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Abstract

Background: Gene expression profiling (GEP) has significantly contributed to the elucidation of the molecular
heterogeneity of multiple myeloma plasma cells (MMPC) and only recently it has been recommended for risk
stratification. Prior to GEP MMPC need to be enriched resulting in an inability to immediately freeze bone marrow
aspirates or use RNA stabilization reagents. As a result in multi-center MM trials sample processing delay due to
shipping may be an important confounder of molecular analyses and risk stratification based on GEP data.

Results: We compared GEP data of 145 in-house and 246 shipped samples and detected 3301 down-regulated and
3501 up-regulated genes in shipped samples. For 3994 genes we confirmed differential expression in an independent
set of 85 in-house and 97 shipped samples. Differentially expressed genes were enriched in processes like ribosome
biogenesis, cell cycle, and apoptosis. Among GEP based risk predictors the IFM-15 seemed to underestimate high risk
in shipped samples, whereas the GEP70 and the EMC-92 gene signatures were more robust. In order to provide a tool
to assess the “shipping effect” in public repositories, we generated a 17-gene predictor for shipped samples with a
10-fold cross validation error rate of 0.06 for the training set and an error rate of 0.15 for the validation set.

Conclusion: Sample processing delay significantly influences GEP of MMPC, implying it should be avoided if samples
were used for risk stratification.
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Background
Multiple myeloma (MM) is characterized by the accumu-
lation of monoclonal malignant plasma cells (PC) in the
bone marrow (BM) resulting in bone destruction, renal
impairment, immunosuppression and hypercalcemia [1].
The implementation of high dose-chemotherapy and
the introduction of immunomodulatory agents and
proteasome-inhibitors improved the outcome of MM
patients [2, 3]. Nevertheless, MM remains a disease with
an unpredictable clinical course mainly attributable to its
composition of a variety of molecular subtypes with a
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distinct pathogenesis [4]. Gene expression profiling (GEP)
has significantly contributed to the elucidation of the
molecular heterogeneity of MM [4–6] and only recently
it has been recommended for risk stratification [7]. The
University of Arkansas forMedical Sciences (UAMS) total
therapies 4 (low risk) and 5 (high risk) and the mSMART
algorithm used by the Mayo Clinic [8] are examples of
risk-adapted strategies based on molecular data. Impor-
tantly, prior to expression analyses MMPCs need to be
enriched preventing the immediate freezing of bone mar-
row aspirates or the use of RNA stabilization reagents
after removal from the patient. As a result in multi-center
MM trials utilizing central sample processing delay due
to shipment (“shipping delay”) may have an important
impact on gene expression. In order to determine the
impact of “shipping delay” on MMPC gene expression
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we analysed a set of 573 newly diagnosed German MM
patients including 230 in-house and 343 shipped samples.

Methods
Expression data
The impact of sample shipment on gene expression was
investigated in publicly available GEP data of newly diag-
nosed MM patients treated in the German-Speaking
Myeloma Multicenter Group (GMMG) HD4 and MM5
trials. The trials were done in accordance with the Dec-
laration of Helsinki (Version 1996) and approved by the
ethics committee Heidelberg and the local ethics com-
mittees of all other participating centers. The names
of the participating centers and the ethics committees
that granted approval to this study can be found in
the Additional file 1 “participating_centers.xls”. Written
informed consent were obtained from patients for treat-
ment, sample procurement and publication of research
findings. The GEP datasets are deposited in ArrayExpress
(accession number E-MTAB-2299) and Gene Expression
Omnibus GSE19784. All samples had been processed in
a central laboratory in Heidelberg and include 85 HD4
and 145 MM5 in-house and 97 HD4 and 246 MM5
shipped samples. External samples where usually shipped
and processed within 24 hours whereas in-house samples
were processed the same day. Further prediction of sam-
ple status was done on publicly available data deposited
at Gene Expression Omnibus under the accession num-
bers GSE21349 (UK) and GSE24080 (UAMS) and the
Multiple Myeloma Research Consortium (MMRC) Refer-
ence Collection downloaded from the Multiple Myeloma
Genomics Portal (http://www.broadinstitute.org/mmgp/
home). From the MMRC dataset we selected the samples
that were marked as ’untreated’ (n = 122).

