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Abstract

Live cell imaging is a powerful tool for studying the distribution and dynamics of

proteins. However, due to the difficulties in absolute quantification and standardiza-

tion of data obtained from individual cells, it has not been used to map large sets of

proteins that carry out dynamic cellular functions. Cell division is a good example of

this challenge for an essential cellular function, as rapid changes in protein localization

and protein interactions result in dramatic changes to subcellular structures and

cellular morphology, which in turn influence the behavior of the enclosed proteins.

Here, I report an integrated experimental and computational pipeline to map the

dynamic protein network of dividing human cells in space and time. Using 3D live

confocal microscopy, I imaged human cell lines that stably expressed fluorescently

tagged mitotic proteins throughout mitosis. To obtain the absolute quantities of

protein abundance with high subcellular resolution over time, the microscopy pipeline

was calibrated by fluorescence correlation spectroscopy (FCS).

Cell and chromosome volumes were segmented as references of cellular context for

temporal and spatial alignment based on fluorescent landmarks. Together with my

colleague Julius Hossain, we computationally generated a canonical model of mitotic

progression for both kinetics (‘‘mitotic standard time’’) and morphology (‘‘mitotic

standard space’’) by averaging and kinetically and geometrically parametrizing many

registered dividing cells. The resulting model enabled us to subdivide the mitotic

process into 20 characteristic kinetic steps and integrate our complete proof of concept

dataset of 13 mitotic proteins imaged in over 300 dividing cells, represented as the

3D protein localization probability of each protein over time.

To measure localization similarities between different proteins and make predic-
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tions about their dynamic interactions, the integrated data was then mined using

supervised as well as unsupervised machine learning. The power of this approach

was demonstrated by our ability to automatically identify the major subcellular local-

izations of all proteins in the dataset and quantify protein fluxes between subcellular

compartments and structures. Due to the quantitative nature of our imaging data,

we were able to estimate the abundance of each protein in mitotic structures and

complexes such as kinetochores, centrosomes, and the midbody, and determine the

order and kinetics of their formation and disassembly.

The integrated computational and experimental method I present in my thesis is

generic and scalable and makes many dynamic cellular processes amenable to dynamic

protein network analysis even for large numbers of components. The pipeline provides

a powerful instrument for analyzing large sets of quantitative live imaging data of

fluorescently tagged proteins. It allows the systematic mapping and prediction of

dynamic protein networks that drive complex cellular processes such as mitosis, thus

promoting our understanding of the mechanisms by which many molecules together

achieve spatio-temporal regulation.
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Zusammenfassung

Mikroskopie an lebenden Zellen ist eine leistungsfähige Methode zur Untersuchung

der Verteilungsdynamik von Proteinen. Wegen der Schwierigkeiten bei der Quan-

tifizierung und Standardisierung von Daten, die von einzelnen Zellen erhoben wurden,

konnte die Technik aber noch nicht für die Abbildung größerer Eiweißgruppen ver-

wendet werden, die zusammen dynamische Funktionen innerhalb der Zelle erfüllen.

Ein gutes Beispiel für die damit verbundenen Herausforderungen ist die Zellteilung,

eine essenzielle Zellfunktion. Während der Zellteilung ändert eine Reihe von Eiweißen

durch ihre räumlichen Verteilungen und Interaktionen miteinander dramatisch die

Morphologie der Zellen und der intrazellulären Strukturen, die wiederum das Verhal-

ten der entsprechenden Eiweiße beeinflussen.

Ich stelle hier über eine Reihe integrierter experimenteller und numerischer Ver-

fahren vor, die das dynamische Proteinnetzwerk einer sich teilenden Zelle sowohl

räumlich als auch zeitlich abbilden. Mit Hilfe eines konfokalen Mikroskops habe ich

lebende humane Zellen, die durch genetische Modifikationen fluoreszierende mito-

tische Eiweiße stabil beinhalten, während der Zellteilung in hoher Auflösung in 3D

aufgenommen. Die Aufnahme wurde durch Fluorescence Correlation Spectroscopy

(FCS) kalibriert, damit die absolute Anzahl der Proteine bestimmt werden konnte.

Anhand der fluoreszierenden Markierungen wurden die zellulären und chromosomalen

Volumina segmentiert und als Vorlage für das zelluläre Umfeld für die räumliche

und zeitliche Registrierung genutzt. Zusammen mit meinem Kollegen Julius Hossain

habe ich numerisch ein kanonisches Modell über den zeitlichen (
”
Standardzeit für

die Mitose“) und den morphologischen (
”
Standardraum für die Mitose“) Verlauf

einer Zellteilung aufgebaut. Dafür haben wir aus allen aufgenommenen Zellen eine
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Durchschnittszelle berechnet, und sie wiederum parametrisiert. Das Modell erlaubt es

uns, den Verlauf der Zellteilung in 20 charakteristische Abschnitte zu teilen und den

gesamten Proof-of-Concept Datensatz von 13 mitotischen Eiweißen aus über 300 sich

teilenden Zellen zu integrieren. Für jedes Protein konnten wir über den Verlauf der

Teilung eine Reihe dreidimensionaler Karten seiner räumlichen Verteilung erstellen.

Durch die Messung der Ähnlichkeit in der Dynamik unterschiedlicher Proteine

haben wir versucht, deren dynamische Interaktionen vorherzusagen. Dafür wurden

die integrierten quantitativen Verteilungsdaten der Proteine mit Maschinenlernver-

fahren analysiert. Wir konnten zeigen, dass unsere Methoden die intrazellulären

Lokalisierungen aller getesteten Proteine automatisch erkennen. Auch die Strömungen

der Eiweiße zwischen verschiedenen subzellulären Strukturen konnten quantifiziert

werden. Da unsere Aufnahmen kalibriert waren, konnten wir sowohl die Anzahl

der Proteinmoleküle in mitotischen Strukturen und anderen Komplexen, wie z.B.

Kinetochore, Centrosomen oder Midbody, als auch die Reihenfolge und Kinetik deren

Auf- und Abbaus schätzen.

Diese integrierten numerischen und experimentellen Methoden in meiner Arbeit hier

sind allgemein für die Analyse dynamischer Proteinnetzwerke vieler zellulärer Prozesse

mit vielen Komponenten anwendbar. Die Pipeline ist ausreichend leistungsfähig,

um große Mengen quantitativer Mikroskopiedaten von mit Fluorophore markierten

Proteinen in lebenden Zellen zu verarbeiten. Diese Verfahren können die Struktur der

Proteinnetzwerke, die komplexe zelluläre Prozesse wie Zellteilung steuern, vorhersagen

und abbilden, und uns damit helfen zu verstehen, wie diese Prozesse sowohl räumlich

als auch zeitlich reguliert werden.
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Chapter 1
Introduction

1.1 Systems biology of mitosis

1.1.1 Mitosis is an essential and complex process of life

Cell division, also called mitosis, is one of the fundamental processes of life (Morgan,

2007). It drives the development of all multicellular organisms, where a single fertilized

cell undergoes a series of divisions to develop into a complex organism with cells

that can have very different functions (Herbert et al., 1995). The regulated division

of cells is also crucial for the regeneration of tissues, such as blood and epithelium,

throughout the entire life of the organism (Goranov and Amon, 2010; Thummel et al.,

2008). Defects in mitosis can therefore cause severe diseases. For example, deficient

control of cell division in vertebrates has been related to tumorigenesis in cancer

(Weaver and Cleveland, 2005), and errors in division during early development can

cause infertility or abortions (Kim and Kao, 2005; Vorsanova et al., 2005). Moreover,

a number of neurological diseases have been linked to the consequences of aberrant

mitosis (Noatynska et al., 2012). Thus, research on mitosis is vital for our basic

understanding of life and will make important contributions to the understanding

and treatment of several diseases.

During mitosis, cells undergo dramatic morphological changes to pass the duplicated

genome equally to the two daughter cells (Figure 1.1). The division of animal cells is

traditionally sub-divided into five stages based on the nuclear morphology: prophase,

prometaphase, metaphase, anaphase and telophase (Alberts et al., 1997), as defined in

Campbell and Reese (2003): prophase starts with the condensation of the duplicated

chromatin within the intact nucleus and ends when the nuclear envelope starts to

break down. During prometaphase the centrosomes move towards the opposite

ends of the cell and organize the formation of the mitotic spindle. In metaphase,

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Mitosis in animal cells.

a

b

H2B/NES

Chromatin/Spindle

(a) Schematic illustration of a dividing animal cell. From left to right, interphase, prophase, prometaphase,
metaphase, anaphase and telophase are shown respectively. (b) Confocal fluorescence image of a dividing HeLa
Kyoto cell in different mitotic stages. Maximum projection of z-stack images, filtered and segmented, scale bar: 10
µm. A different cell was selected for interphase as the mitotic cell.

the chromosomes reach their maximum condensation and congress in the middle

of the cell to form the metaphase plate. The separation of the sister chromatids

at the centromeres marks the onset of Anaphase, in which the chromosomes travel

to the opposite sides of the cell. And finally, telophase defines the time when the

chromosomes de-condense and the nuclear envelope reforms. In parallel to these classic

five phases of nuclear division and genome segregation, cytokinesis, the separation

of the cytoplasm, starts with the ingression of the cleavage furrow and ends with

the complete disconnection of the two daughter cells by abscission. In most cells the

mitotic division, also called M-phase, occupies a minor part of the cell cycle, and the

time between two divisions is referred to as interphase (Reece et al., 2011). In the

most common human cultured cell models, such as the HeLa cells employed in this

study, the cell cycle lasts between 20 and 24 hours, and the duration of mitosis from

microscopically detectable chromatin condensation until the end of telophase takes

about an hour (Cooper Geoffrey, 2000).

Cell division is a complex process driven by a large number of proteins acting

in a coordinated manner (Dephoure et al., 2008; Nigg, 2001). Important mitotic

subcellular structures, such as the spindle, centrosomes and kinetochores, are formed

2



1.1. SYSTEMS BIOLOGY OF MITOSIS

by many specific proteins in a highly organized way (Karsenti and Vernos, 2001;

Satisbury, 1995; Doxsey et al., 2005; Rieder and Salmon, 1998). These structures in

turn provide platforms for the localization and functions of many regulatory proteins,

which can influence the morphology of the dividing cell and position other subcellular

structures (Werner et al., 2013; O’Connell and Wang, 2000; Lázaro-Diéguez et al.,

2015). The correct formation of these subcellular structures and the timed localization

of proteins to these structures are crucial for the success of the division.

As in the example of kinetochores, a large number of proteins need to be correct

localized to ensure their function of controlling the temporal progression of the

cell division in a coordinative and collaborative manner. To prevent the unequal

distribution of sister chromosomes in the two daughter nuclei, chromosome segregation

is delayed by the spindle assembly checkpoint (SAC) until the biorientation of all

sister chromatid pairs to spindle microtubules is complete (Musacchio and Salmon,

2007; Hauf and Watanabe, 2004). Upon the nuclear envelope break down, active Mps1

directs checkpoint proteins to kinetochores which are not attached by microtubules

(Lan and Cleveland, 2010). The core SAC machinery undergoes enzymatic and/or

conformational activation at kinetochores to form the mitotic checkpoint complex

(MCC) composed of Mad2, Bub3, BubR1 and Cdc20 (Musacchio and Salmon, 2007;

Lara-Gonzalez et al., 2012). The activation of Mad2 stabilizes the cytoplasmic

anaphase-promoting complex/cyclosome (APC/C) inhibitory complexes including

Cdc20 (Maciejowski et al., 2010) and prevents the activation of both the APC/C and

the E3 ubiquitin ligase. Once all sister chromosomes are attached on microtubules

and bi-oriented, SAC releases Cdc20 which activates the APC/C to digest both

securin and Cyclin B. The degradation of the checkpoint protein stops the inhibition

of separase which then digests the cohesin tying up the sister chromosome pairs and

promotes the chromosome segregation. The reduction of the Cyclin B allows the

activation of Cdk1 which drives the mitotic exit (Musacchio and Salmon, 2007).

1.1.2 Understanding mitosis at the systems level

Research on mitosis is carried out by a large number of laboratories, but has tradi-

tionally focused on a specific step or only a few components of the mitotic machinery.

This has led to fragmentation of research results and made it difficult to integrate

the data obtained. Only a fraction of the proteins required for mitosis in human
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cells were known until a few years ago, and a systematic molecular understanding

of mitosis is still missing. In 2010, the MitoCheck project screened, for the first

time, the entire human genome to identify mitotic proteins. After inactivating the

expression of each gene by RNA interference, they scored mitotic chromosome segre-

gation errors by live cell imaging. Using an automatic segmentation and classification

pipeline, different classes of phenotypes were identified, and genetic effects could be

compared by phenotypic similarity with each other. Almost 600 genes were validated

as mitotic hits because knocking down their expression caused a reproducible and

significant defect in chromosome segregation (Neumann et al., 2010). This was the

first large scale study of human mitosis at the systems level. But while the data

provided researchers with a starting point for the mitotic functions of unknown genes

based on well characterized genes in the same phenotypic group (Lo et al., 2015),

they rarely allowed to predict molecular mechanism. Further bioinformatics data

integration and mining methods, developed based on the MitoCheck data set, allowed

the prediction of additional genes involved in particular mitotic processes such as

chromosome compaction (Hériché et al., 2014). However, for the large majority of

the now identified mitotic genes the molecular mechanism behind their phenotype

remains unknown.

Thus, systematic analysis of the proteins encoded by mitotic genes is essential for

understanding the molecular mechanism that explains their functional requirement

for chromosome segregation. Due to the very dynamic nature of the multistep cell

division process, knowing the changes in abundance and subcellular localization and

interactions of the identified mitotic proteins during mitosis is the key to understand

mitosis as a complex multistep regulatory system, where hundreds of components are

regulated dynamically in space and time. A first effort in this direction was made

as part of the Mitocheck project, based on the stable expression of fluorescence and

affinity tagged mitotic genes in bacterial artificial chromosomes (BAC) (Kittler et al.,

2005) in HeLa cells (Poser et al., 2008). Mass spectroscopy was used to identify

interaction partners of a number of known mitotic proteins in interphase and M-phase,

and immunofluorescence microscopy of fixed HeLa cells and manual annotation of the

intracellular location of around 100 mitotic proteins in a subset of mitotic stages was

used to predict functional clusters for these proteins (Hutchins et al., 2010). However,

this initial effort lacked the temporal resolution required to track the rapid formation
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and disassembly of mitotic protein complexes that occurs on the seconds to minutes

time scale and, due to the limited throughput of the annotation pipeline, did not

cover the whole mitotic proteome identified in the RNAi screen. Furthermore the

qualitative localization data and its manual annotation made integration with data

from other laboratories impossible and precluded a computational analysis of the

data. A quantitative dynamic study of the mitotic proteome in live cells could in

principle address these shortcomings, but remained elusive due to technical challenges

in high-throughput and high-resolution quantitative imaging of dividing cells as well

as in computational data integration and mining.

1.1.3 Challenges in dynamic proteomics

Systems biology of the proteome can be done at different levels. At the cellular level,

the structure of the proteome including the interaction network and the subcellular

localization of each protein has to be mapped. Next, the dynamics within the structure,

e.g. the kinetics of protein interactions and potential changes in localization should

be measured before the experiments are designed for analyzing the logic behind the

network (Kitano, 2007). However, understanding mitosis at the proteomic systems

level is particular challenging since the structure of the mitotic proteome is known

to be extremely dynamic. During mitosis, for many proteins, both their localization

and abundance as well as their interaction partners are constantly changing. One

prominent example is the ‘‘chromosome passenger complex’’ of Aurora B kinase and

its regulators that relocalizes from the cytoplasm to the kinetochore, then to the

midplane, and finally back to the cytoplasm (Murata-Hori et al., 2002). Moreover,

the morphology of the cell and almost all major mitotic subcellular structures is

changing dramatically (De Souza and Osmani, 2007; Ando et al., 2008) which puts

changing spatial constraints on the behavior of all proteins (Cadart et al., 2014;

Charnley et al., 2013; Kiyomitsu and Cheeseman, 2013).

The key to access such a dynamic proteome is to perform measurements for all

proteins under exactly the same spatio-temporal constraints, i.e. at the same mitotic

time and in the same mitotic space, and therefore dynamic three-dimensional data

with good subcellular resolution are required. However, individual cells divide with

different spatial and temporal dynamics (Figure 1.2). Traditionally, proteins are

compared in cells assigned to the same of the five classic mitotic stages as described
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Figure 1.2: Spatio-temporal variation of mitotic HeLa Kyoto cells.
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in 1.1.1, where staging is done manually, and therefore subjective to bias, and too

coarsely to capture important kinetic transitions. The lack of cell standardization

methods in space and time, which is necessary to integrate data on many proteins

from many different individual cells, has for a long time been the bottleneck for a

comprehensive systems biology of mitosis.

1.2 Methods for protein interaction and network studies

1.2.1 Mass spectrometry

With the progressive reduction in cost for mass spectrometers and their accompanying

increase in capability, mass spectrometry has become one of the most widely used

methods to quantitatively study protein interactions. Proteins of interest can simply

be purified from the cell using affinity approaches, and all of their binding partners

that are co-extracted can then be detected by mass spectrometry (Pandey and

Mann, 2000; Aebersold and Mann, 2003). The technology is not only powerful for

analyzing the binding partners for few proteins of interest, but also used as the gold

standard for analysis of large scale protein interactom (Kito and Ito, 2007). This

needs a large number of proteins being tagged with affinity baits. Although in yeast,

affinity baits can be introduced to hundreds of proteins easily, and the ensemble

of protein interactions can be analyzed at once since many years (Ho et al., 2002).
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However, tagging a series of proteins with affinity tags in mammalian cells is not

trivial. Only in recent years, until the technology of both mass spectrometry and

generation of mammalian cell lines expressing engineered fusion proteins have been

further improved, large scale studies on protein abundance (Beck et al., 2011) and

interactions (Hutchins et al., 2010) could be performed in human cell lines.

Although mass spectrometry is an effective technology to quantitatively study

the proteome and interactome, several disadvantages of the technique prevent its

application to the proteome of a very dynamic process such as mitosis. Since mass

spectrometry needs a relatively large amount of protein to be detected, proteome scale

data at the single cell level are still impossible to obtain, except for very special giant

cells such as amphibian oocytes (Wang and Bodovitz, 2010). Therefore thousands

of mitotic cells have to be collected to generate one sample at one stage of mitosis,

and studies typically use nocodazole to artificially arrest cells in prometaphase. As

nocodazole disrupts spindle formation it is unclear in how far this state still resembles

a natural mitotic stage. Arresting the cell at a specific stage obviously also fails to

cover all mitotic transitions in proteome structure. Furthermore, transient and weak

interactions, which are typical for dynamic regulatory systems such as those between

phosphorylation partners, are often not preserved in the necessary biochemical

purification procedures. It has even been questioned in principle if cell extracts can

reflect the interaction environment present inside a living cell (Vasilescu et al., 2004;

Tagwerker et al., 2006). Thus, for studying the dynamic interactome in mitotic cells,

other technologies than affinity purification followed by mass spectrometry need to

be developed.

1.2.2 Immunostaining based imaging

An alternative approach to investigate the structure of a protein interaction network

is through the localization of its components. Interactions are often assumed as the

cause for co-localization of protein pairs or groups (Dunn et al., 2011; Fay et al., 1997;

Manders et al., 1992; van Steensel et al., 1996). Imaging of immunostained fixed cells

was successfully applied to mammalian cells for the prediction of cell growth rates

(Kafri et al., 2013).

To investigate cell division, Hutchins et al. (2010) immunostained over 100 different

cell lines with a GFP tagged protein and manually assigned both the localization of
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the protein as well as the mitotic stage of the cells. However, as discussed before, the

pipeline was manual, too coarse in time resolution, and biased and non-quantitative

in spatial mapping. A more recently developed powerful alternative would be to

detect the co-localization of many proteins directly within the same cell using multiple

rounds of immunostaining (unpublished data, Pepperkok lab, EMBL Heidelberg).

However, the limited availability of validated antibodies against all proteins does

currently make this approach not easily scalable for hundreds of components, and it

suffers from the same lack of temporal resolution as Hutchins et al. (2010).

1.2.3 Live cell imaging

The best way to study dynamic protein interactions in their physiological environment

is currently to use live cell imaging. The co-localization of proteins can be studied

directly by live imaging of cells co-expressing proteins fused to different fluorophores

(Tanaka et al., 2010). Interactions between proteins can even be more directly

assessed using fluorescence resonance energy transfer (FRET) or fluorescence cross-

correlation spectroscopy (FCCS). FRET detects the Förster energy transfer when

two protein molecules bring their attached fluorephores within less than 10 nm from

each other (Stryer and Haugland, 1967). However, since FRET not only depends on

the proximity but also on the orientation of the two fluorophores used, it suffers from

a large false negative rate if generic fluorescence tagging approaches are used. That

makes it unsuitable for large scale interaction studies. FCCS measures the correlation

in the diffusive movement of two proteins, each labeled with a different fluorophore,

through the subfemtoliter confocal volume of a laser scanning microscope (Schwille,

2001; Bacia et al., 2006). It only requires the putative interactors to be fluorescently

labeled and is therefore well-suited and has been applied to larger scale as well as

single cell time-resolved studies (Wachsmuth et al., 2015). FCCS measurements

are quantitative, reflect the dynamics of the interaction, and have been used for

analyzing small protein networks (Boeke et al., 2014). Both FRET and FCCS can

be applied to live cells and the read outs can be interpreted in the context of a

dynamic cellular process (Sekar and Periasamy, 2003; Michelman-Ribeiro et al., 2010;

Pramanik, 2004).

Live imaging methods suffer from the fact that only a very limited number of

fluorophores suitable for protein tagging in living cells are available, limiting such
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studies practically to one or at most two interaction pairs per cell. In addition to

capture cellular heterogeneity, each interaction should be sampled in tens of cells

for statistical robustness and richness of the data. The bottleneck of using live cell

imaging for proteomic studies of mammalian cells is therefore the low throughput in

the production of cell lines that express two fluorescent fusion proteins that replace

the endogenous unlabeled copies and ensure functionality and physiological expression

as well as maximal signal for an interaction. For the mitotic proteome with about

600 relevant proteins, nearly 180,000 cell lines would be needed to cover all possible

binary protein interactions. Thus, resolving the coarse structure of the dynamic

proteome based on dynamic localization of individual proteins and predicting likely

interactors in clusters is essential to guide the production of cell lines for FCCS

measurements of the dynamics of each interaction cluster.

1.3 Standardization of cellular context

1.3.1 Micropatterns constrain the cellular geometry

In order to make protein distribution data in different individual cells comparable, the

cellular geometry has to be standardized. Since cellular morphology of adherent cells

is strongly influenced by the extracellular matrix, micropatterns were reported to be

a solution for the morphological standardization of the mammalian cell (Whitesides

et al., 2001). The shape of an individual cell, which grows on a micrometer-scaled

fibronectin pattern printed on glass, is constrained by the shape of the pre-designed

pattern (Théry, 2010; Théry and Piel, 2009). Using this method, Schauer et al. (2013,

2010) have followed the distribution of organelles in multiple cells via the expression of

tagged marker proteins (e.g. CD63 and Rab6). Integrating each protein’s localization

in single cells into a probability density map allowed for a statistical comparison

between the distributions of organelles under different conditions. Micropatterns were

also used for constraining the mitotic morphology, such as the size, orientation and

even the temporal progression of the dividing cell (Fink et al., 2011). However these

studies also made it clear that even on micropatterns a lot of variability remains

at the submicron scale of organelles, which makes averaging between individual

cells very challenging, and led only to very low resolution maps for Golgi associated

proteins.

9



CHAPTER 1. INTRODUCTION

Furthermore, no micropattern has been reported to be able to constrain the

orientation of the assembling mitotic spindle in early prometaphase (Théry et al.,

2005). The positions of the centrosomes relative to condensing chromosomes appears

to be random at the moment of nuclear envelope breakdown, which leads to prophase

and prometaphase having the most cell to cell shape variation. Other disadvantages

of the micropattern technique are the restriction to one cell type per optimized

pattern requiring cells to be able to grow in isolation, and that only adherent cell

types can be used (Fink et al., 2007; van Dongen et al., 2013). Based on preliminary

tests that I carried out as part of my project, the standard human cell line used in

Mitocheck, HeLa Kyoto, was not very suitable for single cell micropatterns due to

the tendency to form colonies with tightly adhering neighboring cells (Figure 1.3).

In conclusion, while micropattern technology is in principle a useful approach to

help standardization of the cellular morphology, its resolution and applicability to

standard mitotic cell lines were thought to be not yet sufficient for the systematic

study of the mitotic proteome.

Figure 1.3: HeLa Kyoto cells on micropatterns.

Pattern/H2B/Lifeact

A significant fraction of fibronectin coated 2D micropatterns (provided by the Thery lab) could not be used for cell
division assays due to the occupancy by multiple cells (upper box) instead of by a single cell (lower box). Scale bar:
10 µm.

1.3.2 Cell synchronization with chemicals

Temporal standardization of mammalian cells relies on reversible mechanical or

chemical perturbations. The most commonly used agent is nocodazole, a chemical

inhibiting microtubule polymerization and thus the assembly of the mitotic spindle
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(Deysson, 1968). Cells cultured in a nocodazole solution are consequently arrested

in prometaphase. Inhibitors of DNA synthesis such as aphidicolin, thymidine or

hydroxyurea arrest cells at the G1/S transition (Bootsma et al., 1964; Ikegami

et al., 1978)), and are therefore often used to synchronize the cell cycle. After

several hours of inhibition, a release from these arrests results in a cell population

enriched M-phase cells. However, all of these methods harm the cell, and none

preserve the natural state of cellular functions (Samuels et al., 1964; Zieve, 1984).

Moreover, the achieved efficiency of the synchronization is insufficient to obtain a

highly synchronized population (Dulla and Santamaria, 2011; Ma and Poon, 2011).

Mitotic shake-off is an often used mechanical method for obtaining a mitotic cell

population (Elvin and Evans, 1984). But if the method is not used in combination

with chemical synchronization, then shake-off cells can be in any mitotic stage between

late prometaphase and telophase.

The major issue with current cell synchronization methods is the fact that the

treatment can only arrest cells at one particular and possibly unnatural stage. While

they are able to aid in the investigation of the cell cycle, their drawbacks outweigh

their usefulness for the aim of this project.

1.4 Computer vision methods in cell biology

1.4.1 Bioimage informatics helps us to see

Computational analysis has become essential in image based biological research

due to both the increase in the amount of imaging data as well as the demand

for quantitative measurements of biological processes, (Danuser, 2011; Peng, 2008).

Information technology not only helps biologists to handle and process large amounts

of data in an unbiased, reproducible and quantitative way, but also in extracting useful

information and thereby gaining knowledge from the data (Myers, 2012; Johnston

et al., 2006; Sommer et al., 2013). Moreover, model-based algorithms are not only

able to detect significant changes in experimental data, but can also often identify the

mechanistic reasons behind them (Sprague et al., 2003; Ji et al., 2008). Besides the

classic tasks such as segmentation (Nunez-Iglesias et al., 2014), registration (Kukulski

et al., 2012), tracking (Parthasarathy, 2012), computer vision has also been used

for visualization (Mickoleit et al., 2014), data integration (Ronneberger et al., 2012)
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or automatic classification (Carpenter et al., 2006; Harder et al., 2009; Loo et al.,

2009), where the later one has been used particularly often for analyzing data from

large scale image based screens (Wawer et al., 2014; Laufer et al., 2013)Many tests

reported a higher consistency and even higher accuracy of computational pipelines

compared to human analysis (Danuser, 2011; Sommer and Gerlich, 2013; Zhong et al.,

2012). Two prominent applications of computer vision relevant to my research will

be discussed in the next two subsections.

1.4.2 Automatic assignment of mitotic stages

Temporal alignment has been a challenge for the analysis of time-resolved imaging

data in research on mitosis. Traditionally, either videos of mitotic events are aligned

to one of the two sharp M-phase transitions, i.e. the breakdown of the nuclear

envelope (NEBD) or the onset of anaphase (Dultz et al., 2008; Dumont et al., 2010),

or frames of cells in the predefined mitotic stages are manually picked and then

aligned (Zhu et al., 2005; Uzunova et al., 2012). The precision of the alignment is

strongly influenced by the temporal resolution of imaging, and often many valuable

data points go unused. When a large number of mitotic events need to be manually

annotated into mitotic stages, then the annotation does not only limit the throughput

of the approach but is also subject to each expert’s individual bias (Zhong et al.,

2012).

A commendable case for the automatic annotation of mitotic stages using supervised

computer vision methods was the MitoCheck project (Neumann et al., 2010). Billions

of imaged nuclei were segmented individually and tracked over the course of up to two

cell cycles. Experts annotated a subset of these cells into pre-defined mitotic stages.

Hundreds of numerical features were extracted from each of the segmented nuclei.

Using the support vector machine algorithm (Chang and Lin, 2011), boundaries

separating differently staged cells were determined in the higher dimensional feature

space based on the human annotation. The large majority of non-annotated nuclei

were then annotated automatically using the learned model (Walter et al., 2010).

This approach was key to the success of the MitoCheck project as it allowed tens

of millions of mitotic events to be analyzed, something that would have been near

impossible using a purely manual approach. The derived algorithms were however

not only used for the analysis of the siRNA screening data to provide important
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insights into whether and how a gene is relevant to cell division (Horton et al., 2015;

Yamaguchi et al., 2015). They were also integrated into open source software such

as CellCognition that allows for a more general analysis of mitotic screens (Held

et al., 2010; Schmitz et al., 2010), and Micropilot that is employing machine learning

based image analysis for automating microscopy experiments (Conrad et al., 2011;

Wachsmuth et al., 2015).

The drawback of the approach used in MitoCheck is its reliance on human supervi-

sion. Since then, researchers have thought about fully automating the annotation

of mitotic cell stages without any previous knowledge. Zhong et al. (2012) reduced

the dimensionality of the feature vector describing segmented nuclei using principle

component analysis and, taking the temporal evolution of the feature vector along

the nucleus track into account, clustered all data points into a pre-defined number of

mitotic stages without supervision. The algorithm relied on temporally constrained

combinatorial clustering followed by Gaussian mixture modeling and hidden Markov

modeling. In a test using the five traditional mitotic stages, its performance was

similar to that of the supervised approach (Zhong et al., 2012).

El-Labban et al. (2011) took an entirely different approach to annotate the mitotic

time of dividing cells. Only a few numerical features were used to describe the

nucleus of the cell. However, the entire mitotic progression was represented as a

trace in this low dimensional feature space and analyzed as a whole. A subset of the

tracks were annotated into seven mitotic stages by locally squeezing or stretching the

feature trace. The averaged feature trace based on the training set was then used as

template to which unknown tracks were aligned using dynamic time warping (Müller,

2007). The achieved accuracy of the mitotic assignment was comparable to that of

the approach used in MitoCheck. Unlike the latter, it also has the potential to be

extended to a continuously rather than discretely defined mitotic staging.

1.4.3 Automatic annotation of subcellular protein localization

For the past 15 years, machine learning approaches have been widely used for

the annotation of subcellular protein localization (Murphy, 2010). In pioneering

work, differently targeted two-dimensional immunostained images of proteins purely

localized in one subcellular compartment were automatically annotated using a

classification approach (Boland and Murphy, 1999, 2001), which over the following
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years has been improved through a variety of feature extraction, selection and

classification methods (Chebira et al., 2007; Huang et al., 2003; Nanni et al., 2010;

Hamilton et al., 2007; Tahir et al., 2012; Conrad et al., 2004). Similar pipelines

can also be used for classifying images with multiple cells, and a robust version

was reported in Coelho et al. (2013). More recently, three-dimensional cell images

or time-resolved videos of interphase cells were successfully annotated using the

classification approach with high precision (Chen and Murphy, 2004; Hu et al., 2010).

The only assumption in the time-resolved case was a static protein localization over

time, which can obviously not be used for dividing cells.

At the single cell level, one could also visually model each protein localization

first and then classify unknown images by finding the most similar model. Zhao and

Murphy (2007) built models in 2D for nine vesicle based subcellular compartments

by fitting the images with multi Gaussian distribution and parameterizing the size,

position and intensity of the signal. Using the parameters of the model as features,

real images can be classified with high accuracy (Zhao and Murphy, 2007), and the

method could also be extended to 3D (Peng and Murphy, 2011). The weakness of this

approach is its limitation to vesicular localization due to the use of the Gaussian fit.

For subcellular localization of other morphologies, such as microtubules, completely

different models need to be developed (Shariff et al., 2010).

One challenge in the automatic annotation of subcellular protein localization has

not yet been extensively studied, although it is very relevant for most cases: one

protein can localize to multiple subcellular structures and dynamically exchange

between them. The first work addressing this challenge was reported in Peng et al.

(2010), where a linear regression model was trained based on a data set with labeled

lysosomes and mitochondria in known signal proportion. Subsequent work then used

latent Dirichlet allocation to identify the underlying basic patterns in the data in

an unsupervised manner (Coelho et al., 2010). However, both methods were only

tested on two vesicle-like protein localizations, and their general applicability remains

unclear.

Automated protein distribution annotation has already shown its power in many

projects, such as the correction and annotation of the Human Protein Atlas Project

(Li et al., 2012). In yeast, where the small cell size causes difficulties in resolving

subcellular structures, classification was used successfully for determining protein
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localization at the system level (Handfield et al., 2013; Chong et al., 2015). Neverthe-

less, proteins with multiple subcellular localizations, or proteins which change their

localization over time, have never been automatically annotated and certainly not in

the dynamic cellular context of the dividing cell.
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Chapter 2
Aim and approach of the thesis

The aim of my thesis is to develop generic computational methods for the systematic

study of protein networks in dynamic cellular processes using live cell imaging

technologies. As an example for dynamic cellular processes, I chose cell division due

to the availability of an already identified reference proteome in MitoCheck, and

because cell division exhibits changes both in protein distribution as well as in cellular

context while the function is being carried out. This should ensure that the solution

I developed is generically applicable to many biological functions that may present

only one or the other challenge.

To achieve this, I have to establish an integrated experimental and computational

pipeline that standardizes the acquisition and analysis of dynamic mitotic protein

imaging data. This pipeline aims to integrate the data on different proteins observed

in distinct cell lines, and to allow comparisons in a single digital model of the human

dividing cell. As output, subcellular localizations and interaction clusters of these

proteins have to be objectively identified, and kinetics of these clusters’ formation

or disassembly will be quantified. The pipeline should be robust and scalable up

to thousands of protein components and provide tools for achieving a systematic

understanding of the properties of the dynamic mitotic protein network. And it

should be applicable to other cellular protein networks in the future.

The approach I chose is FCS calibrated automatic 3D live cell confocal microscopy

in order to acquire absolute quantitative data on mitotic protein distribution in

HeLa cell lines that express fluorescent knock-in versions of these proteins. These

proteins are imaged relative to cellular landmarks of the genome and cell surface,

which should allow me to create a canonical model of the human dividing cell, to

which the absolute protein distribution data can be registered in both space and

time. To mine the integrated data I chose machine learning approaches that aim to
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automatically identify localization clusters to which these proteins can be assigned.

As proof-of-concept, a small data set with well-known mitotic proteins is generated in

order to test and validate the integrated experimental and computational pipeline.
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Result

3.1 References of mitotic cellular morphology

3.1.1 Chromosomal volume as spatial-temporal landmark

Before generating the spatial-temporal model for the standardization of dynamic

protein distributions through mitosis, landmarks defining the mitotic cellular context

need to be selected. The selection criteria are as follows: it should enclose a func-

tional volume that is connected to various subcellular structures. It should have a

distinguishable morphology between different mitotic stages. And finally, it could be

fluorescently labeled without changing the cell fitness or the dynamic of division.

As a logical consequence, I selected the chromosomal volume as the first landmark.

As one major goal of cell division is to separate the duplicated chromosome ensemble

into two equal partitions, functional processes and morphological changes of many

subcellular structures are centralized to the chromosomal volume, such as the break-

down of the nuclear envelope, Golgi and ER network (Shima et al., 1998; Zaal et al.,

1999), the formation and deformation of the spindle (Kitajima et al., 2011), and

the remodeling of the centromere/kinetochores (Cleveland et al., 2003). Moreover,

the morphology and the texture of the chromosomal volume has been used to stage

mitosis temporally for more than a hundred years (Paweletz, 2001), and recently,

also as marker for the automatic annotation of mitotic progression (Neumann et al.,

2010).

I have used different HeLa Kyoto cell lines with fluorescently (mCherry, EGFP

or mCerulean3) tagged histon H2B generated by the cDNA transfection technology

(see 5.2.3). The overexpressed labeled H2B has fully decorated all chromosomes

within the cell (data not shown). The volume encloses all chromosomes or, where

the duplicated genome has already been separated into two partitions, the volumes
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in each of the daughter cells can be segmented using the computational pipeline

developed by Dr. Julius Hossain (5.2.15).

