily frequency and then aggregate τi to a yearly frequency. In a second

step, the aggregated long-term component is regressed on a set of macroeconomic

variables. For a panel of nearly 50 countries, Engle and Rangel (2008) show that

τi behaves counter-cyclically, i.e. it is high during recessions and low during boom

phases.

Since we intend to directly model the effects of the macro variables on long-term

volatility, we rely on the GARCH-MIDAS model proposed in Engle et al. (2013).

This approach allows us to combine daily return data with a long-term volatility

component that is entirely driven by the evolution of low-frequency macro variables.

We employ a variant of the model which assumes that the long-term component

changes at the same frequency that the macro variables are observed. In the follow-

ing, we use the notation

ri,t − E [ri,t|Fi−1,t] =
√
gi,tτtZi,t, (1.2)

where t = 1, . . . , T denotes a particular period, e.g. a quarter, and i = 1, . . . , N (t)

the days within that period. Daily expected returns are assumed to be constant,

i.e. we set E [ri,t|Fi−1,t] = µ for all i and t. The short-term component follows a

mean-reverting asymmetric unit GARCH process

gi,t = (1− α− β − γ/2) +
(
α + γ · 1{ri−1,t−µ<0}

) (ri−1,t − µ)2

τt
+ βgi−1,t, (1.3)

with α > 0, β > 0 and α + β + γ/2 < 1. That is, the choice of the constant in

Eq. (1.3) ensures that E [gi,t] = 1.

Following Engle et al. (2013), we consider two alternative versions of the long-term

component. In the basic version, long-term volatility is modeled as the weighted av-

erage of the lagged values of an explanatory variable Xt. We will refer to this version

as a one-sided filter. Alternatively, the extended version specifies long-term volatil-

ity as the weighted average of past, present, and future values of the explanatory

variable. This specification corresponds to a two-sided filter and will be discussed in

Section 1.4.2. In both cases, we opt for modeling log(τt) rather than τt itself which

ensures the positivity of the long-term component. We refer to models with macroe-

conomic explanatory variables as GARCH-MIDAS-X. Our benchmark specification

employs quarterly realized volatility as an explanatory variable and is labeled as
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GARCH-MIDAS-RV.

The one-sided version of the long-term component is given by1

log(τt) = m+ θ

K∑
k=1

ϕk(ω1, ω2)Xt−k, (1.4)

with Beta weighting scheme

ϕk(ω1, ω2) =
(k/(K + 1))ω1−1 · (1− k/(K + 1))ω2−1∑K
j=1 (j/(K + 1))ω1−1 · (1− j/(K + 1))ω2−1

. (1.5)

Even for a large K, Eq. (1.5) parsimoniously specifies the weights ϕk which are

completely determined by the two parameters ω1 and ω2. By construction, ϕk ≥ 0

for k = 1, . . . , K and
∑K

k=1 ϕk = 1. For ω1 = ω2 = 1, the weights are equal, i.e.,

ϕk = 1/K for all k. The restriction ω1 = 1, ω2 > 1 guarantees a decaying pattern,

i.e., the maximum weight is at the first lag. The rate of decay is then determined by

ω2, whereby large values of ω2 generate a rapidly decaying pattern and small values

generate a slowly decaying one. In contrast, the unrestricted scheme can generate

hump-shaped or convex weights.2 Whether an unrestricted weighting scheme leads

to a significant improvement relative to the restricted one can be assessed by means

of a likelihood ratio test (LRT). The maximum number K of lags to be included is

chosen through information criteria. Note that if we restrict θ to zero, the long-run

component remains constant. As a consequence, the GARCH-MIDAS-X specifica-

tion nests the asymmetric GARCH(1,1) process with unconditional variance equal

to exp(m).

Finally, we consider one-period-ahead volatility forecasts. Since at the beginning

of period t the long-term volatility τt is predetermined with respect to FN(t−1),t−1,

the volatility forecast for a specific day i within period t is given by

E
[
gi,tτtZ

2
i,t|FN(t−1),t−1

]
= τtE

[
gi,t|FN(t−1),t−1

]
. (1.6)

Since E
[
gi,t|FN(t−1),t−1

]
= 1 + (α + β + γ/2)i−1(g1,t − 1) converges to unity, i.e. to

the unconditional variance of gi,t, the forecast approaches the long-term component

1In order to differentiate between the long-term components of the GARCH-MIDAS-X and
GARCH-MIDAS-RV models we also use the notation τXt and τRVt .

2For a more detailed discussion of the Beta weighting scheme see Ghysels et al. (2005).
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for i large. The volatility forecast for period t is then given by

E

N(t)∑
i=1

gi,tτtZ
2
i,t

∣∣∣∣FN(t−1),t−1

 = τt

(
N (t) + (g1,t − 1)

1− (α + β + γ/2)N
(t)

1− α− β − γ/2

)
. (1.7)

Clearly, if g1,t is equal to its unconditional expectation, the period t forecast would

be τtN
(t), which resembles the square-root-of-time rule. For a more than one-period-

ahead prediction, one needs to forecast the long-term component itself. We will come

back to this issue in Section 1.4.3.

We estimate the model parameters via quasi-maximum likelihood. The asymp-

totic normality of the quasi-maximum likelihood estimator for a ‘rolling window’ ver-

sion of the GARCH-MIDAS-RV has been established in Wang and Ghysels (2015).

To the best of our knowledge, asymptotic results for the general GARCH-MIDAS-X

model are not yet available. However, we performed a Monte Carlo analysis that

suggests standard asymptotic inference is also valid for this specification.

1.3 Data

In the empirical analysis, we focus on the S&P 500 and U.S. macroeconomic data

for the 1969 to 2011 period. We consider daily stock returns and combine (first

release) macroeconomic data with the corresponding SPF expectations. The survey

data are obtained from the database at the Federal Reserve Bank of Philadelphia,

while all other data are obtained from the FRED database at the Federal Reserve

Bank of St. Louis.

Since the SPF data are only available at a quarterly frequency and we intend

to employ filters that combine first release with expectations data, we consider all

variables at this frequency. That is, for data that are available at a monthly or daily

frequency, we take quarterly averages of the levels. For completeness, in Section 1.4.4

we provide estimation results based on monthly macro data and show that the choice

of frequency for the macro variables does not affect our main results.

Stock market data: We consider continuously compounded daily S&P 500 stock

return data, ri,t, from January 2nd 1969 to December 30th 2011. Quarterly realized

volatility is calculated as RVt =
∑N(t)

i=1 r
2
i,t.

Macroeconomic data: Data revisions can be substantial for macroeconomic

variables. Thus, employing revised instead of first release data can be misleading

when it comes to forecast evaluation (see, for example, Stark, 2010). To obtain
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a realistic evaluation of the various GARCH-MIDAS-X models, we try to match

the information that is used in our econometric specification with the one that was

available to market participants. That is, for those macro variables that undergo

revisions, we employ the advance estimates as published by the Bureau of Economic

Analysis.3

We employ the following macroeconomic variables: real GDP, industrial produc-

tion, the unemployment rate, housing starts, nominal corporate profits after tax,

real personal consumption, the Chicago Fed national activity index (NAI), the new

orders index of the Institute for Supply Management, and the University of Michi-

gan consumer sentiment index. We include the NAI and the new orders index in

levels and take the first difference of the respective level for the unemployment rate

and the consumer sentiment index. For all other variables, we calculate annual-

ized quarter-over-quarter percentage changes as 100 · ((Xt/Xt−1)4 − 1). Inflation

is measured as the annualized quarter-over-quarter percentage change in the GDP

(chain-type) deflator. Finally, to account for interest rate developments, we calcu-

late the term spread as the difference between the 10-year Treasury bond yield and

the 3-month T-bill rate.

When dealing with two-sided filters in Section 1.4.2, we also employ forecasts of

the macro variables that are based on the following AR(4) model

Xt =
4∑
i=1

δiDit +
4∑
i=1

φiXt−i + ξt, (1.8)

where Dit are seasonal dummies. This regression is used in Schwert (1989) and

Engle et al. (2013) to measure the volatility of a macro variable Xt by the squared

residual ξ̂2
t .

Summary statistics for all variables can be found in Table 1.1, while the corre-

sponding times series are plotted in Fig. 1.1. According to standard unit roots tests

all series can be considered as being stationary.

Expectations data: We employ expectations data only for those variables that

were included in the SPF dataset during our full sample period (see the last column

of Table 1.1). The survey is conducted after the release of the Bureau of Economic

Analysis’s advance report, i.e., survey participants know the first release data for the

previous quarter when they make their predictions. For each variable, we consider

3Nevertheless, our evaluation is not fully in real-time. This is because for some variables – such
as real GDP – the advance estimate of Xt−1 is published in quarter t and therefore not included
in the information set FN(t−1),t−1.
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the median expectation for the quarter in which the survey is conducted, denoted by

XSPF
t|t , and forecasts up to four-quarters-ahead, denoted by XSPF

t+k|t, k = 1, . . . , 4.4

1.4 Empirical results

In Section 1.4.1 we first present estimation results for various one-sided GARCH-

MIDAS specifications and then turn to two-sided models in Section 1.4.2. The

out-of-sample forecast performance of the one- and two-sided models is investigated

in Section 1.4.3. To complete our model comparisons, Section 1.4.4 provides several

extensions and robustness analyses.

1.4.1 One-sided filters

For the time being, we consider one-sided filters. In Section 1.4.1, we first confirm the

counter-cyclical behavior of long-term volatility for a broad set of macro variables.

We then focus on the lead-lag-structure between the macro variables and stock

market volatility and identify variables that require flexible unrestricted filters and,

hence, lead long-term volatility. In Section 1.4.1, we analyze the question whether

macro variables still contain predictive information on long-term volatility once one

controls for lagged realized volatility.

The lead-lag-structure between macro variables and volatility

Estimation results for the parameters of the long-term volatility component of the

various one-sided GARCH-MIDAS-X models are summarized in Table 1.2. An ex-

tended version of the table containing all parameter estimates can be found in the

Appendix. For each macro variable, the first/second line presents the estimates for

the restricted/unrestricted weighting scheme. We choose K = 12 for all variables

which corresponds to three MIDAS lag years.5 To ensure comparability across the

one- and two-sided models (see Section 1.4.2), as well as models based on macroeco-

nomic uncertainty measures (see Section 1.4.4), all models are estimated based on

daily return data for the 1973Q1 to 2010Q4 period and quarterly macro data from

4There are a few missing observations of the four-quarters-ahead forecasts at the beginning of
the sample. Analogously to Eq. (1.8), we estimate XSPF

t+4|t =
∑4
i=1 δiDit +

∑4
i=1 φiX

SPF
t+4−i|t + ξt

using the available data and replace the missing observations by the predictions X̂SPF
t+4|t.

5As long as the selected K is large enough, we find the estimation results to be robust with
respect to the specific choice of the maximum number of lags included.
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1970Q1 onwards.6 The table also reports the estimates for the GARCH-MIDAS-RV

as well as the one-component GARCH(1,1) model.

First, we note that the estimates of the GARCH parameters (µ, α, β, γ) are sig-

nificant at the 1% level in all cases (see the Appendix). The estimates of α and β

take the typical values and, consistent with the leverage effect, the estimate of the

parameter γ is found to be positive.

Next, we have a closer look at the estimates of the long-run component τt. For all

variables except the GDP deflator the estimated θ is highly significant and has the

expected sign. For example, for real GDP, the estimated θ is negative, meaning that

an increase in the growth rate is associated with a decline in long-term volatility.

Conversely, the positive θ for the unemployment rate indicates that a rise in unem-

ployment is associated with higher long-term volatility. That is to say, in all cases

the sign of the scale parameter confirms the counter-cyclical property of long-run

volatility as observed in Engle and Rangel (2008) and Engle et al. (2013).

In Fig. 1.2 we plot the estimated restricted and unrestricted weighting schemes

for the different macro variables. For six out of the eleven macro variables, e.g. the

unemployment rate or the NAI, both schemes are declining from the beginning

with almost identical shapes. As one would expect, for these variables a LRT (see

Table 1.2) does not reject the constraint (ω1 = 1) imposed by the restricted scheme.

In sharp contrast, for housing starts, the GDP deflator, consumer sentiments, real

consumption, and the term spread the unrestricted schemes are hump-shaped and

clearly different from the restricted ones. For these variables, the restricted scheme

appears to be clearly misspecified. For example, for the term spread the unrestricted

filter takes its maximum weight at a lag of five quarters, while the restricted scheme

is characterized by an almost linear decay. Only in case of the GDP deflator, we

find an extreme and somewhat unreasonable weighting scheme, putting almost all

weight on the fifth lag. In line with these considerations, the LRT (see Table 1.2)

rejects the constraint that ω1 = 1 for these five variables.7 Accordingly, we classify

all variables that are characterized by hump-shaped weights as leading with respect

to long-term volatility. Finally, note that the optimal weighting scheme for the

GARCH-MIDAS-RV model is the restricted one.

6The first year of macro data (1969Q1-Q4) is used to construct ex-post macro volatility mea-
sures based on the AR(4) model in Eq. (1.8).

7Although the LRT rejects the restricted weighting scheme for the GDP deflator, the estimate of
θ is only marginally significant in the unrestricted filter. That is, the GDP deflator hardly explains
any time variation in the conditional variance of the S&P 500 returns. Hence, all subsequent results
with respect to the GDP deflator should be taken with a grain of salt.
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The finding that some variables are leading with respect to stock market volatility

while others are not is economically plausible. Variables such as industrial produc-

tion (the unemployment rate) are typically considered as coincident (lagging) indica-

tors for the business cycle. For these variables the most recent observations appear

to matter most for predicting the counter-cyclical long-term volatility. In contrast,

the term spread or housing starts are usually considered as leading indicators.8 For

example, Estrella and Hardouvelis (1991), Estrella and Mishkin (1998) and Ang et

al. (2006), among others, provide evidence that the term spread is a powerful pre-

dictor of future economic activity and recessions. The predictive ability of the term

spread is typically explained by the term spread’s relation to investors expectations

about future economic activity, demand for credit and monetary policy (see, e.g.,

Estrella and Trubin, 2006). Similarly, Leamer (2007) and Kydland et al. (2012)

show that housing starts lead real GDP. According to Kydland et al. (2012), the

leading property of housing starts can be rationalized by the empirical observation

of low interest rates for mortgages that precede economic upturns. Our results sug-

gest that variables which lead the business cycle are also leading with respect to

financial volatility and, therefore, require unrestricted weighting schemes.

Fig. 1.3 shows the quarterly aggregated long-term component,
√
N (t)τXt , and

the quarterly conditional volatility,
√
τXt g

X
t with gXt =

∑N(t)

i=1 g
X
i,t, for all GARCH-

MIDAS-X models along with the realized volatility,
√
RVt. The figure clearly shows

the negative relation between
√
RVt and economic activity. The long-term compo-

nents of all macro variables, except the GDP deflator, mirror this counter-cyclical

pattern of stock market volatility.9 Nevertheless, there are also distinct differences.

While the long-term component of the term spread typically increases in advance

of a recession, the long-term components of other variables, e.g. real GDP, seem

to increase during recessions. Finally, the long-run volatility component of the

GARCH-MIDAS-RV model is dominated by the 1987 stock market crash and the

recent financial crisis. It hardly increases during the other recession periods.

Next, we compare the fit of the various models by means of the Bayesian informa-

tion criterion (BIC). According to the BIC, the GARCH-MIDAS-X models based

on housing starts, corporate profits, the NAI, new orders, and the term spread are

8Our classification of leading vs. coincident/lagging variables is in line with the fact that the
yield spread, housing permits, and also consumer expectations are included in the Conference
Board’s leading economic index for the US, while industrial production is included in the coincident
index.

9In line with the only weakly significant estimate of θ for the GDP deflator, the corresponding
long-term component is rather flat.
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preferred to the GARCH-MIDAS-RV (and to the nested GARCH specification).

From an economic point of view, it is important to know how much of the variation

in the expected quarterly variance of a specific GARCH-MIDAS-X model can be

attributed to the variation in the corresponding macro variable (see Engle et al.,

2013, p.794). In order to answer this question, we provide the value of a variance

ratio (VR) statistic for each model. In general, we let the VR be defined as the

fraction of the sample variance of the log of total quarterly conditional volatility,

V̂ar(log(τXt g
X
t )), that can be explained by the sample variance of the log long-

term component, V̂ar(log(τXt )). For easier comparison across the various GARCH-

MIDAS-X models, we report

VR(X) =
V̂ar(log(τXt ))

V̂ar(log(τRVt gRVt ))
, (1.9)

which relates the sample variance of the log of the long-term component of a specific

GARCH-MIDAS-X model to the sample variance of the log of the total expected

variance of the baseline GARCH-MIDAS-RV model with restricted filter.10 It is

important to note that a small VR does not necessarily imply a poor model fit,

since a low V̂ar(log(τXt )) can also be an indication of smooth movements in the

underlying macro variable. However, in the extreme case, where V̂ar(log(τXt )) ≈ 0,

the long-term component is constant and the GARCH-MIDAS-X reduces to the

simple GARCH model. Since τXt dominates the multi-day/period-ahead volatility

forecast (see Eq. (1.7)), it is clear that only GARCH-MIDAS-X specifications with

high VRs have the potential to outperform the simple GARCH model.

As Table 1.2 shows, the model based on housing starts (unrestricted weighting

scheme) achieves the highest VR. Roughly 22% of the variation in expected quar-

terly volatility is explained by housing starts. The specifications including new

orders and the term spread (unrestricted weighting scheme) rank second and third.

Most importantly, the models based on these variables achieve higher VRs than

the benchmark GARCH-MIDAS-RV model. Interestingly, these are also the three

models with the lowest BIC. As expected, the VR for the model based on the GDP

deflator is by far the lowest.

10Although using V̂ar(log(τRVt gRVt )) instead of V̂ar(log(τXt g
X
t )) in the denominator does sim-

plify the comparison across models, we verified that it does not affect the ranking of models.
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Combining macro information with realized volatility

The previous results suggest that macro variables carry information about long-

term volatility that is complementary to that contained in realized volatility. To

formally investigate whether the various macroeconomic variables have additional

explanatory power over realized volatility, we modify the long-term component by

including RVt and a macro variable, Xt, at the same time:

log(τt) = m+ θRV
K∑
k=1

ϕk(ω
RV
1 , ωRV2 )RVt−k + θX

K∑
k=1

ϕk(ω
X
1 , ω

X
2 )Xt−k. (1.10)

We refer to this model as GARCH-MIDAS-RV-X. It nests both the GARCH-MIDAS-

RV and the GARCH-MIDAS-X model. In line with our previous findings we set

ωRV1 = 1, but estimate both restricted and unrestricted weighting schemes for the

macro variables.

Estimation results of the relevant parameters are presented in Table 1.3. The

scaling parameter associated with realized volatility, θRV , is positive and significant

at the 1% level across all models. Most importantly, the parameter associated with

the macro variables, θX , is significant for all variables (at least in one of two spec-

ifications) except for the unemployment rate and real consumption. Once again,

the LRT rejects the restricted weighting scheme for housing starts, the GDP de-

flator, the consumer sentiment index, and the term spread. That is, even if we

control for realized volatility, these variables are still leading with respect to long-

term volatility. In summary, the results in Table 1.3 clearly demonstrate that most

of the macroeconomic variables considered in our analysis expose information on

stock market risk beyond that contained in past realized volatility. The results also

reconfirm that the optimal weighting schemes differ from one macro variable to the

other.11

1.4.2 Two-sided filters

Engle et al. (2013) have suggested that the performance of the GARCH-MIDAS-X

model can be further improved by employing a two-sided filter of the type:

log(τt) = m+ θ

Klag∑
k=−Klead

ϕk(ω1, ω2)Xt−k. (1.11)

11Figures of the weighting schemes and the corresponding long-term components are shown in
the Appendix.
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Two-sided filters reflect the idea that current stock market volatility depends not

only on the past, but also the future (expected) state of the macroeconomy. However,

since the future values of the macro variables are unknown in t − 1, the two-sided

specification in Eq. (1.11) is infeasible in real-time. Instead, we consider a feasible

version of the two-sided filter by replacing Xt−k, k = −Klead, . . . , 0, with forecasts

that are based on information available in t − 1. We consider both time series

forecasts (TSF) that are constructed from the model given in Eq. (1.8) as well as

the median forecasts from the SPF. For example, using the SPF forecasts the feasible

two-sided filter is given by

log(τt) = m+ θ

Klag∑
k=1

ϕk(ω1, ω2)Xt−k + θ
0∑

k=−Klead

ϕk(ω1, ω2)XSPF
t−k|t−1. (1.12)

Since the maximum forecast horizon of the SPF predictions is four-quarters-ahead,

we choose Klead = 3. As before, we set Klag = 12. Finally, we consider a two-sided

filter that is entirely based on SPF data (feasible two-sided SPF + SPF lags) and

given by

log(τt) = m+ θ

Klag∑
k=1

ϕk(ω1, ω2)XSPF
t−k|t−k + θ

0∑
k=−Klead

ϕk(ω1, ω2)XSPF
t−k|t−1. (1.13)

Overall, we compare five specifications: the one-sided filter, the infeasible two-

sided filter, the feasible two-sided TSF and SPF filters, and the entirely SPF based

filter. For those macro variables for which SPF expectations are available for the

full sample period, Table 1.4 presents the BICs as well as the VR statistics for the

five specifications.12 A comparison in terms of the BIC reveals that for all six macro

variables the preferred two-sided specification achieves a BIC that is at least as low

as the BIC of the one-sided model. While the differences between the models are

typically small in terms of BICs, they become much more pronounced when looking

at the VRs and, again, are in favor of the two-sided models. Most importantly, in

all cases one of the feasible SPF based two-sided filters outperforms the one-sided

specification.13 This result is remarkable, because it illustrates the benefits of the

feasible two-sided filters, which combine information on the current (and past) state

12Detailed estimation results can be found in the Appendix.
13In case of real GDP the entirely SPF based specification even outperforms the infeasible

one. This finding is plausible since first release data for real GDP are often substantially revised
subsequently (see, e.g, Croushore, 2011) and, hence, stock market volatility might be more closely
related to expectations data than to first release data.
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of the economy with expectations about future macroeconomic conditions. The

improvements in the VRs may be rationalized by the argument that the survey ex-

pectations are closely related to expectations on future dividends and returns and,

therefore, drive long-term volatility. This interpretation supports Campbell and

Diebold’s (2009) conclusion that expectations data predict future expected returns

because they carry information about future volatility and perceived time-varying

risk. Finally, for all but one variable the TSF based specification performs worst

amongst the two-sided models. Given Stark’s (2010, p.2) finding that the SPF “pro-

jections generally outperform the benchmark projections of univariate autoregressive

time-series models”, this result is not surprising.

In order to better understand why for some variables the VRs more than double

when two- instead one-sided filters (e.g. the unemployment rate) are employed, it is

insightful to compare the estimated weighting schemes for the one-sided, infeasible

two-sided, and preferred feasible (in terms of the VR) specifications. Figure 1.4

shows that for all variables for which the VRs are greatly improved when using a

two-sided filter, the optimal one-sided filter was the restricted one. That is, for

all variables which are coincident (lagging), i.e. the recent (future) observations are

most important, switching from one- to two-sided filters leads to sizable increases

in the VRs. Clearly, for those variables the availability of the SPF expectations is

most valuable. In sharp contrast, for the leading variables housing starts and GDP

deflator the optimal one-sided filter is the unrestricted one and, hence, two-sided

filters apply very little weight to future values. Also, note that for both variables

the weights of the feasible two-sided filters are almost identical with those of the

infeasible ones. This explains why we observe much smaller differences in the VRs

of the one- and two-sided models for these two variables.

1.4.3 Forecast evaluation

Next, we analyze the out-of-sample forecast performance of the various GARCH-

MIDAS-X models. We focus on the one-sided specifications from Section 1.4.1 as

well as the best (in terms of the VR statistic) feasible SPF based two-sided models

from Section 1.4.2.

As discussed in Section 1.2, forecasts of the gi,t component can be obtained it-

eratively for any horizon given subsample parameter estimates. The one-quarter-

ahead forecast of the long-term component, τ̂t|t−1, is directly given by Eq. (1.4) or

(1.12/1.13). For longer horizons, we assume that the long-term component remains
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at the level of the one-step prediction, i.e. we set τ̂t+s|t−1 = τ̂t|t−1 for s > 0. Daily

volatility forecasts are calculated as the product of the GARCH and the long-term

component forecasts. The quarterly forecasts are given by the sum of the daily

forecasts over the respective quarter.

We divide the full sample into an estimation period (based on daily return data

from 1973Q1 to 1998Q4 and quarterly macroeconomic data from 1970Q1 on) and an

out-of-sample period (1999Q1 - 2010Q4). We then evaluate one- up to four-quarters-

ahead volatility forecasts over the 2000Q1 - 2010Q4 period by comparing the models’

predicted volatilities with a series of realized volatilities based on 5-minute intra-

day returns.14,15 For each model and forecast horizon we present the parameter

estimates of a Mincer-Zarnowitz (MZ) regression as well as the corresponding R2. In

order to compare the forecast performance of a specific GARCH-MIDAS-X relative

to the benchmark GARCH-MIDAS-RV we report the ratio of the corresponding

mean square errors (MSE). A ratio below one implies an improvement upon the

benchmark model. Finally, we test for equal (unconditional) predictive ability over

the benchmark model by means of the Giacomini and White (2006) test.

Table 1.5 presents the evaluation of the quarterly volatility forecasts. At the

one-quarter-ahead horizon, the results are quite similar across different models. In

general, estimates of the constant and slope parameter in the MZ regressions are

not significantly different from zero and one. All models except the one for the term

spread yield lower MSEs than the RV model, yet not significantly so. However, with

increasing forecast horizons the differences among the model specifications become

more evident.

At the 2-, 3- and 4-quarters horizons, many GARCH-MIDAS-X models signif-

icantly outperform the benchmark model. Interestingly, for industrial production

and the unemployment rate, only the two-sided specifications do so. This finding

squares with our results in Section 1.4.2, where we found the strongest improvements

in the VRs for these two variables when using two- instead of one-sided filters. For

housing starts and corporate profits the one- and two-sided filters basically have

the same forecasting ability. Once again, this is in line with Section 1.4.2 where we

found only modest improvements in the VRs for both variables. The models based

on the NAI as well as consumer sentiment significantly outperform the RV based

model at the 2-, 3- and 4-quarters-ahead horizons, while the models based on the

14Since the first four-quarters-ahead volatility forecast is constructed in 1999Q1 (i.e. in the first
out-of-sample period) for 2000Q1, the evaluation period begins in 2000Q1.

15The intra-day returns are available at the website of the Oxford-Man Institute of Quantitative
Finance.
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term spread and new orders do so for 3- and 4-quarters-ahead only.

Why does the performance of most GARCH-MIDAS-X models relative to the RV

model improve when increasing the forecast horizon? This question can be addressed

by investigating the behavior of the daily volatility forecasts of the various models

at different horizons. Exemplary, we focus on the h = 1-, 126-, and 252-days-

ahead volatility forecasts. Although, in practical applications one would rarely be

interested in the 126- or 252-days-ahead forecasts in isolation (but rather in forecasts

of volatility over certain periods), these forecasts illustrate how the dominance of

the short- versus the long-term component varies with the forecast horizon.

We evaluate the daily forecasts for a rolling window of 500 observations (i.e. ap-

proximately two years of data) again using the Giacomini and White (2006) test.

For each macro variable, Figure 1.5 presents the evolution of the corresponding t-

statistics for the one- and two-sided models at the three forecast horizons. Each data

point refers to a test statistic for a sample ending at that point in time. Shaded

areas refer to samples that include observations from recession periods. Since the

out-of-sample period begins in 2000, we depict the t-statistics from 2002 onwards and

include ‘recession shadings’ until November 2003 (for the March - November 2001

recession) and from December 2007 until the end of the sample (for the December

2007 - June 2009 recession).

First, at least from mid-2004 onwards, for almost all macro variables the t-

statistics tend to increase with the forecast horizon under consideration. For exam-

ple, for the term spread the line which corresponds to h = 252 is almost permanently

above the one corresponding to h = 1. For the 1-day-ahead forecasts the Giacomini

and White (2006) test typically neither favors the GARCH-MIDAS-X nor the RV

model, i.e. the test statistic is either insignificant or significant but with varying

sign over the different sample periods. Since these forecasts are largely determined

by the short-term component (which is very similar for both specifications), this

result is not surprising. In stark contrast, for h = 252 the macro variable based

specifications often significantly outperform the RV model. Since predictions of the

gi,t component converge to one with an increasing forecast horizon, the long-term

component dominates the daily volatility forecast for h = 252. Hence, our finding

suggests that the long-term components of the GARCH-MIDAS-X models are bet-

ter than the long-term component of the RV model in anticipating the future level

of volatility and, thereby, confirms our interpretation of Table 1.5.

Second, Figure 1.5 illustrates the benefits of the feasible two-sided filters when

applied to coincident/lagging variables. At each forecast horizon, the lines which
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represent the t-statistics for the two-sided filters are typically above the ones for the

one-sided filters, i.e. the SPF based feasible two-sided filters improve upon the purely

backward-looking one-sided filters. This effect appears to be stronger at longer

forecast horizons and, as expected, is most pronounced for industrial production,

the unemployment rate and, to some extent, real GDP. On the contrary, for the

leading variables, i.e. housing starts and the GDP deflator, the one- and two-sided

filters lead to basically the same t-statistics for a given forecast horizon.

Third, even if the focus lies on long-term forecasting (h = 126 and h = 252) the

relative forecasting performance of the GARCH-MIDAS-X models varies consider-

ably over time. The GARCH-MIDAS-X models clearly outperform the RV model

in between both recession periods. Also, with the onset of the financial crisis their

forecast performance improves relative to the one of the RV model. From mid 2008

onwards, basically all GARCH-MIDAS-X specifications significantly outperform the

RV model. The latter finding is in agreement with Paye (2012) and Dorion (2013),

who conclude that macroeconomic variables are of greater importance around re-

cessions. In contrast, at the beginning of the evaluation period and during a short

episode preceding the recent financial crisis the macro based specifications are at

best at par with the RV model.

