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Impulsive Kontrolle der atomaren Dipolantwort in der Zeit- und Frequenzdomäne
— Die Dipolantwort eines angeregten Quantensystems gewährt direkten Einblick in die
Elektronendynamik, die vom einfallenden Licht in Bewegung gesetzt wird. Spectrosko-
piemethoden wie die zeitaufgelöste Absorptionsspektroskopie nutzen die Tatsache, dass
die Dipolantwort einen charakterisitschen Fingerabdruck im Spektrum des transmittierten
Lichts hinterlässt. In dieser Arbeit wird ein allgemeines und leichtverständliches Modell
vorgestellt, das es erlaubt die Dipoldynamik die von zwei ultrakurzen Lichtpulsen aus-
gelöst und manipuliert wird analytisch zu beschreiben. Die Beschreibung findet sowohl
in der Zeit- als auch in der Frequenzdomäne statt. Darauf basierend wird eine zweidi-
mensionale Spektraldarstellung der zeitaufgelösten Absorptionsspektren entwickelt, mit
deren Hilfe sich verschiedene Mechanismen der Licht-Materie-wechselwirkung trennen
und gezielt untersuchen lassen. Dies wird experimentell durch die Untersuchung von elek-
tronischen Wellenpakten in doppelt-angeregtem Helium und in innervalenz-angeregtem
Xenon demonstriert.
Zudem wird eine Methode zur in situ Charakterisierung der intensiven Laserpulse, welche
zur Manipulation der Elektronendynamik des Quantensystems eingesetzt werden, vorge-
stellt und experimentell angewendet. Die Möglichkeit diese ultrakurzen und intensiven
Laserpulse direkt in der Spektroskopieprobe zu analysieren erlaubt es die Elektronendy-
namik präzise zu vermessen und zu kontrollieren, sowie die Vergleichbarkeit von Experi-
ment und Theorie zu verbessern.

Impulsive control of the atomic dipole response in the time and frequency domain —
The dipole response of an excited quantum system gives direct insight into the electron
dynamics triggered by the incoming light. Spectroscopy techniques such as (attosecond)
transient absorption spectroscopy make use of the fact that the dipole response leaves
its characteristic fingerprint on the transmitted light. In this work, a general and com-
prehensive model is introduced, which allows for an analytic description of dipole dy-
namics triggered and modified by two ultrashort light pulses in both time and frequency
domains. Based on this description, a two-dimensional spectral representation of time
delay–resolved absorption data is developed. The power of the method to separate differ-
ent pathways of light–matter interaction, which allows for their individual investigation,
is demonstrated experimentally by studying electronic wave packet dynamics in doubly
excited helium and inner-valence excited xenon.
Furthermore, an in situ technique for characterization of the intense dressing laser pulse
that drives (nonlinear) quantum dynamics in time-resolved absorption experiments is de-
rived from the same analytic model and demonstrated experimentally. The possibility to
characterize these ultrashort strong-field laser pulses directly within the spectroscopy tar-
get enhances the scope of transient absorption spectroscopy as it allows for the precise
measurement and control of electron dynamics and increases the comparability between
experiment and theory.





List of Publications

Parts of this work have been published or prepared in the following references:

A. Blättermann, C. Ott, A. Kaldun, T. Ding and T. Pfeifer.
Two-dimensional spectral interpretation of time-dependent absorption near laser-coupled
resonances.
J. Phys. B: At. Mol. Opt. Phys. 47, 124008 (2014).
(for additional information see [1])

A. Blättermann, C. Ott, A. Kaldun, T. Ding, V. Stooss, M. Laux, M. Rebholz and
T. Pfeifer.
In situ characterization of few-cycle laser pulses in transient absorption spectroscopy.
Opt. Lett. 40, 3464–3467 (2015).
(for additional information see [2])

Further publications with own contributions:

C.-T. Chiang, A. Blättermann, M. Huth, J. Kirschner, and W. Widdra.
High-order harmonic generation at 4MHz as a light source for time-of-flight photoemis-
sion spectroscopy.
Appl. Phys. Lett. 101, 071116 (2012).
(for additional information see [3])

C.-T. Chiang, A. Blättermann, M. Huth, J. Kirschner, and W. Widdra.
Oscillator-based High-order Harmonic Generation at 4MHz for Applications in Time-of-
Flight Photoemission Spectroscopy.
EPJ Web of Conferences 41, 01019 (2013).
(for additional information see [4])

A. Blättermann, Cheng-Tien Chiang, J. Kirschner, and W. Widdra.
Atomic line emission and high-order harmonic generation in argon driven by 4-MHz sub-
µJ laser pulses.
Phys. Rev. A 89, 043404 (2014).
(for additional information see [5])



viii LIST OF PUBLICATIONS

C. Ott, A. Kaldun, L. Argenti, P. Raith, K. Meyer, M. Laux, Y. Zhang, A. Blättermann,
S. Hagstotz, T. Ding, R. Heck, J. Madrõnero, F. Martin and T. Pfeifer.
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Chapter 1

Introduction

The journey is the reward.

This statement by the ancient Chinese scholar Confucius is deeply enrooted in the nature
of many branches of science. It is not only the initial and the final state of a process that
are of importance. Very often, it is the course—or the dynamics—of the process itself
that is at least of the same importance. Having precise knowledge on the dynamics of
processes comprises two great advantages: The insight and the deeper understanding of
the process itself, which often proves useful on its own. And second, the possibility to
use this knowledge and actively intervene the process to increase its efficiency (if the
processes is wanted, e.g. photosynthesis [10]), to block it (if the process is unwanted, e.g.
the uncontrolled division of cancer cells [11]) or to tailor the outcome of the process (e.g.
in chemical synthesis reactions).
One of the major obstacles in getting insight into the course of a process is the time scale
at which the dynamics of the process evolve. Everything that does not occur on the time
scale of our normal perception, e.g. a few days to a few milliseconds, needs extra care or
tools to be resolved in time. On the large–time scale side are processes like the evolution
of the universe or the formation of mountain ranges which span millions to billions of
years. This thesis, however, is dedicated to the other extreme of time scales: Electronic
processes in atoms (or in ensembles of atoms like molecules or condensed materials)
occur on the few-femtosecond (1 fs= 10−15 s) and even attosecond (1 as= 10−18 s) time
scale. One femtosecond is so short that it takes light, which only needs about 1 second to
go from the earth to the moon, more than 3300 fs to travel just 1 mm. Further, capturing
a single lightning strike (duration ≈ 10 ms) with a hypothetical camera that takes one
image per femtosecond, it would take 13000 years to watch the full movie (at 24 frames
per second). The need to study these processes lies in the fundamental role they play in
nature. To name only a few examples, ultrafast electronic processes determine charge
migration in organic photovoltaics [12] and chemical bond formation and breaking [13],
or could be utilized to establish ultrafast signal processing [14].

Having such incredibly fast dynamics, there is only one well established tool to study
electronic process on their natural time scale: ultrashort pulses of light. Traditionally,
femtosecond and attosecond light pulses have very different properties based on the
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way they are generated. Femtosecond light pulses are usually generated by lasers. The
invention of modelocking [15] where typically the Kerr-lens effect is employed [16]
boosted the achievable pulse durations to ever shorter values. Further technological
achievements made it possible to increase the pulse energy by 5 and more orders of
magnitude and to compress these pulses temporally to a few femtoseconds (see Sec. 2.1.2
for details). These—often called strong-field—laser pulses, as their intensity can
easily excess 1014 W/cm2, typically consist of only a few cycles of the electromagnetic
carrier wave [17–19]. They are the working horse of what is called strong-field and
attosecond physics as they provide enough intensity to drive nonlinear dynamics in the
investigated quantum system and they are used to create the even shorter attosecond
pulses, which to date provide the ultimate time resolution. The process used to create
attosecond pulses from femtosecond pulses is called high-order harmonic generation,
which is an extremely nonlinear frequency conversion discovered in 1987 [20]. It
typically produces a train of attosecond pulses [21] or with some effort (see Sec. 2.1.3)
isolated attosecond pulses [22], which have been reported to fall below durations of 100
attoseconds [19, 23]. Compared with the intense femtosecond pulses, which are usually
situated in the visible to near-infrared (NIR) region of the spectrum, the attosecond
pulses are located in the extreme-ultraviolet (XUV) and are orders of magnitude less
intense. In most experiments, the femtosecond NIR pulse and the attosecond XUV pulse
are used in a pump–probe scheme, which can be applied to study and control ultrafast
dynamics in atoms [6, 24–26], molecules [27, 28], and solids [14, 29–31]. However,
there are also techniques with attosecond resolution were only the NIR pulse is used,
e.g. high-harmonic spectroscopy [32–35] or angular streaking [36, 37]. Here, the at-
tosecond timing information is achieved by resolving the cycle structure of the NIR pulse.

In order to deduce dynamical information about the target’s response to the short and
possible intense laser pulses, a "reaction product" of the light–matter interaction process
has to be captured and evaluated. This product can either be a charged particle, e.g. a
photoelectron (as in attosecond streaking and angular streaking) or a photoion (as in the
reaction microscope), or light, e.g. a linear (as in transient absorption spectroscopy) or a
non-linear (as in high-harmonic spectroscopy) optical response.
In the last years, the method of attosecond transient absorption spectroscopy (ATAS)
has proven to be very powerful when it comes to measuring bound-state dynamics,
because it allows to study the absorption lines of bound–bound transitions, whereas in
photoelectron or -ion techniques, an electron has to be liberated from the system in order
to generate an observable reaction product. Besides this main difference, there are further
advantages of ATAS compared with the other techniques. For example, the intensity of
the NIR can be chosen in broad range from zero to weak intensities with perturbative
interactions – all the way up to the strong-field regime where the NIR pulses may drive
non-linear processes like strong-field ionization. In contrast, methods like high-harmonic
spectroscopy and angular streaking require strong-field laser pulses in order to generate
a detectable response, which limits the study of targets under more natural weak-field
conditions.

The key subject of absorption spectroscopy is the dipole response of the quantum system
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with respect to the incident light fields. It contains the information about the system’s
evolution and manifests itself as a characteristic absorption line in the spectrum of the
transmitted light. In order to get the complete picture about the ongoing physics from
the measured absorption data, the signature spectral line has to be linked to the dipole
response in the time domain, which again has to be connected to the actual quantum
dynamics of light–matter interaction.

In this thesis, a universal model is introduced, in which the time-domain evolution of the
dipole response under the influence of the two time-delayed light pulses as well as its
frequency-domain representation can be treated analytically. The quantum-mechanical
process of light–matter interaction is condensed into a single parameter. This draws the
connection between the actual physics and the outcome of the experiment, i.e. the absorp-
tion spectrum, in a comprehensive way. The key of this model is to treat both light pulses
as infinitesimally short Dirac-δ functions. Based on this approach, the effect of the light–
matter interaction can be treated as a sudden change of the dipole moment’s amplitude
and phase. The amount and time-delay dependence of this amplitude and phase jump is
modeled according to the process that is to be described.
Based on the mathematical framework of this model, two fundamental improvements to
the ATAS technique are introduced within this thesis:

1) Introduction of a two-dimensional–spectral representation of the time delay–resolved
data, which allows for a direct separation of different coupling pathways and their specific
study.

2) Implementation of an in situ method for characterization of the few-cycle NIR pulses
directly from measured absorption spectra.

The first method is introduced theoretically and is then applied to investigate the ultra-
fast dynamics in coherently excited superpositions of quantum states—so called wave
packets—under the influence of the dressing NIR laser. The first of two studies can be
considered as a proof-of-principle experiment to demonstrate the method. Here, the dy-
namics of a wave packet of two doubly excited states in helium are studied. The two
states are transiently coupled via a two-NIR-photon transition, which leads to a charac-
teristic beating of the time delay–resolved absorbance. This beating is then transferred to
the spectral domain, where it is separated from other effects, which allows to precisely
determine the beat frequency, the phase that is imprinted by the laser coupling, and the
intensity dependence of the effect.
The second study involves states that are created by XUV excitation of an inner-valence
electron (4d shell) of xenon to an excited shell (6p). Due to the strong spin–orbit cou-
pling, the two states of different total angular momentum are separated by almost 2 eV.
The probing of the coherent wave packet is proposed to be performed by means of strong-
field ionization of the excited electron by virtue of intense NIR light. Theoretical calcula-
tions predict an effective coupling of the states, which gives rise to a spectral signature of
this event. However, under the current experimental conditions, the signature is expected
to be very faint if detectable at all. Hence, the power of the two-dimensional–spectral rep-
resentation to separate this signature from other simultaneously occurring effects plays an
important role for detecting this strong-field effect on a spin–orbit wave packet.

The second method that is proposed and demonstrated within this thesis adds another
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feature to ATAS: the possibility to characterize the few-cycle strong-field laser pulses
in situ. Knowledge of the laser-pulse properties is crucial in order to draw quantitative
conclusions from measurement results and to steer quantum dynamics in a controlled
fashion. So far, only the photoelectron based methods for attosecond spectroscopy had
an appropriate technique for pulse characterization, namely attosecond streaking, avail-
able. Here, the fact that the NIR laser pulse transiently shifts the energy of XUV-excited
states, and thus introduces a shift of the dipole phase, is utilized. By means of the an-
alytical model mentioned before, this phase shift is related to the transformation of the
absorption line, and can thus be extracted from measured spectra. Therefore, the pulse
properties are determined exactly where the XUV beam and the NIR beam intersect with
the spectroscopy target—or in other words—where the quantum dynamics experiment is
performed. This information can directly be used to increase the comparability between
experiment [6, 7, 14, 26, 38–42] and theory [43–45].

This thesis is structured the following way: In Chap. 2, the fundamental physics of light–
matter interaction are presented in a condensed fashion. The chapter covers the basics of
ultrashort laser pulses, their interaction with a quantum system and the according response
of the system. A subsection introduces the helium atom as one of the major spectroscopy
targets in this thesis. Afterwards, Chap. 3 introduces the experimental setup that was used
to collect the presented experimental results. The central model, which allows to connect
the time-domain picture of controlling the dipole moment to the spectral outcome, is ex-
plained in Chap. 4. This lays the basis of the two methods presented in the following two
chapters. Chapter 5 is devoted to the two-dimensional absorption spectroscopy (2DAS)
method, which allows to separate different pathways of light–matter interaction. The sec-
ond method, in situ characterization of few-cycle NIR pulses, is presented in Chap. 6.
Finally, the work presented in this thesis is concluded in Chap. 7.



Chapter 2

Fundamentals

This chapter will give an introduction to the fundamental physical aspects of ultrafast
atomic physics and light–matter interaction that play a role throughout the thesis. Since
ultrashort laser pulses are the key instrument to get access to the time scale of electronic
processes in atoms, the first section is devoted to their mathematical description and their
experimental realization. Afterwards, a short introduction to the treatment of quantum n-
level systems is presented as well as an overview on time-dependent perturbation theory.
As the dipole response of a quantum system is the key quantity of all measurements and
concepts presented in this work, it is described in the fourth section where also the related
quantities of absorption and dispersion are derived. This is followed by the introduction of
the ponderomotive potential, which plays an essential role for the pulse characterization
technique presented in Chap. 6. Finally, the physics of the helium atom as one of the
main spectroscopy targets investigated here is introduced, thereby focusing on the doubly
excited manifold and its characteristic Fano resonances.

2.1 Ultrashort pulses of light

In order to access the extremely fast dynamics of electrons in atoms, molecules, and
solids, an ultrafast measurement technique is needed. An often used approach is the
pump–probe scheme where a pump event triggers ultrafast dynamics in the system under
study and a time-delayed probe event probes for the system’s response to the pump. In
most cases concerning electron dynamics the pump and probe events are interactions of
the system with ultrashort laser pulses. As these pulses nowadays can have durations in
the femto- and even sub-femtosecond regime, the electron motion can be resolved to a
great extend.
In this section, first of all a general formalism for describing ultrashort light pulses will be
introduced, and afterwards techniques for the generation of such pulses will be described.
Further information can be found in dedicated textbooks [46–48] and review articles [49–
51].
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Fig. 2.1: Schematic of the effect of
φcep and b in Eq. 2.2. Panel (a)
shows an unchirped cosine wave-
form whereas (b) shows the corre-
sponding sine waveform which re-
sults from a CEP of π/2. The pulses
displayed in the lower panels ex-
hibit a down- (c) and upchirp (d),
which results in a frequency sweep
across the pulse envelope.
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2.1.1 Mathematical description

A suitable description of ultrashort pulses of linearly polarized light is given by the real-
valued one-dimensional electric field as a function of time E(t). In general, E(t) can be
decomposed into a term that varies rapidly in time, i.e. the carrier wave, and a term that is
slowly variyng in time, i.e. the pulse envelope E :

E(t) = E (t)cos [φ(t)] . (2.1)

The shape of the envelope can be complicated, however, for a theoretical treatment it
is often approximated by simple analytical functions, e.g. Gaussian, cos2 or sech2 (the
soliton solution of many laser oscillators). The temporal phase φ can usually be written
as a power series in t:

φ(t) = φcep +ωct +bt2 + ... (2.2)

Here, φcep is the carrier-envelope phase (CEP) of the pulse, which determines the offset
between the maximum of the envelope and the crest of the wave cycle. This parameter
becomes important for pulses that consist only of a few optical cycles, i.e. the envelope
width is of the same order as the optical cycle, so that the CEP really determines the
wave form of the electric field and its intensity distribution. The carrier frequency ωc
is the center oscillation frequency of the wave, and b is the so-called chirp parameter,
which determines the modulation of the frequency across the pulse. One can define the
instantaneous frequency as the effective speed at which the phase changes:

ωinst =
dφ(t)

dt
= ωc +2bt + ..., (2.3)

which shows that for b > 0 the frequency linearly shifts upwards across the pulse (up-
chirp), whereas for b < 0 the frequency shifts downward (downchirp). If a pulse is
chirped, its time × bandwidth product is not minimized, which means the pulse is not
compressed to the minimum duration supported by the spectral bandwidth. The effect of
these parameters is displayed in Fig. 2.1. An alternative description of the laser pulse is
possible in the frequency domain and is given by the Fourier transform of E(t):

Ẽ(ω) =
∫

∞

−∞

E(t)eiωtdt. (2.4)
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The spectrum Ẽ(ω) is a complex function, which is symmetric around ω = 0 because
E(t) is real-valued, and which can in general be written in terms of an amplitude and
phase:

Ẽ(ω) = Ẽ (ω)eiφ̃(ω). (2.5)

Similar to Eq. 2.2, the spectral phase φ̃(ω) is also usually expanded as power series about
the carrier frequency:

φ̃(ω) = φ̃0 + τ(ω−ωc)+ b̃(ω−ωc)
2 + ...= φ̃0 + τΩ+ b̃Ω

2 + ... (2.6)

with Ω = ω −ωc. The first two terms do not affect the pulse duration or shape. In fact,
a phase term linear in ω is equal to retardation of the pulse by a time τ . The third term
of the power series, however, represents a linear chirp of the pulse and causes temporal
broadening in the time domain representation. In the following τ and b̃ will be related to
the well-known group delay (GD) and group delay dispersion (GDD) that occur when a
pulse traverses a (linear) medium.

The propagation of light in a dielectric medium is governed by the wave equation, the
frequency space representation of which is the optical Helmholtz equation[

∂ 2

∂ z2 +ω
2
ε(ω)µ0

]
Ẽ(ω,z) = 0 (2.7)

where ε is the dielectric constant of the material and µ0 the vacuum permeability. For a
given electric field Ẽ(ω,0) at the beginning of the medium, the general solution to Eq. 2.7
is given by

Ẽ(ω,z) = Ẽ(ω,0)e−ik(ω)z (2.8)

with
k(ω)2 = ω

2
ε(ω)µ0. (2.9)

The wave vector k(ω) can be expanded about the carrier frequency ωc yielding

k(Ω) = kc +
dk
dω

∣∣∣∣
ωc

Ω+
1
2

d2k
dω2

∣∣∣∣
ωc

Ω
2 + ... (2.10)

Here, the first-order coefficient dk/dω|
ωc

is the inverse group velocity (GV) vg and the
second-order coefficient is related to the group velocity dispersion (GVD):

d2k
dω2

∣∣∣∣
ωc

=− 1
v2

g

dvg

dω

∣∣∣∣
ωc

. (2.11)

By comparing Eq. 2.10 to Eq. 2.6 expressions for the GD and GDD can be determined:

τ =
1
vg

z (2.12)

b̃ = − 1
2v2

g

dvg

dω

∣∣∣∣
ωc

z (2.13)
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Fig. 2.2: Influence of a dispersive
medium on the pulse intensity profile. The
initial chirp of the pulse is compensated
by the medium’s GDD at zTL. Afterwards
the overcompensation sets in and leads to
temporal broadening of the pulse.

t

z

In
te
n
sity

zTL

This means that in addition to a delay of the pulse, i.e. the GD, every optical element that
has a non-vanishing GVD will add a certain amount of GDD and will thus introduce or
eliminate—depending on the sign of the GDD—a chirp of the pulse. This in turn will
lead to a modified pulse duration. To give an example, a 1 mm thin fused-silica window
introduces a GDD of +35 fs2 at 800 nm. This means that the spectral components next to
800 nm are delayed by 35 fs per petahertz with respect to the 800 nm part of the spectrum.
The broader the spectrum the more delay between the spectral components is encountered,
so that for short pulses with a broad spectrum this amount of glass already has tremendous
effects. The situation is depicted in Fig. 2.2 where an initially upchirped pulse is travelling
in a medium with positive GVD. At a certain distance zTL the initial chirp is compensated
for by the GDD introduced by the medium: the pulse is transform limited. After that
point the pulse starts to accumulate a net positive GDD and becomes broader again. This
is a typical situation when the chirp of a pulse is defined by a chirped-mirror compressor,
which is usually designed to overcompensate the incoming chirp. Afterwards a pair of
glass wedges is used for fine tuning the net GDD of the compressor setup.
In addition to the second-order dispersion described here in detail, higher orders of disper-
sion, starting at third-order dispersion (TOD), have to be taken into account for practical
pulse compression below ≈ 30 fs. As shown in Fig. 2.3, TOD does not only stretch the
pulse, it also introduces distortions of the pulse shape as it introduces asymmetry and pre
or post pulses.
In the following, the experimental generation of femto- and attosecond light pulses is
discussed.

2.1.2 Generation of intense femtosecond laser pulses

The following section will give a short introduction to modern femtosecond laser pulse
generation. The focus lies on the titanium sapphire (Ti:sa) technology, as this is currently
the basis for most state-of-the-art strong-field and attosecond experiments and was used
to obtain the results of this thesis. While this section provides a general overview of
principals and fundamentals of laser pulse generation, Sec. 3.2 deals with the specific
laser system used in the experiments of the later chapters.