Expression and statistical analysis
Main analyses were undertaken using R (v3.0) software.
As chip definition file (CDF) we used the Affymetrix
U133 Version 2.0 plus array custom (CDF) (v16) map-
ping to Entrez genes (http://brainarray.mhri.med.umich.
edu/Brainarray/Database/CustomCDF/). Expression data
were normalized using GC-RMA. Unsupervised com-
plete linkage hierarchical clustering was performed using
centered Pearson correlation distance. Differential gene
expression was assessed using empirical Bayes statistics in
linear models for microarray data [9]. Predictor for ship-
ment status was generated on the MM5 cohort using pre-
diction analysis for microarrays (PAM) [10]. The predictor
was saved using a documentation-by-value strategy [11]
and subsequently applied to samples from the HD4, UK,
UAMS and MMRC cohorts. Pathway enrichment anal-
ysis was done using WebGestalt [12]. The gene expres-
sion based proliferation index (GPI) [13], the French
Intergroupe Francophone du Myelome (IFM) 15 score

(IFM-15) [14], the GEP70 [15], the EMC-92 [16], as well
as molecular classifications [5, 6] were obtained as previ-
ously described. Fisher’s exact test was used to compare
the subgroup distribution between cohorts. Overall sur-
vival (OS) of patients treated in the GMMG HD4 trial
was calculated from randomization until death from any
cause. For the HD4 the trial design and patient charac-
teristics have recently been described [17]. Estimation of
OS distribution was performed by the method of Kaplan
and Meier. The log-rank test was used for comparisons
of OS curves. The Cox proportional hazards model was
used to access the impact of prognostic factors. If appli-
cable, results were corrected for multiple testing using
the Benjamini-Hochberg method. In all statistical tests,
an effect was considered statistically significant if the
P-value of its corresponding statistical test was not greater
than 5%.

Cytogenetic analyses
Fluorescence in situ hybridization and ploidy classifica-
tion were performed as previously described [18].

Results
Impact of shipping on gene expression
We analyzed the impact of time delay between BM aspi-
ration and cell sorting on gene expression in 391 samples
of the GMMG MM5 multi-center trial including 145 in-
house and 246 shipped samples. Applying the Goeman’s
global test [19] on the MM5 set showed that “ship-
ping delay” significantly impacted global gene expression
(P<0.001). Unsupervised hierarchical clustering showed a
separation into two main clusters. In-house and shipped
samples were not evenly distributed across the two clus-
ters with in-house and shipped samples showing an
enrichment in cluster 1 and 2, respectively (P<0.001,
Fig. 1a). A set of 6802 genes (40%) were significantly
differentially expressed between the two conditions. In
shipped samples a total of 3301 genes were down-
regulated and 3501 genes were up-regulated (Fig. 1b,
Additional file 2: Table S1). Of these genes 2040 had a >

1.5-fold and 826 a > 2-fold difference in expression level.
The highest fold change with a value of 13.5 was observed
for TUBB2A that was up-regulated in shipped samples.
The 10 most up- and down-regulated genes are presented
in Table 1. Genes that were down-regulated in shipped
samples showed an enrichment for 25 KEGG pathways
(Additional file 3: Table S2). Up-regulated genes were
enriched for 42 pathways (Additional file 3: Table S2).
These included neurotrophin and the linked MAPK sig-
naling pathways, in addition to many other signaling path-
ways. Among the 25 down-regulated pathways ribosome
biogenesis and ubiquitin mediated proteolysis ranked on
top; other pathways included RNA metabolism, many
DNA repair pathways and the cell cycle. To investigate
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Fig. 1 Impact of “shipping delay” on global gene expression. a Unsupervised hierarchical clustering showing separation into two distinct clusters.
In-house samples colored in blue, shipped samples colored in green. b Volcano plot showing differential gene expression between 139 in-house
and 252 shipped samples of the GMMG MM5 trial. The left-hand spread shows down-regulated genes in shipped samples. The right-hand spread
shows the up-regulated genes. The color of each point reflects the log2 fold change (logFC) for the respective gene with absolute logFC <1
depicted in black, ≥ 1 & <2 in blue, and ≥ 2 in red. We added the gene symbol, if the absolute logFC was >3

