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1 Summary 

Proper cell movements require balanced activities of different signaling cascades, but 

factors regulating this interplay on the molecular level are poorly characterized. 

During embryogenesis, convergent extension (CE) movements are mainly regulated 

by three branches of non-canonical Wnt signaling: Ror2 mediated signaling, Frizzled 

mediated classical Wnt/PCP signaling, and the Wnt/Ca2+ signaling pathway. 

Secreted frizzled-related proteins (sFRPs) are known as inhibitors or biphasic 

modulators of Wnt/ȕ-catenin signaling but less is known about their function in ȕ-

catenin independent Wnt pathways. 

Here, I show that secreted frizzled-related protein 2 (sFRP2), a member of the sFRP 

family, is required for morphogenesis and papc expression during Xenopus 

gastrulation. Notably, sFRP2 redirects non-canonical Wnt signaling from Fz7 to Ror2. 

During this process, sFRP2 promotes Ror2 signal transduction by stabilizing 

Wnt5a/Ror2 complexes at the membrane while it inhibits Fz7 signaling, probably by 

blocking Fz7 receptor endocytosis.  

Direct interaction of the two receptors via their CRDs also promotes Ror2 mediated 

papc expression but inhibits Fz7 signaling. Furthermore, other Fz-CRD containing 

proteins, such as other sFRP1 and frzb2 can also mediate this function. While the 

cysteine-rich domain (CRD) of sFRP2 is sufficient for Ror2 activation, the NTR 

domain of sFRP2 seems to be important for efficient Fz7 inhibition since the CRD 

alone could not prevent Fz7 receptor internalization. 

Based on my results, I propose that sFRPs act as a molecular switch channeling the 

signal input for different non-canonical Wnt pathways during vertebrate gastrulation. 
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Zusammenfassung 

Zellbewegungen erfordern streng regulierte und aufeinander abgestimmte Signale, 

welche jedoch derzeit noch weitgehend ungeklärt sind. Während der Embryogenese 

werden konvergente Extensionsbewegungen hauptsächlich durch drei nicht 

kanonische Wnt- Signalwege reguliert: 1. Durch Ror2 vermittelte Signaltransduktion, 

2. Durch den klassische Wnt/PCP Signalweg und 3. Durch die Wnt/Ca2+ 

Signalkaskade.  

Studien haben bereits mehrfach gezeigt, dass secreted frizzled-related proteins 

(sFRPs) den kanonischen Wnt/ȕ-catenin Signalweg modulieren können. Über ihre 

Funktionen im Bezug auf den nicht kanonischen Wnt-Signalweg ist allerdings wenig 

bekannt. In dieser Arbeit konnte ich zeigen, dass sFRP2, welches zu der Familie der 

sFRPs angehört, für die Morphogenese und die papc-Expression während der 

Xenopus-Gastrulation erforderlich ist. Insbesondere lenkt sFRP2 die nicht 

kanonische Signaltransduktion vom Fz7 zum Ror2 Rezeptor um. Dabei fördert 

sFRP2 einerseits die Ror2 induzierte Signalkaskade, indem es Wnt5a/Ror2-

Komplexe stabilisiert. Andererseits hemmt sFRP2 dagegen Fz7-vermittelte Signale, 

vermutlich durch eine Inhibierung der Rezeptorendocytose. 

Darüber hinaus führt eine direkte Interaktion von beiden Rezeptoren über ihre 

Cystein-reiche Domäne (CRD) auch zu einer erhöhten Ror2-, aber einer 

verminderten Fz7-Signaltransduktion. Auch andere Proteine, wie sFRP1 oder frzb2, 

die über solch eine CRD verfügen, können diesen Effekt vermitteln. Die CRD von 

sFRP2 ist ausreichend für die Ror2-Aktivierung. Jedoch scheint die NTR-Domäne, 

für eine effiziente Fz7 Inhibierung erforderlich zu sein, da die CRD von sFRP2 allein 

das Fz7-vermittelte Signal nicht hemmen kann. 

Auf Grundlage meiner Ergebnisse lässt sich folgern, dass sFRPs während der 

Gastrulation als molekularer Schalter fungieren, die das nicht kanonische Signal von 

dem einen auf den anderen Rezeptor umlenken können. 
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2 Introduction 

2.1  Xenopus gastrulation movements 

Embryogenesis is a complex process, in which a single cell proliferates and gives 

rise to a multitude of highly specialized cells that finally develop into specific tissues 

and organs of a living organism. This is achieved by multiple signaling events, cell 

differentiation and concerted cell movements. 

Gastrulation is defined and coordinated by four types of region specific cell 

movements: invagination, involution, epiboly and convergent extension (CE) 

movements. These cell and tissue movements thereby force an unstructured group 

of cells to reorganize to an embryo composed of the three germ layers: endoderm, 

mesoderm and ectoderm. An ideal model to study the regulation of these processes 

is the African clawed frog (Xenopus laevis). After the Xenopus oocyte is fertilized, the 

zygote is cleaved several times without increasing its cell mass. At the end of 

cleavage a blastula embryo is formed which consists of several thousands of 

undifferentiated, pluripotent cells and a liquid filled cavity, the blastocoel (Fig. 1, 

Blastula; stage 8) 

Subsequently, gastrulation starts on the future dorsal side of the embryo. During this 

process, specific growth factors induce the formation of so called bottle cells from a 

group of endodermal cells by apical constriction. These cells migrate into the embryo 

and thereby form the invagination (blastopore) (Fig. 1, Early gastrula; stage 10) 

(Keller, 1981; Lee and Harland, 2010). This is followed by involution of mesodermal 

cells, which migrate towards the animal cap (Fig. 1, Gastrula; stage 11) by 

convergent extension (CE) movements to establish the anterior-posterior (AP) axis 

(see 2.1.1). Meanwhile, the cells of the animal cap move downwards to the vegetal 

pole by epiboly. During epiboly the cells intercalate and stretch and by the end of 

gastrulation, ectodermal cells cover the entire embryo (Fig. 1, Late Gastrula; stage 

12) (Keller, 1980). Mesendodermal and ectodermal cell populations do not fuse and 

a morphologically visible tissue border, the Brachet´s cleft arises. 
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Fig. 1: Schematic drawing of early Xenopus gastrulation. At late blastula (stage 8) the animal cap 
region consists of the prospective ectoderm. The future mesoderm and endoderm are located in the 
marginal zone. In early gastrula (stage 10) the formation of bottle cells via apical constriction is 
induced on the dorsal side of the embryo. This leads to the formation of the blastopore. C: During 
midgastrula (stage11) mesoderm cells involute through this blastopore and move in close contact 
along the ectoderm cells towards the anterior. A border, Brachet’s cleft, persist between the involuted 
mesoderm and the ectoderm. At late gastrula (stage 12), the yolk plug is visible through the blastopore 
and animal cap cells cover the entire embryo (adapted and modified from Wolpert; Principles of 
Development). 

 

2.1.1 CE movements establish the anterior-posterior (AP) axis 

Convergent extension (CE) is an important process during development to achieve a 

change in tissue shape. 

The best-studied example of CE is the elongation of the axis during Xenopus 

gastrulation. Moreover, also in other vertebrate and invertebrate systems, CE 

represents a common process that mediates body axis elongation (Glickman et al., 

2003; Munro and Odell, 2002; Sausedo and Schoenwolf, 1994; Schoenwolf and 

Alvarez, 1989). 

When mesodermal cells migrate through the blastopore by CE movements they 

acquire a bipolar shape and due to their protrusive activity on the neighbouring cells 
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they pull themselves between each other. During this process, the tissue 

simultaneously narrows (convergence) in mediolateral direction and lengthens 

(extension) in perpendicular direction (Keller et al., 1985). The combination of 

collective cell movement and cell intercalation thereby establishes the AP axis of the 

embryo (Fig. 2). 

 

 
 

 
Fig. 2: Convergence and extension: Involuting mesodermal cells undergo convergent extension 
movements in which multipolar cells acquire a bipolar shape and converge at the dorsal midline. By 
cell intercalations the tissue narrows and elongates (adapted from (Keller, 2002)). 

 

2.2 Gastrulation and CE movements are regulated by the 

Wnt signaling network 

A tight regulation and a fine-tuned crosstalk of different signaling pathways are 

required for proper cell movements during Xenopus gastrulation.  

Several studies demonstrate that the ß-catenin independent (non-canonical) 

Wnt/Planar Cell polarity (PCP), Wnt5a/Ror2 and Wnt/Ca2+ pathways are important 

regulators for CE movements (Schambony and Wedlich, 2007; Seitz et al., 2014; 

Torres et al., 1996; Veeman et al., 2003; Wallingford et al., 2002). However, also the 

Wnt/ß-catenin dependent (canonical) pathway (Kuhl et al., 2001) and BMP signaling 

have been implicated in morphogenesis (Myers et al., 2002).  

Wnt signaling is mediated by Wnt proteins that bind to the extracellular cysteine rich 

domain (CRD) of seven-transmembrane receptors of the Frizzled (Fz) family. 10 

different Fz receptors exist in human as well as 19 genes that encode Wnt proteins. 

Fz receptors act as a common receptor for both canonical (ȕ-catenin dependent) or 
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non-canonical (ȕ-catenin independent) Wnt signaling and depending on the cellular 

context, a co-receptor or Wnt ligand of one of these cascades is activated (Niehrs, 

2012). However, it is still controversial which co-receptors and downstream effectors 

they are coupled to and moreover to what extend these pathways overlap. 

 

2.2.1 The Canonical Wnt/ß-catenin pathway 

The canonical Wnt/ ȕ-catenin cascade is the best characterized branch of the Wnt 

signaling network and plays a critical role in early embryonic pattering, stem cell 

renewal and cancer (Komiya and Habas, 2008). In many organisms, this signaling 

pathway directs axis formation. For example in In Xenopus, loss of maternally 

provided ȕ-catenin results in ventralized embryos. Furthermore, over stimulation of 

canonical Wnt signaling at the ventral side of a Xenopus embryo leads to the 

formation of double axis (McCrea et al., 1993). A hallmark of this pathway is the core 

protein ȕ-catenin and whose cellular level is controlled by a destruction complex. In 

the absence of a Wnt ligand, the destruction complex machinery composed of 

adenomatous polyposis coli (APC), Axin, Casein Kinase 1 (CK1) and Glycogen 

Synthase Kinase γ (GSKγ) is located in the cytosol and marks ȕ-catenin molecules 

by phosphorylation for subsequent ubiquitination and proteosomal degradation. 

(Niehrs, 2012) (Fig. 3: Unstimulated).   

Canonical Wnt signaling is activated when Wnt binds to a receptor complex 

composed of Fz and the co-receptors low-density lipoprotein receptor-related protein 

5/6 (LRP5/6) forming a dimeric/multimeric structure. This triggers phosphorylation of 

LRP5/6 by CK1 and GSK3-ȕ which in turn leads to association of GSK3 with the 

scaffold protein Axin. Meanwhile, Fz interacts with Dishevelled (Dvl) (Chen et al., 

2003; Tauriello et al., 2012), which in turn promotes interaction with Axin (Fiedler et 

al., 2011; Schwarz-Romond et al., 2007). These events disrupt the 

APC/Axin/CK1/GSKγ machinery and therefore phosphorylation of ȕ-catenin by CK1 

and GSKγ. ȕ-catenin accumulates in the cytoplasm and is subsequently translocated 

into the nucleus where it associates with transcription factors such as TCF (T cell 

factor) and LEF (lymphoid enhancer-binding factor) to mediate transcriptional 

induction of target genes (Fig. 3: Stimulated).  

 



 Introduction 

 Seite 7 

 

 

 

Fig. 3: Overview of the canonical Wnt/β-catenin pathway. A: In the absence of a Wnt ligand ȕ-
catenin  is marked for proteosomal degradation by the destruction complex . B: Wnt ligand binding 
inhibits the destruction complex and thereby leads to accumulation of ȕ-catenin in the nucleus and 
activation of Wnt target genes. Adapted from 

http://d2q6k56aomjvqy.cloudfront.net/content/ppbiochemj/427/1/1/F1.large.jpg. 

 

2.2.2 Non-canonical Wnt signaling pathways 

In contrast to the canonical Wnt pathway, several pathways exists that do not involve 

the function of ȕ-catenin. These pathways are often summarized as “non-canonical” 

Wnt pathways. The output of these non-canonical cascades mostly regulates 

cytoskeletal rearrangements and cell migration and has less effect on cell 

differentiation and proliferation (Niehrs, 2012). However there are several distinct ȕ-

catenin independent pathways known to date. The three most important pathways for 

gastrulation movements are described in the following sections. 

 

2.2.2.1  Wnt/PCP signaling 

The term “planar cell polarity” (PCP) is derived from a study of tissue polarity 

necessary to generate polarization within the plane of the epithelium in Drosophila 

(Nubler-Jung et al., 1987). Also, in vertebrates PCP was shown to be involved in 

cellular processes such as the orientation of stereocilia in the inner ear (Kikuchi et al., 

2011; Simons and Mlodzik, 2008), ordered arrangement of hairs of mammalian skin 

http://d2q6k56aomjvqy.cloudfront.net/content/ppbiochemj/427/1/1/F1.large.jpg
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and cilia of respiratory tract, or orientation of axon extension (Goodrich, 2008).  In 

Xenopus, the Wnt/PCP pathway is a key regulator of cell movements during 

gastrulation, in particular CE movements, which requires the polarisation of the cells 

to enable their mediolateral intercalation and the elongation along the perpendicular 

AP axis  (Wang and Steinbeisser, 2009). Numerous studies showed that inactivation 

as well as stimulation of this pathway leads to gastrulation defects such as a shorter 

AP axis or spina bifida (Djiane et al., 2000; Sumanas and Ekker, 2001).  

Wnt/PCP signaling does not involve stabilization of ȕ-catenin and LEF/TCF mediated 

transcription in the nucleus. This signaling cascade is thought to be independent from 

the co-receptors LRP5 and LRP6 but is characterized by membrane recruitment of 

Dishevelled (Dvl) after Wnt stimulation (Axelrod et al., 1998). This pathway further 

involves the small GTPases RhoA, Rock and c-jun-N-terminal kinase (JNK) which 

are important regulators for cytoskeleton and actin polymerization. Ultimately, JNK 

dependent transcription factors, for example activating transcription factor 2 (ATF2) 

and activator protein 1 (AP-1), are activated (Fig. 4). While in Drosophila it is still 

unclear whether a Wnt ligand is involved in the PCP pathway, it has been shown in 

vertebrates that Wnt5a and Wnt11 can trigger this cascade. Wnt/PCP signal 

transduction was further suggested to require clathrin-mediated Fz receptor 

endocytosis. It was shown that direct interaction of Dvl2 with the clathrin AP-2 

adaptor, an effector of endocytic traffic from the plasma membrane to endosomes, 

was essential to transduce Wnt/PCP signaling (Kim et al., 2008; Yu et al., 2010). 

However, the molecular mechanism regulating the process of Wnt/Fz endocytosis 

and downstream signaling is not fully understood. 

 

2.2.2.2  Wnt/Ca2+ pathway 

Wnt/Fz binding also triggers a second branch of the non-canonical Wnt pathway 

termed as the Wnt/Ca2+ pathway. It shares some components with the PCP pathway 

including Dvl, the Wnt ligand and Fz receptor but involves mobilization of intracellular 

Ca2+ from the endoplasmatic reticulum (ER) and activation of Ca2+ sensitive proteins 

such as Protein Kinase C (PKC) and calcium/calmodulin-dependent kinase II 

(CamKII). This pathway further depends on the function of heterotrimeric G-proteins. 

