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ABSTRACT 

 

Chronic myeloid leukemia (CML) was one of the first malignancies suggested to 

be driven by leukemic stem cells (LSCs) and currently serves as a disease model for 

stem cell based malignancies. The constitutively active BCR-ABL tyrosine kinase, 

created by a reciprocal translocation between chromosomes 22 and 9, drives 

progression of this leukemia and is thus an ideal target for drug design. Research 

has led to the development of the tyrosine kinase inhibitor (TKI) Imatinib, which 

selectively and potently inhibits the BCR-ABL kinase, leading to a rapid hematologic 

and cytogenetic response in most CML patients. However, following years of 

treatment with Imatinib, remaining residual LSCs can lead to a relapse of the disease 

on cessation of treatment, highlighting the need for a curative approach to eliminate 

both the bulk of leukemia as well as the LSCs.  

Quiescence has been proposed as a potential mechanism through which LSCs 

remain resistant to TKI treatment, and therefore pushing these cells into cycle may 

make them susceptible to TKI, leading to their eradication. 

Recently, our group has demonstrated that the cytokine Interferon-alpha (IFNα) 

can very efficiently drive quiescent hematopoietic stem cells (HSCs) into an active 

cell cycle. Here, we have investigated whether IFNα is also capable of activating 

quiescent BCR-ABL expressing LSCs. Furthermore, we have explored whether 

IFNα-induced activation makes LSCs more susceptible to Imatinib treatment and 

investigated the potential beneficial effect of a combined treatment with IFNα and 

Imatinib. To address these questions we used CML mouse models in which BCR-

ABL expression is mainly targeted to the HSC population.  

Here we could demonstrate that upon IFNα exposure, quiescent LSCs enter an 

active cell cycle and proliferate similarly as HSCs. Furthermore, we have tested 

several treatment schemes for a combined treatment in our mouse models. 

Interestingly, the continuous administration of Imatinib together with pulsed 

exposures to IFNα led to a more significant reduction of the leukemic burden when 

compared to either of the treatments alone.  

Furthermore, we also investigated the influence of the leukemic cells on the 

behavior of wt cells in our CML mouse models. Here, we could show that leukemic 

cells induced an alteration of the wt cell population distributions in a way that mimic 

the leukemic compartment. This effect may be mediated by a leukemia-induced 

modification of the cytokine repertoire that we have also characterized in the 

leukemic BM. In addition, by examining the reconstitution ability of the wt cells that 

coexisted with the leukemic cells, we could show that exposure to a leukemic 

environment impairs the function of wt progenitors and HSCs. 

Taken together, our data indicate that a combined strategy of continuous TKI 

administration together with pulsed activation of LSCs through IFNα exposure is 

more advantageous than TKI alone and may thus avoid relapse of the disease by 

eradicating LSCs. Moreover, our data suggest that the presence of leukemic cells is 

detrimental for the wt cells, impairing the function of wt progenitors and HSCs. 
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ZUSAMMENFASSUNG 

 

Die chronische myeloische Leukämie (CML) war eine der ersten Erkrankungen, 
bei denen leukämischen Stammzellen (LSCs) als Krankheitsauslöser vermutet 
wurden und dient daher heutzutage als Modell für Stammzell-basierte Krankheiten. 
Die konstitutiv aktive BCR-ABL Tyrosinkinase, die durch eine reziproke Translokation 
zwischen Chromosom 22 und 9 erzeugt wird, ist der Auslöser der CML und bietet 
daher einen idealen therapeutischen Angriffspunkt für rationales Wirkstoffdesign. 
Fortschritte in der Wirkstoffforschung haben zu der Entwicklung des Tyrosinkinase-
Inhibitoren (TKI) Imatinib beigetragen, welches potent und selektiv die Kinase 
Funktion von BCR-ABL inhibiert und somit zu einer schnellen hematologischen und 
zytogenetischen Antwort in der Mehrheit der CML Patienten führt. Allerdings 
verbleiben auch nach jahrelanger Imatinib Behandlung restliche LSCs, welche die 
Ursache für einen leukämischen Rückfall nach Beendigung der Behandlung sein 
können. Dies betont die Notwendigkeit für einen heilenden Therapieansatz, welcher 
sowohl die Mehrheit der leukämischen Zellen als auch die LSCs eliminiert. 

Quieszenz wurde als möglicher Mechanismus vorgeschlagen, durch welchen 
LSCs resistent gegenüber TKI Behandlung bleiben. Daher könnte eine erzwungene 
Zellzyklusaktivierung diese ruhenden LSCs für eine TKI Behandlung sensibilisieren 
was zu ihrer Vernichtung führt. 

Vor kurzem konnte unsere Gruppe zeigen, dass das Zytokin Interferon-Alpha 
(IFNα) ruhende hämatopoetische Stammzellen (HSCs) sehr effizient in den aktiven 
Zellzyklus treibt. In dieser Arbeit wurde untersucht ob IFNα auch ruhende BCR-ABL 
exprimierende LSCs aktivieren kann und ob diese IFNα-vermittelte Aktivierung LSCs 
empfänglich für eine Imatinib Behandlung macht. Zusätzlich wurde die potenziell 
nützliche Wirkung einer Kombinationsbehandlung von IFNα und Imatinib getestet. 
Für diese Fragestellungen wurden CML Mausmodelle verwendet, in welchen BCR-
ABL Expression hauptsächlich auf die HSC Population beschränkt ist. Wir konnten 
zeigen, dass ruhende LSCs, ähnlich wie HSCs, nach IFNα-Behandlung in den 
Zellzyklus eintraten und proliferierten. Außerdem wurden mit Hilfe unserer 
Mausmodelle mehrere Behandlungsstrategien für eine Kombinationsbehandlung 
getestet. Hierbei zeigte eine kontinuierliche Imatinib Behandlung in Kombination mit 
einer wiederkehrenden IFNα Behandlung eine signifikante Reduktion der 
leukämischen Last im Vergleich zu den jeweiligen Einzelbehandlungen. 

Des Weiteren haben wir den Einfluss von leukämischen Zellen auf das Verhalten 
von wildtyp (wt) Zellen in unseren CML Mausmodellen untersucht. In diesem 
Zusammenhang konnten wir zeigen, dass leukämische Zellen eine Veränderung in 
der Zusammensetzung der wt Zellpopulationen hervorrufen, sodass diese die 
Verteilung der leukämischen Zellen imitiert. Dieser Effekt könnte durch eine durch 
die Leukämie ausgelösten Änderung des Zytokin-Milieus herbeigeführt werden, 
welches wir im leukämischen Knochenmark charakterisiert haben. Außerdem 
konnten wir mit Hilfe von Rekonstitutionsexperimenten mit wt Zellen, welche mit 
leukämischen Zellen koexistierten, zeigen, dass eine leukämische Umgebung die 
Funktion von wt Vorläufern und HSCs beeinträchtigen kann. 

Zusammenfassend zeigen unsere Daten, dass eine Kombinationsbehandlung 
bestehend aus kontinuierlicher TKI Behandlung und einer wiederkehrenden 
Aktivierung von LSCs durch IFNα Behandlung vorteilhafter als eine einfache TKI 
Behandlung ist und daher den Rückfall der Krankheit durch das Beseitigen der LSCs 
verhindern könnte. Außerdem deuten unsere Daten darauf hin, dass die 
Anwesenheit von leukämischen Zellen einen schädlichen Einfluss auf wt Zellen hat, 
indem diese die Funktion von wt Vorläufern und HSCs beeinträchtigen. 
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1. INTRODUCTION 

 

1.1 Hematopoietic stem cells 

1.1.1 Discovery of hematopoietic stem cells  

The hematopoietic stem cell (HSC) research field was initiated in the 1950s with 

the demonstration that lethally irradiated mice could be rescued from death by 

transplantation of bone marrow (BM) from healthy mice, which was able to reinitiate 

blood cell production (Ford et al., 1956; Nowell et al., 1956). The concept of a 

specific population of cells being able to generate diverse hematopoietic cell types 

was first demonstrated in the 1960s, with the observation that colonies formed in the 

spleen of transplanted mice arose from a single cell and contained different mature 

cell lineages (Becker et al., 1963; Till and Mc, 1961; Wu et al., 1967). The existence 

of HSCs was then finally proved in 1977 with the demonstration that a particular BM 

cell was able to give rise to all blood cell types of both the myeloid and lymphoid 

lineages (Abramson et al., 1977). 

The HSCs were the first adult stem cells to be prospectively isolated (Spangrude 

et al., 1988) and to become commonly used for clinical applications such as the BM 

transplantation for the treatment of leukemia and autoimmune disorders (Weissman, 

2000). Nowadays, HSCs are one of the most extensively studied and characterized 

stem cells and serve as model for other adult stem cells. 

1.1.2 Function of hematopoietic stem cells  

Hematopoietic stem cells (HSCs) are at the apex of the hierarchically organized 

hematopoietic system and are responsible for the life-long maintenance of blood 

production (Kondo et al., 2003). In the classical model of hematopoietic lineage 

commitment, HSCs give rise to multipotent progenitors (MPPs), which have the 

ability to rapidly amplify their numbers and differentiate into lineage-committed 

progenitors (Morrison et al., 1997a; Morrison and Weissman, 1994). In turn, these 

committed progenitors, which include the common lymphoid progenitors (CLP), 

common myeloid progenitors (CMP), granulocyte macrophage progenitors (GMP) 

and megakaryocyte-erythrocyte progenitors (MEP), proliferate extensively and 

differentiate into mature blood cells (Fig. 1.1) (Akashi et al., 2000; Kondo et al., 

1997).  
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The simplistic view of the classical model has been challenged by several studies 

such as the discovery of the lymphoid-primed progenitor cells (LMPPs), which are 

capable of giving rise to B and T cells as well as granulocytes and macrophages, but 

not erythrocytes or platelets (Adolfsson et al., 2005). Moreover, recent studies have 

demonstrated the existence of heterogeneity within the HSC pool in terms of lineage-

biased differentiation potentials (Benz et al., 2012; Dykstra et al., 2007; Ema et al., 

2014; Gekas and Graf, 2013; Haas et al., 2015; Morita et al., 2010; Sanjuan-Pla et 

al., 2013). Furthermore, it has recently been suggested that HSCs are able to directly 

give rise to several lineage-committed progenitors within one cell division (Yamamoto 

et al., 2013). Thus, whereas it was initially believed that HSCs would give rise to 

MPPs, which in turn would branch into either myeloid or lymphoid common 

progenitors, increasing evidence demonstrates the existence of additional alternative 

pathways down the hematopoietic tree.  

HSCs are not only able to generate any cell of the hematopoietic system but also 

have the ability to self-renew by dividing asymmetrically and thus ensuring that one 

daughter cell remains an HSC (Kondo et al., 2003). They reside in the trabecular 

bone area of the bone marrow (BM) of adults and are a rare population of cells, 

comprising approximately 0.001-0.01% of total BM cells in mice (Oguro et al., 2013) 

and 0.01-0.2% of total BM mononuclear cells in humans (Pang et al., 2011). 

 

Figure 1.1: The Hematopoietic Hierarchy 

The hematopoietic stem cells (HSCs) reside at the top of the hierarchically organized hematopoietic 
system and have long-term self-renewal capacity as well as the potential to give rise to any blood 
lineage. During the differentiation process, progenitor cells gradually loose the self-renewal and multi-
lineage reconstitution capacity. Whereas multipotent progenitors (MPPs) and lymphoid-primed 
progenitor cells (LMPPs) have the potential to give rise to cells from both the myeloid and lymphoid 
branch, the megakaryocyte-erythrocyte progenitors (MEP), granulocyte-macrophage progenitors (GMP) 
and common lymphoid progenitors (CLPs) are already restricted to a specific lineage. More recently, it 
has been shown that HSCs have also the potential to bypass the stepwise differentiation process and 
within one cell division give rise to committed progenitors. (Figure adapted from (Cedar and Bergman, 
2011))  
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1.1.3 Hematopoietic stem cell markers 

The isolation of very pure fractions of HSCs has been made possible through the 

combination of functional assays with fluorescence activated cell sorting (FACS). The 

golden standard to assess HSC function consists in the ability of the cell to 

reconstitute the hematopoietic system of lethally irradiated mouse recipients. Since 

the irradiation eradicates the majority of hematopoietic cells, including the HSCs, the 

mouse would not be able to survive. The transplanted HSCs occupy the vacated 

niche space and are not only able to generate all mature blood cell types but also to 

self-renew and therefore maintain blood production through the entire life span of the 

recipient. Furthermore, they carry the ability to sustain the hematopoietic system over 

serial transplantations. In contrast, progenitors are only able to reconstitute the 

hematopoietic system for a limited span of time and are not able to be serially 

transplanted due to the lack of long-term self-renewal ability (reviewed in (Weissman 

and Shizuru, 2008)). 

Through the combination of FACS and transplantation assays, HSCs began to be 

identified by cell surface markers. An enriched population for murine HSCs was 

found within the lineage- (negative for a combination of mature blood cell markers), 

Sca-1+ and c-Kit+ (LSK) cells (Uchida et al., 1994). The purity of the HSC population 

was further refined with the addition of more cell surface markers. The addition of 

CD34, as an exclusion marker, was shown to increase the purity of HSCs in the LSK 

compartment to more than 1 in 5 (Osawa et al., 1996). More recently, the inclusion of 

the CD150 and CD48 markers from the signaling lymphocytic activation molecule 

(SLAM) family led to a further refined purity. The combination of all the markers 

mentioned above enable the isolation of a highly purified population 

(LSKCD150+CD48-CD34-) where approximately 1 in 2 cells are long-term 

repopulating HSCs as opposed to 1 in 105 in the total BM (Kiel et al., 2005; Wilson et 

al., 2009). Alternative positive HSC markers, such as EPCR and ESAM, have also 

been described, however they seem to be redundant with the previously described 

marker combination and do not further increase purity (Balazs et al., 2006; Yokota et 

al., 2009). 

1.1.4 Quiescent hematopoietic stem cells 

During homeostasis, more than 70% of HSCs in the adult BM are kept quiescent 

in the G0 state of the cell cycle (Wilson et al., 2008). Through quiescence, the 

genome integrity of HSCs is preserved by avoiding damage linked to cell replication 

(Bakker and Passegue, 2013; Pietras et al., 2011; Walter et al., 2015). The 
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remaining HSC fraction is responsible for continuously replenishing numerous 

mature blood cell types, which have an inherent limited life span. However, in order 

to meet the organism‘s needs upon hematopoietic stress conditions such as 

infection, inflammation, toxic insult and bleeding, quiescent HSCs are able to react to 

a large array of signals and enter the cell cycle and proliferate (Cheshier et al., 2007; 

Essers et al., 2009; Takizawa et al., 2011; Trumpp et al., 2010; Wilson et al., 2007; 

Yanez et al., 2009; Zhang et al., 2008).  

HSCs have the ability to sense and rapidly meet the organism demands for blood 

cell production through receptors for cytokines, chemokines and danger-associated 

molecular patterns (Takizawa et al., 2012).  

1.1.5 Hematopoietic stem cell niche 

Adult HSCs reside in specialized niche microenvironments within the BM. Many 

of the stem cell properties are modulated by the interplay between HSCs and the BM 

microenvironment. The HSC niche is composed of an extensive array of specialized 

cells that provide chemical and physical cues essential for HSC maintenance and 

function. Some of the cellular components exert their effect through cell-to-cell 

contact whereas others employ secreted agents such as cytokines and chemokines. 

Many different cell types contribute to the HSC niche including mesenchymal stem 

cells (MSCs), endothelial cells (ECs), megakaryocytes, sympathetic nerve cells, 

osteoblasts (OBs) and macrophages (Fig. 1.2) (reviewed by (Mendelson and 

Frenette, 2014; Morrison and Scadden, 2014)).  

HSCs are able to reside in a variety of places within the trabecular region of long 

bones, including the area close to the sinusoidal endothelium or near the endosteum  

(Kiel and Morrison, 2008; Wilson and Trumpp, 2006). It has been proposed that the 

HSCs more close to the endosteum are kept quiescent, whereas the remaining ones 

fulfill homeostatic functions (Grassinger et al., 2010; Kunisaki et al., 2013). However, 

the exact definition and functional relevance of the different niche subtypes is still 

under debate and further experiments and advances in the current techniques are 

needed. The visualization of HSCs in their microenvironment is hindered by technical 

issues, such as the inability to use as many fluorochromes simultaneously as flow 

cytometry and the inherent disruption of the BM architecture upon sectioning of the 

bone. 

HSC quiescence is regulated by secreted factors from the niche cells, including 

transforming growth factor beta-1 (TGF-β1), stem cell factor (SCF), thrombopoietin 

(TPO), angiopoietin 1 (ANGPT1) and platelet factor 4 (PF4 or CXCL4) (Pietras et al., 

2011). The regulators of HSC homing and positioning in the niche include the 
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chemokine stromal-derived factor 1 (SDF1α or CXCL12) and its C-X-C chemokine 

receptor type 4 (CXCR4), extracellular matrix (ECM) proteins such as fibronectin or 

hyaluronic acid, diverse selectins and adhesion molecules like vascular cell adhesion 

protein 1 (VCAM-1). The HSC proliferation and differentiation is influenced by 

cytokines like interleukin 7 (IL-7) and erythropoietin (EPO) or by cell-bound 

molecules like notch ligands (Mendelson and Frenette, 2014; Morrison and Scadden, 

2014; Schepers et al., 2015).  

In order to fulfill the organism’s requirement during infection or BM stress, the 

niche cell composition and cytokine repertoire is believed to be altered in order to 

induce a demand-adapted hematopoiesis (Takizawa et al., 2012).  

 

 

Figure 1.2: The hematopoietic stem cell niche 

The hematopoietic stem cells (HSC) reside in specialized niches in the bone marrow. The HSC niche is 
composed by a variety of cells including mesenchymal stem cells, endothelial cells, megakaryocytes, 
sympathetic nerve cells, osteoblasts and macrophages. HSC maintenance is regulated by an array of 
factors, such as SCF and CXCL12 produced by MSCs and endothelial cells. (Figure from: (Morrison 
and Scadden, 2014))  
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1.1.6 Activation of hematopoietic stem cells with interferon-alpha 

Interferon-alpha (IFNα) has been shown to be involved in a wide range of 

biological functions by regulating the transcription of more than 300 IFN-stimulated 

genes (ISGs), encoding host defense, antiviral, immunomodulatory, cell cycle, 

apoptotic, and transcription factor proteins (de Veer et al., 2001). More precisely, this 

cytokine has been primarily known for its role in resistance to viral infections, anti-

proliferative effects, and enhancement of innate and adaptive immune responses 

(Belardelli et al., 2002; Stark et al., 1998). In the course of infection, IFNα was shown 

to be produced by virally infected cells as well as stimulated innate immune cells 

such as macrophages and dendritic cells (DCs) (Fitzgerald-Bocarsly et al., 2008; 

Trinchieri, 2010). 

More recently, a new role for IFNα has been unveiled. It has been demonstrated 

that IFNα is able to push HSCs out of quiescence into active cell cycle (Essers et al., 

2009). In a matter of hours after in vivo administration of IFNα in mice, quiescent 

HSCs are efficiently induced to enter an active cell cycle and proliferate. The binding 

of IFNα to the interferon-α/β receptor (IFNAR) leads to the phosphorylation of the 

signal transducer and activator of transcription 1 (STAT1) and up-regulation of a 

panel of IFNα-inducible genes (ISGs) (Essers et al., 2009). After a few days following 

IFNα acute exposure, the HSCs return back to quiescence. A recent report has 

suggested that upon chronic IFNα exposure, the HSCs proliferate only for a limited 

time, after which the response to IFNα is blocked as a safeguard mechanism (Pietras 

et al., 2014). 