We also evaluated the forecast performance of the GARCH-MIDAS-RV-X models

considered in Section 1.4.1. Although these models generally achieved higher VRs

(see Table 1.3) than the corresponding GARCH-MIDAS-X and GARCH-MIDAS-

RV models, their forecast performance does not significantly differ from the one of

the benchmark RV model. While this finding might be surprising at first sight, a

visual inspection of the corresponding long-term volatility components suggests a

simple explanation. During periods of high volatility such as the 1987 stock market

crash or the recent financial crisis the long-term component of the combined RV-X

specification essentially behaves like the one of the RV model. Since the long-term

components dominate the predictions of the GARCH-MIDAS model over longer

horizons, it is not surprising that we do not find significant differences in the forecast

performance of the RV-X and the RV model for our evaluation sample. For details

see the Appendix.

Finally, although the forecasting results of the GARCH-MIDAS-X model are en-

couraging in terms of statistical significance, a more direct approach might be more

informative concerning the potential economic gains from using the two component

specification. Dorion (2013) provides a first application to long-term option pricing

and finds evidence that accounting for business conditions reduces option-pricing er-
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rors. Since this is beyond the scope of the current paper, we look forward to evaluate

the performance of GARCH-MIDAS-X based volatility predictions in long-term risk

management or portfolio choice settings in future work.

1.4.4 Extensions and robustness

In this section we extend our previous results by including the first two principal

components of the macro variables and measures of macroeconomic uncertainty as

explanatory variables. We then take a fresh look at predictive regressions. Finally,

we provide some robustness checks with respect to the sample period and frequency

of the macro variables. All tables and figures related to this section can be found in

the online Supplementary Appendix.

Principal components: Instead of estimating a separate GARCH-MIDAS-X

model for each macro variable, we use the first two principal components of the macro

variables as explanatory variables. This approach has for instance been adopted

in Asgharian et al. (2013). The first principal component is (contemporaneously)

highly correlated with the NAI, real GDP, and new orders. For the second principal

component, we find the highest correlation with the term spread. The estimates

of the θ coefficients are significant in all principal component based specifications.

Consistent with our previous finding that the term spread is a leading variable,

the results suggest an unrestricted weighting scheme for the second component,

but not for the first one. The forecast evaluation results confirm our conclusion

that the relative performance of the macro models over the RV model enhances

with increasing forecasting horizon. Still, we neither find in-sample (in terms of

BICs or VRs) nor out-of-sample (in terms of MSE ratios) improvements of the

principal component based models over the best one- and two-sided specifications

from Sections 1.4.1 and 1.4.2.

Ex-ante survey disagreement vs. ex-post volatility: Engle and Rangel

(2008) and Engle et al. (2013) have empirically investigated whether there is a link

between long-term volatility and the uncertainty about macroeconomic fundamen-

tals.16 Following Schwert (1989), they proxy the uncertainty associated with a macro

variable with the squared residual from the regression given by Eq. (1.8). We con-

jecture that survey based ex-ante uncertainty measures are more appropriate than

such ex-post regression based volatility proxies (see also David and Veronesi, 2013,

16For economic models that rationalize a link between stock market volatility and macroeco-
nomic uncertainty see Veronesi (1999) and Bollerslev et al. (2009), among others.
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and Arnold and Vrugt, 2008). As an ex-ante measure we employ the disagreement

among the SPF forecasters as described by the interquartile range of the individual

point forecasts. To analyze whether the potential effect of disagreement varies with

the forecast horizon, we employ the disagreement concerning forecasts of the current

quarter as well as up to four-quarters-ahead.

We estimate the GARCH-MIDAS-X models including both types of uncertainty

measures. While θ̂ is insignificant in all specifications based on the ex-post volatil-

ity measure, it is significant for various specifications based on the ex-ante survey

disagreement. In particular, we find significant effects regarding the future devel-

opment of the unemployment rate. As one would expect, the estimated coefficients

suggest that higher dispersion in expectations increases stock market volatility.17

For all variables, the BIC favors one of the disagreement based specifications. Our

results suggest that ex-ante uncertainty measures are more informative of long-term

risks than ex-post measures of volatility. Nevertheless, the VRs of the disagreement

based specifications are generally lower than the ones for the variables in levels.

Predictive regressions: Our findings can be viewed as being complementary to

recent research on the determinants of the secular component of financial volatility

such as Christiansen et al. (2012) and Paye (2012). For example, Christiansen et

al. (2012) focus on predictive regressions of the type

log(
√
RVt) = c+ ρ log(

√
RVt−1) + θXt−1 + ζt, (1.14)

and find that – controlling for log(
√
RVt−1) – financial variables appear to be more

important predictors of volatility than macroeconomic variables.

The parameter estimates of Eq. (1.14) for the different macro variables in our

dataset imply that none of the variables has explanatory power for realized volatility.

Similarly, the R2s of the models that are augmented with macro variables are only

marginally higher than the R2 of the AR(1) benchmark model. Next, we estimate

a version of Eq. (1.14) in which Xt−1 is replaced by log(
√
N (t)τ̂Xt ), i.e. by the (log

of the scaled) estimated long-term component of the respective GARCH-MIDAS-

X model. We find that most long-term components have significant explanatory

power for log realized volatility, some even at the 1% level. In addition, we now

observe sizable increases in the R2s compared to the pure AR(1) model. The largest

increase is found for the term spread. Thus, by including τ̂Xt – which parsimoniously

17The only exception is corporate profits for which we obtain a counterintuitive negative sign
in some specifications.
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summarizes the information about the lead-lag-structure between a specific macro

variable and financial volatility – we find more promising evidence for the relevance

of the macro variables than from the original predictive regressions.

1973Q1 - 2007Q2 subsample: A potential objection against our findings might

be that some of them could be driven by the recent financial crisis. Reestimating

all models for a sample that ends in 2007Q2 provides convincing evidence that this

is not the case. First, the estimated θ coefficients keep their sign and significance,

i.e. the evidence in favor of the counter-cyclical behavior of long-term volatility is

reconfirmed. Second, housing starts, the GDP deflator, consumer sentiment, real

consumption, and the term spread are again identified as leading variables. Also,

the combination of the macro variables with realized volatility does not alter our

conclusions.

Monthly data: As mentioned in Section 1.3, some of our macro variables are

available at the monthly frequency. Over the full sample period, these variables are

industrial production, the unemployment rate, housing starts, the NAI, new orders,

and the term spread. In order to analyze the robustness of our results with respect

to the frequency of the macro variables, we estimate the GARCH-MIDAS-X and

GARCH-MIDAS-RV-X models based on monthly data. The estimation results are

again in line with our previous findings in Section 1.4.1. In particular, for all six

variables the shape of the weighting scheme is robust with respect to the choice of

the frequency.

1.5 Conclusion

This paper revisits the link between long-term financial volatility and the macroe-

conomic environment using the GARCH-MIDAS component model. In general, our

results strongly confirm that long-term financial volatility behaves counter-cyclically.

Our particular focus is on the lead-lag-structure between the macro variables and

long-term volatility. First, we identify leading variables such as the term spread and

housing starts for which the optimal one-sided filters are unrestricted ones. Second,

for real GDP, industrial production, and the unemployment rate the most timely

information is highly valuable and SPF based feasible two-sided filters considerably

improve upon their one-sided counterparts. Hence, our findings highlight the po-

tential role of expectations data in the modeling of stock market volatility. The

empirical evidence suggests that long-term volatility is mainly driven by informa-

tion related to the current state of the economy as well as to expectations regarding
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future macroeconomic conditions. In addition, we find convincing in- as well as out-

of-sample evidence that macro variables contain information that is complementary

to that included in lagged realized volatilities.
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1.6 Tables and figures

1.6.1 Tables

Table 1.1: Descriptive statistics for stock market and macro data

Variable Obs Min Max Mean SD Skew. Kurt. AC(1) SPF
Stock market data
S&P 500 daily returns 10852 -22.90 10.96 0.02 1.09 -1.02 28.61 0.01
S&P 500 quarterly RV 172 11.61 1143.40 74.75 121.92 6.40 51.11 0.38
Macro data
∆ real GDP 172 -10.37 11.16 2.44 3.20 -0.97 5.82 0.49 X
∆ Ind. prod. 172 -29.03 21.16 2.15 6.66 -1.06 6.59 0.54 X
∆ Unemp. 172 -0.97 1.77 0.03 0.38 1.32 6.62 0.50 X
∆ Housing 172 -69.03 236.05 5.89 43.69 1.79 10.11 0.12 X
∆ Corp. prof. 172 -70.81 180.27 12.33 29.69 1.51 10.05 0.13 X
∆ GDP deflator 172 -0.33 13.69 3.73 2.64 1.21 4.21 0.83 X
NAI 172 -3.41 1.92 -0.02 0.89 -1.41 6.24 0.73 7
New orders 172 27.27 71.90 54.74 7.75 -0.75 4.03 0.74 7
∆ Cons. sent. 172 -14.70 16.27 -0.16 5.37 0.11 3.61 -0.08 7
∆ real cons. 172 -11.93 10.19 2.95 2.97 -1.25 7.43 0.08 7
Term spread 172 -1.43 3.80 1.66 1.29 -0.42 2.29 0.88 7

Notes: The dataset covers the sample from 1969Q1 to 2011Q4. The reported statistics include the
number of observations (Obs), the minimum (Min) and maximum (Max), the mean, standard deviation
(SD), Skewness (Skew.), Kurtosis (Kurt.), and the first order autocorrelation coefficient (AC(1)). The
last column (SPF) shows whether the respective variable is available in the SPF dataset over the full
sample period. In case of the unemployment rate and the consumer sentiment index ∆ refers to the
first difference of the respective levels. For all other variables, ∆ refers to annualized quarter-over-
quarter percentage changes as in ∆Xt = 100 · ((Xt/Xt−1)4 − 1). The term spread is calculated as the
difference between the 10-year Treasury bond yield and the 3-month T-bill rate. All macroeconomic
variables included in the SPF dataset are obtained from the Federal Reserve Bank of Philadelphia. The
remaining macro and stock market data are obtained from the Federal Reserve Bank of St. Louis.
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Table 1.2: One-sided GARCH-MIDAS-X specifications

Variable m θ ω1 ω2 LLF BIC VR(X)
∆ real GDP 0.1884

(0.1562)
−0.0803???

(0.0251)
1 4.6508???

(1.1950)
−12789.02 2.6733 6.55

0.1921
(0.1558)

−0.0823???

(0.0263)
1.4895
(1.5532)

5.8531?
(3.0656)

−12788.93
[0.6641]

2.6742 6.90

∆ Ind. prod. 0.0769
(0.1375)

−0.0434???

(0.0133)
1 4.5453???

(1.2437)
−12788.47 2.6732 7.57

0.0767
(0.1370)

−0.0438???

(0.0129)
1.6441
(1.3154)

6.3975??
(3.2453)

−12788.25
[0.5064]

2.6741 8.02

∆ Unemp. −0.0317
(0.1365)

0.5689???
(0.1865)

1 6.4943???
(2.1923)

−12789.96 2.6735 6.02

−0.0320
(0.1369)

0.5751???
(0.1890)

1.7441
(1.3159)

9.4221?
(5.1010)

−12789.82
[0.5991]

2.6744 6.30

∆ Housing 0.0736
(0.1383)

−0.0159???

(0.0049)
1 1.8226???

(0.2867)
−12782.79 2.6720 14.39

0.0651
(0.1359)

−0.0173???

(0.0047)
2.8071??
(1.4305)

4.8430?
(2.4845)

−12777.06
[0.0007]

2.6718 21.85

∆ Corp. prof. 0.2249
(0.1550)

−0.0187???

(0.0053)
1 2.5114??

(1.0048)
−12783.30 2.6721 12.69

0.2284
(0.1538)

−0.0191???

(0.0057)
1.1783??
(0.4851)

2.8187??
(1.3902)

−12783.20
[0.6469]

2.6730 13.24

∆ GDP deflator −0.1017
(0.1887)

0.0269
(0.0259)

1 3.5702???
(0.9506)

−12795.21 2.6746 0.99

−0.1385
(0.1751)

0.0357?
(0.0194)

114.1107???
(9.3931)

197.1066???
(4.5289)

−12793.47
[0.0618]

2.6752 2.10

NAI −0.0305
(0.1315)

−0.3085???

(0.0728)
1 7.7696??

(3.0232)
−12783.99 2.6722 12.84

−0.0305
(0.1315)

−0.3081???

(0.0723)
1.1506
(1.0892)

8.4179??
(3.9454)

−12783.98
[0.8890]

2.6732 12.86

New orders 2.6787???
(0.5637)

−0.0496???

(0.0101)
1 4.2905???

(1.5680)
−12776.96 2.6708 17.85

2.6904???
(0.5563)

−0.0498???

(0.0099)
0.9392
(0.6626)

4.1023???
(1.5572)

−12776.96
[0.9776]

2.6717 17.85

∆ Cons. sent. −0.0175
(0.1361)

−0.1141???

(0.0368)
1 1.7135???

(0.2502)
−12789.08 2.6733 6.55

−0.0193
(0.1382)

−0.1335???

(0.0338)
2.4732???
(0.6649)

4.0434??
(1.6654)

−12783.04
[0.0005]

2.6730 12.63

∆ real cons. 0.2952
(0.2041)

−0.0992??

(0.0422)
1 3.6582???

(1.1263)
−12791.11 2.6737 5.04

0.3406?
(0.1998)

−0.1161???

(0.0413)
2.6571
(1.9264)

8.5625?
(4.8275)

−12789.50
[0.0731]

2.6743 7.70

Term spread 0.4155???
(0.1482)

−0.2723???

(0.0554)
1 1.6276???

(0.5485)
−12779.46 2.6713 14.32

0.3658???
(0.1388)

−0.2443???

(0.0458)
4.2018?
(2.4167)

6.2756??
(3.0765)

−12777.47
[0.0463]

2.6718 15.94

RV −0.2761??

(0.1203)
0.0033???
(0.0009)

1 3.7869
(6.7929)

−12785.29 2.6725 12.96

−0.2956??

(0.1167)
0.0036???
(0.0010)

0.5746
(0.6140)

2.3646
(2.3155)

−12784.90
[0.3800]

2.6734 13.74

GARCH(1,1) 0.0049
(0.1553)

- - - −12796.04 2.6728 -

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-X models including
3 MIDAS lag years of a quarterly macro variable X, i.e, the long-run component is specified as

log(τXt ) = m+ θ ·
K∑
k=1

ϕk(ω1, ω2)Xt−k,

with K = 12. All estimations are based on daily return data from 1973Q1 to 2010Q4 and in-
clude quarterly macroeconomic data from 1970Q1 on. The numbers in parentheses are Bollerslev-
Wooldridge robust standard errors. ???, ??, ? indicate significance at the 1%, 5%, and 10% level.
We estimate each model with a restricted (ω1 = 1) and an unrestricted weighting scheme. LLF is
the value of the maximized log-likelihood function. The numbers in brackets are p-values from a
likelihood ratio test 2(LUR−LR), where LUR and LR refer to the likelihood of the GARCH-MIDAS-
X models with unrestricted and restricted weights, respectively. BIC is the Bayesian information
criterion and VR(X) denotes the variance ratio statistic, see Eq. (1.9). An extended version of the
table containing all parameter estimates can be found in the Appendix.
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Table 1.3: One-sided GARCH-MIDAS-RV-X specifications

Variable m θRV wRV2 θX wX1 wX2 LLF BIC VR(X)
RV + ∆ real GDP −0.1238

(0.1393)
0.0030??
(0.0013)

2.9016
(5.5773)

−0.0550??

(0.0255)
1 6.6800?

(3.9329)
−12780.01 2.6733 16.17

0.0267???
(0.0086)

0.0031??
(0.0013)

2.8773
(4.5726)

−0.0515
(0.0341)

0.1952
(2.9720)

4.5847
(4.4324)

−12779.90
[0.6365]

2.6743 16.20

RV + ∆ Ind. prod. −0.1706
(0.1261)

0.0025???
(0.0008)

6.3608
(7.1541)

−0.0293??

(0.0144)
1 5.5697??

(2.3289)
−12779.90 2.6733 19.60

−0.1661
(0.1251)

0.0025???
(0.0008)

6.7958
(6.6331)

−0.0302??

(0.0149)
1.5168
(1.9851)

7.0924
(4.4797)

−12779.84
[0.7188]

2.6742 19.95

RV + ∆ Unemp. −0.2415??

(0.1101)
0.0025???
(0.0008)

6.1959
(6.4287)

0.3403
(0.2195)

1 8.5731
(5.8779)

−12782.21 2.6738 17.43

−0.2409??

(0.1116)
0.0025???
(0.0009)

6.2585
(6.8029)

0.3433
(0.2498)

1.2331
(2.2599)

9.5429?
(5.6405)

−12782.21
[0.9642]

2.6747 17.47

RV + ∆ Housing −0.1379
(0.1270)

0.0021???
(0.0008)

7.4497?
(4.4271)

−0.0115??

(0.0049)
1 2.0037???

(0.4000)
−12776.34 2.6726 23.50

−0.1144
(0.1214)

0.0018??
(0.0008)

9.1967??
(4.0207)

−0.0130???

(0.0049)
2.9770
(1.8858)

5.4547
(3.5738)

−12772.31
[0.0045]

2.6727 27.34

RV + ∆ Corp. prof. −0.1497
(0.1068)

0.0050???
(0.0011)

2.7708?
(1.4246)

−0.0228???

(0.0047)
1 2.6169???

(0.5637)
−12758.03 2.6687 37.01

−0.1522
(0.1075)

0.0050???
(0.0011)

2.6809??
(1.3553)

−0.0230???

(0.0048)
1.3462???
(0.3607)

3.3148???
(1.0789)

−12757.38
[0.2559]

2.6696 37.55

RV + ∆ GDP def. −0.4420??

(0.1749)
0.0036???
(0.0011)

3.3946
(5.3203)

0.0367
(0.0233)

1 3.9340???
(1.1784)

−12782.97 2.6739 13.88

−0.4490??

(0.1793)
0.0035???
(0.0012)

3.4273
(6.7086)

0.0388?
(0.0226)

125.6962???
(8.9971)

226.7650???
(9.6880)

−12781.53
[0.0893]

2.6746 14.24

RV + NAI −0.2224?

(0.1145)
0.0023??
(0.0009)

6.5075
(7.5933)

−0.2006??

(0.0846)
1 12.5022

(10.0116)
−12777.44 2.6728 22.16

−0.2236?

(0.1184)
0.0023??
(0.0010)

6.4544
(8.0210)

−0.2008??

(0.0950)
0.1002
(2.6180)

7.7109?
(3.9621)

−12777.40
[0.7785]

2.6737 22.20

RV + New orders 1.8224???
(0.6193)

0.0028??
(0.0011)

2.5878
(3.0411)

−0.0381???

(0.0112)
1 5.8904?

(3.3223)
−12768.49 2.6709 25.34

1.8749???
(0.6035)

0.0028??
(0.0011)

2.6587
(3.2878)

−0.0391???

(0.0109)
0.5671
(0.7733)

4.1934?
(2.1694)

−12768.39
[0.6496]

2.6719 25.62

RV + ∆ Cons. sent. −0.2842??

(0.1233)
0.0032???
(0.0012)

3.0341
(4.6700)

−0.0918???

(0.0316)
1 2.2077???

(0.5215)
−12778.05 2.6729 19.90

−0.3047??

(0.1332)
0.0035???
(0.0012)

2.1847
(1.4167)

−0.1010???

(0.0320)
3.0780???
(0.7868)

7.6379?
(4.0328)

−12772.21
[0.0006]

2.6727 24.15

RV + ∆ real cons. −0.1012
(0.1637)

0.0030???
(0.0011)

3.0498
(5.4317)

−0.0497
(0.0343)

1 5.7145??
(2.3934)

−12783.22 2.6740 13.86

−0.0586
(0.1898)

0.0028???
(0.0010)

2.9261
(5.4733)

−0.0611
(0.0462)

2.6300
(2.1412)

11.7666?
(6.2251)

−12782.73
[0.3240]

2.6748 14.35

RV + Term spread 0.0663
(0.1185)

0.0040??
(0.0017)

3.1613
(4.7966)

−0.2625???

(0.0585)
1 2.2372???

(0.8248)
−12760.40 2.6692 30.91

0.0207
(0.1098)

0.0041???
(0.0013)

2.8889
(2.8781)

−0.2425???

(0.0481)
5.1551??
(2.2550)

9.8622??
(4.0127)

−12757.05
[0.0096]

2.6695 33.02

RV −0.2761??

(0.1203)
0.0033???
(0.0009)

3.7869
(6.7929)

- - - −12785.29 2.6725 12.96

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-RV-X models including 3 MIDAS lag years of
quarterly realized volatility and a macro variable X. We include a restricted weighting scheme for the RV variable and both
restricted and unrestricted weights for the macro variable, i.e, the long-run component is specified as

log(τt) = m+ θRV ·
K∑
k=1

ϕk(1, ωRV2 )RVt−k + θX ·
K∑
k=1

ϕk(ωX1 , ω
X
2 )Xt−k,

with K = 12. Otherwise, see notes of Table 1.2.
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Table 1.4: One- and two-sided GARCH-MIDAS-X specifications

Variable Specification BIC VR(X)
∆ real GDP 1-sided 2.6733 6.55

2-sided: infeasible 2.6733 12.88
2-sided: feasible TSF 2.6739 7.93
2-sided: feasible SPF (*) 2.6736 9.76
2-sided: feasible SPF + SPF lags (*) 2.6724 14.08

∆ Ind. prod. 1-sided 2.6732 7.57
2-sided: infeasible 2.6725 18.19
2-sided: feasible TSF 2.6738 9.45
2-sided: feasible SPF 2.6726 15.26
2-sided: feasible SPF + SPF lags 2.6730 12.10

∆ Unemp. 1-sided 2.6735 6.02
2-sided: infeasible 2.6725 20.18
2-sided: feasible TSF 2.6744 6.39
2-sided: feasible SPF 2.6725 15.62
2-sided: feasible SPF + SPF lags 2.6728 12.71

∆ Housing 1-sided (ur) 2.6718 21.85
2-sided: infeasible 2.6718 22.15
2-sided: feasible TSF 2.6717 22.30
2-sided: feasible SPF 2.6717 22.81
2-sided: feasible SPF + SPF lags 2.6731 10.93

∆ Corp. prof. 1-sided 2.6721 12.69
2-sided: infeasible 2.6727 16.23
2-sided: feasible TSF (*) 2.6733 12.50
2-sided: feasible SPF 2.6727 15.46
2-sided: feasible SPF + SPF lags 2.6721 15.96

∆ GDP deflator 1-sided (ur) 2.6752 2.10
2-sided: infeasible 2.6752 2.08
2-sided: feasible TSF 2.6752 1.96
2-sided: feasible SPF 2.6752 2.11
2-sided: feasible SPF + SPF lags 2.6753 2.10

Notes: The table gives an overview over estimation results for the one- and
two-sided GARCH-MIDAS-X specifications,

log(τt) = m+ θ

Klag∑
k=1

ϕk(ω1, ω2)Xt−k,

log(τt) = m+ θ

Klag∑
k=1

ϕk(ω1, ω2)Xt−k + θ

0∑
k=−Klead

ϕk(ω1, ω2)X̃t−k,

with Klag = 12 and Klead = 3. All estimations are based on daily return
data from 1973Q1 to 2010Q4 and include quarterly macro data from 1970Q1
on. We include a restricted weighting scheme (ω1 = 1) in the one-sided
filter for all variables except for housing starts and the GDP deflator. The
infeasible two-sided filter includes leads of the realized macro variable, i.e.
X̃t−k = Xt−k, whereas feasible filters are based on time series (TSF) or

survey forecasts (SPF), i.e. X̃t−k = XTSF
t−k|t−1

or X̃t−k = XSPF
t−k|t−1

. Finally

we consider a specification which is entirely based on SPF data, see Eq. (1.13).
For all specifications we report the BIC and the variance ratio, see Eq. (1.9).
Detailed estimation results can be found in the Appendix.
(*) Due to convergence problems for Klead = 3, we choose Klead = 2 for
these specifications.
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1.6.2 Figures

Figure 1.1: Quarterly macroeconomic data and realized volatility

Notes: Quarterly macroeconomic data and realized volatility for the 1969Q1 to 2011Q4 period.
We plot quarterly realized volatility

√
RVt in annualized terms. Shaded areas represent NBER

recession periods. Otherwise, see Table 1.1 for definition and descriptive statistics of the variables.
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Figure 1.2: Weighting schemes for the one-sided GARCH-MIDAS-X models

Notes: The figures show the restricted (solid black line) and unrestricted weighting (dashed grey
line) schemes, see Section 1.4.1 and Table 1.2.
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Figure 1.3: Volatility components for the one-sided GARCH-MIDAS-X models

Notes: The figures show quarterly aggregated conditional volatilities
√
τXt g

X
t (dashed grey line)

and long-run volatility components
√
N (t)τXt (solid black line) from all one-sided GARCH-MIDAS-

X models (1970Q1 - 2010Q4). Circles correspond to quarterly realized volatility
√
RVt. For leading

variables, the long-term component is based on the unrestricted weighting scheme (ur), see Section
1.4.1 and Table 1.2. Shaded areas represent NBER recession periods. Annualized scale.
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Figure 1.4: Comparison of weighting schemes

Notes: The figure shows the weighting schemes for each one-sided (solid light grey line), infeasible
two-sided (dashed dark grey line) and feasible two-sided with the highest variance ratio (dashed
black line) GARCH-MIDAS-X specification, see Section 1.4.2 and Table 1.4.
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Figure 1.5: Out-of-sample forecasting evaluation

Notes: For each GARCH-MIDAS-X model we present the evolution over the out-of-sample pe-
riod of the t-statistic of a Giacomini-White-Test with the GARCH-MIDAS-RV model being the
benchmark model. We evaluate daily volatility forecasts over three different horizons, namely
for h = 1, 126, 252, corresponding to one-day-ahead, two-quarters-ahead, and four-quarters-ahead
forecasts. For each horizon we calculate the respective t-statistic over a rolling window with fixed
sample size of 500 days, corresponding to two years of data. Each point of the lines refers to a
t-statistic for a sample period ending at that point in time. Thus, the first observations refer to
the 2000-2002 sample, whereas the last observations correspond to the 2008-2010 sample. Shaded
areas refer to samples that include observations from recession periods. The vertical dashed lines
mark the beginning and end of the 2007-2009 recession.
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1.7 Appendix

This Appendix presents full estimation results for the one- and two-sided GARCH-

MIDAS-X specifications in Sections 1.4.1 and 1.4.2 (Tables A.1 and A.2), a com-

parison of the weighting schemes and the long-term volatility components for the

GARCH-MIDAS-RV, the GARCH-MIDAS-X, and the combined GARCH-MIDAS-

RV-X models from Section 1.4.1 (Figures B.1 and B.2), the forecast evaluation of

the GARCH-MIDAS-RV-X models in Section 1.4.3 (Table A.3), as well as all results

from Section 1.4.4 (Tables A.4 - A.11 and Figure B.3).
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Table A.2: One- and two-sided GARCH-MIDAS-X specifications

Variable Klag Klead m θ ω1 ω2 LLF BIC VR(X)

∆ real GDP 12 - 0.1884
(0.1562)

−0.0803???

(0.0251)
1 4.6508???

(1.1950)
−12789.02 2.6733 6.55

∆ real GDP 12 3 0.3088?
(0.1598)

−0.1327???

(0.0336)
8.1523???
(2.3815)

4.2075???
(1.1460)

−12784.50 2.6733 12.88

∆ real GDP 12 3(TSF ) 0.2454
(0.1620)

−0.1044???

(0.0289)
8.5411???
(2.8274)

4.7078?
(2.7246)

−12787.47 2.6739 7.93

∆ real GDP (*) 12 2(SPF ) 0.3684?
(0.1973)

−0.1475???

(0.0443)
5.6729???
(1.6418)

2.1630??
(0.9840)

−12785.73 2.6736 9.76

∆ real GDP (*) 12(SPF ) 2(SPF ) 0.3714??
(0.1749)

−0.1658???

(0.0389)
9.3371??
(4.3608)

3.8444??
(1.7972)

−12780.21 2.6724 14.08

∆ Ind. prod. 12 - 0.0769
(0.1375)

−0.0434???

(0.0133)
1 4.5453???

(1.2437)
−12788.47 2.6732 7.57

∆ Ind. prod. 12 3 0.1522
(0.1288)

−0.0825???

(0.0188)
7.6085???
(2.2601)

3.9072???
(0.9991)

−12780.76 2.6725 18.19

∆ Ind. prod. 12 3(TSF ) 0.0975
(0.1372)

−0.0544???

(0.0144)
10.7031???

(3.4036)
6.2838??
(2.6072)

−12786.64 2.6738 9.45

∆ Ind. prod. 12 3(SPF ) 0.4512?
(0.2676)

−0.1578???

(0.0611)
3.6772???
(1.3667)

1.3264
(0.8758)

−12781.27 2.6726 15.26

∆ Ind. prod. 12(SPF ) 3(SPF ) 0.3950
(0.3425)

−0.1418?

(0.0811)
4.2192
(3.5359)

1.8766
(2.2438)

−12783.03 2.6730 12.10

∆ Unemp. 12 - −0.0317
(0.1365)

0.5689???
(0.1865)

1 6.4943???
(2.1923)

−12789.96 2.6735 6.02

∆ Unemp. 12 3 −0.0596
(0.1242)

1.2381???
(0.2763)

9.7239??
(4.3270)

3.6440??
(1.4595)

−12780.53 2.6725 20.18

∆ Unemp. 12 3(TSF ) −0.0356
(0.1363)

0.6837???
(0.1999)

13.5712???
(4.7068)

6.8646??
(3.4311)

−12789.68 2.6744 6.39

∆ Unemp. 12 3(SPF ) −0.0132
(0.1298)

2.7466???
(0.7783)

4.3472???
(1.3590)

1.1997??
(0.5743)

−12780.62 2.6725 15.62

∆ Unemp. 12(SPF ) 3(SPF ) −0.0629
(0.1358)

2.3487???
(0.7288)

4.8550???
(1.8725)

1.5961?
(0.8928)

−12782.30 2.6728 12.71

∆ Housing 12 - 0.0651
(0.1359)

−0.0173???