These proteins activate phospholipase C (PLC) which is turn cleaves phospholipid 

phosphatidylinositol 4,5 bisphophat (PIP2) into diacylglycerol (DAG) and 
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inositol-1,4,5-trisphosphate (IP3). IP3 diffuses through the cytosol where it binds to 

calcium channels on the ER membrane to mediate intracellular release of Ca2+ 

molecules. The accumulation of Ca2+ in the cytoplasm further stimulates Ca2+ 

sensitive proteins such as PKCα and CamKII (Fig. 4).  

Increased Ca2+ also stimulates calcineurin and CamKII which in turn activate  

the cytoplasmic protein nuclear factor associated with T-cells (NFAT) to regulate cell 

adhesion, migration and tissue separation. In addition, CamKII also activates Nemo 

Like kinase (NLK) which interferes with TCF/ȕ-catenin signaling in the canonical Wnt 

pathway (Komiya and Habas, 2008). 

In humans, fiftheen PKC isoforms exists and depending on the messenger they 

require to be activated they are divided into the following subfamilies: classical 

(conventional) (cPKC), novel (nPKC) and atypical (aPKC). cPKC family members 

contain the isoforms α, ȕI, ȕII, Ȗ and are mainly activated by Ca2+ and DAG. The 

nPKC subgroup includes the isoforms į, İ, ș and Ș, which are not activated by Ca2+ 

but through DAG. Members of the aPKC subgroup cannot be stimulated by either of 

these two molecules (Mellor and Parker, 1998). 

In Xenopus over-expression of Wnt5a or Wnt11 ligands can activate PKCα (Sheldahl 

et al., 1999) and calcium/calmodulin-dependent kinase II (CamKII) (Kuhl et al., 

2000a; Kuhl et al., 2000b). This signaling branch is suggested to control the 

regulation of cell sorting behaviour. Loss of zygotic Fz7 leads to the inability of 

involuted mesoderm to separate from the ectoderm but is rescued by co-expression 

of PKCα. Furthermore, they showed that Fz7 induces activation and recruitment of 

PKCα to the cell membrane in the context of tissue separation during Xenopus 

gastrulation (Winklbauer et al., 2001). 

 

2.2.2.3  Wnt5a/Ror2 pathway 

Fz receptors and LRP5/6 were the first proteins implicated as receptors for Wnt 

ligands, but they are by far not the only ones (Clevers and Nusse, 2012). The 

receptor tyrosine kinase-like orphan receptors Ror1 and Ror2 are members of the 

receptor tyrosine kinases (RTKs) and identified in PCR based screens for proteins 

with resemblance to tyrosine kinases of the Trk family (Masiakowski and Carroll, 

1992). They contain a CRD homologous to the Wnt-binding domain found in Fz 

receptors (Saldanha et al., 1998). In addition to the CRD, they are further 

https://en.wikipedia.org/wiki/NFAT
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characterized by an extracellular Kringle, immunoglobulin and intracellular proline-

rich and serine-threonine-rich domains (Masiakowski and Carroll, 1992). Ror1 and 

Ror2 are single-pass transmembrane proteins and evolutionarily conserved across 

vertebrate and invertebrate species. Studies have shown that forced dimerization 

induces Ror2 tyrosine phosphorylation, whereas ligand binding can induce either 

tyrosine or serine/threonine phosphorylation (Akbarzadeh et al., 2008; Grumolato et 

al., 2010; Liu et al., 2007; Liu et al., 2008; Mikels et al., 2009; Yamamoto et al., 

2007). Recently, it was shown that Ror2 interacts with Wnt5a to induce the 

expression of paraxial protocadherin (papc) and involved in the regulation of CE 

movements (Djiane et al., 2000; Hikasa et al., 2002; Schambony and Wedlich, 2007). 

The Wnt5a/Ror2 pathway has been suggested to form an additional branch of the ȕ-

catenin independent signaling network, likely requiring phosphoinositide 3 kinase 

(PI3K), CDC42, and MKK7 to activate JNK signaling (Fig. 4), rather than RhoA and 

Rac1, which are activated by Fz7 (Schambony and Wedlich, 2007). In humans, 

Brachydactyly type B and recessive Robinow syndrome, which result in limb 

malformations are associated with mutation in Ror2 (Afzal and Jeffery, 2003; Afzal et 

al., 2000; Oldridge et al., 2000). Furthermore, a recent study presents Ror2 as a 

novel prognostic biomarker and potential therapeutic target in patients with 

leiomyosarcomas or gastrointestinal stromal tumors (Edris et al., 2012). 
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Fig. 4:  Overview of the β-catenin independent Wnt signaling branches: Ror2/Wnt5a signaling 
(left cascade), Frizzled mediated Planar Cell polarity (middle cascade) and Wnt/Calcium signaling 
(right cascade). Modified from: http://pharmaceuticalintelligence.com/2015/04/10/targeting-the-

wnt-pathway-7-11/. 

 

2.3 Secreted modulators of Wnt signaling 

Wnt signaling can be regulated by a wide range of effectors which can either interfere 

with the intracellular components of the signaling cascade or modulate ligand-

receptor interactions in the extracellular space. Effectors can function as agonists to 

enhance a signaling event or as antagonists to inhibit a response. They are of great 

importance as they control and fine tune Wnt signaling and thereby play a crucial role 

in development and disease (Cruciat and Niehrs, 2013).There are different types of 

secreted Wnt modulators. Within this work, I especially focus on secreted Frizzled-

related proteins (sFRPs) and the family of Dickkopf (Dkk) proteins described in the 

http://pharmaceuticalintelligence.com/2015/04/10/targeting-the-wnt-pathway-7-11/
http://pharmaceuticalintelligence.com/2015/04/10/targeting-the-wnt-pathway-7-11/
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following sections. However, Wnt signaling can be further controlled by different other 

antagonists such as wnt inhibitory factor 1 (WIF1), Cerberus and Sclerostin (Cruciat 

and Niehrs, 2013). 

 

2.3.1 Secreted Frizzled-Related Protein (sFRP) Family 

sFRPs are soluble glycoproteins and represent the largest family of secreted Wnt 

modulators that bind to Wnt ligands and Fz receptors. They are approximately 300 

amino acids in length and contain an N-terminal cysteine rich domain (CRD) and a C-

terminal netrin-like (NTR) domain. The CRD of sFRPs contain 10 conserved cysteine 

residues and shows 30-50% sequence similarities with the Fz CRDs (Bovolenta et 

al., 2008). The NTR motif contains segments of positively charged residues that were 

shown to confer heparin-binding properties (Uren et al., 2000) and interfere with 

heparan proteoglycans at the cell membrane (Finch et al., 1997). This domain is also 

present in some other unrelated proteins, including tissue inhibitors of metallo-

proteinases (TIMPs), the axon guiding protein netrin 1, type-1 procollagen C-

proteinase enhancer proteins (PCOLCEs) as well as complement proteins (Banyai 

and Patthy, 1999). In humans, five sFRP family members, sFRP1-5, have been 

identified. Phylogenetic sequence analysis revealed that sFRPs can be separated 

into two different subgroups in which sFRP1, sFRP2 and sFRP5 cluster together in 

one and sFRP3 and sFRP4 in another subgroup (Fig. 5). An additional subgroup of 

sFRPs (Crescent, Sizzled, Sizzled-2 and Frzb-2) exists in Xenopus, chick and 

zebrafish but not in mammals (Cruciat and Niehrs, 2013). sFRPs are well known 

inhibitors for canonical Wnt/ȕ-catenin (Kawano and Kypta, 2003; Wawrzak et al., 

2007) and non-canonical Wnt/PCP signaling (Satoh et al., 2006; Satoh et al., 2008; 

Shibata et al., 2005). sFRP5 as well as sFRP2 can directly disrupt Wnt/PCP 

signaling. Depletion of sFRP5 increased JNK/AP1 activity in the foregut in Xenopus 

and sFRP2 inferred with PCP in eye lens fiber cells in rat and mice (Li et al., 2008; 

Sugiyama et al., 2010). However, subsequent observations present evidence that 

they also positively modulate Wnt signaling (Gorny et al., 2013; Mii and Taira, 2009; 

Skah et al., 2015). Genetic analyses have shown that sFRPs are involved in the 

regulation of AP axis elongation and somitogenesis during embryonic mouse 

development (Satoh et al., 2006; Satoh et al., 2008). Also, in Xenopus the member of 

the sFRP family Crescent impairs CE movements (Pera and De Robertis, 2000; 
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Shibata et al., 2005). They are implicated in several diseases such as cancer (Rubin 

et al., 2006; To et al., 2001; Turashvili et al., 2006; Zi et al., 2005) as well as 

pathological events including lung fibrosis (De Langhe et al., 2014), heterotopic 

ossification and osteolysis (Gordon et al., 2007). 

 

 
Fig. 5: Phylogentic analysis of the sFRP family obtained by homology of the CRD motif: Those 
displaying most similarities in amino acid sequences cluster together. The branch length is 
proportional to divergence and numbers indicate the bootstrap confidence for each node. Each family 
is represented in another colour. Am, Ambystoma mexicanum (axolotl); c, Gallus gallus (chick); Ce, 
Caenorhabditis elegans (nematode); ci, Ciona intestinalis (sea squirt); Cr, Crescent; h, Homo sapiens 
(human); m, Mus musculus (mouse); ol, Oryzias latipes (medaka fish); S, Sfrp; sp, Strongylocentrotus 
purpuratus (sea urchin); Sz, Sizzled; X, Xenopus laevis (African clawed frog); z, Danio rerio (zebrafish) 
adapted from (Bovolenta et al., 2008).
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2.3.2 Dkk Protein Family 

Dkks represent a small family of secreted proteins that comprises four members, 

Dkk1-4. They consist of 255-350 amino acids and have an N- terminal cysteine rich 

DKK_N motif unique for Dkks, as well as a C-terminal CRD, homologous to the 

colipase fold, but not to Fz CRDs. The colipase fold domain is present in several 

other unrelated proteins such as colipases, toxins or protease inhibitors (Niehrs, 

2006). While Dkk1, -2 and -4 are more related to each other and are located on the 

same chromosome 4/5/8/10 paralogy group, Dkk3 is not part of this group and less 

related to those. In contrast to Dkk1, -2 and 4, Dkk 3 shares sequence similarities to 

soggy (sgy), also referred as to Dickkopf-like protein 1. Dkk1, -2 and 4 specifically 

inhibit the Wnt/ȕ-catenin pathway by binding to LRP5 and 6. Dkk3 was rather shown 

to affect transforming growth factor-b (TGF-b) in Xenopus (Fujii et al., 2014; Mao and 

Niehrs, 2003; Pinho and Niehrs, 2007). Similar to sFRPs, Dkk family members are 

implicated in human disease, in particular cancer (Aguilera et al., 2006; Gonzalez-

Sancho et al., 2005), but also in neurodegenerative processes, as well as induction 

of apoptosis after neuronal injury (Cappuccio et al., 2005; Caricasole et al., 2004). 



 Aim of this study 

 Seite 15 

 

 

Aim of this study 

sFRPs are well known inhibitors of Wnt signaling and most studies have focused on 

their role in canonical Wnt/ȕ-catenin signaling. Recent studies demonstrate that they 

also modulate non-canonical (ȕ-catenin-independent) Wnt signaling. However, the 

molecular mechanism how these secreted proteins interfere with the different non-

canonical Wnt signaling branches is still unknown. Therefore, this study aims to: 

 

 Examine the effect of sFRP2 on the different non-canonical Wnt signaling 

branches. 

 Explore the mechanism how sFRP2 exerts its activating or inhibiting function, 

particularly focusing on Ror2 and Fz7 mediated non-canonical Wnt signaling 

during vertebrate gastrulation 
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3 Results 

3.1 Gain and Loss of sFRP2 impairs CE movements in 

Xenopus 

To elucidate the role of sFRP2 during embryonic development, I performed  gain and 

loss of function studies in Xenopus laevis embryos. Since sFRP2 is expressed in the 

dorsal mesoderm (Pera and De Robertis, 2000) and its expression pattern overlaps 

with known PCP pathway components such as Wnt11/5a (Shibata et al., 2005), 

Fz7/8 (Itoh et al., 1998; Medina et al., 2000) and Ror2 (Hikasa et al., 2002), I 

suspected a role for sFRP2 in the Wnt/PCP pathway. This pathway is a major 

regulator of CE movements and inactivation as well as stimulation leads to 

gastrulation defects such as a shorter AP axis or spina bifida (Djiane et al., 2000; 

Sumanas and Ekker, 2001) 

I injected Xenopus laevis sfrp2 mRNA as well as a translation blocking sfrp2 

antisense morpholino oligonucleotide (sFRP2 Mo) into the dorsal marginal zone of 4-

cell stage Xenopus embryos and observed that both over-expression as well as loss 

of sFRP2 caused typical gastrulation defects (Fig. 6). Almost all sFRP2 

overexpressing embryos showed either a shorter body axis (51%) or spina bifida 

(45%). These result provide evidence that sFRP2 modulates non-canonical Wnt 

signaling. Similar to sfrp2 from Xenopus, also the human homolog (hsfrp2) induced 

gastrulation defects suggesting an evolutionary conserved function. Furthermore, 

similar phenotypes were also observed in sFRP2 morphants (Fig. 6). Co-injection of 

the morpholino and human sfrp2 (hsfrp2) mRNA partially rescued the loss of function 

phenotype, indicating that well-balanced levels of sFRP2 are required for proper 

gastrulation. I also characterized the effect of single domains of sFRP2 on CE 

movements and over-expressed sFRP2 deletion mutants that either lack the CRD 

(sFRP2-NTR) or the NTR domain (sFRP2-CRD) in Xenopus embryos. The NTR as 

well the CRD deletion mutant induced similar morphogenic defects as the full-length 

sFRP2, implicating that both domains interfere with non-canonical Wnt signaling 

(data not shown). 
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Fig. 6: Gain and loss of sFRP2 impair CE movements in Xenopus. A: Representative phenotypes 
of embryos injected into the dorsal equatorial zone at 4-cell stage with indicated morpholino 
oligonucleotides (Mo, 15ng) and synthetic mRNA (500pg sfrp2/hsfrp2 or 200pg for the Mo-rescue). B: 
Quantification of phenotypic analysis, shown in A. Numbers of analyzed embryos are indicated on top 
of the bars.  

 

To support the finding that sFRP2 affects CE movements during Xenopus 

gastrulation, I performed an elongation assay using Activin treated animal cap (AC) 

explants. During blastula stage, the AC region of a Xenopus embryo is pluripotent 

and can differentiate into certain types of tissues, depending on signals received from 

the vegetal part of the embryo. It was shown that Activin, a member of the TGF-ȕ 

superfamily and FGF related growth factors, is sufficient to induce mesoderm 

differentiation of ectodermal explants (Brieher and Gumbiner, 1994). To test whether 

sFRP2 inhibits the elongation of Activin treated caps, sfrp2 mRNA was injected in the 

animal region of a 2-cell stage embryo. Ror2 served as a positive control and, 

consistent with published data, inhibited the elongation of AC explants (Hikasa et al., 

2002). In line my previous finding, showing that sFRP2 affects morphogenesis, 

sFRP2 also efficiently blocked the Activin induced AC elongation (Fig. 7A+B).  
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Fig. 7: sFRP2 and Ror2 impair Activin treated animal cap elongation. sFRP2 inhibits elongation of 
AC explants. A: For the AC elongation assay, embryos were injected animally at 2-cell stage with 
indicated synthetic mRNAs (300pg) and at stage 9 excised ACs were cultured with or without activin 
overnight to analyze elongation. B: Quantification of AC elongation shown in A. Categorized in not 
elongated (blue), partially elongated (white) and fully elongated (grey) ACs. Numbers of analyzed ACs 
are indicated on top of the bars.  