The basis of such a laser system is the broadband femtosecond oscillator, which provides
the initial seed pulses that are later amplified [52, 53]. Pulsed operation is commonly
achieved via passive modelocking—a technique where a large number of the resonator’s
longitudinal modes are forced to oscillate in phase, so that the superposition results in a
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GDD = 0, TOD = 0
transform limited

GDD > 0, TOD = 0 GDD = 0, TOD < 0

t t t

Fig. 2.3: Comparison of the electric field (orange, thin) and intensity (red, thick) of transform
limited and chirped Gaussian pulses. As discussed previously a non-zero GDD causes a fre-
quency chirp and leads to pulse broadening and consequently a reduction of the peak intensity
while the intensity profile remains Gaussian. In contrast, TOD introduces distortions to the
pulse shape including asymmetry and in this case a post pulse.

train of pulses separated by the repetition rate. To ensure stable operation, a mechanism is
necessary that favors pulsed over continuous operation. Such a mechanism is called self-
amplitude modulation (SAM) and practically often achieved via Kerr-lens modelocking
(KLM). Here, for the high peak power mode caused by pulsed operation, the nonlinear
Kerr effect leads to self-focusing (Fig. 2.4 (a)) and thereby increases the round-trip gain
compared with the weak-power mode in continuous operation. This difference in gain is
usually achieved by a better overlap with the pump volume due to the spatial confinement
as a result of self-focusing. Stable operation starts from noise: a pulse spontaneously
formed inside the cavity will experience greater net gain than the other modes and will
thus grow to a stable pulse after several round-trips. If the pulse, for instance, accumu-
lates a long leading or trailing edge, those weak-power parts of the pulse will experience
poor self-focusing, and therefore less gain than the high-power center part of the pulse.
Hence, KLM helps to maintain a short pulse. In fact, KLM or in general SAM is the only
mechanism that provides stabilization of the pulse, making it one of the most important
intra-cavity processes.
Since the pulse duration is ultimately limited by the spectral bandwidth, the laser transi-
tion must be broad in order to achieve short pulses, which makes Ti:sa a very attractive
material. The fluorescence peaks around 1.59 eV (780 nm) and has a bandwidth of almost
0.4 eV [52]. However, to get to the few-femtosecond regime, additional spectral broad-
ening has to be performed. This is done by self-phase modulation (SPM), which is (like
SAM) caused by the Kerr effect inside the Ti:sa crystal (Fig. 2.4 (b)). As spectral broad-
ening is accompanied by the accumulation of spectral phase (positive GDD around the
carrier wavelength), a compression mechanism with negative GDD has to be present in
the cavity in order to maintain a short pulse. Chirped mirrors are ideal tools for this task
as they can directly replace normal mirrors without the need for additional optics. In prin-
ciple, chirped mirrors are multilayer mirrors where the periodicity of the layers depends
on the position along the mirror’s normal direction [54]. This leads to a wavelength de-
pendent penetration depth or time delay, and therefore, introduces a chirp (mostly GDD).
As most materials exhibit positive GDD, chirped mirrors are usually designed in order to
introduce negative GDD. The interplay of SAM, SPM and negative GDD can lead to a
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n = n  + �n 0 I(r,t)
Kerr effect

Kerr medium

I(r)

Df(r)

self-focusing

Df(r)

lens focusing

Kerr medium

Df(t)

Dw(t)

spectrum after
SPM

spectrum 
before
SPM

self-phase modulation(a) (b)

I(t)

+GDD

Fig. 2.4: Two consequences of the nonlinear Kerr effect, which introduces an intensity de-
pendence of the refractive index. (a) Self-focusing or Kerr lensing as a result of the spatial
intensity distribution. The additional phase ∆φ(r) is proportional to the beam intensity profile,
leading to a curved phase front. This has a similar effect as the glass-thickness distribution
in an ordinary focusing lens (right) and causes focusing of the beam. (b) Self-phase modula-
tion as a result of the temporal intensity distribution. Here, ∆φ(t) follows the pulse intensity,
which introduces additional spectral components ∆ω increasing the spectral bandwidth. The
temporal distribution of the added frequencies across the pulse envelope means that the spec-
trally broadened pulse is chirped. Around the center frequency, the chirp is almost linear and
resembles the accumulation of +GDD.

stable generation of pulses in the sub-6 fs regime [55, 56].
In order to drive highly nonlinear processes like high-order harmonic generation (HHG)

the pulse energy delivered by typical femtosecond oscillators is usually not sufficient (for
a few exceptions see e.g. Ref. [3,5,57,58]) in order to reach the peak intensities of roughly
1014 W/cm2 necessary for these processes. Therefore, the pulses have to be amplified in
a separate step. As direct amplification of the ultrashort pulses would lead to damage in
the amplifier gain medium, the pulses are stretched to the pico- or nanosecond level prior
to amplification and are recompressed afterwards. This concept is called chirped pulse
amplification (CPA) [59] and is very successful for generating multi-mJ pulses down to
20 fs [60]. The stretcher unit usually consists of massive glas blocks, in which positive
GDD as well as higher order dispersion is accumulated. The recompression is done with
the help of prism or grating compressors, which are able to compensate for the previously
added GDD. TOD accumulated in the glass is compensated by means of special TOD mir-
rors, which leave the GDD introduced by the stretcher almost unaffected but reduce the
unwanted TOD [61]. The amplification step in between is straight-forward: the stretched
pulses are sent multiple times through a gain medium, usually a Ti:sa crystal pumped by
a nanosecond-pulsed pumplaser (commonly a few kHz repetition rate, several 10 watts
output power), until saturation sets in. There are two common designs for the amplifica-
tion stage: the multipass amplifier where the geometry defines a fixed number of passes
through the gain medium, and the regenerative amplifier, which is built like a cavity from
which the pulse is released at a certain number of round-trips. If the final amplification
has to be further increased a second amplification stage might be used to boost the pulse
energy. Since the thermal load in the gain medium is a limiting factor, the achievable
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average power is limited to a few to ≈ 20 W. Hence, the repetition rate has to be dropped
to the kHz level if mJ pulse energies are desired. This can be done by selecting individual
pulses at the repetition rate of the kHz pump laser, which then experience (and deplete)
the gain in the pumped medium, whereas the majority of the pulses is dumped. In prac-
tice, this can be done by means of a Pockel’s cell synchronized to the kHz pump laser and
the oscillator pulse train.
Since it is not possible to uniformly amplify the complete bandwidth of the oscillator (be-
cause of a process called gain narrowing) the achievable duration of the amplified pulses
is considerably longer compared with the oscillator output. To get into the few-cycle
regime, the spectrum has to be broadened sufficiently. The most direct approach is to
broaden the spectrum via SPM in a noble gas. This can be done either in a gas-filled
hollow-core fiber, which creates a high power mode inside the hollow core, and thus,
makes SPM efficient [62,63], or by using the effect of filamentation where an interplay of
self-focusing and plasma defocusing sustains an extended zone of high intensity without
the need for a wave guide [64,65]. After spectral broadening, the acquired spectral phase
has to be compensated, which is preferably done by means of a chirped mirror compres-
sor and a pair of glass wedges [66]. Depending on the achieved bandwidth and the ability
to compress the pulses, typical pulse durations range from 10 down to 4 fs [18, 19]. The
result of the spectral broadening depends on many aspects such as

• gas species (mostly noble gases like neon and argon)

• gas pressure (in the regime of a few bar)

• medium length (typically about 1 m)

• peak intensity (determined by many factors, e.g. input power, beam quality, fiber
inner-diameter ...)

and can lead to spectra spanning almost two optical octaves. As it is not possible to de-
sign chirped mirrors for such large bandwidths, an approach called light synthesis was
demonstrated [67], which divides the bandwidth in several spectral channels, compresses
each channel separately, and then recombines them to produce optical pulses shorter
than 1 fs [68]. An alternative approach uses the concept of optical parametric ampli-
fication (OPA) and the related optical parametric chirped-pulse amplification (OPCPA).
Also here, different spectral channels can be set up and individually amplified and com-
pressed, which is also promising to produce sub-cycle light pulses [69].
Once the few-cycle pulses have been generated, they can be utilized as a driver for the
generation of even shorter pulses at higher photon energy as shown below, or they can be
used in the actual experiment as pump or probe in the pump–probe scheme.

2.1.3 Generation of XUV light and attosecond pulses

In order to access electron dynamics in excited states, many atomic systems require pho-
ton energies in the order of several 10 eV or more, i.e. in the XUV or soft x-ray spectral
region. Typical scenarios for the use of this kind of light are the excitation of several
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AccelerationTunnelingStart RecombinationPropagation

Fig. 2.5: The 3-step model with the main steps tunneling, acceleration and propagation. The
atomic potential bent by the strong laser field (red curve) is shown in black and the linear
potential of a dipole in the laser field is shown in orange. The arrows indicate motion of the
electron (green) and the emitted burst of XUV light is drawn in violet.

electrons at once (so-called doubly excited states) and the excitation of strongly bound
electrons from inner-valence or core states. Preferably this light should come in the form
of pulses, which are short enough to resolve the electronic motion on its natural attosec-
ond time scale. The well known process of high-order harmonic generation (HHG) is able
to satisfy both needs [50,51]. In the last years, both photon energies exceeding 1 keV [70]
as well as pulse durations of less than 100 as [19, 23] have been demonstrated. The HHG
process is a highly nonlinear quantum-mechanical process, however, its principle idea
can be understand in terms of a quasi-classical picture—the 3-step model—introduced
by Corkum in 1993 [71] and illustrated in Fig. 2.5. In order to achieve HHG, typically a
noble gas target is exposed to the strong electric field of a femtosecond laser pulse with
intensities on the order of 1014 W/cm2. The electric field of the laser is strong enough
to considerably deform the atomic potential, which allows a part of the valence-electron
wave function to tunnel into the continuum. This process is called strong-field or more
precisely tunnel ionization and can be described theoretically be means of the ADK the-
ory [72, 73]. According to this theory the ionization rate is given by

wi = ωA

(
2e
n∗

)2n∗ IP

2πn∗

(
3E (t)

π(2IP)3/2

)1/2
(

2(2IP)
3/2

E (t)

)2n∗−|m|−1

exp

[
−2(2IP)

3/2

3E (t)

]
fl,m.

(2.14)
Here n∗ is the effective principle quantum number (n∗Ar = 0.93) in the underlying hydrogen
model (for hydrogen n∗= 1), and ωA = 4.134×1016/s is the atomic frequency. IP (in units
of Hartree, 1 Hartree = 27.2 eV ) is the ionization potential of the studied atomic species,
and E (t) (in units of the atomic field strength 5.142× 1011 V/m) is the electric-field
envelope of the laser. The coefficient fl,m is given by

fl,m =
(2l +1)(l + |m|)!
2|m| |m|!(l−|m|)!

(2.15)



2.1 ULTRASHORT PULSES OF LIGHT 13

Species He Ne Ar Kr Xe Rd
IP (eV) 24.6 21.6 15.8 14.0 12.1 10.7

Table 2.1: Ionization potentials of the six noble gases.

where l and m are the quantum numbers of angular momentum. Using the complete
electric field E(t) rather than the envelope E (t), Eq. 2.14 becomes

wi = ωA

(
2e
n∗

)2n∗ IP

2πn∗

(
2(2IP)

3/2

|E(t)|

)2n∗−|m|−1

exp

[
−2(2IP)

3/2

3 |E(t)|

]
fl,m. (2.16)

Since Eq. 2.14 is highly nonlinear in the electric field strength of the ionizing laser, the
ionization process is confined to only a fraction of the laser half-cycle. As an example,
for IP = 15.8 eV (the ionization potential for argon), a peak electric field of 0.05 a.u.
(accordingly 8.8× 1013 W/cm2), and a driving-laser wavelength of 730 nm the effective
ionization window is just about 250 as long. If the oscillation period of the electric field is
short compared to the electronic time scale, e.g. as often in the case of ionization via an X-
ray free electron laser, the ionization is described via multiphoton absorption rather than
by the tunneling picture of Eq. 2.14 and 2.16 (see also Sec.2.5). Either way, ionization
is the first step of the HHG process after which a valence electron is liberated from it’s
parent ion.
Being in the continuum, the electron experiences the force imposed by the laser electric
field and is accelerated away from its parent ion. When the electric field switches sign,
the force is reversed and the electron is driven back. Upon recollision, the kinetic energy
that the electron has gained in the laser field plus the binding energy can be converted into
a high-energy photon (besides other strong-field processes) with

h̄ω = Ekin + IP. (2.17)

This recombination is the final step in the three-step model. From Eq. 2.17 the choice
of noble gases as the generation medium becomes obvious: the higher the ionization po-
tential, the higher the photon energy (see Tab. 2.1 for the ionization potentials). Further-
more, a high ionization potential reduces the generation of plasma, which would introduce
strong distortions to the spatial and temporal characteristics of the laser. However, this
means in turn that the ionization probability is reduced, which leads to less efficiency of
the XUV generation. Quantum mechanically, the high–kinetic-energy continuum wave
function of the returning electron interferes with the remaining bound wave function,
which leads to an ultrafast and coherent oscillation of the electron density, and thus drives
an oscillating dipole moment. This results in the emission of high-energy radiation. The
kinetic energy of the returning electron depends on the moment of ionization within the
optical cycle. The maximum kinetic energy is gained when the electron is ionized shortly
after the crest of the optical half-cycle, as it has a long time for being accelerated back to
the ion by the subsequent half-cycle of opposite sign. A classical calculation yields the
peak kinetic energy to be

Ekin, max = 3.17UP (2.18)

where UP is the ponderomotive potential of the laser, which is described in detail in
Sec. 2.5. It is proportional to the laser intensity and wavelength squared. Hence, high
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driving laser intensities are necessary to achieve high photon energies. Also, increasing
the carrier wavelength of the driving laser leads to higher photon energies, as the acceler-
ation periods become longer. However, this comes at the expense of lower efficiencies. It
was shown experimentally that the integrated harmonic yield scales approximately with
λ−6 to λ−7 [74].
Looking at the harmonic spectrum, there is a universal behavior: The spectral intensity
typically drops quickly for the first (low-order) harmonics, but then levels out over a
broad range—the so-called plateau—before it comes to a sharp cut-off, which marks the
highest achievable photon energy given by IP + 3.17UP. The comb-like structure, which
the term harmonics refers to, is the result of spectral interference: usually the driving
laser pulse consists of at least a few half-cycles, each of which leads to the emission
of an attosecond burst of XUV light creating a train of attosecond pulses (APT) [21].
The spectrum of each attosecond pulse is continuous but the interference results in a
2ωc modulation of the spectrum. For the first experiments [20] and many years after,
the appearance of such created XUV light in form of odd harmonics of the driving
laser was natural. Only when it became possible to isolate a single attosecond pulse
in 2001, the harmonic structure of the spectrum disappeared [22]. In order to create
an isolated attosecond pulse (IAP), the XUV light generated by only one half-cycle of
the driving laser has to be selected, or the XUV emission itself has to be confined to a
single half-cycle. The first technique that led to IAPs was to use a few-cycle driving laser
pulse of cosine wave form with a high contrast between the center and the neighboring
half-cycles, which creates a significant difference between the cut-off energies of each
individual half-cycle. By spectrally selecting only those highest photon energies emitted
by the center half-cycle, an IAP is created. To date, beside this method called amplitude
gating, a variety of other methods has been demonstrated [75].

The major drawback of HHG in gaseous media as a source for XUV light and attosecond
pulses is the very low conversion efficiency of about 10−4 to 10−6. This currently limits
the application of XUV light generated by HHG to linear processes, since the probability
of a second- or higher-order XUV-induced process is extremely low. Approaches to gen-
erate high harmonics from dense targets, e.g. water droplets [76] or solids [34], are thus
promising ways to pursue in the future in order to possibly compete with free electron
laser sources in terms of XUV intensity.
In Sec. 3.3, more technical aspects of HHG of the specific experimental setup used in this
work are presented.

2.2 The n-level system—theoretical foundation for nu-
merical treatment

Since quantum dynamics of excited atoms interacting with strong and short laser pulses
are the main topic of this thesis, it is important to understand how quantum systems evolve
in time. As there is usually at least one strong-field pulse applied in the pump–probe
scenario, perturbative approaches might fail in describing all aspects of light–matter in-
teraction. This makes an exact treatment of the quantum mechanical problem necessary.
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Fig. 2.6: Principle of numerical treatment of a coupled n-level system. First, the transforma-
tion matrix T is determined for the current Hamiltonian, and with its help the transformation
to the Eigensystem is performed. Then the Eigenstate is propagated in time, which eventually
yields the next time step of the wave function.

Therefore, this section provides the basics for the numerical simulation of the experiments
performed within this work. Such simulations are the key in order to get insight into the
physics taking place during the experiment.
In quantum mechanics, a system is defined by its Hamilton operator Ĥ, which determines
the system’s temporal evolution according to the time-dependent Schrödinger equation

Ĥ |ψ〉= ih̄
∂

∂ t
|ψ〉 . (2.19)

Here, |ψ〉 is the wave function. If the system can be described by a finite number n of
descrete states, e.g. if couplings to other states can be neglected, the Hamiltonian can be
represented as a Hermitian n× n matrix and the wave function in terms of an n dimen-
sional state vector:

Ĥ =


E1 W12 W1n

W21 E2 W2n
...

Wn1 Wn2 En

 |ψ〉=


c1(t)
c2(t)
...

cn(t)

 . (2.20)

E j are the energies of the n known unperturbed states, c j are the complex coefficients of
the states, and Wi j are the coupling matrix elements between the states i and j. In cases of
interaction with a laser pulse that can be described by its electric field E(t), the coupling
elements are time-dependent and in the case of a pure dipole interaction may be written
as

Wi j(t) = 〈ψi| d̂
∣∣ψ j
〉

E(t) = di jE(t) (2.21)

where d̂ is the dipole operator and di j are the dipole transition matrix elements. In order
to solve the time-dependent Schrödinger equation for such a system, one can use the fact
that for the Eigensystem of the Hamiltonian, i.e. the representation where Ĥ is diagonal,
the time evolution is trivial: the coefficient c′i of each Eigenstate is just accumulating a
phase which evolves with its respective Eigenfrequency Hi/h̄. The tranformation from the
system of the unperturbed states (Eq. 2.20) to the Eigensystem of Ĥ is done by numerical
diagonalization of Ĥ

T ĤT † =


H1 0 0
0 H2 0

...
0 0 Hn

 T


c1
c2
...
cn

=


c′1
c′2
...
c′n

 (2.22)
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Here, T and its conjugate transpose T † are the unitary transformation matrices composed
of the Eigenvectors of Ĥ. Since Ĥ itself is time-dependent, this diagonalization is valid
only for an infinitesimally short time interval. Numerically, this time interval has a fi-
nite duration ∆t and for this duration Ĥ is assumed to be constant. Therefore, the time
step size has to be sufficiently small in order to achieve correct results. For each time
step the diagonalization and propagation of the wave function are performed yielding the
complete–time-resolved response of the quantum system. The algorithm is sketched in
Fig. 2.6.
The finite lifetime of the excited states is introduced empirically by adding an imaginary
part iΓi to the energy values Ei, where Γi is the decay rate of the state i taken from litera-
ture.
Further details of the specific simulations are described in the respective chapters.

2.3 Time-dependent perturbation theory

In order to simplify calculations and to find analytic expressions in quantum dynamics,
the very helpful concept of time-dependent perturbation theory was developed (the deriva-
tions are based on Ref. [77], as an English textbook see Ref. [78]). Here, the perturbation
Ŵ in contrast to the general treatment of the previous section is required to be small for
the perturbative description to be accurate. In the context of this thesis, this is usually
the case when transitions between the ground state and excited states introduced by the
attosecond XUV light are considered, or when transitions among excited states by means
of weak NIR pulses are considered. The basic idea is to expand the wave function of the
perturbed system in terms of the perturbation strength λ , which is used to scale Ŵ . In the
following derivation the Schrödinger equation reads

ih̄
∂

∂ t
|ψ(t)〉=

[
Ĥ0 +λŴ (t)

]
|ψ(t)〉 (2.23)

where Ĥ0 is the Hamiltonian of the unperturbed system. The solution of Eq. 2.23 can
always be written as a superposition of the Eigenstates |i〉 (with energy h̄ωi and coefficient
ci(t)) of Ĥ0, which form a complete basis:

|ψ(t)〉= ∑
i

ci(t)e−iωit |i〉 . (2.24)

Substitution of this Ansatz into Eq. 2.23 yields

∑
i

ih̄
∂

∂ t
ci(t)e−iωit |i〉= ∑

i
ci(t)e−iωitλŴ (t) |i〉. (2.25)

Projection of this equation onto state | j〉 cancels the first summation and leads to a system
of differential equations for the coeffecients c j(t):

ih̄
∂

∂ t
c j(t) = λ ∑

i
ci(t)eiω jit 〈 j|Ŵ (t) |i〉. (2.26)



2.3 TIME-DEPENDENT PERTURBATION THEORY 17

Here, ω ji =ω j−ωi. Up to now, no approximation was made so that Eq. 2.26 is equivalent
to Eq. 2.23. The next step is to develop the coefficients c j as a power series in terms of λ :

c j(t) = c(0)j (t)+λc(1)j (t)+λ
2c(2)j (t)+ ... (2.27)

Neglecting terms of λ 2 and higher orders, substitution of this expression into Eq. 2.26
yields:

ih̄
∂c(0)j (t)

∂ t
+λ ih̄

∂c(1)j (t)

∂ t
= λ ∑

i
c(0)i (t)eiω jit 〈 j|Ŵ (t) |i〉. (2.28)

By that the assumption λ � 1 was made so that 1� λ � λ 2... . The 0th order expression
contains only one term

ih̄
∂c(0)j (t)

∂ t
= 0 0th order in λ (2.29)

which means that the major part c(0)j (t) of the total coefficient c j(t) is unaffected by the
perturbation and remains constant

c(0)j (t) = c(0)j (0) = c(0)j . (2.30)

The 1st order expression then reads

ih̄
∂c(1)j (t)

∂ t
= ∑

i
c(0)i eiω jit 〈 j|Ŵ (t) |i〉 1st order in λ . (2.31)

The solution of this system of differential equation is straight forward since it is decou-
pled:

c(1)j (t) =− i
h̄ ∑

i
c(0)i

∫ t

0
eiω jit ′ 〈 j|Ŵ (t ′) |i〉dt ′. (2.32)

In the dipole control model, which will be introduced in Chap. 4, the perturbation, i.e. the
interaction of the atom with ultrashort laser pulses, is treated as instantaneous and thus
defined by a Dirac-δ function W (t) =W0 δDirac(t− τ). In turn, the integration in Eq. 2.32
simplifies to:

c(1)j (t) =− i
h̄ ∑

i
c(0)i eiω jiτ Wji (2.33)

so that the final expression for the coefficient c j(t) in first-order perturbation theory with
δ -perturbation reduces to

c j(t) = c(0)j −λ
i
h̄ ∑

i
c(0)i eiω jiτ Wji. (2.34)

For a coupling of only two states this yields

c1(t) = c(0)1 −λ
i
h̄

c(0)2 ei∆ωτ W12 (2.35)

c2(t) = c(0)2 −λ
i
h̄

c(0)1 e−i∆ωτ W21. (2.36)

This result will be used in the dipole control model to find analytical expressions for the
absorption spectrum of perturbatively coupled states.
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2.4 The dipole response—absorption and refraction

When an atom is exposed to a light field, an oscillating dipole moment is initiated. Quan-
tum mechanically, a superposition of electronic states, e.g. the ground state and an excited
state, is created, which leads to a non-vanishing and oscillating expectation value of the
dipole operator. In a classical sense, the electrons are driven by the oscillating electric
field E(t) of the light wave, which forces them to perform an oscillatory motion. This ini-
tiated dipole oscillation acts back on the original light field in the form of the polarization
P, which is described by the wave equation:[