In previous studies, IFNα was demonstrated to have an anti-proliferative effect 

against many cell types in vitro (Borden et al., 2007), suggesting that IFNα signals 

are  perceived differently depending on the cell context. 

Interestingly, IFNγ has also been recently shown to induce mouse quiescent HSCs 

into an active cell cycle in the context of a bacterial infection through an IFNα 

independent signaling pathway (Baldridge et al., 2010). 
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1.2 Origins of leukemia 

 

Normal, self-renewing tissues are built in a hierarchical way, containing a 

population of stem cells responsible for the life-long maintenance of the tissue. 

Furthermore, research in recent years has suggested that different types of cancer 

show a small population of cells with stem cell properties, the so-called cancer stem 

cells (CSCs) (Cho and Clarke, 2008; Dick, 2008; Reya et al., 2001; Trumpp and 

Wiestler, 2008). Evidence for the existence of a cancer stem cell population initially 

came from the field of leukemia research, where it was shown that a subgroup of 

leukemic cells had clonogenic activity in vitro and the ability to transplant the disease 

into mice (Bonnet and Dick, 1997; Lapidot et al., 1994; Wang and Dick, 2005). 

Therefore these cells were called leukemic stem cells (LSCs). Interestingly, their cell 

surface marker phenotype was the same as HSCs. 

HSCs continuously face intrinsic and extrinsic stresses that cause DNA damage, 

which if not accurately resolved lead to mutations (Bakker and Passegue, 2013). 

Over time these mutations accumulate and can lead to malignant transformation 

(Welch et al., 2012). The transformed HSCs maintain the ability to self-renew but the 

capacity to originate the different lineages of blood cells is deregulated (Passegue et 

al., 2003). Additionally, LSCs can also arise from transformed progenitors that 

reacquire the stem cell capability for self-renewal (Eppert et al., 2011; Goardon et al., 

2011; Jamieson et al., 2004; Krivtsov et al., 2006; Wang et al., 2010). 

The LSCs are the disease-initiating cells and upon serial transplantation are able 

to propagate the leukemia, recreating the primary tumor and its heterogeneity in the 

recipient mouse. In order to support their maintenance and activity, the leukemic 

cells have the ability to remodel the BM microenvironment (Tabe and Konopleva, 

2014). 

The LSCs have been shown to resist against most current therapies. Since 

irradiation and many cytotoxic drugs can only induce cell death in proliferating cells, 

they are not able to target the largely quiescent LSCs. Furthermore, LSCs have been 

shown to be resistant not only to irradiation and chemotherapy but also to targeted 

therapies like immunotherapy and tyrosine kinase inhibitors (Guzman and Allan, 

2014). As a consequence, LSCs are believed to be responsible for the majority of 

treatment failure and relapse cases. Therefore, from a clinical perspective, the 

targeting of LSCs is of utter importance. 
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1.3 Chronic myeloid leukemia  

 

Chronic myeloid leukemia (CML) is a myelo-proliferative disease, characterized 

by uncontrolled growth of myeloid cells (Sawyers, 1999). Every year, 1-2 individuals 

per 100,000 people are diagnosed with CML, accounting for 15% of all newly 

diagnosed cases of leukemia in adults (Jemal et al., 2010). 

Although relatively rare, it is one of the best-characterized malignancies and one 

of the first shown to be driven by leukemic stem cells (LSCs). Today, it serves as a 

model disease for stem cell based malignancies.  

CML arises as a consequence of a reciprocal translocation between 

chromosomes 22 and 9 resulting in “Philadelphia chromosome” (Ph), which yields 

the BCR-ABL fusion protein (Fig. 1.3) (Goldman and Melo, 2001; Groffen et al., 

1984; Rowley, 1973).  

Figure 1.3: Philadelphia chromosome 

As a result of a reciprocal chromosomal translocation between chromosomes 9 and 22, the 
“Philadelphia chromosome” is originated, given rise to the BCR-ABL fusion protein. (Figure from: 
(Lydon, 2009)) 
 

1.3.1 Disease phases  

CML usually presents in a chronic phase (CP) but, if not treated, progresses to 

an accelerated phase (AP) and ultimately ends in a terminal phase called blast crisis 

(BC) that is clinically similar to an acute leukemia (Sawyers, 1999). The first large 

data collection of the disease development was derived from the atomic bomb 

survivors (Lange et al., 1954; Preston et al., 1994). It was observed that following a 

prolonged latent period, the majority of patients (85%) presented in the CP, however 

after a 5-year window they progressed through an AP to a BC. Although, within 5 
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years most patients usually progress to BC, this is variable between individuals, with 

some patients remaining in CP for up to 20 years and others progressing to BC in 

just a few months (Cortes, 2004). When comparing the genetic abnormalities 

between the different CML phases, a far higher significant increase in point 

mutations and chromosomal aberrations is detected in the BC (Brazma et al., 2007; 

Grossmann et al., 2011). 

1.3.2 Symptoms, signs and diagnosis 

The majority of patients are diagnosed during the CP of the disease upon routine 

physical examinations or blood tests. Around 30-50% of the newly diagnosed 

patients in the USA are asymptomatic. For the remaining CP patients, the most 

common presented symptoms include fatigue, weight loss, malaise, easy satiety and 

left upper quadrant fullness or pain. Upon medical examination, increased white 

blood cell (WBC) counts and splenomegaly are usually detected. Typically, the 

diagnosis of CML is finalized when the presence of the Ph chromosome is confirmed 

by conventional cytogenetics or fluorescent in situ hybridization (FISH) as well as the 

presence of the BCR-ABL fusion transcript by the highly sensitive reverse 

transcriptase-polymerase chain reaction (RT-PCR) (Jabbour and Kantarjian, 2014).  

1.3.3 The role of BCR-ABL as driver of chronic myeloid leukemia 

The constitutively active BCR-ABL tyrosine kinase leads to deregulation of a large 

array of signal transduction pathways, resulting in leukemic cell growth, proliferation 

and survival (Fig. 1.4) (Mandanas et al., 1993) (Deininger et al., 2000; Kharas and 

Fruman, 2005; Ren, 2005). Similar to other cancers, some of the key cell survival 

pathways being altered include PI3K/AKT/mTOR, RAS/RAF/MEK/ERK, and 

JAK/STAT. In CML, the BCR-ABL deregulated pathways not only inhibit apoptosis 

and stimulate proliferation but also lead to an increased production of reactive 

oxygen species (ROS) within mitochondria (Bolton-Gillespie et al., 2013; 

Nieborowska-Skorska et al., 2012). In turn, increased levels of ROS lead to oxidative 

DNA damage, characterized by increased DNA point mutations and double stranded 

breaks, which due to unfaithful and ineffective DNA repair mechanisms, lead to 

aberrant chromosomal alterations. 
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Figure 1.4: BCR-ABL signaling  

Several signal transduction pathways are deregulated by the constitutively active BCR-ABL tyrosine 
kinase, including PI3K/AKT/mTOR, RAS/RAF/MEK/ERK and JAK/STAT, ultimately resulting in leukemic 
cell survival, growth and proliferation. (Figure from: (Weisberg et al., 2007)) 
 

1.3.4 Initial treatment strategies  

Until the end of the 20th century, the CML therapy was restricted to nonspecific 

agents, evolving from the primitive usage of arsenic containing compounds in the 19th 

century, to the administration of busulfan, hydroxyurea and, later on, interferon-alpha 

(IFNα) (Silver et al., 1999).  

Interferon was used for the first time to treat CML patients in 1983 (Talpaz et al., 

1983). In the first trial, 5 out of 7 patients achieved complete hematological response 

(CHR) after being treated with high doses of IFNα, and the splenomegaly detected in 

3 patients was reverted. From then on, IFNα became the drug of choice to treat CML 

patients. The remission rate and survival were improved, as compared to the 

previously used agents, and the 5-year survival rates were increased from 42% to 

57% (1997). However, IFNα was associated to a wide range of significant side 

effects that interfered with the quality of life and therefore the long-term usage was 

not possible in many patients. In some cases, allogeneic stem cell transplantation 

(AlloSCT) was able to reverse disease development. However, not only was this 

intervention restricted to a limited number of patients with exceptional performance 
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status and available suitable stem cell donor but also was associated with a high risk 

of morbidity and mortality. 

1.3.5 Imatinib targeted therapy 

Since the constitutively active BCR-ABL kinase is the driving force behind this 

leukemia, it is thus an ideal target for drug development. This led to the development 

of the tyrosine kinase inhibitor (TKI) Imatinib (Gleevec), which selectively and 

potently inhibits the BCR-ABL kinase by blocking the ATP binding site, resulting in 

complete abrogation of BCR-ABL kinase activity (Druker and Lydon, 2000). Imatinib 

very efficiently targets BCR-ABL positive CML cells, leading to a rapid hematologic 

and cytogenetic response. With the development of Imatinib, the treatment and 

management of CML patients was revolutionized, resulting in a significantly improved 

prognosis, response rate, overall survival, and patient outcome, compared to 

previous therapeutic regimens (Druker et al., 2006; Hochhaus et al., 2009; O'Brien et 

al., 2003). The 8-year overall survival was improved from approximately 20% to 80-

90% (Jabbour and Kantarjian, 2014; Jemal et al., 2010). 

Nonetheless, after years of treatment with Imatinib, residual leukemic cells 

remain present in most patients, leading to a relapse of the disease upon 

discontinuation of treatment (Goldman, 2009; Michor et al., 2005). Consequently, 

most CML patients currently need to be treated with TKI indefinitely, with risks of 

toxicity, lack of compliance, drug resistance, relapse, and associated expense. 

1.3.6 Second- and third-generation tyrosine kinase inhibitors 

The identification of mutations in the BCR-ABL kinase domain that confer 

resistance to imatinib and were associated with disease relapse led to the 

development of the second-generation TKIs, dasatinib, nilotinib, and bosutinib (Golas 

et al., 2003; Lombardo et al., 2004; Weisberg et al., 2005). Dasatinib is 350 times 

more potent than imatinib in vitro (O'Hare et al., 2005; Tokarski et al., 2006) and is 

also know to inhibit the Src family of kinases (Shah et al., 2004). Nilotinib is a 

structural analog of imatinib with a 50 times higher affinity to the BCR-ABL ATP 

binding site in vitro (Weisberg et al., 2005). The second-generation TKIs were shown 

to be active against the majority of imatinib-resistant single-mutants, with the 

exception of the T315I mutation (Weisberg et al., 2007). This led to the development 

of the third-generation TKI, ponatinib (O'Hare et al., 2009), which represents the only 

TKI with activity against the T315I mutation (Cortes et al., 2012; Cortes et al., 2013). 

However, the acquisition of multiple mutations can still render BCR-ABL resistant to 

ponatinib (Zabriskie et al., 2014).  
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At the present time, imatinib, dasatinib or nilotinib are recommended for the initial 

treatment of CML-CP (O'Brien et al., 2013). Although the second-generation TKIs 

seem to induce faster cytogenetic and molecular responses, the 5-year overall 

survival has not been significantly different from imatinib and their impact in long-

term overall survival remains unclear (Fava et al., 2015). Furthermore, long-term 

toxicity events associated with the second-generation TKIs, have been raising 

concerns for their use, especially in specific groups of patients (Fava et al., 2015). 

1.3.7 Response and resistance to tyrosine kinase inhibitors  

After patients initiate treatment, the first aim is to achieve complete hematological 

response (CHR) by bringing the blood cell counts back to normal values. In case the 

treatment is stopped at this point, the blood counts rapidly come back to abnormal 

values. Therefore, the second objective consists in obtaining complete cytogenetic 

response (CCyR) by achieving Ph chromosome negativity. More importantly, the 

main objective is to achieve a major molecular response (MMR) by bringing the 

levels of BCR-ABL transcripts down to less than 0.1%, as assessed by the highly 

sensitive RT-PCR technique (Baccarani et al., 2013). 

The European Leukemia Net (ELN) defines an optimal response to a first line TKI 

when BCR-ABL transcript levels detected at 3 months are ≤10%, at 6 months <1%, 

and from 12 months onwards ≤0.1%. In the other hand, a failed response is 

characterized by BCR-ABL levels of >10% at 6 months and >1% at 12 months or 

loss of CCyR, CHR, MMR or detection of additional clonal chromosomal 

abnormalities in Ph+ cells (Baccarani et al., 2013). The majority of patients that begin 

TKI treatment while in CP respond to the therapy and achieve CHR after a few 

weeks. Typically, 6 months after the beginning of treatment, CCyR is achieved and 

by 1 year MMR (BCR-ABL1 <0.1%) is reached. Although the majority of patients 

reach the clinic when at the CP of the disease, 10-15% already present AP or BC. 

Even from the patients that initially present CP, 7% have additional chromosomal 

aberrations other than t(9,22). In both these groups of patients, the frequency of 

resistance development and progression to BC is higher.  

When patients are administrated with Imatinib as a first line therapy, 

approximately 50% remain with the same therapy at 5 years and eventually 30-40% 

of them achieve undetectable minimal residual disease (UMRD) (Hehlmann et al., 

2011; Kantarjian and Cortes, 2011; Kantarjian et al., 2009). However, even for these 

patients with optimal response the ELN management guidelines recommend 

indefinite continuation of the TKI therapy. When TKI discontinuation trials were 

conducted with patients under UMDR, approximately 50% developed molecular 
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relapse and therefore therapy restart was undergone (Legros et al., 2012; Mahon et 

al., 2010; Ross et al., 2013; Rousselot et al., 2014; Rousselot et al., 2007). When 

discontinuation trials were performed with the second-generation TKIs dasatinib and 

nilotinib, the relapse rate was not markedly reduced as compared to imatinib. 

From the group of patients that fail to respond to the TKI therapy, according to 

the ELN established thresholds, approximately 50% develop TKI resistance due to 

mutations that occur in the BCR-ABL kinase domain (Khorashad et al., 2013). These 

mutations alter the conformation of BCR-ABL and decrease the drug binding affinity. 

Over 50 different mutations have been reported, each with a distinct sensitivity to the 

several available TKIs.  

Some patients fail to respond not only to the first line TKI but also to multiple TKI 

treatments without the occurrence of mutations in the BCR-ABL kinase domain. The 

drivers of this form of BCR-ABL independent resistance are still not entirely known. 

Some studies suggest that the activation of additional oncogenes like the SRC family 

kinases LYN (Dai et al., 2004; Donato et al., 2003; Mahon et al., 2008; Pene-

Dumitrescu and Smithgall, 2010; Wu et al., 2008) and FYN (Grosso et al., 2009) or 

an increased presence of FGF2 in the BM (Traer et al., 2014) may contribute to the 

BCR-ABL independent resistance. Interestingly, ponatinib, which has the additional 

potential of inhibiting the FGF receptor and LYN kinase (O'Hare et al., 2009), was 

shown to be able to overcome FGF2-mediated resistance in the absence of BCR-

ABL kinase mutations (Traer et al., 2014). Furthermore, ponatinib was shown to 

overcome resistance in several TKI-resistance cell lines (Cassuto et al., 2012). 

However, in a trial with resistant patients, it was only able to lead 27% of the patients 

to achieve MMR and the expected survival remained low (Cortes et al., 2013).  

1.3.8 Chronic myeloid leukemia stem cells and resistance 

In CML CP it has been demonstrated that mutations at the stem cell level are 

responsible for disease progression (Nieborowska-Skorska et al., 2012). The 

induction of high levels of ROS and oxidative damage by BCR-ABL in the leukemic 

stem cells leads to the formation of mutations in the BCR-ABL kinase domain as well 

as mutations associated with progression to BC. Even in the presence of TKI, the 

leukemic stem cells continue to accumulate genetic abnormalities. 

In the case of CML BC it has been suggested that mutations in the GMP 

population, especially at the level of the WNT/β-catenin pathway, might render them 

with self-renewal capacity and turn them into BC leukemic stem cells (Jamieson et 

al., 2004; Minami et al., 2008; Stuart et al., 2009). However, additional 

characterization of this potential leukemia initiating cells in BC is required. 
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By making use of sensitive PCR techniques and functional stem cell assays, it 

has been shown that even when patients achieve UMRD, persistent BCR-ABL+ stem 

cells still remain present (Chomel et al., 2011; Chomel and Turhan, 2011; Chu et al., 

2011). 

In an inducible BCR-ABL transgenic mouse model of CML it was demonstrated 

that after shutting off BCR-ABL expression, the leukemic stem cells were able to 

survive and reinitiate leukemia upon BCR-ABL reactivation (Hamilton et al., 2012). 

Similarly, human CD34+ CML cells remained alive even when BCR-ABL was 

knocked down. Furthermore, human CD34+ CML cells exposed to dasatinib were 

able to withstand apoptosis, maintain their function and proliferate once the TKI was 

washed out, independently of the presence of mutations in the kinase domain 

(Corbin et al., 2011; Hamilton et al., 2012).  

The most primitive, quiescent leukemic stem cells from CML CP, which resist TKI 

treatment, can then lead to a relapse of the disease upon discontinuation of 

treatment. The majority of relapses occur within the first 6 months after treatment 

stoppage (Mahon et al., 2010). 

1.3.9 Chronic myeloid leukemia microenvironment  

At the time of diagnosis, circulating CML CD34+ cells can be detected in the 

peripheral blood of patients and present a downregulation of CXCR4 and defects in 

adhesion signaling (Jin et al., 2008; Weisberg et al., 2012). However, after TKI 

treatment initiation they are cleared from the blood and the resistant LSCs are 

believed to reside in the BM microenvironment. 

The CML cells have been shown to alter the BM microenvironment. For example, 

in an inducible BCR-ABL transgenic CML mouse model, the leukemic cells were 

shown to produce G-CSF, which led to decreased expression of CXCL12/SDF1 by 

the BM (Zhang et al., 2012). Additionally, the leukemic clone has been shown to 

modify the expression levels of other cytokines in the BM such as IL-1α, IL-1β, 

MIP1α, MIP1β, LIF and TNFα. Similarly, CXCL12, G-CSF, MIP1β and MIP2 were 

shown to be differentially regulated in CML human samples.  

The alterations in the BM niche induced by the leukemic cells offer a competitive 

growth advantage for the leukemic versus healthy cells. This mechanism has been 

exemplified through the production of TNFα by the leukemic cells promoting clonal 

dominance for the LSCs (Fleischman et al., 2011; Gallipoli et al., 2013a) as well as 

the induction of PIGF production and secretion by the BM stroma promoted by the 

leukemic cells contributing to disease development (Schmidt et al., 2011). 
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The signals from the BM microenvironment can also contribute to the protection 

of LSCs against TKI.  The adhesion of the leukemic cells to the BM stroma through 

the N-cadherin receptor has been shown to confer protection to the LSCs through 

enhanced cytoplasmic N-cadherin-β-catenin complex formation and increased β-

catenin nuclear translocation (Zhang et al., 2013). 

So far, no therapies targeting the altered CML BM microenvironment have been 

introduced in the clinics. 

1.3.10 Treatment tolerance and adherence 

A group of patients fails to respond to the TKI therapy, not because of resistance 

acquisition, but due to the development of drug toxicity or poor compliance. A study 

focusing on patients in long-term imatinib treatment showed that 25-30% of the 

patients face side effects such as muscle cramps, fatigue, edema and 

musculoskeletal pain (Efficace et al., 2011). Only 20% of the patients reported the 

absence of any side effects. Actually, the incidence of side effects revealed by this 

study might be underestimated since it only included patients that were already able 

to tolerate imatinib for 3 years. The occurrence of side effects has a direct impact on 

the patient compliance to the TKI therapy. According to the ADAGIO study, 71% of 

the patients took less imatinib than the prescribed dose and only 14% were 

completely complaint (Noens et al., 2009). In another study focusing on CML patients 

that had reached CCyR on long-term imatinib therapy, 26% of patients were reported 

to take less than or equal to 90% of the prescribed dose (Marin et al., 2010). The 

intake of ≤90% versus >90% of the prescribed dose of imatinib had a significant 

impact on the MMR (28 versus 94%, P < 0.001) and CMR/UMRD (0 versus 44%, P = 

0.002). 