Figure 3.1: Comparison between the real and predicted division axis.
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(a) Schematic illustration of the real division axis (blue) and the predicted axis (green) in the first anaphase frame
of a cell. The real division axis was determined by the position of centrosomes based on segmented Nedd1 signal.
The predicted axis was calculated based on the geometry of the chromosomal volume segmented on H2B signal. (b)
Boxplot of the difference between the predicted division axis and the pole-to-pole axis in the first anaphase frame.
(c) Averaged differences between pole-to-pole and predicted axes throughout mitosis. Cells were annotated into one
of the five mitotic stages and aligned manually. The analysis was performed by J. Hossain. The illustration was
done by J. Hossain and myself.

In order to validate whether the chromosomal volume can be used to characterize

the mitotic morphology, Julius Hossain and I have examined the difference between

the actual division axis, i.e. the pole-to-pole axis of the mitotic spindle at the moment

of chromosome segregation, and the symmetrical axis of the chromosomal volume.

Birgit Koch and I acquired an imaging data set from the HeLa Kyoto BAC cell

line H2B-mCherry/NEDD1-LAP provided by Ina Poser (see 5.1.2). Using confocal

live cell imaging each cell was imaged every five minutes through mitosis with a

spatial resolution of 150 nm in x-y and 500 nm in z. Julius Hossain segmented

the chromosomal volume based on the H2B and the centrosome volume based on

the Nedd1 signal in 3D. We compared the predicted division axis based on the

binary chromosomal volume geometry (see 5.2.16) with the vector connecting both

centrosomes in the first frame of anaphase (Figure 3.1 a). The difference between

the direction of the two vectors is negligible (Figure 3.1 b).

Furthermore, we looked at the correlation between the geometry of the chromosomal

volume and the spindle position. The third chromosomal eigenvector was identified as

a good approximation for the symmetrical axis towards the division direction for late

metaphase until the beginning of chromosome segregation. For the remaining frames,
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one of the eigenvectors was selected based on the rules described in 5.2.16. Figure

3.1 c shows that, initially, the difference between the chromosomal symmetrical axis

and the spindle pole-to-pole direction is large when the mitotic spindle forms in early

mitosis. But both vectors converge in late prometaphase and stay similar, until

the disassembly of the mitotic spindle starts in late telophase. Thus, chromosomal

volume could well be used for the estimation of the mitotic spindle orientation, as

long as the spindle is completely formed.

I then examined whether simple geometrical features of the chromosomal volume

can be used for characterization of the mitotic temporal progression. I extracted

three features from the chromosomal volume: the total volume, the distance between

the two daughter genome partitions, and the third eigenvalue of the binary chromo-

somal volume. All three features gave very characteristic and reproducible behavior

throughout cell division (Figure 3.2).

Figure 3.2: Features of the chromosomal volume.
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Three features were extracted based on the chromatin signal. Visual illustrations of the features are shown on the
left in red (illustrated by J. Hossain), while on the right the feature values of two mitotic cells are plotted over time.

All of these results show that chromosomal volume is a good landmark for both

the temporal and morphological progression of the mitosis. It is highly predictive of

the division axis and has a tight correlation to the spindle orientation, another major

mitotic subcellular structure. Finally, geometrical components of the chromosomal
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volume are characteristic for different mitotic stages.

3.1.2 Cell volume defines the border of reactions

The cellular boundary defines the border of the cell. Moreover, it actively contributes

to the mitotic process by connecting the extracellular environment with cytoskeleton

structures such as the spindle and actin filaments (Xu and Saunders, 2008). The

shape of the cellular volume is very dynamic throughout mitosis as well: at the

beginning of division, it rounds up from its adherent flat shape. In telophase, the

so-called cleavage furrow, a neck in the middle of the cell, emerges and defines where

the mother cell should separate. Thus, I took the cell boundary as an additional

landmark in addition to the chromosomal volume.

Figure 3.3: Labeling strategies of cellular landmarks.

a

H2B-mCer3/Myrpalm-mCer3
b

H2B-mCherry/Dextran-Dy481XL

Confocal 3D live cell imaging was performed on HeLa Kyoto H2B-mCer3/Myrpalm-mCer3 stable cell (a) or H2B-
mCherry stable cell cultured in Dextran-Dy481XL solution (b). Single imaging z-plane was taken for the cell in (a)
and an averaged projection through 6 z-planes over 3.75 µm was used for (b). Scale bar: 10 µm.

There are different ways to visualize the cellular boundary under a fluorescence

confocal microscope. I first tried to use HeLa Kyoto cells with fluorophore tagged

myrPlam, a cell membrane marker (Figure 3.3 a, cell line generated by Bianca

Nijmeijer). The cells behaved well, but the segmentation results for the cell membrane

were not precise enough due to the irregularity of the membrane signal.

I then used 500 KD dextran labeled with the fluorescent dye Dy481XL (chemical

provided by M. Julia Roberti) to stain the culture medium in such a way that the

cell boundary can be recognized by negative contrast (Figure 3.3 b). I tested the

staining protocol with different concentrations of dextran, and confirmed that a
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Figure 3.4: Toxicity of dextran to cell mitosis and cell cycle.
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HeLa Kyoto cells were immersed in imaging medium containing 3.29 µM 500 KD dextran-Dy481XL. The mitotic
kinetics and the cell cycle time were measured as described in session 5.2.11. (a) For each condition about 1500
mitotic events were automatically annotated and ranked by the total duration of early mitotic stages (prometaphase
to metaphase). The statistics for the duration of all stages are shown in (b). (c) HeLa Kyoto cells were imaged with
a confocal microscope for 40 hours, and about 70 cells were tracked for 26.6 hours after their first division. About
60% of the cells divided a second time under both conditions.

dextran concentration of 3.29 µM as I later used for imaging did influence neither the

cell division (Figure 3.4 a, b) nor the cell cycle kinetics (Figure 3.4 c, see material

and methods). The advantage of using labeled dextran instead of producing a cell

line with a labeled cell boundary or volume was the high flexibility in experimental

design. The color of the label can be chosen freely according to the fluorescent tags

on the chromosome and the proteins of interest.

Some simple features of the cellular boundary had characteristic behaviors through-
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Figure 3.5: Features of cellular volume.
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Cell height and length, illustrated on the left, of two cells over the course of division are plotted on the right.

out cell division. An example is shown in Figure 3.5, where both the height and the

length of the cell at the symmetrical axis of the chromosomal volume are changing

with a reproducible course. It turns out that taking both the chromosomal and

cellular volume as landmarks produces good coverage of the dynamic morphology of

a dividing cell without overcomplicating the experimental design.

3.1.3 Acquisition of landmark data set for modeling of the Mitotic

Standard Cell

HeLa cells stably expressing H2B-mCherry were cultured in an imaging medium

stained with 0.35 µM 500 KD dextran-DY481XL and imaged live overnight at

lower resolution on a ZEISS 780 fluorescence confocal microscope. Cells in prophase

were automatically detected using classification and imaged tomographically in a

z-stack every 90 seconds for an hour at a higher x-y resolution (details see material

and methods). Both cellular and chromosomal volumes were segmented using the

computational pipeline developed by Julius Hossain (see 5.2.15). For modeling of the

Mitotic Standard Cell, 132 successful divisions were acquired.
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3.2. MODELING OF THE MITOTIC STANDARD TIME

3.2 Modeling of the Mitotic Standard Time

3.2.1 Alignment of 2 feature sequences using modified multidimensional

discrete dynamic time warping

Successful divisions of HeLa cells usually take less than an hour, but the duration

of the division can differ strongly between cells. Moreover, the progression varies

massively between cells, i.e. cells with identical mitotic duration can have different

lengths for prometaphase, metaphase, etc. (Figure 1.2). In order to model the

averaged temporal progression of mitosis, I had to find a way to align all of the cells

in time first.

Traditionally, biologists annotated the mitotic stages manually, mostly based on

the morphology and texture of the chromosomal ensemble. More recently, supervised

computer vision methods were increasingly being used where the mitotic stages were

assigned by a classifier trained by experts. However, the annotation was not consistent

between different persons (Zhong et al., 2012), and thus not always reproducible.

The annotation was also limited to a very few characteristic stages.

I decided to use discrete dynamic time warping, an unsupervised approach widely

used in speech recognition (Myers and Rabiner, 1981). It optimizes the temporal

mapping between two digital sequences by locally stretching (duplicate signal points)

or squeezing (deleting signal points) the sequence such that the total distance between

the two signals is minimized over the entire time (Figure 3.6). The method is well

suited for the alignment of mitotic image sequences for the following reasons: the

imaging sequence is discrete in time; the mitotic progress can be described numerically

as feature value over time; and the optimization runs very fast.

I modified the standard implementation of the multidimensional discrete dynamic

time warping reported in Müller (2007) and Ten Holt et al. (2007) based on the

specific features of mitotic imaging sequences. I changed the calculation of the distance

between the two sequences which is used as the cost function for optimization. In the

standard implementation, it was implemented as the sum of the Euclidean distances

between all aligned pairs of data points. Thus, sampling the signal more frequently

will cause the cost function to increase, which would be a problem for later steps (see

next subsection). Thus, I weighted the distance for each aligned pair for the time

this aligned pair lasted (Figure 3.6 and appendix). Moreover, I introduced a penalty
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Figure 3.6: Illustration of discrete dynamic time warping.
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with extra cost for not aligned data points (chops and gaps)

for fusion alignment, i.e. one data point being aligned to multiple points. The reason

for this was that without it, in order to reach the minimum total distance, parts of

one sequence would sometime be extremely stretched or squeezed. However, mitosis

is always progressing, where each stage’s duration has variation but also constraints,

and the penalty pushes the alignment towards similar progression. Furthermore,

alignment gaps at the beginning and end of the sequences and as well as a gap ofgaps

of one data point in the middle of the sequence were allowed but with a penalty.

Since data acquisition has a set duration, image sequences do not start and end at

the same stage. Some stages, such as anaphase, may also only last a very short time,

and therefore the temporal resolution of the imaging protocol might miss certain

stages of cell division. A detailed implementation is attached in 6.3.5.

Next, I had to find a good numerical description for the temporal progression of

mitosis. Since dynamic time warping works best if the time course of the feature

has characteristic and reproducible shapes with multiple ups and downs, I used

the combination of the three morphological features of the chromosomal volume

described in Figure 3.3: the chromosomal volume, the distance between two daughter

nuclear partitions, and the third eigenvalue of the chromosomal volume. All features

were normalized to zero-mean-unit-deviation. In addition to this, as the shape of
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Figure 3.7: Discrete dynamic time warping of two sequences.
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The time-resolved chromosomal volume feature sequences of two cells were aligned using the algorithm described
in Figure 3.6. The timing of the aligned sequences was determined by the averaged progression of the original
sequences.

the feature curve was as important as the absolute value, first derivatives of each

of the three features were also included. To do this, the feature curves were first

smoothed using non-parametric fitting by a sliding window before the derivatives

were calculated (‘‘smoothingspline’’ and ‘‘differentiate’’ function in the MATLAB

curve fitting toolbox). Also the derivative features were normalized to zero-mean-

unit-deviation. Figure 3.7 shows the corresponding feature sequences of Figure 3.3

after the customized discrete dynamic time warping was performed. The alignment

was very effective.

3.2.2 Generation of the model by multi-sequence alignment

In order to generate a model representing the standard mitotic temporal progression,

the average of 132 mitotic cells aligned in the feature space would need to be taken.

However, discrete dynamic time warping is not suitable for aligning more than two

sequences at once. A framework for multi-sequence alignment had to be developed. I

implemented a modified Barton-Sternberg algorithm (Barton and Sternberg, 1987)

as follows: To initiate the alignment, the sequence with the smallest total Euclidean

distance to all remaining sequences in the pool was selected and aligned pair-wise

first to the next closest sequence using dynamic time warping as described in the last

subsection. The average of the aligned pool was updated and the next unaligned
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Figure 3.8: Algorithm of multi-sequence alignment
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(a) Schematic pipeline of modified Barton-Sternberg algorithm. (b) The convergence of the alignement of 132
landmark feature sequences measured by the total standard deviation.

sequence was selected and aligned against the aligned average. Here, an asymmetric

penalization was used where any gaps in the alignment of the selected sequence had a

higher cost compared to those of the averaged sequence. Since the average presented

many mitotic sequences, it was unlikely that any frames in the selected sequence

could not find the corresponding aligning partner in the averaged sequence. This step

was repeated until all sequences were aligned. To refine the alignment, sequences

were taken from the pool one-by-one and re-aligned to the current average sequence

over several rounds (Figure 3.8 a). The convergence of the alignment evaluated by

the total standard deviation was reached after 2 rounds (Figure 3.8 b).

Among all 132 mitoses, sequences with significantly larger (mean + standard

deviation) distance to the averaged sequence were sorted out and the average of the

remaining sequences was used as the model of mitotic temporal progression in the

feature space (Figure 3.9). The averaged progression time between two sequential

frames of the averaged sequence was calculated as the total increase in the imaging

time of all data points aligned to divided by the number of data points. The mitotic

Figure 3.9: 132 cells (grey lines) were aligned in the 6-dimensional feature space, and the average (black line) of the
aligned sequences was used as the mitotic standard time model in the feature space.
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Figure 3.9: Generation of the mitotic standard time model.
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time line was derived from the progression time. The model had a very high sampling

rate that was hard to interpret biologically as it would introduce additional noise.

Thus, I performed sub-sampling with a constant time lapse of 15 seconds. The

feature vector between two sampling points was linearly interpolated. In the end,

the temporal progression of mitosis was modeled as a process that lasts 60 minutes

with 237 sampled frames.

3.2.3 Objective finding of mitotic transitions

Next, I wanted to objectively stage mitosis based on the numerical transitions of the

model in the feature space. A transition was defined as a point in time, before and

after which the slope of the feature sequence changed strongly. Since the averaged

feature sequence was noisy, the change of slope was calculated based on the mean of

a window of 4.5 minutes and normalized to zero-mean-unit-deviation in each of the

feature dimensions. Points which had a change of slope value (approximated second

derivative) larger than a pre-defined threshold (see 6.3.6) in all feature dimensions

were identified as transitions. Since the slopes were calculated through a window of

4.5 minutes, only the peaks in the second derivative were used as final transitions.

When selected transitions in all feature dimensions were merged, sections longer than

12 minutes without any transitions were detected, and additional transition points

were set to the position with the maximum change of slope (Figure 3.10). Finally, if

multiple transitions were selected within a mitotic duration of 1.5 minutes, only the

transition with the highest total change of slope among all feature dimensions was

kept (Figure 3.10). In the end, a total of 19 clearly distinguishable transitions were

identified this way.

3.2.4 Generation of the virtual mitotic cell

To validate that the mitotic standard time adequately represents real biological

stages, we reconstructed for each stage between two standard mitotic transitions a

virtual mitosis by choosing the 3D stack with the shortest distance to the average

feature values among all frames in the mitotic standard time model of that stage

(Figure 3.11). Although the images picked for each stage are from different cells, their

computationally assigned sequential order reconstitutes a perfect mitosis (Figure 3.12)

in which we see known transitions such as nuclear envelope breakdown (between
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Figure 3.10: Objective definition of mitotic standard transitions.
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Transitions (red circles in the upper six panels) were identified as peaks above an automatically determined threshold
(grey line) on the approximated second derivative (black line) in each feature dimension. The transitions were merged
(lower two panels) and transitions were added (blue dots) or deleted (grey circles) such that the duration between
two transitions was kept between 1.5 and 15 minutes. The final stages defined as the time between two transitions
are color-coded in the lower panels.
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frame 2 and 3), anaphase onset (between frame 11 and 12), and the start of telophase

(between frame 15 and 16). But we also recognize previously hard-to-define stages

such as the formation of the metaphase plate in late prometaphase (between frame 6

and 7), and are able to differentiate between anaphase and telophase stages (frames

12 to 18). Thus the mitotic standard time provides a quantitative and objective way

to define mitotic stages. The results show that the mitotic standard time provides a

quantitative and objective way to define mitotic transitions.

3.2.5 Assign mitotic stages using the Mitotic Standard Time model

Any mitosis imaged in HeLa Kyoto cells with the chromosomal volume as landmark

could now be temporally registered to the Mitotic Standard Time. After the segmen-

tation, corresponding parameters were extracted and aligned to the model resolved

every 15 seconds using our discrete dynamic time warping implementation. In order

to avoid having frames being unaligned, or multiple frames being aligned to the same

point in time, the penalization parameters were adjusted (see 6.3.7). Very often, a

single frame in the sequence to be analyzed was aligned to multiple frames in the

model. The final annotation took from these aligned model frames the one closest to

the frame being analyzed. Based on the mitotic time assigned to the sequence being

analyzed, all frames could be automatically annotated with the objective mitotic

stages.

In order to validate the temporal registration accuracy, I used the pipeline to

annotate 96 mitotic HeLa sequences acquired in the same way and with the same

landmarks and compared the annotation results with my manual annotation blindly

done before. It was very difficult for me to annotate a mitotic sequence into 20 mitotic

stages, and thus I first compared whether three major transitions, i.e. nuclear envelop

breakdown, anaphase onset, and post-mitotic de-condensation of the chromosomal

volumes, were identical in the manual and automatic annotation. Both annotation

methods agreed on 67% of the sequences. I then tried my best to assign each frame

into one of the 20 mitotic stages and the annotation would be identical to the

automatic annotation in 96.4% of all z-stacks. This result shows that even using a

completely unsupervised approach, our Mitotic Standard Time model provides a very

good template for the temporal registration of new mitotic data.
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Figure 3.11: Selection of the representative cell.
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The six-dimensional feature space was projected into two dimensions using the standard implementation of multi-
dimensional scaling in MATLAB. The averaged feature vector of the mitotic stage no. 10 is marked with a red dot,
and the cell with the shortest distance marked in red was selected as the representative cell for this stage.
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Figure 3.12: Mitotic Standard Stages as a virtual mitotic cell
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3.3. MODELING OF THE MITOTIC STANDARD SPACE

3.3 Modeling of the Mitotic Standard Space

The standard mitotic time model could register image sequences of any mitotic cell

into the standard time and assign each frame into one of the mitotic standard stages.

Using the images assigned to, Julius Hossain was able to generate a model of the

averaged cell geometry for all symmetrical stages, i.e. from late prometaphase to

cytokinesis (stage 8 to 20). The following text in this section was modified based on

the text formulated by Julius Hossain.

3.3.1 Cylindrical representation of the cellular and chromosomal

volumes

All cells in the same mitotic standard stage were registered to the division axis. To

do this a virtual coordinate system was defined first within a volume where the center

of the volume defines the origin of the virtual coordinate system. Landmarks from all

the cells were registered to the virtual coordinate system by applying translation and

rotation in 3D where transformation function was estimated from the predicted cell

axis and the desired axis in the virtual coordinate system. Bicubic interpolation was

used during the rotation (Keys, 1981). Same transformation function was applied

to both the landmarks so that the inter relationship between the landmarks was

preserved in the registered image stacks shown in Figure 3.13 a, b.

Registered landmarks were represented using a cylindrical coordinate system

(Szymanski, 1989), which has the advantage of polar coordinate systems (Brown and

Gleason, 2004) where the object boundary in 2D is represented as a radial distance

with respect to a reference point (centroid) inside the object as shown in 3.13 c.

Cylindrical representation of 3D landmarks combines the polar based representation

of the landmarks in all 2D planes. The centroids of each plane form an axis along z

which was termed as cylindrical axis (Figure 3.13 d). However, after chromosome

segregation it got difficult to represent both chromosomes accurately with a single

vector representing cylindrical distances. To address this, two separate cylindrical

representations were used to encode each of the chromosomes separately. Also, from

Figure 3.12: The standard cell representing each mitotic standard stage, defined in 3.2.3, was selected as described in
Figure 3.11. The timing and duration is shown as colored bars, and the grey dashed bars show the standard deviation
of the duration of each stage. The biological assignment was done manually based on the definition described in
1.1.1.
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Figure 3.13: Generation of standard mitotic space.
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3.3. MODELING OF THE MITOTIC STANDARD SPACE

late anaphase on the cell boundary starts to transform from one sphere into two

spheres, and a cleavage forms in between them that makes it difficult to represent

the cell boundary. Since the cylindrical axis was set along z, the radial distance was

measured along xy, and thus the top and bottom part of the shape was not estimated

as accurately as the middle slices were in order to generate the mean shape. As a

result the top and bottom part of the mean shape got slightly elongated. To address

this each of the landmarks was represented using two cylindrical distances, one by

setting the cylindrical axis along z, and the other along the predicted cell axis. These

two axes were orthogonal to each other due to the registration. Thus, by using a

cylindrical system each cell is represented by 6 vectors that describe the cell boundary

and chromosomal volumes 1 and 2 (if they exist) by separately using either z or the

cell axis as cylindrical axis.

3.3.2 Reconstruction of the canonical model of mitotic morphology

Average cell shape was computed in two iterations by combining the vectors repre-

senting the cylindrical distance. In the first iteration, all cells within a particular stage

were selected and 6 mean vectors were calculated from the corresponding vectors

representing the landmarks. Mean vectors were then transformed back to a Cartesian

coordinate system in order to obtain six corresponding binary image stacks, two for

each of the mean cell and both chromosomal volumes (Figure 3.13 e). Mean cell

region was obtained by combining two corresponding pairs of binary image stacks

(one using z and the other using the cell axis as cylindrical axis). This was done by

first taking the common space (intersection) between two binary images which was

then extended radially until the mean volume of all the cells belonging to the stage

was reached (Figure 3.14).

The mean shape computed from all the time points within a particular stage might

be influenced more by cells that have a large number of time points than by those

with fewer time points. This was addressed in the second iteration which takes

only one time point (if it exists) from each cell. When a cell contained more than

Figure 3.13: (a) Examples of single cells taken from mitotic stage 10; (b) From left to right: 3D reconstruction
of landmarks and registration of selected cells using predicted cell division axis; (c) Representation of chromosome
and cell boundaries using polar coordinate system; (d) Representation of 3D landmarks using cylindrical coordinate
system; (e) Average morphologies of cellular landmarks in cylindrical representation. (f) Average cell and chromo-
some surfaces in different mitotic stages; (g) Standard deviation of cell and chromosome surfaces. The figure was
constructed by Julius Hossain with my help and input.
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Figure 3.14: Merging two cylindrical representations.
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surfaces in cylindrical (b) and Cartesian (c) coordinate systems. (d) Union and intersection of two volumes occupied
by average landmarks obtained from two cylindrical representations. (e) Combining the results obtained from two
representations to generate final cellular and chromosomal surfaces. The result was obtained by Julius Hossain.
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one time point in a stage then it selected the one most similar to the mean shape

obtained in the first iteration. Here similarity between two shapes was measured

from the deviation between two surfaces, and the corresponding vectors representing

the cylindrical distance were used for this measurement. The standard deviation

of all the cells that belong to the stage was also estimated in the same way. Thus,

mean shape and standard deviation were generated for all the stages (8-20) for each

of the landmarks (Figure 3.13 f, g). If the number of chromosomes varied in different

cells that were at the same stage (due to the legging chromosomes, both daughter

nuclei could be segmented as a connected component even in progressed anaphase),

then a single chromosome was divided into two by fitting a plane orthogonal to the

cell division axis passing through the origin. The mean shape was then generated as

described above by treating each cell as having one of the chromosomes.

Once mean shapes for all the stages were obtained, any number of intermediate

shapes between two neighboring stages could be generated by interpolation. To do

this, mean shapes of two neighboring stages were represented using both cylindrical

representations as described before. Then a combined vector was generated for each

of the landmarks by taking a weighted average of two vectors representing the mean

shapes where the weight of a cluster determined the similarity of that cluster to

the interpolated shape. Theses vectors were then transformed back to a Cartesian

coordinate system to generate an interpolated mean space in a similar way to (Figure

3.15).

3.4 Generation of the 3D protein density map through

mitosis

3.4.1 Acquisition of the proof of concept data set

In order to test and show the power of the integrated experimental and computational

pipeline, I generated a proof of concept data set with 12 well-known mitotic proteins.

Due to a delay in cell line production using genome editing methods such as zinc

finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or

Clustered regularly interspaced short palindromic repeats (Crisp R) techniques, I

based my selection of cell lines only on the correct localization of the proteins and

the goodness of fit of the cells and not on the technologies used for fusion protein
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Figure 3.15: Interpolation of mitotic morphology.
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(a) Standard mitotic spaces: stages 13 and 14. (b) Cellular landmarks: cell surface, chromosome surfaces 1 and 2
in cylindrical representation. (c) Interpolated landmarks in cylindrical representation, from left to right – 75% of
stage 13 and 25% of stage 14, 50% of stage 13 and 50% of stage 14; and 25% of stage 13 and 75% of stage 14. (d)
Corresponding interpolated cellular and chromosomal surfaces. The result was obtained by Julius Hossain.
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expression (Table 3.1).

Table 3.1: The proof of concept data set

Gene Technique Division imaged Division QC+

KIF11 BAC 17 16
MIS12 BAC 36 33
TUBB2C BAC 36 29
RACGAP1 BAC 34 15
CDCA8 BAC 16 13
NEDD1 BAC 33 28
AURKB BAC 22 17
AURKB ZFN 17 15
NUP214 BAC 44 37
PLK1 ZFN 20 17
CENPA cDNA 27 21
BUB1 CrispR 17 12
NES cDNA 23 16
H2B cDNA 35 33

First, only proteins that localized on typical mitotic subcellular structures were

selected, such as the TUBB2C as structural element on the spindle, CENPA as

component of the centromere/kinetochores, RACGAP1 on the miplane/midbody,

and nuclear export sequence (NES) in the cytoplasm. For the centrosome, I chose

the best available marker NEDD1, which also localizes to the pole area of the spindle.

In addition, the chromatin marker H2B that was used for landmark labeling can also

be used as a reference for the localization of proteins of interest (Figure 3.16 a).

In the proof of concept, I wanted to focus in particular on the kinetochore proteins

in order to test the analysis in dynamics quantification. The reason for this are the

distinct localization on the kinetochores, a reasonable expression level, and the large

amount of existing knowledge about the structure, interaction network, assembly and

disassembly of the kinetochores. I selected five proteins with kinetochore localization

(Figure 3.16 b) but different dynamics: MIS12 is a protein localized in the outer

kinetochore connecting both microtubule binding proteins KNL1 and NDC80 (Jia

et al., 2013; Petrovic et al., 2010). As reported in Gascoigne and Cheeseman (2013),

MIS12 dissociates from the kinetochore complex after the chromosome segregation.

BUB1 is an important mitotic checkpoint serine/threonine-protein kinase (Roberts
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Figure 3.16: Proof of concept data set with 13 proteins

a

b c

Reference proteins

Kinetochore proteins Additional proteins

H2B TUBB2C CENP-A NEDD1 RACGAP1 NES

MIS12 BUB1 PLK1 AURKB CDCA8 NUP214 KIF11
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et al., 1994). It bridges knl1 to spindle assembly checkpoint (SAC) proteins such

as MAD1/MAD2 before the binding of microtubules to the kinetochores (Yu, 2002;

Petrovic et al., 2010). BUB1 localizes in the cytoplasm during interphase and

accumulates on the kinetochore at the very beginning of prophase (Grabsch et al.,

2004; Johnson et al., 2004), which is important for the localization and recruitment

of many other proteins such as PLK1 and AURKB (Qi et al., 2006; Boyarchuk et al.,

2007). The polo-like kinase (PLK1) partially localizes to kinetochores from prophase

to anaphase, with one of its phosphorylation targets being the anaphase-promoting

complex (APC) (Hansen et al., 2004). In addition to this, PLK1 has functions on the

spindle pole and migrates during anaphase to the central region of the spindle (Eot-

Houllier et al., 2010; Glotzer et al., 2007). Aurora B kinase (AURKB) is a component

of the chromosomal passage complex (Carmena et al., 2012) and plays a central

role in ensuring the biorientation of the spindle attachment on the kinetochores

(van der Waal et al., 2012). AURKB targets CENPA on the inner centromeres

(Zeitlin et al., 2001) and maintains the correct localization of the SAC components

(Lens et al., 2003). After anaphase, AURKB moves to the midplane/midbody and

exerts functions in cytokinesis (Nguyen et al., 2014). The last protein I selected is

Borealin (CDCA8), also a CPC component interacting with AURKB (Carmena et al.,

2012). It is supposed to co-localize with AURKB throughout mitosis (Gassmann

et al., 2004).

Bearing in mind that the proof of concept data set might be enlarged in the future

such that structures other than kinetochores could be analyzed in a dynamic way, I

added kinesin 5 (KIF11) and nuclear pore protein NUP214 to my list (Figure 3.16

c). KIF11 has been reported as an important component during the separation of

the centrosome pair during prometaphase, and ensures the bipolar orientation of the

mitotic spindle (Raaijmakers et al., 2012). The major localization of KIF11 is the

spindle/spindle pole. NUP214 is a structural protein in the nuclear pore complex and

localizes, under confocal resolution, on the nuclear envelope before NEBD, and then

again in telophase (Strambio-De-Castillia et al., 2010; Xylourgidis et al., 2006). I

aimed to test whether a new localization could be detected using our analysis pipeline.

The technology and source used for cell line production as well as the number

Figure 3.16: Example cells from the proof of concept data with the protein of interest in green and landmarks in red.
Scale bar: 10 µm
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of mitotic cells that were taken using the automatic calibrated confocal imaging

platform are summarized in Table 3.1. Due to the variable expression levels in the

cDNA and BAC expression systems, some of the proteins had challenging variations

in their localization. For example, CENPA showed distinct kinetochore localization

but also clear spread over chromosomes in many cells (Figure 3.17 b), and most cells

with NUP214 show only very dim nuclear rim localization (Figure 3.17 a). This

variation could not be excluded completely even though I performed a manual quality

control by sorting out cells with very high or low protein expression.

Figure 3.17: Variation of protein localization

a b

Landmarks NUP214 Landmarks CENP-AMerge Merge

Example cells from the proof of concept data with a high background protein localization. Scale bar: 10 µm

3.4.2 Getting the absolute protein abundance using calibrated imaging

In order to measure the absolute protein abundance within the dividing cell, I used a

calibrated automatic confocal live cell imaging pipeline that was developed in-house

(A. Politi). Alexa 488 solution at known concentration was used for determining

the confocal volume before each imaging session. Cells were cultured in Dextran-

DY481XL solution, and pre-selected positions were imaged every 5 minutes for three

planes at a low spatial resolution. Using Micronaut, the extension software from

CellCognition for microscope online image analysis (Gerlich lab, IMBA), cells in

prophase were identified using a previously trained classifier. The prophase cell was

then imaged every 90 seconds for an hour at a higher spatial resolution at 31 z-planes

covering the entire cell volume. After an hour, a selected z-plane was imaged using

the same setup followed by six FCS measurements in the POI channel positioned in

and around the nucleus closest to the center. In addition to that, FCS measurements
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were also performed in HeLa cells expressing monoclonal EGFP for every session

such that the brightness of each EGFP molecule could be determined. Details can be

found in the Material and Methods section (Figure 3.18 a).

Figure 3.18: Calibrated automated confocal live mitotic cell imaging
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(a) Automated mitotic cell imaging pipeline. Prophase cells are found in the low resolution imaging mode (left) and
followed through mitosis in the landmark (upper line, middle) and GFP protein of interest (lower line) channels. At
the end of imaging, six FCS measurements are performed in the GFP channel (right). (b) The calibration factor,
calculated using linear regression of the FCS measurements, can be used for the translation of the imaging intensity
into the absolute concentration map of the protein (c). Scale bar: 10 µm

All FCS measurements were processed by Fluctuation Analyzer (developed by Malte

Wachsmuth at EMBL), and identical starting values were used for the numerical

fitting (see 6.2). The number of molecules from the fitting was then used to calculate

the local concentration of the protein by dividing by the confocal volume. The

concentration was corrected if the protein molecule was brighter than the monoclonal

EGFP. The GaASP detector intensity at the spots of FCS measurements was

determined from the image taken before. The averaged intensity of the GFP channel

in cell-free areas was considered as background. The ratio between the local absolute

protein concentration and the background-corrected imaging intensity was calculated

for each measurement point, and the averaged ratio of all measurement points after

passing multiple quality control steps was used to generate the density map of the
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protein by multiplying the ratio with the intensity value of all pixels in the high-

resolution 3D image (Figure 3.18 b, c). Based on the concentration map the absolute

protein abundance could be calculated by summing up the map over the cell volume.

3.4.3 Registration of protein distribution into the Mitotic Standard Cell

The chromosomal and cellular volume of the cells were first segmented using the

computational pipeline developed by Julius Hossain as described in material and

methods. Three features were extracted from the chromosomal volume for modeling

the Mitotic Standard Time. The first derivatives of the feature sequences were

calculated and all features were normalized as described before. The six-dimensional

feature sequences were then aligned to the Mitotic Standard Time model and mitotic

stages were assigned to the image sequence as reported in subsection 2.2.5.

Julius Hossain then implemented algorithms to register the cells into the standard

mitotic space. He wrote: ‘‘To do this, cells having same protein belonging to a

particular mitotic stage were registered first to the average model of that stage by

making use of the predicted cell axis. This brought all individual protein image stacks

into the same coordinate system to generate the average probability map of that

protein by simply taking the mean. The results of cellular region segmentation for

individual cells were also used to take the mean precisely. Following the same way

the average probability map of all the proteins was estimated one by one. Then, the

standard mitotic space could integrate any number of average probability maps for

visualization or analyzing co-localization (Figure 3.19).’’

3.4.4 The 3D protein density map

The 3D protein density maps represent the average of the protein distribution in 12

to 37 cells. By looking at each single map, the subcelluar localization of well known

proteins in the proof of concept data set fully matched our expectations. All proteins

had generally correct subcellular localization displaying the characteristic shape of

the subcellular structure. Although detailed patterns got lost during the averaging

such that single fibers of the spindle or single kinetochores could not be identified,

3D maps were able to provide important information about the protein localization.

Interesting observations were made for NEDD1. The protein is usually considered

to be localized to centrosomes and spindle poles. However, a clear reduction of
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Figure 3.19: Averaging protein distributions in the standard mitotic spaces.
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(a)-(b) Example cells with two proteins that are registered to the corresponding standard mitotic spaces shown in (b);
(c) Average distributions of TUBB2C and AURKB; (d) Average distributions for 4 proteins are shown in different
mitotic stages. This figure was provided by Julius Hossain.
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the protein abundance on the spindle pole was shown from anaphase onward. In

telophase, the protein distributed clearly to the central spindle volume (Figure 3.20

a). Previously, this observation was indicated in a few cells during manual inspection

of the data. Based on the map, I was able to determine that this localization pattern

was representative for the NEDD1 cells in my data set as a whole.

Concurrently visualizing multiple maps in the standard mitotic cell geometry allows

the exploration of the co-existence and the co-localization of protein groups. The

small size of the proof of concept data set made it difficult to generate any new

findings, however it was interesting to see that AURKB formed a central plate and

outer ring in the midbody area where TUBB2C indicating microtubules went through

the central mass (Figure 3.20 b). This observation demonstrates the power of the 3D

map in uncovering details at sub-structure resolution.

Figure 3.20: Example protein maps in the mitotic standard cell.

a b

Landmarks/NEDD1 Landmarks/AURKB/TUBB2C

(a) Protein distribution map of NEDD1 in telophase. (b) AURKB distribution map in late anaphase (middle)
co-visualized with the TUBB2C map (right). The figure was generated using the beta version of a web-based
visualization app designed by Jean-Karim Hériché.

3.5 Quantitative data mining

3.5.1 Concept of a quantitative and automatic protein localization

annotation

The 3D protein density maps include valuable and direct information on a protein’s

localization, and they enable the comparison of multiple proteins within the standard

geometry. However, they are lacking a quantitative and biologically annotated

description of protein localization. Thus, additional data mining techniques were

developed for the quantification of the protein distribution.
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The goal of the analysis is the detection of all underlying cellular structures to

which the protein localizes and the determination of the amount of protein in each

location. Traditionally, researchers would segment the area of a particular subcellular

structure manually, and use image processing software to then quantify the protein

amount within the area of interest. However, doing this for potentially hundreds of

proteins would be very difficult. The number of landmarks for known subcellular

structures is also limited during imaging, which means that the segmentation has

to happen directly in the protein of interest channel. Since the contrast can vary

strongly over all proteins, and the localization pattern can be a combinations of any

number of subcellular structures, developing an objective automated pipeline for this

purpose would be almost impossible this way.

As introduced in 1.4.3, machine learning approaches were widely used for solving

similar problems. First, each image was translated into a numeric vector describing

the features of this image, such as the texture, granularity, or in cell-specific cases

also the signal distribution relative to cellular landmarks (Zhao and Murphy, 2007).

For supervised approaches, a set of feature vectors of images with known annotations

was used for the training, in which parameters of the model defining the boundary

between different patterns in the feature space were optimized for achieving the least

confusion in assigning the images present in the training set. This model was then

used for the annotation of the remaining images. For clustering, the entire data set

could be processed at once, and images close by in feature space would be assigned

to the same cluster.

However, images with more than one basic pattern without any physical separation

in space between the patterns were very challenging for classification based approaches,

which assign each image into one of the pattern classes. These problems had to be

solved using a regression (Peng et al., 2010) or factorization (Coelho et al., 2010)

based approach. The former tried to improve the model by not only defining the

boundary but by also fitting the quantity of each pattern during training. The latter

tried to identify basic clusters and assign all data points as a quantitative combination

of all clusters.