∂ 2

∂ z2 −
1
c2

∂ 2

∂ t2

]
E(t,z) = µ0

∂ 2

∂ t2 P(t,z) (2.37)

with c the vacuum speed of light. The right-hand-side of Eq. 2.37, i.e. the dipole acce-
laration, acts like a source of the electric field: the dipole oscillation creates a field that
interferes with the original field and by that mediates the effects of absorption and disper-
sion. For a linear response of the medium, the general solution to Eq. 2.37 was already
obtained in Sec. 2.1.1 by solving the Helmholtz equation, which is the frequency domain
representation of the wave equation:

Ẽ(ω,z) = Ẽ(ω,0)e−ik(ω)z k(ω)2 = ω
2
ε(ω)µ0. (2.38)

Equation 2.37 is connected to Eq. 2.38 by performing a Fourier transform and introducing
the linear polarization P in terms of the medium’s susceptibility χ:

P̃(ω,z) = ε0χ(ω)Ẽ(ω,z). (2.39)

This yields: [
∂ 2

∂ z2 +
ω2

c2 (1+χ(ω))

]
Ẽ(ω,z) = 0 (2.40)

where the definition of the dielectric constant ε(ω) = ε0(1 + χ(ω)) is used to obtain
Eq. 2.38. It is convenient to introduce the susceptibility χ as a complex quantity:

χ(ω) = χ
′(ω)+ iχ ′′(ω). (2.41)

Thus, the wave vector k in Eq. 2.38 can be written as

k(ω) =
ω

c

√
1+χ ′(ω)+ iχ ′′(ω). (2.42)

The square root term is in general a complex number, the real part of which corresponds
to the refractive index n and introduces dispersion, while the imaginary part gives rise to
absorption (or gain) and is described by the absorption coefficient α:

−1
2

α = Im
[

ω

c

√
1+χ ′+ iχ ′′

]
. (2.43)

In the case of a weakly absorbing material (χ ′, χ ′′ � 1), e.g. a dilute gas target, the
absorption coefficient can be approximated by

α ≈−ω

c
χ
′′. (2.44)
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The absorption coefficient as a function of ω can be measured directly via Lambert-Beer’s
law in an absorption spectroscopy experiment

I(z) = I(0)e−αz, (2.45)

which also gives access to the related microscopic quantities. The absorption cross-
section σ is given by the absorption coefficient α per number density ρ of absorbers,
e.g. atoms. Similar, the atomic dipole moment d (in the frequency domain d̃), is related
to the macroscopic polarization P by d = P/ρ , and to the cross-section via

σ(ω) =
ω

ε0c
Im
[

d̃(ω)

Ẽ(ω)

]
. (2.46)

Thus, measurement of the absorption spectrum gives direct insight into the system’s mi-
croscopic response. Furthermore, by simulation of the system and its response to laser
light, the expected absorption spectrum is readily derived and allows for interpretation of
measurement results.
Closely related to these quantities is the optical density (OD), which is commonly used in
the absorption-spectroscopy community and defined via

Iout(ω) = Iin(ω)10−OD(ω). (2.47)

2.5 Ponderomotive potential

In strong-field physics, the ponderomotive potential or ponderomotive energy is a key
parameter of the laser pulse and is related to—though distinct from—the pulse intensity.
A free electron (charge qe = −1.602× 10−19 C, mass me = 9.109× 10−31 kg) that is
exposed to a laser electric field (amplitude E0, intensity I, carrier frequency ωc, carrier
wavelength λc) is subject to a quivering motion, which raises the electron’s energy. The
force experienced by the electron results in an acceleration

ẍ(t) =
qe E(t)

me
. (2.48)

From that, the velocity and the position can be calculated by integration. For a plain wave
E(t) = E0 cos(ωct +φ), the solution can be obtained analytically. Assuming the electron
experiences the electric force from time t = 0, e.g. due to photoionization at that time,
starting at x(0) = 0 and with zero initial velocity, the solution to Newton’s equation is
given by:

ẋ(t) =
qe E0

meωc
[sin(ωct +φ)− sin(φ)] (2.49)

x(t) =
qe E0

meω2
c
[−cos(ωct +φ)+ cos(φ)]− qe E0

meωc
t sin(φ). (2.50)

The first term of Eq.2.50 describes the quivering motion of the electron due to the oscil-
lating force. The quiver amplitude is given by

xquiv =
qe E0

meω2
c
. (2.51)
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The second term corresponds to a drift motion that is introduced depending on the laser
phase at time t = 0, e.g. at the instant of ionization. Because of that, the electron will
usually revisit the origin only a few times or maybe not at all. This phenomenon is
observed in strong-field physics where the electron might or might not recombine with
the ion (HHG) or rescatter off the ion (above-threshold ionization). Equation 2.49 also
contains the quivering (first term in brackets) and drift (second term in brackets) motion.
The mean kinetic energy contained in the quivering part of the electron motion is obtained
via averaging over one optical cycle. This quantity is called the ponderomotive potential:

UP = 〈Equiv〉=
me

2
〈
[

qe E0

meωc
sin(ωct +φ)

]2

〉= q2
e

4me

E2
0

ω2
c
=

q2
e

2cε0me
λ

2
c I (2.52)

UP acts as an additional potential on top of, for instance, the ionization potential. For an
electron that is liberated from an atom in the presence of a strong laser field, not only the
energy to overcome the binding energy IP has to be supplied by the laser field but also
the energy for the unavoidable quivering motion. Therefore the ionization potential is
effectively increased:

I′P = IP +UP, (2.53)

which has even been measured time-dependently for an ultrashort dressing laser field [79].
Substituting the physical constant symbols of Eq. 2.52 by their values yields a pondero-
motive potential of 9.32 eV per µm2 and TW/cm2. In many strong-field phenomena, the
ponderomotive potential is the crucial parameter that determines the on-going processes
rather than the laser intensity. One prominent example is the well-known cut-off law in
HHG (see Eqs. 2.17 and 2.18 in Sec. 2.1):

h̄ωcut-off = IP +3.17UP. (2.54)

The wavelength dependence of UP makes mid-infrared lasers in the few-µm regime very
attractive for HHG as they allow for much higher cut-off energies compared to traditional
Ti:sa lasers at around 780 nm. In contrast, for an X-ray free electron laser, like the linac
coherent light source (LCLS), the wavelength is around 5 to 0.5 nm, which reduces the
ponderomotive potential by factor of 104 to 106. Hence, although the peak intensities of
these different light sources can be similar, the physics arising from the interaction with
matter might be quite different. Keldysh introduced the γ parameter (named after him the
Keldysh parameter)

γ =

√
IP

2UP
, (2.55)

which helps to distinguish between two regimes of strong-field physics: the tunneling
regime (see Sec. 2.1.3) for γ � 1 and the multiphoton regime for γ � 1. In the tunneling
regime, the laser period is typically long compared to the electronic time scale, so that
the laser field appears quasi-static and bends the atomic potential slowly allowing for
tunneling of an electron. By contrast, in the multiphoton regime, the laser oscillation
is fast compared to the electronic time scale. Strong-field ionization is treated as the
absorption of many laser photons rather than tunneling of the electron. As an example, in
the case of Ar (IP = 15.8 eV) exposed to a Ti:sa laser pulse of 780 nm and 1×1014 W/cm2

the Keldysh parameter amounts to γ = 1.18, which is just in between the two regimes.
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Nevertheless, this situation is usually treated with the ADK formula (Eq. 2.16), which
yields reasonable results even though it is a true tunneling theory.
In Chap. 6 the effect of the ponderomotive potential of an ultrashort strong-field laser
pulse on highly excited states is used in order to characterize the duration and intensity of
the pulse.

2.6 The helium atom

The helium atom consisting of a nucleus and two electrons is the simplest system one can
think of that exhibits electronic correlation. However, Coulomb interaction among the
electrons make its theoretical description hard so that, similar to the classical three-body
problem of celestial mechanics, a closed-form analytical solution could not be presented
to date and numerical solutions are computationally very expensive. That is one of the
reasons why helium is still a very interesting object to study in atomic physics: the atomic
structure is simple compared to heavier atoms, nevertheless, electronic correlations are
present in contrast to atomic hydrogen giving rise to complex physics. The electronic
energy levels of helium that can be reached via single photon absorption span a broad
range from 21.22 eV above the 1s2 ground state for the 1s2p first excited state – up
to 78.98 eV for the threshold of complete ionization of the atom. The first ionization
threshold, i.e. the energy for removing one electron while the second electron remains
in the ground state, is 24.59 eV—the highest of all atoms. Between 24.59 eV and 78.98
eV lies an energy range of states were both electrons are in not in the 1s shell. These
doubly excited states are unstable and ionize spontaneously. Section 2.6.1 is devoted to
their physics and characteristic spectral response, which are both determined by electron–
electron interaction.

Table 2.2 summarizes the energy levels and decay rates of a series of dipole-allowed
singly and doubly excited states. There is a variety of further states, but these are either
dipole forbidden or have a (much) lower cross-section than the states listed above. In this
thesis the doubly excited manifold shown in the table is of particular interest. Chapters 5
and 6 both present measurements focusing on these states. Therefore, more details about
these states are discussed in the following section.

2.6.1 Autoionization and Fano lines

The singly excited states of helium exhibit a Lorentzian line shape, which is commonly
observed in absorption spectroscopy of many atoms. By contrast, the doubly excited
states show a very different absorption behavior. If measured at sufficient resolution, e.g.
as in Ref. [82], the line shape, a so-called Fano profile, turns out to be asymmetric. Fano
was the first to develop a theory that could explain the physics behind this kind of line
shape [84]. In simple words, the explanation of the asymmetric line shape is the following:
Since the doubly excited states are located above the first ionization threshold, there are
two possible quantum pathways that lead to the same final state. (1) Excitation of a doubly
excited state by XUV light and subsequent autoionization due to Coulomb repulsion of
the two electrons, which leads to a free electron and a remaining electron in the 1s shell.
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Configuration Energy (eV) Decay rate (meV)
singly excited states

1s2 0
1s2p 21.22 0.0074
1s3p 23.09 0.0023
1s4p 23.74 0.0010
1s5p 24.05 0.0005
1s6p 24.21 0.0003
1s7p 24.31 0.0002

doubly excited states

2s2p 60.15 37.4
2p2 62.06 6 (dipole-forbidden)
sp23+ 63.66 8.2
sp24+ 64.47 3.5
sp25+ 64.82 1.8
sp26+ 65.00 1.0
sp27+ 65.11 0.7

Table 2.2: Energies and decay rates of a selection of singly and doubly excited states in
helium that are dipole-allowed with respect to the ground state. The notation sp2n+ refers to
a linear combination of 2snp+2pns. Data from [80–83]

(2) Direct ionization of one ground state electron by an XUV photon, while leaving the
second electron in the 1s shell. Both final states are indistinguishable, which gives rise
to interference. As the phases of both pathways are not identical, the interference is not
completely constructive. If it was completely constructive, the absorption line would be
Lorentzian. Fano’s original theory is based on treating a discrete state (the doubly excited
state) that resides within a continuum of states (the direct ionization continuum). If there
is an interaction among these states (Coulomb interaction), the new Eigenstates are a
mixture of the discrete state and the continuum states, with the transition cross-section
following the Fano profile. Based on this theory, the line shape is parametrized by the
so-called Fano q-parameter:

σ ∝
|q+ ε|2

1+ ε2 ε =
ω−ωr

Γ/2
(2.56)

The q parameter is the ratio of the different coupling strengths

q =
GD

π GC×DC
(2.57)

where GD is the coupling matrix element between the ground state (G) and the discrete
state (D), GC is the matrix element between ground state and the continuum states (C),
and DC is the so-called configuration interaction, i.e. the coupling between the discrete
state and the continuum (here, Coulomb interaction of the two electrons). The line shape
for different values of the q-parameters is shown in Fig. 2.7. The case of q� 1 gives rise
to the Lorentzian line shape since effectively the direct ionization pathway is suppressed.
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Fig. 2.7: Absorption line shape for different values of the Fano q-parameter. The resonance
position and width are identical because of the use of ε .

For q = 0 a so-called window resonance arises: the absorption cross-section on resonance
is minimized. For other values of q the line is asymmetric as it is the case for the doubly
excited states of Tab. 2.2. A comprehensive derivation of the physics behind the Fano
profiles can also be found in Ref. [85].

In the experiment, there is usually a relatively flat background caused by other continuum
transitions that do not interfere with the discrete state.

These considerations suggest that the helium atom can be considered a quantum interfer-
ometer. Just like its optical counter part, the Michelson interferometer, it consists of two
arms: a fixed arm, which is the fast and non-resonant direct ionization channel, and a sec-
ond tunable arm, which is the doubly excited state that autoionizes after a certain lifetime.
This finite lifetime allows for the manipulation of the arm: By dressing the atom with a
strong laser field the phase acquired on the second interferometer arm can be controlled,
which manifests itself in the absorption line shape [26]. A detailed description of this
kind of line shape modification is given in Chap. 4.
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Chapter 3

Experimental setup

In this chapter, the concept of attosecond transient absorption spectroscopy and its exper-
imental realization in the frame of this work shall be discussed. While the general princi-
ples of femto- and attosecond pulse generation were presented in Sec. 2.1, technical and
experimental details are provided here. In addition to transient absorption spectroscopy,
the photoelectron based method of attosecond streaking is currently implemented in the
experimental setup, and is discussed in this chapter. Finally, a brief overview on how the
recorded spectra are processed is given. Further details regarding the attosecond beamline
can be found in [86–88].

3.1 Transient absorption spectroscopy

The principle of traditional absorption spectroscopy is simple. An experimental setup
consists of three ingredients:

1. The light source, e.g. a Xe arc lamp, a laser, or a synchrotron radiation source.

2. The spectroscopy target, e.g. a gas of atoms or molecules or a solid.

3. The spectrometer, which consists of

(a) the monochromator, e.g. a grating or a prism

(b) the detector, e.g. a charge coupled device (CCD) camera or a photographic
film

The light emitted from the light source is sent through the spectroscopy target, and the
transmitted light is spectrally resolved and recorded. By comparing this spectrum to a
reference spectrum, i.e. the spectrum without the target, the spectroscopic fingerprint of
the target medium can be obtained. Depending on the photon-energy regime, different
properties of the target can be accessed, e.g. rotational (µeV), vibrational (meV), or elec-
tronic (eV) properties. As the electronic properties of the target are the main research
subject in this thesis, the focus is put on these in the following. The typical stationary
absorption spectrum already contains a lot of information about the target’s electronic
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structure. The position of the absorption lines reveals the level spacing of the accessi-
ble states whereas the natural line width, i.e. disregarding spectrometer resolution and
broadening mechanisms, is determined by the lifetime of the states. Furthermore, the
exact line shape, as was shown in Sec. 2.6, encodes information about the environment
of the state. However, traditional absorption spectroscopy is very limited with regard to
accessing dynamics of the electron system. Thus, a time-resolved version of absorption
spectroscopy was developed: the so-called transient absorption spectroscopy (TAS). As
many other time-resolved methods, TAS is in principle a pump–probe scheme applied to
stationary absorption spectroscopy. A pump pulse, which is often but not always rather
strong compared to the probe pulse, is sent through the spectroscopy target in order to
trigger some dynamics—or in other words—to bring the system into a non-equilibrium
state. After a certain time delay τ , the probe pulse is sent through the medium in or-
der to probe the effect of the pump pulse on the system by recording the probe pulse
absorption spectrum. By varying the time delay between pump and probe, the evolu-
tion of the dynamics is resolved in time. In general, pump and probe pulse can have
completely different photon energy, which is often called two-color configuration. In or-
der to access the electronic dynamics in highly excited states, the photon energy of the
probe must be in the XUV to soft-x-ray regime [38, 89]. Furthermore, since the goal is
to resolve electron dynamics on their natural time scale, the pulse duration needs to be
in the attosecond regime. This leads to the technique of attosecond transient absorption
spectroscopy (ATAS). As the achievable intensity in the attosecond XUV regime is not
sufficient to perform an attosecond pump and probe step, up to now, the second pulse in
ATAS is always a femtosecond pulse (typically in the NIR). Compared with the compet-
ing techniques, such as photoelectron-spectroscopy-based methods (e.g. the attosecond
streak camera [90–92], the reaction microscope also referred to as cold target recoil ion
momentum spectrocopy (COLTRIMS) [93–96], and angular streaking [36, 37, 97]) and
high-harmonic spectroscopy [32, 98, 99], ATAS provides certain advantages. First of all,
ATAS intrinsically gives access to bound–bound transitions, whereas in photoelectron or
photoion methods an electron has to be liberated from the system eventually in order to
detect a signal. From the experimental point of view, ATAS is an all-optical technique.
This means that instead of a rather complicated electron spectrometer where for example
space-charge effects, static electric and magnetic fields, and more rigorous vacuum condi-
tions have to be considered, an optical spectrometer is sufficient. Last but not least, ATAS
allows the target to be studied in both weak and strong-field regimes. Thus, the target may
be investigated in a close-to-natural environment with weak–laser-induced perturbations
up to the case of highly nonlinear interactions at laser intensities exceeding 1013 W/cm2.
These properties make ATAS a very attractive complement to the other methods.
In the first ATAS experiments, a strong NIR pulse was used as the pump step, e.g. leading
to strong-field ionization of krypton atoms [40]. The time-delayed attosecond XUV pulse
was considered the probe, which in the example of strong-field–ionized krypton was used
to probe for the ionic states. However, there is a second scheme of performing ATAS
experiments or a second way of interpretation. In this scheme, the XUV rather than the
NIR pulse is considered the pump, as it promotes the target electrons to highly excited
states. This excitation gives rise to the dipole response, as discussed in Sec. 2.4. During
the finite lifetime of the dipole response the femtosecond NIR pulse is sent in and interacts
with the system. As described in detail in Chap. 4, this interaction leaves its fingerprint
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Scheme 1 Scheme 2

Pump dynamics (strong )NIR  Excite dynamics (weak )XUV

Probe after time delay (weak )XUV Interaction (weak/strong )NIR

Pump Probe Excitation Interaction

Fig. 3.1: Comparison of the two common schemes of attosecond transient absorption spec-
troscopy. A typical scenerio for scheme 1 is strong-field ionization of atoms with an intense
NIR pulse as the pump step. Followed by a weak XUV pulse to probe the ionic states and
dynamics induced by the pump. A similar scenario in the sense of scheme 2 involves the
weak XUV pulse to promote electrons to excited states, which is followed by an NIR pulse
interacting with the excited system. For a strong NIR pulse this would give rise to strong-field
inonization of the excited states as shown above. A weaker NIR pulse could lead to a pertur-
bative coupling of states for example. The effect of the NIR pulse is manifested in the dipole
response, and thus, in the XUV absorption spectrum.

in the dipole response. The coherent superposition of the dipole response and the XUV
pulse form the transmitted spectrum, which can be considered the probe of the dynamics.
This is the reason why the NIR can influence the XUV spectrum, although the NIR pulse
arrives at the target after the XUV pulse is already gone. In that sense, the XUV pulse
can be regarded as both pump (excitation of electrons) and probe (formation of the trans-
mitted spectrum), while the NIR pulse acts in between. Because of that, instead of using
the phrases pump and probe the two pulses are referred to as excitation (XUV pulse) and
interaction (NIR pulse). Figure 3.1 shows a comparison of the two schemes. In this the-
ses, by referring to ATAS the second scheme is meant, which is also known as perturbed
polarization decay [100].
In the following sections, the experimental apparatus to perform the ATAS experiments
shown in this work is described.
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3.2 Femtosecond laser system

VERDI V5

Prism compressor

Stretcher
Rainbow seed oscillator

Multipass amplifier

Fig. 3.2: Schematic drawing of laser system Femtopower Compact Pro CEP by Femtolasers
GmbH operating according to the CPA prinicple. The oscillator pulses are stretched by pass-
ing them through thick glass blocks in the stretcher. Third-order dispersion (TOD) accumu-
lated in the stretcher is compensated by TOD mirrors. Afterwards, the pulses are amplified by
going 9 times through the amplifier gain medium, which is also a Ti:sapphire crystal. Finally,
the amplified pulses are recompressed to < 30 fs in the prism compressor.

The basics of amplified femtosecond laser systems are described in the introductory chap-
ter (see Sec. 2.1.2). The laser system used for the experiments presented in this thesis
is a commercial Ti:sapphire system from the company Femtolasers (meanwhile Spectra
Physics), which is illustrated in Fig. 3.2. The Femtopower Compact Pro CEP houses the
oscillator (model: Rainbow seed CEP3) including the pump laser (Verdi V5, Coherent),
the multipass (9 passes) CPA stage, and the prism compressor. The Q-switched kHz pump
laser (DM-30, Photonics industries) for the amplifier is installed next to the Femtopower
and provides the typically used pump powers of 30 W. The laser systems delivers sub-
30 fs pulses with about 0.7 mJ pulse energy at a repetition rate of 4 kHz. The unamplified
pulses of the Rainbow seed oscillator are generated at 78 MHz with sub-10 fs duration
and 2 nJ pulse energy. The central wavelength is 790 nm. As an additional feature, the
laser pulses can in principle be CEP stabilized, which however was not made use of in
the results presented here (partly because the CEP infrastructure had to be removed due
to technical issues). The beam pointing of the output is stabilized to reduce fluctuation in
the following section of the setup.
The laser output is then spectrally broadened by focusing the beam into a neon-filled
hollow-core fiber (Fig. 3.3 (a)). Typically a neon pressure between 1.5 and 2.5 bar is used.
The fiber has a length of about 100 cm, a core diameter of 250 µm and is located in a com-
mercial housing (Kaleidoscope, Femtolasers). As shown in the figure, a glowing plasma
jet is generated before the fiber entrance. Since plasma introduces pulse and beam dis-
tortions the amount of plasma should be kept low. Also nonlinear effetcs in the entrance
and exit window require the beam diameter on the windows to be as large as possible.
After spectral broadening the linearly acquired and SPM-induced chirp is compensated
for by a chirped-mirror compressor (PC70, Ultrafast Innovations), which is designed to
reduce the chirp of a typical hollow-core fiber compressor between 500 and 1000 nm. The
fiber and chirped-mirror compressor output is characterized by means of a spectrometer
(HR4000+ 200 - 1100 nm, Ocean Optics) and a second-order interferometric autocorre-
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Fig. 3.3: (a) Principle of pulse compression via hollow-core fiber and chirped mirrors. The
input pulse is focused ( f = 1 m) into a hollow-core glass fiber filled with neon. SPM leads
to broadening of the spectrum and introduces a chirp to the pulse, which is compensated
for by a chirped mirror compressor. Fine tuning of the dispersion is achieved with a pair of
wedges. (b) Typical autocorrelation and spectrum after hollow-core fiber and chirped-mirror
compressor. The spectrum ranges from 550 - 950 nm, thus spanning almost a whole octave.
The pulse duration obtained from the interferometric autocorrelation is about 5 fs. The two
side maxima indicate the presence of a weak post pulse.

lator (Femtometer, Femtolasers). A typical spectrum and autocorrelation are shown in
Fig 3.3 (b). The pulse duration retrieved from the autocorrelation is about 5 fs FWHM,
which can be regarded as a rough estimate of the true pulse duration. The pulse energy
at this point is reduced by almost 50 % to about 350 µJ due to losses in the hollow-core
fiber and chirped-mirror compressor. Unfortunately, the blue part of the spectrum is not
reflected by the chirped mirrors, although it is the most important part for achieving the
shortest pulses. Therefore, a new mirror compressor (Mosaic OS, Femtolasers) with mir-
rors covering a range of 450 - 950 nm is planned to be used in the near future.
For pulses in the few-cycle regime, autocorrelation is not an ideal tool for pulse charac-
terization especially because the presence of a chirp can lead to false interpretation of the
autocorrelation signal. Thus, a dispersion-scan (d-scan) setup [101] was implemented re-
cently, which allows for a complete reconstruction of the laser pulses (except for the CEP)
similar to the well established techniques of spectral interferometry for direct electric field
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Fig. 3.4: (a) Input spectrum (amplitude) of the laser after spectral broadening in the hollow-
core fiber and compression in the chirped-mirror compressor. (b) Extracted spectral phase
as the main result of the d-scan measurement and evaluation. (c) Reconstructed laser pulse
(red) given by the Fourier transform of the spectrum (amplitude and phase) compared to the
transform limited pulse (black).

reconstruction (SPIDER) [102] and frequency-resolved optical gating (FROG) [103]. In
the d-scan method, the second harmonic generation (SHG) spectrum of the laser that is
to be characterized is recorded as a function of the amount of glass the laser pulses pass
through. The amount of glass, and thus the dispersion added to the incoming pulse, is
precisely controlled via a motorized pair of wedges. By knowing the input spectrum of
the laser and the dispersion characteristic of the glass wedges (n-BK7), an algorithm tries
to extract the spectral phase of the laser pulse by fitting a calculated SHG spectrum to
the measured spectrum. The result of such a d-scan measurement is depicted in Fig. 3.4.
The reconstructed pulse of 5.4 fs FWHM duration demonstrates the successful generation
of few-cycle pulses by the hollow-core fiber compressor setup. The deviation from the
Fourier limited pulse of 4.8 fs FWHM duration is only 0.6 fs indicating an almost flat
spectral phase. Note that the autocorrelation measurement and d-scan measurement are
not directly comparable as they were recorded under slightly different conditions.
Further pulse characterization is done in the experimental vacuum chamber by means of
an in situ technique in transient absorption spectroscopy conceived and developed in this
thesis work(see Chap. 6) as well as a currently developed attosecond streak camera (see
Sec. 3.3.1).
These laser pulses can now be focused to reach intensities in the order of 1014 to
1015 W/cm2, which is necessary in order to drive high-harmonic generation.