 

To exclude that sFRP2 blocks AC elongation by inhibiting Activin induced mesoderm 

formation, I analyzed the expression of Xbra. Xbra is strongly up-regulated in the ring 

of the involuting mesoderm during Xenopus gastrulation and serves as a 

mesodermal marker (Isaacs et al., 1994). Since neither Ror2 nor sFRP2 over-

expression affected the induction of the mesodermal marker gene Xbra, the inhibition 

of elongation was specifically caused by disturbed cell movements, probably due to 

disturbed non-canonical Wnt signaling, and not by interference with mesoderm 

induction (Fig.8).  

 

 
 
Fig. 8: sFRP2 and Ror2 do not affect mesoderm induction. Analysis of xbra expression of 10 ACs 
per sample, harvested after two hours incubation in Activin. Representative with technical triplicates 
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confirmed by at least 2 independent experiments with similar results is shown using sibling animal 
caps of those shown in Fig.7. 

 
 

3.2 sFRP2 is required for papc expression and enhances 

Ror2 mediated signaling 

Since previous results show that sFRP2 affects cell movements, I next investigated 

its effect on the pathways known to control CE movements. I focused first on 

Wnt5a/Ror2 signaling and analyzed the effect of sFRP2 on the activation of 

Wnt5a/Ror2 mediated papc induction (Schambony and Wedlich, 2007). 

For this purpose, sFRP2 Mo was injected into the dorsal equatorial region of 4-cell 

stage embryos and the expression pattern of papc was evaluated at gastrula stage 

using whole mount in situ hybridization (Fig. 9). I observed that compared to control 

morpholino injected embryos, sFRP2 deficient embryos had reduced papc 

expression at the dorsal lip. This effect was similar to the papc pattern in Ror2 

deficient embryos (Fig. 9A). Loss of Ror2 reduced the papc level in 61±8% of the 

embryos and loss of sFRP2 in 39±2% of the embryos (Fig. 9B). Consistently, sFRP2 

over-expression led to increased papc expression compared to gfp control injected 

embryos (data not shown).  

 

 
Fig. 9: Loss of sFRP2 reduces the expression of papc in the dorsal lip. A: Representative papc 
expression pattern analyzed by whole mount in situ hybridization of gastrula (stage10.5) embryos 
injected at 4-cell stage in the dorsal equatorial region with indicated Mos (15ng). Arrowheads indicate 
site of injection. B: Quantification of in situ hybridization, shown in A. Number of analyzed embryos 
indicated on top of the bars. 
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To verify this observation, papc expression was further analyzed using quantitative 

real time PCR (qPCR). Concurrently, loss of sFRP2 mimicked the loss of Ror2 and 

resulted in a significant decrease of papc transcription in whole embryos (Fig. 10). 

 

 
Fig. 10: Loss of sFRP2 reduces the expression of papc during Xenopus gastrulation, similar to 
loss of Ror2. Relative expression of papc analyzed by qPCR in whole embryos injected with indicated 
Mos (15 ng). Chart shows the mean ± SD of n=3 independent experiments. (*) indicates significance 
(*p< 0.05) compared to controls.  

 

The reduced induction of papc in sFRP2 morphants could be rescued by co-injection 

of hsfrp2 mRNA indicating that the sFRP2 morpholino is specific. Furthermore, the 

injection of hsfrp2 mRNA induced an up-regulation of papc by itself (Fig. 11). 

Collectively, these findings show that sFRP2 is required for papc induction in 

Xenopus gastrulae. 

 
Fig. 11: sFRP2 is required for papc induction during Xenopus gastrulation. Relative expression 
of papc analyzed by qPCR in whole embryos injected with indicated Mos (15 ng) and synthetic mRNA 
(200pg). Chart shows a representative with technical triplicates confirmed by at least n=2 independent 
experiments in different batches of Xenopus laevis with similar results. 
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To examine whether sFRP2 is able to enhance Wnt5a/Ror2 signaling directly, I used 

Xenopus AC explants and examined the induction of papc in the presence of sFRP2. 

In wt ACs excised at blastula stage Ror2 and Wnt5a are not expressed 

endogenously and only very few transcripts of papc can be detected. Ectopic 

expression of Ror2 and Wnt5a is known to induce the transcription of papc in AC 

explants (Schambony and Wedlich, 2007). By co-injection of sfrp2 mRNA in the AC, I 

could show that sFRP2 strongly enhanced Wnt5a/Ror2 mediated papc expression 

compared to the level induced by Wnt5a/Ror2 alone (Fig. 12). This up-regulation of 

papc strictly depends on the presence of Wnt5a since co-expression of sFRP2 and 

Ror2 alone could not induce papc (Fig. 12).  

 

 
Fig. 12: sFRP2 enhances Wnt5a/Ror2 mediated papc expression. Relative expression of papc 
analyzed by qPCR in AC explants injected with indicated synthetic mRNAs (500pg ror2/sfrp2 and 
150pg wnt5a). Chart shows a representative with technical triplicates confirmed by at least 3 
independent experiments in different batches of Xenopus laevis with similar results.  

 

To confirm the potentiating effect of sFRP2 on Ror2 signaling, I further used the ATF 

luciferase reporter assay, which is based on JNK dependent phosphorylation and 

therefore serves a readout system for ȕ-catenin independent Wnt signaling. In line 

with my previous observation, sFRP2 augmented Wnt5a/Ror2 mediated ATF activity 

(Fig. 13). Taken together, these findings demonstrate that sFRP2 is required for papc 

expression during Xenopus gastrulation and acts as a positive modulator for Ror2 

mediated signaling.  
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Fig. 13: sFRP2 enhances Ror2 induced non-canonical Wnt signaling. ATF luciferase reporter 
assay of stage12 gastrula embryos injected with the indicated synthetic mRNAs (500pg ror2/sfrp2 and 
100pg wnt5a) and the ATF2 luc and TK Renilla reporter constructs. Graph shows the mean ± SD of 
biological triplicates of pools of 7 embryos each (* p <0.05 to controls). This was confirmed in at least 
n=3 independent experiments in different batches of Xenopus laevis. 

 

3.3 sFRP2 interacts with Ror2 via its CRD and stabilizes 

Wnt5a/Ror2 complexes  

To investigate whether the molecular mechanism underlying the observed positive 

modulation of Wnt5a/Ror2 signaling by sFRP2 occurs via interaction of sFRP2 with 

the ligand/receptor complex, I performed binding studies in Hek293 cells. For this 

purpose, cells were transfected either alone with Ror2-myc or together with sFRP2-

HA. After cells were lysed, protein lysates were further incubated with corresponding 

antibodies and purified with magnetic beads. In western blot analysis, I could show 

that sFRP2 physically interacts with Ror2 (Fig. 14).  
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Fig. 14 : sFRP2 interacts with Ror2 in HEK293T cells. CO-IP in Hek293 cells transfected with Ror2-
myc and HA-tagged sFRP2 (1μg each). Protein lysates were precipitated with antibody against myc or 
HA, respectively, and IgG as negative control. Western Blot (WB) analysis with anti-HA antibody 
shows that sFRP2 is pulled down together with Ror2.  

 
Previously, it was demonstrated that association of Fz7 with Ror2 enhances the 

affinity of Wnt5a to Ror2 and is required for Wnt5a/Ror2 signaling to induce the 

activation of AP-1 (JNK/c-jun) (Nishita et al., 2010). Since the CRDs of Fz receptors 

and sFRPs are homologous, I tested whether sFRP2, similar to Fz7, can enhance 

Wnt5a binding to Ror2. Hek293 cells were either transfected with Ror2 alone or co-

transfected with sFRP2, sFRP2-CRD or Fz7 as a positive control. After stimulating 

the cells with equal amounts Wnt5a conditioned medium, I compared the levels of 

bound Wnt5a that co-precipitated with Ror2. In the absence of Fz-CRD containing 

proteins, only traces of Wnt5a were associated with Ror2 (Fig. 15A). However, when 

sFRP2 or its CRD were co-expressed, significantly more Wnt5a co-precipitated with 

Ror2. This increase was even stronger than the increase observed in the presence of 

Fz7 (Fig. 15A). However, this is not surprising because also more sFRP2 and 

sFRP2-CRD precipitated with Ror2 compared to Fz7 (Fig. 15B). As a control protein 

containing an unrelated cysteine-rich domain we used Dkk3 (Fig. 15C), which does 

not bind to Ror2 (Fig.15B) and hence did not increase Wnt5a binding to Ror2 (Fig. 

15A).  
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Fig. 15: sFRP2 stabilizes Wnt5a/Ror2 complexes in Hek293 cells. A: The Wnt5a-V5 binding assay 
was performed in Hek293 cells transfected with Ror2 ECD-flag alone or co-transfected with sFRP2-
HA, CRD-HA, DKK3-HA or Fz7-myc (1μg each). Each cell sample was treated with equal amounts of 
Wnt5a-V5 conditioned medium for 20 min before cells were lysed for anti-flag pull-down to precipitate 
Ror2. Two different WB analyses were performed: WB on top was analyzed with anti-V5 antibody and 
shows the Wnt5a-V5 fraction bound to precipitated Ror2 flag. The bottom WB was analyzed with anti-
flag and shows that equal amounts of Ror2 were precipitated in the different samples. B: The WB 
analyzed with anti-HA and anti-myc antibody shows that all co-transfected proteins were expressed 
(Input, first 4 lanes) and were co-precipitated with the Ror2 flag pull-down (IP: anti-flag, last 4 lanes). 
Only Dkk3 was not precipitated with Ror2. C: A scheme of the different proteins used in the 
experiment. sFRP family proteins are related to Fz receptors in the CRD. CRD: Cysteine-rich domain; 
NTR: netrin-like domain; TM: Transmembrane domain; CD: cytoplasmic domain; Cys: Cysteine-rich 
domain. 
 

The stabilizing effect of sFRP2 on Wnt5a was further confirmed in vivo using 

fluorescently tagged proteins in zebrafish embryos. In the absence of sFRP2 only a 

low level of Wnt5a-GFP co-localized with Ror2-mCherry at the membrane (Fig. 16). 

However, co-expression of sFRP2 increased co-localization of Ror2 with Wnt5a in 

punctae at the plasma membrane (Fig. 16). Taken together, our data suggests that 

sFRP2 specifically binds to Ror2 via its CRD and thereby increases the recruitment 

of Wnt5a to Ror2 receptor complexes at the plasma membrane, as indicated by 

stabilized Wnt5a/Ror2 complex formation. 
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Fig. 16: sFRP2 stabilizes Wnt5a/Ror2 complexes in zebrafish embryos. Confocal microscopy 
analysis of live zebrafish embryos expressing 1ng mRNA of the indicated constructs at 30-50% 
epiboly stages shown in the indicated colors. Confocal images represent single z sections. Ror2 
shows membrane localization regardless of the presence of Wnt5a or sFRP2. Wnt5a shows co-
localization with Ror2 in discrete clusters at the membrane. Co-expression of sFRP2 with Ror2/Wnt5a 
leads to an enhanced membrane localization of Wnt5a. (Result obtained in collaboration with 
Benjamin Mattes from the Scholpp Lab, ITG, KIT). 

 

3.4 sFRPs and Fz7 act redundantly in Ror2 activation  

We showed that the sFRP2-CRD mediates interaction with Ror2 and is able to 

enhance Wnt5a/Ror2 complex formation. The CRD of sFRP2 is highly homologous to 

those of other secreted Wnt modulators of the sFRP family. Thus, I analyzed whether 

other sFRPs are also involved in papc transcription. Indeed, a knock-down of sFRP1 

and frzb2 reduced the expression of papc compared to control embryos, suggesting 

that sFRP1 and frzb2 also positively modulate Ror2 signaling (Fig. 17A). In contrast, 

knockdown of Dkk1, a secreted modulator of Wnt/ȕ-catenin signaling, had no 

influence on the expression of papc (data not shown). Moreover, I observed that 

frzb2 could rescue the sFRP2 Mo phenotype (Fig. 17B), indicating that they can 

function redundantly to induce papc.  
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Fig. 17: sFRP1, frzb2 and Fz7 are also required for papc expression. A+B: Relative expression of 
papc analyzed by qPCR in gastrula stage 10.5 embryos injected dorsal equatorially with indicated Mos 
(15ng) and mRNA (200pg frzb2). A: Loss of sFRP2, sFRP1, frzb2 and Fz7 by dorsal Mo injection 
reduces papc induction at gastrula stage. B: Coinjection of frzb2 mRNA can rescue Mo mediated loss 
of sFRP2. Charts show a representative with technical triplicates confirmed by at least 3 independent 
experiments in different batches of Xenopus laevis with similar results.  

 

Consistent with my hypothesis that Fz-CRDs enhance Wnt5a/Ror2 signaling, 

knockdown of Fz7 reduced the level of papc in qPCR (Fig.17A.) and in whole mount 

in situ hybridization experiments (Fig. 18A). Loss of Fz7 therefore mimics loss of 

sFRP2 and Ror2. This suggests that both receptors also co-operate in vivo, in line 

with the known role of Fz7 in Wnt5a/Ror2 induced AP-1 activation in vitro (Nishita et 

al., 2010).Consequently, I investigated whether Fz7 has an effect on Ror2 induced 

signaling in AC explants and found that Wnt5a/Ror2 mediated induction of papc is 

further enhanced by co-injection of fz7 mRNA (Fig. 18B). Notably, in the absence of 

Ror2, Fz7 was unable to induce papc expression in AC, confirming that papc is a 

Ror2 specific target gene, as published earlier (Schambony and Wedlich, 2007). I 

hypothesize that the presence of a CRD motif is required to stabilize the Wnt5a/Ror2 

signaling complex irrespective if provided by the Fz7 receptor or secreted Fz-related 

modulators. 
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Fig. 18: Fz7 is required for papc expression. A: papc expression of Fz7 morphants analyzed by 
whole mount in situ hybridization of gastrula stage embryos. Arrowheads indicate site of injection. B: 
Relative expression of papc analyzed by qPCR in AC explants injected with indicated synthetic 
mRNAs (500pg ror2/fz7 and 150pg wnt5a). Chart shows a representative with technical triplicates 
confirmed by at least 3 independent experiments in different batches of Xenopus laevis with similar 
results. 