(0.0047)
2.8071??
(1.4305)

4.8430?
(2.4845)

−12777.06 2.6718 21.85

∆ Housing 12 3 0.0648
(0.1344)

−0.0175???

(0.0046)
7.2945???
(2.6925)

7.4350???
(2.8725)

−12777.19 2.6718 22.15

∆ Housing 12 3(TSF ) 0.0659
(0.1349)

−0.0177???

(0.0046)
7.1303??
(3.1926)

7.1905??
(3.3751)

−12776.97 2.6717 22.30

∆ Housing 12 3(SPF ) 0.0693
(0.1367)

−0.0184???

(0.0055)
6.8567?
(3.5110)

6.8895?
(3.6895)

−12776.81 2.6717 22.82

∆ Housing 12(SPF ) 3(SPF ) −0.1033
(0.1294)

−0.0210???

(0.0065)
3.6753
(2.9977)

5.2542
(3.4620)

−12783.73 2.6731 10.93

∆ Corp. prof. 12 - 0.2249
(0.1550)

−0.0187???

(0.0053)
1 2.5114??

(1.0048)
−12783.30 2.6721 12.69

∆ Corp. prof. 12 3 0.2849?
(0.1552)

−0.0237???

(0.0062)
4.4428
(3.5278)

3.4230??
(1.7327)

−12781.71 2.6727 16.23

∆ Corp. prof. (*) 12 2(TSF ) 0.2595
(0.1622)

−0.0217???

(0.0059)
3.7175?
(2.0642)

2.6406??
(1.2702)

−12784.31 2.6733 12.50

∆ Corp. prof. 12 3(SPF ) 0.3130?
(0.1660)

−0.0289???

(0.0076)
3.4713?
(1.9386)

2.3592??
(0.9464)

−12781.60 2.6727 15.46

∆ Corp. prof. 12(SPF ) 3(SPF ) 0.2318
(0.1581)

−0.0440???

(0.0120)
6.2270??
(2.5411)

3.7382??
(1.5118)

−12778.57 2.6721 15.96

∆ GDP deflator 12 - −0.1385
(0.1751)

0.0357?
(0.0194)

114.1107???
(9.3931)

197.1066???
(4.5289)

−12793.47 2.6752 2.10

∆ GDP deflator 12 3 −0.1394
(0.1754)

0.0358?
(0.0192)

185.7127???
(4.8179)

202.5811???
(4.3104)

−12793.48 2.6752 2.08

∆ GDP deflator 12 3(TSF ) −0.1318
(0.1746)

0.0341?
(0.0184)

344.4171???
(2.5678)

403.7092???
(1.7643)

−12793.48 2.6752 1.96

∆ GDP deflator 12 3(SPF ) −0.1390
(0.1753)

0.0358?
(0.0193)

218.7094???
(6.6379)

236.9913???
(6.5734)

−12793.47 2.6752 2.11

∆ GDP deflator 12(SPF ) 3(SPF ) −0.1642
(0.1838)

0.0408
(0.0255)

399.3586???
(3.9616)

388.1800???
(3.8229)

−12794.12 2.6753 2.10

GARCH(1,1) - - 0.0049
(0.1553)

- - - −12796.04 2.6728 -

Notes: The table compares estimation results for the one- and two-sided GARCH-MIDAS-X specifications,

log(τt) = m+ θ

Klag∑
k=1

ϕk(ω1, ω2)Xt−k,

log(τt) = m+ θ

Klag∑
k=1

ϕk(ω1, ω2)Xt−k + θ
0∑

k=−Klead

ϕk(ω1, ω2)X̃t−k,

with Klag = 12 and Klead = 3. All estimations are based on daily return data from 1973Q1 to 2010Q4 and quarterly
macroeconomic data from 1970Q1 on. We include a restricted weighting scheme (ω1 = 1) in the one-sided filter for all
variables except for housing starts and the GDP deflator. The infeasible two-sided filter includes leads of the realized
macro variable, i.e. X̃t−k = Xt−k, whereas feasible filters are based on time series (TSF) or survey forecasts (SPF),

i.e. X̃t−k = XTSF
t−k|t−1

or X̃t−k = XSPF
t−k|t−1

. Finally, we consider a specification which is entirely based on SPF data,

see Eq. (1.13). Otherwise, see the notes of Table A.1.
(*) Due to convergence problems for Klead = 3, we choose Klead = 2 for these specifications.
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Table A.7: One-sided GARCH-MIDAS-X specifications - including uncertainty mea-
sures

Variable m θ ω2 LLF BIC VR(X)
∆ real GDP - vola −0.0738

(0.1961)
0.0362
(0.0494)

4.5674??
(1.8726)

−12795.58 2.6747 0.42

∆ real GDP - disp(t) −0.1399
(0.1827)

0.0967
(0.0733)

5.7121???
(1.6940)

−12794.88 2.6745 1.04

∆ real GDP - disp(t+1) −0.2502
(0.1701)

0.1654??
(0.0654)

12.7999
(9.1566)

−12791.49 2.6738 3.36

∆ real GDP - disp(t+2) −0.3228?

(0.1733)
0.2166???
(0.0677)

7.3951??
(3.0943)

−12788.69 2.6732 5.36

∆ real GDP - disp(t+3) −0.2629
(0.1854)

0.1860??
(0.0771)

7.6622?
(4.4139)

−12791.45 2.6738 3.40

∆ real GDP - disp(t+4) −0.1485
(0.1923)

0.1034
(0.0794)

3.1003???
(0.9693)

−12794.67 2.6745 1.21

∆ Ind. prod. - vola −0.0093
(0.1569)

0.0036
(0.0095)

84.8578???
(0.0863)

−12795.93 2.6747 0.05

∆ Ind. prod. - disp(t) −0.1023
(0.1830)

0.0303
(0.0273)

93.2056???
(0.0401)

−12794.37 2.6744 0.77

∆ Ind. prod. - disp(t+1) −0.2087
(0.1567)

0.0679??
(0.0271)

24.4823???
(8.7081)

−12791.30 2.6738 2.89

∆ Ind. prod. - disp(t+2) −0.1649
(0.1757)

0.0557
(0.0361)

28.3161???
(9.1895)

−12791.72 2.6739 2.62

∆ Ind. prod. - disp(t+3) −0.1998
(0.1887)

0.0700?
(0.0393)

3.8946???
(1.1607)

−12793.32 2.6742 2.12

∆ Ind. prod. - disp(t+4) −0.3326
(0.2305)

0.1194?
(0.0663)

3.3750??
(1.3762)

−12790.27 2.6736 4.51

Unemp. - vola −0.0152
(0.1642)

0.0837
(0.1781)

96.8312???
(0.1480)

−12795.85 2.6747 0.08

Unemp. - disp(t) −0.1347
(0.1863)

0.8437
(0.6182)

7.2600??
(3.3421)

−12794.79 2.6745 0.98

Unemp. - disp(t+1) −0.4200?

(0.2357)
1.6465??
(0.7093)

6.5758???
(1.9051)

−12790.10 2.6735 4.46

Unemp. - disp(t+2) −0.4969??

(0.2085)
1.3964???
(0.4236)

4.7422???
(1.0817)

−12788.99 2.6733 5.74

Unemp. - disp(t+3) −0.5178???

(0.1934)
1.1970???
(0.2764)

7.8313?
(4.5198)

−12783.92 2.6722 7.66

Unemp. - disp(t+4) −0.4967???

(0.1837)
0.9941???
(0.2264)

6.3622???
(2.4066)

−12785.04 2.6725 7.02

∆ Housing - vola 0.1560
(0.2642)

−0.0051
(0.0067)

1.0770
(0.9358)

−12795.17 2.6746 1.11

∆ Housing - disp(t) −0.0398
(0.2105)

0.0020
(0.0065)

8.1061??
(3.9674)

−12795.96 2.6747 0.8

∆ Housing - disp(t+1) −0.1768
(0.1910)

0.0083
(0.0051)

8.7074
(7.8799)

−12793.60 2.6742 2.80

∆ Housing - disp(t+2) −0.2482?

(0.1499)
0.0124???
(0.0036)

138.7290???
(1.3050)

−12787.84 2.6730 6.22

∆ Housing - disp(t+3) −0.2673
(0.1695)

0.0144???
(0.0051)

8.2040??
(3.6190)

−12790.53 2.6736 5.31

∆ Housing - disp(t+4) −0.1581
(0.1984)

0.0096
(0.0077)

9.6938
(8.7115)

−12794.35 2.6744 1.69

∆ Corp. prof. - vola 0.0375
(0.1642)

−0.0016
(0.0015)

117.7321???
(0.0776)

−12795.28 2.6746 0.30

∆ Corp. prof. - disp(t) 0.6851??
(0.3137)

−0.0437??

(0.0180)
1.0528???
(0.3920)

−12788.08 2.6731 8.21

∆ Corp. prof. - disp(t+1) −0.2247
(0.2479)

0.0167
(0.0152)

7.2212??
(3.0518)

−12794.60 2.6745 1.41

∆ Corp. prof. - disp(t+2) −0.0040
(0.1639)

0.0007
(0.0037)

12.0173?
(6.9746)

−12796.02 2.6748 0.01

∆ Corp. prof. - disp(t+3) 0.0264
(0.1592)

−0.0018
(0.0028)

82.5353???
(0.0420)

−12795.81 2.6747 0.09

∆ Corp. prof. - disp(t+4) −0.4596
(0.2935)

0.0422?
(0.0238)

3.6093???
(1.3483)

−12792.20 2.6740 3.94

∆ GDP deflator - vola −0.0705
(0.1728)

0.0739
(0.0952)

4.4783??
(2.2468)

−12795.60 2.6747 0.49

∆ GDP deflator - disp(t) −0.1677
(0.1765)

0.1605
(0.1024)

109.9414???
(0.1224)

−12793.95 2.6743 1.27

∆ GDP deflator - disp(t+1) −0.1909
(0.2614)

0.2033
(0.2039)

6.0606??
(2.6030)

−12795.05 2.6745 1.13

∆ GDP deflator - disp(t+2) −0.3210
(0.2409)

0.3259?
(0.1850)

3.7749??
(1.7386)

−12793.13 2.6741 3.36

∆ GDP deflator - disp(t+3) −0.0217
(0.1959)

0.0273
(0.1298)

59.1361???
(0.0653)

−12795.99 2.6747 0.03

∆ GDP deflator - disp(t+4) −0.2581
(0.2127)

0.2525?
(0.1520)

13.1151?
(7.3896)

−12793.19 2.6742 2.26

GARCH(1,1) 0.0049
(0.1553)

- - −12796.04 2.6728 -

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-X models includ-
ing 3 MIDAS lag years of a macro uncertainty measure with a restricted weighting scheme, i.e,
the long-run component is specified as

log(τXt ) = m+ θ ·
K∑
k=1

ϕk(1, ω2)Xt−k,

with K = 12. Measures of macroeconomic uncertanity are either based on proxies for macro
volatilities, see Eq. (1.8), or on cross-sectional measures of forecast dispersion from the SPF. The
latter are available for the current quarter (disp(t)) and up to four-quarters-ahead (disp(t+4)).
For the unemployment rate, the uncertainty measures refer to the level of the variable. Otherwise,
see the notes of Table A.1.
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Table A.8: Predictive regressions

Variable (Model) ∆R2 c ρ θ

Panel A
∆ real GDP 0.06 0.6443???

(0.1305)
0.6766???
(0.0621)

−0.0030
(0.0075)

∆ Ind. prod. 0.13 0.6503???
(0.1277)

0.6723???
(0.0625)

−0.0022
(0.0036)

∆ Unemp. 0.25 0.6634???
(0.1282)

0.6624???
(0.0645)

0.0553
(0.0653)

∆ Housing 0.38 0.6443???
(0.1205)

0.6742???
(0.0600)

−0.0006
(0.0005)

∆ Corp. prof. 0.01 0.6205???
(0.1198)

0.6842???
(0.0594)

0.0001
(0.0008)

∆ GDP deflator 0.17 0.6479???
(0.1244)

0.6824???
(0.0594)

−0.0059
(0.0086)

NAI 0.77 0.7113???
(0.1326)

0.6380???
(0.0667)

−0.0426
(0.0288)

New orders 0.16 0.7685???
(0.2501)

0.6684???
(0.0638)

−0.0021
(0.0032)

∆ Cons. sent. 0.21 0.6092???
(0.1201)

0.6911???
(0.0600)

0.0034
(0.0044)

∆ real cons. 0.10 0.5920???
(0.1318)

0.6931???
(0.0617)

0.0043
(0.008)

Term spread 0.78 0.6701???
(0.1224)

0.6823???
(0.0590)

−0.0265
(0.0177)

Panel B
∆ real GDP: 2s 1.05 −0.0207

(0.3892)
0.6344???
(0.0654)

0.3594?
(0.2072)

∆ Ind.prod.: 2s 2.40 −0.3219
(0.3737)

0.5981???
(0.0664)

0.5397???
(0.2029)

∆ Unemp.: 2s 3.36 −0.5031
(0.3728)

0.5657???
(0.0685)

0.6585???
(0.2073)

∆ Housing: 2s 2.57 −0.1446
(0.3017)

0.5980???
(0.0658)

0.4538???
(0.1647)

∆ Corp. prof.: 2s 2.17 −0.2359
(0.3595)

0.6176???
(0.0639)

0.4805???
(0.1903)

∆ GDP deflator: 2s 0.03 0.9118
(1.0084)

0.6823???
(0.0597)

−0.1380
(0.4781)

NAI: 1s 0.57 0.1126
(0.4161)

0.6432???
(0.0672)

0.2862
(0.2239)

New orders: 1s 0.31 0.3173
(0.3457)

0.6607???
(0.0642)

0.1707
(0.1815)

∆ Cons. sent.: 1s (ur) 1.66 −0.2520
(0.4146)

0.6196???
(0.0654)

0.4837??
(0.2199)

∆ real cons.: 1s (ur) 0.02 0.5183
(0.5284)

0.6801???
(0.0624)

0.0541
(0.2667)

Term spread: 1s (ur) 4.18 −0.5739
(0.3539)

0.5914???
(0.0626)

0.6707???
(0.1877)

Notes: We estimate an AR(1) model for log(
√
RVt) and two types

of predictive regressions

log
(√

RVt
)

= c+ ρ log
(√

RVt−1

)
+ θXt−1 + ζt (Panel A)

log
(√

RVt
)

= c+ ρ log
(√

RVt−1

)
+ θ log

(√
N(t)τ̂Xt

)
+ ζt (Panel B)

where the regression is either augmented by the first lag of a macro
variable Xt or by the quarterly aggregated long-term component
N(t)τ̂Xt from the respective GARCH-MIDAS-X model. We either
include the long-term component from the feasible two-sided specifi-
cation with the highest variance ratio, see Section 1.4.2 and Table 1.4
or Table A.2, or from the one-sided specification for variables which
are not included in the SPF dataset. For leading variables we include
an unrestricted (ur) weighting scheme in the one-sided specification,
see Section 1.4.1 and Table 1.2.
Robust standard errors are presented in parentheses and ∗∗∗,∗∗ ,∗ in-
dicate significance at the 1%, 5%, and 10% level. ∆R2 the increase in
the percentage R2 for the predictive regressions relative to a baseline
AR(1) model for log(

√
RVt). The percentage R2 value for the latter

is 47.06. We consider the 1973Q1 - 2010Q4 sample.
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56 CHAPTER 1 | Anticipating Long-Term Stock Market Volatility

Table A.10: One-sided GARCH-MIDAS-RV-X specifications - subsample until 2007Q2

Variable m θRV wRV2 θX wX1 wX2 LLF BIC VR(X)
∆ real GDP −0.3139??

(0.1535)
0.0055???
(0.0019)

2.6642
(2.2918)

−0.0608???

(0.0207)
1 6.3969???

(2.3516)
−11211.91 2.5845 23.52

−0.3137?

(0.1608)
0.0055???
(0.0020)

2.6647
(2.3031)

−0.0609???

(0.0235)
1.0262
(2.0301)

6.4750
(4.3228)

−11211.91
[0.9475]

2.5855 23.53

∆ Ind. prod. −0.3725??

(0.1488)
0.0052???
(0.0019)

3.1892
(3.2753)

−0.0357???

(0.0108)
1 5.6799???

(1.7047)
−11210.28 2.5841 26.28

−0.3703??

(0.1501)
0.0052???
(0.0020)

3.2496
(3.5074)

−0.0365???

(0.0109)
1.8906
(1.5384)

8.6561??
(4.1049)

−11210.01
[0.4592]

2.5851 26.95

∆ Unemp. −0.4538???

(0.1458)
0.0052???
(0.0020)

3.1159
(3.3439)

0.4637???
(0.1691)

1 7.9774??
(3.5296)

−11212.94 2.5847 23.01

−0.4534???

(0.1462)
0.0052???
(0.0020)

3.1236
(3.3885)

0.4683???
(0.1812)

1.4047
(1.4611)

9.6628??
(4.2697)

−11212.91
[0.8185]

2.5857 23.12

∆ Housing −0.3372??

(0.1627)
0.0046??
(0.0021)

3.0866
(3.9622)

−0.0098??

(0.0042)
1 2.2684???

(0.6237)
−11211.56 2.5844 23.82

−0.3190??

(0.1582)
0.0044??
(0.0021)

2.9963
(4.2936)

−0.0108??

(0.0048)
3.0497
(2.3699)

6.3012
(4.6103)

−11208.84
[0.0197]

2.5848 27.16

∆ Corp. prof. −0.3022??

(0.1195)
0.0067???
(0.0016)

3.0202?
(1.6400)

−0.0224???

(0.0043)
1 2.4239???

(0.4825)
−11192.69 2.5800 43.26

−0.3196???

(0.1147)
0.0069???
(0.0015)

3.1179??
(1.5348)

−0.0224???

(0.0041)
1.7154???
(0.5075)

3.6168???
(0.8618)

−11191.07
[0.0721]

2.5807 45.41

∆ GDP deflator −0.6143???

(0.1812)
0.0056???
(0.0020)

2.9068
(2.6008)

0.0350?
(0.0200)

1 3.8383???
(1.2025)

−11216.66 2.5856 17.97

−0.6265???

(0.1807)
0.0056???
(0.0020)

2.9483
(2.7746)

0.0378??
(0.0172)

116.2248???
(11.0846)

213.1336???
(1.7851)

−11215.33
[0.1024]

2.5863 18.60

NAI −0.4254???

(0.1462)
0.0049??
(0.0019)

3.5068
(4.2894)

−0.2471???

(0.0693)
1 9.1103??

(4.2918)
−11208.41 2.5837 27.71

−0.4252???

(0.1463)
0.0049??
(0.0019)

3.5102
(4.2932)

−0.2474???

(0.0704)
1.2616
(1.3772)

10.2807??
(4.2830)

−11208.40
[0.9067]

2.5847 27.76

New orders 1.8133???
(0.4939)

0.0054???
(0.0016)

3.1312
(2.5365)

−0.0419???

(0.0090)
1 5.0161??

(2.0022)
−11197.60 2.5812 37.50

1.8323???
(0.4841)

0.0054???
(0.0016)

3.1306
(2.5255)

−0.0422???

(0.0089)
0.8649
(0.7714)

4.5393??
(2.0090)

−11197.59
[0.8642]

2.5822 37.52

∆ Cons. sent. −0.4648???

(0.1423)
0.0054???
(0.0018)

2.5953
(1.8713)

−0.0867???

(0.0291)
1 2.2106???

(0.4158)
−11212.08 2.5845 24.41

−0.4736???

(0.1476)
0.0056???
(0.0018)

2.3139
(1.4462)

−0.1016???

(0.0297)
3.0757???
(0.6866)

6.7877???
(2.4311)

−11206.00
[0.0005]

2.5841 29.92

∆ real cons. −0.2996?

(0.1763)
0.0053???
(0.0019)

2.5858
(2.0351)

−0.0475
(0.0317)

1 5.6873??
(2.2586)

−11216.93 2.5856 18.06

−0.2530
(0.1767)

0.0052???
(0.0018)

2.5707
(2.1233)

−0.0601
(0.0391)

3.0595
(2.8506)

12.9027?
(7.6446)

−11216.26
[0.2454]

2.5865 18.85

Term spread −0.1144
(0.1450)

0.0057???
(0.0020)

3.0076
(2.5423)

−0.2442???

(0.0453)
1 2.3460???

(0.8676)
−11195.72 2.5807 38.34

−0.1548
(0.1349)

0.0058???
(0.0018)

2.8084
(1.8745)

−0.2250???

(0.0411)
4.8994
(3.1349)

9.9784
(7.2785)

−11193.06
[0.0211]

2.5812 40.37

RV −0.4617???

(0.1495)
0.0055???
(0.0019)

2.8690
(2.5327)

- - - −11218.93 2.5840 16.67

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-RV-X models including 3 MIDAS lag years
of quarterly realized volatility and a macro variable X. We include a restricted weighting scheme for the RV variable and
both restricted and unrestricted weights for the macro variable, i.e, the long-run component is specified as

log(τt) = m+ θRV ·
K∑
k=1

ϕk(1, ωRV2 )RVt−k + θX ·
K∑
k=1

ϕk(ωX1 , ω
X
2 )Xt−k,

with K = 12. All estimations are based on daily return data from 1973Q1 to 2007Q2 and quarterly macroeconomic data
from 1970Q1 on. The numbers in brackets are p-values from a likelihood ratio test 2(LUR−LR), where LUR is the likelihood
of the GARCH-MIDAS-X specification including unrestricted weights and LR is the likelihood of the respective specification
including restricted weights. Otherwise, see the notes of Table A.1.
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Table A.11: One-sided GARCH-MIDAS-(RV)-X specifications - including monthly
macro data

Variable m θRV wRV2 θX wX1 wX2 LLF BIC VR(X)
∆ Ind. prod. 0.1034

(0.1318)
- - −0.0642???

(0.0135)
1 4.0276???

(0.8366)
−12780.84 2.6716 12.74

0.1017
(0.1323)

- - −0.0641???

(0.0131)
1.3351??
(0.5561)

5.1695???
(1.6379)

−12780.51
[0.4179]

2.6725 13.34

RV + ∆ Ind. prod. −0.1116
(0.1432)

0.0072?
(0.0039)

1.6830??
(0.7674)

−0.0519???

(0.0134)
1 4.9934???

(1.4924)
−12776.70 2.6726 17.37

−0.1086
(0.1463)

0.0071?
(0.0041)

1.6606??
(0.7516)

−0.0521???

(0.0138)
1.1122??
(0.5427)

5.4174???
(1.7527)

−12776.67
[0.8127]

2.6736 17.37

∆ Unemp. −0.1093
(0.1339)

- - 0.0110???
(0.0027)

1 6.8834?
(3.9504)

−12779.93 2.6714 12.20

−0.1098
(0.1316)

- - 0.0111???
(0.0023)

0.5118
(0.3261)

3.9937???
(1.0882)

−12778.83
[0.1373]

2.6721 11.80

RV + ∆ Unemp. −0.3007??

(0.1237)
0.0084??
(0.0034)

1.8560??
(0.8650)

0.0073???
(0.0020)

1 15.6081?
(8.9620)

−12774.88 2.6723 17.17

−0.2915??

(0.1262)
0.0076??
(0.0037)

1.7947??
(0.8251)

0.0084???
(0.0022)

0.3671
(0.3834)

5.3028??
(2.4831)

−12774.34
[0.3000]

2.6731 17.09

∆ Housing 0.0427
(0.1787)

- - −0.0004
(0.0007)

1 1.7196
(1.1973)

−12795.69 2.6747 0.31

0.0968
(0.1701)

- - −0.0009?

(0.0006)
13.0877???

(4.3119)
21.2448???

(4.9438)
−12792.49

[0.0114]
2.6750 4.14

RV + ∆ Housing −0.2149
(0.1453)

0.0089??
(0.0036)

1.8619??
(0.8480)

−0.0002
(0.0005)

1 2.2841
(1.6697)

−12790.58 2.6755 6.68

−0.1559
(0.1489)

0.0085??
(0.0036)

1.8788??
(0.8257)

−0.0007?

(0.0004)
13.2505???

(3.7321)
22.9374???

(5.5934)
−12787.76

[0.0176]
2.6759 9.50

NAI −0.0351
(0.1284)

- - −0.3796???

(0.0693)
1 7.4250???

(2.5243)
−12778.86 2.6712 16.98

−0.0351
(0.1281)

- - −0.3823???

(0.0707)
0.7809
(0.5930)

6.2046??
(2.7065)

−12778.78
[0.6970]

2.6721 16.96

RV + NAI −0.1897
(0.1393)

0.0059
(0.0043)

1.6853??
(0.7996)

−0.3022???

(0.0813)
1 10.9656

(7.0142)
−12776.47 2.6726 19.53

−0.1905
(0.1366)

0.0059
(0.0042)

1.7228??
(0.8441)

−0.3050???

(0.0801)
0.5587
(0.7623)

7.4063?
(4.3574)

−12776.30
[0.5638]

2.6735 19.57

New orders 3.0083???
(0.5606)

- - −0.0556???

(0.0101)
1 3.8584???

(1.3016)
−12774.22 2.6702 19.10

3.0148???
(0.5701)

- - −0.0558???

(0.0101)
0.9821??
(0.4979)

3.7946??
(1.4942)

−12774.22
[1.0000]

2.6712 19.10

RV + New orders 2.3471???
(0.6044)

0.0078??
(0.0040)

1.6271??
(0.6348)

−0.0473???

(0.0103)
1 4.8753??

(2.3150)
−12769.06 2.6710 23.96

2.4130???
(0.5768)

0.0080??
(0.0039)

1.6815??
(0.6766)

−0.0486???

(0.0099)
0.7072
(0.5159)

3.6609??
(1.4962)

−12768.88
[0.5521]

2.6720 24.38

Term spread 0.4233???
(0.1478)

- - −0.2769???

(0.0555)
1 1.4503???

(0.4300)
−12779.29 2.6713 12.93

0.3653???
(0.1378)

- - −0.2446???

(0.0451)
4.8830
(5.2942)

6.5897
(5.2859)

−12776.91
[0.0290]

2.6717 14.80

RV + Term spread 0.0927
(0.1239)

0.0122???
(0.0034)

1.9639?
(1.0265)

−0.2755???

(0.0485)
1 1.8675???

(0.5257)
−12766.91 2.6706 24.20

0.0389
(0.1133)

0.0124???
(0.0035)

1.9383??
(0.9208)

−0.2502???

(0.0408)
5.1274
(3.8610)

8.3131??
(4.2296)

−12763.09
[0.0057]

2.6708 27.33

RV −0.2405?

(0.1378)
0.0091??
(0.0037)

1.8671??
(0.8359)

- - - −12790.75 2.6737 6.44

GARCH(1,1) 0.0049
(0.1553)

- - - - - −12796.04 2.6728 -

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-X models, i.e, the long-run component is
specified as

log(τXt ) = m+ θX ·
K∑
k=1

ϕk(ωX1 , ω
X
2 )Xt−k,

and the one-sided GARCH-MIDAS-RV-X models with a restricted weighting scheme for RV, i.e, the long-run component
is specified as

log(τXt ) = m+ θRV ·
K∑
k=1

ϕk(1, ωRV2 )RVt−k + θX ·
K∑
k=1

ϕk(ωX1 , ω
X
2 )Xt−k,

where in both cases we include 3 MIDAS lag years of monthly data, i.e. K = 36. All model estimations are based on daily
return data from January 1973 to December 2010 and monthly macroeconomic data from January 1973 on. Otherwise, see
the notes of Table A.1.
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B Figures

Figure B.1: Weighting schemes for GARCH-MIDAS-RV, GARCH-MIDAS-X and
GARCH-MIDAS-RV-X mdoels

Notes: The figures show the weighting schemes for the GARCH-MIDAS-RV (solid black line), GARCH-MIDAS-X
(solid grey line), as well as for the GARCH-MIDAS-RV-X models (RV: dashed black line, X: dashed grey line). We
include unrestricted weights for leading variables, see Table 1.3 and Section 4.1.2.
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Figure B.2: Long-run volatility components for GARCH-MIDAS-RV, GARCH-
MIDAs-X and GARCH-MIDAS-RV-X mdoels

Notes: The figures show the quarterly aggregated long-run volatility components
√
N (t)τt for the

GARCH-MIDAS-RV (solid grey line), GARCH-MIDAS-X (solid light grey line), as well as for the
GARCH-MIDAS-RV-X models (dashed black line), see Table 1.3 and Section 4.1.2.
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Figure B.3: Weighting schemes for monthly and quarterly GARCH-MIDAS-X mod-
els

Notes: The figures show the quarterly (solid black line, left scale) and monthly (dashed grey line,
right scale) weighting schemes for all one-sided GARCH-MIDAS-X models for which monthly data
is available, see Table A.11. Within each quarter, we keep the quarterly weights constant.



2
The Variance Risk Premium and

Fundamental Uncertainty

We propose a new measure of the expected variance risk premium that is based

on a forecast of the conditional variance from a GARCH-MIDAS model. We find

that the new measure has strong predictive ability for future U.S. aggregate stock

market returns and rationalize this result by showing that the new measure effec-

tively isolates fundamental uncertainty as the factor that drives the variance risk

premium.