3.3 ATTOSECOND SPECTROSCOPY BEAMLINE 31

HHG cell iris

split mirror

toroidal mirror

filter unit

VLS grating

CCD sensor

HHG Iris Mirrors Experiment Grating

Camera

(a)

(b)

(c)

(d)

Fig. 3.5: (a) Complete beamline with NIR and XUV beam path drawn. The harmonic gen-
eration chamber is followed by the iris chamber and the mirror chamber, which also houses
the filter unit. After the temporal separation of the pulses, the experimental chamber with
the target gas cell and the second filter, as well as the spectrometer consisting of the grating
and the camera follow. (b), (c), and (d) show details of the two beams and pulses passing the
optical elements in the different chambers.

3.3 Attosecond spectroscopy beamline

After the Ti:sapphire pulses are spectrally broadened and compressed, they are used to
drive HHG (see Sec. 2.1.3) in order to produce attosecond pulses of XUV light, and in the
second step, they are combined with the generated XUV beam to perform the transient
absorption experiment.

XUV light is strongly absorbed in the atmosphere as the photon energy easily exceeds
the ionization potential of all gases. Therefore, the beam has to be generated and
guided in a system of vacuum chambers—the beamline—shown in Fig. 3.5 (a). A
Brewster-angled window marks the entrance of the chamber setup. The laser is focused
by a spherical mirror ( f = 50 cm) into a gas cell, typically filled with neon or argon at 10
- 100 mbar backing pressure (Fig. 3.5 (b)). The gas cell has an inner diameter of 2 mm
with two drilled holes allowing the laser beam to enter the cell. Taking into account
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Fig. 3.6: High harmonic spectrum generated in neon in the energy region between 45 and
75 eV used for the experiments in this work. The sharp cutoff near 72.3 eV is cause by the Al
filters used to remove the copropagating NIR light.

the gas jet emerging from the holes, the effective generation-medium length is about
3 mm. To account for the high gas load, a 2300 l/s turbo molecular pump (HiPace 2300,
Pfeiffer Vacuum) is installed reducing the pressure in the chamber to 10−4 to 10−3 mbar.
Typically photon energies between 20 and 100 eV are emitted in the form of a train
of a few attosecond pulses. By spectroscopically selecting the high-energy part of the
spectrum, attosecond pulses originating from weaker half-cycles of the driving pulse are
discarded. A typical harmonic spectrum generated in neon is shown in Fig. 3.6. The
relatively continuous intensity distribution around 65 eV indicates the presence of only
one major and a few minor attosecond pulses in that energy region (a flat spectrum is
only a real evidence for the generation of an IAP if the CEP is stabilized). The duration
of each attosecond burst is unknown because up to now the attosecond pulse duration
is not accessible by means of transient absorption spectroscopy. The attosecond streak
camera that is currently under construction (see next section) will be able to deliver both
the XUV as well as the NIR pulse durations. The sharp drop in intensity is caused by
the absorption edge of aluminum filters (described below) around 72.3 eV. After the
harmonic generation, a motorized iris aperture is placed in order to control the intensity
of the NIR, which is one of the major degrees of freedom. In contrast to the NIR
beam, the much narrower XUV beam is barely affected by the iris position. Only if the
zero-aperture iris is close to shut, the XUV beam intensity is reduced.
Next, the two co-propagating beams are reflected off of a split mirror under grazing inci-
dence in order to introduce a time delay between the corresponding pulses (Fig. 3.5 (c)).
The narrow XUV beam almost exclusively hits the gold-coated inner part of the mirror,
whereas most of the strongly diverging NIR beam hits the silver-coated outer mirror.
A piezo is used to move the inner mirror with respect to the outer mirror with sub-µm
precision. Typically a step size of 171.15 as is used for scanning one pulse across the
other in the pump–probe scheme. The interferometric stability of the split mirror setup
is on the order of 10 as. In order to completely separate the XUV pulse from the NIR
pulse, the part of the NIR hitting the inner mirror and the part of the XUV hitting the
outer mirror have to be removed. This is accomplished by a filter unit that consists
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of a 2 µm thin polymer membrane with a center hole, and a metal foil filter covering
this hole. The XUV beam is transmitted by the metal filter (200 nm thin aluminum for
all data presented, replacable by, e.g., indium or zirkonium filters for different spectral
regions, see Fig. 3.7) and can only pass the hole in the polymer membrane because it
is strongly absorbed (optical density of 5 for XUV light) by the membrane material
(nitrocellulose). On the other hand, the NIR passes the whole membrane except for the
hole because it is reflected by the metal filter in front. By that, a complete spatial and
thus temporal separation of the pulses can in principle be achieved. However, due to
micro holes and cracks in the metal foil and incomplete coverage of the hole, a small
amount of NIR light leaks through the center part of the filter unit leading to a weak
additional NIR pulse on top of the XUV pulse. This leakage pulse leads to a population
of otherwise dipole forbidden states (e.g. states of S and D symmetry in the case of He)
in the initial population step by means of two-photon interaction (XUV + NIR or XUV -
NIR). Although this effect is unwanted in many situations and thus minimized, it can be
exploited in the sense of a four-wave-mixing scheme as recently shown [9].

Placed between the split mirror and the filter unit, a gold-coated toroidal mirror (Hellma
Optics) images the generation volume into the experimental gas cell, where the actual
pump–probe experiment takes place. To increase reflectivity, the mirror is hit under 15◦

grazing incidence, which is the reason for the toroidal shape: a spherical mirror would
introduce strong astigmatism under these conditions as the beam experiences two differ-
ent effective radii of curvature for the meridional and sagittal plane. For a torus, the two
different radii of curvature just compensate for astigmatism, which leads to better image
quality and higher peak intensity. Note that spherical aberration is still present, as the
torus has a circular curvature. However, the 1:1 imaging property and the small size of at
least the XUV beam help to minimize aberrations.
The chamber housing the experimental cell is pumped by another 2300 l/s turbo pump
since the gas load during an experiment is comparable to that in the generation chamber
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in order to increase the optical density of the target for adequate signal-to-noise ratio.
The NIR intensity in the experimental cell can reach up to about 1013 W/cm2, which is
enough to study strong-field effects. After the experimental cell, the NIR beam is dumped
by means of another metal filter (also aluminum here) as it would cause damage to the
sensor of the XUV camera. This filter is followed by a gold-coated variable line space
(VLS) grating (avg. 1200 groves / mm, Hitachi) hit under grazing incidence (Fig. 3.5 (d)).
The surface of the grating is cylindrically shaped with focusing propeties in the dispersive
plane and no curvature in the perpendicular direction. Therefore, the XUV beam profile
is unaffected in the vertical direction, which allows to control the beam quality. By con-
trast, in the horizontal plane, identical spectral components hitting the grating across the
extended beam profile are focused in single line. Using a VLS grating, the foci of each
wavelength are situated along a flat plane rather than on a curved surface (the Rowland
circle) as it would be the case for an ordinary cylindrical grating. This is because the vari-
able line spacing itself introduces a focusing property: Depending on the position on the
grating the diffraction angle varies across the beam profile due to the varying line spacing.
Hence, the diffracted rays emerging from different positions on the grating can meet at
some point in space. The grove spacing can be designed in such a way that it flattens the
image plane of the concave grating surface. The photon energy range of the grating is
20 - 110 eV, which is dispersed and focused (in the dispersive plane) along the 110 mm
long image line. Thus, the 27 mm large camera sensor (1340 pixels) covers a considerable
region of the spectral bandwidth. In order, to record the full spectral range the camera is
moved along the gratings’ image plane by means of a home-built camera suspension. The
CCD chip is back-illuminated and thermoelectrically cooled to -50 ◦C, which allows for
low noise and short integration times (typically 100 ms - a few seconds). The resolution
of the spectrometer is about 20 meV (standard deviation) at 60 eV photon energy.

3.3.1 Photoelectron streak camera

In order to extend the scope of the beamline beyond transient absorption measurements
towards photoelectron experiments, and to establish a powerful femto- and attosecond
pulse characterization method, an attosecond streak camera [90–92] is currently build up.
The principle of the attosecond streak camera shown in Fig. 3.8 (a) is the following: The
(isolated) attosecond pulse triggers single-photon ionization in the target gas. The low
frequency NIR pulse acts as the streaking field, which is super-imposed and scanned over
the XUV pulse by varying the time delay. Since the attosecond pulse is much shorter
than the optical cycle of the NIR, the beginning of the NIR-electron interaction is well
confined in time. The liberated electrons will acquire a certain momentum change ∆p,
which is determined by the NIR’s vector potential A at the time of photo ionization:

∆p = qe

∫
∞

t0
E(t)dt = qeA(t0) (3.1)

Thereby, the vector potential, and with that also the electric field, of the NIR pulse is di-
rectly mapped to the momentum shift of the photoelectrons, which can be measured via an
electron time-of-flight (TOF) spectrometer. Hence, the streaking technique allows for the
direct measurement of the oscillating electric field—the wave form—of the pulse. This
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Fig. 3.8: (a) Principle of attosecond streaking. The attosecond XUV pulse (purple) photoion-
izes the target gas at time t0 and the free photoelectrons are dressed by the NIR pulse (electric
field red, vector potential orange dashed). Thus, the final electron momentum is shifted by
∆p = qeA(t0) depending on the delay between XUV and NIR. This momentum shift can be
measured by means of an electron time-of-flight spectrometer (TOF). (b) Drawing of movable
photoelectron streak camera with key components named. The path of the photoelectrons is
indicated by the green trace inside the µ-metal shield.
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makes the streak camera an analog of the oscilloscope in the petahertz domain. Further-
more, using the numerical frequency- resolved optical gating for complete reconstruction
of attosecond bursts (FROG CRAB) algorithm it is possible to reconstruct the attosec-
ond pulse [105]. Alternatively, the reconstruction of attosecond beating by interference
of two- photon transitions (RABBITT) technique can be used to reconstruct attosecond
pulse trains [106]. Besides the possibilities of femto- and attosecond pulse reconstruction,
the streak camera allows to investigate fundametal aspects of quantum dynamics such as
time delays in photoemission [25].
The heart of the streak camera is the TOF spectrometer, which mainly consists of a
magnetic-field–free drift tube made from µ-metal and the microchannel plate detector
(MCP) as shown in Fig. 3.8. The drift tube has a tip with a 1 mm diameter entrance chan-
nel, which can be moved close to the experimental cell along all axes in order to collect
electrons emerging from a gas jet. The small entrance channel acts both as a momen-
tum filter for the photoelectrons, since only those electrons leaving the target along the
NIR-laser polarization are of interest, as well as a differential pumping stage. Differ-
ential pumping of the TOF volume is necessary in order to assure safe operation of the
MCP detector and to maximize the mean free path of the photoelectrons. Together with
a 300 l/s TMP (HiPace 300, Pfeiffer) at the back of the TOF apparatus, pressure of up
to 10−3 mbar in the experimental chamber is expected to be reduced to 10−6 mbar in the
TOF. For 10−3 mbar, the mean free path is ≤ 10 cm, (according to [107] where a mean
free path of 67 nm in the atmosphere was reported) whereas for 10−6 mbar the mean free
path easily exceeds the dimensions of the vacuum chamber allowing for unobscured travel
of the electrons. The electrons reaching the end of the drift tube are accelerated onto the
MCP, which amplifies the signal so that it can be processed electronically. The flight
distance of the electrons is about 60 cm so that electrons with 40 eV kinetic energy need
about 160 ns to travel this distance. The energy resolution is in principle determined by
the time-of-flight and the temporal resolution of the detector electronics. A key parameter
is the dead time of the MCP and read-out electronics, which determines how long after an
event the electronics need for the next event to be recorded. The MCP dead time is very
small due to the large amount of channels, which can detect electrons simultaneously.
However, the read-out electronics put limits on the dead time of the system. In addition,
the time resolution of the MCP and amplifier determines whether two consecutive events
can be resolved in time, so that the read-out electronics have a chance to register both
events. A NIM module converts the analog signal of the MCP into standardized NIM
pulses, which are then counted by a computer scalar card. Once completely assembled
and installed, the streak camera will add a powerful tool for pulse characterization to the
beamline and it will be used in quantum dynamics measurements to complement transient
absorption spectroscopy.

3.4 Data processing

The handling of spectroscopic data is described in detail in Ref. [88], so that the
description here is restricted to the most important basics.
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For the data shown in this thesis, the hardware binning mode of the CCD camera was
used, which records a one-dimensional array of intensity values. Each value is collected
from a vertical strip of camera pixels over a user-defined range. In order to calibrate
the photon energy axis, several absorption lines of known energy are used to establish a
calibration function, which converts pixel number to photon energy. Therefore, the exact
resonance position on the camera chip is fitted for each spectral line and the discrete
points are interpolated with a parabolic function. In order to reconstruct the absorption
spectrum, knowledge of the background and a reference are necessary. The background
B(ω) is determined by shutting all gas valves, so that only NIR stray light leaking on
the camera chip and the camera noise itself contribute to the image. The reference R(ω)
is recorded with XUV light but no absorbing target, in order to compare it to the actual
measurement M(ω) to determine the optical density OD(ω) of the gas target. Ideally, the
relation between these quantities is given by

M(ω) = B(ω)+(R(ω)−B(ω))10−OD(ω), (3.2)

which allows for the determination of OD from the three measured spectra. However, due
the fluctuations of (mainly) the laser pulse energy, which is amplified due to the nonlin-
earity of HHG, it is often the case that measurement and reference cannot be compared
to each other because the overall shape of the spectrum fluctuates. There are currently
three ways to deal with this problem. The first, and most direct way, is to simultaneously
record measurement and reference. This implies that a portion of the XUV light has to be
picked off before the interaction with the gas target and has then to be recorded be another
XUV spectrometer. Such a technique will be implemented in a new version of the current
beamline, which is currently set up. The second approach to generate a useful reference
is to derive it from the measurement. For spectral lines that are narrow compared to the
overall structure of the spectrum, which is mainly determined by the harmonic modula-
tion of approximately 3.5 eV, a lowpass filter can be effectively applied to the spectrum
in order to remove these lines. The spectrum without the resonance lines serves then as a
reference. This approach, for instance, works well for the narrow lines of doubly excited
helium. However, the non-resonant absorption due to transitions to the continuum is not
retrieved by this method. If the absorption lines are too broad, the lowpass filtering will
introduce artifacts. In this case, one can try to roughly remove the absorption lines from
the spectrum previously in order to support the lowpass filter. A third approach is to con-
struct a reference from a set of measured references that matches best with the absorption
experiment data. The construction might be realized as a linear combination of measured
references or by singular value decomposition (see e.g. Ref. [108]).
With that the major processing of experimental data is accomplished and further analysis,
which is presented in the subsequent chapters, can be performed.
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Chapter 4

The dipole control model

The following chapter deals with a physical description of impulsive quantum control
that is the basis for the methods described in chapters 5 and 6 as it helps to bridge the gap
between time and frequency domain in a comprehensive analytical way. Furthermore,
it allows to retrieve amplitude and phase information about light–matter interaction pro-
cesses from time-resolved spectra. In the model conceived and developed in this thesis,
the system is described via its dipole moment, which is controlled in the time domain—it
is thus named dipole control model (DCM). The main content of this chapter has been
published in Ref. [1], so that the presentation will adhere closely to the publication.

4.1 General concept

The starting point is the temporal dipole response d(t) of an isolated quantum state after
excitation by an ultrashort light pulse Eex(t), e.g. an attosecond XUV pulse, at time t = 0.
The pulse duration shall be small compared to the lifetime of the excited state so that
it can be approximated by a Dirac-δ function. As the dipole response oscillates with
the resonance frequency ωr it is subject to an exponential decay with a decay rate Γ

(Fig. 4.1 (a)). To calculate the dipole response, first-order time-dependent perturbation
theory can be used. The coefficient of the excited state |1〉 is given by

c1(t) =
1
ih̄

∫
∞

0
eiωrt ′ 〈1|d Eex(t) |0〉dt ′ =

1
ih̄

d10E0 (4.1)

Here, d is the dipole operator, |0〉 is the ground state (energy is chosen to be 0), d10 =
〈1|d |0〉 is the dipole matrix element between ground and excited state, and E0 is the
amplitude of the Dirac-δ pulse. With that the wave function |ψ(t)〉 evaluates to

|ψ(t)〉= |0〉+ 1
ih̄

d10E0e−iωrt |1〉 (4.2)

from which the time-dependent dipole moment can be calculated as the expectation value
of the dipole operator:

d(t) = 〈ψ(t)|d |ψ(t)〉= 1
ih̄

E0 d01
2 [e−iωrt− eiωrt

]
=
−2E0 d01

2

h̄
sin(ωrt) (4.3)



40 THE DIPOLE CONTROL MODEL

Fig. 4.1: (a) Excitation (not shown) fol-
lowed by a free decay (dashed blue) and
phase-kicked decay (solid purple) due to
interaction with a second dressing laser
pulse (red) directly after the excitation
step. The corresponding spectral response
is displayed in the inset. (b) Natural
Fano lines (red) of doubly excited states
of helium are transformed to a symmet-
ric Lorentzian line (blue) upon interaction
with an NIR pulse. (c) Same situation as in
(b) but for singly excited helium where the
natural line shape is Lorentzian and can be
transformed into a Fano-like line shape by
virtue of the laser pulse. The data of (b)
and (c) is taken from [26]
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Here, the relation d01 = d∗10 was used. Introducing an exponential decay of the wave
function exp(−Γ/2t) leads to the same exponential behavior of the dipole moment. To
simplify the analytical treatment, a complex representation of d(t) is chosen, which is
equivalent to treating only the positive frequencies of the spectrum and thus justified for
the considerations presented here. This leads to the dipole response that will be used in
the following:

d(t > 0) ∝ ieiωrt−Γ

2 t . (4.4)

The spectral line shape of the absorption cross-section σ(ω) ∝ ω Im
[
d̃(ω)/Ẽ(ω)

]
asso-

ciated with this freely decaying dipole is determined by the imaginary part of the Fourier
transform of Eq. 4.4:

Im
[
d̃(ω)

]
= Im

[∫
∞

−∞

d(t)e−iωtdt
]

∝ Im
[

i
i(ω−ωr)+Γ/2

]
(4.5)

This is because the spectrum of the δ -like pulse is uniform and the factor ω can be ne-
glected for the common case of Γ� ωr. Therefore, the imaginary part of the dipole
response is regarded as the main observable in transient absorption measurements using
ultrashort excitation pulses. Equation 4.5 resembles a Lorentzian line centered about ωr
with its full width at half maximum (FWHM) equal to the decay rate Γ. By adding an
initial phase φ0 to the dipole oscillation of Eq. 4.4, the absorption line shape can be contin-
uously converted into a Fano-like line shape [26]. Furthermore, a direct relation between
φ0 and the Fano-q-parameter can be found:

φ0 = 2arg(q− i) ↔ q =−cot
(

φ0

2

)
(4.6)

It was experimentally demonstrated that the initial phase of the dipole response can be
effectively controlled by means of an ultrashort NIR laser pulse dressing the excited state
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right at the beginning of the decay [26]. In the corresponding absorption spectra, the spec-
tral line could be modified substantially: the original asymmetric Fano line shape due to
the autoionizing nature of the studied states (see Sec. 2.6) could be converted into a sym-
metric Lorentzian line shape and vice versa by controlling the NIR intensity as shown in
Fig. 4.1 (b) and (c). Thereby, absorption could be transformed into transparency or even
gain. The underlying physical mechanism was identified to be a non-resonant shift of the
excited state’s energy due to the laser dressing, which causes a phase shift if integrated
over a certain time: the phase gets a kick with respect to the free decay (Fig. 4.1 (a)). If
the delay τ between the excitation and the dressing laser is small compared to the lifetime
of the excited state, and if the dressing laser pulse duration is also much shorter than the
lifetime, it could be shown that the line shape is well described by the general Fano for-
mula.
For the DCM, this restriction is lifted making the time delay a completely accessible di-
mension allowing for the interpretation of time-resolved measurements. In the following,
a second laser pulse interacting with the system at arbitrary time delay τ is introduced to
the model. This gives rise to a perturbed dipole decay or (macroscopically) a perturbed
polarization decay [45, 100].
Because of the δ -approximation of both optical pulses, which again is justified if the pulse
durations are short compared to the state’s lifetime, the excitation / dressing scheme of
ATAS can be divided in three temporal regions. For t < 0 the excitation pulse did not act
so that the excited state is empty, which leads to a vanishing dipole response. The second
region is the region of free decay, which begins at the time of excitation t = 0 and ends
at t = τ as soon as the dressing laser pulse arrives. In this region, the dipole response is
governed by the field-free dynamics as derived above

d(0 < t < τ) ∝ ieiωrt−Γ

2 t = f1(t). (4.7)