Apart from the short-term side effects, over time some patients can develop more 

severe complications that can become life-threatening, such as gastrointestinal 

bleeding, vascular events (e.g. hypertension, myocardial infarction, peripheral 

vascular occlusion and stroke), fluid retention (e.g. pleural and pericardial effusions), 

liver toxicity, pancreatitis, cardiac effects (e.g. prolongation of QTc, cardiac failure, 

arrhythmias), pulmonary hypertension, myelosuppression and infection. The majority 

of these side effects are observed with all TKIs but the frequency and severity of a 

particular effect varies between different TKIs. Recently, a phase 3 trial evaluating 

ponatinib versus imatinib as front line therapy for CP CML patients (NCT01650805) 

had to be stopped and subsequently ponatinib was temporarily withdrawn in USA 

due to the high incidence of vascular side effects (Cortes et al., 2013; Cortes et al., 

2014; Quintas-Cardama, 2014). 
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All TKIs share the occurrence of side effects and compliance issues, therefore an 

approach that enables the complete eradication of the CML cells and consequently 

the possibility of treatment discontinuation is needed. 

1.3.11 Chronic myeloid leukemia prevalence and associated expense 

The development of TKIs revolutionized the management and treatment of CML 

patients. The overall survival of CML patients has been markedly increased as 

compared to previous therapeutic approaches. As a consequence the prevalence of 

CML has increased over time. It has been estimated that the prevalence in USA will 

increase from 70,000 cases in 2010 to 112,000 in 2020, reaching a plateau of 

181,000 in 2050 (Huang et al., 2012). Already in the present time, since TKI therapy 

is expensive and needs to be taken indefinitely, some countries are not able to afford 

their prescription, emphasizing the need for a curative approach (2013). 

1.3.12 Imatinib versus second- and third- generation tyrosine kinase inhibitors  

When patients are diagnosed with CML in CP, the ELN recommends the 

administration of imatinib, nilotinib or dasatinib as a first line therapy. The decision 

between imatinib or second-generation TKI administration has to consider the 

balance between potential benefits and risks. In some particular cases, such as the 

existence of BCR-ABL kinase mutations, the choice for a more potent TKI is clear. 

The usage of third-generation TKIs is only advised when patients present with the 

T315I mutation. However, when patients present in CP without additional genetic 

abnormalities, taking into account the concerns regarding the side effects of the long-

term usage of the newer agents, the decision might fall on imatinib, the TKI more 

extensively studied and with the safest track record.  
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2. AIM 

 

The emergence of TKI targeted therapy revolutionized the treatment of CML 

patients, leading to a significant increase of the remission rates and overall survival, 

as compared to previous therapeutic approaches. However, even in patients under 

remission following years of TKI therapy, residual quiescent LSCs remain present 

that can lead to a relapse of the disease upon treatment discontinuation. Therefore, 

patients are required to undergo TKI treatment indefinitely, emphasizing the need for 

a curative approach able to target the quiescent LSCs. 

Quiescence has been proposed as a potential mechanisms responsible for 

conferring treatment resistance to LSCs. Therefore, finding a way to activate LSCs 

into an active cell cycle might render them susceptible to TKI treatment, ultimately 

leading to the elimination of all CML cells  

Previous studies have demonstrated that the cytokine IFNα can very efficiently 

drive quiescent HSCs into an active cell cycle. However, the effect of IFNα on LSCs 

has remained unknown. Thus, one aim of this thesis was to investigate whether IFNα 

is capable of activating quiescent LSCs in a similar way as in HSCs. Additionally, we 

wanted to test whether the IFNα induced activation would make the LSCs 

susceptible to the TKI treatment and investigate the potential benefit of the combined 

treatment. To address these questions we made use of CML mouse models in which 

BCR-ABL expression is mainly targeted to the HSC population. To model the 

situation of a CML patient, in which both healthy and CML cell populations coexist, 

mixed BM chimeras were generated by co-transplanting LSCs with wild-type HSCs. 

Moreover, in this experimental setup we also aimed to characterize the interplay 

between leukemic and healthy cells in the mixed BM chimeras. More specifically, we 

wanted to investigate the influence of the leukemic cells on the healthy cells across 

distinct populations of the hematopoietic tree, ranging from mature cells, to 

committed progenitors and finally HSCs. 
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3. RESULTS 

3.1 Targeting quiescent leukemic stem cells through a 

combined treatment strategy 

 

TKIs selectively and potently inhibit the BCR-ABL kinase, leading to a rapid 

hematologic and cytogenetic response in CML patients. However, following years of 

patient treatment, remaining residual LSCs can lead to a relapse of the disease on 

cessation of treatment. The reason for treatment resistance of LSCs is highly 

debated, with one of the mechanisms suggested being the quiescence of the LSCs.  

Our group has previously demonstrated that the cytokine IFNα can very efficiently 

drive quiescent HSCs into an active cell cycle (Essers et al., 2009). Thus, we have 

investigated whether IFNα was capable of activating quiescent BCR-ABL expressing 

LSCs in a similar way as in HSCs. Furthermore we tested whether the IFNα induced 

activation makes the LSCs susceptible to the TKI treatment and investigated the 

potential benefit of the combined treatment. We addressed these questions in mouse 

models that mimic the situation of the CML patient. 

3.1.1 Inducible model of BCR-ABL expression → SCLtTA/BCR-ABL 

In our initial studies we made use of the double-transgenic (dtg) SCLtTA/BCR-

ABL mouse model, which inducibly and reversibly expresses BCR-ABL under the 

control of the 3’ enhancer of the murine stem cell leukemia (SCL) gene 

(Koschmieder et al., 2005), thus targeting BCR-ABL expression to the HSC 

population (Fig. 3.1). More specifically, in one transgene, the 3’ enhancer of the SCL 

gene targets the tetracycline transactivator (tTA) expression to the HSC population, 

whereas in the other transgene, BCR-Abl is under the control of the Tetracycline 

Response Element (TRE). Therefore, in the presence of doxycycline (DOX), the tTA 

is rendered incapable of binding to the TRE and thereby BCR-Abl expression is 

abrogated. Upon removal of DOX from the drinking water, the tTA is capable of 

binding to the TRE, inducing the expression of BCR-Abl in the HSCs. 

The dtg mice, carrying both the SCLtTA and TRE-BCR-ABL transgenes, were 

always analyzed in comparison to control single-transgenic (stg) mice (carrying only 

one of the transgenes and therefore unable to express BCR-ABL). Both mouse lines 

were kept on DOX from the moment they were born until they reached adulthood (8-

10 weeks old). 
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Figure 3.1: Inducible SCLtTA/BCR-ABL Tet-OFF mouse model. 

The SCLtTA transgenic line expressing the tetracycline transactivator (tTA) under the control of the 3’ 
enhancer of the murine stem cell leukemia (SCL) gene was crossed with the TRE-BCR-ABL transgenic 
line in which BCR-ABL expression is regulated by the Tetracycline Response Element (TRE). The 
resulting double-transgenic (dtg) mouse inducible and reversibly expresses BCR-ABL, in a doxycycline 
(DOX) dependent manner, under the control of the 3’ enhancer of the murine stem cell leukemia (SCL) 
gene, thus targeting BCR-ABL expression mainly to the HSC population. The transgenic lines were kept 
on a FVB/N genetic background.  
 

3.1.1.1 SCLtTA/BCR-ABL mice develop a chronic phase CML-like disease 

In order to confirm the development of leukemia by the inducible SCLtTA/BCR-

ABL Tet-OFF mouse model, the blood was monitored every second week after DOX 

removal until signs of leukemia were detected. The blood samples were analyzed by 

Hemavet to quantify the blood cell counts and additionally were stained and analyzed 

by flow cytometry to ascertain changes in the distribution of cell populations. Over 

the course of time, a statistically significant increase in the white blood cell (WBC) 

count could be detected in the dtg as compared to the stg mice (Fig. 3.2 A). More 

specifically, the monocytes (MO) (Fig. 3.2 B) and neutrophils (NE) (Fig. 3.2 C) counts 

were elevated whereas there was no difference in the eosinophils (EO) (Fig. 3.2 D) 

or lymphocytes (LY) (Fig. 3.2 E) counts.  
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Figure 3.2: Blood cell count analysis of the SCLtTA/BCR-ABL mice. 

The blood of SCLtTA/BCR-ABL double-transgenic (dtg) and control single-transgenic (stg) mice was 
analyzed 30 weeks after doxycycline removal from the drinking water. The blood cell counts were 
analyzed by HEMAVET and the white blood cell (A), monocytes (B), neutrophils (C), eosinophils (D) and 
lymphocytes (E) were monitored. The dashed lines delineate the normal range of the blood cell counts. 
Data are presented as mean ± SD with n ≥ 3. The significance was determined using an unpaired, two-
tailed student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
 

Further analysis revealed a decrease in the body weight and an increase in the 

spleen size of the dtg as compared to the stg mice (Fig. 3.3 A-C). Moreover, when 

examining the spleen cells by flow cytometry, a statistically significant increase in the 

mature (CD11b+Gr1high) and immature (CD11b+Gr1low) granulocytes was detected in 

the dtg mice as opposed to the stg mice (Fig. 3.3 D+E). Finally, an expansion of the 

granulocyte population in the BM of the dtg mice was identified through flow 

cytometry, whereas the stg mice retained normal values  (Fig. 3.3 F). 
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Taken together, we could confirm that the SCLtTA/BCR-ABL mice develop signs 

of a chronic myeloproliferative disorder resembling human chronic-phase CML. 

   

Figure 3.3: Bone marrow and spleen analysis of the SCLtTA/BCR-ABL mice. 

The SCLtTA/BCR-ABL dtg and control stg mice were analyzed 30 weeks after doxycycline removal from 
the drinking water. (A) The body weight of dtg and stg mice was monitored. (B) The spleen was isolated 
and the formula (g spleen mass/g mouse mass)×100 was used to calculate the spleen-somatic index 
(SSI). (C) Representative picture of the macroscopic appearance of the spleen of stg and dtg mice. (D) 
The spleen mature granulocytes (CD11b

+
Gr1

high
) were examined by flow cytometry. (E) The immature 

granulocytes (CD11b
+
Gr1

low
) from the spleen were monitored through flow cytometry. (F) The bone 

marrow (BM) cells were stained and the granulocyte population (CD11b
+
Gr1

+
) was investigated by flow 

cytometry. Data are presented as mean ± SD with n ≥ 3. The significance was determined using an 
unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01). 

 

3.1.1.2 Effects of IFNα on the SCLtTA/BCR-ABL cells  

Our group has previously shown that IFNα can very efficiently drive HSCs out of 

quiescence into an active cell cycle via the interferon-α/β receptor (IFNAR) and 
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STAT1 signaling (Essers et al., 2009). However, whether IFNα has similar effects on 

quiescent LSCs is not known. Therefore, we first addressed whether INFα is able to 

activate LSCs, and whether the effect of IFNα on LSCs is comparable to the effect of 

INFα on HSCs. 

In order to challenge the mice with IFNα, we made use of polyinosinic-

polycytidylic acid (pIC), a synthetic analogue of double-stranded RNA (dsRNA) that 

leads to the production of INFα. Both leukemic dtg and healthy stg mice were 

injected with PBS or pIC and 20h later the BM cells were isolated. The stem cells 

were then subjected to a combined intracellular staining with the active cell cycle 

marker Ki67 together with the DNA dye Hoechst33342, in order to monitor the cell 

cycle status through flow cytometry. Through this assay, the cells can be 

distinguished as being quiescent in G0 (Ki67-Hoechstlow) or cycling in G1 

(Ki67+Hoechstlow) or S, G2 and M phases (Ki67+Hoechsthigh). As expected, in the stg 

healthy mice challenged with IFNα, the HSCs were induced to exit G0 phase and 

enter an active cell cycle (Fig. 3.4 A). Interestingly, when the leukemic dtg mice were 

challenged with IFNα, the LSCs were also induced to exit the G0 phase and enter an 

active cell cycle to a comparable extend as the HSCs in the stg mice (Fig. 3.4 A). To 

assess whether the increase of HSCs in the active cell cycle was accompanied by 

increased proliferation, we performed a 5-Bromo-2-deoxyuridine (BrdU) incorporation 

assay. Since BrdU is a thymidine base analog, it becomes incorporated by actively 

dividing cells upon DNA replication. Mice were treated with BrdU for 14h before 

analysis of the stem cells by flow cytometry. As expected, the HSCs from stg mice 

were induced to proliferate when challenged with IFNα (Fig. 3.4 B). Interestingly, 

upon challenge with IFNα, the LSCs in the dtg mice were induced to proliferate to the 

same extend as the HSCs in the stg mice (Fig. 3.4 B).  

Recently, Bhattacharya et al. suggested that BCR-ABL leads to the degradation 

of the interferon-α/β receptor (IFNAR) and consequently impairs the response to 

INFα (Bhattacharya et al., 2011). However the majority of the study was carried out 

using cell lines. Even though no impairment in the response to INFα was detected in 

the SCLtTA/BCR-ABL mice, we analyzed the level of IFNAR expressed on LSCs. In 

line with our previous data, both healthy HSCs as well as LSCs had similar levels of 

IFNAR both at steady state and after stimulation with INFα (Fig. 3.4 C). 

In conclusion, we demonstrated that IFNα induces BCR-ABL-expressing stem 

cells to exit G0 phase, enter an active cell cycle and increase proliferation to similar 

levels as healthy HSCs. 
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Figure 3.4: Effect of IFNα on the stem cells of SCLtTA/BCR-ABL mice. 

The SCLtTA/BCR-ABL double-transgenic (dtg) and control single-transgenic (stg) mice were analyzed 
30 weeks after doxycycline removal from the drinking water. Mice were intraperitoneally injected with a 
single dose of pIC (5mg/kg) or PBS and 20 hours later the stem cells from the bone marrow were 
isolated, stained, fixed, permeabilized and analyzed by flow cytometry. (A) The cell cycle status of stem 
cells (LSKCD150

+
CD48

-
CD34

-
) was determined by Ki67/Hoechst intracellular staining (G0: Ki67

-

Hoechst
low

; G1: Ki67
+
Hoechst

low
; SG2M: Ki67

+
Hoechst

high
). (B) Mice were treated with BrdU, 14 hours 

before analysis, followed by quantification of the incorporation levels in the stem cells 
(LSKCD150

+
CD48

-
CD34

-
). (C) The levels of the interferon-α/β receptor (IFNAR) in the surface of stem 

cells (LKCD150
+
CD48

-
CD34

-
) were monitored by making use of a specific IFNAR antibody. Data are 

presented as mean ± SD with n ≥ 3. The significance was determined using an unpaired, two-tailed 
student’s t-test (* p < 0.05). 
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3.1.2 Generation of mixed bone marrow chimeras  

Due to the potential implications of these studies for the treatment of CML 

patients, we wanted to generate a mouse model that would more closely resemble 

the patient scenario. Whereas in the SCLtTA/BCR-ABL mice all the stem cells 

express BCR-ABL, in the patients there is a coexistence of both LSCs and healthy 

HSCs in the BM. Thus, we generated mixed BM chimeras harboring a mixture of 

both LSCs from the dtg mice as well as HSCs from WT mice (Fig. 3.5). Therefore, 

WT lethally irradiated recipients were transplanted with a mixture of 50% 

SCLtTA/BCR-ABL and 50% WT BM cells. These mice were always analyzed in 

comparison to control mixed BM chimeras generated from a mixture of 50% stg and 

50% WT BM cells. Since the stg cells lack one of the transgenes, they are unable to 

express BCR-ABL. 

 

Figure 3.5: Mixed BM chimeras composed of cells derived from SCLtTA/BCR-ABL Tet-OFF 
mouse model and WT mice. 

The mixed bone (BM) marrow chimeras were generated by transplanting a mixture of 5x10
6
 BM cells 

from both SCL-tTA/BCR-Abl double-transgenic (dtg) and WT mice in a 1:1 ratio into WT lethally 
irradiated recipients. As control, chimeras containing cells from single-transgenic (stg) mice (unable to 
express BCR-ABL due to lack of the other transgene) instead of dtg mice were generated. 
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3.1.2.1 Mixed BM chimeras develop a CML-like disease 

In order to monitor the onset of leukemia, the mixed BM chimeras were checked 

for leukemic symptoms every two weeks following transplantation. Blood samples 

were taken and analyzed by Hemavet to ascertain the blood cell counts. 

Furthermore, the blood was stained for a panel of cell populations and analyzed by 

flow cytometry. In the course of time, the dtg chimeras developed a statistically 

significant increase in the white blood cell (WBC) counts as compared to the control 

stg chimeras (Fig. 3.6 A). Into more detail, the monocytes (MO) (Fig. 3.6 B) and 

neutrophils (NE) (Fig. 3.6 C) counts were specifically increased, whereas no 

statistically significant difference in the eosinophils (EO) (Fig. 3.6 D) or lymphocytes 

(LY) counts was observed (Fig. 3.6 E). Moreover, an expansion of both the mature 

(CD11b+Gr1high) (Fig. 3.6 F) and immature (CD11b+Gr1low) (Fig. 3.6 G) granulocyte 

populations could be observed in the dtg chimeras through flow cytometry analysis.  



 RESULTS  

 26  
 

 

Figure 3.6: Mixed BM chimeras develop increased blood cell counts and an expansion of the 
granulocyte population. 

The SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras and control single-transgenic (stg) 
mixed BM chimeras were analyzed 22 weeks after bone marrow transplantation. The number of white 
blood cells (A), monocytes (B), neutrophils (C), eosinophils (D) and lymphocytes (E) in the blood were 
monitored by HEMAVET. (F) The blood mature granulocytes (CD11b

+
Gr1

high
) were examined by flow 

cytometry. (G) The immature granulocytes (CD11b
+
Gr1

low
) from the blood were monitored through flow 

cytometry. The dashed lines delineate the normal range of the blood cell counts. Data are presented as 
mean ± SD with n ≥ 3. The significance was determined using an unpaired, two-tailed student’s t-test (* 
p < 0.05, ** p < 0.01, *** p < 0.001). 
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In addition, a decrease in the body weight of the dtg chimeras could be detected 

whereas the stg chimeras retained regular body weight values (Fig. 3.7 A). Upon 

further analysis, the dtg chimeras revealed the presence of enlarged spleens, 

whereas the stg chimeras presented normal spleen size (Fig. 3.7 B). Moreover, the 

spleens of dtg chimeras showed an increase in the mature (Fig. 3.7 C) and immature 

granulocyte populations as compared to the control stg chimeras (Fig. 3.7 D). On the 

other hand, the spleen of the dtg chimeras showed a decrease in the B cell 

population (Fig. 3.7 E).  

 

Figure 3.7: Spleen analysis of the mixed BM chimeras. 

The SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras and control single-transgenic (stg) 
mixed BM chimeras were analyzed 22 weeks after bone marrow transplantation. (A) The mice body 
weight was monitored. (B) The spleen was isolated and the formula (g spleen mass/g mouse 
mass)×100 was used to calculate the spleen-somatic index (SSI). (C) The spleen mature granulocytes 
(CD11b

+
Gr1

high
) were examined by flow cytometry. (D) The immature granulocytes (CD11b

+
Gr1

low
) from 

the spleen were monitored through flow cytometry. (E) The B cells (B220+) from the spleen were 
analyzed by flow cytometry. Data are presented as mean ± SD with n ≥ 3. The significance was 
determined using an unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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When analyzing the mature BM cells, an expansion of the granulocyte population 

(Fig. 3.8 A) and a decrease in the B cell population (Fig. 3.8 B) were detected in the 

dtg chimeras as compared to the stg chimeras. Upon examination of the committed 

progenitor cells, an expansion of the granulocyte-macrophage progenitor (GMP) 

population (Fig. 3.8 C) and a decrease in the megakaryocyte-erythrocyte progenitor 

(MEP) population (Fig. 3.8 D) were observed in the dtg chimeras. 