 

3.5 sFRP2 and Ror2 inhibit Fz7 mediated signaling  

Gastrulation movements during Xenopus development are not only affected by the 

Wnt5a/Ror2 mediated signaling (Schambony and Wedlich, 2007; Seitz et al., 2014; 

Torres et al., 1996; Veeman et al., 2003; Wallingford et al., 2002) . As described 

earlier, Fz7 also activates non-canonical Wnt signaling when stimulated with Wnt5a 

or Wnt11 (Habas et al., 2003; Kim et al., 2008) and due to the known role of sFRPs 

as Wnt signaling modulators  (Kawano and Kypta, 2003; Wawrzak et al., 2007), I 

further analyzed whether sFRP2 acts in the same complex with Fz7 and affects Fz7 

signaling activity. Using Co-IP, I could show that in addition to Ror2 (Fig. 14), sFRP2 

also interacts with Fz7 (Fig. 19). 
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Fig. 19: sFRP2 physically interacts with Fz7 in vitro. CO-IP in Hek293 cells transfected with Fz7-
myc and sFRP2-HA (1μg each). Protein lysates were precipitated with antibody against myc or HA 
respectively and IgG as negative control. Western Blot (WB) analyzed with anti-HA antibody shows 
that sFRP2 is pulled down together with Fz7. 

 

Since no specific target gene analysis, like papc for Ror2 signaling, is known so far 

for Fz7 mediated signaling, I used a chimeric NT7C5 receptor construct (Swain et al., 

2001). This chimeric receptor consists of the extracellular- and transmembrane 

domains of Fz7, which Wnt5a or Wnt11 bind to and the intracellular domain of human 

Fz5, which transmits the canonical Wnt signal upon ligand binding. Therefore this 

receptor induces the expression of the Wnt/ ȕ-catenin target gene Nodal-related 

(xnr3), when stimulated with Wnt5a. In contrast, wt Xenopus Fz7 cannot activate xnr3 

after Wnt5a stimulation. Analysis of the xnr3 expression in NT7C5 injected AC 

explants by qPCR revealed that sFRP2 (Fig. 20) inhibits Wnt5a/NT7C5 induced xnr3 

expression. The inhibitory effect mediated by sFRP2 was also observed when 

Wnt11, an alternative ligand for Fz7, was used instead of Wnt5a (data not shown). 

 

 
Fig. 20: sFRP2 inhibits NT7C5 mediated xnr3 expression. qPCR analysis of AC explants of 
embryos injected with the indicated mRNAs (500pg n7c5/sfrp2 and 100pg wnt5a) Charts shows the 
mean ± SD of n=3 independent experiments (*) indicates significant difference (Student´s t test* 
p<0.05, **p<0.001) compared to controls.  

 

Previous data have shown that apart from its interaction with Ror2 the Fz7 receptor 

can also induce Ror2-independent Wnt/PCP signaling (Habas et al., 2003). Thus, I 

examined whether Ror2 has an influence on Fz7 mediated signaling using the 

chimeric construct. I quantified xnr3 expression in NT7C5/Ror2 injected AC explants 

and observed that Ror2 completely blocked Wnt5a/NT7C5 mediated xnr3 induction 
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(Fig. 21A). To confirm that Ror2 inhibits Fz7 on the receptor level via direct 

interaction and not by its downstream signaling activity, I included a Ror2 kinase 

dead (KD) mutant in this assay. Since Fz7 and Ror2 interact via their extracellular 

CRD, this Ror2 mutant should still form a complex with NT7C5 but has no signaling 

activity. As demonstrated (Fig.21A), the KD mutant of Ror2 is still able to inhibit 

NT7C5 induced xnr3 expression, indicating that the inhibition of Fz signaling is 

independent of Ror2 downstream signaling. As expected, papc expression was not 

induced by Ror2 KD (Fig. 21B). However, co-expression of wt Ror2 and NT7C5 

strongly enhanced Ror2 mediated papc expression compared to the papc signal 

induced by Ror2 alone (Fig. 21B), supporting the idea that the extracellular portion of 

Fz7 is sufficient for enhancing Ror2 signaling. 

 

 

 

 

 

 

 

 

 

 

Fig. 21: Ror2 inhibits NT7C5 mediated xnr3 expression, while NT7C5 augments Ror2 mediated 
papc expression. A+B: qPCR analysis of AC explants of embryos injected with the indicated mRNAs 
(500pg n7c5/ror2/ror2 kd and 100pg wnt5a). A: Analysis of xnr3 expression. Chart shows the mean ± 
SD of three independent experiments (*) indicates significant difference (Student´s t test*p <0.05, 
**p<0.001) compared to controls. B: Analysis of papc expression. Chart shows a representative with 
technical triplicates confirmed by n=2 independent experiments in different batches of Xenopus laevis 
with similar results. 

 

To further confirm that sFRP2 and Ror2 are negative regulators for Fz7, I used the 

ATF-Luc assay. Consistent with my previous observation, that sFRP2 inhibits NT7C5 

induced xnr3 expression; I showed that sFRP2 inhibits Wnt5a/Fz7 mediated ATF 

reporter activity (Fig. 22A). Since the ATF reporter cannot discriminate between Fz7 

and Ror2 induced signaling, I used the Ror2 KD construct, which is not able to 



 Results 

 Seite 30 

 

activate the ATF reporter but still binds Fz7. Like sFRP2, also Ror2 KD inhibited 

Wnt5a/Fz7 induced reporter activity (Fig. 22B).  

 

 
 
Fig. 22: sFRP2 and Ror2 inhibit Wnt5a/Fz7 mediated ATF reporter activation. A+B: ATF 
luciferase reporter assay of stage12 gastrula embryos injected with the indicated synthetic mRNAs 
(300 pg fz7/ sfrp2 / ror2 kd and 100pg wnt5a per embryo) and the ATF luc and TK Renilla reporter 
constructs. A: Co-expression effect of sfrp2. B: Co-expression effect of ror2 kd. Graphs show the 
mean of 3 ± SEM of biological triplicates of pools of 5 embryos each (* p <0.05 to controls). This was 
confirmed in at least n=3 independent experiments in different batches of Xenopus laevis. 

 

Furthermore, a Ror2 KD was also able to inhibit Wnt11/Fz7 induced signaling (Fig. 

23). Taken together, my results show that sFRP2 and Ror2 negatively influence Fz7 

mediated signaling, while at the same time Ror2 mediated signaling is promoted by 

Fz7 and sFRP2. 

 
Fig. 23: Ror2 inhibits Wnt11/Fz7 mediated non-canonical signaling.  ATF luciferase reporter 
assay of stage12 gastrula embryos injected with the indicated synthetic mRNAs (300 pg fz7/ror2 kd 
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and 100pg wnt11 per embryo) and the ATF luc and TK Renilla reporter constructs. Graph shows the 
mean of 3 ± SEM of biological triplicates of pools of 5 embryos each (* p <0.05 to controls). This was 
confirmed in at least three independent experiments in different batches of Xenopus laevis with similar 
results. 

 

3.6 sFRP2 and Ror2 inhibit Fz7 induced PKCδ but not 
PKCα recruitment 

In addition to the activation of JNK, Fz7 was shown to trigger membrane recruitment 

of PKCį and PKCα. PKCį plays an essential role in non-canonical Wnt signaling and 

in the regulation of CE movements (Kinoshita et al., 2003). Unlike PKCα, PKCį 

belongs to the family of novel protein C kinases and is not activated through Ca2+ 

molecules (Toker, 1998). Since my data revealed that sFRP2 as well as Ror2 inhibit 

Fz7 activity, I tested whether they also affect Fz7 mediated recruitment of PKCį–

GFP in Xenopus animal cap explants. I expressed either PKCį–GFP with Fz7 alone, 

or together with Ror2 or sFRP2 in the animal region of a 2-cell stage embryo. 

Consistent with published data, PKCį was translocated to the plasma membrane 

when co-expressed with Fz7 and indeed both sFRP2 as well as Ror2 disturbed Fz7 

induced PKCį membrane recruitment (Fig. 24). My findings showed that sFRP2 and 

Ror2 prevent Fz7 receptor mediated PKCį recruitment.  

 

 
Fig. 24: sFRP2 and Ror2 inhibit Fz7 induced PKCδ-GFP membrane recruitment. Confocal 
microscopy analysis of Xenopus animal cap explants expressing indicated mRNAs (η00pg PKCį-GFP 
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(green), Fz7, Ror2, sFRP2) and 300pg mRNA of the membrane marker mbRFP. To visualize the 
nucleus, explants were stained with DAPI. 

 

In addition to classical Wnt/PCP signaling, Fz7 also mediates Wnt/Ca2+ signaling 

which involves the activation and membrane recruitment of PKCα, a classical protein 

C kinase which is activated in response to Ca2+ (Winklbauer et al., 2001). Thus, I also 

examined whether sFRPβ and Rorβ are capable to inhibit Fz7 mediated PKCα-GFP 

translocation. In the presence of Fz7, PKCα-GFP was recruited to the plasma 

membrane but neither a co-expression of sFRP2 nor Ror2 inhibited membrane 

localization of PKCα (Fig. 25). Taken together, my findings suggest that sFRP2 and 

Ror2 specifically inhibit the Wnt/PCP branch but not Fz7 mediated Wnt/Ca2+ 

signaling. 

 

 

 
Fig. 25: sFRP2 and Ror2 do not inhibit Fz7 induced PKCα-GFP membrane recruitment. Confocal 
microscopy analysis of Xenopus animal cap explants expressing indicated mRNAs (η00pg PKCα-GFP 
(green), Fz7, Ror2, sFRP2). To visualize the nucleus, explants were stained with DAPI. 

 

3.7 sFRP2 and Ror2 prevent Fz7 receptor endocytosis  

A recent study demonstrated that the internalization of Fz4 via clathrin-mediated 

endocytosis is required for non-canonical Wnt signaling (Chen et al., 2003). This is 

supported by the finding that activation of Rac by Wnt5a requires the internalization 

of Fz2 (Yu et al., 2010) and results suggest that the endocytosis is an essential step 

for transducing the non-canonical Wnt signal. Since my data showed that sFRP2 and 
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Ror2 are inhibitors for the Fz7 receptor, I analyzed whether they have an effect on 

the localization of Fz7 and might block Fz7 internalization. In Hek293 cells, I first 

observed that the over-expression of Ror2 and sFRP2 resulted in a stronger 

accumulation of Fz7 protein at the cell membrane. 

Therefore, I next analyzed whether a loss of sFRP2 or Ror2 have an effect on Fz7-

GFP localization in Xenopus and injected antisense morpholino oligonucleotides for 

sFRP2 or Ror2 into the dorsal marginal zone (DMZ) of 4-cell stage embryos. 

Fluorescence immunostainings show that loss of sFRP2 or Ror2 only slightly affected 

localization of Fz7-GFP (Fig. 26A). When Fz7-GFP was expressed alone it was more 

continuously expressed at the membrane. However, I always observed few more 

Fz7-GFP vesicles when Wnt5a or morpholinos for sFRP2 or Ror2 were co-injected 

(Fig. 26A). These data indicate that sFRP2 and Ror2 might prevent Fz7 receptor 

endocytosis. However, immunostainings of Fz7-GFP in Xenopus explants were very 

difficult to interpret since no clear Fz7 vesicles were formed and membrane 

localization was not significantly reduced by Wnt5a stimulation. Over-expressed Fz7-

GFP was always localized in a diffuse pattern inside the cell and partially trapped in 

the ER (Fig. 26A). To confirm that sFRP2 and Ror2 are involved in blocking Fz7 

endocytosis, I overexpressed sFRP2 or Ror2 in the animal hemisphere together with 

Fz7-GFP and Wnt5a. Co-expression of Wnt5a should stimulate the endocytosis of 

Fz7-GFP, which I expected to be inhibited by sFRP2 or Ror2 over-expression. 

However, co-injection of Wnt5a alone did not lead to a significant decrease of Fz7-

GFP at the plasma membrane or an increase of Fz7-GFP positive vesicles (Fig. 

26B), indicating that Wnt5a stimulation did not work as expected. Nevertheless, both, 

sFRP2 and Ror2 co-expression resulted in a stronger accumulation of Fz7-GFP 

protein at the cell membrane (Fig. 26B). Therefore, these finding confirm the trend 

found in the loss of function analysis in the DMZ (Fig. 26A) and support my 

hypothesis that sFRP2 and Ror2 interfere with Fz7 receptor internalization. 
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Fig. 26: sFRP2 and Ror2 prevent Fz7 receptor internalization in Xenopus. Confocal microscopy 
analysis of Xenopus DMZ explants for loss-of-function (A) and AC explants for gain of function (B) 
effects. The embryos were injected at 2-4 cell stage in the area of explantation with 500pg of the 
indicated constructs, 15 ng of the indicated morpholinos and 300pg mRNA of the membrane marker 
mbRFP. To visualize the nucleus, explants were stained with DAPI. 

 
Although both gain and loss of function analysis in the Xenopus explants already 

point towards an inhibitory function of sFRP2 and Ror2 on Wnt5a induced Fz7 

endocytosis, the data obtained involved technical problems, which will be discussed 

later. Therefore, I additionally tested whether a knockdown of sFRP2 or Ror2 also 

affects the localization of endogenous Fz7 protein in DMZ explants. Compared to 

explants that were injected with a Co Mo, loss of sFRP2, Ror2 as well as a double 
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knockdown of both proteins clearly reduced Fz7 membrane localization (Fig. 27). A 

similar effect was observed when explants were treated with Wnt5a. These findings 

indicate that sFRP2 and Ror2 are required for Fz7 membrane stabilization. 

 

 
 
Fig. 27: Loss of sFRP2, or Ror2 and a double knockdown of both proteins reduce endogenous 
Fz7 membrane localization. Confocal microscopy analysis of Xenopus DMZ explants. The embryos 
were injected at 4-cell stage in the the dorsal equatorial zone with 500pg Wnt5a and 15 ng of indicated 
morpholinos. 
 

To confirm the trend observed in the Xenopus explants, I decided to include 

microscopic analyses in zebrafish, as another vertebrate model system. 

High-resolution in vivo imaging in zebrafish embryos has recently proven a valuable 

tool to study trafficking of Wnt ligands and receptors in a living vertebrate model 

organism (Hagemann et al., 2014; Stanganello et al., 2015). By using this imaging-

based in vivo approach performed in the lab of Steffen Scholpp (KIT, ITG, Karlsruhe, 

Germany), we observed that in the absence of Wnt5a, Fz7 (Fz7-CFP) was localized 

at the cell membrane as well as in intracellular vesicles. After stimulation with Wnt5a, 

Fz7 was translocated from the membrane to intracellular vesicles (Fig. 28). However, 

co-injection of sFRP2 or Ror2 (Ror2-mCherry) decreased Wnt5a induced Fz7 

receptor internalization. Instead, Ror2-mCherry and Fz7-CFP molecules formed 
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prominent clusters at the plasma membrane upon Wnt5a stimulation (Fig. 28). When 

sFRP2, instead of Ror2, was co-expressed along with Fz7 and Wnt5a, cluster 

formation of Fz7 was not observed (Fig. 28). Moreover, cluster formation was 

dependent on the presence of Wnt5a, since Fz7 and Ror2 alone did not form 

clusters. In the absence of Wnt5a or Ror2, Fz7 was homogenously distributed at the 

membrane. Collectively, these findings confirm the data obtained in Xenopus and 

indicate that sFRP2 and Ror2 trap Fz7 at the cell membrane, probably to reduce Fz7 

receptor internalization and signaling.  

 

 

 

Fig. 28: sFRP2 and Ror2 prevent Fz7 receptor internalization in zebrafish. Confocal microscopy 
analysis of live zebrafish embryos expressing 1ng mRNA of indicated constructs at 30% - 50% epiboly 
stage together with 1ng mRNA of the membrane marker mem-mCherry (red) or GFP-GPI (blue). Fz7-
CFP (green) is present at the membrane and in endocytic vesicles. Co-expression of Wnt5a leads to 
enhanced internalization. sFRP2 as well as Ror2 are able to decrease Wnt5a mediated endocytosis of 
Fz7. 