This chapter was published as: Conrad, C., and K. Loch (2015). “The Variance Risk Premium
and Fundamental Uncertainty.” Economics Letters 132, 56–60.
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2.1 Introduction

The findings in Bollerslev et al. (2009, 2012, 2014), Bekaert and Hoerova (2014) and

others strongly suggest that the variance risk premium (VRP) predicts medium-

term aggregate stock market returns. Economically, the predictive ability of the

VRP can be rationalized by its close relation to economic uncertainty and aggregate

risk aversion (see Bollerslev et al., 2009, 2011 or Corradi et al., 2013).1

Formally, the expected VRP is defined as the difference between the ex-ante risk-

neutral expectation of future stock market variation and the statistical expectation of

the realized variance. While ‘model-free implied volatilities’ can be constructed from

option prices, the expected realized variance has to be estimated. The most common

approaches are either to assume that the realized variance follows a martingale or to

estimate a heterogeneous autoregressive model for the realized variance (HAR-RV).

We follow a different approach by modeling the conditional variance of daily stock

returns as a GARCH-MIDAS process. In this setting, the conditional variance is

decomposed into a short-term GARCH component and a long-term component that

is driven by macroeconomic explanatory variables. As discussed in Conrad and

Loch (2014), we think of the long-term component as ‘the part’ of the conditional

variance of stock market returns that is driven by “uncertainty about the variability

of economic prospects” (Bollerslev et al., 2013, p.417).

Our contribution to the literature on the VRP is twofold. First, we suggest a

new proxy for the expected VRP that is based on the difference between the option-

implied variance and the variance forecast from the GARCH-MIDAS model. We

then show that the proposed measure has considerably stronger predictive power

for stock returns than conventional measures of the VRP. Second, we rationalize the

strong predictive power of our new measure by showing that it effectively isolates

the long-term volatility component as the factor that determines the VRP.

1Using a stylized self-contained general equilibrium model, Bollerslev et al. (2009) show that
the equity risk premium can be decomposed into two terms. While the first term describes the
classical risk-return trade-off, the second one suggests a positive relation between expected returns
and the volatility of consumption growth volatility (vol-of-vol). The predictive ability of the VRP
then follows from the observation that the VRP is proportional to the time-varying vol-of-vol.
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2.2 A new variance risk premium measure

2.2.1 The GARCH-MIDAS model

The GARCH-MIDAS model specifies the conditional variance of daily returns as the

product of a short-term GARCH component that captures day-to-day fluctuations

in volatility and a long-term component that is entirely driven by low-frequency

(monthly) macroeconomic variables. The long-term component fluctuates at the

monthly frequency only and can be considered as representing economic or funda-

mental uncertainty. Following Conrad and Loch (2014), we denote daily returns by

ri,t, where t refers to a certain month and i = 1, . . . , N (t) to the i’th day within that

month. We then assume that

ri,t = µ+
√
gi,tτtZi,t, (2.1)

where Zi,t is IID with mean zero and variance one. gi,t and τt represent the short-

and long-term conditional variances, which are measurable with respect to the in-

formation set given at day i − 1 of month t. The short-term component follows a

mean-reverting asymmetric unit variance GARCH process

gi,t = (1− α− β − γ/2) +
(
α + γ · 1{ri−1,t−µ<0}

) (ri−1,t − µ)2

τt
+ βgi−1,t, (2.2)

with α > 0, β > 0 and α + β + γ/2 < 1. The long-term component is driven by

lagged values of an explanatory variable Xt:

log(τt) = m+ θ

K∑
k=1

ϕk(ω1, ω2)Xt−k, (2.3)

where the behavior of the MIDAS weights ϕk(ω1, ω2) is parsimoniously determined

using a flexible Beta weighting scheme. For a more detailed discussion, see Engle et

al. (2013) or Conrad and Loch (2014).

At the last day of each month t, we use the GARCH-MIDAS (GM) model to con-

struct out-of-sample forecasts for the realized variance during the following month,

RVt+1. Note that next month’s long-term volatility, τt+1, is predetermined with re-

spect to macro realizations up to month t. Then, the realized variance prediction is
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given by

R̂V
GM

t+1 = Et

N(t+1)∑
i=1

gi,t+1τt+1Z
2
i,t+1

 = g̃t+1τt+1, (2.4)

where g̃t+1 =

(
N (t+1) + (g1,t+1 − 1)1−(α+β+γ/2)N

(t+1)

1−α−β−γ/2

)
. For a given value of the

monthly short-term variance, g̃t+1, a high (low) value of fundamental uncertainty,

τt+1, will upscale (downscale) the forecast of the expected monthly realized variance.

In this sense, τt+1 is similar to the vol-of-vol factor in the model of Bollerslev et

al. (2009).

2.2.2 Constructing the VRP

We define the monthly expected VRP as IVt−Et[RVt+1], where IVt is the risk-neutral

expected variation during month t + 1 and Et[RVt+1] is the expected (under the

physical measure) realized variation for that period. We build on the approximation

of the expected VRP in Bollerslev et al. (2009) and measure IVt by the end-of-month

t value of the squared VIX and, assuming that RVt follows a martingale sequence,

replace Et[RVt+1] by RVt. The VRP is thus given by

V RPt = V IX2
t −RVt. (2.5)

This measure is both directly observable and model-free. However, as discussed in

Bekaert and Hoerova (2014), the assumption that RVt follows a martingale sequence

may be inappropriate. As a new measure, we propose to base the expected VRP

on the conditional variance forecast from the GARCH-MIDAS model, R̂V
GM

t+1 . This

forecast explicitly takes into account the macroeconomic uncertainty via the long-

term component:

V RPGM
t = V IX2

t − R̂V
GM

t+1 . (2.6)

2.3 Data

We use daily continuously compounded returns, ri,t, for the S&P 500 and monthly

U.S. macroeconomic data from 1970 to 2011. We include industrial production

growth (annualized month-to-month percentage change), the new orders index of

the Institute for Supply Management (levels) and the Chicago Fed National Activity
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Index (NAI).2 Annualized monthly excess returns are calculated as rext = 12 · (rt −
rf,t), where rt =

∑N(t)

i=1 ri,t and rf,t denotes the one-month T-bill rate. For the

2000 to 2011 period, we employ observations for the ‘new’ VIX and daily realized

volatilities, RVi,t, based on 5-minute intra-day returns obtained from the website of

the Oxford-Man Institute of Quantitative Finance. Monthly realized variances are

constructed as RVt =
∑N(t)

i=1 RVi,t. Otherwise, all data are obtained from the FRED

database at the Federal Reserve Bank of St. Louis.

2.4 Empirical results

2.4.1 VRP estimation

We estimate the GARCH-MIDAS models for the 1973 to 1999 period. Following

Conrad and Loch (2014), we include three MIDAS lag years of the macro variables

and use a restricted (ω1 = 1, i.e. strictly decreasing) Beta weighting scheme. The

estimation results presented in Table 2.1 basically replicate the findings in Conrad

and Loch (2014) but for a briefer sample. Specifically, for all variables the estimate

of θ is highly significant and negative, thus confirming the counter-cyclical behavior

of long-term volatility. Periods of economic growth above trend (e.g. measured

by positive NAI realizations) are associated with a decline in long-term volatility,

while recession periods coincide with increasing long-term volatility. We use out-

of-sample forecasts for τt+1 and R̂V
GM

t+1 for the 2000 to 2011 period to construct

our new measure of the VRP. Table 2.2 provides summary statistics and Figure 2.1

depicts the different measures of the VRP over the out-of-sample period.3 The table

also presents summary statistics for the ex-post VRP defined as V IX2
t −RVt+1. As

expected, the VRP is positive on average. Note that the different VRP measures

are much less persistent than realized volatility or the VIX squared.

2The NAI is a weighted average of 85 monthly national economic indicators. Positive re-
alizations indicate growth above trend, while negative realizations indicate growth below trend.
Industrial production and new orders are among the indicators considered.

3Bollerslev et al. (2014) consider the same out-of-sample period, but employ a different risk-free
rate in calculating the excess returns and base their RVt measure on daily squared returns. This
explains the slight differences in the summary statistics and the following return predictability
regression results.



66 CHAPTER 2 | The Variance Risk Premium and Fundamental Uncertainty

2.4.2 Return predictability

In this section, we investigate the predictive abilities of the expected VRP measures

for future stock market returns. We rely on simple monthly regressions of the form:

1

h

h∑
j=1

rext+j = ah + bhZt + ut,t+h, (2.7)

where Zt ∈ {V RPt, V RPGM
t }. Following Bollerslev et al. (2014), we use Newey-

West robust standard errors.4 Table 2.3 presents the regression results for different

horizons h, while Figure 2.2 shows the estimated bh coefficients for our VRP measures

along with 90% confidence bands based on the critical values simulated in Bollerslev

et al. (2014). First, based on these critical values, V RPt significantly predicts future

returns for horizons one to five. In accordance with the theoretical model developed

in Bollerslev et al. (2009), the adjusted R2 initially increases and then decreases

with expanding forecast horizon. The maximum R2 is achieved for h = 4 months.5

Second, and most importantly, all three proxies for the expected VRP based on

the GARCH-MIDAS models have strong predictive power for future returns with

significant regression coefficients up to the 6 months horizon. At almost all horizons,

the R2s from these models are markedly higher than the ones based on V RPt. In all

three cases, the maximum R2 is achieved at h = 5. These findings suggest that our

new proxy – which explicitly takes into account the state of the macroeconomy – is

a more precise measure for the ex-ante VRP than alternative proxies and, thus, has

superior forecasting power for returns. In other words, using R̂V
GM

t+1 as a measure

of the expected variance clearly helps to “isolate the factor that drives the volatility

risk premium” (Bollerslev et al., 2009, p.4485).

2.4.3 The ex-post VRP and fundamental uncertainty

In a final step, we provide an intuitive argument for the successfulness of our new

measure in predicting returns. Recall that the variance forecast from the GARCH-

MIDAS model can be written as R̂V
GM

t+1 = g̃t+1τt+1, where τt+1 reflects fundamental

uncertainty. Then, similarly to Bollerslev et al. (2012), we decompose the squared

4We choose the same bandwidth in the Bartlett kernel as suggested in their paper. As shown
in Bollerslev et al. (2014, p.635), given the low persistence in the VRP (see Table 2.2), the robust
t-statistics “are reasonably well behaved” despite the overlapping nature of the return regressions.

5As in Bekaert and Hoerova (2014), we also considered a VRP based on conditional variance
forecasts from a HAR-RV model. The corresponding R2s are slightly lower.
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VIX into the expected conditional variance plus the VRP. In the model of Boller-

slev et al. (2012), the VRP can be written as an affine function of fundamental

uncertainty. Assuming the same relationship, we obtain:

V IX2
t = c+ R̂V

GM

t+1 + b(τ)τt+1 (2.8)

or V IX2
t −R̂V

GM

t+1 = c+b(τ)τt+1 with some constant b(τ) > 0. We test this mechanism

by first regressing V IX2
t on a constant, R̂V

GM

t+1 and τt+1 and, second, by regressing

the ex-post VRP on a constant, R̂V
GM

t+1 and τt+1. Both should be significant in the

first regression, but only τt+1 in the second one. Relying on the ex-post VRP in the

second regression has the advantage that we do not have to estimate Et[RVt+1].

Panel A of Table 2.4 confirms that V IX2
t is positively related to both R̂V

GM

t+1

and τt+1. In this regression, the conditional variance forecast can be interpreted as

an interaction term: the predicted effect of a change in the long-term component

is stronger the higher the forecast for the short-term component is. On the other

hand, in the regressions with the ex-post VRP as the dependent variable, only

the long-term components are highly significant (see Panel B).6 Both regressions

support our hypothesis that the long-term volatility components from the GARCH-

MIDAS models can be considered as representing the vol-of-vol factor driving the

VRP.7 The fact that the counter-cyclical long-term component drives the VRP also

provides direct evidence for the conclusion of Campbell and Diebold (2009) that

expected returns are inversely linked to expected business conditions. However, it

should be noted that the R2s in the regressions involving the ex-post VRP are quite

low. Thus, the VRP is driven by additional factors that are not directly captured

by the long-term component, such as aggregate risk aversion and disagreement in

beliefs. However, these factors are also likely to behave counter-cyclically and, hence,

should comove with τt+1.

Finally, note that the ex-post VRP corresponds to the payoff from selling a vari-

ance swap. Thus, when τt is increasing, the expected payoff from selling a variance

swap increases as well. Intuitively, in times of high economic uncertainty investors

are willing to pay a high premium to ensure against volatility risk.

6Additionally including the lagged ex-post VRP does not change our result.
7Our findings are in line with Bollerslev et al. (2011) who estimate a time-varying VRP that is

driven by macroeconomic state variables and report that, e.g., higher industrial production leads
to a decrease in the VRP.
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2.5 Conclusion

Our results strongly confirm the theoretical insight from the models discussed in

Bollerslev et al. (2009, 2012) that fundamental uncertainty (the vol-of-vol) is an im-

portant factor driving the VRP. In particular, we show that our new VRP measure,

which is based on a volatility component reflecting the ‘state of the macroecon-

omy’, has considerably higher predictive power for future stock market returns than

previously suggested measures.
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2.6 Tables and figures

2.6.1 Tables

Table 2.1: GARCH-MIDAS-X model estimation

Variable µ α β γ m θ ω2 LLF

Ind. prod. 0.0348???
(0.0098)

0.0253???
(0.0068)

0.9153???
(0.0239)

0.0773??
(0.0305)

−0.0003
(0.1647)

−0.0531???

(0.0144)
4.2582???
(1.0124)

−8660.61

New orders 0.0339???
(0.0098)

0.0233???
(0.0069)

0.9176???
(0.0225)

0.0784???
(0.0295)

2.5077???
(0.6514)

−0.0481???

(0.0115)
4.6872??
(2.0799)

−8655.37

NAI 0.0343???
(0.0098)

0.0250???
(0.0069)

0.9158???
(0.0230)

0.0782???
(0.0299)

−0.0806
(0.1657)

−0.3503???

(0.0889)
7.2203??
(2.9228)

−8658.29

Notes: The table reports estimation results for the GARCH-MIDAS-X model including 3 MIDAS lag years of
a monthly macro variable X, i.e the long-run component is specified as log(τt) = m+θ ·

∑K
k=1 ϕk(ω1, ω2)Xt−k

with K = 36. The three variables require a restricted Beta weighting scheme with ω1 = 1, see Conrad and
Loch (2014) for details. All estimations are based on daily return data from January 1973 to December 1999
and include monthly macroeconomic data beginning in January 1970. LLF is the value of the maximized log-
likelihood function. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. ??? indicates
significance at the 1% level. ?? indicates significance at the 5% level.

Table 2.2: Summary statistics

Variable Mean Std. dev. Skew. Kurt. AC(1)

Excess returns −3.57 57.39 −0.58 3.89 0.15
RV 30.77 48.35 6.01 50.38 0.62

VIX2 46.82 42.35 2.89 14.28 0.81
VRP 16.02 23.89 −3.08 30.61 0.14

VRPGM - Ind. prod. 14.04 21.99 −3.45 34.75 0.13

VRPGM - New orders 13.27 20.78 −2.66 23.92 0.34

VRPGM - NAI 11.96 21.89 −3.63 33.28 0.24
VRP ex-post 16.07 39.83 −5.02 47.65 0.26

Notes: Summary statistics for monthly excess returns and dif-
ferent measures of the VRP, see Section 2.2.2. AC(1) denotes the
first-order autocorrelation coefficient. Monthly excess returns are
constructed using the one-month T-bill rate as the risk-free rate
and are in annualized percentage form. Monthly realized volatil-
ity (RV ) is the sum of daily realized volatilities based on 5-minute
intra-day returns. V IX2 denotes the squared ‘new’ VIX index in
monthly units. The out-of-sample period extends from January
2000 to December 2011 and includes 144 observations.
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Table 2.3: Return predictability regressions

Variance Premium Horizon 1 2 3 4 5 6 9 12

VRP Constant -12.28 -11.53 -11.62 -11.09 -9.59 -8.18 -6.18 -5.49
( -2.45 ) ( -2.32 ) ( -2.49 ) ( -2.27 ) ( -1.99 ) ( -1.69 ) ( -1.24 ) ( -1.10 )

VRP 0.57 0.54 0.53 0.50 0.41 0.32 0.18 0.15
( 3.91 ) ( 3.09 ) ( 4.42 ) ( 5.13 ) ( 3.91 ) ( 2.78 ) ( 1.77 ) ( 1.60 )

adj. R2 4.69 7.60 11.28 12.58 9.60 6.40 2.39 2.02

VRPGM - Ind. prod. Constant -13.52 -13.33 -11.35 -10.47 -10.79 -9.28 -6.90 -5.67
(-2.15) (-2.32) (-2.16) (-2.00) (-1.99) (-1.76) (-1.38) (-1.17)

VRP 0.76 0.76 0.60 0.54 0.57 0.46 0.26 0.18
(3.43) (7.20) (5.17) (4.81) (5.70) (4.47) (2.50) (1.76)

adj. R2 7.62 13.78 12.66 12.75 16.44 11.78 5.12 3.11

VRPGM - New orders Constant -14.36 -14.53 -13.11 -11.83 -11.36 -9.60 -6.80 -5.54
(-2.31) (-2.61) (-2.52) (-2.26) (-2.11) (-1.83) (-1.37) (-1.15)

VRP 0.87 0.90 0.78 0.68 0.65 0.51 0.27 0.19
(3.40) (7.30) (6.20) (5.77) (6.12) (4.88) (2.43) (1.59)

adj. R2 9.06 17.39 19.04 18.23 19.10 13.15 4.79 2.72

VRPGM - NAI Constant -12.81 -12.63 -11.17 -10.10 -9.87 -8.34 -6.01 -4.88
(-2.25) (-2.40) (-2.24) (-2.00) (-1.89) (-1.61) (-1.21) (-1.01)

VRP 0.84 0.84 0.70 0.61 0.60 0.46 0.24 0.15
(3.88) (7.91) (6.01) (5.82) (6.35) (4.83) (2.30) (1.43)

adj. R2 9.33 16.79 17.07 16.17 17.81 11.80 3.86 1.77

Notes: Monthly return predictability regressions 1
h

∑h
j=1 r

ex
t+j = ah+bhZt+ut,t+h with Zt ∈ {V RPt, V RPGMt }.

In parentheses, we present t-statistics based on Newey-West standard errors, where we adjust the bandwidth in the
Bartlett kernel following Bollerslev et al. (2014). The adjusted sample period extends from February 2000 to January
2011 and includes 132 observations. Adjusted R2 in percentage form. For each VRP measure, the bold number
indicates the forecast horizon with the highest R2.

Table 2.4: The ex-post VRP and fundamental uncertainty

c b(RV ) b(τ) adj. R2

Panel A: VIX2 (depend. Var.)

Ind. prod. −18.72
(−1.71)

0.81
(6.36)

41.12
(3.44)

77.05

New orders −10.59
(−1.35)

0.74
(8.20)

34.70
(3.77)

82.27

NAI −7.52
(−1.07)

0.71
(6.99)

26.69
(3.74)

80.34

Panel B: Ex-post VRP (depend. Var.)

Ind. prod. −28.38
(−2.02)

−0.19
(−0.66)

53.42
(3.31)

5.20

New orders −22.13
(−2.19)

−0.15
(−0.61)

45.81
(3.33)

6.10

NAI −18.50
(−2.27)

−0.19
(−0.78)

37.26
(3.68)

6.88

Notes: Regression results for

Panel A: V IX2
t = c+ b(RV ) R̂V

GM

t+1 + b(τ) τGMt+1 + ξt

Panel B: Ex-post VRPt = c+ b(RV ) R̂V
GM

t+1 + b(τ) τGMt+1 + ξt

with Ex-post VRPt = V IX2
t −RVt+1.

The numbers in parentheses are t-statistics based on Newey-West standard
errors. The sample period extends from January 2000 to December 2011.
Adjusted R2 in percentage form.
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2.6.2 Figures

Figure 2.1: Variance risk premium measures

Notes: Different measures of the VRP for the January 2000 to December 2011 period. Shaded
areas represent NBER recessions.

Figure 2.2: Return predictability regression coefficient estimates

Notes: Estimated regression coefficients for the different VRP measures in the return predictability
regressions (Eq. (2.7)) with 90% confidence bands based on Newey-West standard errors and the
simulated critical values from Bollerslev et al. (2014).





3
Time-Varying Volatility

Persistence in a GARCH-MIDAS

Framework

This paper presents a new volatility model with time-varying volatility persistence

(TVP) that is governed by the dynamics of an explanatory variable. We extend

the GJR-GARCH model by introducing a time-varying GARCH coefficient that is

linked to the variable in a parsimonious way using MIDAS techniques. We refer to

the model as the TVP-GARCH-MIDAS model. It nests the GJR-GARCH under the

null that the variable has no explanatory power. We present a misspecification test

based on the Lagrange multiplier principle and study its finite sample properties in

a Monte-Carlo simulation. In an empirical application to the U.S. stock market, we

show that volatility persistence is positively related to realized volatility and that it

varies across the business cycle in a counter cyclical way. Finally, forecasting gains

of the new model are assessed in a direct forecasting comparison.
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3.1 Introduction

This paper adds to the literature on volatility persistence and suggests a new

GARCH type model allowing for time variation in volatility persistence that is

governed by the dynamics of an explanatory variable.

First, we extend the GJR-GARCH model by introducing smooth transitions for

the GARCH parameter that is attached to the lagged conditional variance. The nov-

elty of our model lies in linking the transition between different persistence regimes

to the history of an explanatory variable in a parsimonious way. This is done by

employing the MIxed Frequency DAta Sampling (MIDAS) framework introduced by

Ghysels et al. (2005), in a spirit similar to the GARCH-MIDAS component models

in Engle et al. (2013). Our new model generates time-varying persistence (TVP)

without actually requiring time-varying parameters. Instead, the time variation is

determined via the dynamics of the explanatory variable. Therefore, in contrast

to genuine time-varying parameter models, the model is still straightforward to

estimate by quasi maximum likelihood methods. The new model is called TVP-

GARCH-MIDAS and nests the GJR-GARCH under the null that the variable has

no explanatory power for time-varying persistence.

Second, we provide a misspecification test based on the Lagrange multiplier

principle along the lines of Lundbergh and Teräsvirta (2002), Halunga and Orme

(2009), Conrad and Schienle (2015), and Amado and Teräsvirta (2015). Our test

is closely related to the latter misspecification framework of testing the standard

GRJ-GARCH against general alternatives with time varying parameters. We find

good finite samples size and power properties in a Monte-Carlo simulation study.

Finally, we consider an empirical application to the S&P 500 and let the time-

varying persistence be determined by realized volatility dynamics and general macroe-

conomic conditions captured by the ADS business indicator introduced in Aruoba et

al. (2009). Our results strongly suggest that volatility persistence varies over time,

in line with Karanasos et al. (2014), who present a unified framework for time-

varying AR-GARCH models and find strong evidence for time-varying persistence

across different European stock markets. Moreover, we show that persistence is high

(low) during high (low) volatility regimes and weak business conditions.1 In a direct

1Our findings relate to the literature on GARCH component models introduced in Engle and
Rangel (2008) and Engle et al. (2013) that link long-term financial volatility components to the
business cycle, see also applications in Asgharian et al. (2013), Conrad and Loch (2014, 2015),
Dorion (2013), and Opschoor et al. (2014). Interestingly, we provide strong evidence for volatility
persistence being counter cyclical as well.
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forecasting evaluation, we find that the model with realized volatility significantly

outperforms the benchmark GRJ-GARCH model across horizons from one day up

to one quarter.

The new model is motivated by the stylized fact that financial conditional volatil-

ity is highly persistent. Estimations of the standard (stationary) GARCH model

on financial return series spanning several years or decades typically indicate high

persistence, i.e. the sum of the two parameters is found to be close to one (this has

been referred to as the IGARCH effect, see also Engle and Bollerslev, 1986). How-

ever, as already argued by Diebold (1986) and Lamoureux and Lastrapes (1990),

volatility persistence may be overstated due to neglected deterministic shifts in the

unconditional variance (see also Mikosch and Stǎricǎ, 2004). More general, Hille-

brand (2005) formalizes why parameter regime changes in GARCH models that are

not accounted for will cause the sum of the estimated parameters to be close to one -

a phenomenon he labels “spurious almost-integration”. Remarkably, the effect is in-

dependent of the estimation method and the statistical properties of the parameter

changes. Also, it generalizes to higher-order GARCH models.2

Our new model adds to the literature on GARCH models that explicitly take

into account structural breaks by introducing time-varying parameters. We extend

the popular GJR-GARCH model, which allows for asymmetric volatility response

to shocks. The latter can be viewed as the simplest form of a regime-switching

volatility model, with two regimes and switches based on the sign of past innovations.

In contrast, the smooth transition (ST) GARCH models, proposed by Hagerud

(1997), González-Rivera (1998), and Anderson et al. (1999), impose smooth changes

between the regimes. In these models, smooth transition is typically attached to the

ARCH coefficient with a lesser focus on variation in the GARCH coefficient and the

transitions are determined by lagged shocks. Alternatively, Lanne and Saikkonen

(2005) use lagged conditional variances as a transition variable. These models have

in common that they include only a single lag of the transition variable, whereas the

MIDAS approach allows us to include potentially many lags in a parsimonious way.

Alternative models with time-varying parameters are Markov-switching GARCH

models (e.g., see Hamilton and Susmel, 1994, and more recently Marcucci, 2005),

where changes in the regime are governed by an unobservable (or hidden) variable.

Instead, Regnard and Zaköıan (2009) present a GARCH model extension that allows

2Some of the early volatility component models, such as in Engle and Lee (1999), Ding and
Granger (1996), and Bauwens and Storti (2009) can be re-written as higher-order GARCH models
and may therefore also be prone to spurious almost-integration.
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for regime switches in the parameters to depend on realizations of an exogenous

variable.3

The organization of the remainder of this paper is as follows. The new TVP-

GARCH-MIDAS model is introduced in Section. We present a corresponding mis-

specification test in Section 3.3 and discuss its size and power properties. The model

is applied to U.S. stock market data in Section 3.4 and its forecasting properties are

analyzed. Finally, Section 3.5 concludes.

3.2 Time-varying volatility persistence in a

GARCH-MIDAS framework

We first motivate the new GARCH model by some stylized facts on time-varying

volatility persistence in Section 3.2.1. The TVP-GARCH-MIDAS model is then

introduced as an extension to the GJR-GARCH model in Section 3.2.2. In Section

3.3.2, we present a misspecification test based on the Lagrange multiplier principle

and study its size and power properties in a simulation study.

3.2.1 Motivation

In order to motivate the new GARCH model, we provide empirical evidence on time

varying volatility persistence of financial returns. Figure 3.1 shows the autocorre-

lation function (ACF ) up to lag 100 for daily returns and squared returns on the

S&P 500 across four decades (1970-2010). For each subsample, we add the ACF

that is implied by the subsample parameter estimates of a GARCH(1,1) model. In

the standard Bollerslev (1986) GARCH(1,1) model, volatility persistence is constant

over time. It is determined by the model parameters and yields an exponentially

decaying ACF of the squared returns.4 Consistent with financial returns being un-

3Though temperature is one of the few variables that can be considered as effectively being
exogenous, applications to financial time series may be limited. An application of a GARCH(1,1)
model with temperature-dependent coefficients to gas price volatility can be found in Regnard and
Zaköıan (2011).

4More precisely, in the GARCH(1,1) model specifying the conditional variance of returns rt =
µ+
√
htZt as ht = ω+α(rt−1 − µ)2 + βht−1 with parameters α, β such that E[r4t ] <∞, the ACF

of squared returns ρ(j) at lag j is determined by

ρj = (α+ β)j−1ρ1, j > 1, with ρ1 =
α(1− αβ − β2)

1− 2αβ − β2
.

Note that ρ(j) is increasing in both parameters α and β.
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predictable, we see hardly any significant autocorrelation for the returns across the

subsamples, but find significant autocorrelations up to high lags for the squared re-

turns. However, the figure illustrates a variation over time in the speed of decay of

the ACF of the squared returns. The lowest autocorrelation is found for the 1980-

1989 subsample, where it becomes insignificant beyond lag 55. Across the other

subsamples, the autocorrelation remains significant up to lag 100, with most persis-

tent autocorrelation during the last decade 2000-2009, which included the collapse

of the dot-cum bubble as well as the financial crisis and the subsequent Great Reces-

sion. In general, the varying autocorrelation structure is reasonably well captured

by the subsample GARCH model estimates.5

Can the time varying autocorrelation of squared returns be linked to some ex-

planatory variable? We address this question by looking at the autocorrelation

across two regimes that are determined by realized volatility on the one hand and

by the ADS business conditions index on the other hand. The ADS is a daily

macroeconomic indicator with average value zero and positive (negative) values in-

dicating better-(worse-)than-average conditions, see also Section 3.4.1. We calculate

autocorrelations conditional on being in a high vs. low volatility regime, and a pos-

itive vs. negative ADS regime. To be more precise, we distinguish between above

and below mean realized volatility regimes, where we consider a 22-days rolling win-

dow realized volatility, RV
(22)
t = 1/22

∑21
i=0 r

2
t−j. A similar rolling window version is

calculated for the ADS. Adopting the formula in Regnard and Zaköıan (2011), the

autocorrelation at lag j for the squared returns conditional on the negative ADS

regimes is calculated as

ρ̂(j) =

∑T
t=1

(
(r2
t − m̂(−)) · 1{ADSt<0}

) (
r2
t−j − m̂

)√∑T
t=1(r2

t − m̂(−))2 · 1{ADSt<0}

√∑T
t=1(r2

t−j − m̂)2

, (3.1)

where

m̂(−) =
T∑
t=1

r2
t · 1{ADSt<0}

/ T∑
t=1

1{ADSt<0}, m̂ =
T∑
t=1

r2
t−j

/
T, (3.2)

and analogously for positive ADS regimes and the RV regimes. A similar formula

can be adopted for the ACF of the returns.

