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1. Summary 

The Wnt signaling pathway controls diverse cellular processes and is implicated in stem 

cell biology, embryonic patterning, tissue homeostasis and human diseases, notably 

cancer. The regulation of the pathway is complex, and some aspects remain 

incompletely understood. This includes the signaling mechanism of R-spondins, which 

potentiate Wnt signaling, and the regulation of the endocytosis of the Wnt receptors. In 

order to obtain a better understanding for these processes, novel Wnt pathway 

components regulating Wnt signaling at the receptor level were identified and 

characterized in this thesis. 

In search for an R-spondin receptor, the leucine-rich repeat (LRR)-containing G protein-

coupled receptor 5 (LGR5) was identified. This thesis provides evidence that the orphan 

receptor LGR5, and its homolog LGR4, act as R-spondin receptors. Functionally, LGR4 

and LGR5 are required for Rspondin 3-mediated Wnt/PCP signaling during Xenopus 

development.  

Moreover, in collaboration with Prof. M. Boutros, the Rab GTPase RAB8B was 

characterized as a novel Wnt/β-catenin signaling regulator that controls LRP6 activity 

and endocytosis. This requirement of RAB8B for Wnt/β-catenin signaling was confirmed 

in Xenopus. 

Furthermore, angiopoietin-like 4 (ANGPTL4) was identified as a novel inhibitor of the 

Wnt/β-catenin signaling pathway. ANGPTL4 inhibits canonical Wnt signaling in 

mammalian cells and in Xenopus embryos, and is required for notochord formation 

during Xenopus development. In addition, ANGPTL4 is a mediator of TGFβ signaling and 

is required for mesoderm formation in Xenopus by regulating Activin/Nodal signaling. 

Similar to R-spondin 3, ANGPTL4 can bind to the syndecan family of transmembrane 

proteoglycans, which induce its clathrin-mediated endocytosis. The removal of ANGPTL4 

increases membrane levels of LRP6, resulting in higher Wnt activity, whereas ANGPTL4 

gain-of-function decreases LRP6 cell surface levels. The N-terminal domain of ANGPTL4 

is sufficient to mediate this effect. These results suggest that ANGPTL4 inhibits Wnt/β-

catenin signaling by removal of LRP6 from the plasma membrane, presumably via 

clathrin-mediated endocytosis. 



2. Zusammenfassung 

2 
 

2. Zusammenfassung 

Der Wnt Signalweg reguliert zahlreiche zelluläre Prozesse während der 

Embryonalentwicklung und der Gewebshomöostase. Fehlerhafte Wnt Signalübertragung 

ist die Ursache verschiedener menschlicher Krankheiten, insbesondere Krebs. Die 

Regulation dieses Signalweges ist sehr komplex, und einige Aspekte sind noch immer 

weitgehend unbekannt. Um die Übertragung von Wnt Signalen zwischen Zellen besser 

zu verstehen, wurden in dieser Arbeit neue Moleküle charakterisiert, die den Wnt 

Signalweg auf Rezeptorebene regulieren.   

Bei der Suche nach einem R-spondin Rezeptor wurde LGR5 als Kandidat identifiziert. Ich 

zeige hier, dass LGR5 und dessen Homolog LGR4 als Rezeptoren für R-spondin dienen. 

Die biologische Relevanz dieser Entdeckung wurde im Tiermodell belegt, wo LGR4 und 

LGR5 für die Aktivierung des Wnt/PCP Signalweges durch R-spondin 3 während der 

Xenopus Entwicklung benötigt werden.   

Ausserdem wurde in Kollaboration mit Prof. M. Boutros ein weiterer neuer Regulator 

der Wnt Signalkaskade charakterisiert. Wir konnten zeigen, dass die GTPase RAB8B die 

Aktivität und Endozytose des Wnt Rezeptors LRP6 kontrolliert. Ähnlich wie LGR4/5 wird 

auch RAB8B für die Aktivierung des Wnt/β-catenin Signalweges während der frühen 

Entwicklung von Xenopus benötigt.  

Schließlich identifiziere ich in dieser Arbeit ANGPTL4 als neuen Inhibitor des Wnt/β-

catenin Signalweges. ANGPTL4 inhibiert den Signalweg in Säugetierzellen und in 

Xenopus, und wird für die Notochord-Entwicklung in Xenopus benötigt. Wie ich hier 

darlege, reguliert ANGPTL4 zusätzlich den TGFβ Signalweg und ist an der Mesoderm-

Entwicklung in Xenopus beteiligt. ANGPTL4 wird nach Bindung an Syndecan-Proteine 

Clathrin-abhängig endozytiert. In Abwesenheit von ANGPTL4 wird LRP6 an der 

Zellmembran stabilisiert, wohingegen Expression von ANGPTL4 dazu führt, dass LRP6 

von der Membran enfernt wird. Dieser Effekt wird durch den N-Terminus von ANGPTL4 

vermittelt. Die Ergebnisse deuten darauf hin, dass ANGPTL4 den Wnt/β-catenin 

Signalweg durch Entfernung von LRP6 von der Plasmamembran inhibiert. Dies könnte 

durch Clathrin-abhängige Endzytose von LRP6 erfolgen.               



3. Introduction 

3 
 

3. Introduction 

3.1 Wnt signaling transduction cascades 

The first Wnt gene, Wnt1, was initially discovered in 1982 as a proto-oncogene activated 

by mouse mammary tumor virus (MMTV) integration.1 Since then, several other Wnt 

proteins have been identified, which now comprise a family of 19 secreted, hydrophobic 

glycoproteins in humans and mice. Wnt molecules are characterized by a signal peptide 

that mediates protein secretion, followed by a stretch of highly conserved cysteine-rich 

domains.2  

Wnts are evolutionarily conserved, and control various developmental and physiological 

processes.3 Each Wnt ligand binds a specific combination of receptor and co-receptor, 

and thereby stimulates different downstream signaling events. Based on the 

downstream signaling output, these pathways are commonly referred to as “canonical” 

and “noncanonical” Wnt signaling, and individual Wnt ligands are broadly classified by 

their ability to activate one of these cascades. For example, canonical Wnt proteins such 

as WNT1, WNT3a and WNT8 are able to induce transformation of mouse mammary 

epithelial cells and formation of secondary axis in Xenopus embryos, which are 

prototypical biological readouts for this pathway.4,5 However, this initial classification of 

Wnt signaling has since been extended, following the identification of several sub-

branches of both signaling pathways (reviewed in Niehrs, 20126). The induction of either 

of these signaling pathways depends on the cellular context and the combination of 

available receptors, rather than on the intrinsic property of the Wnt proteins.7 In the 

following chapters, Wnt/β-catenin and Wnt/PCP signaling will be addressed in detail.             
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3.1.1 Wnt/β-catenin signaling 

The Wnt/β-catenin signaling pathway controls major developmental processes such as 

axis formation and nervous system patterning, and is implicated in stem cell biology and 

human diseases, notably cancer.3,8,9  

The key event in Wnt/β-catenin signaling is the cytoplasmic stabilization of the 

transcriptional co-factor β-catenin and its subsequent nuclear translocation. In the 

absence of Wnt ligands, cytoplasmic β-catenin levels are kept low, through continuous 

proteasome-mediated degradation, which is controlled by a multiprotein complex 

containing glycogen synthase kinase 3 (GSK3), casein kinase 1 alpha (CK1α), Axin, and 

adenomatous polyposis coli (APC). The scaffold proteins Axin and APC assemble the 

destruction complex,10-13 whereas CK1α and GSK3 phosphorylate β-catenin at conserved 

Ser/Thr-residues near the amino terminus.14,15 Phosphorylated β-catenin is then 

recognized by the beta-transducin repeat containing E3 ubiquitin protein ligase (β-TrCP), 

which ubiquitinates β-catenin and thereby targets it for proteasomal degradation (Figure 

1).16-20     

Following Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein 

receptor-related protein 5/6 (LRP5/6), the ternary complex undergoes clustering on 

dishevelled (DVL) platforms.21 This in turn induces internalization of the ligand-receptor 

complex via endocytic vesicles, termed LRP6 signalosomes.21 These vesicular structures 

are acidified by the vacuolar ATPase (v-ATPase), which interacts with LRP6 via the 

prorenin receptor (PRR).22 This promotes phosphorylation of LRP5/6 by CK1γ21,23 and 

GSK324-26 and leads to membrane recruitment of the negative regulator Axin together 

with the other components of the destruction complex.27,28 Subsequently, GSK3 is 

inhibited, which stabilizes β-catenin.25 Following its stabilization, β-catenin binds to the 

lymphoid enhancer factor/T-cell factor (LEF/TCF) transcription factors, replacing the 

transcriptional co-repressor groucho, to activate Wnt target gene transcription (Figure 

1).29  
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Figure 1| Model of Wnt/β-catenin signaling. In the absence of Wnt, β-catenin is bound to the destruction 

complex, consisting of Axin, APC, CK1α and GSK3. The latter two phosphorylate β-catenin, which triggers 

its proteasomal degradation. In the presence of Wnt, the destruction complex is recruited to the Wnt-

Frizzled-LRP5/6 receptor complex and inactivated. This allows the accumulation of β-catenin and the 

activation of Wnt target gene transcription. Figure modified from Schuijers & Clevers, 2012.
30

 

   

Although GSK3 activity is critical for β-catenin stability and thus Wnt signaling, the 

molecular mechanism of GSK3 inhibition remains under debate.31 As a first and likely 

intermediate response, the phosphorylated, intracellular domain of LRP5/6 not only 

recruits, but also directly inhibits GSK3.32 Afterwards, sustained inhibition of GSK3 is 

achieved by its sequestration in multivesicular bodies (MVBs).33,34 Following 

internalization, LRP6 signalosomes are recruited to the endosomal sorting complex 

required for transport (ESCRT), which mediates sorting of these vesicles to late 

endosomes, which undergo intraluminal budding. Thereby GSK3 is sequestered in the 

lumen of MVBs and can no longer target its substrates, including β-catenin, for 

proteasomal degradation.33 In addition, it has been observed that Axin is 

dephosphorylated in response to Wnt signaling. This decreases the affinity of Axin for β-

catenin, and releases β-catenin from the destruction complex.35,36  
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3.1.2 Wnt/PCP signaling 

The Wnt/planar cell polarity (PCP) pathway does not involve the activation of β-

catenin/TCF-dependent transcription and is thereby distinct from canonical Wnt 

signaling. Wnt/PCP signaling regulates various aspects of cell migration and polarity 

during morphogenetic processes.2,37,38 In vertebrates it mediates cell movements during 

gastrulation, neural tube closure, hair cell orientation and ciliogenesis.2,39,40  

The PCP pathway was originally identified in Drosophila, where it regulates the polarity 

of actin-rich protrusions (trichomes) in the adult wing and abdomen.41 Similar to Wnt/β-

catenin signaling, FZD and DVL are also required for Wnt/PCP signaling. Genetic studies 

in Drosophila uncovered additional core components of the Wnt/PCP pathway. These 

include the four transmembrane protein Strabismus (Stbm/Vangl2), the atypical 

cadherin Flamingo (Fmi), and the cytoplasmic proteins Prickle (Pk) and Diego (Dgo). The 

atypical, cadherin-domain containing seven transmembrane protein Fmi42 differentially 

recruits FZD and Stbm to opposite sides of the cell.43 Thereby complexes of the 

transmembrane proteins Fmi and Stbm, together with the cytoplasmic protein Pk 

accumulate at the proximal side of the cell, whereas Fmi and FZD, together with DVL and 

Dgo, localize to the distal border. This separation allows the interaction of the two 

complexes at opposite sides of the cell.43,44  

In contrast to Drosophila, the molecular basis of the interaction of Fmi with the Wnt/PCP 

pathway in vertebrates remains elusive.45,46 Furthermore initial studies in Drosophila 

suggested that Wnt proteins are not required for signal transduction.43 At least in 

vertebrates, however, WNT5A and WNT11 induce the Wnt/PCP signaling pathway 

through binding to FZD receptors.47,48 This in turn recruits DVL to the plasma membrane 

and activates a downstream signaling cascade that involves the small GTPases RAC1 and 

RHOA, the Jun-N-terminal kinase (JNK), and Rho-associated coiled-coil containing 

protein kinase (ROCK). These kinases can phosphorylate and thereby activate 

transcription factors such as activating transcription factor 2 (ATF2), which induce 

transcription of target genes, thereby mediating cytoskeleton remodeling (Figure 2).2,39  
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Figure 2| Model of Wnt/planar cell polarity (PCP) signaling. Activation of the Wnt/PCP pathway, by 

binding of Wnt ligands to Frizzled and different possible co-receptors, induces recruitment of DVL and 

activation of the small GTPases RHOA and RAC1. These in turn activate ROCK and JNK, which 

phosphorylate the transcription factor ATF2. This results in actin polymerization and microtubule 

stabilization. Thereby Wnt/PCP signaling regulates cell polarity, motility and morphogenetic movements. 

Figure modified from Niehrs, 2012.
6
 

 

In addition to the core components, several co-receptors for Wnt/PCP signaling have 

been identified. The heparan sulfate proteoglycans (HSPG) glypican and syndecan (SDC) 

have been shown to bind both the Wnt ligand and Frizzled and enhance Wnt signaling.49-

52 In the case of SDC4, direct interaction with DVL was observed.52 Another class of Wnt 

co-receptors are the single transmembrane receptor tyrosine kinases ROR1 and ROR2. In 

vertebrates ROR2 binds to noncanonical Wnts, like WNT5A and WNT11, and associates 

with FZD receptors to mainly transduce Wnt/PCP signaling.53,54     

As indicated above, Wnt/β-catenin and Wnt/PCP signaling are involved in a multitude of 

developmental processes and share several signaling components. A characteristic of 

Wnt/β-catenin and Wnt/PCP signaling is that they antagonize each other. The inhibition 

of one pathway will up-regulate the other branch.6    
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3.2 Wnt/β-catenin signaling regulation at the receptor level 

Wnt signaling has to be tightly regulated to prevent excessive activation, which could 

induce misregulation of cell differentiation, proliferation or migration.3 Aberrant 

regulation of Wnt signaling is associated with a variety of diseases, including bone and 

metabolic diseases, and cancer.8,55 The majority of colorectal cancer patients carry 

mutations in adenomatous APC, and to a lesser extent in Axin or β-catenin, all resulting 

in activation of the Wnt/β-catenin signaling pathway (reviewed in Clevers & Nusse, 

201255). Therefore the Wnt signaling pathway is regulated at different levels by a wide 

range of effectors.3,6,56 As regulation of Wnt signaling at the receptor level is the subject 

of this thesis, control of Wnt receptors, extracellular modifiers and different endocytic-

routes are introduced below.  

 3.2.1 Wnt receptors 

Wnt/β-catenin signaling requires activation of the co-receptor LRP5/6, which forms a 

ternary complex with Wnt ligands and the FZD receptor. These receptors can be 

regulated at different levels, either extra- or intracellularly. Furthermore, the association 

of Frizzled and LRP5/6 with different co-receptors such as the syndecans can further 

regulate downstream signaling.   

Frizzled 

The core Wnt receptors of the Frizzled family comprise 10 members in humans.57 They 

can associate with several different co-receptors and mediate not only Wnt/β-catenin, 

but also Wnt/PCP signaling. Frizzled proteins belong to the superfamily of G protein-

coupled receptors (GPCRs) and contain seven membrane-spanning domains.58,59 Frizzled 

proteins interact with Wnts via their highly conserved, large extracellular cysteine-rich 

domain (CRD).59-61 Besides Wnts, Frizzled proteins bind other secreted proteins that 

regulate its function. For instance, FZD4 has been shown to interact with Norrin, which 

binds to the CRD and mediates oligomerization of FZD4, thereby activating Wnt/β-

catenin signaling.62,63 The binding of cytoplasmic proteins to the intracellular domain of 

FZD can further regulate the receptor. One of the best-characterized FZD interacting 

proteins is the scaffold protein DVL.64 DVL is involved in Wnt/β-catenin, as well as 

Wnt/PCP signaling and mediates interaction of the receptor with several other 
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cytoplasmic proteins.2 In the case of Wnt/β-catenin signaling, DVL contributes to the 

recruitment of the destruction complex, whereas in Wnt/PCP signaling it binds to 

atypical PKC (aPKC) or DVL-associated activator of morphogenesis 1 (DAAM1), which 

mediate the activation of the small GTPases RHO and RAC.65  

LRP5 and LRP6 

LRP5, LRP6 and their Drosophila homolog Arrow are type-I single-pass transmembrane 

proteins and constitute a subfamily of the low density lipoprotein (LDL) receptor family. 

They are characterized by a large extracellular domain and a short cytoplasmic tail, 

containing five Pro-Pro-Pro-Ser/Thr-Pro (PPPSP) sites and several Ser/Thr clusters.26,66 

The extracellular domain (ECD) contains different Wnt binding sites and mediates the 

interaction with Wnt and Frizzled, resulting in the formation of a ternary signaling 

complex.67 The regulation of LRP5/6 activity is mainly achieved by phosphorylation of 

the cytoplasmic domain of the protein. The PPPSP sites are required for Wnt/β-catenin 

signaling, as evidenced by the fact that an LRP6 mutant lacking those domains is inactive 

in signaling.28,68 The phosphorylation of these PPPSP sites is mediated by proline-

directed kinases, such as GSK3, upon activation of Wnt signaling (Figure 3).24 Thereby, 

GSK3 acts as a dual regulator of Wnt signaling, as it inhibits Wnt signaling by 

phosphorylation of β-catenin and activates it by phosphorylation of LRP6.24 

Phosphorylation of the PPPSP sites primes LRP6 for phosphorylation by CK1γ at 

neighboring Ser residues (Figure 3). The phosphorylation of all sites promotes Axin 

recruitment to the plasma membrane and thereby activates Wnt signaling.23  

file:///C:/Nadine%20Profil/kirschn/Thesis/Thesis_Nadine_2%20chapters_new.docx%23_ENREF_2


3. Introduction 

10 
 

 

 

Figure 3| LRP6 phosphorylation by GSK3 and CK1γ. The intracellular domain of LRP6 has five PPPSP and 

CK1 phosphorylation sites. Phosphorylation of PPPSP sites by GSK3 primes LRP6 for CK1γ phosphorylation 

upon extracellular Wnt stimulation. Figure modified from Davidson et al., 2009.
69

 

 

The activity of LRP6 is also regulated by other kinases. For example, serine/threonine 

kinase CK2 is activated upon Wnt stimulation and phosphorylates LRP6 at a highly 

conserved Ser1579 site. This phosphorylation promotes binding of the endocytic 

adaptor disabled-2 (DAB2), which inhibits Wnt signaling by inducing clathrin-dependent 

LRP6 endocytosis.70 

Syndecans 

Syndecans are a family of four transmembrane proteoglycans, which were described as 

co-receptors of Wnt signaling. Based on sequence homology, the vertebrate syndecans 

can be divided into two subclasses, with SDC1 and SDC3 constituting one class, and SDC2 

and SDC4 making up the other.71,72 Syndecans contain an extracellular domain with 

attachment sites for three to five heparan sulfate (HS) or chondroitin sulfate (CS) 

glycosaminoglycan (GAG) chains, a single-pass transmembrane domain, and a short 

cytoplasmic domain (Figure 4).72 The HS chains mediate interaction with a variety of 

growth factors such as Hedgehog, FGFs, TGFβ, and Wnts.73 Furthermore, interaction 

with several extracellular matrix proteins has been described. This mostly requires 

modification of the GAG chains by sulfatases, generating highly specific binding sites.74 

Whereas the homology of the ECD is fairly low, the transmembrane domain is highly 
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conserved between the four syndecans. The cytoplasmic domain can be divided into 

three regions, containing two highly conserved (C1, C2) and a variable (V) domain 

(Figure 4). These domains contain binding sites for several cytoplasmic proteins 

(reviewed in Tkachenko, 200575), coupling syndecans to different downstream 

processes.  

The four syndecan members show distinct expression patterns, which are tightly 

regulated during development. SDC1 is expressed very early in development in epithelial 

and mesenchymal tissue, whereas SDC3 is mainly expressed in neural and 

musculoskeletal tissue. SDC2 is detected in cells of mesenchymal origin, as well as in 

neuronal and epithelial cells. SDC4, on the other hand, is ubiquitously expressed from 

early stages of development.75,76   

 

 

 

Figure 4| Structure of syndecans. The extracellular domain of all four syndecans with attachment sites for 

3-5 heparan sulfate (HS) or chondroitin sulfate (CS) chains is shown in light grey. The transmembrane 

domain links the extracellular domain to the intracellular cytoplasmic part of the protein, consisting of one 

variable and two conserved (C1, C2) regions. The four syndecans (SDC) differ in their extracellular domain 

and variable region. Figure modified from Pap & Bertrand, 2013.
77

 

 

Of all syndecans, the function of SDC4 is best described. SDC4 regulates Wnt/PCP 

signaling in Xenopus via direct interaction with FZD and DVL and recruitment of DVL to 

the plasma membrane.52 Moreover, SDC4 was shown to bind RSPO3, which also 
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activates Wnt/PCP signaling.78 In this manner syndecans add another level of regulation 

to the Wnt receptor complex. 

3.2.2 Extracellular modifiers 

Besides Wnt ligands, several other proteins have been identified that can interact with 

the Wnt (co-)receptors and thereby regulate Wnt signaling. The most prominent ones 

are R-spondins.  

R-spondins 

R-spondins (roof plate specific spondin, RSPO) comprise a family of four secreted 

proteins, which potently enhance Wnt/β-catenin and Wnt/PCP signaling in a Wnt-

dependent manner.78-80 The four R-spondin proteins consist of an N-terminal signal 

peptide, two furin domains which are required for Wnt/β-catenin signaling,79 and one 

thrombospondin type I domain (TSP), which promotes Wnt/PCP signaling (Figure 5).78 

Interestingly, R-spondins enhance Wnt signaling even in the presence of low amounts of 

Wnt ligands. In the absence of Wnts, R-spondins are not able to induce β-catenin 

accumulation.81,82 

 
 

 

Figure 5| Domain organization of R-spondins. The R-spondin family members consist of an N-terminal 

signal peptide (SP), mediating secretion, two cysteine-rich furin-like domains (Furin1, Furin2), a single 

thrombospondin type 1 repeat (TSP) and a positively charged C-terminal tail of variable length. The Furin 

domains are implicated in Wnt/β-catenin signaling and the TSP domain is required for Wnt/PCP signaling. 