The dressing laser field will then impulsively interact with the system and this interaction
will leave its fingerprint in the dipole response. However, after the interaction the system
is again field free and evolves naturally. Hence, the dipole response after the dressing laser
pulse can in general be written as the field-free response, i.e. f1, modified in amplitude
and phase, which shall be described by the complex dipole control parameter A:

d(τ < t) ∝ A f1(t) (4.8)

By choosing A, a variety of light–matter interaction processes can be modeled. For ex-
ample a pure modification of the dipole phase, i.e. |A| = 1, can be used to simulate the
effect of a non-resonant energy shift, whereas a pure modification of the amplitude, i.e.
Im[A] = 0, can be used to model ionization of the excited state. In general, A depends on
the time delay τ with A(τ < 0) = 1.
Combining the three temporal sections to a piecewise function yields:

dτ(t,τ) ∝


0 t < 0
f1(t) 0 < t < τ

A(τ) f1(t) t > τ

, (4.9)

which is the central time-domain equation of the DCM and which is illustrated in
Fig. 4.2 (a). The structure of A can often be described as one of two prototype structures:
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Fig. 4.2: (a) Illustration of the dipole control model. The excitation (blue pulse) is followed
by free decay (dashed blue), which is interrupted by the dressing pulse (red) at arbitrary time
delay (τ1). The perturbed dipole decay (solid purple) gives rise to a modified spectrum (see
inset). The perturbation is parametrized by the complex quantity A. Pale colors indicate a
different time-delay (τ2) leading to a different spectrum. (b) Structure of the complex dipole
control parameter A, which modifies the dipole response after interaction of the excited state
with the laser pulse (in δ -approximation) and leads to a perturbed dipole decay. Different
types of interaction are described by different structures of A as described in detail in the
main text. (c) Example for a non-resonant type of interaction. In strong-field ionization, the
real A = a1 resembles the part of the dipole moment that remains bound after the ionization
event. (d) Example for a resonant type of interaction. During the excitation a coherent su-
perposition of two dipole-allowed states, i.e. a wave packet, is created. Depending on the
timing τ of the dressing laser pulse, either a portion in-phase or out-of-phase (or anywhere in
between) is added to the wave function, leading to an increased or decreased state amplitude,
and thus an increased or decreased dipole moment. The perturbative treatment of the two-
photon transition via an intermediate state yields A and leads to a quantum path interference
with the beat frequency ∆ω given by the level spacing.
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Fig. 4.3: Spectral interference: comparison
of laser pulses and (perturbed) dipole re-
sponse. (a) Single laser pulse featuring a
smooth spectrum. (b) The presence of a
time-delayed (time delay τ) second pulse
leads to a sinusoidal modulation of the spec-
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components of the two pulses have different
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ond pulse with respect to the first pulse (see
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arises. (c) In the case of the free decay—
similar to the single pulse—all components
interfere constructively leading to a sharp
and smooth absorption spectrum. (d) Inter-
ference of the perturbed part with the free
part leads to modulations and broadening of
the absorption spectrum.

a product of terms or a sum of terms. The product form A = a1eiφ1 is suitable to describe
non-resonant processes like strong-field ionization or non-resonant transient level shifts,
e.g. a ponderomotive shift as shown in Chap. 6. On the other hand, the sum form
A = 1+a2ei∆ωτ+iφ2 is derived from perturbative coupling to another state with an energy
separation of h̄∆ω (see Sec. 2.3, Eq. 2.36). In principle, all parameters may depend
explicitly on τ . Figure 4.2 (b) summarizes the fundamental structures and introduces
an example of a mixed composition, which can be used to describe a combination of
interaction processes. One example of the non-resonant and resonant case is given in
Fig. 4.2 (c) and (d), respectively.

4.2 From time domain to frequency domain

Since spectroscopy techniques give access to the spectral representation of the dipole
response rather than the time-domain representation, the (complex) time delay–dependent
spectrum d̃τ(ω,τ) will be derived from Eq. 4.9. The piecewise description of the dipole
response makes Fourier transform convenient:

d̃τ(ω,τ) =
∫

∞

−∞

dτ(t,τ)e−iωtdt ∝

∫
τ

0
f1(t)e−iωtdt +A(τ)

∫
∞

τ

f1(t)e−iωtdt. (4.10)

By substituting Eq. 4.7 into Eq. 4.10 the complex spectrum can be calculated analytically
without specifying A(τ):

d̃τ(ω,τ) ∝ i
1− ei(ωr−ω)τ−Γ

2 τ(1−A(τ))
i(ω−ωr)+Γ/2

(4.11)
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In correspondence to Eq. 4.9, this is the central equation of the DCM in the spectral do-
main. For convenience, Eq. 4.11 shall be simplified by introducing γ = Γ/2, the detuning
from the resonance frequency δ = ω−ωr (not to be confused with the Dirac-δ function
δDirac), and the complex dipole spectrum D̃τ(δ ,τ) = d̃τ(ωr + δ ,τ). With that, Eq. 4.11
reduces to

D̃τ(δ ,τ) ∝−1− e−iδτ−γτ(1−A(τ))
δ − iγ

(4.12)

Note that, for simplicity the functions and equations presented throughout the thesis de-
pend on the angular frequencies ω or δ and ν . However, in the figures containing ex-
perimental data or simulations of experimental situations, the data will explicitly depend
on the XUV photon energy h̄ω or the Fourier energy h̄ν with electron volts (eV) as the
standard unit. The time delay τ is used in units of femtoseconds.

Equation 4.12 already gives insight into the physics going on during a transient absorption
experiment. In the case of A(τ) = 1, i.e. in the absence of any interaction between the
dressing laser field and the excited state, the term in parentheses equates to 0, so that
the complex spectrum becomes independent of τ and yields nothing but the natural line
shape of the excited state. If light–matter interaction leads to a perturbed dipole decay,
i.e. for A(τ) 6= 1, several complex-valued terms of possibly different phase are present
in the numerator. This gives rise to time delay–dependent spectral interference and the
according interference patterns. The situation is similar to a double-pulse configuration,
which causes a sinusoidal modulation of the spectral intensity compared to a single pulse
(Fig. 4.3 (a) and (b)). The same phenomenon leads to the formation of the well-known
frequency combs for a long train of pulses [109–111] or the harmonic comb of HHG.
In the case of a perturbed dipole decay, the two temporal regions before and after the
dressing laser field also interfere spectrally leading to a characteristic modulation of the
absorption spectrum as shown in Fig. 4.3 (c) and (d).
The exponential factor exp(−γ τ) damps the effect of the term in parentheses, i.e. the
perturbation, for increasing time delay τ of the perturbation with respect to the excitation.
Hence, the line shape converges against the natural line for τ→∞ as a steadily decreasing
fraction of the decaying dipole response is affected by the dressing laser.
Substitution of A(τ) in Eq. 4.12 by either the non-resonant case (product form, case 1) or
the resonant case (sum form, case 2) enables further evaluation of the complex spectrum
as well as of the absorption spectrum given by

στ(δ ,τ) ∝ Im
[
D̃τ(δ ,τ)

]
(Sec. 2.4) (4.13)

The complex spectra for the two example cases are

D̃τ,1(δ ,τ) ∝−1− e−iδτ−γτ(1−a1eiφ1)

δ − iγ
(4.14)

D̃τ,2(δ ,τ) ∝−1−a2e−iδτ−γτei∆ωτ+iφ2

δ − iγ
. (4.15)

Evaluating the imaginary part, which is directly proportional to experimental absorption
data, of Eq. 4.12, 4.14 and 4.15 yields

στ(δ ,τ) ∝
1

δ 2 + γ2

[
γ + eiδτ−γτ(γ + iδ )(A(τ)−1)

]
+ c.c. (4.16)
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Fig. 4.4: Time-resolved absorption spectra analytically calculated with the DCM. (a) Sim-
ulated strong-field ionization of an excited state (as in Fig. 4.2 (c)) for different time delays
between XUV and strong-field pulse as an example of the non-resonant-type interaction. The
absorption spectrum is described by Eq. 4.17 with parameters a1 = 0 and φ1 = 0 to model
complete ionization of the state via the NIR pulse. (b) Resonant coupling of excited states (as
in Fig. 4.2 (d)) according to Eq.4.18 with a2 = 0.1, φ2 = π , and h̄∆ω = 3.5 eV. The beating
structure is a signature of quantum-path interference processes.

for the general case,

στ,1(δ ,τ) ∝
1

δ 2 + γ2

[
γ + eiδτ−γτ(γ + iδ )

(
a1eiφ1−1

)]
+ c.c. (4.17)

for the non-resonant case, and

στ,2(δ ,τ) ∝
1

δ 2 + γ2

[
γ +a2ei(δ+∆ω)τ−γτ(γ + iδ )eiφ2

]
+ c.c. (4.18)

for the resonant case. Figure 4.4 shows a calculated example spectrum for each case based
on Fig. 4.2 (c) and (d). The spectra exhibit characteristic structures that are commonly
observed in many recent attosecond transient absorption studies [6, 39, 45, 79, 112–117].
Figure 4.4 (a) shows hyperbolic features along curves of δ × τ = const., which are
accompanied by spectral broadening for decreasing time delay. The spectral broadening
can be readily understood since early ionization (τ → 0) terminates the dipole response
after much less than its natural lifetime. Thus, according to the time-energy uncertainty,
a fine spectral feature cannot develop and the spectral bandwidth is proportional to
1/τ . The abrupt vanishing of the dipole oscillation due to strong-field ionization also
causes the hyperbolic structures. The physical mechanism behind is the intrinsic Fourier
transform performed by the spectrometer on a decaying signal that stops fast compared
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to the natural lifetime. In analogy to that, a numerical Fourier transform performed on a
decaying function before the amplitude has declined enough, e.g. due to a limited grid,
causes the same effect in the form of an artifact. However, in the case of light–matter
interaction that strongly modifies the dipole oscillation amplitude on a time scale faster
than the lifetime, such as strong-field ionization does, the artifact is real and can be
measured as demonstrated in the following chapters.
This strong modification of the absorption spectrum is absent in Fig. 4.4 (b) due to
the perturbative nature of the modeled light–matter interaction process. In contrast to
Fig. 4.4 (a), Fig. 4.4 (b) exhibits a fast τ-dependent modulation of the optical density due
to quantum path interference (see Fig. 4.2 (d)). The apparent rippling structure becomes
tilted for increasing τ , which is due to the exp [i(δ +∆ω)τ] term in Eq. 4.18. Physically,
the transition frequency towards the coupled state is lower on one side of the spectral
line’s center frequency and higher on the other side, which causes the rippling period
to vary across the spectral line introducing the observed tilt. In principal, the tilting of
the rippling has the same origin as the hyperbolic structures - the effect is just frequency
shifted by ∆ω .

In summary, the presented dipole control model is a general framework, which helps to
understand resonant and non-resonant time delay–dependent dipole dynamics driven by
ultra-short laser pulses. As will be shown in the subsequent chapters, the analytically
calculated absorption spectra can be used to extract amplitude (e.g. a1 and a2) and phase
(e.g. φ1, φ2, and ∆ω) from measured spectra. This allows for a precise characterization
of light–matter interaction processes (Chap. 5) as well as characterization of the intense
few-cycle laser pulses that are used to drive such processes (Chap. 6).



Chapter 5

Two-dimensional absorption
spectroscopy (2DAS)

The conventional attosecond transient absorption spectroscopy, as introduced in Sec. 3.1,
is a very powerful technique as it allows to both access and also to control the ultra-
fast dynamics of a quantum system via the experimental outcome: a time-, or actually
time delay–, resolved spectrum. These features, however, come at the expense of typi-
cally fairly complicated-structured spectra containing the signatures of several different
processes. Therefore, individual processes can hardly be separated, analyzed and under-
stood. This is especially the case for strong and ultrashort broadband laser pulses where
a variety of effects can occur simultaneously.
This raises the question if there is an alternative or even better way to study quantum
dynamics than by analyzing the time-resolved absorption spectrum. The answer to this
question is the content of this chapter. By performing a Fourier analysis along the time-
delay axis a complex-valued two-dimensional spectral representation of the information
encoded in the time-resolved absorption spectrum is created (Fig. 5.1). It will be shown
by means of an analytic theory based on the dipole control model (DCM) of the pre-
ceding chapter that by this procedure different coupling pathways are spectroscopically
separated. This allows different pathways of light–matter interaction to be analyzed sep-
arately. The two-dimensional representation will in the following be referred to as two-
dimensional absorption spectrum (2DAS) and the technique itself as two-dimensional
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Fig. 5.1: Schematic of two-
dimensional absorption spec-
troscopy (2DAS). The temporal
description of the dipole control
model (Eq. 4.9) is transformed into
a two-dimensional–spectroscopic
representation by performing two
Fourier tranforms: along the time
axis (done by the spectrometer in
the experiment) and the second one
along the time-delay axis.
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absorption spectroscopy (also 2DAS). Furthermore, also by means of the DCM, it is pos-
sible to extract amplitude and phase modifications imprinted by the laser–atom interaction
onto the atomic resonances. This makes 2DAS a powerful complement to the conven-
tional transient absorption spectroscopy.
Besides that, 2DAS can be regarded as one of the first experimental steps towards tradi-
tional (four-wave-mixing-type) two-dimensional spectroscopy [118–121] with attosecond
pulses in the XUV as theoretically described in Refs. [122, 123]. 2DAS is in principle a
two-color (NIR and XUV) nonlinear method (e.g. four-wave-mixing in the case presented
in the second section of this chapter), and by choosing the two-dimensional–spectral rep-
resentation, similar to traditional two-dimensional spectroscopy, couplings between dif-
ferent coherently excited states are revealed. This provides the key to understand the
dynamics of transiently coupled—or more general laser-dressed—states.
The chapter is divided as follows: First the analytical framework based on the DCM is
developed where the focus is placed on the 2DAS representation of the non-resonant and
resonant prototype examples of Chap. 4. Afterwards, the theoretical knowledge is applied
to experimental and simulated data of doubly excited states of helium excited by attosec-
ond XUV light and dressed by a few-cycle NIR laser pulse.
Further applications of the method are presented in Sec. 5.3, where a spin–orbit wave
packet is created by inner-valence excitation of xenon, and is afterwards exposed to in-
tense NIR light, is studied.
The majority of the content of the first two sections (5.1 and 5.2) of this chapter was
published in Ref. [1]. Therefore, the content will adhere closely to the publication.

5.1 Dipole control model for 2DAS

In the following the 2DAS representation of the time delay–resolved spectrum introduced
in Sec. 4.2 will be derived, which enables interpretation of experimental data shown in
the next section. It will be demonstrated that amplitude and phase information on the
laser-induced modification of the excited quantum state can be retrieved from the 2DAS.
The 2DAS is created from the time-resolved absorption spectrum by Fourier transform
along the time-delay axis, thus transforming the time delay τ into a frequency ν , which
in the following shall be denoted as Fourier frequency. The 2DAS is defined as

D̃ν(δ ,ν) =
∫

∞

−∞

Im
[
D̃τ(δ ,τ)

]
e−iντdτ (5.1)

where Im
[
D̃τ(δ ,τ)

]
is directly proportional to the experimentally observable absorp-

tion cross section σ . The general expression for the complex time-dependent spectrum
D̃τ(δ ,τ) was derived in the framework of the DCM and is given by Eq. 4.12. The two
spectral dimensions ω =ωr+δ and ν belong to the frequency ranges of the excitation and
interaction/dressing pulse, respectively. Although in the studies presented in this thesis
attosecond pulses of XUV light are used for the excitation and femtosecond NIR pulses
are used for the interaction, the approach is completely general and not limited to these
spectral regions. Since the NIR pulse intensity can be tuned sufficiently high in order to
drive nonlinear processes, the range of ν values can extend to multiples of the NIR spec-
trum. For example a two-NIR-photon process, such as the coupling of two states of the
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same parity will contribute to the range of frequencies around twice the NIR frequency. A
highly nonlinear process, such as strong-field ionization, will lead to even higher energy
components of the ν-spectrum. In order to proceed with the evaluation of the 2DAS, the
general form of Im

[
D̃τ(δ ,τ)

]
according to Eq. 4.16 is substituted into Eq. 5.1:

D̃ν(δ ,ν) ∝
1

δ 2 + γ2

∫
∞

−∞

{[
γ + eiδτ−γτ(γ + iδ )(A(τ)−1)

]
+ c.c

}
e−iντdτ. (5.2)

The first summand is constant and yields a Dirac-δ function δDirac(ν). In the case of no
interaction of the sample with the second laser, i.e. A(τ) = 1, the rest of the terms cancels
leading to

D̃ν(δ ,ν) ∝
γ

δ 2 + γ2 δDirac(ν) no interaction. (5.3)

This is the well-known Lorentzian line shape along the ω axis, confined to the DC limit
(ν = 0) of the Fourier frequency axis due to the absence of any modulation in the spec-
trum. Without specifying A(τ) the rest of the integration can only be performed to a
certain extent. By defining A (τ) = A(τ)−1 the integration of the τ-dependent part can
be cast into the form∫

∞

0

{[
eiδτ−γτ(γ + iδ )A (τ)

]
+
[
e−iδτ−γτ(γ− iδ )A (τ)∗

]}
e−iντdτ. (5.4)

The lower integration limit was set to 0 because A = 0 for τ < 0 (no effect of the inter-
action pulse if it appears before the excitation). The exponential factor exp(±iδτ − γτ)
gives rise to a complex line shape (Lorentzian) as a function of ν centered about ±δ :

(γ± iδ )
∫

∞

0
e±iδτ−γτe−iντdτ =

γ± iδ
i(ν∓δ )+ γ

= L ±
δ
(ν). (5.5)

Using the convolution (symbol ∗) theorem of Fourier transform, this yields the final and
most general expression for the 2DAS:

D̃ν(δ ,ν) ∝
1

δ 2 + γ2

[
2γ δDirac(ν)+

(
L +

δ
∗ ˜A

)
(ν)+

(
L −

δ
∗ Ã ∗

)
(ν)
]

(5.6)

where ˜A and Ã ∗ are the Fourier transforms of A and A ∗, respectively.
For the further discussion, it is more helpful to consider the two prototype cases of A(τ)
presented in Chap. 4 instead of working with the most general form. Therefore the product
form A= a1eiφ1 suitable for non-resonant processes, and the sum form A= 1+a2ei∆ωτ+iφ2

describing resonant coupling of states are inserted into Eq. 5.2. The result of the calcula-
tions and their physical interpretation are presented in the following subsections.

5.1.1 Non-resonant type of interaction

For the non-resonant interaction, Eq. 5.2 becomes

D̃ν ,1(δ ,ν) ∝
1

δ 2 + γ2

∫
∞

−∞

{[
γ + eiδτ−γτ(γ + iδ )

(
a1eiφ1−1

)]
+ c.c

}
e−iντdτ. (5.7)
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Fig. 5.2: Analytically calculated time-resolved spectra (a) and corresponding 2DAS (b,c,d)
for two examples of non-resonant interaction (A = a1 exp(iφ1)). Row 1 shows complete ion-
ization (a1 = 0, φ1 = 0) whereas row 2 shows partial ionization (a1 = 0.8) together with a
phase shift (φ1 = π/4). The 2DAS is given in terms of magnitude (b), phase (c) and real part
(d). The state’s resonance frequency is that of the sp23+ doubly excited state of helium.

This integration can be performed analytically giving complete insight into the structure
of the two-dimensional spectrum. The result is given by

D̃ν ,1(δ ,ν) ∝
1

δ 2 + γ2

{
2γ δDirac(ν)+

a1eiφ1−1
i(δ −ν)− γ

(γ + iδ )− a1e−iφ1−1
i(δ +ν)+ γ

(γ− iδ )
}
(5.8)

and visualized for two examples in Fig 5.2. The first example shows, as in Chap. 4, the
complete ionization of a state (a1 = 0), whereas the second example features partial ion-
ization (a1 = 0.8) combined with a phase shift (φ1 = π/4). Qualitatively the time-delay
scans (1a) and (2a) look similar, however, there are two major differences: in (2a), i.e. the
incomplete ionization with phase shift, the spectral broadening towards τ = 0 is much
less dominant compared to the complete ionization. This is because of the remaining
population of the state after the ionization event, which radiates dipole emission leading
to a sharp spectral feature. Furthermore, the line shape itself is transformed to an asym-
metric Fano-like shape due to the addition of a phase (and is transformed back for τ→∞,
which exceeds the figure’s axis range). In the 2DAS magnitude plots (1b) and (2b) the
strong modification of the dipole response is visible as diagonal structures with a slope of
1 that emerge from the resonance position towards both directions. These diagonals are
the frequency-space analog to the hyperbolic structures in the time domain. They arise
from the two terms

a1eiφ1−1
i(δ −ν)− γ

(γ + iδ ) and − a1e−iφ1−1
i(δ +ν)+ γ

(γ− iδ ),
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which are particular versions of the general formula in Eq. 5.5. They create confined
profiles along the lines δ∓ν = 0 with a magnitude determined by the absolute value of the
complex factor a1e±iφ1−1. The sharp line emerging along the resonance postion (δ = 0
or ω =ωr) resembles the bandwidth of the non-resonant process. Since the ionization was
modeled as an instantaneous drop in amplitude, the bandwidth is infinite in this case. In
reality, the bandwidth is finite as will be shown in Chap. 5.3. The DC part of the 2DAS is
dominated by the Dirac-δ function. It resembles the average of all spectra along the time-
delay axis. Therefore the DC spectrum is equal to the unperturbed spectrum if the upper
integral limit of the Fourier transform is infinite. The phase shift introduced in the second
example compared to the first is clearly visible from the different symmetries of the phase
distributions in the phase plots (1c) and (2c). In addition to that, the real part contains the
information of both amplitude and phase, and is thus a beneficial complement.
Evaluation of Eq. 5.8 on the diagonals further simplifies the description of the 2DAS to

D̃ν ,1(δ =±ν) ∝−
(
a1e±iφ1−1

)
(γ± iδ )

γ(δ 2 + γ2)
(5.9)

From the argument of this expression the phase φ1 imprinted by the laser–atom interaction
can be retrieved.