Table 1 Ten most up- and down-regulated genes in shipped samples of the MM5 set

Up-regulated in shipped samples Down-regulated in shipped samples

Symbol Entrez Log2FC* adjP** Symbol Entrez Log2FC* adjP**

TUBB2A 7280 3.76 1.18x10−44 TTC33 23548 3.92 2.63x10−80

LOC100506935** 1.01E+08 3.16 8.41x10−50 PDZRN4 29951 3.67 5.60x10−36

CD83 9308 3.11 2.50x10−35 ANKRD46 157567 3.58 7.05x10−47

MAFF 23764 2.82 2.32x10−49 CCR2 729230 3.36 6.52x10−43

FAM209A 200232 2.79 3.13x10−37 KIAA0907 22889 3.32 2.46x10−54

NFKBIZ 64332 2.78 3.03x10−35 CRNKL1 51340 3.09 6.01x10−50

MAP3K8 1326 2.76 7.95x10−31 BBS10 79738 2.86 1.68x10−70

CSRNP1 64651 2.66 1.22x10−76 ZNF260 339324 2.83 8.48x10−44

NR4A2 4929 2.59 2.24x10−33 GOLPH3L 55204 2.81 1.40x10−47

MIR22HG 84981 2.58 3.11x10−40 TMEM68 137695 2.77 5.87x10−67

*Log2FC: log2 of fold change, **Benjamini-Hochberg adjusted P-Value
**This record has been withdrawn by NCBI because the model on which it was based was not predicted in a later annotation
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the impact of “shipping delay” on proliferation we applied
the proliferation surrogate marker GPI to the MM5 set.
This analysis showed significantly lower frequencies of
medium (35% vs. 60%) or high (4.9% vs. 13.8%) prolifer-
ation rates in shipped samples (P<0.001).
We examined the expression levels of the 6802 changed

genes in an independent set of 182 patients (85 in-house,
97 shipped samples) treated in the GMMG HD4 trial.
For 3994 (59%) of these genes we could confirm changed
expression levels in the same direction (data not shown).
In this set, shipped samples also showed less medium
(46.4% vs. 58.1%) or high (4.1% vs. 9.3%) proliferation
rates (P = 0.04).
A stratified analysis of theMM5 set by ploidy (status was

available for 383/391 cases) showed that 4829 and 4624
genes were significantly differentially expressed between
in-house and shipped hyperdiploid (212 cases) and non-
hyperdiploid (171 cases), respectively. More than 96%
of the respective genes were also found in the complete
dataset. In addition, we investigated the impact on sam-
ples containing at least one of the high risk copy number
alterations gain(1q21) or del(17p13) (189 cases).We found
4911 (96% overlap) differentially expressed genes in this
subset.