Figure modified from Jin & Yoon, 2012.
83

  

 

R-spondins have been shown to control embryonic development and 

differentiation,79,84-86 and can stimulate the proliferation of crypt stem cells in the 

intestine via activation of Wnt/β-catenin signaling.87,88 However, the molecular 
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mechanism of R-spondin activity in Wnt signaling remained elusive. Several receptors 

were proposed as binding partners of R-spondins, including LRP6 and Kremen, which 

however could not be confirmed.78,81 Recently, syndecans were identified as receptors 

for RSPO2 and RSPO3, binding to their TSP domain.78 In Xenopus, SDC4 and RSPO3 are 

essential for convergent extension movements during gastrulation and head cartilage 

morphogenesis.78 Syndecans are known to undergo internalization upon ligand binding. 

Consistently, RSPO3 binding induces SDC4-dependent, clathrin-mediated endocytosis of 

the FZD-WNT5A complex, which is essential for Wnt/PCP signaling.78    

3.2.3 Regulation of Wnt signaling by endocytosis 

There is increasing evidence that internalization of the Wnt-receptor complex can not 

only attenuate signal transduction, but is also required for pathway activation.89 In this 

context, two major signaling events have been described, namely clathrin and caveolin-

mediated endocytosis.    

Clathrin-mediated endocytosis 

In clathrin-mediated endocytosis, ligand-receptor complexes accumulate in “coated pits” 

at the plasma membrane (Figure 6). Clathrin-coated pits consist of cytosolic coat 

proteins, which assemble into a cage-like structure. This requires clathrin, the major 

assembly unit, which is comprised of three heavy and three light chains forming a three-

legged structure, also known as triskelion.90 Besides clathrin, several other proteins such 

as the assembly protein 2 (AP-2), are involved in the formation of the polygonal clathrin 

coat (Figure 6).91 Other proteins like β-arrestin1/2 work as adaptor proteins, which on 

the one hand bind AP-2 and clathrin, and on the other hand interact with various 

activated GPCRs.92 Thereby β-arrestins mediate the accumulation of these receptors in 

clathrin-coated pits.93 During the late process of clathrin-coated vesicle (CCV) formation, 

dynamin, a GTP-binding protein, assembles at the neck of invaginating pits and mediates 

membrane fission.94 After internalization, CCVs are uncoated and fuse with early 

endosomes. At this step membrane proteins can either be recycled to the plasma 

membrane, or transported to late endosomes and lysosomes for degradation. (reviewed 

in Kikuchi et al., 200795)   
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Figure 6| Model of clathrin-mediated endocytosis. Ligand-receptor complexes are concentrated in 

clathrin-coated pits in the plasma membrane. These structures are assembled by cytosolic coat proteins, 

including clathrin and assembly protein 2 (AP-2). Clathrin-coated vesicles undergo endocytosis and are 

uncoated after internalization, and fuse with early endosomes. Figure modified from Dobrowolski & De 

Robertis, 2012.
96

 

 

In the case of Wnt/PCP signaling, only clathrin-mediated endocytosis seems to be 

essential for the induction of the signaling pathway. Wnt/PCP signaling is mainly induced 

by binding of Wnt ligands to their Frizzled receptors. As Frizzled receptors themselves 

are GPCRs,58,59 β-arrestin is implicated in the internalization of FZD. Upon binding of 

FZD4 to WNT5A, FZD4 undergoes internalization, mediated by β-arrestin2. This requires 

DVL2, which recruits β-arrestin2 to the plasma membrane and thereby induces the 

internalization of FZD4.97 Besides its interaction with β-arrestin, DVL2 also binds a 

subunit of AP-2. This association mediates the Wnt-dependent internalization of FZD4 

and is essential for Wnt/PCP signaling in Xenopus.98 In addition to Wnts, RSPO3 also 

induces clathrin-mediated endocytosis of Frizzled, which is essential for Wnt/PCP 

signaling.78  

For Wnt/β-catenin signaling there are several reports showing the importance of 

caveolin-mediated endocytosis for activation of downstream signaling (see below). 

However, it has been proposed that clathrin-dependent internalization is also involved 

in the activation of β-catenin signaling. In murine L-cells, β-catenin accumulation 
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induced by WNT3A was suppressed upon addition of clathrin specific inhibitors.89 

Furthermore, inhibition of β-arrestin in mouse embryonic fibroblasts or Xenopus blocked 

β-catenin accumulation after Wnt stimulation.99 In addition to activation of Wnt/β-

catenin signaling, the internalization via clathrin-dependent routes can also inhibit the 

pathway. This is achieved by binding of DKK1 to LRP5/6 and Kremen. The ternary 

complex is rapidly internalized in a clathrin-dependent manner and attenuates Wnt 

signaling by removal of LRP5/6 from the plasma membrane.100  

Caveolin-mediated endocytosis 

Caveolin-mediated endocytosis takes place in regions of the plasma membrane called 

caveolae. These are flask-shaped plasma membrane invaginations rich in cholesterol and 

sphingolipid, which concentrate many membrane transporter and signaling 

molecules.101,102 Caveolae are formed by caveolin, which directly binds cholesterol and 

confers the characteristic shape and structural organization. Caveolin is an integral 

membrane protein and self-associates to form a striated caveolin coat on the surface of 

membrane invaginations (Figure 7).103,104 Membrane fission of caveolae also involves 

dynamin, similar to clathrin-mediated endocytosis.94 In contrast to CCVs, caveolin is 

stably associated with the plasma membrane of the internalized vesicles and caveolae 

are only slowly internalized102 (reviewed in Lajoie & Nabi, 2010105).  

Wnt/β-catenin signaling proceeds via caveolin-mediated endocytosis to trigger 

downstream signaling. In response to Wnt signaling, LRP6 has been found in intracellular 

aggregates that contain caveolin.21 Consistently, it has been shown that LRP6 undergoes 

caveolin-mediated endocytosis upon Wnt stimulation, and inhibition of caveolin-

dependent endocytosis blocks WNT3A-induced β-catenin accumulation.106,107     
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Figure 7| Model of caveolin-mediated endocytosis. Upon binding of Wnt to Frizzled and LRP6, DVL is 

recruited to the plasma membrane. DVL is required for the polymerization of the receptors in caveolae 

and endocytosis via caveolin-coated vesicles. Other components of the Wnt/β-catenin signaling pathway 

are not shown for simplicity. Figure modified from Dobrowolski & De Robertis, 2012.
96

 

 

3.3 Wnt signaling during Xenopus development 

Xenopus is an important and established model system for studying Wnt signaling in 

vertebrates. Major advantages are the large size of the embryos and easy accessibility, 

which allows microinjection experiments, short generation times and the high degree of 

conservation of essential cellular and molecular mechanisms, including the Wnt 

signaling pathway.108,109    

During Xenopus development, Wnt/β-catenin signaling is first involved in the 

establishment of the dorsal-ventral (D-V) axis and later in the patterning of the anterior-

posterior (A-P) axis. These two processes can be divided into two separate events: 

Maternal Wnt signaling, which is controlled by molecules inherited from the mother, 

and zygotic Wnt signaling, which begins after the initiation of transcription in the 

embryo.110 D-V axis determination starts with fertilization of the egg. Sperm entry 

initiates rotation of the cortical cytoplasm, which relocates dorsal determinants from the 
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vegetal pole to the dorsal side.111-114 These determinants include maternal WNT11 

mRNA,115 which induces the asymmetric stabilization and nuclear translocation of β-

catenin (Figure 8A).116-118 Thereby Wnt signaling induces dorsal-specific gene expression, 

which is responsible for Spemann organizer formation.116,119 This signaling center 

dorsalizes the three germ layers and is required for the formation of the A-P axis.  

Zygotic Wnt/β-catenin signaling mediates A-P axis specification by establishing a linear 

signaling gradient.120 Wnt/β-catenin signaling activity is high at the posterior pole, where 

Wnt signaling promotes posterior cell fates.121,122 In the anterior part of the embryo, 

Wnt activity is low, due to secretion of Wnt antagonists (Figure 8B).123-125 Accordingly, 

zygotic Wnt/β-catenin gain-of-function induces posteriorization, characterized by lack of 

head structures, whereas conversely, loss-of-function causes anteriorization, marked by 

big heads, enlarged cement glands and short trunks.  

 

 

Figure 8| Xenopus axis specification by maternal and zygotic Wnt/β-catenin signaling. (A) Maternal 

Wnt/β-catenin signaling establishes the dorsal (D) – ventral (V) axis. After fertilization, cortical rotation 

(black dotted line) induces accumulation of β-catenin at the future dorsal site, where it activates gene 

transcription leading to formation of the Spemann organizer. (B) Zygotic Wnt/β-catenin signaling is 

involved in anteroposterior axis specification. Secretion of Wnt antagonists in the anterior (A) region and 

expression of Wnt ligands in the posterior (P) region establish a Wnt gradient along the embryonic axis, 

which is essential for axis formation. Figure modified from Hikasa & Sokol, 2013.
110
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Wnt/PCP signaling also contributes to Xenopus development, by regulating cell 

movements during gastrulation. This includes convergent extension (CE) movements, 

which drive the elongation of the body axis. In this process, dorsal mesodermal cells 

align with mediolateral orientation. These cells possess protrusive activities on their 

lateral surfaces, which allow directed cell movements. Thereby cells intercalate and the 

tissue narrows (convergence) mediolaterally. At the same time, the tissue elongates 

along the A-P axis (extension), which results in the formation of the A-P body axis (Figure 

9).126,127 This process is tissue-autonomous, because explants of the dorsal marginal 

zone (Keller explants) undergo elongation in the absence of neighboring, mesodermal 

tissue.128 Because Wnt/PCP signaling is essential for convergent extension, interfering 

with the pathway results in shortened embryonic body axis and defects in neural tube 

closure (spina bifida).78,129,130 

 

 

 

Figure 9| Convergent extension movements during Xenopus gastrulation. Schematic illustration of the 

dorsal vegetal region of a Xenopus gastrula embryo. Arrows indicate movements of cells. Mesodermal 

cells align mediolaterally (L↔M↔L) and based on their protrusive activity at the mediolateral edges, 

these cells intercalate. Thereby sheets of cells narrow mediolaterally (convergence) and at the same time 

elongate in anterior (A) posterior (P) direction (extension), which establishes formation of the A-P body 

axis. Figure modified from Tada & Kai, 2009.
40
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4. Aim of the thesis 

The Wnt signaling pathway has been studied extensively, however several aspects of the 

transduction cascade, especially at the level of the receptors, remain unresolved. The 

aim of this thesis is to identify new regulators of the Wnt signaling pathway, which 

control Wnt signaling at the receptor level. These regulators should be analyzed 

regarding their molecular mechanism and their physiological relevance in Wnt signaling 

and validated in vivo, using Xenopus as a model organism. This should lead to a better 

understanding of the Wnt signaling pathway. Here I describe three new Wnt regulators 

that affect Wnt signaling at the receptor level: 

Chapter 1: LGR4 and LGR5 are R-spondin receptors mediating Wnt signaling. R-

spondins enhance both Wnt/β-catenin and Wnt/PCP signaling in the presence of Wnt.78-

80 The molecular mechanism of Wnt signal enhancement and the reason for the 

requirement of Wnts to enhance both signaling pathways are incompletely understood. 

We thus aimed to identify novel R-spondin receptors. The requirement of these 

receptors for R-spondin mediated Wnt/PCP signaling was analyzed in Xenopus embryos.  

Chapter 2: RAB8B is required for Wnt/β-catenin signaling in Xenopus. Endocytosis plays 

an important role in signal transduction of the Wnt pathway,89 but how endocytosis of 

the Wnt receptors is regulated is incompletely understood. The small GTPase RAB8B was 

identified as regulator of LRP6 receptor endocytosis in an RNAi screen. To analyze if the 

function of RAB8B on Wnt/β-catenin signaling is conserved, the effect of RAB8B loss-of-

function was analyzed in Xenopus.  

Chapter 3: ANGPTL4 binds syndecans and inhibits Wnt/β-catenin signaling by 

promoting LRP6 internalization. ANGPTL4 was identified in a genome-wide siRNA 

screen with the aim to discover novel molecules that regulate Wnt signaling at the 

receptor level. The function and mechanism of ANGPTL4 in Wnt signaling was 

investigated in vitro and the biological function was characterized during the early 

development of Xenopus embryos.  
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5. Chapter 1: LGR4 and LGR5 are R-spondin receptors mediating 

noncanonical Wnt signaling in Xenopus 

5.1 Introduction 

5.1.1 Leucine-rich repeat-containing G protein-coupled receptor family 

The G protein-coupled receptor (GPCR) family represents one of the largest families of 

transmembrane proteins comprising more than 800 receptors.131 The main 

characteristic of GPCRs is the presence of seven transmembrane domains. Through their 

membrane-spanning domain, these receptors convert extracellular signals into 

intracellular signaling responses by activation of heterotrimeric G proteins. These 

extracellular stimuli can be quite diverse, comprising sensory and chemical signals, 

including light, odor, pheromones, hormones and neurotransmitters.132 The binding of 

the respective ligand to GPCRs induces the activation of heterotrimeric G proteins, 

which positively or negatively regulate the activity of effector molecules, such as 

enzymes and ion channels. This causes a change in ion composition, or second 

messenger levels, which in turn induces cellular responses.133,134 Desensitization of GPCR 

signaling is achieved by uncoupling of GPCRs from heterotrimeric G proteins in response 

to phosphorylation by G protein-coupled receptor kinases (GRKs). The phosphorylation 

of GPCRs promotes binding of β-arrestin, which mediates the uncoupling process. 

Furthermore, β-arrestin binds to AP-2 and clathrin and thereby facilitates internalization 

of GPCRs via clathrin-mediated endocytosis. This internalization attenuates downstream 

signaling.92,93 Based on phylogenetic analysis, the human GPCRs can be divided into five 

subgroups: Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin.131,135  

The leucine-rich repeat-containing G protein-coupled receptors (LGRs) belong to the 

Rhodopsin family and can be divided into three subgroups, based on their unique 

domain arrangement (Figure 10A,B).136 The Type A subgroup is constituted by the 

hormone receptors for follicle-stimulating hormone (FSHR/LGR1), luteinizing hormone 

(LHR/LGR2) and thyroid-stimulating hormone (TSHR/LGR3). LGR7 and LGR8 bind to 

peptides of the relaxin family and are classified as type C.137-139 The type B receptors 

LGR4-6 share 50% sequence identity at the amino acid level.136 The structure of the LGRs 
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is characterized by a large N-terminal extracellular domain containing a series of 9 to 17 

leucine-rich repeats (LRR), which in the case of subgroup A and C are crucial for ligand 

binding (Figure 10B). In the case of LGR4, LGR5, and LGR6, the 17 LRRs are flanked by N- 

and C-terminal cysteine-rich domains (Figure 10C) (reviewed in Tang et al., 2012135). 

LGRs are of ancient evolutionary origin.140 Apart from vertebrates and insects, LGR 

homologues were found in sea anemone, mollusk, and the nematode C.elegans.141-145  

 

 

Figure 10| LGR subfamilies and domain organization. (A) Phylogenetic relationship between LGR 

subfamilies. Group A includes follicle-stimulating (FSHR/LGR1), luteinizing (LHR/LGR2) and thyroid-

stimulating (TSHR/LGR3) hormone receptors. Group B contains LGR4, LGR5 and LGR6. Group C comprises 

LGR7 and LGR8, receptors of the relaxin family. (B) Domain structure of the three groups. Group A 

contains 9 leucine-rich repeats (LRR), whereas group B contains 17 LRRs and group C 10 LRRs. Hinge, Hinge 

domain; 7 TM, seven transmembrane domain; LDL, low density lipoprotein. (C) Predicted structure of 

LGR5, consisting of a large extracellular domain of 17 LRRs, which are linked to the cytoplasmic domain via 

seven transmembrane helices. Panel A and B modified from Tang et al., 2012
135

, panel C was taken from 

Barker & Clevers, 2010.
146

 

 

The expression pattern and functions of LGR4, LGR5 and LGR6 are quite distinct.135,146 

LGR5 is a marker of gastrointestinal, colon, stomach and hair follicle stem cells.147,148 It 

was shown that LGR5 expression in mouse small intestine and colon is restricted to a 

very specific cell type, called crypt base columnar (CBC) cells, which are interspersed 

between Paneth cells at the crypt base. These LGR5 positive cells are long-lived and 

multipotent.147,149 Similarly, the epithelial stem cells of the gastric gland in the stomach 

and of the follicle bulge in the hair follicle of the skin all express LGR5.147,148,150 These 

cells have in common that their self-renewal and differentiation is controlled by Wnt 
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signaling.151-153 Furthermore, it was described that Wnt signaling regulates the 

expression of LGR5.154 Mutations that cause an up-regulation of LGR5 result in the 

formation of colorectal cancers and tumors of the ovary, and they promote cell 

proliferation and tumor formation in basal cell carcinoma.155,156 The knockout of LGR5 in 

mice results in neonatal lethality characterized by ankyloglossia and gastrointestinal 

distension.157   

While LGR5 expression is mainly restricted to stem cell compartments, LGR4 shows a 

wide tissue distribution, with strong expression in cartilage, kidney, stomach, heart, 

reproductive tracts, hair follicles and cells of the nervous system.158,159 Therefore, LGR4 

knockout mice display a pleiotropic phenotype, characterized by several developmental 

defects, including intrauterine growth retardation associated with embryonic and 

perinatal lethality,159 defective development of the gall bladder and cystic ducts,160 

dysfunctions in bone formation and remodeling,161 and several other organic defects 

(reviewed in Barker & Clevers, 2010146). Overexpression of LGR4 increases the 

invasiveness and metastasis of human colon carcinoma.162 Whereas LGR5 is a marker of 

several stem cells, LGR4 rather appears to be required for the maintenance of adult 

stem cells in the intestine and is involved in the development of different embryonic 

tissues, which are of mesodermal, endodermal and ectodermal origin.146,158,163 

Similar to LGR5, LGR6 has been shown to be a marker of multipotent stem cells in the 

hair follicle of the skin, which are located directly above the bulge cells in the hair 

follicle.164,165 The LGR6 positive cells give rise to all lineages of the skin and are involved 

in wound repair in adult mice, including the formation of new hair follicles.165 Similar to 

LGR4 and LGR5, LGR6 is also implicated in cancer. Total exon sequencing revealed that 

LGR6 is often mutated in colon cancer.166 Furthermore, the promoter region of LGR6 is 

hypermethylated in 20-50% of human colorectal cancer samples.167,168  
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Although LGR4, LGR5 and LGR6 are all associated with cancer and are markers of various 

stem cells, as in the case of LGR5 and LGR6, their specific function within these cells is 

incompletely understood. This can be mainly attributed to the fact that LGR ligands are 

unknown. Here we identify R-spondins as LGR ligands. R-spondins were previously 

characterized as orphan ligands that enhance Wnt/-catenin and Wnt/PCP signaling.79 

However, their mechanism of action has remained elusive. By showing direct interaction 

between LGRs and R-spondins, we provide evidence that Wnt signal amplification of R-

spondins is regulated via LGRs.  
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5.2 Results  

In search for an R-spondin receptor a genome-wide siRNA screen was performed in the 

Niehrs laboratory in HEK293T cells,22 which led to the initial identification of LGR5 as a 

positive regulator of R-spondin-mediated Wnt signaling. We have shown before that 

RSPO3 amplifies both Wnt/β-catenin and Wnt/PCP signaling in Xenopus embryos.78 

Therefore we used Xenopus as a model organism to determine whether LGR5 could 

function as R-spondin receptor in Wnt/PCP signaling. Besides LGR5, LGR4 and LGR6 were 

also described as orphan receptors and are structurally similar to LGR5. However, 

Xenopus does not have an LGR6 orthologue, and was thus not investigated here.  

5.2.1 LGR4 and LGR5 show distinct expression patterns in Xenopus tropicalis 

The expression of LGR4 and LGR5 in Xenopus has not been described so far. Expression 

analysis of LGR4 and LGR5 showed maternally stored mRNA, which decreased until 

blastula stage (stage 10). After gastrulation the zygotic transcripts increased and reached 

comparable levels at tailbud stage (stage 34) (Figure 11A). In the three germ layers of 

Xenopus embryos, LGR4 showed an ubiquitous expression, whereas LGR5 was 

predominantly expressed in the endoderm (Figure 11B).  

 

 

Figure 11| Expression analysis of LGR4 and LGR5 during Xenopus development. (A) qPCR analysis of 

LGR4 and LGR5 in Xenopus embryos using different developmental stages. ODC was used for 

normalization. (B) Expression analysis of LGR4 and LGR5 in Xenopus germ layers. Xenopus explants of 

stage 10 embryos were analyzed by qPCR for LGR4 and LGR5 expression. LGR4 shows expression in all 

three germ layers. LGR5 expression is highest in endodermal cells. Figure from Glinka et al., 2011.
169
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5.2.2 LGR4 Morpholino rescues RSPO3 induced spina bifida  

Wnt/PCP signaling is a key regulator of convergent extension movements during 

gastrulation. Misregulation of genes involved in this process, e.g. R-spondin 3 (RSPO3), 

results in gastrulation defects.78 To investigate if LGR4 and LGR5 also affect gastrulation 

movements, similar to RSPO3, Xenopus LGR4 and human LGR5 messenger RNAs (mRNA) 

were injected into Xenopus embryos. Overexpression of both LGR4 and LGR5 induced 

gastrulation defects in Xenopus embryos (Figure 12). This phenotype is similar to the 

gastrulation defect and spina bifida observed after RSPO3 mRNA injection,78 and 

suggests a possible function of LGR4 and LGR5 in Wnt/PCP signaling in Xenopus. 

 

 

Figure 12| Gain of function of LGR4 and LGR5 causes gastrulation defects in Xenopus. Embryos were 

injected equatorially at 4-cell stage with messenger RNA (mRNA) for PPL, Xenopus LGR4 and human LGR5, 

and phenotypes were analyzed at tailbud stage. 