5The persistence implied by the GARCH model can be quantified by the sum of the param-
eter estimates α̂ + β̂, which varies between 0.954 (1980-1989) and 0.993 (2000-2009) across the
subsamples.
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Figures 3.2 and 3.3 show the rolling window versions of the ADS and of mean

adjusted realized volatility as well as the ACF up to lag 100 for the daily returns

and squared returns across the ADS and volatility regimes. Both figures reveal a

similar pattern. We find persistent autocorrelation in the squared returns up to high

lags during negative ADS regimes, but only weak autocorrelation during positive

regimes. Note that negative ADS regimes generally coincide with NBER recession

periods. Similarly, there is significant autocorrelation up to high lags during periods

with high realized volatility, but virtually no significant autocorrelation at higher

lags during low volatility regimes.

Our empirical findings imply that volatility persistence increases during turbulent

times and recessions, whereas it decreases during periods of low financial volatility

and economic growth. In our new model, volatility persistence will be governed by

a time varying GARCH coefficient that is linked to an explanatory variable. These

empirical ACF s now suggest an increasing (decreasing) coefficient during negative

(positive) ADS regimes. Similarly, we expect the GARCH coefficient to be positively

related to the level of realized volatility.

3.2.2 The TVP-GARCH-MIDAS model

We present a new specification of the conditional variance process that extends the

GJR-GARCH(1,1) model introduced by Glosten et al. (1993). The GJR-GARCH

is one of the most popular modifications of the standard Bollerslev (1986) GARCH

model and allows for an asymmetric response of the conditional variance to past

shocks, thus accommodating for the so-called leverage effect.6 Let ht denote the con-

ditional variance process of (de-meaned) financial returns εt. In the GJR-GARCH

model, it is specified as

ht = ω + (α1 + α21{εt−1<0})ε
2
t−1 + β1ht−1, (3.3)

with ω > 0, α1 > 0, β1 ≥ 0, and stationarity condition α1 + 1/2α2 + β1 < 1. The

asymmetry parameter α2 is typically found to be positive, implying that negative

shocks have a greater impact on volatility than positive ones.

We extend this model by including a time varying GARCH coefficient that de-

6In the empirical analysis in Engle and Ng (1993) this model outperforms various alternative
asymmetric specifications. Hansen and Lunde (2005) conclude from an extensive forecast compari-
son of volatility models that, in case of stock returns, only GARCH models that can accommodate
for the leverage effect beat the forecasting performance of the simple GARCH(1,1) model.
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pends on an explanatory variable x̃. The new conditional variance equation will be

given as

ht = ω + (α1 + α21{εt−1<0})ε
2
t−1 + β1ht−1 + β2F (γ, x̃t−1)ht−1, (3.4)

with ω > 0, α1 > 0, β1, β2 ≥ 0, α1 + 1/2α2 + β1 + β2 < 1, and

F (γ, x̃t−1) = (1 + exp(γx̃t−1))−1 . (3.5)

The function F : R → [0, 1] is strictly monotonically decreasing with asymptotes

F (γ,−∞) = 1 and F (γ,∞) = 0 in case of a positive γ. It governs the transition

between two persistence regimes, a low persistence regime with GARCH coefficient

β1 and a high persistence regime with β1 + β2.7 The parameter γ governs the

smoothness of the transition. Additionally, in this new model framework its sign

determines whether the explanatory variable is positively or negatively related to

the time variation in persistence. The transition function is illustrated for different

values of γ in Figure 3.4.

The type of logistic transition function in Eq. (3.5) has been widely used in various

non-linear GARCH model extensions of Eq. (3.3) with time varying parameters. In

different specifications of a Smooth Transition (ST) GARCH model presented in

Hagerud (1997), González-Rivera (1998), Lundbergh and Teräsvirta (1998), and

Anderson et al. (1999), it governs transitions in the intercept ω or the (G)ARCH

parameters. Typically, the transition is governed by a lag of the shock εt−d, for

some d > 0. Alternatively, Lanne and Saikkonen (2005) use the lagged conditional

variance as a transition variable, combined with the cumulative distribution function

of a gamma distribution as the transition function. They argue that since the

innovation is a martingale difference sequence, using ε2
t−1 in the transition function

will imply unreasonably frequent changes in regimes whenever large (small) values

are followed by small (large) values. More recently, Amado and Teräsvirta (2013,

2014) propose an alternative time varying parameter GARCH model, where the

variable triggering the transition for the parameters is the index of time.

In the new variance specification in Eq. (3.4), we opt for introducing smooth

transitions for the GARCH parameter attached to the lagged conditional variance,

instead of for the ARCH parameter attached to the lagged squared shock. In doing

7 In case of a negative γ, the transition function is strictly monotonically increasing. In case
of a negative γ and a strictly positive explanatory variable x̃, the function F yields transitions
between β1 + 1/2β2 and β1 + β2.
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so, we have several reasons in mind. If we view the model equation as a forecast-

ing model, then the one step ahead volatility forecast is determined as a weighted

average of the long-run forecast, the lagged squared shock, and lagged conditional

variance. Yet, estimates of the ARCH parameters are typically found to be small

or even insignificant (in particular for the GJR-GARCH specification), implying

that the forecast is mainly determined by the lagged conditional variance and its

weight, the GARCH parameter. Alternatively, in the ARCH(∞) representation of a

GARCH model, the rate at which the effect of the squared innovations on the condi-

tional variance vanishes is primarily governed by the GARCH parameter. Besides,

Hillebrand (2005) argues that the effect of “spurious almost-integration” is greater

for parameter changes in the GARCH parameter than in the ARCH parameter. Fi-

nally, we note that time variation in the GARCH coefficient will induce variation

in the relative weight associated with the lagged squared shock. In our empirical

application in Section 3.4, we will, however, also consider a time varying ARCH

coefficient.8

The novelty of our model lies in linking the transition function to the history

of an explanatory variable x in a parsimonious way. We do so by employing the

MIxed Frequency DAta Sampling (MIDAS) framework introduced by Ghysels et

al. (2005). In a similar vein as in the GARCH-MIDAS model in Engle et al. (2012),

we construct x̃ in Eq. (3.4) from a variable x via a MIDAS weighting scheme as in

x̃t−1 = Φ′xt−1 =
K∑
k=1

ϕk(ϑ1, ϑ2)xt−k, (3.6)

with Φ = (ϕ1, . . . , ϕK)′, xt−1 = (xt−1, . . . , xt−K)′ and beta weights

ϕk(ϑ1, ϑ2) =
(k/(K + 1))ϑ1−1 (1− k/(K + 1))ϑ2−1∑K
j=1 (j/(K + 1))ϑ1−1 (1− j/(K + 1))ϑ2−1

. (3.7)

The transition is thus determined by a weighted average of K past realizations of

x. With only two parameters, the function in Eq. (3.6) allows for flexible weighting

8Bollerslev et al. (2015) take a different approach on time varying volatility persistence mod-
eling and propose an extension to the HAR model of Corsi (2009), where the parameters of the
model vary with the (estimated) degree of measurement error. They argue that daily RV provides
a stronger (weaker) signal for the next day’s volatility when the variance of the measurement error
is small (large). Their arguments carry over for time varying parameters in the GARCH(1,1) to
the extent that the GARCH parameter should increase (decrease) when squared returns are large
(low), since the precision of the squared shocks as a measure of daily realized volatility generally
decreases (increases) when the level of volatility is high (low).
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schemes, in particular hump-shaped or convex schemes, of potentially many lags of

x. The restriction ϑ2 = 1 yields a strictly decreasing weighting scheme

ϕk(ϑ) =
(1− k/(K + 1))ϑ−1∑K
j=1 (1− j/(K + 1))ϑ−1

, (3.8)

where the rate of decay is increasing in ϑ.

Finally, the equations in (3.4)-(3.7) define the new time varying persistence (TVP)

GARCH-MIDAS model.9 We highlight, that in case the variable x has no ex-

planatory power for time varying volatility persistence, i.e. γ = 0, our new model

only nests the GJR-GARCH in Eq. (3.3) for the shifted transition function with

F̃ (γ, x̃t−1) = F (γ, x̃t−1) − 1/2 with F̃ (0) = 0.10 However, the specification of the

transition function in Eq. (3.5) will be more convenient for our empirical analysis in

Section 3.4.

3.3 Misspecification test

In this section, we present a misspecification test for testing the standard GJR-

GARCH model against the new model extension presented in the previous section.

The test will be based on the Lagrange multiplier (LM) principle, which has emerged

as the leading testing principle in the GARCH misspecification testing literature.

Misspecification tests for the ST-GARCH model are discussed in Hagerud (1997),

González-Rivera (1998), and Anderson et al. (1999). Lundbergh and Teräsvirta

(2002) as well as Halunga and Orme (2009) present a unified framework for a number

9The model proposed and applied in this paper does not combine mixed data frequencies - note
that all model equations rely only on the daily time index t. Rather, we make use of the flexible
weighting scheme of the MIDAS approach to smooth the explanatory variable in a parsimonious
way and to link time-varying volatility persistence to regimes of say realized volatility or business
conditions (as motivated in Secion 3.2.1). This contrasts to the GARCH-MIDAS model introduced
in Engle et al. (2013) and applied for instance in Conrad and Loch (2014, 2015), where daily return
data is combined with monthly and quarterly macroeconomic data. However, the TVP-GARCH-
MIDAS model could likewise be applied to mixed frequency, though the misspecification test
presented in Section 3.3 would need to be modified appropriately.

10Using F̃ in Eq. (3.4) instead of F , yields

ht = ω + (α1 + α21{εt−1<0})ε
2
t−1 + β1ht−1 + β2F̃ (γ, x̃t−1)ht−1,

which nests Eq. (3.3) for γ = 0 and can be re-parameterized as

ht = ω + (α1 + α21{εt−1<0})ε
2
t−1 + β̃1ht−1 + β2F (γ, x̃t−1)ht−1,

with β̃1 = β1 − 1/2β2.
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of misspecification tests for (parametric) GARCH models. More recently, Conrad

and Schienle (2015) develop a misspecification test for the GARCH-MIDAS model

and derive its asymptotic theory. The derivation of the LM test statistic in this

section will follow along the lines of these papers and we adapt a similar notation

as in Conrad and Schienle (2015).

The model presented in the Section 3.2 shares the common characteristic with

nonlinear models that it is not identified if the true model is the nested standard

GJR-GARCH model. This problem can be circumvented by a linear approximation

of the transition function, which will be done in the next section. We then present

the LM test statistic in Section 3.3.2 and discuss its size and power properties in a

simulation study in Section 3.3.3.

3.3.1 Linearizing the model

In the following, we consider the shifted version of the transition function

F̃ (γ,Φ′xt−1) = (1 + exp(γΦ′xt−1))
−1 − 1

2
,

so that the model nests the standard GJR-GARCH model in Eq. (3.3) if the variable

x has no explanatory power. Note, that the alternative model in Eq. (3.4) is not

identified under the null hypothesis. It nests the GJR-GARCH if γ = 0, but then

β2 and Φ (or (ϑ1, ϑ2)) are nuisance parameters.

Following Luukkonen et al. (1988), Hagerud (1997), and Lundbergh and Teräsvirta

(2002), we first linearize the transition function by means of a Taylor expansion in

order to break the nonlinear dependence on the parameter γ. The first order Taylor

expansion around γ0 = 0 is given by

F̃ (γ,Φ′xt−1) = F̃ (γ0,Φ
′xt−1) + (γ − γ0)

∂F̃ (γ,Φ′xt−1)

∂γ

∣∣∣∣
γ=γ0

+R1(γ,Φ′xt−1)

= F̃ (γ0,Φ
′xt−1)− (γ − γ0) (1 + exp(γ0Φ

′xt−1))
−2

exp(γ0Φ
′xt−1)Φ′xt−1

+R1(γ,Φ′xt−1)

= −1

4
γΦ′xt−1 +R1(γ,Φ′xt−1),

where R1(γ,Φ′xt−1) is the remainder term. This yields the following linearized and
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re-parameterized version of our model

ht = ω + (α1 + α21{εt−1<0})ε
2
t−1 + β1ht−1 + π′xt−1ht−1 +R∗1, (3.9)

with π′ = −β2
1
4
γΦ′ and the remainder term R∗1 = β2R1(γ,Φ′xt−1)ht−1. The model

now reduces to the standard GJR-model if π = 0. The linearized model has the

following ARCH(∞) representation

ht =
∞∑
i=0

[
i∏

j=1

(β1 + π′xt−j +R∗1)

] (
ω + (α1 + α21{εt−1−i<0})ε

2
t−1−i

)
. (3.10)

Since under H0 : γ = 0, we have R∗1 = 0, the stochastic remainder will not affect

the distributional properties of the test statistic under the null hypothesis. The

representation above then reduces to

ht|π=0 =
∞∑
i=0

βi1
(
ω + (α1 + α21{εt−1−i<0})ε

2
t−1−i

)
.

3.3.2 The LM test statistic

We derive a Lagrange multiplier (LM) test for testing the null hypothesis that the

variable has no explanatory power in the linearized model in Eq. (3.9), i.e. we test

the hypothesis H0 : π = 0 against H1 : π 6= 0.11 The LM testing principle has

the advantage that it requires estimation of the model under the null only. It does

not rely on the asymptotic properties of the new model, whose derivations will not

be considered in this paper. In the following, let θ = (η,π) denote the parameter

vector of the model with η = (ω, α1, α2, β1)′, whereas η0 denotes the true GARCH

parameters under the null. h0,t = ht|π=0(η) refers to the conditional variance model

under the null and we specify h0,t(η0) in case of the true GARCH parameters under

the null. The observed log-returns are given by εt =
√
h0,t(η0)Zt, where Zt is

independent and identically distributed (i.i.d.) with mean zero, variance equal to

one and finite fourth moment.

The conditional quasi log-likelihood function for observation t is given as

lt(θ) = −1

2

(
ln(ht) +

ε2
t

ht

)
,

11Strictly speaking, the LM test we derive applies to testing the null of a GJR-GARCH against
the class of all non-linear models that yield the same first-order Taylor approximation as our model
alternative.
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and the score vector evaluated under the null for observation t is given as

d0,t(η) =
∂lt
∂θ

∣∣∣∣
π=0

=
1

2

[
ε2
t

h0,t

− 1

]
1

h0,t

∂ht
∂θ

∣∣∣∣
π=0

.

Explicit expressions for these partial derivatives are derived from the representation

in Eq. (3.10) as

∂ht
∂η

∣∣∣∣
π=0

=
∞∑
i=0

βi1
(
1, ε2

t−1−i, 1{εt−1−i<0}ε
2
t−1−i, h0,t−1−i

)′
,

and
∂ht
∂π

∣∣∣∣
π=0

=
∞∑
i=0

βi1xt−1−ih0,t−1−i.

The average score vector under the null is then obtained as

D0(η) =
1

2T

T∑
t=1

[
ε2
t

h0,t

− 1

](
yt

rt

)
, (3.11)

with yt = 1/h0,t

∑∞
i=0 β

i
1

(
1, ε2

t−1−i, 1{εt−1−i<0}ε
2
t−1−i, h0,t−1−i

)′
and

rt = 1/h0,t

∑∞
i=0 β

i
1xt−1−ih0,t−1−i.

The variance of the score vector under the null and evaluated at the true GARCH

parameters is given by

V = E (d0,t(η0)d0,t(η0)′) = E

(
1

4

(
ε2
t

h0,t(η0)
− 1

)2
(
y0,ty

′
0,t y0,tr

′
0,t

r0,ty
′
0,t r0,tr

′
0,t

))
(3.12)

=
κ

4

(
E(y0,ty

′
0,t) E(y0,tr

′
0,t)

E(r0,ty
′
0,t) E(r0,tr

′
0,t)

)
, (3.13)

with y0,t = yt(η0), r0,t = rt(η0) and κ = E((ε2
t/h0,t(η0)− 1)2).

The LM test statistic is based on the observed average score vector, which is

an approximation of Eq. (3.11) with truncated versions of yt and rt, evaluated

at the quasi-maximum likelihood estimator (QMLE) η̂ of η0 under the null. Its

asymptotic distribution will not be shown in this paper, but it should be derived

along similar lines as in the proofs in Lundbergh and Teräsvirta (2002), Halunga

and Orme (2009), and in Conrad and Schienle (2015), where the arguments in the

derivation rely on the results for the QMLE for pure GARCH models in Francq and

Zaköıan (2004). Having used a similar notation as in Conrad and Schienle (2015),
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the formula for the score in Eq. (3.11) differs from theirs only in the specification

of the (test) variables in the vector rt (besides including the additional derivative

with respect to the asymmetry parameter α2). The asymptotic distribution of the

test statistic can generally be derived in three steps. First, one shows asymptotic

normality of the average score evaluated at the true parameters η0. In a next step,

the score is related to the “lower part” of the score evaluated at the QMLE in

order to derive asymptotic normality of the latter. Finally, it is necessary to show

that the observed average score evaluated at the QMLE has the same asymptotic

distribution as the unobserved one.

Adopting Theorem 3 in Conrad and Schienle (2015), we obtain the following LM

test statistic

LM =
1

4T

(
T∑
t=1

[
ε2
t

ĥt
− 1

]
r̂t

)′
Σ̂−1

(
T∑
t=1

[
ε2
t

ĥt
− 1

]
r̂t

)
, (3.14)

with parameter estimates from the model under the null η̂ = (ω̂, α̂1, α̂2, β̂1)′, the

estimated variance process under the null ĥt = ω̂+ (α̂1 + α̂21{(εt−1<0})ε
2
t−1 + β̂1ĥt−1,

r̂t = 1/ĥt
∑t−1

i=0 β̂
i
1xt−1−iĥt−1−i, and xt−1 = (xt−1, . . . xt−K).

A consistent estimator of the asymptotic variance of the relevant part of the score

at the QML estimates is given by

Σ̂ =
κ̂

4T

 T∑
t=1

r̂tr̂
′
t −

T∑
t=1

r̂tŷ
′
t

(
T∑
t=1

ŷtŷ
′
t

)−1 T∑
t=1

ŷtr̂
′
t

 , (3.15)

with κ̂ = 1/T
∑T

t=1(ε2
t/ĥt − 1)2. Note, that the inverse of the asymptotic variance

Σ of the relevant part of the score is given by the “(2,2) element” of V −1. The

test statistic is asymptotically χ2 distributed with K degrees of freedom, where

K corresponds to the number of lags of the explanatory variable included in the

transition function, see Eq. (3.6).12 Note that in the original non-linear model

12Alternatively, the test can be carried out in the so-called TR2 form (Engle, 1982) based on
the auxiliary regression (

ε2t

ĥt
− 1

)
= ŷ′tc1 + r̂′tc2 + ut.

The LM test statistic in Eq. (3.14) and Eq. (3.15) can be re-written as T times the uncentered R2

of this regression,

LM = T
SSR0 − SSR1

SSR0
,

where SSR1 is the sum of squared residuals from the regression and SSR0 is the sum of squared
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specification in Eq. (3.4), the null hypothesis that the variable x has no explanatory

power for time varying persistence corresponded to γ = 0. The linearization of the

transition function in Section 3.3.1 leads to a degree of freedom K in the asymptotic

χ2 distribution, since the null is now that Π1 = Π2 = · · · = Πk = 0.

Finally, we compare the test in Eq. (3.14) and Eq. (3.15) to the misspecification

tests proposed in Amado and Teräsvirta (2015), who consider testing the GJR-

GARCH with constant parameters against a general form of time-varying param-

eters.13 Adopting their notation to our setup, results in a decomposition of the

conditional variance ht = h0,t + gt, where gt introduces non-stationarity and

h0,t = ω + (α1 + α21{εt−1<0})ε
2
t−1 + β1h0,t−1 (3.16)

gt = β2F (γ, x̃t−1)h0,t−1. (3.17)

However, note that this does not yield the same model under the alternative as

in our model in Eq. (3.4). The above specification is not ”recursive in nature“ as

pointed out by Halunga and Orme (2009), meaning that the functions h0,t and gt

include lags of h0,t−1, whereas in our alternative they should include the lag of the

volatility process ht−1. The Amado and Teräsvirta (2015) LM test statistic for

the linearized model will have the same form, but with r̃t = 1/ĥtxt−1ĥt−1. The

lack of the recursive nature under the alternative may lead to a decrease in power,

as discussed in Halunga and Orme (2009) and Conrad and Schienle (2015). In

the following simulation study on the size and power properties, we shall therefore

compare our LM test to the Amado and Teräsvirta (2015) test version.

3.3.3 Simulation study: power and size properties

In this section, finite sample properties of the proposed LM test are examined in a

Monte-Carlo experiment. We simulate return series with T = 1250 observations for

M = 1000 Monte-Carlo replications. Throughout the simulations, the innovation Zt

is assumed to be either standard normally distributed or (standardized) t-distributed

with seven degrees of freedom. We will calculate both the LM test statistic in

Eq. (3.14) and Eq. (3.15) and the Amado and Teräsvirta (2015) test version, which

we denote by LMAT .

residuals under the null H0 : c2 = 0, i.e. SSR0 =
∑T
t=1

(
ε2t/ĥt − 1

)2
.

13They consider both an additive and a multiplicative misspecification of the conditional vari-
ance.
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Size properties We first consider the size properties of the LM test statistic.

We simulate the model under the null of a GJR-GARCH(1,1) model, i.e. the data

generating process (DGP ) for the conditional variance is given by

ht = ω +
(
α1 + α21{εt−1<0}

)
ε2
t−1 + β1ht−1.

We set the parameter values to α1 = 0.06, α2 = 0.05, and consider three different

values for β1, reflecting different degrees of persistence (Low: L, Intermediate: I,

High: H)

βL1 = 0.82, βI1 = 0.87, βH1 = 0.91.

The persistence of the simulated model (α1 + α2/2 + β1) thus varies between 0.90,

0.95, and 0.99. The parameter ω is adjusted accordingly for the unconditional

variance to be equal to one. The LM tests are based on different rolling windows

of realized volatility,

xt = RV
(N)
t =

1

N

N−1∑
j=0

ε2
t−j, N = 1, 22, 65,

and we set K = 1. We report the empirical size for both LM tests in Table 3.1. The

empirical size is close to the nominal size for both test versions when Zt is normally

distributed. The size tends to decrease for t-distributed innovations, in line with

similar LM test evaluations in Conrad and Schienle (2015). The size properties are

robust to increasing K to K = 22 as well as in case the DGP includes a constant µ

in the mean equation and the LM tests are applied to de-meaned returns, see the

simulation results in the Appendix.14

Power properties In order to consider a realistic model under the alternative, we

include actual data in the TVP-GARCH-MIDAS model

ht = ω +
(
α1 + α21{εt−1<0}

)
ε2
t−1 +

(
β1 + β2

(
F (γ,Φ′xt−1)− 1

2

))
ht−1

Φ′xt−1 =
K∗∑
k=1

ϕk(ϑ)xt−k,

14 The true MIDAS lag length is of course unknown in empirical applications. In case of
misspecification testing in the GARCH-MIDAS model framework, Conrad and Schienle (2015)
argue that their LM test is not suited for selecting the true lag order of the model. Their argument
applies just as well to our TVP-GARCH-MIDAS model.
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with ω = 0.10, α1 = 0.05, α2 = 0.06, β1 = 0.82, β2 = 0.18. We include daily rolling

windows of realized volatility, RV
(N)
t , and of the V IX, V IX

(N)
t , for N = 1, 22, 65,

over the 2010-2014 sample.15 We consider two different smooth transitions in the

time-varying GARCH coefficient for each variable, with γ ∈ {−1,−10} for realized

volatility and γ ∈ {−1.5,−4} for the V IX. We denote the true MIDAS lag length

by K∗ and set K∗ = 1 or K∗ = 22 with ϑ = 3. We choose K = 1 in the test

statistics.

The daily rolling window versions of the variables over the 2010-2014 period as well

as the time-varying GARCH coefficients implied by the two model specifications are

shown in Figures 3.5 and 3.6. All variables except the daily realized volatility RV
(1)
t

are highly persistent. Increasing N in the rolling window versions of the variables

has a smoothing effect on them. Increasing the absolute value of the transition

parameter γ has two effects: it steepens the transition between the persistence

regimes and attenuates the range of the time-varying GARCH coefficient if the

explanatory variable x is bounded from zero. The latter effect is particularly evident

in case of N = 65 and should make it more difficult to detect time variation in

persistence in that case. We present the results of the Monte-Carlo simulations for

normally distributed innovations and realized volatility in Table 3.2 and in Table

3.3 for the V IX. For each specification, we also report the standard deviation of

the time-varying GARCH coefficient.

Let us first consider the specifications including realized volatilities with γ = −1

and K∗ = 1, i.e. the upper left part of Table 3.2. Our LM test has very good power

for the specifications with N = 22 and N = 65, with rejection rates of 86% and

93% at the 10% nominal level. The rates are always greater than for the LMAT

test version, though they are similar in magnitude. Increasing K∗ does not have a

big effect on the time variation in the GARCH coefficient (note that its standard

deviation does not change by much) and consequently, the rejection rates are very

similar for K∗ = 22. For N = 1 and K∗ = 1 however, our test has difficulties in

detecting the time-varying persistence and we see substantially lower rejection rates

(33% at the 10% nominal level), though now the difference to LMAT is much more

pronounced. Recall that the two test versions differ only in the specification of the

testing variable r̂t. Our test includes r̂t = 1/ĥt
∑t−1

i=0 β̂
i
1xt−1−iĥt−1−i, whereas the

LMAT version includes only the first summand 1/ĥtxt−1ĥt−1. For the very erratic

15More precisely, we take squared returns as a realized volatility measure and define V IXt as
1/365 times the squared V IX index. We standardize all variables by dividing with their standard
deviation. The sample is chosen so that it includes T = 1250 observations.
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RV
(1)
t variable, the additional smoothing via the summation in our test variable

seems to be beneficial in terms of power. Smoothing the time-varying GARCH

coefficient by increasing K∗ slightly increases the power of our test.

For the model specification with γ = −10, it becomes more difficult to detect time

variation in the persistence for the rolling windows with N = 22 and N = 65. As

already suggested in Figure 3.5, the standard deviation of the time-varying GARCH

coefficient decreases, which leads to lower rejection rates. In sharp contrast, our

test now has good power for the N = 1 specification and yields particularly higher

rejection rates than the LMAT version, namely 62%, resp. 91%, compared to 31%,

resp. 35%, at the 10% nominal level for K∗ = 1, resp. K∗ = 22.

Results for the specifications including the V IX are reported in Table 3.3. The

V IX is generally smoother and less erratic than realized volatility, resulting in over-

all higher power of the tests. For the DGP with γ = −1.5, our test yields rejection

rates well above 95% at the 10% nominal level across all specifications. Again,

our test performs particularly better than the LMAT version for the rolling windows

with N = 1. Choosing γ = −4, decreases the standard deviation of the time-varying

GARCH coefficient, which leads to lower rejection rates. Interestingly, differences

in rejection rates for the different rolling windows are much less pronounced than

for realized volatility, since already the rolling windows of the V IX are relatively

smooth (see Figure 3.6).

Including standardized t-distributed errors instead of normally distributed ones

tends to decrease the power of the tests, though our main conclusions are still valid.

The simulation results are presented in the Appendix.

In summary, the power of our LM test is high for reasonably smooth and large

time variation in persistence and its power is particularly higher than the LMAT

test version for erratic explanatory variables.

3.4 Empirical analysis

This section presents an empirical application of the new TVP-GARCH-MIDAS

model to stock returns on the S&P 500. The dataset is briefly discussed in Section

3.4.1 and estimation results are presented in Section 3.4.2. In Section 3.4.3, the

forecasting performance of the new model is compared to the GJR-GARCH model

in a direct forecasting evaluation.
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3.4.1 Data

Our empirical analysis focuses on the S&P 500 and general U.S. macroeconomic

conditions for the 1969 to 2014 period. We consider continuously compounded

daily S&P 500 stock return data, rt, from January 2nd 1969 to December 31st

2014. We calculate daily realized volatility, RV
(1)
t = r2

t , and a 22-days rolling

window version thereof, RV
(22)
t = 1/22

∑21
j=0 r

2
t−j. In order to account for general

macroeconomic conditions, we consider the Aruoba-Diebold-Scotti (ADS) business

conditions index, which is introduced in Aruoba et al. (2009) and is provided by

the Federal Reserve Bank of Philadelphia. The index tracks real business conditions

at a daily frequency. It is based on six economic indicators: weekly initial jobless

claims, monthly payroll employment, industrial production, personal income less

transfer payments, real manufacturing and trade sales, and quarterly real GDP.

Its average value is zero, positive values indicate better-than-average conditions,

and negative values worse-than-average conditions. We calculate the 22-days rolling

window version of the ADS as ADS
(22)
t = 1/22

∑21
j=0ADSt−j. Summary statistics

of the daily data are presented in Table 3.4 and the variables are depicted in Figure

3.7. Note that compared to the ADS, realized volatility is heavily skewed with

an excessive kurtosis. Finally, we also consider a modified version of the ADS that

focuses only on its negative values, neg ADS
(22)
t = min{0, ADS(22)

t }, see also Dorion

(2013). Throughout the empirical analysis, we consider standardized versions of the

variables divided by their standard deviation.

3.4.2 Estimation results

We estimate the TVP-GARCH-MIDAS model defined in the equations (3.4)-(3.7)

with the daily 22-days rolling window versions of realized volatility, ADS, and

neg ADS using quasi-maximum likelihood methods. We include one MIDAS lag

year in the MIDAS filter, i.e. we set K = 252 in Eq. (3.6).16 The estimation re-

sults are presented in Table 3.5 along with the benchmark GJR-GARCH(1,1) model

estimates.

In terms of likelihood criteria, only the model with RV
(22)
t yields a lower Bayesian

information criterion than the benchmark GJR-GARCH. Accordingly, estimates of

16We find K = 252 to be sufficiently large for our application. As demonstrated in Engle et
al. (2013) and Conrad and Loch (2014), the beta weighting function seems to be robust to the
maximum number of lags K included in the MIDAS filter, as long as it is chosen large enough.
See also Footnote 14 on the MIDAS lag length choice.
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the model extension parameters are highly significant for the RV model, whereas

only the β2 parameter is found to be significant at the 5% level for the neg ADS

variable. However, due to the identification issue under the null discussed in Section

3.3.1, the (in)significance of the model extension parameters have to be taken with

a pinch of salt. We therefore add the LM test statistic presented in Eq. (3.14) and

Eq. (3.15) for testing the null hypothesis that the variable x has no explanatory

power for time variation in the GARCH coefficient. The test statistic is significant

at the 1% level for both ADS variables and lies slightly above the 10% significance

level for the RV variable.17 The estimated (restricted) MIDAS weighting schemes

are plotted in Figure 3.8.18 The schemes roughly imply vanishing weights for lags

beyond half a year.