Impact of “shipping delay” onmolecular classification and
risk prediction
Recently, GEP based molecular classifications of MM
[5, 6] and risk predictors have been published [13–16].
In order to check whether “shipping delay” has a signif-
icant impact on the performance of these classifiers we
compared the distribution of molecular or risk subgroups
in shipped vs in-house samples. For these analyses we
combined the HD4 and MM5 sets.
Whereas the molecular TC classification is based on the

expression of D type cyclins and the type of the recurrent
immunoglobulin heavy chain translocation [5], the UAMS
classifier was developed using unsupervised hierarchical
clustering of GEP data and recognizes seven molecular
subgroups [6]. Both molecular classifications were gen-
erated using GEP data of in-house samples. We did not
detect significant differences in the distribution of molec-
ular subgroups between in-house and shipped samples in
the combined set of HD4 and MM5 (Additional file 4:
Table S3).
Applying the IFM-15 risk predictor that had been

developed using shipped samples we found significantly
more high risk patients in in-house samples compared
to shipped samples (Table 2). In order to rule out ran-
dom variation in the data we additionally investigated the
distribution of IFM-15 scores in the HD4 and the MM5
set separately. Both the HD4 (21.6% vs. 31.4%) as well
as the MM5 set (17.8% vs. 38.6%) showed lower num-
bers of IFM-15 high risk cases in shipped samples. By

Table 2 Influence of “shipping delay” on risk prediction

Data set n Signature
Risk in-house [%] Risk in-house [%]

P
High / low High / low

HD4 & MM5

573

IFM-15 36.1 / 63.9 19.0 / 81.0 <0.001

combined GEP70 11.7 / 88.3 11.4 / 88.6 0.9

EMC-92 9.1 / 90.9 12.2 / 87.8 0.3

contrast, the GEP70 (developed using in-house samples)
and the EMC-92 (generated using a mixture of in-house
and shipped samples) signatures showed no significant
distribution inequalities of high risk cases in in-house
compared to shipped samples (Table 2). We found 7/15
IFM15 genes, 32/70 GEP70 genes and 41/92 EMC-92
genes to show significant differential expression between
shipped and in-house samples (Additional file 5: Table S5).
To further investigate the impact of “shipping delay” on

risk prediction we investigated OS of high and low risk
HD4 patients as predicted by these signatures. As shown
in Fig. 2, using GEP data from shipped samples all pre-
dictors still enabled the identification of patients with a
significantly worse outcome. The impact of sample pro-
cessing delay on the IFM-15 signature is further illustrated
in Additional file 6: Figure S1. Although the overall sur-
vival was similar for patients treated in Heidelberg and
external centers, low and high risk patients treated in
external centers showed worse outcomes in comparison
to the corresponding IFM-15 risk subgroups of in-house
patients.
Next we analyzed whether inaccuracies introduced into

gene expression profiling may weaken the value of the
risk signatures to the extent that they are not indepen-
dent of cytogenetic or clinical risk factors. We used Cox
regression on OS of external HD4 patients including
the prognostically unfavorable alterations gain(1q21) and
del(17p13) and the international staging system (ISS) and
one of the gene signatures respectively. The GEP70 did
not show a significantly different prognostic effect (P =
0.4,HR = 1.64), whereas the IFM-15 (P = 0.03,HR =
2.49) and the EMC-92 (P = 0.03,HR = 3.67) were inde-
pendently negatively associated with outcome (Additional
file 7: Table S6).

Prediction of shipped samples
We tested whether shipped samples can be identified
based on their expression profile by applying PAM to the
set of MM5 patients and validating the predictor with the
HD4 set. The predictor consisted of 17 genes (Additional
file 8: Table S4), all being part of the 3994 validated differ-
ential expressed genes. In the training set the overall error
rate of the predictor, as tested by a 10-fold cross validation,
was 0.06 (Table 3). Application of the predictor on the
HD4 set resulted in an overall error rate of 0.15 (Table 3)
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Fig. 2 OS among MM patients according to risk and sample status. Kaplan-Meier analysis of OS is shown in relation to risk as determined by the
IFM-15 (a, d), the EMC-92 (b, e) or the GEP70 (c, f) using in-house or external (shipped) samples of patients treated within the GMMG HD4 trial

confirming the accuracy of the predictor. The code to run
the predictor is available on GitHub (https://github.com/
meissnert/intext).
To further validate the predictor we applied it to three

publicly available GEP datasets of newly diagnosed MM
patients from the UK and the US (MMRC & UAMS). All
samples in the UK dataset were sent to a central laboratory
in the ICR (Sutton/UK) and served as a positive control
for the identification of shipped samples. In contrast, we
used the UAMS data as control set for in-house prepa-
ration of samples. The incubation time was not available
for the MMRC set but according to a recent publication
theMMRC standard operating procedure for sample ship-
ment provides that samples are shipped at 4 °C [20]. In the
UAMS set 498 of 559 samples (89 %) were predicted to be