Therefore, the feature vector had to preserve the quantitative nature of the image

data and reflect the quantitative distribution of the proteins to multiple locations,

i.e. the combined localization could be represented as the linear combination of
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multiple basic localization elements where the weight vector corresponds to the

protein fraction in each localization element. Traditional image features such as the

Haralick texture feature (Haralick et al., 1973) were not suitable. Thus, I decided

to use a Bag-of-Words approach (Csurka et al., 2004). Each image (the ‘‘article’’)

was represented by a series of local image spots (‘‘words’’), where each of them had

a ‘‘meaning’’ assigned by a ‘‘dictionary’’ generated by clustering a set of ‘‘words’’

described by a common feature vector. The feature vector for the entire image

composed as the frequency of each ‘‘meaning’’ should be completely linear additive.

Similar methods were already used for the classification of cell images (Coelho et al.,

2013), but not yet for the quantification of the underlying patterns.

3.5.2 Dissecting a protein signal into a series of interest points

To select ‘‘words’’ in the image, I chose the detector of the Speed Up Robust Features

(SURF) algorithm reported in (Bay et al., 2006) and implemented in the Computer

Vision Toolbox in MATLAB, to detect spots with a higher contrast relative to

their local environment. Here, the protein z-stack concentration map was processed

using a Gaussian filter at 0.5 micrometer followed by projection along the z-axis and

normalization to the theoretical saturation intensity. SURF interest points were then

detected at four scales, sized from single kinetochores up to the whole cell (default

implementation in MATLAB, see 6.3.9).

Figure 3.21: Detection and selection of interest points

Landmarks/AURKB Interest point all Interest points reduced

Interest points (grey circles) were extracted using SURF detectors in the protein of interest channel and selected
further in order to avoid overlapping.

Interest points were subsequently ranked by their local contrast, with those dis-

playing insufficient contrast being discarded. Even so, overlapping interest points

remained and further selection was required (Figure 3.21, middle panel). An interest
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point was kept if its center and more than 60% of its intensity were not overlapping

with any other interest points, or if the mean intensity of its surrounding environment

was higher than that of other overlapping interest points. After this process, the cell

image was dissected into a series of interest points where the signal was reasonably

well covered by the selected interest points but only a small fraction of signals was

represented in more than one interest point (Figure 3.21, right panel).

Each of these interest points was then described by a numerical vector. Due to

the low contrast nature of live cell fluorescence images, values calculated by the

SURF descriptor did not give the best performance in further analysis steps. Thus, I

implemented descriptors quantifying features in the following four categories: the

location features, the correlation features, the intensity distribution relative to the

center, the orientation of the intensity (explanation see below, implementation see

6.3.9).

For the location features, the original 3D coordinates of each pixel taken in the

maximum projection were compared with the 3D segmentation of the cellular and

chromosomal volumes. The relative position of all pixels in the interest points were

summarized and percentage thresholds were set to categorize the interest points into

cell boundary, cytoplasm, nuclear boundary and nuclear regions.

The correlation features describe the relations between the interest points and the

chromatin signal and between the interest points and the midplane volume. For the

former, the 3D image of chromatin was projected using the pixel coordinates taken

for the protein channel maximum projection. The co-variance between the intensity

values in the protein channel and the chromatin channel within the interest point

area was used as feature value. For the later one, midplane/midbody was predicted

as the symmetrical plane between two daughter chromosomal volumes (see material

and method) and dilated into a volume. The intensity fraction located within the

midplane volume was calculated for each interest point as a separate feature.

The feature vector derived from the intensity distribution relative to the center

was implemented based on spin image features in (Lazebnik et al., 2005). Interest

points were cropped into squares and re-sized to a standard of 73 by 73 pixels. A

two-dimensional intensity histogram of five distance bins relative to the center was

calculated based on the frequency of one of six intensity levels. Here, the ‘‘soft

histogram”-approach was used such that each pixel could contribute into multiple
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bins weighted by the intensity and location distance relative to the bin definition.

The contribution of a pixel with a distance relative to the center of 𝑥 and an intensity

of 𝐼 was defined as:

𝑒𝑥𝑝(−(𝑥− 𝑑)2

50
− (𝐼 − 𝑖)2

0.005
),

for the bin (𝑑, 𝑖). The two-dimensional histogram was then unfolded into a vector

describing whether the signal was homogeneous, randomly distributed within the

interest point or accumulated at a particular distance to the center, i.e. as a bright

spot or a ring.

Furthermore the features describing the intensity orientation were calculated on

the cropped square interest points. For each pixel in the interest point, pixels in the

neighborhood at a distance of two pixels were assigned a 1 if they were brighter than

the center pixel and 0 otherwise. The interest point was then summarized into a

uniform Local Binary Patterns vector (uLBP) (Heikkilä and Pietikäinen, 2006) by

counting the frequency of random pixels (with more than one 0-1 transitions in the

neighborhood) and of each type of uniform pixel (0 to 8 brighter neighborhood pixels

with none or only one 0-1 transition). In order to increase the signal to noise ratio, I

further summarized the vector into four numbers: first, the Euclidean distance to the

uLBP vector of a simulated interest point with a completely random signal; second,

the frequency of uniform pixels with three to four brighter pixels in the neighborhood,

indicating stripes; third, the ratio of pixels with a neighborhood of only darker pixels

to those with random pixels; and fourth, the dominant direction where the local

signal orientation was calculated as the direction, numbered one to eight, separating

the neighborhood signal of an uniform pixel into two equal intensity fractions. Thus,

only a four-dimensional vector was used to describe the local signal orientation of an

interest point.

In total, each interest point was numerically defined by a 41-dimensional feature

vector as the concatenation of all four categories of features.

3.5.3 Generation of the dictionary of interest points

The next step in a ‘‘bag-of-words’’ approach is the generation of a dictionary for the

‘‘words’’. The concept here is to compare a training set of ‘‘words’’ in their feature
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space and distinguish clusters of ‘‘words’’ with similar meaning. Later, any ‘‘words’’

can then be assigned to a particular meaning cluster based on its feature vector.

I randomly selected 5% of the interest points in the complete data set to construct

the training set. The structure of the training set was not obvious, and I therefore

decided to perform clustering at multiple layers. First, all training interest points

were separated into 16 clusters based on their localization feature and their contrast

to the environment. For each location category, i.e. cell boundary, cell cytoplasm,

nuclear boundary, nuclear inside, the interest points were clustered into four metric

levels determined using median values.

I then checked the maximum metric value in each cluster first. If the maximum

metric value was below a pre-defined threshold, interest points in that cluster were

not separated further. Otherwise, interest points in each of the location-contrast

clusters were further divided based on their correlation features. Using the pre-

defined thresholds, data points were clustered into anti-correlated, no-correlation,

and positive-correlated groups based on the intensity correlation to chromatin for

interest points localized on the nuclear boundary or in the chromosomal volume and

based on the correlation to the midplane volume for cellular localized interest points.

Next, I used dbscan (Ester et al., 1996) to cluster the interest points in each of the

location-contrast-correlation clusters further if there were more than 15 data points

in the current cluster. A principle component analysis (PCA) (Jolliffe, 2002) was

performed on the data points in the feature space defined by 34 intensity distribution

and orientation features. Components covering 85% of the variance were used to

reconstruct the data set in a reduced feature space for clustering. Based on the density

of the data in the feature space, parameters for the dbscan clustering algorithm were

automatically calculated (see 6.3.10) and used for the clustering. The algorithm used

was implemented by Tran et al. (2013) and tries to identify clusters in which the data

points could be linked with each other at a distance below the pre-defined threshold.

The final clustering step was performed only to the clusters with the highest

contrast value in their location category. Using the 30 intensity distribution to center

features, the median intensity value for each distance bin was calculated. Three

classes were defined by pre-defined thresholds, i.e. dim interest points, where in all

distance bins more than half the pixels were dimmer than a threshold; homogeneous

bright interest points where the averaged median intensity throughout all distance
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bins was high and the standard deviation was low; and mustered interest points

where the standard deviation of the median intensity was high throughout all distance

levels.

The total number of clusters was not deterministic since the training set was

randomly generated, which meant that the number of clusters calculated by dbscan

was inherently unpredictable. However, after multiple runs it turned out that for our

data set the algorithm stably yielded between 70 and 90 clusters, which gave us a

good dictionary size to work with.

I manually checked the interest points in each of the clusters. For most of them,

a clear biological pattern could be identified among all data points (Figure 3.22).

However, many of the biological patterns were represented in multiple clusters, and

needed to be considered for further processing steps.

Figure 3.22: Interest point classes of subcellular structures

Chromatin

Kinetochores

Centrosomes

Midbody

IP class 70
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Interest point (green) classes defined by the dictionary often represent one particular biological pattern. Scale bar:
10 µm.

3.5.4 Numerical representation of a protein image

With the dictionary generated in the previous subsection, a ‘‘text’’ consisting of a

series of ‘‘words’’, in our case an image as a list of interest points, can be interpreted

based on the frequencies at which each ‘‘meaning’’ appears. Each interest point
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was assigned to one of the clusters in the dictionary based on their feature vector

compared to the separation thresholds and, in the case of clusters generated by

dbscan, to the same class of the closest interest point in the training set. The fraction

of intensity in each of the clusters composed the feature vector for the image (Figure

3.23).

Since some of the meaning clusters represent the same or very similar data points,

similar interest points can be assigned to different clusters and thereby cause instability

in the feature representation of similar images. Thus, in some of the feature dimensions,

the numerical value over the division of a cell could display dramatic ups and downs

that are biologically meaningless and technically difficult to handle. I therefore

smoothed the feature vector over time for each cell.

Smoothing turned out to be a nontrivial problem as proteins often change their

localization dramatically and accordingly cause strong and fast changes in the feature

vector. This behavior in the data can potentially be of particular biological interest,

and should therefore not be filtered away. Thus, the size of the window for smoothing

has to be determined based on the data.

I assumed that very similar images, i.e. having a high intensity correlation with

each other, should have very similar feature vectors. For each mitotic image video,

the intensity correlation between two adjacent frames was calculated and mapped

with a pre-defined function into a correlation factor, a value normalized to between

zero and one (Figure 3.24, see 6.3.12). For each frame to be smoothed (center

frame), the contribution of all neighboring frames was calculated as the product of

all correlation factors from the neighboring frame to the center frame. Finally, the

total contribution was normalized to one. Figure 3.24 shows the smoothing function

and its effect for an example sequence. Using this smoothing procedure, flips in the

time-resolved feature vectors were under control, whereas genuine dramatic changes

in the protein localization were still preserved in the trace through feature space.

3.5.5 Recognition of protein networks using non-negative tensor

factorization

After the feature extraction, each image was represented as a 85-dimensional feature

vector conserving the relative quantity of each of the interest point cluster. With the

prospect of having data with a large amount of unknown proteins, the first thing I
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Figure 3.23: Images as feature vectors
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as the protein of interest. The heatmap was generated using BlueGecko. Scale bar: 10 µm.
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Figure 3.24: Time-dependent smoothing of the feature vector trace over time.
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point classes shown in Figure 3.22. The correlation coefficient (upper left) was translated into correlation factor
by a pre-defined sigmoid function (upper right). Based on the correlation factor over time, the smoothing function
was calculated for each point of time (middle left). The trace of interest point classes describing kinetochores and
midbody before and after smoothing are illustrated in the lower panel.
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wanted to do was to uncover a structure within the data by grouping similar proteins.

Traditionally, time-resolved data were analyzed for each time point individually

without considering the connection between points of time. I wanted to expand this

approach to analyze the entire time-series using unsupervised techniques.

The approach to solving this problem was implemented and carried out by Dr.

Jean-Karim Hériché, with whom I had many fruitful discussions on the subject. The

following text in this subsection is based on notes on the topic formulated by him.

All images were temporally registered and assigned to one of the 20 mitotic

standard stages. Thus, a cell could be represented by several vectors at a given

mitotic stage. These duplicates were replaced by their average, resulting in each

cell being represented by only one vector per mitotic stage. Each protein was then

represented at each mitotic time point by the average of all its vectors present at

that time point. The resulting data set was a 3-dimensional tensor X of 13 proteins

(including H2B) times 85 features times 20 mitotic stages.

We viewed canonical subcellular localization as latent features of the data, which

meant that we assumed that, at any time point, the observed vector for a protein

was generated by a combination of the different canonical subcellular localizations

the protein occupied at this mitotic stage. A protein vector x could then be expressed

as the product of a subcellular localization membership vector z and a matrix A of

canonical subcellular localization features. Therefore, we wished to model our data

tensor X such that for each frontal (temporal) slice:

X𝑡 = Z𝑡A + E𝑡

where Z𝑡 was a matrix whose rows were localization membership vectors and E𝑡 was

a matrix containing the errors.

Given that all feature values were non-negative, a candidate solution for each

time point could be found by non-negative matrix factorization (NMF) of individual

matrices X𝑡 (Lee and Seung, 1999). However, processing time independently results

in loss of information with the undesirable effect that different canonical localizations

are learned for different mitotic stages. Simultaneous non-negative factorization of

a set of matrices is a special form of non-negative tensor factorization (NTF) that

could be reduced to a standard NMF using column-wise unfolding of the data tensor

X (Cichocki et al., 2009):
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3.5. QUANTITATIVE DATA MINING

X = ZA + E

where X was formed by vertically stacking the X𝑡 matrices and Z was formed by the

correspondingly stacked Z𝑡 matrices and E contained the errors. Z and A were then

found using multiplicative updates (Lee and Seung, 1999) to minimize the objective

function ‖X−ZA‖ where ‖.‖ indicates the Frobenius norm. As a final step, the rows

of Z were normalized to sum 1. Values in Z could be interpreted as fractions of the

amount of protein (captured by the features) present at each canonical localization.

The method requires to chose the number k of canonical subcellular localizations

we wanted to represent our data with. There was no good strategy for finding this

number a priori as increasing k corresponds to a higher resolution of the localizations

description, e.g. a low k would result in lumping all chromatin proteins together,

while a higher k would resolve kinetochore proteins from other chromatin proteins.

Thus, the optimal number of subcellular localizations was partly subjective, depending

on the level of granularity desired. However, we could use heuristics to help guide

the choice of k. If the number of selected canonical localizations was too low, many

proteins would share the same temporal profile, i.e. their corresponding vectors in Z𝑡

would have been highly similar for all mitotic stages. As more canonical localizations

were added, we could expect more proteins to resolve into distinct profiles, i.e. the

similarity between their corresponding vectors would decrease until eventually adding

more canonical localizations wouldn’t improve resolution and similarity would stop

decreasing.

Figure 3.25: Tucker’s congruence coefficient of the NTF of the data.
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Tucker’s congruence coefficient was calculated during the NTF of the data for determining the right number of basic
patterns objectively. The figure was provided by Jean-Karim Hériché.

Similarity between vectors across points of time could be measured using Tucker’s
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congruence coefficient (TCC) (Tucker, 1951). Therefore, for each value of k from 3 on,

we plotted the maximum value of TCC between the proteins (Figure 3.25). The first

value of k for which the maximum TCC reached a low value plateau, which was 7 for

our proof of concept data, indicated that there were enough canonical localizations

to describe each protein individually, and therefore this value of k represented an

upper bound on the number of canonical localizations. Because the NMF algorithm

could converge to a local minimum of the objective function, 10 runs with random

initialization of the matrices were performed, and the run with the lowest objective

function value was kept.

3.5.6 Unsupervised dynamic clustering of proof of concept proteins

Based on the TCC value, we identified seven classes in our data set. The fractional

affiliations to the clusters in all mitotic stages were visualized in Figure 3.26. According

to the proteins assigned to each of these clusters, we could assign the classes to major

mitotic subcellular structures: chromatin (H2B major localization), kinetochore

(CENPA major localization), midbody (RACGAP major localization from anaphase

onset), spindle pole (NEDD1 major localization until anaphase), cytoplasm (NES

localization), spindle (TUBB2C localization), and chromatin periphery (NUP214

localization after anaphase).

Besides those proteins with a single major subcellular localization that were used for

the interpretation of the classes, other proteins with mixed localizations were correctly

assigned into the expected classes as well. For PLK1 before anaphase the localization

on both kinetochores and spindle poles was identified (Figure 3.26), and KIF11 was

assigned to both spindle pole and spindle (Figure 3.26). Moreover, the migration

of proteins between subcellular components could be clearly distinguished. While

AURKB, PLK1 and CDCA8 displayed a clear reduction of their kinetochore and

nuclear localization and an immediate accumulation on midbody at anaphase onset,

BUB1 and MIS12 displayed a more graduate loss of kinetochore/nuclear localization

in metaphase and anaphase, respectively (Figure 3.26).

The quantitative nature of the feature extraction and NTF allowed us to successfully

assign fractions of proteins to each of the localization patterns as evidenced by

Figure 3.26: Each protein was quantitatively assigned to one of the seven localization patterns determined by the
NTF through all mitotic stages. The results were obtained by Jean-Karim Hériché.
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Figure 3.26: Output of the NTF analysis on the proof of concept data.
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comparison to existing knowledge. However, the lack of cytoplasmic localization in

most of the proteins suggests that most of the classes might not represent a single

subcellular structure. For example the spindle class might represent a combination

of spindle and cytoplasm since NES, NUP214 (between NEBD and telophase) and

other proteins without clear spindle localization could be found in that class. The

nuclear periphery might also be a composite of signals on the boundary of the

chromosomal volume, including both nuclear periphery and cytoplasm. In spite of

these uncertainties, the NTF managed to automatically identify the major sub-cellular

structures without supervision and allowed quantitative subcellular localization

assignment in our proof of concept data set.

3.5.7 Determine protein fractions in pre-defined subcellular structures

Although the NTF could assign the distribution of proteins into different localization

clusters quantitatively, depending on the data quality and the proteins in the data

set, the automatically identified localization clusters might correspond to a mixture of

multiple subcellular structures or incomplete structures, making their interpretation

difficult. Moreover, since the algorithm is completely unsupervised, it needs data

with little noise and good structures. Thus, the averaged feature vector through all

cells was taken for each protein in each mitotic stage in the analysis. However, the

assembly or dissociation of some protein clusters might happen in the order of tens of

a seconds. Also the variations between cells could be potentially interesting in itself.

Thus, methods need to be developed that allow researchers to analyze the dynamics

of cellular structures specifically at higher temporal resolution for each single cell.

Considering how many researchers are interested in the dynamic nature of specific

well-defined cellular structures, I decided to build a supervised framework for the

automatic quantitative assignment of protein localization. In order to keep the

annotator as generic as possible and the definition of subcellular localizations constant

over time, one annotator was built for the entire mitosis. This means that for each

of the pre-defined classes representing one subcellular structure, images of proteins

with the corresponding localization in all mitotic stages, if feasible, were selected

for the training of the annotator. In our proof of concept test, structures with their

representative proteins are listed in Table 3.2.

Different models could be used for the annotator. Since the quantitative detection
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Table 3.2: Reference structures

Localization Gene Stages

Cytoplasm NES 1-20
Chromatin H2B 1-20
Kinetochores CENPA 1-20
Centrosomes NEDD1 1-16
Spindle TUBB2C 4-20
Midplane/Midbody RACGAP1 13-20

of complex protein localizations on multiple cellular structures was needed, regression

with models allowing a good resolution between 0 (not localized) and 1 (pure localized)

would provide the best fit. Thus, classification algorithms such as support vector

machine (Chang and Lin, 2011) were not suitable due to their binary outputs. I

tested both linear and logistic regression instead and chose a linear model at the end

due to its simplicity, good results, and the linearity of our 85-dimensional feature

vector in the localization quantities.

In Peng et al. (2010), a specific data set of images with known distribution over

two subcellular compartments was generated for the training of the unmixing model.

However, generating such a data set for many subcellular localizations in living

mitotic cells is impossible with existing techniques. Since proteins with clear single

localization were selected for training, I estimated the objective function for the

regression as follows: I performed thresholding on the 3D image stack based on the

algorithm developed by Otsu (1975) (see 6.3.8) where the foreground signals 𝑓 were

considered as the fraction of proteins localized on the structure of interest. 𝑓 2/3 was

taken as the approximation for the foreground in 2D as the feature extraction was

performed on 2D images. The remaining signal fraction (1− 𝑓 2/3) was assigned to the

cytoplasmic location. For numerical reasons, the objective function was normalized,

for extreme long-tail distributions log-normalized, to the range between 0 and 1 for

each localization (see 6.3.12).

I performed a quality control step before the linear regression on the feature space.

Interest point clusters which did not have more than a 5% signal in any of the cells

of the entire data set were deleted, as were clusters which were not present in more

than 20% of the cells with any proteins. Two global features were added. The first
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measured the fraction of proteins in the segmented chromosomal volume in 3D. The

second calculated the accumulation of the protein in the estimated spindle volume,

which was defined as the convex hull volume of the intersecting points of the division

axis on the cell boundary and the chromatin volume (see 6.3.8). All features were

normalized to the range from 0 to 1.

For each of the six pre-defined localizations, up to 400 cell images were randomly

selected to construct the training set. Linear regression models were trained using

elastic net (Zou and Hastie, 2005) on each localization using a one-against-all approach.

To balance the positive and negative data points for each of the location classes, an

equal number of images with and without the corresponding location were used for

training. The training algorithm was implemented in MATLAB as function ‘‘lasso’’.

A ten-fold cross-validation was used to validate the quality of the linear model, and

parameters achieving the best fit with a relaxation of one standard deviation were

chosen. The predicted values were then back-calculated to the 3D foreground.

Judging by the correlation value R-square defined as,

𝑅2 = 1 −
∑︀

(𝑝𝑖 − 𝑓𝑖)
2∑︀

(𝑓𝑖 −𝑚𝑒𝑎𝑛(𝑓𝑖))2
,

where 𝑝 was the predicted and 𝑓 was the actual fraction of proteins in a particular

localization (Figure 3.27), the linear correlation of the protein fraction localized on

each of the reference mitotic structures between the training objective function and

the predicted value was very good. The lower accuracy of the prediction for the

centrosome localization might be due to the fact that the reference protein NEDD1

distributes on the spindle pole as well, and the extremely low fraction of the protein

localized to the structure. The prediction for images with reference proteins that

were not shown to the classifier gave overall satisfactory results too (Figure 3.27).

Thus, the classifier was used to assign all images in the proof of concept data set.

In order to validate the prediction for proteins with more than one mitotic localiza-

tion, a number of images were selected and processed by manual segmentation for each

of the mitotic structures. The comparison between the manual segmentation output

and the prediction of the classifier is shown in Figure 3.28. Protein localization with

Figure 3.27: Six reference proteins built a training set for the pre-defined subcellular localizations, and the linear
model was constructed using an elastic net algorithm. The correlation between the objective function and the
prediction for the training set (on the left) as well as to a testing set that was not used for training (on the right)
are shown. The R-square value was used for the evaluation of the model.
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Figure 3.27: Prediction output for the training and testing set.
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very low contrast or protein fraction (below 2%) might be missing in the estimation.

Structured protein localization with very high protein fraction (beyond 50%) were

usually under-estimated. The spindle localization was generally over-estimated, and

the central spindle confused slightly with the midplane/midbody localization. For

the remaining cases, the protein fraction on each mitotic structure could be relatively

well predicted with an error smaller than 10% of the total protein.

3.5.8 Kinetic readout using supervised framework

The good subcellular localization prediction at single cell single frame level reassured

me of the power of the analysis. More interestingly, I looked at predicted protein

fluxes between mitotic structures by connecting the predicted localization over time.

As an example the fraction of AURKB localized on each of the mitotic structures

over time was predicted and temporally registered as shown in Figure 3.29. As

observed at the single-cell level, the predicted localization value is noisy. I then

took the time information into account and smoothed the prediction for each cell

throughout mitosis. Since genuine sudden changes in the localization behavior should

not be replaced, I only smoothed predicted value on peaks, i.e. both neighboring

data points had either lower or higher predicted value than the central point and the

difference in predicted values between the central and neighboring points was high

(implementation see 6.3.13). In such cases the mean of both neighboring points was

taken for the central point. The result after smoothing is shown in Figure 3.29 on

the right.

As a temporal resolution of 90 seconds for image acquisition is still low for some

stages during mitosis, especially anaphase, combining information from multiple cells

would give us a more complete picture about the protein movement dynamics. Based

on the temporal registration of each cell, the time resolved localization predictions

were aligned to the mitotic standard time, where only 40 out of the 237 frames

were filled with data. Using linear interpolation, the missing predictions could be

estimated for the remaining frames. Furthermore, due to the quantitative nature

of our imaging data, the predicted fraction of proteins for different structures could

be multiplied with the absolute total number of proteins in the cell such that the

number of molecules on each of the mitotic structures was predicted. By averaging

through 12 to 37 cells with the same protein, I obtained a very smoothed prediction

66



Figure 3.28: Prediction VS manual annotation.
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Six cells with different proteins were randomly selected for validation. Two frames of each cell were manually
processed by adjusting the intensity threshold to a value that preserved the characteristic localization pattern of
the protein in 3D. Fractions for the protein in each subcellular structure were calculated based on the image after
thresholding (lilac) and compared to the automatic annotation (green).
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Figure 3.29: Prediction output for AURKB at the single cell level.
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about the absolute number of each protein on six major mitotic structures throughout

division with a temporal resolution of 15 seconds (Figure 3.30).

At the qualitative level, the prediction was very similar to our expectation. As an

example, the accumulation of RACGAP1, AURKB and PLK1 each on the midbody

after anaphase onset was well predicted and the disassembly of AURKB, BUB1 and

MIS12 from the kinetochores was nicely estimated. Also a small fraction of TUBB2C

was assigned to the kinetochore in prometaphase and at the start of anaphase.

More challenging localizations, such as the centrosome localization of KIF11, the

nuclear localization of RACGAP1 in prophase and the kinetochore distribution of

PLK1 were also predicted as per our existing knowledge. However, some of the

predictions were probably less accurate. The spindle localization dominating in

TUBB2C and KIF11 matched the expectation, but its existence in all proteins was

definitely due to confusion with a cytoplasmic localization. In the early anaphase,

the midplane localization seemed to confuse with the cytoplasmic localization as

well to a certain degree. The reason could be the low contrast of the RACGAP1

midplane in the training set. And unfortunately the midbody localization of CDCA8

was underestimated. But overall, the quality of the annotation was good. Some

of these problems could probably be solved by using better contrasted images of

endogenously tagged cells for training of the annotator.

Since both the validations at the single cell image level and on the protein fluxes

show reliable results, especially for the kinetochore localization, I wanted to use the

annotator to analyze the kinetics of kinetochore disassembly quantitatively. In the

data set, six kinetochore proteins were present, and the post-mitotic disassembly of

five of them has been reported previously (Sharp-Baker and Chen, 2001; Kelly and

Funabiki, 2009; Shao et al., 2015; Gascoigne and Cheeseman, 2013). However, none

of the research has analyzed all of them in a single study such that a quantitative

comparison of the kinetics between different kinetochore components becomes possible.

Although these five proteins were separately imaged in different cells using our

computational pipeline, the data were completely integrated into the standard mitotic

time and space.

I analyzed the predicted absolute abundance of all six kinetochore proteins through

Figure 3.29: The model estimates the fraction of AURKB localized in each pre-defined subcellular structure at the
single cell level over time (grey lines). An additional smoothing step deleted spikes in the time-resolved prediction
traces.
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Figure 3.30: Predicted time-resolved localization profiles.
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Table 3.3: Kinetochore disassembly kinetics

Pre-anaphase dissociation Anaphase dissociation Post-anaphase accumulation
Mitotic Frac- Rate Mitotic Frac- Rate Mitotic Frac- Rate

Gene time tion [104/ time tion [104/ time tion [104/
[min] [%] min] [min] [%] min] [min] [%] min]

BUB1 17.5 54 0.22 32.6 45 0.67
PLK1 8.4 100 0.18 34.4 44 0.38
AURKB - - <0.1 35.0 95 3.2
CDCA8 36.3 50 0.75 45.9 67 0.42
MIS12 2.4 44 0.17 36.9 72 0.20

mitosis (Figure 3.31). The only protein staying on the kinetochore for the entire

time is CENPA, and the number of CENPA molecules measured using biochemical

methods matched with my prediction (Hasson et al., 2013; Scott and Bloom, 2014).

BUB1, which was reported for disassociation from the kinetochores in metaphase,

clearly showed two disassembly processes with different kinetics, one before and one

after anaphase onset. Thus, I used the additive of two logistic functions:

𝑓 = 𝑜𝑓𝑓𝑠𝑒𝑡 +
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛1

1 + 𝑒𝑥𝑝(𝜏1 · (𝑡− 𝑡𝑖𝑚𝑒1))
+

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛2

1 + 𝑒𝑥𝑝(𝜏2 · (𝑡− 𝑡𝑖𝑚𝑒2))
,

to fit the kinetic curves of all five disassociating kinetochore proteins where 𝑜𝑓𝑓𝑠𝑒𝑡,

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝜏 and 𝑡𝑖𝑚𝑒 are variables. The starting time for the fitting was selected as

the maximum kinetochore accumulation before anaphase. The output of the fittings

are summarized in Table 3.3. A model for kinetochore disassembly based on the

findings is illustrated in Figure 3.32.

Both AURKB and CDCA8 were identified as having only one dissociation event

starting at almost the same time in anaphase. Surprisingly, CDCA8, which had

been thought to be part of CPC like AURKB, has a slower disassociation rate and

returns to the kinetochore in telophase. PLK1 has a slower but otherwise similar

anaphase disassembly as AURKB, and displays a clear drop after NEBD. Different

disassociation kinetics were shown for BUB1 where half of the proteins are slowly

released from kinetochores through prometaphase and metaphase, and the remaining

half disassembles rapidly from the kinetochore as the earliest protein just after

anaphase onset. Different from the kinetics of other kinases, the majority of MIS12

Figure 3.30: The predicted fraction of proteins was multiplied with the absolute total number of proteins within a
cell to obtain the molecule number in each mitotic subcellular structure. The averaged prediction throughout 12 to
37 cells was taken for each protein. H2B could not be plotted due to the missing calibration.
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Figure 3.31: Predicted dynamics of kinetochore disassmebly.
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The predicted numbers of proteins on kinetochores were averaged through 12 to 37 cells for six kinetochore proteins.
The predicted dynamic of the post-mitotic kinetochore disassembly could be assured by images of single cells. The
kinetics could be quantified by fitting with a logistic function (dashed lines). The results were shown in Table 3.3.
Scale bar: 10 µm
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Figure 3.32: Illustration of kinetochore disassmebly.
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Based on Figure 3.31 and Table 3.3, the predicted kinetochore disassembly dynamics are illustrated.
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unbinds slowly from the outer kinetochores in late anaphase and telophase. Some of

these kinetics matches with what was reported previously (Sharp-Baker and Chen,

2001; Kelly and Funabiki, 2009; Shao et al., 2015; Gascoigne and Cheeseman, 2013),

others were surprising but do not disagree with previous reports as these proteins

were analyzed in an integrated manner. Looking at many cell videos in our data set,

the prediction seems to match what we see qualitatively. The biological discoveries

need to be validated quantitatively using specifically designed experiments. Further

experiments can be suggested to study the mechanism and relevance of our predicted

kinetochore kinetics.
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Chapter 4
Discussion

4.1 The Mitotic Standard Cell model can be used for

mapping the dynamic protein network throughout

mitosis

In this work, a spatio-temporal canonical model of a standard mitotic human cell was

built where the cellular and chromosomal volumes were used as references for the

cellular context. The model represents the average of more than 300 mitotic HeLa

cells and allows an objective view of the mitotic progression in terms of dynamic

morphology changes. By indicating the existence of 19 distinct mitotic transitions

it promises to provide a much more detailed mechanistic view of mitosis, and it

will be very interesting to test the value of the identification of these additional

transitions once the canonical model developed here has been populated with the full

complement of mitotic proteins. The proteins whose abundance and/or subcellular

location changes at a transition will be the basis to predict the functional significance

of each transition. Moreover, for the first time, the standard mitotic cell model

developed here provides a quantitative spatio-temporal average of mitosis in human

cells, as well as the cell-to-cell variations of all measured parameters.

Using this model, any image sequence of mitotic HeLa cells with landmarks showing

the chromosomal and cellular boundaries can be registered into the model both in

time and space. The automatic temporal registration was compared with manual

annotation and showed a very high accuracy. Thus, the standard mitotic cell model

allows a direct quantitative comparison of different cells within a standardized cellular

context. By integrating multiple cells expressing the same protein into the model,

a 3D protein distribution map can be generated for any mitotic stage from late

prometaphase onward, as defined objectively by the mitotic standard time. As the
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distribution maps of all proteins were generated within the same standard model,

multiple maps can be virtually ‘‘co-expressed’’ and thereby allow the quantitative

exploration of protein co-localization. Compared to the 3D protein map previously

reported by Schauer et al. (2013), our method did not need the support of adhesive

micropatterns and can therefore be applied to cells and processes which cannot

be studied on micropatterns. In order to quantitatively compare the similarities in

protein localization, temporal registered image sequences were analyzed using different

data mining methods that employ both supervised and unsupervised machine-learning

based identification of subcellular localization and abundance patterns.

For validation, I generated a proof-of-concept data set of well-known mitotic

proteins. The integrated nature of the model offers the potential identification of

new functional structures that are difficult or impossible to identify by eye alone.

The power of the averaged 3D map in uncovering details in subcellular structures

was demonstrated for AURKB where a central mass and outer ring in the midbody

area were resolved, with TUBB2C, that likely corresponds to microtubules, seemingly

going through the center of the midbody (Figure 3.20 b).

Annotations by experts are usually biased. Results against expectation and existing

knowledge are often classified as ‘‘spurious results’’ during manual inspection of data.

However the objective nature of the model allows the integration of even rarely

seen features, putting them on a much more robust footing. This was impressively

demonstrated for NEDD1 where a spurious observation made in only a few cells

during manual inspection, that NEDD1 might localize on the central spindle in

telophase, could be clearly identified and followed in the integrated model (Figure

3.20 a). Furthermore, due to the unsupervised nature of the standardization and

clustering methods we used, protein localization patterns could be defined completely

unbiased. The power of this is demonstrated by the cluster ‘‘chromatin periphery’’

that was robustly detect despite the very weak fluorescence signal of NUP214.

The quantification of transient and therefore rarely seen features has been chal-

lenging for a very long time. It was almost impossible to integrate data on dynamic

cellular processes from experiments performed separately. Using the standard cellular

context that provides high spatio-temporal resolution, my model allows analysis of fast

cellular processes that occur over seconds to a few minutes, such as the kinetochore

disassembly during anaphase. The dissociation kinetics of different components of
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the kinetochore could be quantified and compared. Clear differences in the disassem-

bly process were identified for several proteins including CENPA, MIS12, CDCA8,

AURKB, PLK1 and BUB1 (Table 3.3). That CDCA8 and AURKB show different

kinetics was unexpected from the literature and will serve as a motivation for more

detailed mechanistic studies in the future.

This is the first time that such a model has been developed for a dynamic cellular

process, where both the spatial and temporal progressions were integrated into one

standardized framework. The model was not only used for simply assigning subcellular

localizations to proteins but furthermore allowed to mine those for analyzing protein

dynamics during mitosis. While the current version of the integrated model of a

standard mitotic cell is based on only 13 proteins, it already gives a tantalizing

glimpse of what a model populated with data from all 600 mitotic proteins could

offer.

One could think of further validations of the model’s functionality, for example

proteins currently expressed in two separate cell lines could be co-expressed tagged

with differently colored fluorophores, and the output from the computational integra-

tion could be compared against the biologically integrated readout. The estimated

kinetics of the kinetochore disassembly based on the predicted kinetochore localization

could also be further validated by comparison with results generated using a manual

kinetochore segmentation and quantification pipeline. Nevertheless, I believe that

our methods are generic, and can be used widely for analyzing live cell microscopy

data of mitotic cells by mapping the observed proteins into our standard model of

the mitotic cell.

4.2 Comparison of data mining methods

In this work, three data mining methods were used to analyze the localization

dynamics of mitotic proteins within the standardized cellular environment. The first

one was the unsupervised direct integration and visual comparison as a 4D protein

density map, the second one was the unsupervised detection of protein localization

clusters using non-negative tensor factorization (NTF), and the third one was the

supervised classification/regression of protein distribution at single cell level using a

linear model trained by reference proteins with known localizations.
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The advantage of the 4D map was the direct and completely unprocessed nature

of the data mining. Biologists could look by eye at each of the integrated and

standardized protein maps, or even multiple maps at the same time, as they would

usually do on the microscope. They could use their human experience and explore

the data for any question they were interested in. The protein density map allows

a continuous presentation of the protein distribution without any pre-defined and

sometimes subjective borders for subcellular structures. The disadvantage of the

method is the loss of resolution of fine structure patterns in subcellular localizations,

such as the kinetochore proteins that are visualized as a diffusive cloud within the

nuclear volume due to the averaging of multiple cells. One could think of using

different computational techniques to better preserve the structured patterns during

registration and averaging, however the large variation on the patterns of all mitotic

subcellular structures make this quite challenging, and it would need to be tested

extensively before implementation. In addition, looking at more than three to five

differently colored protein maps at the same time becomes challenging quickly for

finding interesting correlations between them. For exploring larger amounts of data

at the system level, quantitative parameters that characterize protein density map

similarities are still missing.

