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INTRODUCTION

FINANCIAL VOLATILITY, DYNAMIC CORRELATIONS,
AND MACROECONOMIC FUNDAMENTALS

After more than 25 years of
research on volatility, the central
unsolved problem is the relation
between the state of the economy

and aggregate financial volatility.

Engle and Rangel (2008, p. 1187)

SOME GENERAL REMARKS ON FINANCIAL VOLATILITY

Volatility lies at the core of financial risk and plays a crucial role in many financial
applications, such as the pricing of financial derivatives, portfolio selection, and risk
management. [t is closely tracked by private and institutional investors, central
bankers, financial regulators, and policy makers. For instance, an estimate of the
volatility of an asset is a crucial input for determining capital requirements that
are imposed on banks by the so-called Basel accords. Furthermore, policy institu-
tions around the world constantly monitor risk developments across different asset
classes, comprising equity, government bond, corporate bond, commoditiy, and FX

markets.!

!Both the ECB and the IMF report heat maps with red, yellow, and green colors indicating
high, medium, and low volatility estimates across different markets in the bi-annual Financial
Stability Review and Global Financial Stability Report report, respectively. In addition, in its
September 2015 meeting, the Federal Open Market Committee - the principal decision-making
body within the Federal Reserve System - explicitly took into account the (increasing) level of



During the last couple of years, volatility indices, most notably the Volatility
Index (VIX) published by the Chicago Board Options Exchange (CBOE), which is a
measure of the implied volatility of S&P 500 index options, have drawn considerable
attention. The VIX represents a measure of the market’s expectation of stock market
volatility over the next 30-days period. Since it can be viewed as representing
investors’ sentiments, it is often referred to as the fear index. More recently, volatility
itself has been considered as an asset class and the number of financial instruments
based on volatility indices has increased dramatically.?

The accurate modeling of time variation in co-volatilities or correlations between
single assets as well as (international) asset markets has become just as important.
Models of dynamic correlations are applied both on a small scale (e.g., in portfolio
allocation) and on a large scale (e.g., for systemic risk measures).

This thesis contributes to the volatility literature by investing several relevant
aspects of both financial volatility as well as dynamic correlations and the determi-
nation of their macroeconomic fundamentals in the framework of GARCH-MIDAS

models - a particular class of volatility models from the ARCH universe.

THE ARCH MODEL AND ITS EXTENSIONS

The ARCH (AutoRegressive Conditional Heteroskedasticity) model was first intro-
duced by Robert F. Engle in 1982. The economic literature at that time considered
conditional heteroskedasticity in the cross-section, but did not regard it as a time-
series phenomenon. Twenty years later, Engle was awarded the Sveriges Riksbank
Prize in Economic Sciences in Memory of Alfred Nobel (2003, shared with Clive
Granger) in recognition of his work on “methods of analyzing economic time series
with time-varying volatility (ARCH)”.

Though its first application in Engle (1982) was on UK inflation, the great success
of the ARCH model and its Generalized version, the GARCH model suggested by
Bollerslev (1986), lies in applications to equity and exchange markets. These models
have been so popular since they are able to capture the main stylized facts of financial
return series, which are characterized by fat tails and volatility clustering. The

tendency of financial volatility to cluster had already been observed by Mandelbrot

stock market volatility in its monetary policy decision-making process.

2The financial industry has already passed on to a higher, i.e. fourth, moment of asset returns
and provides options on the VVIX, see “Double the fun with the VIX on the VIX” on www.cboe.
com.


www.cboe.com
www.cboe.com

(1963, p. 418) who noted that “large changes tend to be followed by large changes -
of either sign - and small changes tend to be followed by small changes” .

Ever since its introduction, the number of GARCH model extensions has liter-
ally exploded, as has the range of its applications. Yet, the simple GARCH(1,1)
remains the benchmark volatility model against which any model extension has to
compete.®> An (almost) exhaustive listing of GARCH model extensions and variants
is provided in the ARCH Glossary of Bollerslev (2008).* Extensions and applications
of the GARCH model are presented in several survey chapters of the handbooks by
Andersen et al. (2009) and Bauwens et al. (2012).

ON THE ECONOMIC SOURCES OF FINANCIAL VOLATILITY

The analysis of the economic fundamentals of financial volatility goes back to Officer
(1976), who considered the wvariability of the market factor of the New York Stock
Exchange, and Schwert (1989) who raised the question “Why does stock market
volatility vary over time?”. In his analysis, Schwert (1989) considers monthly stock
return data spanning from 1857 to 1987 and its relation to real and nominal macroe-
conomic volatility, the level of economic activity, as well as financial leverage. The
counter-cyclical behavior of stock market volatility has generally been acknowledged
ever since, i.e. volatility is found to be high during recession and crisis periods and
low during economic expansions. However, the link has often seemed unreasonably
weak.

In general, fluctuations in asset prices can be rationalized economically by re-
lating them to fluctuations in the arrival and content of news. According to basic
financial theory, the price of an asset should reflect the expected present value of
its future income flows. This has been formalized in the framework of Campbell
(1991) and Campbell and Shiller (1988). Changes in the asset price are then due

3In an extensive forecast comparison study of volatility models on exchange rates and stock
returns, Hansen and Lunde (2005) ask “Does anything beat a GARCH(1,1)?” They find no evi-
dence that the model is outperformed by more sophisticated models for exchange rates. In case of
stock returns, it is outperformed only by asymmetric models that account for the leverage effect,
such as the GJR-GARCH model (Glosten et al., 1993).

4“The alphabet soup of volatility models continually amazes” even its inventor (Engle 2002,
p. 426). A contest on what other anacronyms ARCH might stand for, spured the following (not
to be taken seriously) list of alternatives:
Anything Really Can Happen; Another Risk Can’t Hurt; Another Really Cute Hunch; All Reality
Comes Here; Applied Research Can Help; Another Rather Crazy Hypothesis; Almost Right Con-
jected Heuristic; And Robert Can Hit; All Risks Compensate Highly...culminating in the YAARCH,
the Yet Another ARCH model proposed by the economist Figlewski.

Excerpt from: http://englenobel.blogs.com/
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to changes in the expectations of investors about these future income streams and
these expectations are modified with new information flowing in. Consequently, the
volatility of an asset changes over time, since both the content and the arrival rate
of news fluctuates over time. The same news may have a different impact on asset
prices depending on the general state of the macroeconomy. Furthermore, both the
horizon and the persistence of its impact may vary over time.

The last financial crisis and the subsequent great recession have revealed the need
for a better understanding of the interaction between risks in financial markets
and general economic conditions.® This has put the analysis of such macro finance
links back on the research agenda, see, e.g., Asgharian et al. (2013), Campbell and
Diebold (2009), Christiansen et al. (2012), Corradi et al. (2013), Dorion (2013),
Engle et al. (2013), Engle and Rangel (2008), and Paye (2012).

In particular, the crisis has revealed fatal consequences of short-sighted risk man-
agement and has spured new research on long-term financial risks and systemic risk
measures. In his paper “How to forecast a crisis”, Engle concludes that “the cri-
sis was predictable using familiar time series models, but only at short horizons”
(Engle, 2010, p. 1). Furthermore, he stresses that long-term financial risk measures
need to incorporate the “risk that risk will change”, Engle (2009). The new focus
on the long-term evolvement of financial risks and their link to economic fundamen-
tals naturally extends the time span of the financial and economic series considered.
When analyzing long time series spanning several years or decades, structural breaks
become an important issue. Hence, a large part of the literature on GARCH model
extensions has focused on developing more flexible models, allowing in particular
for changing parameters. There are various alternative approaches to do so, but we
will focus on one particular class of GARCH models in this dissertation.

The quote from Engel and Rangel (2008, p. 1187) preceding this introduction re-
sumes as follows: “The number of models that have been developed to predict volatil-
ity based on time series information is astronomical, but the models that incorporate
economic variables are hard to find”. In their paper, Engle and Rangel (2008) pro-
pose a new GARCH model, called spline-GARCH, that fills this gap and is closely
related to the GARCH-MIDAS component model, which will be the starting point

of this dissertation.

5The financial crisis of 2007-08 is considered by many economists to have been the worst
financial crisis since the Great Depression of the 1930s and has seen unprecedented high levels of
financial volatility. These were only surpassed by the (short-lived) 1987 stock market crash. For
instance, the VIX reached an intraday high of 89.53 on October 24, 2008, whereas its average value
since 1990 has been just below 20.



THE GARCH-MIDAS AND DCC-MIDAS COMPONENT MODELS

The GARCH-MIDAS model introduced in Engle et al. (2013) is a two component
volatility specification in the spirit of the models in Ding and Granger (1996), Engle
and Lee (1999), and more recently Bauwens and Storti (2009) as well as Amado
and Terdsvirta (2013, 2014, 2015). The model separates short-run fluctuations in
volatility from slowly evolving long-term developments. The underlying motivation
of these component models is the observation that “volatility is not just volatility”
(Engle et al., 2013, p. 776), but consists of different components, which ought to be
modeled separately. By introducing a time-varying unconditional variance, both the
spline-GARCH and the GARCH-MIDAS models relax the assumption that volatility
mean reverts to a constant level, which generally underlies many GARCH models
and the early component models. In both models, the short-term component is
specified as a unit variance GARCH process, which represents day-to-day clustering
of volatility, evolving around a long-term trend component. The two models differ

only in the specification of the long-term component.

The spline-GARCH model allows the unconditional variance to change smoothly
as a function of time (similar to the model of Amado and Tarésvirta, 2012) via a non-
parametric exponential quadratic spline. In this model, both volatility components
are modeled at the same (high) frequency and the long-term component can only
be linked to (low frequency) explanatory macroeconomic variables in a two-step
approach. Engle and Rangel (2008) first transform the estimated daily long-term
component to a lower frequency, which is then regressed on a set of explanatory
variables. In a cross-sectional study comprising equity markets across 50 countries,

they show that the long-term component behaves counter-cyclically.

The GARCH-MIDAS model combines the non-stationary volatility model of the
spline-GARCH with the Mlzed Frequency DAta Sampling (MIDAS) approach intro-
duced in Ghysels et al. (2005) and allows to directly link macro economic variables
of lower frequency to the long-term volatility component. The central feature of the
MIDAS regression (or MIDAS filter) approach is a flexible weighting function that
allows to combine data of high and low frequency in a very simple and parsimonious
way. The GARCH-MIDAS model applies a beta weighting scheme to link (daily)
high frequency financial return data to (monthly / quarterly) low-frequency macroe-
conomic variables, but there also exist other parsimonious weighting schemes, see
Ghysels et al. (2007) for more details. In this model, forecasts of volatility (in par-

ticular at longer horizons) are mainly determined by the secular component, since



forecasts of the short-run volatility component converge to unity. In their empirical
analysis, Engle et al. (2013) consider an extended version of the Schwert (1987) data
set (spanning from 1890 to 2010) and link the long-term component to the level and
variance of industrial production growth and inflation.

Asymptotic results for the general GARCH-MIDAS model are not yet available,
but Wang and Ghysels (2015) establish the asymptotic normality of the quasi-
maximum likelihood estimator for a GARCH-MIDAS model including rolling win-
dows of realized volatility as explanatory variable. Conrad and Schienle (2015)
present a misspecification test based on the Lagrange multiplier principle and derive
its asymptotic properties for testing the null hypothesis that the variable included
in the long-term component has no explanatory power.

A multivariate version of the component model is presented in Colacito et al. (2011),
who extend the Engle (2002) DCC model by introducing a short- and a long-term
in the correlation specification in a similar way as in the GARCH-MIDAS model.
In contrast to the latter, the original DCC-MIDAS specification by Colacito et
al. (2011), relates the secular correlation component to lags of realized volatilities
only.

This dissertation will focus on empirical applications of the GARCH- and DCC-
MIDAS component models. It should be noted however, that these models remain
reduced-form models, which are not directly linked to any structural model of the
macroeconomy. Still, the new models present a feasible approach to relate finan-
cial volatility to macroeconomic fundamentals and have been widely applied during
recent years, see Asgharian et al. (2013, 2015), Boffelli and Urga (2014), Dorion
(2013), Opschoor et al. (2014), amongst others.



OUTLINE OF THE THESIS

This dissertation consists of four research articles that deal with different aspects of
the modeling of financial volatility and dynamic correlations. They all focus on the
U.S. stock market and its link to macroeconomic fundamentals by applying MIDAS
techniques. The contributions of the articles are of theoretical, methodological, and
empirical nature. Each chapter is self-contained and can be read independently.
Chapter 1 and 2 consider GARCH-MIDAS component models and the relation-
ship between long-term financial volatility and the stance of the macroeconomy.
Both chapters are joint work with my first supervisor Christian Conrad and have
been published in the Journal of Applied Econometrics and in Economics Letters.
Chapter 3 is single-authored and presents a new GARCH model that links time-
varying volatility persistence to explanatory variables. Finally, Chapter 4 applies
the multivariate DCC-MIDAS model to returns on the stock and the oil market and
analyzes their relation to macroeconomic fundamentals. It is written jointly with
Christian Conrad and my former colleague Daniel Rittler and has been published
in the Journal of Empirical Finance.b

In the following, I will outline the main results and contributions of each chapter.

Chapter 1: Anticipating Long-Term Stock Market Volatility

In Chapter 1, we revisit the link between long-term financial volatility and the
general macroeconomic environment using GARCH-MIDAS component models. We
focus particularly on the lead-lag relationship between macroeconomic variables and
volatility and on the role expectations concerning current and future macroeconomic
developments play in predicting volatility.

We present an extensive analysis of the U.S. stock market for the 1969 to 2011
period and consider a variety of measures of economic activity, inflation rates, and
interest rates, and combine first release data with expectations from the Survey of
Professional Forecasters (SPF). We consider various specifications of the GARCH-
MIDAS model. We either let the long-term volatility component be determined
by a weighted average of lagged values of the explanatory variable, corresponding
to a one-sided filter, or we combine lagged and future realizations or expectations

thereof, corresponding to a two-sided filter. Applying the MIDAS techniques allows

6A previous version of this chapter has been part of the Ph.D. dissertation “The Carbon
Market, Oil, and the Macroeconomy” (2012) of Daniel Rittler at the Fakultdt fiir Wirtschafts- und
Sozialwissenschaften der Ruprechi-Karls- Universitat Heidelberg.



us to directly combine daily stock return data with quarterly macroeconomic data.

This chapter extends the empirical analysis in Engle et al. (2013) in several im-
portant ways and our main results may be summarized as follows. First of all, we
confirm the counter-cyclical behavior of long-term financial volatility for a broad set
of macro variables. Secondly, we identify several leading variables with respect to
stock market volatility. For variables such as housing starts growth and the term
spread, the optimal weighting scheme in the MIDAS filter is not strictly decreasing,
but rather hump-shaped. These two variables perform best in terms of variance
ratios (V Rs), which measure the fraction of the variation in expected volatility that
can be explained by the respective variable. In particular, the term spread specifica-
tion indicates increasing financial risks well ahead of the recent financial crisis and
clearly anticipates the build-up of financial risks. Our finding that the term spread
and housing starts are leading with respect to long-term volatility is economically
plausible, since these two variables are generally considered as leading indicators for
the business cycle (see, e.g., Estrella and Mishkin, 1998, and Kydland et al. 2012).
On the other hand, unemployment rate changes, industrial production growth, and
real GDP growth are found to be coincident/lagging with respect to stock market
volatility, since their optimal weighting scheme is a strictly decreasing one. Yet, we
demonstrate that the performance for these variables can be improved by using a
feasible two-sided filter, that is one which combines lagged realizations with expec-
tations of future realizations. In theses cases, switching from one-sided to two-sided
filters, leads to sizable increases in the V Rs. For the GARCH-MIDAS model that
includes past realized volatilities as explanatory variable, we find that the long-term
volatility component is mainly dominated by the 1987 stock market crash, and to
a lesser extend by the last financial crisis. It hardly varies though during the other
recession periods. We also consider model specifications, which include both realized
volatilities and a macro variable in the long-term component. Even if we control
for realized volatility, we still find significant effects of the macro variables on long-
term volatility and the variables mentioned previously are still leading with respect
to long-term volatility. This demonstrates that many of the variables considered
contain information on stock market risks beyond that contained in past realized
volatilities.

In an out-of-sample forecasting exercise, we find further evidence for the pre-
dictive power of macroeconomic variables. For most variables, we find significant
improvements in forecasting performance over the benchmark model that includes

lagged realized volatilities and the gains are particularly large for longer forecasting



horizons.

The chapter concludes with some extensions and robustness checks. In particular,
we analyze how long-term volatility is related to the uncertainty about macroeco-
nomic fundamentals. Schwert (1989) and later Engle and Rangel (2008) and Engle
et al. (2013) measure the volatility of a macro variable by the squared residual of a
simple autoregressive model with seasonal dummies. We show that survey based ex-
ante uncertainty measures are more appropriate than such ez-post regression based
volatility proxies. As an ex-ante measure, we consider the disagreement among the
SPF forecasters as implied by the interquartile range of the individual point fore-
casts. We find that higher dispersion in expectations increases long-term volatility
and more importantly that the ez-ante uncertainty measures are more informative
than the ex-post measures of macro volatility, although the V Rs of the disagreement
specifications are generally lower than the ones of the level specifications. Finally,
we argue that our results complement recent research on the determinants of the sec-
ular component of financial volatility in Christiansen et al. (2012) and Paye (2012).
These papers consider predictive regressions, where current realized volatility (or
a transformation thereof) is regressed on its lagged value(s) and the lag(s) of an
explanatory variable. They typically find only weak evidence on the relevance of
macro variables in predicting volatility. We find much more promising evidence
when considering a slightly different version of the predictive regression, which in-
cludes the long-term volatility component obtained from a GARCH-MIDAS model
with a macro variable instead of a single lag of the variable. We conclude that these
long-term volatility components parsimoniously summarize the information on the

lead-lag-structure between a specific macro variable and financial volatility

Chapter 2: The Variance Risk Premium and Fundamental Uncertainty

The insights from Chapter 1 on long-term financial volatility and its macroeconomic
determinants are applied to the modeling of the variance risk premium (V RP). The
chapter builds on recent findings in Bollerslev et al. (2009, 2012, 2014), Bekaert and
Hoerova (2014), and others that strongly suggest that the V RP predicts medium-
term aggregate stock market returns. This can be rationalized by the close relation
of the VRP to economic uncertainty and aggregate risk aversion. Bollerslev et
al. (2009) present a stylized self-contained general equilibrium model and argue
that expected returns are positively related to the volatility of consumption growth

volatility (vol-of-vol or fundamental uncertainty). The expected V RP is defined as



the difference between the ex-ante risk-neutral expectation of future stock market
variation and the statistical expectation of the realized variance. The risk-neutral
expected variation is well approximated by the (squared) VIX, a model-free option
implied variance measure, but the expected realized variance has to be estimated.
However, a typical approach is to simply assume that the realized variance follows
a martingale sequence.

The contribution of Chapter 2 is twofold. First, we propose a new measure of
the VRP that is based on variance forecasts from the GARCH-MIDAS component
model. This new proxy explicitly takes into account macroeconomic uncertainty
via the long-run volatility component. In our empirical analysis, we consider the
same financial return data set as in Chapter 1, but focus on monthly macroeconomic
variables. We construct the V RP based on out-of-sample variance forecasts of the
GARCH-MIDAS models. We consider monthly return predictability regressions
and show that the new V RP measure has considerably stronger predictive power
for stock returns than conventional measures of the V RP. Second, we argue that the
strong predictive power stems from the fact that the long-term volatility component

effectively isolates the fundamental uncertainty factor that drives the VRP.

Chapter 3: Time-Varying Volatility Persistence in a GARCH-MIDAS
Framework

In Chapter 3, we take a different perspective on financial volatility modeling by
considering time variation in volatility persistence. We suggest a new GARCH model
with time-varying persistence (TVP) that is governed by an explanatory variable.
We motivate the new model by showing that persistence in squared financial returns,
as measured by the speed of decay of their autocorrelation function, varies over time
and is high (low) during periods of high (low) realized volatility and weak (strong)

business conditions.

In the standard (stationary) GARCH(1,1) model, volatility persistence is deter-
mined by the ARCH and GARCH parameters and thus remains constant over time.
Estimations of the model on (long) financial return series typically indicate high
persistence, i.e. the sum of the two parameters is found to be close to one. However,
as already argued by Diebold (1986) and Lamoureux and Lastrapes (1990), and then
formalized by Hillebrand (2005), volatility persistence will be over estimated in case
there are structural breaks in the model parameters that are not accounted for. This

has motivated a large body of literature on GARCH models with time-varying pa-



rameters. We add to this literature and extend the asymmetric GJR-GARCH model
in Glosten et al. (1993) by introducing time variation in persistence through smooth
transitions in the GARCH coefficient. The novelty of the model lies in letting the
transition between different persistence regimes be governed by an explanatory vari-
able in the spirit of the GARCH-MIDAS model. We refer to the new model as the
TVP-GARCH-MIDAS model. It nests the standard GJR-GARCH model in case
the variable has no explanatory power. In standard smooth transition type GARCH
models, the transition has typically been governed by the lagged squared shock (see
Hagerud, 1997, Gonzéalez-Rivera, 1998, Lundbergh and Terasvirta, 1998, and An-
derson et al., 1999) or the lagged conditional variance (Lanne and Saikkonen, 2005).
Applying MIDAS techniques now allows us to link the transition to the history of an
explanatory variable, i.e. to the weighted average of potentially many of its lagged
values, in a parsimonious way. This approach yields a reasonably smooth measure
of time-varying persistence of volatility.

After introducing the TVP-GARCH-MIDAS model, we derive a misspecification
test based on the Lagrange multiplier principle, which has the advantage that it
requires estimation of the model under the null only. We examine its finite sam-
ple size and power properties in a Monte-Carlo simulation study. The empirical
size of the test is found to be close to the nominal size for normally distributed
errors. In order to investigate power properties of the test, we consider two different
TVP-GARCH-MIDAS model specifications, which include (smoothed versions) of
realized volatility and the VIX. We find high power in case of reasonably smooth

and pronounced time variation in persistence.

The second part of Chapter 3 presents an empirical application of the new model
to the U.S. stock market and considers an extended version of the data set from
Chapters 1 and 2. As explanatory variables, we include daily realized volatilities
and the ADS business conditions index. The model estimations confirm the intu-
ition from our motivation and we find increasing (decreasing) persistence for high
(low) realized volatilities and weak (strong) business conditions. The model with
realized volatility generates stronger time variation over a greater range of persis-
tence compared to the model including the ADS. However, both models imply a
lower persistence than the GJR-GARCH model on average. In an out-of-sample
forecast evaluation, we provide evidence that the new TVP-GARCH-MIDAS model
with realized volatility yields significant gains in forecasting performance over the
GJR-GARCH model across horizons varying from one day to one quarter. In par-

ticular, we demonstrate that the model with realized volatility captures the average



level of persistence of volatility particularly well during periods of very low and high

volatility.

Chapter 4: On the Macroeconomic Determinants of Long-Term Volatilities
and Correlations in U.S. Stock and Crude Oil Markets

Chapter 4 considers a multivariate extension of the GARCH-MIDAS model and its
application to dynamic correlation between returns on the U.S. stock market and
the oil market.

Based on the presumption that exogenous oil supply shocks are causal for reces-
sions and periods of low growth (see the seminal articles by Hamilton, 1983, 1985,
2003), several empirical studies have analyzed the relationship between oil prices
and stock market returns, yielding however conflicting evidence, see among oth-
ers, Jones and Kaul (1996), Wei (2003), Nandha and Faff (2008), Miller and Ratti
(2009). Results from regressing stock returns on oil price changes may be mislead-
ing though, as argued in Kilian and Park (2009), due to reverse causality from the
U.S. economy to the oil price. Additionally, they argue that the sign of a stock price
response to changes in oil price depends on the type of the underlying shock and
may change over time. Indeed, Filis et al. (2011) confirm for several oil-exporting
and oil-importing countries that the oil-stock correlations vary over time.

The main contribution of this chapter is the identification of a counter-cyclical
relation between the long-term correlation component and macroeconomic condi-
tions, which is driven by the same variables that also anticipate changes in both
financial and oil long-term volatility. In particular, we provide first evidence on the
link between macroeconomic conditions and the daily oil-stock correlation.

We first present a modification of the DCC-MIDAS component model introduced
in Colacito et al. (2011) that allows to directly incorporate information on the
macroeconomic development in the long-term correlation component. Our empiri-
cal analysis covers the 1993 to 2011 period and combines daily stock returns and oil
return data with monthly macroeconomic data. More precisely, we consider vari-
ables measuring the current stance of the economy, such as industrial production
growth, non-farm payrolls growth, and changes in the unemployment rate, as well
as two forward looking indicators, the leading index and the national activity in-
dex. To begin with, we look separately at the macroeconomic determinants of the
long-term volatility components for the stock and the oil market. We confirm the

counter-cyclical behavior of the financial volatility component, which we analyzed in



depth in Chapter 1. More importantly, we also find convincing evidence for a simi-
lar counter-cyclical relationship for the oil market. Previous studies such as Barsky
and Kilian (2004) and Kilian (2008, 2009) have established reverse causality from
the U.S. economy to the oil price and our findings now extend these results to the
volatility of oil prices. Interestingly, both long-term volatility components respond
to the same macroeconomic information.

In a next step, we show that changes in the long-term oil-stock correlation can be
anticipated by the same macroeconomic variables that drive the long-term volatili-
ties and find that the oil-stock correlation varies in a counter-cyclical way as well.
The model estimates imply a positive long-term correlation component during re-
cessions (or the beginning of expansions with growth still below trend), whereas
the correlation decreases or turns negative during periods of strong growth above
trend. This can be rationalized economically as follows. During recession periods,
a simultaneous drop in oil and stock prices will induce a positive correlation. At
the beginning of an economic recovery, increasing oil prices will at first not have a
negative effect on the stock market. As argued in Kilian and Park (2009), there will
typically be positive short-run effects of an unexpected increase in global demand
on oil and stock prices. However, the negative effect of increasing oil prices will
dominate in the long-run and in the course of an expansion, the oil-stock correlation
will decrease again or even turn negative.

The counter-cyclical nature of the long-term correlation component implies that
the sign of the oil-stock correlation critically depends on the state of the macroe-
conomy. This reinforces the argument made in Kilian and Park (2009) that simple
regressions of stock returns on oil price changes may be very misleading.

In our model, the evolution of the long-term correlation component is purely
driven by macroeconomic variables, which represent U.S. (or at least to some extent
global) aggregate demand. As a consequence, deviations of the short-term compo-
nent from the long-run trend must be related to other factors the affect the stock
and/or oil market. In case of the oil market, typical factors would be either oil-
specific (i.e. precautionary or speculative) demand shocks or supply shocks. Indeed,
temporary deviations can be related to particular oil-related events, such as the
Venezuelan oil supply crisis, the second Iraq war, and the Libyan crisis and political
turmoil in North Africa. Since most of these deviations occur for relatively short pe-
riods, we consider this being further evidence that the oil-stock correlation is largely
determined by U.S. economic activity and global aggregate demand, in line with

Hamilton (2008), Kilian (2009), and Kilian and Murphy (2014).



The chapter concludes with some evidence on the potential benefits of accounting
for time variation in the oil-stock correlation in a portfolio application. Our results
suggest that including macro fundamentals in the conditional correlation specifi-
cation in the DCC-MIDAS model leads to significantly lower portfolio variances
compared to the standard DCC model.



ANTICIPATING LONG-TERM STOCK
MARKET VOLATILITY

We investigate the relationship between long-term U.S. stock market risks and the
macroeconomic environment using a two component GARCH-MIDAS model. Our
results show that macroeconomic variables are important determinants of the secular
component of stock market volatility. Among the various macro variables in our
dataset the term spread, housing starts, corporate profits, and the unemployment
rate have the highest predictive ability for long-term stock market volatility. While
the term spread and housing starts are leading variables with respect to stock market
volatility, for industrial production and the unemployment rate expectations data
from the Survey of Professional Forecasters regarding the future development are

most informative.

This chapter was published as: Conrad, C., and K. Loch (2014). “Anticipating Long-Term
Stock Market Volatility.” Journal of Applied Econometrics, forthcoming.



1.1 INTRODUCTION

Although the question as to whether measures of economic activity actually antic-
ipate changes in stock market volatility dates back to Officer (1973) and Schwert
(1989), the last financial crisis has put this issue back into the spotlight. Recent
examples are Asgharian et al. (2013), Campbell and Diebold (2009), Christiansen
et al. (2012), Corradi et al. (2013), Dorion (2013), and Paye (2012). This paper
complements the recent literature by employing the GARCH-MIDAS framework
suggested in Engle et al. (2013), which enables us to directly identify the effect of
the macroeconomic environment on the secular component of stock market volatil-
ity. Our contribution is twofold. First, we provide a detailed exploration of the
lead-lag relationship between macroeconomic variables and volatility and, second,
we analyze the role of expectations concerning current and future macro develop-
ments in predicting volatility. We shall see that both issues are key to enhancing our
understanding of the link between macroeconomic conditions and financial volatility.
The GARCH-MIDAS model is a two component volatility specification in the
spirit of Ding and Granger (1996), Engle and Lee (1999), and more recently Bauwens
and Storti (2009) and Amado and Terésvirta (2013 and 2014), and separates short-
run fluctuations in volatility from long-term developments. Similarly, as in the
Engle and Rangel (2008) Spline-GARCH model, the short-term component is spec-
ified as a unit GARCH process evolving around a long-term trend component that
reflects macroeconomic conditions. In comparison to the Spline-GARCH model, the
GARCH-MIDAS has the advantage that it allows us to directly incorporate infor-
mation on the macroeconomic environment into the long-term component. Using
a flexible Beta weighting scheme, long-term volatility of daily stock returns is ex-
pressed as a weighted average of either lagged (one-sided filter) or lagged and future
(two-sided filter) values of lower frequency macroeconomic variables. While most of
the literature on volatility modeling exclusively focuses on the GARCH component,
within the GARCH-MIDAS framework the log GARCH component can be thought
of as the residual of a regression of the log conditional variance on macroeconomic
explanatory variables (see Engle et al., 2013, p.781). Within this new framework, we
identify specific economic variables that anticipate changes in long-term volatility.
Our analysis covers U.S. data for the 1969 to 2011 period and provides a detailed
analysis of the lead-lag relationship between macroeconomic variables and stock
market volatility. For this purpose, we consider a variety of measures of economic

activity, as well as inflation and interest rate developments. Furthermore, in order



to obtain a realistic picture of the macroeconomic variables’ ability to anticipate
changes in stock market volatility in real-time, we employ first release instead of
revised data. Finally, combining first release data with expectations from the Survey
of Professional Forecasters (SPF) allows us to estimate feasible two-sided filters.

Our main results can be summarized as follows. First, we reconfirm the counter-
cyclical behavior of stock market volatility — this was first observed in Schwert (1989)
— for a broad set of macro variables.

Second, we identify several leading variables with respect to stock market volatil-
ity. That is, the optimal (one-sided) weighting schemes for these variables do not
decay from the beginning but are rather hump-shaped. Among these leading vari-
ables, the term spread and housing starts perform best in terms of variance ratios,
which measure the fraction of the variation in expected quarterly volatility that can
be attributed to the respective macro variable. In particular, the long-term com-
ponent based on the term spread increases before all the recessions in our sample.
The term spread specification clearly indicates increasing stock market risks well
in advance of the recent financial crisis. The close relationship between the term
spread, housing starts and stock market volatility is not surprising given that both
variables are commonly considered as leading indicators for the business cycle (see,
e.g. Estrella and Mishkin, 1998, and Kydland et al., 2012).

Third, we find that the performance of some variables, whose weights strictly de-
crease in the one-sided filter, can be improved by using a feasible two-sided filter
— one which combines first release data with SPF expectations about the future.
These variables can be described as coincident/lagging with respect to stock market
volatility. Specifically, for industrial production, the unemployment rate, and real
GDP, the feasible two-sided filters are preferred to their one-sided counterparts. The
results for these variables suggest that — besides the current state of the macroecon-
omy — expectations about future macroeconomic conditions are important drivers
of stock market volatility. This interpretation is very much in line with Campbell
and Diebold’s (2009, p.275) conclusion that expected business conditions forecast
future volatility because they are “linked to perceived systematic risk and expected
returns”.

Fourth, an out-of-sample forecast evaluation provides further evidence for the
predictive power of macroeconomic variables. That is, for most macro variables we
find significant improvements in forecasting performance over the benchmark model
that includes lagged realized volatilities. Modeling the long-term component as a

function of the macroeconomic environment pays off particularly when it comes to



long-term forecasting.

Finally, it is important to highlight that our results complement the recent findings
in Asgharian et al. (2013) and Dorion (2013). The former study focuses on the
predictive ability of GARCH-MIDAS models that are based on the first two principal
components of several macro variables and the latter applies the GARCH-MIDAS
framework in the context of option pricing. While our main focus lies on the macro
variable specific lead-lag-structure and the potential gains from using unrestricted
one- and feasible two-sided filters, both Asgharian et al. (2013) and Dorion (2013)
exclusively employ one-sided filters with restricted weighting schemes.

The remainder of this article is organized as follows. Section 1.2 introduces the
GARCH-MIDAS component model. The data and empirical results are presented
in Sections 1.3 and 1.4. Finally, Section 1.5 concludes the article. Various additional

tables and figures are available in an online Supplementary Appendix.