 

It is conceivable that in complex with Fz7, with the transmembrane protein Ror2 

serves as an anchor, which blocks endocytosis. For soluble sFRP2 this mechanism 

is less obvious. Interestingly, the NTR domain of sFRP was suggested to interact 

with heparan proteoglycans at the cell membrane (Finch et al., 1997). To investigate 

if the NTR is responsible for sFRP association with the cell membrane, I analyzed 

Fz7 localization in the presence of the NTR deletion mutant. Indeed, I found that 
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sFRP2 lacking the NTR domain was less potent in stabilizing Fz7 at the membrane 

(Fig. 29).  

 

 

 

Fig. 29: sFRP2 lacking the NTR domain does not prevent Fz7 membrane internalization in 
zebrafish. Confocal microscopy analysis of live zebrafish embryos expressing 1ng mRNA of indicated 
constructs at 30% - 50% epiboly stage together with 1ng mRNA of the membrane marker mem-
mCherry (red). Fz7-CFP (green) is present at the membrane and in endocytic vesicles. Co-expression 
of Wnt5a leads to enhanced internalization, which is repressed by full length sFRP2 (also compare 
with Fig.28). The CRD of sFRP2 alone is unable to prevent Wnt5a induced stabilization of Fz7 at the 
membrane but appears to increase size of the Fz7 vesicles. 

 

Taken together, my data support a novel role for sFRPs on the activation of distinct 

branches of the non-canonical signaling network. sFRPs activate Wnt5a/Ror2 

signaling by stabilizing the ligand/receptor complex and have an inhibitory effect on 

Fz7 mediated signaling, most likely by inhibiting its endocytosis. While the CRD of 

sFRP2 seems to be sufficient for the activation of the Wnt5a/Ror2 pathway, the NTR 

domain seems to be essential for efficient Fz7 receptor stabilization. My data further 

indicate that sFRP2 as well as Ror2 specifically inhibit Fz7 mediated PKCį but not 

PKCα recruitment suggesting that they have modulating functions in Wnt/PCP but 

not Wnt/Ca2+ signaling.  
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4 Discussion 

4.1 Co-expression of Ror2 and Fz7 leads to selective 

pathway inhibition or activation 

 

A tight regulation of the different Wnt signaling cascades is crucial for proper cell 

migration during embryonic development. During Xenopus development, the 

receptors Fz7 and Ror2 are stimulated by the same ligand, but can activate different 

downstream effectors and are suggested to mediate two distinct branches of ȕ-

catenin independent Wnt signaling (Fig. 4) (Ho et al., 2012; Niehrs, 2012; 

Schambony and Wedlich, 2007). However, it has also been shown that Fz7 and Ror2 

co-operate to induce the activation of AP-1 in vitro (Nishita et al., 2010). Using 

specific read-outs for the distinct branches of Ror2 and Fz7, I was able to shed more 

light on the molecular interplay of these two parallel pathways in vivo.  

For Ror2 mediated signaling, I analyzed the expression of the target gene papc and 

found that Fz7 enhances Ror2 mediated signaling and is required for papc 

expression during  Xenopus gastrulation (Fig. 18). This function is independent of the 

intracellular Fz domain, since a stronger papc induction was also observed when the 

chimeric Fz7 receptor with a “canonical” signaling domain of Fzη (NT7Cη) was co-

expressed with Ror2 (Fig. 21). This suggests that the presence of an extracellular Fz-

CRD motif promotes Ror2 activity. Surprisingly, signal transduction via the Fz7 

receptor is repressed when both receptors are co-expressed. Using the chimeric 

NT7C5 receptor to monitor Fz7 mediated signaling, I observed that Ror2 inhibited 

Wnt5a/NT7C5 induced xnr3 expression (Fig. 21). This inhibition was not caused by 

downstream signaling components of Ror2, which inhibit Wnt/ȕ-catenin signaling 

(Yuan et al., 2011), because the kinase inactive Ror2 mutant, Ror2 KD (Fig. 21) 

(Schambony and Wedlich, 2007), also inhibited NT7C5 signaling. Thus, these data 

indicate that inhibition of Fz7 signaling by Ror2 occurs at the level of receptor 

complex formation.  

 

 



 Discussion 

 Seite 39 

 

4.2 sFRP2 fine-tunes signaling of Fz7 and Ror2 at the 

receptor level 

Data obtained by characterizing the function of sFRP2 strongly support the 

assumption that the presence of an extracellular Fz7-CRD motif promotes Ror2 

activity. In this study, I demonstrate that sFRP2 is required for morphogenesis during 

Xenopus gastrulation by differentially modulating the Ror2 and the Fz7 pathways. 

Similar to Ror2, sFRP2 inhibited Wnt5a/Fz7 mediated ATF activation (Fig. 22) as well 

as Wnt5a/NT7C5 induced xnr3 expression (Fig. 20) and TopFlash activity. Focusing 

on Ror2 signal transduction, I found that sFRP2, like Fz7, cooperates with Ror2 to 

induce Wnt5a mediated papc expression (Fig. 12). Moreover, sFRP2 and other 

sFRPs are required for papc expression during gastrulation (Fig. 17), which further 

supports the hypothesis that CRDs of Fz-related proteins promote and are required 

for Ror2 signal transduction. Notably, preliminary data revealed that sFRP2 binds to 

Ror2 via its CRD motif. 

Although there are several studies showing that sFRPs can act as Wnt signaling 

modulators (Bhat et al., 2007; Leyns et al., 1997; Lin et al., 1997; Lopez-Rios et al., 

2008; Uren et al., 2000), the mechanism of Wnt signal regulation by sFRPs is still 

unresolved. Due to my findings I focused on the function of the CRD in this process 

and provide insights into the potential mechanism of Ror2 signal regulation. Since the 

CRD of sFRP2 alone was able to enhance Wnt5a binding to Ror2 (Fig. 15A), I 

suggest that CRDs are responsible for Wnt5a/Ror2 stabilization and enhanced Ror2 

signaling. Notably, Dkk3 which contains a cysteine-rich region distinct from those of 

classical Fz and sFRP CRDs (Cruciat and Niehrs, 2013) did not bind to Ror2 and had 

no effect on Wnt5a/Ror2 stabilization (Fig. 15). The Fz7 receptor, however, is known 

to enhance Wnt5a binding to Ror2 (Nishita et al., 2010), indicating that Ror2 signal 

transduction is specifically affected by Fz CRDs.  

The findings, that sFRPs stabilize Wnt5a/Ror2 complex formation, is further 

consistent with the observation that sFRP2 increased Wnt5a punctae at the plasma 

membrane in zebrafish embryos (Fig. 16). However, in the absence of sFRP2 there 

was constantly less Wnt5a-GFP detected in the experiments, which could indicate 

that Wnt5a-GFP is stabilized upon binding to a CRD of a receptor or a sFRP. In the 

absence of a CRD motif, Wnt5a might be degraded. This correlates with data 

showing that Ror2 signaling is much lower when only Wnt5a was co-expressed (Fig. 
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12). Of note, there was no an additional increase of Ror2 activity using higher 

concentrations of sFRP2 (data not shown), indicating that sFRP2 might modulate 

Wnt signaling in a biphasic manner and might form inactive clusters at high 

concentrations. Consistently, data published previously showed that increasing 

amounts of soluble mouse Fz8-CRD modulated Wnt3a induced signaling in a 

biphasic manner and micromolar CRD concentrations were proposed to form inactive 

Wnt-CRD polymers (Kumar et al., 2014).  

Taken together, results show that sFRP2 is necessary to regulate morphogenic 

movements during Xenopus gastrulation. sFRP2 inhibits Fz7 but augments Ror2 

signaling suggesting that sFRP2 balances the signaling activities of Ror2 and Fz7. 

Furthermore, the CRD of sFRP2 is sufficient to stabilize Wnt5a/Ror2 complexes at 

the membrane and thereby promotes Ror2 signal transduction. 

 

4.3 sFRP2 and Ror2 inhibit Fz7 mediated PKCδ but do not 

affect Fz7 mediated Wnt/Ca2+ signaling 

Activation of Fz7 was further shown to trigger the Wnt/Ca2+ branch through 

heterotrimeric G-proteins, which leads to the activation of Ca2+ sensitive protein 

kinase PKCα. In Xenopus, stimulation of PKCα results in its translocation to the cell 

membrane (Wang and Steinbeisser, 2009; Winklbauer et al., 2001). Fluorescence 

immunostainings revealed that sFRP2 and Ror2 do not inhibit Fz7 mediated PKCα 

translocation (Fig. 25) and similar to Fz7, Ror2 alone could induce membrane 

recruitment of PCKα. Notably, it was demonstrated that Wnt5a/Ror2 induced 

expression of papc is unrelated to the Wnt/Ca2+ branch since papc transcription was 

insensitive to pertussis toxin, an inhibitor for G-proteins (Leaney and Tinker, 2000). 

Thus, Ror2 alone is probably unable to induce PCKα translocation and both sFRP2 

and Ror2 rather promote PKCα activation mediated through Fz7 receptors that are 

animally expressed in Xenopus. However, these findings do not provide sufficient 

information and it is difficult to say whether sFRP2 and Ror2 promote or just do not 

affect Fz7 induced PKCα membrane translocation. To obtain further evidence, it 

could be analyzed whether a knockdown of Fz7 prevents PCKα translocation 

observed in Ror2 over-expressing ACs and additionally test the effect of sFRP2 and 

Ror2 on other components of this signaling cascade. 
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In addition to PKCα, Fz7 can also trigger membrane translocation of PKCį, which 

was demonstrated to be essential for Fz7 induced JNK activation and morphogenesis 

during Xenopus gastrulation (Kinoshita et al., 2003). There exist various members of 

the PKC family and each has a specific expression profile and is believed to play 

distinct roles. Similar to PKCα, PKCį is sensitive to DAG, a substrate produced by 

Wnt/Ca2+ signaling (Toker, 1998). Focusing on the the localization PKCį in Xenopus 

AC explants, sFRP2 as well as Ror2 reduced Fz7 mediated PKCį recruitment (Fig. 

24). Ror2 by itself was unable to recruit PKCį to the membrane.  

While canonical signaling is largely distinct from non-canonical Wnt signaling, single 

non-canonical Wnt branches partially overlap and can share several pathway 

components. The Wnt/PCP and Wnt/Ca2+ branches share common effectors and 

several reports suggest that they may be a joint part of a common non-canonical Wnt 

pathway. Notably, there is accumulating evidence that G-proteins play a role in all 

Wnt/Fz cascades. Fz receptors belong to the super family of G-protein coupled 

receptors and it was demonstrated that they interact with different types of 

heterotrimeric G-proteins (Katanaev et al., 2005; Koval and Katanaev, 2011; Nichols 

et al., 2013). However, it remains to be tested by loss of function experiments 

whether specific heterotrimeric G-proteins play a role in non-canonical Wnt signaling. 

 

Collectively, the presented data show that sFRP2 and Ror2 inhibit the recruitment of 

PKCį, in line with its known function in CE movements and Fz7 mediated JNK 

activation (Kinoshita et al., 2003). This is in agreement with the proposed hypothesis 

that sFRP2 and Ror2 antagonize Wnt/PCP signaling during CE.  

In contrast, Fz7 mediated translocation of PCKα was not inhibited suggesting that 

they do not affect the process of tissue separation during Xenopus gastrulation. 

However, further studies are needed to prove this hypothesis. 
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4.4 sFRP2 and Ror2 prevent Fz7 receptor internalization 

and signaling 

In the past, endocytosis has been considered mainly as a terminator of signaling by 

receptor turn-over but recent studies present evidence that Fz receptor internalization 

is a positive key player in many signaling events (Blitzer and Nusse, 2006; Kim et al., 

2008; Ohkawara et al., 2011). In Xenopus dorsal marginal zone explants, a 

morpholino oligonucleotide mediated knockdown of Ror2 always resulted in a slightly 

higher Fz7 vesicle formation compared to those that only expressed Fz7-GFP (Fig. 

26). Consistently, over-expression of Ror2 enhanced Fz7 accumulation at the 

membrane indicating that both proteins exert inhibitory effects on Fz7 endocytosis. 

However, in both experimental set ups, a stimulation with Wnt5a did not significantly 

increase Fz7 internalization which served as a positive control in this assay. It should 

be noted that Wnt proteins are highly expressed in the DMZ of a gastrulating 

Xenopus embryo and therefore the endogenous Wnt concentration might already be 

too high to induce stronger effect. Alternatively, it might be that injected Wnt proteins 

were not properly expressed in these experiments. Moreover, over-expressed Fz7-

GFP was partially trapped in the ER and was not localized in clear patterns even at 

very low expression levels. It could be tested whether an mCherry or CFP tagged 

Fz7 version induces clearer results in these localization assays. Due to these 

technical problems, the localization of endogenous Fz7 in DMZ explants was further 

analyzed. Stimulation with Wnt5a enhanced the amount of intracellular Fz7 vesicles 

and consistent with previous observations, loss of sFRP2/Ror2 as well as a double 

knockdown reduced Fz7 membrane staining (Fig. 27). However, injected mbRFP 

RNA, which serves as a membrane marker, was not expressed in this experimental 

setup and therefore has to be reproduced. In addition, it has to be tested whether 

overexpression of sFRP2 or Ror2 enhance endogenous Fz7 membrane staining.  

To verify the proposed hypothesis, I decided to include zebrafish as another 

vertebrate model system. In zebrafish, Wnt5a induced a clear formation of 

intracellular Fz7 vesicles (Fig. 28). This vesicle formation was strongly reduced when 

Ror2 is co-expressed demonstrating that Ror2 is able to retain Fz7 at the cell 

membrane. Moreover, Ror2 and Fz7 formed prominent clusters when Wnt5a was co-

expressed indicating that Ror2/Fz7 cluster formation and complex stabilization 
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depends on the presence of Wnt. The Wnt5a-induced Ror2/Fz7 cluster formation is 

in line with previous findings that Wnt5a stimulates Ror2 clustering at the cell 

membrane in Xenopus tissues (Wallkamm et al., 2014) and Wnt5a enhances Fz7 

binding to Ror2 (Nishita et al., 2010). However, it was shown that the CRD of Ror2 

enhances Fz7 mediated clustering of Dvl2, which co-localizes with the Wnt/PCP 

effector Rac1 suggesting that Ror2 supports Fz7 triggered signaling (Nishita et al., 

2010). At a first glance this is controversial to the inhibition of Fz7 specific signaling 

by Ror2 observed in our study. Still, it is not known yet whether the formation of Dvl2-

Rac1 clusters alone is sufficient to activate signaling in mouse L-cells, or if these 

need to be internalized in complex with Fz7 to induce Wnt signaling. It remains to be 

shown whether Fz7 is also part of the observed Dvl2-Rac1complex or if Ror2, as in 

our study, traps Fz7 at the membrane and induces AP-1 via an alternative and Rac1 

independent pathway, as shown for Xenopus (Schambony and Wedlich, 2007). 