 

The spina bifida phenotype induced by RSPO3 overexpression was rescued in a dose-

dependent manner by co-injection of an antisense Morpholino oligonucleotide (Mo1) 

targeting the 5’ untranslated region (UTR) of LGR4 (Figure 13A,B). Co-injection of a 

Morpholino targeting the 5’UTR of LGR5 (LGR5 Mo1), was not able to rescue the RSPO3-

induced gastrulation defect (data not shown). The results indicate a requirement of 

LGR4, but not LGR5, for RSPO3-induced spina bifida in Xenopus embryos. 
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Figure 13| RSPO3 signaling requires LGR4 to induce gastrulation defects in Xenopus embryos. (A) 

Embryos were injected equatorially at 4-cell stage with Xenopus RSPO3 mRNA (250 pg) and control or 

LGR4 Mo1 (20 ng co Mo, 10 ng (+) or 20 ng (++) LGR4 Mo1). Scale bar corresponds to 500 µm. (B) 

Statistical analysis of the injected Xenopus embryos. For each sample 20 embryos were analyzed and the 

percentage of spina bifida phenotypes was determined at stage 25. Figure from Glinka et al., 2011.
169

 

 

5.2.3 LGR4 and LGR5 are required for RSPO3-mediated Wnt/PCP signaling in Xenopus 

We investigated the role of LGR4 and LGR5 in RSPO3-mediated noncanonical Wnt 

signaling by using a specific reporter for Wnt/PCP signaling in early Xenopus embryos, 

ATF2-luciferase.170 Expression of the ATF2-luciferase reporter was induced by WNT5A 

mRNA injection (Figure 14A). Stimulation of the ATF2-luciferase activity was inhibited by 

either RSPO3 Mo, as described before,78 or by six individual LGR4 and LGR5 Mos. 

Because the rescue of LGR4/5 Mos proved technically difficult, six Morpholinos, 

targeting different sites of LGR4 and LGR5, were designed to confirm Mo specificity. The 

same inhibitory effect was observed when PCP signaling was activated using a 

combination of FZD7 and RSPO3 mRNAs. The elevated ATF2 reporter activity was 

decreased to basal levels after co-injection of either LGR4 or LGR5 Mo1 (Figure 14B). 

Besides exogenous activation of the PCP signaling pathway, the effect of LGR4/5 Mo1 on 

endogenous PCP signaling was investigated. For this purpose, low doses of the RSPO3, 

LGR4 and LGR5 Mos, which by themselves had no effect on the reporter activity, were 

combined. Co-injection of RSPO3 Mo with either LGR4, or LGR5 Mo1, or both LGR Mos 

together, resulted in a decrease in ATF2-luciferase activity (Figure 14C).  
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Figure 14| LGR4 and LGR5 are required for Wnt/PCP signaling in Xenopus. (A-C) ATF2-luciferase activity is 

reduced by LGR4/5 Mos in Xenopus. Embryos were injected equatorially at 4-cell stage with ATF2-luc 

reporter (100 pg) and Renilla reporter plasmids (25 pg) and the indicated Morpholinos (40 ng LGR4 Mo1, 

10ng LGR4 Mo2/3, 10 ng LGR5 Mo1, 5 ng LGR5 Mo2, 2.5 ng LGR5 Mo3, 10 ng RSPO3 Mo (A, B), 20 ng LGR4 

Mo1, 5 ng LGR5 Mo1 (C)) and mRNAs (500 pg WNT5A, 250 pg FZD7, 250 pg RSPO3). Luciferase reporter 

assays were performed from whole embryos at stage 11. Luciferase activity of embryos injected with co 

Mo was set to 100%. RLA, relative luciferase activity. Figure from Glinka et al., 2011.
169

   

 

These results provide evidence for a requirement of LGR4 and LGR5 for RSPO3-mediated 

Wnt/PCP signaling in Xenopus embryos.  
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5.3 Discussion 

The phenotypic analysis and ATF2 reporter assays indicate that the effect of RSPO3 on 

Wnt/PCP signaling in Xenopus embryos is mediated via LGR4 and LGR5.  

5.3.1 LGR4 and LGR5 are bone fide R-spondin receptors 

In early Xenopus embryos, injection of RSPO3 mRNA results in gastrulation defects, 

which are due to Wnt/PCP signaling pathway misregulation.78 The observations that 

LGR4 as well as LGR5 mRNAs gave rise to a similar phenotype, and that RSPO3 

overexpression could be rescued by LGR4 depletion, suggested that they may act in the 

same pathway as RSPO3. Similarly, it was shown by de Lau et al. that genetic deletion of 

LGR4/5 in mouse intestinal crypt cultures phenocopies RSPO1 withdrawal,171 which 

further supports a synergistic action of R-spondins and LGRs in vivo. Indeed, additional 

experiments performed in the course of this study, including cell surface and in vitro 

binding assays, confirmed that R-spondins directly interact with LGRs.169 We thus 

identify R-spondins as LGR ligands, which was independently confirmed by other 

groups.171,172  

Although we observed that both LGR4 and LGR5 bind to R-spondins in vitro, LGR5 

depletion was not sufficient to rescue the RSPO3 overexpression phenotype in Xenopus 

embryos. A possible explanation may be the different expression patterns of LGR4 and 

LGR5. Whereas LGR4 shows a ubiquitous expression in all three germ layers, LGR5 is 

predominantly expressed in endodermal tissue. During gastrulation, RSPO3 is mainly 

expressed in mesodermal cells, which undergo cell migration and convergent extension 

during gastrulation.78 Because of this distinct expression pattern, it is possible that 

RSPO3 and LGR4, but not LGR5, interact during gastrulation. It should be noted, 

however, that LGR5 may preferentially bind other R-spondin family members not 

investigated here, and thereby contributes to Xenopus development. 
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5.3.2 LGR4 and LGR5 in Wnt signaling 

R-spondins were discovered in 2004 as enhancers of WNT3A-induced Wnt signaling.79 

Carmon et al. were the first to show that this potentiating effect of R-spondins is 

dependent on LGR4 and LGR5, whereas the maximal activity of Wnt/β-catenin activation 

is determined by the level of WNT3A and the presence of the Wnt co-receptor LRP6. 

Moreover, their data indicate that this potentiation is mediated by enhancing Wnt-

induced LRP6 phosphorylation.172 LGR4 and LGR5 belong to the GPCR superfamily, which 

interact with heterotrimeric G proteins and β-arrestin.131,132 Carmon et al. analyzed 

whether LGR4 and LGR5 are coupled to heterotrimeric G proteins or β-arrestin to 

mediate their function in Wnt/β-catenin signaling. Although LGR4/5 show sequence 

homology to the Rhodopsin family of GPCRs,136 they do not bind to G proteins or β-

arrestins when stimulated by R-spondins. However, it cannot be excluded that LGRs bind 

ligands other than R-spondins, which require G proteins for signal transduction. Finally, 

these authors showed that LGR4 and LGR5 are constitutively internalized into large 

intracellular vesicles. Upon binding, R-spondins undergo co-internalization with each of 

the two receptors. The nature of this internalization was not analyzed further. We 

extended on these findings by showing that LGR4 is co-internalized with RSPO3 by 

clathrin-mediated endocytosis.169 Thereby, RSPO3-mediated Wnt/β-signaling is using a 

different endocytic route compared to WNT3A-induced signaling, which requires 

caveolin-mediated endocytosis.169  

In another study, de Lau et al. identified R-spondins as ligands for LGR4 and LGR5, by 

using both receptors as baits in a tandem affinity purification mass spectrometric 

setup.171 Using this strategy, they identified LGR5, LRP6 and FZD5/7 as interaction 

partners of LGR4, and FZD5, LRP5 and LRP6 as LGR5 interaction partners. Hence, LGR4 

and LGR5 associate with the FZD/LRP6 receptor complex. Besides binding the Wnt 

receptors, LGR4, LGR5 and also LGR6 were shown to bind all four R-spondins. In contrast 

to the members of type B family of Rhodopsin proteins, type A (LGR1, LGR3) and type C 

(LGR7, LGR8) receptors did not associate with RSPO1, showing a clear specificity of R-

spondins for LGR4/5/6. The affinity of RSPO1 for LGR5 lies in the low nanomolar range 

and is in accordance with our results for binding of RSPO3 to LGR4 and LGR5.169 Whereas 

we were able to show that the interaction of LGR4/5 and RSPO3 requires the two furin 
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domains of RSPO3,169 de Lau et al. identified the first LRR domains at the N-terminus of 

LGR5 to be essential for RSPO1 binding. This is in accordance with type A homologues of 

the Rhodopsin subfamily, where binding of the glycoprotein hormones involves the N-

terminal LRR ectodomain.173 In addition to their cell culture studies, de Lau et al. 

performed genetic deletions of LGR4 and LGR5 in mouse intestinal crypt cultures, which 

phenocopied RSPO1 withdrawal and induced the demise of the cultured crypt organoids. 

This effect was efficiently rescued by WNT3A overexpression, indicating that strong 

Wnt/β-catenin signal activation can overcome loss of LGR4/5 receptors. 

For Wnt/PCP signaling it was shown that SDC4 mediates PCP signaling and binds to the 

TSP1 domain of RSPO3.78 As LGR4/5 bind to the Furin domains, R-spondins might bridge 

between syndecans and LGR4/5 in Wnt/PCP signaling. The specificity of R-spondin and 

LGR4/5 to signal either via the Wnt/β-catenin or the Wnt/PCP signaling pathway may be 

defined by the availability of Wnt/FZD or syndecan receptors.  

5.3.3 Signaling mechanism of LGR4 and LGR5 

Although the receptors for R-spondins were identified and their effect on Wnt/β-catenin 

and Wnt/PCP signaling was characterized, the exact mechanism of how R-spondins 

enhance Wnt signaling via LGR4, LGR5 and LGR6 remained to be determined.  

LGR4/5/6 receptors were initially shown to interact with LRP5/6 and FZD5/7 in the Wnt 

signaling complex, and were thus thought to enhance receptor activity.171,174 However, it 

was found more recently that R-spondins increase membrane levels of LRP6 and 

Frizzled.175,176 The cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 

(ZNRF3) and its close homolog ring finger protein 43 (RNF43) were shown to associate 

with the Wnt receptor complex and promote the degradation of LRP6 and FZD, thereby 

inhibiting Wnt signaling. R-spondins bind to ZNRF3 and RNF43 and induce their 

association with LGR4/5. Because LGR4 and LGR5 are rapidly internalized, the 

interaction of ZNRF3/RNF43 with LGR4/5 through R-spondins thus results in their 

membrane clearance (Figure 15). Consequently, in the presence of R-spondins LRP6 and 

FZD receptors accumulate at the plasma membrane and enhance not only Wnt/β-

catenin but also Wnt/PCP signaling.175,176 This mechanism provides an elegant 
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explanation why R-spondins require the presence of Wnts to potentiate Wnt 

signaling.79,80,82     

 

 

Figure 15| Model of ZNRF3 function in Wnt signaling and its inhibition by R-spondin. In the absence of R-

spondin, the transmembrane E3 ubiquitin ligase ZNRF3 associates with the Wnt receptor complex and 

ubiquitinates Frizzled. This results in degradation of Frizzled and LRP6 and inhibition of Wnt/β-catenin and 

Wnt/PCP signaling. R-spondin (RSPO) binds to LGR4/5 and ZNRF3 and thereby induces the formation of a 

ternary complex, which is subsequently internalized. The removal of ZNRF3 via R-spondin leads to the 

accumulation of Frizzled and LRP6 at the membrane level and enhances Wnt/β-catenin and Wnt/PCP 

signaling. Figure modified from Hao et al., 2012.
175

 

 

The structural analysis of the ternary LGR5-RSPO1-RNF43 complex confirmed the 

physical linkage between the three proteins.177 The Cys-rich domain of RSPO1 provides 

two separate regions, which form distinct binding sites for LGR5 and RNF43. Whereas 

the first furin domain is involved in RNF43 binding, the second furin domain mediates 

binding to LGR5. The affinity of RNF43 and RSPO1 is increased when RSPO1 is bound by 

LGR5, suggesting a stabilization of RSPO1 in a configuration more favorable for RNF43 

binding. Consequently, LGR5 serves as an engagement receptor, recruiting R-spondins to 

RNF43, whereas RNF43 acts as the effector receptor.177 A similar mechanism was also 

described for LGR4/ZNRF3.178,179  

In summary, we and others have shown that R-spondins potentiate Wnt signaling via 

LGR family receptors. This interaction has important implications for development, 

shown here, as well as stem cell maintenance. It explains for the first time why R-

spondins promote the growth of stem cells, especially in the intestine,87 and why 

addition of R-spondin is required to allow long-term culturing and organoid formation of 

LGR5 positive mouse intestinal crypt stem cells in vitro.180   
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6. Chapter 2: RAB8B is required for Wnt/β-catenin signaling in Xenopus 

6.1 Introduction 

6.1.1 The family of Rab GTPases 

Rab proteins belong to the superfamily of Ras GTPases. They constitute the largest 

family of small GTPases, which act as organizers of almost all membrane trafficking 

processes in eukaryotic cells. For instance, Rab GTPases regulate signaling of many 

hormone and growth factor receptors by mediating their trafficking to lysosomes for 

degradation, or endosomes to relay downstream signaling.181 In humans, more than 60 

different members of the Rab family have been described, which differ in their 

intracellular membrane localization.182-184 Rab GTPases control the activation and 

localization of various interacting molecules, including sorting adaptors, tethering 

factors, kinases, phosphatases, coat components and motor proteins. Characterization 

of approximately half of the known Rab GTPases shows that Rab GTPases, besides their 

known role in vesicle trafficking, are also involved in signaling, cell differentiation and 

proliferation (reviewed in Stenmark, 2009181). 

Interaction of Rab GTPases with their effector molecules depends on the conformational 

state of the Rab GTPases, which alternates between a GTP-bound (active) form and a 

GDP-bound (inactive) form. Interaction of Rab GTPases and the different effector 

proteins only takes place in the active state. Through hydrolysis of the bound GTP, Rab 

GTPases are converted back to their inactive form. This occurs through intrinsic GTPase 

activity, or can be catalyzed by a GTPase-activating protein (GAP). Subsequently, Rab 

GDP is recognized by a guanine nucleotide exchange factor (GEF), which catalyzes the 

exchange of GDP by GTP. This converts the Rab GTPase back to the active state, where 

the cycle can start again (Figure 16). Thus, Rab GTPases act as molecular switches that 

impose temporal and spatial regulation on membrane transport, based on their 

respective state. 

 

 



6. Chapter 2: RAB8B is required for Wnt/β-catenin signaling in Xenopus 

33 
 

 

 

Figure 16| Activation cycle of Rab proteins. The active, GTP-bound form of Rab GTPases is recognized by 

multiple effector proteins. The hydrolysis of GTP induces a conformational change and the release of 

inorganic phosphate (Pi). Thereby Rab proteins are converted from an active to an inactive, GDP-bound 

state. This process can be catalyzed by GTPase-activating proteins (GAP). The conversion back to the 

active conformation requires exchange of GDP by GTP, which can be catalyzed by guanine nucleotide 

exchange factors (GEF). Figure modified from Stenmark, 2009.
181

 

 

6.1.2 Rab GTPase RAB8 

In mammals, two RAB8 isoforms, known as RAB8A and RAB8B have been described, 

which differ substantially in their C-terminal region and expression pattern.185,186 Both 

proteins are activated by RABIN8, a GEF that seems to be specific for RAB8, as it does 

not activate other Rab family members.187,188 The activation of RAB8A and RAB8B via 

RABIN8 is facilitated by another member of the Rab family, RAB11.189,190 Originally, RAB8 

was described to mediate the trafficking of newly synthesized proteins from the trans-

Golgi network (TGN) to the plasma membrane.181 Besides protein shuttling, RAB8A and 

RAB8B participate in various other membrane-based pathways, like exocytosis, 

membrane recycling, neuron differentiation and ciliogenesis.191 Furthermore, RAB8 is 

involved in the regulation of cell migration and cell morphogenesis by connecting actin 

dynamics to membrane trafficking and turnover.192,193 RAB8 was found to be up-

regulated in mammary tumors and their lymph node metastases.194 This is probably 

linked to the finding that RAB8 regulates polarized exocytosis of a matrix 

metalloproteinase involved in cell invasion.195  
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Endocytosis also plays an important role in Wnt/β-catenin signal transduction. After 

binding of Wnts, the ligand-receptor complex undergoes internalization via clathrin or 

caveolin-dependent routes.95 However, the mechanism of Wnt signal transmission, 

notably how endocytosis of the Wnt receptors is regulated, remains incompletely 

understood. It has been suggested that the localization of LRP6 in the different 

microdomains of the plasma membrane could be regulated by proteins, which link LRP6 

to the endocytic machinery.107 The identification of proteins involved in the endocytosis 

process of the Wnt receptors could give new insights into the specificity of the endocytic 

processes and the regulation of Wnt signaling.  
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6.2 Results 

In an RNAi screen aimed at identifying regulators involved in trafficking of Wnt pathway 

components, the small GTPase RAB8B was identified as a candidate protein in the 

Boutros laboratory. Based on experiments performed by Kubilay Demir in the laboratory 

of Prof. M. Boutros, RAB8B is required for Wnt/β-catenin signaling in mammalian cells. 

To analyze if RAB8B is also required for Wnt/β-catenin signaling in vivo, the role of 

RAB8B in Xenopus embryos was examined.   

In order to analyze the effect of RAB8B on Wnt/β-catenin signaling in Xenopus, two 

antisense Morpholino oligonucleotides (Mo) were designed, targeting distinct regions of 

RAB8B. Injection of either Morpholino gave rise to similar phenotypes in Xenopus 

tadpoles, suggesting a specific effect on RAB8B. RAB8B morphants were characterized 

by shortened body axes, smaller heads and eyes and a reduction in eye pigmentation 

and melanocytes (Figure 17A). This phenotype resembles conditions in which Wnt/β-

catenin, as well as Wnt/PCP signaling are dysregulated.22,196 To confirm the requirement 

of RAB8B for Wnt signaling in Xenopus on the molecular level, TOPFlash reporter assays 

for Wnt/β-catenin signaling were performed. On the endogenous level, both 

Morpholinos reduced the reporter activity in a dose-dependent manner, further 

corroborating their specificity (Figure 17B,C). This decrease in luciferase activity 

resembled loss of LRP6. Moreover, when Wnt/β-catenin signaling was stimulated by co-

injection of WNT3A mRNA, increased reporter activity was fully blocked by RAB8B Mo2 

(Figure 17C). Taken together, these results strongly suggest a positive role of RAB8B in 

Wnt/β-catenin signaling in Xenopus embryos. 
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Figure 17| RAB8B is required for Wnt/β-catenin signaling in Xenopus. (A) RAB8B Morpholino 1 (Mo1) 

and Morpholino 2 (Mo2) display similar phenotypes in X.laevis. Embryos were injected equatorially at 4-

cell stage with 40 ng Mo1 and 60 ng Mo2 and the corresponding control Mo (co). (B-C) TOPFlash reporter 

activity is reduced by RAB8B Mo1/2 in Xenopus. Embryos were injected equatorially at 4-cell stage with 

TOPFlash reporter (100 pg) and Renilla reporter plasmids (25 pg) and the indicated Morpholinos (5 ng, 

10 ng, 20 ng, 40 ng RAB8B Mo1, 10 ng, 20 ng, 40 ng, 60 ng RAB8B Mo2, 2.5 ng LRP6 Mo) and WNT3A 

mRNA (4 pg). Corresponding amounts of control Mo and control mRNA were injected. Luciferase reporter 

assays were performed from whole embryos at stage 11. Luciferase activity of embryos injected with co 

Mo was set to 100%. RLA, relative luciferase activity. Graphs show mean ± SD, N=3. Figure from Demir et 

al., 2013.
197
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6.3 Discussion  

6.3.1 RAB8B is required for Wnt/β-catenin signaling in vivo 

RAB8B was identified as a regulator of Wnt/β-catenin signaling in mammalian cells.197 

Because Wnt signaling plays major roles during the development of Xenopus embryos, 

this model organism is well suited to investigate putative Wnt pathway regulators in 

vivo.  

In Xenopus embryos, RAB8B is already present as maternal RNA, indicating an early 

function during Xenopus development.198 The loss-of-function phenotype of RAB8B in 

Xenopus is characterized by axis, head and pigmentation defects, which resembles 

Wnt/β-catenin and Wnt/PCP signaling defects described earlier.22,196 The requirement of 

RAB8B for Wnt signaling in vivo was additionally confirmed in zebrafish embryos.197 In 

contrast to Xenopus, the expression of RAB8B in zebrafish was first detectable in the 

brain of embryos at somitogenesis. Knockdown of RAB8B in zebrafish decreased target 

gene c-myc and reporter protein expression in transgenic Wnt/β-catenin reporter lines. 

Taken together, these results indicate a conserved regulatory role of RAB8B during 

vertebrate development.    

6.3.2 RAB8B promotes caveolar endocytosis of LRP6 

To investigate the molecular mechanism of RAB8B, Demir et al. examined the effect of 

RAB8B in mammalian cells.197 The effect of RAB8B is specific for Wnt/β-catenin signaling, 

as no other signaling pathways were affected, and the paralog RAB8A did not have an 

impact on Wnt/β-catenin signaling. Furthermore, these authors found that RAB8B 

promotes caveolin-dependent endocytosis of LRP6. In response to WNT3A, LRP6 

undergoes internalization in lipid raft domains, mediated by caveolin. In contrast, DKK1 

removes LRP6 from lipid raft domains and induces endocytosis based on clathrin-

dependent routes.107 It has been proposed that the localization of LRP6 in raft and non-

raft domains could be regulated by proteins, which link LRP6 to the endocytic 

machinery.107 The small GTPase RAB8B could thus serve as a regulator of caveolin-

mediated LRP6 internalization. 
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RAB8B was recently shown to interact with TANK-binding kinase 1 (TBK-1) during the 

maturation of autophagosomes.199 Because TBK-1 was shown to associate with the 

ESCRT-I complex,200 which is involved in sorting of membrane receptors into MVBs, 

RAB8B may be involved in trafficking of the Wnt receptor complex to MVBs via its 

interaction with TBK-1. However, because the interaction of RAB8B and TBK-1 was only 

analyzed in the context of antimicrobial defense, this hypothesis requires further 

investigation.  

Interestingly, Demir et al. additionally demonstrated that the activity of RAB8B seems to 

be regulated by Wnt signaling: Recruitment of DVL1 after formation of the ternary 

receptor complex activates RAB8B, and Wnt ligands induce the interaction of RAB8B 

with its activator RABIN8.197 A similar mechanism was suggested for RAC1, a member of 

the Rho family of small GTPases.201 Whereas RAC1 promotes the nuclear translocation of 

β-catenin, its activity is in turn regulated by the Wnt signaling pathway. These 

observations suggest that a feed-forward loop from Wnt signaling to small GTPases 

potentiates Wnt signaling, through regulation of receptor trafficking. 