1.2 THE GARCH-MIDAS MODEL

The present value models of Campbell (1991) and Campbell and Shiller (1988)
illustrate that unexpected returns can be associated with news that leads to revisions
in the discounted sum of future expected dividends and returns. Specifically, the
same news can have a small or large impact on unexpected returns depending on
whether it affects expectations over short or long horizons. The volatility component
models considered in this article capture this idea by relating the size of the new’s
impact to variables that describe the state of the macroeconomy and, hence, carry
information about expected future cash flows. For example, Engle and Rangel (2008)
assume that daily unexpected returns can be described by a two component volatility
model, i.e.

ri — B ri|Fioi] = Vo Zi, (1.1)

where r; are daily log returns, F; is the information set available at day i, Z; £ (0,1),

g; is a unit GARCH process and 7; is an exponential spline function. While the
short-term volatility component g; represents the well-known day-to-day clustering
of volatility, the smooth long-term component 7; reflects the state of the macroe-
conomy. Hence, Eq. (1.1) illustrates how the same piece of news can have strong or
weak effects on unexpected returns depending on the level of 7;.

The drawback of the Spline-GARCH is that it is not straightforward to incorporate

information on the macroeconomy into the long-term component, since the macro



variables are typically observed at a lower frequency than the daily returns. Engle
and Rangel (2008) opt for a two-step strategy. In a first step, they estimate the
model at a daily frequency and then aggregate 7; to a yearly frequency. In a second
step, the aggregated long-term component is regressed on a set of macroeconomic
variables. For a panel of nearly 50 countries, Engle and Rangel (2008) show that
7; behaves counter-cyclically, i.e. it is high during recessions and low during boom

phases.

Since we intend to directly model the effects of the macro variables on long-term
volatility, we rely on the GARCH-MIDAS model proposed in Engle et al. (2013).
This approach allows us to combine daily return data with a long-term volatility
component that is entirely driven by the evolution of low-frequency macro variables.
We employ a variant of the model which assumes that the long-term component
changes at the same frequency that the macro variables are observed. In the follow-

ing, we use the notation

Tit — E [Ti,t’-/—:i—l,t] = \/gi,tTtZi,h (1-2)
where t = 1,...,T denotes a particular period, e.g. a quarter, and i = 1,..., N®

the days within that period. Daily expected returns are assumed to be constant,
i.e. we set E[r;¢|Fi—1:] = p for all ¢ and ¢. The short-term component follows a

mean-reverting asymmetric unit GARCH process

) (Tic1e — )

Tt

gir = (l—a—=B-=7/2)+ (a+7- Ly, ,—p<o} + B89i-1., (1.3)
with @ > 0, f > 0 and a + f + 7/2 < 1. That is, the choice of the constant in
Eq. (1.3) ensures that E[g;¢] = 1.

Following Engle et al. (2013), we consider two alternative versions of the long-term
component. In the basic version, long-term volatility is modeled as the weighted av-
erage of the lagged values of an explanatory variable X;. We will refer to this version
as a one-sided filter. Alternatively, the extended version specifies long-term volatil-
ity as the weighted average of past, present, and future values of the explanatory
variable. This specification corresponds to a two-sided filter and will be discussed in
Section 1.4.2. In both cases, we opt for modeling log(7;) rather than 7 itself which
ensures the positivity of the long-term component. We refer to models with macroe-
conomic explanatory variables as GARCH-MIDAS-X. Our benchmark specification

employs quarterly realized volatility as an explanatory variable and is labeled as



GARCH-MIDAS-RV.
The one-sided version of the long-term component is given by!

K

log(7) =m+6 Z o (w1, wa) Xy, (1.4)
k=1

with Beta weighting scheme

o) — B/ D) (R 1)
) = S R+ P 0 (K + D

(1.5)

Even for a large K, Eq. (1.5) parsimoniously specifies the weights ¢; which are
completely determined by the two parameters w; and ws. By construction, ¢ > 0
for k =1,..., K and Zle or = 1. For w; = wy = 1, the weights are equal, i.e.,
or = 1/K for all k. The restriction w; = 1, we > 1 guarantees a decaying pattern,
i.e., the maximum weight is at the first lag. The rate of decay is then determined by
wy, whereby large values of wy generate a rapidly decaying pattern and small values
generate a slowly decaying one. In contrast, the unrestricted scheme can generate
hump-shaped or convex weights.? Whether an unrestricted weighting scheme leads
to a significant improvement relative to the restricted one can be assessed by means
of a likelihood ratio test (LRT). The maximum number K of lags to be included is
chosen through information criteria. Note that if we restrict 6 to zero, the long-run
component remains constant. As a consequence, the GARCH-MIDAS-X specifica-
tion nests the asymmetric GARCH(1,1) process with unconditional variance equal

to exp(m).

Finally, we consider one-period-ahead volatility forecasts. Since at the beginning
of period ¢ the long-term volatility 7; is predetermined with respect to Fy-1 , 1,

the volatility forecast for a specific day ¢ within period ¢ is given by
E [gi,tTtZZt|fN<t—1>,t_1} =nE [9i,t|]:1v(t—1>,t_1] . (1-6)

Since E [gi¢|Fye-n 1] =14 (o + B4 7/2) (g4 — 1) converges to unity, i.e. to

the unconditional variance of g;+, the forecast approaches the long-term component

In order to differentiate between the long-term components of the GARCH-MIDAS-X and
GARCH-MIDAS-RV models we also use the notation 77X and 7/*V.
2For a more detailed discussion of the Beta weighting scheme see Ghysels et al. (2005).



for ¢ large. The volatility forecast for period ¢ is then given by

N (@)
E | gunZ | Frov,a| =7 (N(t) +(g1s— 1)

=1

1—(a+B+v/2N"
s

Clearly, if g1, is equal to its unconditional expectation, the period ¢ forecast would
be N which resembles the square-root-of-time rule. For a more than one-period-
ahead prediction, one needs to forecast the long-term component itself. We will come
back to this issue in Section 1.4.3.

We estimate the model parameters via quasi-maximum likelihood. The asymp-
totic normality of the quasi-maximum likelihood estimator for a ‘rolling window’ ver-
sion of the GARCH-MIDAS-RV has been established in Wang and Ghysels (2015).
To the best of our knowledge, asymptotic results for the general GARCH-MIDAS-X
model are not yet available. However, we performed a Monte Carlo analysis that

suggests standard asymptotic inference is also valid for this specification.

1.3 DATA

In the empirical analysis, we focus on the S&P 500 and U.S. macroeconomic data
for the 1969 to 2011 period. We consider daily stock returns and combine (first
release) macroeconomic data with the corresponding SPF expectations. The survey
data are obtained from the database at the Federal Reserve Bank of Philadelphia,
while all other data are obtained from the FRED database at the Federal Reserve
Bank of St. Louis.

Since the SPF data are only available at a quarterly frequency and we intend
to employ filters that combine first release with expectations data, we consider all
variables at this frequency. That is, for data that are available at a monthly or daily
frequency, we take quarterly averages of the levels. For completeness, in Section 1.4.4
we provide estimation results based on monthly macro data and show that the choice
of frequency for the macro variables does not affect our main results.

Stock market data: We consider continuously compounded daily S&P 500 stock
return data, 7;¢, from January 2nd 1969 to December 30th 2011. Quarterly realized
volatility is calculated as RV, = Zfﬁ) .

Macroeconomic data: Data revisions can be substantial for macroeconomic
variables. Thus, employing revised instead of first release data can be misleading

when it comes to forecast evaluation (see, for example, Stark, 2010). To obtain



a realistic evaluation of the various GARCH-MIDAS-X models, we try to match
the information that is used in our econometric specification with the one that was
available to market participants. That is, for those macro variables that undergo
revisions, we employ the advance estimates as published by the Bureau of Economic
Analysis.?

We employ the following macroeconomic variables: real GDP, industrial produc-
tion, the unemployment rate, housing starts, nominal corporate profits after tax,
real personal consumption, the Chicago Fed national activity index (NAI), the new
orders index of the Institute for Supply Management, and the University of Michi-
gan consumer sentiment index. We include the NAI and the new orders index in
levels and take the first difference of the respective level for the unemployment rate
and the consumer sentiment index. For all other variables, we calculate annual-
ized quarter-over-quarter percentage changes as 100 - ((X;/X;_1)* — 1). Inflation
is measured as the annualized quarter-over-quarter percentage change in the GDP
(chain-type) deflator. Finally, to account for interest rate developments, we calcu-
late the term spread as the difference between the 10-year Treasury bond yield and
the 3-month T-bill rate.

When dealing with two-sided filters in Section 1.4.2, we also employ forecasts of

the macro variables that are based on the following AR(4) model

4 4
X = Z 0;Di + Z 0iX—i + &, (1.8)
i=1 i=1

where D;; are seasonal dummies. This regression is used in Schwert (1989) and
Engle et al. (2013) to measure the volatility of a macro variable X; by the squared
residual £2.

Summary statistics for all variables can be found in Table 1.1, while the corre-
sponding times series are plotted in Fig. 1.1. According to standard unit roots tests
all series can be considered as being stationary.

Expectations data: We employ expectations data only for those variables that
were included in the SPF dataset during our full sample period (see the last column
of Table 1.1). The survey is conducted after the release of the Bureau of Economic
Analysis’s advance report, i.e., survey participants know the first release data for the

previous quarter when they make their predictions. For each variable, we consider

3Nevertheless, our evaluation is not fully in real-time. This is because for some variables — such
as real GDP — the advance estimate of X;_; is published in quarter ¢ and therefore not included
in the information set Fy -1 ;-



the median expectation for the quarter in which the survey is conducted, denoted by

XSPF

i and forecasts up to four-quarters-ahead, denoted by X°5F k=1,..., 44

t+k[t)

1.4 EMPIRICAL RESULTS

In Section 1.4.1 we first present estimation results for various one-sided GARCH-
MIDAS specifications and then turn to two-sided models in Section 1.4.2. The
out-of-sample forecast performance of the one- and two-sided models is investigated
in Section 1.4.3. To complete our model comparisons, Section 1.4.4 provides several

extensions and robustness analyses.

1.4.1 ONE-SIDED FILTERS

For the time being, we consider one-sided filters. In Section 1.4.1, we first confirm the
counter-cyclical behavior of long-term volatility for a broad set of macro variables.
We then focus on the lead-lag-structure between the macro variables and stock
market volatility and identify variables that require flexible unrestricted filters and,
hence, lead long-term volatility. In Section 1.4.1, we analyze the question whether
macro variables still contain predictive information on long-term volatility once one

controls for lagged realized volatility.

The lead-lag-structure between macro variables and volatility

Estimation results for the parameters of the long-term volatility component of the
various one-sided GARCH-MIDAS-X models are summarized in Table 1.2. An ex-
tended version of the table containing all parameter estimates can be found in the
Appendix. For each macro variable, the first/second line presents the estimates for
the restricted /unrestricted weighting scheme. We choose K = 12 for all variables
which corresponds to three MIDAS lag years.® To ensure comparability across the
one- and two-sided models (see Section 1.4.2), as well as models based on macroeco-
nomic uncertainty measures (see Section 1.4.4), all models are estimated based on
daily return data for the 1973Q1 to 2010Q4 period and quarterly macro data from

4There are a few missing observations of the four-quarters-ahead forecasts at the beginning of

the sample. Analogously to Eq. (1.8), we estimate X/} = Yim 0D+ Yiy b XS + &
X SPF
4|t

5As long as the selected K is large enough, we find the estimation results to be robust with

respect to the specific choice of the maximum number of lags included.

using the available data and replace the missing observations by the predictions



1970Q1 onwards.® The table also reports the estimates for the GARCH-MIDAS-RV
as well as the one-component GARCH(1,1) model.

First, we note that the estimates of the GARCH parameters (i, «, 3,7) are sig-
nificant at the 1% level in all cases (see the Appendix). The estimates of a and
take the typical values and, consistent with the leverage effect, the estimate of the

parameter 7y is found to be positive.

Next, we have a closer look at the estimates of the long-run component 7;. For all
variables except the GDP deflator the estimated 6 is highly significant and has the
expected sign. For example, for real GDP, the estimated 6 is negative, meaning that
an increase in the growth rate is associated with a decline in long-term volatility.
Conversely, the positive 6 for the unemployment rate indicates that a rise in unem-
ployment is associated with higher long-term volatility. That is to say, in all cases
the sign of the scale parameter confirms the counter-cyclical property of long-run
volatility as observed in Engle and Rangel (2008) and Engle et al. (2013).

In Fig. 1.2 we plot the estimated restricted and unrestricted weighting schemes
for the different macro variables. For six out of the eleven macro variables, e.g. the
unemployment rate or the NAI, both schemes are declining from the beginning
with almost identical shapes. As one would expect, for these variables a LRT (see
Table 1.2) does not reject the constraint (w; = 1) imposed by the restricted scheme.
In sharp contrast, for housing starts, the GDP deflator, consumer sentiments, real
consumption, and the term spread the unrestricted schemes are hump-shaped and
clearly different from the restricted ones. For these variables, the restricted scheme
appears to be clearly misspecified. For example, for the term spread the unrestricted
filter takes its maximum weight at a lag of five quarters, while the restricted scheme
is characterized by an almost linear decay. Only in case of the GDP deflator, we
find an extreme and somewhat unreasonable weighting scheme, putting almost all
weight on the fifth lag. In line with these considerations, the LRT (see Table 1.2)
rejects the constraint that w; = 1 for these five variables.” Accordingly, we classify
all variables that are characterized by hump-shaped weights as leading with respect
to long-term volatility. Finally, note that the optimal weighting scheme for the
GARCH-MIDAS-RV model is the restricted one.

6The first year of macro data (1969Q1-Q4) is used to construct ex-post macro volatility mea-
sures based on the AR(4) model in Eq. (1.8).

" Although the LRT rejects the restricted weighting scheme for the GDP deflator, the estimate of
0 is only marginally significant in the unrestricted filter. That is, the GDP deflator hardly explains
any time variation in the conditional variance of the S&P 500 returns. Hence, all subsequent results
with respect to the GDP deflator should be taken with a grain of salt.



The finding that some variables are leading with respect to stock market volatility
while others are not is economically plausible. Variables such as industrial produc-
tion (the unemployment rate) are typically considered as coincident (lagging) indica-
tors for the business cycle. For these variables the most recent observations appear
to matter most for predicting the counter-cyclical long-term volatility. In contrast,
the term spread or housing starts are usually considered as leading indicators.® For
example, Estrella and Hardouvelis (1991), Estrella and Mishkin (1998) and Ang et
al. (2006), among others, provide evidence that the term spread is a powerful pre-
dictor of future economic activity and recessions. The predictive ability of the term
spread is typically explained by the term spread’s relation to investors expectations
about future economic activity, demand for credit and monetary policy (see, e.g.,
Estrella and Trubin, 2006). Similarly, Leamer (2007) and Kydland et al. (2012)
show that housing starts lead real GDP. According to Kydland et al. (2012), the
leading property of housing starts can be rationalized by the empirical observation
of low interest rates for mortgages that precede economic upturns. Our results sug-
gest that variables which lead the business cycle are also leading with respect to
financial volatility and, therefore, require unrestricted weighting schemes.

Fig. 1.3 shows the quarterly aggregated long-term component, \/W , and
the quarterly conditional volatility, /75 gX with ¢¥ = ZZ.N:(I) g7y, for all GARCH-
MIDAS-X models along with the realized volatility, /RV;. The figure clearly shows
the negative relation between y/RV; and economic activity. The long-term compo-
nents of all macro variables, except the GDP deflator, mirror this counter-cyclical
pattern of stock market volatility.” Nevertheless, there are also distinct differences.
While the long-term component of the term spread typically increases in advance
of a recession, the long-term components of other variables, e.g. real GDP, seem
to increase during recessions. Finally, the long-run volatility component of the
GARCH-MIDAS-RV model is dominated by the 1987 stock market crash and the

recent financial crisis. It hardly increases during the other recession periods.

Next, we compare the fit of the various models by means of the Bayesian informa-
tion criterion (BIC). According to the BIC, the GARCH-MIDAS-X models based

on housing starts, corporate profits, the NAI, new orders, and the term spread are

80ur classification of leading vs. coincident /lagging variables is in line with the fact that the
yield spread, housing permits, and also consumer expectations are included in the Conference
Board’s leading economic index for the US, while industrial production is included in the coincident
index.

9In line with the only weakly significant estimate of § for the GDP deflator, the corresponding
long-term component is rather flat.



preferred to the GARCH-MIDAS-RV (and to the nested GARCH specification).

From an economic point of view, it is important to know how much of the variation
in the expected quarterly variance of a specific GARCH-MIDAS-X model can be
attributed to the variation in the corresponding macro variable (see Engle et al.,
2013, p.794). In order to answer this question, we provide the value of a variance
ratio (VR) statistic for each model. In general, we let the VR be defined as the
fraction of the sample variance of the log of total quarterly conditional volatility,
Var(log(7X ¢X)), that can be explained by the sample variance of the log long-
term component, \/fz;'(log(rtx )). For easier comparison across the various GARCH-
MIDAS-X models, we report

VR<X) _ Var(log(TtX))

== , (1.9)
Var (log (7" g/*"'))

which relates the sample variance of the log of the long-term component of a specific
GARCH-MIDAS-X model to the sample variance of the log of the total expected
variance of the baseline GARCH-MIDAS-RV model with restricted filter.!'® It is
important to note that a small VR does not necessarily imply a poor model fit,
since a low \//az‘(log(TtX )) can also be an indication of smooth movements in the
underlying macro variable. However, in the extreme case, where \/fa\r(log(rtx )) ~ 0,
the long-term component is constant and the GARCH-MIDAS-X reduces to the
simple GARCH model. Since 7;¥ dominates the multi-day/period-ahead volatility
forecast (see Eq. (1.7)), it is clear that only GARCH-MIDAS-X specifications with
high VRs have the potential to outperform the simple GARCH model.

As Table 1.2 shows, the model based on housing starts (unrestricted weighting
scheme) achieves the highest VR. Roughly 22% of the variation in expected quar-
terly volatility is explained by housing starts. The specifications including new
orders and the term spread (unrestricted weighting scheme) rank second and third.
Most importantly, the models based on these variables achieve higher VRs than
the benchmark GARCH-MIDAS-RV model. Interestingly, these are also the three
models with the lowest BIC. As expected, the VR for the model based on the GDP
deflator is by far the lowest.

10 Although using @‘(log(TtRV gfV)) instead of @'(log(TtX gi¥)) in the denominator does sim-
plify the comparison across models, we verified that it does not affect the ranking of models.



Combining macro information with realized volatility

The previous results suggest that macro variables carry information about long-
term volatility that is complementary to that contained in realized volatility. To
formally investigate whether the various macroeconomic variables have additional
explanatory power over realized volatility, we modify the long-term component by

including RV; and a macro variable, X;, at the same time:

K K
log(r) = m + 0 Y or(wf,wg )RVier + 6% Y pulwit,wp ) Xepe (1.10)

k=1 k=1
We refer to this model as GARCH-MIDAS-RV-X. It nests both the GARCH-MIDAS-
RV and the GARCH-MIDAS-X model. In line with our previous findings we set
wiV' = 1, but estimate both restricted and unrestricted weighting schemes for the

macro variables.

Estimation results of the relevant parameters are presented in Table 1.3. The

scaling parameter associated with realized volatility, 67V

, is positive and significant
at the 1% level across all models. Most importantly, the parameter associated with
the macro variables, 6%, is significant for all variables (at least in one of two spec-
ifications) except for the unemployment rate and real consumption. Once again,
the LRT rejects the restricted weighting scheme for housing starts, the GDP de-
flator, the consumer sentiment index, and the term spread. That is, even if we
control for realized volatility, these variables are still leading with respect to long-
term volatility. In summary, the results in Table 1.3 clearly demonstrate that most
of the macroeconomic variables considered in our analysis expose information on
stock market risk beyond that contained in past realized volatility. The results also
reconfirm that the optimal weighting schemes differ from one macro variable to the

other.!!

1.4.2 TWO-SIDED FILTERS

Engle et al. (2013) have suggested that the performance of the GARCH-MIDAS-X
model can be further improved by employing a two-sided filter of the type:

Klag

log(r)) =m+6 > orlw,ws)Xis. (1.11)
kz*Klead

HFigures of the weighting schemes and the corresponding long-term components are shown in
the Appendix.



Two-sided filters reflect the idea that current stock market volatility depends not
only on the past, but also the future (expected) state of the macroeconomy. However,
since the future values of the macro variables are unknown in ¢ — 1, the two-sided
specification in Eq. (1.11) is infeasible in real-time. Instead, we consider a feasible
version of the two-sided filter by replacing X;_, k = —Kjeaq, - - - , 0, with forecasts
that are based on information available in ¢ — 1. We consider both time series
forecasts (TSF) that are constructed from the model given in Eq. (1.8) as well as
the median forecasts from the SPF. For example, using the SPF forecasts the feasible

two-sided filter is given by

Klag 0
log(mz) =m + 6 Z r(wr, we) Xi—i + 6 Z or(wr, wg)Xiiifl. (1.12)
k=1 k=—Kjcad

Since the maximum forecast horizon of the SPF predictions is four-quarters-ahead,
we choose Kjeqq = 3. As before, we set K, = 12. Finally, we consider a two-sided
filter that is entirely based on SPF data (feasible two-sided SPF + SPF lags) and
given by

Klag 0
log(r) =m+6 Z or (w1, wg)XtS_il‘;_k +0 Z A WQ)XtS_iI‘;_l. (1.13)
k=1 k=—Kjeaa

Overall, we compare five specifications: the one-sided filter, the infeasible two-
sided filter, the feasible two-sided TSF and SPF filters, and the entirely SPF based
filter. For those macro variables for which SPF expectations are available for the
full sample period, Table 1.4 presents the BICs as well as the VR statistics for the
five specifications.'? A comparison in terms of the BIC reveals that for all six macro
variables the preferred two-sided specification achieves a BIC that is at least as low
as the BIC of the one-sided model. While the differences between the models are
typically small in terms of BICs, they become much more pronounced when looking
at the VRs and, again, are in favor of the two-sided models. Most importantly, in
all cases one of the feasible SPF based two-sided filters outperforms the one-sided
specification.'> This result is remarkable, because it illustrates the benefits of the

feasible two-sided filters, which combine information on the current (and past) state

2Detailed estimation results can be found in the Appendix.

13In case of real GDP the entirely SPF based specification even outperforms the infeasible
one. This finding is plausible since first release data for real GDP are often substantially revised
subsequently (see, e.g, Croushore, 2011) and, hence, stock market volatility might be more closely
related to expectations data than to first release data.



of the economy with expectations about future macroeconomic conditions. The
improvements in the VRs may be rationalized by the argument that the survey ex-
pectations are closely related to expectations on future dividends and returns and,
therefore, drive long-term volatility. This interpretation supports Campbell and
Diebold’s (2009) conclusion that expectations data predict future expected returns
because they carry information about future volatility and perceived time-varying
risk. Finally, for all but one variable the TSF based specification performs worst
amongst the two-sided models. Given Stark’s (2010, p.2) finding that the SPF “pro-
jections generally outperform the benchmark projections of univariate autoregressive
time-series models”, this result is not surprising.

In order to better understand why for some variables the VRs more than double
when two- instead one-sided filters (e.g. the unemployment rate) are employed, it is
insightful to compare the estimated weighting schemes for the one-sided, infeasible
two-sided, and preferred feasible (in terms of the VR) specifications. Figure 1.4
shows that for all variables for which the VRs are greatly improved when using a
two-sided filter, the optimal one-sided filter was the restricted one. That is, for
all variables which are coincident (lagging), i.e. the recent (future) observations are
most important, switching from one- to two-sided filters leads to sizable increases
in the VRs. Clearly, for those variables the availability of the SPF expectations is
most valuable. In sharp contrast, for the leading variables housing starts and GDP
deflator the optimal one-sided filter is the unrestricted one and, hence, two-sided
filters apply very little weight to future values. Also, note that for both variables
the weights of the feasible two-sided filters are almost identical with those of the
infeasible ones. This explains why we observe much smaller differences in the VRs

of the one- and two-sided models for these two variables.

1.4.3 FORECAST EVALUATION

Next, we analyze the out-of-sample forecast performance of the various GARCH-
MIDAS-X models. We focus on the one-sided specifications from Section 1.4.1 as
well as the best (in terms of the VR statistic) feasible SPF based two-sided models
from Section 1.4.2.

As discussed in Section 1.2, forecasts of the g;; component can be obtained it-
eratively for any horizon given subsample parameter estimates. The one-quarter-
ahead forecast of the long-term component, 74;_1, is directly given by Eq. (1.4) or

(1.12/1.13). For longer horizons, we assume that the long-term component remains



at the level of the one-step prediction, i.e. we set 7y 4;—1 = Typ—1 for s > 0. Daily
volatility forecasts are calculated as the product of the GARCH and the long-term
component forecasts. The quarterly forecasts are given by the sum of the daily
forecasts over the respective quarter.

We divide the full sample into an estimation period (based on daily return data
from 1973Q1 to 1998Q4 and quarterly macroeconomic data from 1970Q1 on) and an
out-of-sample period (1999Q1 - 2010Q4). We then evaluate one- up to four-quarters-
ahead volatility forecasts over the 2000Q1 - 2010Q4 period by comparing the models’
predicted volatilities with a series of realized volatilities based on 5-minute intra-

14,15 For each model and forecast horizon we present the parameter

day returns.
estimates of a Mincer-Zarnowitz (MZ) regression as well as the corresponding R%. In
order to compare the forecast performance of a specific GARCH-MIDAS-X relative
to the benchmark GARCH-MIDAS-RV we report the ratio of the corresponding
mean square errors (MSE). A ratio below one implies an improvement upon the
benchmark model. Finally, we test for equal (unconditional) predictive ability over
the benchmark model by means of the Giacomini and White (2006) test.

Table 1.5 presents the evaluation of the quarterly volatility forecasts. At the
one-quarter-ahead horizon, the results are quite similar across different models. In
general, estimates of the constant and slope parameter in the MZ regressions are
not significantly different from zero and one. All models except the one for the term
spread yield lower MSEs than the RV model, yet not significantly so. However, with
increasing forecast horizons the differences among the model specifications become
more evident.

At the 2-; 3- and 4-quarters horizons, many GARCH-MIDAS-X models signif-
icantly outperform the benchmark model. Interestingly, for industrial production
and the unemployment rate, only the two-sided specifications do so. This finding
squares with our results in Section 1.4.2, where we found the strongest improvements
in the VRs for these two variables when using two- instead of one-sided filters. For
housing starts and corporate profits the one- and two-sided filters basically have
the same forecasting ability. Once again, this is in line with Section 1.4.2 where we
found only modest improvements in the VRs for both variables. The models based
on the NAI as well as consumer sentiment significantly outperform the RV based

model at the 2-; 3- and 4-quarters-ahead horizons, while the models based on the

HMSince the first four-quarters-ahead volatility forecast is constructed in 1999Q1 (i.e. in the first
out-of-sample period) for 2000Q1, the evaluation period begins in 2000Q1.

15The intra-day returns are available at the website of the Oxford-Man Institute of Quantitative
Finance.



term spread and new orders do so for 3- and 4-quarters-ahead only.

Why does the performance of most GARCH-MIDAS-X models relative to the RV
model improve when increasing the forecast horizon? This question can be addressed
by investigating the behavior of the daily volatility forecasts of the various models
at different horizons. Exemplary, we focus on the h = 1-, 126-, and 252-days-
ahead volatility forecasts. Although, in practical applications one would rarely be
interested in the 126- or 252-days-ahead forecasts in isolation (but rather in forecasts
of volatility over certain periods), these forecasts illustrate how the dominance of
the short- versus the long-term component varies with the forecast horizon.

We evaluate the daily forecasts for a rolling window of 500 observations (i.e. ap-
proximately two years of data) again using the Giacomini and White (2006) test.
For each macro variable, Figure 1.5 presents the evolution of the corresponding ¢-
statistics for the one- and two-sided models at the three forecast horizons. Each data
point refers to a test statistic for a sample ending at that point in time. Shaded
areas refer to samples that include observations from recession periods. Since the
out-of-sample period begins in 2000, we depict the t-statistics from 2002 onwards and
include ‘recession shadings’ until November 2003 (for the March - November 2001
recession) and from December 2007 until the end of the sample (for the December
2007 - June 2009 recession).

First, at least from mid-2004 onwards, for almost all macro variables the t-
statistics tend to increase with the forecast horizon under consideration. For exam-
ple, for the term spread the line which corresponds to A = 252 is almost permanently
above the one corresponding to h = 1. For the 1-day-ahead forecasts the Giacomini
and White (2006) test typically neither favors the GARCH-MIDAS-X nor the RV
model, i.e. the test statistic is either insignificant or significant but with varying
sign over the different sample periods. Since these forecasts are largely determined
by the short-term component (which is very similar for both specifications), this
result is not surprising. In stark contrast, for h = 252 the macro variable based
specifications often significantly outperform the RV model. Since predictions of the
gix component converge to one with an increasing forecast horizon, the long-term
component dominates the daily volatility forecast for h = 252. Hence, our finding
suggests that the long-term components of the GARCH-MIDAS-X models are bet-
ter than the long-term component of the RV model in anticipating the future level
of volatility and, thereby, confirms our interpretation of Table 1.5.

Second, Figure 1.5 illustrates the benefits of the feasible two-sided filters when

applied to coincident/lagging variables. At each forecast horizon, the lines which



represent the t-statistics for the two-sided filters are typically above the ones for the
one-sided filters, i.e. the SPF based feasible two-sided filters improve upon the purely
backward-looking one-sided filters. This effect appears to be stronger at longer
forecast horizons and, as expected, is most pronounced for industrial production,
the unemployment rate and, to some extent, real GDP. On the contrary, for the
leading variables, i.e. housing starts and the GDP deflator, the one- and two-sided
filters lead to basically the same t-statistics for a given forecast horizon.

Third, even if the focus lies on long-term forecasting (h = 126 and h = 252) the
relative forecasting performance of the GARCH-MIDAS-X models varies consider-
ably over time. The GARCH-MIDAS-X models clearly outperform the RV model
in between both recession periods. Also, with the onset of the financial crisis their
forecast performance improves relative to the one of the RV model. From mid 2008
onwards, basically all GARCH-MIDAS-X specifications significantly outperform the
RV model. The latter finding is in agreement with Paye (2012) and Dorion (2013),
who conclude that macroeconomic variables are of greater importance around re-
cessions. In contrast, at the beginning of the evaluation period and during a short
episode preceding the recent financial crisis the macro based specifications are at
best at par with the RV model.

We also evaluated the forecast performance of the GARCH-MIDAS-RV-X models
considered in Section 1.4.1. Although these models generally achieved higher VRs
(see Table 1.3) than the corresponding GARCH-MIDAS-X and GARCH-MIDAS-
RV models, their forecast performance does not significantly differ from the one of
the benchmark RV model. While this finding might be surprising at first sight, a
visual inspection of the corresponding long-term volatility components suggests a
simple explanation. During periods of high volatility such as the 1987 stock market
crash or the recent financial crisis the long-term component of the combined RV-X
specification essentially behaves like the one of the RV model. Since the long-term
components dominate the predictions of the GARCH-MIDAS model over longer
horizons, it is not surprising that we do not find significant differences in the forecast
performance of the RV-X and the RV model for our evaluation sample. For details
see the Appendix.

Finally, although the forecasting results of the GARCH-MIDAS-X model are en-
couraging in terms of statistical significance, a more direct approach might be more
informative concerning the potential economic gains from using the two component
specification. Dorion (2013) provides a first application to long-term option pricing

and finds evidence that accounting for business conditions reduces option-pricing er-



rors. Since this is beyond the scope of the current paper, we look forward to evaluate
the performance of GARCH-MIDAS-X based volatility predictions in long-term risk

management or portfolio choice settings in future work.

1.4.4 EXTENSIONS AND ROBUSTNESS

In this section we extend our previous results by including the first two principal
components of the macro variables and measures of macroeconomic uncertainty as
explanatory variables. We then take a fresh look at predictive regressions. Finally,
we provide some robustness checks with respect to the sample period and frequency
of the macro variables. All tables and figures related to this section can be found in
the online Supplementary Appendix.

Principal components: Instead of estimating a separate GARCH-MIDAS-X
model for each macro variable, we use the first two principal components of the macro
variables as explanatory variables. This approach has for instance been adopted
in Asgharian et al. (2013). The first principal component is (contemporaneously)
highly correlated with the NAI, real GDP, and new orders. For the second principal
component, we find the highest correlation with the term spread. The estimates
of the 6 coefficients are significant in all principal component based specifications.
Consistent with our previous finding that the term spread is a leading variable,
the results suggest an unrestricted weighting scheme for the second component,
but not for the first one. The forecast evaluation results confirm our conclusion
that the relative performance of the macro models over the RV model enhances
with increasing forecasting horizon. Still, we neither find in-sample (in terms of
BICs or VRs) nor out-of-sample (in terms of MSE ratios) improvements of the
principal component based models over the best one- and two-sided specifications
from Sections 1.4.1 and 1.4.2.