Using NTF to analyze protein distributions after parametrization in the quantitative

feature space of interest point clusters is a good way to identify clusters of proteins

with similar localization patterns within the data. The method was unsupervised, and

thus it can process proteins that localize in any combination of subcellular structures,

and thereby identify even completely novel distribution patterns. Furthermore, the

method preserved the quantitative nature of the image features and could assign

fractions of proteins into each of the automatically identified localization clusters

instead of only performing binary annotations. The way in which the entire data

set was decomposed at once, using time as an explicit dimension instead of frame

by frame, allowed the definition of clusters over time, and confirmed the nature of

subcellular structures. The disadvantage here was the unclear biological meaning of

some of the clusters that could represent mixtures of multiple subcellular structures.

Moreover, the requirement of high quality data with a high signal to noise ratio

hardly allows analysis of single cell data. Thus, the interpretation of the NTF results

could be challenging.

78



4.3. SPATIO-TEMPORAL MODELING AS A GENERAL CONCEPT FOR
STUDYING OTHER CELLULAR DYNAMIC PROCESSES

The supervised method based on reference proteins made it possible to assign

even single images into different pre-defined subcellular localizations, and allowed

analysis to be performed at the single cell level with high temporal resolution. The

linear regression method I used was able to quantitatively assign protein fractions

into a range of mitotic structures and accurately distinguish mixed patterns. The

advantage of the supervision was the clear biological interpretability behind each

of the localization classes. However, the disadvantage was the need for existing

knowledge, and the inability of finding novel localization patterns. This method is

particularly suitable for biologists with a clear target in mind, that want to look into

the details of the kinetics of a particular process of interest at known subcellular

structures, as shown for example in the case study on kinetochore disassembly.

In summary, all three methods used for data analysis were powerful and comple-

mented each other in their ability to mine the integrated data. Each of them gave

researchers new means to explore 4D localization data of many proteins. Combining

all methods would be a good way to have an extensive and complete view of the data,

and understand mitotic processes both at system and detailed kinetics level.

4.3 Spatio-temporal modeling as a general concept for

studying other cellular dynamic processes

The concept of generating a spatio-temporal model for standardizing the environment

of cellular processes for integration and analysis of experimental data is generic. The

method we used to generate the model was based solely on registration and averaging

and almost free of assumptions, and thus could be easily adapted to other dynamic

cellular processes as well.

For the temporal modeling, the requirement was a reproducible and characteristic

time course of features. In the case of mitosis, the chromosomal geometry was

sufficient for the feature extraction. However, not all cellular processes are coupled

to such dynamic morphological changes as undergone by chromatin. But other

morphological or molecular clocks could be found for these processes. For example in

cell migration, the morphology of the cell surface, or the focal adhesion kinase/paxillin

ratio could be a good starting point for following the process of focal adhesions. For

the entire cell cycle rather than just M-phase, different cyclin levels or DNA replication
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markers could provide a good cell internal clock. The method could also be used for

processes at particular structures of the cell, such as the centrosome. Initial results

generated by Dr. Robert Mahen in the Mitosys group show that a few proteins could

be sufficient as good temporal markers for the centrosome maturation process (data

not shown). At the multicellular level, many researchers interested in Drosophila

embryonic development were using expression patterns of transcriptional regulators

or the number of nuclei to stage development. Such temporally highly controlled

shape changes or expression patterns are found in many multicellular processes and

could be used as the temporal landmarks.

For the geometric modeling, the symmetric nature of mitotic cells was crucial for

the success of the biologically meaningful registration of protein localization. Other

processes with clear symmetry or polarization could be analyzed in the same way,

since the registration reference would be well correlated to the molecular process of

interest. In directed cell migration, the front of the cell could be used as a reference,

while in T cell maturation, the interaction interface to the B cell could be the best

registration reference. For multicellular organisms, the polarization of the process

would often be more obvious, such as the dorsal-ventral axis of the Drosophila embryo,

or the apical-basal orientation of epithelium.

However, the method has limitations for non-polarized asymmetric processes with

little molecular temporal control, such as un-directed cell migration or growth, since

the correlation between the spatio-temporal registration landmarks and the actual

molecular process of interest would be unclear. For these kind of processes a simple

morphological registration marker, such as the nucleus, and a large amount of

data could be a good starting point for exploration. The identification of novel

characteristic distribution patterns of particular molecules during the analysis could

then be used to refine the spatio-temporal registration.

4.4 Future perspectives

In the reported work, the computational pipeline was validated by a set of proof-

of-concept data with 13 known proteins (incl. H2B in the landmarks channel). As

mentioned before, for further validation the pipeline could process image sequences

of pairs of two proteins co-expressed within one cell line and directly compare the
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computational integration with the biological co-expression data.

The pipeline can and is planned to be used for the integration of a large amount

of protein live cell imaging data in dividing human cells. To understand mitosis

at the system level requires the analysis of the hundreds of mitotic proteins, for

example those identified in Neumann et al. (2010). The absolute quantitative nature

of our calibrated confocal live cell imaging pipeline allows us to assess the absolute

abundance of a protein in each of the subcellular structures. Thus, generating cell

lines with homozygous fluorescently tagged endogenous mitotic proteins is essential

for getting the physiological picture of mitosis, and this effort is under way in the

Mitosys team at EMBL.

For the computational pipeline, further development could be done to improve its

usability. A user interface for uploading and processing data would make the software

more user friendly. Distribution of the software would allow different labs to share the

experimental burden of cell line and imaging data generation. Another computational

challenge might arise with an increase in data volume that populates the standard

model. With NTF or supervised annotation, trajectories through different protein

clusters or subcellular localizations were output for each of the proteins. With just

13 proteins, all trajectories could be compared by eye. However, once the number

of trajectories increases dramatically, it would be difficult to identify correlations

between proteins in the data. Methods for mining the trajectories need to be developed

to identify both similar overall paths as well as path sections.

One could think of further usages for the results generated by this thesis. The

temporal model of the standard mitotic human cell progression could be used for

guiding the intelligent acquisition of data. As different processes take place at different

times and with different speed during mitosis, such as the kinetochore disassembly

starting around the metaphase-anaphase transition, it would be more efficient to

acquire data in very high resolution only from late metaphase to telophase. Based on

the probability distribution generated by the temporal model for the duration of each

mitotic stage, software could be developed to control microscope image acquisition

by on-the-fly processing of the last acquired images. By identification of the exact

mitotic stage of the cell, the timing for acquiring the next frame could be adjusted to

adequately sample this particular kinetic phase of mitosis.

As the dynamics of different components of the kinetochore were integrated in our
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model, the quantitative data of kinetochore disassembly could be used for building

a small model of this process. Using the huge amount of existing knowledge about

kinetochores, assumptions could be made for building a kinetic model to quantitatively

explain the dynamic observations made in this work. Predictions of the kinetic model

can be further tested by analyzing additional proteins or repeating the current analysis

in conditions perturbed by silencing different components.

To understand the mitotic proteome in an integrated quantitative way, a database

needs to be developed as an online platform for data visualization and exploration.

This will guide and motivate researchers that analyze mitotic proteins both at a

detailed level as well as on a system scale. This important work to disseminate the

proof of concept data presented here and further data that will be generated in the

future are underway in the Mitosys team at EMBL.
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Chapter 5
Material and methods

5.1 Materials

5.1.1 Cell culture

Table 5.1: Cell culture instruments

Name Size Provider

Water baths - GFL
Cell culture incubator - Heraeus Hera Cell
Laminar flow hood - Safe 2020 ThermoScientific
Pipettes P2, 10, 20, 200, 1000 Gilson Pipetman
Pipetus Akku - Hirschmann
Neubauer chamber - Celeromics
Nunc𝑇𝑀 dishes 6/10/15 cm Petri, ThermoScientific

6-well plate
Lab-Tek𝑇𝑀 chambered coverslips II, VIII ThermoScientific
Centrifuge Heraeus
Plastic tube 15 ml Greiner bio-one
Falcon tube 50 ml Corning Science
Pipette 2, 10, 25 ml Corning Science
Pipette tips P10, 20, 200, 1000 Molecular BioProducts
Cryo tube 1.8 ml Thermo Scientific
Gloves Kimtech
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Table 5.2: Cell culture chemicals

Name Unit Provider Purpose

High glucose Dulbecco’s modi-
fied Eagle’s medium (DMEM) ml Life Technology cell growth culture
Fetal bovine serum (FBS) ml Life Technology cell culture
Penicillin 10000 U/ml Sigma cell culture
Streptomycin 10 mg/ml Sigma cell culture
Glutamine 200 mM Life Technology cell culture
Sodium pyruvate 100 mM Life Technology cell culture
Geneticin𝑇𝑀 50 mg/ml Life Technology cell selection culture
Hygromycin 100 mg/ml Invitrogen cell selection culture
Puromycin g Invivogen cell selection culture
CO2 independent DMEM customized Life Technology cell imaging culture
Dextran 500000 MW Life Technology cell imaging culture
Dy481XL-NHS-ester g Dyomics cell imaging culture
DMSO ml Sigma cell storage
Phosphate buffered saline EMBL Media
(PBS) 1x kitchen cell seeding
Trypsin-EDTA 1x Gibco cell seeding
Paraformaldehyde (PFA) 16% EMS cell fixation
Triton X-100 ml Sigma cell permeabilization
Thymidine ml Sigma cell synchronization
BSA g Sigma immuno staining
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5.1.2 Cell modification

Table 5.3: HeLa Kyoto stable cell lines

Construct Method Background Provider Details

H2B-mCherry cDNA HeLa K. Neumann et al. (2010) single clone

pmEGFP cDNA HeLa K. Mahen, EMBL HD pool

mKIF11-GFP BAC H2B-mCherry Maliga et al. (2013) pool, no. 2354

mMIS12-LAP BAC H2B-mCherry Hutchins et al. (2010) pool, no. 2341

mTUBB2C-LAP BAC H2B-mCherry Hutchins et al. (2010) pool, no. 2637

LAB-mRACGAP1 BAC H2B-mCherry Hutchins et al. (2010) pool, no. 2362

mCDCA8-LAP BAC H2B-mCherry Poser, MPI Dresden pool, no. 2607

mNEDD1-LAP BAC H2B-mCherry Poser, MPI Dresden pool, no. 311

mAURKB-LAP BAC H2B-mCherry Poser, MPI Dresden pool, no. 73

AURKB-mEGFP ZFN HeLa K. Mahen et al. (2014) clone no. H24

H2B-mCherry cDNA AURKB H24 Mahen et al. (2014) pool

mNUP214-LAP BAC H2B-mCherry Poser, MPI Dresden pool, no. 2518

PLK1-mEGFP ZFN HeLa K. Koch, EMBL HD clone no. 24

H2B-mCheery cDNA PLK1 24 Mergenthaler, EMBL pool

H2B-mCherry cDNA CENPA-EGFP Isokane, EMBL HD pool

BUB1-mEGFP CrispR HeLa K. Koch, EMBL HD clone no. 63

H2B-mCherry cDNA BUB1(ZFN) Koch, EMBL HD pool

NES-mEGFP cDNA H2B-mCherry Koch, EMBL HD pool

H2B-mCer3 cDNA HeLa K. Nijmeijer, EMBL clone no. B7

NES-mCer3 cDNA H2B-mCer3 Nijmeijer, EMBL clone no. 29

Myrpalm-mCer3 cDNA HeLa K. Nijmeijer, EMBL clone no. E11

H2B-mEGFP cDNA HeLa K. Neumann et al. (2010) single clone

Notes: The HeLa Kyoto cells were originally generated by Dr. S. Narumiya in the Department of Pharmacology, Ky-

oto University. The HeLa Kyoto cell line expressing EGFP-CENPA was provided by Toru Hirota (Cancer Institute,

Tokyo, Japan).
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Table 5.4: Recognition sequences and guide RNAs

Gene Technique Sequences
PLK1 ZFN 5’ TCGGCCAGCAACCGTCTC 3’; 5’ TCCTAATAGCTGCCC 3’
AURKB ZFN 5’ CGCCTGATGGTCCCT 3’; 5’ CACTCGGGTGCGTGTGTT 3’
BUB1 ZFN 3’ ACCAGACGGACACTTACTGAAGG 5’; 5’GGGCGCCTGGGGTTCGGGCCCGG 3’

5.1.3 Microscopy

Table 5.5: Instruments and materials for microscopy

Name Provider

Zeiss LSM 780 Carl Zeiss, Jena
ScanR epifluorescence microscope Olympus
Incubation chamber EMBL Workshop
Water pump Bartel
Control of water pump EMBL Workshop
Water objective cup EMBL Workshop
Silicon gel Bayer
Alexa 488 Life Technology
Alexa 561 Life Technology
Rhodamin-Phaloidin Invitrogen
Menzel-Gläser Thermo Scientific
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5.1.4 Softwares

Table 5.6: Computer softwares

Name Provider Purpose

ZEN 2011-2013 Carl Zeiss, Jena Image acquisition
Imaging macro 2012 A. Politi Image acquisition
Micronaut 2013 R. Hoefer, C. Sommer Online image processing
Fiji NIH, A. Politi On/offline image processing
CellCognition cellcognition.org Image processing
Fluctuation Analyzer M. Wachsmuth FCS data processing
MATLABr The MathWorks Pipeline development
MS Office Microsoft Data presentation
Illustrator CS2 Adobe Graphics
Amira FEI software 3D visualization
Adobe Reader Adobe Text processing
Texmaker Xm1 Math Text editing
jabRef jabref.sourceforge.net Reference management
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5.2 Methods

5.2.1 Cell culture

Cells were cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM;

Life Technology) with 10% (v/v) FBS, 1% (v/v) penicillin-streptomycin, 1% (v/v)

Glutamine and 1% (v/v) Sodium pyruvate at 37 °C and 5% CO2 in petri dishes.

Depending on the genetic modification, one or more of the following antibiotics

were supplied to the culture at the stated final concentration: Geneticin 500 µg/ml,

Hygromycin 200 µg/ml or Puromycin 0.5 µg/ml. Once the cells reached 80-90%

confluence, they were split and only a fraction of the cells were cultured in a fresh

dish.

For splitting, cells were washed twice with PBS buffer before incubation with

trypsin at 37 °C for 2 minutes. Afterwards, cells were detached from the petri dish

mechanically and suspended in DMEM medium. A fraction of the suspension was

transferred into a fresh dish.

5.2.2 Cell storage

HeLa cells were grown without antibiotics for mammalian cells for 3 days. After

treatment with trypsin as described in cell splitting, the detached cells were suspended

in 90% FBS, 10% DMSO solution and frozen in plastic boxes at -80 °C. Cells with

90% confluence on 15 cm dishes were distributed into 4 frozen aliquots, or from 10

cm dishes into 2 aliquots. Cells to be stored for a longer duration were deposited in

liquid nitrogen.

Frozen cells could be re-cultured. The frozen aliquot was thawed at 37 °C in a

water bath and then transferred into a 10 cm petri dish with 10 ml pre-warmed

medium. After incubation at 37 °C with 5% CO2 for 4 to 10 hours, the culture

medium was refreshed.

5.2.3 Stable cell line production

All cell lines generated using the BAC system were taken from the publicly available

resources. Genome edited cell lines were generated by B. Koch in the Ellenberg lab.

Stable cell lines expressing cDNA for POIs were produced by colleagues in the

Ellenberg lab. HeLa cells were transfected with DNA encoding the gene of interest
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and treated with selection medium with antibiotics. In order to obtain cells that

strongly expressed the introduced gene, single cells or a cell population were harvested

for imaging by fluorescence activated cell sorting (FACS, performed by the EMBL

Heidelberg facility).

Both Zinc finger nuclease (ZFN) and Clustered regularly interspaced short palin-

dromic repeats (CrispR) based technologies were used. In brief: Zinc finger nucleases

were purchased from Sigma-Aldrich with different DNA-binding sequences (Table

5.4). Based on ENSEMBL release 75, donor plasmids were designed to contain the

mEGFP cDNA sequence flanked by a left and a right homology arm consisting of

the POI’s genomic sequence. HeLa Kyoto cells were transfected with both ZFN and

donor plasmid. With the CrispR technique, two gRNAs (Table 5.4) were transfected

into the same cell in order to produce a double strand break close to the start codon

of the gene of interest. During repair, the mEGFP coding sequence from the donor

plasmid was transferred to the target locus via homologous recombination. Single

clones expressing the POI were selected using the in-house developed validation

pipeline (Mahen et al., 2014).

5.2.4 Wide field live cell microscopy

Wide field imaging was performed on a Olympus Scan R microscope using the

10x, NA 0.4 air objective controlled via the software developed by Olympus. An

incubation chamber was keeping a constant temperature of 37 °C. Cells cultured

in CO2 independent medium were mounted one hour before the start of imaging.

One position was selected as reference on the stage, and the software automatically

generated a list of imaging positions in x-y based on the layout defined prior imaging.

The z-positions were defined by the autofocus mode during the first round of imaging.

A series of images were acquired at different depth within the specimen for each of

the positions, and the z-position producing the image with the highest total intensity

was used for the entire acquisition.

5.2.5 Confocal fluorescence microscopy

Confocal microscopy was performed on a Zeiss LSM780 laser scanning microscopes

using, as indicated for each experimental pipeline, the 10x air NA 0.45, 63x, NA 1.4

oil or 40x, NA 1.2 water DIC Plan-Apochromat objectives and the GaASP detectors
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(Zeiss). Cells were cultured in CO2 independent medium. Within the incubation

chamber temperature was kept at 37 °C. Time-lapse imaging was performed using the

ZEN 2012-2013 image acquisition software as well as in-house software applications

(developd by A. Politi). Imaging sessions taking longer than half an hour and using

the water objective were done with an in-house developed cup and a water pump,

that was controlled by software developed by M. Wachsmuth, such that water drops

were regularly supplied to the objective-sample interphase.

A standard live cell imaging pipeline was supported by a macro (A. Politi). Before

starting the imaging, a number of imaging positions were selected manually and saved

in the software. Setups such as laser configuration, imaging field size and resolution,

detection filters and pinhole at 1 AU were defined and saved. During live cell imaging,

the microscope finds the focus automatically by performing line-scan imaging of

the reflection signal around 633 nm. The vertical position of the microscopy glass

coverslip was determined as the position with the maximum reflection intensity, and

used as reference for acquiring a volume of the specimen at a particular deepness.

5.2.6 Automation of mitotic cell imaging

In collaboration with the Gerlich lab (IMBA Vienna) a software called Micronaut

that worked within the CellCognition framework was developed for automatically

finding mitotic cells in a sample. A training set was acquired from a HeLa Kyoto

H2B-mCherry cell line by live cell confocal microscopy using an excitation laser at 561

nm every 5 min for about 16 hours. The resolution in x-y was 0.32 µm and 2.5 µm in

z for 3 planes. Images were projected in z by taking the maximum intensity value.

These images were used for building a SVM classifier for distinguishing between

cells in interphase, prophase, mitosis (prometaphase till telophase) and artefacts

(apoptosis, out of imaging field, out of focus, too low expression).

On the microscope, Micronaut uses the imaging and processing setups defined

during the training of the SVM classifier and classified images on the fly. The

classification score for the prophase, often interpreted as the probability of a cell

being in the class of interest, was output, and a pre-defined threshold was used

to make a decision on whether imaging setups for mitotic cell acquisition should

be activated. According to how different the sample’s H2B-mCherry expression

level were to the training set, the threshold was set between 0.85 and 0.96. Once a
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prophase cell was found, it was then imaged using a different imaging setup. For

our purpose, mitotic cells were imaged live every 90 seconds for 31 z-planes with a

spatial resolution of 0.25 µm in x-y and 0.75 µm in z with 488 nm laser.

5.2.7 Fluorophore concentration determination using FCS

Every day before FCS measurements, the pinhole size was calibrated using a 20

nM solution of Alexa488, and single EGFP brightness was calibrated by performing

FCS measurements on the HeLa Kyoto EGFP cell line. For measurements of other

fluorescently labeled molecules, a solution of the corresponding fluorescence molecule

was used for the brightness calibration.

All FCS measurements were processed using Fluctuation Analyzer. Measurements

of dye solutions were fitted using a two-component anomalous diffusion with triplet-

like blinding, and measurements of fluorophore-fused proteins were fitted using a two

rounds two-component anomalous diffusion with fluorescent protein-like blinking.

For detailed parameter settings see 6.2.

The effective confocal volume was calculated using the form:

𝑉𝑒𝑓𝑓 = (4 · 𝜋 ·𝐷 · 𝜏 · 10−6)

3

2 · 𝜅)

where D was the diffusion coefficient of the Alexa488 which is 441 µm2/s at 37 °C
and 𝜅 is 5.5 µm3 for the ZEISS 780 confocal system. The 𝜏 was one of the fitting

outputs for Alexa488. The number of fluorescent molecules within a confocal volume

was calculated by multiplying the fitted number of the molecule (N) with the fitted

correction factor.

As proteins might exist in complex with multiple molecules, a count per molecule

(CPM) value was used to correct the number of molecules. As reference, I used the

CPM value of EGFP as measured in the HeLa EGFP cell line. During analysis,

I realized that some of the EGFP measurements had unusual high CPM values,

indicative of multimeric EGPFs. Thus, I took the median value of all EGFP

measurements with a CPM value below 4.25 (highest limit for monomeric EGPF

from experience) as the reference CPM for each experiment. Dividing the CPM

value of the fusion protein measurements by the reference CPM, I got the multimeric

factor. If the multimeric factor was larger than 1, the fitted number of molecule

value was corrected by multiplication with the multimeric factor. Finally, the local
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concentration of the measured protein was determined as the corrected number of

molecules divided by the effective confocal volume.

5.2.8 Imaging HeLa cells on micropatterns

Fibronectin mixed with Alexa647 was printed in different forms on a coverslip by

A. Christ (Théry lab). The coverslips were attached to a 6-well plate by one water

droplet. All coverslips were washed twice with PBS and supplied with 0.5 ml culturing

medium on the top. Stable HeLa Kyoto H2B-mCer3 cells were detached from a 10

cm petri dish by treatment with 0.75 ml trypsin for 5 minutes. The processes ended

by adding 6 ml culturing medium. The suspension was centrifuged at 800 rpm for

3 minutes and the supernatant discarded. The cells were re-suspended in culturing

medium to a final concentration of 100,000 cells/ml by using a double pipette tip (200

µm tip on the top of a 1,000 µm tip) to ensure that all cells detach from each other.

1 ml of the cell suspension was carefully applied to the coverslip in such a way that

a droplet forms above it that covers the entire coverslip. The coverslips were then

incubated at 37 °C with 5% CO2 for 1.5 hours. Afterwards, coverslips were washed

twice with pre-warmed culturing medium and incubated for another 6.5 hours.

After incubation, the coverslips were exposed to 3% PFA for 10 minutes at room

temperature before being washed twice with PBS. They were then incubated with 0.5%

triton x-100 for 5 minutes before being washed twice with 2% BSA/PBS solutions.

Cells were stained with 1:40 rhodamin-phaloidin diluted with 2% BSA/PBS for 25

minutes. After washing with PBS, the coverslips were mounted on a glass which

could be installed on the ZEISS 780 microscope stage. The coverslips were finally

imaged by confocal microscopy using 10x magnification and lasers at 458 nm, 561

nm and 633 nm. The signals were detected in three channels: 473 - 544 nm (H2B),

570 - 633 nm (Actin), 633 - 695 nm (pattern) at the x-y resolution of 0.25 µm.

5.2.9 Label Dextran with fluorescence

The cross linking of Dextran to fluorescent dyes was performed by Dr. Julia Roberti.

Just briefly: 80 mg Dextran with an average size of 500,000 Dalton and labeled with

multiple amino residues was solved in 4 ml 0.2 M NAHCO3. 6.4 mg Dy481XL with

ester residues was solved in 320 µl DMSO (Click Chemistry) and mixed with the

Dextran solution at 500 rpm and room temperature for 60 minutes. The labeled
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Dextran molecules were separated from unreacted Dy481XL molecules by size ex-

clusion chromatography using PD-10 Sephadex desalting columns (GE Healthcare).

The elutate was concentrated to about 3.5 ml using a centrifugal filter concentrator

at NMWL 10,000 (Milipore), and dialyzed for two days against water in an 8,000

Dalton membrane. The solution was then diluted, filtered, and concentrated again

using centrifugal filter concentrators first at NMWL 30,000 followed by another at

NMWL 10,000.

5.2.10 Determination of Dextran concentration

A 1:250 dilution of the labeled Dextran stock was measured using the FCS mode on

a ZEISS Confocal 780 system. For calibrating the brightness of Dy481XL and the

confocal volume, a 100 nM Dy481XL solution was used. The solutions were excited

by 488 nm argon laser, and photons in the range of 505 nm to 540 nm were counted

by the APD detector. The biophysical parameters such as the concentration, diffusion

time and molecular brightness were fitted with a two-component diffusion model

using the Fluctuation Analyzer. The concentration of Dextran was converted to that

of the culture solution I used (13.5 µl Dextran stock in 360 µl culture medium) which

was estimated at 3.29 µM, and based on the brightness per molecule of both labelled

Dextran and Dy481XL only solutions, the efficiency of the labeling was estimated at

1.89/molecule.

5.2.11 Quantification of Dextran toxicity

Mitotic time and cell cycle time were measured in order to test the toxicity of adding

Dextran to the cell culture.

Mitotic time of cells cultured in labeled Dextran

HeLa Kyoto H2B-eGFP cells were seeded with 9,000 cells per Lab Tek VIII well

at 25 hours before imaging. One hour before starting the imaging, DMEM medium

was replaced by CO2 independent medium supplied with Dy481XL labeled Dextran

solution at different concentration. After a one hour pre-incubation, wide-field live

cell imaging at 10x magnification was performed at 25 independent positions per well

every 5 minutes for 48 hours. A SVM classifier of 10 classes was trained based on
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the manual cell stage annotation of 925 nuclei with an overall accuracy of 91.9%. All

cells were annotated with this classifier and tracked based on nearest neighbour in

CellCognition version 1.4.1. Mitotic events were selected by detection of transitions

from interphase to prophase or prometaphase and traced for two-and-half hours.

Early mitosis duration, defined as the time between the start of prophase and the

detected segregation of chromosomes, was used to characterize the influence of a

Dextran solution on mitosis.

Cell cycle of cells in Dextran culture

78.5 hours prior imaging HeLa Kyoto H2B-mCherry cells were seeded at 6,000

cells/well in DMEM. Cells were supplied with 20 µM thymidine at 54.5 hours and

released in DMEM 30.5 hours before the imaging. 8 hours later, cells were cultured

again in DMEM supplied with 20 µM thymidine for another 16 hours. 6.5 hours after

cells were released for a second time in DMEM, cells were imaged in CO2 independent

medium at different Dextran concentrations. Images were taken every 8 minutes in 4

z-planes for 40 to 60 hours using confocal live microscopy with 63x magnification.

The resolution was 0.44 µm in x-y and 3 µm in z. 533 nuclei were manually annotated

into 10 cell stages (7 mitotic stages, apoptosis, polylobed and artefact) for building a

SVM classifier. Using CellCognition, all cells were annotated and tracked for 26 hours

after the first mitotic event defined by the transition from interphase to prophase or

prometaphase. The duration between the start of prometaphase of two sequential

mitoses was defined as the cell cycle time for comparison.

5.2.12 Automated calibrated 3D live mitotic cell imaging

HeLa Kyoto cells expressing both H2B-mCherry and EGFP fused POI cultured in

medium with labeled Dextran were imaged live using the pipeline for automated

mitotic cell imaging. According to the expression level of the EGFP (and thus the

POI), the GaASP EGFP detector range was set such that no detection saturation

happened during the imaging. However, laser intensity was set the same for all

experiments and sufficiently weak to prevent EGFP bleaching (Figure 5.1). The

strongly overexpressed H2B-mCherry and Dy481XL labeled Dextran could also be

excited at 488 nm and detected by two band-pass sections of the GaASP detectors in
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mCherry (587 - 621 nm, Figure 5.2a) and far-red range (621 - 692 nm, Figure 5.2b).

High resolution mitotic cell imaging took one hour for 40 imaging rounds.

After the high resolution live imaging, an additional image at 0.25 µm in x-y was

taken and the nucleus closest to the center of the imaging field (mostly from the

just-divided cell) was segmented from the H2B-mCherry image channel on the fly

using Fiji macro developed by A. Politi. Six FCS measurements (two in and four

around the segmented nucleus with a distance of 1 µm) were performed using the

same objective and an avalanche photodiode (APD) in the spectrally distinct region

505-540 nm (Figure 3.18). Each measurement was taken for 30 seconds. Afterwards,

the microscope continued with the scan mode for searching further mitotic cells.

Figure 5.1: Bleaching of mEGFP over high-resolution live imaging.
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Two confocal microscope systems were used for imaging acquisition in this thesis and were tested for bleaching. 6
H2B-mEGFP mitotic cells were imaged on each system using the same setup as for high-resolution live cell imaging.
The total intensity in the GFP channel was measured for a constant volume including the cell of interest over time
and normalized by the measurement of the first frame (grey lines). The mean through the 6 cells (black line) was
calculated frame by frame. The bleaching of mEGFP was controlled at a negligible level. Images were acquired by
myself and analysis was performed together with J. Hossain.

5.2.13 Manual quality control

Before the imaging data were processed, all images were manually controlled and

images with unsatisfactory qualities were not processed further. Following criteria

were used for quality control: cells that did not reach anaphase within the high

resolution imaging time were sorted out. Cells without any obvious POI expression

were deleted as well as cells with too high expression where the saturation in the

EGFP channel was reached at some point during imaging. And finally, if the FCS
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measurement was not performed in the cell of interest, the imaged cell was not further

processed either.

5.2.14 Calibration of the GaASP image

All FCS measurements were analyzed using Fluctuation Analyzer for the determina-

tion of the fluorophore concentration at the measured position as described before.

Measurements were discarded if: the R square was smaller than 0.65, or the Chi

square was larger than 0.15, or the bleaching was more than 10% or the signal was

lower than 2x of the background FCS signal that was determined for each of the

microscopes in an separate experiment. Also measurements which showed an outlying

(mean ± 2 standard deviation) count per molecule (CPM) value compared to all

measurements performed on the same day on the same microscope were deleted. For

the remaining measurements, the GaASP intensity at the corresponding position was

calculated on the image taken just before the FCS measurements. In order to avoid

the effect of noise, averaged filtering with a 9 by 9 sized window was performed on

the image, and the background GaASP value calculated based on the cell-free area

image subtracted from the averaged local intensity value. Measurement positions

with a negative intensity were not considered for the calibration.

For each cell, the median CPM of all satisfactory measurements was used to

determine how many molecules were present within a single complex. The corrected

concentration was then divided by the GaASP intensity for each of the remaining

positions after all quality controls. The mean among all calculated ratios within a

cell was taken as the calibration factor for the transformation from the image to a

density map.

5.2.15 Segmentation of landmarks

A fully automated computational pipeline was developed by Julius Hossain in MAT-

LAB to segment chromosomes from the mCherry wavelength channel and the cell

boundary from the far-red wavelength channel, and reconstruct the 3D cell and

nuclear shape. Original stacks were interpolated along z axis to obtain isotropic

resolution for better 3D image analysis. A 3D Gaussian filter was applied to reduce

the effects of noise. To detect chromosome regions, mCherry channel (587 - 621 nm)

was binarized first using a multi-level thresholding method as described in Hériché
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et al. (2014) (Figure 5.2 a, c). First, a global threshold was estimated based on the

entire 3D image Otsu (1975). The threshold was then adapted for each 2D slice by

validation of the connectivity of binary components in 3D. The chromosome region

of interest was detected in the first frame of the sequence by making use of the size

and location information of the connected objects in the binary image. The detected

chromosome was then tracked over the subsequent frames of the image sequence. To

detect the cell boundary, a ratio image was obtained by first dividing the far-red

wavelength channel by the mCherry channel. In this ratio image, the intensity of

the chromosome signal was minimized as the mCherry labelling the chromatin gave

emissions in both channel. The ratio image was then binarized using the multi-level

thresholding in a similar way as for the mCherry channel. To identify the border

between cells, a marker based watershed algorithm (Meyer, 1994) on the distance

transformed ratio image was applied. The segmented chromosomes were used as

markers (Figure 5.2 b, d).

5.2.16 Prediction of division axis

Julius Hossain developed computational pipelines to extract and predict parameters

of the cellular geometry. The following text was formulated together with Julius

Hossain. Chromosome volume in each frame was represented by three orthogonal

eigenvectors and three associated eigenvalues, where the eigenvector with the largest

eigenvalue represented the longest elongated axis of the chromosome volume and

so on. Metaphase frames were automatically detected based on the low value of

the smallest eigenvalue of the chromosomal volume, which forms a plate during

metaphase. Division axis, the direction of spindle pole-to-pole, for metaphase cells

was predicted first by simply taking the eigenvector having the minimum eigenvalue.

This vector was always orthogonal to the metaphase plate. Using the predicted axis

in the first and last metaphase frame, axis for the remaining frames were propagated

backwards and forwards for stages before and after metaphase respectively. There the

eigenvector with the smallest discrepancy to the axis predicted for the adjacent frame

was used. For further analysis, the orthogonal plate to the division axis localized

in the middle of the centers of both daughter nuclei was predicted as the midplane

(Figure 5.2 e, f).
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Figure 5.2: Overview of the segmentation and parameters prediction pipeline
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(a) - (b) Raw image stacks. Single z plane image of H2B-mCherry and Dextran-DY481XL at 587 nm-621 nm (a) and
622 nm–695 nm (b) emission, respectively. (c) Detected chromosome markers where boundaries of the chromosomes
of interest are marked with red. (d) Output of watershed transform on ratio image where boundary of the detected cell
of interest is marked with green. (e) Left: reconstruction of cell and chromosome surfaces in 3D, right: chromosome
volume and minimum Eigen value of chromosome mass over mitosis. (f) Some of the extracted parameters: upper
row - the predicted cell axis, marked with red along with the landmarks in gray; lower row from left to right –
distance of the two detected chromosome masses, predicted mid zone, three major axes of the chromosome mass,
minimum Eigen value of chromosome mass, chromosome volume and cell volume. Figure and legend were provided
by Julius Hossain.
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6.1 Imaging macros

6.1.1 Configuration of the classifier for automated imaging

namingscheme: LSM SplitCh version: 1.4.1

Object detection: channelid: 1; zslice selection slice: 3; zslice projection: True; zslice projection

method: maximum; zslice projection begin: 1; zslice projection end: 3; zslice projection step: 1;

intensity normalize max: 255; intensity normalize min: 0; segmentation method: local adaptive

threshold w/split merge; medianradius: 3; window size: 80; min contrast: 4; local adaptive threshold2:

False; holefilling: True; removeborderobjects: False; Split and merge: False; object filter: True;

intensity max: inf; intensity min: 10; size max: 3800; size min: 300.

Feature extraction: Statistical geometric features: False; Granulometry features: False; Basic

shape features: True; Convex hull features: False; Haralick features: True; Basic intensity features:

False; Distance map features: False; Moments: True.

Classification: Classifier: Mitosys1 40x 320nm Automation and Mitosys2 40x 320nm Automation;

Class 1: prophase; Class 2: interphase; Class 3: mitotic and apoptotic; Class 4: polyplois and

border nuclei.

Micronaut settings: class of interest: 1; threshold probability: 0.85 - 0.96, adjusted for

different cell lines.

6.1.2 Macro of automatic imaging pipeline

Version: AutofocusMacro for ZEN 2012 v3.0.24.

Global repetition settings: MultipleLocationToggle: True; Global repetition: 5 min; Global

repetition interval: True; Global repetition number: 300 (stopped earlier).
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Water pump settings: Interval: 25 min; Distance: 9 mm; Pumping duration: 2 sec; Pump-

ing waiting: 2 sec.

Autofocus settings: Period: 1; TrackZ: True; TrackXY: False; Method: Center of Mass (thr);

ScanMode: ZScan; SamplesPerLine: 512; LineStepNumber: 1; FramesPerStack: 25; FrameSpac-

ing round1: 1 µm; FrameSpacing round2: 0.2 µm; Zoom: 1.3; SamplingNumber: 1; pixelDwell:

1.27 µsec; BitDepth: 8; ScanDirection: 0; CorrX: 0; CorrY: 0; TimeSeries: True; StacksPerRecord: 1.

Monitoring of H2B-mCherry: Channel Track: H2BScan; ZOffset: 2.5 µm; Period: 1; TrackZ:

False; TrackXY: False; Focus Method: None; Analysis: True; Analysis Sequential: True; Time-

Out: False; ScanMode: Stack; SamplesPerLine: 512; LinesPerFrame: 512; LineStepNumber: 1;

FramesPerStack: 3; FrameSpacing: 2.5 µm; Zoom: 1.3; SamplingNumber: 1; pixelDwell: 1.27 µsec;
BitDepth: 8; ScanDirection: 0; CorrX: 0; CorrY: 0; TimeSeries: True; StacksPerRecord: 1.

High-resolution live 4D imaging: Channel: GFP Cherry; ZOffset: 11 µm; Period: 1; TrackZ:

False; TrackXY: False; Focus Method: None; Analysis: Flase; Analysis Sequential: none; Time-

Out: False; ScanMode: Stack; SamplesPerLine: 256; LinesPerFrame: 256; LineStepNumber: 1;

FramesPerStack: 31; FrameSpacing: 0.75 µm; Zoom: 3.3; SamplingNumber: 4; pixelDwell: 1.27

µsec; BitDepth: 16; ScanDirection: 0; CorrX: 0; CorrY: 0; TimeSeries: True; StacksPerRecord: 1;

Repetition: 90 sec; Repetition interval: True; Repetition number: 40.