In conclusion, we have identified RAB8B as a novel agonist of Wnt/β-catenin signaling, 

which promotes Wnt activity by facilitating endocytosis of LRP6 signalosomes (Figure 

18). The specific function(s) of RAB8B in vivo are poorly understood, but based on the 

results shown here it can be assumed that RAB8B-dependent Wnt signaling control is 

essential for development. 
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Figure 18| Model of RAB8B function in Wnt/β-catenin signaling. After binding of Wnt to Frizzled and 

LRP6, the receptors accumulate in caveolae and recruit the β-catenin destruction complex, consisting of 

Axin, APC, CK1α, GSK3 and DVL. At the same time, RAB8B is translocated to the membrane and activated 

in a Wnt- and DVL-dependent manner. RAB8B enhances signalosome formation and/or maturation and 

promotes LRP6 activity, which results in caveolin-dependent internalization of the receptor complex and 

activation of downstream signaling. Figure modified from Demir et al., 2013.
197
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7. Chapter 3: ANGPTL4 binds syndecan and inhibits Wnt/β-catenin 

signaling by decreasing LRP6 levels 

7.1 Introduction 

7.1.1 Angiopoietin-like 4 

Angiopoietin-like 4 (ANGPTL4) was initially identified as a peroxisome proliferator-

activated receptor (PPAR) target gene with structural similarity to angiopoietins 

(ANG).202-204 Besides ANGPTL4, seven other members of this family have since been 

discovered (ANGPTL1-8, Figure 19), most of which show little structural homology.205-207 

Indeed, ANGPTL4 shares just 30% sequence identity with its closest family member, 

ANGPTL3.208 

 

 

Figure 19| Phylogenetic relationship of Angiopoietin-like family members. In humans the angiopoietin-

like (ANGPTL) family contains seven members, which share sequence homology to the angiopoietins 

(ANG), which comprise five members. The eighth member of the ANGPTL family is not shown, as it lacks 

the conserved fibrinogen-like domain, which is shared by ANG and ANGPTL proteins. Figure modified from 

Tan et al., 2012.
209
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Most ANGPTL proteins consist of a signal peptide directing secretion, an amino-terminal 

coiled-coil domain (CCD), a linker region, and a large carboxy-terminal fibrinogen-like 

domain (FLD), which is conserved in the ANG and ANGPTL families.210 An exception to 

this domain organization is ANGPTL8, which lacks the fibrinogen-like domain.206,207 In 

contrast to all other members of the ANGPTL family, only ANGPTL4 and ANGPTL3 

assemble into oligomeric structures.211,212 The full length ANGPTL4 protein (flANGPTL4) 

forms dimers or tetramers prior to secretion, through disulfide bond formation in the N-

terminal domain.211,213 In contrast, the oligomerization of ANGPTL3 requires no 

intermolecular disulfide bonds.214 After secretion of ANGPTL4 into the extracellular 

space, the full length form can bind to the extracellular matrix (ECM) via its CCD. It was 

shown in vitro that this interaction is mainly mediated by heparan and dermatan 

sulfates.215 The release of ANGPTL4 from the ECM results in proteolytic cleavage in the 

linker region, which gives rise to an N-terminal (nANGPTL4) and a C-terminal (cANGPTL4) 

fragment (Figure 20).211,215,216 This cleavage at the -RRXR- consensus cleavage site is 

mediated by pro-protein convertases.215,216 The N-terminal CCD remains multimerized, 

and binds to the extracellular matrix, whereas the C-terminal FLD is released into the 

medium as a monomer.211,215  

 

 

Figure 20| Domain organization of ANGPTL4. The structure of the human full length ANGPTL4 protein 

consists of an amino terminal, hydrophobic signal peptide (SP), a coiled-coil domain, a linker region and a 

carboxy terminal fibrinogen-like domain. After secretion, the protein can undergo proteolytic processing 

by pro-protein convertases in the linker region at conserved basic residues (-RRKR-). This results in the 

formation of nANGPTL4 and cANGPTL4 fragments. Figure modified from Tan et al., 2012.
209
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This cleavage has only been observed for ANGPTL4 and ANGPTL3, and thus distinguishes 

these two proteins from the other family members.211,212 The cleavage of ANGPTL4 

appears to be tissue and species-specific. In humans, only full length ANGPTL4 is found 

in adipose tissue, whereas the protein undergoes cleavage in mouse adipocytes.217 

Abundant ANGPLT4 cleavage was also observed in the liver, and both the full length and 

cleaved forms can be found in blood plasma.217 The expression of ANGPTL4 can be 

induced by different factors. During fasting the synthesis and secretion of ANGPTL4 is 

increased, which is mediated by glucocorticoids. This steroid hormone is induced under 

fasting conditions and activates its receptor, which elevates the expression of 

ANGPTL4.218 Similarly, chronic caloric restriction or the accumulation of free fatty acids 

stimulates nuclear hormone receptors of the PPAR family. These receptors bind PPAR-

response elements in the promoter region of ANGPTL4 and activate its 

transcription.203,219-221 Furthermore ANGPTL4 expression can be induced by hypoxia via 

hypoxia-inducible factor-1α (HIF-1α), which binds to a recognition site upstream of the 

ANGPTL4 gene.222,223 Moreover, it was recently shown that ANGPTL4 expression can be 

also regulated by the TGFβ/SMAD3 signaling pathway.224  

Although ANGPTL4 is known to undergo proteolytic processing, the biological 

importance of this process and the function of the different fragments remain elusive.209 

Furthermore, the identity of ANGPTL4 binding partner(s) is still unknown. Even though 

ANGPTL proteins are structurally related to ANGs, they do not bind the prototypical 

angiopoietin receptors TIE1 and TIE2.202 It was shown that cANGPTL4 can associate with 

integrins, whereas nANGPTL4 interacts with HSPG.215,225 These components of the ECM 

cannot explain all molecular functions of ANGPTL4, and are likely co-receptors of 

ANGPTL4. Recently it was shown that ANGPTL2 and ANGPTL5 can bind the immune-

inhibitory receptor human leukocyte immunoglobulin-like receptor B2 (LILRB2).226 As 

ANGPTL4 showed no binding to this receptor, it is still considered an orphan ligand.  
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7.1.2 Physiological functions of ANGPTL4 

ANGPTL4 has primarily been described as a regulator of lipid metabolism.227,228 It 

suppresses the clearance of circulating triacylglycerols (TAGs) by inhibiting lipoprotein 

lipase (LPL), the enzyme which hydrolyzes TAGs in lipoprotein particles.208,229,230 The N-

terminal domain of ANGPTL4 binds to LPL and converts the active LPL dimer into inactive 

monomers.216,231 This inhibitory effect is enhanced if nANGPTL4 exists as an oligomer, 

and indeed, mutations that prevent oligomerization severely reduce the ability of 

ANGPTL4 to inhibit LPL.232 ANGPTL4 expression is induced during fasting, and thus 

ANGPTL4 can act as a sensor for energy homeostasis by inhibiting LPL activity.  

Conversely, ANGPTL4 expression is enhanced by free fatty acids, which could protect the 

cell from cellular lipid overload by reducing the hydrolysis of TAGs and subsequent fatty 

acid uptake.221 Increased uptake of saturated fatty acids is typically associated with a 

stimulation of inflammation- and immunity-related factors, and macrophages in 

particular are protected from this pro-inflammatory effect via expression of ANGPTL4, 

which decreases the release of fatty acids.233 

In addition to energy homeostasis and inflammation, ANGPTL4 plays a regulatory role 

during wound healing.225,234 After skin injury, several processes are involved to facilitate 

wound closure, including cell migration, proliferation, and remodeling of the 

extracellular matrix.235 It was shown that flANGPTL4 and cANGPTL4 are expressed by 

keratinocytes adjacent to the wound and coordinate cell-matrix communication during 

the re-epithelialization process. This involves the interaction of ANGPTL4 with 

vitronectin and fibronectin in the wound bed, delaying their degradation by matrix-

metalloproteinases. Thereby the availability of extracellular matrix components is 

increased, which enhances cell-matrix interaction. In addition, cANGPTL4 interacts with 

β1 and β5-integrins to activate integrin-mediated signaling, internalization and 

keratinocyte migration.225,234     
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7.1.3 ANGPTL4 in tumorigenesis and angiogenesis 

Tumor tissue RNA micro-arrays revealed an increase in ANGPTL4 expression in several 

human epithelial tumors.236 The expression level of ANGPTL4 correlates with tumor 

progression from a benign to a metastatic state.237 An essential feature of tumor cells is 

the loss of dependence on integrin-mediated ECM contact for growth.238 The interaction 

of cANGPTL4 with β1 and β5-integrins on tumor cells was shown to activate the 

production of reactive oxygen species (ROS), which induce a pro-survival signal 

independent of cell-cell or cell-matrix contacts. Thus, ANGPTL4 confers anoikis 

resistance to tumor cells.236 The inhibition of ANGPTL4 induces tumor cell apoptosis, 

highlighting the importance of ANGPTL4 for cancer therapy.236,239  

The formation of new blood vessels through release of angiogenic factors ensures the 

supply of necessary nutrients and growth factors for tumor progression. Furthermore 

they allow dissemination of cancer cells throughout the body and the formation of 

metastases in distant organs.238 The communication of tumor cells with the surrounding 

endothelium is crucial for these processes and involves the production of secreted 

factors such as vascular endothelial growth factor (VEGF) and ANG.240  

The role of ANGPTL4 in angiogenesis and vascular permeability remains controversial. 

Some studies proposed an anti-angiogenic function of ANGPTL4, as it inhibits 

proliferation and tubule formation of endothelial cells.241 In addition, ANGPTL4 

decreased VEGF-induced angiogenesis and vascular leakiness and tumor growth in the 

dermal layer of transgenic mice.242 In a hypoxic environment, ECM-bound flANGPTL4 

inhibits endothelial cell motility, sprouting and tubule formation.241 ANGPTL4 also 

prevents metastasis by inhibiting vascular permeability, as well as tumor cell motility 

and invasiveness.243 In gastric cancers, ANGPTL4 was shown to suppress tumor 

formation by inhibition of angiogenesis.244 Interestingly, an ANGPTL4 mutant that carries 

a deletion mutation in the CCD was not able to inhibit angiogenesis, indicating that this 

domain is required for the inhibitory effect. Accordingly, in human gastric cancers an 

accumulation of the deletion mutant was found.244  
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However, a pro-angiogenic function of ANGPTL4 was observed in other studies. In in 

vitro assays ANGPTL4 induced angiogenesis and rearrangement of blood vessels, and its 

expression was significantly increased in tumor cells from clear cell renal cell 

carcinomas.245 Similarly, ANGPTL4 mRNA levels are up-regulated in human gastric and 

colorectal cancer, where ANGPTL4 was found to promote venous invasion.237,246 In 

Kaposi’s sarcoma, a highly vascular tumor induced by human herpesvirus-8 infection, 

enhanced ANGPTL4 expression is thought to facilitate angiogenesis and vascular 

permeability and thereby promote tumorigenesis.247 In addition, ANGPTL4 was 

identified as one of several genes that mediate breast cancer metastasis to the 

lung.224,248 It was shown that TGFβ, which is secreted by the tumor microenvironment 

under hypoxic conditions, induces the expression of ANGPTL4 in a SMAD3-dependent 

manner. Tumor cell-derived ANGPTL4 disrupts vascular endothelial cell-cell junctions 

and increases the permeability of lung capillaries. This facilitates the trans-endothelial 

passage of breast tumor cells to selectively seed lung metastasis.224 Mechanistically, 

cANGPTL4 interacts with and activates the α5β1-integrin signaling pathway to weaken 

cell-cell contacts. Additionally, cANGPTL4 associates with vascular endothelial cadherin 

and claudin 5 and induces their dissociation and internalization. Both processes 

converge in endothelial disruption and facilitate lung metastasis in mice.249  

The above observations show that the biological functions of ANGPTL4 and their 

underlying molecular mechanisms are incompletely understood. In particular, the 

specific roles of the ANGPTL4 cleavage fragments are largely unknown, and require 

further investigation. Moreover, to fully elucidate ANGPTL4 signaling, it will be critical to 

identify ANGPTL4 interactors and receptors that mediate its diverse biological effects.   
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7.1.4 Development and regulation of notochord formation in Xenopus 

The development of axial structures in vertebrates is induced during gastrulation by the 

organizer region. In amphibian embryos, the organizer can be subdivided into a head 

and a trunk organizer.250 Whereas the head organizer induces anterior fates in the 

overlying ectoderm, the trunk organizer mediates neural induction in dorsal ectoderm, 

as well as dorsalization of equatorial mesoderm.251 Besides its ability to organize 

surrounding tissue, the head or trunk organizers undergo differentiation and give rise to 

head tissue, such as the prechordal plate or the notochord, respectively. The notochord 

itself acts as a signaling center, which is required for patterning of surrounding 

tissues.252,253 The development of the presumptive notochord region requires the 

inhibition of both BMP and Wnt/β-catenin signaling.254  

In Xenopus, wnt8 is expressed in the ventral marginal zone during gastrulation.255,256 It 

was shown that Xenopus Wnt8 enhances the expression of myogenic genes, such as 

myoD and myf5, whereas it inhibits the expression of the notochord marker gene 

Xnot.257-259 Consequently, ectopic expression of wnt8 in dorsal mesoderm of Xenopus 

embryos changes the fate of dorsal cells (head mesoderm, notochord) to more lateral 

tissue (somatic muscle).257 Thereby Wnt8 has a function in patterning the marginal zone, 

and it was proposed that Wnt8 may position the notochord/somite boundary.259 This, 

however, requires the expression of Wnt inhibitors in the presumptive notochord 

region, which allow Xnot expression and thereby notochord formation. It was shown 

that the expression of goosecoid (gsc) inhibits wnt8 expression on the transcriptional 

level. Furthermore gsc induces the expression of frzb, which is secreted from the 

prechordal plate and inhibits wnt8 through direct binding (Figure 21). These two 

mechanisms exclude Wnt8 from the presumptive notochord region and allow the 

expression of Xnot.254,257    
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Figure 21| Model of notochord formation during Xenopus development. The induction of notochord 

formation requires inhibition of BMP signaling in somitic (yellow) and notochord (red) regions. In addition, 

Wnt signals have to be blocked in the presumptive notochord tissue. This is facilitated by secretion of Wnt 

inhibitors like Frzb from the prechordal plate. Frzb expression is regulated by goosecoid (gsc). The 

inhibition of both pathways allows the expression of the notochord marker Xnot and thereby the 

development of the notochord. Figure modified from Yasuo & Lemaire, 2001.
254

 

 

Thus, maintenance of notochord development requires inhibition of Wnt/β-catenin 

signaling, through expression and secretion of specific Wnt inhibitors like Frzb. 
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7.2 Results 

To identify novel Wnt pathway components regulating Wnt signaling, we performed a 

genome-wide small interfering RNA (siRNA) screen.22 The transcription of a Wnt-

responsive luciferase reporter construct was analyzed after stimulation with six different 

Wnt activators. In this screen, ANGPTL4 was identified as a putative negative regulator 

of Wnt signaling (Table 1). Compared to all other ANG and ANGPTL proteins covered by 

this screen, only ANGPTL4 depletion resulted in high z-scores (>3) after stimulation of 

the Wnt luciferase reporter with either WNT3A conditioned medium or transfection of 

WNT1, FZD8, LRP6. 

 

Table 1: ANGPTL4 is a negative regulator of Wnt signaling. Angiopoietin (ANG) and Angiopoietin-like 

(ANGPTL) proteins sorted according to their z-scores in the genome-wide siRNA Wnt luciferase reporter 

assay in HEK293T cells, stimulated by transfection of the ternary WNT1+FZD8+LRP6 complex. The list 

contains only candidates with low z-score in the cell viability screen. Z-scores from Wnt luciferase reporter 

screens activated with WNT3A-/RSPO3-conditioned medium or by transfection with β-catenin, WNT1, 

RSPO3 and LRP6ΔE1-4 constructs are also indicated. siRNA screen was performed by Cristina Cruciat and 

data analysis by Dierk Ingelfinger.
22

 Z-scores indicate the strength of each siRNA. Strong siRNA effects are 

resembled by a large positive or negative z-score.
260

 

WNT3A RSPO3 β-catenin Viability 
WNT1

+ 
RSPO3 

WNT1 
+FZD8 
+LRP6 

LRP6
∆E1-4 

Gene-ID Gene 
Name 

3.58 2.9 1.52 -1.31 1.65 3.24 2.06 NM_016109 ANGPTL4 

-0.65 -0.28 1.59 0.15 0.99 1.49 0.82 NM_015985 ANG4 

0.08 0.07 0.02 0.45 -0.65 1.04 0.4 NM_014495 ANGPTL3 

-0.57 -0.42 0.09 0.57 0.22 0.85 0.68 NM_001147 ANG2 

0.33 -0.08 1.25 -0.26 0.63 0.34 -0.18 NM_004673 ANGPTL1 

-0.8 0.3 -1.86 0.12 0.96 0.14 -0.57 NM_031917 ANGPTL6 

-0.08 -1.17 1.05 1.01 -0.16 -0.02 0.64 NM_001146 ANG1 

-0.71 -0.49 -3.12 1.07 0.02 -0.9 -1.6 NM_178127 ANGPTL5 

-0.73 -1.33 1.44 -0.22 -2.95 -2.17 -0.47 NM_012098 ANGPTL2 
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7.2.1 ANGPTL4 is a negative regulator of Wnt/β-catenin signaling 

To validate the results of the genome-wide siRNA screen and to analyze the effect of 

ANGPTL4 epistatically, additional Wnt reporter assays were performed. Knock-down of 

ANGPTL4 by siRNA enhanced TOPFlash reporter activity induced by a combination of 

WNT1, FZD8 and LRP6 or by WNT3A (Figure 22A). In contrast, siANGPTL4 did not 

enhance luciferase activity induced intracellularly by DVL1 or β-catenin (Figure 22A). 

Similarly, the expression of the canonical Wnt target gene AXIN2 was enhanced in 

siANGPTL4 transfected cells, further confirming the inhibitory role of ANGPTL4 (Figure 

22B). The siANGPTL4 effect on TOPFlash reporter activity was rescued by the addition of 

ANGPTL4 conditioned medium, whereas DKK3 conditioned medium had no effect, 

attesting specificity (Figure 22C).  

The accumulation of cytoplasmic β-catenin and the phosphorylation of LRP6 are 

immediate, transcription-independent read-outs for activated Wnt signaling. Consistent 

with results from the TOPFlash assays, knock-down of ANGPTL4 led to an increase in β-

catenin, phospho- and total LRP6 protein levels in unstimulated as well as in WNT3A-

treated cells (Figure 22D, E). These results indicate an inhibitory effect of ANGPTL4 on 

Wnt/β-catenin signaling. Furthermore siANGPTL4 increased total LRP6 protein levels 

(Figure 22E), suggesting that the mechanism of ANGPTL4 in Wnt signaling could be via 

negative regulation of LRP6 production, maturation, trafficking or stability. 

As ANGPTL4 belongs to a family of eight ANGPTL proteins, the effect of other family 

members on the Wnt pathway was also investigated. Knock-down of ANGPTL3 and 

ANGPTL5 using siRNA had no effect on TOPFlash reporter activity (Figure 22F), indicating 

that the inhibitory function on Wnt/β-catenin signaling is specific for ANGPTL4. 
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Figure 22| ANGPTL4 is a negative regulator of Wnt/β-catenin signaling. (A) TOPFlash assay in HEK293T 

cells treated as indicated. Graphs show mean ± SD, N=3. Co, control. RLA, relative luciferase activity. (B) 

qPCR analysis of AXIN2 in HepG2 cells. Cells were transfected with the indicated siRNAs and stimulated 

with WNT3A-conditioned medium for 24h. (C) TOPFlash assay in HEK293T cells. ANPTL4, but not, DKK3 

conditioned medium rescued loss of ANGPTL4. (D,E) Western blot analysis of endogenous β-catenin, 

phospho (Sp1490) and total LRP6, using cytosolic (D) and membrane (E) fractions of H1703 cells. Cells 

were treated with control or WNT3A-conditioned medium in the presence of the indicated siRNAs. (F) 

TOPFlash assay in HEK293T cells transfected with the indicated siRNAs. Graphs show mean ± SD, N=3. Co, 

control. RLA, relative luciferase activity. 

 

Due to the comparatively low expression level of ANGPTL4 in HEK293T cells, the effect 

of siANGPTL4 was also analyzed in the non-small cell lung cancer lines H1299 and H1703, 

which display higher protein levels of ANGPTL4 and LRP6 and should therefore be 

sensitized to loss of ANGPTL4 (Figure 23A, and data not shown). Indeed, TOPFlash 

reporter activity was increased 4- to 8-fold compared to 2.5-fold in HEK293T cells after 

depletion of ANGPTL4, despite comparable knock-down efficiency (Figure 23B-D). These 
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results indicate that ANGPTL4 is an inhibitor of Wnt/β-catenin signaling, acting upstream 

or at the level of the Wnt receptors. 

 

 

Figure 23| The inhibitory effect of ANGPTL4 is stronger in cells with higher LRP6 levels. (A) Western blot 

analysis of endogenous LRP6 (T1479) in HEK293T, H1703 and H1299 cells. ERK1/2 was used for 

normalization. (B-D) Wnt luciferase reporter assays in HEK293T (B), H1703 (C) and H1299 (D) cells 

stimulated with WNT3A-conditioned medium, in the presence of the indicated siRNAs. Graphs show mean 

± SD, N=3. Co, control. RLA, relative luciferase activity.  Knock-down efficiency was determined by qPCR, 

shown in the graphs on the right. 
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7.2.2 ANGPTL4 inhibits TGFβ/Smad signaling in vitro   

To investigate whether ANGPTL4 knock-down also affects other signaling pathways, 

specific reporter constructs for the TGFβ/SMAD2, BMP/SMAD1 and FGF signaling 

pathways were analyzed. TGFβ signaling was strongly enhanced after ANGPTL4 siRNA 

transfection (Figure 24A). This siRNA effect was specific, as Xenopus ANGPTL4 was able 

to rescue the effect dose-dependently (Figure 24B). The induction of TGFβ signaling was 

associated with increased phosphorylation of SMAD2, as shown by Western blot analysis 

(Figure 24C). For BMP signaling, a decrease in BMP reporter activity was observed after 

ANGPTL4 knock-down (Figure 24D). In contrast, FGF signaling was not affected by loss of 

ANGPTL4 (Figure 24E). These results indicate an inhibitory function of ANGPTL4 not only 

on Wnt/β-catenin but also TGFβ/SMAD2 signaling.   