Table 3 10-fold cross validation error rate and validation of
17-gene PAM predictor

Training group (MM5) Validation group (HD4)

Status Shipped In-house Class error Shipped In-house Class error
rate rate

Shipped 237 9 0.04 73 24 0.25

In-house 15 130 0.10 4 81 0.05

Overall error rate=0.06 Overall error rate=0.15

in-house (Fig. 3). In contrast 241 of 257 UK samples (94%)
were assigned to shipped samples. In the MMRC dataset
76 of 122 samples (62%) showed the signature of shipped
samples (Fig. 3).

Discussion
GEP has been used by several groups for molecular analy-
ses and risk stratification ofMM. InmulticenterMM trials
BM aspirates are usually sent to a central processing lab-
oratory for PC enrichment and sample storage as these
techniques are not routinely available at all participating
institutions, and building them up would imply a signifi-
cant costs issue. Here we show that sample shipment has
a profound impact on gene expression of MMPC.
More than one third of genes analyzed were significantly

impacted by “shipping delay”. The effects were similar
in cytogenetic subgroups of MM and samples showing
the progression markers gain(1q21) or del(17p13) indi-
cating that all subgroups of MM were equally impacted.
Upregulated gene pathways includedmany signaling path-
ways, probably as an expression of cellular stress. On
the other hand the downregulated pathways indicated
slowing down of biosynthetic processes, as well as prolif-
eration. Ahmann et al. investigated the impact of sample
processing delay on gene expression in MM cells using
paired bone marrow samples [20]. In contrast to our

https://github.com/meissnert/intext
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Fig. 3 Prediction of sample status in different cohorts. Barplot depicting the percentage of samples predicted to be in-house (blue) or shipped (red)
by the 17-gene PAM classifier. The MM5 (bars 1 & 2) and HD4 cohorts (bars 3 & 4) have been split into in-house and shipped samples according to the
actual status

study the authors did not detect significantly differentially
expressed genes in selected PC from shipped samples but
this result was based on seven pairs only. Nevertheless, in
that study eighty-two probe sets showed a 1.5-fold differ-
ence in expression level between immediately processed
and shipped samples and an enrichment for pathways
involved in responses to environmental stress. For 48
of these genes we found significant differential expres-
sion with fold changes up to 13.5 in our dataset as well
(Additional file 2: Table S1). Another study that investi-
gated BM samples reported that even short-term storage
of these samples had a large impact on mRNA expres-
sion in unselected cells [21]. Only recently, a study using
RNA sequencing data of hematopoietic cells showed that
the impact of shipping was not confined to expression
level differences but also changed RNA splicing and inhib-
ited RNA surveillance [22]. These results and our findings
indicate that GEP-based molecular analyses of MM need
to take into account confounding by sample shipping.
Even more important, shipping may impact the per-

formance of risk predictors. According to our data high
risk cases as defined by the GEP70 and the ECM-92 sig-
natures were evenly distributed in in-house and shipped
samples. This suggests that the two predictors were resis-
tant to the shipping effect, but more than 40% of genes in
them were significantly differentially expressed between
in-house and external samples. Furthermore, in a Cox
regression model on OS of external HD4 patients includ-
ing the GEP70, the progression markers gain(1q21) and
del(17p13) and the ISS, the GEP70 did not show an inde-
pendent statistically significant prognostic effect. This
result may be due to lacking statistical power, but may
also indicate that inaccuracies introduced into GEP data