FCS calibration imaging: Channel: GFP Cherry; ZOffset: 2.5 µm; Period: 1; TrackZ: False;

TrackXY: False; Focus Method: None; Analysis: True; Analysis Sequential: True; TimeOut: False;

ScanMode: Stack; SamplesPerLine: 256; LinesPerFrame: 256; LineStepNumber: 1; FramesPerStack:

1; FrameSpacing: none; Zoom: 3.3; SamplingNumber: 4; pixelDwell: 1.27 µsec; BitDepth: 16;

ScanDirection: 0; CorrX: 0; CorrY: 0; TimeSeries: True; StacksPerRecord: 1.

FCS calibration position selection: Threshod method: Li; Smoothing filter radius: 2 pix;

Exclude particles ⟩ 6000 µm2; Watershed if ⟩ 1000 µm2; Measurements in nucleus: 2; Measurements

in cytoplasm: 4.

FCS calibration measurement: ZOffset: 0; Configuration: FCSAuto eGFP; Measurement-

Time: 30.

6.2 Parameters of the FCS fitting

Modify and correlate: Base freq. [Hz]: 106 (dye)/ 105 (POI); Eval freq. [Hz]: 2000; Detrend

freq. [Hz]: 2; Correlate mode: Scale; Evaluation steps: 9; Evaluation depth: 4; Table offset: 0.
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Intensity correlations: Offset GFP: 3.3 (System 1)/3.5 (System 2); Ampl. KHz: 0; Rate:

0.01.

Table 6.1: Fit correlations

Parameters N 𝜃𝑇 𝜏𝑇 f1 𝜏𝐷1 𝛼1 𝜏𝐷2 𝛼2 𝜅 offset
Starting value dye 10 0.2 4 1 500 1 5000 1 5.5 0
First round free fix fix fix free fix fix fix fix fix
Second round free link link free free free free free free free
Starting value POI 10 0.2 100 0.5 500 1 5000 1 5.5 0
First round free fix fix free free fix free fix fix fix
Second round free link free link free link free link free free
Upper limit 104 1 103 1 5·104 1.2 5·106 2 20 10
Lower limit 10−4 0 0 0 10/100 0.5 500 0.5 1 -10

6.3 Code of the computational pipeline

The entire pipeline was tested with MATLAB 2013b. Toolbox dependency: Computer Vision

System Toolbox, Curve Fitting Toolbox, Image Processing Toolbox and Statistics Toolbox.

6.3.1 Summarizing the data using a database file

Cells were first segmented by Julius Hossain. The segmentation outputs were examed by Julius and

me manually. Errors in segmentation were either solved by re-processing with adjusted parameters

or forced the deletion of the cell. Cells without complete divisions were also deleted For each

segmentable cell, a result folder was generated and the chromatin and cellular volume segmentation

results as binary volumes with basic parameters describing the chromosomal morphology were saved

in the ‘‘.mat’’ format. First, a database file for all segmentable cells with the information of the

result folder path, general information about the cell such as the imaged protein, the localization

etc. was generated. The database file not only made the inputting of data during processing easier,

but also kept tracking of processing and QC status through the entire analysis.

function exp dir = extract full database(exp dir)

% Interactive selection of experiment directory

if ¬nargin
exp dir = uigetdir('','Select the directory with your data ...

series');

end
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% Load the poi label and localization database

fID = fopen('POI annotation database.txt'); % Reference proteins ...

can be assigned if needed

annotation = textscan(fID,'%s %s %s');

% Get all experiments

list of date = dir(fullfile(exp dir,'* *'));

num of data = length(list of date);

% Define the information for summary

filepath = {};
system = [];

poi = {};
label = {};
localization = {};
vec idx = [];

% Go through the list of all experiments and summarizing

for date idx = 1:num of data;

% Check whether the experiment is a usual high content experiment which

% has the naming pattern date poi

splitname = ...

strsplit(list of date(date idx).name,' ','CollapseDelimiters',true);

if length(splitname) == 2;

if ¬isnan(str2double(splitname(1)));
% Find all microscope systems ran the same experiment

list of system = ...

dir(fullfile(exp dir,list of date(date idx).name,'Mito*'));

num of system = length(list of system);

for sys idx = 1:num of system;

if exist(fullfile(exp dir,list of date(date idx).name, ...

list of system(sys idx).name,'Result'), 'dir');

% Collect all segmentable cells on that day with that particular ...

microscope system

list of cell = dir(fullfile(exp dir,list of date(date idx).name, ...

list of system(sys idx).name, 'Result', 'cell*'));

for cell idx = 1:length(list of cell);

% Summarize all important information
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filepath = cat(1,filepath, ...

fullfile(exp dir,list of date(date idx).name, ...

list of system(sys idx).name, ...

'Result',list of cell(cell idx).name));

splitsys = strsplit(list of system(sys idx).name, ...

'ys','CollapseDelimiters',true);

system = cat(1,system,str2double(splitsys(2)));

poi = cat(1,poi,splitname(2));

annotation idx = find(strcmp(annotation{1,1},splitname{2})>0);
label = cat(1,label,annotation{1,2}{annotation idx,1});
localization = cat(1,localization,annotation{1,3}{annotation idx,1});
% During the segmentation, the positions of the FCS measurements ...

were checked and if more than 4 out of 6 measurements were ...

performed outside of the cell, the cell failed the QC

segqc = importdata( fullfile(exp dir,list of date(date idx).name, ...

list of system(sys idx).name,'Result', ...

list of cell(cell idx).name,'Preprocessing', ...

'Segmentation','dirProcStat.txt'));

if ismember(segqc,[1 2]);

vec idx = cat(1,vec idx,1);

else

vec idx = cat(1,vec idx,0);

end

end

end

end

end

end

end

% Write the database file in .txt format

num of cell = length(filepath);

summary database = dataset(filepath,system,poi,label, localization, ...

{vec idx,'segmentation'}, {-ones(num of cell,7), ...

'fcs calibration', 'lm features', 'time alignment', ...

'registration', 'feature extract', 'classification', ...

'post processing'});
output txt = fullfile(exp dir,'full database.txt');

export(summary database,'file',output txt);
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end

Afterwards, cells with irregular (too high or too low) protein expression were manually identified

and deleted for further processing by updating the database file manually.

6.3.2 Calculation of the calibration factor

The next step is to calculate the factor for the calibration of imaging detector intensity to the

absolute molecule concentration based on the FCS measurements. All FCS measurements were

processed using Fluctuation Analyzer beforehand using the parameters in 6.2.

function vec QC = get calibration(exp dir,calibrated)

%% Interactive selection of experiment directory

if isempty(exp dir)

exp dir = uigetdir('','Select the directory with your data ...

series');

end

%% Link the APD to GaASP and calculate the calibration

if calibrated == 0; % Perform calibration calculation

% Find all date poi folders

list of date = dir(fullfile(exp dir,'* *'));

num of data = length(list of date);

for date idx = 1:num of data;

splitname = strsplit(list of date(date idx).name,' ', ...

'CollapseDelimiters',true);

if length(splitname) == 2;

if ¬isnan(str2double(splitname(1)));
% Find all microscope systems in the data poi folder

list of system = ...

dir(fullfile(exp dir,list of date(date idx).name,'Mito*'));

num of system = length(list of system);

for sys idx = 1:num of system;

% If unprocessed, calculate the calibration factor for all cells ...

using the function fcs calibration

if exist(fullfile(exp dir,list of date(date idx).name, ...

list of system(sys idx).name, 'Result','fcs fittings.res'),'file');

if ¬exist(fullfile(exp dir,list of date(date idx).name, ...

list of system(sys idx).name, ...
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'Result','FCS calibration.mat'),'file');

disp(['Process fcs calibration for' ...

fullfile(exp dir,list of date(date idx).name, ...

list of system(sys idx).name)])

fcs calibration(fullfile(exp dir,list of date(date idx).name, ...

list of system(sys idx).name));

end

end

end

end

end

end

end

%% Summarize the calibration

% Load the database file

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database,'Delimiter','∖t');
summary database.fcs calibration = -ones(size( ...

summary database.fcs calibration));

cell dirlist = summary database.filepath;

cell total = length(cell dirlist);

vec QC = zeros(cell total,1);

% For each cell, save the calibration file

for cdx = 1:cell total;

% load the corresponding FCS calibration file

fcs file = [cell dirlist{cdx}(1:end-14) 'FCS calibration.mat'];

if exist(fcs file,'file');

savefile = ...

fullfile(cell dirlist{cdx},'Preprocessing','calibration.mat');
if ¬exist(savefile,'file');
disp(['Process' fullfile(cell dirlist{cdx},'Calibration')])
load(fcs file);

cellidx = str2double(cell dirlist{cdx}(end-9:end-6)); % identify ...

the index of the cell in that particular experiment

ratio N voxel = ratio N voxel(ratio N voxel(:,1)==cellidx,:);

if ¬isempty(ratio N voxel);

calibration factor = ratio N voxel(2); % Calibration factor

stochiometry = ratio N voxel(3); % multimeric or monomeric

measured position = LSM Intensity(idxpath(:,1)==cellidx,1:2);
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GaASP intensity = LSM Intensity(idxpath(:,1)==cellidx,5);

N fitted = N corr(idxpath(:,1)==cellidx);

subpos QC = idxpath(idxpath(:,1)==cellidx,3);

save(savefile,'calibration factor','stochiometry', ...

'measured position','GaASP intensity','N fitted', 'subpos QC');

% Update the QC for the cell. Discard cells if less than 2 valid ...

FCS measurements were performed

if sum(subpos QC) ≥ 2;

vec QC(cdx) = 1;

else

vec QC(cdx) = 0;

end

else

vec QC(cdx) = 0;

end

else

load(savefile);

if sum(subpos QC) ≥ 2;

vec QC(cdx) = 1;

else

vec QC(cdx) = 0;

end

end

end

end

summary database.fcs calibration = vec QC;

writetable(summary database,exp database,'Delimiter','∖t');
end

The following function calculate the calibration factor for all cells with the same protein imaged

on the same day with the same microscope.

function fcs calibration(data dir)

% Load the Bioformat Toolbox

addpath('Y:∖Yin∖Code∖pipeline∖bfmatlab');

% Fixed parameters
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D alexa488 = 441; % diffusion coefficient Alexa 488 in ...

micrometerˆ2/s in water at 37 degree

kappa lsm = 5.5; % ZEISS 780, based on Malte Wachsmuth

R th = 0.65; % Fitting R square QC threshold

C th = 0.15; % Fitting Chi square QC threshold

B th = 0.9; % Bleaching correction QC threshold

SN th = 2; % Signal to noise QC threshold

Diameter filter = 9; % Mean filter size of the GaASP detector image

voxel Z size = 0.75; % resolution in z, in micrometer

measure min = 4; % min number of measurements within a cell for CPM QC

GFP CPM QC = 4.25; % max value of the CPM value for mEGFP

% Read the res file and extract useful part

% Full path (3),Intensity (Interval1 Ch1, 29), Correction (Total ...

Ch1, 44), Rsq (R sq adj Ch1, 65), N fit (P01 value,

% 71), tauD (P05 value, 87), fraction of fast moving molecules (P04 ...

value, 83), Background APD(offset Ch1,

% 17), Bleached (Bleaching Ch1, 35), Chi sq (R sq adj Ch1, 64)

fitting filename = fullfile(data dir,'Result','fcs fittings.res');

fittings data = importdata(fitting filename);

fullpath = fittings data.textdata(3:end,3);

Offset = str2double(fittings data.textdata(3:end,17));

Intensity = str2double(fittings data.textdata(3:end,29));

Bleached = str2double(fittings data.textdata(3:end,35));

Correction = str2double(fittings data.textdata(3:end,44));

Rsq = str2double(fittings data.textdata(3:end,65));

Csq = str2double(fittings data.textdata(3:end,64));

N fit = str2double(fittings data.textdata(3:end,71));

tauD = str2double(fittings data.textdata(3:end,87));

f1 = str2double(fittings data.textdata(3:end,83));

clear fittings data

% Generate a database file based on fullpath including the information:

total sequences = length(fullpath);

idxpath = zeros(total sequences,3);

for sidx = 1:total sequences;

splitted = strsplit(fullpath{sidx},{'Alexa∖',' 0'}, ...

'CollapseDelimiters',true);

if length(splitted) ≥ 3; % it is a dye

107



CHAPTER 6. APPENDIX

splitted = splitted{2};
if splitted(1) == '4';

idxpath(sidx,1:2) = [488 0]; % Alexa 488

elseif splitted(1) == '5';

idxpath(sidx,1:2) = [561 0]; % Alexa 561

else

idxpath(sidx,1:2) = [0 0]; % Dy481XL on Dextran 500

end

else

splitted = strsplit(fullpath{sidx},{'GFP∖',' 0'}, ...

'CollapseDelimiters',true);

if length(splitted) ≥ 3; % it is a GFP calibration measurement

p splitted = splitted{2};
sub splitted = splitted{end};
idxpath(sidx,1) = -str2double(p splitted(2:end)); % cell ...

index

idxpath(sidx,2) = str2double(sub splitted(6)); % ...

position index

else

splitted = strsplit(fullpath{sidx},{'AQ ',' P0001'}, ...

'CollapseDelimiters',true); % it is a measurement in ...

the cell with the POI

p splitted = splitted{2};
sub splitted = splitted{end};
idxpath(sidx,1) = str2double(p splitted(2:end)); % cell ...

index

idxpath(sidx,2) = str2double(sub splitted(end-11)); % ...

position index

end

end

end

% First relaxed QC based on good R square, Chi square values and ...

signal to

% noise ratio.

idxpath(:,3) = double((Rsq ≥ R th).*(Csq ≤ C th).*(Bleached ≥ ...

B th).* ((Intensity.*Bleached./Offset)≥SN th));

% Calculate the confocal volume

isalexa488 = (idxpath(:,1)+idxpath(:,3)==489);
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Veff = ...

mean((4*D alexa488*pi*tauD(isalexa488)*10ˆ(-6)).ˆ(3/2)*kappa lsm); ...

% tauD unit: us. Veff unit: umˆ3

% Correct the bleaching effect in Intensity

% Assuming that the bleaching at P1 doesn't affect the ground ...

intensity of P6

Intensity = Intensity.*Bleached;

% Calculate the averaged Intencity/molecule for mEGFP

N corr = N fit.*Correction;

CPM = (Intensity-Offset)./N corr; % count per molecule value, ...

indicating the brightness

isgfp = ((idxpath(:,1)<0).*idxpath(:,3).*(CPM<GFP CPM QC))>0; % QC ...

mEGFP: no dimer measurements

CPM singleGFP = median(CPM(isgfp));

idxpath(((idxpath(:,1)<0).*idxpath(:,3).*(CPM≥GFP CPM QC))>0,3) = 0;

% Calculate the background for the GaASP detector;

dir cellfree = fullfile(data dir,'Calibration','Alexa');

idx dexfile = find(idxpath(:,1) == 0);

sum background = zeros(length(idx dexfile),6); % Values: Position ...

start/end, Detector range start/end, BG, Bit

for didx = 1:length(idx dexfile);

dex filepath = fullpath{idx dexfile(didx)}; % Using the image ...

in cell free dextran-Dy481XL medium for background calculation

splitted = strsplit(dex filepath,{'Alexa∖',' R1'}, ...

'CollapseDelimiters',true);

dex root = splitted{2};
% Summarize in which well the dextran medium image was acquired ...

using

% the index of positions on which the cells were imaged

P position = strfind(dex root,'P');

if isempty(P position);

sum background(didx,1) = 0; % just small enough

sum background(didx,2) = 100; % just large enough

else

P to P = dex root((P position(1)+1):(end-2));

splitP = strsplit(P to P,{'P','to'},'CollapseDelimiters',true);
if length(splitP) == 1;
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sum background(didx,1) = str2double(splitP{1});
sum background(didx,2) = str2double(splitP{1});

else

sum background(didx,1) = str2double(splitP{1});
sum background(didx,2) = str2double(splitP{2});

end

end

% Load the image and calculate the background as the mean of ...

the image

% in the mEGFP channel

dex file = fullfile(dir cellfree,[dex root,' preFCS.lsm']);

dex data = bfopen(dex file);

dex image = dex data{1,1};
dex image = dex image{1,1};
dex metadata = dex data{1,2};
sum background(didx,3) = dex metadata.get( 'DetectionChannel ...

SPI Wavelength Start #1');

sum background(didx,4) = dex metadata.get( 'DetectionChannel ...

SPI Wavelength End #1');

sum background(didx,5) = mean(dex image(:));

dex bit = class(dex image);

sum background(didx,6) = str2double(dex bit(5:end));

voxel XY size = dex metadata.get('Recording Line Spacing #1');

clear dex data

clear dex image

clear dex metadata

end

% Calculate the GaASP intensity for all FCS measured positions

dir cell = fullfile(data dir,'LSM');

idx cellfileP1 = find(double(idxpath(:,1) > 0).*double( ...

idxpath(:,2) == 1) > 0);

LSM Intensity = zeros(size(idxpath,1),6);

for cidx = 1:length(idx cellfileP1);

idx subpos = find(idxpath(:,1)==idxpath(idx cellfileP1(cidx),1));

tr2 leveldir = ...

strsplit(fullpath{idx cellfileP1(cidx)},{'LSM∖','FCS'}, ...

'CollapseDelimiters',true);

tr2 leveldir = strsplit(tr2 leveldir{2},{'∖'}, ...

'CollapseDelimiters',true);
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dir cell tr2 = fullfile(dir cell,tr2 leveldir{1}, ...

tr2 leveldir{2},tr2 leveldir{3});
lsm cell tr2 = dir(fullfile(dir cell tr2,'*.lsm'));

lsm cell tr2 = fullfile(dir cell tr2,lsm cell tr2(1).name);

txt cell tr2 = dir(fullfile(dir cell tr2,'*.txt'));

txt cell tr2 = fullfile(dir cell tr2,txt cell tr2(1).name);

% Get the positions from the txt

txt positions = importdata(txt cell tr2);

txt positions = txt positions.data;

txt positions = txt positions(7:12,1:2);

% Get the lsm image and metadata

lsm data = bfopen(lsm cell tr2);

tr2 image = lsm data{1,1};
tr2 image = tr2 image{1,1};
lsm bit = class(tr2 image);

lsm bit = str2double(lsm bit(5:end));

% Mean-filter the image with the pre-defined diameter

tr2 image filtered = imfilter(tr2 image,fspecial('average', ...

[Diameter filter,Diameter filter]));

lsm metadata = lsm data{1,2};
detect start = lsm metadata.get( 'DetectionChannel SPI ...

Wavelength Start #1');

detect end = lsm metadata.get( 'DetectionChannel SPI Wavelength ...

End #1');

% Summary for corresponding positions, Value: position x, y, ...

detector

% range start, end, intensity filtered, depth of the bit

for subidx = 1:length(idx subpos);

LSM Intensity(idx subpos(subidx),1) = ...

max(1,txt positions(idxpath( idx subpos(subidx),2),1));

LSM Intensity(idx subpos(subidx),2) = ...

max(1,txt positions(idxpath( idx subpos(subidx),2),2));

LSM Intensity(idx subpos(subidx),3:6) = [detect start ...

detect end ...

tr2 image filtered(LSM Intensity(idx subpos(subidx),2), ...

LSM Intensity(idx subpos(subidx),1)) lsm bit];

end

clear lsm data

clear tr2 image

clear tr2 image filtered
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clear lsm metadata

end

% Calculate the calibration factor for each cell

iscell = (idxpath(:,1).*idxpath(:,2))>0;

% Set the QC criteria based on the CPM value. Outlier measurements ...

will be

% excluded later.

mean cpm = mean(CPM(iscell));

std cpm = std(CPM(iscell));

qc cpm min = max(1,mean cpm-2*std cpm);

qc cpm max = mean cpm+2*std cpm;

% Define output matrices

Vvoxel = voxel XY sizeˆ2*voxel Z size; %umˆ3

ratio N voxel = zeros(length(idx cellfileP1),3);

compare cpm = zeros(length(idx cellfileP1),2);

compare ratio = zeros(length(idx cellfileP1),2);

% For each cell

for cidx = 1:length(idx cellfileP1);

idx subpos = find(idxpath(:,1)==idxpath(idx cellfileP1(cidx),1));

qc intracell = zeros(length(idx subpos),5);

for subidx = 1:length(idx subpos);

qc intracell(subidx,1) = idx subpos(subidx); % index

qc intracell(subidx,2) = idxpath(idx subpos(subidx),3); % ...

Basic QC

qc intracell(subidx,3) = CPM(idx subpos(subidx)); % CPM

qc intracell(subidx,4) = ...

LSM Intensity(idx subpos(subidx),5); % LSM intensity ...

with background

qc intracell(subidx,5) = N corr(idx subpos(subidx)); % N ...

from the fitting

end

% If there were enough QC+ measurements for this cell, QC the

% measurements based on the CPM value.

if size(qc intracell,1) > measure min

qc intracell(qc intracell(:,3) > qc cpm max,2) = 0;

qc intracell(qc intracell(:,3) < qc cpm min,2) = 0; % not ...

passed the CPM QC

end

% identify the background for this position
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for bidx = 1:size(sum background,1);

if ismember(idxpath(idx subpos(1),1), ...

sum background(bidx,1):sum background(bidx,2));

bg index = bidx;

end

end

% substract the background

qc intracell(:,4) = qc intracell(:,4)-sum background(bg index,5);

qc intracell(qc intracell(:,4) ≤ 0,2) = 0; % negative intensity ...

not passed the intensity

qc intracell(qc intracell(:,3) ≤ 0,2) = 0; % netative CPM not ...

passed the CPM QC %

% Give warnings if the metadata doesn't match

if ¬isequal(round([sum background(bg index,3:4) ...

sum background(bg index,6)]),round([LSM Intensity(idx subpos(1),3:4) ...

LSM Intensity(idx subpos(1),6)]));

disp([data dir 'calibration metadata missmatch aquisition']);

[sum background(bg index,3:4) sum background(bg index,6) ...

LSM Intensity(idx subpos(1),3:4) ...

LSM Intensity(idx subpos(1),6)]

end

% Get the calibration ratio

ratio N voxel(cidx,1) = idxpath(idx subpos(1),1);

if sum(qc intracell(:,2)>0)>0;

% Normalize the CPM value of measurements in the cytoplasma ...

agains mEGFP CPM

cpm cyt = qc intracell(3:6,3);

median cpm = median(cpm cyt(qc intracell(3:6,2)>0));

ratio cpm = median cpm/CPM singleGFP;

% Correct the N value if multimeric molecules are existing

if ratio cpm > 1;

qc intracell(:,5) = qc intracell(:,5)*ratio cpm;

ratio N voxel(cidx,3) = ratio cpm;

else

ratio N voxel(cidx,3) = 1;

end

% Calculate the calibration factor

all ratio = (qc intracell(qc intracell(:,2)>0,5)./ ...

qc intracell(qc intracell(:,2)>0,4))*Vvoxel/Veff;
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ratio N voxel(cidx,2) = mean(all ratio); % Average of all ...

QC+ measurements in that cell: I*ratio N voxel = N in a ...

voxel;

else

ratio N voxel(cidx,2) = 0;

end

for qidx = 1:size(qc intracell,1);

idxpath(qc intracell(qidx,1),3) = qc intracell(qidx,2);

LSM Intensity(qc intracell(qidx,1),5) = qc intracell(qidx,4);

end

end

ratio N voxel(ratio N voxel(:,2)==0,:) = [];

% Write the output file (for now! after the segmentation is done, ...

it can be

% saved into the generated cell individual result space

outputfile = fullfile(data dir,'Result','FCS calibration.mat');

save(outputfile,'fullpath','idxpath','sum background','ratio N voxel', ...

'N corr','CPM','tauD','Rsq','LSM Intensity','Veff', ...

'D alexa488','kappa lsm','R th','Diameter filter', ...

'voxel Z size','measure min','f1', 'CPM singleGFP','compare ratio');

end

6.3.3 Extraction of the geometrical features of the landmarks

Afterwards, features describing the landmarks geometry were extracted.

function LM shape feature(exp dir)

%% Parameter settings

feature name = ...

{'nuc dist';'nuc dist2';'nuc vol';'nuc 3eigenval';'divaxis cs l'; ...

'divaxis cs h';'time'};

% Interactive selection of experiment directory

if ¬nargin
exp dir = uigetdir('','Select the directory with your data series');

end
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%% Load the database file

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database,'Delimiter','∖t');
summary database.lm features = ...

-ones(size(summary database.lm features));

cell dirlist = ...

summary database.filepath(summary database.segmentation>0);

cell total = length(cell dirlist);

vec QC = zeros(cell total,1);

% extract features cell by cell

for cdx = 1:cell total;

cellseq list = ...

dir(fullfile(cell dirlist{cdx},'Preprocessing','Segmentation', ...

'*T0*.mat'));

% Make the output directiry

temporal dir = fullfile(cell dirlist{cdx},'Temporal Align');

if ¬exist(temporal dir,'dir');

mkdir(temporal dir);

end

LM feature seq = fullfile(temporal dir,'LM feature seq.mat');

% If the output already exists and extracts the same features, then ...

set the QC to 1 and skip processing

if exist(LM feature seq,'file');

M = load(LM feature seq);

if isequal(feature name,M.feature name);

vec QC(cdx) = 1;

end

end

% Process un-processed image sequences

if vec QC(cdx) ̸= 1;

disp(['Process' fullfile(cell dirlist{cdx},'Landmarks feature ...

extraction')])

LM feats = zeros(length(feature name),length(cellseq list));

for tdx = 1:length(cellseq list);

load(fullfile(cell dirlist{cdx},'Preprocessing','Segmentation', ...

cellseq list(tdx).name)); % load the result from the ...

segmentation pipeline

LM feats(1:2,tdx) = chrDistPix; % extracted by Julius Hossain, ...

inter-nuclei distance from the technical complete disconnection.
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if isequal(mitoTime{1},'Ana');
if numChr == 1;

LM feats(2,tdx) = chrSptDistPix; % distance between two ...

chromosomes from anaphase onwards even both nuclei still ...

have connections

end

end

LM feats(3,tdx) = chrVolMic; % volume of the chromosome(s), ...

extracted by Julius Hossain

LM feats(4,tdx) = eigValuesMic(1,1); % The 3rd (smallest) ...

eigenvalue of the chromatin volume, extracted by Julius Hossain

% Cell length and height on the section of the predicted division ...

axis Calculate the 2D section through the division axis

dx = isectPointsPix(1,1,1)-isectPointsPix(2,1,1);

dy = isectPointsPix(1,2,1)-isectPointsPix(2,2,1);

if dx == 0;

div axis sec = ...

cat(2,isectPointsPix(1,1,1)*ones(size(cellVolume,2),1), ...

(1:size(cellVolume,2))');

elseif dy == 0;

div axis sec = cat(2,(1:size(cellVolume,1))',isectPointsPix(1,2,1)* ...

ones(size(cellVolume,1),1));

elseif abs(dx) > abs(dy);

d = dy/dx;

div axis y = isectPointsPix(1,2,1):-abs(d):1;

if d > 0;

div axis x = isectPointsPix(1,1,1):-1:1;

else

div axis x = isectPointsPix(1,1,1):1:size(cellVolume,1);

end

l = min(length(div axis y),length(div axis x));

div axis y = ...

cat(2,div axis y(1:l),isectPointsPix(1,2,1):abs(d):size(cellVolume,2));

if d > 0;

div axis x = ...

cat(2,div axis x(1:l),isectPointsPix(1,1,1):1:size(cellVolume,1));

else
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div axis x = cat(2,div axis x(1:l),isectPointsPix(1,1,1):-1:1);

end

l = min(length(div axis y),length(div axis x));

div axis sec = cat(2,div axis x(2:l)',div axis y(2:l)');

div axis sec = round(sortrows(div axis sec));

elseif abs(dx)≤ abs(dy);

d = dx/dy;

div axis x = isectPointsPix(1,1,1):-abs(d):1;

if d > 0;

div axis y = isectPointsPix(1,2,1):-1:1;

else

div axis y = isectPointsPix(1,2,1):1:size(cellVolume,2);

end

l = min(length(div axis y),length(div axis x));

div axis x = ...

cat(2,div axis x(1:l),isectPointsPix(1,1,1):abs(d):size(cellVolume,1));

if d > 0;

div axis y = ...

cat(2,div axis y(1:l),isectPointsPix(1,2,1):1:size(cellVolume,2));

else

div axis y = cat(2,div axis y(1:l),isectPointsPix(1,2,1):-1:1);

end

l = min(length(div axis y),length(div axis x));

div axis sec = cat(2,div axis x(2:l)',div axis y(2:l)');

div axis sec = round(sortrows(div axis sec));

end

l = size(div axis sec,1);

sec mat = zeros(l,size(cellVolume,3));

for ldx = 1:l;

sec mat(ldx,:) = ...

reshape(cellVolume(div axis sec(ldx,1),div axis sec(ldx,2),:), ...

1,size(cellVolume,3));

end

% Calculate the length and height by finding the first and last ...

non-zero pixel. The 3 frames closest to the bottom were not ...

included due to irregular adhesions.

length vec = double(sum(sec mat(:,4:end),2)>0);

height vec = double(sum(sec mat(:,4:end),1)>0);

length vec = [find(length vec,1,'first') find(length vec,1,'last')];

height vec = [find(height vec,1,'first') find(height vec,1,'last')];
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if isempty(length vec);

LM feats(5,tdx) = 0;

LM feats(6,tdx) = 0;

else

LM feats(5,tdx) = sqrt(sum((div axis sec(length vec(end),:) - ...

div axis sec(length vec(1),:)).ˆ2));

LM feats(6,tdx) = height vec(end) - height vec(1) + 1;

end

LM feats(8,tdx) = str2double(splitted{end-1});

end

% Sort the matrix by time

LM feats = (sortrows(LM feats',[7,1]))';

% QC+ if 40 frames were processed

if size(LM feats,2)==40;

if LM feats(2,end) > 0;

vec QC(cdx) = 1;

save(LM feature seq,'LM feats','feature name')

end

end

end

end

summary database.lm features(summary database.segmentation>0) = vec QC;

writetable(summary database,exp database,'Delimiter','∖t');

end

6.3.4 Generation of the data set with H2B as POI

Since all data has H2B imaged as landmarks, images were randomly selected and the H2B signal

from the landmarks channel was transferred into the POI channel in order to generate a data set

with H2B as POI.

nuc dir = fullfile(exp dir,'150506 H2B');

function Synthetic nuc(nuc dir,exp dir)

% Load the database file

exp database = fullfile(exp dir,'full database.txt');
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summary database = readtable(exp database,'Delimiter','∖t');

% Number of H2B cells generated

select number = 35;

% Find cells with reference proteins imaged (here, only cells with ...

reference proteins were used for the H2B image synthesis. ...

However, any images can be used for this purpose.)

ref idx = strcmp(summary database.label,'ref');

% Only cells with positive QC were considered

ref celldir list = ...

summary database.filepath((ref idx.*(summary database.fcs calibration>0) ...

.*(summary database.segmentation>0).*(summary database.lm features>0))>0);

ref number = length(ref celldir list);

% Generate their QC and processing status

basetab = cell2table({'n',1,'H2B','ref','Chr',1,1,1,1,0,0,0,0});
basetab.Properties.VariableNames = ...

summary database.Properties.VariableNames;

% Select cells

selected = 0;

for idx = 1:ref number;

if selected < select number;

disp(['Generate H2B' num2str(selected)])

% Generate the output directory

celldir = fullfile(nuc dir,ref celldir list{idx}(end-29:end));
% If there is no directory with the same name

if ¬exist(celldir,'dir');
selected = selected + 1;

mkdir(fullfile(celldir,'Preprocessing','Segmentation'));

mkdir(fullfile(celldir,'Temporal Align'));

seg filelist = dir(fullfile(ref celldir list{idx}, ...

'Preprocessing','Segmentation','TR*.mat'));

% Generate frame by frame

for f idx = 1:length(seg filelist);

% Load the segmentation results

load(fullfile(ref celldir list{idx},'Preprocessing','Segmentation', ...

seg filelist(f idx).name));

% Generate the poi channel by using the mCherry channel image ...

croped by the cell volume from the segmentation
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poi = nuc.*cellVolume;

% Save the new segmentation file to the H2B directory

nuc savefile = fullfile(celldir,'Preprocessing','Segmentation', ...

seg filelist(f idx).name);

if isequal(mitoTime{1},'Ana');
if numChr == 1;

save(nuc savefile,'bgMask','cellVolume','neg', ...

'nucVolume','nuc','poi','chrCentMic', ...

'isectPointsPix', ...

'midPlane','regPointsMic','eigVectors','eigValuesMic', ...

'cellAxis','chrVolMic','chrDistPix','numChr','mitoTime', ...

'avgBgInt','chrSptDistPix');

else

save(nuc savefile,'bgMask','cellVolume','neg', ...

'nucVolume','nuc','poi','chrCentMic', ...

'isectPointsPix', ...

'midPlane','regPointsMic','eigVectors','eigValuesMic', ...

'cellAxis','chrVolMic','chrDistPix','numChr','mitoTime', ...

'avgBgInt');

end

else

save(nuc savefile,'bgMask','cellVolume','neg', ...

'nucVolume','nuc','poi','chrCentMic', 'isectPointsPix', ...

'midPlane','regPointsMic','eigVectors','eigValuesMic', ...

'cellAxis','chrVolMic','chrDistPix','numChr','mitoTime', ...

'avgBgInt');

end

end

% Save the fcs calibration file to the H2B directory by using the ...

pre-defined calibration rate of 0.002.

fcs savefile = fullfile(celldir,'Preprocessing','calibration.mat');

load(fullfile(ref celldir list{idx},'Preprocessing','calibration.mat'));
calibration factor = 0.002;

stochiometry = 1;

save(fcs savefile,'calibration factor','stochiometry');

% Save the landmarks feature file to the H2B directory

lmfeats savefile = ...

fullfile(celldir,'Temporal Align','LM feature seq.mat');

load(fullfile(ref celldir list{idx},'Temporal Align','LM feature seq.mat'));

save(lmfeats savefile,'LM feats','feature name','var cell');
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basetab.filepath{1} = celldir;

basetab.system = str2double(ref celldir list{idx}(end-22));
summary database = cat(1,summary database,basetab);

end

end

end

% Upate the database file

writetable(summary database,exp database,'Delimiter','∖t');

end

6.3.5 Generate the Mitotic Standard Time model

Using a subset of the data, a model of the mitotic standard time was generated using multi sequence

dynamic time warping.

% model dir = '∖temporal model';

% mkdir(model dir)

function model dir = temporal alignment(exp dir,model dir)

% Interactive selection of experiment directory

if isempty(exp dir)

exp dir = uigetdir('','Select the directory with your data ...

series');

end

% Generate a subset of the data for the modelling. In this work, ...

all cells

% with reference proteins, i.e. proteins localized in a single ...

subcellular

% structure except for H2B, were selected. The total number was 132.

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database,'Delimiter','∖t');
ref idx = (summary database.segmentation>0).* ...

(summary database.lm features>0);

ref idx = ref idx .*(strcmp(summary database.label,'ref')>0).* ...

(strcmp(summary database.poi,'H2B')==0);

filepath = summary database.filepath(ref idx>0);
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addpath = cellstr(repmat([filesep 'Temporal Align' filesep ...

'LM feature seq.mat'], [length(filepath) 1]));

feat filelist = strcat(filepath',addpath')';

savefile = fullfile(exp dir,'LM align feat.mat');

save(savefile,'featseq list');

% Set up the parameters

% Select landmarks geometrical features for the modelling. In this ...

work,

% only three features were used: inter-nuclei distance, nuclear ...

volume and

% third eigenvalue of the nuclear volume

takefeat = [0;1;1;1;0;0;0];

seq length = 40;

% Parameters for the smoothing for first derivative calculation

smooth degree = 3; % filtering parameters for calculating the ...

derivatives

spline Δ = 0.05;

% Dynamic time warping parameters

penat fuse = [0;0];

penat chop = [5;54];

penat gap = [12;54];

unit t = 0.3;

max rounds = 4; % number of rounds for multi sequence alignment

%% Generate the model

feature number = sum(takefeat);

cell total = length(feat filelist);

savefile = fullfile(model dir,'temporal alignment.mat');

%% Get the feature matrix for all selected sequences and normalization

feat original = zeros(feature number,seq length,cell total);

for cdx = 1:cell total;

if exist(feat filelist{cdx},'file')
load(feat filelist{cdx});
if size(LM feats,2) == seq length;

feat original(:,:,cdx) = LM feats(takefeat>0,:);

end

end

end
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feat original(:,:,max(max(feat original,[],1),[],2)==0) = []; % ...

delete sequences without any non-zero data

cell total = size(feat original,3);

% Normalize all features using mean and std

feat mean = mean(reshape(feat original,[feature number, ...

seq length*cell total]),2);

feat std = std(reshape(feat original,[feature number, ...

seq length*cell total]),[],2);

feat normalized=(feat original-repmat(feat mean,[1,seq length,cell total])) ...