To analyze whether ANGPTL4 affects Wnt/β-catenin and TGFβ signaling also in vivo, the 

role of ANGPTL4 in Xenopus was investigated. 
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Figure 24| ANGPTL4 is an inhibitor of TGFβ signaling. (A,B) TGFβ/SMAD2 luciferase reporter assays in 

HepG2 cells. Cells were transfected with ARE-luc reporter/FAST1, the indicated siRNAs, xANGPTL4 DNA 

(B), and stimulated with recombinant human TGFβ1 (2 ng/ml) for 2h. (C) Western blot analysis of 

phosphorylated SMAD2 (pSMAD2) and total SMAD2/3 after transfection with control or ANGPTL4 siRNA 

and stimulation with recombinant TGFβ1 (2 ng/ml) for 24h. (D) BMP/SMAD2 signaling assay using BREx4-

luc reporter stimulated with recombinant human BMP4 (10 ng/ml) for 24h. (E) FGF signaling assay using 

Gal-luc reporter and co-transfected Gal-Elk stimulated with recombinant human FGF8 (50 ng/ml) for 24h. 

Error bars indicate SDs, N=3. RLA, relative luciferase activity. 

 

7.2.3 ANGPTL4 is expressed in mesodermal tissue in Xenopus tropicalis 

The expression and function of ANGPTL4 during Xenopus development is unknown. 

Therefore, qPCR analysis and in situ hybridization were performed to characterize 

ANGPTL4 in Xenopus.  

In Xenopus embryos, ANGPTL4 showed prominent expression in mesodermal tissues, 

such as the tailbud mesoderm, eye lens, somites, pronephros and ventral blood islands 

(Figure 25A). Furthermore, sagittal sections of stage 25 embryos showed a defined 
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staining in the notochord. The expression pattern determined via in situ hybridization 

was confirmed by qPCR analysis, where highest expression of ANGPTL4 is detected in 

the mesodermal germ layer (Figure 25B). Furthermore it was shown that ANGPTL4 is 

maternally expressed at low levels, and that the expression strongly increased after 

gastrula stage (Figure 25C). These results demonstrate a distinct expression profile of 

ANGPTL4 in Xenopus embryos, with highest expression in tissues of mesodermal origin. 

 

 

Figure 25| ANGPTL4 is expressed in mesodermal tissues in X.tropicalis embryos. (A) Whole-mount in situ 

hybridization analysis of ANGPTL4 mRNA expression in Xenopus embryos at different stages. Cross-section 

of a stage-25 embryo showing ANGPTL4 expression in the notochord. Tb, tailbud mesoderm; no, 

notochord; ey, eye; pn, pronephros; so, somites; vbi, ventral blood island. (B) qPCR analysis of ANGPTL4 in 

Xenopus explants at stage 18, with strongest expression in mesodermal cells. Gene expression in whole 

embryos was set to 100%. (C) qPCR analysis of ANGPTL4 in Xenopus embryos at different developmental 

stages. Ornithine decarboxylase (odc) was used for normalization. 
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7.2.4 ANGPTL4 inhibits Wnt signaling in Xenopus and is required for notochord 

formation 

To investigate the role of ANGPTL4 on Wnt/β-catenin signaling in Xenopus, the 

expression of the Wnt target genes siamois and Xnr3 was analyzed. For this purpose two 

independent ANGPTL4 antisense Morpholino oligonucleotides (Mo1 and Mo2), targeting 

different splice sites of the ANGPTL4 pre-mRNA, were used. The injection of both 

Morpholinos resulted in similar phenotypes, characterized by small heads, shortened, 

bent body axes and defects in melanocyte and eye pigmentation (Figure 26A). This effect 

was specific because a mouse ANGPTL4 construct was able to partially rescue the 

phenotype (Figure 26A,B). Depletion of ANGPTL4 by Mo1 enhanced the expression of 

the Wnt target genes siamois and Xnr3 in Xenopus animal caps (Figure 26C, data for 

siamois not shown). This indicates that ANGPTL4 also acts as an inhibitor of Wnt/β-

catenin signaling in Xenopus. The inhibitory effect on Wnt signaling is specific, because it 

was rescued by co-injection of mouse ANGPTL4 mRNA in a dose-dependent manner 

(Figure 26C). Interestingly, the expression of high concentrations of ANGPTL4 resulted in 

a decrease of Wnt target genes, whereas the expression of low amounts of ANGPTL4 

increased siamois and Xnr3 expression (data not shown). This suggests a biphasic role of 

ANGPTL4 in Xenopus and illustrates that the concentration of ANGPTL4 used in the 

experiments is critical.  

Because the expression analysis of ANGPTL4 shows a distinct signal in the notochord, a 

region where Wnt/β-catenin signaling has to be inhibited to ensure its development, the 

impact of ANGPTL4 on notochord formation was examined. Depletion of ANGPTL4 with 

both Morpholinos reduced the expression of the notochord markers noggin and 

goosecoid (gsc) on the RNA level, similarly as observed after WNT8 mRNA injection 

(Figure 26D). In contrast, the expression of the muscle marker myf5 was increased 

(Figure 26E). These results were confirmed by in situ hybridization, where a reduction in 

the expression intensity and the expression area for collagen and chordin was detected 

in ANGPTL4 morphants (Figure 26F). Taken together, these results demonstrate that 

ANGPTL4 is an inhibitor of Wnt/β-catenin signaling in vivo and required for notochord 

formation in Xenopus.   
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Figure 26| ANGPTL4 inhibits Wnt/β-catenin signaling and is required for notochord formation in 

Xenopus. (A) Representative tadpole stage embryos injected equatorially at 2-cell stage with control (co) 

or two ANGPTL4 antisense Morpholino oligonucleotides (Mo1, Mo2) in the absence or presence of mouse 

ANGPTL4 mRNA. (B) Statistical analysis of the injected Xenopus embryos shown in panel (A). For each 

sample 20-60 embryos were analyzed, and the percentage of induced phenotypes was determined at 

stage 32. (C-E) Expression analysis in Xenopus animal caps by qPCR.  Animal caps were excised at blastula 

and harvested at gastrula (C) or neurula stage (D,E). Ornithine decarboxylase (odc) was used for 

normalization. Co Mo was set to 100%. (C) qPCR of Xenopus nodal-related 3 (Xnr3) in animal caps injected 

with WNT3A and mANGPTL4 mRNA and ANGPTL4 Morpholino (Mo1). (D,E) Analysis of noggin, gsc and 

myf5 expression in Xenopus animal caps. Embryos were injected with Activin and WNT8 mRNA and control 

(co) or two different ANGPTL4 Morpholinos (Mo1, Mo2). gsc, goosecoid; myf5, myogenic factor 5. (F) 

Whole-mount in situ hybridization analysis of collagen and chordin mRNA expression in Xenopus 

morphants at the indicated stages. Embryos were injected with control (co) or two different 

concentrations of ANGPTL4 Morpholino1 or 2 (Mo1, Mo2). 
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7.2.5 ANGPTL4 is required for mesoderm formation in Xenopus through Activin/Nodal 

signaling 

To investigate if ANGPTL4 also affects TGFβ signaling in Xenopus, the expression of 

target genes was analyzed. In animal cap explants, Xbra expression can be induced by 

different signaling pathways. The effect of ANGPTL4 on inducers of TGFβ (Nodal/Activin) 

and FGF signaling pathways was examined. Co-injection of ANGPTL4 Mo1 and Mo2 

decreased Xbra expression induced by Activin and Xnr1 (Figure 27A, B). In contrast, 

depletion of ANGPTL4, by Mo1 or Mo2, had no effect on Xbra expression induced by 

eFGF RNA (Figure 27C). This indicates that ANGPTL4 has no effect on FGF signaling, 

confirming the in vitro results. These results suggest that ANGPTL4 is required for 

Activin/Nodal, but not FGF signaling in Xenopus.  

Among other processes, Activin/Nodal signaling is involved in mesoderm formation 

during Xenopus development. Because ANGPTL is required for Activin/Nodal signaling in 

Xenopus, it is possible that ANGPTL4 is also involved in this process. To address this 

question, mesodermal markers were analyzed. The expression of the pan-mesodermal 

marker brachyury (Xbra) was decreased in ANGPTL4 morphants as shown by qPCR 

analysis (Figure 27D). Accordingly, the expression of the muscle markers myf5 and 

myoD, which develop from the mesodermal germ layer, was reduced (Figure 27E, F). 

This was confirmed by in situ hybridization of unilateral injected embryos, which showed 

a decrease in muscle actin and myf5 staining, upon knock-down of ANGPTL4 (Figure 

27G). The misregulation of critical components, required for mesoderm development, 

results in gastrulation defects in Xenopus embryos. A similar phenotype was observed 

after overexpression of either mouse or Xenopus ANGPTL4 (Figure 27H). The phenotype 

of these tadpoles is characterized by shortened embryonic axis, defects in neural tube 

closure and small heads. This indicates that ANGPTL4 is required for mesoderm 

formation in Xenopus through its effect on Activin/Nodal signaling. 
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Figure 27| ANGPTL4 is required for Activin/Nodal signaling and mesoderm formation in Xenopus. (A-C) 

Expression analysis of Xbra in Xenopus animal caps by qPCR. Xbra expression was induced by injection of 

Activin (A), Xnr1 (B) or eFGF mRNA (C). Embryos were co-injected with control (co) or ANGPTL4 

Morpholinos (Mo1, Mo2) using three different concentrations (10ng, 20ng, 40ng). Animal caps were 

excised at blastula and harvested at gastrula stage. Ornithine decarboxylase (odc) was used for 

normalization. Co Mo was set to 100%. (D-F) Expression analysis of Xbra (D), myf5 (E), and myoD (F) in 

Xenopus whole embryos by qPCR. Embryos were injected with control (co) or ANGPTL4 Morpholinos 

(Mo1, Mo2) as in (A-C). (G) Whole-mount in situ hybridization analysis of m.actin and myf5 mRNA 

expression in Xenopus morphants at different stages. Embryos were injected unilaterally with control (co) 

or ANGPTL4 Morpholino1 (Mo1) in combination with the lineage tracer β-galactosidase. Staining of β-

galactosidase (red) indicates injected site. (H) Representative tadpole stage embryos injected equatorially 

at 4-cell stage with control (ppl), mouse (mAL4) or Xenopus (xAL4) ANGPTL4 mRNAs.  

Xbra, Xenopus brachyury; Xnr1, Xenopus nodal-related 1; eFGF, embryonic fibroblast growth factor; myf5, 

myogenic factor 5; myoD, myogenic differentiation 1; m.actin, muscle actin. 
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Full length ANGPTL4 is proteolytically processed after secretion, and gives rise to an N-

terminal (nANGPTL4) and a C-terminal (cANGPLT4) fragment. To analyze which part of 

ANGPTL4 is required for mesoderm induction during Xenopus development, different 

deletion constructs were cloned (Figure 28A). In gain-of-function experiments, 

nANGPTL4 was able to induce spina bifida similar to the full length protein (Figure 28B). 

The cANGPTL4 construct, on the other hand, did not induce this phenotype (Figure 28B), 

suggesting that the C-terminal part is dispensable for the effect of ANGPTL4 on 

mesoderm formation. 

In contrast to its inhibitory effect on TGFβ signaling in vitro, ANGPTL4 is required for 

Activin/Nodal signaling and mesoderm formation in Xenopus, and this function is likely 

mediated by the N-terminal CCD domain. 

 

 

Figure 28| N-terminal domain of ANGPTL4 is sufficient to induce spina bifida in Xenopus. (A) Domain 

organization of ANGPTL4. Based on the structure of ANGPTL4 a full length (flANGPTL4), N-terminal 

(nANGPTL4) and C-terminal (cANGPTL4) construct was cloned. (B) Embryos were injected equatorially at 

4-cell stage with control (ppl), flANGPTL4, nANGPTL4 or cANGPTL4 mRNA. Phenotypes were analyzed at 

tadpole stage.  
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7.2.6 ANGPTL4 binds to syndecans 

As shown above, ANGPTL4 regulates Wnt/β-catenin and TGFβ signaling in vitro and in 

vivo. To investigate the molecular mechanism by which ANGPTL4 regulates both 

signaling pathways, the identity of the interaction partner was investigated. For this 

purpose, co-immunoprecipitation (co-IP) with subsequent mass spectrometric analysis 

was performed. A total of six membrane-associated proteins were identified, including 

components of the extracellular matrix and three members of the syndecan family of 

transmembrane proteoglycans (Table 2).  

 

Table 2: Transmembrane or membrane-associated proteins identified via mass spectrometry after 

ANGPTL4 co-IP. ANGPTL4 IP was performed in HepG2 cells after addition of HRP-Str.-ProteinA-ANGPTL4 

conditioned medium for 1h. After a two-step purification process, IP samples were separated by SDS-PAGE 

and proteins were stained with Coomassie Blue. Co-precipitated proteins were analyzed by mass 

spectrometric analysis (ESI-MS/MS). Transmembrane or extracellular matrix proteins were identified 

based on gene ontology (bioDBnet). These proteins were sorted according to the number of unique 

peptides detected during MS analysis. 

Accession No. Identified protein #unique peptides 

ZO2_HUMAN Tight junction protein ZO-2 17 

FINC_HUMAN Fibronectin 10 

SDC4_HUMAN Syndecan-4 4 

LEG8_HUMAN Galectin-8 5 

SDC1_HUMAN Syndecan-1 5 

SDC2_HUMAN Syndecan-2 3 

 

As syndecans (SDC) are transmembrane proteins, and ANGPTL4 was shown to act 

epistatically at the Wnt receptor level (Figure 22), a possible direct interaction of 

ANGPTL4 and SDC was tested. In cell surface binding assays, an alkaline-phosphatase 

(AP) fusion protein of ANGPTL4 bound to cells expressing SDC1, SDC2, SDC3 and SDC4 

(Figure 29A). In contrast, no binding of ANGPTL4 to cells transfected with LGR4/5 or 

LRP6 was detected, which however bound their respective ligands, RSPO3 and DKK1 

(Figure 29A). To confirm the direct binding between ANGPTL4 and SDC, an ELISA-based 

binding assay was used. Here Strep-tagged ANGPTL4 was coupled to Streptavidin-coated 

plates and different concentrations of AP-tagged, soluble SDC4 were applied (Figure 

29B). In the tested concentration range, a near-linear correlation between bound and 

free SDC4 was observed for ANGPTL4 and the known syndecan ligand RSPO3. In 
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contrast, no binding of DKK3 to SDC4 was detected (Figure 29C). Together these results 

show that ANGPTL4 can bind all four syndecans.    

 

 

Figure 29| ANGPTL4 binds syndecans. (A) Cell surface binding assay. HEK293T cells were transfected with 

the indicated plasmids and subjected to binding assays with conditioned medium containing alkaline-

phosphatase (AP) fusion proteins of ANGPTL4, R-spondin3-ΔC (RSPO3), or DKK1. Bound ligands were 

detected with AP substrate (red). (B) Schematic model of ELISA-based in vitro binding assay. High binding 

affinity plates were coated with Streptavidin, and Strep-tagged ANGPTL4 was bound to the Streptavidin-

coated plate. After washing, different concentrations of alkaline-phosphatase (AP) fusion protein of 

SDC4∆TMC was applied. Binding of SDC4 was detected by AP measurement. Besides ANGPTL4, RSPO3∆C 

and DKK3 were used as controls. (C) ELISA-based in vitro binding assay using ANGPTL4 (blue), RSPO3∆C 

(red) and DKK3 (green). As binding was still in the linear phase, linear fitting was applied.  
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7.2.7 Syndecans mediate clathrin-dependent internalization of ANGPTL4 

A characteristic feature of syndecans is their ability to induce endocytosis upon ligand 

binding.261-264 This is essential for signal transduction, for example in FGF signaling.264 To 

investigate if ANGPTL4 undergoes endocytosis, internalization assays were performed. 

For this purpose a horseradish peroxidase (HRP) fusion protein of ANGPTL4 was used, 

which can be visualized by tyramide signal amplification. Incubation of HepG2 cells with 

HRP-ANGPTL4 at 37°C induced internalization of ANGPTL4 within 40 min. In contrast, no 

internalization was observed when cells were incubated on ice (Figure 30A). The 

treatment of cells with chlorate inhibits the sulfation of heparan sulphate chains, which 

is required for proper function of HSPGs like syndecans.265 The incubation of cells with 

chlorate completely abrogates ANGPTL4 endocytosis (Figure 30A), indicating that HSPGs 

are required for ANGPTL4 internalization. The depletion of all four syndecans, using 

siRNA mediated knock-down, also reduced ANGPTL4 internalization. Interestingly, the 

depletion of only one member of the syndecan family had no effect (Figure 30A), 

indicating that they can compensate each other. 

To determine the nature of this endocytosis process, cells were treated with inhibitors 

of clathrin and caveolin-dependent endocytosis. The clathrin inhibitor monodansyl-

cadaverine (MDC) blocked ANGPTL4 internalization, unlike inhibitors of caveolin-

mediated endocytosis, including nystatin and filipin (Figure 30B). Consistent with the 

drug treatment, depletion of clathrin by siRNA reduced ANGPTL4 cytoplasmic punctae, 

whereas siRNA targeting caveolin had no effect (Figure 30B). Conclusively, the data show 

that syndecans are required for clathrin-mediated endocytosis of ANGPTL4.  
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Figure 30| Syndecans mediate clathrin-dependent internalization of ANGPTL4. (A,B) Internalization 

assay in HepG2 cells treated for 40 min with horseradish peroxidase (HRP)-tagged ANGPTL4 on ice or at 

37°C. HRP-tagged ANGPTL4 was visualized by tyramide signal amplification (green). Nuclei were 

counterstained with Hoechst-33342 (blue). Where indicated cells were pretreated with siRNAs for 3 days 

or with 25 mM sodium chlorate for 48 h. (B) Internalization of ANGPTL4 in the presence of different 

clathrin (MDC) or caveolin (Nystatin, Filipin) specific inhibitors. Cells were treated for 1 h with the 

indicated inhibitors. DMSO was used as a control. MDC, monodansyl-cadaverin. 

 

7.2.8 ANGPTL4 binds to LRP6 likely via syndecan 

Endocytosis is an essential mechanism of receptor mediated signaling. In the case of 

Wnt signaling, the internalization of the Wnt-receptor complex is an obligatory step in 

activating downstream signaling. Syndecans were not only characterized as efficient 

inducers of endocytosis, but were also described as co-receptors of Wnt signaling in 

different organisms.78,266 Recently it was shown that syndecan 4 does not only promote 

noncanonical, but also inhibits canonical Wnt signaling.267 Syndecans could therefore 

mediate the inhibitory effect of ANGPTL4 on Wnt/β-catenin signaling. To analyze if 

syndecans have a similar function as ANGPTL4, TOPFlash reporter assays were 

performed. The reporter activity was enhanced after depletion of SDC1, similar to 

siANGPTL4 (Figure 31A). The combination of siRNA targeting ANGPTL4 and SDC1 further 

enhanced reporter activity, indicating that both cooperate in Wnt pathway inhibition.  
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Based on the synergistic effect of ANGPTL4 and syndecan, and the role of syndecans as 

Wnt co-receptors, it was investigated if ANGPTL4 binds to Wnt receptors via syndecans. 

Indeed, Flag-tagged LRP6 and Strep-tagged ANGPTL4, which was added as conditioned 

medium, can be immunoprecipitated in the presence of co-expressed haemagglutinin-

tagged SDC4 (SDC4-HA). In contrast, no interaction was observed, when control or Strep-

tagged RSPO3 conditioned media were added (Figure 31B). These results suggest that 

ANGPTL4 and syndecans synergize in Wnt/β-catenin pathway inhibition and ANGPTL4 

interacts with LRP6 in the presence of syndecan.  

 

 

Figure 31| ANGPTL4 synergizes with syndecan in Wnt/β-catenin signaling and binds to LRP6.  (A) Wnt 

luciferase reporter assay stimulated with WNT3A-conditioned medium in the presence of the indicated 

siRNAs. Co, control medium. RLA, relative luciferase activity. (B) Western blot analysis shows binding of 

ANGPTL4 to LRP6 in the presence of SDC4. HEK293T cells were transfected with SDC4-HA and LRP6-Flag, 

and Strep-tagged ANGPTL4, RSPO3 or control conditioned medium was added to cells for 1 h. After lysis of 

cells, Strep-tagged proteins were precipitated using streptavidin beads, and interacting proteins were 

examined by Western blot analysis. SDC4 and LRP6 are equally expressed in all conditions. Panel B was 

provided by Stefan Koch. 
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7.2.9 ANGPTL4 inhibits Wnt/β-catenin signaling by decreasing LRP6 levels 

Based on the interaction of ANGPTL4 with syndecans and LRP6, and the increase in total 

LRP6 levels detected after ANGPTL4 depletion (Figure 22E), ANGPTL4 may inhibit Wnt/β-

catenin signaling by affecting LRP6 levels. Biochemical assays were conducted to test this 

hypothesis. A cell-surface protein biotinylation assay was performed and LRP6 levels 

were detected by Western blot after Streptavidin-IP. Treatment with ANGPTL4 siRNA 

increased levels of cell surface LRP6, without affecting other transmembrane proteins, 

like transferrin receptor (Figure 32A). This indicates that ANGPTL4 affects LRP6 cell 

surface levels. This was confirmed by gain-of-function studies using a flow cytometry 

based approach.268 The detection of cell surface LRP6 revealed a decrease in LRP6 

surface levels after addition of ANGPTL4 conditioned medium (data not shown). To 

determine which part of ANGPTL4 is required for this effect, deletion constructs were 

generated, containing either the N-terminal or C-terminal domain. Interestingly, the 

addition of nANGPTL4 decreased cell surface LRP6, whereas cANGPTL4 had no effect 

(Figure 32B). Taken together, these results indicate that ANGPTL4 inhibits Wnt/β-catenin 

signaling by reducing LRP6 membrane levels, which requires only the N-terminal domain 

of ANGPTL4.   