 

Figure 3.8: Bone marrow analysis of the mixed BM chimeras. 

The SCLtTA/BCR-ABL double-transgenic (dtg) mixed bone marrow (BM) chimeras and control single-
transgenic (stg) mixed BM chimeras were analyzed 22 weeks after BM transplantation. (A) The BM 
granulocytes (CD11b

+
Gr1

+
) were examined by flow cytometry. (B) The B cells (B220

+
) from the BM 

were monitored through flow cytometry. (C) The granulocyte-macrophage progenitors (GMPs) from the 
BM (Lin

-
 CD117

+
 Sca-1

-
 CD16/32

high
 CD34

+
)  were analyzed by flow cytometry. (D) The megakaryocyte-

erythrocyte progenitors (MEPs) from the BM (Lin
-
 CD117

+
 Sca-1

-
 CD16/32

low
 CD34

-
) were investigated 

by flow cytometry. Data are presented as mean ± SD with n ≥ 3. The significance was determined using 
an unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
 

In summary, the mixed BM chimeras transplanted with a mixture of dtg and WT 

BM cells develop a chronic myeloproliferative disorder resembling human chronic-

phase CML. On the other hand, the control chimeras, which received a mixture of 

WT and stg cells (instead of the dtg cells), do not develop any of the disease signs. 
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3.1.3 Activation of quiescent leukemic stem cells by Interferon-alpha 

It has been previously demonstrated by our group that IFNα induces quiescent 

HSCs to enter an active cell cycle in a manner dependent on IFNAR and STAT1 

(Essers et al., 2009). However, it has remained unknown whether IFNα could have a 

similar effect in quiescent LSCs. Thus, we made use of our mixed BM chimera CML 

model that closely resembles the real patient scenario to investigate the effect of 

IFNα on LSCs. In order to challenge the chimeras with IFNα, we made use of the 

synthetic analog of dsRNA, pIC, which leads to the production of IFNα. Both 

leukemic dtg chimeras and healthy stg chimeras were treated with PBS or pIC for 

20h followed by analysis of the BM stem cells. To ascertain the cell cycle status of 

the stem cells in the BM, the intracellular Ki67/Hoechst staining was performed 

followed by flow cytometry analysis. Through the combination of Ki67, a marker of 

active cycling cells, together with the DNA dye Hoechst33342, it is possible to 

distinguish between quiescent cells in G0 (Ki67-Hoechstlow) and cycling cells in G1 

(Ki67+Hoechstlow) or S, G2 and M phase (Ki67+Hoechsthigh). As expected, when the 

control healthy chimeras were challenged with IFNα, the HSCs were induced to exit 

G0 phase and enter the active G1 and S/G2/M phases of the cell cycle (Fig. 3.9 A). 

Interestingly, upon IFNα challenge, the LSCs in the leukemic dtg chimeras were also 

induced to enter an active cell cycle by exiting G0 and entering the active G1 and 

S/G2/M phases, to a similar extend as the healthy HSCs in the control stg chimeras 

(Fig. 3.9 A). To further assess the proliferation state of the stem cells we made use of 

the thymidine analogue BrdU. When cells are actively proliferating, they incorporate 

BrdU, and the levels of BrdU incorporation can be correlated with the proliferation 

rate. The chimeras were treated with PBS or pIC for 20h together with BrdU for the 

last 14h. Indeed, as expected, the stem cells in the control stg chimeras were 

induced to proliferate and incorporate BrdU upon IFNα challenging (Fig. 3.9 B). 

Interestingly, in the leukemic dtg chimeras the LSCs were also induced to proliferate 

when challenged with IFNα and furthermore, the levels of BrdU incorporation were 

similar to the ones observed in HSCs (Fig. 3.9 B). 

Additionally, apart from the alteration in the cell cycle and proliferation status, we 

were also interested in investigating the direct effect of IFNα on the stem cells in 

terms of signaling. Thus, after treating control stg chimeras and leukemic dtg 

chimeras with PBS or pIC for 20 hours, we sorted the stem cells out of the BM and 

extracted the RNA in order to monitor changes in the expression of the INFα 

inducible gene ISG15 through qRT-PCR. From this, we could observe a similar 
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induction of the expression of ISG15 in the LSCs in comparison to healthy HSCs 

(Fig. 3.9 C). 

It was recently suggested that BCR-ABL might lead to the degradation of the 

interferon-α/β receptor (IFNAR) (Bhattacharya et al., 2011). However the study was 

mainly conducted in cell lines and thus it required further in vivo validation. In order to 

address this, we quantified the levels of IFNAR in both LSCs from the dtg chimeras 

and HSCs from the stg chimeras by making use of a specific IFNAR antibody and 

flow cytometry analysis. In line with our previous results, the levels of IFNAR were 

similar between the LSCs and HSCs at steady state (Fig. 3.9 D). Additionally, after 

IFNα stimulation, the IFNAR levels of both HSCs and LSCs decreased to the same 

extend (Fig 3.9 D). 

 

Figure 3.9: IFNα drives LSCs out of quiescence into an active cell cycle. 

The SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras and control single-transgenic (stg) 
mixed BM chimeras were analyzed 22 weeks after bone marrow transplantation. Mice were injected 
with a single dose of pIC (5mg/kg) or PBS and 20 hours later the stem cells from the bone marrow were 
isolated, stained, fixed, permeabilized and analyzed by flow cytometry. (A) The cell cycle status of stem 
cells (LSKCD150

+
CD48

-
CD34

-
) was determined by Ki67/Hoechst intracellular staining (G0: Ki67

-

Hoechst
low

; G1: Ki67
+
Hoechst

low
; SG2M: Ki67

+
Hoechst

high
). (B) Mice were treated with BrdU, 14 hours 

before analysis, followed by analysis of the incorporation levels in the stem cells (LSKCD150
+
CD48

-

CD34
-
). (C) Quantification of the mRNA expression of the IFNα inducible gene ISG15 relative to the 

house keeping gene Sdha (succinate dehydrogenase complex subunit A) by qRT-PCR in HSCs 
(LKCD150

+
CD48

-
) sorted from the bone marrow by FACS. (D) The levels of the interferon-α/β receptor 

(IFNAR) on the surface of stem cells (LSKCD150
+
CD48

-
CD34

-
) were monitored with a specific IFNAR 

antibody by flow cytometry. Data are presented as mean ± SD with n ≥ 3. The significance was 
determined using an unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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In conclusion, we demonstrated that upon exposure to IFNα, the LSCs are 

induced to exit quiescence, enter an active cell cycle and proliferate to a similar 

extend as healthy HSCs. Accordingly, the levels of IFNAR and the induction of 

ISG15 were comparable between HSCs and LSCs. This finding paves the way for 

exploitation of the potential synergistic effect of IFNα and TKI in the treatment of 

CML. 

3.1.4 Retroviral transduction of HSCs 

Taking into consideration that the development of leukemia in our mixed BM 

chimeras was taking a considerable long time, we also set up an alternative CML 

mouse model with a faster onset of disease. For that purpose, we made use of 

retroviruses to introduce BCR-ABL into the FACS sorted HSC enriched population 

Lineage- Sca-1+ c-Kit+, followed by transplantation into WT lethally irradiated 

recipients (Fig. 3.10). Since the BCR-ABL open reading frame is attached to a GFP 

gene by an internal ribosome entry site, we were able to easily follow the leukemic 

cells through GFP detection.  

 

Figure 3.10: Transplantation of BCR-ABL transduced LSKs. 

The HSC enriched population LSK (Lineage
-
 Sca-1

+
 c-Kit

+
) from C57BL/6 mice were sorted out of the 

bone marrow by FACS and cultured for 2 days in HSC media supplemented with TPO, SCF and FLt3-L, 
followed by retroviral transduction with BCR-ABL by making use of the MSCV BCR-ABL-IRES-eGFP 
vector. As control, cells were transduced with the empty-vector (without BCR-ABL). Two days after 
transduction, the BCR-ABL+/GFP+ or control empty-vector/GFP+ cells were sorted by FACS and 
transplanted intravenously into C57BL/6 WT lethally irradiated recipients. 
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3.1.4.1 Transduced stem cells lead to the development of a CML-like disease 

The mice transplanted with BCR-ABL+/GFP+ transduced HSCs were always 

compared to mice transplanted with control empty-vector GFP+ transduced HSCs. 

Every week following bone marrow transplantation (BMT), the blood cell counts were 

monitored through Hemavet and the distribution of the leukemic GFP+ cells as well 

as the mature blood cell populations were analyzed by flow cytometry. Already at 3 

weeks after BMT, the BCR-ABL mice presented white blood cell (WBC) counts 

above the healthy threshold whereas the control empty-vector mice had normal 

counts (Fig. 3.11 A). Elevated counts of monocytes (MO) (Fig. 3.11 B) and 

neutrophils (NE) (Fig. 3.11 C) above the healthy threshold were also detected in the 

BCR-ABL mice but not in the control empty-vector mice. Furthermore, a statistically 

significant increase in the granulocytes was observed in the BCR-ABL mice as 

compared to the control empty-vector mice through flow cytometry analysis (Fig. 3.11 

D).  

 

Figure 3.11: The blood of BCR-ABL mice presents increased cell counts and an expansion of the 
granulocyte population 

The BCR-ABL mice and control empty-vector mice were analyzed 3 weeks after bone marrow 
transplantation. The number of white blood cells (A), monocytes (B) and neutrophils (C) in the blood 
were monitored by HEMAVET. (D) The blood cells were stained and the granulocyte population 
(CD11b

+
Gr1

+
) was investigated by flow cytometry. The dashed lines delineate the normal range of the 

blood cell counts. Data are presented as mean ± SD with n ≥ 3. The significance was determined using 
an unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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Additionally, the BCR-ABL mice presented with marked splenomegaly, while the 

control empty-vector mice maintained a normal spleen size (Fig. 3.12 A+B). 

The survival of the BCR-ABL mice was markedly affected and by the 6th week 

after BMT all mice were dead whereas the control empty-vector mice remained alive 

during the complete course of the survival analysis (Fig. 3.12 C). 

 

Figure 3.12: BCR-ABL mice develop splenomegaly and have an impaired survival. 

(A) The spleen of BCR-ABL and control empty-vector mice was isolated 3 weeks after bone marrow 
transplantation and analyzed. (B) Representative picture of the macroscopic appearance of the spleen 
of BCR-ABL and control empty-vector mice. (C) Survival curve of the BCR-ABL and control empty-
vector following bone marrow transplantation (BMT) with 6x10

4
 cells. Data are presented as mean ± SD 

with n ≥ 3. The significance was determined using an unpaired, two-tailed student’s t-test (* p < 0.05, ** 
p < 0.01, *** p < 0.001). 
 

In conclusion, the mice transplanted with BCR-ABL transduced HSCs develop a 

myeloproliferative disease that resembled human CML. In contrast, none of the 

recipients of control empty-vector transduced HSCs develop any signs of the 

disease. 

3.1.5 Combinatorial treatment: IFNα + Imatinib 

Since we could show that treatment with IFNα activates quiescent LSCs into an 

active cell cycle, we now wanted to test whether a combined treatment strategy with 
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TKI would be beneficial to eliminate not only the bulk of the tumor but also the LSCs. 

Through IFNα treatment the LSCs would first be activated, followed by TKI targeted 

therapy. Assuming that activated LSCs become susceptible to TKI treatment, this 

two-step treatment protocol would not only get rid of the leukemic clone but also of 

the LSCs, preventing relapse of the disease.  

Interestingly, through a mathematical modeling approach, the persistence of CML 

leukemic cells following TKI treatment could be explained by a selective effect of the 

TKI exclusively in proliferative leukemic cells (Roeder et al., 2006). Furthermore, in 

the same study, the mathemetical model suggests that the combination of a cell 

cycle stimulating drug together with TKI would lead to the complete eradication of the 

CML cells. One of the crucial aspects of this combinatorial treatment approach is to 

determine the appropriate time points between each step. Recently, Glauche et al. 

have used a mathematical model to predict the potential effect of combining INFα 

with TKI administration (Glauche et al., 2012). Interestingly, the predicted more 

favourable combination would consist of a pulsed INFα treatment together with 

continuous TKI administration.  

Using our CML mouse model in which BCR-ABL expression is targeted to the 

HSC population, we tested different combined treatment schemes running over a 

maximum span of 9 days by using Imatinib as a TKI and pIC as a way to challenge 

the mice with INFα. In the optimized protocol, mice were first challenged with INFα at 

day 1 followed by daily Imatinib administration for 9 days except on day 5 when the 

mice were re-challenged with INFα to ensure that LSCs that remained or returned to 

quiescence could be activated (Fig. 3.13 A). 

In our studies, mice under combined treatment were compared to mice under 

imatinib-only treatment, pIC-only treatment and PBS treatment. Since the BCR-ABL 

leukemic cells expressed GFP, their presence could be measured through flow 

cytometry. In the PBS treatment group the leukemic clone expanded whereas in the 

pIC-only group there were no significant changes and in the imatinib-only group there 

was a slight decrease of the leukemic burden (Fig. 3.13 B). Interestingly, the 

combined treatment group had a deeper reduction in the leukemic burden as 

compared to any of the other groups (Fig. 3.13 B).  

As shown before, the CML mice markedly develop splenomegaly. Although both 

the imatinib-only and the combined-treatment groups led to a decrease in 

splenomegaly as compared to the untreated group, the combined treatment led to a 

significant deeper reduction (Fig. 3.13 C). Furthermore, preliminary studies indicate a 

survival advantage conferred by the combined treatment (Fig. 3.13 D). 

In conclusion, this combined-treatment protocol led to a deeper reduction of the 
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leukemic burden as compared to the PBS treated, pIC-only treated or imatinib-only 

treated CML mice. Additionally, the splenomegaly was markedly abrogated by the 

combined treatment to significant reduced levels than any of the other groups. 

Moreover, our data suggests that the combined treatment induces prolonged 

survival. 

 

Figure 3.13: Combined treatment leads to a deeper reduction of the leukemic burden and 
restores spleen regular size. 

(A) The BCR-ABL mice were daily treated with Imatinib (100mg/kg) for 9 days except on the 1st and 5th 
day when they were challenged with INFα through pIC injection. Apart from the combined treatment 
group, BCR-ABL mice were also treated with pIC-only, imatinib-only or left untreated. Following one day 
after finishing treatment, the mice were analyzed. (B) The levels of leukemic BCR-ABL+/GFP+ cells 
were monitored through flow cytometry and normalized to the the values before treatment initiation. (C) 
The spleen of mice was isolated and analyzed. (D) Survival curve of the BCR-ABL mice following 
treatment. Data are presented as mean ± SD with n ≥ 3. The significance was determined using an 
unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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3.1.6 Effect of the treatment in the T cell compartment 

In order to investigate if the combined treatment was inducing an expansion of 

the T cell pool, which could also contribute to its beneficial effect, the blood of the 

leukemic BCR-ABL mice was analyzed one day after treatment through flow 

cytometry. No significant changes were detected in the total T cell population 

(CD4/8+) between the PBS, pIC-only, imatinib-only or combined treatment groups 

(Fig. 3.14 B). We then specifically monitored the cytotoxic T cell compartment (CD8+) 

and also no significant changes were detected when comparing the PBS, pIC-only, 

imatinib-only or combined treated mice (Fig. 3.14 C). 

Overall, neither pIC-only, imatinib-only nor combined treatment led to a significant 

change in the distribution of the CD4+ or CD8+ T cell populations immediately after 

the treatment window. 

 

Figure 3.14: Analysis of the T cell pool of BCR-ABL mice following treatment 

(A) The BCR-ABL mice were daily treated with Imatinib (100mg/kg) for 9 days except on the 1st and 5th 
day when they were challenged with INFα through pIC injection. Apart from the combined treatment 
group, BCR-ABL mice were also treated with pIC-only, imatinib-only or left untreated. Following one day 
after treatment, the mice were analyzed. (B) The blood cells were stained and the total T cell population 
(CD4/8

+
) was investigated by flow cytometry. (C) The cytotoxic T cell population (CD8

+
) in the blood was 

examined through flow cytometry. Data are presented as mean ± SD with n ≥ 3. The significance was 
determined using an unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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3.2 Influence of leukemic cells on the behavior of wild-type 

cells in mixed bone marrow chimeras 

 

In our mixed BM chimera model, both a leukemic and healthy population of 

hematopoietic cells coexist inside the same organism, resembling the patient 

scenario. Furthermore, since the transgenic and wt cells have a different cell surface 

marker, namely CD45.1 and CD45.2 respectively, they can be easily distinguished 

through flow cytometry. Therefore we made use of this CML model to investigate 

interactions between leukemic and healthy cells.  

Interestingly, we unexpectedly observed that the wt cells that coexist with the 

leukemic dtg cells behave differently to the wt cells from healthy chimeras. 

3.2.1 The differences between the bone marrow dtg and stg mature cells are 

mimicked by the wt cells in the mixed BM chimeras 

As previously described, when analyzing the total BM mature cell populations of 

the mixed BM chimeras, an expansion of the granulocyte population in the leukemic 

chimeras as compared to the healthy control chimeras was detected (Fig 3.15 A). 

However, since the transgenic and wt cells can be distinguished through the CD45 

cell surface marker, instead of analyzing the bulk of cells, the analysis can be 

exclusively focused on either the transgenic or wt cells. As expected, when directly 

comparing the dtg cells inside the leukemic chimeras versus the stg cells inside the 

healthy chimeras, the expected increase in granulocytes could be detected (Fig. 3.15 

A). Surprisingly, when exclusively comparing the wt cells inside the leukemic 

chimeras versus the wt cells inside the healthy chimeras, also an increase in the 

granulocyte population could be observed (Fig 3.15 A).  

Furthermore, the decrease in the B cell population detected in the BM of the 

leukemic chimeras could be observed not only the dtg leukemic cells but also in the 

wt cells (Fig. 3.15 B). 

In conclusion, the increase in the granulocytes and decrease in the B cells 

detected in the BM of leukemic chimeras was observed not only in the dtg cells but 

also mimicked in the wt cells.  
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Figure 3.15: The changes in the bone marrow mature cell populations in the leukemic chimeras 
are detected in both dtg and WT cells. 

The SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras and control single-transgenic (stg) 
mixed BM chimeras were analyzed 22 weeks after bone marrow transplantation. By making use of the 
cell surface CD45 marker, the transgenic (CD45.1

+
) and WT (CD45.2

+
) cells within the same mouse can 

be distinguished through flow cytometry. Therefore, apart from the total population, the transgenic or 
WT cells exclusively can be directly compared between the leukemic dtg and control stg mixed BM 
chimeras. (A) The bone marrow granulocytes (CD11b

+
Gr1

+
) were examined by flow cytometry. (B) The 

B cells (B220
+
) from the bone marrow were monitored through flow cytometry. Data are presented as 

mean ± SD with n ≥ 3. The significance was determined using an unpaired, two-tailed student’s t-test (* 
p < 0.05, ** p < 0.01, *** p < 0.001). 
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3.2.2 Changes in the committed progenitor cell populations inside leukemic 

chimeras detected in both dtg and wt cells 

The increase in GMPs detected in the BM of leukemic chimeras was investigated 

again but with an exclusive focus on either CD45.1+ transgenic or CD45.2+ wt cells. 

First, as expected, the increase in GMPs was observed when comparing the dtg cells 

from the leukemic chimeras with the stg cells from the control healthy chimeras (Fig. 

3.16 A). Surprisingly, the same increase in GMPs was detected in the wt cells inside 

the leukemic chimeras as compared to the wt cells inside the control healthy 

chimeras (Fig. 3.16 A). 