Ex-ante survey disagreement vs. ex-post volatility: Engle and Rangel
(2008) and Engle et al. (2013) have empirically investigated whether there is a link
between long-term volatility and the uncertainty about macroeconomic fundamen-
tals.!® Following Schwert (1989), they proxy the uncertainty associated with a macro
variable with the squared residual from the regression given by Eq. (1.8). We con-
jecture that survey based ex-ante uncertainty measures are more appropriate than

such ez-post regression based volatility proxies (see also David and Veronesi, 2013,

16For economic models that rationalize a link between stock market volatility and macroeco-
nomic uncertainty see Veronesi (1999) and Bollerslev et al. (2009), among others.



and Arnold and Vrugt, 2008). As an ex-ante measure we employ the disagreement
among the SPF forecasters as described by the interquartile range of the individual
point forecasts. To analyze whether the potential effect of disagreement varies with
the forecast horizon, we employ the disagreement concerning forecasts of the current

quarter as well as up to four-quarters-ahead.

We estimate the GARCH-MIDAS-X models including both types of uncertainty
measures. While 6 is insignificant in all specifications based on the ex-post volatil-
ity measure, it is significant for various specifications based on the ex-ante survey
disagreement. In particular, we find significant effects regarding the future devel-
opment of the unemployment rate. As one would expect, the estimated coefficients
suggest that higher dispersion in expectations increases stock market volatility.!”
For all variables, the BIC favors one of the disagreement based specifications. Our
results suggest that ez-ante uncertainty measures are more informative of long-term
risks than ex-post measures of volatility. Nevertheless, the VRs of the disagreement
based specifications are generally lower than the ones for the variables in levels.

Predictive regressions: Our findings can be viewed as being complementary to
recent research on the determinants of the secular component of financial volatility
such as Christiansen et al. (2012) and Paye (2012). For example, Christiansen et

al. (2012) focus on predictive regressions of the type

log(n/RV;) = ¢+ plog(n/RV;_1) + 0X; 1 + ¢, (1.14)

and find that — controlling for log(y/RV;_;) — financial variables appear to be more
important predictors of volatility than macroeconomic variables.

The parameter estimates of Eq. (1.14) for the different macro variables in our
dataset imply that none of the variables has explanatory power for realized volatility.
Similarly, the R2s of the models that are augmented with macro variables are only
marginally higher than the R? of the AR(1) benchmark model. Next, we estimate
a version of Eq. (1.14) in which X;_; is replaced by log(y/N®7#X), i.e. by the (log
of the scaled) estimated long-term component of the respective GARCH-MIDAS-
X model. We find that most long-term components have significant explanatory
power for log realized volatility, some even at the 1% level. In addition, we now
observe sizable increases in the R%s compared to the pure AR(1) model. The largest

increase is found for the term spread. Thus, by including 77X — which parsimoniously

I"The only exception is corporate profits for which we obtain a counterintuitive negative sign
in some specifications.



summarizes the information about the lead-lag-structure between a specific macro
variable and financial volatility — we find more promising evidence for the relevance
of the macro variables than from the original predictive regressions.

1973Q1 - 2007Q2 subsample: A potential objection against our findings might
be that some of them could be driven by the recent financial crisis. Reestimating
all models for a sample that ends in 2007Q2 provides convincing evidence that this
is not the case. First, the estimated 6 coefficients keep their sign and significance,
i.e. the evidence in favor of the counter-cyclical behavior of long-term volatility is
reconfirmed. Second, housing starts, the GDP deflator, consumer sentiment, real
consumption, and the term spread are again identified as leading variables. Also,
the combination of the macro variables with realized volatility does not alter our
conclusions.

Monthly data: As mentioned in Section 1.3, some of our macro variables are
available at the monthly frequency. Over the full sample period, these variables are
industrial production, the unemployment rate, housing starts, the NAI, new orders,
and the term spread. In order to analyze the robustness of our results with respect
to the frequency of the macro variables, we estimate the GARCH-MIDAS-X and
GARCH-MIDAS-RV-X models based on monthly data. The estimation results are
again in line with our previous findings in Section 1.4.1. In particular, for all six
variables the shape of the weighting scheme is robust with respect to the choice of

the frequency.

1.5 CONCLUSION

This paper revisits the link between long-term financial volatility and the macroe-
conomic environment using the GARCH-MIDAS component model. In general, our
results strongly confirm that long-term financial volatility behaves counter-cyclically.
Our particular focus is on the lead-lag-structure between the macro variables and
long-term volatility. First, we identify leading variables such as the term spread and
housing starts for which the optimal one-sided filters are unrestricted ones. Second,
for real GDP, industrial production, and the unemployment rate the most timely
information is highly valuable and SPF based feasible two-sided filters considerably
improve upon their one-sided counterparts. Hence, our findings highlight the po-
tential role of expectations data in the modeling of stock market volatility. The
empirical evidence suggests that long-term volatility is mainly driven by informa-

tion related to the current state of the economy as well as to expectations regarding



future macroeconomic conditions. In addition, we find convincing in- as well as out-
of-sample evidence that macro variables contain information that is complementary

to that included in lagged realized volatilities.



1.6 TABLES AND FIGURES

1.6.1 TABLES

TABLE 1.1: DESCRIPTIVE STATISTICS FOR STOCK MARKET AND MACRO DATA

Variable Obs Min Max Mean SD Skew. Kurt. AC(1) SPF
Stock market data

S&P 500 daily returns 10852  -22.90 10.96 0.02 1.09 -1.02  28.61 0.01

S&P 500 quarterly RV 172 11.61 1143.40 74.75  121.92 6.40 51.11 0.38
Macro data

A real GDP 172 -10.37 11.16 2.44 3.20 -0.97 5.82 0.49 v
A Ind. prod. 172 -29.03 21.16 2.15 6.66 -1.06 6.59 0.54 v
A Unemp. 172 -0.97 1.77 0.03 0.38 1.32 6.62 0.50 v
A Housing 172 -69.03  236.05 5.89 43.69 1.79 10.11 0.12 v
A Corp. prof. 172 -70.81  180.27  12.33  29.69 1.51 10.05 0.13 v
A GDP deflator 172 -0.33 13.69 3.73 2.64 1.21 4.21 0.83 v
NAI 172 -3.41 1.92 -0.02 0.89 -1.41 6.24 0.73 X
New orders 172 27.27 71.90 54.74 7.75 -0.75 4.03 0.74 X
A Cons. sent. 172 -14.70 16.27 -0.16 5.37 0.11 3.61 -0.08 X
A real cons. 172 -11.93 10.19 2.95 2.97 -1.25 7.43 0.08 X
Term spread 172 -1.43 3.80 1.66 1.29 -0.42 2.29 0.88 X

Notes: The dataset covers the sample from 1969Q1 to 2011Q4. The reported statistics include the
number of observations (Obs), the minimum (Min) and maximum (Max), the mean, standard deviation
(SD), Skewness (Skew.), Kurtosis (Kurt.), and the first order autocorrelation coefficient (AC(1)). The
last column (SPF) shows whether the respective variable is available in the SPF dataset over the full
sample period. In case of the unemployment rate and the consumer sentiment index A refers to the
first difference of the respective levels.
quarter percentage changes as in AX; = 100 - ((X¢/X¢—1)* — 1). The term spread is calculated as the
difference between the 10-year Treasury bond yield and the 3-month T-bill rate. All macroeconomic
variables included in the SPF dataset are obtained from the Federal Reserve Bank of Philadelphia. The

remaining macro and stock market data are obtained from the Federal Reserve Bank of St. Louis.

For all other variables, A refers to annualized quarter-over-




TABLE 1.2: ONE-SIDED GARCH-MIDAS-X SPECIFICATIONS

Variable m 0 w1 wo LLF BIC VR(X)
A real GDP 0.1884 —0.0803%*% 1 4.6508* % —12789.02 2.6733 6.55
(0.1562) (0.0251) (1.1950)
0.1921 —0.0823*** 1.4895 5.8531* —12788.93 2.6742 6.90
(0.1558) (0.0263) (1.5532) (3.0656) [0.6641]
A Ind. prod. 0.0769 —0.04347F% 1 4.5453%7% —12788.47 2.6732 7.57
(0.1375) (0.0133) (1.2437)
0.0767 —0.0438*** 1.6441 6.3975** —12788.25  2.6741 8.02
(0.1370) (0.0129) (1.3154) (3.2453) [0.5064]
A Unemp. —0.0317 0.5689* % 1 6.4943% % —12789.96 2.6735 6.02
(0.1365) (0.1865) (2.1923)
—0.0320 0.5751*** 1.7441 9.4221* —12789.82 2.6744 6.30
(0.1369) (0.1890) (1.3159) (5.1010) [0.5991]
A Housing 0.0736 —0.01597*% 1 1.8226* —12782.79 2.6720 14.39
(0.1383) (0.0049) (0.2867)
0.0651 —0.0173*** 2.8071** 4.8430* —12777.06 2.6718 21.85
(0.1359) (0.0047) (1.4305) (2.4845) [0.0007]
A Corp. prof. 0.2249 —0.0187" % 1 2.5114%F —12783.30 2.6721 12.69
(0.1550) (0.0053) (1.0048)
0.2284 —0.0191*** 1.1783** 2.8187** —12783.20 2.6730 13.24
(0.1538) (0.0057) (0.4851) (1.3902) [0.6469]
A GDP deflator —0.1017 0.0269 1 3.57027 % —12795.21 2.6746 0.99
(0.1887) (0.0259) (0.9506)
—0.1385 0.0357* 114.1107*** 197.1066*** —12793.47  2.6752 2.10
(0.1751) (0.0194) (9.3931) (4.5289) [0.0618]
NAI —0.0305 —0.3085" % 1 7.7696" —12783.99 2.6722 12.84
(0.1315) (0.0728) (3.0232)
—0.0305 —0.3081*** 1.1506 8.4179** —12783.98 2.6732 12.86
(0.1315) (0.0723) (1.0892) (3.9454) [0.8890]
New orders 2.6787 " * —0.0496° % 1 4.2905%F% —12776.96 2.6708 17.85
(0.5637) (0.0101) (1.5680)
2.6904* ** —0.0498*** 0.9392 4.1023*** —12776.96 2.6717 17.85
(0.5563) (0.0099) (0.6626) (1.5572) [0.9776]
A Cons. sent. —0.0175 —0.11417°% 1 1.7135%% —12789.08 2.6733 6.55
(0.1361) (0.0368) (0.2502)
—0.0193 —0.1335*** 2.4732*** 4.0434** —12783.04 2.6730 12.63
(0.1382) (0.0338) (0.6649) (1.6654) [0.0005]
A real cons. 0.2952 —0.0992%% 1 3.65827 % —12791.11 2.6737 5.04
(0.2041) (0.0422) (1.1263)
0.3406* —0.1161*** 2.6571 8.5625* —12789.50 2.6743 7.70
(0.1998) (0.0413) (1.9264) (4.8275) [0.0731]
Term spread 0.41557 % —0.27237% 1 1.6276° "~ —12779.46 2.6713 14.32
(0.1482) (0.0554) (0.5485)
0.3658*** —0.2443*** 4.2018* 6.2756** —12777.47 2.6718 15.94
(0.1388) (0.0458) (2.4167) (3.0765) [0.0463]
RV —0.2761% 0.0033***F 1 3.7869 —12785.29 2.6725 12.96
(0.1203) (0.0009) (6.7929)
—0.2956** 0.0036*** 0.5746 2.3646 —12784.90 2.6734 13.74
(0.1167) (0.0010) (0.6140) (2.3155) [0.3800]
GARCH(1,1) 0.0049 _ . _ —12796.04  2.6728 B
(0.1553)

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-X models including
3 MIDAS lag years of a quarterly macro variable X, i.e, the long-run component is specified as

K

log(t) =m+0- > r(wi,wa)X;,
k=1

with K = 12. All estimations are based on daily return data from 1973Q1 to 2010Q4 and in-
clude quarterly macroeconomic data from 1970Q1 on. The numbers in parentheses are Bollerslev-
Wooldridge robust standard errors. ***, ** * indicate significance at the 1%, 5%, and 10% level.
We estimate each model with a restricted (w1 = 1) and an unrestricted weighting scheme. LLF is
the value of the maximized log-likelihood function. The numbers in brackets are p-values from a
likelihood ratio test 2(Ly gr — Lg), where Ly g and Ly refer to the likelihood of the GARCH-MIDAS-
X models with unrestricted and restricted weights, respectively. BIC is the Bayesian information
criterion and VR(X) denotes the variance ratio statistic, see Eq. (1.9). An extended version of the
table containing all parameter estimates can be found in the Appendix.




TABLE 1.3: ONE-SIDED GARCH-MIDAS-RV-X SPECIFICATIONS

Variable m [ wlV 9% wik wx LLF BIC VR(X)
RV + A real GDP —0.1238 0.0030* 2.9016 —0.0550%* 1 6800* —12780.01 2.6733 16.17
(0.1393) (0.0013) (5.5773) (0.0255) (3 9329)
0.0267*** 0.0031** 2.8773 —0.0515 0.1952 4.5847 —12779.90 2.6743 16.20
(0.0086) (0.0013) (4.5726) (0.0341) (2.9720) (4.4324) [0.6365]
RV + A Ind. prod. —0.1706 0.00257 % 6.3608 —0.0293%% 1 5.5697 * —12779.90 2.6733 19.60
(0.1261) (0.0008) (7.1541) (0.0144) (2 3289)
—0.1661 0.0025*** 6.7958 —0.0302** 1.5168 7.0924 —12779.84 2.6742 19.95
(0.1251) (0.0008) (6.6331) (0.0149) (1.9851) (4.4797) [0.7188]
RV 4+ A Unemp. —0.2415*% 0.0025%*% 6.1959 0.3403 1 8.5731 —12782.21 2.6738 17.43
(0.1101) (0.0008) (6.4287) (0.2195) (5.8779)
—0.2409** 0.0025*** 6.2585 0.3433 1.2331 9.5429* —12782.21 2.6747 17.47
(0.1116) (0.0009) (6.8029) (0.2498) (2.2599) (5.6405) [0.9642]
RV + A Housing —0.1379 0.00217 % 7.4497% —0.0115%% 1 2.00377 % —12776.34 2.6726 23.50
(0.1270) (0.0008) (4.4271) (0.0049) (0.4000)
—0.1144 0.0018** 9.1967** —0.0130*** 2.9770 5.4547 —12772.31 2.6727 27.34
(0.1214) (0.0008) (4.0207) (0.0049) (1.8858) (3.5738) [0.0045]
RV 4+ A Corp. prof. —0.1497 0.0050* "% 2.7708% —0.0228F % 1 2.61697 ¢ —12758.03 2.6687 37.01
(0.1068) (0.0011) (1.4246) (0.0047) (0.5637)
—0.1522 0.0050*** 2.6809** —0.0230*** 1.3462*** 3.3148*** —12757.38 2.6696 37.55
(0.1075) (0 0011) (1.3553) (0.0048) (0.3607) (1 0789) [0.2559]
RV + A GDP def. —0.4420%% 0.0036* %% 3.3946 0.0367 1 3.9340F %% —12782.97 2.6739 13.88
(0.1749) (0 0011) (5.3203) (0.0233) (1.1784)
—0.4490** 0.0035*** 3.4273 0.0388* 125.6962*** 226.7650*** —12781.53 2.6746 14.24
(0.1793) (0.0012) (6.7086) (0.0226) (8.9971) (9.6880) [0.0893]
RV 4+ NAI —0.2224% 0.0023*% 6.5075 —0.2006*% 1 12.5022 —12777.44 2.6728 22.16
(0.1145) (0.0009) (7.5933) (0.0846) (10.0116)
—0.2236* 0.0023** 6.4544 —0.2008** 0.1002 7.7109* —12777.40 2.6737 22.20
(0.1184) (0.0010) (8.0210) (0.0950) (2.6180) (3.9621) [0.7785]
RV + New orders 1.8224*% 0.0028% 2.5878 —0.0381" % 1 5.8904% —12768.49 2.6709 25.34
(0.6193) (0 0011) (3.0411) (0.0112) (3.3223)
1.8749*** 0.0028** 2.6587 —0.0391*** 0.5671 4.1934* —12768.39 2.6719 25.62
(0.6035) (0.0011) (3.2878) (0.0109) (0.7733) (2.1694) [0.6496]
RV + A Cons. sent. —0.2842%% 0.0032% % 3.0341 —0.0918% % 1 2.2077° % —12778.05 2.6729 19.90
(0.1233) (0 0012) (4.6700) (0.0316) (0.5215)
—0.3047** 0.0035*** 2.1847 —0.1010*** 3.0780*** 7.6379* —12772.21 2.6727 24.15
(0.1332) (0.0012) (1.4167) (0.0320) (0 7868) (4.0328) [0.0006]
RV + A real cons. —0.1012 0.0030% 3.0498 —0.0497 1 5.7145% —12783.22 2.6740 13.86
(0.1637) (0.0011) (5.4317) (0.0343) (2.3934)
—0.0586 0.0028*** 2.9261 —0.0611 2.6300 11.7666* —12782.73 2.6748 14.35
(0.1898) (0.0010) (5.4733) (0.0462) (2.1412) (6.2251) [0.3240]
RV + Term spread 0.0663 0.00407 % 3.1613 —0.26257°F 1 2.23727 7% —12760.40  2.6692 30.91
(0.1185) (0.0017) (4.7966) (0.0585) (0.8248)
0.0207 0.0041*** 2.8889 —0.2425*** 5.1551** 9.8622** —12757.05 2.6695 33.02
(0.1098) (0 0013) (2.8781) (0.0481) (2.2550) (4.0127) [0.0096]
RV —0.2761%F 0.0033*** 3.7869 - - - —12785.29  2.6725 12.96
(0.1203) (0 0009) (6.7929)

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-RV-X models including 3 MIDAS lag years of
quarterly realized volatility and a macro variable X. We include a restricted weighting scheme for the RV variable and both
restricted and unrestricted weights for the macro variable, i.e, the long-run component is specified as

K K
log(re) =m+ 6% > " 0p(L,wfV )RV, + 652> pp(wit,ws) Xek,
k=1 k=1

with K = 12. Otherwise, see notes of Table 1.2.




TABLE 1.4: ONE- AND TWO-SIDED GARCH-MIDAS-X SPECIFICATIONS

Variable Specification BIC VR(X)
A real GDP 1-sided 2.6733 6.55
2-sided: infeasible 2.6733 12.88
2-sided: feasible TSF 2.6739 7.93
2-sided: feasible SPF (*) 2.6736 9.76
2-sided: feasible SPF + SPF lags (*) 2.6724 14.08
A Ind. prod. 1-sided 2.6732 7.57
2-sided: infeasible 2.6725 18.19
2-sided: feasible TSF 2.6738 9.45
2-sided: feasible SPF 2.6726 15.26
2-sided: feasible SPF + SPF lags 2.6730 12.10
A Unemp. 1-sided 2.6735 6.02
2-sided: infeasible 2.6725 20.18
2-sided: feasible TSF 2.6744 6.39
2-sided: feasible SPF 2.6725 15.62
2-sided: feasible SPF + SPF lags 2.6728 12.71
A Housing 1-sided (ur) 2.6718 21.85
2-sided: infeasible 2.6718 22.15
2-sided: feasible TSF 2.6717 22.30
2-sided: feasible SPF 2.6717 22.81
2-sided: feasible SPF + SPF lags 2.6731 10.93
A Corp. prof. 1-sided 2.6721 12.69
2-sided: infeasible 2.6727 16.23
2-sided: feasible TSF (*) 2.6733 12.50
2-sided: feasible SPF 2.6727 15.46
2-sided: feasible SPF + SPF lags 2.6721 15.96
A GDP deflator 1-sided (ur) 2.6752 2.10
2-sided: infeasible 2.6752 2.08
2-sided: feasible TSF 2.6752 1.96
2-sided: feasible SPF 2.6752 2.11
2-sided: feasible SPF + SPF lags 2.6753 2.10

Notes: The table gives an overview over estimation results for the one- and
two-sided GARCH-MIDAS-X specifications,

Kiag
log(re) =m+0 Y ¢p(wi,we)Xi g,
k=1
Klag 0
log(r) =m+0 > gr(wi,w2)Xek+0 > or(wi,wo)Xs g,
k=1 k=—Kiecad

with Kjqg = 12 and Kjeqq = 3. All estimations are based on daily return
data from 1973Q1 to 2010Q4 and include quarterly macro data from 1970Q1
on. We include a restricted weighting scheme (wi = 1) in the one-sided
filter for all variables except for housing starts and the GDP deflator. The
infeasible two-sided filter includes leads of the realized macro variable, i.e.
Xi_ 1 = Xi_p, whereas feasible filters are based on time series (TSF) or
survey forecasts (SPF), i.e. Xeip = X?—Sklrt—l XtS—Pkﬁ—
we consider a specification which is entirely based on SPF data, see Eq. (1.13).
For all specifications we report the BIC and the variance ratio, see Eq. (1.9).
Detailed estimation results can be found in the Appendix.

(*) Due to convergence problems for Kjeqq = 3, we choose Kjeqq = 2 for
these specifications.

or Xo_p = ;- Finally
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1.6.2 FIGURES

FIGURE 1.1: QUARTERLY MACROECONOMIC DATA AND REALIZED VOLATILITY
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Notes: Quarterly macroeconomic data and realized volatility for the 1969Q1 to 2011Q4 period.
We plot quarterly realized volatility +/RV; in annualized terms. Shaded areas represent NBER
recession periods. Otherwise, see Table 1.1 for definition and descriptive statistics of the variables.



FIGURE 1.2: WEIGHTING SCHEMES FOR THE ONE-SIDED GARCH-MIDAS-X MODELS
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Notes: The figures show the restricted (solid black line) and unrestricted weighting (dashed grey
line) schemes, see Section 1.4.1 and Table 1.2.



FIGURE 1.3: VOLATILITY COMPONENTS FOR THE ONE-SIDED GARCH-MIDAS-X MODELS
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Notes: The figures show quarterly aggregated conditional volatilities 1/7;X g;* (dashed grey line)
and long-run volatility components y/N () 7% (solid black line) from all one-sided GARCH-MIDAS-
X models (1970Q1 - 2010Q4). Circles correspond to quarterly realized volatility v/RV;. For leading
variables, the long-term component is based on the unrestricted weighting scheme (ur), see Section
1.4.1 and Table 1.2. Shaded areas represent NBER recession periods. Annualized scale.



FIGURE 1.4: COMPARISON OF WEIGHTING SCHEMES
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Notes: The figure shows the weighting schemes for each one-sided (solid light grey line), infeasible
two-sided (dashed dark grey line) and feasible two-sided with the highest variance ratio (dashed
black line) GARCH-MIDAS-X specification, see Section 1.4.2 and Table 1.4.



FIGURE 1.5:

real GDP

OUT-OF-SAMPLE FORECASTING EVALUATION
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Notes: For each GARCH-MIDAS-X model we present the evolution over the out-of-sample pe-
riod of the t-statistic of a Giacomini-White-Test with the GARCH-MIDAS-RV model being the
We evaluate daily volatility forecasts over three different horizons, namely
for h = 1,126,252, corresponding to one-day-ahead, two-quarters-ahead, and four-quarters-ahead
forecasts. For each horizon we calculate the respective t-statistic over a rolling window with fixed
sample size of 500 days, corresponding to two years of data. Each point of the lines refers to a
t-statistic for a sample period ending at that point in time. Thus, the first observations refer to
the 2000-2002 sample, whereas the last observations correspond to the 2008-2010 sample. Shaded
areas refer to samples that include observations from recession periods. The vertical dashed lines

benchmark model.

h=1 —n=126 ——n=252

mark the beginning and end of the 2007-2009 recession.
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1.7 APPENDIX

This Appendix presents full estimation results for the one- and two-sided GARCH-
MIDAS-X specifications in Sections 1.4.1 and 1.4.2 (Tables A.1 and A.2), a com-
parison of the weighting schemes and the long-term volatility components for the
GARCH-MIDAS-RV, the GARCH-MIDAS-X, and the combined GARCH-MIDAS-
RV-X models from Section 1.4.1 (Figures B.1 and B.2), the forecast evaluation of
the GARCH-MIDAS-RV-X models in Section 1.4.3 (Table A.3), as well as all results
from Section 1.4.4 (Tables A.4 - A.11 and Figure B.3).
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TABLE A.2: ONE- AND TWO-SIDED GARCH-MIDAS-X SPECIFICATIONS

Variable Kiag Kioad m 7] w1 w2 LLF BIC VR(X)

A real GDP 12 - 0.1884 —0.0803* %% 1 1.6508° % —12789.02  2.6733 6.55
(0.1562) (0.0251) (1.1950)

A real GDP 12 3 0.3088* —0.1327*** 8.1523*** 4.2075*** —12784.50  2.6733 12.88
(0.1598) (0.0336) (2.3815) (1.1460)

A real GDP 12 3(T'SF) 0.2454 —0.1044*** 8.5411*** 4.7078* —12787.47  2.6739 7.93
(0.1620) (0.0289) (2.8274) (2.7246)

A real GDP (*) 12 2(SPF)  ( 3684* —0.1475*** 5.6720*** 2.1630** —12785.73  2.6736 9.76
(0.1973) (0.0443) (1.6418) (0.9840)

A real GDP (*) 12(SPF)  o(SPF)  g3714**  _0.1658*** 9.3371** 3.8444** —12780.21  2.6724 14.08
(0.1749) (0.0389) (4.3608) (1.7972)

A Ind. prod. 12 - 0.0769 —0.0434%%* 1 1.5453° % —12788.47  2.6732 757
(0.1375) (0.0133) (1.2437)

A Ind. prod. 12 3 0.1522 —0.0825*** 7.6085* ** 3.9072*** —12780.76  2.6725 18.19
(0.1288) (0.0188) (2.2601) (0.9991)

A Ind. prod. 12 3(T'SF) 0.0975 —0.0544*** 10.7031*** 6.2838** —12786.64  2.6738 9.45
(0.1372) (0.0144) (3.4036) (2 6072)

A Ind. prod. 12 3(SPF)  ¢4512* —0.1578*** 3.6772*** 1.3264 —12781.27  2.6726 15.26
(0 2676) (0.0611) (1.3667) (0.8758)

A Ind. prod. 12(SPF)  3(SPF) 0.3950 —0.1418* 4.2192 1.8766 —12783.03  2.6730 12.10
(0.3425) (0.0811) (3.5359) (2.2438)

A Unemp. 12 - —0.0317 0.5689° % 1 6.4943%* —12789.96  2.6735 6.02
(0.1365) (0.1865) (2.1923)

A Unemp. 12 3 —0.0596 1.2381*** 9.7239** 3.6440** —12780.53  2.6725  20.18
(0.1242) (0.2763) (4.3270) (1.4595)

A Unemp. 12 3(TSF)  _0.0356 0.6837*** 13.5712*** 6.8646** —12789.68  2.6744 6.39
(0.1363) (0.1999) (4.7068) (3.4311)

A Unemp. 12 3(SPF)  _0.0132 2.7466*** 4.3472*** 1.1997** —12780.62  2.6725 15.62
(0.1298) (0.7783) (1.3590) (0.5743)

A Unemp. 12(SPF)  3(SPF)  _0 0629 2.3487*** 4.8550*** 1.5961% —12782.30  2.6728 12.71
(0.1358) (0 7288) (1.8725) (0.8928)

A Housing 12 - 0.0651 —0.0173* %% 28071 % 1.8430% ~12777.06  2.6718 _ 21.85
(0.1359) (0.0047) (1.4305) (2.4845)

A Housing 12 3 0.0648 —0.0175*** 7.2945* ** 7.4350*** —12777.19  2.6718  22.15
(0.1344) (0.0046) (2.6925) (2.8725)

A Housing 12 3(T'SF) 0.0659 —0.0177*** 7.1303** 7.1905** —12776.97  2.6717  22.30
(0.1349) (0.0046) (3.1926) (3.3751)

A Housing 12 3(SPF) 0.0693 —0.0184*** 6.8567* 6.8895* —12776.81  2.6717  22.82
(0.1367) (0.0055) (3 5110) (3.6895)

A Housing 12(SPF)  3(SPF)  _1033  —0.0210*** 3.6753 5.2542 —12783.73  2.6731 10.93
(0.1294) (0.0065) (2.9977) (3.4620)

A Corp. prof. 12 - 0.2249 ~0.0187 %% 1 25114%% —12783.30 _ 2.6721 12.69
(0.1550) (0.0053) (1 0048)

A Corp. prof. 12 3 0.2849* —0.0237*** 4.4428 3.4230* —12781.71  2.6727  16.23
(0 1552) (0.0062) (3.5278) (1. 7327)

A Corp. prof. (*) 12 2(T'SF) 0.2595 —0.0217*** 3.7175* 2.6406* * —12784.31  2.6733 12.50
(0.1622) (0.0059) (2 0642) (1.2702)

A Corp. prof. 12 3(SPF)  (.3130* —0.0289*** 3.4713* 2.3592** —12781.60  2.6727  15.46
(0 1660) (0.0076) (1.9386) (0.9464)

A Corp. prof. 12(SPF)  3(SPF) 0.2318 —0.0440*** 6.2270** 3.7382** —12778.57  2.6721 15.96
(0.1581) (0.0120) (2.5411) (1.5118)

A GDP deflator 12 - —0.1385 0.0357% 114.1107° %% 197.1066***  —12793.47  2.6752 2.10
(0.1751) (0.0194) (9.3931) (4.5289)

A GDP deflator 12 3 —0.1394 0.0358* 185.7127***  202.5811***  —12793.48  2.6752 2.08
(0.1754) (0.0192) (4.8179) (4.3104)

A GDP deflator 12 3(TSF) —0.1318 0.0341* 344.4171***  403.7092***  —12793.48  2.6752 1.96
(0.1746) (0.0184) (2.5678) (1.7643)

A GDP deflator 12 3(SPF)  _0.1390 0.0358* 218.7094***  236.9913***  _12793.47  2.6752 2.11
(0.1753) (0.0193) (6.6379) (6.5734)

A GDP deflator 12(SPF)  3(SPF)  _( 1642 0.0408 399.3586***  388.1800***  —12794.12  2.6753 2.10
(0.1838) (0.0255) (3.9616) (3.8229)

GARCH(1,1) - - 0.0049 - - - —12796.04  2.6728 »
(0.1553)

Notes: The table compares estimation results for the one- and two-sided GARCH-MIDAS-X specifications,

Kiag
log(re) =m+60 > prlwi,w2)Xi g,
k=1
Kiag 0
log(re) =m+60 > grlwi,w)Xek+0 Y prlwi,w2) Xk,
k=1 k=—Kicad

with Kjqg = 12 and Kjeqq = 3. All estimations are based on daily return data from 1973Q1 to 2010Q4 and quarterly
macroeconomic data from 1970Q1 on. We include a restricted weighting scheme (w1 = 1) in the one-sided filter for all
variables except for housing starts and the GDP deflator. The infeasible two-sided filter includes leads of the realized
macro variable, i.e. X;_r = X;_j, whereas feasible filters are based on time series (TSF) or survey forecasts (SPF),
ie. Xi_p = XtT hji_1 OF Xy = Xfiﬁ‘; Finally, we consider a specification which is entirely based on SPF data,
see Eq. (1.13). O‘che}rWlse7 see the notes of Table Al

(*) Due to convergence problems for Kj.q,q = 3, we choose Kj.qoq = 2 for these specifications.
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TABLE A.7: ONE-SIDED GARCH-MIDAS-X SPECIFICATIONS - INCLUDING UNCERTAINTY MEA-
SURES

Variable m 0 w2 LLF BIC VR(X)
A real GDP - vola —0.0738 0.0362 4.5674*F —12795.58 2.6747 0.42
(0.1961) (0.0494) (1.8726)

A real GDP - disp(t) —0.1399 0.0967 5.7121*** —12794.88  2.6745 1.04
(0.1827) (0.0733) (1.6940)

A real GDP - disp(t+1) —0.2502 0.1654** 12.7999 —12791.49  2.6738 3.36
(0.1701) (0.0654) (9.1566)

A real GDP - disp(t+2) —0.3228* 0.2166*** 7.3951** —12788.69  2.6732 5.36
(0.1733) (0.0677) (3.0943)

A real GDP - disp(t+3) —0.2629 0.1860** 7.6622* —12791.45 2.6738 3.40
(0.1854) (0.0771) (4.4139)

A real GDP - disp(t+4) —0.1485 0.1034 3.1003*** —12794.67  2.6745 1.21
(0.1923) (0.0794) (0.9693)

A Ind. prod. - vola —0.0093 0.0036 84.8578%FF —12795.93  2.6747 0.05
(0.1569) (0.0095) (0.0863)

A Ind. prod. - disp(t) —0.1023 0.0303 93.2056*** —12794.37  2.6744 0.77
(0.1830) (0.0273) (0.0401)

A Ind. prod. - disp(t+1) —0.2087 0.0679** 24.4823*** —12791.30  2.6738 2.89
(0.1567) (0.0271) (8.7081)

A Ind. prod. - disp(t+2) —0.1649 0.0557 28.3161*** —12791.72 2.6739 2.62
(0.1757) (0.0361) (9.1895)

A Ind. prod. - disp(t+3) —0.1998 0.0700* 3.8946*** —12793.32 2.6742 2.12
(0.1887) (0.0393) (1.1607)

A Ind. prod. - disp(t+4) —0.3326 0.1194* 3.3750** —12790.27  2.6736 4.51
(0.2305) (0.0663) (1.3762)

Unemp. - vola —0.0152 0.0837 96.8312*% % —12795.85 2.6747 0.08
(0.1642) (0.1781) (0.1480)

Unemp. - disp(t) —0.1347 0.8437 7.2600** —12794.79  2.6745 0.98
(0.1863) (0.6182) (3.3421)

Unemp. - disp(t+1) —0.4200* 1.6465** 6.5758*** —12790.10 2.6735 4.46
(0.2357) (0.7093) (1.9051)

Unemp. - disp(t+2) —0.4969** 1.3964*** 4.7422*** —12788.99  2.6733 5.74
(0.2085) (0.4236) (1.0817)

Unemp. - disp(t+3) —0.5178*** 1.1970*** 7.8313* —12783.92 2.6722 7.66
(0.1934) (0.2764) (4.5198)

Unemp. - disp(t+4) —0.4967*** 0.9941*** 6.3622*** —12785.04  2.6725 7.02
(0.1837) (0.2264) (2.4066)

A Housing - vola 0.1560 —0.0051 1.0770 —12795.17  2.6746 1.11
(0.2642) (0.0067) (0.9358)

A Housing - disp(t) —0.0398 0.0020 8.1061** —12795.96  2.6747 0.8
(0.2105) (0.0065) (3.9674)

A Housing - disp(t+1) —0.1768 0.0083 8.7074 —12793.60  2.6742 2.80
(0.1910) (0.0051) (7.8799)

A Housing - disp(t+2) —0.2482* 0.0124*** 138.7290*** —12787.84  2.6730 6.22
(0.1499) (0.0036) (1.3050)

A Housing - disp(t+3) —0.2673 0.0144*** 8.2040** —12790.53  2.6736 5.31
(0.1695) (0.0051) (3.6190)

A Housing - disp(t+4) —0.1581 0.0096 9.6938 —12794.35 2.6744 1.69
(0.1984) (0.0077) (8.7115)

A Corp. prof. - vola 0.0375 —0.0016 117.7321°F% —12795.28 2.6746 0.30
(0.1642) (0.0015) (0.0776)

A Corp. prof. - disp(t) 0.6851** —0.0437** 1.0528*** —12788.08  2.6731 8.21
(0.3137) (0.0180) (0.3920)

A Corp. prof. - disp(t+1) —0.2247 0.0167 7.2212** —12794.60  2.6745 1.41
(0.2479) (0.0152) (3.0518)

A Corp. prof. - disp(t+2) —0.0040 0.0007 12.0173* —12796.02 2.6748 0.01
(0.1639) (0.0037) (6.9746)

A Corp. prof. - disp(t+3) 0.0264 —0.0018 82.5353*** —12795.81 2.6747 0.09
(0.1592) (0.0028) (0.0420)

A Corp. prof. - disp(t+4) —0.4596 0.0422* 3.6093*** —12792.20  2.6740 3.94
(0.2935) (0.0238) (1.3483)

A GDP deflator - vola —0.0705 0.0739 4.4783%F —12795.60  2.6747 0.49
(0.1728) (0.0952) (2.2468)

A GDP deflator - disp(t) —0.1677 0.1605 109.9414*** —12793.95 2.6743 1.27
(0.1765) (0.1024) (0.1224)

A GDP deflator - disp(t+1) —0.1909 0.2033 6.0606** —12795.05 2.6745 1.13
(0.2614) (0.2039) (2.6030)

A GDP deflator - disp(t+2) —0.3210 0.3259* 3.7749** —12793.13 2.6741 3.36
(0.2409) (0.1850) (1.7386)

A GDP deflator - disp(t+3) —0.0217 0.0273 59.1361*** —12795.99  2.6747 0.03
(0.1959) (0.1298) (0.0653)

A GDP deflator - disp(t+4) —0.2581 0.2525* 13.1151%* —12793.19  2.6742 2.26
(0.2127) (0.1520) (7.3896)

GARCH(1,1) 0.0049 - - —12796.04  2.6728 -

(0.1553)

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-X models includ-
ing 3 MIDAS lag years of a macro uncertainty measure with a restricted weighting scheme, i.e,
the long-run component is specified as

K

log(mX) =m+6-> ¢r(l,w2) Xy,
k=1

with K = 12. Measures of macroeconomic uncertanity are either based on proxies for macro
volatilities, see Eq. (1.8), or on cross-sectional measures of forecast dispersion from the SPF. The
latter are available for the current quarter (disp(t)) and up to four-quarters-ahead (disp(t+4)).
For the unemployment rate, the uncertainty measures refer to the level of the variable. Otherwise,
see the notes of Table A.1.