Furthermore, the interaction of Fz7 and Ror2 could have different, context dependent 

effects in distinct cell lines and tissues. As an example, Ryk (atypical receptor related 

tyrosine kinase) was demonstrated to function as a co-receptor for Fz7 to promote 

Wnt11 mediated endocytosis of Dvl (Kim et al., 2008). Ryk is a one pass 

transmembrane protein with a Wnt inhibitory factor (WIF) motif unrelated to Fz-CRDs 

and maternally provided in Xenopus. Ror2, which is strongly up-regulated during 

gastrulation, might compete with Ryk in mesodermal tissue for Fz7 binding to 

antagonize their cooperating effect. Similar to this, the type of co-receptor expressed 

in a given tissue could determine whether Fz internalization and signaling is 

repressed or promoted. It would be interesting to test whether sFRPs have an impact 

on Ryk/Fz7 interaction. 

In addition to Ror2, sFRP2 was also able to stabilize Fz7 at the cell membrane in 

Xenopus and zebrafish (Fig. 26, 27, 28) and a morpholino oligonucleotide mediated 

knockdown of sFRP2 slightly increased the amount of intracellular Fz7 vesicles in 

Xenopus dorsal marginal zone explants. However, sFRP2 did not induce such a 

strong Fz7 cluster formation as seen in Ror2 treated zebrafish animals, suggesting 

that the transmembrane and intracellular domain of Ror2 might serve as an anchor 

for Fz7. Analyses of the effect of a Ror2 mutant that lacks the C-terminal domain 

could give a hint whether the intracellular domain has an impact on Fz7 stabilization. 

Also, cell surface biotinylation and co-localization assays with effectors of the 
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endocytotic machinery would further support the hypothesis that Fz7 endocytosis and 

signaling is impeded in the presence sFRP2 and Ror2. The effect induced by sFRP2 

is much weaker and the potential mechanism how it stabilizes Fz7 will be discussed 

below. 

In summary, sFRP2 and Ror2 prevent Fz7 receptor endocytosis, which could provide 

a mechanism for the observed inhibition of Fz7 signal transduction. 

The presented study demonstrates that the CRD motif in sFRPs interacts with 

different receptors and can act as a molecular switch to promote or repress specific 

ȕ-catenin independent Wnt signaling branches. On the basis of these data, I propose 

following model: when each receptor is expressed alone and stimulated with Wnt5a, 

Ror2 signaling is mildly stimulated and the Fz7 receptor is internalized thereby 

activating the Fz7 signaling pathway (Fig.  panel (A)). However, when sFRP2 is 

present in the extracellular space, it binds to Ror2 via its CRD and stabilizes 

Wnt5a/Ror2 complexes leading to a high Ror2 signaling activity. On the other hand, 

when sFRP2 binds to Fz7, this complex is stabilized at the cell membrane, 

preventing Fz7 endocytosis and thereby reducing Fz7 signaling (Fig.  panel (B)). 

Independent of sFRP2, when both receptors are co-expressed they can directly 

interact and influence the signaling activity of the other, leading to enhanced Ror2 

and reduced Fz7 signaling. The CRD of the corresponding receptor thereby 

substitutes the CRD of sFRP2 (Fig. panel (C)). 



 Discussion 

 Seite 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How can the divergent effects of sFRPs in different receptor contexts be explained? 

CRD-CRD interactions appear to be at the core of this regulatory mechanism. These 

data suggest that CRD heterodimers formed by the Ror2-CRD enhance signaling via 

this route whereas Fz7 heterodimers formed with Ror2 or sFRP-CRDs inhibit 

signaling and endocytosis of Fz7. On the other hand, forced Fz7 homodimerization 

has been shown to induce canonical Wnt signaling (Carron et al., 2003) . PCP 

signaling via Fz7 might therefore be generally inhibited by Wnt ligand binding to a 

Fz7 with dimeric CRD configuration, which probably precludes association with 

membrane-bound or cytoplasmic factors specific for the Fz-Rho signaling pathway 

(Habas et al., 2003). To solve this hypothesis, the role of the receptor-ligand 

stoichiometry in different non-canonical Wnt signaling cascades and the effect of 

sFRPs on the complex composition should be the focus of future studies.  
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4.5 Efficient Fz7 receptor inhibition requires both the CRD 

and NTR domain of sFRP2 

At present, it is unclear how sFRP2 prevents Fz7 receptor endocytosis. The NTR 

domain of sFRP was suggested to interact with heparan proteoglycans and therefore 

might be responsible for sFRP association with the cell membrane (Finch et al., 

1997). Indeed, sFRP2 lacking the NTR domain (sFRP2-CRD) was less potent in 

stabilizing Fz7 at the membrane (Fig. 29) indicating that the NTR domain of sFRP2 

might be instrumental for efficient Fz7 receptor stabilization. Furthermore, preliminary 

data showed that sFRP2 lacking the NTR domain (sFRP2-CRD) could also not inhibit 

Fz7 mediated ATF activity. Interestingly, also the CRD deleted mutant did not inhibit 

but rather enhanced Fz7 signaling. These findings implicate that efficient inhibition of 

Fz7 receptor endocytosis and signaling by sFRP2 requires the presence of both the 

CRD and NTR domain.  

The NTR domain of sFRP1 was demonstrated to interact with Wnt ligands and 

antagonizes their activity in the anterior neural plate (Lopez-Rios et al., 2008). It was 

shown that the CRD of sFRP1 binds to Fz5 whereas the NTR domain interacts with 

Wnt8. The NTR domain could mimic the function of the entire molecule and inhibit 

Wnt8 induced ȕ-catenin signaling. This was also the case for the sFRP2-NTR mutant 

(Lopez-Rios et al., 2008; Uren et al., 2000). Interestingly, for sFRP3 the CRD was 

required and sufficient for the modulation of Wnt signaling. sFRP3 that lacks the CRD 

was unable to bind to Wnt1 and could not inhibit Wnt1 induced axis duplication (Lin 

et al., 1997). Sequence analysis revealed that the NTR motif of sFRP1, sFRP2 and 

sFRP5 share a similar cysteine pattern related to Netrin-1 whereas sFRP3 and 

sFRP4 display a different cysteine - spacing and a distinct pattern of disulphide 

bonds. Furthermore, sFRP1 is N-glycosylated and sulphated at two 2 tyrosine 

residues that are absent from sFRP2, -3 and - 4 (Chong et al., 2002; Zhong et al., 

2007). Notably, plasmon-resonance binding studies demonstrated that Wnt3a, a 

ligand, which activates canonical Wnt signaling, binds at least two sites in sFRP1, 2 

and sFRP4, and one in sFRP3. In contrast, Wnt5a which induces non-canonical Wnt 

signaling binds exclusively to sFRP1 and 2. The affinity of sFRPs to canonical Wnt 

ligands might be different to those of non-canonical Wnt ligands. It seems that there 

exist differences among sFRP family members how and which pathway they 
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prevalently interfere with. It will be of interest to study the effect of different sFRPs, 

their deletion constructs and chimeric constructs of their CRD and NTR domains on 

the Wnt5a/Ror2, Wnt/Fz7 and the other Wnt pathways. 

In case of sFRP2 and with focus on non-canonical Wnt signaling, I assume that 

sFRP2-NTR binds and shuttles Wnt5a molecules to Fz7, which results in enhanced 

Fz7 signaling activity. Sequestered Wnt5a either has a higher affinity to the Fz7 

receptor than to the NTR domain, or the NTR domain alone is unable to efficiently 

associate with both the Fz7/Wnt5a complex and membrane proteins. The Wnt5a/Fz7 

complex is internalized alone or together with the NTR domain, which finally leads to 

signaling. The tertiary structure of sFRP2 therefore seems to be important to retain 

the Fz7/Wnt5a complex at the cell membrane. The CRD however can bind to Fz7 

and is internalized together with Fz7 bound to Wn5a. This also mediated Fz7 

signaling since it lacks the NTR domain which is essential to retain Fz7 at the cell 

membrane. In this context it would be interesting to examine whether the NTR of 

sFRP2 is also capable to interact with Fz7 and in addition to have a closer look on 

other sFRP family members, such as sFRP3 and sFRP4, and if they also have block 

Fz7 endocytosis and signaling. 
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5 Material and Methods 

5.1 Materials 

5.1.1 Antibodies 

α-Digoxigenin-AP   sheep    Roche 

α-flag, M2    mouse   Sigma 

α-flag, OctAprobe   rabbit    Santa Cruz 

α-V5     mouse   Invitrogen 

α-myc, 9E10    mouse   Calbiochem 

α-rabbit Alexa 488   goat    Invitrogen 

α-mouse Alexa 488   goat    Molecular Probes 

α-rabbit HRP    rabbit    Bio Rad 

α-mouse HRP   goat    Bio Rad 

α-mouse HA    mouse   Sigma 

α-rabbit GFP    rabbit    Abcam 

 

5.1.2 Buffer and Solutions 

Cysteine solution    2% L-cysteine, pH 7.8 

DMEM Ready mix    PAA, Sigma 

DMEM High Glucose   PAA; Sigma 

MBSH      88 mM Nacl, 1mm KCl, 2.4 mM NaHCO3,   
                                                       0.33 mM Na(NO)3, 10 mM Hepes (pH 7.4)  
    
MEMFA 100mM MOPS, 2 mM EGTA, 1mM MgSO4,                

3.7% Formaldehyde 
 
MMR 100 mM NaCl, 2mM KCL,1 mM MaSO4, 2 

mM CaCl2, 5 mM Hepes, pH 7.4 
 
Mowiol     20 mg Mowiol, 50 ml Glycerol  

PBS (10x) 137 mM NaCl, 27 mM KCl, 20 mm KH2PO4, 
100  mM Na2HPO4 x 2H2O 

PBST      1x PBS, 0.1% Tween-20 

4% PFA/PBS    4% PFA in 1x PBS 
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pH 9 Buffer     0.1 M NaCl, 0.1 M Tris pH 9.5, 50 mm MgCl2 

3x SDS/Lämmli Buffer 150 mM Tris-HCl pH 6.8, 6% SDS, 0.3% 
Bromphenol blue, 30% Glycerol, 300 mM 
DTT 

 
SDS-PAGE running Buffer   24.8 mM Tris, 192 mM glycine, 0.1 % SDS 

SSC (20x)     3 m NaCl, 0.3 M sodium citrate, pH 7.5 

Western Blot Transfer Buffer  10 mM Tris, 192 mM glycine, 20% methanol 

TBE (10x)     89 mM Tris, 89 mM Boric acid, 2 mM EDTA 

TBS (10x)     50 mM Tris-HCl, pH 7.4, 150 mM NaCl 

Blocking solution (In situ)   2% BBR, 20% sheep serum in MABT 

Blocking solution (Western Blot)  5% milk powder in 1x PBST 

Blocking solution (IF)   3% BSA, 205 NGS, 0.1 M glycine in H2O 

Bleaching solution    15 H2O2, 5% formamide, 0.5 x SSC 

BBR (10%)     10% Boehringer Blocking reagent, 1x MAB 

BBR/MABT (2%)    1 v 10% BBR, 4 v MABT 

Hybridization Buffer  5x SSC, 50% formamide, 1% BBR, 1 mg 
yeast tRNA, 0.1 mg heparin, 0.1 % Tween-
20, 0.1 % Chaps, 5mM EDTA 

 
LB medium     1% Bactotrypon,1% NaCl, 0.5% yeast extract 

LB-Amp 1.5 % agarose, LB-medium, 50 mg/ml 
Ampicillin 

 
MAB (10x)     1 M maleic acid, 1.5 M Nacl, pH 7.5 

MABT 100mM Maleic acid, 150 mM NaCl, 0.1% 
Tween, pH 7.5 

 
MEM (10x) 1M MOPS, 20 mM EGTA, 10 MM MgSO4  

pH 7.4 
 
NP40 Lysis Buffer  150 mM NaCl, 10 mM Tris/HCl, pH 7.8, 1 

mM MgCl2, 0.75 mM CaCl2, 1% NP-40 and 
0,3 mM OGP 
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5.1.3 Enzymes, Kits and Markers 

 

BM Purple     Roche 

Chorionic gonadotropin (human)  Sigma 

Complete Mini Protease   Roche 

Inhibitor Cocktail Tablets 

 

DIG-RNA labelling mix   Roche 

EuroTaq DNA polymerase   Euroclone 

FastDigest™ Resriction enzymes Thermo Scientific 

Page Rule™ Prestained δadder  Thermo Scientific 

GeneRuler™ 100bp and 1kb δadder Thermo Scientific 

Proteinase K     Sigma 

Phusion DNA Polymerase   Finnzymes 

 

RT Maxima Reverse Transcriptase Thermo Scientific 

Midori Green Advanced or direct  Nippon Genetics 

RNA Polymerase    Roche 

T4 Polynucleotid kinase 

T4 DNA Ligase    Thermo Scientific 

TurboFect™ Transfection reagent Thermo Scientific 

RiboLock RNAse inhibitor   Fermentas 

DNase I     Fermentas 

Turbo DNAse     Fermentas 

Absolute QPCR SYBR® Green   Thermo Scientific 

QIAquick Gel extraction kit   Qiagen 

Super Signal West Femto   Thermo Scientific 
Maximun Sensitivity Trail Kit 
 
Dual-Luciferase Reporter kit  Promega 

mMessage mMachine High Capped Ambion 
RNA Transcrition kit (Sp6, T3, T7) 
 

Qiagen Plasmid Midi Kit   Qiagen 
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5.1.4 Oligonucleotides 

qPCR 
 
odc forward:    η’-GTCAATGATGGAGTGTATGGATC-γ’   
odc reverse:    η’-TCCATTCCGCTCTCCTGAGCAC-γ’   

xnr3 forward:    5´-CCAAAGCTTCATCGCTAA AAG-3´,             
xnr3 reverse:     5´-AAAAGAAGGGAGGCAAATACG-3´              

papc forward:    η’-CCCAGTCGGTCTCTTCTTCTTTG-3´   
papc reverse:    5`-TTGCTGATGCTGCTCTTGGTTAG-3´   
 
xbra forward:     5´-TTCAGCCTGTCTGTCAATGC-3 ´    
xbra reverse:    5´-TGAGACACTGGTGTGATGGC-3´    
 
Cloning: 
 
CRD-HA forward: 5´-GCTCCTCTTCTAAGAAAACTCG-3´         
CRD-HA reverse:    η’-CGATCTCCTTCACTTTTATCTTC-γ’                 
 
NTR-HA forward:     5´-CGATCTCCTTCACTTTTATCTTC-3´        
NTR-HA reverse:    5´- GCATCCGCAAGCTTCAG-3´          
 
 

5.1.5 Antisense morpholino Oligonucleotides 

All antisense morpholino oligonucleotides (Mos) used in this study were ordered from 

Gene Tool LLC. sFRP2 Mo (5´-AGCGCGACCCGCTGTGCCACATGAT -3´) covers 

the ATG region of xsfrp2 (BJ071409). All other Mo´s were previously described: Fz7 

Mo (Winklbauer et al., 2001), Ror2 Mo and Standard Mo (Schambony and Wedlich, 

2007), sFRP1 Mo2 (Gibb et al., 2013) and frzb2 (crescent) Mo (Shibata et al., 2005). 