5.1.2 Resonant coupling of states

The counter part of Eq. 5.7 for a perturbative treatment of resonantly coupled states reads

D̃ν ,1(δ ,ν) ∝
1

δ 2 + γ2

∫
∞

−∞

{[
γ + eiδτ−γτ(γ + iδ )

(
a2ei∆ωτ+iφ1

)]
+ c.c

}
e−iντdτ, (5.10)

and evaluating the Fourier integral yields the closed-form 2DAS:

D̃ν ,1(δ ,ν) ∝
1

δ 2 + γ2

{
2γ δDirac(ν)+a2

[
eiφ2(γ + iδ )

i(δ +∆ω−ν)− γ
− e−iφ2(γ− iδ )

i(δ +∆ω +ν)+ γ

]}
(5.11)

Figure 5.3 illustrates Eq. 5.11 evaluated for two examples that are related to the content of
the next section. Both examples feature resonant coupling of the shown state to another
coherently populated state displaced by ∆ω . As it was demonstrated earlier (Fig. 4.4),
this coupling amongst the states of a wave packet leads to a fast modulation of the target’s
optical density as a result of interference. The beat frequency on resonance is given by the
level spacing ∆ω . In the 2DAS magnitude plots (1b) and (2b), this leads to a well-defined
peak at ν =∆ω for δ = 0 (resonance condition), which is accompanied by a diagonal line.
In general, Eq. 5.11 gives rise to such diagonal structures along the lines δ +∆ω∓ν = 0
similar to the non-resonant case. Multiplication with the prefactor 1/(δ 2 + γ2) produces
a pronounced peak at the center of the diagonal. The amplitude of this peak is directly
proportional to the coupling strength parameter a2. This allows for the characterization
of a2 as a function of the laser intensity for instance to analyze the power scaling of
light–matter interaction processes. The main difference compared with the non-resonant
case is the displacement of the diagonal line by ∆ω . In addition, this displacement leads
to a single diagonal (in the ν > 0 halfspace) as compared with the two diagonals of the
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Fig. 5.3: Analytically calculated time-resolved spectra (a) and corresponding 2DAS (b,c,d)
for two examples. Both rows show absorption spectra of a state perturbatively coupled to
another coherently excited state (A = 1− a2 exp(i∆ωτ + iφ2)). Row 1 depicts the case of
stronger coupling (a2 = 0.1) with a phase shift of φ2 = π whereas row 2 is the case of weaker
coupling (a2 = 0.05) and less phase shift (φ2 = π/2). The state’s resonance frequency is that
of the sp23+ doubly excited state of helium and the energy spacing of h̄∆ω = 3.51 eV was
chosen to match the energy spacing between 2s2p and sp23+.

non-resonant case. This single line is oriented such that it points towards the resonant
coupling partner on the δ (or ω) axis making identification of coupled states easy. This
is especially helpful if the coupling partner is dipole forbidden with respect to the ground
state and yet coherently excited in the excitation step (e.g. due to a two-photon excitation
enabled by residual NIR light in the excitation step because of leakage through the metal
filters). In that case, the even-parity coupling partner is hidden in the XUV spectrum but
in the 2DAS its presence is revealed due to the diagonal pointing to its energy position.
In a recent work [9], the probing of such coupling dynamics between states of opposite
parity in inner-valence excited neon has been demonstrated. In general these diagonal
structures are the Fourier representation of the tilted rippling structure observed in the
time domain ((1a) and (2a)), which were discussed in Sec. 4.2.
Besides the coupling strength a2, the two examples of Fig. 5.3 only differ in the amount
of phase φ2 imprinted on the state by the coupling. As it was shown in the last subsection,
the phase difference can effectively be read from the 2DAS phase plots (1c) and (2c) and
the real part plot (1d) and (2d). Here, φ2 clearly determines the symmetry observed in
the 2d-map. Moreover, the phase can be extracted from the phase plot directly: On the
diagonal Eq. 5.11 reduces to

D̃ν ,1(δ =±ν−∆ω) ∝−a2e±iφ2(γ± iδ )
γ(δ 2 + γ2)

, (5.12)
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and on the peak position (δ = 0) of the diagonal the equations further reduces to

D̃ν ,1(0,±∆ω) ∝−a2e±iφ2

γ2 . (5.13)

In turn, the laser imprinted phase shift is directly given by

φ2 =±
(
arg
[
D̃ν ,1(0,±∆ω)

]
−π
)
. (5.14)

With that, the amplitude (a2) as well as the phase (φ2) of the perturbation of the state
introduced by the laser pulse can be retrieved from the 2DAS, which will be demonstrated
experimentally in the following section. Although direct extraction of φ2 from the 2DAS
is in principle possible, it shall be noted that in practice it can be more helpful to retrieve
the phase from the symmetry of the phase or real part plot. This is due to the fact that,
as can be seen in Fig. 5.3 and 5.2, the phase varies rapidly in the interesting region.
Combined with a limited resolution in experiments and sophisticated simulations this can
result in a high uncertainty of the direct phase extraction.
During the last section, emphasis was put on the fact that both states that are coupled are
coherently excited. This is important since the spectral finger print of resonant coupling
between an initially populated state (|a〉) and an initially empty state (|b〉), e.g. a dipole
forbidden state in the absence of NIR leakage, is completely different. The characteristic
beating as a result of quantum path interference can only occur if a common clock was
initially established by coherent excitation. After a time delay τ the second laser mixes
the states, which leads to interference, because their phases evolved at different speeds.
If however, one of the states, i.e. |b〉, is initially empty, the dressing laser pulse moves
only population towards |b〉, whose wave function is not sensitive to the phase of the state
|a〉 coefficient, since the coefficient of |b〉 was zero. State |a〉 gets primarily depleted,
which is a very similar situation as ionization (Perturbatively, depletion is a first-order
process, whereas moving population back is a second-order process. Non-perturbatively,
if the dressing pulse is strong or long enough, Rabi-cycling may occur.). Therefore, the
spectroscopic signature is that of a slow modulation in the time domain or diagonals
around the DC limit in the spectral domain.

The previous examples of resonant and non-resonant type light–matter interaction pro-
vide the building blocks for many 2DAS spectra. Yet, owing to simplicity for making the
examples comprehensive, the aspect of separating different coupling pathways to analyze
them separately, which is one of the main advantages of 2DAS compared with time-
resolved spectroscopy, fell short up to this point. Hence, before 2DAS will be applied to
experimental and simulated data, a last example shall be given in order to demonstrate the
power of the method as a complement to purely time-resolved absorption spectroscopy.
Figure 5.4 (a) shows a time-delay scan according to an analytic expression in the frame-
work of the DCM. Besides the low frequency hyperbolic structures next to the absorption
peak, the spectrum appears rather noisy without much information. However, casting the
time-delay scan into the 2DAS representation (Fig. 5.4 (b) and (c)) reveals that the appar-
ent noise pattern is the result of the superposition of five well defined beat frequencies.
From the 2DAS magnitude all 5 frequencies and their respective amplitudes are readily
obtained. And from the real part of the 2DAS, the phase jump in every beat signal can be
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Fig. 5.4: Analytically calculated time-resolved spectra (a) and corresponding 2DAS magni-
tude (b) and phase (c). The state undergoes multiple perturbative couplings to neighboring
states and a typical non-resonant drop in population due to strong-field ionization.

retrieved by comparison with patterns of known phase jump: The two lower peaks exhibit
the same symmetry as the peak in Fig. 5.3 (2d) with φ2 = π/2, whereas the two upper
peaks show the same symmetry as Fig. 5.3 (1d) with φ2 = π . The center peak has a phase
of φ2 = π/4 making the real part structure of the peak asymmetric. This shows that the—
in total six—different light–matter interaction processes featured in this example can be
clearly separated and analyzed in a spectroscopic fashion using 2DAS.

5.2 2DAS of doubly excited states in helium—a proof-of-
principle experiment

In the following section, the concept and basic understanding of the 2DAS technique
in terms of the DCM, which was developed in the last section, will be applied in
a proof of principle to experimental data as well as to a non-perturbative few-level
simulation of the experimental quantum system. The focus lies on the doubly-excited
states of helium in the energy regime between 60 and 65 eV (see Sec. 2.6). Overview
spectra of this region are depicted in Fig. 5.5 (a) and (b). The NIR carrier wavelength is
730 nm (1.7 eV) and the peak intensity of the 7 fs pulses is approximately 2×1012 W/cm2.

In order to get more insight into the physical processes occurring in the experiment and
to test the understanding of these processes, a numerical simulation was carried out. The
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Fig. 5.5: Overview spectra of the doubly excited manifold of helium between 59 and 65.5 eV.
(a) Time-delay scan of 300 steps with a step size of 171 as for an NIR peak intensity of
2×1012 W/cm2. The NIR photon energy is 1.7 eV and its pulse duration is 7 fs. (b) Spectral
lineouts of (a) for two different time delays revealing the strong modifications of the system’s
spectral response upon dressing with a strong NIR laser field. (c) Time-delay scan resulting
from a numerical three-level simulation of the 2s2p, 2p2, and sp23+ states dressed by an NIR
laser pulse with parameters similar to the experimental conditions.
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heart of the model is a three-level system that consists of the 2s2p state (|1〉), the 2p2

state (|2〉), and the sp23+ state (|3〉). This three-level system is dressed by a 7 fs FWHM
Gaussian laser pulse of 730 nm carrier wavelength. The peak electric field was set to
0.075 atomic units, which corresponds to a peak intensity of 2× 1012 W/cm2. The time-
dependent Schrödinger equation of this strongly coupled system is given by:

i
∂

∂ t

 ψ1(t)
ψ2(t)
ψ3(t)

=

 E1 + iγ1 W12(t) W13(t)
W21(t) E2 + iγ2 W23(t)
W31(t) W32(t) E3 + iγ3

 ψ1(t)
ψ2(t)
ψ3(t)

 . (5.15)

The interaction matrix elements Wi j are given by the electric field of the dressing NIR
laser pulse and the dipole transition matrix element between the respective states:

Wi j = ENIR(t)〈i| d̂ | j〉= di jENIR(t). (5.16)

As both the 2s2p state and the sp23+ state are dipole allowed with respect the ground
state, they have the same symmetry (P). Hence, the corresponding dipole transition matrix
elements and with that the interaction matrix elements vanish:

W13 =W31 = 0. (5.17)

Therefore, Eq. 5.15 reduces to

i
∂

∂ t

 ψ1(t)
ψ2(t)
ψ3(t)

=

 E1 + iγ1 d12 ENIR(t) 0
d21 ENIR(t) E2 + iγ2 d23 ENIR(t)

0 d32 ENIR(t) E3 + iγ3

 ψ1(t)
ψ2(t)
ψ3(t)

 , (5.18)

which expresses that the coupling between the 2s2p state and the sp23+ state is not direct
(in the dipole approximation) but mediated by the 2p2 state. The time evolution of this
system is treated by means of the algorithm described in Sec. 2.2 of the Fundamentals
chapter. The only thing missing in order to calculate the time propagation is the initial ex-
citation step. In the experiment the attosecond XUV pulse excites the two dipole allowed
states from the 1s2 (S0) ground state (|0〉). Since the XUV pulse in the experiment is very
weak, the excitation step is treated in first-order perturbation theory in the simulation.
According to Eq. 2.32, the initially empty states are populated by a 250 as FWHM XUV
pulse of 62 eV photon energy:

c(1)j (t) =− i
h̄

d0 j

∫ t

0
eiω jt ′EXUV(t ′)dt ′ (5.19)

where the energy of the ground state was set to E0 = 0 and its population to c0 = 1.
A discretized version of Eq. 5.19 with built-in decay is used in the actual calculation to
modify the excited state population in each time step according to the XUV pulse:

ψ j(k) = ψ j(k−1)e−γ j∆t−iω j∆t− iα j EXUV(k)e−γ j∆t (5.20)

with the coefficient α j = d0 j ∆t/h̄. The Fano line shape of the helium doubly excited
states, is accounted for by multiplying the dipole moment with the corresponding Fano
phase factors (Eq. 4.6) with values taken from [83]. The final time-resolved absorption
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E0 0 eV γ0 0 meV

E1 60.15 eV γ1 37 meV d12 = d21 2.2 a.u.

E2 62.06 eV γ2 6.0 meV d23 = d32 0.8 a.u.

E3 63.66 eV γ3 8.2 meV d31 = d13 0 a.u.

drel
01 1 drel

02 0 drel
03 0.4

q1 -2.74 q3 -2.58

ENIR 0.0075 a.u. INIR 2×1012 W/cm2

TNIR 7 fs TXUV 250 as

h̄ωNIR 1.7 eV h̄ωXUV 62 eV

∆t 20 as ∆τ 100 as

Table 5.1: Summary of important parameters in the three-level simulation. The parameters
have the following meanings: E j and γ j are the state energies and decay rates [81–83]. di j are
the dipole transition matrix elements [87, 89, 124]. drel

0 j are the relative dipole moments with
respect to the ground state. q j are the Fano-q-parameters of the doubly excited states [83].
ENIR and INIR are the dressing laser peak field strength and peak intensity, respectively. TNIR
and TXUV are the durations of the femtosecond NIR and attosecond XUV pulses, respectively,
and ωNIR and ωXUV are the respective carrier frequencies. Finally, ∆t is the time-step size of
the propagation and ∆τ is the time delay–step size of the time-delay scan.

spectrum is shown in Fig. 5.5 (c). All important parameters used in this simulation are
given in Tab. 5.1.

Figures 5.5 (a) and (c) exhibit the typical structures as they were explained by the DCM
in Chap. 4. The 2s2p and sp23+ states exhibit a fast modulation indicating a resonant
coupling. Furthermore, especially the 2s2p line shows hyperbolic structures, which is due
to a strong modification of the state population, as well as a splitting of the line around
the region of temporal overlap of XUV and NIR pulse. This splitting is the so-called
Autler-Townes splitting, as a result of strong resonant coupling between the 2s2p and the
spectroscopically dark 2p2 state [125]. The energy splitting is basically the frequency
representation of the well-known Rabi-oscillation that drives population between the
coupled states. The time-delay dependence of this effect was theoretically investigated
for a similar system by Wu et al. [126]. Although the detuning between the 2p2 state
and the 2s2p is 210 meV whereas the detuning between the 2p2 and the sp23+ is only
100 meV, the coupling between the former states is apparently stronger. This is because
the dipole transition matrix element d12 is almost a factor of 3 larger compared with the
matrix element d23 of the other transition.
A fourth effect that is visible in the overview time-delay scan of the experimental data
is the continuous modification of the resonance line shape among the highly excited
states of sp24+ and above. Starting from an asymmetric Fano line shape the effect of the
dressing NIR laser causes the line to become symmetric. This effect will be exploited in
Chap. 6 in order to perform a precise in situ characterization of the applied few-cycle NIR
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Fig. 5.6: Two-dimensional spectral representation of Fig. 5.5 (a) and (c) in the Fourier energy
range between 0 (DC) and 4 eV. The diagonal structures at Fourier energy h̄ν ≈ 3.5 eV indi-
cate two-photon coupling between the 2s2p and the sp23+ via the intermediate 2p2 state. This
intermediate state is weakly populated in the excitation step of the experiment, which gives
rise to the beat frequency of 1.9 eV due to coupling with the 2s2p state.

pulses. Figure 5.5 (b) reveals explicitly the changes between the unperturbed (red line,
τ = −15 fs) and a strongly perturbed (black line, τ = 7.7 fs) situation. The modification
of the line shape of the highly excited states is clearly visible as well as the Autler-Townes
splitting of the 2s2p line. The non-zero background absorption in between the resonances
is due to the fact that these states lie energetically high above the first ionization threshold
of helium. This means, they are embedded in a continuum of relatively constant optical
density.

The time delay–dependent representation of Fig. 5.5 (a) and (c) are now complemented
by the 2DAS representation of Fig. 5.6 (a) and (b). According to the time delay–step
size of 171 as, the maximum of the ν-spectral range in the experiment yields 12.1 eV.
The resolution δν along the ν-axis is determined by the time-delay range (51 fs in the
experiment shown) and reads 80 meV. The corresponding parameters for the simulated
data are 20.7 eV for the maximum ν and 34 meV for the resolution.

By means of the 2DAS, the beat frequencies with which the 2s2p and sp23+ states are
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modulated are directly revealed. The fast modulation in the experiment corresponds to a
beating at 3.5±0.1 eV equivalent to a period of only 1.2 fs. This matches the level spac-
ing of the 2s2p and the sp23+ states, which is 3.51 eV according to the synchrotron data
of Tab. 2.2, which closely resembles the beat frequency of 3.52±0.04 eV obtained from
the simulated 2DAS. Hence, the beating is due to a resonant two-NIR-photon coupling
between those states. The 2p2 state at 62.04 eV serves as a resonant intermediate state,
which both of the visible states couple to (see Fig. 4.2 (d)). This two-photon coupling
process will be the main topic of a more detailed discussion in the next subsection. In
addition to the fast beating – a so-called 2ω modulation referring to twice the laser
frequency – the experimental 2DAS reveals also a weak 1ω modulation across the 2s2p
state. This peak located at a Fourier frequency of h̄ν = 2.0± 0.1 eV is the signature of
a wave packet beating between the 2s2p and the spectroscopically dark sp2 state whose
energy difference is 1.91 eV. As discussed previously, the quantum path interference
leading to the beating structure only occurs if both coupled states are coherently excited.
Therefore, the 1ω beating indicates an NIR leakage, which leads to population of the
2p2 state via two-photon absorption (XUV+NIR) in the initial excitation step. Since, the
NIR leakage was not taken into account in the three-level simulation, the 1ω-modulation
is absent in the corresponding 2DAS. A 1ω modulation of the sp23+ is not observed in
the experimental data. The reason for this is most probably the dipole matrix element
between sp23+ and 2p2 being only one third of the dipole matrix element between
2s2p and 2p2. This combined with the generally lower absorption cross-section of the
sp23+ state compared to the 2s2p might cause the 1ω feature not to rise above the noise
level. Figure 5.6 (a) also shows that the highly excited states do not undergo resonant
transitions to other states, which is important for the considerations in Chap. 6. All
states shown exhibit peaks close to the DC limit, indicating slow variations of the
absorption behavior. For the 2s2p state, a clear asymmetry of the diagonals is visible
from the 2DAS, which corresponds to the asymmetry of the hyperbolic structures in
the time-delay scan: they occur primarily on the right-hand-side of the absorption
line. This cannot be explained by the prototype structure of non-resonant processes in
the frame work of the DCM (A= a1 exp(iφ1)) nor by the numerical three-level simulation.

For the following investigation, the sp23+ doubly excited state shall serve as the state of
interest and its resonant two-photon–mediated coupling to the 2s2p state is analyzed in
detail by means of 2DAS.

5.2.1 Wave-packet beating on the sp23+ state in detail

The sp23+ doubly excited state of helium was chosen to demonstrate the 2DAS method
for several reasons. First of all, the helium atom itself provides rich two-electron physics,
while being at the same time the simplest few-body system one could think of. Second,
the sp23+ state is subject to ultrafast population dynamics on the 1 fs time scale visible
as the beating structure of the absorption signal (a detailed view of the time dependent
spectrum as well as spectral lineouts of Fig. 5.5 is given in Fig. 5.7). Nevertheless, the
underlying physics can mostly be understood in terms of a simple 3-level system (+
ground state) dressed by a strong NIR laser pulse, which will be numerically simulated
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Fig. 5.7: Detailed view of the time delay–
dependent spectrum (a) and lineouts (b) of
the sp23+ state and the neighboring sp24+ and
sp25+ states. The data is identical to that in
Fig. 5.5. The 1.2 fs (3.5 eV) wave packet beat-
ing that starts around the temporal pulse over-
lap of XUV and NIR is clearly resolved. The
appearance of faint hyperbolic structures indi-
cate the coupling to the initially unpopulated
2p2 state. The transform of the line shape of
the higher lying states is also revealed. The
intially asymmetric Fano line (q-parameter ≈
−2.6 [83]) is tranformed to a highly symmetric
Lorentzian line shape (q-parameter� 1) in the
vicinity of the pulse overlap. For greater time
delays the effect gets weaker since the dressing
laser then only affects a small residual part of
the decaying state amplitude / dipole moment.
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and compared to the experimental data. And third, for the experimental conditions
in the frame of this thesis, the sp23+ state (as well as the higher lying states) is ideal
for comparison with the dipole control model. This is because the lifetime of this
autoionizing state is > 80 fs, which is considerably longer than the 7 fs NIR pulses used
rendering the Dirac-δ approximation of the pulse durations made in the DCM applicable.

Both the experimental and the three-level simulation data will be compared to an analytic
DCM calculation for the resonant-interaction-type control parameter:

A(τ) = 1+a2ei∆ωτ+iφ2. (5.21)

By doing so, it shall be tested whether the quantum dynamics introduced by the strong
NIR dressing laser can be described in terms of the analytic theory. As input parame-
ters, the literature value h̄∆ω = 3.51 eV and a phase shift of φ2 = π are chosen. The
ν-resolution was chosen to be similar to the three-level case.

The results of a close-up look at the beat signal at ≈ 3.5 eV in the 2DAS representa-
tion depicted in Fig. 5.8. Using 2DAS, the information about the resonant coupling pro-
cess leading to quantum interference is spectroscopically separated from other interaction
pathways, which allows for a specific analysis. The peak in the magnitude plot reveals
the beat frequency ∆ω and thus the location of the coupling partner. As partly shown in
the previous section, the results are

∆ωsim = 3.52±0.04eV ∆ωex = 3.5±0.1eV ∆ωDCM = 3.51±0.02eV (5.22)
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Fig. 5.8: Detailed 2DAS representation of the beat signal on the sp23+ state corresponding to
the quantum interference with the 2s2p state via two NIR photons and the 2p2 intermediate
state. Rows 1, 2, and 3 show the magnitude, phase, and real part of the 2DAS, respectively.
Columns a, b, and c designate the three-level simulation, experimental, and analytic DCM
data. The respective color scales are normalized. The dashed lines in figure (3c) indicate the
mirror axes M1 and M2 of the pattern.
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Fig. 5.9: Integrated amplitude of the 2DAS
magnitude peak that corresponds to the
coupling of the 2s2p to the sp23+ state
(Fig. 5.8 (1b)) plotted versus the NIR laser
peak intensity. The dots correspond to the
experimental data points whereas the dashed
line resembles a linear fit of the data points,
which corresponds to the theoretically ex-
pected behavior. The data points do not
emerge from the origin due to finite back-
ground noise in the 2DAS.
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Compared to the reference value of ∆ωref = 3.51 eV [83] the deviation of these values is
about 0.3% at most. The resolution values corresponding to the numerical and analytical
calculation could be increased directly by an increased number of time-delay steps.
In the experiments with the current setup this is only in principle possible. While the
delay range of the piezo stage (Hera, Physical Instruments) driving the split-mirror unit
exceeds 400 fs, driving a large time-delay range, e.g. more than 50 fs, is accompanied by
a lateral shift of the beams (details in [87]). Thus, the two beams, NIR and XUV, are
not imaged properly onto the same spot in the experimental cell. This problem could be
solved by implementation of a tilt motion of the split-mirror to compensate for the lateral
displacement of the foci.

Regarding the structure of the three 2DAS peaks, it is found to be similar but not
identical. However, each peak exhibits a diagonal structure pointing towards the 2s2p
state at ν = 0. In general, the experimental peak in figure (1b) appears broader in both
spectral directions compared to the simulated peaks. This is most likely because of the
resolution of the XUV spectrometer (horizontal direction) and of the ν-axis (vertical
direction).