Moreover, the decrease in MEPs identified in the BM of leukemic chimeras was 

assessed purely in transgenic or wt cells. Interestingly, not only the dtg but also the 

wt cells from the leukemic chimeras showed the decrease in MEPs (Fig. 3.16 B). 

Taken together, the changes in the distribution of the committed progenitor cell 

populations inside the leukemic chimeras are detected not only in the dtg cells but 

also mimicked in the wt cells. 
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Figure 3.16: The differences between the bone marrow dtg and stg committed progenitor cells 
are mimicked by the WT cells in the mixed BM chimeras. 

The SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras and control single-transgenic (stg) 
mixed BM chimeras were analyzed 22 weeks after bone marrow transplantation. By making use of the 
cell surface CD45 marker, the transgenic (CD45.1

+
) and WT (CD45.2

+
) cells within the same mouse can 

be distinguished through flow cytometry. Therefore, apart from the total population, the transgenic or 
WT cells exclusively can be directly compared between the leukemic dtg and control stg mixed BM 
chimeras. (A) The granulocyte-macrophage progenitors (GMPs) from the bone marrow (Lin

-
 CD117

+
 

Sca-1
-
 CD16/32

high
 CD34

+
)  were analyzed by flow cytometry. (B) The megakaryocyte-erythrocyte 

progenitors (MEPs) from the bone marrow (Lin
-
 CD117

+
 Sca-1

-
 CD16/32

low
 CD34

-
) were investigated by 

flow cytometry. Data are presented as mean ± SD with n ≥ 3. The significance was determined using an 
unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01). 
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3.2.3 The differences between the spleen dtg and stg mature cells are 

mimicked by the wt cells in the mixed BM chimeras 

The expansion in the mature and immature granulocyte populations detected in 

the spleen of the leukemic chimeras was re-examined in either the purified CD45.1+ 

transgenic or CD45.2+ wt cell populations. When performing a CD45.1+ exclusive 

comparison between the leukemic and control healthy chimeras, an increase in both 

mature and immature granulocytes was detected in the dtg versus stg cells (Fig 3.17 

A+B). Interestingly, in a CD45.2+ purified analysis, an increase in the mature and 

immature granulocytes was unveiled in the wt cells inside the leukemic chimeras as 

compared to the wt cells inside the control healthy chimeras (Fig 3.17 A+B). 

Additionally, when reassessing the decrease in the B cell compartment in the spleen 

of leukemic chimeras, not only was it confirmed when comparing the dtg to the stg 

cells but also in the wt cells in the leukemic chimeras versus the wt cells in the 

control healthy chimeras (Fig 3.17 C). 

In summary, the changes in the mature cell populations observed in the spleen of 

the leukemic chimeras are not only detected in the dtg cells but also mimicked in the 

wt cells. 
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Figure 3.17: The changes in the spleen mature cell populations in the leukemic chimeras are 
detected in both dtg and WT cells 

The spleen of the SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras and control single-
transgenic (stg) mixed BM chimeras were analyzed 22 weeks after bone marrow transplantation. By 
making use of the cell surface CD45 marker, the transgenic (CD45.1

+
) and WT (CD45.2

+
) cells within 

the same mouse can be distinguished through flow cytometry. Therefore, apart from the total 
population, the transgenic or WT cells exclusively can be directly compared between the leukemic dtg 
and control stg mixed BM chimeras. (A) The spleen mature granulocytes (CD11b

+
Gr1

high
) were 

examined by flow cytometry. (B) The immature granulocytes (CD11b
+
Gr1

low
) from the spleen were 

monitored through flow cytometry. (C) The B cells (B220
+
) from the spleen were analyzed by flow 

cytometry. Data are presented as mean ± SD with n ≥ 3. The significance was determined using an 
unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01). 
 

3.2.4 Cytokine expression profile of mixed BM chimeras 

We hypothesized that the leukemic cells could affect the behavior of the wt cells 

through the production of secreted factors. In turn, these secreted factors could have 

a direct effect on the wt cells or induce the niche to produce other factors that would 

then affect both leukemic and wt cells. In order to detect these potential agents we 

performed a cytokine array on the BM supernatant of both the leukemic and healthy 

control chimeras (Fig. 3.18 A). Several clear differences between the leukemic 

versus healthy chimeras were observed, more precisely, a highly significant increase 

in the presence of IL-1α, IL-1β, IL-6, MIP-1α and MIP-1β and a marked decrease in 

CXCL9 (Fig. 3.18 B).  

Subsequently, in order to validate the array results, ELISAs were performed on 

the BM supernatant of the mixed BM chimeras, which confirmed the increase in IL-

1β, IL-6, MIP-1α and MIP-1β in the BM of the leukemic chimeras (Fig. 3.19 A-D).  

Importantly, several of the obtained hits were also reported by other groups to be 

present in the BM of CML mouse models (Zhang et al., 2012), which further validates 

the quality of our array and mouse model. For some of these hits, like IL-6 (Reynaud 

et al., 2011), the functional importance and the molecular and cellular mechanisms 

through which they promote CML were already described but for the others it still 

remains unclear.  
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Figure 3.18: Cytokine array of the bone marrow supernatant of mixed BM chimeras. 

The bone marrow supernatant of the SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras 
and control single-transgenic (stg) mixed BM chimeras was analyzed 22 weeks after BM 
transplantation. (A) List of the cytokines examined in the bone marrow supernatant of the mixed BM 
chimeras by making use of the R&D Systems Mouse Cytokine Array, Panel A. (B) Cytokines detected in 
the bone marrow supernatant of the mixed BM chimeras and summary of the most prominently 
differentially expressed cytokines between dtg and stg chimeras. 
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Figure 3.19: The bone marrow of SCLtTA/BCR-ABL dtg chimeras is enriched in MIP-1α, MIP-1β, 
IL-6 and IL-1β as compared to the control stg chimeras. 

The bone marrow supernatant of the SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras 
and control single-transgenic (stg) mixed BM chimeras was analyzed 22 weeks after bone marrow 
transplantation. (A) The concentration of MIP-1α in the bone marrow supernatant was determined by 
ELISA assay. (B) MIP-1β protein concentration was determined by ELISA of the bone marrow 
supernatant. (C) IL-6 protein concentration was determined by ELISA on the bone marrow supernatant. 
(D) IL-1β levels (ELISA) in the bone marrow supernatant. Data are presented as mean ± SD with n ≥ 3. 
The significance was determined using an unpaired, two-tailed student’s t-test (* p < 0.05, ** p < 0.01, 
*** p < 0.001). 
 

3.2.5 Effect of MIP-1α and MIP-1β in the cell cycle behavior of HSCs 

It has been suggested that MIP-1 inhibits HSC proliferation and maintenance of 

these cells in a quiescent state (Dunlop et al., 1992). Although in these studies the 

HSC challenging was performed in vivo by injecting mice with MIP-1, their read-out 

consisted of CFUs in vitro. Therefore the population being addressed was actually 

mainly consisting of progenitors and not specifically the HSCs. To gain further 

insights, we challenged mice with PBS, MIP-1α (also known as CCL3) or MIP-1β 

(CCL4) for 20h and specifically analyzed the HSC population in the BM through flow 

cytometry. In order to assess the cell cycle status of the HSCs, we performed 

intracellular Ki67/Hoechst staining to determine the percentage of cells in G0, G1 and 

S, G2 or M phases. The HSCs challenged with either MIP-1α or MIP-1β showed no 

significant differences in the cell cycle distribution as compared to the PBS control 
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group (Fig. 3.20 A). To analyze the proliferation levels of the treated HSCs we used 

an in vivo BrdU incorporation assay. For this, mice were treated with the base analog 

BrdU for 14h before the analysis of the incorporation rate in HSCs through flow 

cytometry. No significant differences in the incorporation levels of BrdU were 

detected in the HSCs treated with MIP-1α, MIP-1β or PBS (Fig. 3.20 B). 

Although, at steady state, MIP-1α or MIP-1β showed no effect in the cell cycle or 

proliferation state of HSCs, we wondered whether in a stress condition, where stem 

cells are pushed into an active cell, MIP-1α/MIP-1β would then abrogate this 

activation. Hence we co-challenged mice with pIC together with MIP-1α or MIP-1β for 

20 hours. Through Ki67/Hoechst analysis, no significant difference in the HSC cell 

cycle distribution was observed with MIP-1α or MIP-1β treatment (Fig. 3.20 C). In 

addition, there was no significant difference induced by either MIP-1α or MIP-1β in 

the incorporation levels of BrdU (Fig. 3.20 D). 

 

Figure 3.20: Influence of MIP-1α and MIP-1β on the cell cycle behavior of HSCs. 

The wt mice were challenged with an intraperitoneal injection of PBS or 500 ng of MIP-1α / MIP-1β and 
20 hours later the stem cells from the bone marrow were isolated, stained, fixed, permeabilized and 
analyzed by flow cytometry. (A) The cell cycle status of stem cells (LSKCD150

+
CD48

-
CD34

-
) was 

determined by Ki67/Hoechst intracellular staining (G0: Ki67
-
Hoechst

low
; G1: Ki67

+
Hoechst

low
; SG2M: 

Ki67
+
Hoechst

high
). (B) Mice were treated with BrdU, 14 hours before analysis, followed by analysis of the 

incorporation levels in the stem cells (LSKCD150
+
CD48

-
CD34

-
). (C) Mice were co-challenged with MIP-

1α / MIP-1β  and a dose of pIC (5mg/kg) or PBS for 20 hours followed by analysis of the cell cycle 
status of stem cells (LSKCD150

+
CD48

-
CD34

-
) through Ki67/Hoechst intracellular staining. (D) Mice 

were co-challenged with MIP-1α / MIP-1β  and a dose of pIC (5mg/kg) or PBS for 20 hours followed by 
treatment with BrdU 14 hours before analysis, followed by analysis of the incorporation levels in the 
stem cells (LSKCD150

+
CD48

-
CD34

-
). Data are presented as mean ± SD with n ≥ 3. The significance 

was determined using an unpaired, two-tailed student’s t-test (* p < 0.05). 
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In order to exclude the possibility that no significant effect of MIP-1α or MIP-1β in 

the cell cycle distribution and proliferation status of HSCs was detected due to an 

insufficient amount of stimulus, we increased the dose given per mouse from 500 ng 

to 5 μg. Nonetheless, the percentage of HSCs in G0, G1 and S, G2, or M phases was 

similar between PBS, MIP-1α or MIP-1β treated mice (Fig. 3.21 A). Furthermore, 

there was no significant difference in the levels of HSC proliferation in mice treated 

with MIP-1α, MIP-1β or PBS (Fig. 3.21 B).  

The effect of a high dose of MIP-1α/MIP-1β (5 μg/mouse) together with a pIC co-

challenge was then investigated. However, no significant differences in the cell cycle 

distribution were detected between the BM HSCs of MIP-1α, MIP-1β or PBS treated 

mice (Fig. 3.21 C). Moreover, no significant difference was observed in the HSC 

proliferation rate of mice treated with MIP-1α, MIP-1β or PBS (Fig. 3.21 D). 

 

Figure 3.21: Effect of a high dose of MIP-1α and MIP-1β on the proliferation of HSCs. 

The wt mice were challenged with an intraperitoneal injection of PBS or 5 μg of MIP-1α / MIP-1β and 20 
hours later the stem cells from the bone marrow were isolated, stained, fixed, permeabilized and 
analyzed by flow cytometry. (A) The cell cycle status of stem cells (LSKCD150

+
CD48

-
CD34

-
) was 

determined by Ki67/Hoechst intracellular staining (G0: Ki67
-
Hoechst

low
; G1: Ki67

+
Hoechst

low
; SG2M: 

Ki67
+
Hoechst

high
). (B) Mice were treated with BrdU, 14 hours before analysis, followed by analysis of the 

incorporation levels in the stem cells (LSKCD150
+
CD48

-
CD34

-
). (C) Mice were co-challenged with MIP-

1α / MIP-1β  and a dose of pIC (5mg/kg) or PBS for 20 hours followed by analysis of the cell cycle 
status of stem cells (LSKCD150

+
CD48

-
CD34

-
) through Ki67/Hoechst intracellular staining. (D) Mice 

were co-challenged with MIP-1α / MIP-1β  and a dose of pIC (5mg/kg) or PBS for 20 hours followed by 
treatment with BrdU 14 hours before analysis, followed by analysis of the incorporation levels in the 
stem cells (LSKCD150

+
CD48

-
CD34

-
). Data are presented as mean ± SD with n ≥ 3. The significance 

was determined using an unpaired, two-tailed student’s t-test (* p < 0.05). 
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Taken together, our data suggests that not only at the steady-state condition but 

also under an inflammatory setting, MIP-1α or MIP-1β have no impact in the cell 

cycle status or proliferation rate of HSCs. 

3.2.6 Effect of the leukemic clone in the wt hematopoietic progenitor cells 

We wanted to evaluate whether the function of the wt progenitor cells inside the 

leukemic chimeras was altered as compared to the wt progenitor cells inside the 

control healthy chimeras. Therefore, we sorted the BM wt cells (CD45.2+) out of the 

leukemic and control healthy chimeras and performed an in vitro colony-forming unit 

(CFU) assay to evaluate the expansion and differentiation capacity of the 

progenitors. This method is based on the ability of progenitors to form colonies in a 

semi-solid methylcellulose medium supplemented with cytokines that induce 

differentiation of the progenitor cells. After 7 days of culture the total number of 

generated colonies per plate was determined. Interestingly, the wt progenitor cells 

that coexisted with the leukemic dtg cells showed a decreased potential to generate 

colonies as compared to the wt progenitor cells from the control healthy chimeras 

(Fig. 3.22).  

Thus, these data indicate that the leukemic cells impair the function of the wt 

progenitor cells, leading to a decrease in their colony forming ability. 

 

 

Figure 3.22: The WT committed progenitor cells that coexisted with the leukemic cells in the 
mixed BM chimeras have an impaired function. 

The SCLtTA/BCR-ABL double-transgenic (dtg) mixed BM chimeras and control single-transgenic (stg) 
mixed BM chimeras were analyzed 22 weeks after bone marrow transplantation. (A) By making use of 
the cell surface CD45 marker, the bone marrow WT (CD45.2

+
) cells were sorted apart from the the 

transgenic (CD45.1
+
) cells and plated in a semi-solid methylcellulose medium supplemented with 

cytokines that induce differentiation of the progenitor cells. (B) After 7 days of culture in the colony-
forming unit (CFU) assay specific medium, the colonies formed per plate were counted. Data are 
presented as mean ± SD with n ≥ 3. The significance was determined using an unpaired, two-tailed 
student’s t-test (* p < 0.05). 
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3.2.7 The function of the wt HSCs is impaired by the leukemic cells 

To investigate whether the effect of the leukemic cells on the wt cells was also 

taking place at the stem cell level we performed transplantation assays. The wt cells 

(CD45.2+) from either leukemic or control healthy chimeras were sorted out of the BM 

by FACS and transplanted into CD45.1+ wt lethally irradiated recipients. Later on, 

when analyzing the blood of the recipients, we could observe that the wt stem cells 

that once coexisted with the leukemic cells were impaired in their ability to generate 

mature cells as compared to the wt stem cells that coexisted with the control stg cells 

(Fig. 3.23). The contribution of the wt stem cells from the leukemic chimeras to the 

generation of granulocytes in the CD45.1+ recipients was markedly decreased as 

compared to the wt cells from the control healthy chimeras (Fig. 3.23 B+C). While 

investigating the BM of the CD45.1+ wt recipients, the same phenotype was detected. 

The wt stem cells from the leukemic chimeras were impaired in their potential to 

contribute to the generation of mature cells whereas the wt stem cells from the 

healthy control chimeras performed normally (Fig. 3.23 D). The ability of the wt stem 

cells that were sorted out of the leukemic chimeras to generate granulocytes was 

markedly decreased as compared to the wt cells sorted out of the healthy chimeras 

(Fig. 3.23 E). 

In order to further validate the effect at the stem cell level, we performed similar 

transplantation experiments as described above, but instead of transplanting the bulk 

BM cells we specifically sorted and transplanted the HSC enriched population 

lineage- Sca-1+ c-Kit+ (LSK). Again, when analyzing the CD45.1+ recipients, the wt 

HSCs that previously coexisted with the dtg leukemic cells showed a marked 

decreased contribution in the generation of mature cells as compared to the wt cells 

that coexisted with the control stg cells (Fig. 3.24). 

Furthermore, we investigated whether the HSC impairment was caused by a 

defect of the cells to find their BM niche. Therefore, we transplanted LSK cells 

directly into the bone by intrafemoral injection, as opposed to intravenous 

transplantation. However, once more, the wt HSCs that coexisted with the dtg cells 

had an impaired ability to contribute to the generation of blood cells as compared to 

the wt cells from control stg chimeras (Fig. 3.24 D). 
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Figure 3.23: The engraftment potential of the WT cells that coexisted with leukemic cells in the 
mixed BM chimeras is impaired. 

(A) By making use of the cell surface CD45 marker, the bone marrow WT (CD45.2
+
) cells from either 

leukemic or control healthy chimeras (22 weeks after BMT) were sorted apart from the transgenic 
(CD45.1

+
) cells by FACS and transplanted into CD45.1

+
 WT lethally irradiated recipients. The blood and 

bone marrow of the recipients was analyzed 16 weeks after BMT. (B) The blood cells were stained and 
the granulocyte population (CD11b

+
Gr1

+
) was investigated by flow cytometry. (C) The contribution of the 

WT cells (CD45.2
+
) that coexisted with the transgenic cells to the generation of blood granulocytes 

(CD11b
+
Gr1

+
) in the CD45.1

+
 WT recipients was examined by flow cytometry. (D) The contribution of 

the WT cells (CD45.2
+
) that coexisted with the transgenic cells to the generation of bone marrow mature 

cells in the CD45.1+ WT recipients was monitored through flow cytometry. (E) The bone marrow (BM) 
cells were stained and the granulocyte population (CD11b

+
Gr1

+
) was investigated by flow cytometry. 

Data are presented as mean ± SD with n ≥ 3. The significance was determined using an unpaired, two-
tailed student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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Figure 3.24: The WT HSCs that coexisted with the leukemic cells in the mixed BM chimeras have 
an impaired function. 

(A) By making use of the cell surface CD45 marker, the bone marrow WT LSK (Lineage
-
Sca-1

+
c-

Kit
+
CD45.2

+
) cells from either leukemic or control healthy chimeras (22 weeks after BMT) were sorted 

apart from the transgenic (CD45.1
+
) cells by FACS and intravenously transplanted into CD45.1

+
 WT 

lethally irradiated recipients. The blood and bone marrow of the recipients was analyzed 10 weeks after 
BMT. (B) The contribution of the WT cells (CD45.2

+
) that coexisted with the transgenic cells to the 

generation of mature cells in the CD45.1
+
 WT recipients was monitored through flow cytometry. (C) The 

contribution of the WT cells (CD45.2
+
) that coexisted with the transgenic cells to the generation of 

granulocytes (CD11b
+
Gr1

+
) in the CD45.1

+
 WT recipients was examined by flow cytometry. (D) The WT 

cells (CD45.2
+
) that coexisted with the transgenic cells were transplanted intrafemorally into CD45.1

+
 

WT recipients, and the contribution to the generation of mature cells was monitored through flow 
cytometry. Data are presented as mean ± SD with n ≥ 3. The significance was determined using an 
unpaired, two-tailed student’s t-test (* p < 0.05). 
 