All antisense Mos were injected with a concentration of 15 ng / embryo. 
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5.1.6 Plasmids 

pCS2+NT7C5      (Swain et al., 2001) 

pCS2+Fz7      (Medina and Steinbeisser, 2000)  

pCS2+Fz7-myc     KM. Kürner 

pCS2+Fz7-GFP     KM. Kürner 

pCS2+PKCα- GFP     (Sheldahl et al., 1999) 

pCS2+PKCį- GFP      Amaya Manchester 

pCS2+Ror2      (Hikasa et al., 2002) 

pCS2+ Ror2 KD          (Hikasa et al., 2002) 

pCS2+Wnt5a     (Moon et al., 1993) 

pCS2+Wnt11     (Du et al., 1995) 

pCS2+ Dkk3-HA         Andrey Glinka 

pCS2+mouse Ror2-myc    Andrey Glinka 

pCS2+mouse Ror2 ECD-flag   Andrey Glinka 

pCS2+ mb-RFP     (Iioka et al., 2004) 

pCMV-SPORT6+human sFRP2    (Invitrogen) (Ac.No: NM_003013 )  

pCS2+sFRP2-HA      Anne Gorny 

pCS2+frzb2      Anne Gorny 

M50-Super 8xTOP-Flash     (Biechele and Moon, 2008) 

ATF2  reporter     (Ohkawara and Niehrs, 2011) 

 

pCS2+sFRP2-CRD HA / pCS2+sFRP2-NTR-HA deletion constructs were generated 

from full length pCS2+sFRP2-HA by PCR amplification using the following primers: 

5´-CGATCTCCTTCACTTTTATCTTC-3´and 5´- GCATCCGCAAGCTTCAG-3´ for 

pCS2+sFRP2-NTR HA and 5´-GCTCCTCTTCTAAGAAAACTCG-γ´ and η’-

CGATCTCCTTCACTTTTATCTTC-γ’ for pCSβ+sFRPβ-CRD HA. 

For zebrafish experiments all expression constructs were subcloned in pCS2+ (Rupp 

et al., 1994). cDNAs were obtained from xFz7, xRor2 and xWnt5a (Schambony and 

Wedlich, 2007). mem-mCherry, and GFP-GPI (Rengarajan et al., 2014). 
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5.1.7 Cells and Bacteria 

E. coli XL1 (chemocompetent) 

E. coli DH10B (electrocompetent) 

Wnt5a-V5 producing mouse L-cells  

Hek293 cells 

 

5.1.8 Microscopes and Equipment 

Axiophot stereomicroscope    Zeiss 

DC350FX camera      Leica 

C1 plus laser-scanning microscope   Nikon 

TCS SP5 X confocal laser-scanning microscope Leica 

ND-1000 Spectrophotometer     NanoDrop 

Lucy 2        Anthos Mikrosystems GmbH 

 

5.1.9 Software 

Image J 

Photoshop 

NIS-Elements Viewer 4.0, Nikon 

Microsoft Excel 

Imaris v7.5.2 software (Bitplane AG) 
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5.2 Nucleic acid methods 

5.2.1 RNA Isolation 

Total RNA from either 5 whole embryos at stage 11, 10 AC dissected at stage 8.5, or 

10 DMZ explants dissected at stage 10.5 were cultivated until control embryos 

reached stage 12 and RNT was extracted using the MasterPure™ RNA Purification 

Kit (Epicenter Biotechnologies) according the manual instructions. The Quantity of 

total RNA was measured using a NanoDrop ND-1000 and RNA quality was checked 

by gel eletctrophoresis. 

 

5.2.2 cDNA synthesis 

To analyze the expression of the target gene by quantitative real time (qRT) PCR, 

extracted RNA (5.2.1) has to be reverse transcribed (RT-PCR) into cDNA. RNA was 

transcribed using random hexamer primers and reverse transcriptase RT Maxima 

(Fermentas). 500ng-1µg of total RNA was incubated in the following 20 µl reaction 

volume according to the program listed in Tab.1.  

 

         x µl        RNA 
                     4 µl        5x RT buffer 
                     1 µl        dNTPs 
                     1 µl        Random Hexamer Primer 
                     1 µl        RT Maxima 
       0.5 µl       Ribolock 
 
The reaction volume was filled up to 20 µl with RNAse free water.  

 

 Temperature Time 

 96 °C 2 min 

 

25-30 x 

94 °C 

55-65 °C 

72 °C 

30 sec 

30 sec 

1 min 

 72 °C 5 min 

 4 °C ∞ 

 

Tab.1: PCR program used for RT-PCR 
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5.2.3 Quantitative real-time PCR 

To quantify gene expression quantitative real PCR (qRT-PCR) was performed using 

SybrGreen Mix (Thermo Scientific) as a detection system. Reaction was carried out 

on a Real time PCR theromocycler (Analytik Jena) and set up in the following 10µl 

PCR reaction volume according to the program listed in Tab.2: 

 

2 µl  cDNA sample 
             5 µl      SybrGreen Mix 
         0.4 µl      reverse primer 
         0.4 µl      forward primer  
         2.2 µl      water 
 
 

 Temperature Time 

 95 °C    2 min 

40x 95 °C 

60 °C 

  5 sec 

15 sec 

 melt 6 sec 

       

Tab. 2: PCR program used for qRT-PCR 

 

Expression levels were normalized to ornithin-decarboxylase (odc). Primer for odc: 

5´-TGCACATGTCAAGCCAGTTC-3´, 5´-GCCCATC ACACGTTGGTC-3´; xnr3: 5´-

CCAAAGCTTCATCGCTAA AAG-3´,            

5´-AAAAGAAGGGAGGCAAATACG-3´; papc: η’-CCCAGTCGGTCTCTTCTTCTTTG-

3´, 5`-TTGCTGATGCTGCTCTTGGTTAG-3´. xbra: 5´-

TTCAGCCTGTCTGTCAATGC-3 ´, 5´-TGAGACACTGGTGTGATGGC-3´.  
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5.2.4 DNA Isolation 

For plasmid DNA isolation from bacteria (E.coli XL-1) the Midi-prep kit was used and 

performed according the manual. Single bacteria colonies were inoculated in LB-

medium containing the corresponding antibiotic and incubated overnight at 37°C on a 

shaker. DNA isolation from agarose gels was performed using the QiaQuick DNA 

extraction kit according the manual instructions. To quantify the amount of isolated 

DNA, a spectrophotometer (NanoDrop) was used. 

 

5.2.5 Restriction digests of plasmids 

Restriction enzymes are prokaryotic endonucleases that recognize specific DNA 

sequences and can cut double stranded DNA at these sites. These enzymes either 

create a 5´- or 3´- overhang or blunt ends. Plasmids were digested using FastDigest 

restriction enzymes (Fermentas) according the manual. Reactions were incubated for 

1 h at 37°C and the reaction was stopped either by heat inactivation or ethanol 

precipitation. 

 

5.2.6 Nucleic acid precipitation 

To precipitate nucleic acids, sample containing plasmid DNA is mixed with 1/10 

volume of 3M natrium acetate and 3 volumes of 100% ethanol. After the sample was 

incubated for 30 min at -20°C, it is centrifuged at 13.000rpm for 15 min. The 

supernatant is removed and the pellet which contains the nucleic acids is washed 

once with 75% ethanol. After the pellet is air dried it is re-suspended in an 

appropriate volume of RNAse free water. Linearization and quality can be checked 

on an agarose gel (5.2.13) and is further serves as a template for Cap-RNA synthesis 

(5.2.7). 

 

5.2.7 Cap RNA synthesis 

For microinjections into Xenopus embryos, 5´-capped mRNAs have to be 

synthesized from linearized plasmids. A methylated guanine at the 5´-end is required 

for mRNA stability and attachment to the ribosome, where it is translated into a 
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protein. For this purpose the RNA Transcription kit (Ambion) was used and reaction 

was performed according the manual in the following 10µl reaction volume: 

 
    1 µg        linearized plasmid DNA 
    5 µl         2x NTP/CAP 
    1 µl   10 x reaction buffer 
    1 µl    Sp6/T7 or T3 enzyme mix 
    x µl    water  
  
After the reaction was incubated for 3 h at 37°C, 1 µl Turbo DNAse was added and 

incubated for further 15 min to digest all residual DNA. To stop the reaction, 120 µl of 

water and 15 µl ammonium acetate stop solution were added to the sample and 

mixed vigorously. Synthesized Cap-RNA was then purified by phenol/chloroform 

(5.2.9). 

 

5.2.8 DIG RNA synthesis 

To detect endogenous RNA expressed in the Xenopus embryo, Digoxygenin (DIG) 

labeled antisense RNA was used. The labeling mix from Roche was used and RNA 

expression can be visualized by an enzymatic reaction. Linearized and purified DNA 

serves as a template for DIG RNA synthesis and the reaction was set up according 

the following equation: 

 

                                                  1 µg          linearized plasmid 
              Add to 17 µl     water 
            2.5 µl    10x labeling mix 
            2.5 µl         10x polymerase buffer 
            0.5 µl          RNAse inhibitor 
            1.5 µl          RNA polymerase 
 
Anti-sense probe against papc was synthesized from the pBS+PAPC full-length 

clone (Kim et al., 2000), linearized with XbaI and T7 RNA polymerase was used for in 

vitro transcription. The reaction was incubated for 3 h at 37°C and then precipitated 

by adding 1.5 µl 7.5M LiCl and 70 µl ice cold 100% ethanol. After this reaction was 

incubated for 30 min at -20°C, the sample was centrifuged at 13.000 rpm for 30 min 

at 4°C to pellet the DIG-RNA. The supernatant was removed and the pellet was 

washed twice with 75% ethanol and then air dried until DIG-RNA was re-supendend 

in 20µl 2x SSC/10% formamide. DIG-RNA can be stored at -20°C and quality is 

checked by gel electrophoresis (5.2.13). 
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5.2.9 RNA Purification by Phenol/Chloroform 

Phenol/Chloroform extraction was used to separate Cap-RNA acids from proteins 

and lipids. In a first step, the nucleic acids solution is mixed with the same volume of 

Phenol-chloroform-isoamylalcohol. After the sample is centrifuged for 5 min at 12.000 

rpm, the upper aqueous phase is transferred into a fresh tube. This solution is then 

mixed with an equal volume of chloroform-isoamylalcohol (1:24) and centrifuged for 5 

min at 12.000 rpm. The upper phase is again transferred in a new tube and 

precipitated by isopropanol for minimum 30 min at -20°C. To pellet the nucleic acids, 

it is centrifuged at 12.000 rpm for 30 min. The supernatant is discarded and the pellet 

is washed once with 75% ethanol before it is re-suspended in an appropriate volume 

of water. The quality of purified Cap RNA can be checked on an agarose gel (5.2.13) 

and is ready to use for Xenopus microinjections (5.5.3). To quantify the amount of 

Cap-RNA, a spectrophotometer (NanoDrop) was used. 

 

5.2.10 Polymerase chain reaction (PCR) 

 

Temperature gradient PCR 

For cloning purposes the proofreading Phusion DNA polymerase was used.  To 

amplify single CRD and NTR domains of sFRP2 a temperature gradient PCR was 

performed using specific primers flanking the start site of each region (see 5.1.4). For 

both deletion construct, the following 50 µl reaction volume was used for amplification 

according to the PCR program in Tab 3. 

 

      1 ng       template plasmid 
           10 mM        dNTPs 
                 1 µl         Primermix 
             10 µl         5x Phusion HF Buffer 
            0.5 µl         Pfu polymerase 
     x µl         water 
 
For each deletion construct, seven reactions were set up and PCR was performed at 

the following temperatures: 

 

57°C, 59°C, 60.2°C, 61.4°C,  62.6°C, 63.8°C, 65°C 
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 Temperature Time 

 98 °C 

98 °C 

30 sec 

10 sec 

35x see temp. 

above 

 30 sec 

15 sec 

 72 °C 10 sec 

 

Tab.3: PCR program used for Cloning 

 

Single amplified reactions were then separated on agarose gel (5.2.13). Specific 

bands were then cut out of the gel and purified using the QIAquick Gel extraction kit 

according the manual. 

 

5.2.11 Phosphorylation and Ligation of amplified PCR products 

Amplified PCR products were phosphorylated using a T4 Polynucleotid kinase and 

the reaction was set up as follows: 

 

      15 µl      template 
        2 µl     10x ReactionBuffer  
        2 µl  10 mM ATP 
        1 µl     T4 Polynucleotid kinase  
 
This reaction was incubated for 20 min at 37°C and enzyme was heat inactivated for 

10 min at 37°C. Phosphorylated blunt ends of amplified DNA segments were further 

ligated using a T4 Ligase in the following 20 µl reaction volume:  

      

                   20-100 ng     phosphorylated plasmid 
         2 µl     10x Ligase Buffer 
                     2 µl     50% PEG 4000 solution 
         1 µl      T4 Ligase 
         x µl      water 
 
To check whether cloning was successful both generated constructs were double 

digested with specific restriction enzymes and analyzed by gel electrophoresis 

(5.2.13) and sequencing. 
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5.2.12 Chemical transformation in E.Coli  

50 µl of chemocompetent E. coli XL1 cells were mixed with 100 µl of amplified 

plasmids and incubated for 20 min on ice. The plasmid cell suspension was heat 

shocked for 40 sec. at 42°C and then incubated for 2 min on ice. After 

transformation, bacteria were cultured in 800 µl LB-medium without antibiotics for 1 h 

at 37°C. 100 µl of this suspension was then plated on LB agar plates containing the 

corresponding antibiotic and incubated over night at 37°C. 

 

5.2.13 Agarose Gel electrophoresis 

Gel electrophoresis was used to analyze the quality of RNA or DNA fragments 

according their size. Agarose was melted in 1x TBE buffer and was polymerized in as 

gel-cast. For electrophoresis, the gel was placed in a chamber filled with 1xTBE 

buffer. DNA or RNA samples were mixed with 6x concentrated Midori Green direct 

(Nippon Genetics) and filled with water up to a total volume of 10µl. Samples were 

loaded into the single pockets of the agarose gel and nucleic acids were separated 

by electrophoresis under constant voltage. In addition, 6µl of a DNA protein ladder 

was used as a size standard. Nucleic acids were visualized by UV light exposure. 

 

5.3 Cell culture methods 

5.3.1 Cell culturing Hek293 and L-cells 

Hek293 cells and Wnt5a-V5 producing L-cells were cultured in DMEM High Glucose 

containing 1% Penicillin/Streptavidin and 10% FCS in a 5% CO2 incubator at 37°C. 

When cells were 80% confluent, they were treated with 1 ml Trypsin/EDTA for 1 min. 

When cells completely detached from the flask surface, 9 ml fresh culture medium 

was added. 1 ml of this cell suspension was then mixed with 15 ml culture medium in 

a fresh culture flask. 

 

5.3.2 Transfection Hek293 cells 

For transfection, cells were seeded in an appropriate density. 24h later they were 

transfected using TurboFect Transfection reagent. DNA, DMEM high Glucose without 
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serum and TurboFect reagent were mixed according the manual instructions. The 

solution was incubated for 20 min at RT and afterwards added dropwise to the cells. 

GFP was always used as a transfection control and to adapt protein amounts. 

 

5.3.3 Conditioned media generation of L-cells 

L-cells stably producing Wnt5a-V5 protein were seeded in an appropriate density in 

10 cm petri dishes containing 15 ml culture medium. After 3 days of cultivation, 

complete supernatant was collected in a separate glass bottle. Fresh culture medium 

was added to the cells and incubated for further 3 days. Again, the supernatant was 

removed and mixed with the conditioned medium collected before. Conditioned 

media was filtered sterile using 0.2 µm Whatman filters, transferred in a fresh glass 

bottle and stored at 4°C for a maximum time of 2 month. 