 

 

Figure 32| ANGPTL4 decreases LRP6 membrane levels. (A) ANGPTL4 loss-of-function increased LRP6 cell 

surface levels as indicated by cell surface biotinylation assay. Western blot analysis of LRP6 after cell 

surface biotinylation, cell lysis (Input) and pull down of biotinylated proteins (IP) in the presence of the 

indicated siRNAs. (B) nANGPTL4 gain-of-function decreased cell surface LRP6 in FACS analysis. Flow 

cytometric analysis of membrane LRP6 in cells treated with control, C-terminal ANGPTL4 (cANGPTL4), N-

terminal ANGPTL4 (nANGPTL4) or DKK1 conditioned medium for 1 h. Figure was provided by Stefan Koch.   
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7.3 Discussion 

7.3.1 ANGPTL4 is a regulator of mesodermal differentiation in Xenopus 

ANGPTL4 has previously been described as an integral regulator of lipid 

metabolism,227,228 cell migration,225,234 and angiogenesis.242,244,246 Here I outline a new 

function of ANGPTL4 in Xenopus development. In Xenopus embryos, ANGPTL4 

expression was mainly detected in mesodermal tissue, including the notochord. The 

development of the notochord is strictly regulated and requires co-inhibition of BMP 

and Wnt signaling.254 It was shown that inhibition of Wnt/β-catenin signaling is essential 

for normal specification of axial (notochord) versus lateral (somatic) mesoderm.251,269 

Because ANGPTL4 shows prominent expression in the notochord, it was investigated 

whether depletion of ANGPTL4 affects on notochord formation. The analysis of different 

notochord markers, using both qPCR and in situ hybridization, confirmed this 

hypothesis. The knockdown of ANGPTL4 resembled overexpression of WNT8,258 which 

suggests that ANGPTL4 is an inhibitor of Wnt signaling in vivo. In contrast to the 

reduction in notochord marker gene expression, mesodermal markers were increased 

upon depletion of ANGPTL4. These data are in accordance with the observation that 

overactivation of Wnt signaling results in re-specification of the notochord as somitic 

mesoderm.257 These results demonstrate that the inhibitory effect of ANGPTL4 is of 

physiological relevance, as ANGPTL4 promotes notochord development in Xenopus, 

presumably by inhibiting Wnt signaling. It should be noted, however, that ANGPTL4 

knock-out mice are viable, although they are born at lower frequency than heterozygous 

litter mates.227 Similarly, hemizygous loss of ANGPTL4 in humans affects lipid 

metabolism, but does not result in overt developmental defects.270 It has recently been 

suggested that deleterious genetic mutations may not manifest phenotypically due to 

compensatory gene regulation.271 The striking effect of acute Morpholino-mediated 

knock-down on Xenopus notochord differentiation may therefore reflect more faithfully 

the developmental function of ANGPTL4. 
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7.3.2 ANGPTL4 inhibits Wnt/β-catenin signaling at the receptor level. 

The above results strongly suggest that ANGPTL4 regulates mesodermal differentiation 

primarily by inhibiting Wnt/-catenin signaling. Indeed, it was shown previously that 

ectopic over-expression of the prototypical Wnt antagonist DKK1 in zebrafish is sufficient 

to induce notochord enlargement.272 Similarly, it has been suggested that Frzb 

antagonizes WNT8 during Xenopus development, thereby ensuring notochord 

differentiation.254 Consistent with the concept that ANGPTL4 acts as a secreted Wnt 

inhibitor, knock-down of ANGPTL4 in vitro strongly induced Wnt signaling, and epistasis 

assays revealed that ANGPTL4 inhibits Wnt signaling at the receptor level. This function 

is unique for ANGPTL4, as no such effect was observed for ANGPTL3 and ANGPTL5.  

7.3.3 ANGPTL4 is a mediator of TGFβ signaling and regulates mesoderm formation in 

Xenopus 

Besides being a negative regulator of Wnt/β-catenin signaling, ANGPTL4 is also involved 

in the regulation of TGFβ signaling. TGFβ reporter activity was strongly enhanced in cells 

treated with ANGPTL4 siRNA. This effect is likely mediated by the SMAD2/3 pathway, as 

ANGPTL4 depletion increased SMAD2 phosphorylation. In contrast to the inhibitory 

effect of ANGPTL4 in vitro, in vivo results revealed a requirement of ANGPTL4 for 

Activin/Xnr1 induced Xbra expression. Based on preliminary studies, it appears that 

different domains of ANGPTL4 exert these divergent effects. In Xenopus embryos the N-

terminal part of ANGPTL4 is sufficient to induce spina bifida formation. It is possible, that 

TGFβ signaling in mammalian cell lines requires a different part of ANGPTL4. 

Comparatively, the in vitro experiments were performed using TGFβ1, whereas the 

Xenopus effects were investigated using Activin and Nodal ligands. Therefore another 

explanation could be that different ligands of the TGFβ family mediate the interaction of 

ANGPTL4 with different effector molecules, which induce distinct effects. Besides the 

effect on TGFβ signaling in Xenopus, ANGPTL4 seems to be required for mesoderm 

formation, as depletion reduced mesodermal markers. In the process of mesoderm 

development several pathways converge to allow formation of the three germ layers 

(reviewed in Kimelman et al., 1992273). Whereas ANGPTL4 has no effect on FGF 

signaling, it strongly affects TGFβ signaling. Therefore in Xenopus development the 
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requirement of ANGPTL4 for the process of mesoderm formation is likely mediated by 

the positive effect of ANGPTL4 on TGFβ signaling. 

Taken together, the data indicate that ANGPTL4 is not only an inhibitor of Wnt/β-

catenin, but also a mediator of TGFβ signaling in vitro and in Xenopus.    

7.3.4 ANGPTL4 binds all four syndecans 

In search for an ANGPTL4 receptor, which mediates the effects of ANGPTL4 on Wnt/β-

catenin and TGFβ signaling, syndecans were identified as a putative candidate. Besides 

syndecans, the intracellular tight junction protein ZO-2, as well as the extracellular 

matrix components fibronectin and galectin 8 were detected by mass spectrometry. 

Binding of ANGPTL4 to these proteins is likely indirect via integrins or syndecans, for 

which interaction has already been described.274-276  

By independent lines of evidence, it was shown that syndecans act as receptors or co-

receptors for ANGPTL4, including co-IP, cell surface binding, ELISA-based binding assays 

and functional cooperation. Syndecans comprise a family of four transmembrane 

proteoglycans, which act as co-receptors for different growth factors and are involved in 

cell proliferation, differentiation, adhesion, and migration.277-279  

Recent studies suggest a regulatory function of SDC2 in TGFβ signaling. It was shown 

that SDC2 impacts TGFβ signaling via direct binding of the TGFβ ligand and regulation of 

receptor expression.280,281 However, another report observed an inhibitory effect of 

SDC2 on TGFβ signaling in alveolar epithelial cells. In this background SDC2 promotes 

caveolin-dependent internalization of ligand (TGFβ) and receptor (TGFβRI), thereby 

inhibiting TGFβ signaling.282 These different effects of SDC2 on TGFβ signaling are in line 

with a biphasic effect of SDC1 on BMP signaling in Xenopus embryos.283 Based on the 

regulatory role of syndecan in TGFβ signaling, it is possible that ANGPTL4 exerts its effect 

on TGFβ signaling via syndecans. The requirement of the N-terminal domain of ANGPTL4 

for spina bifida induction in Xenopus is in line with this, as interaction of ANGPTL4 with 

HSPG is mediated by a binding motif in the N-terminal domain of the protein.215 

Furthermore the contradictory results of SDC2 on TGFβ signaling could provide an 

explanation for the different effects of ANGPTL4, observed in vitro and in vivo. The effect 
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of ANGPTL4 on TGFβ signaling via syndecans could be tissue specific or dependent on 

the respective microenvironment.      

Syndecans also function in Wnt signaling. SDC1, for example, was described as a 

modulator of Wnt signaling and is required for WNT1 induced mammary tumorigenesis 

in mice.266 Furthermore SDC4 was shown to act as a co-receptor for RSPO3 in Wnt/PCP 

signaling in Xenopus, and mediates clathrin-dependent internalization of RSPO3.52,78 

Additionally, it has been shown that besides noncanonical Wnt signaling, SDC4 also has 

an effect on canonical Wnt signaling, as it inhibits Wnt/β-catenin signaling in mammalian 

cell lines and Xenopus.267 Therefore the observed effect of ANGPTL4 on Wnt/β-catenin 

signaling could be mediated by syndecans. This is further supported by the observation 

that SDC1 synergizes with ANGPTL4 in Wnt/β-catenin inhibition. These results indicate 

that ANGPTL4 and syndecans cooperate in Wnt signal inhibition.  

In contrast to the observed effect of ANGPTL4 on mesoderm development, SDC4 

however, has no effect on Xbra expression.78 This could be due to redundant effects of 

other SDC members, which could mediate the effect of ANGPTL4 during mesoderm 

formation. It is also possible that other receptors transmit ANGPTL4 signals in this 

process. A close examination of ANGPTL4 and syndecans reveals a number of 

overlapping functions during development. Similar to ANGPTL4 knockout mice, SDC1, 

SDC3 or SDC4 deficient mice are viable, fertile and have no overt phenotypic 

abnormalities.228,266,284-286 On the molecular level, however, ANGPTL4 and syndecans are 

implicated in several overlapping biological mechanisms in vertebrates. For SDC1 

deficient mice a very slow re-epithelization during wound healing was described, similar 

to ANGPTL4 knockout mice.234,287 Furthermore SDC1 plays an important role in 

regulating inflammation, similar to ANGPTL4.233,288 Both ANGPTL4 and SDC2 are required 

for angiogenesis.245,289 Additionally, SDC4 deficiency results in delayed wound healing 

and defective angiogenesis, a process in which ANGPTL4 is also required.225,234,286 This 

shows that ANGPTL4 and syndecans are involved in the same biological processes, and 

suggests that syndecans may mediate the effects of ANGPTL4.   
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7.3.5 Syndecans mediate the internalization of ANGPTL4 

A characteristic of syndecans is their ability to induce endocytosis upon ligand 

binding.261-264 It was shown that ANGPTL4 is internalized via clathrin-dependent 

endocytosis, which requires syndecans and sulfation of their GAG chains. This is in 

accordance with binding of other extracellular proteins.78,278,279 Similarly, binding of 

RSPO3 to SDC4 also requires GAGs and induces clathrin-mediated endocytosis.78    

Whether the internalization of ANGPTL4 is required for its inhibitory effect on Wnt/β-

catenin signaling is unknown. In the context of Wnt signaling, internalization of the 

receptor complex is an essential step in the initiation of signal transduction.89,106,290 In 

vertebrates, Wnt ligands induce caveolin-dependent receptor endocytosis, whereas 

DKK1 promotes clathrin-dependent endocytosis of LRP5/6, leading to inhibition of the 

pathway.95,106,107 Because ANGPTL4 acts as an inhibitor of Wnt signaling and is 

internalized via clathrin-dependent endocytosis, similar to DKK1, it is feasible that its 

internalization plays an important role with regard to Wnt signaling.  

7.3.6 ANGPTL4 reduces LRP6 at the plasma membrane level 

The similarity of ANGPTL4 internalization to that of DKK1 and RSPO3, and the fact that 

ANGPTL4 and syndecans synergize in Wnt/β-catenin inhibition, raised the possibility that 

ANGPTL4 affects the Wnt receptor complex via syndecans. Indeed, in the presence of 

syndecan, ANGPTL4 interacts with LRP6. Via this interaction ANGPTL4 regulates cell 

surface levels of LRP6, as shown by gain- and loss-of-function studies. It can be 

hypothesized that ANGPTL4 removes LRP5/6 from the cell surface via clathrin-

dependent endocytosis, thereby attenuating Wnt signaling. Interestingly, it was found 

that the N-terminal CCD of ANGPTL4 is sufficient to decrease LRP6 membrane levels, 

whereas the C-terminal FLD is dispensable. As the CCD was already characterized to 

harbor the binding site for HSPG215, it further underlines that syndecans mediate the 

observed effects of ANGPTL4.  
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7.3.7 Model of ANGPTL4 inhibition of Wnt/β-catenin signaling 

Collectively the data shown here support a model, in which ANGPTL4 binds to 

syndecans, which likely mediate the interaction of ANGPTL4 with LRP6. This interaction 

results in the membrane clearance of LRP6, likely by clathrin-mediated endocytosis of 

the receptor complex, which in turn inhibits Wnt/β-catenin signaling (Figure 33). The N-

terminal domain of ANGPTL4 is sufficient to affect LRP6 membrane levels.  

Clathrin-mediated endocytosis targets membrane proteins to early endosomes, where 

they can be either recycled or transported to late endosomes and lysosomes for 

degradation.95 As also total LRP6 levels are affected by ANGPTL4, it is possible that LRP6 

is undergoing lysosomal degradation, after ANGPTL4-induced removal from the plasma 

membrane. Further investigation is required to proof this hypothesis.  

 

 

 

Figure 33| Model for the inhibitory effect of ANGPTL4 on Wnt/β-catenin signaling. ANGPTL4 binds to 

syndecans via its N-terminal coiled-coil domain. This requires sulfation of the glycosaminoglycan chains of 

syndecans. Thereby ANGPTL4 associates with LRP6 and likely induces clathrin-mediated endocytosis of 

this complex. This results in a decrease of LRP6 membrane levels, leading to the inhibition of Wnt/β-

catenin signaling. 
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In general, syndecans do not act as primary receptors but rather as co-receptors.277 

Therefore it is possible that ANGPTL4 interacts with another transmembrane protein, 

which mediates the interaction with the Wnt receptors. This is supported by the fact 

that ANGPTL4 has no effect on FGF signaling, a signaling pathway in which syndecans 

have also been implicated.264,278,279 The identification of this additional factor could 

provide an explanation for the specificity of ANGPTL4 for Wnt/β-catenin and TGFβ 

signaling. 

 

7.3.8 Outlook 

This study led to the identification of a novel antagonist of the Wnt/β-catenin signaling 

pathway. The inhibitory effect of ANGPTL4 is of physiological relevance, as it promotes 

notochord formation during Xenopus development. Because both ANGPTL4 and Wnt 

signaling are implicated in cancer development and progression, it will be very 

interesting to see if the anti-angiogenic function of ANGPTL4 is mediated via inhibition of 

Wnt/β-catenin signaling. In accordance with this hypothesis is the finding that ANGPTL4 

is frequently silenced by methylation in human gastric cancers,244,291 where Wnt 

signaling is aberrantly activated.292 Interestingly, the tumor suppressive effect of 

ANGPTL4 is mediated by the N-terminal CCD,244 which is in line with our results, showing 

that the N-terminal part of ANGPTL4 is sufficient to decrease LRP6 membrane levels.    

The finding that syndecans are (co-)receptors for the orphan ligand ANGPTL4 opens new 

directions for studies of ANGPTL4 functions. Based on the number of overlapping 

biological roles of ANGPTL4 and syndecans and the implication in cancer and tumor 

progression, it will be interesting to analyze the functional interaction in these 

processes. 
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8. Materials and Methods 

8.1 Equipment and reagents 

 
Equipment 

Agarose gel chambers (Biozym), Balances (Sartorius, Kern), Blotting apparatus Trans-Blot 

SD Semi-Dry Transfer Cell (Biorad), Centrifuges (Heraeus), Electroporator (BioRad), 

Fluorescence microscope (Nikon), Homogenizers (Wheaton), Imaging System LAS3000 

(Fujifilm), Incubators (Labotect, Heraeus), Laminar flow hoods (Labotect), LightCycler 

480 (Roche), Light Source KL1500 (Schott), Luminometer (Fluoroskan Ascent FL, 

Thermo), Magnetic stirrer (CAT), Microcentrifuges (Heraeus), Microinjector (Harvard 

Apparatus), Microwave (Sharp), Multiscan RC plate-reader (Labsystems), Multi-channel 

pipettes (Transferpette), PAGE minigel chambers (Biorad), PCR thermocyclers (MJ 

Research, BioRad), pH meter (Sartorius), Power supplies (Biorad), Rotators (CAT, Kisker), 

Shakers (Thermo, EB), Spectrophotometer NanoDrop 2000 (Thermo), Stereomicroscopes 

MZ8 (Leica), Stereomicroscope Discovery.V20 (Zeiss), Thermoshaker (Eppendorf), 

Thermostat cabinet (Aqua Lytic), Ultrapure water purification system (Millipore), UV 

photodocumentation system (Intas), Vortexer (Scientific industries), Water baths 

(Julabo, GFL). 

 
Chemicals 

Acetic Acid (Merck), Acrylamide (Roth), Agarose (Biozym), Ampicillin (Sigma), Biotin 

(Pierce, Thermo), Blocking Reagent (Roche), BM Purple AP substrate (Roche), 

Bromophenol blue (Merck, Serva), BSA Grade V (Roche), β-mercaptoethanol (Roth), 

CaCl2 (Merck), CHAPS (Serva), Chloroform (Roth), complete protease inhibitor cocktail 

(Roche), L-cysteine (Sigma), DMSO (Sigma), dNTPs (Thermo, Fermentas), DTT (Roche, 

Sigma), Diethylpyrocarbonate (DEPC) (Roth), EDTA (Gerbu), EGTA (Sigma), Ethanol 

(Sigma), Ethidium bromide (Roth), Fluoromount-G (SouthernBiotech), Freon (Riedel-de 

Haën), Formaldehyde (J.T. Baker), Formamide (Merck), Formamide deionized 

(AppliChem), Glycogen (Fermentas), Glycerol (Roth, Sigma), Heparin (MP), human 

chorionic gonadotropin (HCG) (Sigma, Aska), HCl (Sigma), Hydrogen peroxide (Merck), 

HEPES (GERBU), Hoechst (Sigma), Iodacetamide (Sigma), Isopropanol (Sigma), KCl (Fluka, 
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Roth, Sigma), LB agar (Fluka), Maleic acid (Serva), Methanol (Sigma), MgCl2 (Merck), 

MgSO4 (Merck), Monodansylcadaverine (MDC) (Sigma), MOPS (Sigma), NaOH (Fluka), 

NaCl (Sigma, VWR), NaF (Sigma), Na2HPO4 (Merck), NaH2PO4 (Roth), Na3VO4 (Sigma), 

NaOAc (Fluka, Merck), Nonidet NP-40 (Sigma), Phenol (Roth), Phenol/Chloroform 

(Ambion), Paraformaldehyde (PFA) (Merck, Sigma), PMSF (Sigma), Proteinase K (Roche), 

Random Primers (Invitrogen), Restore Western Blot Stripping Buffer (Thermo), RNA cap 

structure analog (NEB), RNase-free H2O (Qiagen), Rose-Gal (Genaxxon), Roti-Phenol 

(Phenol/Chloroform/Isoamylalcohol-25/24/1) (Roth), SDS (Roth), Sephadex beads C-25 

(GE Healthcare) and G-50 (Sigma), Sodium pyrophosphate (Sigma), Streptavidin (Vector, 

SA-5000), TEMED (Serva), Trypsin (Sigma), Triton X-100 (Gerbu), Triethanolamine 

(Sigma), Trizol (Ambion), Tris base (Sigma), Trypan blue (VWR), Tween-20 (Gerbu), Yeast 

RNA (Boehringer Mannheim). 

 
Agarose beads 

Anti-Flag M2 affinity gel (Sigma, A2220), CH-IgG rabbit beads (17.6 mg/ml, homemade), 

Heparin-Agarose (Sigma, H6508), Protein A-Agarose (Sigma, P3476), Streptavidin 

Agarose (Thermo, 20359).  

 
Enzymes, reagents and kits for molecular biology 

4-Dinitrophenylphosphate disodium salt hexahydrate (Sigma, N9389), CIAP (Fermentas, 

EF0341), Clarity Western ECL substrate (BioRad, 1705060), DNA Orange loading dye (6x) 

(Thermo, R0631), DTT 0.1 M (Invitrogen, 00147), Dual-Luciferase reporter assay system 

(Promega, E1960), Gene Ruler DNA ladder 1 kb (Thermo, SM1163), Gene Ruler DNA 

ladder 100 bp (Thermo, SM0241), LDS sample buffer NuPage (Life Technologies, 

NP0008), LightCycler 480 Probes master (Roche, 04887301001), MEGAscript in vitro 

transcription kits SP6/T7/T3 (Ambion, AM1330/AM1334/AM1338), Page Ruler 

Prestained Protein Ladder (Thermo, 26616), PCR buffer (10x) (Life Technologies, 

N8080129), Poly-L-Lysin (Sigma, P5899), ProSieve QuadColor Protein Marker 4.6-

300 kDa (Lonza, 00193837), QIAprep Spin Miniprep Kit (Qiagen, 27106), QIAquick Gel 

extraction kit (Qiagen, 28706), QIAquick PCR purification kit (Qiagen, 28104), QuantaBlu 

Fluorogenic Peroxidase substrate (Pierce, 15169), RiboLock RNase Inhibitor (Thermo, 

EO0381), RiboRuler High Range RNA ladder (Thermo, SM1823), RiboRuler Low Range 
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RNA ladder (Thermo, SM1833), RNA guard (Thermo, EO0381), RNA loading dye (2x) 

(Thermo, R0641), RNase A (Thermo, EN0531), RNase-free DNase Set (Qiagen, 79254), 

SEAP reporter gene assay (Roche, 11779842001), Super signal West Pico 

Chemiluminescence substrate (Thermo, 34078), Superscript II Reverse Transcriptase 

(Invitrogen, 18064-014), UPL probes (Roche), TEV protease (Life Technologies, 12575-

015). 

 
Cell culture reagents and cell lines 

DharmaFECT (Dharmacon), DMEM (Lonza), FCS (Gibco), H1299 cells (American Type 

Culture Collection (ATCC), CRL-5803), H1703 cells (ATCC, CRL-5889), Hanks Balanced Salt 

Solution (Hank’s BSS) (Sigma, H6648), HEK293T cells (GenHunter, WAK-Chemie, Q401), 

HepG2 (ATCC, HB-8065), L cells with/out stably transfected with mouse Wnt3a (ATCC, 

CRL-2647/-2648) L-glutamine (Sigma), Opti-MEM (Gibco), Penicillin-Streptomycin 

(Lonza), RPMI (Lonza), Sodium pyruvate (Sigma), Trypsin-EDTA (Gibco), X-treme Gene 9 

DNA transfection reagent (Roche).  

 
Buffers and solutions 

AP substrate solution: 2 M Diethanolamine pH 9.8, 1 mM MgCl2, 2 tablets 4-

Dinitrophenylphosphate disodium salt hexahydrate (Sigma). 

Barth solution (10x): 880 mM NaCl, 10 mM KCl, 24 mM NaHCO3, 8.2 mM MgSO4·7H2O, 

3.3 mM Ca(NO3)2·4H2O, 4.1 mM CaCl2·2H2O, 100 mM HEPES, pH 7.6. 

DEPC-H2O: 0.01% (v/v) DEPC/ddH2O, mixed for 12 h at room temperature and 

autoclaved. 

Bicarbonate buffer: 50 mM NaHCO3 pH 9.6. 

Bleaching solution (for ISH): 5% Formamide, 0.5% SSC (20x), 3% H2O2 (30%) in ddH2O 

(Formamide has to be diluted in H2O before adding H2O2, otherwise an exothermic 

reaction occurs). 

Boehringer Block (10x): 127 g Tris-HCl, 23.6 g Tris Base, 58.44 g NaCl, 50 g Boehringer 

reagent (Boehringer), add ddH2O up to 1 l, adjust pH to 7.5, dissolves when autoclaved 

and store at -20°C. 

dNTP mix: 2 or 5 mM dATP, dCTP, dGTP, dUTP, store at -20 °C. 

Ethanol/NaOAc mix: 100 mM sodium acetate in 100% ethanol. 