TABLE A.8: PREDICTIVE REGRESSIONS

Variable (Model) AR? c P [
Panel A
A real GDP 0.06 0.6443*** 0.6766*** —0.0030
(0.1305) (0.0621) (0.0075)
A Ind. prod. 0.13 0.6503*** 0.6723*** —0.0022
(0.1277) (0.0625) (0.0036)
A Unemp. 0.25  0.6634***  0.6624*** 0.0553
(0.1282) (0.0645) (0.0653)
A Housing 0.38  0.6443***  0.6742*** —0.0006
(0.1205) (0.0600) (0.0005)
A Corp. prof. 0.01 0.6205***  0.6842*** 0.0001
(0.1198) (0.0594) (0.0008)
A GDP deflator 0.17 0.6479*** 0.6824*** —0.0059
(0.1244) (0.0594) (0.0086)
NAI 0.77 0.7113*** 0.6380*** —0.0426
(0.1326) (0.0667) (0.0288)
New orders 0.16 0.7685*** 0.6684*** —0.0021
(0.2501) (0.0638) (0.0032)
A Cons. sent. 0.21 0.6092*** 0.6911*** 0.0034
(0.1201) (0.0600) (0.0044)
A real cons. 0.10 0.5920*** 0.6931*** 0.0043
(0.1318) (0.0617) (0.008)
Term spread 0.78 0.6701*** 0.6823*** —0.0265
(0.1224) (0.0590) (0.0177)
Panel B
A real GDP: 2s 1.05 —0.0207 0.6344*** 0.3594*
(0.3892) (0.0654) (0.2072)
A Ind.prod.: 2s 2.40 —0.3219 0.5981*** 0.5397***
(0.3737) (0.0664) (0.2029)
A Unemp.: 2s 3.36 —0.5031 0.5657*** 0.6585***
(0.3728) (0.0685) (0.2073)
A Housing: 2s 2.57 —0.1446 0.5980*** 0.4538***
(0.3017) (0.0658) (0.1647)
A Corp. prof.: 2s 2.17 —0.2359 0.6176*** 0.4805***
(0.3595) (0.0639) (0.1903)
A GDP deflator: 2s 0.03 0.9118 0.6823*** —0.1380
(1.0084) (0.0597) (0.4781)
NAI: 1s 0.57 0.1126 0.6432*** 0.2862
(0.4161) (0.0672) (0.2239)
New orders: 1s 0.31 0.3173 0.6607*** 0.1707
(0.3457) (0.0642) (0.1815)
A Cons. sent.: 1s (ur) 1.66 —0.2520 0.6196*** 0.4837**
(0.4146) (0.0654) (0.2199)
A real cons.: 1s (ur) 0.02 0.5183 0.6801*** 0.0541
(0.5284) (0.0624) (0.2667)
Term spread: 1s (ur) 4.18 —0.5739 0.5914*** 0.6707***
(0.3539) (0.0626) (0.1877)

Notes: We estimate an AR(1) model for log(v/RV;) and two types
of predictive regressions

log <\/R7Vt) =c+plog (\/WH) +0Xi—1 + (e (Panel A)
log (m) =c+plog (\/WH) + 6log (y/N(t)i—tX) + (G (Panel B)

where the regression is either augmented by the first lag of a macro
variable X¢ or by the quarterly aggregated long-term component
N(t)i'tx from the respective GARCH-MIDAS-X model. We either
include the long-term component from the feasible two-sided specifi-
cation with the highest variance ratio, see Section 1.4.2 and Table 1.4
or Table A.2, or from the one-sided specification for variables which
are not included in the SPF dataset. For leading variables we include
an unrestricted (ur) weighting scheme in the one-sided specification,
see Section 1.4.1 and Table 1.2.

Robust standard errors are presented in parentheses and *** ** * in-
dicate significance at the 1%, 5%, and 10% level. AR? the increase in
the percentage R? for the predictive regressions relative to a baseline
AR(1) model for log(v/RV;). The percentage R? value for the latter
is 47.06. We consider the 1973Q1 - 2010Q4 sample.
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TABLE A.10: ONE-SIDED GARCH-MIDAS-RV-X SPECIFICATIONS - SUBSAMPLE UNTIL 2007Q2

X

Variable m oV wlV 6% wik w3 LLF BIC VR(X)
A real GDP —0.3139%% 0.0055*** 2.6642 —0.0608***F 1 6.3969* ** —11211.91 2.5845 23.52
(0.1535) (0.0019) (2.2918) (0.0207) (2.3516)
—0.3137* 0.0055*** 2.6647 —0.0609*** 1.0262 6.4750 —11211.91 2.5855 23.53
(0.1608) (0.0020) (2.3031) (0.0235) (2.0301) (4.3228) [0.9475]
A Ind. prod. —0.3725% 0.0052%*% 3.1892 —0.03577 %% 1 5.67997 —11210.28 2.5841 26.28
(0.1488) (0.0019) (3.2753) (0.0108) (1.7047)
—0.3703** 0.0052*** 3.2496 —0.0365*** 1.8906 8.6561** —11210.01 2.5851 26.95
(0.1501) (0.0020) (3.5074) (0.0109) (1.5384) (4.1049) [0.4592]
A Unemp. —0.4538*% 0.00527 % 3.1159 0.4637" "~ 1 7.97747F —11212.94 2.5847 23.01
(0.1458) (0.0020) (3.3439) (0.1691) (3.5296)
—0.4534*** 0.((()]005022*0*)* (%‘}?,3256) O.(é[l)618831*2’;* (1143841117) 9(.462%3;)* —11212.91 2.5857 23.12
(0.1462) . . . . . [0.8185]
A Housing —0.3372%% 0.0046*~F 3.0866 —0.0098%% 1 2.26847 F % —11211.56 2.5844 23.82
(0.1627) (0.0021) (3.9622) (0.0042) (0.6237)
—0.3190** 0.0044** 2.9963 —0.0108** 3.0497 6.3012 —11208.84 2.5848 27.16
(0.1582) (0.0021) (4.2936) (0.0048) (2.3699) (4.6103) [0.0197]
A Corp. prof. —0.3022%% 0.0067" 3.0202% —0.022477F 1 2.423977% —11192.69 2.5800 43.26
(0.1195) (0.0016) (1.6400) (0.0043) (0.4825)
—0.3196*** 0.(0 001*5*)* 3(11%;91;)* —0.0224*** 1&15{;1;;)* 3.(01861*8*)* —11191.07  2.5807 45.41
(0.1147) . . (0.0041) -5 . [0.0721]
A GDP deflator —0.61437 % 0.0056*** 2.9068 0.0350% 1 3.83837 % —11216.66 2.5856 17.97
(0.1812) (0.0020) (2.6008) (0.0200) (1.2025)
—0.6265*** 0.(0056**)* (2.{;17183) 0(.037§*)* 11(6.2248*)** 215(3‘17336*)** —11215.33 2.5863 18.60
(0.1807) 0.0020 2.7746 0.0172 11.0846 1.7851 [0.1024]
NAI —0.42547F% 0.0049%% 3.5068 —0.247177F 1 9.1103*F —11208.41 2.5837 27.71
(0.1462) (0.0019) (4.2894) (0.0693) (4.2918)
—0.4252*** 0(.00%513;)* (i.gégg) —0.2474*** (11%(;‘%?) 1?422880370*)* —11208.40  2.5847 27.76
(0.1463) .001¢ . (0.0704) . . [0.9067]
New orders 1. bl 0.0 * 3.1312 —0.04197F 1 5.0 * —11197.60 2.5812 37.50
(0.4939) (0.0016) (2.5365) (0.0090) (2.0022)
1.8323*** 0.0054*** 3.1306 —0.0422*** 0.8649 4.5393** —11197.59 2.5822 37.52
(0.4841) (0.0016) (2.5255) (0.0089) (0.7714) (2.0090) [0.8642]
A Cons. sent. —0.46487FF 0.00547 % 2.5953 —0.0867" "% 1 2.2106" 7% —11212.08 2.5845 24.41
(0.1423) (0.0018) (1.8713) (0.0291) (0.4158)
—0.4736*** 0.(8005061*8*)* (21%}12’29) —0.1016*** 3‘(2765;;6*)* 6&3847371*1*)* —11206.00  2.5841 29.92
(0.1476) . . (0.0297) . . [0.0005]
A real cons. —0.2996 0.0053™ % 2.5858 —0.0475 1 5.6873% % —11216.93 2.5856 18.06
(0.1763) (0.0019) (2.0351) (0.0317) (2.2586)
—0.2530 0.0052*** 2.5707 —0.0601 3.0595 12.9027* —11216.26 2.5865 18.85
(0.1767) (0.0018) (2.1233) (0.0391) (2.8506) (7.6446) [0.2454]
Term spread —0.1144 0.(0057*’;* (3‘0076) —0.24427FF 1 2.(3460**)* —11195.72 2.5807 38.34
(0.1450) 0.0020 2.5423 (0.0453) 0.8676
—0.1548 . Foxx 2.8084 —0.2250*** 4.8994 9.9784 —11193.06  2.5812 40.37
(0.1349) (0.0018) (1.8745) (0.0411) (3.1349) (7.2785) [0.0211]
RV —0.4617FFF io 001*9’;* (%.Sgg% - - - —11218.93 2.5840 16.67
(0.1495) . .55

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-RV-X models including 3 MIDAS lag years
of quarterly realized volatility and a macro variable X. We include a restricted weighting scheme for the RV variable and

both restricted and unrestricted weights for the macro variable, i.e, the long-run component is specified as

K K
log(me) =m+ 607V - > " or (L, wsV )RVi_p + 0% op(wit,ws ) Xi—p,

k=1

k=1

with K = 12. All estimations are based on daily return data from 1973Q1 to 2007Q2 and quarterly macroeconomic data
from 1970Q1 on. The numbers in brackets are p-values from a likelihood ratio test 2(Ly g —Lg), where Ly g is the likelihood
of the GARCH-MIDAS-X specification including unrestricted weights and L is the likelihood of the respective specification

including restricted weights. Otherwise, see the notes of Table A.1.




TABLE A.11: ONE-SIDED GARCH-MIDAS-(RV)-X SPECIFICATIONS - INCLUDING MONTHLY
MACRO DATA
Variable m oFV wlV 60X wik wx LLF BIC _ VR(X)
A Ind. prod. 0.1034 - B —0.0642% % 1 4.0276% %~ —12780.84  2.6716 12.74
(0.1318) (0.0135) (0.8366)
0.1017 - - —0.0641*** 1.3351** 5.1695*** —12780.51 2.6725 13.34
(0.1323) (0.0131) (0.5561) (1.6379) [0.4179]
RV + A Ind. prod. —0.1116 0.0072% 1.6830* " —0.05197 % 1 4.99347F% —12776.70 2.6726 17.37
(0.1432) (0 0039) (0 7674) (0.0134) (1.4924)
—0.1086 071* *x —0.0521*** 1.1122** 5.4174*** —12776.67 2.6736 17.37
(0.1463) (0 0041) (0 7516) (0 0138) (0.5427) (1.7527) [0.8127]
A Unemp. —0.1093 - - 1107%% 1 6.8834% —12779.93 2.6714 12.20
(0.1339) (0 0027) (3.9504)
—0.1098 - - 0.0111*** 0.5118 3.9937*** —12778.83 2.6721 11.80
(0.1316) (0.0023) (0.3261) (1.0882) [0.1373]
RV 4+ A Unemp. —0.3007% 0.0084** 1.8560* 0.0073* % 1 15.6081% —12774.88 2.6723 17.17
(0.1237) (0.0034) (0.8650) (0.0020) (8.9620)
—0.2915** 0.0076** 1.7947** 0.0084*** 0.3671 5.3028** —12774.34 2.6731 17.09
(0.1262) (0.0037) (0.8251) (0.0022) (0.3834) (2 4831) [0.3000]
A Housing 0.0427 - - —0.0004 1 1.7196 —12795.69 2.6747 0.31
(0.1787) (0.0007) (1.1973)
0.0968 - - —0.0009* 13.0877*** 21.2448*** —12792.49  2.6750 4.14
(0.1701) (0.0006) (4.3119) (4.9438) [0.0114]
RV + A Housing —0.2149 0.0089% 1.8619*~ —0.0002 1 2.2841 —12790.58 2.6755 6.68
(0.1453) (0.0036) (O 8480) (0.0005) (1.6697)
—0.1559 0.0085** 1.8788** —0.0007* 13.2505*** 22.9374*** —12787.76 2.6759 9.50
(0.1489) (0.0036) (0.8257) (0.0004) (3.7321) (5.5934) [0.0176]
NAI —0.0351 - - —0.3796**F 1 7.4250%*F —12778.86 2.6712 16.98
(0.1284) (0.0693) (2.5243)
—0.0351 - - —0.3823*** 0.7809 6.2046* * —12778.78 2.6721 16.96
(0.1281) (0.0707) (0.5930) (2 7065) [0.6970]
RV 4+ NAI —0.1897 0.0059 1.6853* " —0.30227 % 1 10.9656 —12776.47 2.6726 19.53
(0.1393) (0.0043) (0.7996) (0.0813) (7.0142)
—0.1905 0.0059 1.7228** —0.3050*** 0.5587 7.4063* —12776.30 2.6735 19.57
(0.1366) (0.0042) (0.8441) (0.0801) (0.7623) (4.3574) [0.5638]
New orders 3.0083* % - - —0.0556**F 1 3.8584%FF —12774.22 2.6702 19.10
(0.5606) (0.0101) (1.3016)
3.0148*** - - —0.0558*** 0.9821** 3.7946** —12774.22 2.6712 19.10
(0.5701) (0.0101) (0 4979) (1 4942) [1.0000]
RV 4 New orders 2.34717 % 0.0078** 1.6271°% —0.04737 % 1 4.8753™ —12769.06 2.6710 23.96
(0.6044) (0.0040) (0 6348) (0.0103) (2 3150)
2.4130*** . *x 15** —0.0486*** 0.7072 *ox —12768.88 2.6720 24.38
(0 5768) (0.0039) (O 6766) (0.0099) (0.5159) (1 4962) [0.5521]
Term spread 0.4233* % - - —0.2769%*F 1 1.4503**% —12779.29 2.6713 12.93
(0 1478) (0.0555) (0 4300)
0.3653*** - - —0.2446*** 4.8830 6.5897 —12776.91 2.6717 14.80
(0 1378) (0.0451) (5.2942) (5.2859) [0.0290]
RV +4 Term spread 0.0927 0.01227 % 1.9639 —0.2755° 1 1.8675" —12766.91 2.6706 24.20
(0.1239) (0.0034) (1.0265) (0.0485) (0.5257)
0.0389 0.0124*** 1.9383** —0.2502*** 5.1274 8.3131** —12763.09 2.6708 27.33
(0.1133) (0.0035) (O 9208) (0.0408) (3.8610) (4 2296) [0.0057]
RV —0.2405% 0.0091** 1.8671%F - - - —12790.75 2.6737 6.44
(0.1378) (0.0037) (0.8359)
GARCH(1,1) 0.0049 - - - - —12796.04 2.6728 -
(0.1553)

Notes: The table reports estimation results for the one-sided GARCH-MIDAS-X models, i.e, the long-run component is

specified as

K
log(r7) =m+6% - > on(wi,wi ) Xe—i,

k=1

and the one-sided GARCH-MIDAS-RV-X models with a restricted weighting scheme for RV, i.e, the long-run component

is specified as

log(r¥) =

m+ 68V . Zg@klwz YRV + 6%
k=1

k=1

K
Z @Ok(wf(,wf)Xz_k,

where in both cases we include 3 MIDAS lag years of monthly data, i.e. K = 36. All model estimations are based on daily
return data from January 1973 to December 2010 and monthly macroeconomic data from January 1973 on. Otherwise, see
the notes of Table A.1.




B FIGURES

Ficure B.1: WEIGHTING SCHEMES FOR GARCH-MIDAS-RV, GARCH-MIDAS-X AND
GARCH-MIDAS-RV-X MDOELS
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Notes: The figures show the weighting schemes for the GARCH-MIDAS-RV (solid black line), GARCH-MIDAS-X
(solid grey line), as well as for the GARCH-MIDAS-RV-X models (RV: dashed black line, X: dashed grey line). We
include unrestricted weights for leading variables, see Table 1.3 and Section 4.1.2.



FIGURE B.2:
MIDAS-X AND GARCH-MIDAS-RV-X MDOELS

LONG-RUN VOLATILITY COMPONENTS
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Notes: The figures show the quarterly aggregated long-run volatility components v/ N ()7, for the

GARCH-MIDAS-RV (solid grey line), GARCH-MIDA

S-X (solid light grey line), as well as for the

GARCH-MIDAS-RV-X models (dashed black line), see Table 1.3 and Section 4.1.2.



FIGURE B.3: WEIGHTING SCHEMES FOR MONTHLY AND QUARTERLY GARCH-MIDAS-X MOD-
ELS
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Notes: The figures show the quarterly (solid black line, left scale) and monthly (dashed grey line,
right scale) weighting schemes for all one-sided GARCH-MIDAS-X models for which monthly data
is available, see Table A.11. Within each quarter, we keep the quarterly weights constant.



THE VARIANCE RISK PREMIUM AND
FUNDAMENTAL UNCERTAINTY

We propose a new measure of the expected variance risk premium that is based
on a forecast of the conditional variance from a GARCH-MIDAS model. We find
that the new measure has strong predictive ability for future U.S. aggregate stock
market returns and rationalize this result by showing that the new measure effec-
tively isolates fundamental uncertainty as the factor that drives the variance risk

premium.

This chapter was published as: Conrad, C., and K. Loch (2015). “The Variance Risk Premium
and Fundamental Uncertainty.” Fconomics Letters 132, 56—60.



2.1 INTRODUCTION

The findings in Bollerslev et al. (2009, 2012, 2014), Bekaert and Hoerova (2014) and
others strongly suggest that the variance risk premium (VRP) predicts medium-
term aggregate stock market returns. KEconomically, the predictive ability of the

VRP can be rationalized by its close relation to economic uncertainty and aggregate
risk aversion (see Bollerslev et al., 2009, 2011 or Corradi et al., 2013).1

Formally, the expected VRP is defined as the difference between the ex-ante risk-
neutral expectation of future stock market variation and the statistical expectation of
the realized variance. While ‘model-free implied volatilities’ can be constructed from
option prices, the expected realized variance has to be estimated. The most common
approaches are either to assume that the realized variance follows a martingale or to

estimate a heterogeneous autoregressive model for the realized variance (HAR-RV).

We follow a different approach by modeling the conditional variance of daily stock
returns as a GARCH-MIDAS process. In this setting, the conditional variance is
decomposed into a short-term GARCH component and a long-term component that
is driven by macroeconomic explanatory variables. As discussed in Conrad and
Loch (2014), we think of the long-term component as ‘the part’ of the conditional
variance of stock market returns that is driven by “uncertainty about the variability

of economic prospects” (Bollerslev et al., 2013, p.417).

Our contribution to the literature on the VRP is twofold. First, we suggest a
new proxy for the expected VRP that is based on the difference between the option-
implied variance and the variance forecast from the GARCH-MIDAS model. We
then show that the proposed measure has considerably stronger predictive power
for stock returns than conventional measures of the VRP. Second, we rationalize the
strong predictive power of our new measure by showing that it effectively isolates

the long-term volatility component as the factor that determines the VRP.

1Using a stylized self-contained general equilibrium model, Bollerslev et al. (2009) show that
the equity risk premium can be decomposed into two terms. While the first term describes the
classical risk-return trade-off, the second one suggests a positive relation between expected returns
and the volatility of consumption growth volatility (vol-of-vol). The predictive ability of the VRP
then follows from the observation that the VRP is proportional to the time-varying vol-of-vol.



2.2 A NEW VARIANCE RISK PREMIUM MEASURE

2.2.1 THE GARCH-MIDAS MODEL

The GARCH-MIDAS model specifies the conditional variance of daily returns as the
product of a short-term GARCH component that captures day-to-day fluctuations
in volatility and a long-term component that is entirely driven by low-frequency
(monthly) macroeconomic variables. The long-term component fluctuates at the
monthly frequency only and can be considered as representing economic or funda-
mental uncertainty. Following Conrad and Loch (2014), we denote daily returns by
7i¢, where t refers to a certain month and i =1, ... ,N® to the i’th day within that

month. We then assume that

Tig = W+ /G TiZig, (2.1)

where Z;; is IID with mean zero and variance one. g¢;; and 7; represent the short-
and long-term conditional variances, which are measurable with respect to the in-
formation set given at day ¢ — 1 of month ¢. The short-term component follows a

mean-reverting asymmetric unit variance GARCH process

) (Tifl,t - M)

Tt

it = (1 - — 6 - 7/2) + (Oé + v 1{r¢71,t*u<0} + /Bgi—lﬂfa (22)
with &« > 0, > 0 and a + f + /2 < 1. The long-term component is driven by

lagged values of an explanatory variable X;:

K
log(7) = m+92gpk(w1,w2)Xt,k, (2.3)
k=1

where the behavior of the MIDAS weights ¢y (w,ws) is parsimoniously determined
using a flexible Beta weighting scheme. For a more detailed discussion, see Engle et
al. (2013) or Conrad and Loch (2014).

At the last day of each month ¢, we use the GARCH-MIDAS (GM) model to con-
struct out-of-sample forecasts for the realized variance during the following month,
RV;1. Note that next month’s long-term volatility, 7,1, is predetermined with re-

spect to macro realizations up to month ¢. Then, the realized variance prediction is



given by
N(t+1)

—GM ~
th+1 =E, Z gi,t+17—t+1ZZt+1 = Gt+1Tt+1, (2-4)
i=1

(t+1)
where g1 = (N(tﬂ) + (91441 — 1)1_(0‘+5+7/2)N For a given value of the

l—a—f—v/2
monthly short-term variance, g;y1, a high (low) value of fundamental uncertainty,
Ty+1, will upscale (downscale) the forecast of the expected monthly realized variance.
In this sense, 73,1 is similar to the vol-of-vol factor in the model of Bollerslev et
al. (2009).

2.2.2 (CONSTRUCTING THE VRP

We define the monthly expected VRP as I'V;—E;[RV; 1], where IV} is the risk-neutral
expected variation during month ¢ + 1 and E;[RV;;,] is the expected (under the
physical measure) realized variation for that period. We build on the approximation
of the expected VRP in Bollerslev et al. (2009) and measure I'V; by the end-of-month

t value of the squared VIX and, assuming that RV, follows a martingale sequence,
replace E;[RV, 1] by RV;. The VRP is thus given by

VRP, = VIX? — RV,. (2.5)

This measure is both directly observable and model-free. However, as discussed in
Bekaert and Hoerova (2014), the assumption that RV, follows a martingale sequence
may be inappropriate. As a new measure, we propose to base the expected VRP
on the conditional variance forecast from the GARCH-MIDAS model, E‘\/fi]‘f This
forecast explicitly takes into account the macroeconomic uncertainty via the long-

term component:

—GM
VRPEM = VIX? -~ RV,,,. (2.6)

2.3 DATA

We use daily continuously compounded returns, r;;, for the S&P 500 and monthly
U.S. macroeconomic data from 1970 to 2011. We include industrial production
growth (annualized month-to-month percentage change), the new orders index of

the Institute for Supply Management (levels) and the Chicago Fed National Activity



Index (NAT).? Annualized monthly excess returns are calculated as r¢&® = 12« (r; —
rs¢), where r, = vaz(? ri+ and rs; denotes the one-month T-bill rate. For the
2000 to 2011 period, we employ observations for the ‘new’ VIX and daily realized
volatilities, RV;, based on 5-minute intra-day returns obtained from the website of
the Oxford-Man Institute of Quantitative Finance. Monthly realized variances are
constructed as RV, = ZZV:(I) RV; ;. Otherwise, all data are obtained from the FRED

database at the Federal Reserve Bank of St. Louis.

24 EMPIRICAL RESULTS

2.4.1 VRP ESTIMATION

We estimate the GARCH-MIDAS models for the 1973 to 1999 period. Following
Conrad and Loch (2014), we include three MIDAS lag years of the macro variables
and use a restricted (w; = 1, i.e. strictly decreasing) Beta weighting scheme. The
estimation results presented in Table 2.1 basically replicate the findings in Conrad
and Loch (2014) but for a briefer sample. Specifically, for all variables the estimate
of 6 is highly significant and negative, thus confirming the counter-cyclical behavior
of long-term volatility. Periods of economic growth above trend (e.g. measured
by positive NAT realizations) are associated with a decline in long-term volatility,
while recession periods coincide with increasing long-term volatility. We use out-
of-sample forecasts for 7,41 and EI\/i]\f for the 2000 to 2011 period to construct
our new measure of the VRP. Table 2.2 provides summary statistics and Figure 2.1
depicts the different measures of the VRP over the out-of-sample period.> The table
also presents summary statistics for the ez-post VRP defined as VIX? — RV, ;. As
expected, the VRP is positive on average. Note that the different VRP measures

are much less persistent than realized volatility or the VIX squared.

2The NAI is a weighted average of 85 monthly national economic indicators. Positive re-
alizations indicate growth above trend, while negative realizations indicate growth below trend.
Industrial production and new orders are among the indicators considered.

3Bollerslev et al. (2014) consider the same out-of-sample period, but employ a different risk-free
rate in calculating the excess returns and base their RV; measure on daily squared returns. This
explains the slight differences in the summary statistics and the following return predictability
regression results.



2.4.2 RETURN PREDICTABILITY

In this section, we investigate the predictive abilities of the expected VRP measures

for future stock market returns. We rely on simple monthly regressions of the form:

> =

h
D it = an + bnZi + tggin, (2.7)
j=1

where Z; € {VRP,,VRPF}. Following Bollerslev et al. (2014), we use Newey-
West robust standard errors.* Table 2.3 presents the regression results for different
horizons h, while Figure 2.2 shows the estimated by, coefficients for our VRP measures
along with 90% confidence bands based on the critical values simulated in Bollerslev
et al. (2014). First, based on these critical values, V RP, significantly predicts future
returns for horizons one to five. In accordance with the theoretical model developed
in Bollerslev et al. (2009), the adjusted R? initially increases and then decreases
with expanding forecast horizon. The maximum R? is achieved for h = 4 months.?

Second, and most importantly, all three proxies for the expected VRP based on
the GARCH-MIDAS models have strong predictive power for future returns with
significant regression coefficients up to the 6 months horizon. At almost all horizons,
the R?s from these models are markedly higher than the ones based on VRP,. In all
three cases, the maximum R? is achieved at h = 5. These findings suggest that our
new proxy — which explicitly takes into account the state of the macroeconomy — is
a more precise measure for the ex-ante VRP than alternative proxies and, thus, has
superior forecasting power for returns. In other words, using E‘\/iﬂf as a measure
of the expected variance clearly helps to “isolate the factor that drives the volatility
risk premium” (Bollerslev et al., 2009, p.4485).

2.4.3 THE EX-POST VRP AND FUNDAMENTAL UNCERTAINTY

In a final step, we provide an intuitive argument for the successfulness of our new

measure in predicting returns. Recall that the variance forecast from the GARCH-
—GM

MIDAS model can be written as RV, | = §i417¢41, where 7 reflects fundamental

uncertainty. Then, similarly to Bollerslev et al. (2012), we decompose the squared

4We choose the same bandwidth in the Bartlett kernel as suggested in their paper. As shown
in Bollerslev et al. (2014, p.635), given the low persistence in the VRP (see Table 2.2), the robust
t-statistics “are reasonably well behaved” despite the overlapping nature of the return regressions.

®As in Bekaert and Hoerova (2014), we also considered a VRP based on conditional variance
forecasts from a HAR-RV model. The corresponding R?s are slightly lower.



VIX into the expected conditional variance plus the VRP. In the model of Boller-
slev et al. (2012), the VRP can be written as an affine function of fundamental

uncertainty. Assuming the same relationship, we obtain:
2 oM )
VIX; =c+ RV, +b"1 (2.8)

or VI Xf—ﬁ‘\/i]‘f = c+b" 7, with some constant b > 0. We test this mechanism
by first regressing VIX? on a constant, E‘Zﬁ:\f and 7341 and, second, by regressing
the ez-post VRP on a constant, E?/fff and 7;1. Both should be significant in the
first regression, but only 73, in the second one. Relying on the ex-post VRP in the

second regression has the advantage that we do not have to estimate E,[RV}4].

Panel A of Table 2.4 confirms that VIX? is positively related to both E‘\/iﬂf
and 7;,1. In this regression, the conditional variance forecast can be interpreted as
an interaction term: the predicted effect of a change in the long-term component
is stronger the higher the forecast for the short-term component is. On the other
hand, in the regressions with the ex-post VRP as the dependent variable, only
the long-term components are highly significant (see Panel B).% Both regressions
support our hypothesis that the long-term volatility components from the GARCH-
MIDAS models can be considered as representing the vol-of-vol factor driving the
VRP.” The fact that the counter-cyclical long-term component drives the VRP also
provides direct evidence for the conclusion of Campbell and Diebold (2009) that
expected returns are inversely linked to expected business conditions. However, it
should be noted that the R2s in the regressions involving the ex-post VRP are quite
low. Thus, the VRP is driven by additional factors that are not directly captured
by the long-term component, such as aggregate risk aversion and disagreement in
beliefs. However, these factors are also likely to behave counter-cyclically and, hence,

should comove with 7.