./repmat(feat std,[1,seq length,cell total]);

%% Calculate the first derivative based on filtered data and ...

normalize piecewise smoothing fit and derivative from the fit

t aq = 1:seq length;

feat derivative = zeros(size(feat normalized));

for fdx = 1:feature number;

for cdx = 1:cell total;

[smooth seq,stat] = ...

fit(t aq',feat normalized(fdx,:,cdx)','smoothingspline');

feat derivative(fdx,:,cdx) = ...

(differentiate(smooth seq,t aq'))';

end

end

% Normalize all derivative features using mean and std

dev mean = mean(reshape(feat derivative,[feature number, ...

seq length*cell total]),2);

dev std = std(reshape(feat derivative,[feature number, ...

seq length*cell total]),[],2);

feat derivative=(feat derivative-repmat(dev mean,[1,seq length,cell total])) ...

./repmat(dev std,[1,seq length,cell total]);

feature parameters = struct('select',takefeat,'plotf',plotfeat p, ...

'mean 0 deriv',feat mean,'std 0 deriv',feat std, ...

'mean 1 deriv',dev mean,'std 1 deriv',dev std, ...

'smoothing',smooth degree,'spline',spline Δ, ...

'penatration',[penat fuse penat chop penat gap], ...

'unit t',unit t,'frame num',seq length,'cellnorm',cellnorm);
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% Calculate the total standard deviation

std ground = std([feat normalized;feat derivative],[],3);

dev track = [sum(std ground(¬isnan(std ground))) 0];

%% Alignment first round

% Calculate the Euclidic distance between all sequences

dist matrix = zeros(cell total,cell total);

for cell1 idx = 1:cell total;

for cell2 idx = (cell1 idx+1):cell total;

calc f = ...

[feat normalized(:,:,cell1 idx)-feat normalized(:,:,cell2 idx) ...

feat derivative(:,:,cell1 idx)-feat derivative(:,:,cell2 idx)];

calc f(isnan(calc f)) = 0;

dist matrix(cell1 idx,cell2 idx) = sum(sum(calc f.ˆ2));

dist matrix(cell2 idx,cell1 idx) = ...

dist matrix(cell1 idx,cell2 idx);

end

end

align ranking = zeros(cell total,1);

% find the cell having the smallest total distance to all other cells

[val,align ranking(1)] = min(sum(dist matrix,2));

dist matrix(:,align ranking(1)) = inf;

[val,align ranking(2)] = min(dist matrix(align ranking(1),:));

dist matrix(:,align ranking(2)) = inf;

% Align the first two sequences against each other using the function

% multidim DDTW

align TD = zeros(cell total,1);

align model = [feat normalized(:,:,align ranking(1)); ...

feat derivative(:,:,align ranking(1))];

align seq = [feat normalized(:,:,align ranking(2)); ...

feat derivative(:,:,align ranking(2))];

[align TD(align ranking(2)),matching vector]=multidim DDTW( ...

align model,t aq,align seq,t aq,penat fuse, ...

penat chop,penat gap,unit t);

% Assign the alignment and calculate the average

aligned full = zeros(cell total,size(matching vector,1));

aligned full(align ranking(1),:) = matching vector(:,1)';

aligned full(align ranking(2),:) = matching vector(:,2)';
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master seq = zeros(size(align model,1),size(aligned full,2));

std master = zeros(size(master seq));

for atidx = 1:size(aligned full,2);

aligned frames = zeros(size(align model,1), ...

sum(aligned full(:,atidx)>0));

seq idx = 0;

for cidx = 1:cell total;

if aligned full(cidx,atidx) > 0;

seq idx = seq idx + 1;

aligned frames(:,seq idx) = [feat normalized(:, ...

aligned full(cidx,atidx),cidx);feat derivative(:, ...

aligned full(cidx,atidx),cidx)];

end

end

actual feat = sum((1-isnan(aligned frames)),2);

calc f = aligned frames;

calc f(isnan(calc f)) = 0;

master seq(:,atidx) = sum(calc f,2)./actual feat;

calc f = aligned frames-repmat(master seq(:,atidx), [1 ...

size(aligned frames,2)]);

calc f(isnan(calc f)) = 0;

actual feat(actual feat<2) = 2;

std master(:,atidx) = sqrt(sum((calc f).ˆ2,2)./(actual feat-1));

end

% Calculate the timeline for the master seq using the progression time

timeline = [aligned full(align ranking(1),:); ...

aligned full(align ranking(2),:)];

for cellidx = 1:2;

for atidx = 2:size(aligned full,2);

if timeline(cellidx,atidx) < timeline(cellidx,atidx-1);

timeline(cellidx,atidx) = timeline(cellidx,atidx-1);

end

end

end

timeline = diff(cat(1,zeros(1,2),timeline'));

timeline = mean(timeline,2);

for atidx = 2:length(timeline);

timeline(atidx) = timeline(atidx-1) + timeline(atidx);

end
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%% Align the remaining sequences to the averaged sequence and ...

refine the model after each alignment

for align cdx = 3:cell total;

% find the next processing sequence

[val,align ranking(align cdx)] = min( ...

dist matrix(align ranking(align cdx-1),:));

dist matrix(:,align ranking(align cdx)) = inf;

% align the sequence to the model

align seq = [feat normalized(:,:,align ranking(align cdx)); ...

feat derivative(:,:,align ranking(align cdx))];

[align TD(align ranking(align cdx)),matching vector]=multidim DDTW( ...

master seq,timeline,align seq,t aq,penat fuse, ...

penat chop,penat gap,unit t);

% Assign the alignment using the function AssAligned

aligned full = ...

AssAligned(aligned full,matching vector,cell total, ...

align ranking(align cdx));

% Update the averaged sequence and the timeline using the ...

function GetMaster

[master seq,timeline,StD] = GetMaster([feat normalized; ...

feat derivative],aligned full);

end

% Quality control of the alignment using the function qc masterseq ...

and update the averaged sequence after

% delting sequences with bad alignment

[aligned full,qc idx] = qc masterseq(align TD,aligned full);

[master seq,timeline,StD] = ...

GetMaster([feat normalized;feat derivative],aligned full);

% Document the total standard deviation

norm StD = StD.*repmat((diff([0;timeline]))',[size(StD,1) 1]);

dev track = cat(1,dev track,[sum(norm StD(¬isnan(norm StD))) ...

sum(align TD)/cell total]);

% Refine the alignment for pre-defined number of rounds

al round = 1;

while al round < max rounds;

align ranking = [align TD (1:cell total)'];
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align ranking = sortrows(align ranking);

align ranking = align ranking(:,2);

for cidx = 1:cell total;

align seq = [feat normalized(:,:,align ranking(cidx)); ...

feat derivative(:,:,align ranking(cidx))];

aligned full(align ranking(align cdx),:) = 0;

[master seq,timeline,StD] = ...

GetMaster([feat normalized;feat derivative], aligned full);

[align TD(align ranking(cidx)),matching vector]=multidim DDTW( ...

master seq,timeline,align seq,t aq,penat fuse, ...

penat chop,penat gap,unit t);

aligned full = ...

AssAligned(aligned full,matching vector,cell total, ...

align ranking(align cdx));

[master seq,timeline,StD] = GetMaster([feat normalized; ...

feat derivative],aligned full);

end

[aligned full,qc idx] = qc masterseq(align TD,aligned full);

[master seq,timeline,StD] = ...

GetMaster([feat normalized;feat derivative], aligned full);

norm StD = StD.*repmat((diff([0;timeline]))',[size(StD,1) 1]);

dev track = cat(1,dev track,[sum(norm StD(¬isnan(norm StD))) ...

sum(align TD)/cell total]);

al round = al round + 1;

end

save(savefile,'feature parameters','feat normalized','feat derivative', ...

'feat filelist','master seq','aligned full','timeline', ...

'dev track','StD','align TD','qc idx');

end

Functions that was used for generating the model:

Dynamic time warping based pairwise sequence alignment

function ...

[TD,w]=multidim DDTW(sm,tm,ss,ts,pen fuse,pen chop,pen gap,unit t)

% sm and ss are the sequence of the model and the sequence

% tm and ts are the timeline of the model and the sequence
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% pen fuse is the penalization parameter that is used when multiple ...

frames of one sequence are aligned to a single frame of the ...

other sequence

% pen chop is the penalization parameter for chopping the starting ...

or ending frame away for alignment

% pen gap is the penalization parameter for jumps in alignment.

% unit t is the unit time for solving the end duration in 'time' mode

%% Calculate the euroclidian distance matrix from all points of sm ...

to ss

num feat = size(sm,1);

lm = size(sm,2);

ls = size(ss,2);

d = zeros(lm,ls);

% calculate the distance without considering the nan, however ...

normalize to full dimensions

for midx = 1:lm;

for sidx = 1:ls;

nan idx = 1-isnan(sm(:,midx)+ss(:,sidx));

d(midx,sidx) = ...

sum((sm(nan idx>0,midx)-ss(nan idx>0,sidx)).ˆ2)/ ...

sum(nan idx)*num feat;

end

end

%% Calculate the lowest cummulative cost of a path from (1,1) to ...

(lm,ls)

% At the start, missing alignment is allowed and the cost for each ...

missing frame is denpendent on the pen chop and the frame position

% At the end, missing alignment is also allowed. The cost is ...

calculated in the same way as the start

% Within the sequence, alignment gap up to 1 frame is allowed and ...

will have a cost of pen gap

% Non diagonal alignment will have a cost weighted in a ...

time-dependent way (mode time)

D = zeros(size(d));

ID = D;

D(1,1) = d(1,1);

ID(1,1) = 0;
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% First row and column

for midx = 2:lm;

[D(midx,1),m] = ...

min([d(midx-1,1)*(tm(midx)-tm(midx-1))+D(midx-1,1), ...

tm(midx)*pen chop(1)]);

if m == 2;

ID(midx,1) = 0;

else

ID(midx,1) = 2;

end

end

for sidx = 2:ls;

[D(1,sidx),m] = ...

min([d(1,sidx-1)*(ts(sidx)-ts(sidx-1))+D(1,sidx-1), ...

ts(sidx)*pen chop(2)]);

if m == 2;

ID(1,sidx) = 0;

else

ID(1,sidx) = 3;

end

end

% Second row and column

for midx = 2:lm;

[D(midx,2),ID(midx,2)] = min([d(midx-1,1)*(tm(midx)-tm(midx-1) ...

+ts(2)-ts(1))+D(midx-1,1), ...

(d(midx-1,2)+pen fuse(1))*(tm(midx)-tm(midx-1))+D(midx-1,2), ...

(d(midx,1)+pen fuse(2))*(ts(2)-ts(1))+D(midx,1)]);

end

for sidx = 2:ls;

[D(2,sidx),ID(2,sidx)] = min([d(1,sidx-1)*(tm(2)-tm(1)+ts(sidx) ...

-ts(sidx-1))+D(1,sidx-1), ...

(d(1,sidx)+pen fuse(1))*(tm(2)-tm(1))+D(1,sidx), ...

(d(2,sidx-1)+pen fuse(2))*(ts(sidx)-ts(sidx-1))+D(2,sidx-1)]);

end

% The remaining part of the matrix

for midx = 3:lm;

for sidx = 3:ls;

[D(midx,sidx),ID(midx,sidx)] = min([d(midx-1,sidx-1)* ...

(tm(midx)-tm(midx-1)+ts(sidx)-ts(sidx-1))+D(midx-1,sidx-1), ...
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(d(midx-1,sidx)+pen fuse(1))*(tm(midx)-tm(midx-1))+D(midx-1,sidx), ...

(d(midx,sidx-1)+pen fuse(2))*(ts(sidx)-ts(sidx-1))+D(midx,sidx-1), ...

d(midx-2,sidx-1)*(tm(midx)-tm(midx-2)+ts(sidx)-ts(sidx-1)) ...

+D(midx-2,sidx-1)+pen gap(1)*(tm(midx)-tm(midx-2)), ...

d(midx-1,sidx-2)*(tm(midx)-tm(midx-1)+ts(sidx)-ts(sidx-2)) ...

+D(midx-1,sidx-2)+pen gap(2)*(ts(sidx)-ts(sidx-2))]);

end

end

% Last row and column

for midx = 2:lm;

D(midx,end) = ...

D(midx,end)+d(midx,end)*unit t+pen chop(1)*(tm(end)-tm(midx));

end

for sidx = 2:ls;

D(end,sidx) = ...

D(end,sidx)+d(end,sidx)*unit t+pen chop(2)*(ts(end)-ts(sidx));

end

%% Find the best solution where the last frame of at least one ...

sequence is aligned

[v t,end t] = min(D(:,end));

[v r,end r] = min(D(end,:));

if v t < v r

seq idx = [zeros(lm-end t,1);ls];

mod idx = (lm:-1:end t)';

else

seq idx = (ls:-1:end r)';

mod idx = [zeros(ls-end r,1);lm];

end

TD = min(v t,v r);

%% Assign the alignment vector from the last to the first frame

w = [mod idx,seq idx];

seq idx = w(end,2);

mod idx = w(end,1);

idx = ID(mod idx,seq idx);

while idx > 0;

switch idx

case 1
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seq idx = seq idx-1;

mod idx = mod idx-1;

case 2

mod idx = mod idx-1;

case 3

seq idx = seq idx-1;

case 4

w = cat(1,w,[mod idx-1,0]);

mod idx = mod idx-2;

seq idx = seq idx-1;

case 5

w = cat(1,w,[0,seq idx-1]);

mod idx = mod idx-1;

seq idx = seq idx-2;

end

w=cat(1,w,[mod idx,seq idx]);

idx = ID(mod idx,seq idx);

end

if w(end,1) > 1;

w = cat(1,w,[((w(end,1)-1):-1:1)' zeros(w(end,1)-1,1)]);

elseif w(end,2) > 1;

w = cat(1,w,[zeros(w(end,2)-1,1) ((w(end,2)-1):-1:1)']);

end

% Arange the alignment list from start to end

w = w(end:-1:1,:);

end

Assign the alignment to a cell x frame matrix from the matching vector

function A = AssAligned(A,vecM,numcell,c2)

APast = A;

A = zeros(numcell,size(vecM,1));

for midx = 1:size(vecM,1);

if vecM(midx,1) > 0;

A(:,midx) = APast(:,vecM(midx,1));

end

end
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A(c2,:) = vecM(:,2)';

A(:,sum(A,1)==0) = [];

AS = A(:,1);

for atidx = 2:size(A,2);

if ¬isequal(A(A(:,atidx)>0,atidx),A(A(:,atidx)>0,atidx-1));
AS = cat(2,AS,A(:,atidx));

end

end

A = AS;

end

Quality control: delete sequences with large (mean + std) distance to the model after alignment

function [AS,qc seq] = qc masterseq(Dist,A)

mean TD = mean(Dist);

std TD = std(Dist,[],1);

qc seq = double(Dist≤(mean TD+std TD));

A(qc seq==0,:) = 0;

AS = A(:,1);

for atidx = 2:size(A,2);

if ¬isequal(A(A(:,atidx)>0,atidx),A(A(:,atidx)>0,atidx-1));
AS = cat(2,AS,A(:,atidx));

end

end

end

Calculate the averaged sequence and its timeline

function [F,T,SD] = GetMaster(featmat,alignmat)

F = zeros(size(featmat,1),size(alignmat,2));

S = zeros(size(F));

SD = S;

for atidx = 1:size(alignmat,2);

af = zeros(size(featmat,1),sum(alignmat(:,atidx)>0));

seq idx = 0;

for cidx = 1:size(alignmat,1);

if alignmat(cidx,atidx) > 0;
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seq idx = seq idx + 1;

af(:,seq idx) = featmat(:,alignmat(cidx,atidx),cidx);

end

end

actual feat = sum((1-isnan(af)),2);

calc f = af;

calc f(isnan(calc f)) = 0;

F(:,atidx) = sum(calc f,2)./actual feat;

calc f = af-repmat(F(:,atidx),[1 size(af,2)]);

calc f(isnan(calc f)) = 0;

actual feat(actual feat<2) = 2;

SD(:,atidx) = sqrt(sum((calc f).ˆ2,2)./(actual feat-1));

end

T = alignmat(sum(alignmat,2)>0,:);

for cellidx = 1:size(T,1);

for atidx = 2:size(alignmat,2);

if T(cellidx,atidx) < T(cellidx,atidx-1);

T(cellidx,atidx) = T(cellidx,atidx-1);

end

end

end

T = diff(cat(1,zeros(1,size(T,1)),T'));

T = mean(T,2);

for atidx = 2:length(T);

T(atidx) = T(atidx-1) + T(atidx);

end

end

6.3.6 Objective determination of Mitotic Standard Transitions

Characteristic transitions were then identified in the mitotic standard time model using the function

cluster temporal model. The function reduces the model to a temporal resolution of 15 seconds

where the feature value for each time was linearly interpolated based on the neighboring two

measurements. Then, transitions were found for the temporal model based on the derivative.

function time cluster = cluster temporal model(model dir)

%% Parameters
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red dt = (15/60/1.5); % resolution at 15 seconds

dt = 3; % 4.5 minutes, window size for derivative calculation

nosplit = 8; % 12 minutes, longest duration for one phase between ...

two transitions

toptr = 0.7; % Threshold for selecting significant peaks as transitions

minsplit = 1; % 1.5 minutes, the minimum temporal duration for one ...

phase between two transitions

%% Reduce/equalize the model's temporal resolution

tt = timeline(1):red dt:feature parameters.frame num;

ms2 = zeros(size(master seq,1),length(tt));

st2 = ms2;

for i = 1:length(tt);

br = sum(timeline≤tt(i));

dt1 = tt(i)-timeline(br);

if br < length(timeline);

dt2 = timeline(br+1)-tt(i);

ms2(:,i) = master seq(:,br) + ...

(master seq(:,br+1)-master seq(:,br))*(dt1/(dt1+dt2));

st2(:,i) = StD(:,br) + (StD(:,br+1)-StD(:,br))*(dt1/(dt1+dt2));

else

ms2(:,i) = master seq(:,br);

st2(:,i) = StD(:,br);

end

end

align original model = struct('master seq',master seq,'StD',StD, ...

'timeline',timeline);

master seq = ms2;

StD = st2;

timeline = tt;

%% Calculate the approximation of the second derivative

frame start = sum(timeline≤(dt+timeline(1)))+1;

frame end = sum(timeline≤(timeline(end)-dt));

add start = frame start-1;

add end = size(master seq,2)-frame end;

frame end = length(timeline)+add start;

master seq = cat(2,repmat(master seq(:,1),[1 add start]),master seq);

master seq = cat(2,master seq,repmat(master seq(:,end),[1 add end]));

StD = cat(2,repmat(StD(:,1),[1 add start]),StD);
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StD = cat(2,StD,repmat(StD(:,end),[1 add end]));

timeline = [-red dt*(add start:-1:1) timeline 40+red dt*(1:add end)];

tangentseq = zeros(size(master seq,2),2+size(master seq,1));

tangentseq(:,1) = (1:size(master seq,2))';

for i = frame start:frame end;

i minus = sum(timeline≤(timeline(i)-dt));

i plus = sum(timeline<(timeline(i)+dt))+1;

if i minus == i;

i minus = i-1;

end

if i plus == i;

i plus = i+1;

end

tangentseq(i,3:end) = abs(mean(master seq(:,i minus:i-1)- ...

repmat(master seq(:,i),[1 ...

i-i minus]),2)+mean(master seq(:,i+1:i plus) ...

-repmat(master seq(:,i),[1 i plus-i]),2));

tangentseq(i,2) = sum(((master seq(:,i-1)+StD(:,i-1)) ...

<(master seq(:,i)-StD(:,i)))+((master seq(:,i-1)-StD(:,i-1)) ...

>(master seq(:,i)+StD(:,i))));

end

%% Find transitions by selecting the peaks beyond the threshold

breakpoints = double(tangentseq(:,2) > 0);

tangentseq original = tangentseq;

break max single = zeros(length(breakpoints),size(tangentseq,2)-2);

for i = 3:size(tangentseq,2);

val = 10;

while val > toptr;

[val,idx] = max(tangentseq(:,i));

if val > toptr;

breakpoints(idx) = 1;

break max single(idx,i-2) = 1;

i minus = sum(timeline≤(timeline(idx)-dt));

i plus = sum(timeline<(timeline(idx)+dt))+1;

if i minus == idx;

i minus = idx-1;

end

if i plus == idx;

i plus = idx+1;
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end

[¬,idx min] = min(tangentseq((idx-1):-1:i minus,i));

tangentseq((idx-idx min):idx,i) = 0;

[¬,idx min] = min(tangentseq((idx+1):1:i plus,i));

tangentseq(idx:(idx+idx min),i) = 0;

end

end

end

tangentseq = tangentseq original;

th tan = toptr*ones(1,size(tangentseq,2)-2);

th tan = (th tan-mean(tangentseq(frame start:frame end,3:end),1)) ...

./std(tangentseq(frame start:frame end,3:end),[],1);

tangentseq(frame start:frame end,3:end) = ...

(tangentseq(frame start:frame end,3:end)-repmat(mean( ...

tangentseq(frame start:frame end,3:end),1), ...

[frame end-frame start+1,1]))./ ...

repmat(std(tangentseq(frame start:frame end,3:end), [],1), ...

[frame end-frame start+1,1]);

frame end0 = frame end;

%% If the time between two transitions is too long, find additional ...

transitions which have the maximum second derivative in one ...

feature dimension through all points within the corresponding ...

duration

breakpoints(frame start) = 1;

for i = 1:sum(timeline≤timeline(end)-nosplit);

frame end = sum(timeline≤(timeline(i)+nosplit));

if sum(breakpoints(i:frame end)) == 0;

[¬,idx] = max(max(tangentseq(i:frame end,3:end),[],2),[],1);

breakpoints(idx+i-1) = 1;

end

end

%% If the time between two transitions is too short, delete the ...

transitions with smaller second derivatives

fnum = (size(tangentseq,2)-2)/2 + 2;

i = 1;

while i ≤ sum(timeline≤timeline(end)-minsplit);

frame end = sum(timeline≤(timeline(i)+minsplit));

if sum(breakpoints(i:frame end)) > 1;
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s = sum(tangentseq(i:frame end,3:fnum),2);

s(breakpoints(i:frame end)==0) = -inf;

[¬,idx] = max(s,[],1);

breakpoints(i:frame end) = 0;

breakpoints(idx+i-1) = 1;

i = idx+i;

else

i = i+1;

end

end

%% Update all sequences

breakpoints(frame start) = 1;

master seq = master seq(:,frame start:frame end0);

StD = StD(:,frame start:frame end0);

timeline = timeline(frame start:frame end0);

tangentseq = tangentseq(frame start:frame end0,:);

breakpoints = breakpoints(frame start:frame end0);

%% Write output

class start = find(breakpoints==1);

class label = (1:length(class start))';

class end = cat(1,class start(2:end)-1,length(breakpoints));

class mean = zeros(length(class start),size(master seq,1));

class creteria = zeros(length(class start),2);

for i = 1:length(class start);

class mean(i,:) = ...

(mean(master seq(:,class start(i):class end(i)),2))';

if tangentseq(class start(i),2) == 0;

[class creteria(i,2),class creteria(i,1)] = max(tangentseq( ...

class start(i),3:end),[],2);

end

end

cluster parameter = struct('model t resolution',red dt,'dt',dt, ...

'longest cluster',nosplit,'taketoptransition',toptr, ...

'mingap bettransition',minsplit);

time cluster = ...

table(class label,class start,class end,class mean,class creteria);
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save(model file,'feature parameters','feat normalized','feat derivative', ...

'feat filelist','master seq','aligned full','timeline','dev track', ...

'StD','align TD','qc idx','time cluster','tangentseq', ...

'breakpoints','cluster parameter','align original model');

end

In order to visualize the standard mitotic sequence, representative cells were selected for each

stage between two transitions.

function select master mitosis

F = [feat normalized;feat derivative];

class number = size(time cluster,1);

cellname cl = {};
celltime cl = [];

for i = 1:class number;

allcells = [];

allidx = [];

subalign = aligned full(:,(sum(align original model.timeline < ...

timeline(time cluster.class start(i)))+1): ...

sum(align original model.timeline ≤ ...

timeline(time cluster.class end(i))));

if isempty(subalign)

subalign = aligned full(:,(sum(align original model.timeline < ...

timeline(time cluster.class start(i-1)))+1): ...

sum(align original model.timeline ≤ ...

timeline(time cluster.class end(i+1))));

end

for j = 1:size(subalign,1);

subframe = unique(subalign(j,:));

subframe(subframe==0) = [];

if ¬isempty(subframe)
allidx = cat(2,allidx,cat(1,repmat(j,[1 ...

length(subframe)]),subframe));

for k = 1:length(subframe);

allcells = cat(2,allcells,F(:,subframe(k),j));

end

end

end
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dist classmean = ...

sum((allcells-repmat((time cluster.class mean(i,:))', [1 ...

size(allcells,2)])).ˆ2,1);

[¬,clidx] = min(dist classmean);

cellpath cl = strsplit(feat filelist{allidx(1,clidx)},{'Temporal'}, ...

'CollapseDelimiters',true);

cellpath cl = cellpath cl{1}(1:end-1);
addname = ['cluster' num2str(i,'%02.f')];

cellname cl = cat(1,cellname cl,cellpath cl);

celltime cl = cat(1,celltime cl,allidx(2,clidx));

end

savefile cl = fullfile(model dir,'selected cell.mat');

save(savefile cl,'cellname cl','celltime cl');

end

6.3.7 Temporal registration of all image sequences in the data

All cells were then registered temporally to the mitotic standard time model.

function temporal annotation(exp dir, model dir)

modelpath = fullfile(model dir,'temporal alignment.mat');

load(modelpath);

pp = feature parameters;

% Set the parameters such that all frames in the cell sequence ...

should be practically aligned

penat fuse = [0;360];

penat chop = [15;540];

penat gap = [36;540];

unit t = 0.3;

th qc = 3*dev track(end,2); % threshold for the quality control ...

whether a cell has a successful alignment

feature number = sum(pp.select);

% Load the database file

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database,'Delimiter','∖t');
summary database.time alignment = -ones(size( ...

summary database.time alignment));
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feat filelist = ...

summary database.filepath(summary database.lm features>0);

cell total = length(feat filelist);

%% Align cell by cell

vecQC = zeros(cell total,1);

for align idx = 1:cell total;

% Load the feature matrix for selected sequence

matfile = fullfile(feat filelist{align idx},'Temporal Align', ...

'LM feature seq.mat');

savefile = fullfile(feat filelist{align idx},'Temporal Align', ...

'Align annotation.mat');

disp(feat filelist{align idx})
% If the result file exists, check whether the sequence was aligned ...

to the same model

if exist(savefile,'file');

M = load(savefile);

if isequal(M.modelpath,modelpath);

vecQC(align idx) = 1;

end

end

if vecQC(align idx) ̸= 1;

disp(['Process' fullfile(feat filelist{align idx}, 'Temporal align ...

to the model')])

if exist(matfile,'file');

load(matfile);

if size(LM feats,2) == pp.frame num && LM feats(1,end) > 0;

feat original = LM feats(pp.select>0,:);

% Normalize all features using mean and std saved during modeling

feat normalized = (feat original-repmat(pp.mean 0 deriv, ...

[1,pp.frame num])) ./repmat(pp.std 0 deriv,[1,pp.frame num]);

%% Calculate the first derivative based on filtered data and normalize

% piecewise smoothing fit and derivative from the fit

t aq = 1:pp.frame num;

feat derivative = zeros(size(feat normalized));

for fdx = 1:feature number;

[smooth seq,stat] = fit(t aq',feat normalized(fdx,:)', ...

'smoothingspline');
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feat derivative(fdx,:) = (differentiate(smooth seq,t aq'))';

end

% Normalize all derivative features using mean and std saved during ...

the modeling

feat derivative = (feat derivative-repmat(pp.mean 1 deriv, ...

[1,pp.frame num]))./ repmat(pp.std 1 deriv,[1,pp.frame num]);

%% Align the sequence using the function multidim DDTW

align seq = [feat normalized;feat derivative];

[align TD,matching vector]=multidim DDTW(master seq,timeline, ...

align seq,t aq,pp.mode,penat fuse,penat chop, penat gap,pp.unit t);

% Quality control of alignment

if align TD > th qc;

vecQC(align idx) = 0;

else

% Assign the alignment. If a frame in the sequence is

% aligned to multiple frames of the model, the model

% frame with the shortest distance to it will be used

% for the assignment

mitotime = zeros(pp.frame num,2);

for aidx = 1:pp.frame num;

alignframe = find(matching vector(:,2)==aidx);

modelframe = master seq(:,matching vector(alignframe(1),1));

if length(alignframe) > 1;

for fidx = 2:length(alignframe);

modelframe = cat(2,modelframe,master seq(:, ...

matching vector(alignframe(fidx),1)));

end

end

framedist = (modelframe-repmat(align seq(:,aidx),[1, ...

size(modelframe,2)])).ˆ2;

framedist(isnan(framedist)) = 0;

framedist = sum(framedist,1);

[¬,frame] = min(framedist);

mitotime(aidx,:) = [matching vector(alignframe(frame),1) ...

timeline(matching vector(alignframe(frame),1))];

end

vecQC(align idx) = 1;
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save(savefile,'align seq','mitotime','pen fact','th qc', ...

'modelpath','align TD')

end

end

end

end

end

% Update the database file

summary database.time alignment(summary database.lm features>0) = ...

vec QC;

writetable(summary database,exp database,'Delimiter','∖t');

end

6.3.8 Calibration and image processing of the POI channel

Then, the POI channel image was processed into a 3D density map by calibration, smoothing and

rotating for particular processing steps later.

function vec QC = preprocess(exp dir)

%% Interactive selection of experiment directory

if ¬nargin
exp dir = uigetdir('','Select the directory with your data series');

end

%% Set up parameters

filter size = [3 3 1]; % 3D gaussian filter size

xy resolution = 0.25; % in um

z resolution = 0.75; % in um

z resolution = z resolution/xy resolution;

tmax = 40; % number of frames

%% Load the database file and only process files with positive QC ...

for segmentation and FCS calibration

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database,'Delimiter','∖t');
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cell dirlist = ...

summary database.filepath(((summary database.segmentation>0) ...

.*(summary database.fcs calibration>0))>0);

cell total = length(cell dirlist);

vec QC = ...

summary database.registration(((summary database.segmentation>0) ...

.*(summary database.fcs calibration>0))>0);

summary database.registration = ...

-ones(size(summary database.registration));

%% Load the mat file from the segmentation

for cdx = 1:cell total;

cellseq list = ...

dir(fullfile(cell dirlist{cdx},'Preprocessing','Segmentation', ...

'*T0*.mat'));

if length(cellseq list) == tmax;

% Make the direcory for saving processed data

registration dir = ...

fullfile(cell dirlist{cdx},'Preprocessing','Registration');
if ¬exist(registration dir,'dir')

mkdir(registration dir);

end

% If the image sequence has been processed, then skip

if exist(fullfile(registration dir,cellseq list(tmax).name),'file');

vec QC(cdx) = 1;

end

% If not, then processing

if vec QC(cdx) ̸= 1;

% Load the calibration file

calibration file = ...

fullfile(cell dirlist{cdx},'Preprocessing','calibration.mat');
load(calibration file);

% Process frame by frame

for tdx = 1:length(cellseq list);

savefile = fullfile(registration dir,cellseq list(tdx).name);

if ¬exist(savefile,'file')
disp(['Process' cell dirlist{cdx} 'at ' num2str(tdx) ' ...

Registration'])

% load the result from the segmentation pipeline
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load(fullfile(cell dirlist{cdx},'Preprocessing','Segmentation', ...

cellseq list(tdx).name));

%% Pre-process the protein of interest channel

% Calibrate the POI image

proc poi = poi*calibration factor;

% Filter the POI image and the landmarks image

proc poi = smooth3(proc poi,'gaussian',filter size);

proc nuc = smooth3(nuc,'gaussian',filter size);

% Substract the background which is the mean intensity of the ...

cell-free volume.

background 488 = sum(proc poi(:).*bgMask(:))/sum(bgMask(:)>0);

proc poi = proc poi - background 488;

proc poi(proc poi<0) = 0;

% Crop POI within the cell based on the segmentation result

proc poi = proc poi.*cellVolume;

% Crop the landmarks image using the segmented nuclear volume

proc nuc = proc nuc.*(nucVolume>0);

%% Calculating the rotational angle based on intersetion ...

axis-cell locations

rotation xy = ...

180*atan2(isectPointsPix(1,2)-isectPointsPix(2,2), ...

isectPointsPix(1,1) -isectPointsPix(2,1))/pi;

% Caculating the center of rotation, i.e. the center of ...

chromatin volume

nucdata = bwconncomp(nucVolume>0);

size nuc = cellfun(@numel,nucdata.PixelIdxList);

nucnumber = length(size nuc);

centronuc = regionprops(nucdata,'Centroid');

if nucnumber == 1;

nuccent = centronuc(1).Centroid;

else % only consider the biggest two parts of the nucleus, i.e. ...

two divided doughters

[val1,nucidx1] = max(size nuc);

size nuc(nucidx1) = 0;

[val2,nucidx2] = max(size nuc);

nuccent = (centronuc(nucidx1).Centroid*val1 + ...

centronuc(nucidx2).Centroid*val2)/(val1+val2);

end

if length(nuccent) < 3;

nuccent = cat(2,nuccent,1);
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end

nuccent = round([nuccent(2) nuccent(1) nuccent(3)]);

% Rotational registration of the protein of interest channel ...

using the function yc imrotate3d

[reg poi,¬,¬] = yc imrotate3d(proc poi,-rotation xy,nuccent,[]);

%% Calculate for each POI pixel the distance to the nuclear and ...

cellular boundary with further geometrical informations

imgsize = size(poi);

celldistmap2d = zeros(size(cellVolume));

for i = 1:imgsize(3);

celldistmap2d(:,:,i) = bwdist(bwperim(cellVolume(:,:,i),4));

end

chr full = imfill(nucVolume,'holes');

nucdistmap2d = zeros(size(chr full));

for i = 1:imgsize(3);

nucdistmap2d(:,:,i) = bwdist(bwperim(chr full(:,:,i),4));

end

celldistmap3d = zeros(size(celldistmap2d));

nucdistmap3d = zeros(size(nucdistmap2d));

if imgsize(3)>1;

for i = 1:imgsize(3);

distvec = (z resolution*abs((1:imgsize(3))-i)).ˆ2;

distvec = permute(repmat(distvec,[imgsize(2) 1 ...

imgsize(1)]),[3 1 2]);

celldistmap3d(:,:,i) = ...

sqrt(min(celldistmap2d.ˆ2+distvec,[],3));

nucdistmap3d(:,:,i) = ...

sqrt(min(nucdistmap2d.ˆ2+distvec,[],3));

end

else

celldistmap3d = celldistmap2d;

nucdistmap3d = nucdistmap2d;

end

nucdistmap3d(chr full>0) = -nucdistmap3d(chr full>0);

clear celldistmap2d;

clear nucdistmap2d;

clear distvec;

lm = prod(imgsize)-1;

trans matrix = [(0:lm)' cellVolume(:) celldistmap3d(:) ...

nucdistmap3d(:) proc poi(:)];
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clear chr full;

clear celldistmap3d;

clear nucdistmap3d;

trans matrix(trans matrix(:,2)==0,:) = []; % only keep the data ...

inside of the cell

trans matrix(:,2) = sum(abs(trans matrix(:,3:4)),2);

trans matrix(trans matrix(:,2)==0,:) = []; % delete totdist=0

coords = zeros(size(trans matrix,1),3);

coords(:,3) = floor(trans matrix(:,1)/imgsize(1)/imgsize(2))+1;

trans matrix(:,1) = mod(trans matrix(:,1),imgsize(1)*imgsize(2));

coords(:,2) = floor(trans matrix(:,1)/imgsize(1))+1;

coords(:,1) = mod(trans matrix(:,1),imgsize(1))+1;

normdists = trans matrix(:,4)./trans matrix(:,2); % dist to ...

nuc/(abs(dist to nuc)+abs(dist to cell bound))

angles = zeros(size(coords,1),2);

angles(:,1) = ...

180*(atan2(coords(:,2)-nuccent(2),coords(:,1)-nuccent(1)) - ...

atan2(isectPointsPix(1,2) - nuccent(2),isectPointsPix(1,1) - ...

nuccent(1)))/pi;

angles(:,2) = ...

180*(atan2(coords(:,3)-nuccent(3),sqrt((coords(:,2)-nuccent(2)).ˆ2 ...

+ (coords(:,1)-nuccent(1)).ˆ2)) - ...

atan2(isectPointsPix(1,3)-nuccent(3),sqrt((isectPointsPix(1,2) ...

- nuccent(2)).ˆ2 + (isectPointsPix(1,1)-nuccent(1)).ˆ2)))/pi;

dist to nuc = trans matrix(:,4);

dist to pm = trans matrix(:,3);

intensities = trans matrix(:,5);

%% Saving and updating

save(savefile,'proc nuc','proc poi','reg poi','background 488', ...

'normdists','dist to nuc', 'dist to pm','intensities', ...