weaken the value of this risk signature to the extent that
it is not independent of cytogenetic or clinical risk factors
anymore. In contrast, the EMC-92 signature developed
on a mixture of in-house and external samples showed
an independent prognostic impact on external samples.
On the one hand, one could conclude that risk signatures
developed on a mixture of samples perform better, but on
the other hand this hypothesis cannot be proven using the
HD4 dataset since the signature had been developed on
it. Paired sample data were not available, preventing the
investigation of the impact of sample processing delay on
individual samples. In summary we cannot exclude at least
minor effects on these predictors.
The IFM-15 risk signature showed a significantly differ-

ent distribution in the two sets. As presented in Additional
file 6: Figure S1 low and high risk patients treated in
external centers showed worse outcomes in comparison
to the corresponding IFM-15 risk subgroups of in-house
patients. The IFM-15 risk signature is mainly composed
of genes involved in proliferation. Our data show that
GEP data of shipped samples were unsuitable for a reli-
able measurement of proliferation. The results suggest
that proliferation was underestimated in external samples
leading to a misclassification of patients whose increased
risk was mainly due to higher proliferation rates of their
tumor cells.
Despite the impact of the sample processing delay on

gene expression, all three signatures still enabled the
detection of patients with a significant worse outcome.
This suggests that at least a subset of genes selected for
high risk signatures may be an integral part of the high
risk clone and expressed independently of environmental
influences. Environmental independent gene expression



Meißner et al. BMCMedical Genomics  (2015) 8:85 Page 7 of 8

could also explain why sample shipping showed no signif-
icant impact on molecular classification. Nevertheless, we
recommend using in-house samples for discovery analy-
ses as the “shipping effect” may obscure the true biology
of MM cells.
Many centers involved in multi-center MM trials either

do not have experience in plasma cell purification nor see
the necessity to build this up, basically to avoid costs, and
due to the fact that in most trials no clinical consequences
are drawn from GEP based risk classifications. As a result,
sample shipping cannot be avoided in these trials. Are
there ways to avoid impact of shipping? There are com-
mercially available RNA stabilizing reagents and tubes,
but they cannot be combined with flow sorting proto-
cols [23–25]. In blood cells the effect of sample processing
delay on the transcriptome can be alleviated by incubating
the cells on ice [22]. Applying our PAM predictor to the
MMRC set, more than 60% of samples were assigned to
shipped samples, indicating that incubating BM samples
at low temperatures before MM cell enrichment may not
effectively reduce the effect of sample shipping on gene
expression of MM cells. On the other hand, enrichment
of MM cells at higher temperatures may have covered the
positive effect of cooling samples during transport. Future
studies will have to show whether cooling at transport and
enrichment can reduce the negative impact of sample pro-
cessing delay and if controlled shipping of cooled samples
is feasible in multi-center MM trials. Based on available
data, currently no clear circumvention of the shipping
impact can be recommended.
How should one handle GEP based risk stratification

within multi-center trials? The discussed results imply the
following possibilities: to set up theMMPC purification at
the participating centers, refer each patient before inclu-
sion to a center with an experienced sample processing
laboratory or accept inaccuracies in estimation of risk in
shipped samples.
How should one interpret the existing MM GEP and

RNAseq datasets and handle biorepositories? In publicly
available datasets the origin of samples used for molecular
analyses is usually not documented. We propose to apply
our PAM predictor based on GEP data (limited to data
derived from Affymetrix U133 Version 2.0 plus arrays)
or the recently published panel of alternatively spliced
exons for detection of impacted samples. These tools may
suggest the samples to be excluded or the analysis being
adjusted for this confounder. Alternatively,confounding
effects may be identified and removed from expression
data using the recently published “probabilistic estimation
of expression residuals” [26].

Conclusions
Our study shows that “shipping delay” widely influences
gene expression of MMPC with different impact on

molecular classification and risk stratification. It should be
avoided if possible or at least be taken into account.
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