Finally, note that the ex-post VRP corresponds to the payoff from selling a vari-
ance swap. Thus, when 7; is increasing, the expected payoff from selling a variance
swap increases as well. Intuitively, in times of high economic uncertainty investors

are willing to pay a high premium to ensure against volatility risk.

6 Additionally including the lagged ex-post VRP does not change our result.

"Our findings are in line with Bollerslev et al. (2011) who estimate a time-varying VRP that is
driven by macroeconomic state variables and report that, e.g., higher industrial production leads
to a decrease in the VRP.



2.5 (CONCLUSION

Our results strongly confirm the theoretical insight from the models discussed in
Bollerslev et al. (2009, 2012) that fundamental uncertainty (the vol-of-vol) is an im-
portant factor driving the VRP. In particular, we show that our new VRP measure,
which is based on a volatility component reflecting the ‘state of the macroecon-
omy’, has considerably higher predictive power for future stock market returns than

previously suggested measures.



2.6 TABLES AND FIGURES
2.6.1 TABLES

TABLE 2.1: GARCH-MIDAS-X MODEL ESTIMATION

Variable 1 a B % m 6 w9 LLF

Ind. prod. 0.0348*** 0.0253*** 0.9153*** 0.0773** —0.0003 —0.0531*** 4.2582*** —8660.61
(0.0098) (0.0068) (0.0239) (0.0305) (0.1647) (0.0144) (1.0124)

New orders 0.0339*** 0.0233*** 0.9176*** 0.0784*** 2.5077*** —0.0481*** 4.6872** —8655.37
(0.0098) (0.0069) (0.0225) (0.0295) (0.6514) (0.0115) (2.0799)

NAI 0.0343*** 0.0250*** 0.9158*** 0.0782*** —0.0806 —0.3503*** 7.2203** —8658.29
(0.0098) (0.0069) (0.0230) (0.0299) (0.1657) (0.0889) (2.9228)

Notes: The table reports estimation results for the GARCH-MIDAS-X model including 3 MIDAS lag years of
a monthly macro variable X, i.e the long-run component is specified as log(r¢) = m+6- Zszl (w1, w2) Xk

with K = 36. The three variables require a restricted Beta weighting scheme with w; = 1, see Conrad and
Loch (2014) for details. All estimations are based on daily return data from January 1973 to December 1999
and include monthly macroeconomic data beginning in January 1970. LLF is the value of the maximized log-
likelihood function. The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. *** indicates
significance at the 1% level. ** indicates significance at the 5% level.

TABLE 2.2: SUMMARY STATISTICS

Variable Mean Std. dev. Skew. Kurt. AC(1)
Excess returns —3.57 57.39 —0.58 3.89 0.15
RV 30.77 48.35 6.01 50.38 0.62
\ar & 46.82 42.35 2.89 14.28 0.81
VRP 16.02 23.89 —3.08  30.61 0.14
VRPEM_ Ind. prod. 14.04 21.99 —3.45  34.75 0.13
VRPEM_ New orders  13.27 20.78 —2.66  23.92 0.34
VRPEM._ NAI 11.96 21.89 —3.63  33.28 0.24
VRP ex-post 16.07 39.83 —5.02  47.65 0.26

Notes: Summary statistics for monthly excess returns and dif-
ferent measures of the VRP, see Section 2.2.2. AC(1) denotes the
first-order autocorrelation coefficient. Monthly excess returns are
constructed using the one-month T-bill rate as the risk-free rate
and are in annualized percentage form. Monthly realized volatil-
ity (RV') is the sum of daily realized volatilities based on 5-minute
intra-day returns. VIX? denotes the squared ‘new’ VIX index in
monthly units. The out-of-sample period extends from January
2000 to December 2011 and includes 144 observations.




TABLE 2.3: RETURN PREDICTABILITY REGRESSIONS

Variance Premium Horizon 1 2 3 4 5 6 9 12

VRP Constant -12.28 -11.53 -11.62 -11.09 -9.59 -8.18 -6.18 -5.49
(-245) (-2.32) (-249) (-2.27) (-1.99) (-1.69) (-1.24) (-1.10)

VRP 0.57 0.54 0.53 0.50 0.41 0.32 0.18 0.15
(3.91) (3.09) (4.42) (5.13) (3.91) (2.78) (1.77) (1.60)

adj. R2 4.69 7.60 11.28 12.58 9.60 6.40 2.39 2.02

VRPSEM_ Ind. prod. Constant -13.52 -13.33 -11.35 -10.47 -10.79 -9.28 -6.90 -5.67
(-2.15) (-2.32) (-2.16) (-2.00) (-1.99) (-1.76) (-1.38) (-1.17)

VRP 0.76 0.76 0.60 0.54 0.57 0.46 0.26 0.18

(3.43) (7.20) (5.17) (4.81) (5.70) (4.47) (2.50) (1.76)

adj. R2 7.62 13.78 12.66 12.75 16.44 11.78 5.12 3.11

VRPEM_ New orders  Constant -14.36 -14.53 -13.11 -11.83 -11.36 -9.60 -6.80 -5.54
(-2.31) (-2.61) (-2.52) (-2.26) (-2.11) (-1.83) (-1.37) (-1.15)

VRP 0.87 0.90 0.78 0.68 0.65 0.51 0.27 0.19

(3.40) (7.30) (6.20) (5.77) (6.12) (4.88) (2.43) (1.59)

adj. R2 9.06 17.39 19.04 18.23 19.10 13.15 4.79 2.72

VRPSM. NAI Constant -12.81 -12.63 -11.17 -10.10 -9.87 -8.34 -6.01 -4.88
(-2.25) (-2.40) (-2.24) (-2.00) (-1.89) (-1.61) (-1.21) (-1.01)

VRP 0.84 0.84 0.70 0.61 0.60 0.46 0.24 0.15

(3.88) (7.91) (6.01) (5.82) (6.35) (4.83) (2.30) (1.43)

adj. R2 9.33 16.79 17.07 16.17 17.81 11.80 3.86 1.77

Notes: Monthly return predictability regressions % Z;'L:1 TiL; = an +bpZt+ugp4n with Zy € {VRP, VRPtGM}.
In parentheses, we present t-statistics based on Newey-West standard errors, where we adjust the bandwidth in the
Bartlett kernel following Bollerslev et al. (2014). The adjusted sample period extends from February 2000 to January
2011 and includes 132 observations. Adjusted R? in percentage form. For each VRP measure, the bold number
indicates the forecast horizon with the highest R2.

TABLE 2.4: THE EX-POST VRP AND FUNDAMENTAL UNCERTAINTY

c p(RV) 5(T) adj. R?

Panel A: VIX? (depend. Var.)

Ind. prod. —18.72 0.81 41.12 77.05
(—1.71) (6.36) (3.44)

New orders —10.59 0.74 34.70 82.27
(—1.35) (8.20) (3.77)

NAI —7.52 0.71 26.69 80.34
(—1.07) (6.99) (3.74)

Panel B: Ex-post VRP (depend. Var.)

Ind. prod. —28.38 —0.19 53.42 5.20
(—2.02) (—0.66) (3.31)

New orders —22.13 —-0.15 45.81 6.10
(—2.19) (—0.61) (3.33)

NAI —18.50 —0.19 37.26 6.88
(—2.27) (—0.78) (3.68)

Notes: Regression results for

Panel A: VIX? = c+bY) I/%V,iklf +b(7) Tﬁj\fl + &

Panel B:

Ex-post VRP, = ¢ + b(EV)

—GM

RV +

with Ex-post VRP, = VIX2 — RV;41.

The numbers in parentheses are t-statistics based on Newey-West standard
The sample period extends from January 2000 to December 2011.

€errors.
Adjusted R? in percentage form.

b TGN 4 g,




2.6.2 FIGURES

FIGURE 2.1: VARIANCE RISK PREMIUM MEASURES
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Notes: Different measures of the VRP for the January 2000 to December 2011 period. Shaded
areas represent NBER recessions.

FIGURE 2.2: RETURN PREDICTABILITY REGRESSION COEFFICIENT ESTIMATES
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TIME-VARYING VOLATILITY
PERSISTENCE IN A GARCH-MIDAS
FRAMEWORK

This paper presents a new volatility model with time-varying volatility persistence
(TVP) that is governed by the dynamics of an explanatory variable. We extend
the GJR-GARCH model by introducing a time-varying GARCH coefficient that is
linked to the variable in a parsimonious way using MIDAS techniques. We refer to
the model as the TVP-GARCH-MIDAS model. It nests the GJR-GARCH under the
null that the variable has no explanatory power. We present a misspecification test
based on the Lagrange multiplier principle and study its finite sample properties in
a Monte-Carlo simulation. In an empirical application to the U.S. stock market, we
show that volatility persistence is positively related to realized volatility and that it
varies across the business cycle in a counter cyclical way. Finally, forecasting gains

of the new model are assessed in a direct forecasting comparison.



3.1 INTRODUCTION

This paper adds to the literature on volatility persistence and suggests a new
GARCH type model allowing for time variation in volatility persistence that is
governed by the dynamics of an explanatory variable.

First, we extend the GJR-GARCH model by introducing smooth transitions for
the GARCH parameter that is attached to the lagged conditional variance. The nov-
elty of our model lies in linking the transition between different persistence regimes
to the history of an explanatory variable in a parsimonious way. This is done by
employing the MIxed Frequency DAta Sampling (MIDAS) framework introduced by
Ghysels et al. (2005), in a spirit similar to the GARCH-MIDAS component models
in Engle et al. (2013). Our new model generates time-varying persistence (TVP)
without actually requiring time-varying parameters. Instead, the time variation is
determined via the dynamics of the explanatory variable. Therefore, in contrast
to genuine time-varying parameter models, the model is still straightforward to
estimate by quasi maximum likelihood methods. The new model is called TVP-
GARCH-MIDAS and nests the GJR-GARCH under the null that the variable has
no explanatory power for time-varying persistence.

Second, we provide a misspecification test based on the Lagrange multiplier
principle along the lines of Lundbergh and Terédsvirta (2002), Halunga and Orme
(2009), Conrad and Schienle (2015), and Amado and Terésvirta (2015). Our test
is closely related to the latter misspecification framework of testing the standard
GRJ-GARCH against general alternatives with time varying parameters. We find
good finite samples size and power properties in a Monte-Carlo simulation study.

Finally, we consider an empirical application to the S&P 500 and let the time-
varying persistence be determined by realized volatility dynamics and general macroe-
conomic conditions captured by the ADS business indicator introduced in Aruoba et
al. (2009). Our results strongly suggest that volatility persistence varies over time,
in line with Karanasos et al. (2014), who present a unified framework for time-
varying AR-GARCH models and find strong evidence for time-varying persistence
across different European stock markets. Moreover, we show that persistence is high

(low) during high (low) volatility regimes and weak business conditions.! In a direct

LOur findings relate to the literature on GARCH component models introduced in Engle and
Rangel (2008) and Engle et al. (2013) that link long-term financial volatility components to the
business cycle, see also applications in Asgharian et al. (2013), Conrad and Loch (2014, 2015),
Dorion (2013), and Opschoor et al. (2014). Interestingly, we provide strong evidence for volatility
persistence being counter cyclical as well.



forecasting evaluation, we find that the model with realized volatility significantly
outperforms the benchmark GRJ-GARCH model across horizons from one day up

to one quarter.

The new model is motivated by the stylized fact that financial conditional volatil-
ity is highly persistent. Estimations of the standard (stationary) GARCH model
on financial return series spanning several years or decades typically indicate high
persistence, i.e. the sum of the two parameters is found to be close to one (this has
been referred to as the IGARCH effect, see also Engle and Bollerslev, 1986). How-
ever, as already argued by Diebold (1986) and Lamoureux and Lastrapes (1990),
volatility persistence may be overstated due to neglected deterministic shifts in the
unconditional variance (see also Mikosch and Starica, 2004). More general, Hille-
brand (2005) formalizes why parameter regime changes in GARCH models that are
not accounted for will cause the sum of the estimated parameters to be close to one -
a phenomenon he labels “spurious almost-integration”. Remarkably, the effect is in-
dependent of the estimation method and the statistical properties of the parameter

changes. Also, it generalizes to higher-order GARCH models.?
Our new model adds to the literature on GARCH models that explicitly take

into account structural breaks by introducing time-varying parameters. We extend
the popular GJR-GARCH model, which allows for asymmetric volatility response
to shocks. The latter can be viewed as the simplest form of a regime-switching
volatility model, with two regimes and switches based on the sign of past innovations.
In contrast, the smooth transition (ST) GARCH models, proposed by Hagerud
(1997), Gonzalez-Rivera (1998), and Anderson et al. (1999), impose smooth changes
between the regimes. In these models, smooth transition is typically attached to the
ARCH coefficient with a lesser focus on variation in the GARCH coefficient and the
transitions are determined by lagged shocks. Alternatively, Lanne and Saikkonen
(2005) use lagged conditional variances as a transition variable. These models have
in common that they include only a single lag of the transition variable, whereas the
MIDAS approach allows us to include potentially many lags in a parsimonious way.
Alternative models with time-varying parameters are Markov-switching GARCH
models (e.g., see Hamilton and Susmel, 1994, and more recently Marcucci, 2005),
where changes in the regime are governed by an unobservable (or hidden) variable.
Instead, Regnard and Zakoian (2009) present a GARCH model extension that allows

2Some of the early volatility component models, such as in Engle and Lee (1999), Ding and
Granger (1996), and Bauwens and Storti (2009) can be re-written as higher-order GARCH models
and may therefore also be prone to spurious almost-integration.



for regime switches in the parameters to depend on realizations of an exogenous
variable.?

The organization of the remainder of this paper is as follows. The new TVP-
GARCH-MIDAS model is introduced in Section. We present a corresponding mis-
specification test in Section 3.3 and discuss its size and power properties. The model
is applied to U.S. stock market data in Section 3.4 and its forecasting properties are

analyzed. Finally, Section 3.5 concludes.

3.2 TIME-VARYING VOLATILITY PERSISTENCE IN A
GARCH-MIDAS FRAMEWORK

We first motivate the new GARCH model by some stylized facts on time-varying
volatility persistence in Section 3.2.1. The TVP-GARCH-MIDAS model is then
introduced as an extension to the GJR-GARCH model in Section 3.2.2. In Section
3.3.2, we present a misspecification test based on the Lagrange multiplier principle

and study its size and power properties in a simulation study.

3.2.1 MOTIVATION

In order to motivate the new GARCH model, we provide empirical evidence on time
varying volatility persistence of financial returns. Figure 3.1 shows the autocorre-
lation function (ACF') up to lag 100 for daily returns and squared returns on the
S&P 500 across four decades (1970-2010). For each subsample, we add the ACF
that is implied by the subsample parameter estimates of a GARCH(1,1) model. In
the standard Bollerslev (1986) GARCH(1,1) model, volatility persistence is constant
over time. It is determined by the model parameters and yields an exponentially

decaying AC'F of the squared returns.* Consistent with financial returns being un-

3Though temperature is one of the few variables that can be considered as effectively being
exogenous, applications to financial time series may be limited. An application of a GARCH(1,1)
model with temperature-dependent coefficients to gas price volatility can be found in Regnard and
Zakoian (2011).

4More precisely, in the GARCH(1,1) model specifying the conditional variance of returns r; =
p+VhiZy as hy = w+ a(ri_1 — p)? + Bhy_1 with parameters a, 3 such that E[r}] < oo, the ACF
of squared returns p(j) at lag j is determined by

.- ) ) a(l —aB — B?)
pj=(a+B)"p1, j>1, with P a2

Note that p(j) is increasing in both parameters o and .



predictable, we see hardly any significant autocorrelation for the returns across the
subsamples, but find significant autocorrelations up to high lags for the squared re-
turns. However, the figure illustrates a variation over time in the speed of decay of
the AC'F of the squared returns. The lowest autocorrelation is found for the 1980-
1989 subsample, where it becomes insignificant beyond lag 55. Across the other
subsamples, the autocorrelation remains significant up to lag 100, with most persis-
tent autocorrelation during the last decade 2000-2009, which included the collapse
of the dot-cum bubble as well as the financial crisis and the subsequent Great Reces-
sion. In general, the varying autocorrelation structure is reasonably well captured
by the subsample GARCH model estimates.?

Can the time varying autocorrelation of squared returns be linked to some ex-
planatory variable? We address this question by looking at the autocorrelation
across two regimes that are determined by realized volatility on the one hand and
by the ADS business conditions index on the other hand. The ADS is a daily
macroeconomic indicator with average value zero and positive (negative) values in-
dicating better-(worse-)than-average conditions, see also Section 3.4.1. We calculate
autocorrelations conditional on being in a high vs. low volatility regime, and a pos-
itive vs. negative ADS regime. To be more precise, we distinguish between above
and below mean realized volatility regimes, where we consider a 22-days rolling win-

dow realized volatility, RVtm) =1/22 Z?io r? .. A similar rolling window version is

t—j
calculated for the ADS. Adopting the formula in Regnard and Zakotan (2011), the
autocorrelation at lag j for the squared returns conditional on the negative ADS

regimes is calculated as

T R .
ﬁ(]) _ Zt:l ((rtQ - m(—)) ) l{ADSKO}) (Tt{j B m) (3 1)
T - T N2 '
\/Zt:1<rt2 - m(—))2 - L{aps.<o} \/Zt:l (TtQ—j — m)?
where

T T T
oy =y 17 IL{ADSt<0}/ > Laps<oy, = er_j/ﬂ (3.2)

=1 t=1 t=1

and analogously for positive ADS regimes and the RV regimes. A similar formula
can be adopted for the ACF of the returns.

5The persistence implied by the GARCH model can be quantified by the sum of the param-
eter estimates & + 5, which varies between 0.954 (1980-1989) and 0.993 (2000-2009) across the
subsamples.



Figures 3.2 and 3.3 show the rolling window versions of the ADS and of mean
adjusted realized volatility as well as the AC'F up to lag 100 for the daily returns
and squared returns across the ADS and volatility regimes. Both figures reveal a
similar pattern. We find persistent autocorrelation in the squared returns up to high
lags during negative ADS regimes, but only weak autocorrelation during positive
regimes. Note that negative ADS regimes generally coincide with NBER recession
periods. Similarly, there is significant autocorrelation up to high lags during periods
with high realized volatility, but virtually no significant autocorrelation at higher
lags during low volatility regimes.

Our empirical findings imply that volatility persistence increases during turbulent
times and recessions, whereas it decreases during periods of low financial volatility
and economic growth. In our new model, volatility persistence will be governed by
a time varying GARCH coefficient that is linked to an explanatory variable. These
empirical AC'F's now suggest an increasing (decreasing) coefficient during negative
(positive) ADS regimes. Similarly, we expect the GARCH coefficient to be positively

related to the level of realized volatility.

3.2.2 THE TVP-GARCH-MIDAS MODEL

We present a new specification of the conditional variance process that extends the
GJR-GARCH(1,1) model introduced by Glosten et al. (1993). The GJR-GARCH
is one of the most popular modifications of the standard Bollerslev (1986) GARCH
model and allows for an asymmetric response of the conditional variance to past
shocks, thus accommodating for the so-called leverage effect.® Let h; denote the con-
ditional variance process of (de-meaned) financial returns ¢;. In the GJR-GARCH

model, it is specified as
hy = w+ (a1 + oz, <oy)ei g + Prhuy, (3.3)

with w > 0,7 > 0, 81 > 0, and stationarity condition oy + 1/2as + 1 < 1. The
asymmetry parameter «s is typically found to be positive, implying that negative
shocks have a greater impact on volatility than positive ones.

We extend this model by including a time varying GARCH coefficient that de-

In the empirical analysis in Engle and Ng (1993) this model outperforms various alternative
asymmetric specifications. Hansen and Lunde (2005) conclude from an extensive forecast compari-
son of volatility models that, in case of stock returns, only GARCH models that can accommodate
for the leverage effect beat the forecasting performance of the simple GARCH(1,1) model.



pends on an explanatory variable . The new conditional variance equation will be

given as
he =w+ (a1 + 062]1{st,1<0})€§71 + Brhue—1 + BoF (7, Tp—1) by, (3.4)
with w > 0,07 > 0, 51,52 >0, 01 + 1/20[2+ﬁ1 *|>62 <1, and

F(7,%1) = (1 + exp(vie1)) " (3.5)

The function F: R — [0, 1] is strictly monotonically decreasing with asymptotes
F(v,—00) = 1 and F(vy,00) = 0 in case of a positive 7. It governs the transition
between two persistence regimes, a low persistence regime with GARCH coefficient
f; and a high persistence regime with 3; + 3.7 The parameter v governs the
smoothness of the transition. Additionally, in this new model framework its sign
determines whether the explanatory variable is positively or negatively related to
the time variation in persistence. The transition function is illustrated for different
values of v in Figure 3.4.

The type of logistic transition function in Eq. (3.5) has been widely used in various
non-linear GARCH model extensions of Eq. (3.3) with time varying parameters. In
different specifications of a Smooth Transition (ST) GARCH model presented in
Hagerud (1997), Gonzalez-Rivera (1998), Lundbergh and Terdsvirta (1998), and
Anderson et al. (1999), it governs transitions in the intercept w or the (G)ARCH
parameters. Typically, the transition is governed by a lag of the shock e; 4, for
some d > 0. Alternatively, Lanne and Saikkonen (2005) use the lagged conditional
variance as a transition variable, combined with the cumulative distribution function
of a gamma distribution as the transition function. They argue that since the
innovation is a martingale difference sequence, using €? | in the transition function
will imply unreasonably frequent changes in regimes whenever large (small) values
are followed by small (large) values. More recently, Amado and Terédsvirta (2013,
2014) propose an alternative time varying parameter GARCH model, where the
variable triggering the transition for the parameters is the index of time.

In the new variance specification in Eq. (3.4), we opt for introducing smooth
transitions for the GARCH parameter attached to the lagged conditional variance,

instead of for the ARCH parameter attached to the lagged squared shock. In doing

" In case of a negative v, the transition function is strictly monotonically increasing. In case
of a negative v and a strictly positive explanatory variable Z, the function F' yields transitions
between 81 + 1/285 and 31 + fBa.



so, we have several reasons in mind. If we view the model equation as a forecast-
ing model, then the one step ahead volatility forecast is determined as a weighted
average of the long-run forecast, the lagged squared shock, and lagged conditional
variance. Yet, estimates of the ARCH parameters are typically found to be small
or even insignificant (in particular for the GJR-GARCH specification), implying
that the forecast is mainly determined by the lagged conditional variance and its
weight, the GARCH parameter. Alternatively, in the ARCH(00) representation of a
GARCH model, the rate at which the effect of the squared innovations on the condi-
tional variance vanishes is primarily governed by the GARCH parameter. Besides,
Hillebrand (2005) argues that the effect of “spurious almost-integration” is greater
for parameter changes in the GARCH parameter than in the ARCH parameter. Fi-
nally, we note that time variation in the GARCH coefficient will induce variation
in the relative weight associated with the lagged squared shock. In our empirical
application in Section 3.4, we will, however, also consider a time varying ARCH
coefficient.®

The novelty of our model lies in linking the transition function to the history
of an explanatory variable z in a parsimonious way. We do so by employing the
MIxed Frequency DAta Sampling (MIDAS) framework introduced by Ghysels et
al. (2005). In a similar vein as in the GARCH-MIDAS model in Engle et al. (2012),

we construct Z in Eq. (3.4) from a variable z via a MIDAS weighting scheme as in

K

Tyo1 = (I)/mtfl = Z <Pk<791; 192)$t—k7 (3-6)
k=1

with ® = (¢1,...,9K), 1 = (241, ...,7,_ k)" and beta weights

(k/(K +1)" " (1= k/(K +1))""
1917192 - K , —1 . -1
ol ) S G/ + 1) (1= /(K 4 1))™

(3.7)

The transition is thus determined by a weighted average of K past realizations of

x. With only two parameters, the function in Eq. (3.6) allows for flexible weighting

8Bollerslev et al. (2015) take a different approach on time varying volatility persistence mod-
eling and propose an extension to the HAR model of Corsi (2009), where the parameters of the
model vary with the (estimated) degree of measurement error. They argue that daily RV provides
a stronger (weaker) signal for the next day’s volatility when the variance of the measurement error
is small (large). Their arguments carry over for time varying parameters in the GARCH(1,1) to
the extent that the GARCH parameter should increase (decrease) when squared returns are large
(low), since the precision of the squared shocks as a measure of daily realized volatility generally
decreases (increases) when the level of volatility is high (low).



schemes, in particular hump-shaped or convex schemes, of potentially many lags of

x. The restriction ¥, = 1 yields a strictly decreasing weighting scheme

(1—k/(K+1)""
S (L= G/ 4+ 1))

er(V) = (3.8)
where the rate of decay is increasing in .

Finally, the equations in (3.4)-(3.7) define the new time varying persistence (TVP)
GARCH-MIDAS model.® We highlight, that in case the variable z has no ex-
planatory power for time varying volatility persistence, i.e. v = 0, our new model
only nests the GJR-GARCH in Eq. (3.3) for the shifted transition function with
F(vy,i1) = F(v,-1) — 1/2 with F(0) = 0.1 However, the specification of the
transition function in Eq. (3.5) will be more convenient for our empirical analysis in
Section 3.4.

3.3 MISSPECIFICATION TEST

In this section, we present a misspecification test for testing the standard GJR-
GARCH model against the new model extension presented in the previous section.
The test will be based on the Lagrange multiplier (LM ) principle, which has emerged
as the leading testing principle in the GARCH misspecification testing literature.
Misspecification tests for the ST-GARCH model are discussed in Hagerud (1997),
Gonzélez-Rivera (1998), and Anderson et al. (1999). Lundbergh and Terésvirta

(2002) as well as Halunga and Orme (2009) present a unified framework for a number

9The model proposed and applied in this paper does not combine mixed data frequencies - note
that all model equations rely only on the daily time index ¢. Rather, we make use of the flexible
weighting scheme of the MIDAS approach to smooth the explanatory variable in a parsimonious
way and to link time-varying volatility persistence to regimes of say realized volatility or business
conditions (as motivated in Secion 3.2.1). This contrasts to the GARCH-MIDAS model introduced
in Engle et al. (2013) and applied for instance in Conrad and Loch (2014, 2015), where daily return
data is combined with monthly and quarterly macroeconomic data. However, the TVP-GARCH-
MIDAS model could likewise be applied to mixed frequency, though the misspecification test
presented in Section 3.3 would need to be modified appropriately.

10Using F in Eq. (3.4) instead of F, yields

he =w+ (o1 + aslye, | <oy)er_y + Bihe—1 + BoF (v, Fe—1)he—1,
which nests Eq. (3.3) for ¥ = 0 and can be re-parameterized as
by =w+ (o1 + asly., ,<op)erq + Brhi—1 4 BoF (v, 1)1,

with 1 = 81 — 1/20,.



of misspecification tests for (parametric) GARCH models. More recently, Conrad
and Schienle (2015) develop a misspecification test for the GARCH-MIDAS model
and derive its asymptotic theory. The derivation of the LM test statistic in this
section will follow along the lines of these papers and we adapt a similar notation
as in Conrad and Schienle (2015).

The model presented in the Section 3.2 shares the common characteristic with
nonlinear models that it is not identified if the true model is the nested standard
GJR-GARCH model. This problem can be circumvented by a linear approximation
of the transition function, which will be done in the next section. We then present
the LM test statistic in Section 3.3.2 and discuss its size and power properties in a

simulation study in Section 3.3.3.

3.3.1 LINEARIZING THE MODEL

In the following, we consider the shifted version of the transition function

L 1
F(v,®xi1) = (1 + exp(y®'ws-1)) T_ 5

so that the model nests the standard GJR-GARCH model in Eq. (3.3) if the variable
x has no explanatory power. Note, that the alternative model in Eq. (3.4) is not

identified under the null hypothesis. It nests the GJR-GARCH if v = 0, but then

Po and ® (or (1,12)) are nuisance parameters.

Following Luukkonen et al. (1988), Hagerud (1997), and Lundbergh and Terésvirta
(2002), we first linearize the transition function by means of a Taylor expansion in
order to break the nonlinear dependence on the parameter . The first order Taylor

expansion around 7y = 0 is given by

~ , N , OF (v, ®'x;_
F(y, ®'2i-1) = F(v0, ®'®-1) + (v — ) (7(97 =

= F’(’Yo, (I),mt—l) - (7 - 70) (1 + eXP(%(I)/wt—l))_2 eXp(%q)/mt—l)‘I)/iBt—l
+ Ri(y, ®'x;1)

+ Ri(y, ®'zi1)

¥=70

1
w4 R )

where R;(7y, ®'@,_1) is the remainder term. This yields the following linearized and



re-parameterized version of our model
ht =w + (Oél + Oég:ﬂ_{et_1<0})€?_1 + Blht—l + ﬂ/wt_lht_l + RI, (39)

with v/ = —ﬂﬁﬂ@’ and the remainder term R} = foR (v, ®'x;_1)h;—1. The model
now reduces to the standard GJR-model if ®# = 0. The linearized model has the
following ARCH(o0) representation

ht - Z
1=0

i

(Br+7'xij+ RY) | (w+ (a1 + aolye,,_,<0})Er-1—;) - (3.10)
=1

J

Since under Hy : v = 0, we have R} = 0, the stochastic remainder will not affect
the distributional properties of the test statistic under the null hypothesis. The

representation above then reduces to

ht|7‘r:0 = Z ﬁi (w + (051 + 052]1{5t_1_i<0}>8?717i) :
=0

3.3.2 THE LM TEST STATISTIC

We derive a Lagrange multiplier (LM) test for testing the null hypothesis that the
variable has no explanatory power in the linearized model in Eq. (3.9), i.e. we test
the hypothesis Hy : m = 0 against H; : w # 0.} The LM testing principle has
the advantage that it requires estimation of the model under the null only. It does
not rely on the asymptotic properties of the new model, whose derivations will not
be considered in this paper. In the following, let @ = (1, ) denote the parameter
vector of the model with n = (w, ay, as, f1)’, whereas 1y denotes the true GARCH
parameters under the null. Ay, = ht‘,,zo(n) refers to the conditional variance model
under the null and we specify ho (1) in case of the true GARCH parameters under
the null. The observed log-returns are given by &; = \/WZt, where Z; is
independent and identically distributed (i.i.d.) with mean zero, variance equal to
one and finite fourth moment.

The conditional quasi log-likelihood function for observation ¢ is given as

HStrictly speaking, the LM test we derive applies to testing the null of a GJR-GARCH against
the class of all non-linear models that yield the same first-order Taylor approximation as our model
alternative.



and the score vector evaluated under the null for observation ¢ is given as

ol

do,t(n) = 20

o 2Lhos | ho;s 00

=0

Explicit expressions for these partial derivatives are derived from the representation
in Eq. (3.10) as

oh > ;
— = Zﬁ1 (17 5?7172‘7 l{at,l,i<0}5§717@'7 ho,t—l—z’)/7
0N |x—o i=0
and
Oh, =
- = i _ih —1—g-
o L ;Blwt 1—3/0,t—1

The average score vector under the null is then obtained as

D():iz ] (v (3.11)
AT 2 |y ] :
with y, = 1/h0,t Zfio B% (L 5?—1—1'» ]]'{Et—lfi<0}€?—1—i7 hO,t—l—i)/ and

v =1/hoy Z;:o ﬁiwt—l—iho,t—l—i-

The variance of the score vector under the null and evaluated at the true GARCH

parameters is given by

1 2 2 / /
v=E<do7t<no>do,t<no>'>=E<;( . —1) (” y)) (3.12)

/ /
hot(10) T0:Yo: T0tTos

_k E(yoyos) E(Youro,) (3.13)
L\ E(royn,) Blroms,))

)

with Yo = yi(n0), o = 71(no) and £ = E((eZ/ho+(no) — 1)?).

The LM test statistic is based on the observed average score vector, which is
an approximation of Eq. (3.11) with truncated versions of y; and r;, evaluated
at the quasi-maximum likelihood estimator (QMLE) 7j of no under the null. Its
asymptotic distribution will not be shown in this paper, but it should be derived
along similar lines as in the proofs in Lundbergh and Terésvirta (2002), Halunga
and Orme (2009), and in Conrad and Schienle (2015), where the arguments in the
derivation rely on the results for the QM LE for pure GARCH models in Francq and
Zakoian (2004). Having used a similar notation as in Conrad and Schienle (2015),



the formula for the score in Eq. (3.11) differs from theirs only in the specification
of the (test) variables in the vector r; (besides including the additional derivative
with respect to the asymmetry parameter «y). The asymptotic distribution of the
test statistic can generally be derived in three steps. First, one shows asymptotic
normality of the average score evaluated at the true parameters 19. In a next step,
the score is related to the “lower part” of the score evaluated at the QMLE in
order to derive asymptotic normality of the latter. Finally, it is necessary to show
that the observed average score evaluated at the QM LFE has the same asymptotic

distribution as the unobserved one.