Interestingly, these data indicate that the wt HSCs that coexisted with the dtg 

cells in the leukemic chimeras were severely impaired in their engraftment ability 

whereas the ones interacting with the stg cells in the healthy control chimeras 

performed normally. 
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4. DISCUSSION 

 

4.1 Combined treatment approach to target quiescent LSCs  

 

The life-long blood production is maintained by HSCs, which reside at the apex of 

the hierarchically organized hematopoietic system (Kondo et al., 2003). The majority 

of adult HSCs are found in a quiescent state during homeostasis, nonetheless they 

have the potential to respond to external stimuli and rapidly enter an active cell cycle 

in order to meet the organism’s requirements for blood cells (Wilson et al., 2008). 

Our group has previously demonstrated that one such stimulus is IFNα, which very 

efficiently drives HSCs out of quiescence into an active cell cycle (Essers et al., 

2009). However, whether quiescent LSCs can also be pushed into an active cell 

cycle by IFNα has remained unknown. Given that quiescence has been proposed as 

one of the mechanisms through which LSCs are able to resist treatment, we 

investigated the activation potential of IFNα. More specifically, we focused on the 

LSCs from CML, which is one of the best-characterized malignancies and nowadays 

serves as a model disease for stem cell based malignancies. CML is driven by the 

constitutively active BCR-ABL tyrosine kinase, which arises as consequence of a 

reciprocal chromosomal translocation between chromosomes 9 and 22. By 

deregulating a wide range of signal transduction pathways, BCR-ABL induces 

leukemic cell growth, proliferation and survival. With the development of TKIs, which 

selectively target BCR-ABL, the treatment of patients was revolutionized and the 

rates of remission and survival were significantly increased. However, even after 

years of treatment with TKIs, residual LSCs remain present in most patients, which 

can lead to a relapse of the disease upon discontinuation of treatment, emphasizing 

the need for a curative approach that eradicates the LSCs. 

For the first time, we have demonstrated that quiescent LSCs can also be pushed 

into an active cell cycle upon IFNα exposure, to a similar extend as HSCs. 

Furthermore, since quiescence has been proposed to confer treatment resistance in 

LSCs, we investigated the potential benefit of combining the activation capacity of 

IFNα with TKI to eradicate the leukemic cells. We could demonstrate that a combined 

treatment of IFNα short acute exposures together with continuous TKI administration 

is more advantageous than any of the agents alone, leading to a deeper decrease of 

the leukemic burden. 
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4.1.1 Establishment of experimental CML models 

To unravel the in vivo effects of IFNα on LSCs and the potential synergistic effect 

of combination treatments with TKI, we employed CML mouse models in which BCR-

ABL expression is mainly targeted to the HSC population. Such studies could not be 

carried out in vitro since HSCs need to be in their BM niche microenvironment in 

order to be activated by IFNα. When isolated HSCs are exposed to IFNα in vitro no 

activation is detected. 

In our studies we initially made use of the dtg SCLtTA/BCR-ABL Tet-OFF mouse 

model, in which HSCs inducible and reversible express BCR-ABL in a DOX 

dependent manner (Fig. 3.1). However, a disadvantage of this mouse model is that 

all the stem cells express BCR-ABL. In contrast, there is a coexistence of both 

healthy and leukemic cells in CML patients. Therefore, in order to more closely mimic 

the patient scenario, we generated mixed BM chimeras by co-transplanting a mixture 

of HSCs and LSCs into wt recipients (Fig. 3.5). In the course of time, the dtg mixed 

BM chimeras developed signs of a CML-like disease whereas the control stg 

chimeras remained healthy. Such signs included enlarged spleen size, increased 

blood cell counts, decreased body weight and an expansion of the mature and 

immature granulocyte population in the blood, spleen and BM (Fig 3.6 - 3.8). 

Although, initial studies were performed in the SCLtTA/BCR-ABL mice, they were 

then recapitulated and further explored in the mixed BM chimeras. In order to 

distinguish the leukemic from the healthy population we made use of wt mice that 

express CD45.2 in the surface of hematopoietic cells, whereas the transgenic cells 

posses the CD45.1 isoform. Of note, the onset of leukemia in the mixed BM 

chimeras took a considerable amount of time. Therefore, we additionally set up a 

CML mouse model with a faster onset of leukemia by making use of retroviruses to 

introduce BCR-ABL into the HSC enriched population Lineage- Sca-1+ c-Kit+ (LSK), 

followed by transplantation into wt recipients (Fig. 3.10). Since a GFP gene is 

attached to the BCR-ABL open reading through an IRES sequence, the leukemic 

cells can be easily followed by GFP detection. This retroviral vector has been 

typically used to transduce BM cells from mice serially treated with 5-Fluoro-Uracil 

(5-FU) as way to eliminate mature blood cells and enrich the BM for stem and 

progenitor cells. However, in order to target a more precise HSC enriched population 

we made use of FACS to transduce sorted LSK cells. Furthermore, through this 

approach, the stress caused on the HSCs by the 5-FU chemotherapy is avoided. 

Following transplantation of the transduced LSKs, the recipient mice develop signs of 

leukemia within weeks rather than months (Fig. 3.11 - 3.12). Although, this model is 
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advantageous from a logistic point of view, particularly taking into account the time 

constraints of these studies, the levels of BCR-ABL induced by the retroviral vector 

are supraphysiological and consequently the fast development of disease does not 

adequately recapitulates the chronic phase of CML. In contrast, the slow onset of 

leukemia in the mixed BM chimeras more physiologically mimics the natural course 

of the disease in patients. 

As a way to get further closer to the patient scenario, similar experiments to the 

ones previously described could be carried out in human cells. To date, the activation 

potential of IFNα has not been demonstrated for neither human HSCs nor LSCs. 

Such experiments are not feasible to be carried out in vitro, since the stem cells need 

to be in their BM niche in order to be activated, and no effect is detected in vitro. 

Therefore, xenotransplantation mouse models could be established by making use of 

immunocompromised mice. However CP-CML human samples have been shown 

quite difficult to engraft in mice. A possible way to circumvent this issue and improve 

the efficacy of transplantation could be through the co-transplantaion of human 

MSCs together with the human primary hematopoietic cells. This approach has been 

recently shown to significantly improve the efficacy of transplantation of primary 

myelodysplastic syndrome (MDS) samples, which had also been known to poorly 

engraft in mice (Medyouf et al., 2014).  

Apart from the engraftment hurdle, the human primary hematopoietic cells would 

reside in a mouse specific environment and thus they might lack essential cues 

provided by the human niche. As a possible way to overcome this potential issue, the 

primary hematopoietic cells could be transplanted in combination with human niche 

cells in an effort to humanize the mouse BM niche environment. 

In order to explore the activation potential of IFNα in vitro, the niche might have to 

be reconstructed in vitro. In such complex effort, not only the different components 

would have to be added but also their spatial distribution might have to be 

considered. Furthermore, the culture conditions should take into account the BM 

environment characteristics such as the low concentration of oxygen. When such 

approach would enable the activation of HSCs in vitro, it would be interesting to 

selectively remove or add different elements of the niche and investigate which ones 

are crucial for the IFNα effect. 

4.1.2 Activation of quiescent LSCs into an active cell cycle through IFNα 

One of the crucial questions to address for a potential combined treatment with 

IFNα and TKI was whether quiescent LSCs could be activated by IFNα and how 

comparable would this effect be to healthy HSCs. In order to challenge the mice with 
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IFNα, we made use of pIC, a synthetic analogue of dsRNA that ultimately leads to 

the production of INFα. Through cell cycle analysis and proliferation assays, we 

demonstrated that upon exposure to IFNα, the LSCs were induced to exit G0, enter 

an active cell cycle and proliferate to a similar extend as the HSCs (Fig. 3.9 A+B). In 

addition, by making use of qRT-PCR we observed an induction of the expression of 

the INFα inducible gene ISG15 in the LSCs to the same levels as in the healthy 

HSCs (Fig. 3.9 C). 

A previous study has suggested that BCR-ABL leads to the degradation of the 

interferon-α/β receptor (IFNAR) and consequently impairs the response to INFα 

(Bhattacharya et al., 2011). However the majority of the study was carried out using 

cell lines and all the assays were performed in vitro. Therefore whether such effect 

would occur in the in vivo setting has remained unclear. Although we did not detect 

impairment in the response to INFα in the CML mouse model, we quantified the level 

of IFNAR expressed on the surface of LSCs as compared to healthy HSCs. In 

accordance with our previous studies, the levels of IFNAR, and therefore the 

potential to respond to IFNα, were comparable between HSCs and LSCs, both at 

steady state and after stimulation with IFNα (Fig. 3.9 D). 

In summary our data indicate that IFNα exposure induces LSCs to exit 

quiescence, enter an active cell cycle and proliferate to a similar extend as healthy 

HSCs. This finding paves the way for exploitation of the potential synergistic effect of 

IFNα and TKI in the treatment of CML. 

4.1.3 Combinatorial treatment: IFNα + Imatinib 

Once we demonstrated that quiescent LSCs could be pushed into an active cell 

cycle through IFNα exposure, we then investigated the potential beneficial effect of a 

combined treatment strategy with imatinib for the treatment of CML. The quiescent 

LSCs would first be activated into an active cell cycle by IFNα, followed by imatinib 

targeted therapy. Assuming that cycling LSCs become susceptible to the cytotoxic 

effect of imatinib, the combined therapy would target not only the bulk of the tumor 

but also the LSCs, avoiding relapse of the disease (Fig. 4.1). 
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Figure 4.1: Combined treatment strategy to target and eliminate the quiescent LSCs.  

Since quiescence has been proposed to render LSCs resistant against TKI treatment, then activating 
the LSCs might be a way to make them susceptible to TKI treatment and therefore lead to the 
eradication not only of the bulk of leukemia but also the LSCs, avoiding relapse of the disease. 

 

The cause for the resistance of LSCs to imatinib has been highly debated, and 

several mechanisms have been proposed. Since LSCs have been reported to 

express higher levels of BCR-ABL than the more differentiated leukemic cells (Jiang 

et al., 2007), the same concentration of imatinib could possibly inhibit BCR-ABL in 

the bulk of the leukemia whereas it would be inefficient within the LSCs. Additionally, 

LSCs where shown to express decreased levels of the uptake transporter OCT1 and 

higher levels of the efflux transporters ABCB1 and ABCG2, which could actively 

reduce the amount of imatinib within LSCs and further contribute to an insufficient 

inhibition of BCR-ABL (Engler et al., 2010; Jiang et al., 2007). Challenging the 

hypothesis of an inefficient inhibition of the BCR-ABL kinase activity within LSCs, 

when primary human CML samples where subjected to high doses of TKI together 

with BCR-ABL knockdown in vitro, although maximal pharmacological inhibition was 

achieved, the LSCs were still able to survive (Hamilton et al., 2012). Interestingly, 

when BCR-ABL inhibition was discontinued, the LSCs were able to proliferate. 

Additionally, similar results were replicated in a CML mouse model (Hamilton et al., 

2012). Altogether, these results suggest that LSC survival is independent of BCR-

ABL kinase activity. 

Several lines of evidence correlate LSC treatment resistance to quiescence, as 

further discussed below (section 4.1.4). In addition, the location or interaction of the 

stem cells with the bone marrow niche have been suggested for playing a role in the 
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resistance, which, interestingly, have been shown to be linked to quiescence in 

normal HSCs. So, if quiescence and the localization in the bone marrow niche 

prevent imatinib from targeting the LSCs, then activating the LSCs might be a way to 

make them susceptible to imatinib treatment. 

In support of this concept, mathematical modelling of the imatinib effect on CML 

cells suggested that the persistence of LSCs following treatment could be explained 

by a selective effect of imatinib exclusively on proliferative leukemic cells (Roeder et 

al., 2006). Additionally, the same mathematical modelling approach suggests that the 

combination of a cell cycle stimulating drug together with imatinib would lead to the 

complete eradication of the CML cells. The determination of the appropriate time 

points between each step is one of the crucial aspects of this combinatorial 

treatment. Recently, another study employing mathematical modeling to investigate 

the potential effect of combining IFNα with imatinib predicted that the more favorable 

combination would consist of a pulsed INFα treatment together with continuous TKI 

administration (Glauche et al., 2012). 

We employed our CML mouse model, in which BCR-ABL expression is targeted 

to the HSC population, to investigate the in vivo outcome of several treatment 

schemes lasting up to 9 days. The optimized combined treatment begins with IFNα 

stimulation followed by continuous imatinib administration in the following days, 

except on the 5th day on which IFNα re-stimulation is performed. The idea was to 

initiate the treatment with the activation of the quiescent LSCs into an active cell 

cycle so that the TKI treatment could then affect all CML cells. Moreover, in the 

middle of the treatment window, a re-stimulation with IFNα would ensure that LSCs 

that remained or returned to quiescence could be activated. 

The combined treatment was analyzed in comparison to either of the agents 

alone as well as to the absence of both. Interestingly, the combined treatment led to 

a significant deeper reduction of the leukemic burden as compared to any of the 

other groups (Fig. 3.13 B). Furthermore, the combined treatment led to a reversion of 

splenomegaly to significant levels as compared to any of the other groups (Fig. 3.13 

C). Additionally, our preliminary studies indicate a survival advantage conferred by 

the combined treatment (Fig. 3.13 D). 

Altogether, our data indicate that a combined treatment approach with IFNα and 

imatinib is more effective for the treatment of CML as compared to any of the agents 

alone. Although the combined treatment was shown to be advantageous, it was not 

surprising that it did not let to the complete elimination of leukemic cells, since the 

mice were only subjected to a short treatment window of 9 days. To investigate 

whether the surviving leukemic cells were able to resist due to permanence in a 
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quiescent state a characterization of their cell cycle status could be performed. 

Furthermore, it would be interesting to investigate whether the reiteration of several 

continuous cycles of our optimized combined treatment scheme would further 

enhance the eradication of leukemic cells. 

Of note, although pIC has been commonly used as cost effective way to 

challenge mice with IFNα, it can also induce the production of other cytokines and 

therefore it would be interesting to test the direct administration of purified IFNα. Also 

it should be noted the IFNα could possibly contribute to the beneficial effect of the 

combined treatment through additional mechanisms apart from the activation of 

LSCs into cell cycle, such as the activation of the immune system against the cancer 

cells (further discussed in 4.1.5). In order to further correlate the benefit of the 

combined treatment to the activation of quiescent LSCs, alternative cell-cycle-

stimulation agents could be tested. By showing that alternative ways of stem cell 

activation enhance imatinib efficacy, a strong indication that activated LSCs become 

susceptible to imatinib would be made. More specifically, it would be particularly 

interesting to explore the potential effect of TPO, since in this approach the stem cell 

activation is detached from an inflammatory setting (Yoshihara et al., 2007). 

4.1.4 Quiescence as a mechanism for LSC treatment resistance 

A similar concept, correlating drug resistance to quiescence, has been 

demonstrated for healthy HSCs. While quiescent HSCs are resistant to the 

chemotherapy drug 5-FU, they become vulnerable when activated into cell cycle by 

IFNα (Essers et al., 2009). The combined treatment depletes the HSC pool, leading 

to a severe pancytopenia and ultimately death of mice (Essers et al., 2009). 

Furthermore, similar rationales have been explored in CML LSCs. Previous work 

has demonstrated that the promyelocytic leukaemia tumour-suppressor protein 

(PML) contributes to the regulation of quiescence in HSCs and LSCs (Ito et al., 

2008). The genetic deletion of PML or its pharmacological inhibition with arsenic 

trioxide (As2O3) in CML mouse models induces an increase in actively cycling LSCs. 

The combination of As2O3 with the chemotherapeutic drug cytaribine led to an 

increased eradication of LSCs in a CML mouse model as well as in primary human 

CML samples in vitro (Ito et al., 2008). It should be noted that As2O3 was also shown 

to activate HSCs and therefore they might also be affected by the combined 

treatment. However the effect appeared to be stronger in LSCs, opening the 

possibility for a therapeutic window. Nonetheless, since both agents do not 

specifically target only the leukemic cells, a careful and precise determination of the 

ideal doses and time-points have to be investigated in such a way that the effect on 
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leukemic cells would be considerable greater than on the healthy cells. 

Several studies have also explored the potential benefit of G-CSF, which has 

also been shown to induce quiescent HSCs into an active cell cycle (Morrison et al., 

1997b; Wright et al., 2001). The in vitro treatment of CML primary human samples 

with G-CSF was shown to induce activation of LSCs and make them more 

susceptible to imatinib (Jorgensen et al., 2006). However, when the efficacy of a 

combined treatment with G-CSF and imatinib was accessed in a clinical trial, no 

significant advantage in eradicating the leukemic cells was detected in the 2-year 

follow up (Drummond et al., 2009). Interestingly, in the 5-year follow up analysis, a 

deeper reduction of the BCR-ABL levels was reported in the combined treatment 

group as compared to the group of patients under continuous imatinib administration, 

suggesting a potential benefit for the combined treatment in the long-term (Gallipoli 

et al., 2013b). It should be noted that this clinical trial was conducted on a relatively 

small number of patients and therefore larger studies are needed to provide a more 

definitive insight into the efficacy of this combined treatment.  

The LSC resistance has also been associated with quiescence in other types of 

leukemia such as acute myeloid leukemia (AML).  By making use of an AML 

xenotransplantation model, G-CSF treatment was shown to induce quiescent LSCs 

to enter an active cell cycle and to render them more susceptible to the 

chemotherapy drug cytarabine (Saito et al., 2010). The combined treatment led to a 

significant reduction of the LSCs and increased survival of the mice, however it was 

not able to completely eradicate the disease. The mouse HSCs were not affected by 

the combined treatment, nevertheless the effect on human HSCs was not elucidated. 

Since both agents have the potential to also act on HSCs, a detailed evaluation of 

the ideal doses and administration timing would be necessary to determine an 

adequate therapeutic window. 

A most recent study suggests that the PPARγ receptor regulates quiescence in 

LSCs through a pathway involving STAT5, HIF2α and CITED2 (Prost et al., 2015). 

Interestingly, the pharmacologically activation of PPARγ with pioglitazone, which 

induces LSCs to exit quiescence, in combination with TKI had a synergistic effect in 

inducing death of LSCs (Prost et al., 2015).  

Altogether, several independent studies point towards the importance of LSC 

quiescence for treatment resistance, further strengthening the rationale explored 

here for combining IFNα and imatinib for the treatment of CML. Others have also 

explored alternative ways of cell cycle stimulation, such as the previously described 

experiments with G-CSF. However, G-CSF is also known to induce mobilization of 

HSCs out of the BM, which puts them under an additional stress situation. In contrast 



 DISCUSSION  

 60  
 

to G-CSF induced activation, IFNα does not induce mobilization of HSCs to the 

periphery. Additionally, IFNα may contribute to the elimination of leukemic cells 

trough additional mechanisms such as immunomodulatory effects.  

4.1.5 Pleiotropic effects of IFNα 

Interferon-α has been known for its role in resistance to viral infections, anti-

proliferative effects, and enhancing innate and adaptive immune responses 

(Belardelli et al., 2002; Stark et al., 1998). The pleiotropic effects of IFNα can be 

explained by its role in regulating the transcription of more than 300 IFN-stimulated 

genes (ISGs), encoding antiviral, host defense, immunomodulatory, apoptotic, cell 

cycle, and transcription factor proteins (de Veer et al., 2001).  

Although IFNα has been recently shown to induce quiescent HSCs into 

proliferation (Essers et al., 2009), in the past it has been demonstrated to have an 

anti-proliferative effect against many cell types in vitro (Borden et al., 2007), 

indicating that IFNα signals are perceived differently depending on the cell context.  

Aside from pushing quiescent LSCs into an active cell cycle, IFNα could also 

contribute to the combined treatment enhanced eradication of leukemic cells through 

additional mechanisms. Since IFNα has been implicated in the activation of the 

immune system, we wondered whether such mechanism was also responsible for 

the improved efficacy of the combined treatment. In order to investigate the potential 

role of IFNα in activating T cells we examined the distribution of the T cell 

compartment immediately after the treatment window. However no significant 

changes were detected in the combined treatment as compared to the other groups 

(Fig 3.14 A). Additionally, instead of examining the distribution of the total T cell 

compartment, we specifically investigated the CD8+ cytotoxic T cells (Fig. 3.14 B). 