8. Materials and Methods 

76 
 

Hybridization buffer (500 ml): 5 g Boehringer Block, 250 ml deionized Formamide, 

125 ml SSC (20x), dissolve for 1 h at 65°C, add 50 ml yeast RNA (10 mg/ml), 1 ml Heparin 

(50 mg/ml), 2.5 ml Tween (20%), 5 ml CHAPS (10%), 5 ml EDTA (0.5 M), DEPC-H2O, store 

at - 20°C. 

IP lysis buffer: 1% Triton X-100, 2 mM β-mercaptoethanol, 1 mM MgCl2, 1x complete 

protease inhibitor cocktail (Roche), 1x TBS, adjust pH to 7.5. 

IP wash buffer 1: 1% Triton X-100, 2 mM β-mercaptoethanol, 1x TBS, adjust pH to 7.5. 

IP wash buffer 2: 0.1% Triton X-100, 2 mM β-mercaptoethanol, 1x TBS, adjust pH to 7.5. 

Lämmli loading buffer (4x): 5 ml solution C for SDS-PAGE, 2 ml glycerol (100%), 2 ml SDS 

(20%), 1 ml β-mercaptoethanol (14 M), 200 µl bromophenol blue (0.5%). 

Lämmli running buffer (10x): 0.25 M Tris, 1.92 M glycerol, 1% SDS, add up to 1 l 

deionized water, pH ~8.3. 

LB (1x): 10 g tryptone, 5 g yeast, 10 g NaCl. 

Maleic acid buffer (MAB): 100 mM maleic acid, 150 mM NaCl, pH 7.5. 

Modified Ringer solution (MR): 0.1 M NaCl, 1.8 mM KCl, 2.0 mM CaCl2, 1.0 mM MgCl2, 

5.0 mM HEPES-NaOH, pH 7.6, autoclaved. 

MEM buffer (10x): 1 M MOPS pH 7.4, 20 mM EGTA, 10 mM MgSO4. 

MS222 (1 l): 1.5 g MS222 (Sigma), 1.4 g NaHCO3, pH 7. 

NP-40 buffer: 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 mM NaF, 1x complete protease 

inhibitor cocktail (Roche), 1% NP-40, 0.1% SDS, 5 mM β-mercaptoethanol, 5 mM 

glycerophosphate.  

PTW buffer: 1x PBS, 0.1% Tween 20. 

Phosphate-buffered saline (PBS, 10x): 1.36 M NaCl, 26.8 mM KCl, 14.7 mM KH2PO4, 

162.9 mM Na2HPO4, adjusted to 1 l with ddH2O, autoclaved. 

Ringer solution: 116 mM NaCl, 2.9 mM KCl, 1.8 mM CaCl2, 5 mM HEPES pH 7.4. 

Saponin buffer: 0.05% Saponin, 1 mM MgCl2, 2 mM β-mercaptoethanol, 10 mM NaF, 

5 mM glycerophosphate, 0.1 mM PMSF, 1x complete protease inhibitor cocktail (Roche), 

1x TBS. 

SDS-PAGE solutions: Solution B: 1.5 M Tris, 0.4% SDS in 1 l ddH2O pH 8.8; Solution C: 

0.5 M Tris, 0.4% SDS in 1 l ddH2O pH 6.8. 

TBE buffer (10x, for agarose gel-electrophorese): 540 g Tris Base, 275 g Boric Acid, 

200 ml EDTA (0.5 M) pH 8.0, in 5 l ddH2O. 
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TBE buffer (10x, for semidry blotting): 108 g Tris Base, 55 g Boric Acid, 40 ml EDTA (0.5 

M), add up to 1 l ddH2O, adjust pH to 8.3. 

TEV buffer: 150 mM NaCl, 0.1% NP-40, 0.5 mM EDTA, 20 mM Tris pH 8.0. 

Tris-buffered saline (TBS, 20x): 1 M Tris pH 7.4, 3 M NaCl, 54 mM KCl, add up to 1 l 

ddH2O, autoclaved. 

TBS-T (1x): 1x TBS, 0.05% Tween.  

TE buffer: 10 mM Tris-HCl pH 7.4, 1 mM EDTA, autoclaved. 

Transferbuffer (10x): 58.2 g Tris Base, 29.3 g Glycin, 200 ml EDTA (0.5 M) pH 8.0, add up 

to 1 l ddH2O (for 1x add 200 ml Methanol/l). 

 
Antibodies 

Mouse anti-β-catenin (BD, 610154), Mouse anti-FLAG (Sigma, F-3165), Mouse anti-MAPK 

(ERK1+ERK2) (Sigma, M8159), Mouse anti-myc (DSHB, 9E10), Mouse anti-SMAD2/3 (BD, 

610842), Mouse anti-Tubulin (Sigma, T5168), Mouse anti-V5 (Invitrogen, 46-0705), 

Rabbit anti-AP (Zymed, 18-0099), Rabbit anti-HRP (Acris, R1107), Rabbit anti-LRP6 

(T1479) homemade antibody, Rabbit anti-phospho-LRP6 (Sp1490) (Cell Signaling), Rabbit 

anti-phospho-LRP6 (Sp1490) homemade antibody, Rabbit anti-phospho-SMAD2 

(Ser465/467) (Cell Signaling, 138D4), Rabbit anti-phospho-SMAD3 (Ser423/425) (Cell 

Signaling, C25A9), Rabbit anti-Transferrin receptor (Cell Signaling, 13113P), Rat anti-HA 

(Roche, 1867423). 

 
Plasmids 

Human and mouse ANGPTL4 was received from imaGenes (Table 3). 

Table 3| Human and mouse ANGPTL4 cDNA clones obtained from imaGenes. 

Gene Clone ID IMAGE ID vector 

Human ANGPTL4 IRAUp969A0880D 5088323 pOTB7 

Mouse Angptl4 IRAVp968A0472D 5137159 pCMV-SPORT6 

 

Xenopus angptl4 was cloned by Christine Dolde from st.40 X. tropicalis embryos using 

the following primers: ATGAAGCTGTTACTTGCAAGTATAACT (forward primer), 

CACAGTAAGGTCTGTATCAACAGG (reverse primer). The cloned angptl4 was ligated into 

pCS2+ vector (EcoRI, BamHI) and pBluescript KS+ (BamHI, XbaI).  
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Using the human and mouse ANGPTL4 cDNA clones from imaGenes, different constructs 

were cloned for the experiments performed in this thesis (Table 4). 

 

Table 4| ANGPTL4 constructs cloned for this thesis. AP, alkaline phosphatase; NT, N-terminal domain of 
ANGPTL4; CT, C-terminal domain of ANGPTL4; SP, signal peptide for secretion; Prot.Ax2, two times Protein 
A-tag; TEV, cleavage site for protease from Tobacco Etch Virus; Str., Strep-tag; HRP, horseradish 
peroxidase; myc, myc-tag; h, human; m, mouse.  

Construct Insert Vector Cloning Sites 

hANGPTL4-AP Full length hANGPTL4 pCDNA3 EcoRI, BglII 

hANGPTL4-AP (NT) N-terminal part of hANGPTL4 pCDNA3 EcoRI, BglII 

SP-Prot.Ax2-TEV-Str.-HRP-
hANGPTL4 

Full length hANGPTL4 pCS2+ BspEI, XbaI 

SP-Prot.Ax2-TEV-Str.-HRP-
hANGPTL4 (NT) 

N-terminal part of hANGPTL4 pCS2+
 BspEI, XbaI 

SP-Prot.Ax2-TEV-Str.-HRP-
hANGPTL4 (CT) 

C-terminal part of hANGPTL4 pCS2+
 BspEI, XbaI 

SP-Prot.Ax2-TEV-Str.-HRP-
mAngptl4 

Full length mAngptl4 pCS2+ BspEI, XbaI 

SP-Prot.Ax2-TEV-Str.-HRP-
mAngptl4 (NT) 

N-terminal part of mAngptl4 pCS2+ BspEI, XbaI 

SP-Prot.Ax2-TEV-Str.-HRP-
mAngptl4 (CT) 

C-terminal part of mAngptl4 pCS2+ BspEI, XbaI 

myc-mAngptl4 Full length mAngptl4 pCS2+
 BglII, XhoI 

myc-mAngptl4 (NT) N-terminal part of mAngptl4 pCS2+ BglII, XhoI 

myc-mAngptl4 (CT) C-terminal part of mAngptl4 pCS2+ BglII, XhoI 
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8.2 Molecular Biology 

General molecular biology methods, like preparation of XL1-blue competent cells, 

transformation of plasmid DNA, amplification and quantification of DNA and RNA 

samples, PCR amplification and DNA restriction digest were performed as described.293 

For isolation of plasmid DNA from bacteria, isolation of RNA from cells, and gel 

extraction of PCR fragments Kits from Qiagen were used, according to manufacturer’s 

instructions. DNA oligonucleotides were synthesized by Sigma Aldrich. DNA samples 

were sequenced by GATC Biotech. 

 
Bioinformatic tools 

Genomic sequences were obtained from the public databases NCBI (www.ncbi.nih.gov) 

and Ensembl Genome Browser (www.ensembl.org). Sequence searches and 

comparisons were performed with BLAST (www.ncbi.nlm.nih.gov/BLAST). DNA 

restriction and translation maps were analyzed with the service of DKFZ-HUSAR 

(www.genome.dkfz-heidelberg.de/husar). Real time PCR primers and corresponding UPL 

probes were designed using the Universal ProbeLibrary Assay Design Center from Roche 

(www.roche-applied-science.com/) choosing intron spanning assays. For literature 

searches PubMed was used (www.ncbi.nlm.nih.gov/pubmed).   

 
RNA isolation 

RNA from mammalian cells was isolated using the RNeasy Mini Kit (Qiagen), according to 

manufacturer’s instructions. The RNA of Xenopus embryos/explants was isolated with 

Trizol reagent (Ambion). Samples were homogenized in 1 ml Trizol, and 200 μl 

chloroform was added. Samples were vortexed for 30 sec and then centrifuged at 

13.000 rpm for 15 min and 4°C. The upper aqueous phase was transferred to a fresh 

tube, mixed 1:1 with isopropanol and precipitated at -80°C for at least 1 h, or overnight 

in the case of explants. RNA was pelleted by centrifugation at 13.000 rpm for 30 min. 

RNA pellets were washed with 70% ethanol, again centrifuged, briefly dried and 

dissolved in RNase-free H2O. RNA concentration was quantified by measuring the 

absorbance at 260 nm in a spectrophotometer. 

 

http://www.ncbi.nih.gov/
http://www.ensembl.org/
http://www.ncbi.nlm.nih.gov/BLAST
https://www.roche-applied-science.com/
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cDNA synthesis 

cDNA was synthesized from total RNA using SuperScript II reverse transcriptase. Up to 

1 μg of total RNA was mixed with 1 µl random primers (0.5 µg/µl) and 2 μl dNTPs (5 mM) 

in a total volume of 12 μl and heated to 65°C for 5 min. Samples were cooled on ice and 

2 μl First strand buffer (5x), 1 μl DTT (0.1 M) and 1 μl RNase inhibitor were added. 

Samples were mixed and 0.5 μl SuperScript II reverse transcriptase (100 U) was added. 

Reverse transcription was carried out in a PCR-cycler at 25°C for 5 min, and 42°C for 

90 min. The reaction was stopped by heat-inactivation at 70°C for 15 min. The cDNA 

samples were diluted 1:5 with RNase-free H2O and used for quantification of gene 

expression by qPCR. 

 
Quantitative RT-PCR (qPCR) 

Quantitative real-time PCR was used to examine and compare gene expression levels 

using cDNA templates. The measurements were performed with the Roche 

Lightcycler 480, using UPL mono-color hydrolysis probes. Primer sequences and UPL 

probes, which were used in this thesis are indicated in Table 5. 

For qPCR 11 μl reactions were used, containing 5.5 μl PROBES master (2x) (Roche), 0.5 µl 

primer and probes mix (11 µM of each primer, 2.2 µM UPL probe), and 5 μl cDNA 

template. For the detection of mono-color hydrolysis probes, a program, consisting of a 

pre-incubation step, 55 amplification cycles, and a cooling step, was used. The annealing 

temperature during the amplification cycles was set to 60°C (1 sec hold). All samples 

were analyzed in duplicates. Relative expression levels for marker gene analysis were 

obtained by normalizing the expression to the housekeeping gene odc (Xenopus) or 

GAPDH (human). For each gene a standard curve was generated by usage of a dilution 

series of the respective cDNA. 
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Table 5| Primer and UPL-probes used for qPCR analysis of Xenopus and human genes. Primers were 
ordered from Sigma and UPL probes from Roche.  

Target Primer sequences UPL probe 

Xenopus ANGPTL4 forward: TCTGATTTTAACTGCGCCAAA 
reverse: ATGGCCGCATGAGCTAAA 

UPL probe #88 

Xenopus brachyury forward: TTCAAGGAGCTCACCAATGA 
reverse: CGACACGCTCACCTTTAGAA 

UPL probe #97 

Xenopus chordin forward: AGGAGCCCCTCCAATCTAAG 
reverse: GATGCCATGAATCCTCCAGA 

UPL probe #31 

Xenopus gsc forward: GAAACCAAGTACCCAGACGTG 
reverse: CCTCCACTTTGCTCTTCGAT 

UPL probe #126 

Xenopus myf5 forward: AGCTGCTCAGATGGCATGA 
reverse: AGCTGCTGTTCCTTCCAGAC 

UPL probe #66 

Xenopus myoD forward: GGTCCAACTGCTCCGATG 
reverse: CTGCTGTCGTAGCTGTTCCTT 

UPL probe #1 

Xenopus noggin forward: TGGGGAGTTGGATCTCCTT 
reverse: TTTGATTTCTGCTGGCATTG 

UPL probe #29 

Xenopus odc forward: TTTGGTGCCACCCTTAAAAC 
reverse: CCACTGCCAACATGGAAAC 

UPL probe #50 

Xenopus siamois forward: TTGACCCCCTAGTCAACAGC 
reverse: ACCAGCGGCCTCTTACATT 

UPL probe #101 

Xenopus Xnot2 forward: ACAACAGCAGCCAATGAGG 
reverse: GGCAATGGGAGTAGGGTAAAC 

UPL probe #96 

Xenopus Xnr3 forward: CCAAAGCTTCATCGCTAAAAG 
reverse: AAAAGAAGGGAGGCAAATACG 

UPL probe #102 

Human ANGPTL4 forward: GTTGACCCGGCTCACAAT 
reverse: TGGCGCCTCTGAATTACTG 

UPL probe #75 

Human AXIN2 forward: CCACACCCTTCTCCAATCC 
reverse: TGCCAGTTTCTTTGGCTCTT 

 

UPL probe #36 

Human GAPDH forward: GCATCCTGGGCTACACTGAG 
reverse: AGGTGGAGGAGTGGGTGTC 

UPL probe #82 
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8.3 Cell culture and transfection 

 
Cell lines and culture condition 

HEK293T and HepG2 cell lines were maintained in DMEM, 10% FCS, 

1% penicillin/streptomycin (10.000 U/ml), and 1% L-glutamine (200 mM) at 37°C in a 

humidified atmosphere with 10% CO2. H1703 and H1299 cell lines were grown in RPMI, 

10% FCS, 1% penicillin/streptomycin (50 µg/ml), 1% L-glutamine (200 mM) and 

1% sodium pyruvate (11 mg/ml) at 37°C in a humidified atmosphere with 5% CO2.  

 
Preparation of the WNT3A conditioned medium 

WNT3A conditioned medium was produced from mouse L-cells stably transfected with 

mouse WNT3A (ATCC, CRL-2647) and the control conditioned medium was received 

from non-transfected L-cells (ATCC, CRL-2648).294 To obtain conditioned medium, cells 

were split 1:10 and grown for two to three days until confluence. Cells were 

supplemented with fresh medium and 2 days later conditioned medium was harvested. 

The medium was centrifuged at 2500 rpm for 5 min at 4°C, to remove residual cells, and 

stored in glass bottles at 4°C.  

 
Preparation of ANGPTL4, R-spondin and DKK conditioned medium 

HEK293T cells were seeded in 15 cm-dishes one day before transfection that they 

reached 80% confluence at the following day. For transfection 10 µg of the respective 

Plasmid-DNA was used. The cells were transfected using X-treme Gene9 (Roche) 

transfection reagent according to manufacturer’s instructions. On day after transfection 

medium was changed and after 48 h - 72 h medium was harvested. The conditioned 

medium was centrifuged at 2500 rpm for 5 min and 4°C. The medium was stored in glass 

bottles at 4°C. In total 3 harvests of conditioned medium were collected.  

  
Transfection of DNA 

For DNA transfection, cells were seeded one day before. Transfection of DNA was 

carried out using X-treme Gene9 (Roche) according to the manufacture’s instruction. 

The cells were harvested for analysis after one to three days. 

For cell surface binding assays, HEK293T cells were seeded one day before transfection 

on Poly-L-Lysine-treated 24-well plates, that they reached 50% confluence at the day of 
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transfection. For immunofluorescence, cells were seeded one day before transfection on 

glass coverslips in 24-well plates. On day of transfection cells reached 60-70% 

confluence.  

 
Transfection of siRNA 

Cells were transfected with siRNA using Dharmafect (Dharmacon) transfection reagent 

according to manufacturers’ instruction. In general, cells were cultured for two to three 

days for RNAi effect to occur. 

 
Luciferase reporter assay  

Luciferase assays were carried out in 96-well plates in triplicates. Cells were transfected 

with different constructs, including Firefly (TOPFlash reporter plasmid, which contains 

TCF/LEF binding sites in the promoter driving the expression of a Firefly luciferase 

construct) and Renilla luciferases. For the transfection of one 96-well the following DNA 

concentrations were used: 10 ng TOPFlash, 5 ng pTK-Renilla, 10 ng mWnt1, 2 ng mFzd8, 

12 ng hLRP6, 0.2 ng Xenopus β-catenin, 40 ng hDVL. pCS2+ DNA was used to adjust total 

DNA amount to 100 ng per well of a 96-well plate.  

For monitoring TGFβ, BMP and FGF signaling different luciferase reporters were used 

(Table 6). 

Table 6| Luciferase reporter constructs used to monitor TGFβ, BMP and FGF signaling. 

Signaling pathway Luciferase reporter 
construct 

Concentration 
per well 

Reference 

TGFβ/SMAD2 signaling ARE-luc reporter, FAST1 10 ng, 1 ng 295
 

BMP/SMAD1 signaling BREx4-luc reporter 10 ng 296
 

FGF signaling Gal-Elk/Gal-luc 2 ng / 10 ng 297,298 

 

After 24 to 48 hours of transfection, cells were lysed in 50 μl passive lysis buffer (1x, 

Promega) for 15 min at RT with continuous shaking. 15 µl of the lysates was transferred 

to 96-well white Microtiter Plates (Thermo Electron Corporation). The dual Luciferase 

Assay Kit (Promega) was used to measure Firefly and Renilla luciferase activities using a 

Fluoroskan Ascent FL luminometer (Labsystems) according to manufacturer’s 

instruction. The activity of Firefly luciferase was normalized to Renilla luciferase activity.  
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8.4 Xenopus methods 

In vitro fertilization, culturing of embryos, staging and microinjection of X. laevis and 

X. tropicalis embryos were generally carried out as described.299-302 Morpholinos were 

ordered from Gene Tools. 

 
Priming, fertilization and microinjection  

X. laevis females were injected with 600 U of human chorionic gonadotropin (HCG, 

Sigma, Aska) to induce ovulation. X. tropicalis females were pre-primed with 10 U of 

HCG in the evening before the experiment. On the next morning, females were injected 

with 200 U of HCG. About 4 h later females started laying eggs, which were in vitro 

fertilized by mixing them with a piece of testis minced in 1x Ringer’s solution. After 

3 min, eggs were covered with 0.1x Barth solution to promote sperm activation. After 

20-25 min, embryos were de-jellied in 2% cysteine in ddH2O, pH 7.6. Embryos were 

washed three times in 0.1x Barth solution followed by 2 washes and cultivation in 1/9x 

Modified Ringer. Microinjections were performed in 1% agarose (dissolved in 1/9x 

Modified Ringer) dishes containing 1/9x Modified Ringer and 2% Ficoll 400, using 

calibrated glass capillary needles. Embryos were injected at 1- to 8-cell stage with a total 

volume of 5 to 10 nl per embryo. After injection embryos were cultured in 1/18x 

Modified Ringer in plastic dishes at temperatures between 18°C and 25°C. 

 
Morpholino injections  

Morpholinos were designed according to the general guidelines suggested by Gene 

Tools, LLC. All obtained Mos were dissolved in RNase-free H2O to a final concentration of 

20 µg/µl and stored at RT. Mos, which were used in this thesis are indicated in Table 7. 

Before injection, Mos were heated up to 70°C for 3 min, chilled on ice for 5 min and then 

kept at RT during injection.  
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Table 7| Morpholinos with their respective sequences used in this thesis. Morpholinos were ordered 
from Gene Tools and concentration was adjusted to 10 µg/µl in RNase-free H2O. 

Gene Morpholino sequence Target site Reference 

LGR4 Mo1 CAACAGCTTGCACGGTCCGACACCT 5'UTR 169
 

LGR4 Mo2 CACAACCTGCACTTTATTTGGCCGC 5'UTR 169
 

LGR4 Mo3 GCCATACTTACAGCGAGTGGGTGAA splice site 169
 

LGR5 Mo1 AGGTGTCCATGGTGCCGATCAGATC ATG 169
 

LGR5 Mo2 CGCTGCTCTAATGGTGCAGGCTAAA 5'UTR 169
 

LGR5 Mo3 GCTTGAAAGGTCCTAGGGAGAAAAG splice site 169
 

RSPO3 Mo ATGCAATTGCGACTGCTTTCTCTGT ATG 86
 

RAB8B Mo1 GGTAGTCGTAAGTCTTCGCCATCTT ATG 197
 

RAB8B Mo2 AAGTCTTCGCCATCTTTAGTCCTCC ATG 197
 

LRP6 Mo CCCCGGCTTCTCCGCTCCGACCCCT 5’UTR 303
 

ANGPTL4 Mo1 TTTATCTGACCTGAAAGGTGTTTGG splice site - 

ANGPTL4 Mo2 TGTCGGCCACTCACTTGAAACAATA splice site - 

 
 

Explants 

Explants were generally performed as described.304 In brief, excision of explants was 

performed in dishes covered with a layer of 1% agarose (dissolved in 0.5x Barth) and 

0.5x Barth solution. The vitelline membrane of embryos was removed and explants were 

cut using two watchman forceps (Dumont number 5). Explants were cultured in agarose-

coated dishes in 0.5x Barth until the desired stage. 