Adopting Theorem 3 in Conrad and Schienle (2015), we obtain the following LM

test statistic
1 T ore2 / T ore2
LM = — A—t—}ﬁ 3! {A—t—]f , 3.14

with parameter estimates from the model under the null n = (&, 4y, Go, Bl)’ , the
estimated variance process under the null 7, = & + (G + Goly(e, <0})Ef1 + Brhy_1,
Ty = 1/iLt Zf;é B{wt—l—iﬁt—l—ia and x;_; = (%&—1, .. -xt—K)-

A consistent estimator of the asymptotic variance of the relevant part of the score

at the QML estimates is given by

N T T T
A . K .y . . .
Y= iT ;rtrt - ;'f‘t'yt (; ytyt> ;ytrt : (3.15)

with & = 1/T 3. (¢2/hy — 1)2. Note, that the inverse of the asymptotic variance
3 of the relevant part of the score is given by the “(2,2) element” of V1. The
test statistic is asymptotically y? distributed with K degrees of freedom, where
K corresponds to the number of lags of the explanatory variable included in the

transition function, see Eq. (3.6).!2 Note that in the original non-linear model

12 Alternatively, the test can be carried out in the so-called TR? form (Engle, 1982) based on
the auxiliary regression

6% ~! A/
~— — 1| =yer +rea + uy.
hy
The LM test statistic in Eq. (3.14) and Eq. (3.15) can be re-written as T' times the uncentered R?

of this regression,
SSRy — SSRy

SSRy ’

where SSR; is the sum of squared residuals from the regression and SSRy is the sum of squared

LM =T



specification in Eq. (3.4), the null hypothesis that the variable = has no explanatory
power for time varying persistence corresponded to 7 = 0. The linearization of the
transition function in Section 3.3.1 leads to a degree of freedom K in the asymptotic
x? distribution, since the null is now that II; = Iy = --- = II;, = 0.

Finally, we compare the test in Eq. (3.14) and Eq. (3.15) to the misspecification
tests proposed in Amado and Terésvirta (2015), who consider testing the GJR-
GARCH with constant parameters against a general form of time-varying param-

3

eters.!® Adopting their notation to our setup, results in a decomposition of the

conditional variance h; = ho; + g+, where g, introduces non-stationarity and

hoy = w + (o0 + oo lye,_ <0})er_q + Brhog—1 (3.16)
gt = BoF'(v,Z1-1)ho i1 (3.17)

However, note that this does not yield the same model under the alternative as
in our model in Eq. (3.4). The above specification is not "recursive in nature“ as
pointed out by Halunga and Orme (2009), meaning that the functions hg, and g¢;
include lags of hg;—;, whereas in our alternative they should include the lag of the
volatility process h;—;. The Amado and Terdsvirta (2015) LM test statistic for
the linearized model will have the same form, but with 7, = 1/ hixi_1hi_i. The
lack of the recursive nature under the alternative may lead to a decrease in power,
as discussed in Halunga and Orme (2009) and Conrad and Schienle (2015). In
the following simulation study on the size and power properties, we shall therefore

compare our LM test to the Amado and Terésvirta (2015) test version.

3.3.3 SIMULATION STUDY: POWER AND SIZE PROPERTIES

In this section, finite sample properties of the proposed LM test are examined in a
Monte-Carlo experiment. We simulate return series with 7' = 1250 observations for
M = 1000 Monte-Carlo replications. Throughout the simulations, the innovation Z;
is assumed to be either standard normally distributed or (standardized) ¢-distributed
with seven degrees of freedom. We will calculate both the LM test statistic in
Eq. (3.14) and Eq. (3.15) and the Amado and Terésvirta (2015) test version, which
we denote by LM 4.

. 2
residuals under the null Hy : c; = 0, i.e. SSRy = Zthl (5f/ht - 1) .

BThey consider both an additive and a multiplicative misspecification of the conditional vari-
ance.



Size properties We first consider the size properties of the LM test statistic.
We simulate the model under the null of a GJR-GARCH(1,1) model, i.e. the data

generating process (DG P) for the conditional variance is given by
hy = w + (041 + 042]1{5,5,1<0}) 5,:2_1 + Brhi—1.

We set the parameter values to a; = 0.06, a; = 0.05, and consider three different
values for (3, reflecting different degrees of persistence (Low: L, Intermediate: I,
High: H)

Bl =082,  pl=087, pI =001

The persistence of the simulated model (a; + as/2 + £;) thus varies between 0.90,
0.95, and 0.99. The parameter w is adjusted accordingly for the unconditional
variance to be equal to one. The LM tests are based on different rolling windows

of realized volatility,
n=RVY = ="l N=1,2265

and we set K = 1. We report the empirical size for both LM tests in Table 3.1. The
empirical size is close to the nominal size for both test versions when Z; is normally
distributed. The size tends to decrease for t-distributed innovations, in line with
similar LM test evaluations in Conrad and Schienle (2015). The size properties are
robust to increasing K to K = 22 as well as in case the DG P includes a constant
in the mean equation and the LM tests are applied to de-meaned returns, see the

simulation results in the Appendix.*

Power properties In order to consider a realistic model under the alternative, we

include actual data in the TVP-GARCH-MIDAS model

1
he =w+ (1 + asly, <oy) &1y + (51 + 32 (F(’Y, D'z, ) — 5)) hi—y

K*
D'z | = Z (V) @,
=1

14 The true MIDAS lag length is of course unknown in empirical applications. In case of
misspecification testing in the GARCH-MIDAS model framework, Conrad and Schienle (2015)
argue that their LM test is not suited for selecting the true lag order of the model. Their argument
applies just as well to our TVP-GARCH-MIDAS model.



with w = 0.10, a1 = 0.05, a5 = 0.06, 8; = 0.82, B, = 0.18. We include daily rolling
windows of realized volatility, RV;(N), and of the VIX, VIXt(N), for N =1,22,65,
over the 2010-2014 sample.'> We consider two different smooth transitions in the
time-varying GARCH coefficient for each variable, with v € {—1, —10} for realized
volatility and v € {—1.5, —4} for the VIX. We denote the true MIDAS lag length
by K* and set K* = 1 or K* = 22 with ¥ = 3. We choose K = 1 in the test

statistics.

The daily rolling window versions of the variables over the 2010-2014 period as well
as the time-varying GARCH coefficients implied by the two model specifications are
shown in Figures 3.5 and 3.6. All variables except the daily realized volatility RVt(I)
are highly persistent. Increasing N in the rolling window versions of the variables
has a smoothing effect on them. Increasing the absolute value of the transition
parameter v has two effects: it steepens the transition between the persistence
regimes and attenuates the range of the time-varying GARCH coefficient if the
explanatory variable x is bounded from zero. The latter effect is particularly evident
in case of N = 65 and should make it more difficult to detect time variation in
persistence in that case. We present the results of the Monte-Carlo simulations for
normally distributed innovations and realized volatility in Table 3.2 and in Table
3.3 for the VIX. For each specification, we also report the standard deviation of
the time-varying GARCH coefficient.

Let us first consider the specifications including realized volatilities with v = —1
and K* = 1, i.e. the upper left part of Table 3.2. Our LM test has very good power
for the specifications with N = 22 and N = 65, with rejection rates of 86% and
93% at the 10% nominal level. The rates are always greater than for the LMt
test version, though they are similar in magnitude. Increasing K* does not have a
big effect on the time variation in the GARCH coefficient (note that its standard
deviation does not change by much) and consequently, the rejection rates are very
similar for K* = 22. For N = 1 and K* = 1 however, our test has difficulties in
detecting the time-varying persistence and we see substantially lower rejection rates
(33% at the 10% nominal level), though now the difference to LM 47 is much more
pronounced. Recall that the two test versions differ only in the specification of the
testing variable 7;. Our test includes 7, = 1/ h, ZE;S‘) Biwt,l,iﬁt,l,i, whereas the

LMt version includes only the first summand 1/ Btmt_lﬁt_l. For the very erratic

5More precisely, we take squared returns as a realized volatility measure and define VIX; as
1/365 times the squared VIX index. We standardize all variables by dividing with their standard
deviation. The sample is chosen so that it includes T' = 1250 observations.



R‘/;(l) variable, the additional smoothing via the summation in our test variable
seems to be beneficial in terms of power. Smoothing the time-varying GARCH

coefficient by increasing K* slightly increases the power of our test.

For the model specification with v = —10, it becomes more difficult to detect time
variation in the persistence for the rolling windows with N = 22 and N = 65. As
already suggested in Figure 3.5, the standard deviation of the time-varying GARCH
coefficient decreases, which leads to lower rejection rates. In sharp contrast, our
test now has good power for the N = 1 specification and yields particularly higher
rejection rates than the LM p version, namely 62%, resp. 91%, compared to 31%,
resp. 35%, at the 10% nominal level for K* = 1, resp. K* = 22.

Results for the specifications including the VX are reported in Table 3.3. The
VIX is generally smoother and less erratic than realized volatility, resulting in over-
all higher power of the tests. For the DGP with v = —1.5, our test yields rejection
rates well above 95% at the 10% nominal level across all specifications. Again,
our test performs particularly better than the LM 47 version for the rolling windows
with NV = 1. Choosing v = —4, decreases the standard deviation of the time-varying
GARCH coefficient, which leads to lower rejection rates. Interestingly, differences
in rejection rates for the different rolling windows are much less pronounced than
for realized volatility, since already the rolling windows of the VIX are relatively

smooth (see Figure 3.6).

Including standardized ¢-distributed errors instead of normally distributed ones
tends to decrease the power of the tests, though our main conclusions are still valid.

The simulation results are presented in the Appendix.

In summary, the power of our LM test is high for reasonably smooth and large
time variation in persistence and its power is particularly higher than the LMyr

test version for erratic explanatory variables.

3.4 EMPIRICAL ANALYSIS

This section presents an empirical application of the new TVP-GARCH-MIDAS
model to stock returns on the S&P 500. The dataset is briefly discussed in Section
3.4.1 and estimation results are presented in Section 3.4.2. In Section 3.4.3, the
forecasting performance of the new model is compared to the GJR-GARCH model

in a direct forecasting evaluation.



3.4.1 DATA

Our empirical analysis focuses on the S&P 500 and general U.S. macroeconomic
conditions for the 1969 to 2014 period. We consider continuously compounded
daily S&P 500 stock return data, r;, from January 2nd 1969 to December 31st
2014. We calculate daily realized volatility, RV,;(D = r2, and a 22-days rolling
window version thereof, RV;@Q) = 1/22 Z?lzo Tf_j. In order to account for general
macroeconomic conditions, we consider the Aruoba-Diebold-Scotti (ADS) business
conditions index, which is introduced in Aruoba et al. (2009) and is provided by
the Federal Reserve Bank of Philadelphia. The index tracks real business conditions
at a daily frequency. It is based on six economic indicators: weekly initial jobless
claims, monthly payroll employment, industrial production, personal income less
transfer payments, real manufacturing and trade sales, and quarterly real GDP.
Its average value is zero, positive values indicate better-than-average conditions,
and negative values worse-than-average conditions. We calculate the 22-days rolling
window version of the ADS as ADS™ =1 /22 2]2.1:0 ADS,;_;. Summary statistics
of the daily data are presented in Table 3.4 and the variables are depicted in Figure
3.7. Note that compared to the ADS, realized volatility is heavily skewed with
an excessive kurtosis. Finally, we also consider a modified version of the ADS that
focuses only on its negative values, neg ADSt(QQ) = min{0, ADSI,@)}, see also Dorion
(2013). Throughout the empirical analysis, we consider standardized versions of the

variables divided by their standard deviation.

3.4.2 ESTIMATION RESULTS

We estimate the TVP-GARCH-MIDAS model defined in the equations (3.4)-(3.7)
with the daily 22-days rolling window versions of realized volatility, ADS, and
neg ADS using quasi-maximum likelihood methods. We include one MIDAS lag
year in the MIDAS filter, i.e. we set K = 252 in Eq. (3.6).'¢ The estimation re-
sults are presented in Table 3.5 along with the benchmark GJR-GARCH(1,1) model
estimates.

In terms of likelihood criteria, only the model with RVt(22) yields a lower Bayesian

information criterion than the benchmark GJR-GARCH. Accordingly, estimates of

6We find K = 252 to be sufficiently large for our application. As demonstrated in Engle et
al. (2013) and Conrad and Loch (2014), the beta weighting function seems to be robust to the
maximum number of lags K included in the MIDAS filter, as long as it is chosen large enough.
See also Footnote 14 on the MIDAS lag length choice.



the model extension parameters are highly significant for the RV model, whereas
only the By parameter is found to be significant at the 5% level for the neg ADS
variable. However, due to the identification issue under the null discussed in Section
3.3.1, the (in)significance of the model extension parameters have to be taken with
a pinch of salt. We therefore add the LM test statistic presented in Eq. (3.14) and
Eq. (3.15) for testing the null hypothesis that the variable x has no explanatory
power for time variation in the GARCH coefficient. The test statistic is significant
at the 1% level for both ADS variables and lies slightly above the 10% significance
level for the RV variable.!” The estimated (restricted) MIDAS weighting schemes
are plotted in Figure 3.8.1% The schemes roughly imply vanishing weights for lags
beyond half a year.

Next, we have a closer look at the time variation in persistence that is im-
plied by the model estimations. The estimated time-varying GARCH coefficients,
B, =B+ BQF(&, é’mt_l), are shown in Figure 3.9 and some descriptive statistics
are summarized in Table 3.6. First, the signs of the transition parameter + confirm
our intuition from Section 3.2.1. A negative v for RV implies that the time-varying
GARCH coefficient is positively related to realized volatility, i.e. we see high (low)
persistence during high (low) volatility regimes. Correspondingly, positive ~y es-
timates for the ADS variables imply increasing (decreasing) persistence for weak
(strong) business conditions. The RV model implies a greater time variation in
the GARCH coefficient than the ADS models. For RV, the coefficient lies in the
range of [0.78,0.90], whereas it lies in the range [0.91,0.93] for the ADS models.
Accordingly, we see a higher standard deviation of the GARCH coefficient in the
RV model.” Both versions of the ADS variable yield a similar time variation in
persistence, though the neg AD.S version yields a slightly smoother variation. How-
ever, note that both models imply a lower persistence than the GJR-GARCH model
on average.

For the ADS variables, particularly for the negative ADS, we see essentially two
persistence regimes in Figure 3.9 that roughly correspond to recession and expansion

periods with not much variation in between. For realized volatility on the other

I"The financial crisis period seems to have distorting effects on the LM test for the realized
volatility model. The test statistic for the subsample ending 2007 is calculated as 4.06 and is
significant at the 5% level.

18For all three variables, including an unrestricted scheme in Eq. (3.7) instead yielded no sig-
nificant improvements in terms of the likelihood (as measured by means of a likelihood ratio test).

9Note that the range of the time-varying GARCH coefficient implied by the model estimates
31,32 differs for the strictly positive RV/neg ADS, and the ADS, since in the first case, the
transition function is restricted to the [0.5, 1] interval, see also Footnote 7.



hand, there is more variation in the GARCH coefficient during expansion periods.
This suggests that there are other factors than the U.S. business conditions affecting
volatility persistence, which are reflected in realized volatility but not in the ADS.
For instance, monetary policy is an important driver of realized volatility. The term
spread (which is not included in the ADS) has strong predictive power for realized
volatility, as shown in Paye (2012), and is a leading indicator for financial volatility,
as argued in Conrad and Loch (2014).

We illustrate the underlying transitions between high and low persistence regimes
implied by the explantory variables in Figure 3.10. The figure plots estimates of
the transition function F(4,®'x,_1) and the time-varying GARCH coefficient f;,
which corresponds to a linear transformation of the transition function, against
the weighted average of the respective explanatory variable z, 7; = 'z, =
Zifl OrTi_. To illustrate how the distribution of the explanatory variables re-
lates to the time variation in persistence, the figure includes histograms of z; and of
the transition / GARCH coefficient. The skewness of realized volatility is evident
and in line with the descriptive statistics in Table 3.4. Combined with some large
outliers, this translates into a very steep transition function for realized volatility,
which results in the GARCH coefficient being almost flat during very high volatility
regimes, such as the financial crises 2008/09. On the contrary, the distribution of
the ADS is symmetric around zero with few outliers and its translation function is
smoother.

Finally, we find similar results if we let the explanatory variables govern time
variation in the ARCH coefficient. The corresponding estimates of the time-varying
ARCH coefficient as well as a summary of their descriptive statistics can be found
in the Appendix. However, we note that these model estimates imply a higher level
of average volatility persistence, compared to the specification with a time-varying
GARCH coefficient. This finding is perfectly in line with the argument by Hillebrand
(2005) that the effect of overestimating volatility persistence is stronger if changes
in the GARCH parameter are not accounted for (see also the discussion on page

80). This reconfirms the specific choice of our model specification in Eq. (3.4).

3.4.3 FORECASTING EVALUATION

Our forecasting analysis is based on model estimations up to the end of 1999 and an
out-of-sample evaluation period from 2000 to 2010. Subsample model estimations as

well as descriptive statistics for the estimated time-varying persistence are presented



in the Appendix. Note that the LM test statistic is now found to be significant at
the 1% level for the RVtm) variable. Also, the average estimated persistence from
the TVP-GARCH model estimations are found to be lower for the subsample, which
excludes the financial crisis, than for the full sample.

In the direct forecasting evaluation, we use the mean squared error (M SE) and
the quasi-likelihood (QLIK E) loss functions, since Patton (2011) showed that they
are both robust in the sense that they yield the same ranking of two volatility fore-
casts when using an observed (unbiased) volatility proxy instead of the unobserved
true volatility. The two loss functions differ in an important way: the MSE is a
symmetric loss function, whereas the QLI K E depends on the relative forecast error
and penalizes more heavily volatility forecasts that underestimate volatility. More-
over, Brownlees et al. (2011) show that the M SE has a bias that is proportional to
the true volatility, whereas the bias of QLI K F is independent of the volatility level.
Let RV,.; denote the realized volatility proxy that is based on 5-minutes intra-day
returns and let ilt+l\t denote the I-step ahead volatility forecast.?’ For observation

t, the two loss functions are then given by

MSE, = (RVHz — ﬁt+lt>2 )

QLIKE, = BVir log (5”“) —1.

1t 1t

Note that at the beginning of period ¢t + 1, the time-varying GARCH coefficient
Brr1 = P + B2 F (7, ®'x;) is predetermined with respect to JF;, since the transition
function includes lags of x beyond period t. Thus, the one-step ahead volatility
prediction izt+1|t from the TVP-GARCH-MIDAS model is simply A1, just as in
the GJR-GARCH model. In computing volatility forecasts from the TVP-GARCH-
MIDAS model beyond horizon [ = 1, we make the simplifying assumption that
E[Bi11|Fi] = Biyq for 1 > 1, that is we keep ;41 fixed. Volatility forecasts are then
obtained iteratively in a similar way as in the GJR-GARCH model.

The results of a forecast evaluation based on the QLI K F for daily forecasts hori-
zons [ = 1,10,22,65 are presented in Table 3.7. Based on a Diebold-Mariano test,
we find significant improvements over forecasts from the GJR-GARCH benchmark
model for the TVP-GARCH-MIDAS model including the RV across all horizons.
On the other hand, the models including the ADS yield no significant improvements

over the benchmark model. We find similar results for the mean squared error loss

20We rely on intra-day returns from the Oxford-Man-Institute of Quantitative Finance.



function. In Figure 3.11, we show the R?s obtained from Mincer-Zarnowitz regres-
sions across horizons [ = 1,...,65, that is from regressing realized volatility for
period t + [ on a constant and the respective [-step ahead volatility forecast given ¢.
The R? obtained from the RV forecasts constantly lies above the other ones across
the horizons. On the other hand, the R? from the benchmark model is not dis-
tinguishable from the ADS models. In summary, we find strong evidence that the
model with time-varying persistence determined by RV;(QQ) significantly improves
volatility forecasts over the GJR-GARCH model.

Finally, we compare the volatility forecasts across volatility regimes in order to get
a sense when the adjustment in volatility persistence pays off the most. We follow
the approach in Lanne and Saikkonen (2005) and split realized volatility into three
categories. Then, based on each realized volatility observation, we calculate forecasts
implied by the different model estimations at horizons from 1 to 65 days and take
the average of the forecasts for a given horizon within each category. The average
realized volatility as well as the volatility forecasts at each horizon are depicted in
Figure 3.12. The forecasts are based on the initial realized volatility value RV} with
RV < 0.6,0.6 < RVy < 4.3, and RV > 4.3. The thresholds correspond to the 50%
and 95% quantile of realized volatility and most of the observations falling into the
last category coincide with the financial crisis period. Note that we plug in RV, as
a starting value for all models and then iterate the forecasts based on the respective
persistence estimates. This exercise does therefore not evaluate the actual volatility
(point) forecasts, but rather compares the persistence evolvement that is implied by
the models.

We find that on average, forecasts from the TVP-GARCH-MIDAS model with
RVtm) capture very well the actual rate of persistence of realized volatility for the
first (low initial RVp) and the last (high initial RV;) category. The two models
with the ADS variables yield similar forecast persistence, though the negative ADS
improves over the standard AD.S variable in the high initial realized volatility regime.

In the low volatility regime, the TVP-GARCH-MIDAS models imply a lower
volatility persistence than the GJR-GARCH, but the level implied by the ADS is
still to high compared to the actual persistence of realized volatility in this regime.

Similarly, the ADS overestimates persistence in the high volatility regime.?!

21Tn line with the full sample estimations, the TVP-GARCH MIDAS model with realized volatil-
ity yields a greater time variation in persistence. The minimum persistence value for the model is
0.7788, compared to (0.9829) 0.9777 for the (negative) ADS. The mazimum persistence value for
the model with realized volatility is 0.9545, compared to (0.9922) 0.9972 for the (negative) ADS.
The estimated persistence implied by the GJR-GARCH model equals 0.9881. The full descriptive



The “spurious almost-integration” effect for the GJR-GARCH(1,1) is evident in
the low realized volatility category, where the rate of persistence is too high. For the
intermediate initial realized volatility category, none of the models is able to capture
the right level of persistence, but note that the differences to the actual evolvement

of realized volatility are small compared to the high volatility regime.

3.5 CONCLUSIONS

We suggest a new GARCH volatility model that links time-varying persistence
(TVP) to an explanatory variable using MIDAS techniques. The new model nests
the GJR-GARCH in case the variable has no explanatory power and we present a
misspecification test based on the Lagrange multiplier principle. We find good sam-
ple size and power properties in a Monte-Carlo simulation study. In an empirical
application to the U.S. stock market, we provide evidence that volatility persistence
is counter cyclical and high (low) during periods of weak (strong) business condi-
tions and high (low) realized volatilities. However, the model including realized
volatility is able to capture more time variation in the persistence than the model
including business conditions and is preferable from a forecasting point of view. It
therefore seems natural to extend our empirical analysis to including alternative
(high-frequency) realized volatility measures as explanatory variables. Also, our
framework allows to include macroeconomic variables of lower frequency, though

the misspecification test would have to be adjusted accordingly.

statistics are presented in the Appendix.



3.6 TABLES AND FIGURES

3.6.1 TABLES

TABLE 3.1: EMPIRICAL SIZE PROPERTIES OF THE LM-TESTS

L I H L I H

, = RV"
1% | 0.95 062 051 | 043 020 0.30

LM 5% | 318 3.62 323 | 267 205 193
10% | 805 754 636 | 597 563  5.07

1% | 085 0.72 081 | 0.64 0.61 0.30
LMar 5% | 4.03 320 3.13 | 3.62 4.09 3.65
10% | 9.32 826 7.58 | 874 815 7.09

21 = RV
1% 0.74 1.14 0.61 | 0.64 0.61 0.20

LM 5% 4.77 4.86 4.24 | 5.01 4.40 3.14
10% | 10.06 9.61 8.48 | 9.59 9.21 6.18

1% | 042 062 051 | 032 041 0.20
LMar 5% | 3.18 341 3.54 | 352 266 3.14
10% | 8.16  6.51 7.07 | 6.61 594 588

) = RVt(65)
1% 1.69 1.76 1.21 0.53 0.92 1.22

LM 5% 6.04 5.27 7.07 | 5.12 6.02 6.18
10% | 12.08 12.40 12.63 | 9.28 10.44 11.14

1% 117 1.14 1.11 | 0.53 041 0.41
LMar 5% 498 517 5.05 | 3.20 3.38 3.75
10% | 10.70 10.85 11.21 | 9.59 8.90 841

Notes: Rejection rates in percent at the 1%, 5%, and 10% nominal level.
The data generating process is a GJR-GARCH(1,1) process

gt = \/EtZt
ht = w4+ (Ozl +a21{8t—1<0}) E?,l + Bihie—1,

with parameter values set to ey = 0.05, a2 = 0.06, and persistence regimes
L, I, and H with 8f = 0.82, 8f = 0.87, and B = 0.91. The persistence
of the simulated model (a1 + a2/2 + 1) thus varies between 0.90,0.95, and
0.99. We set w accordingly, so that the unconditional variance equals one.
The shocks Z; are simulated from a standard normal distribution or a t-
distribution with seven degrees of freedom. The LM-tests are based on x; =
RVt(N> = % Zj\f:_ol z—:?ij, with N = 1,22,65, and we set K = 1 in the test
statistics. LM refers to the test statistic in Section 3.3.2, see Eq. (3.14) and
Eq. (3.15), whereas LM a7 refers to the Amado and Terésvirta (2015) test
version, see the discussion at the end of Section 3.3.2.




TABLE 3.2: EMPIRICAL POWER PROPERTIES OF THE LM-TESTS WITH RV

K =1 K* =22
N 1 22 65 1 22 65
Tt = RVt(N) v=-1

SD of B; 0.013 0.017 0.017 | 0.009 0.016 0.017
1% 9.3 61.6 727 | 127 579 72.3

LM 5% 246 781 882 | 2855 754 87.2
10% 33.0 8.6 933 | 36.7 845 92.9

1% 4.2 50.9  68.3 3.1 43.2 64.7

LMar 5% 126 717 85.7 9.9 63.0 84.2

10% 20.0 804 920 16.3  74.2 90.3

SD of B; 0.032 0.018 0.008 | 0.025 0.016 0.008
1% 32.7  36.6 8.7 65.1  30.2 8.4
LM 5% 51.0 559 220 | 843 514 21.3

10% 61.5 66.1 333 | 90.7 60.6 32.4
1% 10.2 239 6.4 11.6  16.1 5.9
LM ar 5% 221 446 200 | 245 352 18.2
10% 31.3 555 295 | 345 458 28.6

Notes: Rejection rates at 1%, 5%, and 10% nominal level. The data generating
process is the TVP-GARCH-MIDAS(1,1)

£t = \/EtZt

1
hi =w+ <a1 + a21{gt71<0}) €2 4+ (51 + B2 (F(’%@/mtfl) - 5)) hi—1
o
@'z 1= o)z,
k=1

with w = 0.1, a1 = 0.05, a2 = 0.06, B1 = 0.82, B2 = 0.18, ¥ = 3, and v = —1 or
v = —10. z¢ is taken as rolling window versions of realized volatility, RV;(N) with
N = 1,22,65, over the 2010-2014 sample. K* denotes the true MIDAS lag order in
the DGP. We also report the standard deviation (SD) of the time-varying GARCH
coefficient in the DGP, 8; = 81 + B2 (F(v, D'xi_q1) — % .

All test statistics are based on K = 1. LM refers to the test statistic in Section 3.3.2,
see Eq. (3.14) and Eq. (3.15), whereas LM 7 refers to the Amado and Terdsvirta
(2015) test version, see the discussion at the end of Section 3.3.2. The shocks Z; are
simulated from a standard normal distribution.




TABLE 3.3: EMPIRICAL POWER PROPERTIES OF THE LM-TESTS WITH THE VIX

K =1 K* =22

N 1 22 65 1 22 65

2 =VIXN  y=-15

SD of 8 0.019 0.018 0.018 | 0.019 0.018 0.018
1% 798 800 789 | 785 785  79.0

LM 5% 93.0 931 926 | 925 923  93.0
10% | 963 97.2 964 | 963 968  96.3

1% 61.4 728 721 | 538 66.7 683

LMz 5% 833 895 90.0 | 784 867 88.6

10% | 909 954 956 | 87.6 927 946
2 =VIXN =4

SD of 3, 0.013 0.012 0.010 | 0.013 0.011 0.010
1% 334 264 205 | 298 245  20.1

LM 5% 56.8 49.6 43.1 53.0 48.6 428
10% 68.5 61.6 559 | 646 60.2 553

1% 19.7  18.2 14.2 152 159 13.7

LM 41 5% 421 428  36.7 | 354 395 351

10% 54.6  54.6  49.5 | 47.7 515 483

Notes: Rejection rates at 1%, 5%, and 10% nominal level. The data generating
process is the TVP-GARCH-MIDAS(1,1)

£t = \/EtZt
1
ht = w+ (oq + a21{5t71<o}) ef_q1+ (61 + B2 (F(% @'z 1) — 5)) hi—1
o+
@'z 1= or()Tip,
k=1

with w = 0.1, a1 = 0.05, ag = 0.06, 51 = 0.82, B2 = 0.18, ¥ = 3, and v =
—1.5 or v = —4. z; is taken as rolling window versions of the VIX, VIXt(N> with
N = 1,22,65, over the 2010-2014 sample. K* denotes the true MIDAS lag order in
the DGP. We also report the standard deviation (SD) of the time-varying GARCH
coefficient in the DGP, B; = 81 + B2 (F (v, ®'z¢—1) — % .

All test statistics are based on K = 1. LM refers to the test statistic in Section 3.3.2,
see Eq. (3.14) and Eq. (3.15), whereas LM 1 refers to the Amado and Terdsvirta
(2015) test version, see the discussion at the end of Section 3.3.2. The shocks Z; are
simulated from a standard normal distribution.




TABLE 3.4: DESCRIPTIVE STATISTICS OF THE DATA

Variable Min Max Mean SD Skew. Kurt.

S&P 500 returns 2290 1096  0.03  1.07 -1.03  29.09

Realized volatility 0.00 52440 1.14  6.02 59.80 4977.19
(0.00) (87.13) (0.19)  (1.00)

RV, 0.06 37.82 114 235 977  123.06
(0.03)  (16.12) (0.49) (1.00)

ADS, 442 278 -0.09 087 -123  6.76
(-5.07)  (3.18)  (-0.10) (1.00)

ADS) 430 262  -009 086 -1.26  6.74

(-5.00)  (3.04) (-0.10) (1.00)

Notes: The reported statistics include the minimum (Min) and maximum (Max), mean,
standard deviation (SD), Skewness (Skew.), and Kurtosis (Kurt.). Daily realized volatil-
ity is the squared daily return and its 22-days rolling window version is calculated as

RV;(QQ) =1/22 251:0 T?ﬁ]‘, and analogously for the ADS Business Conditions Index. For
each variable, the second row displays statistics in parentheses for a standardized version,
where the variable is divided by its standard deviation. The full sample includes 11576

daily observations from January 2, 1969 to December 31, 2014.
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TABLE 3.6: DESCRIPTIVE STATISTICS OF TIME-VARYING PERSISTENCE

Variable Min Max Mean SD
Panel A: Time-varying GARCH coefficient

RV, 0.7792 0.8946 0.8592  0.0312
ADS* 0.9017 0.9267 0.9118  0.0050
neg ADS®?  0.9065 0.9250 0.9106  0.0052
Panel B: Time-varying persistence

RV, 0.8565 0.9718 0.9364 0.0312
ADS* 0.9708 0.9958 0.9810  0.0050
neg ADS*®  0.9760 0.9945 0.9801  0.0052
Notes: The table reports descriptive statistics of the time-varying

GARCH coefficients, 8; = 81 + B2 F (¥, ®'z¢_1), from the TVP-GARCH-
MIDAS model estimations in Table 3.5 and the corresponding time-
varying persistence, calculated as &1 + =&z + B¢. The estimated GARCH

2

coefficient, resp. persistence, from the GJR-GARCH model is 0.9164, resp.

0.9852.

TABLE 3.7: DAILY FORECAST EVALUATION

Forecast horizon =1 [=10 [=22 [ =065
Model QLIKEF loss ratio
GJR-GARCH(1,1) 023 034 042 0.59
RV,*? 0.96 097 0093 0.88
(0.00] [0.06] [0.00] [0.00]
ADS) 101 1.01  1.00 0.96
(0.00] [0.18] [0.76] [0.17)
neg ADS*? 100 1.00  0.99 0.93
(0.90] [0.97) [0.41] [0.11]

Notes:

The forecast evaluation is based on TVP-GARCH-MIDAS

model estimations on the subsample from March 1970 to December
1999, see the estimations results in the Appendix. We evaluate daily
volatility forecasts for varying forecast horizons [ = 1, 10,22, 65 over
the January 2000 to December 2014 out-of-sample period with 3744
observations. Volatility forecasts are evaluated using the QLIKE loss
function,

QLIKE = TVt 0, <RV’5“> _1,

hiyiye hiyiye

with the [—step ahead volatility forecast fzt+”t and the RV proxy
RV;4; that is based on 5-min intra-day returns. We present mean
QLIKE losses for the benchmark GJR-GARCH(1,1) model and mean
QLIKE loss ratios relative to the benchmark for the TVP-GARCH-
MIDAS models. A ratio below one implies an improvement over
the benchmark model. In brackets, we present p-values based on a
Giacomini-White test on equal predictive ability.




3.6.2 FIGURES

FIGURE 3.1: EMPIRICAL AUTOCORRELATION FUNCTIONS ACROSS SUBSAMPLES
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1980 - 1989

I returns
[ squared returns
] GARCH(1,1) model

2000 - 2009

M returns
[ squared returns
1 GARCH(1,1) model

T
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Notes: Empirical autocorrelation functions up to lag 100 for daily returns and squared returns
across four decades from 1970 to 2009. The dashed lines are 95% confidence bands for independent
white noise, calculated as +1.96/v/T. For each decade, a simple GARCH(1,1) model is estimated
and the model implied autocorrelation function is added to the figure.