Actually, IFNα has been shown to induce proliferation, expansion, and long-term 

survival of mouse and human cytotoxic T cells (Hervas-Stubbs et al., 2010). 

Nonetheless, the combined treatment did not led to significant alterations.  

It should be kept in mind, that the changes in the T cell populations were 

exclusively analyzed 1 day after the treatment window and therefore the analysis of 

additional time-points could give a better understating of the changes across time. 

Additionally, changes in the T cell activity could be investigated by analyzing 

alterations in the expression of markers associated with activated T cells. Also, since 

IFNα has been shown to enhance the activity of natural killer (NK) cells in vitro (Lee 

et al., 2000), and the NK cell antitumor response in mice (Swann et al., 2007), it is 

possible that such a mechanism could also contribute to the beneficial effect of the 

treatment. 
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It would be interesting to investigate whether the combined treatment would 

remain advantageous in the absence of T cells and NK cells. For that, disease could 

be induced in immunodeficient mice lacking those cell populations, such as the NSG 

mice, and the combined treatment could be evaluated in comparison to imatinib-

alone. 

4.1.6 From the bench to the clinic 

Apart from preclinical studies, there is also accumulating evidence from clinical 

trials suggesting a beneficial effect for the combination TKI with IFNα. Interestingly, 

the discontinuation of TKI therapy seems to be more successful when patients were 

previously subjected to interferon treatment (Ross et al., 2013; Rousselot et al., 

2007). Recently, the potential beneficial effect of combining a pegylated long lasting 

form of IFNα together with imatinib has been addressed in clinical trials, and the 

combination therapy seems to be more favorable than imatinib alone, leading to 

significantly higher rates of molecular response (Nicolini et al., 2011; Preudhomme et 

al., 2010; Simonsson et al., 2011). Altogether, the studies suggest that the 

combination of low doses of IFNα with TKI for at least 12 months can be beneficial in 

the achievement of remission. Currently, clinical trials testing the beneficial effect of 

second generation TKIs (nilotinib/dasatinib) in combination with IFNα are underway 

(NCT01657604; NCT01725204). 

Of note, apart from the dose determination, also the adequate administration 

timing of each agent is crucial for maximal synergistic effect. Instead of long 

exposures to the pegylated forms of IFNα, it would be interesting to investigate the 

effect of periodic short acute exposures as a way to render the LSCs susceptible to 

continuous TKI administration. 

4.1.7 Arms race for the treatment of CML 

On a broader perspective, for the past two decades, CML treatment has mainly 

focused on the inhibition of BCR-ABL kinase activity through TKIs. However this 

approach has been continuously counteracted by the occurrence of mutations in the 

BCR-ABL kinase domain. Due to the inability of imatinib to target several BCR-ABL 

kinase domain mutants, second generation TKIs (nilotinib/dasatinib) were developed 

with a higher affinity to the kinase domain. In turn, these TKIs were able to target 

many of the imatinib-resistant mutants. However, the BCR-ABLT315I mutant was 

shown to be resistant even to these TKIs. The arms race continued and the third 

generation TKI ponatinib was developed and shown to overcome the BCR-ABLT315I 

resistance. Nevertheless, the combination of different mutations in the BCR-ABL 
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kinase domain was shown to confer resistance against ponatinib. Therefore, new 

approaches that focus on alternative targets than the kinase domain may benefit the 

treatment of CML patients.  As an example, a recent studied focused on the 

interference with the BCR-ABL oligomerization, which is crucial for its activity 

(Woessner et al., 2015). The inhibition of this event led to inhibition of proliferation 

and induction of apoptosis of BCR-ABL-expressing cell lines in vitro, irrespective of 

the kinase domain mutation status (including compound mutants resistant to 

ponatinib). Furthermore, through the same approach, the colony formation ability was 

inhibited in human primary CML samples, including a sample with the BCR-ABLT315I 

mutation. Although, this was still a very preliminary study carried out only in vitro and 

mainly on cell lines and on a few number of patient samples, it serves as an example 

of potential alternatives to the direct kinase inhibition. Alternatively, therapeutic 

approaches could also focus on the microenvironmental agents that promote 

leukemia development as well as on the modulation of the immune system against 

the leukemic cells. 

 

 

4.2 Impact of leukemic cells on the behavior of wt cells 

4.1.1 Leukemia-induced alteration of the wt cell population distribution and BM 

cytokine repertoire 

Using our mixed BM chimera model, which mimics the coexistence of leukemic 

and healthy cells that occurs in CML patients, we investigated the interplay between 

both populations. More precisely, we wanted to shed light on the impact of leukemic 

cells on the healthy hematopoietic cells. Since in the mixed BM chimeras, the 

leukemic and wt healthy hematopoietic cells have a different CD45 surface marker, 

they can be easily distinguished.   

We have shown that the alterations of the mature cell populations in the spleen 

and BM of leukemic chimeras occurred not only in the leukemic compartment but 

also in the wt cells. More precisely, the expansion of the granulocyte population and 

the decrease of the B cell population observed in leukemic chimeras were detected 

in both the leukemic and wt cells (Fig 3.15 + 3.17). Additionally, the modifications in 

the committed progenitor cell populations that unfold in the leukemic chimera BM, 

such as the expansion of GMPs and decrease in MEPs, were detected not only in 

the leukemic cells but also in their wt counterpart (Fig 3.16).  
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We then investigated possible mechanisms through which the leukemic cells 

could influence the behavior of wt cells. We hypothesized that such effect could be 

mediated by secreted agents from the leukemic clone that could directly affect the wt 

cells or induce changes in the niche that in turn would impact the wt cells. In order to 

detect such potential agents, we performed a cytokine array in the BM supernatant of 

the mixed BM chimeras (Fig 3.18). Several differences were detected, however the 

most prominent and clear hits were a significant increase in IL-1α, IL-1β, MIP-1α, 

MIP-1β and decrease in CXCL9. The array results were then validated by ELISAs 

performed on the BM supernatant (Fig 3.19). Interestingly, some of the cytokines 

detected by our array have also been shown to be present in CML mouse models by 

other groups (Zhang et al., 2012), further validating the quality of our array and 

mouse model. For some of the hits, potential mechanisms through which they might 

contribute to disease progression have been elucidated whereas for others it remains 

unclear.  

Using CML mouse models, BCR-ABL was shown to induce production of IL-6 in 

the expanded myeloid leukemic cells, which in turn blocks the differentiation of CML 

multipotent progenitors into the lymphoid lineage and redirects them into the myeloid 

lineage, creating a paracrine positive feedback loop for CML development (Reynaud 

et al., 2011).  

Interestingly, using a JAK2V617F mouse model for myeloproliferative neoplasms, it 

has been recently shown that IL-1β secreted by mutated HSCs induces damage on 

the BM sympathetic nerve fibers and triggers apoptosis of Schwann cells and MSCs, 

contributing to disease development (Arranz et al., 2014). 

In another study, MIP-1α was shown to be produced by leukemic cells and to 

contribute to the maintenance of LSCs. In the absence of MIP-1α, the LSCs become 

impaired in their ability to propagate disease. Similarly, LSCs have a reduced ability 

to populate the BM of mice lacking CCR1 or CCR5 (receptors through which MIP-1α 

signals). The authors hypothesize that MIP-1α confers a competitive growth 

advantage to the LSCs by displacing the wt cells from their niche and therefore 

making space for the leukemic cells. Of note, upon wt mice injection with MIP-1α, a 

mobilization of the lineage- c-Kit+ progenitors was demonstrated, but not of a specific 

HSC population. The competitive advantage conferred by MIP-1α could also be 

possibly driven by inhibiting the growth of the wt cells. Actually, in the past it has 

been suggested that MIP-1 inhibits the proliferation of HSCs and induces them into 

quiescence. Although in these studies the stimulation with MIP-1 was performed in 

vivo by injecting mice, the read out consisted of in vitro CFU assays. Therefore, the 

population being addressed was mainly consisting of progenitors and not specifically 
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HSCs. Therefore we sought to investigate the in vivo effect of both MIP-1α and MIP-

1β in the cell cycle behavior of the purified LSKCD150+CD48-CD34- HSC population. 

For that, we challenged mice with either MIP-1α or MIP-1β and analyzed the cell 

cycle status and proliferation levels of HSCs. Neither agent induced a significant 

change in the HSC cell cycle or proliferation behavior (Fig. 3.20 A+B). Although no 

effect was detected when mice were under homeostatic conditions, we wondered 

whether in a stress condition where HSCs are induced to proliferate, MIP-1 would 

then interfere with such activation. Thus, we co-challenged mice with MIP-1α/MIP-1β 

and pIC. However, no significant changes were induced by either MIP-1 (Fig. 3.20 

C+D). In order to discard the possibility that no effect of MIP-1α/MIP-1β was 

observed due to an insufficient amount of stimulus we performed the same 

experiments described above but instead of administrating 500 ng per mouse, a high 

dose of 5 μg was used. Nonetheless, even at the high dose of 5 μg, MIP-1α/MIP-1β 

did not have an impact in the HSC cell cycle and proliferation behavior, either at 

steady state or under an inflammatory setting (Fig. 3.21).  Although no effect was 

detected, one should consider that we only tested a single acute exposure and no 

long-term exposures were examined.  

When investigating the potential function of one of the array-acquired hits on the 

wt cell behavior, a long-term, instead of a momentary, stimulation or blockage might 

be required, since the phenotype observed in the mixed BM also develops through a 

considerable length of time. Furthermore, the phenotype could be induced by a 

combination of several cytokines. 

In order to get further insights into the potential role of the array obtained hits in 

the influence of leukemic cells on the behavior of wt cells, mixed BM chimeras could 

be generated under specific KO backgrounds. More precisely, one could investigate 

whether the previously described influence would still occur when a particular 

cytokine gene is deleted from the leukemic cells. Conversely the mixed BM chimeras 

could also be evaluated when the cytokine receptor is KO from the wt cells. 

However, one should keep in mind that such effect could be driven not only by one 

but trough the combination of several agents.  

4.1.2 Leukemic cells impair the function of wt hematopoietic progenitor and 

stem cells 

Since we observed that the leukemic cells modify the distribution of the wt cell 

populations, we investigated whether the function of the wt committed progenitors 

was being altered. Therefore we evaluated the progenitor expansion and 

differentiation capacity of the wt cells from either leukemic or control chimeras 
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through CFU assays. Interestingly, the coexistence with leukemic cells led to an 

impairment of the wt committed progenitors ability to generate colonies (Fig. 3.22). 

Following up on the observed decreased ability of wt committed progenitors to 

expand and differentiate as a result of interacting with leukemic cells, we sought to 

investigate whether the function of HSCs was also being altered. Thus we performed 

transplantation experiments and evaluated the HSC capacity to reconstruct the 

hematopoietic system of lethally irradiated recipients. Interestingly, the wt cells from 

leukemic chimeras showed a significantly reduced engraftment potential and ability 

to generate blood cells as compared to wt cells from control chimeras (Fig. 3.23). 

Since we transplanted total BM cells, we could not exclude the possibility that there 

was a reduced number of HSCs within the wt population of the leukemic versus 

control chimeras. Therefore, we performed additional transplantation experiments but 

instead of total wt BM cells we specifically transplanted the stem and progenitor 

enriched population LSK. Similarly, the wt cells that coexisted with leukemic cells 

showed a reduced ability to engraft and generate blood cells as compared to wt cells 

from control chimeras. 

We wondered whether the wt HSCs from leukemic chimeras had a defective 

homing capacity. Therefore we examined whether the defective phenotype would still 

be observed when the cells are transplanted directly into the BM as opposed to 

intravenously.  

In summary, we have shown an unexpected influence of the leukemic cells on 

the behavior of the wt healthy cells. More precisely, the coexistence with leukemic 

cells impairs the expansion and differentiation potential of wt progenitors as well as 

the function of HSCs.  

To gain further insights, it would be interesting to conduct transplantation 

experiments with more precise and purer progenitor (for instance, differentiate 

between MPPs and other committed progenitors) and HSC populations (such as 

LSKCD150+CD48-C34-) in order to differentiate the effect in each precise population. 

Additionally, limiting dilution transplantation assays could be performed in order to 

more precisely quantify the impact of leukemic cells in functional HSC frequency. 

Moreover, single cell HSC transplantation assays could elucidate the impact of 

leukemic cells in the HSC pool heterogeneity and differentiation bias.  

To better understand the leukemia-induced changes on the wt cells, the gene 

expression profile of precise HSC and progenitor populations could be investigated 

and compared to the control healthy chimeras. 

To implicate the array-obtained hits in the leukemia-induced effect on wt cells, 

one could investigate whether the genetic deletion or pharmacological inhibition of a 
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particular cytokine (on the leukemic cells) or the corresponding receptor (on the wt 

cells) would revert the phenotype. However, as previously mentioned, the effect 

might be driven by a combination of several agents and a long-term exposure (in the 

case of the pharmacological approach) might be required. 

Importantly, the relevance and quality of our data have been strengthened by a 

most recent study, where leukemic cells were also shown to alter normal 

hematopoiesis and, interestingly, inhibiting IL-6 attenuated the effect (Welner et al., 

2015). 

 

Altogether, the present studies reveal for the first time the ability of INFα 

exposure to push LSCs out of quiescence, and underline the potential advantage of 

combining INFα with TKI for the treatment of CML patients. Such a combined 

treatment could potentially avoid relapse of the disease by rendering the otherwise 

resistant LSCs susceptible to TKI. Additionally, the present work sheds light on the 

detrimental impact of the leukemic cells on the function of wt progenitors and HSCs. 

By interfering with this process, the leukemic cells may lose competitive advantage 

and become impaired in their ability to propagate disease.  
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5. METHODS 

 

5.1 Molecular Biology 

5.1.1 Bacterial Work 

5.1.1.1 Transformation of Eschericha Coli 

Chemically competent E. Coli cells (Stbl3) were used for the amplification of 

plasmids by chemical transformation. Therefore, the cells were thawed on ice and 

incubated with a small amount of plasmid DNA for 30-40min on ice. After a short 

heat shock for 45sec at 42°C in a water bath and a cool down on ice for 2min, 200µl 

of S.O.C medium was added. The mix was then incubated at 37°C and slight shaking 

for another hour. Afterwards, some of cell suspension was spread on LB agar plates 

containing the required antibiotics. Plates were incubated at 37°C overnight for 

bacterial growth. 

5.1.1.2 Bacterial liquid cultures 

Single colonies were picked and transferred to 2ml of LB medium with ampicillin. 

These small-scale cultures were incubated over night at 37°C with shaking. For 

large-scale liquid cultures, the small-scale liquid cultures were transferred to 200ml of 

LB medium. Subsequently, the cultures were incubated over night at 37°C with 

shaking.  

5.1.1.3 Preparation of plasmid DNA from Eschericha Coli 

Plasmid preparation from large-scale bacterial liquid cultures was performed 

using the Qiaprep Plasmid Maxi Kit provided by Qiagen following the manufacturer’s 

instruction. The DNA was eluted with 200µl 1x TE buffer and stored at -20°C. 

5.1.2 DNA work 

5.1.2.1 Preparation of genomic DNA for genotyping 

PCR Tail Lysis reagent was added to a piece of mouse tail tip and incubated 

according to the manufacturer’s instructions.   
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5.1.2.2 Genotyping PCR 

Genomic DNA from mice was amplified by polymerase chain reactions using the 

Taq polymerase. The primers used are listed in the material part 6.4 and the reaction 

mix composed as followed: 

BCR-ABL 

Component Volume (total 25µl) 

H2O 18,95µl 

Home-made buffer (10x) 2,5µl 

BSA (10mg/ml) 0,25µl 

dNTP's (10mM) 1µl 

BCR/ABL s (10µM) 0,5µl 

BCR/ABL as (10µM) 0,5µl 

Home-made Taq polymerase 0,3µl 

DNA 1µl 

 

SCLtTA 

Component Volume (total 25µl) 

H2O 15,55µl 

Invitrogen buffer (10x) 2,5µl 

MgCl2 (50mM) 0,75µl 

DMSO 2,5µl 

dNTP's (10mM) 1µl 

Scl enh wt R (10µM) 0,5µl 

Scl enh wt F (10µM) 0,5µl 

tTA (10µM) 0,5µl 

Invitrogen Taq polymerase 0,2µl 

DNA 1µl 

 

The reactions were as followed: 

Transgene Amplification 

BCR-ABL 95°C, 2min 

 94°C, 45sec 

 58°C, 1min 

 72°C, 1min 

 72°C, 5min 

40x 
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SCLtTA 94°C, 5min 

 94°C, 40sec 

 59°C, 1min 

 72°C, 1min 

 72°C, 10min 

 

The amplified PCR products were analyzed by 1% agarose gel electrophoresis with 

expected results were as followed: 

BCR-ABL  tg: 500 bp 

SCLtTA wt:  250 bp 

  tg:  750 bp 

5.1.3 RNA work 

5.1.3.1 RNA isolation 

For qPCR samples, RNA was isolated with the Arcutus PicoPureTM RNA Isolation 

Kit after FACS sorting the cells directly in 50µl extraction buffer delivered with the kit. 

All steps were carried out according to the manufacturer’s protocol, including a DNA 

digestion step with RNAse-free DNAse. 

5.1.3.2 cDNA Synthesis 

RNA was reverse transcribed with the SuperScript VILO cDNA synthesis kit 

(Invitrogen) according to manufacturer’s protocol. After completion, cDNA samples 

were diluted in RNAse-free water before use for quantitative real-time PCR. 

5.1.3.3 Quantitative real-time PCR 

Quantification of mRNA expression was performed using the ViiATM 7 Real-Time 

PCR System (Applied Biosystems). Technical duplicates of all samples were 

performed in 384-well plates with primer concentrations of 0,5µM and a 2x DNA-

polymerase-SYBR-Green master mix. RNA expression data were quantified 

according to the comparative ΔΔ-ct method and normalized to RNA levels of the 

house keeping genes Sdha and Oaz1. 

 

 

 

 

40x 
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The qPCR program was as followed: 

Temperature Time 

95°C 10min 

95°C 15sec 

60°C 60sec 

 

 

5.2 Cell and Virus Work 

5.2.1 Cell culture conditions 

All experiments with eukaryotic cells were performed under sterile conditions, and 

cells were cultivated at 37°C, 5% CO2 and 95% humidity. All media and additives 

were warmed to 37°C prior to use. When the cells reached 80% confluency, they 

were splitted using trypsin-EDTA and distributed into new dishes containing fresh 

media. A list of the media used for cell culture experiments is shown below: 

Cell line Medium FCS Antibiotics 
Further 

additives 
Dish coating 

Phoenix-GP DMEM 10% 1% P/S 1% L-glutamine 0,1% gelatine 

3T3 DMEM 10% 1% P/S 1% L-glutamine - 

5.2.2 Transient transfection of Phoenix-GP cells for virus production 

For retrovirus production, the human embryonic kidney (HEK) cell line 293T-

derived Phoenix-GP cells and the Calcium Phosphate Transfection Kit were used. 

The transient transfection was performed according to the manufacturer’s 

instructions. In detail, on the day of transfection when the cells reached 70-80% 

confluence in 10cm cell culture dishes, the transfection mix was prepared (8µg 

MSCV BCR-Alb-IRES-eGFP retroviral plasmid, 10µg Gag/Pol packaging plasmid, 

3µg envelope plasmid and 2M CaCl2 in sterile water at a final volume of 300µl), 

mixed thoroughly with 300µl 2x HEPES Buffered Saline (HBS, provided with the kit) 

and added to the cells. The incubation time was 45min at room temperature, during 

which the medium of the cells was replaced with fresh DMEM containing 25µM of 

chloroquine to increase the transfection efficiency. Afterwards, the transfection 

mixture was added drop-wise to the cells, which then were incubated overnight. The 

next morning, the culture medium was replaced by fresh medium. On the evening of 

the same day, the culture medium was switched to collection media (normal growth 

medium containing 1% HEPES buffer and having a pH of 7,8 – 7,9).  