Next, the laser intensity dependence of the coupling strength shall be studied. In order to
do so, the integrated amplitude of the experimental 2DAS magnitude peak (Fig. 5.8 (1b))
is plotted versus the NIR laser intensity the target was exposed to. The result is summa-
rized in Fig. 5.9. The figure shows that the amplitude of the 2DAS peak grows approxi-
mately linear with increasing laser intensity for moderate intensities. This observed linear
relation is in agreement with the result obtained from perturbation theory. The dipole
coupling term in the Hamiltonian is given by W = −d ENIR. Thus, the fraction ∆ψ12 of
the wave function going from the 2s2p to the intermediate 2p2 state is proportional to
d12 ENIR:

∆ψ12 ∝ d12 ENIR. (5.23)

Similar, the part coming from the 2p2 that is transferred to the final sp23+ state is propor-
tional to d23 ENIR:

∆ψ23 ∝ d23 ENIR. (5.24)
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Therefore, the part ∆ψ13 that undergoes the transition from the 2s2p to the sp23+ state is
determined by

∆ψ13 ∝ d12 ENIR×d23 ENIR ∝ d12 d23 INIR. (5.25)

In the context of the DCM, ∆ψ is identified with the parameter a2. Hence, a linear
dependence of a2 on the laser intensity is understood and confirmed by the experimental
data. The linear function has an offset with respect to the origin (0,0) due experimental
noise leading to a background signal in the 2DAS. Nevertheless, even for low laser
intensities the Fourier feature separates from the background, allowing for the detection
of weak beat signals that could hardly be seen directly in the time-resolved representation.

The phase of the 2DAS depicted in Fig. 5.8 column 2 as well as the real part in column
3 are used to retrieve the phase jump φ2 of the portion added to the sp23 wave function
by resonant coupling to the 2s2p state. Besides the amplitude a2 and the beat frequency
∆ω , φ2 is the third degree of freedom for characterization of the light–matter interaction
process within the limit of the DCM description of resonant coupling. By going to the
resonance position (according to Eq. 5.22), the phase φ2 can directly be obtained from the
phase map via Eq. 5.14. Doing so yields

φ2,sim =−3.04 φ2,exp =−3.33 φ2,DCM =−3.33 (5.26)

These values are all relatively close to −π ≈−3.14 with a correction of +0.1 (4% devi-
ation) for the three-level simulation and −0.19 (6% deviation) for the experimental data.
The value of the DCM also deviates by 6% from −π , which is due to the decreased reso-
lution. For a ν-resolution of 3 meV, the value of −π is obtained with only 1% deviation.
Intuitively, a value of φ2 = −π is just what one would expect for this type of transition.
Similar to classical mechanics where a pendulum driven resonantly by a periodic force
exhibits a phase shift of −π/2 with respect to the driving motion, in quantum mechanics,
a resonant transition between two states is accompanied by a phase shift of −π/2. This
can be seen from Eq. 2.36: The part added to the wave function coefficient

−λ
i
h̄

c(0)1 ei∆ωτ W21 (5.27)

contains the phase factor −i = exp(−iπ/2), which represents a constant phase shift
of the coherently added part by −π/2 with respect to the existing part of the wave
function (in addition to the τ-dependent phase shift). Since the experimental situation
is a resonant two-photon process, the part of the 2s2p population that is moved to the
sp23+ state acquires the phase shift of −π/2 twice: once in the transition from 2s2p to
the intermediate 2p2 state, and once on the transition from the 2p2 to the sp23+ final
state. Thus, the results of the direct phase retrieval are in good agreement with the
theoretical considerations, which verifies the introduced method and its applicability to
study ultrafast process of light–matter interaction.

As discussed in Sec. 5.1, the phase varies rapidly in the vicinity of the resonance peak.
Therefore, directly reading the phase value from the phase map introduces high uncer-
tainties, although the absolute value is determined accurately in the demonstrated cases.
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Fig. 5.10: Lineouts of Fig. 5.8 (2a) and (2b) showing the 2DAS phase as a function of the
photon energy for three different ν values around the resonance position obtained from the
2DAS magnitude in Fig. 5.8 (1a) and (1b). (a) shows the three-level simulation data and (b)
shows the experimental data. The simulation data is drawn in solid lines because of the high
resolution. The green curves correspond to the actual peak position along the ν-axis while
the red and blue curves are displaced by + and − one ν-resolution unit δν , respectively. The
dashed line indicates the resonance photon energy. (c) Comparison of the 2DAS real part
patterns for five neighboring phase shifts φ2 calculated by means of the DCM.

Figure 5.10 shows the 2DAS phase in the vicinity of the 2DAS magnitude peak positions
in Fig. 5.8 (1a) and (1b). The figure clearly indicates the rapid change of the phase
around the resonance position. While the resolution in the photon energy dimension
is sufficient to maintain a variation of the phase at the data points next to resonance
of about ±0.2 for the simulation and ±0.5 for the experiment, the Fourier energy
resolution puts more severe constraints to the uncertainty of the direct retrieval of φ2. The
phase at the photon energy resonance position ω = ωr on the curves displaced by ±δν

differs by approximately +0.7/ − 1.3 from the resonance value in both simulation and
experiment. Hence, despite that reading the phase at the resonance position yields values
in good agreement with the theory, a second—more robust—method for phase retrieval
is provided.
As demonstrated in Figs. 5.3 and 5.4 of the preceding section, the symmetry of the phase
and real part pattern of the 2DAS is sensitive to φ2. Figure 5.8 allows to compare the
symmetry of the three-level simulation (2a, 3a) and the experimental data (2b, 3b) to that



5.2 2DAS OF DOUBLY EXCITED STATES IN HELIUM 65

of the analytic DCM calculation (2c, 3c) with given φ2 =−π as input parameter. Both the
real part and the phase map exhibit similar symmetry for all three cases. The three-level
simulation and the DCM calculation agree qualitatively: the line perpendicular to
the diagonal (M1) and the line bisecting the diagonal and the vertical (M2) as shown
in Fig. 5.8 (3c) form mirror planes. The same pattern with minor deviations can be
observed in Fig. 5.8 (3a). In contrast, a different phase shift leads to a different pattern
as demonstrated in Fig. 5.10 (c). From this figure, it is obvious that a phase difference
of π/4 ≈ 0.8 can easily be resolved, whereas the changes in the pattern according to a
phase difference of π/8≈ 0.4 are more subtle. This finding indicates that the phase jump
φ2 recovered from the three-level simulation is approximately the same as for the DCM
calculation, i.e. φ2 =−π , with an uncertainty of about π/8.
In the case of the experimental data, the agreement with the other two data sets is
acceptable. In the lower right region of the map, the agreement is good. The real part
makes a transition from positive (blue) to negative (red) values as the resonance photon
energy is crossed. The red hourglass shaped region is also prominent in the lower left
part. A transition to positive values indicated by a color change from red via white to
blue, as observed in the simulations, is faint but visible. In the upper part of the graph,
as also shown in the magnitude plot Fig. 5.8 (1b), the amplitude of the experimental
2DAS signal decreases quickly for ν-values above the resonance position. Thus the
pattern cannot be directly compared to the simulated ones in that region. In the lower
region, the broken symmetry with respect to the M2 mirror plane makes the pattern
resemble the φ2 = −9π/8 ≈ −3.53 pattern of Fig. 5.10 (c) rather than the perfectly
symmetric φ2 = −π = −3.14 pattern. This is in agreement with the directly retrieved
value φ2,exp = −3.33 being in between these two values. Also here the uncertainty is
estimated to be π/8.

In general, the retrieved phases agree well with the theoretically expected value within
the uncertainty limits. There are two main points that could lead to the found deviations.
First, the theoretical value was estimated by a simple consideration, not taking into
account the slight detuning of the laser carrier frequency with respect to the transition
energies. Second, the phase φ2 and its appearance in the 2DAS where derived in the per-
turbative limit of the DCM. The relatively intense laser field of 2×1012 W/cm2 starts to
introduce non-perturbative effects, e.g. Autler-Townes splitting as seen in Fig. 5.5, so that
the perturbative treatment could introduce an error. Nevertheless, this proof-of-principle
experiment and calculation demonstrate that 2DAS is capable of extracting phase and
amplitude information on ultrafast light–matter interaction processes.
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5.3 2DAS of a spin–orbit wave packet in inner-valence–
excited xenon

In this section the concept of 2DAS is applied in a second study in order to observe the
signatures of a spin–orbit wave packet that is created by inner-valence excitation of xenon
by XUV light and probed by strong-field ionization caused by intense NIR laser pulses.

First, the level structure of xenon is outlined and the creation of the wave packet by means
of XUV light is discussed. The main focus lies on the observation of this wave packet,
which is possible via strong-field ionization as shall be discussed using a simplified an-
alytic and a numeric calculation. Finally the experimental data is analyzed by means of
2DAS.

5.3.1 Creation of a spin–orbit wave packet

The electronic ground-state configuration of xenon is [Kr]4d105s25p6. The first four ion-
ization energies of xenon are (Ref. [80])

I1
P = 12.1eV I2

P = 21.0eV

I3
P = 31.1eV I4

P = 42.2eV,

which means that at photon energies around 66 eV the system is highly excited. There
are two Rydberg series in this energy regime, which both arise from excitation of one
4d-shell electron into np states with n≥ 6 (the lower p shells are completely filled). The
electron configuration [Kr]4d95s25p6 has D-symmetry character so that the orbital angular
momentum l = 2 and the spin of the electron s = 1/2 that is not compensated for by the
other 8 electrons—one could also speak of a hole—give rise to spin–orbit coupling. The
two possible configurations, which can by accessed by XUV light, are [127]:

[Kr]4d95s25p6 (2D3/2
)

np and [Kr]4d95s25p6 (2D5/2
)

np.

The excited electron in the np shell (l = 1) has a total angular momentum of either
j = 1/2 in the D3/2 configuration or j = 3/2 in the D5/2 configuration of the inner shells,
so that in total, the dipole selection rule ∆l = 1 for absorption of a photon is fulfilled.
An overview absorption spectrum is depicted in Fig. 5.11 where the states up to n = 8
are labeled for each Rydberg series. Owing to the heavy xenon atom, the splitting of
the two n = 6 states, which the focus is put on in the following, is relatively strong
and amounts to 1.93 eV [127]. As both states are coherently populated by the XUV
light, they are expected to form a coherent quantum-mechanical wave packet. The beat
frequency is given by the energy splitting and is equivalent to a period of 2.1 fs. Due to
the highly non-equilibrium nature of these states, their lifetime is only about 5 fs and thus
comparable or even shorter than the few-cycle NIR pulses used in these experiments (7 fs
FWHM duration). Hence, more care needs to be taken when comparing the experimental
data to theory that assumes Dirac-δ light pulses.
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Fig. 5.11: Overview spectra of the 4d-shell-excited xenon levels around 67 eV. There are two
spin-orbit-split Rydberg series: D3/2 sub-symmetry (blue) and D5/2 sub-symmetry (red).

Compared with the situation of the preceding section on doubly excited helium, the prob-
lem of detecting a signature of the wave packet is different in the case of 4d-excited xenon.
In the case of helium, the transfer of population from one state to the other via resonant
two-photon coupling, leads to a periodic modulation of the optical density as a result of
quantum path interference as the signature of the wave packet (see Sec. 5.2). In xenon,
since the spacing of the two states is only 1.92 eV, it is not possible to transfer popula-
tion from one state to the other via a two-photon transition (a one-photon transition is
dipole forbidden), as this would require sufficient intensity at 1290 nm, which greatly ex-
ceeds the achievable bandwidth reaching approximately 950 nm on the long-wavelength
side. Thus, a different mechanism is needed in order to probe the wave packet. The idea
proposed here is to use the effect of strong-field ionization of the excited 6p electron to
generate a signature of the wave packet. This will be the topic of the following sections.

5.3.2 Observation of the wave packet via strong-field ionization

Since conventional two-photon coupling of the
(
D5/2

)
6p and the

(
D3/2

)
6p state is ex-

perimentally not possible with the existing setup, an alternative approach is investigated
experimentally and theoretically. It is known from ADK theory (see Sec. 2.1.3) that in
a strong laser field the tunneling probability depends on the magnetic quantum number
ml—or in other words—on the alignment of the orbital with respect to the laser polariza-
tion axis. The excited electron has an angular momentum quantum number of l = 1, so
that the ratio between the probability for tunneling out of the ml = 0 orbital to that for
tunneling out of the ml = 1 orbital is according to Eq. 2.16 given by

wi,ml=0

wi,ml=1
= 2

(2 IP)
3/2

|E(t)|
. (5.28)

To give a rough estimate, this value is approximately 10 at the peak of the laser pulse
(intensity 1013 W/cm2, IP = 2.5 eV). Therefore, after the ionization event, the population
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in the m = 0 state is almost negligible compared with the population remaining in the
|ml| = 1 state. This means that strong-field ionization is strongly selective concerning
the magnetic quantum numbers of the uncoupled l states. In the total angular momentum
basis, which is the Eigensystem of the excited xenon atom because spin–orbit coupling
is present, the states are labeled by the total angular momentum j and its magnetic quan-
tum number m j. Nevertheless, the

∣∣ j,m j
〉

Eigenstates of the system can be decomposed
into linear combinations of the |l,ml〉 states. These |l,ml〉 states of the uncoupled basis
enter in both the

(
D5/2

)
6p and the

(
D3/2

)
6p Eigenstates. Now, by means of strong-field

ionization, both states of the proposed wave packet are basically projected onto the same
|ml|= 1 state. This leads to quantum interference, which can be detected by virtue of the
absorption signal. The whole process is illustrated by an analytic quantum-mechanical
model assuming Dirac-δ pulses.

Analytic explanation

In order to demonstrate the quantum path interference that leads to a beat signal in the
absorption spectrum as a fingerprint of the spin–orbit wave packet, a simple analytical
model is developed. The focus is placed on the excited 6p electron, which can be removed
from the atom via strong-field ionization by the NIR pulse. The total angular momentum
can be j = 3/2 or j = 1/2 as explained before. The magnetic quantum numbers, thus,
are restricted m j = ±3/2,±1/2 and m j = ±1/2, respectively. The m j = ±3/2 does
not couple to the other states since it is solely represented by the state of ml = ±1 and
ms =±1/2. Therefore, these states are not considered in the calculation. In the following
the states are labeled as

spin-orbit-coupled basis:
∣∣ j,m j

〉
j

uncoupled basis: |ml,ms〉l .

According to this definition ∣∣∣∣32 ,±3
2

〉
j
=

∣∣∣∣±1,±1
2

〉
l

(5.29)

The other states in the two bases are related via the Clebsch–Gordan coefficients:∣∣∣∣32 , 1
2

〉
j
=

1√
3

∣∣∣∣1,−1
2

〉
l
+

√
2√
3

∣∣∣∣0, 1
2

〉
l

(5.30)∣∣∣∣12 , 1
2

〉
j
=

√
2√
3

∣∣∣∣1,−1
2

〉
l
− 1√

3

∣∣∣∣0, 1
2

〉
l

(5.31)∣∣∣∣1,−1
2

〉
l
=

1√
3

∣∣∣∣32 , 1
2

〉
j
+

√
2√
3

∣∣∣∣12 , 1
2

〉
j

(5.32)∣∣∣∣0, 1
2

〉
l
=

√
2√
3

∣∣∣∣32 , 1
2

〉
j
− 1√

3

∣∣∣∣12 , 1
2

〉
j

(5.33)

The negative m j involve the ml = −1 state, and thus, do not couple to the positive m j
states. Apart from that the calculations for negative m j are completely analogous, which
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is why only the positive m j-values are considered in the following. In conclusion, the
considerations are restricted to the

∣∣3
2 ,

1
2

〉
j and the

∣∣1
2 ,

1
2

〉
j state.

In the excitation step at t = 0, the wave packet is created by means of the XUV pulse,
which is treated as a Dirac-δ function. Thereby, the wave function can be written as the
coherent superposition of the two considered Eigenstates:

|ψ(t = 0)〉= a
∣∣∣∣32 , 1

2

〉
j
+b
∣∣∣∣12 , 1

2

〉
j

(5.34)

where a and b are the coefficients, which can be obtained from the absorption cross-
section [127]. The field-free time evolution of this wave packet is obtained by multiplica-
tion of the states with their respective phase term:

|ψ(t)〉= a
∣∣∣∣32 , 1

2

〉
j
e−iω3/2t +b

∣∣∣∣12 , 1
2

〉
j
e−iω1/2t (5.35)

where h̄ω3/2 = 65.11 eV is the energy of the
∣∣3

2 ,
1
2

〉
j state and h̄ω1/2 = 67.04 eV is the en-

ergy of the
∣∣1

2 ,
1
2

〉
j state. By means of Eqs. 5.30 and 5.31, the wave function is equivalently

represented in the l,ml basis:

|ψ(t)〉= a

[
1√
3

∣∣∣∣1,−1
2

〉
l
+

√
2√
3

∣∣∣∣0, 1
2

〉
l

]
e−iω3/2t +b

[√
2√
3

∣∣∣∣1,−1
2

〉
l
− 1√

3

∣∣∣∣0, 1
2

〉
l

]
e−iω1/2t .

(5.36)

Reordering of the terms yields:

|ψ(t)〉=

[
a√
3

ei∆ωt +
b
√

2√
3

]
e−iω1/2t

∣∣∣∣1,−1
2

〉
l
+

[
a
√

2√
3

ei∆ωt− b√
3

]
e−iω1/2t

∣∣∣∣0, 1
2

〉
l

(5.37)

where ∆ω = ω1/2−ω3/2 is the difference frequency of the states. Equation 5.37 implies
that the population in the l,ml basis states is not constant but oscillates in time, which
is because they are not Eigenstates of the excited xenon atom. The oscillation period is
given by 2π/∆ω .
To keep the description simple, the strong-field ionization by the NIR pulse is approxi-
mated as an instantaneous event where all population of the

∣∣0, 1
2

〉
l is removed and the∣∣1,−1

2

〉
l state is not affected. The main differences of this simplified treatment compared

with reality are that in the experiment the ionization occurs periodically at every crest of
the NIR electric field, and that the ionization is not complete—just the ionization rate of
the
∣∣1,−1

2

〉
l and the

∣∣0, 1
2

〉
l state differ significantly. This has important consequences on

the success of probing the wave packet as will be discussed later. Nevertheless, the main
mechanism is already captured by this crude approximation.
The ionization takes place at time t = τ after the excitation, so that directly afterwards the
wave function reads:

|ψ(t = τ)〉=

[
a√
3

ei∆ωτ +
b
√

2√
3

]
e−iω1/2τ

∣∣∣∣1,−1
2

〉
l

(5.38)
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Fig. 5.12: Population dynamics in the two bases (l,ml) (blue) and ( j,m j) (orange), where the
excitation event takes place at the origin of the graph and the ionization event occurs at the
respective time delay τa, τb, and τc. The effect of the ionization on the remaining population
depends on the time delay and is periodic.

This defines how much population has survived the ionization event: If most of the pop-
ulation was in

∣∣0, 1
2

〉
l at time τ , almost no population would remain bound since

∣∣0, 1
2

〉
l

is completely depopulated. On the other hand, if most of the population was in
∣∣1,−1

2

〉
l ,

the ionization would barely affect the system since
∣∣0, 1

2

〉
l is only weakly ionized. Equa-

tion 5.38 forms the starting point of again a field free propagation period. Since,
∣∣1,−1

2

〉
l

is not an Eigenstate, the temporal evolution is of |ψ(t > τ)〉 is obtained by going back to
the j,m j representation via Eqs. 5.32

|ψ(t = τ)〉=

[
a√
3

ei∆ωτ +
b
√

2√
3

]
e−iω1/2τ

[
1√
3

∣∣∣∣32 , 1
2

〉
j
+

√
2√
3

∣∣∣∣12 , 1
2

〉
j

]
(5.39)

and incorporating the phase evolution:

|ψ(t > τ)〉=

[
a√
3

ei∆ωτ +
b
√

2√
3

]
e−iω1/2τ

[
1√
3

e−iω3/2(t−τ)

∣∣∣∣32 , 1
2

〉
j
+

√
2√
3

e−iω1/2(t−τ)

∣∣∣∣12 , 1
2

〉
j

]
(5.40)

After algebraic modifications the wave function becomes

|ψ(t > τ)〉=
√

2
3

{[
a√
2

ei∆ωτ +b
]

e−iω3/2t
∣∣∣∣32 , 1

2

〉
j
+
[
a+
√

2e−i∆ωτb
]

e−iω1/2t
∣∣∣∣12 , 1

2

〉
j

}
(5.41)

The temporal evolution of the individual state populations is shown exemplarily in
Fig. 5.12 for three different time delays τa - τc between excitation by the XUV and
ionization by the NIR pulse. The initial population in the Eigenstates is distributed as
2/5 on the

∣∣1
2 ,

1
2

〉
j and 3/5 on the

∣∣3
2 ,

1
2

〉
j state. This distribution is stationary, while

the population of in the two –
∣∣1,−1

2

〉
l and

∣∣0, 1
2

〉
l – states oscillates back and forth

(Eq. 5.37). At the ionization event, the whole wave function is projected onto the
∣∣1,−1

2

〉
l
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Fig. 5.13: Time resolved absorption spectrum (a) and 2DAS (b) of the spin-orbit wave packet
in inner-valence-excited xenon according to the analytical theory presented.

state because of complete ionization of the
∣∣0, 1

2

〉
l state. In Fig. 5.12 (a), this occurs when

the population in
∣∣0, 1

2

〉
l is minimized leading to basically only a redistribution of the

population in the coupled basis (the relation 3/5 to 2/5 becomes 2/3 to 1/3). Compared
with (a), Figs. (b) and (c) exhibit a stronger manipulation of the population. In Fig. (c),
the population is almost completely removed from the states because the ionization
occurs just when almost all population resides in the preferably ionized

∣∣0, 1
2

〉
l state. The

whole process is periodic in τ , which gives rise to a characteristic beat signal in the time
delay–resolved absorption spectrum. The absorption spectrum can be obtained from the
wave function, directly by calculating the imaginary part of the spectrum of the dipole
expectation value d(t) = 〈ψ(t)| d̂ |ψ(t)〉. Figure 5.13 shows the resulting time-delay scan
(a) and the corresponding 2DAS (b). The initial population was chosen to be the same
as in Fig. 5.12. The beating is clearly visible in the time-delay scan and manifests itself
as the two characteristic 2DAS peaks at 1.92 eV Fourier energy. Since the population,
and thus the absorption cross-section, of the two states is strongly modified during the
strong-field ionization event, also diagonals above the DC limit arise.

As stated previously, in the experiment with few-cycle NIR laser pulses, incomplete
strong-field ionization occurs at every crest of the laser pulse electric field. For the ex-
periments done within the frame of this thesis, the pulse duration is approximately 7 fs
(FWHM), corresponding to six half-cycles, and the photon energy is 1.7 eV. This corre-
sponds to an ionization period of 1.2 fs. Thus, the multiple probing steps of the spin–orbit
wave packet are not in phase with the wave packet’s beat. The consequence of this is
that the contributions from the different half-cycles do not add up coherently, so that the
strength of modulation is strongly decreased compared with the analytic case of a single
ionization event. For shorter pulses in the single-cycle regime or a resonant photon en-
ergy (h̄ω = 1/2∆ω ≈ 0.96 eV), the loss of coherence can be reduced significantly. To
simulate this effect, a non-perturbative two-level simulation was performed. In each time
step, the basis is changed from ( j,m j) to (l,ml) where the ionization is treated via the
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Fig. 5.14: Loss of wave packet signature due to finite laser pulse duration at non-resonant
wavelength. Simulated 2DAS spectra and corresponding wave forms of the NIR laser pulse
used to simulate strong-field ionization by means of ADK theory. (a) In the single-cycle
regime (3 fs FWHM) the dominant half-cycle almost exclusively leads to ionization, which
preserves the coherence in the final state. (b) Considerable reduction of the wave packet
signal in the 2DAS at 4 fs FWHM duration. (c) Almost complete loss of information about
the spin-orbit wave packet for a 5 fs pulse.