FIGURE 3.2: EMPIRICAL AUTOCORRELATION FUNCTIONS ACROSS ADS REGIMES

ADS business indicator

[ negative ADS RW(22)
[ positive ADS RW(22)

70 75 80 85 90 95 00 05 10

negative ADS regimes positive ADS regimes

[ squared returns [ squared returns
25 M returns 25+ M returns

Notes: The top row shows the daily 22-days rolling window of the ADS business indicator, denoted
by ADS RW(22), over the full 1969-2014 sample. Shaded areas represent NBER recession periods.
There are 5732 negative and 5823 positive values of the ADS RW(22). The bottom row shows
the empirical autocorrelation functions (ACF) up to lag 100 for daily returns and squared returns
across negative and positive 22-days rolling window ADS regimes over the full sample. The dashed
lines are 95% confidence bands for independent white noise, calculated as +£1.96v/T. See Eq. (3.1)
for the calculation of the ACF across the two regimes.



FIGURE 3.3: EMPIRICAL AUTOCORRELATION FUNCTIONS ACROSS RV REGIMES
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Notes: The top row shows the daily 22-days rolling window of mean-adjusted realized volatility,
denoted by RV RW (22), over the full 1969-2014 sample. Shaded areas represent NBER recession
periods. The mean value of RV RW(22) is 1.14 and there are 2812 values above and 8743 values
below the mean. The bottom row shows the empirical autocorrelation functions (ACF) up to lag
100 for daily returns and squared returns across above and below average realized volatility rolling
window (with 22 lags) regimes over the full sample. The dashed lines are 95% confidence bands
for independent white noise, calculated as £1.96v/T. See Eq. (3.1) for the calculation of the ACF

across the two regimes.



FIGURE 3.4:

TRANSITION FUNCTION
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Notes: Transition function F(v,Z) = (1 4 exp(yZ))” " with v € {0.25,1,4} and v = —1.



FIGURE 3.5: EMPIRICAL POWER PROPERTIES OF THE LM-TESTS WITH RV

Daily RV rolling windows: 2010-2014
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Notes: The top row figure shows daily rolling window versions of realized volatility, denoted by RV
RW(N), with N = 1,22,65, over the 2010-2014 period. The bottom row shows the time-varying
GARCH coefficient implied by the two TVP-GARCH-MIDAS model specifications considered in
the power simulation for the LM test, see Section 3.3.3 and Table 3.2. The two specifications
only differ in the value for the v parameter, which governs the transitions between the persistence
regimes.



FIGURE 3.6: EMPIRICAL POWER PROPERTIES OF THE LM-TESTS WITH THE VIX

Daily VIX rolling windows: 2010-2014

VIX RW(1)
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Notes: The top row figure shows daily rolling window versions of the VIX, denoted by VIX
RW(N), with N = 1,22,65, over the 2010-2014 period. The bottom row shows the time-varying
GARCH coefficient implied by the two TVP-GARCH-MIDAS model specifications considered in
the power simulation for the LM test, see Section 3.3.3 and Table 3.3. The two specifications
only differ in the value for the v parameter, which governs the transitions between the persistence
regimes.



FIGURE 3.7: FINANCIAL AND MACROECONOMIC DATA

S&P 500 daily returns

RV RW(22) (standardized)
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Notes: Daily S&P 500 log returns (top row), 22-days rolling window of the daily ADS business
conditions index (bottom row, left) and 22-days rolling window of daily realized volatility (bottom

row, right). The two variables are standardized through division by their standard deviation.
Shaded areas represent NBER recession periods.



FIGURE 3.8: BETA WEIGHTING SCHEMES
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Notes: Beta weighting schemes from the TVP-GARCH-MIDAS model estimations (see Table 3.5)
with one MIDAS lag year of daily data, i.e. with K = 252 in Eq. (3.8).

FIGURE 3.9: TiME-VARYING GARCH COEFFICIENTS
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Notes: Time-varying GARCH coefficients calculated as 3; = (1 + BoF (4, >’ x;_1) based on the
TVP-GARCH-MIDAS model estimations in Table 3.5. Shaded areas represent NBER recession
periods.



FIGURE 3.10: TRANSITION FUNCTIONS AND TIME-VARYING GARCH COEFFICIENTS
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Notes: Transition functions (gray, left axis), F (5, ®'z¢_1) = 1/(exp(3®'x;_1)), and time-varying

b

GARCH coefficients (black, right axis), 8; = 1 + B2 F (¥, ®'¢,_1), from the TVP-GARCH-MIDAS
model estimations in Table 3.5. The functions are plotted against the weighted average of the
respective explanatory variable that is implied by the model estimation, bz, = Zifl DrTi—k-
The axes also include histograms to illustrate the distribution of the (weighted) explanatory vari-

able (bottom), the transition function (left), and the GARCH coefficient (right).



FIGURE 3.11: MINCER-ZARNOWITZ REGRESSION RZ2s

ARCH(1,1)
V RW(22)
ADS RW(22)
— — - neg ADS RW(22)

forecast horizon

Notes: R2s from a Mincer-Zarnowitz regression across varying forecast horizons, i.e. the R? values
from regressing the [-step ahead realized volatility on a constant and the [-step ahead volatility
forecast for [ = 1,...,65.

FIGURE 3.12: AVERAGE VOLATILITY FORECAST OVER DIFFERENT VOLATILITY REGIMES
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Notes: The figure shows averages of out-of-sample volatility forecasts of the GJR-GARCH(1,1)
and the TVP-GARCH-MIDAS model specifications at horizons [ = 1,...,65, over different values
of realized volatility. The forecasts are based on initial realized volatility values RVy with RV <
0.6, 0.6 < RV < 4.3, and RVy > 4.3. See also the subsample estimation results presented in the
Appendix.



3.7 APPENDIX
A TABLES

TABLE A.1: EMPIRICAL SIZE PROPERTIES OF THE LM-TESTS WITH K = 22

Z, ~N(0,1) Zy ~ 1(7)
L I H L I H

o0 = RV
1% | 074 083 081 | 1.81 152 1.74

LM 5% | 413 475  4.65 | 4.05 355  4.20
10% | 911 981 899 | 6.93 6.79  6.55

1% | 0.64 052 051 | 1.49 132 1.74

LM ar 5% | 318 351 424 | 362 3.65 3.79
10% | 9.11 940 859 | 7.36 588  7.06

z, = RV
1% | 1.27  1.34 141 | 1.07 1.22 1.23

LM 5% | 4.13  3.72 4.24 | 522 4.15 5.12
10% | 710 7.95 838 | 842 7.50 7.8

1% | 138 124 131 | 096 091 1.02

LMar 5% | 413 393 384 | 448 344 450
10% | 710 7.95 677 | 8.00 7.19  7.98

= RVt(es)
1% 1.38 1.14 1.01 2.56 2.74 2.56

LM 5% | 5.19 5.17 4.65 | 6.18 5.78 6.35
10% | 9.75 10.33 10.61 | 9.28 8.41 9.42

1% 1.27 1.24 1.11 1.92 1.93 2.05

LMyt 5% | 5.19 5.17 4.75 | 597 4.76 5.73
10% | 9.75 9.71 8.99 | 832 &8.31 8.70

Notes: Rejection rates in percent at the 1%, 5%, and 10% nominal level.
The data generating process is a GJR-GARCH(1,1) process

gt = \/EtZt
ht = w + <a1 +a21{5t71<0}> E?,l + Biht—1,

with parameter values set to a1 = 0.05, a2 = 0.06 and persistence regimes
L, I, and H with 8F = 0.82, 8f = 0.87, and B = 0.91. The persistence
of the simulated model (a1 + a2/2 + (1) thus varies between 0.90,0.95, and
0.99. We set w accordingly, so that the unconditional variance equals one.
The shocks Z; are simulated from a standard normal distribution or a t-
distribution with seven degrees of freedom. The LM-tests are based on x; =
RV = Ly NTle? | with N = 1,22,65, and we set K = 22 in the
test statistics. LM refers to the test statistic in Eq. (3.14) and Eq. (3.15),
whereas LM g7 refers to the Amado and Terasvirta (2015) test version, see
the discussion at the end of Section 3.3.2.




TABLE A.2: EMPIRICAL SIZE PROPERTIES OF THE LM-TESTS WITH [

Z; ~ N0, 1) Z, ~1(7)
L I H L 1 H

Ty = RVt(l)
1% 095 093 071 | 042 020 041

LM 5% | 3.48 3.81 3.55 | 3.07 3.68 1.93
10% | 7.70 845 6.69 | 6.03 5.73  4.78

1% 0.63 052 081 | 0.74 0.61 0.30

LMt 5% | 4.01 361 3.65 | 3.60 3.68 4.78
10% | 9.07 804 791 |899 7.98 752

71 = RV
1% 0.63 082 061 | 074 0.61 0.30

LM 5% 4.96 4.64 4.16 | 497 4.40 2.85
10% | 9.49 9.79 9.03 | 9.21 9.41 6.71

1% 0.53 0.72 0.61 | 0.32 0.41 0.20

LM 7 5% 3.06 3.09 3.65 | 3.07 256 244
10% | 7.70  6.60 710 | 6.24 573 6.71

71— RV
1% 1.48 1.55 141 | 0.53 0.92 1.32

LM 5% 5.59 5.67 6.19 | 5.08 4.81 5.18
10% | 12.34 12.47 11.87 | 9.42 10.84 11.38

1% 1.16 124 091 | 0.53 0.31 0.30

LM ap 5% 4.96 5.15 4.46 | 3.07 337  3.96
10% | 10.65 10.82 11.46 | 9.10 8.69 11.38

Notes: Rejection rates in percent at the 1%, 5%, and 10% nominal level.
The data generating process is a GJR-GARCH(1,1) process

re =@+ VhiZy
ht =w+ (041 + 042]1{”_1,“<0}> (re—1 — )% + Brhe—1,

with parameter values set to vy = 0.05, a2 = 0.06 and persistence regimes
L, I, and H with B{‘ = 0.82, B{ = 0.87, and ,Bf{ = 0.91. The persistence
of the simulated model (a1 + a2/2 + B1) thus varies between 0.90,0.95, and
0.99. We set w accordingly, so that the unconditional variance equals one.
The shocks Z; are simulated from a standard normal distribution or a t-
distribution with seven degrees of freedom. The LM-tests are based on xy =
RVt(N) = % Z;V:_Ol T?,j, with N = 1,22,65, and are applied to de-meaned
returns. We set K = 22 1n the test statistics. LM refers to the test statistic in
Eq. (3.14) and Eq. (3.15), whereas LM g7 refers to the Amado and Terésvirta
(2015) test version, see the discussion at the end of Section 3.3.2.




TABLE A.3: EMPIRICAL POWER PROPERTIES OF THE LM-TESTS WITH RV AND ¢(7) INNOVA-
TIONS

K*=1 K* =22
N 1 22 65 1 22 65
Ty = RVt(N) v=-1

SD of 5, 0.013 0.017 0.017 | 0.009 0.016 0.017
1% 7.5 35.9 452 8.8 34.0 44.5

LM 5% 158 56.2 664 | 17.3 5H4.1 65.6
10% 21.0 664 771 | 243 64.7 76.0

1% 5.0 28.0  40.5 3.8 23.1 37.6

LMt 5% 10.3 477 63.1 9.2 41.3 60.0

10% 13.8 598 741 | 124 531 71.4
Ty = RV;(N) v=-10

SD of B; 0.032 0.018 0.008 | 0.025 0.016 0.008
1% 18.0 19.1 6.4 380 16.3 6.1
LM 5% 31.1  36.1 154 | 60.9 31.7 14.8
10% 40.5 46.9 235 70.8 415 224
1% 8.1 11.7 4.4 9.1 9.2 4.1
LM a7 5% 144 276 13.0 16.9  21.0 12.0

10% 19.7 369 209 | 224 298 19.9

Notes: Rejection rates at 1%, 5%, and 10% nominal level. The data generating
process is the TVP-GARCH-MIDAS(1,1)

Et = \/EtZt

1
ht =w+ (0‘1 +a21{5t71<0}) g1+ (ﬂ1 + B2 (F('Y:(I)lmt—l) - 5)) hi—1
0
®'x = Z P (9t i,
k=1

with w = 0.1, a1 = 0.05, ag = 0.06, f1 = 0.82, B2 = 0.18, ¥ =3, and v = —1 or
v = —10. z¢ is taken as rolling window versions of realized volatility, RVt(N) with
N = 1,22,65, over the 2010-2014 sample. K* denotes the true MIDAS lag order in
the DGP. We also report the standard deviation (SD) of the time-varying GARCH
coefficient, 8y = B1 + B2 (F(y, ®'zi—1) — 1).

All test statistics are based on K = 1. LM refers to the test statistic in Eq. (3.14) and
Eq. (3.15), whereas LM 4 refers to the Amado and Terésvirta (2015) test version,
see the discussion at the end of Section 3.3.2. The shocks Z; are simulated from a
(standardized) t-distribution with seven degrees of freedom.




TABLE A.4: EMPIRICAL POWER PROPERTIES OF THE LM-TESTS WITH THE VIX AND t(7)
INNOVATIONS

K*=1 K* =22

N 1 22 65 1 2 65

2 =VIX™ 4=-15

SD of B, 0.019 0.018 0.018 | 0.019 0.018 0.018
1% 194 523 497 | 799 497 133

LM 5% 726 740 740 | 930 720 27.0
10% | 821 825 827 | 963 815 378

1% 362 434 419 | 68.3 384 87

LMur 5% 576 67.1 66.6 | 88.6 623 224

10% 69.8 782 784 | 946 741  32.0
2, =VIX®Y) =4

SD of B, 0.013 0.012 0.010 | 0.013 0.011 0.010
1% 173 149 135 | 156 139 489

LM 5% 35.2 307 275 | 328 299 733
10% 475 421 381 | 45.1 406  82.2

1% 127 101 88 | 103 95 402

LMar 5% 28.3 241 232 | 236 223 65.0

10% 36.6 36.8 329 | 334 339 772

Notes: Rejection rates at 1%, 5%, and 10% nominal level. The data generating
process is the TVP-GARCH-MIDAS(1,1)

Et = \/EtZt
_ 2 / 1
he=w+ (a1 +a2lpe, scop) et + (B4 B2 (FOn®'@ems) = 5 ) ) hes
o
®'w g = Z P (9)xt i,
k=1

with w = 0.1, a1y = 0.05, a2 = 0.06, 51 = 0.82, B2 = 0.18, ¥ = 3, and v =
—1.5 or v = —4. xz; is taken as rolling window versions of the VIX, VIXt(N) with
N = 1,22,65, over the 2010-2014 sample. K* denotes the true MIDAS lag order in
the DGP. We also report the standard deviation (SD) of the time-varying GARCH
coefficient, 8y = B1 + B2 (F(v, ®'z4—1) — ).

All test statistics are based on K = 1. LM refers to the test statistic in Eq. (3.14) and
Eq. (3.15), whereas LM 4 refers to the Amado and Terasvirta (2015) test version,
see the discussion at the end of Section 3.3.2. The shocks Z; are simulated from a
(standardized) t-distribution with seven degrees of freedom.




TABLE A.5: DESCRIPTIVE STATISTICS OF TIME-VARYING (ARCH) PERSISTENCE

Variable Min Max Mean SD
Panel A: Time varying ARCH coefficient

RV, 0.0178 0.0294 0.0241  0.0034
ADS* 0.0076 0.0294 0.0164  0.0043
neg ADS?  0.0148 0.0285 0.0177  0.0038
Panel B: Time varying persistence

RV,* 0.9747 0.9863 0.9810  0.0034
ADS®? 0.9736 0.9954 0.9824  0.0043
neg ADS?  0.9796 0.9933 0.9824  0.0038

Notes: The table reports descriptive statistics of the time-varying ARCH
coefficients, &1: = di12 + G12F (%, &’wt,l), from an alternative TVP-
GARCH-MIDAS model specification and the corresponding time varying
persistence, calculated as &1t + %dg +B. The estimated ARCH coefficient,
resp. persistence, from the GJR-GARCH model is 0.0190, resp. 0.9852.
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TABLE A.7: DESCRIPTIVE STATISTICS OF TIME-VARYING PERSISTENCE: 1970-1999 SUBSAMPLE

Variable Min Max Mean SD
Panel A: Time-varying GARCH coefficient

RV, 0.7042 0.8800 0.8337  0.0457
ADS* 0.9155 0.9351 0.9234  0.0044
neg ADS?  0.9206 0.9299 0.9243  0.0038
Panel B: Time-varying persistence

RV, 0.7788 0.9545 0.9082  0.0457
ADS™? 0.9777 0.9972 0.9856  0.0044
neg ADS*®  0.9829 0.9922 0.9866  0.0038

Notes: The table reports descriptive statistics of the time-varying
GARCH coefficients, 8; = 81 + B2 F (¥, ®'z¢_1), from the TVP-GARCH-
MIDAS model estimations over the 1970-1999 subsample and the cor-
responding time-varying persistence, calculated as &; + %dz + B¢. The
estimated GARCH coefficient, resp. persistence, from the GJR-GARCH
model over the 1970-1999 subsample period is 0.9253, resp. 0.9881.

TABLE A.8: DESCRIPTIVE STATISTICS OF TIME-VARYING PERSISTENCE: 2000-2014 OUT-OF-
SAMPLE PERIOD

Variable Min Max Mean SD
Panel A: Time-varying GARCH coefficient

RV, 0.7205 0.8800 0.8487  0.0380
ADS™? 0.9198 0.9351 0.9256  0.0033
neg ADS?  0.9206 0.9299 0.9259  0.0034
Panel B: Time-varying persistence

RV, 0.7951 0.9545 0.9232  0.0380
ADS* 0.9819 0.9973 0.9877  0.0033
neg ADS?  0.9829 0.9922 0.9881  0.0034

Notes: The table reports descriptive statistics of the time-varying
GARCH coefficients, 8; = 81 + B2 F (5, ®'x;_1), from the TVP-GARCH-
MIDAS model over the 2000-2014 out-of-sample period based on in-
sample parameter estimates from the 1970-1999 model estimation and the
corresponding time-varying persistence, calculated as &1 + Lag + Bt- The
estimated GARCH coefficient, resp. persistence, from the GJR-GARCH
model over the 1970-1999 subsample period is 0.9253, resp. 0.9881.




B FIGURES

FIGURE B.1: TIME-VARYING ARCH COEFFICIENTS

030 — - - — 030 — - -
B
028 | fi \p" ﬂ'ﬁ i ﬂ
02595y i i A ’
026 w N} }‘\} \ ,“‘ i “ E
| L] | I
024 '0207”1 v FM\‘N | JM%I“ rH l\fﬂ' \ »,’, | f
TR R A R Muu i AU f
i oy [ I YR B AT \l Al
oI LI LMW I W
020
0104
018
.016 T T T T T T T T .005 T T T T T T T
75 8 8 9 9 00 05 10 75 80 8 9 9 00 05 10

Notes: Time-varying ARCH coefficients, &1y = &2 + d12F (%, @’wt_l), from an alternative TVP-
GARCH-MIDAS model specification. Shaded areas represent NBER recession periods.






ON THE MACROECONOMIC
DETERMINANTS OF LONG-TERM
VOLATILITIES AND CORRELATIONS IN
U.S. STocK AND CRUDE OIL
MARKETS

Using a modified DCC-MIDAS specification, we endogenize the long-term corre-
lation between crude oil and stock price returns with respect to the stance of the
U.S. macroeconomy. We find that variables which contain information on current
and future economic activity are helpful predictors for changes in the oil-stock cor-
relation. For the period 1993-2011 there is strong evidence for a counter cyclical
behavior of the long-term correlation. For prolonged periods with strong growth
above trend our model predicts a negative long-term correlation, while before and
during recessions the sign changes and remains positive throughout the economic

recovery.

This chapter was published as: Conrad, C., Loch, K., and D. Rittler (2014). “On the Macroe-
conomic Determinants of Long-Term Volatilities and Correlations in U.S. Stock and Crude Oil
Markets.” Journal of Empirical Finance 29, 26—40.



4.1 INTRODUCTION

In this article, we revisit the oil-stock market relationship by analyzing the macroe-
conomic determinants of the long-term correlation between daily U.S. stock market
and crude oil price returns. Recently, Kilian and Park (2009) have shown that on
average 22% of the variation in U.S. stock returns in the period 1975-2006 can be
explained by oil price shocks. However, whether an oil price shock drives oil and
stock prices in the same or in opposite directions crucially depends on the type
of the underlying shock. While oil price increases due to precautionary demand
have a negative effect on stock prices, demand driven oil price shocks lead to in-
creasing stock prices. Based on these insights, Kilian and Park (2009) argue that
the time-varying sign in rolling oil-stock correlations reflects changes in the relative
importance of different demand and supply shocks in the oil market.

While Kilian and Park (2009) investigate the oil-stock relationship using monthly
data, our purpose is to analyze the correlation between oil and stock returns at a
daily frequency. More specifically, we use a novel MIxed Data Sampling (MIDAS)
approach to link the smooth component of daily return correlations to changes
in monthly U.S. macroeconomic variables. While there is a growing literature on
the endogeneity of monthly or quarterly oil prices with respect to U.S. and global
macroeconomic conditions (Barsky and Kilian, 2004; Kilian, 2008, 2009), our con-
tribution is to provide first evidence on the link between U.S. economic activity and
the daily oil-stock correlation.!

Our econometric specification is based on the Dynamic Conditional Correlation
MIDAS (DCC-MIDAS) model proposed in Colacito et al. (2011). The DCC-MIDAS
combines the Engle (2002) DCC specification with the GARCH-MIDAS framework
of Engle et al. (2013). The latter framework extends the simple GARCH specifica-
tion by modeling volatility as consisting of a short-term and a long-term component.
Most importantly, the long-term component is specified as a function of the macroe-
conomic environment. In the original DCC specification with correlation targeting
each quasi-correlation follows a ‘GARCH type’ process, which is mean-reverting to
the unconditional correlation of the volatility-adjusted residuals. The basic idea of
Colacito et al. (2011) is to replace this unconditional correlation with a slowly time-
varying long-term component. The quasi-correlation then fluctuates around this

long-run trend. Hence, the new specification can be considered as a two-component

In the following, we refer to the correlation between oil and stock returns simply as the
oil-stock correlation.



model for the dynamic correlations. Colacito et al. (2011) model the long-term com-
ponent as a weighted sum of the lagged monthly realized correlations between the
volatility-adjusted residuals.

Using the GARCH-MIDAS framework, we first analyze whether the long-term oil
market volatility is related to the U.S. macroeconomy and whether oil and stock
volatility respond to the same macroeconomic information. We then extend the
DCC-MIDAS model by directly incorporating monthly macroeconomic explanatory
variables X into an appropriately modified long-term correlation component. We
refer to this new specification as the DCC-MIDAS-X model.

Our results can be summarized as follows. First, we find that the movements
in long-term oil market volatility can be well predicted by various measures of
U.S. macroeconomic activity. Our empirical results provide convincing evidence
for a counter cyclical relationship between oil market volatility and variables which
either describe the current stance of the economy, e.g. industrial production, or pro-
vide forward looking information about the future state of the economy, e.g. the
leading index for the U.S. Current and expected increases (decreases) in economic
activity clearly anticipate downswings (upswings) in long-term oil volatility. While
the notion that there is reverse causality from macroeconomic variables to the level of
the oil price (see, e.g., Barsky and Kilian, 2004; Kilian, 2008, 2009) is now widely ac-
cepted, our result adds a new dimension by establishing a link between U.S. macroe-
conomic variables and the volatility of oil price returns. Interestingly, we also find
that long-term oil and stock market volatility respond to the same macroeconomic
information.

Second, our empirical results show that changes in the long-term oil-stock corre-
lation can be anticipated by the same macroeconomic factors that affect the long-
term volatilities. We provide strong evidence for a counter cyclical behavior of the
long-term oil-stock correlation. Phases with positive long-term oil-stock correlations
correspond to values of the macroeconomic factors which either indicate recessions
or the beginning of expansions with growth still below or at trend. On the other
hand, a negative long-run correlation emerges when the macroeconomic variables
signal strong growth above trend. Clearly, the positive correlation during recessions
is driven by the simultaneous drop in oil and stock prices. The economic recovery
during the early phase of an expansion then leads to increasing oil prices due to
higher demand as well as to rising stock prices because of the improved outlook for
corporate cash flows. The combination of these two effects causes the long-run oil-

stock correlation to remain positive. This interpretation squares with the findings



in Kilian and Park (2009) regarding the positive short-run effect on oil and stock
prices of an unexpected increase in global demand. Finally, during boom phases
with strong growth above trend both the further increasing oil prices as well as the
expectation of rising interest rates should have a depressing effect on the stock mar-
ket. Hence, for these periods our model predicts a decreasing or negative long-term

correlation.

Third, the long-term correlation component can be interpreted as the predicted
or expected correlation given a certain state of the economy. Since the macroeco-
nomic variables that drive the long-term component represent aggregate demand,
the deviations of the short-term from the long-term component should be driven by
other factors related to the stock and/or the oil market. Typical examples for the
oil market would be either oil specific, i.e. precautionary, demand shocks or supply
shocks. However, the fact that various measures of macroeconomic activity lead to
a convincing and coherent fit of the long-term correlation suggests that aggregate
demand is the most important factor for the oil-stock relationship. This interpreta-
tion is very much in line with the view that — in contrast to the 1970s when supply
shocks were likely to be predominant — oil prices have been mainly driven by high
global aggregate demand since the mid-1990s (see Hamilton, 2008; Kilian, 2009;
Kilian and Murphy, 2014).2

Fourth, the fact that the sign of the oil-stock correlation critically depends on
the state of the economy reinforces Kilian and Park’s (2009) argument that simple
regressions of stock returns on oil price changes can be very misleading. This point
may well explain the conflicting empirical evidence on the oil-stock relationship in
Jones and Kaul (1996), Wei (2003), Nandha and Faff (2008), Miller and Ratti (2009)
and others.

Fifth, we show that the volatility and correlation predictions from the various
DCC-MIDAS-X specifications significantly outperform the ones from the simple
DCC model. Hence, the explicit modeling of the long-term correlation component
may be very beneficial for portfolio choice, hedging decisions or risk management.

The remainder of the article is organized as follows. Section 4.2 reviews the
related literature, while Section 4.3 discusses the GARCH-MIDAS and DCC-MIDAS
models. The data and empirical results are presented in Sections 4.4 and 4.5. In

Section 4.6 we evaluate the forecasting performance of the different models and

2 Although we focus on economic activity measures for the U.S. only, while the oil price is
driven by global demand, our approach may still be informative to the extent that changes in U.S.
real activity are correlated with changes in global real activity.



Section 4.7 concludes the article.

4.2 RELATED LITERATURE

Our analysis is based on two strands of literature. The first one is concerned with
the modeling of long-term movements in volatilities and correlations, the second one
with the relationship between oil and stock prices and macroeconomic conditions.

The idea of having short- and long-term component models of volatilities dates
back to Ding and Granger (1996), Engle and Lee (1999), and more recently Davidson
(2004) and Conrad (2010). In their specifications, both components follow ‘GARCH-
type’ processes but with different degrees of persistence. While these specifications
allow one to separate the two volatility components, the unconditional variance is
still assumed to be constant over time. Engle and Rangel (2008) and Engle et
al. (2013) relax this assumption and propose specifications in which the long-term
component can be considered a time-varying unconditional variance. While in the
Engle and Rangel (2008) Spline-GARCH model both components fluctuate at the
same frequency, in Engle et al. (2013) it is assumed that the long-term component
evolves at a lower frequency than the short-term component. Using the MIDAS
framework of Ghysels et al. (2005, 2007), they directly relate the long-term compo-
nent to the evolution of macroeconomic time series such as industrial production or
inflation. In line with the earlier findings in Schwert (1989), the GARCH-MIDAS
model provides strong evidence for a counter cyclical behavior of financial volatil-
ity. Recently, Conrad and Loch (2014) extended the analysis of Engle et al. (2013)
by using a broader set of macroeconomic variables and expectations data from the
Survey of Professional Forecasters. The DCC-MIDAS model proposed in Colacito
et al. (2011) simply extends the two-component idea from volatilities to correla-
tions. However, instead of relating the long-term correlation directly to its potential
macroeconomic sources, Colacito et al. (2011) only consider lagged realized correla-
tions as explanatory variables.

Since the seminal articles of Hamilton (1983, 1985, 2003) exogenous oil supply
shocks were suspected to be causal for recessions and periods of low economic growth.
Based on this presumption, several empirical studies have analyzed the relation-
ship between oil prices and stock market returns. While Jones and Kaul (1996) or
Nandha and Faff (2008) indeed find that oil price increases negatively affect stock
prices, Huang et al. (1996) and Wei (2003) cannot establish a significant relationship.
Recently, Miller and Ratti (2009) provide evidence for a time-varying relationship.



For the period after 1999 they even report a positive connection. Hence, the em-
pirical evidence is far from being uncontroversial. Kilian and Park (2009) provide
two explanations for the conflicting results. First, there is convincing evidence for
reverse causality from the U.S. economy to the oil price (see also Kilian, 2009, and
Alquist et al., 2013). Thus, stock and oil price changes may be induced by the same
macroeconomic factors and, hence, regressions of stock returns on oil price changes
can be misleading due to endogeneity. Second, Kilian and Park (2009) argue that
the sign of the effect of an oil price increase on the stock market depends on the
type of the underlying shock and, hence, may change over time. While shocks due
to an unanticipated economic expansion may have a positive impact, shocks related
to precautionary demand, for example, are likely to have a negative impact. For
several oil-exporting and oil-importing countries Filis et al. (2011) confirm that the
oil-stock correlation is indeed time-varying. Although they informally relate phases
of positive or negative correlations to demand and supply shocks, their simple DCC

model does not explicitly incorporate information on the state of the economy.

43 THE DCC-MIDAS MODEL

In this section, we develop the econometric framework to analyze the impact of
macroeconomic variables on long-term volatility and correlations. We consider the
bivariate vector of asset returns ry = (ry,72:), where ry; refers to the stock and
ro4 to the oil returns, and denote by F;_y = o(r;_1,T_9,...) the o-field generated
by the information available through time ¢ — 1. Returns are defined as r;; =
100 - (log(P;¢) —log(Pis—1)), where P;; denotes the price at time t. Let Elry|F;_1] =
e = (f14, p2r) and define the vector of residuals ry — py = &, = (€14,624)". The
residuals have mean zero by definition and we denote their conditional covariance
matrix by H; = Var[e;|F;_1]. Following Engle (2002), we decompose the conditional

covariance matrix into H; = D;R;D; where

1 h': o0
R, = Piat and D= ( " L, (4.1)
prze 1 0 hy

Finally, we define the standardized residuals m; = (114, 72.4)" as m; = Dy 'e;. Note
that Var[n:|F;_1] = R;. The DCC framework allows us to separately model the

conditional variances and the conditional correlations.



4.3.1 CONDITIONAL VARIANCES

To capture the impact of macroeconomic variables on return volatility, we adopt
the GARCH-MIDAS framework of Engle et al. (2013). We assume a multiplicative
component model for each conditional variance, i.e. we specify h;; = g;ym; r, where
i+ 1s the short-run and m; » the long-run component. While the transitory volatility
component changes at the daily frequency ¢, the long-run component changes at the
monthly frequency 7 only. We denote N(7 as the number of days within month
7. Specifically, we assume that the short-run volatility component follows a mean-
reverting unit GARCH(1,1) process

2
Tit—1 — Mit—
gir=1—a; — ;) + Oéi< 41 = Mi-1) + BiGi -1, (4.2)

1T

with o; > 0, ; > 0, and «; + 5; < 1. The long-term component is modeled as a

slowly varying function of an exogenous variable X, using the MIDAS specification

Ky
log(m;,) = m; + 0; Z or(wi) X7, (4.3)
k=1

where the log transformation guarantees the non-negativity of the conditional vari-
ances when the exogenous variables can take negative values. X, will be a monthly
macroeconomic variable.?

For the weighting scheme, we follow Engle et al. (2013) and adopt a restricted

beta weighting scheme where the weights are computed according to*

(1 - k/KvyJFl
fi”l(l _ l/Kv)wi—l’

or(w;) = k=1,.., K,. (4.4)

For all w; > 1, the weighting scheme guarantees a decaying pattern, where the rate

3Note that we keep the long-run component constant over each calendar month. Obviously,
announcements dates for different macro variables vary across the month. Since our focus is not
on (short-term) announcements effects, but on modeling the long-term volatility component, we
simplify the model implementation by synchronizing all macro variables with the calendar months.
4The generalized beta weighting scheme with two parameters

(1—k/K,)*i=t. (k/K,)~21
Zl[ivl(l — 1/ K,)win—t e (kK )@s2—1 ’

Sﬁk(wi,lywiﬂ) =

allows for more flexible, in particular hump-shaped, weights. In line with the results in Conrad
and Loch (2014), we find that none of the variables included in our analysis requires such an
unrestricted weighting scheme in the MIDAS filter. We therefore restrict the weights to be strictly
decreasing in all subsequent specifications.



of decay is determined by w;. Large (small) values of w; generate a rapidly (slowly)
decaying pattern. By construction, the oy (w;) are nonnegative and sum to one.

In the following, we will refer to the component model with explanatory variables
as GARCH-MIDAS-X. Finally, note that when 6; = 0 the long-run component is
simply a constant and, hence, h;; follows a stationary GARCH(1,1) process with

constant unconditional variance.