40x 



 METHODS  

 71  
 

5.2.3 Retrovirus harvest 

The retroviral supernatant was collected 48 hours post transfection, stored at 4°C 

and fresh collection medium was added to the cells for another 6-8 hours. Both 

harvests were combined and filtered through a 0,45µm filter. The virus particles were 

concentrated by ultracentrifugation (17.000 x g, 4°C overnight), and stored at -80°C 

after resuspension in IMDM. 

5.2.4 Virus Titration 

In order to assess the efficiency of the retrovirus production and to calculate the 

infectious units received within the process, a limiting dilution transduction series with 

murine 3T3 cells was conducted. Therefore, the cells were cultured as described in 

section 5.2.1 and seeded in 6-well plates with a concentration of 100000 cells per 

well. The next day, cells of two wells were collected, combined and counted to 

estimate the average number of cells to be transduced. A limiting dilution series of 

the retrovirus was prepared in growth medium containing 8µg/ml polybrene, and 

added to the wells. The next morning, this transduction medium was switched to 

fresh growth medium lacking polybrene. After an incubation time of 36-48 hours, the 

transduced cells were harvested and re-suspended in PBS containing 2% FCS for 

analysis using flow cytometry (see section 5.3.5). The dilution factor (DF), the 

frequency of transduced cells, the count noted on the day of transduction and the 

total volume were needed to calculate the infectious units (IU) as followed: 

(
DF x frequency of transduced cells x counted cells

volume
)  = IU/ml  

5.2.5 Transduction of murine LSK cells 

FACS-isolated LSK cells were pre-stimulated in serum-free StemPro 34 medium 

containing StemPro supplement, 1% L-glutamine, 1% P/S, 50ng/ml murine SCF, 

50ng/ml murine TPO, and 50ng/ml murine Flt3-L for 48h on suspension culture 

plates, followed by retroviral transduction in 6-well cell culture plates pre-coated with 

4µg/cm2 retronectin. In detail, approximately 5 x 106 IU/well of virus was mixed with 

pre-stimulation medium, added to the wells and spinned down for 45min at 2500rpm, 

24°C, to immobilize the virus on the pre-coated plates. Afterwards, appropriate 

volumes of thoroughly re-suspended cells were added onto each well of the virus-

coated plate. 8h later, a second transduction round was conducted, wherein the 

same amount of virus was added to each well. Cells were harvested two days after 
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transduction, and live GFP+ cells were isolated by FACS sorting and used in 

transplantation experiments. 

 

 

5.3 Animal experiments 

5.3.1 General procedures and housing 

All mice were housed in individually ventilated cages under specific pathogen-

free conditions at the German Cancer Research Center (DKFZ, Heidelberg) 

according to international standard conditions with a 12 hours dark, 12 hours light 

cycle with free access to water and food. Animal handling and experimentation was 

performed in agreement with National Institute of Health (NIH) guidelines and 

approved by local authorities (Regierungspräsidium Karlsruhe). 

5.3.2 Mouse strains 

The SCLtTA;BCR/ABL mice were obtained from the laboratory of Dr. Steffen 

Koschmieder and kept on a FVB/N background (Koschmieder et al., 2005). The 

transgenic mice were kept on DOX in the drinking water (2 g/L) from the moment 

they were born until they reached adulthood (8-10 weeks old). The FVB/N wt mice 

were used as recipients for the generation of mixed BM chimeras. For the generation 

and transplantation of BCR-ABL transduced cells, C57Bl/6 mice were used. 

5.3.3 Treatment 

For the activation of quiescent HSCs, 5mg/kg pIC was diluted in PBS and 

injected intraperitoneally (i.p.) 20h before analysis. For proliferation assays, mice 

were injected i.p. with BrdU (18mg/kg) 14h prior to analysis. For Imatinib treatment, 

mice were injected i.p. with a dose of 100mg/kg daily (diluted in PBS). For all 

treatments, control mice received an equal volume of PBS. For the combined 

treatment, mice were daily treated with Imatinib for 9 days except on the 1st and 5th 

day when they were injected i.p. with pIC. The treatment was initiated 26 days after 

BM transplantation. 

5.3.4 Preparation of bone marrow, spleen and peripheral blood serum 

Mice were sacrificed by cervical dislocation and tibiae, femura, sternum, coxae 

and vertebral column were collected as source for bone marrow cells. The bones 

were cleaned and crushed in ice-cold RPMI-1640 medium supplemented with 2% 
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FCS, after which the cells were filtered through a 40µm nylon filter. Also the spleen 

was disintegrated in RPMI-1640 medium supplemented with 2% FCS, the cells 

resuspended by pipetting up and down and filtered through a 40µm nylon filter. 

Viability and number of bone marrow and spleen cells was assessed with the Vi-Cell 

Automated Cell Viability Analyzer. 

For lineage depletion, bone marrow cells were incubated for 30 minutes on ice 

with lineage antibodies against CD4, CD8, CD11b, B220, Gr-1 and TER119 diluted 

in RPMI-1640 medium with 2% FCS. Afterwards, the cell suspension was washed 

with PBS/2%FCS, centrifuged for 5min at 16000 rpm, 4 °C, and the lineage positive 

cells were removed with Dynabeads® Magnetic Beads. 

Peripheral blood was collected from the vena facialis into EDTA coated tubes. 

The blood cells were counted using the Hemavet 950 or used for FACS analysis. 

Therefore, the erythrocytes were lysed in 1ml of ACK buffer according to the 

manufacture’s protocol, washed and stained as described in section 5.3.5. 

5.3.5 Fluorescence activated cell staining and sorting (FACS) 

All antibodies for cell staining and sorting were titrated with whole bone marrow 

before using them in experiments. In general, the antibodies were diluted in a mixture 

of 50% PBS (with 2% FCS) and 50% 24G2 hybridoma cell line supernatant to 

prevent unspecific binding. Only for analysis of CD16/32 expression the respective 

antibody was diluted only in PBS/FCS. Cells were incubated with antibody dilution for 

30min on ice. Incubation with biotin-coupled antibodies was followed by an additional 

incubation step of 20min on ice with streptavidin conjugates. 

All cell suspensions were filtered through a 70 µm nylon mesh filter prior to FACS 

analysis, which was performed using the BD LSRII or BD LSR Fortessa with 350 nm, 

405 nm, 488 nm, 561 nm, and 640 nm lasers. For cell sorting, the BD Aria I, Aria II 

and Aria III were used. For all flow cytometeric applications, compensation using 

OneComp eBeads stained with single antibodies and the auto-compensation tool of 

the BD FACSDiva software was performed. Data were analyzed with the FlowJo 

software. 

5.3.6 Transplantation 

For the generation of mixed BM chimeras, FVB/N recipient mice were lethally 

irradiated (2 x 475 rad) before intravenously (i.v.) receiving 5 x 106 bone marrow cells 

(diluted in 200µl of PBS) with a 1:1 ratio of each genotype. A FACS analysis of the 

injected cells was performed in order to assess the input ratio, and the mixed blood 

chimerism was monitored every two weeks by FACS analysis. During the first three 
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weeks after transplantation, all mice received antibiotic (Cotrim) containing water. 

Transgenic and wt cells were distinguished by using mice with different CD45 

isoforms, CD45.1 and CD45.2, respectively. For the BCR-ABL transduced cells, 

C57BL/6J mice with the CD45.1 isoform were used for transduction whereas 

C57BL/6J mice with the CD45.2 isoform were used as wt. In this case, C57BL/6J 

(CD45.2) lethally irradiated recipients (2 x 475 rad) were i.v. injected with 1.5 x 104 

LSK cells, unless stated otherwise.  

5.3.7 Cell Cycle and Proliferation Analysis 

Assessment of the cell cycle activity and proliferation profile of HSCs was 

performed by cell surface staining as described in section 5.3.5, combined with 

intracellular DNA Ki67-Hoechst staining or BrdU incorporation assays, respectively. 

For the Ki67-Hoechst analysis, cells were fixed with Cytofix/Cytoperm buffer after cell 

surface staining, then washed with 1x Permwash and subsequently stained with anti-

Ki67-FITC or anti-Ki67-APC at 4°C overnight. Cells were co-incubated with 25µg/ml 

of Hoechst 33342 10min before analysis. 

For the BrdU analysis, mice were injected i.p. with 18mg/kg BrdU 14h before 

sacrifice. Bone marrow cells were isolated and stained as described in section 5.3.5.  

Fixation, DNAse I treatment and intra-cellular BrdU staining of the cells were 

performed according to the manufacturer’s protocol of the BD PharmigenTM FITC or 

APC BrdU Flow Kit. 

5.3.8 Cytokine Array & ELISA 

Femura and tibiae were crushed in 450μl RPMI, and the BM supernatant was 

used for the cytokine array or ELISAs according to manufacturer’s instructions (see 

material section 6.2). The SpectraMax M5 Microplate Reader from Molecular 

Devices was used to measure the absorbance. 

5.3.9 Colony-forming assay 

Bone marrow cells were prepared and stained as described in section 5.3.5. 500 

LSK sorted cells were plated in 1ml of Methocult 3434® into 35mm tissue culture 

dishes as duplicates and incubated in a humidified atmosphere at 37°C and 5% 

CO2. After 7d, colonies were counted using an inverted microscope. 
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5.4 Statistical Analysis 

 

Data plotted in figures are mean ± standard deviation (SD) generated with the 

GraphPad Prism® software. Statistical analyses were performed using unpaired two-

tailed student’s t-test. Statistical significance is indicated by *p < 0.05, **p < 0.01, ***p 

< 0.001.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 MATERIAL  

 76  
 

6. MATERIAL 

 

6.1 Antibodies 

Antigen Clone Label Distributor 

B220 RA3-6B2 PECy5, PECy7 eBioscience 

B220 RA3-6B2 Biotin BioLegend 

CD4 GK1.5 PECy7 eBioscience 

CD4 GK1.5 Biotin BioLegend 

CD8a 53-6.7 PECy7 eBioscience 

CD8a 53-6.7 Biotin BioLegend 

CD11b M1/70 PECy7 eBioscience 

CD11b M1/70 Biotin BioLegend 

CD34 RAM34 FITC, Alexa700 eBioscience 

CD45.1 A20.1 FITC eBioscience 

CD45.2 104 Pacific Blue BioLegend 

CD45.2 104 Alexa700 BD Pharmingen 

CD48 HM48-1 PE eBioscience 

CD48 HM48-1 Pacific Blue BioLegend 

CD150 TC15-12F12.2 PECy5, APC BioLegend 

CD117 (c-Kit) 2B8 PE, APC eBioscience 

Gr-1 (Ly6G) RB6-8C5 PE, PECy7 eBioscience 

Gr-1 RB6-8C5 Biotin BioLegend 

Ki67 B56 FITC, APC BD Pharmingen 

Sca-1 D7 APC-Cy7 BD Pharmingen 

Streptavidine - PETexasRed BD Pharmingen 

TER-119 TER-119 PECy7, APC-Cy7 eBioscience 

TER-119 TER-119 Biotin BioLegend 

 
 

6.2 Kits 

Kit Distributor 

ABI Power SYBR Green Master Mix Applied Biosciences 

APC BrdU Flow Kit BD Pharmingen 

Arcturus® PicoPure® RNA Isolation Kit Life Technologies 

Calcium Phosphate Kit Invitrogen 
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DNAse Set, RNAse-free Qiagen 

FITC BrdU Flow Kit BD Pharmingen 

Mouse IL-6 ELISA Kit R&D Systems 

Mouse IL-1 beta/Il-1F2 Quantikine ELISA Kit R&D Systems 

Mouse MIP-1 alpha Quantikine ELISA Kit R&D Systems 

Mouse MIP 1 beta Quantikine ELISA Kit R&D Systems 

Mouse Cytokine Antibody Array, Panel A R&D Systems 

QIAGEN Plasmid Mega Kit  Qiagen 

SuperScript® VILOTM cDNA Synthesis Kit Life Technologies 

 
 

6.3 Oligonucleotides for genotyping 

Product Primer Sequence (5‘  3‘) 

BCR-ABL Sense GAGCGTGCAGAGTGGAGGGAGAAC 

 Anti-sense GGTACCAGGAGTGTTTCTCCAGACTG 

SCLtTA SCLenh wt R AGAACAGAATTCAGGGTCTTCCTT 

 SCLenh wt F GGGCAGTTGATGTGTTTGTG 

 tTA5 F TTTCGATCTGGACATGTTGG 

 
 

6.4 qRT-PCR primers 

Gene Direction Sequence (5‘  3‘) 

Isg15 fwd TCCTTAATTCCAGGGGACCTA 

Isg15 rev ACCGTCATGGAGTTAGTCACG 

Oaz1 fwd TTTCAGCTAGCATCCTGTACTCC 

Oaz1 rev GACCCTGGTCTTGTCGTTAGA 

Sdha fwd AAGTTGAGATTTGCCGATGC 

Sdha rev TGGTTCTGCATCGACTTCTG 

 
 

6.5 Cell lines 

Cell line Distributor 

Phoenix-GP (HEK 293T-derived) cell line ATCC 

3T3 (murine embryonic fibroblast) cell line ATCC 

E. coli Stbl3 Chemically Competent Cells Life Technologies 
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6.6 Mice 

Mouse Distributor 

C57Bl6/J Harlan Laboratories 

FVB/N Charles River 

SCLtTA/BCR-Abl Dr. Steffen Koschmieder 

 
 

6.7 Enzymes 

Enzyme Distributor 

DNase I Qiagen 

Proteinase K Thermo Scientific 

Taq Polymerase Invitrogen 

 
 

6.8 Reagents and Consumables 

Chemical/Reagent Distributor 

6-well cell culture plates Corning 

ACK buffer Life Technologies 

Chloroquine AppliChem 

Cytox/CytopermTM Buffer BD Biosciences 

Dulbecco’s modified Eagle’s medium (DMEM)  Sigma 

Dynabeads® Magnetic beads Invitrogen 

Fetal calf serum (FCS)  Invitrogen 

Filters (0.45 μm) Millipore 

Gelatine-coated (0,1%) tissue culture dishes  Sigma 

HEPES buffer Life Technologies 

Hoechst 33342 Molecular Probes 

Imatinib Mesylate Selleckchem 

Iscove’s modified Dulbecco’s medium (IMDM) Life Technologies 

LB-Agar  Merck 

LB medium Merck 

L-Glutamine Invitrogen 

Methocult 3434 Stem Cell Technologies 

Murine Flt3-L PeproTech 

Murine TPO PeproTech, 
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Murine SCF PeproTech 

Nylon filter (40 µm) BD Biosciences 

Nylon filter (70 µm) BD Biosciences 

OneComp eBeads eBioscience 

PCR Tail Lysis Reagent Peqlab 

Penicillin / Streptomycin (P/S)  Invitrogen 

Polybrene Sigma 

Retronectin TaKaRa 

RPMI-1640 medium Sigma 

S.O.C medium Invitrogen 

StemPro 34 medium Invitrogen 

StemPro supplement Invitrogen 

Suspension culture plates Cellstar 

Tissue culture dishes (35 mm)  Stem Cell Technologies 

Trypsin-EDTA solution  Life Technologies 

 
 

6.9 Instruments 

Equipment Distributor 

Aria I, Aria II, Aria III BD Biosciences 

Centrifuge (5810R)  Eppendorf 

Hemavet 950 Drew Scientific 

LSRII and LSR Fortessa BD Biosciences 

SpectraMax M5 Microplate Reader Molecular Devices 

Vi-Cell Automated Cell Viability Analyzer Beckmann 

ViiATM 7 Real-Time PCR System Applied Biosystems 

 
 

6.10 Software 

Software Distributor 

Endnote  Thomson  

FlowJo Tree Star 

GraphPad Prism® GraphPad Software Inc. 

Pubmed  http://www.pubmedcentral.nih.gov  
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7.2 Abbreviations 

 

2G Second generation 

ABL Abelson murine leukemia viral oncogene homolog 

BL6 C57BL/6 mice 

AKT Protein kinase B (PKB) 

AlloSCT Allogeneic stem cell transplantation 

APC Allophycocyanine 

APC-Cy7 Allophycocyanine-cyanine 7 

BC Blast crisis 

BCR Breakpoint cluster region 

BM Bone marrow 

BMT Bone marrow transplantation 

BrdU 5-bromo-2-deoxyuridine 

CCyR Complete cytogenetic response 

CD Cluster of differentiation 

CFU Colony forming unit 

CHR Complete hematological response 

c-Kit V-kit Hardy-Zuckerman 4 feline sarcoma cellular homologue 

CLP Common lymphoid progenitor 
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CML Chronic myeloid leukemia 

CMP Common myeloid progenitor 

CP Chronic phase 

CSC Cancer stem cells 

DC Dendritic cells 

DNA Deoxyribonucleic acid 

DOX Doxycycline 

dsRNA Double-stranded RNA 

dtg Double-transgenic 

ECs Endothelial cells 

ELISA Enzyme-linked immunosorbent assay  

ELN European Leukemia Net 

EO Eosinophils 

ERK Extracellular-signal-regulated kinase 

FACS Fluorescence-activated cell sorting 

Flt-3 Fms-like tyrosine kinase 3 

FGF2 Fibroblast growth factor 2 

FISH Fluorescent in situ hybridization 

FITC Fluorescein isothiocyanate 

GFP Green fluorescent protein 

GMP Granulocyte-macrophage progenitor 

HSC Hematopoietic stem cell 

i.f. Intrafemoral 

i.p. Intraperitoneal 

i.v. Intravenous 

IFN Interferon 

IFNAR Interferon-α/β receptor  

IFNα Interferon-alpha 

IL Interleukin 

ISG Interferon-alpha inducible genes 

IVC Individually ventilated cage 

JAK Janus kinase 

LSC Leukemic stem cell 

LT-HSC Long term hematopoietic stem cell 
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LY Lymphocytes 

MEK Mitogen-activated protein kinase kinase ( MAP2K, MAPKK) 

MEP Megakaryocyte-erythrocyte progenitor 

MIP Macrophage inflammatory protein 

MkP Megakaryocyte progenitor 

MMR Major molecular response 

MO Monocytes  

MPP Multipotent progenitor 

mRNA Messenger RNA 

MSC Mesenchymal stem cell 

mTOR Mammalian target of rapamycin 

NE Neutrophils 

OBs Osteoblasts 

PB Pacific blue 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PE Phycoerythrin 

PE-Cy5 Phycoerythrin-cyanine 5 

Ph Philadelphia chromosome 

PI3K Phosphoinositide 3-kinase 

pIC Polyinosinic-polycytidylic acid 

qRT-PCR Quantitative real-time polymerase chain reaction 

RAF Rapidly accelerated fibrosarcoma 

RAS Rat sarcoma 

RBCs Red blood cell 

ROS Reactive oxygen species 

RT-PCR Reverse transcriptase-polymerase chain reaction 

Sca-1 Stem cell antigen 1 

SCF Stem cell factor 

SCL Stem cell leukemia 

SDHA Succinate dehydrogenase complex subunit A 

SLAM Signaling lymphocytic activation molecule 

STAT1 Signal transducer and activator of transcription 1 

stg Single-transgenic 
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ST-HSC Short term hematopoietic stem cell 

TKI Tyrosine kinase inhibitor 

TPO Thrombopoietin 

TRE Tetracycline Response Element 

tTA Tetracycline transactivator 

UMRD Undetectable minimal residual disease  

USA United States of America 

WBC White blood cells  

WT Wild-type 
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