'coords','angles');

end

end

% QC criteria: if all 40 frames exist and can be processed

if exist(fullfile(registration dir,cellseq list(tmax).name),'file');

vec QC(cdx) = 1;

else

vec QC(cdx) = 0;

end

146



6.3. CODE OF THE COMPUTATIONAL PIPELINE

end

end

end

summary database.registration(((summary database.segmentation>0).* ...

(summary database.fcs calibration>0))>0) = vec QC;

writetable(summary database,exp database,'Delimiter','∖t');
end

Using the following function, images can be rotated counterclockwise for ‘‘angle’’ degree with

‘‘center input’’ as fixed point in xy plane. In the output image, ‘‘center input’’ will located on

the position ‘‘center output’’. The output image will have the same size as the input image. If

the ‘‘center output’’ is not given the function will try to find the best location where the signal is

minimum cut out and image as close to the center as possible. The image will be rotated in x-y but

not in z.

function [Rotated newcenter center input] = ...

yc imrotate3d(A,angle,center input,center output)

imagesize = size(A);

if length(imagesize) < 3;

imagesize = [imagesize 1];

end

% Extend the image so that the center input is located at the image ...

center

if center input(1) < (imagesize(1)+1)/2;

num addrow = imagesize(1)-2*center input(1)+1;

A = [zeros(num addrow,imagesize(2),imagesize(3));A];

center input(1) = center input(1)+num addrow;

else

num addrow = -imagesize(1)+2*center input(1)-1;

A = [A;zeros(num addrow,imagesize(2),imagesize(3))];

end

temp imagesize = size(A);

if length(temp imagesize)<3;

temp imagesize = [temp imagesize 1];

end

if center input(2) < (imagesize(2)+1)/2;
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num addcol = imagesize(2)-2*center input(2)+1;

A = [zeros(temp imagesize(1),num addcol,temp imagesize(3)) A];

center input(2) = center input(2)+num addcol;

else

num addcol = -imagesize(2)+2*center input(2)-1;

A = [A zeros(temp imagesize(1),num addcol,temp imagesize(3))];

end

% Rotate the image using imrotate

Rot A = imrotate(A,angle,'bilinear','loose');

temp imagesize = size(Rot A);

if length(temp imagesize)<3;

temp imagesize = [temp imagesize 1];

end

temp cent = round((temp imagesize+1)/2);

% In the case that center output is given, move the center of the ...

image to the center output and crop the image into the size of ...

the original image

if length(center output) == 3;

Rot A org = sum(sum(sum(Rot A)));

topdelete = temp cent(1)-center output(1);

bottemdelete = ...

temp imagesize(1)-temp cent(1)-imagesize(1)+center output(1);

leftdelete = temp cent(2)-center output(2);

rightdelete = ...

temp imagesize(2)-temp cent(2)-imagesize(2)+center output(2);

if topdelete ≥ 0;

Rot A(1:topdelete,:,:) = [];

else

Rot A = ...

[zeros(abs(topdelete),temp imagesize(2),temp imagesize(3));Rot A];

end

center input(1) = center input(1)-topdelete;

if bottemdelete ≥ 0;

Rot A(end-bottemdelete+1:end,:,:) = [];

else
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Rot A = [Rot A;zeros(abs(bottemdelete),temp imagesize(2), ...

temp imagesize(3))];

end

if leftdelete ≥ 0;

Rot A(:,1:leftdelete,:) = [];

else

Rot A = [zeros(imagesize(1),abs(leftdelete),imagesize(3)) ...

Rot A];

end

center input(2) = center input(2)-leftdelete;

if rightdelete ≥ 0;

Rot A(:,end-rightdelete+1:end,:) = [];

else

Rot A = [Rot A ...

zeros(imagesize(1),abs(rightdelete),imagesize(3))];

end

if sum(sum(sum(Rot A))) ̸=Rot A org;

warning('rotated image extended the size of the original ...

image')

end

if center output(3) ̸=center input(3);

error('the center of input and output has to be the same in ...

z-direction')

end

elseif isempty(center output); % Automatic searching of best center

center output = [0 0 center input(3)];

Rot A mid = Rot A(:,:,center input(3));

signalrows = find(sum(Rot A mid,2)>0);

signalrows = [signalrows(1) signalrows(end)];

num rows = signalrows(2)-signalrows(1)+1;

signalcols = find(sum(Rot A mid,1)>0);

signalcols = [signalcols(1) signalcols(end)];

num cols = signalcols(2) - signalcols(1)+1;

if num rows ≤ imagesize(1);

addrows top = round((imagesize(1)-num rows)/2);

addrows buttom = imagesize(1)-num rows-addrows top;

row1 = signalrows(1)-addrows top;

rowend = signalrows(2)+addrows buttom;

if row1≥1 && rowend ≤ temp imagesize(1);

Rot A = Rot A(row1:rowend,:,:);
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center input(1) = center input(1)-row1+1;

elseif row1 < 1;

Rot A = Rot A(1:imagesize(1),:,:);

elseif rowend > temp imagesize(1);

Rot A = Rot A(end-imagesize(1)+1:end,:,:);

center input(1) = ...

center input(1)-size(Rot A,1)+imagesize(1);

end

center output(1) = temp cent(1)-signalrows(1)+addrows top+1;

else

warning('rotated image extended the size of the original ...

image')

delrows top = round((num rows-imagesize(1))/2);

delrows bottum = num rows-delrows top-imagesize(1);

Rot A = Rot A(signalrows(1)+delrows top:signalrows(2)- ...

delrows bottum,:,:);

center output(1) = temp cent(1)-signalrows(1)-delrows top+1;

end

if num cols ≤ imagesize(2);

addcols top = round((imagesize(2)-num cols)/2);

addcols buttom = imagesize(2)-num cols-addcols top;

col1 = signalcols(1)-addcols top;

colend = signalcols(2)+addcols buttom;

if col1≥1 && colend ≤ temp imagesize(2);

Rot A = Rot A(:,col1:colend,:);

center input(2) = center input(2)-col1+1;

elseif col1<1

Rot A = Rot A(:,1:imagesize(2),:);

elseif colend > temp imagesize(2);

Rot A = Rot A(:,end-imagesize(2)+1:end,:);

center input(2) = ...

center input(2)-size(Rot A,2)+imagesize(2);

end

center output(2) = temp cent(2)-signalcols(1)+addcols top+1;

else

warning('rotated image extended the size of the original ...

image')

delcols top = round((num cols-imagesize(2))/2);

delcols bottum = num cols-delcols top-imagesize(2);
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Rot A = Rot A(:,signalcols(1)+delcols top:signalcols(2)- ...

delcols bottum,:);

center output(2) = temp cent(2)-signalcols(1)-delcols top+1;

end

elseif ¬isempty(center output);

error('center output must be empty or a 3-dimension coordinate')

end

Rotated = Rot A;

newcenter = center output;

end

6.3.9 Dissect the POI image into a series of interest points

The next step is to extract features from each image. In this step, the features can be sorted into

two categories. The first are the global features describing the global distribution of the protein.

The second are local features in the form as SURF interest points. Each interest point was then

described using a feature vector. The features need to be further processed into different interest

point clusters. Together with global features are saved in the feature folder.

function poi feature extraction surf(exp dir)

%% Interactive selection of experiment directory

if ¬nargin
exp dir = uigetdir('','Select the directory with your data ...

series');

end

%% Set up parameters

tmax = 40;

parameter thbw = 0.48; % Parameter for thresholding the BW image: ...

factor multiplied on the intensity level for foreground found ...

using otsu method with the default set up

surf th = 100; % Surf IP extraction: metric selection threshold

factor = 4; % Surf IP extraction: resize image factor such that the ...

Surf IP size covers both kinetochores (small) and chromatin (large)
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bitnum = 16; % number of image bit

ip overlap = 0.4; % threshold on intensity fraction that two IP can ...

share

sI a = 5; % 2D soft spin image parameter, weighing the distance to ...

measuremnet, the bigger the more bloring

sI b = 0.05; % 2D soft spin image parameter, keep the weight ...

between distance and intensity

d level = [0 9 18 27 36]; % spin image, selected levels for ...

distance counting, as pixels after normalization

i level = [0 0.1 0.2 0.3 0.4 0.5]; % spin image, selected levels ...

for intensity, normalized to the saturation intensity

randref = ...

[0.111,0.032,0.016,0.013,0.015,0.031,0.110,0.112,0.111,0.449, ...

0.124,0.126,0.122,0.124,0.126,0.129,0.126,0.123]; % uLBP value ...

for random distributed intensity, estimated from multiple ...

simulations

maxvalue = 1.156; % simulated threshold for defining random texture ...

for the summarized LBP

min sig = 0.05; % minimum intensity for being a LBP center

% Define the weight between different feature categories such that ...

the clustering later does not prefer one categrory of features.

weight spinImage = 0.2;

weight LBP = 0.5;

weight corr = 1;

weight pos = 1;

feature parameters = struct('bwth',parameter thbw,'surfth',surf th, ...

'factor',factor,'bit',bitnum,'ip overlap',ip overlap,'spinImage', ...

struct('dI weight',[sI a sI b],'ds',d level,'is',i level), ...

'LBP',struct('randref',randref,'maxdist',maxvalue,'minsig',min sig));

weight parameters = struct('global',1,'spinImage',weight spinImage, ...

'LBP',weight LBP,'corr',weight corr,'pos',weight pos);

%% Load the database file

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database,'Delimiter','∖t');
summary database.feature extract = ...

-ones(size(summary database.feature extract));

cell dirlist = ...

summary database.filepath(((summary database.registration>0).* ...

(summary database.time alignment>0))>0);
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cell total = length(cell dirlist);

vec QC = zeros(cell total,1);

%% Process cell by cell

for cdx = 1:cell total;

cellseq list = dir(fullfile(cell dirlist{cdx},'Preprocessing', ...

'Registration','*T0*.mat'));

if length(cellseq list) == 40;

% Generate the folder for saving the output

feature dir = fullfile(cell dirlist{cdx},'Features words');

if ¬exist(feature dir,'dir')

mkdir(feature dir);

end

if exist(fullfile(feature dir,cellseq list(tmax).name),'file');

vec QC(cdx) = 1;

end

if vec QC(cdx) ̸= 1;

% load the calibration file

calibration file = fullfile(cell dirlist{cdx},'Preprocessing', ...

'calibration.mat');

load(calibration file);

for tdx = 1:length(cellseq list);

savefile = fullfile(feature dir,cellseq list(tdx).name);

if ¬exist(savefile,'file')
disp(['Process' cell dirlist{cdx} ' at ' num2str(tdx) ' Surf ...

feature extraction'])

load(fullfile(cell dirlist{cdx},'Preprocessing','Segmentation', ...

cellseq list(tdx).name)); % load the result from the ...

segmentation pipeline

load(fullfile(cell dirlist{cdx},'Preprocessing','Registration', ...

cellseq list(tdx).name)); % load the result from the ...

registration pipeline

nucVolume = double(nucVolume>0);

POI Feats = [];

feature name = table({},{},[],'VariableNames',{'name' 'category' ...

'level'});
registered = [];

% Calculate the total intensity

tot intensity = sum(intensities);

if tot intensity > 0;
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%% Determine foreground and background

th bw = parameter thbw*max(proc poi(:))*graythresh(proc poi);

bw proc poi = proc poi>th bw;

poi foreground = proc poi.*bw proc poi;

% Calculate the fraction of protein in the foreground for the 3D ...

image and the 2D maximum projection

frac foreground = sum(poi foreground(:))/sum(proc poi(:));

[maxProj low,mPidx] = max(proc poi,[],3);

poi foreground = max(poi foreground,[],3);

frac foreground2d = sum(poi foreground(:))/sum(maxProj low(:));

%% Global feature extraction

% 1. fraction of protein over threshold in the nuclear volume

POI Feats = cat(1,POI Feats,sum(intensities(((normdists≤0).*( ...

intensities>th bw))>0))/sum(intensities(intensities>th bw)));

registered = cat(1,registered,0);

feature name = cat(1,feature name,table({'%poi in ...

nuc'},{'geometry'},0,'VariableNames',{'name' 'category' 'level'}));
% 2. fraction of protein in the predicted spindle volume which is ...

the convex hull volume of the nuclear volume and the two ...

intersession points of the predicted division axis to the ...

cellular boundary

spindle volume = nucVolume;

spindle volume(isectPointsPix(1,1),isectPointsPix(1,2), ...

sum(sum(nucVolume))>0) = 1;

spindle volume(isectPointsPix(2,1),isectPointsPix(2,2), ...

sum(sum(nucVolume))>0) = 1;

for sp idx = 1:size(spindle volume,3);

spindle volume(:,:,sp idx) = ...

bwconvhull(spindle volume(:,:,sp idx),'union',4);

end

spindle volume = spindle volume.*cellVolume;

outOFsp = cellVolume - spindle volume;

spindle volume = spindle volume - imfill(nucVolume,'holes');

sp acc = ...

mean(proc poi(spindle volume(:)>0))/(mean(proc poi(outOFsp(:)>0)) ...

+mean(proc poi(spindle volume(:)>0)));

if isnan(sp acc);

sp acc = 0;

end

POI Feats = cat(1,POI Feats,sp acc);
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registered = cat(1,registered,0);

feature name = cat(1,feature name,table({'%poi in ...

spindle'},{'geometry'},0,'VariableNames',{'name' 'category' ...

'level'}));

%% Extract Interest Points in 2D maximum projected image

satInt = (2ˆbitnum-1)*calibration factor - background 488; % The ...

calibrated value at the detector's saturation

maxProj low = maxProj low/satInt; % normalize the projected image

% Project the mCherry channel, croped with the nuclear volume, ...

using the pixels taken in the maximum projection of the protein ...

channel

nuc = nuc.*nucVolume;

nucProj = zeros(size(maxProj low));

for i = 1:size(nucProj,1);

for j = 1:size(nucProj,2);

nucProj(i,j) = nuc(i,j,mPidx(i,j))/satInt;

end

end

% Dilate the prediced midplane to get a volume

for zdx = 1:size(midPlane,3);

midPlane(:,:,zdx) = imdilate(midPlane(:,:,zdx),ones(8));

end

% Resize the project poi channel such that the default SURF scales ...

match the biological purpose

maxProj = imresize(maxProj low,factor);

% Extract SURF interest points beyond the metric threshold set before

InterestPoints = detectSURFFeatures(maxProj,'MetricThreshold',surf th);

%% Interest Points selection: each pixel in the image is included ...

in multiple IPs. The selection tries to find a subset of the IPs ...

which cover most area of the image only once.

ipidx mask = cell(size(maxProj));

% Generate matrices

mean int = zeros(length(InterestPoints),1); % for averaged ...

intensity 17x17 pixels around the IP center

loc = repmat(mean int,[1 2]); % localization of the IP center

tot int = mean int; % for selected IP, the total intensity in the ...

IPs (using the IP scale and circular crop)

add int = mean int; % during the selection: the intensity in the ...

area which only covered by the IP under examination
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flag = mean int; % index whether an IP is selected

for i = 1:length(InterestPoints);

loc(i,:) = round(InterestPoints(i).Location);

mean int(i) = sum(sum((maxProj(loc(i,2)+ ...

(-8:8),loc(i,1)+(-8:8)))))/(17ˆ2);

% Select the IP if the center of the IP is not covered

% by any other IP

% or, in case that other IPs cover the center of the examing ...

IP, select if the IP has the biggest

% averaged intensity

% in case of equal intensity, the smaller scaled IP is selected)

if isempty(ipidx mask{loc(i,2),loc(i,1)}); % a new interest point

flag(i) = 1;

else

for j = 1:length(ipidx mask{loc(i,2),loc(i,1)});
if flag(ipidx mask{loc(i,2),loc(i,1)}(j)) > 0;

if mean int(i) > mean int(ipidx mask{loc(i,2), ...

loc(i,1)}(j));
flag(ipidx mask{loc(i,2),loc(i,1)}(j)) = 0;

flag(i) = 1;

elseif mean int(i) == mean int(ipidx mask{loc(i,2), ...

loc(i,1)}(j));
if InterestPoints(i).Scale < ...

InterestPoints(ipidx mask{loc(i,2),loc(i,1)}(j)).Scale;
flag(ipidx mask{loc(i,2),loc(i,1)}(j)) = 0;

flag(i) = 1;

end

end

end

end

end

% Further selection: if the IP is selected using the criteria ...

above, it will still be deleted if more that 40% of its ...

intensity has been covered by already selected IPs.

if flag(i) == 1;

s = 6*InterestPoints(i).Scale; % 6 is defined by matlab as ...

SURF IP scaled surrounding

rs = round(s);

[x,y] = meshgrid(-rs:rs,-rs:rs);

pos = [x(:) y(:)]; % circular scaled IP surrounding
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pos(sum(pos.ˆ2,2)>sˆ2,:) = [];

pos = pos + repmat(loc(i,:),[size(pos,1) 1]);

pos(((pos(:,1)<1) + (pos(:,2)<1))>0,:) = [];

pos(((pos(:,1)>size(maxProj,2))+ ...

(pos(:,2)>size(maxProj,1)))>0,:) = [];

for iparea = 1:size(pos,1);

tot int(i) = tot int(i) + maxProj(pos(iparea,2), ...

pos(iparea,1));

existint = 0;

for j = 1:length(ipidx mask{pos(iparea,2),pos(iparea,1)});
existint = existint+flag(ipidx mask{pos(iparea,2), ...

pos(iparea,1)}(j));
end

add int(i) = add int(i) + double(existint==0)* ...

maxProj(pos(iparea,2),pos(iparea,1));

end

if add int(i) ≤ tot int(i)*(1-ip overlap);

flag(i) = 0;

else

for iparea = 1:size(pos,1);

ipidx mask{pos(iparea,2),pos(iparea,1)} = ...

cat(1,i,ipidx mask{pos(iparea,2),pos(iparea,1)});
end

end

end

end

%% Feature Extraction for each selected IP

feature spinImage = zeros(length(InterestPoints),length(d level)* ...

length(i level)); % 6 intensity level and 5 distance level

feature LBP = zeros(length(InterestPoints),4);

feature corr = zeros(length(InterestPoints),1); % correlation to ...

the H2B signal

feature pos = zeros(length(InterestPoints),5); % localization features

feature detail = zeros(length(InterestPoints),2); % detailed ...

information about the IP localization

feature mid = zeros(length(InterestPoints),1); % correlation to the ...

midplane volume

for i = 1:length(InterestPoints);

if flag(i)>0;

% crop the IP surrounding as a squared image
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s = 6*InterestPoints(i).Scale;

rs = round(s);

if min(loc(i,:)) ≤ rs;

rs = min(loc(i,:)-1);

end

if max(loc(i,:))+rs > min(size(maxProj));

rs = min(size(maxProj))-max(loc(i,:));

end

I = (maxProj(loc(i,2)+(-rs:rs),loc(i,1)+(-rs:rs)));

I(I<0) = 0;

%% 2D soft spin Image features this is similar as a 2D ...

histogram on distance-to-the-center and intensity with ...

the modification that intensities larger than the max ...

i-level will be counted in the max i-level bin.

% resize the IP to the maximum distance level

rs2 = ceil(d level(end));

I2 = imresize(I,length(-rs2:rs2)/size(I,1));

I2 = I2(1:length(-rs2:rs2),1:length(-rs2:rs2));

[x,y] = meshgrid(-rs2:rs2,-rs2:rs2);

distmap = sqrt(x.ˆ2+y.ˆ2);

distmap = distmap(:);

I3 = I2(:);

% saturate the intensity at the highest i-level

I3(I3>i level(end)) = i level(end);

% calculate the 2D soft histogram

for d i = 1:length(d level);

for i i = 1:length(i level)-1;

feature spinImage(i,((d i-1)*6+i i)) = ...

sum(exp(-(((distmap-d level(d i)).ˆ2/2/sI aˆ2)+ ...

((I2(:)-i level(i i)).ˆ2/2/sI bˆ2))));

end

feature spinImage(i,((d i-1)*6+length(i level))) = ...

sum(exp(-(((distmap-d level(d i)).ˆ2/2/sI aˆ2) ...

+((I3-i level(end)).ˆ2/2/sI bˆ2))));

feature spinImage(i,((d i-1)*6+(1:6))) = ...

feature spinImage(i,((d i-1)*6+(1:6)))/ ...

sum(exp(-(((distmap-d level(d i)).ˆ2/2/sI aˆ2))));

end
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%% LBP features: this is a modified version of LBP feature. ...

First, uLBP was calculated (count of multitransitions ...

and count of the pixel number greater than the center ...

with a single transition or none transition, 10 ...

dimensions) and then, the major orientation of the ...

5-by-5 field are calculated for each pixel and ...

summarized for the IP. Afterwards, the 18 dimensional ...

vector is summarized into 4 indicating the degree of ...

randomness, structured brightness, portion of ...

homegeneous field and orientation dominance (rotational ...

symmetric).

full lbp = zeros(1,18);

lbp vec = -ones(size(I,1)*size(I,2),10);

% binarize the surrounding circle based on intensity ...

comparison to the center pixel

for x i = 3:(size(I,1)-2);

for y i = 3:(size(I,2)-2);

v = I((x i-2):2:(x i+2),(y i-2):2:(y i+2));

v = v(:);

if v(5) < min sig; % threshold for signal

v = 0.1*ones(9,1);

end

ref = v(5);

v(5) = [];

if ref == 0;

if max(v) > 0;

ref = min(v(v>0))/5; % avoid artefect of NaN

else

ref = 0.01;

end

end

v = [v(1:3);v(5);v(8:-1:6);v(4)]; % arrange into a ...

circle

v = v';

v(v≤ref) = 0;

lbp vec(((y i-1)*(size(I,2)-1)+x i),:) = [v/ref 0 0];

v = double(v>0); % binarization

for s i = 1:7;

v(s i) = v(s i)-v(s i+1);

end
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v(8) = 0;

lbp vec(((y i-1)*(size(I,2)-1)+x i),9) = ...

sum(v==-1); % count the transitions

lbp vec(((y i-1)*(size(I,2)-1)+x i),10) = sum(v==1);

end

end

lbp vec(sum(lbp vec,2)<0,:) = []; % delete the border

totbox = size(lbp vec,1);

% Summrize to the uLBP values

full lbp(10) = sum(max(lbp vec(:,9:10),[],2)>1); % count of ...

multitransitions

lbp vec(max(lbp vec(:,9:10),[],2)>1,:) = [];

full lbp(8) = sum(sum(lbp vec(:,1:8)>1,2)==8); % count of ...

complete bright surround

lbp vec(sum(lbp vec(:,1:8)>1,2)==8,:) = [];

full lbp(9) = sum(sum(lbp vec(:,1:8),2)==0); % count of ...

complete dark/homogeneous surround

lbp vec(sum(lbp vec(:,1:8),2)==0,:) = [];

sumvec value = sum(lbp vec(:,1:8),2);

sumvec count = sum(lbp vec(:,1:8)>1,2);

for p i = 1:7;

full lbp(p i) = sum((sumvec count==p i));

end

% Calculate the major orientation

lbp vec(:,9:10) = []; % orientation only calculated for ...

sinlge transitions

orientation = zeros(size(lbp vec,1),1);

for idx = 1:size(lbp vec,1); % orientation is the intensity ...

weighted balance center

if lbp vec(idx,1) == 0;

for vdx = 1:8;

v(vdx) = sum(lbp vec(idx,1:vdx));

end

orientation(idx) = find(v ≥ (sumvec value(idx)/2),1);

else

start idx = find(lbp vec(idx,:)==0,1);

for vdx = 1:(8-start idx+1);

v(vdx) = ...

sum(lbp vec(idx,start idx:(vdx+start idx-1)));

end
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for vdx = (8-start idx+2):8;

v(vdx) = v(9-start idx) + sum(lbp vec(idx,1: ...

(vdx-(8-start idx+1))));

end

orientation(idx) = find(v ≥ ...

(sumvec value(idx)/2),1)+start idx-1;

if orientation(idx) > 8;

orientation(idx) = orientation(idx)-8;

end

end

end

% Summrize the orientation

for o i = 1:8;

full lbp(o i+10) = sum(orientation==o i);

end

full lbp(1:10) = full lbp(1:10)/totbox; % Normalization to 1

if size(orientation,1) == 0; % Avoid artefect of NaN

orientation = 1;

end

full lbp(11:end) = full lbp(11:end)/size(orientation,1); % ...

normalize to 1

% Summarize the uLBP and orientation to 4-dimensional features

feature LBP(i,1) = sum((full lbp-randref).ˆ2)/maxvalue;% ...

distance to complete random

l = sum(full lbp(1:7)); % single transition proportion, ...

inhomogeneity

if l > 0;

feature LBP(i,2) = sum(full lbp(3:4))/l; %indicating ...

stripe and structured bright area

else

feature LBP(i,2) = 0;

end

if full lbp(10) > 0;

feature LBP(i,3) = full lbp(9)./sum(full lbp(9:10)); % ...

homogeneous area proportion

else

feature LBP(i,3) = 1;

end

feature LBP(i,4) = ...

max(full lbp(11:14)+full lbp(15:18),[],2); % dominante ...
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direction for stripe

%% Correlation feature: Correlation between POI and max ...

projected H2B in the squal IP field

rs low = floor(rs/factor);

loc low = round(loc(i,:)/factor);

if min(loc low) ≤ rs low;

rs low = min(loc low-1);

end

if max(loc low)+rs low > min(size(maxProj low));

rs low = min(size(maxProj low))-max(loc low);

end

I low = maxProj low(loc low(2)+(-rs low:rs low),loc low(1)+ ...

(-rs low:rs low));

h2bsig = ...

nucProj(loc low(2)+(-rs low:rs low),loc low(1)+(-rs low:rs low));

corrsig = corrcoef([I low(:) h2bsig(:)]);

feature corr(i) = corrsig(2,1);

%% Location features location features categorize the IP ...

into complete nuc, half-nuc-half-cyt, complete cyt and ...

half-outside. The position definition is calculated ...

based on the 3D position of each pixel in the max ...

projected POIn image.

%% Also the correlation to the midplane volume is ...

calculated for an additional feature

cell low = ...

cellVolume(loc low(2)+(-rs low:rs low),loc low(1)+ ...

(-rs low:rs low),:);

nuc low = nucVolume(loc low(2)+(-rs low:rs low),loc low(1)+ ...

(-rs low:rs low),:);

mid low = midPlane(loc low(2)+(-rs low:rs low),loc low(1)+ ...

(-rs low:rs low),:);

mPidx low = mPidx(loc low(2)+(-rs low:rs low),loc low(1)+ ...

(-rs low:rs low));

I distnup = zeros(size(I low));

I distcell = zeros(size(I low));

I distmid = zeros(size(I low));

for xidx = 1:size(I low,1);

for yidx = 1:size(I low,2);
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I distnup(xidx,yidx) = nuc low(xidx,yidx, ...

mPidx low(xidx,yidx));

I distcell(xidx,yidx) = cell low(xidx,yidx, ...

mPidx low(xidx,yidx));

I distmid(xidx,yidx) = mid low(xidx,yidx, ...

mPidx low(xidx,yidx));

end

end

I distnup = I distnup(:);

I distcell = I distcell(:);

I distmid = I distmid(:);

pixnum = length(I distnup);

if sum(I distcell > 0) < (pixnum*0.8);

feature pos(i,1) = 0.25; % partially outside of the cell

else

nuppart = sum(I distnup.*I low(:))/sum(I low(:));

if nuppart ≤ 0.25; % almost complete in cell

feature pos(i,2) = 0.25;

else

if nuppart > 0.85; % complete in nuc

feature pos(i,4) = 0.25;

else % nup border

feature pos(i,3) = 0.25;

end

end

feature detail(i,1) = nuppart;

feature detail(i,2) = sum(I distnup>0)/pixnum;

end

%% Metric value and fraction of protein in the midplane volume

feature pos(i,5) = ...

log(InterestPoints(i).Metric)/(log(100))-1; % Metric as ...

a feature in addition as well

feature mid(i) = sum(I distmid.*I low(:))/sum(I low(:));

end

end

feature spinImage = feature spinImage * weight spinImage;

feature LBP = feature LBP * weight LBP;

feature corr = feature corr * weight corr;

feature pos = feature pos * weight pos;

feature mid = feature mid * weight corr;
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else

POI Feats = [];

SurfFeats = [];

InterestPoints = [];

addFeats = [];

end

%% Saving and updating

maxProj = imresize(maxProj,1/factor);

save(savefile,'frac foreground','frac foreground2d','poi foreground', ...

'POI Feats','registered','feature name','maxProj low', ...

'InterestPoints','tot int','flag','loc','feature spinImage', ...

'feature LBP','feature corr','feature pos','feature mid', ...

'feature detail','feature parameters','weight parameters');

end

end

% QC: if all 40 frames can be processed

if exist(fullfile(feature dir,cellseq list(tmax).name),'file');

vec QC(cdx) = 1;

else

vec QC(cdx) = 0;

end

end

end

end

% Update the database file

summary database.feature extract(((summary database.registration>0).* ...

(summary database.time alignment>0))>0) = vec QC;

writetable(summary database,exp database,'Delimiter','∖t');
end

6.3.10 Generation of the SURF interest point dictionary by clustering

For the Bag-of-words approach, the next step was to built a dictionary by clustering similar interest

points. For building the dictionary, a subset (5 %) of all interest points was used. The dictionary was

generated by multi-step clustering. First, interest points were clustered based on their localization

feature, metric value and correlation features with a k-d tree method. Furthermore, for each

sub-class, clusters were found based on spin-image, and LBP features using the dbscan algorithm.

Interest points with particular high metric value were further clustered by processing the spin-image

features. The dictionary can then be used for assigning all interest points extracted from all images.
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function generate dict(exp dir)

%% Interactive selection of experiment directory

if isempty(exp dir)

exp dir = uigetdir('','Select the directory with your data ...

series');

end

%% Set parameters

metric perclass = 0.03; % A threshold of the metric value for ...

performing dbscan clustering

dict method = 'dbscan';

pca th = 85; % PCA feature dimension reduction parameter: coverage ...

of the variance

density fac = 6; % dbscan parameter: for calculating the distance ...

defining neighborhood

min cluster = 3; % dbscan parameter: minimum number of data points ...

in a cluster

% Threshold parameters for clustering data points by correlation ...

features.

NE corr = 0.65;

NE anticorr = 0.05;

NUC corr = 0.7;

NUC anticorr = 0.1;

MID corr = 0.5;

MID none = 0.2;

% Parameter structure for saving

dict parameter = ...

struct('metric cl',metric perclass,'method',dict method, ...

'NE',[NE corr;NE anticorr],'NUC',[NUC corr;NUC anticorr], ...

'MID',[MID corr;MID none]);

%% Define the saving directories and load the database file

features dirname = 'Features words';

current dir = what;

centroid dir = fullfile(current dir.path,['Dictionary ' ...

features dirname]);

if ¬exist(centroid dir,'dir');

mkdir(centroid dir);
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end

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database,'Delimiter','∖t');
celldir list = ...

summary database.filepath(summary database.feature extract>0);

%% Generate the subset of interest points for dictionary building

cellnamefile = fullfile(centroid dir,'cells in dictionary.mat');

if ¬exist(cellnamefile,'file');
cluster filepaths = {};
for cellidx = 1:length(celldir list);

frame list = dir(fullfile(celldir list{cellidx},features dirname, ...

'*T0*.mat'));

for fridx = 1:length(frame list)

cluster filepaths = cat(1,cluster filepaths,fullfile( ...

celldir list{cellidx},features dirname, ...

frame list(fridx).name));

end

end

%% Generate the 5% cell list at random base

cell number = length(cluster filepaths);

selcellidx = cat(2,rand(cell number,1),(1:cell number)');

selcellidx = sortrows(selcellidx,1);

selcellidx = selcellidx(1:round(cell number*0.05),2); % save

disp('cell list generated')

%% Make the list of feature vectors of all interest points in the ...

selected 5% cells

cell number = length(selcellidx);

selcellidx = cat(2,selcellidx,zeros(cell number,1));

FeatMat = []; % save

IP idx list = {};
for cellidx = 1:cell number;

idx1 = size(FeatMat,1);

M = load(cluster filepaths{selcellidx(cellidx,1)});
M.feature corr(isnan(M.feature corr)) = 0;

M.feature mid(isnan(M.feature mid)) = 0;

merged corr = 4*(M.feature corr.*sum(M.feature pos(:,3:4),2)+ ...

M.feature mid.*sum(M.feature pos(:,1:2),2));
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SurfFeats = [M.feature LBP M.feature spinImage merged corr ...

M.feature pos];

SurfFeats = SurfFeats(M.flag>0,:);

FeatMat = cat(1,FeatMat,SurfFeats);

selcellidx(cellidx,2) = size(SurfFeats,1);

idx2 = size(FeatMat,1);

IP idx list = cat(1,IP idx list,[cluster filepaths{ ...

selcellidx(cellidx,1)}(1:(end-4)) ' ' num2str(idx1+1) ' ' ...

num2str(idx2)]);

end

save(cellnamefile,'cluster filepaths','selcellidx','FeatMat', ...

'IP idx list');

else

% If the feature vector list had been generated, just load

load(cellnamefile);

M = load(cluster filepaths{selcellidx(1,1)});
disp('list of cells for training loaded')

end

%% Clustering based on the metric value, separated by median, or ...

the localization features

ipnumber = size(FeatMat,1);

featnumber = size(FeatMat,2);

FeatMat = cat(2,(1:ipnumber)',FeatMat); % add index column

FeatMat = cat(2,zeros(ipnumber,1),FeatMat); % output clustering ...

level 1

FeatMat = sortrows(FeatMat,featnumber+2); % sort based on metric value

splitidx = floor(ipnumber/2); % determine index of the median data ...

point

FeatMat(1:splitidx,1) = 1; % smaller metric

metric level1 = FeatMat(splitidx,end); % the thredhold for separation

FeatMat = cat(2,4*sum(FeatMat(:,(end-2):(end-1)),2),FeatMat); % ...

nuclear or half nuclear localization assigned to 1

devcl = 2*FeatMat(:,1)+FeatMat(:,2); % the data was separated into ...

4 clusters. small metric = cluster 1 and 3; nuclear localization ...

in clusters 2 and 3

FeatMat = cat(2,devcl,FeatMat);

FeatMat = sortrows(FeatMat,[1 featnumber+4]); % In each of the 4 ...

clusters, sort the data by metric value.

FeatMat(:,1) = 0;
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splitidx = 0;

% Split each cluster into two subclusters with lower and higher ...

metric value

metric level2 = zeros(4,1);

for i = 0:3;

level1 number = sum(devcl==i);

FeatMat(splitidx+(1:floor(level1 number/2)),1) = 1;

metric level2(i+1) = FeatMat(splitidx+floor(level1 number/2),end);

splitidx = level1 number+splitidx;

end

% Finalize the clusters by separating cell boundary from ...

cytoplasmic localization and nuclear boundary from chromosomal ...

localization. In total, 16 clusters were formed

FeatMat = cat(2,4*(FeatMat(:,(end-1))+FeatMat(:,(end-3))),FeatMat);

devcl = 8*FeatMat(:,1)+4*FeatMat(:,2)+2*FeatMat(:,3)+FeatMat(:,4);

disp('First level clustering done')

%% Further clustering for each of the 16 interest point clusters

subfeats number = ...

size(M.feature LBP,2)+size(M.feature spinImage,2)+ ...

size(M.feature corr,2);

level1 number = max(devcl);

subclass meta = zeros(level1 number+1,2);

devcl2 = zeros(size(devcl));

FeatMat = cat(2,devcl,FeatMat);

FeatMat = sortrows(FeatMat,6);

devcl = FeatMat(:,1);

FeatMat(:,1:6) = [];

clustering meta = cell(level1 number,1); % document clustering ...

procedure

for i= 0:level1 number;

% feature vector list of IPs in one cluster

SubMat = FeatMat(devcl==i,:);

ipnumber = size(SubMat,1);

maxmetric = max(SubMat(:,end));

SubMat = SubMat(:,1:subfeats number);

% for clusters with more than 15 IPs, further clustering

if ipnumber > 15;
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% decide how further clustering should be performed by the maximum ...

metric value

class number = round(maxmetric/metric perclass);

if class number > 2;

% cluster the interest points by correlation features

subcl = zeros(size(SubMat,1),1);

if ismember(i,[7 6 3 2]); % nuc boundary clusters, use the H2B ...

correlation

corr cl = ones(size(SubMat,1),1) + ...

double(SubMat(:,end)>NE corr) + ...

double(SubMat(:,end)>NE anticorr);

corr cl number = 3;

end

if ismember(i,[15 14 11 10]); % chromosomal clusters, use the H2B ...

correlation with different threshold

corr cl = ones(size(SubMat,1),1) + ...

double(SubMat(:,end)>NUC corr) + ...

double(SubMat(:,end)>NUC anticorr);

corr cl number = 3;

end

if ismember(i,[13 12 9 8 5 4 1 0]); % cytoplasm and cell boundary, ...

use the midbody correlation

corr cl = ones(size(SubMat,1),1) + ...

double(SubMat(:,end)>MID corr) + double(SubMat(:,end)>MID none);

corr cl number = 3;

end

clustering meta{i+1} = cell(corr cl number,1);

class number = 0;

sub2 cl = zeros(size(corr cl));

% for each cluster of IPs with similar metric and H2B/midplane ...

correlation and same localization, dbscan was used for further ...

clustering

for j = 1:corr cl number;

sub2 ipnumber = sum(corr cl==j);

% if the size of the cluster if large enough

if sub2 ipnumber > 15;

Sub2Mat = SubMat(corr cl==j,1:(end-1));

sub2 cl(corr cl==j) = 1;

% Perform the PCA of the feature matrix for dimension ...

reduction
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[coeff,¬,latent,¬,v percent] = pca(Sub2Mat);

for kk = length(v percent):-1:2;

v percent(kk) = sum(v percent(1:kk));

end

num feat = sum(v percent<pca th)+1;

if num feat < 2;

num feat = 2;

end

S2 = Sub2Mat*coeff(:,1:num feat);

% Calculate the distance defining neighborhood ...

based on the density of the data set in the ...

feature space

dbscan env = ...