 

5.4 Biochemical and immunological methods 

5.4.1 Immunoprecipitation 

For immunoprecipitation experiments (IP) in Hek293 cells, 1µg of corresponding 

plasmids were transfected using Turbofect transfection reagent (Sigma). 

pCS2+mRor2-myc was transfected alone or together with either pCS2+sFRP2-HA or 

pCS2+sFRP2-NTR HA or pCS2+sFRP2-CRD HA. pCS2+GFP plasmid was used as 

a transfection control and to adapt transfected plasmid amounts. Hek293 cells were 

grown for 48 h in a 6-well culture dish. After cells were washed twice with 500 µl ice 

cold PBS, 400 µl NP40-Lysis buffer containing 10% protease-and phosphatase 

inhibitor was added to each well and incubated for 10 min at 4°C on a shaker. The 

cells were scraped off the well and cell solutions were then transferred into 1.5 ml 

tubes and further incubated for 40 min on an overhead-rotator. To pellet cell debris, 

tubes were centrifuged with 12.000 rpm for 20 min at 4 °C. After cells were lysed, the 

protein lysate was divided into three separate aliquots either incubated with a mouse 

anti-IgG antibody (Dianova), anti-myc antibody (1:100, Calbiochem) or a mouse anti-

HA antibody (1:100, Sigma) to precipitate the corresponding tagged proteins. 50 µl 

was served as the input. 30 µl of magnetic bead suspension (Ademtech) were added 

to the immune complex and incubated for further 3 h at 4°C. Using a magnetic rack, 
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beads which bound to the immune complex were washed 3x with 500 µl Lysis buffer 

and were then re-suspended in 30 µl PAG elution buffer to elute the immune 

complex. The solution was mixed by pipetting up and down for 1 min. Beads were 

collected by a magnetic rack and supernatant, containing the immune complex was 

transferred to a new tube. For the binding assay in Hek293 cells, 1 µg of 

pCS2+mouseRor2 ECD flag was transfected alone or in combination with either 

pCS2+sFRP2-HA, pCS2+sFRP2-CRD HA, pCS2+Fz7- myc or pCS2+Dkk3-HA or 

pCS2+GFP. After 48 h of incubation, cells were washed with serum free media and 

were further incubated with Wnt5a-V5 conditioned media stably secreted by L-cells 

(Ohkawara et al., 2011) for 25 min. Cells were lysed in NP40 – Lysis buffer followed 

by the incubation with a rabbit anti-flag (OctAprobe: Santa Cruz). After the cell lysate 

was incubated for 2 h at 4°C on an overhead rotator, 50 µl magnetic bead 

suspension (Ademtech) was added and further incubated over night at 4 °C. After 

washing the precipitated proteins several times with ice-cold lysis buffer, lysates were 

re-suspended in PAG elution buffer (Adamtech).  

Purified protein samples were mixed with 6x SDS-Laemmli buffer, heated up to 90 °C 

for 5 min and samples were then frozen at -80°C. 

 

5.4.2 SDS-Page and Western Blot 

Proteins were separated by SDS-polyacrylamide gel electrophoresis using a Novex 

XCell SureLock mini chamber. A 15% separating gel topped with a 4% stacking gel 

was prepared by polymerization as described (Laemmli 1970). 10µl of protein 

extracts were separated at constant voltage of 150V in SDS-PAGE running buffer. 

6µl of a pre-stained protein ladder was used as a molecular weight standard.  

Afterwards, SDS-gel containing separated proteins were transferred on a 

nitrocellulose membrane by semi Dry western Blotting. After the protein transfer was 

checked by PonceauS staining the membrane was blocked in 5% milkpowder in 

PBST for 1 h at RT followed by incubation with the first antibody (see corresponding 

figure legends) over night at 4°C. Next day, membrane was washed 6x 15 min with 

PBST and further incubated for 1 h with secondary antibody at RT. For western blot 

analysis, a mouse anti-myc antibody (1:1000, Calbiochem), a mouse anti-V5 

antibody (1:1000, Invitrogen), a mouse anti-flag antibody (1:1000, Sigma) or a mouse 

anti-HA antibody (1:1500, Sigma) were used. 
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Specific protein signals were visualized by the chemoluminscence SuperSignal west 

Femto Maximum Sensitivity Substrate trail Kit (Thermo Scientific) and further 

detected on X-ray film.  

 

5.4.3 Renilla Luciferase Reporter Assay 

For TopFlash Luciferase assay, 2-cell stage embryos were injected animally, into 

both blastomeres and for the ATF luciferase reporter assay, 4-cell stage embryos 

were injected into both animal ventral blastomeres. 100 pg of the ATF2-Luciferase-,or  

80pg of the TopFlash reporter plasmid and 10 pg of the TK Renilla Luciferase 

reporter plasmid were either injected alone or together with indicated synthetic 

mRNAs in the figure legends. The ATF2 Luciferase reporter assays and TopFlash 

Luciferase assays were carried out from whole embryos lysed at gastrula stage 12 

and stage 1, alternatively. Triplicates of 5-7 embryos each were homogenized on ice 

in 125 µl Passive Lysis buffer (Promega). To remove the cell debris, samples were 

centrifuged for 5 min once at 10000 rpm and then at 5000rpm. 20 µl of each embryo 

lysate without the fat layer was transferred in a 96 well plate and Luciferase activity 

was measured using the Dual luciferase system (Promega) according to 

manufacturer’s instructions. 

 

5.4.4 Immunostaining of Xenopus DMZ and AC explants 

AC or DMZ explants of Xenopus embryos were fixed for 40 min at RT in 3.7% 

PFA/PBS. After explants were washed twice with PBS for 15 min, they were further 

incubated in Tris/NaCl for 30 min, followed by another 15 min in PBS. Explants were 

permeabilized in 0.3% Triton X-100/PBS for 10 min and then washed twice with PBS 

for 15 min before they were incubated in blocking solution for 1h at RT. Afterwards 

they were incubated with an anti-rabbit α-GFP antibody in blocking solution (1:10) 

overnight at 4°C. Explants were washed several times with PBS and were again 

incubated with a secondary α-rabbit Alexa 488 antibody (1:200) in blocking solution 

at 4°C overnight. After they were washed with PBS, explants were stained with 

Dapi/PBS and were finally mounted using Mowiol and a cover glass. Glass slides 

were dried over night at 4°C and then used for further analysis. 
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5.5 Embryological Methods 

5.5.1 Xenopus egg collection 

Xenopus laevis frogs were obtained from Nasco. All experiments complied with local 

and international guidelines for the use of experimental animals. Female Xenopus 

laevis frogs were injected with 400IU of human chorionic gonadotropin into the lymph 

sac. Around 10-12 hours after injection the frogs started to lay eggs. They were 

collected in a small petri dish and further used for in vitro fertilization. 

5.5.2 In vitro fertilization 

For preparation of the sperm solution, a piece of testis was cut off and homogenized 

in 500µl 1x MBSH. This solution was added on top of the eggs and were further 

spread out and arranged to a monolayer. They were covered with water which 

decreases the salt concentration and enables the sperm to move and fertilize the 

eggs. 40 minutes post fertalization they were de-jellied with 2% cysteine hydrochlorid, 

pH 7.8 by gentle agitation for not longer than 5 minutes. Fertilized embryos were 

washed 5x with water and twice with 1x MBSH. For experiments, embryos were 

microinjected in 1xMBSH and further cultured in 0.1× MBSH at 14-18°C. 

Embryos were staged according to (Nieuwkoop and Faber, 1967) and dorsal 

blastomeres of 4 - cell embryos were identified according to (Klein, 1987). 

 

5.5.3 Microinjection 

In vitro synthesised 5´-capped RNA (5.2.7) or antisense morpholino oligonucleotides 

(5.1.5) were injected into Xenopus embryos by a IM300 Microinjector. The stage and 

side of injection depends on the single experiment and is mentioned in the 

corresponding figure legend. Embryos were placed in a small petris dish that is filled 

with 1x MBSH and covered with 1% agarose. Injection volume was calibrated to 5 nl.  

After injection, they were cultured for 1 h in 1x MBSH and then in 0.1 x MBSH.  

Injection sites, construct compositions and stages used in the individual experiments 

are indicated in the figure legends and in the following sections of Material and 

Methods. 
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5.5.4 Animal cap explants 

For Animal Cap (AC) explants, embryos were injected animally into both blastomeres 

ACs can be explanted from blastula embryos at stage 9. By using fine forceps, the 

vitelline membrane is carefully removed without harming the embryo. In a next step, 

the embryo is oriented in such a way that the pigmented animal pole is faced up. The 

AC is then explanted and placed into a petri dish filled with 1x MBSH.  ACs were 

either used for RNA extraction (5.2.1) or the AC elongation assay (5.5.5).  ACs used 

to analyze the expression of papc or xnr3, were incubated for 5h at RT before RNA 

was extracted. 

5.5.5 Animal cap elongation assay 

For the elongation assay, ACs were dissected at stage 8.5 (5.5.4) and cultivated 

overnight in 0.5 x MBSH together with 10 ng/µl gentamycin and 50 ng/µl Activin on 

plates coated with BSA. For the analysis of xbra expression, AC explants were 

cultivated only for 2 h in Activin before total RNA was extracted for qPCR (5.2.1). 

When control embryos reached stage 26, the ACs were fixed in MEMFA (5.5.7) and 

scored for elongation. Elongated explants were classified into three subgroups: full 

elongation, partial elongation and no elongation. 

 

5.5.6 Dorsal marginal zone explants 

Embryos were injected into the dorsal equatorial zone at 4-cell and dorsal marginal 

zone (DMZ) explants were dissected from gastrula embryos at stage 10. After the 

vitelline membrane was removed, the dorsal third part of the embryo was removed as 

described (Shih and Keller, 1992).  DMZ explants were placed in a petri dish filled 

with 1x MBSH and incubated for 2 h at RT before RNA was extracted (5.2.1). 

 

5.5.7 Fixation of embryos 

When embryos reached the desired stage, they were collected in a glass vial and 

fixed in 2 ml 1x MEMFA for 2h at RT or at 4°C overnight. Fixed embryos were 

washed twice with 1x PBS for 10 minutes and used directly for phenotypic analysis or 

in situ hybridization (5.5.8). For long-time storage they can be kept in 100% methanol 

at -20°C. 
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5.5.8 Whole mount In situ hybridization 

Whole mount in situ hybridization is a technique used to visualize a spatial 

expression pattern of endogenous mRNA (Harland, 1991). For this method, an 

antisense RNA probe that is labeled with Digoxygenin coupled nucleotides (5.2.8) 

can hybridize to the endogenous target mRNA. This probe can be visualized by using 

an α-Digoxygenin labeled antibody coupled to alkaline phophatase which uses BM-

purpel (Roche) as a substrate. For Whole-mount in situ hybridizations, 4-cell stage 

embryos were injected into the DMZ with morpholinos (5.1.5) and/or synthetic 

mRNAs (5.2.7).  In situ hybridization was performed as follows: 

 
Day 1:  
 

 When embryos were kept in 100% Methanol, rehydrate them in 70%, 50% and 
25% MeOH in PBST 

 wash 2x 5 min in PBST 
 Proteinase K digest: 10µg/ml in PBST, 20 min at RT 
 wash 2x in PBST 
 fixation in 3.7% PFA/PBS for 10 min at RT 
 wash 4x 5 min in PBST 
 1 ml hybridization buffer 5 min at RT 
 1 ml pre-warmed hybridization buffer 1 h at 65 °C 
 1 ml fresh hybridization buffer 2-6h at 65°C 
 Hybridization of antisense probes: 1µl probe/1 ml hybridization buffer 

 

Day 2:  
 

 Wash 1x 5 min with 50% formamid/ 0.1% Chaps/ 5x SSC( preheat to 65°C) at 
RT 

 Wash 1x 5 min with 25% formamid/ 0.1% Chaps/ 3.5x SSC at RT 
 Wash 1x 5 min with 50% formamid/ 0.1% Chaps ( preheat to 37°C) at RT 
 Wash 2x 25 min with 2x SSC /0.1% Chaps at 37°C 
 Wash 1x 5 min with 0.2x SSC/0.1% Chaps at RT 
 Wash 2x 30 min with 0.2x SSC/ 0.1 % Chaps at 60°C 
 Wash 2x 10 min with 0.2x SSC/ 0.1% Chaps at RT 
 Wash 1x 10 min with 0.2x SSC/ 0.1% Chaps: MABT (1.1) at RT 
 Wash 2x 5 min and 2x10 min with MABT at RT 
 Incubate embryos with 1ml MABT/ 2% Boehringer Blocking reagent 

(BBR)(Roche) for 1 h at RT 
 Dilute α-Dig-AP antibody 1:10000 in MABT/ 2% BBR/ 20% heat inactivated 

sheep-serum albumin  
 Incubate embryos in 1 ml α-Dig-AP solution at 4 °C overnight 
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Day 3:  
 

 Wash 2x 20 min and 4x 1h with MABT at RT 
 Wash 1x 15 min with pH 9 buffer at RT 
 Mix BM Purpel with pH 9 buffer (1:1) and add 500µl to each vial 
 Keep vials with embryos in the dark and check coloration under the 

microscope 
 Wash 2x 5 min with 1x PBS at RT to stop colour reaction 
 Fix embryos in 3.7% PFA/PBS over night at 4°C 

 

Pigmented embryos were bleached using 1% H2O2/ 5% formamid in 0.5x SSC under 

intensive light. 

 

5.6 Statistical Analysis 

Significant levels of qPCR and ATF data were calculated using the One-way Anova 

analysis and the paired Student´s t-test (* p ≤ 0.0η; ** p ≤ 0.01; *** p ≤ 0.001). 

Calculations were performed using Microsoft Excel or SPSS. 
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6 Appendix 

6.1 Index of Abbreviations 

AC   animal cap 

Amp   ampicillin 

ATF2   activating transcription factor 2 

BBR   boehringer blocking reagent 

BSA   bovine serum albumin 

cDNA   copy DNA 

CE   convergent extension 

dNTPs  nucleoside triphosphate 

DNA   desoxyribonucleic acid 

DMZ   dorsal marginal zone 

Dvl   Dishevelled 

E. coli   Escherichia coli 

Fz7   Frizzled 7 

GFP   Green fluorescent protein 

GSK   glycogen synthase kinase 

GTPase  GTPase activating proteins 

hCG   human chorionic gonadotropin 

HEPES  2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethansulfonic acid 

Hek   human embryonic kidney 

JNK    c-jun N-terminal kinase 

ISH   whole mount in situ hybridization 

MO    morpholino antisense oligonucleotide 

mRNA   messenger ribonucleic acid 

MEM   Modified Eagle´s Medium 

PAPC   Paraxial Protocadherin 

PCP   planar cell polarity 

PCR   polymerase chain reaction 

PKCα   protein kinase C alpha 

Rac   Ras-related C3 botulinum toxin substrate 
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RhoA   Ras homolog gene family member A 

rpm   rounds per minute 

RFP   red fluorescent protein 

RT   room temperature 

SDS   sodium dodecyl sulfate polyacrylamide gel electrophoresis 

st   stage 

TEMED  N,N,N’,N’-Tetramethylethylendiamin 

Wnt   Wingless; Int 

wt   wild type 

xbra   Xenopus brachyury 
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