 
Luciferase reporter assay in Xenopus embryos 

For Wnt reporter assays in Xenopus embryos 80 pg TOPFlash DNA, containing three 

copies of the TCF-binding site, together with 25 pg pRLTK (Renilla) DNA for 

normalization, was injected into Xenopus embryos together with Mos and mRNAs. At 

the desired stage, embryos were collected and lysed in 1x passive lysis buffer (6.7 µl lysis 

buffer/embryo for X. tropicalis and 15 µl lysis buffer/embryo for X. laevis). Lysates were 

vortexed 10 min and centrifuged at 13.000 rpm for 10 min at 4°C to remove yolk. Firefly 

and Renilla luciferase reporter activity was measured in triplicates using the dual 
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luciferase assay system (Promega) and a Fluoroskan Ascent FL luminometer 

(Labsystems). The activity of Firefly luciferase was normalized to Renilla luciferase 

activity. 

 
Preparation of mRNA for embryo injections  

For mRNA synthesis linearized DNA template was used. The synthesis was performed 

using the MEGAscript in vitro transcription kits from Ambion. RNA cap structure analog 

was added to increase stability and translation efficiency of the mRNA. Since free cap 

analog is a potent translation inhibitor and toxic to cells, mRNA was purified after 

synthesis.  

 
Linearization of DNA template  

Plasmid DNA (5 µg) was linearized by restriction digest for 2 h at 37°C. After linearization 

the DNA was purified by phenol-chloroform extraction. The upper phase (100 µl) was 

precipitated with 200 µl ethanol (100%), 10 µl NaOAc (3 M) and 2 µl glycogen (4 mg/ml) 

at -80°C for at least 1 h. Precipitate was pelleted at 13.000 rpm for 20 min, washed with 

70% ethanol, dried and resuspended in 10 µl ddH2O. 

 
Synthesis of mRNA 

For mRNA synthesis 1 µg of linearized DNA was used for a 20 µl reaction: 

2 µl  10x buffer (Ambion MEGAscript kit)   

2 µl  ATP solution (75 mM for T3/T7, 50 mM for SP6)   

 2 µl   CTP solution (75 mM for T3/T7, 50 mM for SP6) 

  2 µl   UTP solution (75 mM for T3/T7, 50 mM for SP6) 

 0.4 µl   GTP solution (75 mM for T3/T7, 50 mM for SP6) 

 3.75 µl  RNA cap structure analog (40 mM) 

 2 µl  T7 / T3 / SP6 RNA polymerase (Ambion MEGAscript kit) 

 2 µl  DNA template (1 µg) 

 3.85 µl  RNase-free H2O (Qiagen)      

 20 µl 

 

Samples were incubated at 37°C for 2 h, and subsequently treated with 1 μl DNase I 

(RNase free, Roche) at 37°C for 15 min. After the synthesis 10 volume-% of EDTA (0.5 M) 

was added. 
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Purification of RNA transcript  

For the purification of the synthesized mRNA self-made columns were used. Tips (200 µl) 

were filled with glass wool, and 300 µl G50-sephadex beads and 100 µl C25-sephadex 

beads in G+E buffer were added. Columns were washed two times with 300 µl G+E 

buffer at 1500 rpm and 4°C. The mRNA was applied to the columns and centrifuged for 

2 min at 1500 rpm and 4°C. Concentration was determined photometrically and quality 

of the mRNA was analyzed on an agarose gel.  

 
DIG-labeled RNA probes for in situ hybridization 

Synthesis of DIG-labeled RNA probes was performed using linearized template DNA, RNA 

polymerase from the in vitro transcription kit from Ambion (Ambion MEGAscript Kit), 

and DIG-labeled dNTPs. Linearization of Plasmid-DNA and purification was conducted as 

described before for mRNA synthesis.  

For a 20 µl reaction volume 1 µg of linearized template DNA was mixed with the 

following components: 

2 µl  10x buffer (Ambion MEGAscript kit)  

4 µl   DIG-labeled dNTPs (Roche) 

2 µl  T7 / T3 / SP6 RNA polymerase (Ambion MEGAscript kit) 

3 µl  DNA template (1 µg) 

             9 µl  RNase-free H2O (Qiagen)      

          20 µl 

 

DIG-labeled RNA probes were synthesized for 2 h at 37°C. After addition of 1 µl DNase I 

(Ambion MEGAscript kit) for 15 min at 37°C the reaction was stopped by adding 10 

volume-% of EDTA (0.5 M). The purification was performed as described for the mRNA 

transcript but only G50-sephadex beads were used. The concentration was determined 

photometrically and quality of the DIG-labeled RNA probe was analyzed on an agarose 

gel.   
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Lineage tracing in Xenopus embryos 

For lineage tracing experiments in Xenopus embryos, lacZ mRNA (200 pg per half of the 

embryo) was unilaterally co-injected and β-galactosidase staining was performed as 

described,302 using Rose-Gal substrate. After staining of the embryos the protocol for in 

situ hybridization was followed. 

 
Whole mount in situ hybridization (WMISH) 

WMISH of Xenopus embryos was carried out as described in the following.  

Preparation of embryos (Day 0) 

Embryos are collected at the desired stage in 5 ml glass vials and fixed in freshly 

prepared MEMFA (1x MEM, 3.7% formaldehyde, in DEPC-H2O) at RT, for 1 h. After 

fixation embryos were dehydrated using different dilutions of methanol in DEPC-H2O 

(25%, 50%, 75% and four times 100%) for 5 min, each on a roller. Dehydrated embryos 

were stored in 100% methanol at -20°C until hybridization. 

Hybridization (Day 1) 

Washes and incubations were preformed in 3 ml for 5 min, if not stated otherwise. Fixed 

embryos were rehydrated through a reverse series of methanol in DEPC-H2O (100%, 

75%, 50%, 25%), and then washed four times with PTW buffer. Embryos were treated 

with proteinase K (10 µg/ml in PTW) to increase the permeability of the tissue for 

hybridization probes and antibodies. Embryos of all stages were treated with proteinase 

K for 7 min. Vials were not shaken or rolled during the incubation. To stop the 

proteinase K digest, embryos were washed three times with PTW, followed by two 

washes in 0.1 M triethanolamine. To neutralize positive charges, which would otherwise 

bind nucleic acids by ionic bonding, resulting in high background staining, acetic 

anhydride treatment was included. Embryos were incubated in 3 ml triethanolamine 

with 7.5 µl acetic anhydride for 5 min on a roller. Additional 7.5 µl of acetic anhydride 

was added and embryos were rolled again for 5 min. Embryos were washed three times 

in PTW for 5 min. Embryos were re-fixed for 20 min in freshly prepared 4% 

formaldehyde in PTW. Embryos were rinsed five times in PTW. For pre-hybridization, all 

but 1 ml of PTW was removed and 250 µl hybridization buffer was added. After embryos 

have settled, the buffer was replaced by 500 µl hybridization buffer. Again embryos 
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were allowed to settle, before hybridization mix was replaced. Embryos were incubated 

in hybridization buffer for 30 min at 65°C with gentle shaking in a water bath. 

Hybridization buffer was replaced and embryos were pre-hybridized for 6 h with gentle 

shaking in a water bath. At this point, embryos were either processed directly or stored 

at -20°C. 

Pre-hybridized embryos were incubated at 65°C in a water bath for at least 10 min. DIG-

labeled RNA probes were diluted in hybridization buffer to a concentration of 200-

750 ng/ml for angptl4, myf5, muscle actin, collagen and chordin. The RNA probes were 

denatured by heating up for 3 min at 95°C. Then probes were immediately cooled down 

on ice for 5 min and afterwards heated to 70°C for 10 min. The hybridization buffer of 

the embryos was replaced by 500 µl of the respective probe. Hybridization was carried 

out over night at 60°C in a water bath with gentle rocking. Probe dilutions were 

recovered and re-used, resulting in less background after several rounds of 

hybridization. 

Solutions for washing steps were pre-warmed at 65°C. RNA probes were replaced by 

500 µl hybridization buffer and after 10 min, 500 µl of 2x SSC was added to the embryos 

and incubated for 20 min. Embryos were washed three times 20 min in 2x SSC. Embryos 

were treated with 10 µg/ml RNase A for 30 min at 37°C. RNase was removed by washing 

of the embryos with 2x SSC for 10 min at RT, followed by two washes for 30 min in 0.2x 

SSC at 65°C. Embryos were incubated in freshly prepared MAB on a roller for two times 

15 min at RT. Embryos were washed for 15 min in 2% Boehringer Block reagent in MAB, 

followed by blocking for 1 h in 2% Boehringer Block reagent and 10% goat serum in MAB 

rolling at RT. The blocking solution was replaced by a 1:5.000 dilution of anti-

Digoxygenin-AP Fab fragments (Roche) in 2% Boehringer Blocking reagent and 10% goat 

serum in MAB. After 4 h with gentle rocking at RT, embryos were washed 2x with MAB 

for 30 min. The washing was continued over night at 4°C on a roller. On the following 

day embryos were again washed eight times 10 min at RT, following two times 5 min in 

water. 
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Color reaction 

Water was replaced with BM Purple AP substrate (Boehringer Mannheim) and staining 

was proceeded in the dark with gentle shaking. Staining was analyzed regularly. If 

staining had to be proceeded for several days, the staining solution was replaced every 

morning and evening and incubation occurred at 4°C at night. After staining reached the 

desired intensity, embryos were washed once in water for 5 min, followed by 100% 

methanol for 2-3 min and 50% methanol for 5 min, to remove unspecific background 

staining. Methanol was removed by washing again with water and embryos were stored 

in 1x MEMFA.  

 
Bleaching of Xenopus embryos 

Xenopus embryos were bleached to remove the natural pigmentation, as this might 

mask the hybridization signals. Embryos, stored in MEMFA, were washed once in 1x SSC 

for 5-10 min at RT. The washing solution was replaced by bleaching solution and the 

glass vials were rolled in the cold room (4°C) under direct light. The incubation at 4°C 

prevents the embryos from turning black during the exothermic reaction. Embryos were 

incubated until pigmentation was removed (approximately 1-2 h). Embryos were rinsed 

two times with PBS and fixed and stored in 1x MEMFA until pictures were taken. 
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8.5 Biochemical methods 

 
Membrane and cytosolic cell extraction  

The Western blots for LPR6 and β-catenin were performed using membrane and 

cytosolic extracts, respectively. Medium of cells was removed and 1 ml ice cold Hank’s 

BSS was added. Cells were scraped from plate and centrifuged at 1500 rpm and 4°C for 

5 min. Cell pellets were stored at -80°C until extraction was performed.  

The cell pellets were resuspended in 50-100 µl Saponin buffer, and incubated on ice for 

30 min. After centrifugation at 13.500 rpm and 4°C for 5 min, supernatant containing the 

cytosolic fraction was mixed with Lämmli loading buffer, boiled at 95°C for 3 min and 

stored at -20°C until Western blot analysis. 

The pellet, containing the membrane fraction, was resuspended in 50 µl NP-40 Lysis 

buffer and after 30 min incubation on ice, samples were centrifuged at 10.500 rpm and 

4°C for 3 min. The supernatant was mixed with LDS sample buffer (4x) and 10 mM DTT, 

heated up to 70°C for 10 min and samples were stored at -20°C until Western blot 

analysis.  

 
SDS-PAGE and Western blot 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting were 

performed according to standard protocols.293 The signals were detected with the 

SuperSignal® West Pico Chemiluminescent substrate (Pierce) or for weak signals with 

the Clarity Western ECL substrate (BioRad). Chemiluminescene was detected with the 

luminescent image analyzer LAS3000 (Fujifilm). 

 
AP activity assay 

For the AP-tagged constructs, produced as conditioned medium, the AP activity was 

determined. As a reference for the AP activity, a dilution series of calf intestine alkaline 

phosphatase (CIAP, 1000 U/ml) (Fermentas) was prepared in DMEM. The measurement 

was performed at 405 nm in 96-well plates using 50 µl AP substrate solution per well. 

After addition of 1 µl conditioned medium or different dilutions of CIAP, the absorption 

at 405 nm was measured. The CIAP standard curve was used to determine the AP 

activity of the different AP-tagged constructs. 
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HRP activity assay 

The HRP activity of the HRP-tagged constructs, produced as conditioned medium, was 

measured using the QuantaBlu Fluorogenic peroxidase substrate kit (Pierce). The 

measurement was performed according to manufacturer’s instructions. For one well of a 

96-well plate 100 µl substrate solution (9x QuantaBlu substrate solution, 1x QuantaBlu 

stable peroxide solution) was mixed with 1 µl of the conditioned medium containing the 

HRP-tagged protein.       

 
Tyramide signal amplification of HRP-tagged proteins 

HepG2 cells, seeded on glass cover slips, were incubated for 40 min with conditioned 

medium containing 50 U/µl of the respective HRP-tagged protein. Afterwards cells were 

washed three times with ice cold Hank’s BSS and fixed with 0.5 mM DSP in Hank’s BSS 

with 10 mM HEPES pH 7.2 for 15 min on ice and additional 30 min at RT. Fixation 

solution was removed and cells were permeabilized with 0.1% saponin in TSA buffer 

(100 mM Tris, 10 mM imidazole pH 8.8) for 15 min at RT. The TSA reaction was 

performed for 30 min in the dark in a humidified chamber using 3 µM Rhodamine- 

tyramide and 0.003% H2O2 in TSA buffer. After staining of the HRP-tagged proteins, cells 

were washed three times 10 min at RT with PBS containing 0.1% saponin. In the second 

wash step a 1:10.000 dilution of Hoechst was added to stain nuclear DNA of the cells. 

Cover slips were briefly rinsed with ddH2O before mounted with the Fluoromount-G 

(SouthernBiotech) on a glass slide (Roth).    

The treatment of cells with different endocytic inhibitors and siClathrin or siCaveolin was 

performed as described previously.169 

 
Cell surface binding assay 

For cell surface binding assays, HEK293T cells were seeded on Poly-L-Lysin treated 

plates. For this purpose Poly-L-Lysin was diluted 1:20 in ddH2O and 1 ml was added to 

each well of a 24-well plate for 1 h at RT. Afterwards plates were washed three times 

with ddH2O and UV-treated for 30 min. Plates were directly used for seeding of cells or 

stored at RT up to 6 months. One day after seeding, cells were transfected with DNA 

(200 ng/well) using X-treme Gene 9 (Roche), according to manufacturer’s instructions. 

The AP-tagged proteins were produced as conditioned medium as described in 8.2 Cell 
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culture methods, preparation of ANGPTL4 conditioned medium. Cell surface binding 

assay was performed like described before.78  

 
ELISA based binding assay 

For the ELISA-based binding assay, white 96-well plates with high binding affinity 

(Greiner) were used. Plates were coated with 2 µg/ml streptavidin in bicarbonate buffer 

over night at 4°C. On following day, plate was washed three times with TBS-T and 

blocked with 5% BSA in TBS-T for 1 h at RT. After four additional washing steps with TBS-

T, Strep-tagged ANGPTL4 / RSPO3 / DKK3 conditioned medium was added in 5% BSA in 

TBS-T. Binding was performed over night at 4°C and plate was washed three times with 

150 µl and four times with 300 µl TBS-T on next day. Soluble AP-tagged SDC4 was added 

in different dilutions in 5% BSA in TBS-T and 1 mM MgCl2 for 2 h at RT with gentle 

shaking. Unbound SDC4 was removed by washing three times with 150 µl and four times 

with 300 µl TBS-T. For the detection of bound AP-tagged SDC4, the SEAP reporter gene 

assay kit (Roche) was used. For each well 50 µl substrate solution (50 µl SCPD, 950 µl 

substrate buffer) was added, incubated for 10 min and chemiluminescence was 

measured.  

 
Co-immunoprecipitation for identification of ANGPTL4 interaction partners 

HepG2 cells were seeded in 10x 15 cm-dishes and medium was changed after 24 h. Two 

days after seeding of cells, 15 ml of SP-Prot.Ax2-TEV-Str.-HRP-hANGPTL4 conditioned 

medium (50 U/µl) was added to the cells. After 30 min at 37°C, medium was removed 

and cells were washed three times on ice with ice cold Hank’s BSS. Cells were lysed in 

5 ml ice cold IP lysis buffer for 10 min on ice. Cell lysis was increased using a dounce 

homogenizer. Non-disrupted cells were removed by centrifugation at 13.000 rpm and 

4°C for 3 min. The supernatant was supplemented with 1 mM EDTA and EGTA to avoid 

precipitation of the proteins.  

 
1st purification step using IgG beads 

After a pre-clearing step using sephadex beads, lysates were incubated with 100 µl IgG 

beads over night with rotation at 4°C. On the following day, beads were washed three 

times with IP wash buffer 1 on ice, followed by three washes using 1x TBS and 1% Triton-

X100. To inhibit proteases, beads were washed two times with a buffer containing 1x 
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TBS, 1% Triton-X100, 1 mM PMSF, 0.5 mM EDTA, 1x Benzamidine and 2 mM 

iodacetamide (freshly prepared). After washing once again with 1x TBS and 1% Triton-

X100, beads were washed four times with TEV buffer at 4°C with rotation. To elute 

bound ANGPTL4 protein from the beads, 150 µl of TEV buffer, 1 mM β-mercaptoethanol 

and 3 µl TEV enzyme was added to the beads. Elution was performed over night at 4°C 

with rotation. 

 
2nd purification step using Streptavidin beads 

After centrifugation, new TEV buffer and 2 µl TEV enzyme was added to the beads and 

re-elution was performed 4 times. The different elutions were combined and mixed with 

20 µl Streptavidin beads (Thermo). Binding to beads was proceeded over night at 4°C 

with rotation. The next day, beads were washed three times in IP wash buffer 2. The 

elution of the protein was accomplished by addition of 2 mM Biotin in IP wash buffer 2. 

Four elutions à 30 µl were obtained and analyzed via Western blot. The first two elutions 

were combined and processed for mass spectrometric analysis by the core facility for 

mass spectrometry and proteomics at the “Zentrum für Molekulare Biologie der 

Universität Heidelberg” (ZMBH). 
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9. Abbreviations 

ANG Angiopoietin 

ANGPTL Angiopoietin-like 

AP Alkaline phosphatase 

A-P Anterior-posterior 

AP-2 Assembly protein 2 

APC Adenomatous polyposis coli  

ATF2 Activating transcription factor 2 

ATP Adenosine triphosphate 

BMP Bone morphogenetic protein 

Bp Base pairs 

BSA Bovine serum albumin 

cANGPTL4 C-terminal domain of ANGPTL4 

cDNA Complementary DNA 

CCD Coiled-coil domain 

CCV Clathrin-coated vesicle 

CE Convergent extension  

CK1 Casein kinase 1 

Co Control 

co-IP Co-Immunoprecipitation 

CRD Cysteine-rich domain  

Cys Cysteine 

DEPC Diethylpyrocarbonate 

Dgo Diego 

DKK Dickkopf 

DMEM Dulbecco’s modified Eagle’s medium 

DMSO Dimethyl sulphoxide 

DNA Deoxyribonucleic acid 

DNase Deoxyribonuclease 

dNTP Deoxynucleotide triphosphate 

DTT Dithiothreitol 

D-V Dorsal-ventral 

DVL Dishevelled 

ECD Extracellular domain  

ECM Extracellular matrix 

EDTA Ethylene diamine tetraacetate 

EGTA Ethylene glycol tetraacetate 

ELISA Enzyme-linked immunosorbent assay 

FACS Fluorescence-activated cell sorting 

FCS Fetal calf serum 

FGF Fibroblast growth factor 

flANGPTL4 Full length ANGPTL4 

FLD Fibrinogen-like domain 



9. Abbreviations 

96 
 

Fmi Flamingo 

FZD Frizzled 

GAG Glycosaminoglycan 

GEF Guanine exchange factor 

GPCR G protein-coupled receptor 

gsc Goosecoid 

GSK3 Glycogen synthase kinase 3 

GTP Guanosine triphosphate 

h Hours 

H1299 Human non-small cell lung carcinoma cell line 

H1703 Human non-small cell lung carcinoma cell line 

HA Hemagglutinin 

HCG Human chorionic gonadotropin 

HEK293T Human embryonic kidney cell 293 with SV-40 large T-antigen 

HepG2 Human hepatocellular liver carcinoma cell line 

HRP Horseradish peroxidase 

HS Heparan sulfate 

HSPG Heparan sulfate proteoglycans 

IP Immunoprecipitation 

ISH In situ hybridization 

JNK Jun-N-terminal kinase  

kDa Kilodaltons 

LDL Low density lipoprotein 

LEF Lymphoid enhancer factor 

LGR Leucine-rich repeat-containing G protein-coupled receptor  

LILRB2 Leukocyte immunoglobulin-like receptor, subfamily B, member 2 

LPL Lipoprotein lipase 

LRP Low-density lipoprotein receptor-related protein 

LRR Leucine-rich repeat 

min Minutes 

Mo Morpholino 

mRNA Messenger RNA 

MVB Multivesicular body 

myf5 Myogenic factor 5 

myoD Myogenic differentiation 1 

nANGPTL4 N-terminal domain of ANGPTL4 

PAGE Poly acrylamide gel electrophoresis 

PBS Phosphate buffered saline 

PCP Planar cell polarity 

PCR Polymerase chain reaction 

Pk Prickle 

PPAR Peroxisome proliferator-activated receptor 

Pro Proline 

PRR Prorenin receptor 
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qPCR Quantitative PCR 

RNA Ribonucleic Acid 

RNAi RNA interference  

RNF43 Ring finger protein 43 

rpm Revolutions per minute 

RSPO R(oof plate-specific)-spondin 

RT Room temperature 

RT-PCR Real-time polymerase chain reaction 

SD Standard deviation 

SDC Syndecan 

SDS Sodium dodecylsulfate 

Sec Seconds 

Ser Serine 

siRNA Small interfering RNA 

St Stage 

Stbm Strabismus 

TAG Triacylglycerols 

TCF T-cell factor 

TEMED Tetramethyl ethylene diamine 

TGF Transforming growth factor  

Thr Threonine 

UPL Universal probe library 

wt Wildtype 

Xbra Xenopus brachyury 

Xnot Xenopus notochord  

Xnr Xenopus nodal related protein 

ZNRF3 E3 ubiquitin ligase zinc and ring finger 3 

 

 

For simplicity the human nomenclature was used for all genes and proteins within this 

thesis. Appropriate nomenclature is indicated below with LGR as an example. 

Species Gene symbol Protein symbol 

Human LGR LGR 

Xenopus lgr Lgr 

Mouse Lgr Lgr 
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