Next, we have a closer look at the time variation in persistence that is im-

plied by the model estimations. The estimated time-varying GARCH coefficients,

β̂t = β̂1 + β̂2F (γ̂, Φ̂′xt−1), are shown in Figure 3.9 and some descriptive statistics

are summarized in Table 3.6. First, the signs of the transition parameter γ confirm

our intuition from Section 3.2.1. A negative γ for RV implies that the time-varying

GARCH coefficient is positively related to realized volatility, i.e. we see high (low)

persistence during high (low) volatility regimes. Correspondingly, positive γ es-

timates for the ADS variables imply increasing (decreasing) persistence for weak

(strong) business conditions. The RV model implies a greater time variation in

the GARCH coefficient than the ADS models. For RV , the coefficient lies in the

range of [0.78, 0.90], whereas it lies in the range [0.91, 0.93] for the ADS models.

Accordingly, we see a higher standard deviation of the GARCH coefficient in the

RV model.19 Both versions of the ADS variable yield a similar time variation in

persistence, though the neg ADS version yields a slightly smoother variation. How-

ever, note that both models imply a lower persistence than the GJR-GARCH model

on average.

For the ADS variables, particularly for the negative ADS, we see essentially two

persistence regimes in Figure 3.9 that roughly correspond to recession and expansion

periods with not much variation in between. For realized volatility on the other

17The financial crisis period seems to have distorting effects on the LM test for the realized
volatility model. The test statistic for the subsample ending 2007 is calculated as 4.06 and is
significant at the 5% level.

18For all three variables, including an unrestricted scheme in Eq. (3.7) instead yielded no sig-
nificant improvements in terms of the likelihood (as measured by means of a likelihood ratio test).

19Note that the range of the time-varying GARCH coefficient implied by the model estimates
β̂1, β̂2 differs for the strictly positive RV/neg ADS, and the ADS, since in the first case, the
transition function is restricted to the [0.5, 1] interval, see also Footnote 7.
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hand, there is more variation in the GARCH coefficient during expansion periods.

This suggests that there are other factors than the U.S. business conditions affecting

volatility persistence, which are reflected in realized volatility but not in the ADS.

For instance, monetary policy is an important driver of realized volatility. The term

spread (which is not included in the ADS) has strong predictive power for realized

volatility, as shown in Paye (2012), and is a leading indicator for financial volatility,

as argued in Conrad and Loch (2014).

We illustrate the underlying transitions between high and low persistence regimes

implied by the explantory variables in Figure 3.10. The figure plots estimates of

the transition function F (γ̂, Φ̂′xt−1) and the time-varying GARCH coefficient β̂t,

which corresponds to a linear transformation of the transition function, against

the weighted average of the respective explanatory variable x, x̃t = Φ̂′xt−1 =∑252
k=1 ϕ̂kxt−k. To illustrate how the distribution of the explanatory variables re-

lates to the time variation in persistence, the figure includes histograms of x̄t and of

the transition / GARCH coefficient. The skewness of realized volatility is evident

and in line with the descriptive statistics in Table 3.4. Combined with some large

outliers, this translates into a very steep transition function for realized volatility,

which results in the GARCH coefficient being almost flat during very high volatility

regimes, such as the financial crises 2008/09. On the contrary, the distribution of

the ADS is symmetric around zero with few outliers and its translation function is

smoother.

Finally, we find similar results if we let the explanatory variables govern time

variation in the ARCH coefficient. The corresponding estimates of the time-varying

ARCH coefficient as well as a summary of their descriptive statistics can be found

in the Appendix. However, we note that these model estimates imply a higher level

of average volatility persistence, compared to the specification with a time-varying

GARCH coefficient. This finding is perfectly in line with the argument by Hillebrand

(2005) that the effect of overestimating volatility persistence is stronger if changes

in the GARCH parameter are not accounted for (see also the discussion on page

80). This reconfirms the specific choice of our model specification in Eq. (3.4).

3.4.3 Forecasting evaluation

Our forecasting analysis is based on model estimations up to the end of 1999 and an

out-of-sample evaluation period from 2000 to 2010. Subsample model estimations as

well as descriptive statistics for the estimated time-varying persistence are presented
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in the Appendix. Note that the LM test statistic is now found to be significant at

the 1% level for the RV
(22)
t variable. Also, the average estimated persistence from

the TVP-GARCH model estimations are found to be lower for the subsample, which

excludes the financial crisis, than for the full sample.

In the direct forecasting evaluation, we use the mean squared error (MSE) and

the quasi-likelihood (QLIKE) loss functions, since Patton (2011) showed that they

are both robust in the sense that they yield the same ranking of two volatility fore-

casts when using an observed (unbiased) volatility proxy instead of the unobserved

true volatility. The two loss functions differ in an important way: the MSE is a

symmetric loss function, whereas the QLIKE depends on the relative forecast error

and penalizes more heavily volatility forecasts that underestimate volatility. More-

over, Brownlees et al. (2011) show that the MSE has a bias that is proportional to

the true volatility, whereas the bias of QLIKE is independent of the volatility level.

Let RVt+l denote the realized volatility proxy that is based on 5-minutes intra-day

returns and let ĥt+l|t denote the l-step ahead volatility forecast.20 For observation

t, the two loss functions are then given by

MSEt =
(
RVt+l − ĥt+l|t

)2

,

QLIKEt =
RVt+l

ĥt+l|t
− log

(
RVt+l

ĥt+l|t

)
− 1.

Note that at the beginning of period t + 1, the time-varying GARCH coefficient

βt+1 = β1 + β2F (γ,Φ′xt) is predetermined with respect to Ft, since the transition

function includes lags of x beyond period t. Thus, the one-step ahead volatility

prediction ĥt+1|t from the TVP-GARCH-MIDAS model is simply ht+1, just as in

the GJR-GARCH model. In computing volatility forecasts from the TVP-GARCH-

MIDAS model beyond horizon l = 1, we make the simplifying assumption that

E[βt+l|Ft] = βt+1 for l > 1, that is we keep βt+1 fixed. Volatility forecasts are then

obtained iteratively in a similar way as in the GJR-GARCH model.

The results of a forecast evaluation based on the QLIKE for daily forecasts hori-

zons l = 1, 10, 22, 65 are presented in Table 3.7. Based on a Diebold-Mariano test,

we find significant improvements over forecasts from the GJR-GARCH benchmark

model for the TVP-GARCH-MIDAS model including the RV across all horizons.

On the other hand, the models including the ADS yield no significant improvements

over the benchmark model. We find similar results for the mean squared error loss

20We rely on intra-day returns from the Oxford-Man-Institute of Quantitative Finance.
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function. In Figure 3.11, we show the R2s obtained from Mincer-Zarnowitz regres-

sions across horizons l = 1, . . . , 65, that is from regressing realized volatility for

period t+ l on a constant and the respective l-step ahead volatility forecast given t.

The R2 obtained from the RV forecasts constantly lies above the other ones across

the horizons. On the other hand, the R2 from the benchmark model is not dis-

tinguishable from the ADS models. In summary, we find strong evidence that the

model with time-varying persistence determined by RV
(22)
t significantly improves

volatility forecasts over the GJR-GARCH model.

Finally, we compare the volatility forecasts across volatility regimes in order to get

a sense when the adjustment in volatility persistence pays off the most. We follow

the approach in Lanne and Saikkonen (2005) and split realized volatility into three

categories. Then, based on each realized volatility observation, we calculate forecasts

implied by the different model estimations at horizons from 1 to 65 days and take

the average of the forecasts for a given horizon within each category. The average

realized volatility as well as the volatility forecasts at each horizon are depicted in

Figure 3.12. The forecasts are based on the initial realized volatility value RV0 with

RV0 < 0.6, 0.6 ≤ RV0 < 4.3, and RV0 ≥ 4.3. The thresholds correspond to the 50%

and 95% quantile of realized volatility and most of the observations falling into the

last category coincide with the financial crisis period. Note that we plug in RV0 as

a starting value for all models and then iterate the forecasts based on the respective

persistence estimates. This exercise does therefore not evaluate the actual volatility

(point) forecasts, but rather compares the persistence evolvement that is implied by

the models.

We find that on average, forecasts from the TVP-GARCH-MIDAS model with

RV
(22)
t capture very well the actual rate of persistence of realized volatility for the

first (low initial RV0) and the last (high initial RV0) category. The two models

with the ADS variables yield similar forecast persistence, though the negative ADS

improves over the standardADS variable in the high initial realized volatility regime.

In the low volatility regime, the TVP-GARCH-MIDAS models imply a lower

volatility persistence than the GJR-GARCH, but the level implied by the ADS is

still to high compared to the actual persistence of realized volatility in this regime.

Similarly, the ADS overestimates persistence in the high volatility regime.21

21In line with the full sample estimations, the TVP-GARCH MIDAS model with realized volatil-
ity yields a greater time variation in persistence. The minimum persistence value for the model is
0.7788, compared to (0.9829) 0.9777 for the (negative) ADS. The maximum persistence value for
the model with realized volatility is 0.9545, compared to (0.9922) 0.9972 for the (negative) ADS.
The estimated persistence implied by the GJR-GARCH model equals 0.9881. The full descriptive
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The “spurious almost-integration” effect for the GJR-GARCH(1,1) is evident in

the low realized volatility category, where the rate of persistence is too high. For the

intermediate initial realized volatility category, none of the models is able to capture

the right level of persistence, but note that the differences to the actual evolvement

of realized volatility are small compared to the high volatility regime.

3.5 Conclusions

We suggest a new GARCH volatility model that links time-varying persistence

(TVP) to an explanatory variable using MIDAS techniques. The new model nests

the GJR-GARCH in case the variable has no explanatory power and we present a

misspecification test based on the Lagrange multiplier principle. We find good sam-

ple size and power properties in a Monte-Carlo simulation study. In an empirical

application to the U.S. stock market, we provide evidence that volatility persistence

is counter cyclical and high (low) during periods of weak (strong) business condi-

tions and high (low) realized volatilities. However, the model including realized

volatility is able to capture more time variation in the persistence than the model

including business conditions and is preferable from a forecasting point of view. It

therefore seems natural to extend our empirical analysis to including alternative

(high-frequency) realized volatility measures as explanatory variables. Also, our

framework allows to include macroeconomic variables of lower frequency, though

the misspecification test would have to be adjusted accordingly.

statistics are presented in the Appendix.
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3.6 Tables and figures

3.6.1 Tables

Table 3.1: Empirical size properties of the LM-tests

Zt ∼ N (0, 1) Zt ∼ t(7)
L I H L I H

xt = RV
(1)
t

1% 0.95 0.62 0.51 0.43 0.20 0.30
LM 5% 3.18 3.62 3.23 2.67 2.05 1.93

10% 8.05 7.54 6.36 5.97 5.63 5.07
1% 0.85 0.72 0.81 0.64 0.61 0.30

LMAT 5% 4.03 3.20 3.13 3.62 4.09 3.65
10% 9.32 8.26 7.58 8.74 8.15 7.09

xt = RV
(22)
t

1% 0.74 1.14 0.61 0.64 0.61 0.20
LM 5% 4.77 4.86 4.24 5.01 4.40 3.14

10% 10.06 9.61 8.48 9.59 9.21 6.18
1% 0.42 0.62 0.51 0.32 0.41 0.20

LMAT 5% 3.18 3.41 3.54 3.52 2.66 3.14
10% 8.16 6.51 7.07 6.61 5.94 5.88

xt = RV
(65)
t

1% 1.69 1.76 1.21 0.53 0.92 1.22
LM 5% 6.04 5.27 7.07 5.12 6.02 6.18

10% 12.08 12.40 12.63 9.28 10.44 11.14
1% 1.17 1.14 1.11 0.53 0.41 0.41

LMAT 5% 4.98 5.17 5.05 3.20 3.38 3.75
10% 10.70 10.85 11.21 9.59 8.90 8.41

Notes: Rejection rates in percent at the 1%, 5%, and 10% nominal level.
The data generating process is a GJR-GARCH(1,1) process

εt =
√
htZt

ht = ω +
(
α1 + α21{εt−1<0}

)
ε2t−1 + β1ht−1,

with parameter values set to α1 = 0.05, α2 = 0.06, and persistence regimes
L, I, and H with βL1 = 0.82, βI1 = 0.87, and βH1 = 0.91. The persistence
of the simulated model (α1 + α2/2 + β1) thus varies between 0.90, 0.95, and
0.99. We set ω accordingly, so that the unconditional variance equals one.
The shocks Zt are simulated from a standard normal distribution or a t-
distribution with seven degrees of freedom. The LM -tests are based on xt =

RV
(N)
t = 1

N

∑N−1
j=0 ε2t−j , with N = 1, 22, 65, and we set K = 1 in the test

statistics. LM refers to the test statistic in Section 3.3.2, see Eq. (3.14) and
Eq. (3.15), whereas LMAT refers to the Amado and Teräsvirta (2015) test
version, see the discussion at the end of Section 3.3.2.
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Table 3.2: Empirical power properties of the LM-tests with RV

K∗ = 1 K∗ = 22
N 1 22 65 1 22 65

xt = RV
(N)
t γ = −1

SD of βt 0.013 0.017 0.017 0.009 0.016 0.017
1% 9.3 61.6 72.7 12.7 57.9 72.3

LM 5% 24.6 78.1 88.2 28.5 75.4 87.2
10% 33.0 85.6 93.3 36.7 84.5 92.9
1% 4.2 50.9 68.3 3.1 43.2 64.7

LMAT 5% 12.6 71.7 85.7 9.9 63.0 84.2
10% 20.0 80.4 92.0 16.3 74.2 90.3

xt = RV
(N)
t γ = −10

SD of βt 0.032 0.018 0.008 0.025 0.016 0.008
1% 32.7 36.6 8.7 65.1 30.2 8.4

LM 5% 51.0 55.9 22.0 84.3 51.4 21.3
10% 61.5 66.1 33.3 90.7 60.6 32.4
1% 10.2 23.9 6.4 11.6 16.1 5.9

LMAT 5% 22.1 44.6 20.0 24.5 35.2 18.2
10% 31.3 55.5 29.5 34.5 45.8 28.6

Notes: Rejection rates at 1%, 5%, and 10% nominal level. The data generating
process is the TVP-GARCH-MIDAS(1,1)

εt =
√
htZt

ht = ω +
(
α1 + α21{εt−1<0}

)
ε2t−1 +

(
β1 + β2

(
F (γ,Φ′xt−1)−

1

2

))
ht−1

Φ′xt−1 =

K∗∑
k=1

ϕk(ϑ)xt−k,

with ω = 0.1, α1 = 0.05, α2 = 0.06, β1 = 0.82, β2 = 0.18, ϑ = 3, and γ = −1 or

γ = −10. xt is taken as rolling window versions of realized volatility, RV
(N)
t with

N = 1, 22, 65, over the 2010-2014 sample. K∗ denotes the true MIDAS lag order in
the DGP. We also report the standard deviation (SD) of the time-varying GARCH
coefficient in the DGP, βt = β1 + β2

(
F (γ,Φ′xt−1)− 1

2

)
.

All test statistics are based on K = 1. LM refers to the test statistic in Section 3.3.2,
see Eq. (3.14) and Eq. (3.15), whereas LMAT refers to the Amado and Teräsvirta
(2015) test version, see the discussion at the end of Section 3.3.2. The shocks Zt are
simulated from a standard normal distribution.
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Table 3.3: Empirical power properties of the LM-tests with the V IX

K∗ = 1 K∗ = 22
N 1 22 65 1 22 65

xt = V IX
(N)
t γ = −1.5

SD of βt 0.019 0.018 0.018 0.019 0.018 0.018
1% 79.8 80.0 78.9 78.5 78.5 79.0

LM 5% 93.0 93.1 92.6 92.5 92.3 93.0
10% 96.3 97.2 96.4 96.3 96.8 96.3
1% 61.4 72.8 72.1 53.8 66.7 68.3

LMAT 5% 83.3 89.5 90.0 78.4 86.7 88.6
10% 90.9 95.4 95.6 87.6 92.7 94.6

xt = V IX
(N)
t γ = −4

SD of βt 0.013 0.012 0.010 0.013 0.011 0.010
1% 33.4 26.4 20.5 29.8 24.5 20.1

LM 5% 56.8 49.6 43.1 53.0 48.6 42.8
10% 68.5 61.6 55.9 64.6 60.2 55.3
1% 19.7 18.2 14.2 15.2 15.9 13.7

LMAT 5% 42.1 42.8 36.7 35.4 39.5 35.1
10% 54.6 54.6 49.5 47.7 51.5 48.3

Notes: Rejection rates at 1%, 5%, and 10% nominal level. The data generating
process is the TVP-GARCH-MIDAS(1,1)

εt =
√
htZt

ht = ω +
(
α1 + α21{εt−1<0}

)
ε2t−1 +

(
β1 + β2

(
F (γ,Φ′xt−1)−

1

2

))
ht−1

Φ′xt−1 =

K∗∑
k=1

ϕk(ϑ)xt−k,

with ω = 0.1, α1 = 0.05, α2 = 0.06, β1 = 0.82, β2 = 0.18, ϑ = 3, and γ =

−1.5 or γ = −4. xt is taken as rolling window versions of the V IX, V IX
(N)
t with

N = 1, 22, 65, over the 2010-2014 sample. K∗ denotes the true MIDAS lag order in
the DGP. We also report the standard deviation (SD) of the time-varying GARCH
coefficient in the DGP, βt = β1 + β2

(
F (γ,Φ′xt−1)− 1

2

)
.

All test statistics are based on K = 1. LM refers to the test statistic in Section 3.3.2,
see Eq. (3.14) and Eq. (3.15), whereas LMAT refers to the Amado and Teräsvirta
(2015) test version, see the discussion at the end of Section 3.3.2. The shocks Zt are
simulated from a standard normal distribution.
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Table 3.4: Descriptive statistics of the data

Variable Min Max Mean SD Skew. Kurt.
S&P 500 returns -22.90 10.96 0.03 1.07 -1.03 29.09
Realized volatility 0.00 524.40 1.14 6.02 59.80 4977.19

(0.00) (87.13) (0.19) (1.00)

RV
(22)
t 0.06 37.82 1.14 2.35 9.77 123.06

(0.03) (16.12) (0.49) (1.00)
ADSt -4.42 2.78 -0.09 0.87 -1.23 6.76

(-5.07) (3.18) (-0.10) (1.00)

ADS
(22)
t -4.30 2.62 -0.09 0.86 -1.26 6.74

(-5.00) (3.04) (-0.10) (1.00)

Notes: The reported statistics include the minimum (Min) and maximum (Max), mean,
standard deviation (SD), Skewness (Skew.), and Kurtosis (Kurt.). Daily realized volatil-
ity is the squared daily return and its 22-days rolling window version is calculated as

RV
(22)
t = 1/22

∑21
j=0 r

2
t−j , and analogously for the ADS Business Conditions Index. For

each variable, the second row displays statistics in parentheses for a standardized version,
where the variable is divided by its standard deviation. The full sample includes 11576
daily observations from January 2, 1969 to December 31, 2014.
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Table 3.6: Descriptive statistics of time-varying persistence

Variable Min Max Mean SD
Panel A: Time-varying GARCH coefficient

RV
(22)
t 0.7792 0.8946 0.8592 0.0312

ADS
(22)
t 0.9017 0.9267 0.9118 0.0050

neg ADS
(22)
t 0.9065 0.9250 0.9106 0.0052

Panel B: Time-varying persistence

RV
(22)
t 0.8565 0.9718 0.9364 0.0312

ADS
(22)
t 0.9708 0.9958 0.9810 0.0050

neg ADS
(22)
t 0.9760 0.9945 0.9801 0.0052

Notes: The table reports descriptive statistics of the time-varying
GARCH coefficients, β̂t = β̂1 + β̂2F (γ̂, Φ̂′xt−1), from the TVP-GARCH-
MIDAS model estimations in Table 3.5 and the corresponding time-
varying persistence, calculated as α̂1 + 1

2
α̂2 + β̂t. The estimated GARCH

coefficient, resp. persistence, from the GJR-GARCH model is 0.9164, resp.
0.9852.

Table 3.7: Daily forecast evaluation

Forecast horizon l = 1 l = 10 l = 22 l = 65
Model QLIKE loss ratio
GJR-GARCH(1,1) 0.23 0.34 0.42 0.59

- - - -

RV
(22)
t 0.96 0.97 0.93 0.88

[0.00] [0.06] [0.00] [0.00]

ADS
(22)
t 1.01 1.01 1.00 0.96

[0.00] [0.18] [0.76] [0.17]

neg ADS
(22)
t 1.00 1.00 0.99 0.93

[0.90] [0.97] [0.41] [0.11]

Notes: The forecast evaluation is based on TVP-GARCH-MIDAS
model estimations on the subsample from March 1970 to December
1999, see the estimations results in the Appendix. We evaluate daily
volatility forecasts for varying forecast horizons l = 1, 10, 22, 65 over
the January 2000 to December 2014 out-of-sample period with 3744
observations. Volatility forecasts are evaluated using the QLIKE loss
function,

QLIKE =
RVt+l

ĥt+l|t
− log

(
RVt+l

ĥt+l|t

)
− 1,

with the l−step ahead volatility forecast ĥt+l|t and the RV proxy
RVt+l that is based on 5-min intra-day returns. We present mean
QLIKE losses for the benchmark GJR-GARCH(1,1) model and mean
QLIKE loss ratios relative to the benchmark for the TVP-GARCH-
MIDAS models. A ratio below one implies an improvement over
the benchmark model. In brackets, we present p-values based on a
Giacomini-White test on equal predictive ability.
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3.6.2 Figures

Figure 3.1: Empirical autocorrelation functions across subsamples

Notes: Empirical autocorrelation functions up to lag 100 for daily returns and squared returns
across four decades from 1970 to 2009. The dashed lines are 95% confidence bands for independent
white noise, calculated as ±1.96/

√
T . For each decade, a simple GARCH(1,1) model is estimated

and the model implied autocorrelation function is added to the figure.
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Figure 3.2: Empirical autocorrelation functions across ADS regimes

Notes: The top row shows the daily 22-days rolling window of the ADS business indicator, denoted
by ADS RW(22), over the full 1969-2014 sample. Shaded areas represent NBER recession periods.
There are 5732 negative and 5823 positive values of the ADS RW(22). The bottom row shows
the empirical autocorrelation functions (ACF) up to lag 100 for daily returns and squared returns
across negative and positive 22-days rolling window ADS regimes over the full sample. The dashed
lines are 95% confidence bands for independent white noise, calculated as ±1.96

√
T . See Eq. (3.1)

for the calculation of the ACF across the two regimes.
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Figure 3.3: Empirical autocorrelation functions across RV regimes

Notes: The top row shows the daily 22-days rolling window of mean-adjusted realized volatility,
denoted by RV RW (22), over the full 1969-2014 sample. Shaded areas represent NBER recession
periods. The mean value of RV RW(22) is 1.14 and there are 2812 values above and 8743 values
below the mean. The bottom row shows the empirical autocorrelation functions (ACF) up to lag
100 for daily returns and squared returns across above and below average realized volatility rolling
window (with 22 lags) regimes over the full sample. The dashed lines are 95% confidence bands
for independent white noise, calculated as ±1.96

√
T . See Eq. (3.1) for the calculation of the ACF

across the two regimes.
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Figure 3.4: Transition function

Notes: Transition function F (γ, x̃) = (1 + exp(γx̃))
−1

with γ ∈ {0.25, 1, 4} and γ = −1.
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Figure 3.5: Empirical power properties of the LM-tests with RV

Notes: The top row figure shows daily rolling window versions of realized volatility, denoted by RV
RW(N), with N = 1, 22, 65, over the 2010-2014 period. The bottom row shows the time-varying
GARCH coefficient implied by the two TVP-GARCH-MIDAS model specifications considered in
the power simulation for the LM test, see Section 3.3.3 and Table 3.2. The two specifications
only differ in the value for the γ parameter, which governs the transitions between the persistence
regimes.
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Figure 3.6: Empirical power properties of the LM-tests with the V IX

Notes: The top row figure shows daily rolling window versions of the V IX, denoted by VIX
RW(N), with N = 1, 22, 65, over the 2010-2014 period. The bottom row shows the time-varying
GARCH coefficient implied by the two TVP-GARCH-MIDAS model specifications considered in
the power simulation for the LM test, see Section 3.3.3 and Table 3.3. The two specifications
only differ in the value for the γ parameter, which governs the transitions between the persistence
regimes.
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Figure 3.7: Financial and macroeconomic data

Notes: Daily S&P 500 log returns (top row), 22-days rolling window of the daily ADS business
conditions index (bottom row, left) and 22-days rolling window of daily realized volatility (bottom
row, right). The two variables are standardized through division by their standard deviation.
Shaded areas represent NBER recession periods.



3.6.2 Figures 109

Figure 3.8: Beta weighting schemes

Notes: Beta weighting schemes from the TVP-GARCH-MIDAS model estimations (see Table 3.5)
with one MIDAS lag year of daily data, i.e. with K = 252 in Eq. (3.8).

Figure 3.9: Time-varying GARCH coefficients

Notes: Time-varying GARCH coefficients calculated as β̂t = β̂1 + β̂2F (γ̂, Φ̂′xt−1) based on the
TVP-GARCH-MIDAS model estimations in Table 3.5. Shaded areas represent NBER recession
periods.
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Figure 3.10: Transition functions and time-varying GARCH coefficients

Notes: Transition functions (gray, left axis), F (γ̂, Φ̂′xt−1) = 1/(exp(γ̂Φ̂′xt−1)), and time-varying

GARCH coefficients (black, right axis), β̂t = β̂1 + β̂2F (γ̂, Φ̂′xt−1), from the TVP-GARCH-MIDAS
model estimations in Table 3.5. The functions are plotted against the weighted average of the
respective explanatory variable that is implied by the model estimation, Φ̂′xt−1 =

∑252
k=1 ϕ̂kxt−k.

The axes also include histograms to illustrate the distribution of the (weighted) explanatory vari-
able (bottom), the transition function (left), and the GARCH coefficient (right).
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Figure 3.11: Mincer-Zarnowitz regression R2s

Notes: R2s from a Mincer-Zarnowitz regression across varying forecast horizons, i.e. the R2 values
from regressing the l-step ahead realized volatility on a constant and the l-step ahead volatility
forecast for l = 1, . . . , 65.