4.3.2 CONDITIONAL CORRELATIONS

The DCC-MIDAS specification proposed by Colacito et al. (2011) provides a natural
extension of the GARCH-MIDAS model to dynamic correlations. We follow Engle
(2002) and specify the matrix process Q, = [¢ij.t)i j=1,2 with GARCH(1,1) dynamics
as

Q,=(1—a—-bRy+an,_1m_; +bQs_1, (4.5)

with @ > 0, b > 0, and a + b < 1, and a positive definite Q,. In the Engle
(2002) DCC model with correlation targeting the matrix R; does not depend on
time and equals the empirical correlation matrix of m;. The process Q, can be
thought of as an approximation to the true conditional correlation matrix. The
Q, are therefore sometimes referred to as quasi-correlations. Note that the initial
condition Q, positive definite and the parameter constraints ensure that all Q, are
positive definite. However, the process does not generally produce valid correlation
matrices. The actual conditional correlation matrix is obtained by rescaling as
R, = diag{Q;}/* Q, diag{Q,} /2.

The DCC-MIDAS framework proposed by Colacito et al. (2011) introduces long-
term correlations pia, as the off-diagonal elements in the now time varying matrix
R:. As in the GARCH-MIDAS equation the long-term correlation component does
not vary at the daily frequency ¢t but at the lower frequency 7. That is, the short-run

quasi-correlations fluctuate around the time-varying long-run correlations:

G2t = P12 + a(Mm—1M24-1 — pr2r) + b(q124-1 — Pr2,7)- (4.6)

Colacito et al. (2011) assume that pi2, can be expressed as a weighted average of

the K. past realized correlations RC,:

K.
P1or = Z ok (w12) RCr g, (4.7)
k=1



with
N,
DN, 1 T

RC, =
N, 2 N 2
\/Zt:NT_H-l U Zt:NT_H-l by,

where N, = -7 N@ and Ny = 0. The weights are again given by Eq. (4.4) with

w; and K, replaced by wis and K., respectively. Since the weights ¢ (wi2) sum up

: (4.8)

to one and the RC are correlations, the long-run correlation will itself lie within
the [—1, +1] interval.

We extend the DCC-MIDAS model by directly incorporating information on the
macroeconomic development in the long-run component. Similarly as in the GARCH
MIDAS setting — where the specification for m; . has to ensure the non-negativity of
the long-term volatility — our specification has to ensure that the long-run correlation
lies within the [—1, +1] interval although the explanatory variables do not. We
follow Christodoulakis and Satchell (2002) and use the Fisher-z transformation of

the correlation coefficient, i.e. we assume that

exp(2z12,) — 1

p T = ) 49
P2 exp(2z12,-) + 1 (4.9)
with
K.
2127 = iz + bho Z or(wi2) X7, (4.10)
k=1

where X, denotes either a macroeconomic variable or a realized correlation. Note
that in our non-linear specification, from 6 we can only infer the sign but not directly
the marginal effect of a macroeconomic variable on the long-term correlation.

Finally, in the DCC-MIDAS model - as in the standard DCC model - the con-
ditional correlations are obtained by rescaling, i.e. p1as = qi24/ Va11,:922,1- In the
subsequent analysis we refer to the specifications with either macroeconomic ex-
planatory variables or the realized correlations as DCC-MIDAS-X or DCC-MIDAS-
RC models, respectively.

4.3.3 ESTIMATION

Following Engle (2002) and Colacito et al. (2011) we estimate the model parameters
via quasi-maximum likelihood. For asymptotic results on the CCC and DCC mod-
els we refer to Ling and McAleer (2003), Engle et al. (2008), Francq and Zakoian
(2012), and Aielli (2013). Asymptotic results for the DCC-MIDAS models are not
yet available, but see Wang and Ghysels (2015) for a discussion of the univariate



GARCH-MIDAS-RV model. We adopt the Engle (2002) and Colacito et al. (2011)
two-step estimation procedure which is feasible because the log quasi-likelihood func-

tion to be maximized

M-

T
(2log(27) + 2log(|Dy|) + €;D; %e;) Z log(|Re|) + MRy ' — mimy)
t=1 t=1

(4.11)

can be separated into two parts. The first sum in Eq. (4.11) contains the data and
the variance parameters while the second sum depends on the volatility-adjusted
residuals and the correlation parameters. Hence, in the first step we estimate the
GARCH-MIDAS parameters individually for each return series and use the esti-
mated volatility-adjusted residuals in the second step to obtain the correlation pa-
rameters. This way, we can analyze separately the macroeconomic determinants of

the long-term volatilities and the long-term correlation component.

4.4 DATA

We combine daily U.S. stock market and crude oil price data with monthly obser-
vations on the macroeconomic variables. While the stock series was obtained from
the Kenneth R. French data library, the oil prices and the macroeconomic data are
taken from the FRED database at the Federal Reserve Bank of St. Louis. Our data
covers the period from January 1993 to November 2011.

4.4.1 OIL AND STOCK MARKET DATA

For the stock series, we employ the daily returns on the CRSP value-weighted portfo-
lio, which is based on all NYSE, AMEX and NASDAQ stocks and can be considered
the best available proxy for ‘the stock market’. As in Kilian and Vega (2011), oil
price returns are constructed from the daily spot price for West Texas Intermedi-
ate (WTI) crude oil for delivery in Cushing, Oklahoma. The data source is the
U.S. Energy Information Administration.

Panel A of Table 4.1 provides summary statistics for the two return series.> While

the sample mean of the returns is positive for both markets, the table provides first

5As alternative measures for the stock market we also considered the S&P 500 as well as the
DJIA. Similarly, we employed the Brent instead of the WTI crude oil price. All the subsequent
results were robust to these changes in the variables.



evidence for stronger fluctuations in oil returns than in stock market returns. The
annualized unconditional standard deviation of the oil price returns is 39.21% and,
hence, considerably higher than the 19.53% of the CRSP returns. Finally, the

unconditional correlation between oil and stock returns is 0.14.

4.4.2 MACROECONOMIC DATA

We divide the monthly macroeconomic data into two categories: those which mea-
sure the current stance of the economy and forward looking indicators. The first
category contains the following variables: industrial production (IP), nonfarm pay-
rolls (NFP), and the unemployment rate (UR). The forward looking indicators are
the national activity index (NAI)® and the leading index (LI)” for the U.S. They
are supposed to reflect the role of market participants’ expectations concerning the
future economic development.

For the variables IP and NFP we compute month-to-month growth rates according
to 100 - [In(X,) — In(X,_1)], while in case of UR we use month-to-month changes.
The NAI and LI are included in levels. Panel B of Table 4.1 provides the sum-
mary statistics for the macroeconomic data and Figure 4.1 shows the dynamics of
the macroeconomic variables. Note that by construction the GARCH- and DCC-
MIDAS models require additional lags of the explanatory variables at the beginning
of the sample. Since we shall include three MIDAS lag years in the filter, we report
descriptive statistics and figures for the macroeconomic variables for the period from
January 1990 to November 2011. All data are obtained from the FRED database
at the Federal Reserve Bank of St. Louis.

4.5 BEMPIRICAL RESULTS

We first present the estimation results for the GARCH-MIDAS models that relate

the long-term volatilities to the macroeconomic environment. Thereafter, the DCC-

6The NAI is a standardized weighted average of 85 monthly indicators of national economic ac-
tivity including figures that represent (i) production and income, (ii) employment, unemployment,
and hours, (iii) personal consumption and housing, and (iv) sales, orders and inventories. The NAT
is computed and published by the Federal Reserve Bank of Chicago. Positive realizations indicate
growth above trend, while negative realizations indicate growth below trend. The variables IP,
NFP, and UR are among the indicators used for the computation of the NAT.

"The LI predicts the six-month growth rate of the US coincident index based on variables that
lead the economy including housing permits, unemployment insurance claims, delivery times from
the ISM manufacturing survey, and the term spread. The LI is published by the Federal Reserve
Bank of Philadelphia.



MIDAS specifications that focus on the long-run correlations are discussed.

4.5.1 DETERMINANTS OF LONG-TERM VOLATILITIES

Tables 4.2 and 4.3 present the estimates for the various stock and oil GARCH-
MIDAS models. In addition to the models which include the macroeconomic vari-
ables, we consider the stationary GARCH(1,1) with constant unconditional variance
as our benchmark specification. Since the serial correlation in daily stock and oil
returns is negligible, we choose f1;; = p; in both conditional means. To ensure com-
parability across all specifications, we choose K, = 36 for both markets. However,
all results are robust to moderate changes in K,,. We compare the fit of the different
models by means of the Akaike and Bayesian information criteria (AIC and BIC).®

The constant p; is significant in all stock return models, but insignificant in the
oil return specifications. In all cases the estimated a; and [3; parameters are highly
significant. Interestingly, while the «; (5;) parameters are estimated to be slightly
higher (lower) in the stock than in the oil market, the sum «; + ; is almost identical
in both markets and always less than one. That is, in all specifications the short-run
volatility component is mean-reverting to the long-run trend. Next, we discuss the
estimated long-term volatility components individually for the two markets.

Since the macroeconomic determinants of long-term stock market volatility have
been investigated in Engle et al. (2013) and Conrad and Loch (2014) already, we only
briefly summarize our findings which are very much in line with theirs. Table 4.2
shows that each macroeconomic variable has a significant effect on long-term stock
market volatility. For IP, NFP, NAI, and LI the estimated coefficient 0, is negative
and highly significant, while it is positive and highly significant in case of UR.
Since the sign of #; measures whether an increase of the respective variable leads
to an upswing or downswing in long-run volatility, the estimates imply that higher
(lower) levels of economic activity lead to a reduction (rise) in long-term stock
market volatility. All GARCH-MIDAS-X models are preferred over the benchmark
GARCH(1,1) by the AIC, but not by the BIC. The best model according to the AIC
is the one including LI.

In short, our results reconfirm the observation that long-term stock market volatil-
ity behaves counter cyclically. The analysis of the macroeconomic drivers of stock
market volatility dates back to Officer (1973) and Schwert (1989) who first revealed

8Note that all GARCH-MIDAS-X models include the same number of parameters and, hence,
the AIC and BIC will lead to the same ranking. However, the benchmark GARCH(1,1) model
includes two parameters less.



this counter cyclical link. Since then, the literature has put forward different eco-
nomic arguments to explain the channels through which the economic environment
relates to stock market volatility. The present value models of Campbell (1991) and
Campbell and Shiller (1988) relate unexpected returns to news that induce revisions
in the discounted sum of future expected dividends and returns. Specifically, the
same news may have different impact on unexpected returns depending on the state
of the macroeconomy. As a consequence, counter cyclical stock market volatility
arises due to variations in future expected cash flows and future discount rates.
For alternative theoretical approaches see for instance Veronesi (1999), and more
recently Bansal and Yaron (2004), and Mele (2007).

In Table 4.3 we turn to the analysis of the macroeconomic determinants of the
long-term oil return volatility. The estimates of 0y suggest that long-term oil return
volatility is closely linked to each of the macroeconomic variables describing the
current stance of the economy as well as the future economic outlook. In particular,
the results imply that downturns in U.S. economic activity, i.e. decreases in IP,
NFP, NAI, and LI and increases in UR lead to higher levels of long-term oil return
volatility. While Kilian (2008, 2009), Kilian and Murphy (2014) and Alquist et
al. (2013) have provided ample evidence for the notion that changes in economic
activity predict oil prices, our finding that U.S. economic activity also precedes
changes in long-term oil return volatility adds a new insight. Given the positive
relation between aggregate demand shocks and the level of the oil price which was
established in the previous literature, our finding of a counter cyclical behavior of
long-term oil return volatility is very much in line with the observation in stock
markets that volatility is low during phases of increasing prices but high during
phases of decreasing prices. That is, good news on the macroeconomy is also good
news for the oil market, i.e. increases the oil price and at the same time reduces oil
return volatility.

Lastly, all GARCH-MIDAS-X models achieve a better fit than the GARCH(1,1)
both in terms of the AIC and the BIC. The best model according to the information
criteria is the one based on the LI.

Figure 4.2 shows the GARCH-MIDAS-LI estimates of the annualized monthly
long-term volatility components for the two markets. While the level of oil re-
turn volatility is about twice as high as the one of the stock returns, the evolution
of the two components is very similar across markets. It is now straightforward
to compare the marginal effects of this variable on the two long-term volatility

components. In general, the effect of a one standard deviation increase in X; in



the current month on long-term volatility s-months-ahead can be calculated by
exp (éz s (@;) - SD(XQ) — 1. Thus, a one standard deviation increase in LI this
month, i.e. an increase by 0.98, leads to a 7.66% decrease in long-term stock mar-
ket volatility and a 14.03% decrease in long-term oil market volatility next month.
These sizes of the marginal effects imply that they are not only highly significant
statistically, but also economically. The observation that the macroeconomic envi-
ronment affects long-term oil and stock volatility in a very similar manner is very
interesting. Our finding suggests that the long-term second moment of oil price
returns shares a common component with that of stock returns which reflects the

state of the U.S. business cycle.

4.5.2 DETERMINANTS OF LONG-TERM CORRELATIONS

In this section, we analyze the macroeconomic determinants of the long-term oil-
stock correlation. We consider two benchmark specifications. The first natural
benchmark is the Engle (2002) DCC model. The second benchmark is the Colacito
et al. (2011) specification that uses backward-looking monthly realized correlations
as explanatory variables.® For these two benchmark models we employ the stan-
dardized residuals from the simple GARCH(1,1) models.

Alternatively, we estimate DCC models based on standardized residuals from the
GARCH-MIDAS-X models from Section 4.5.1. In the most general DCC-MIDAS-X
specifications we replace the realized correlations with key macroeconomic figures.
For these models the volatility-adjusted residuals are obtained either from the simple
GARCH(1,1) models or from the corresponding GARCH-MIDAS-X models. For
each macro variable, we thus compare three different model specifications - one DCC
and two DCC-MIDAS-X specifications. As in the case of the long-term volatilities,
we include three MIDAS lag years of macroeconomic data, i.e. we choose K. = 36.

Table 4.4 presents the estimation results. Clearly, in all specifications the es-
timated parameters a and b are highly significant and sum up to a value of less
than one. That is, the quasi-correlations are mean-reverting either to the uncon-
ditional correlation in the DCC case or to the long-term correlation in the various
DCC-MIDAS-X specifications. The estimates of 015 indicate that all macroeconomic
variables significantly affect the long-run oil-stock correlation. In line with our anal-
ysis in Section 4.5.1, we find negative 615 coefficients on 1P, NFP, NAI, and LI,

9We calculate monthly realized correlations over the full 1990-2011 sample based on the stan-
dardized residuals from GARCH(1,1) models for oil and stock returns over this sample.



while the coefficient on UR is positive. The estimates imply that a contraction of

macroeconomic activity leads to an increase of the long-term correlation.

All DCC-MIDAS-X specifications are superior relative to the benchmark DCC
according to the AIC. In addition, the specifications based on GARCH-MIDAS-X
residuals are also superior according to the BIC. Hence, there is convincing evi-
dence in favor of the component models, which allow for time-varying long-term
volatilities and correlations. The model ranking in terms of information criteria
is consistent across the different macro variables. According to both the AIC and
BIC, the DCC-MIDAS-X based on simple GARCH(1,1) residuals performs worst.
The DCC-MIDAS-X models based on the respective GARCH-MIDAS-X residuals
perform best in terms of the AIC, whereas the more parsimonious DCC models
based on the GARCH-MIDAS-X residuals perform best in terms of the BIC. This
model comparison emphasizes the importance of an adequate volatility specification
for the statistical fit of the conditional covariance matrix. Confirming our results
from the previous section, the best performing models are the ones including LI in
the volatility specification, where the DCC (DCC-MIDAS) with GARCH-MIDAS
residuals achieves the lowest BIC (AIC).

Interestingly, our second benchmark model, the DCC-MIDAS-RC, performs worst
in terms of both information criteria. The fact that the DCC-MIDAS-X models
are preferred to the DCC-MIDAS-RC, suggests that the various macroeconomic
variables carry information on the evolution of the long-term correlation beyond
that included in past realized correlations. Next, we explain how the forward looking
properties of the macroeconomic variables which gauge future economic activity as
well as inflationary pressures (and thereby future monetary policy) are particularly

relevant for anticipating changes in the oil-stock correlation.!®

Figure 4.3 shows the estimated dynamics of the short- and long-run correlations
based on the DCC-MIDAS-LI specification together with a rolling-window of yearly
realized correlations. First, although the unconditional correlation between stock
and oil returns was found to be 0.14, the figure shows that there is substantial time-
variation in the realized correlations with prolonged periods of positive or negative
correlations. While the short-run correlation closely follows the behavior of the
realized correlations, the long-run correlation evolves much more smoothly. Both

the realized correlations as well as the short-run correlations follow this long-run

10Tn the following, we only consider the DCC-MIDAS-X specifications based on the volatility-
adjusted residuals from the respective GARCH-MIDAS-X models. However, the subsequent results
also hold for the other DCC-MIDAS-X specifications in a similar way.



trend component.

To provide an economic interpretation of the cyclical pattern in the evolution
of the correlation dynamics we refer to Figure 4.4, which depicts the long-term
component along with the LI. First, the figure clearly shows an inverse relationship
between the LI and the long-term oil-stock correlation, which was already evident
from the negative #, estimate in Table 4.4. That is, the oil-stock correlation is
increasing (decreasing) when the LI is declining (rising).

Our empirical evidence for a counter cyclical oil-stock correlation is perfectly in
line with the recent evidence in Kilian (2009) in favor of a positive oil-growth relation.
Kilian and Park (2009) argue that in an early phase of an expansion increasing oil
prices may not have negative effects on the stock market. This is because in the
short-run the positive effect of higher economic activity on expected future cash
flows dominates and, hence, the oil-stock correlation will be positive. However, in
the long-run the negative effect of increasing oil prices on corporate cash flows will
dominate and, therefore, the oil-stock correlation will decrease or even turn negative.

The long-term correlation in Figure 4.4 very much supports these views. Before
and during both recessions bad news on the LI is associated with sharply decreasing
stock and oil prices and, therefore, a positive oil-stock correlation. The fact that
the correlation turns positive and increases well before both recessions is remarkable
and suggests that the long-term oil-stock correlation may itself be used as an early
recession indicator. During the recovery phases in 2002-2003 and 2010-2011 the
improvement in the LI leads to increasing oil prices and, at the same time, to upward
revisions concerning firms’ expected dividends and cash flows. In these periods the
oil-stock correlation remains positive, but smoothly decreases. The same rationale
also applies to the first year of our sample, which falls into the recovery period after
the recession of 1990/91. Finally, during the years 1994-1999 and 2004-2006 the LI
signals strong growth for a protracted period, which again should positively affect
oil prices. However, the (expected) oil price increases now dampen the outlook
for future corporate cash flows, i.e. during these periods the good news on the
macroeconomy — through the indirect effect via increasing oil prices — turns into
bad news for the stock market. Alternatively, the negative effect might also work
via interest rates. When the economy is already close to full employment, good news
on the LI could signal higher future interest rates and, hence, be bad news for the
stock market. During these strong boom phases the negative effect dominates and
leads to a decreasing or negative long-run oil-stock correlation.

Since the evolution of the long-term correlation is purely driven by variables which



represent U.S. aggregate demand, deviations of the short-term component from the
long-run trend must be related to other factors which affect stock and /or oil returns.
Typical oil related factors would be oil supply shocks or oil-market specific demand
shocks such as precautionary demand or speculative demand shocks. Specifically,
the temporary deviation in 2002/03 (see Figure 4.3) can be explained as a combina-
tion of the Venezuelan oil supply crisis and precautionary demand provoked by the
second Iraq war (see Kilian and Murphy, 2014). Similarly, the drop in the short-term
component in 2011/02-2011/04 can be related to the Libyan crisis and political tur-
moil in North Africa.!! Another example would be the positive correlation signaled
by the short-term component as well as the realized correlations around 1998/99.
Following the Asian and Russian financial crises, this positive short-term correlation
can be explained by a simultaneous decline in oil and stock prices. Nevertheless, the
fact that these deviations occur only for relatively short periods suggests that the
oil-stock correlation can be largely explained by U.S. economic activity for most of
the time.

A particularly important conclusion that can be drawn from the time-varying oil-
stock correlation is that regressions of stock returns on oil price changes are likely
to be misleading, since the result will depend on the state of the economy. This
insight may explain the controversial empirical findings on the oil-stock relationship
and agrees with the arguments put forward in Kilian and Park (2009).

Next, we discuss the MIDAS lag structure and its implications more closely. Recall
that the higher wis the more weight will be given to the more recent observations of
the macro variable and, hence, the faster the weights will decline to zero. Table 4.4
reveals that the lowest wiy is estimated for IP and the highest for NFP. Since the
DCC-MIDAS-LI model produced the best fit for the correlations, in Figure 4.5
we plot the corresponding weighting function. For comparison, we also display the
weighting functions for the GARCH-MIDAS-LI models for the stock and oil market.
The figure shows that the weighting function of the correlation model is nearly linear

while the weighting functions of the volatility specifications are rapidly declining.!?
13

On February 22nd 2011, for instance, oil returns spiked up by 8%, whereas stock market
returns went down by 2%.

12As a robustness check, we also estimated models including a weighting scheme with two
parameters, hereby relaxing the assumption of strictly decreasing weights. However, including
an unrestricted weighting scheme did not lead to significant improvements in the value of the
maximized log likelihood and the resulting weighting schemes were still strictly decreasing.

13Similar results are obtained for the other macroeconomic variables but omitted for reasons of
brevity.



Finally, we calculate the marginal effect of a one standard deviation change in a
macro variable X; on the long-run correlation component in the next month. Due
to the non-linear Fisher-z transformation in Eq. (4.9), the marginal effect has to be
calculated conditional on the history of the explanatory variable.!* For instance, if
we keep all lags of LI fixed at its sample mean of 0.99, then this yields a long-term
correlation of 0.088 and a one standard deviation increase in LI this month results
in a decrease to 0.072 next month, i.e. a decrease by 18.12%. Thus, the predicted
marginal effect on the long-term correlation component is also highly economically
relevant.

In the previous considerations we mainly focused on the DCC-MIDAS-LI speci-
fication to explain the dynamic behavior of the slowly-moving long-run correlation
component. However, Table 4.4 clearly reveals that the fit of the DCC-MIDAS-X
specifications with IP, NFP, UR, and NAI are only slightly inferior. Figure 4.6
displays the estimated long-run correlations from the corresponding specifications.
The figure illustrates nicely that the long-term components of all specifications fol-
low the same pattern and, hence, further support our argument that the long-term
oil-stock correlation is counter cyclical. Note that the spike in the long-term correla-
tion component predicted by IP for October 2005 can be traced back to a significant
contraction in industrial production one month earlier. This is not reflected to such

a strong extent in the other macroeconomic figures (compare Figure 4.1).

4.6 MODEL EVALUATION AND HEDGING PERFORMANCE

Although the main focus of our analysis lies on the macroeconomic determinants of
the long-term oil price return volatility as well as the long-term oil-stock correlation,
our findings might also have important implications for portfolio choice, hedging
decisions or risk management. Therefore, we now have a closer look at the forecasting
performance of the different models for the entire conditional covariance matrix H;.
Since a full-fledged out-of-sample analysis is beyond the scope of the current paper,
we focus on in-sample results. Following Laurent et al. (2012, 2013) we apply two
robust loss functions, i.e. loss functions that deliver the same ordering whether the

evaluation the evaluation is based on the true conditional covariance matrix or an

14We calculate the percentage change in the long-term correlation component following a one
standard deviation increase in X - conditional on all lags of X being fixed at its sample mean
X. More precisely, we compare pi2, in Eq. (4.9) based on the estimates of z12, in Eq. (4.10)
evaluated at
Xi1=-= thKc = X and at X1 = X + SD(Xt),Xt,Q =...= thKc = X.



unbiased proxy of it.

The first loss function is the Euclidean distance which equally weights the vari-

ances and COV&rianCGSZ
Ly = (r{, — hie)® + (r3, — hot)? + (riras — hisy)?

The second one is based on the Frobenius distance and double counts the loss asso-

clated with the conditional covariance:
Lf = (Tit - ilLt)Q + (T;t — ]Alz’t)z + 2(T1,tr2,t — il127t)2

In Table 4.5, we report for each model the average value of the two loss functions.
In addition, for each DCC-MIDAS-X model we test whether the average loss is
significantly different from the average loss of the DCC benchmark model. Panel A
presents results for the full sample, while Panel B covers the subsample of the
financial crisis in the years 2007-2009. In case of a positive difference, forecasts from
the DCC-MIDAS-X model are superior to those from the benchmark model.

For the full sample, the differences in both loss functions are significant for all
DCC-MIDAS-X models except the one based on IP. To the contrary, the DCC-
MIDAS-RC model does not lead to a significant improvement over the simple DCC.
Unsurprisingly, during the financial crisis period the average losses more than double
in comparison to the full sample. During this period we only find a significant
improvement over the DCC for the model based on the LI when considering the
Frobenius distance. This somewhat disappointing outcome may be due to the fact
that during the crisis the forecast quality of all models deteriorated dramatically
and it became increasingly difficult to distinguish between them. Another potential
explanation could be that during the crisis the quality of our proxies, i.e. the squared
returns and the product of daily oil and stock returns, for the true conditional

volatilities and covariances has declined.

As an alternative approach to evaluate the forecast performance without the ne-
cessity to rely on proxies of the unobserved volatilities and correlations, we consider
the problem of hedging a long position of one dollar in the stock market by a short
position of 512, dollars in the oil market. The optimal hedge portfolio is given by
(see Kroner and Sultan, 1993):

h
PF . 12t
Ty =T — 512,t “Tot, with 512,t ==

2.t




We then compare the average portfolio variance based on the volatility and covari-
ance forecasts from the DCC-MIDAS-X models with those from the DCC model.
The results in Table 4.5 suggest that the DCC-MIDAS-X models lead to significantly
lower portfolio variances compared to the DCC in both the full sample as well as the
crisis subsample. Although, the forecasting results are very promising for potential
financial applications, a first natural avenue for future research would be to confirm

our in-sample findings in a more detailed out-of-sample analysis.

4.7 CONCLUSION

We investigate the effect of changes in the U.S. macroeconomic environment on
the long-term volatilities and correlations in crude oil and U.S. stock price returns.
First, our results show that the long-term volatilities in both markets share a com-
mon component that reflects the state of the U.S. business cycle. Second, we extend
the two-component DCC-MIDAS model of Colacito et al. (2011) by allowing the
slowly-moving long-term correlation component to be determined endogenously by
the variation of key macroeconomic figures. We show that changes in macroeco-
nomic variables, which reflect the current stance of the economy as well as the
future economic outlook, can anticipate counter cyclical fluctuations in the long-
term correlation. More specifically, our model predicts a negative correlation during
prolonged periods of strong economic expansions, while a positive correlation is
observed during recessions and recoveries.

Our results provide further evidence for the argument put forward in Barsky and
Kilian (2002, 2004) and Kilian (2008, 2009), among others, that oil price changes
should not be considered exogenous with respect to U.S. and global macroeconomic
conditions. However, while previous studies focused on a relationship in levels, our
analysis shows that there is also feedback from the level of the macro variables to
the second moment of the oil price. In addition, our MIDAS approach allows us
to establish a link between low frequency data on U.S. economic activity and high
frequency oil-stock return correlations, whereas previous evidence in Kilian and Park

(2009) was based low frequency data.



4.8 TABLES AND FIGURES

4.8.1 TABLES

TABLE 4.1: DESCRIPTIVE STATISTICS

Variable Obs Min Max Mean SD* Skew. Kurt.

Panel A: Daily return data (Jan 4, 1993 - Nov 30, 2011)
Oil (WTI) 4743  -17.09 16.41 0.03 39.21 -0.19 7.73
CRSP 4743  -8.96 11.35 0.04 19.53 -0.11 10.66

Panel B: Monthly macro data (Jan 1990 - Nov 2011)
Current stance of the economy

1P 263  -4.30 2.10 0.16 0.67 -1.72 11.52
NFP 263  -0.62 0.41 0.07 0.18 -1.16 5.17
UR 263  -0.50 0.50 0.01 0.16 0.39 3.88
Future economic outlook

NAI 263  -4.55 1.52 -0.17 0.86 -1.82 8.48
LI 263  -3.03 2.42 0.99 0.98 -1.67 6.69

Notes: The reported statistics include the number of observations (Obs), the minimum (Min) and maximum
(Max), the mean, standard deviation (SD), Skewness (Skew.), and Kurtosis (Kurt.). For the variables IP
and NFP we compute month-to-month growth rates according to 100 - [In(X,) — In(X-_1)], while in case
of UR we use month-to-month changes. The NAI and LI are included in levels. We calculate continuously
compounded oil returns based on the WTI crude oil spot price. The CRSP return data is obtained from
Kenneth R. French data library, whereas oil prices and macro economic data are obtained from the Federal
Reserve Bank of St. Louis.

*The standard deviations are annualized for the daily return series.
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TABLE 4.5: MODEL EVALUATION

Euclidean distance Frobenius distance  Hedge portfolio
Variable loss difference loss difference  variance difference

Panel A: Full sample (Jan 1993 - Nov 2011)
Benchmark models

DCC 266.511 - 289.199 - 1.415 -

DCC-RC 266.508 0.003 289.194 0.005 1.414 0.001
(0.060) (0.060) (0.446)

Current stance of the economy

1P 264.604 1.907 287.063 2.136 1.399 0.016*
(1.158) (1.311) (1.896)

NFP 263.328 3.183** 285.744 3.455** 1.398 0.017~*
(2.03) (2.181) (1.892)

UR 263.078 3.433** 285.394 3.805** 1.394 0.021*
(2.152) (2.344) (1.876)

Future economic outlook

NAI 263.738 2.772** 286.073 3.126** 1.395 0.020*
(2.008) (2.223) (1.919)

LI 262.477 4.034*** 284.801 4.398*** 1.396 0.019**
(2.895) (3.054) (1.982)

Panel B: Financial crisis (Jan 2007 - Dec 2009)
Benchmark models

DCC 629.845 - 721.984 - 3.113 -

DCC-RC 629.890 —0.045 722.074 —0.090 3.118 —0.006
(—0.178) (—0.178) (—0.634)

Current stance of the economy

1P 629.624 0.221 720.357 1.628 3.012 0.100**
(0.023) (0.175) (2.151)

NFP 621.292 8.553 711.732 10.252 3.004 0.109**
(0.967) (1.153) (2.193)

UR 622.677 7.168 712.467 9.517 2.979 0.134**
(0.824) (1.080) (2.196)

Future economic outlook

NAI 624.536 5.309 714.491 7.493 2.987 0.126**
(0.715) (0.995) (2.153)

LI 618.037 11.808 707.883 14.101** 2.997 0.116**
(1.592) (1.846) (2.240)

Notes: For each DCC-MIDAS model we report the average of the Euclidean and Frobenius loss functions:

LE =(r; —h1,)® + (3 — hot)® + (r1,ema, — hao)?,

LE = (1}, —h1,0)? + (rd, — hot)? + 2(r1472,e — ha2,4)?,

and the average difference relative to the benchmark DCC model along with values of the corresponding t-statistic. For
each DCC-MIDAS model we calculate the optimal hedge portfolio

h

PF . 12,t

ry U =711t — B2t -T2, with Bi2,t = N =,
2.t

and report its average variance. The average variance for the portfolio consisting only of stock returns amounts to 1.507
for the full sample and to 3.438 for the subsample. We calculate the average difference of each variance relative to the
DCC model and the corresponding t-statistic. ***, **| * indicate significance at the 1 %, 5 %, and 10 % level.




4.8.2 FIGURES

FIGURE 4.1: MONTHLY MACROECONOMIC DATA
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Notes: The figure shows the development of the macroeconomic explanatory variables. Shaded
areas represent NBER recession periods.

FIGURE 4.2: LONG-TERM VOLATILITY COMPONENTS FOR THE STOCK AND OIL MARKET

73 S ——
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Notes: The figure shows the annualized monthly long-term volatility components (standard de-
viations) obtained from the GARCH-MIDAS-LI specification. The bold line refers to the stock
market, the dashed line to the oil market. Shaded areas represent NBER recession periods.



FIGURE 4.3: OIL-STOCK CORRELATION COMPONENTS

T
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Notes: The figure shows the DCC-MIDAS-LI estimates of the conditional oil-stock correlation
(dashed line) and its long-term component (bold black line). The circles correspond to one-year
rolling window realized correlations. Each series is shown at a monthly frequency, where monthly
realizations are obtained by computing monthly averages. Shaded areas represent NBER recession
periods.

FIGURE 4.4: LONG-TERM CORRELATION COMPONENT WITH THE LEADING INDEX
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Notes: The bold black line (left scale) represents the DCC-MIDAS-LI estimate of the long-term
oil-stock correlation. The dashed line (right scale) corresponds to the LI. Shaded areas represent
NBER recession periods.



FIGURE 4.5: WEIGHTING SCHEMES FOR THE LONG-TERM VOLATILITY COMPONENTS
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Notes: The figure shows the estimated weighting functions for the long-term volatilities based on
the GARCH-MIDAS-LI and for the long-term correlation based on the DCC-MIDAS-LI. While

the bold black line refers to the long-term correlation, the light-gray and the dark-gray dashed
lines refer to the long-term volatilities of CRSP and of oil price returns, respectively.

FIGURE 4.6: LONG-TERM CORRELATION COMPONENTS
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Notes: The figure shows the DCC-MIDAS-X estimates of the long-term oil-stock correlations for
all macroeconomic variables. Shaded areas represent NBER recession periods.
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