1/(sqrt(size(S2,1)/(max(S2(:,1))-min(S2(:,1)))/ ...

(max(S2(:,2))-min(S2(:,2))))) *density fac;

[sub2 test,score] = dbscan(S2,dbscan env,min cluster);

[¬,¬,sub2 test] = unique(sub2 test);

kupdate = max(sub2 test);

sub2 cl(corr cl==j) = sub2 test;

clustering meta{i+1}{j} = ...

struct('algorithm','dbscan', ...

'pca coeff',coeff,'dim',num feat,'parameter', ...

[density fac;dbscan env;min cluster;kupdate],'refine',0);

if ismember(i,[0 2 8 10]); % very high metric classes, ...

further cluster based on spinImage I-center distance

clustering meta{i+1}{j} = ...

struct('algorithm','dbscan', ...

'pca coeff',coeff,'dim',num feat,'parameter', ...

[density fac;dbscan env;min cluster;kupdate*3], ...

'refine',1,'assigned',sub2 test);

l = zeros(size(Sub2Mat,1),1);

for alpha = 1:length(l);

rsh = ...

(reshape(Sub2Mat(alpha,(size(M.feature LBP,2)+1):end), ...

[6 5]))';

for beta = 6:-1:2;

rsh(:,beta) = sum(rsh(:,1:beta),2);

end

lsh = zeros(5,1);

for beta2 = 1:5;
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lsh(beta2) = find(rsh(beta2,:)> ...

(rsh(beta2,end)/2),1);

end

l(alpha) = mean(lsh)/std(lsh)*(max(lsh)>3);

if isnan(l(alpha));

l(alpha) = -1;

end

end

% Three classes: bright homogeneous, dim homogeneous, ...

bright structured (dot, ring etc.). In the ...

dictionary, the threshod for ``bright'' is defined by ...

setting a value. During the assignment, the threshold ...

is adjusted cell specifically

sub2 test = sub2 test + kupdate*double(l>0) + ...

kupdate*double(l>4);

kupdate = kupdate*3;

sub2 cl(corr cl==j) = sub2 test;

end

else % if the size of the cluster is small, no clustering

kupdate = 1;

sub2 cl(corr cl==j) = 1;

clustering meta{i+1}{j} = struct('algorithm','none', ...

'parameter',1);

end % assign the clustering result

subcl = subcl + class number*double(corr cl==j) + sub2 cl.* ...

double(corr cl==j);

class number = class number + kupdate;

end

else % very low metric, only a dbscan clustering

clustering meta{i+1} = cell(1);

[coeff,¬,latent,¬,v percent] = pca(SubMat(:,1:(end-1)));

for j = length(v percent):-1:2;

v percent(j) = sum(v percent(1:j));

end

num feat = sum(v percent<pca th)+1;

if num feat < 2;

num feat = 2;

end

S2 = SubMat(:,1:(end-1))*coeff(:,1:num feat);
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dbscan env = 1/(sqrt(size(S2,1)/(max(S2(:,1))-min(S2(:,1))) ...

/(max(S2(:,2))-min(S2(:,2)))))*density fac;

[subcl,score] = dbscan(S2,dbscan env,min cluster);

[¬,¬,subcl] = unique(subcl);

class number = max(subcl);

clustering meta{i+1}{1} = struct('algorithm','dbscan', ...

'pca coeff',coeff,'dim',num feat,'parameter', ...

[density fac;dbscan env;min cluster]);

end

else % very small cluster, no further clustering

class number = 1;

subcl = ones(ipnumber,1);

clustering meta{i} = cell(1,1);

clustering meta{i}{1} = struct('algorithm','none','parameter',1);

end

devcl2(devcl==i) = subcl;

subclass meta(i+1,:) = [ipnumber class number];

disp(['clustering for cluster level 1 number ' num2str(i)])

end

%% Calculate the centroids for all classes

feats centroids = [];

index centroids = [];

for i = 0:level1 number;

for j = 1:subclass meta(i+1,2);

if sum((devcl==i).*(devcl2==j))>0;

index centroids = cat(1,index centroids,[i j]);

feats centroids = cat(1,feats centroids, ...

mean(FeatMat(((devcl==i).* ...

(devcl2==j))>0,1:subfeats number),1));

end

end

end

%% save the results

savefile = fullfile(centroid dir,['dictionary ' features dirname ...

' ' dict method '.mat']);

save(savefile,'cluster filepaths','selcellidx','FeatMat','metric level1', ...

'metric level2','devcl','devcl2','subclass meta','feats centroids', ...

'index centroids','clustering meta','dict parameter')
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end

The function dbscan was downloaded from Thanh N. Tran, Klaudia Drab, Michal Daszykowski,

‘‘Revised DBSCAN algorithm to cluster data with dense adjacent clusters’’, Chemometrics and

Intelligent Laboratory Systems, 120:92–96.

6.3.11 Assign SURF interest points into IP clusters

Once the dictionary was built, all interet points extracted from the POI images were assigned to

the clusters accordingly.

function assign surf ips(exp dir,time dir,dictionary file, ...

alignmatname)

%% Loading the temporal model, IP dictionary and database files

if isempty(exp dir)

exp dir = uigetdir('','Select the directory with your data ...

series');

end

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database,'Delimiter','∖t');
cell dirlist = summary database.filepath( ...

summary database.feature extract>0);

cell total = length(cell dirlist);

vec QC = ones(cell total,1);

if isempty(time dir)

time dir = uigetdir('','Select the directory with your time ...

alignment data');

end

load(fullfile(time dir,'temporal alignment.mat'));

load(dictionary file);

features dirname = 'Features words';

add updatename = 'version';

tmax = 40;

%% Assign IPs cell by cell
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for cdx = 1:cell total;

% make the output directory

savedir = fullfile(cell dirlist{cdx},[features dirname ' ' ...

dict parameter.method add updatename]);

cellseq list = dir(fullfile(cell dirlist{cdx}, ...

features dirname,'*T0*.mat'));

if ¬exist(savedir, 'dir');

mkdir(savedir);

end

if exist(fullfile(savedir,cellseq list(tmax).name),'file');

vec QC(cdx) = 2;

end

if vec QC(cdx) ̸= 2;

% load the temporal registration result

timefile = fullfile(cell dirlist{cdx},'Temporal Align', alignmatname);

load(timefile);

% assign the temporal registration into one of the 20 standard stages

for tdx = 1:length(mitotime);

mitotime(tdx,1) = sum(time cluster.class start ≤ mitotime(tdx,1));

end

if length(cellseq list) == tmax;

if length(mitotime) == tmax;

for tdx = 1:length(cellseq list);

savefile = fullfile(savedir,cellseq list(tdx).name);

if ¬exist(savefile,'file')
% load the interest point file of each image

featfile = fullfile(cell dirlist{cdx},features dirname, ...

cellseq list(tdx).name);

disp(['Process' cell dirlist{cdx} ' at ' num2str(tdx) ' Assign the ...

surf interest points'])

M = load(featfile);

if sum(M.flag)==0;

vec QC(cdx) = 0;

end

if vec QC(cdx) == 1;

M.feature corr(isnan(M.feature corr)) = 0;

M.feature mid(isnan(M.feature mid)) = 0;

merged corr = 4*(M.feature corr.*sum(M.feature pos(:,3:4),2) + ...

M.feature mid.*sum(M.feature pos(:,1:2),2));
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SurfFeats = [M.feature LBP M.feature spinImage merged corr ...

M.feature pos];

SurfFeats = SurfFeats(M.flag>0,:);

IP idxvec = (1:length(M.flag))';

IP idxvec = IP idxvec(M.flag>0);

clustering featnum = size(M.feature LBP,2) + ...

size(M.feature spinImage,2);

% determine the background intensity using the interest point with ...

the lowerst metric value in the cell for thresholding ``bright'' ...

from ``dim''

lastpos = find(M.feature pos(:,2)>0);

if isempty(lastpos);

lastpos = find(M.flag>0);

end

lastpos = lastpos(end);

lastsize = 6*M.InterestPoints(lastpos).Scale; % 6 is defined by ...

matlab as SURF IP scaled surrounding

lastsize = (round(lastsize)*2+1)ˆ2;

background int = M.tot int(lastpos)/lastsize;

% First level clustering by localization and metric value

kd clustering = zeros(size(SurfFeats,1),4);

kd clustering(:,4) = double(SurfFeats(:,end) ≤ metric level1);

kd clustering(:,3) = 4*sum(SurfFeats(:,(end-2):(end-1)),2);

metric level2 idx = 2*kd clustering(:,3)+kd clustering(:,4)+1;

for midx = 1:4;

kd clustering(metric level2 idx==midx,2) = double(SurfFeats( ...

metric level2 idx==midx,end)≤metric level2(midx));

end

kd clustering(:,1) = 4*(SurfFeats(:,(end-1))+SurfFeats(:,(end-3)));

asscl = 8*kd clustering(:,1)+4*kd clustering(:,2) + ...

2*kd clustering(:,3)+kd clustering(:,4);

% Find the closest cluster if the cluster to be assigned does not ...

exist in the dictionary

for l1 idx = 1:length(asscl);

if ¬ismember(asscl(l1 idx),index centroids(:,1));

ant1 = 8*kd clustering(l1 idx,1)+ ...

4*mod(kd clustering(l1 idx,2)+1,2) + ...

2*kd clustering(l1 idx,3)+ kd clustering(l1 idx,4);

175



CHAPTER 6. APPENDIX

if ismember(ant1,index centroids(:,1));

asscl(l1 idx) = ant1;

else

ant2 = 8*kd clustering(l1 idx,1)+ ...

4*kd clustering(l1 idx,4)+ ...

2*kd clustering(l1 idx,3)+ ...

mod(kd clustering(l1 idx,4)+1,2);

if ismember(ant2,index centroids(:,1));

asscl(l1 idx) = ant2;

else

asscl(l1 idx) = 8*kd clustering(l1 idx,1)+ ...

4*mod(kd clustering(l1 idx,4)+1,2)+ ...

2*kd clustering(l1 idx,3)+ ...

mod(kd clustering(l1 idx,4)+1,2);

end

end

end

end

% Next, assign each ip into the subclass

asscl2 = zeros(size(asscl));

lib idx = zeros(size(asscl));

for l1 idx = 1:length(asscl);

% in case that the cluster was only sub-divided using dbscan

if size(clustering meta{asscl(l1 idx)+1},1) == 1;

correspond centers = FeatMat(devcl==asscl(l1 idx), ...

1:clustering featnum);

correspond index = devcl2(devcl==asscl(l1 idx));

correspond centers = correspond centers* ...

clustering meta{asscl(l1 idx)+1}{1}.pca coeff(:, ...

1:clustering meta{asscl(l1 idx)+1}{1}.dim);
dbscan dist = sum((correspond centers - ...

repmat(SurfFeats(l1 idx,1:clustering featnum) * ...

clustering meta{asscl(l1 idx)+1}{1}.pca coeff(:, ...

1:clustering meta{asscl(l1 idx)+1}{1}.dim), ...

[size(correspond centers,1) 1])).ˆ2,2);

[¬,asscl2(l1 idx)] = min(dbscan dist,[],1);

asscl2(l1 idx) = correspond index(asscl2(l1 idx));

lib idx(l1 idx) = ...

find(index centroids(:,1)==asscl(l1 idx),1) + ...
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find(index centroids(index centroids(:,1) ...

==asscl(l1 idx),2)==asscl2(l1 idx),1) - 1;

elseif size(clustering meta{asscl(l1 idx)+1},1) > 1; % in case ...

that hte cluster was multiple divided into subclusters

% get the correlation class

correspond centers = FeatMat(devcl==asscl(l1 idx), ...

1:(clustering featnum+1));

[¬,corr idx] = min(abs(correspond centers(:,end) - ...

SurfFeats(l1 idx,clustering featnum+1)),[],1);

corr val = correspond centers(corr idx,end);

if ismember(asscl(l1 idx),[7 6 3 2]); % nuc boundary

corr cl = 1 + double(corr val>dict parameter.NE(1)) + ...

double(corr val>dict parameter.NE(2));

elseif ismember(asscl(l1 idx),[15 14 11 10]); % pure nuc

corr cl = 1 + double(corr val>dict parameter.NUC(1)) + ...

double(corr val>dict parameter.NUC(2));

elseif ismember(asscl(l1 idx),[13 12 9 8 5 4 1 0]); % cyto ...

and cell boundary

corr cl = 1 + double(corr val>dict parameter.MID(1)) + ...

double(corr val>dict parameter.MID(2));

end

% get the index range

cl2min = 0;

jidx = 1;

while jidx < corr cl;

cl2min = ...

clustering meta{asscl(l1 idx)+1}{jidx}.parameter(end) ...

+ cl2min;

jidx = jidx + 1;

end

% assign into the dbscan cluster which has the closest ...

data point to the IP being processed

cl2max = cl2min + ...

clustering meta{asscl(l1 idx)+1}{corr cl}.parameter(end);
correspond centers = FeatMat(((devcl==asscl(l1 idx)) ...

.*(devcl2>cl2min).*(devcl2≤cl2max))>0, ...

1:clustering featnum);

correspond centers = correspond centers* ...

clustering meta{asscl(l1 idx)+1}{corr cl}. ...

pca coeff(:,1:clustering meta{asscl(l1 idx)+1}{corr cl}.dim);
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dbscan dist = sum((correspond centers- ...

repmat(SurfFeats(l1 idx,1:clustering featnum)* ...

clustering meta{asscl(l1 idx)+1}{corr cl}. ...

pca coeff(:,1:clustering meta{asscl(l1 idx)+1}{corr cl}.dim), ...

[size(correspond centers,1) 1])).ˆ2,2);

[¬,ass2 test] = min(dbscan dist,[],1);

% in case of low metric cluster without further clustering

if clustering meta{asscl(l1 idx)+1}{corr cl}.refine == 0;

correspond index = devcl2(((devcl==asscl(l1 idx)).* ...

(devcl2>cl2min).*(devcl2≤cl2max))>0);

asscl2(l1 idx) = correspond index(ass2 test);

else % high metric clusters with further clustering ...

based on spin image features

ass2 test = ...

clustering meta{asscl(l1 idx)+1}{corr cl}.assigned( ...

ass2 test);

rsh = ...

(reshape(SurfFeats(l1 idx,(size(M.feature LBP,2)+1): ...

clustering featnum),[6 5]))';

for beta = 6:-1:2;

rsh(:,beta) = sum(rsh(:,1:beta),2);

end

lsh = zeros(5,1);

for beta2 = 1:5;

lsh(beta2) = ...

find(rsh(beta2,:)>(rsh(beta2,end)/2),1);

end

ipsize = 6*M.InterestPoints(IP idxvec(l1 idx)).Scale;

ipsize = (round(ipsize)*2+1)ˆ2;

meanint = M.tot int(IP idxvec(l1 idx))/ipsize;

lsh = ...

mean(lsh)/std(lsh)*(meanint>(2*background int)); ...

% "bright" IP: averaged intensity twice larger ...

than the mean intensity of the IP with the ...

lowest metric

if isnan(lsh);

lsh = -1;

end

ass2 test = ass2 test + ...

(clustering meta{asscl(l1 idx)+1}{corr cl}.parameter(end) ...
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/3)*double(lsh>0)+(clustering meta{asscl( ...

l1 idx)+1}{corr cl}.parameter(end)/3) ...

*double(lsh>4)+cl2min;

% assign to a close cluster if the correct cluster ...

was not included in the dictionary

if ¬...
ismember(ass2 test,index centroids(index centroids(:,1) ...

==asscl(l1 idx),2));

if lsh≤0;

ass2 test = ass2 test + ...

2*(clustering meta{asscl(l1 idx)+1}{ ...

corr cl}.parameter(end)/3);
if ¬ismember(ass2 test,index centroids( ...

index centroids(:,1) == asscl(l1 idx),2));

ass2 test = ass2 test - ...

(clustering meta{asscl(l1 idx)+1}{ ...

corr cl}.parameter(end)/3);
end

elseif lsh≤4;

ass2 test = ass2 test + ...

(clustering meta{asscl(l1 idx)+1}{ ...

corr cl}.parameter(end)/3);
if ¬ismember(ass2 test,index centroids( ...

index centroids(:,1) == asscl(l1 idx),2));

ass2 test = ass2 test - ...

2*(clustering meta{asscl(l1 idx)+1}{ ...

corr cl}.parameter(end)/3);
end

elseif lsh > 4;

ass2 test = ass2 test - ...

2*(clustering meta{asscl(l1 idx)+1}{ ...

corr cl}.parameter(end)/3);
if ¬ismember(ass2 test,index centroids( ...

index centroids(:,1) == asscl(l1 idx),2));

ass2 test = ass2 test + ...

(clustering meta{asscl(l1 idx)+1}{ ...

corr cl}.parameter(end)/3);
end

end

end
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asscl2(l1 idx) = ass2 test;

end

lib idx(l1 idx) = find(((index centroids(:,1) == ...

asscl(l1 idx)).*(index centroids(:,2) == ...

asscl2(l1 idx)))>0);

end

end

% Calculate the feature vector for the image as fraction of ...

intensities in each interest point cluster

POI Feats int = zeros(size(index centroids,1),1);

vector int = M.tot int(M.flag>0);

for fh idx = 1:length(POI Feats int);

POI Feats int(fh idx) = sum(vector int(lib idx==fh idx));

end

% Save the file

red time = mitotime(tdx,1);

save(savefile,'red time','POI Feats int','asscl','asscl2','lib idx', ...

'dictionary file','background int');

end

end

end

end

end

end

end

% Update the database file

vec QC(vec QC==2) = 1;

summary database.feature extract(summary database.feature extract>0) ...

= vec QC;

writetable(summary database,exp database,'Delimiter','∖t');

end

6.3.12 Automatic annotation of the protein distribution using supervised modeling

Based on the feature vectors, the protein distribution in each image could be automatically assigned.

Here, a linear model was built based on a subset of the data for six characteristic mitotic subcellular

structures and was then used to assign all images in the data set.
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First, the feature vectors of each image sequence were smoothed over time based on the image

intensity correlation between adjacent frames. A table summarize all feature vectors was built.

function smooth feature vector

% select data directories

exp dir = uigetdir('', 'Select the directory with your data series');

time dir = uigetdir('', 'Select the directory with your time ...

alignment data');

features dirname = 'Features words';

add name = ' dbscan';

% load the database file

exp database = fullfile(exp dir,'full database.txt');

summary database = readtable(exp database, 'Delimiter','∖t');
cell dirlist = ...

summary database.filepath(summary database.feature extract>0);

poinamelist = summary database.poi(summary database.feature extract>0);

cell total = length(cell dirlist);

% load the temporal model

load(fullfile(time dir,'temporal alignment.mat'));

alignmatname = 'Align annotation.mat';

% Information in the summary table

dir list = {};
poi name = {};
poi namefull = {};
time vec = [];

feature matall = [];

BG = [];

% Process cell by cell

for cdx = 1:cell total;

timefile = fullfile(cell dirlist{cdx}, 'Temporal Align',alignmatname);

load(timefile)

for tdx = 1:length(mitotime);

% assign temporal registration into standard mitotic stages

mitotime(tdx,2) = sum(time cluster.class start ≤ mitotime(tdx,1));

end

featlist = dir(fullfile(cell dirlist{cdx}, [features dirname ...

add name],'*T0*.mat'));

% Calculate the correlation coefficient between two adjacent frames ...
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and assign other information to the summary table

if length(featlist)==40;

corrtrace = zeros(40,1);

load(fullfile(cell dirlist{cdx},features dirname, featlist(1).name));

frame t0 = maxProj low(:);

f ip = [];

f glob = [];

for tdx = 1:length(featlist);

load(fullfile(cell dirlist{cdx},features dirname, featlist(tdx).name));

load(fullfile(cell dirlist{cdx},[features dirname ...

add name],featlist(tdx).name));

frame t1 = maxProj low(:);

frame common = frame t0+frame t1;

m = corrcoef(frame t0(frame common>0), frame t1(frame common>0));

corrtrace(tdx) = m(2,1);

frame t0 = frame t1;

POI Feats int = POI Feats int/(sum(POI Feats int)+ ...

1*double(sum(POI Feats int)==0));

f ip = cat(1,f ip,POI Feats int');

f glob = cat(1,f glob,POI Feats');

poi name = cat(1,poi name,cell dirlist{cdx}(33:35));
poi namefull = cat(1,poi namefull,poinamelist{cdx});
dir list = cat(1,dir list,cell dirlist{cdx});
BG = cat(1,BG,[frac foreground frac foreground2d]);

end

smooth fcell = zeros(size(f ip));

% translate the correlation coefficient to the correlation factor

tr = mean(corrtrace);

fcorr = 1./(1+exp(-(corrtrace-tr)*20));

% calculate the smoothing function over time and smooth the feature ...

sequence

for k = 1:40;

fcorr k = zeros(40,1);

for p = 1:(k-1);

fcorr k(p) = prod(fcorr((p+1):k));

end

for p = (k+1):40;

fcorr k(p) = prod(fcorr((k+1):p));

end

fcorr k(k) = 1;
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fcorr k = fcorr k/sum(fcorr k);

smooth fcell(k,:) = sum(f ip.*repmat(fcorr k, [1 size(f ip,2)]),1);

end

time vec = cat(1,time vec,mitotime);

% record in the summary table

feature matall = cat(1,feature matall, [smooth fcell f glob]);

end

end

% Output and save

summary database = dataset({dir list,'path'},{poi name,'poi'}, ...

{poi namefull,'fullname'},{time vec,'time'}, ...

{BG,'foreground'},{feature matall,'f'});
featuretxt = fullfile(exp dir,['Summary feature' add name ...

' smooth.txt']);

export(summary database,'file',featuretxt);

end

Then, a regression model was trained on a subset of the data and used for assigning all images.

function distribution analysis(featuretxt)

% Define the training set: structure, protein and time classes

pattern name = {'cyt';'chr';'kt';'ct';'sp';'mid'};
pattern def = {'NES';'H2B';'CEN';'NED';'TUB';'RAC'};
pattern time = {(1:20);(1:20);(1:20);(1:16); (4:20);(13:20)};
tmax = 40;

poi all = {'KIF';'MIS';'TUB';'RAC';'CDC';'NED';'AUR'; ...

'NUP';'PLK';'CEN';'BUB';'NES';'H2B'};

% load the data

Data = readtable(featuretxt,'Delimiter','∖t');
feature fullmat = table2array(Data(:,8:end));

% feature QC: delete features where too little cells have them and ...

too low fraction of proteins were assigned to

del feat = (max(feature fullmat,[],1)<0.05)+ ...

(sum(feature fullmat>0,1)<(size(feature fullmat,1)/length(poi all)/5));

feature fullmat(:,del feat>0) = [];

% define the objective function based on the foreground fraction
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fg = Data.foreground 1.ˆ(2/3); % 3D converto to 2D foreground

% Define the parameters for the training of the model

cv fac = 10; % cross validation factor

lr alpha = 0.3; % balance the lasso and l2 weight in elastic net

% Construct the training matrix: For each localization, select up ...

to 400 cells with the right poi at the right stage

labelmatrix = [];

featmat = [];

trainingcells = [];

for pdx = 1:length(pattern name);

selvec = strcmp(Data.poi,pattern def{pdx});% scan based on the ...

poi name

selvec = selvec.*ismember(Data.time 2, pattern time{pdx});% ...

scan based on the time

if sum(selvec) > 400;

selvec = [(1:length(selvec))' rand(length(selvec),1) selvec];

selvec = sortrows(selvec,[3 2]);

selvec(1:(end-400),3) = 0;

selvec = sortrows(selvec,1);

selvec = selvec(:,3);

end

lm = zeros(sum(selvec),length(pattern name));

lm(:,pdx) = fg(selvec>0);

labelmatrix = cat(1,labelmatrix,lm);

featmat = cat(1,featmat,feature fullmat(selvec>0,:));

trainingcells = cat(2,trainingcells,selvec);

end

labelmatrix(:,1) = labelmatrix(:,1) + 1 - sum(labelmatrix,2); % the ...

fraction in cytoplasm is the background fraction

% normalize the feature matrix such that for each feature, the ...

maximum is 1 in the training set

featmat max = max(featmat,[],1);

featmat max(featmat max==0) = 1;

featmat = featmat./repmat(featmat max,[size(featmat,1),1]);

% training set qc: delete empty localization

del idx = (sum(labelmatrix,1)==0);
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labelmatrix(:,del idx>0) = [];

pattern name(del idx'>0) = [];

pattern def(del idx'>0) = [];

pattern time(del idx'>0) = [];

% Define the output structures

classnum = size(labelmatrix,2);

ncell = size(labelmatrix,1);

Beta tot = cell(1,classnum);

Fit tot = cell(1,classnum);

labelpredict cv = zeros(ncell,classnum);

fg train = sum(labelmatrix(:,2:6),2); % foreground original

labelmatrix original = labelmatrix; % labelmatrix original

% Log the objective function if the distribution is far from normal ...

(very concentrated in the low part, e.g. centrosomes)

mm = zeros(2,classnum);

for i = 1:classnum;

pos = labelmatrix(labelmatrix(:,i)>0,i);

mm(1,i) = median(pos);

mm(2,i) = (max(pos)+min(pos))/2;

end

logfeat = (mm(2,:)./mm(1,:))>2;

labelmatrix(:,logfeat) = log(labelmatrix(:,logfeat) + 0.0001) - ...

log(0.0001);

% Normalize the objective function for each localization to max=1 ...

such that the weight between classes get balanced

max label = max(labelmatrix,[],1);

labelmatrix = labelmatrix./repmat(max label, [size(labelmatrix,1) 1]);

% Train the linear model for each localization pattern

for cl round = 1:classnum;

% randomly select the equal number of negative cells to train with ...

the positive one such that the training weigt get balanced

posnum = sum(labelmatrix(:,cl round)>0);

negnum = sum(labelmatrix(:,cl round)==0);

if negnum ≥ posnum;

featmat unbias = cat(2,labelmatrix(labelmatrix(:,cl round)==0, ...

cl round),featmat(labelmatrix(:,cl round)==0,:));
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featmat unbias = cat(2,rand(negnum,1),featmat unbias);

featmat unbias = sortrows(featmat unbias,[1 2]);

label unbias = featmat unbias(1:posnum,2);

featmat unbias = featmat unbias(1:posnum,3:end);

label unbias = cat(1,label unbias,labelmatrix(labelmatrix(:, ...

cl round)>0,cl round));

featmat unbias = cat(1,featmat unbias,featmat(labelmatrix(:, ...

cl round)>0,:));

else

featmat unbias = featmat;

label unbias = labelmatrix(:,cl round);

end

% Train the model

[B,FitInfo] = lasso(featmat unbias,label unbias,'CV',cv fac, ...

'Alpha',lr alpha);

Beta tot{cl round} = B;

Fit tot{cl round} = FitInfo;

labelpredict cv(:,cl round) = FitInfo.Intercept(FitInfo.Index1SE) ...

+featmat*B(:,FitInfo.Index1SE);

end

predict error = sqrt(sum((labelmatrix-labelpredict cv).ˆ2,2));

%% Use the model to predict the distribution for all cells

% normalize the feature matrix as for the training

feature fullmat = feature fullmat./repmat(featmat max, ...

[size(feature fullmat,1),1]);

% Predict the distribution using the linear model

predictresult = zeros(size(feature fullmat,1),classnum);

for cl round = 1:classnum;

predictresult(:,cl round) = ...

Fit tot{cl round}.Intercept(Fit tot{cl round}.Index1SE) ...

+feature fullmat*Beta tot{cl round}(:,Fit tot{cl round}.Index1SE);
end

% Time dependent smoothing for each image sequence

smoothresult = predictresult;

for k = 1:length(poi all);

poiname = poi all{k};
idxlist = strcmp(Data.poi,poiname);

framelist = Data.path(idxlist>0);

celllist = unique(framelist);
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analysis result = predictresult(idxlist>0,:);

cellnum = length(celllist);

for i = 1:cellnum;

cellframe = strcmp(framelist,celllist{i});
if sum(cellframe) == tmax;

subresult = analysis result(cellframe>0,:);

for j = 1:size(analysis result,2);

diffvec = diff(subresult(:,j));

dv = diffvec;

meandiff = mean(abs(diffvec));

stddiff = std(abs(diffvec),[],1);

peakdiff = (diffvec(1:end-1).*diffvec(2:end))<0;

diffvec = abs(diffvec(1:end-1)-diffvec(2:end));

diffvec = cat(2,(2:tmax-1)',diffvec);

diffvec = sortrows(diffvec,2);

% Smooth if one data point differs to the adjacent data point ...

on both sides strongly beyond the average difference by ...

taking the mean of the adjacent neighborhood.

for p = (tmax-2):-1:1;

if peakdiff(diffvec(p,1)-1) == 1;

if max(abs([dv(diffvec(p,1)),dv(diffvec(p,1)-1)])) ...

>(meandiff+stddiff);

if min(abs([dv(diffvec(p,1)),dv(diffvec(p,1)-1)])) ...

>meandiff;

subresult(diffvec(p,1),j) = ...

mean([subresult(diffvec(p,1)-1,j), ...

subresult(diffvec(p,1)+1,j)]);

dv = diff(subresult(:,j));

end

end

end

end

end

analysis result(cellframe>0,:) = subresult;

end

end

smoothresult(idxlist>0,:) = analysis result;

end
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% Back-normalize the prediction output

smoothresult(smoothresult<0) = 0;

smoothresult = smoothresult.* ...

repmat(max label,[size(smoothresult,1) 1]);

smoothresult(:,logfeat) = exp(smoothresult(:,logfeat) + ...

log(0.0001))-0.0001;

smoothresult = smoothresult./repmat(sum(smoothresult,2) + ...

double(sum(smoothresult,2)==0), [1 size(smoothresult,2)]);

smoothresult(:,2:end) = smoothresult(:,2:end).ˆ(3/2);

smoothresult(:,1) = 1-sum(smoothresult(:,2:end),2);

% Save the file

savefile = 'prediction 3Dconvert lassol2 norm.mat';

save(savefile,'featuretxt','poi all','featmat max','cv fac', ...

'lr alpha','Beta tot','Fit tot','labelmatrix','featmat', ...

'labelpredict cv','predict error','pattern name','pattern def', ...

'pattern time','predictresult','fg','fg train','trainingcells', ...

'labelmatrix original','max label','logfeat','smoothresult');

end

6.3.13 Protein kinetics based on the average of multiple cells

The prediction of the protein distribution was then registered into the mitotic standard time. A

distribution trace was calculated for each cell at a temporal resolution of 15 seconds where the

missing data points were interpolated linearly from the adjacent existing data points.

By multiplication with the total protein number within the cell, the number of protein molecules

in each mitotic structures was then determined.

function P = distribution kinetics(featuretxt,analysisfile)

tmax = 40;

tot t = 237;

Data = readtable(featuretxt,'Delimiter','∖t');
A = load(analysisfile);

% each cell distance to the mean query

meanassign = cell(length(A.poi all),1);

assignmat concat = meanassign;
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assignmat full = meanassign;

P = zeros(tot t,6,length(A.poi all));

for k = 1:length(A.poi all);

poiname = A.poi all{k};
idxlist = strcmp(Data.poi,poiname);

framelist = Data.path(idxlist>0);

celllist = unique(framelist);

analysis result = A.smoothresult(idxlist>0,:);

cellnum = length(celllist);

matcomplete = nan(tot t,size(analysis result,2),cellnum);

matconcat = nan(tmax,1+size(analysis result,2),cellnum);

for i = 1:cellnum;

cellframe = strcmp(framelist,celllist{i});
if sum(cellframe) == tmax;

% load the timeline of the cell and the calibrated protein image

load(fullfile(celllist{i},'Temporal Align', 'mitotime.mat'));

TRlist = dir(fullfile(celllist{i},'Preprocessing', ...

'Registration','* T0*.mat'));

M = load(fullfile(celllist{i},'Preprocessing', ...

'Registration',TRlist(1).name));

subresult = analysis result(cellframe>0,:);

matconcat(1,1,i) = mitotime(1,1);

matconcat(1,2:end,i) = subresult(1,:)*sum(M.proc poi(:));

matcomplete(mitotime(1,1),:,i) = matconcat(1,2:end,i);

counter = 1;

for j = 2:tmax;

M = load(fullfile(celllist{i},'Preprocessing', ...

'Registration',TRlist(j).name));

matconcat(j,2:end,i) = subresult(j,:)*sum(M.proc poi(:));

matconcat(j,1,i) = mitotime(j,1);

if isnan(matcomplete(mitotime(j,1),1,i));

matcomplete(mitotime(j-1,1),:,i) = ...

matcomplete(mitotime(j-1,1),:,i)/counter;

matcomplete(mitotime(j,1),:,i) = matconcat(j,2:end,i);

counter = 1;

else

matcomplete(mitotime(j,1),:,i) = matcomplete(mitotime(j,1),:,i) ...

+ matconcat(j,2:end,i);

counter = counter + 1;

end
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end

matcomplete(mitotime(tmax,1),:,i) = ...

matcomplete(mitotime(tmax,1),:,i)/counter;

isnnan = double(¬isnan(matcomplete(:,1,i)));
if isnan(matcomplete(1,1,i));

nextv = find(isnnan,1,'first');

matcomplete(1,:,i) = matcomplete(nextv,:,i);

end

% Linearly interpolate the data points between two measured data points

for j = 2:tot t;

if isnan(matcomplete(j,1,i));

nextv = find(isnnan(j+1:end),1,'first');

if isempty(nextv);

matcomplete(j,:,i) = matcomplete(j-1,:,i);

else

matcomplete(j,:,i) = (matcomplete(j-1,:,i)*nextv + ...

matcomplete(j+nextv,:,i))/(nextv+1);

end

end

end

end

end

% Average through all cells with the same protein

meanresult = nanmean(matcomplete,3);

meanassign{k} = meanresult;

assignmat concat{k} = matconcat;

assignmat full{k} = matcomplete;

P(:,:,k) = meanresult;

end

end

6.4 Abbreviation

H2B histone protein 2B

Myrpalm Myristoylation and Palmitoylation sequence

KIF11 kinesin family 11

MIS12 Protein MIS12 homolog

TUBB2C Tubulin beta-4B chain

RACGAP1 Rac GTPase-activating protein 1
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NEDD1 Protein NEDD1

AURKB Aurora kinase B

NUP214 Nuclear pore complex protein Nup214

PLK1 Serine/threonine-protein kinase PLK1

CDCA8 Borealin

CENPA Histone H3-like centromeric protein A

BUB1/3 budding uninhibited by benzimidazoles 1/3

NES nuclear export signal

MAD1/2 Mitotic spindle assembly checkpoint protein MAD1/MAD2A

BUBR1 Mitotic checkpoint serine/threonine-protein kinase BUB1 beta

CDC20 Cell division cycle protein 20 homolog

CDK1 Cyclin-dependent kinase 1

KNL1 Cancer susceptibility candidate gene 5 protein

NDC80 Kinetochore protein NDC80 homolog

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

siRNA Small interfering RNA

gRNA Guide RNA

RNAi RNA interference

cDNA complementary DNA

BAC Bacterial artificial chromosomes

ZFN Zinc finger nuclease

TALEN Transcription activator-like effector nuclease

CrispR Clustered regularly interspaced short palindromic repeats

LAP localization and affinity purification tag

DMEM Dulbecco’s modified Eagle’s medium

PBS Phosphate buffered saline

FBS Fetal bovine serum

DMSO Dimethyl sulfoxide

PFA Paraformaldehyde

BSA Bovine serum albumin

NEBD nuclear envelop break down

APC/C anaphase-promoting complexes/cyclosome

MCC mitotic checkpoint complex

CPC chromosomal passenger complex

SAC spindle assembly checkpoint

mEGFP monomeric enhanced green fluorescence protein

mCherry monomeric cherry fluorescence protein

mCer3 monomeric cerulean3 fluorescence protein

GaASP Gallium arsenide phosphide detector
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APD Avalanche photodiode

NA Numerical aperture

DIC Differential interference contrast

CPM count per molecule

FCS fluorescence correlation spectroscopy

FCCS fluorescence cross correlation spectroscopy

FRET fluorescence resonance energy transfer

POI protein of interest

ROI region of interest

2D two-dimensional

3D three-dimensional

PCA principle component analysis

SURF speeded up robust features

IP interest point

SVM support vector machine

NTF non-negative tensor factorization

NMF non-negative matrix factorization

TCC Tucker’s congruence coefficient

uLBP uniform local binary pattern
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