Figure 3.12: Average volatility forecast over different volatility regimes

Notes: The figure shows averages of out-of-sample volatility forecasts of the GJR-GARCH(1,1)
and the TVP-GARCH-MIDAS model specifications at horizons l = 1, . . . , 65, over different values
of realized volatility. The forecasts are based on initial realized volatility values RV0 with RV0 <
0.6, 0.6 ≤ RV0 < 4.3, and RV0 ≥ 4.3. See also the subsample estimation results presented in the
Appendix.
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3.7 Appendix

A Tables

Table A.1: Empirical size properties of the LM-tests with K = 22

Zt ∼ N (0, 1) Zt ∼ t(7)
L I H L I H

xt = RV
(1)
t

1% 0.74 0.83 0.81 1.81 1.52 1.74
LM 5% 4.13 4.75 4.65 4.05 3.55 4.20

10% 9.11 9.81 8.99 6.93 6.79 6.55
1% 0.64 0.52 0.51 1.49 1.32 1.74

LMAT 5% 3.18 3.51 4.24 3.62 3.65 3.79
10% 9.11 9.40 8.59 7.36 5.88 7.06

xt = RV
(22)
t

1% 1.27 1.34 1.41 1.07 1.22 1.23
LM 5% 4.13 3.72 4.24 5.22 4.15 5.12

10% 7.10 7.95 8.38 8.42 7.50 7.88
1% 1.38 1.24 1.31 0.96 0.91 1.02

LMAT 5% 4.13 3.93 3.84 4.48 3.44 4.50
10% 7.10 7.95 6.77 8.00 7.19 7.98

xt = RV
(65)
t

1% 1.38 1.14 1.01 2.56 2.74 2.56
LM 5% 5.19 5.17 4.65 6.18 5.78 6.35

10% 9.75 10.33 10.61 9.28 8.41 9.42
1% 1.27 1.24 1.11 1.92 1.93 2.05

LMAT 5% 5.19 5.17 4.75 5.97 4.76 5.73
10% 9.75 9.71 8.99 8.32 8.31 8.70

Notes: Rejection rates in percent at the 1%, 5%, and 10% nominal level.
The data generating process is a GJR-GARCH(1,1) process

εt =
√
htZt

ht = ω +
(
α1 + α21{εt−1<0}

)
ε2t−1 + β1ht−1,

with parameter values set to α1 = 0.05, α2 = 0.06 and persistence regimes
L, I, and H with βL1 = 0.82, βI1 = 0.87, and βH1 = 0.91. The persistence
of the simulated model (α1 + α2/2 + β1) thus varies between 0.90, 0.95, and
0.99. We set ω accordingly, so that the unconditional variance equals one.
The shocks Zt are simulated from a standard normal distribution or a t-
distribution with seven degrees of freedom. The LM -tests are based on xt =

RV
(N)
t = 1

N

∑N−1
j=0 ε2t−j , with N = 1, 22, 65, and we set K = 22 in the

test statistics. LM refers to the test statistic in Eq. (3.14) and Eq. (3.15),
whereas LMAT refers to the Amado and Teräsvirta (2015) test version, see
the discussion at the end of Section 3.3.2.
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Table A.2: Empirical size properties of the LM-tests with µ

Zt ∼ N (0, 1) Zt ∼ t(7)
L I H L I H

xt = RV
(1)
t

1% 0.95 0.93 0.71 0.42 0.20 0.41
LM 5% 3.48 3.81 3.55 3.07 3.68 1.93

10% 7.70 8.45 6.69 6.03 5.73 4.78
1% 0.63 0.52 0.81 0.74 0.61 0.30

LMAT 5% 4.01 3.61 3.65 3.60 3.68 4.78
10% 9.07 8.04 7.91 8.99 7.98 7.52

xt = RV
(22)
t

1% 0.63 0.82 0.61 0.74 0.61 0.30
LM 5% 4.96 4.64 4.16 4.97 4.40 2.85

10% 9.49 9.79 9.03 9.21 9.41 6.71
1% 0.53 0.72 0.61 0.32 0.41 0.20

LMAT 5% 3.06 3.09 3.65 3.07 2.56 2.44
10% 7.70 6.60 7.10 6.24 5.73 6.71

xt = RV
(65)
t

1% 1.48 1.55 1.41 0.53 0.92 1.32
LM 5% 5.59 5.67 6.19 5.08 4.81 5.18

10% 12.34 12.47 11.87 9.42 10.84 11.38
1% 1.16 1.24 0.91 0.53 0.31 0.30

LMAT 5% 4.96 5.15 4.46 3.07 3.37 3.96
10% 10.65 10.82 11.46 9.10 8.69 11.38

Notes: Rejection rates in percent at the 1%, 5%, and 10% nominal level.
The data generating process is a GJR-GARCH(1,1) process

rt = µ+
√
htZt

ht = ω +
(
α1 + α21{rt−1−µ<0}

)
(rt−1 − µ)2 + β1ht−1,

with parameter values set to α1 = 0.05, α2 = 0.06 and persistence regimes
L, I, and H with βL1 = 0.82, βI1 = 0.87, and βH1 = 0.91. The persistence
of the simulated model (α1 + α2/2 + β1) thus varies between 0.90, 0.95, and
0.99. We set ω accordingly, so that the unconditional variance equals one.
The shocks Zt are simulated from a standard normal distribution or a t-
distribution with seven degrees of freedom. The LM -tests are based on xt =

RV
(N)
t = 1

N

∑N−1
j=0 r2

t−j , with N = 1, 22, 65, and are applied to de-meaned
returns. We set K = 22 in the test statistics. LM refers to the test statistic in
Eq. (3.14) and Eq. (3.15), whereas LMAT refers to the Amado and Teräsvirta
(2015) test version, see the discussion at the end of Section 3.3.2.
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Table A.3: Empirical power properties of the LM-tests with RV and t(7) innova-
tions

K∗ = 1 K∗ = 22
N 1 22 65 1 22 65

xt = RV
(N)
t γ = −1

SD of βt 0.013 0.017 0.017 0.009 0.016 0.017
1% 7.5 35.9 45.2 8.8 34.0 44.5

LM 5% 15.8 56.2 66.4 17.3 54.1 65.6
10% 21.0 66.4 77.1 24.3 64.7 76.0
1% 5.0 28.0 40.5 3.8 23.1 37.6

LMAT 5% 10.3 47.7 63.1 9.2 41.3 60.0
10% 13.8 59.8 74.1 12.4 53.1 71.4

xt = RV
(N)
t γ = −10

SD of βt 0.032 0.018 0.008 0.025 0.016 0.008
1% 18.0 19.1 6.4 38.0 16.3 6.1

LM 5% 31.1 36.1 15.4 60.9 31.7 14.8
10% 40.5 46.9 23.5 70.8 41.5 22.4
1% 8.1 11.7 4.4 9.1 9.2 4.1

LMAT 5% 14.4 27.6 13.0 16.9 21.0 12.0
10% 19.7 36.9 20.9 22.4 29.8 19.9

Notes: Rejection rates at 1%, 5%, and 10% nominal level. The data generating
process is the TVP-GARCH-MIDAS(1,1)

εt =
√
htZt

ht = ω +
(
α1 + α21{εt−1<0}

)
ε2t−1 +

(
β1 + β2

(
F (γ,Φ′xt−1)−

1

2

))
ht−1

Φ′xt−1 =

K∗∑
k=1

ϕk(ϑ)xt−k,

with ω = 0.1, α1 = 0.05, α2 = 0.06, β1 = 0.82, β2 = 0.18, ϑ = 3, and γ = −1 or

γ = −10. xt is taken as rolling window versions of realized volatility, RV
(N)
t with

N = 1, 22, 65, over the 2010-2014 sample. K∗ denotes the true MIDAS lag order in
the DGP. We also report the standard deviation (SD) of the time-varying GARCH
coefficient, βt = β1 + β2

(
F (γ,Φ′xt−1)− 1

2

)
.

All test statistics are based on K = 1. LM refers to the test statistic in Eq. (3.14) and
Eq. (3.15), whereas LMAT refers to the Amado and Teräsvirta (2015) test version,
see the discussion at the end of Section 3.3.2. The shocks Zt are simulated from a
(standardized) t-distribution with seven degrees of freedom.
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Table A.4: Empirical power properties of the LM-tests with the V IX and t(7)
innovations

K∗ = 1 K∗ = 22
N 1 22 65 1 22 65

xt = V IX
(N)
t γ = −1.5

SD of βt 0.019 0.018 0.018 0.019 0.018 0.018
1% 49.4 52.3 49.7 79.9 49.7 13.3

LM 5% 72.6 74.0 74.0 93.0 72.0 27.0
10% 82.1 82.5 82.7 96.3 81.5 37.8
1% 36.2 43.4 41.9 68.3 38.4 8.7

LMAT 5% 57.6 67.1 66.6 88.6 62.3 22.4
10% 69.8 78.2 78.4 94.6 74.1 32.0

xt = V IX
(N)
t γ = −4

SD of βt 0.013 0.012 0.010 0.013 0.011 0.010
1% 17.3 14.9 13.5 15.6 13.9 48.9

LM 5% 35.2 30.7 27.5 32.8 29.9 73.3
10% 47.5 42.1 38.1 45.1 40.6 82.2
1% 12.7 10.1 8.8 10.3 9.5 40.2

LMAT 5% 28.3 24.1 23.2 23.6 22.3 65.0
10% 36.6 36.8 32.9 33.4 33.9 77.2

Notes: Rejection rates at 1%, 5%, and 10% nominal level. The data generating
process is the TVP-GARCH-MIDAS(1,1)

εt =
√
htZt

ht = ω +
(
α1 + α21{εt−1<0}

)
ε2t−1 +

(
β1 + β2

(
F (γ,Φ′xt−1)−

1

2

))
ht−1

Φ′xt−1 =

K∗∑
k=1

ϕk(ϑ)xt−k,

with ω = 0.1, α1 = 0.05, α2 = 0.06, β1 = 0.82, β2 = 0.18, ϑ = 3, and γ =

−1.5 or γ = −4. xt is taken as rolling window versions of the V IX, V IX
(N)
t with

N = 1, 22, 65, over the 2010-2014 sample. K∗ denotes the true MIDAS lag order in
the DGP. We also report the standard deviation (SD) of the time-varying GARCH
coefficient, βt = β1 + β2

(
F (γ,Φ′xt−1)− 1

2

)
.

All test statistics are based on K = 1. LM refers to the test statistic in Eq. (3.14) and
Eq. (3.15), whereas LMAT refers to the Amado and Teräsvirta (2015) test version,
see the discussion at the end of Section 3.3.2. The shocks Zt are simulated from a
(standardized) t-distribution with seven degrees of freedom.
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Table A.5: Descriptive statistics of time-varying (ARCH) persistence

Variable Min Max Mean SD
Panel A: Time varying ARCH coefficient

RV
(22)
t 0.0178 0.0294 0.0241 0.0034

ADS
(22)
t 0.0076 0.0294 0.0164 0.0043

neg ADS
(22)
t 0.0148 0.0285 0.0177 0.0038

Panel B: Time varying persistence

RV
(22)
t 0.9747 0.9863 0.9810 0.0034

ADS
(22)
t 0.9736 0.9954 0.9824 0.0043

neg ADS
(22)
t 0.9796 0.9933 0.9824 0.0038

Notes: The table reports descriptive statistics of the time-varying ARCH
coefficients, α̂1t = α̂12 + α̂12F (γ̂, Φ̂′xt−1), from an alternative TVP-
GARCH-MIDAS model specification and the corresponding time varying
persistence, calculated as α̂1t+

1
2
α̂2+β̂. The estimated ARCH coefficient,

resp. persistence, from the GJR-GARCH model is 0.0190, resp. 0.9852.
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Table A.7: Descriptive statistics of time-varying persistence: 1970-1999 subsample

Variable Min Max Mean SD
Panel A: Time-varying GARCH coefficient

RV
(22)
t 0.7042 0.8800 0.8337 0.0457

ADS
(22)
t 0.9155 0.9351 0.9234 0.0044

neg ADS
(22)
t 0.9206 0.9299 0.9243 0.0038

Panel B: Time-varying persistence

RV
(22)
t 0.7788 0.9545 0.9082 0.0457

ADS
(22)
t 0.9777 0.9972 0.9856 0.0044

neg ADS
(22)
t 0.9829 0.9922 0.9866 0.0038

Notes: The table reports descriptive statistics of the time-varying
GARCH coefficients, β̂t = β̂1 + β̂2F (γ̂, Φ̂′xt−1), from the TVP-GARCH-
MIDAS model estimations over the 1970-1999 subsample and the cor-
responding time-varying persistence, calculated as α̂1 + 1

2
α̂2 + β̂t. The

estimated GARCH coefficient, resp. persistence, from the GJR-GARCH
model over the 1970-1999 subsample period is 0.9253, resp. 0.9881.

Table A.8: Descriptive statistics of time-varying persistence: 2000-2014 out-of-
sample period

Variable Min Max Mean SD
Panel A: Time-varying GARCH coefficient

RV
(22)
t 0.7205 0.8800 0.8487 0.0380

ADS
(22)
t 0.9198 0.9351 0.9256 0.0033

neg ADS
(22)
t 0.9206 0.9299 0.9259 0.0034

Panel B: Time-varying persistence

RV
(22)
t 0.7951 0.9545 0.9232 0.0380

ADS
(22)
t 0.9819 0.9973 0.9877 0.0033

neg ADS
(22)
t 0.9829 0.9922 0.9881 0.0034

Notes: The table reports descriptive statistics of the time-varying
GARCH coefficients, β̂t = β̂1 + β̂2F (γ̂, Φ̂′xt−1), from the TVP-GARCH-
MIDAS model over the 2000-2014 out-of-sample period based on in-
sample parameter estimates from the 1970-1999 model estimation and the
corresponding time-varying persistence, calculated as α̂1 + 1

2
α̂2 + β̂t. The

estimated GARCH coefficient, resp. persistence, from the GJR-GARCH
model over the 1970-1999 subsample period is 0.9253, resp. 0.9881.
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B Figures

Figure B.1: Time-varying ARCH coefficients

Notes: Time-varying ARCH coefficients, α̂1t = α̂12 + α̂12F (γ̂, Φ̂′xt−1), from an alternative TVP-
GARCH-MIDAS model specification. Shaded areas represent NBER recession periods.





4
On the Macroeconomic

Determinants of Long-Term

Volatilities and Correlations in

U.S. Stock and Crude Oil

Markets

Using a modified DCC-MIDAS specification, we endogenize the long-term corre-

lation between crude oil and stock price returns with respect to the stance of the

U.S. macroeconomy. We find that variables which contain information on current

and future economic activity are helpful predictors for changes in the oil-stock cor-

relation. For the period 1993-2011 there is strong evidence for a counter cyclical

behavior of the long-term correlation. For prolonged periods with strong growth

above trend our model predicts a negative long-term correlation, while before and

during recessions the sign changes and remains positive throughout the economic

recovery.

This chapter was published as: Conrad, C., Loch, K., and D. Rittler (2014). “On the Macroe-
conomic Determinants of Long-Term Volatilities and Correlations in U.S. Stock and Crude Oil
Markets.” Journal of Empirical Finance 29, 26–40.
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4.1 Introduction

In this article, we revisit the oil-stock market relationship by analyzing the macroe-

conomic determinants of the long-term correlation between daily U.S. stock market

and crude oil price returns. Recently, Kilian and Park (2009) have shown that on

average 22% of the variation in U.S. stock returns in the period 1975–2006 can be

explained by oil price shocks. However, whether an oil price shock drives oil and

stock prices in the same or in opposite directions crucially depends on the type

of the underlying shock. While oil price increases due to precautionary demand

have a negative effect on stock prices, demand driven oil price shocks lead to in-

creasing stock prices. Based on these insights, Kilian and Park (2009) argue that

the time-varying sign in rolling oil-stock correlations reflects changes in the relative

importance of different demand and supply shocks in the oil market.

While Kilian and Park (2009) investigate the oil-stock relationship using monthly

data, our purpose is to analyze the correlation between oil and stock returns at a

daily frequency. More specifically, we use a novel MIxed Data Sampling (MIDAS)

approach to link the smooth component of daily return correlations to changes

in monthly U.S. macroeconomic variables. While there is a growing literature on

the endogeneity of monthly or quarterly oil prices with respect to U.S. and global

macroeconomic conditions (Barsky and Kilian, 2004; Kilian, 2008, 2009), our con-

tribution is to provide first evidence on the link between U.S. economic activity and

the daily oil-stock correlation.1

Our econometric specification is based on the Dynamic Conditional Correlation

MIDAS (DCC-MIDAS) model proposed in Colacito et al. (2011). The DCC-MIDAS

combines the Engle (2002) DCC specification with the GARCH-MIDAS framework

of Engle et al. (2013). The latter framework extends the simple GARCH specifica-

tion by modeling volatility as consisting of a short-term and a long-term component.

Most importantly, the long-term component is specified as a function of the macroe-

conomic environment. In the original DCC specification with correlation targeting

each quasi-correlation follows a ‘GARCH type’ process, which is mean-reverting to

the unconditional correlation of the volatility-adjusted residuals. The basic idea of

Colacito et al. (2011) is to replace this unconditional correlation with a slowly time-

varying long-term component. The quasi-correlation then fluctuates around this

long-run trend. Hence, the new specification can be considered as a two-component

1In the following, we refer to the correlation between oil and stock returns simply as the
oil-stock correlation.
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model for the dynamic correlations. Colacito et al. (2011) model the long-term com-

ponent as a weighted sum of the lagged monthly realized correlations between the

volatility-adjusted residuals.

Using the GARCH-MIDAS framework, we first analyze whether the long-term oil

market volatility is related to the U.S. macroeconomy and whether oil and stock

volatility respond to the same macroeconomic information. We then extend the

DCC-MIDAS model by directly incorporating monthly macroeconomic explanatory

variables X into an appropriately modified long-term correlation component. We

refer to this new specification as the DCC-MIDAS-X model.

Our results can be summarized as follows. First, we find that the movements

in long-term oil market volatility can be well predicted by various measures of

U.S. macroeconomic activity. Our empirical results provide convincing evidence

for a counter cyclical relationship between oil market volatility and variables which

either describe the current stance of the economy, e.g. industrial production, or pro-

vide forward looking information about the future state of the economy, e.g. the

leading index for the U.S. Current and expected increases (decreases) in economic

activity clearly anticipate downswings (upswings) in long-term oil volatility. While

the notion that there is reverse causality from macroeconomic variables to the level of

the oil price (see, e.g., Barsky and Kilian, 2004; Kilian, 2008, 2009) is now widely ac-

cepted, our result adds a new dimension by establishing a link between U.S. macroe-

conomic variables and the volatility of oil price returns. Interestingly, we also find

that long-term oil and stock market volatility respond to the same macroeconomic

information.

Second, our empirical results show that changes in the long-term oil-stock corre-

lation can be anticipated by the same macroeconomic factors that affect the long-

term volatilities. We provide strong evidence for a counter cyclical behavior of the

long-term oil-stock correlation. Phases with positive long-term oil-stock correlations

correspond to values of the macroeconomic factors which either indicate recessions

or the beginning of expansions with growth still below or at trend. On the other

hand, a negative long-run correlation emerges when the macroeconomic variables

signal strong growth above trend. Clearly, the positive correlation during recessions

is driven by the simultaneous drop in oil and stock prices. The economic recovery

during the early phase of an expansion then leads to increasing oil prices due to

higher demand as well as to rising stock prices because of the improved outlook for

corporate cash flows. The combination of these two effects causes the long-run oil-

stock correlation to remain positive. This interpretation squares with the findings
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in Kilian and Park (2009) regarding the positive short-run effect on oil and stock

prices of an unexpected increase in global demand. Finally, during boom phases

with strong growth above trend both the further increasing oil prices as well as the

expectation of rising interest rates should have a depressing effect on the stock mar-

ket. Hence, for these periods our model predicts a decreasing or negative long-term

correlation.

Third, the long-term correlation component can be interpreted as the predicted

or expected correlation given a certain state of the economy. Since the macroeco-

nomic variables that drive the long-term component represent aggregate demand,

the deviations of the short-term from the long-term component should be driven by

other factors related to the stock and/or the oil market. Typical examples for the

oil market would be either oil specific, i.e. precautionary, demand shocks or supply

shocks. However, the fact that various measures of macroeconomic activity lead to

a convincing and coherent fit of the long-term correlation suggests that aggregate

demand is the most important factor for the oil-stock relationship. This interpreta-

tion is very much in line with the view that – in contrast to the 1970s when supply

shocks were likely to be predominant – oil prices have been mainly driven by high

global aggregate demand since the mid-1990s (see Hamilton, 2008; Kilian, 2009;

Kilian and Murphy, 2014).2

Fourth, the fact that the sign of the oil-stock correlation critically depends on

the state of the economy reinforces Kilian and Park’s (2009) argument that simple

regressions of stock returns on oil price changes can be very misleading. This point

may well explain the conflicting empirical evidence on the oil-stock relationship in

Jones and Kaul (1996), Wei (2003), Nandha and Faff (2008), Miller and Ratti (2009)

and others.

Fifth, we show that the volatility and correlation predictions from the various

DCC-MIDAS-X specifications significantly outperform the ones from the simple

DCC model. Hence, the explicit modeling of the long-term correlation component

may be very beneficial for portfolio choice, hedging decisions or risk management.

The remainder of the article is organized as follows. Section 4.2 reviews the

related literature, while Section 4.3 discusses the GARCH-MIDAS and DCC-MIDAS

models. The data and empirical results are presented in Sections 4.4 and 4.5. In

Section 4.6 we evaluate the forecasting performance of the different models and

2Although we focus on economic activity measures for the U.S. only, while the oil price is
driven by global demand, our approach may still be informative to the extent that changes in U.S.
real activity are correlated with changes in global real activity.
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Section 4.7 concludes the article.

4.2 Related literature

Our analysis is based on two strands of literature. The first one is concerned with

the modeling of long-term movements in volatilities and correlations, the second one

with the relationship between oil and stock prices and macroeconomic conditions.

The idea of having short- and long-term component models of volatilities dates

back to Ding and Granger (1996), Engle and Lee (1999), and more recently Davidson

(2004) and Conrad (2010). In their specifications, both components follow ‘GARCH-

type’ processes but with different degrees of persistence. While these specifications

allow one to separate the two volatility components, the unconditional variance is

still assumed to be constant over time. Engle and Rangel (2008) and Engle et

al. (2013) relax this assumption and propose specifications in which the long-term

component can be considered a time-varying unconditional variance. While in the

Engle and Rangel (2008) Spline-GARCH model both components fluctuate at the

same frequency, in Engle et al. (2013) it is assumed that the long-term component

evolves at a lower frequency than the short-term component. Using the MIDAS

framework of Ghysels et al. (2005, 2007), they directly relate the long-term compo-

nent to the evolution of macroeconomic time series such as industrial production or

inflation. In line with the earlier findings in Schwert (1989), the GARCH-MIDAS

model provides strong evidence for a counter cyclical behavior of financial volatil-

ity. Recently, Conrad and Loch (2014) extended the analysis of Engle et al. (2013)

by using a broader set of macroeconomic variables and expectations data from the

Survey of Professional Forecasters. The DCC-MIDAS model proposed in Colacito

et al. (2011) simply extends the two-component idea from volatilities to correla-

tions. However, instead of relating the long-term correlation directly to its potential

macroeconomic sources, Colacito et al. (2011) only consider lagged realized correla-

tions as explanatory variables.

Since the seminal articles of Hamilton (1983, 1985, 2003) exogenous oil supply

shocks were suspected to be causal for recessions and periods of low economic growth.

Based on this presumption, several empirical studies have analyzed the relation-

ship between oil prices and stock market returns. While Jones and Kaul (1996) or

Nandha and Faff (2008) indeed find that oil price increases negatively affect stock

prices, Huang et al. (1996) and Wei (2003) cannot establish a significant relationship.

Recently, Miller and Ratti (2009) provide evidence for a time-varying relationship.
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For the period after 1999 they even report a positive connection. Hence, the em-

pirical evidence is far from being uncontroversial. Kilian and Park (2009) provide

two explanations for the conflicting results. First, there is convincing evidence for

reverse causality from the U.S. economy to the oil price (see also Kilian, 2009, and

Alquist et al., 2013). Thus, stock and oil price changes may be induced by the same

macroeconomic factors and, hence, regressions of stock returns on oil price changes

can be misleading due to endogeneity. Second, Kilian and Park (2009) argue that

the sign of the effect of an oil price increase on the stock market depends on the

type of the underlying shock and, hence, may change over time. While shocks due

to an unanticipated economic expansion may have a positive impact, shocks related

to precautionary demand, for example, are likely to have a negative impact. For

several oil-exporting and oil-importing countries Filis et al. (2011) confirm that the

oil-stock correlation is indeed time-varying. Although they informally relate phases

of positive or negative correlations to demand and supply shocks, their simple DCC

model does not explicitly incorporate information on the state of the economy.

4.3 The DCC-MIDAS model

In this section, we develop the econometric framework to analyze the impact of

macroeconomic variables on long-term volatility and correlations. We consider the

bivariate vector of asset returns rt = (r1,t, r2,t)
′, where r1,t refers to the stock and

r2,t to the oil returns, and denote by Ft−1 = σ(rt−1, rt−2, . . .) the σ-field generated

by the information available through time t − 1. Returns are defined as ri,t =

100 · (log(Pi,t)− log(Pi,t−1)), where Pi,t denotes the price at time t. Let E[rt|Ft−1] =

µt = (µ1,t, µ2,t)
′ and define the vector of residuals rt − µt = εt = (ε1,t, ε2,t)

′. The

residuals have mean zero by definition and we denote their conditional covariance

matrix by Ht = Var[εt|Ft−1]. Following Engle (2002), we decompose the conditional

covariance matrix into Ht = DtRtDt where

Rt =

(
1 ρ12,t

ρ12,t 1

)
and Dt =

(
h

1/2
1,t 0

0 h
1/2
2,t

)
. (4.1)

Finally, we define the standardized residuals ηt = (η1,t, η2,t)
′ as ηt = D−1

t εt. Note

that Var[ηt|Ft−1] = Rt. The DCC framework allows us to separately model the

conditional variances and the conditional correlations.
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4.3.1 Conditional variances

To capture the impact of macroeconomic variables on return volatility, we adopt

the GARCH-MIDAS framework of Engle et al. (2013). We assume a multiplicative

component model for each conditional variance, i.e. we specify hi,t = gi,tmi,τ , where

gi,t is the short-run and mi,τ the long-run component. While the transitory volatility

component changes at the daily frequency t, the long-run component changes at the

monthly frequency τ only. We denote N (τ) as the number of days within month

τ . Specifically, we assume that the short-run volatility component follows a mean-

reverting unit GARCH(1,1) process

gi,t = (1− αi − βi) + αi
(ri,t−1 − µi,t−1)2

mi,τ

+ βigi,t−1, (4.2)

with αi > 0, βi ≥ 0, and αi + βi < 1. The long-term component is modeled as a

slowly varying function of an exogenous variable Xτ using the MIDAS specification

log(mi,τ ) = mi + θi

Kv∑
k=1

ϕk(ωi)Xτ−k, (4.3)

where the log transformation guarantees the non-negativity of the conditional vari-

ances when the exogenous variables can take negative values. Xτ will be a monthly

macroeconomic variable.3

For the weighting scheme, we follow Engle et al. (2013) and adopt a restricted

beta weighting scheme where the weights are computed according to4

ϕk(ωi) =
(1− k/Kv)

ωi−1∑Kv
l=1(1− l/Kv)ωi−1

, k = 1, ..., Kv. (4.4)

For all ωi > 1, the weighting scheme guarantees a decaying pattern, where the rate

3Note that we keep the long-run component constant over each calendar month. Obviously,
announcements dates for different macro variables vary across the month. Since our focus is not
on (short-term) announcements effects, but on modeling the long-term volatility component, we
simplify the model implementation by synchronizing all macro variables with the calendar months.

4The generalized beta weighting scheme with two parameters

ϕk(ωi,1, ωi,2) =
(1− k/Kv)

ωi,1−1 · (k/Kv)
ωi,2−1∑Kv

l=1(1− l/Kv)ωi,1−1 · (k/Kv)ωi,2−1
, k = 1, ...,Kv

allows for more flexible, in particular hump-shaped, weights. In line with the results in Conrad
and Loch (2014), we find that none of the variables included in our analysis requires such an
unrestricted weighting scheme in the MIDAS filter. We therefore restrict the weights to be strictly
decreasing in all subsequent specifications.
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of decay is determined by ωi. Large (small) values of ωi generate a rapidly (slowly)

decaying pattern. By construction, the ϕk(ωi) are nonnegative and sum to one.

In the following, we will refer to the component model with explanatory variables

as GARCH-MIDAS-X. Finally, note that when θi = 0 the long-run component is

simply a constant and, hence, hi,t follows a stationary GARCH(1,1) process with

constant unconditional variance.

4.3.2 Conditional correlations

The DCC-MIDAS specification proposed by Colacito et al. (2011) provides a natural

extension of the GARCH-MIDAS model to dynamic correlations. We follow Engle

(2002) and specify the matrix process Qt = [qij,t]i,j=1,2 with GARCH(1,1) dynamics

as

Qt = (1− a− b)R̄t + aηt−1η
′
t−1 + bQt−1, (4.5)

with a > 0, b ≥ 0, and a + b < 1, and a positive definite Q0. In the Engle

(2002) DCC model with correlation targeting the matrix R̄t does not depend on

time and equals the empirical correlation matrix of ηt. The process Qt can be

thought of as an approximation to the true conditional correlation matrix. The

Qt are therefore sometimes referred to as quasi -correlations. Note that the initial

condition Q0 positive definite and the parameter constraints ensure that all Qt are

positive definite. However, the process does not generally produce valid correlation

matrices. The actual conditional correlation matrix is obtained by rescaling as

Rt = diag{Qt}−1/2 Qt diag{Qt}−1/2.

The DCC-MIDAS framework proposed by Colacito et al. (2011) introduces long-

term correlations ρ̄12,τ as the off-diagonal elements in the now time varying matrix

R̄t. As in the GARCH-MIDAS equation the long-term correlation component does

not vary at the daily frequency t but at the lower frequency τ . That is, the short-run

quasi-correlations fluctuate around the time-varying long-run correlations:

q12,t = ρ̄12,τ + a(η1,t−1η2,t−1 − ρ̄12,τ ) + b(q12,t−1 − ρ̄12,τ ). (4.6)

Colacito et al. (2011) assume that ρ̄12,τ can be expressed as a weighted average of

the Kc past realized correlations RCτ :

ρ̄12,τ =
Kc∑
k=1

ϕk(ω12)RCτ−k, (4.7)
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with

RCτ =

∑Nτ
t=Nτ−1+1 η1,tη2,t√∑Nτ

t=Nτ−1+1 η
2
1,t

∑Nτ
t=Nτ−1+1 η

2
2,t

, (4.8)

where Nτ =
∑τ

i=1 N
(i) and N0 = 0. The weights are again given by Eq. (4.4) with

ωi and Kv replaced by ω12 and Kc, respectively. Since the weights ϕk(ω12) sum up

to one and the RCτ are correlations, the long-run correlation will itself lie within

the [−1, +1] interval.

We extend the DCC-MIDAS model by directly incorporating information on the

macroeconomic development in the long-run component. Similarly as in the GARCH

MIDAS setting – where the specification for mi,τ has to ensure the non-negativity of

the long-term volatility – our specification has to ensure that the long-run correlation

lies within the [−1, +1] interval although the explanatory variables do not. We

follow Christodoulakis and Satchell (2002) and use the Fisher-z transformation of

the correlation coefficient, i.e. we assume that

ρ̄12,τ =
exp(2z12,τ )− 1

exp(2z12,τ ) + 1
, (4.9)

with

z12,τ = m12 + θ12

Kc∑
k=1

ϕk(ω12)Xτ−k, (4.10)

where Xτ denotes either a macroeconomic variable or a realized correlation. Note

that in our non-linear specification, from θ we can only infer the sign but not directly

the marginal effect of a macroeconomic variable on the long-term correlation.

Finally, in the DCC-MIDAS model - as in the standard DCC model - the con-

ditional correlations are obtained by rescaling, i.e. ρ12,t = q12,t/
√
q11,tq22,t. In the

subsequent analysis we refer to the specifications with either macroeconomic ex-

planatory variables or the realized correlations as DCC-MIDAS-X or DCC-MIDAS-

RC models, respectively.

4.3.3 Estimation

Following Engle (2002) and Colacito et al. (2011) we estimate the model parameters

via quasi-maximum likelihood. For asymptotic results on the CCC and DCC mod-

els we refer to Ling and McAleer (2003), Engle et al. (2008), Francq and Zaköıan

(2012), and Aielli (2013). Asymptotic results for the DCC-MIDAS models are not

yet available, but see Wang and Ghysels (2015) for a discussion of the univariate
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GARCH-MIDAS-RV model. We adopt the Engle (2002) and Colacito et al. (2011)

two-step estimation procedure which is feasible because the log quasi-likelihood func-

tion to be maximized

L =−
T∑
t=1

(
2log(2π) + 2log(|Dt|) + ε′tD

−2
t εt

)
−

T∑
t=1

(
log(|Rt|) + η′tR

−1
t ηt − η′tηt

)
(4.11)

can be separated into two parts. The first sum in Eq. (4.11) contains the data and

the variance parameters while the second sum depends on the volatility-adjusted

residuals and the correlation parameters. Hence, in the first step we estimate the

GARCH-MIDAS parameters individually for each return series and use the esti-

mated volatility-adjusted residuals in the second step to obtain the correlation pa-

rameters. This way, we can analyze separately the macroeconomic determinants of

the long-term volatilities and the long-term correlation component.

4.4 Data

We combine daily U.S. stock market and crude oil price data with monthly obser-

vations on the macroeconomic variables. While the stock series was obtained from

the Kenneth R. French data library, the oil prices and the macroeconomic data are

taken from the FRED database at the Federal Reserve Bank of St. Louis. Our data

covers the period from January 1993 to November 2011.

4.4.1 Oil and stock market data

For the stock series, we employ the daily returns on the CRSP value-weighted portfo-

lio, which is based on all NYSE, AMEX and NASDAQ stocks and can be considered

the best available proxy for ‘the stock market’. As in Kilian and Vega (2011), oil

price returns are constructed from the daily spot price for West Texas Intermedi-

ate (WTI) crude oil for delivery in Cushing, Oklahoma. The data source is the

U.S. Energy Information Administration.

Panel A of Table 4.1 provides summary statistics for the two return series.5 While

the sample mean of the returns is positive for both markets, the table provides first

5As alternative measures for the stock market we also considered the S&P 500 as well as the
DJIA. Similarly, we employed the Brent instead of the WTI crude oil price. All the subsequent
results were robust to these changes in the variables.



4.4.2 Macroeconomic data 131

evidence for stronger fluctuations in oil returns than in stock market returns. The

annualized unconditional standard deviation of the oil price returns is 39.21% and,

hence, considerably higher than the 19.53% of the CRSP returns. Finally, the

unconditional correlation between oil and stock returns is 0.14.

4.4.2 Macroeconomic data

We divide the monthly macroeconomic data into two categories: those which mea-

sure the current stance of the economy and forward looking indicators. The first

category contains the following variables: industrial production (IP), nonfarm pay-

rolls (NFP), and the unemployment rate (UR). The forward looking indicators are

the national activity index (NAI)6 and the leading index (LI)7 for the U.S. They

are supposed to reflect the role of market participants’ expectations concerning the

future economic development.

For the variables IP and NFP we compute month-to-month growth rates according

to 100 · [ln(Xτ ) − ln(Xτ−1)], while in case of UR we use month-to-month changes.

The NAI and LI are included in levels. Panel B of Table 4.1 provides the sum-

mary statistics for the macroeconomic data and Figure 4.1 shows the dynamics of

the macroeconomic variables. Note that by construction the GARCH- and DCC-

MIDAS models require additional lags of the explanatory variables at the beginning

of the sample. Since we shall include three MIDAS lag years in the filter, we report

descriptive statistics and figures for the macroeconomic variables for the period from

January 1990 to November 2011. All data are obtained from the FRED database

at the Federal Reserve Bank of St. Louis.

4.5 Empirical results

We first present the estimation results for the GARCH-MIDAS models that relate

the long-term volatilities to the macroeconomic environment. Thereafter, the DCC-

6The NAI is a standardized weighted average of 85 monthly indicators of national economic ac-
tivity including figures that represent (i) production and income, (ii) employment, unemployment,
and hours, (iii) personal consumption and housing, and (iv) sales, orders and inventories. The NAI
is computed and published by the Federal Reserve Bank of Chicago. Positive realizations indicate
growth above trend, while negative realizations indicate growth below trend. The variables IP,
NFP, and UR are among the indicators used for the computation of the NAI.

7The LI predicts the six-month growth rate of the US coincident index based on variables that
lead the economy including housing permits, unemployment insurance claims, delivery times from
the ISM manufacturing survey, and the term spread. The LI is published by the Federal Reserve
Bank of Philadelphia.
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MIDAS specifications that focus on the long-run correlations are discussed.

4.5.1 Determinants of long-term volatilities

Tables 4.2 and 4.3 present the estimates for the various stock and oil GARCH-

MIDAS models. In addition to the models which include the macroeconomic vari-

ables, we consider the stationary GARCH(1,1) with constant unconditional variance

as our benchmark specification. Since the serial correlation in daily stock and oil

returns is negligible, we choose µi,t = µi in both conditional means. To ensure com-

parability across all specifications, we choose Kv = 36 for both markets. However,

all results are robust to moderate changes in Kv. We compare the fit of the different

models by means of the Akaike and Bayesian information criteria (AIC and BIC).8

The constant µi is significant in all stock return models, but insignificant in the

oil return specifications. In all cases the estimated αi and βi parameters are highly

significant. Interestingly, while the αi (βi) parameters are estimated to be slightly

higher (lower) in the stock than in the oil market, the sum αi+βi is almost identical

in both markets and always less than one. That is, in all specifications the short-run

volatility component is mean-reverting to the long-run trend. Next, we discuss the

estimated long-term volatility components individually for the two markets.

Since the macroeconomic determinants of long-term stock market volatility have

been investigated in Engle et al. (2013) and Conrad and Loch (2014) already, we only

briefly summarize our findings which are very much in line with theirs. Table 4.2

shows that each macroeconomic variable has a significant effect on long-term stock

market volatility. For IP, NFP, NAI, and LI the estimated coefficient θ̂1 is negative

and highly significant, while it is positive and highly significant in case of UR.

Since the sign of θ1 measures whether an increase of the respective variable leads

to an upswing or downswing in long-run volatility, the estimates imply that higher

(lower) levels of economic activity lead to a reduction (rise) in long-term stock

market volatility. All GARCH-MIDAS-X models are preferred over the benchmark

GARCH(1,1) by the AIC, but not by the BIC. The best model according to the AIC

is the one including LI.

In short, our results reconfirm the observation that long-term stock market volatil-

ity behaves counter cyclically. The analysis of the macroeconomic drivers of stock

market volatility dates back to Officer (1973) and Schwert (1989) who first revealed

8Note that all GARCH-MIDAS-X models include the same number of parameters and, hence,
the AIC and BIC will lead to the same ranking. However, the benchmark GARCH(1,1) model
includes two parameters less.
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this counter cyclical link. Since then, the literature has put forward different eco-

nomic arguments to explain the channels through which the economic environment

relates to stock market volatility. The present value models of Campbell (1991) and

Campbell and Shiller (1988) relate unexpected returns to news that induce revisions

in the discounted sum of future expected dividends and returns. Specifically, the

same news may have different impact on unexpected returns depending on the state

of the macroeconomy. As a consequence, counter cyclical stock market volatility

arises due to variations in future expected cash flows and future discount rates.

For alternative theoretical approaches see for instance Veronesi (1999), and more

recently Bansal and Yaron (2004), and Mele (2007).

In Table 4.3 we turn to the analysis of the macroeconomic determinants of the

long-term oil return volatility. The estimates of θ2 suggest that long-term oil return

volatility is closely linked to each of the macroeconomic variables describing the

current stance of the economy as well as the future economic outlook. In particular,

the results imply that downturns in U.S. economic activity, i.e. decreases in IP,

NFP, NAI, and LI and increases in UR lead to higher levels of long-term oil return

volatility. While Kilian (2008, 2009), Kilian and Murphy (2014) and Alquist et

al. (2013) have provided ample evidence for the notion that changes in economic

activity predict oil prices, our finding that U.S. economic activity also precedes

changes in long-term oil return volatility adds a new insight. Given the positive

relation between aggregate demand shocks and the level of the oil price which was

established in the previous literature, our finding of a counter cyclical behavior of

long-term oil return volatility is very much in line with the observation in stock

markets that volatility is low during phases of increasing prices but high during

phases of decreasing prices. That is, good news on the macroeconomy is also good

news for the oil market, i.e. increases the oil price and at the same time reduces oil

return volatility.

Lastly, all GARCH-MIDAS-X models achieve a better fit than the GARCH(1,1)

both in terms of the AIC and the BIC. The best model according to the information

criteria is the one based on the LI.

Figure 4.2 shows the GARCH-MIDAS-LI estimates of the annualized monthly

long-term volatility components for the two markets. While the level of oil re-

turn volatility is about twice as high as the one of the stock returns, the evolution

of the two components is very similar across markets. It is now straightforward

to compare the marginal effects of this variable on the two long-term volatility

components. In general, the effect of a one standard deviation increase in Xt in
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the current month on long-term volatility s-months-ahead can be calculated by

exp
(
θ̂i · ϕs(ω̂i) · SD(Xt)

)
− 1. Thus, a one standard deviation increase in LI this

month, i.e. an increase by 0.98, leads to a 7.66% decrease in long-term stock mar-

ket volatility and a 14.03% decrease in long-term oil market volatility next month.

These sizes of the marginal effects imply that they are not only highly significant

statistically, but also economically. The observation that the macroeconomic envi-

ronment affects long-term oil and stock volatility in a very similar manner is very

interesting. Our finding suggests that the long-term second moment of oil price

returns shares a common component with that of stock returns which reflects the

state of the U.S. business cycle.

4.5.2 Determinants of long-term correlations

In this section, we analyze the macroeconomic determinants of the long-term oil-

stock correlation. We consider two benchmark specifications. The first natural

benchmark is the Engle (2002) DCC model. The second benchmark is the Colacito

et al. (2011) specification that uses backward-looking monthly realized correlations

as explanatory variables.9 For these two benchmark models we employ the stan-

dardized residuals from the simple GARCH(1,1) models.

Alternatively, we estimate DCC models based on standardized residuals from the

GARCH-MIDAS-X models from Section 4.5.1. In the most general DCC-MIDAS-X

specifications we replace the realized correlations with key macroeconomic figures.

For these models the volatility-adjusted residuals are obtained either from the simple

GARCH(1,1) models or from the corresponding GARCH-MIDAS-X models. For

each macro variable, we thus compare three different model specifications - one DCC

and two DCC-MIDAS-X specifications. As in the case of the long-term volatilities,

we include three MIDAS lag years of macroeconomic data, i.e. we choose Kc = 36.

Table 4.4 presents the estimation results. Clearly, in all specifications the es-

timated parameters a and b are highly significant and sum up to a value of less

than one. That is, the quasi-correlations are mean-reverting either to the uncon-

ditional correlation in the DCC case or to the long-term correlation in the various

DCC-MIDAS-X specifications. The estimates of θ12 indicate that all macroeconomic

variables significantly affect the long-run oil-stock correlation. In line with our anal-

ysis in Section 4.5.1, we find negative θ12 coefficients on IP, NFP, NAI, and LI,

9We calculate monthly realized correlations over the full 1990-2011 sample based on the stan-
dardized residuals from GARCH(1,1) models for oil and stock returns over this sample.
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while the coefficient on UR is positive. The estimates imply that a contraction of

macroeconomic activity leads to an increase of the long-term correlation.

All DCC-MIDAS-X specifications are superior relative to the benchmark DCC

according to the AIC. In addition, the specifications based on GARCH-MIDAS-X

residuals are also superior according to the BIC. Hence, there is convincing evi-

dence in favor of the component models, which allow for time-varying long-term

volatilities and correlations. The model ranking in terms of information criteria

is consistent across the different macro variables. According to both the AIC and

BIC, the DCC-MIDAS-X based on simple GARCH(1,1) residuals performs worst.

The DCC-MIDAS-X models based on the respective GARCH-MIDAS-X residuals

perform best in terms of the AIC, whereas the more parsimonious DCC models

based on the GARCH-MIDAS-X residuals perform best in terms of the BIC. This

model comparison emphasizes the importance of an adequate volatility specification

for the statistical fit of the conditional covariance matrix. Confirming our results

from the previous section, the best performing models are the ones including LI in

the volatility specification, where the DCC (DCC-MIDAS) with GARCH-MIDAS

residuals achieves the lowest BIC (AIC).

Interestingly, our second benchmark model, the DCC-MIDAS-RC, performs worst

in terms of both information criteria. The fact that the DCC-MIDAS-X models

are preferred to the DCC-MIDAS-RC, suggests that the various macroeconomic

variables carry information on the evolution of the long-term correlation beyond

that included in past realized correlations. Next, we explain how the forward looking

properties of the macroeconomic variables which gauge future economic activity as

well as inflationary pressures (and thereby future monetary policy) are particularly

relevant for anticipating changes in the oil-stock correlation.10

Figure 4.3 shows the estimated dynamics of the short- and long-run correlations

based on the DCC-MIDAS-LI specification together with a rolling-window of yearly

realized correlations. First, although the unconditional correlation between stock

and oil returns was found to be 0.14, the figure shows that there is substantial time-

variation in the realized correlations with prolonged periods of positive or negative

correlations. While the short-run correlation closely follows the behavior of the

realized correlations, the long-run correlation evolves much more smoothly. Both

the realized correlations as well as the short-run correlations follow this long-run

10In the following, we only consider the DCC-MIDAS-X specifications based on the volatility-
adjusted residuals from the respective GARCH-MIDAS-X models. However, the subsequent results
also hold for the other DCC-MIDAS-X specifications in a similar way.
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trend component.

To provide an economic interpretation of the cyclical pattern in the evolution

of the correlation dynamics we refer to Figure 4.4, which depicts the long-term

component along with the LI. First, the figure clearly shows an inverse relationship

between the LI and the long-term oil-stock correlation, which was already evident

from the negative θ12 estimate in Table 4.4. That is, the oil-stock correlation is

increasing (decreasing) when the LI is declining (rising).

Our empirical evidence for a counter cyclical oil-stock correlation is perfectly in

line with the recent evidence in Kilian (2009) in favor of a positive oil-growth relation.

Kilian and Park (2009) argue that in an early phase of an expansion increasing oil

prices may not have negative effects on the stock market. This is because in the

short-run the positive effect of higher economic activity on expected future cash

flows dominates and, hence, the oil-stock correlation will be positive. However, in

the long-run the negative effect of increasing oil prices on corporate cash flows will

dominate and, therefore, the oil-stock correlation will decrease or even turn negative.

The long-term correlation in Figure 4.4 very much supports these views. Before

and during both recessions bad news on the LI is associated with sharply decreasing

stock and oil prices and, therefore, a positive oil-stock correlation. The fact that

the correlation turns positive and increases well before both recessions is remarkable

and suggests that the long-term oil-stock correlation may itself be used as an early

recession indicator. During the recovery phases in 2002-2003 and 2010-2011 the

improvement in the LI leads to increasing oil prices and, at the same time, to upward

revisions concerning firms’ expected dividends and cash flows. In these periods the

oil-stock correlation remains positive, but smoothly decreases. The same rationale

also applies to the first year of our sample, which falls into the recovery period after

the recession of 1990/91. Finally, during the years 1994-1999 and 2004-2006 the LI

signals strong growth for a protracted period, which again should positively affect

oil prices. However, the (expected) oil price increases now dampen the outlook

for future corporate cash flows, i.e. during these periods the good news on the

macroeconomy – through the indirect effect via increasing oil prices – turns into

bad news for the stock market. Alternatively, the negative effect might also work

via interest rates. When the economy is already close to full employment, good news

on the LI could signal higher future interest rates and, hence, be bad news for the

stock market. During these strong boom phases the negative effect dominates and

leads to a decreasing or negative long-run oil-stock correlation.

Since the evolution of the long-term correlation is purely driven by variables which
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represent U.S. aggregate demand, deviations of the short-term component from the

long-run trend must be related to other factors which affect stock and/or oil returns.

Typical oil related factors would be oil supply shocks or oil-market specific demand

shocks such as precautionary demand or speculative demand shocks. Specifically,

the temporary deviation in 2002/03 (see Figure 4.3) can be explained as a combina-

tion of the Venezuelan oil supply crisis and precautionary demand provoked by the

second Iraq war (see Kilian and Murphy, 2014). Similarly, the drop in the short-term

component in 2011/02-2011/04 can be related to the Libyan crisis and political tur-

moil in North Africa.11 Another example would be the positive correlation signaled

by the short-term component as well as the realized correlations around 1998/99.

Following the Asian and Russian financial crises, this positive short-term correlation

can be explained by a simultaneous decline in oil and stock prices. Nevertheless, the

fact that these deviations occur only for relatively short periods suggests that the

oil-stock correlation can be largely explained by U.S. economic activity for most of

the time.

A particularly important conclusion that can be drawn from the time-varying oil-

stock correlation is that regressions of stock returns on oil price changes are likely

to be misleading, since the result will depend on the state of the economy. This

insight may explain the controversial empirical findings on the oil-stock relationship

and agrees with the arguments put forward in Kilian and Park (2009).

Next, we discuss the MIDAS lag structure and its implications more closely. Recall

that the higher ω12 the more weight will be given to the more recent observations of

the macro variable and, hence, the faster the weights will decline to zero. Table 4.4

reveals that the lowest ω12 is estimated for IP and the highest for NFP. Since the

DCC-MIDAS-LI model produced the best fit for the correlations, in Figure 4.5

we plot the corresponding weighting function. For comparison, we also display the

weighting functions for the GARCH-MIDAS-LI models for the stock and oil market.

The figure shows that the weighting function of the correlation model is nearly linear

while the weighting functions of the volatility specifications are rapidly declining.12

13

11On February 22nd 2011, for instance, oil returns spiked up by 8%, whereas stock market
returns went down by 2%.

12As a robustness check, we also estimated models including a weighting scheme with two
parameters, hereby relaxing the assumption of strictly decreasing weights. However, including
an unrestricted weighting scheme did not lead to significant improvements in the value of the
maximized log likelihood and the resulting weighting schemes were still strictly decreasing.

13Similar results are obtained for the other macroeconomic variables but omitted for reasons of
brevity.
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Finally, we calculate the marginal effect of a one standard deviation change in a

macro variable Xt on the long-run correlation component in the next month. Due

to the non-linear Fisher-z transformation in Eq. (4.9), the marginal effect has to be

calculated conditional on the history of the explanatory variable.14 For instance, if

we keep all lags of LI fixed at its sample mean of 0.99, then this yields a long-term

correlation of 0.088 and a one standard deviation increase in LI this month results

in a decrease to 0.072 next month, i.e. a decrease by 18.12%. Thus, the predicted

marginal effect on the long-term correlation component is also highly economically

relevant.

In the previous considerations we mainly focused on the DCC-MIDAS-LI speci-

fication to explain the dynamic behavior of the slowly-moving long-run correlation

component. However, Table 4.4 clearly reveals that the fit of the DCC-MIDAS-X

specifications with IP, NFP, UR, and NAI are only slightly inferior. Figure 4.6

displays the estimated long-run correlations from the corresponding specifications.

The figure illustrates nicely that the long-term components of all specifications fol-

low the same pattern and, hence, further support our argument that the long-term

oil-stock correlation is counter cyclical. Note that the spike in the long-term correla-

tion component predicted by IP for October 2005 can be traced back to a significant

contraction in industrial production one month earlier. This is not reflected to such

a strong extent in the other macroeconomic figures (compare Figure 4.1).

4.6 Model evaluation and hedging performance

Although the main focus of our analysis lies on the macroeconomic determinants of

the long-term oil price return volatility as well as the long-term oil-stock correlation,

our findings might also have important implications for portfolio choice, hedging

decisions or risk management. Therefore, we now have a closer look at the forecasting

performance of the different models for the entire conditional covariance matrix Ht.

Since a full-fledged out-of-sample analysis is beyond the scope of the current paper,

we focus on in-sample results. Following Laurent et al. (2012, 2013) we apply two

robust loss functions, i.e. loss functions that deliver the same ordering whether the

evaluation the evaluation is based on the true conditional covariance matrix or an

14We calculate the percentage change in the long-term correlation component following a one
standard deviation increase in X - conditional on all lags of X being fixed at its sample mean
X̄. More precisely, we compare ρ̄12,τ in Eq. (4.9) based on the estimates of z12,τ in Eq. (4.10)
evaluated at
Xt−1 = · · · = Xt−Kc = X̄ and at Xt−1 = X̄ + SD(Xt), Xt−2 = · · · = Xt−Kc = X̄.
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unbiased proxy of it.

The first loss function is the Euclidean distance which equally weights the vari-

ances and covariances:

LEt = (r2
1,t − ĥ1,t)

2 + (r2
2,t − ĥ2,t)

2 + (r1,tr2,t − ĥ12,t)
2

The second one is based on the Frobenius distance and double counts the loss asso-

ciated with the conditional covariance:

LFt = (r2
1,t − ĥ1,t)

2 + (r2
2,t − ĥ2,t)

2 + 2(r1,tr2,t − ĥ12,t)
2

In Table 4.5, we report for each model the average value of the two loss functions.

In addition, for each DCC-MIDAS-X model we test whether the average loss is

significantly different from the average loss of the DCC benchmark model. Panel A

presents results for the full sample, while Panel B covers the subsample of the

financial crisis in the years 2007-2009. In case of a positive difference, forecasts from

the DCC-MIDAS-X model are superior to those from the benchmark model.

For the full sample, the differences in both loss functions are significant for all

DCC-MIDAS-X models except the one based on IP. To the contrary, the DCC-

MIDAS-RC model does not lead to a significant improvement over the simple DCC.

Unsurprisingly, during the financial crisis period the average losses more than double

in comparison to the full sample. During this period we only find a significant

improvement over the DCC for the model based on the LI when considering the

Frobenius distance. This somewhat disappointing outcome may be due to the fact

that during the crisis the forecast quality of all models deteriorated dramatically

and it became increasingly difficult to distinguish between them. Another potential

explanation could be that during the crisis the quality of our proxies, i.e. the squared

returns and the product of daily oil and stock returns, for the true conditional

volatilities and covariances has declined.

As an alternative approach to evaluate the forecast performance without the ne-

cessity to rely on proxies of the unobserved volatilities and correlations, we consider

the problem of hedging a long position of one dollar in the stock market by a short

position of β12,t dollars in the oil market. The optimal hedge portfolio is given by

(see Kroner and Sultan, 1993):

rPFt = r1,t − β12,t · r2,t, with β12,t =
ĥ12,t

ĥ2,t

.
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We then compare the average portfolio variance based on the volatility and covari-

ance forecasts from the DCC-MIDAS-X models with those from the DCC model.

The results in Table 4.5 suggest that the DCC-MIDAS-X models lead to significantly

lower portfolio variances compared to the DCC in both the full sample as well as the

crisis subsample. Although, the forecasting results are very promising for potential

financial applications, a first natural avenue for future research would be to confirm

our in-sample findings in a more detailed out-of-sample analysis.

4.7 Conclusion

We investigate the effect of changes in the U.S. macroeconomic environment on

the long-term volatilities and correlations in crude oil and U.S. stock price returns.

First, our results show that the long-term volatilities in both markets share a com-

mon component that reflects the state of the U.S. business cycle. Second, we extend

the two-component DCC-MIDAS model of Colacito et al. (2011) by allowing the

slowly-moving long-term correlation component to be determined endogenously by

the variation of key macroeconomic figures. We show that changes in macroeco-

nomic variables, which reflect the current stance of the economy as well as the

future economic outlook, can anticipate counter cyclical fluctuations in the long-

term correlation. More specifically, our model predicts a negative correlation during

prolonged periods of strong economic expansions, while a positive correlation is

observed during recessions and recoveries.

Our results provide further evidence for the argument put forward in Barsky and

Kilian (2002, 2004) and Kilian (2008, 2009), among others, that oil price changes

should not be considered exogenous with respect to U.S. and global macroeconomic

conditions. However, while previous studies focused on a relationship in levels, our

analysis shows that there is also feedback from the level of the macro variables to

the second moment of the oil price. In addition, our MIDAS approach allows us

to establish a link between low frequency data on U.S. economic activity and high

frequency oil-stock return correlations, whereas previous evidence in Kilian and Park

(2009) was based low frequency data.
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4.8 Tables and figures

4.8.1 Tables

Table 4.1: Descriptive statistics

Variable Obs Min Max Mean SD* Skew. Kurt.

Panel A: Daily return data (Jan 4, 1993 - Nov 30, 2011)
Oil (WTI) 4743 -17.09 16.41 0.03 39.21 -0.19 7.73
CRSP 4743 -8.96 11.35 0.04 19.53 -0.11 10.66

Panel B: Monthly macro data (Jan 1990 - Nov 2011)
Current stance of the economy
IP 263 -4.30 2.10 0.16 0.67 -1.72 11.52
NFP 263 -0.62 0.41 0.07 0.18 -1.16 5.17
UR 263 -0.50 0.50 0.01 0.16 0.39 3.88
Future economic outlook
NAI 263 -4.55 1.52 -0.17 0.86 -1.82 8.48
LI 263 -3.03 2.42 0.99 0.98 -1.67 6.69

Notes: The reported statistics include the number of observations (Obs), the minimum (Min) and maximum
(Max), the mean, standard deviation (SD), Skewness (Skew.), and Kurtosis (Kurt.). For the variables IP
and NFP we compute month-to-month growth rates according to 100 · [ln(Xτ ) − ln(Xτ−1)], while in case
of UR we use month-to-month changes. The NAI and LI are included in levels. We calculate continuously
compounded oil returns based on the WTI crude oil spot price. The CRSP return data is obtained from
Kenneth R. French data library, whereas oil prices and macro economic data are obtained from the Federal
Reserve Bank of St. Louis.
*The standard deviations are annualized for the daily return series.
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Table 4.5: Model evaluation

Euclidean distance Frobenius distance Hedge portfolio
Variable loss difference loss difference variance difference
Panel A: Full sample (Jan 1993 - Nov 2011)
Benchmark models
DCC 266.511 - 289.199 - 1.415 -
DCC-RC 266.508 0.003

(0.060)
289.194 0.005

(0.060)
1.414 0.001

(0.446)

Current stance of the economy
IP 264.604 1.907

(1.158)
287.063 2.136

(1.311)
1.399 0.016?

(1.896)

NFP 263.328 3.183??
(2.03)

285.744 3.455??
(2.181)

1.398 0.017?
(1.892)

UR 263.078 3.433??
(2.152)

285.394 3.805??
(2.344)

1.394 0.021?
(1.876)

Future economic outlook
NAI 263.738 2.772??

(2.008)
286.073 3.126??

(2.223)
1.395 0.020?

(1.919)

LI 262.477 4.034???
(2.895)

284.801 4.398???
(3.054)

1.396 0.019??
(1.982)

Panel B: Financial crisis (Jan 2007 - Dec 2009)
Benchmark models
DCC 629.845 - 721.984 - 3.113 -
DCC-RC 629.890 −0.045

(−0.178)
722.074 −0.090

(−0.178)
3.118 −0.006

(−0.634)
Current stance of the economy
IP 629.624 0.221

(0.023)
720.357 1.628

(0.175)
3.012 0.100??

(2.151)

NFP 621.292 8.553
(0.967)

711.732 10.252
(1.153)

3.004 0.109??
(2.193)

UR 622.677 7.168
(0.824)

712.467 9.517
(1.080)

2.979 0.134??
(2.196)

Future economic outlook
NAI 624.536 5.309

(0.715)
714.491 7.493

(0.995)
2.987 0.126??

(2.153)

LI 618.037 11.808
(1.592)

707.883 14.101??
(1.846)

2.997 0.116??
(2.240)

Notes: For each DCC-MIDAS model we report the average of the Euclidean and Frobenius loss functions:

LEt = (r2
1,t − ĥ1,t)

2 + (r2
2,t − ĥ2,t)

2 + (r1,tr2,t − ĥ12,t)
2,

LFt = (r2
1,t − ĥ1,t)

2 + (r2
2,t − ĥ2,t)

2 + 2(r1,tr2,t − ĥ12,t)
2,

and the average difference relative to the benchmark DCC model along with values of the corresponding t-statistic. For
each DCC-MIDAS model we calculate the optimal hedge portfolio

rPFt = r1,t − β12,t · r2,t, with β12,t =
ĥ12,t

ĥ2,t

,

and report its average variance. The average variance for the portfolio consisting only of stock returns amounts to 1.507
for the full sample and to 3.438 for the subsample. We calculate the average difference of each variance relative to the
DCC model and the corresponding t-statistic. ???, ??, ? indicate significance at the 1 %, 5 %, and 10 % level.
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4.8.2 Figures

Figure 4.1: Monthly macroeconomic data

Notes: The figure shows the development of the macroeconomic explanatory variables. Shaded
areas represent NBER recession periods.

Figure 4.2: Long-term volatility components for the stock and oil market

Notes: The figure shows the annualized monthly long-term volatility components (standard de-
viations) obtained from the GARCH-MIDAS-LI specification. The bold line refers to the stock
market, the dashed line to the oil market. Shaded areas represent NBER recession periods.
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Figure 4.3: Oil-stock correlation components

Notes: The figure shows the DCC-MIDAS-LI estimates of the conditional oil-stock correlation
(dashed line) and its long-term component (bold black line). The circles correspond to one-year
rolling window realized correlations. Each series is shown at a monthly frequency, where monthly
realizations are obtained by computing monthly averages. Shaded areas represent NBER recession
periods.

Figure 4.4: Long-term correlation component with the leading index

Notes: The bold black line (left scale) represents the DCC-MIDAS-LI estimate of the long-term
oil-stock correlation. The dashed line (right scale) corresponds to the LI. Shaded areas represent
NBER recession periods.
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Figure 4.5: Weighting schemes for the long-term volatility components

Notes: The figure shows the estimated weighting functions for the long-term volatilities based on
the GARCH-MIDAS-LI and for the long-term correlation based on the DCC-MIDAS-LI. While
the bold black line refers to the long-term correlation, the light-gray and the dark-gray dashed
lines refer to the long-term volatilities of CRSP and of oil price returns, respectively.

Figure 4.6: Long-term correlation components

Notes: The figure shows the DCC-MIDAS-X estimates of the long-term oil-stock correlations for
all macroeconomic variables. Shaded areas represent NBER recession periods.
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Lundbergh, S., and Teräsvirta, T., 2002. Evaluating GARCH models. Journal

of Econometrics 110, 417-435.

Luukkonen, R., Saikkonen, P., and Teräsvirta, T., 1988. Testing linearity
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