ADK formula (Eq. 2.16) with the respective ml-values of the two states. Afterwards, the
basis transformation is reversed and the system is propagated in the ( j,m j) basis assuming
no further effects of the NIR laser except ionization. The resulting 2DAS are plotted in
Fig. 5.14 for three different laser pulse durations in the one- to two-cycle regime at 730 nm
carrier wavelength. As expected intuitively, the signature 2DAS peak at h̄∆ω = 1.92 eV
vanishes rapidly for increasing laser pulse duration. In order to obtain a clear signature of
the wave-packet beating, the simulations suggest an FWHM pulse duration on the order
of 4 fs, which corresponds to 1.5 optical cycles. This makes the experimental observation
of this wave packet challenging since generating and maintaining such short pulse dura-
tions is a sophisticated task.
These considerations are in agreement with a recent study by Pabst and Wörner where
the coherence of the 5p−1

1/2 and 5p−1
3/2 hole states in xenon prepared by strong-field ion-

ization was theoretically investigated [128]. The authors demonstrate that for laser wave-
lengths ωc that are not resonant with the multiples of twice the wave packet wavelength
(λwp = 2πc/∆ω) the coherence of the created wave packet is reduced significantly if the
laser pulse exceeds the 1.5 cycle regime. The effect is especially strong if the laser period
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Fig. 5.15: Absorption spectrum as a function of the aperture opening to demonstrate the
strong-field ionization capability of the NIR pulses. For aperture position 0, the effect of the
NIR is negligible. The inner-shell-excited series above 65 eV starts to vanish quickly due to
strong-field ionization. Around position 10 the signatures are completely gone. Instead ab-
sorption lines of strong-field generated xenon cation states arise, which proves the applicable
intensities to be sufficient for strong-field ionization.

is close to the wave-packet period, which is the case for the system considered here:

1×λwp < λc� 2×λwp

645nm < 730nm� 1290nm

In the following, despite the discouraging theoretical predictions, a first experimental at-
tempt in order to observe the wave-packet dynamics in xenon with a laser pulse duration
of approximately 7 fs FWHM is presented and discussed with the knowledge of the pre-
ceding section.

Experimental indications

The two prerequisites for the observation of the wave-packet signal are excitation of the
inner-shell–excited states by XUV light, and strong-field ionization of the excited xenon
states by the NIR pulse. The former is demonstrated by Fig. 5.11. Thus, only the pos-
sibility and signatures of strong-field ionization need to be investigated first. Figure 5.15
shows a stationary spectrum at 7 fs time delay between XUV and NIR pulse for varying
NIR intensity labeled by the aperture number (increasing number corresponds to wider
aperture). From this figure, it becomes obvious that the NIR laser can be operated at suf-
ficient intensities to completely extinguish the signatures of the

(
D5/2

)
np and

(
D3/2

)
np

series. The aperture opening in the depicted scan is varied coarsely to provide a high
intensity range. For the actual experiment, the region around position 4 is studied pre-
cisely. At higher intensity, the signal vanishes so that observation of the wave-packet
beating is not possible. Interestingly, for high intensities, i.e. starting around position 10,
strong-field ionization of ground state xenon begins, which is revealed by the absorption
lines between 55 and 56 eV. These lines correspond to XUV absorption by the strong-field
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generated cation states:

[Kr]4d105s25p6 S0
NIR−−→ [Kr]4d105s25p5 P3/2

XUV−−−→ [Kr]4d95s25p6 D5/2

[Kr]4d105s25p6 S0
NIR−−→ [Kr]4d105s25p5 P1/2

XUV−−−→ [Kr]4d95s25p6 D3/2.

These are the states studied in Ref. [128] and experimentally observed by means of
XUV transient absorption spectroscopy in Ref. [38]. The appearance of these states in
the absorption spectrum demonstrates that the laser pulses can even strong-field ionize
neutral xenon with an ionization potential of 12.1 eV.

In order to investigate the possible spin–orbit wave-packet signature, a fine scan of the
laser-pulse intensity around the onset of strong-field ionization is performed, and for
each intensity, a time delay–resolved spectrum is recorded. Since the beat signal of
the spin–orbit wave packet is supposed to be very faint, the 2DAS method is applied in
order to extract the information from the time-resolved spectrum where a multitude of
frequency components contributes to the spectral pattern (see Fig. 5.4 as a demonstra-
tion). Figure 5.16 features the time delay–resolved as well as the 2DAS representation
of three sets of experimental data of the intensity scan. The NIR intensity is increasing
from the top to the bottom figures. The two strong absorption lines at 65.1 and 67.0 eV
correspond to the transitions from the ground state to the

(
D5/2

)
6p and to

(
D3/2

)
6p

states, respectively, as shown in the stationary overview spectrum in Fig. 5.11. While the
overall decrease of the optical density of these absorption lines is relatively weak in (a), it
becomes increasingly significant with growing NIR intensity. The lowest optical density,
which corresponds to the strongest depletion of the state population, is observed around
the temporal overlap τ ≈ 0 of the XUV and NIR pulse. As visible in all time-delay
scans, the optical density exhibits a relatively strong modulation for positive delays. The
2DAS representation reveals that the frequency components of this modulation peak at
1.4 and 1.7 eV. The origin of this signal is the interference with spectroscopically dark
states of S- and D-symmetry that are initially populated due to leakage of the NIR light
through the metal foil in the filter unit as it was also the case for the helium target (see
Sec. 5.2). In this case, the effect is unwanted because it obscures the signature of the
spin–orbit wave packet. However, in the 2DAS representation the beat frequency of
the wave packet (1.92 eV) should be distinguishable from the two features at 1.4 and
1.7 eV. Note that the 2DAS color range has to be capped because the signal around
the DC limit is much more pronounced than the features corresponding to finite beat
frequencies (ratio ≈ 100 : 1). Going from Fig. 5.16 (b) to (f) the position of the peak at
1.7 eV seems to move (the dashed lines show the final peak position) while the 1.4 eV
signal remains constant. At the highest intensity, the 2DAS magnitude peaks at 1.85 eV
(resolution 0.07 eV), which is close to the expected beat frequency of 1.92 eV of the
spin–orbit wave packet. Up to now, it is not understood if the peak position moves due
to the increasing intensity, or if a new effect, e.g. the spin–orbit wave- packet beating,
in combination with a reduction of the original peak’s magnitude is responsible for
the apparent shift. Figure 5.17 allows for a closer look at the evolution of the Fourier
spectrum as it shows lineouts along the resonance photon energy of the

(
D5/2

)
6p line

in the 2DAS. The figure shows that the original peak at 1.7 eV develops a shoulder at
1.85 eV with increasing intensity. This is accompanied by a decreasing magnitude at
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Fig. 5.16: Time-delay scans (left column) and 2DAS magnitude (right column) of inner-
valence excited xenon for three different NIR intensities (increasing from top to bottom row).
For details please see main text.
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Fig. 5.17: Lineouts of the 2DAS representation along the ν-axis at the position of the(
D5/2

)
6p line revealing the different frequency components that contribute to the final ab-

sorption spectrum. Each lineout corresponds to a different NIR intensity as encoded by the
color bar (blue corresponds to low – red corresponds to high intensity)

1.7 eV until at the highest NIR intensity, i.e. the solid red line (taken from Fig. 5.16 (f)),
the former shoulder at 1.85 eV dominates. Apart from this, the final-intensity data exhibit
considerably more noise than the other data and additional structures below 1.4 eV.
Unfortunately, the intensity scan had to be aborted (for a sudden drop in laser power)
after this intensity, so that the further evolution of the peak structure at even higher
intensities remains unknown. Thus, a final conclusion about the origin of the apparent
peak shift and the observation of the spin–orbit wave-packet signature cannot be made
at this point. Further measurements, which should make use of shorter laser pulses
in the 1.5 cycle regime, and a broader intensity scan are necessary to unambiguously
prove the wave packet’s existence and to study its properties in a strong-field environment.

Nevertheless, the concept of 2DAS was again demonstrated to be a helpful complement
to the time delay–resolved representation of experimental data. The ability to spectro-
scopically separate different coupling channels by means of their Fourier energy is a key
to study weak modulations of the spectrum that are otherwise obscured by other effects.



Chapter 6

In situ characterization of few-cycle
strong-field laser pulses

In the field of ultrafast light–matter interaction with strong laser fields, the characteriza-
tion of the laser pulses used to drive the (nonlinear) quantum dynamics is a crucial step
in order to draw quantitative conclusions from measurement results.
There are various well-established ways to characterize the temporal structure of
ultrashort laser pulses. The most prominent examples are the already mentioned SPI-
DER [102] and FROG [103] techniques as well as their numerous derivatives, e.g. spa-
tially encoded arrangement (SEA) SPIDER [129] or interferometric (I) FROG [130].
Other pulse characterization techniques include the d-scan [101], self-referencing
spectral interferometry (SRSI) [131], or the multiphoton intrapulse interference phase
scan (MIIPS) method [132]. While these methods are powerful in a sense that they can
be used to retrieve the spectral phase, and thus completely characterize the temporal
structure of the pulse, they are not in situ methods. The main advantage of an in situ
technique would be that the pulse is characterized directly inside the spectroscopy
target under realistic conditions. Furthermore, the pulse intensity is not accessible by
the aforementioned techniques, and for strong-field pulses the used medium (usually a
nonlinear crystal) might even evaporate.
These facts create the urge for other techniques to be implemented in ultrafast and
strong-field experiments. For the photoelectron community, the attosecond streaking
technique [90–92] provides a powerful in situ method. Its principle is outlined in
Sec. 3.3.1. It allows both to study quantum-dynamics on the electronic time scale as well
as it provides a powerful pulse characterization technique that has become a standard
over the last decade. The streaking method is able to temporally resolve the oscillation
of the electric field itself, and thus allows to completely characterize the wave form
of ultrashort laser pulses down to the single- or sub-cycle regime [67]. Furthermore,
by implementation of reconstruction algorithms such as FROG CRAB [105] or phase
retrieval by omega oscillation filtering (PROOF) [133] the attosecond pulse used in the
streaking scheme can be characterized. Attosecond streaking also in principle allows
to determine the absolute value of the electric field strength or the intensity of the
femtosecond pulses from the measured kinetic energy shift of the photoelectrons.
These features come at the expense of relatively high requirements on the experimental
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setup. First, the wave form of the NIR laser pulses has to be stabilized with low noise,
which is achieved by CEP stabilization of the femtosecond oscillator and amplifier. If the
CEP fluctuates from shot to shot, the measured photoelectron signal gets averaged over
different field strengths and directions. This causes loss of the information on the field
itself. Second, isolated attosecond pulses have to be produced. Otherwise the electric
field of several half-cycles contributes to the photoelectron spectrum.
Conceptually, one of the major drawbacks of attosecond streaking and in general all
photoelectron techniques is the necessity for liberating an electron from the studied target
atom or molecule. Therefore, and as described previously in Sec. 3.1 ATAS has become
an important complement that intrinsically provides access to bound-state quantum
dynamics. Unlike the attosecond streaking technique, until very recently ATAS has
lacked the possibility for in situ characterization of the femtosecond NIR laser pulses that
drive and control the electron dynamics. The precise knowledge of the laser pulse shape
and peak intensity—or in general of its instantaneous intensity distribution—enhances
the scope of ATAS concerning quantitative measurements and the control of quantum
dynamics. Together with an improved comparability between experimental and theoreti-
cal studies, where pulse duration and intensity are crucial input parameters, this enables
a more detailed analysis and understanding of bound-state dynamics in strong and short
laser fields.

The following chapter is dedicated to demonstrate a new scheme for ATAS combining
the measurement of time-resolved quantum dynamics with the characterization of the
few-cycle driving laser pulse in one single experiment. First the main idea behind the
pulse characterization scheme is introduced and elaborated in terms of the dipole control
model (DCM). Afterwards the method is validated by comparison with a numerical
calculation before it is applied experimentally.

Most of this chapter’s content is based on [2] and will adhere to this publication.

6.1 Few-cycle pulse characterization scheme

The presented pulse characterization method is based on extracting the time delay–
dependent phase shift [1, 6, 7, 26, 42] imprinted on a resonance, which is excited by
attosecond XUV light and dressed by the few-cycle–NIR laser pulse that is to be
characterized. From this transient phase shift, the time-dependent intensity distribution
is obtained. Since the signature of the NIR laser pulse interacting with the XUV-excited
spectroscopy target is analyzed, the pulse characteristics are determined in situ, i.e. di-
rectly where the physics of quantum dynamics experiments studied with ATAS happens.
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6.1.1 Principle

The physical mechanism behind the phase shift is the ponderomotive shift (see Sec. 2.5)
of the energy of highly excited states, in which the electron is close to free. In general,
bound states dressed by laser light are subject to the AC Stark effect. Here, a coupling of
several states makes a theoretical treatment of a realistic scenario, e.g. using strong laser
fields, complicated. However, in the vicinity of the continuum threshold, i.e. for high
principal quantum numbers, the presence of a high density of states causes the Stark effect
to eventually become the ponderomotive effect. This means that the Stark shift converges
against the ponderomotive potential UP. In the time domain, the electron’s energy shift
corresponds to an accelerated evolution of the wave functions phase for the duration of the
laser pulse. In general the phase acquired in the presence of a time-dependent frequency
is given by

φ(t) =−i
∫ t

−∞

ω(t ′)dt ′. (6.1)

In the case of an electron excited by an attosecond XUV pulse (treated as a Dirac-δ
function) at time t = 0 to a close-to-free state (resonance frequency ωr) that is dressed by
an NIR pulse (ponderomotive potential UP) Eq. 6.1 becomes

φ(t) =−i
[

ωrt +
1
h̄

∫ t

0
UP(t ′− τ)dt ′

]
. (6.2)

The poderomotive potential UP of the laser is (like the laser intensity) centered about
the time τ , which corresponds to the time delay between excitation pulse (XUV) and
interaction (NIR). Note that throughout these considerations the excitation pulse will be
regarded as an XUV pulse and the interaction or dressing pulse will be regarded as an NIR
pulse. However, there is no general restriction to these spectral regions as the presented
concept is completely general. It is only the context of the recent ATAS studies, which
makes it convenient to assign these spectral regions to the two pulses.

The phase evolution of the state according to Eq. 6.2 is illustrated in Fig. 6.1 (a). The
presence of the laser pulse ponderomotive potential causes the electron to accumulate an
additional phase of

φP(t,τ) =−
i
h̄

∫ t

0
UP(t ′− τ)dt ′. (6.3)

For the pulse characterization scheme the situation gets especially interesting in the vicin-
ity of the pulse overlap, which is depicted in Fig. 6.1 (b). Here, the total phase accumu-
lated

∆φP(τ) =−
i
h̄

∫
∞

0
UP(t ′− τ)dt ′ (6.4)

strongly depends on the time delay of the two pulses. In contrast, for time delays
considerably longer than the pulse duration, as shown in Fig. 6.1 (a), ∆φP becomes
stationary. In this way, by scanning the NIR pulse over the XUV pulse—similar to the
attosecond streaking technique—the pulse shape is mapped onto the additional phase
of the loosely bound electron. The early NIR pulse in Fig. 6.1 (b) arriving at time τ1
after the XUV pulse, which starts the "phase clock", only acts with slightly more than
half of its duration on the electron. Thus, the imprinted phase is considerably smaller
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Fig. 6.1: Illustration of the phase
evolution of a laser-dressed reso-
nance in general (a) and its appli-
cation for pulse characterization (b).
The presence of the laser pulse’s
ponderomotive potential causes the
wave functions phase to evolve
faster. In the vicinity of the pulse
overlap the additional phase ac-
quired by the electron explicitly de-
pends on the timing of the NIR
pulse. Thus, the temporal profile of
the laser pulse is mapped onto the
electron’s phase, and thereby also
on the spectral response, which can
be measured in ATAS and analyzed
be means of the DCM.
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compared with the phase that the late pulse arriving at τ3 adds to the electron’s phase
evolution. The acquisition of an additional phase by the electron can be interpreted as a
perturbed decay. This perturbation of the dipole decay in the time domain is associated
with a modification of the absorption spectrum in the frequency domain as indicated
in the figure. The remaining question is "How to extract the laser imprinted additional
phase from the (measured) absorption spectrum?". The answer is given by the DCM.
From Chap. 4, the effect of a given phase jump introduced at a given time delay τ on the
spectral response of the system is known analytically (Eq. 4.17). The only task is now
to cast the ponderomotive dressing of the electron by the NIR into the DCM, by finding
a suitable expression for the dipole control parameter A. Then the analytic frame work
of the DCM can be utilized in order to extract the phase information from the recorded
spectra. This will be the content of the next section.

Once the laser imprinted phase ∆φP(τ) has been recovered from the absorption spectrum,
the laser pulse can be characterized. The derivative of ∆φP(τ) with respect to the time
delay directly yields the laser’s instantaneous ponderomotive potential:

ih̄
d∆φP

dτ
=UP(τ). (6.5)

Of course, the absolute value of UP depends on the validity of the assumption that the
electron experiences the full ponderomotive potential rather than the ordinary Stark
shift, which will be a subject of the next sections. From UP the laser intensity can be
calculated directly via Eq. 2.52 if the laser center wavelength is known, which usually
is the case. With that, the pulse envelope is characterized completely. In principle, it
should be possible to resolve also the cycle structure of the pulse intensity using this
method. However, this would require—as in streaking—a CEP stable source, which is at
the moment not available experimentally in the current laboratory.
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Fig. 6.2: Dipole control model representation of the ponderomotive dressing of a highly
excited state. The continuous evolution of the laser imprinted phase φP(t,τ) is condensed to
a phase jump ∆φP(τ) of the same amount as the total accumulated phase.

6.1.2 Implementation using the dipole control model

In this section, the ponderomotive effect of an ultrashort dressing laser pulse will be ex-
pressed in terms of the DCM in order to allow for practical implementation of the pulse
characterization scheme. At first glance, it might be confusing that in spite of the fact
that the DCM treats all optical pulses as Dirac-δ functions the finite duration of the NIR
pulse is going to be characterized using this model. However, the finite duration of the
NIR pulse will enter in the form of the dipole control parameter A. As the ponderomotive
effect is a non-resonant type of light–matter interaction, A should have the form

A(τ) = a1(τ)eiφ1(τ) (6.6)

where the time-delay dependence of amplitude a1 and phase φ1 is explicitly indicated.
Furthermore, if the laser intensity is not too high, a depletion of the state can be neglected,
such that a constant amplitude a1 = 1 can be assumed:

A(τ) = eiφ1(τ) (6.7)

In order to cast the continuous action of the dressing laser into the impulsive DCM, a
phase jump is introduced: the actually continuous phase accumulation caused by the NIR
laser is condensed to an infinitesimally short instant in time (at t = τ). The size of the
phase jump is given by the total amount of laser-induced phase that the electron acquires:

A(τ) = ei∆φP(τ) = exp
[

i
h̄

∫
∞

0
UP(t ′− τ)dt ′

]
(6.8)

Figure 6.2 illustrates this situation. Since the laser pulse maps its shape onto the electrons’
phase via Eq. 6.4, the laser pulse is temporally resolved by scanning τ although it is treated



82 IN SITU CHARACTERIZATION OF FEW-CYCLE STRONG-FIELD LASER PULSES

as a Dirac-δ function. Equation 6.8 contains no explicit time dependence so that the
complex spectrum D̃τ(δ ,τ) is directly obtained in analogy to Eq. 4.14:

D̃τ(δ ,τ) ∝
−eiφ0

δ − iγ
×

{
1− e−iδτ−γτ

[
1− ei∆φP(τ)

]
τ > 0

ei∆φP(τ) τ < 0
(6.9)

The Fano phase φ0 accounts for the unperturbed line shape. The case of τ < 0 does not
appear in Eq. 4.14 but has to be introduced to describe the finite duration of the NIR
pulse. It arises naturally by setting all instances of τ to zero except for ∆φP(τ). The
interpretation of this term is straight-forward: The electron is not affected by the dressing
laser until t = 0. Hence, for all τ < 0 the effect of the laser is treated to occur at t = 0,
whereas via ∆φP(τ) it is taken into account how much of the laser pulse the electron
actually experiences. For laser pulses much shorter than the lifetime of the state, which is
usually larger than 200 fs for the highly excited states of interest, this treatment causes no
severe mistake since the action of the laser is anyhow confined very closely around t = 0
for τ < 0. In this case, it was shown in [26] that the effect of the laser can be regarded
purely as an additional initial phase, which is exactly what is written in Eq. 6.9.
In the following the imaginary part of Eq. 6.9, i.e. the absorption spectrum, will be used
to retrieve the laser-imprinted phase from simulated and experimental data by fitting the
analytic expression to given spectra.

6.2 Validation of the method

Before the in situ method is applied to experimental data, the retrieval mechanism shall be
validated. Therefore, absorption spectra of an atomic resonance that is ponderomotively
dressed by a few-cycle NIR pulse with known properties are numerically calculated. The
pulse characteristics obtained by applying the characterization method to the spectra
are then compared to the input pulse parameters. The main aim is to test whether
the treatment of the phase acquisition as an instantaneous phase jump imposes severe
limitations on the pulse retrieval.

The excitation step from the ground state to the highly excited state is performed pertur-
batively according to Eq. 5.19 where a 150 as XUV pulse is used. The ponderomotive
effect of the dressing NIR laser pulse is treated according to Eq. 6.3 as a continuous
shift of the states energy and phase. For comparability to the experimental situation,
the simulation parameters of the state, i.e. resonance energy and decay rate, are chosen
to match the sp24+ doubly excited state of helium (see Tab. 2.2). The simulation was
carried out for Gaussian laser pulses of three different FWHM of intensity durations:
3.54 fs, 4.95 fs, and 7.07 fs (corresponding to FWHM of the electric field of 5 fs, 7 fs, and
10 fs, respectively). The peak ponderomotive potential of all three pulses is 350 meV.
At a photon energy of 1.7 eV this corresponds to a peak intensity of 6.9× 1012 W/cm2.
To retrieve the laser-imprinted phase from the calculated spectra the imaginary part of
Eq. 6.9 plus an offset is fitted to the individual spectra of the time-delay scan. First,
the fit is performed for negative time delay where the impact of the NIR pulse on the
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Fig. 6.3: Validation of the DCM based phase retrieval for pulse characterization. The red,
purple, and blue data sets correspond to input pulses of 7.07 fs, 4.95 fs, and 3.54 fs, respec-
tively. For each of the pulses, the input peak ponderomotive potential is 350 meV. The lines
correspond to the phase (left axis) retrieved by fitting the DCM spectrum of Eq. 6.9 to the
simulated absorption spectra and the shaded areas correspond to the pulse profiles (right axis)
obtained by derivation of the phase.

absorption spectrum is negligible. In that case the laser imprinted phase vanishes, so
that the initial phase φ0 and the resonance frequency can be determined. These values
are kept fixed throughout the following fits. Keeping the resonance frequency fixed is
important because the variation of ωr has a similar effect on the spectrum as a variation
of the phase (both terms enter the exponent of Eq. 6.9). The time delay τ also enters the
fitting as a fixed parameter taking the value of the current time delay-setting, which the
fit is performed on.
Figure 6.3 shows the results of the phase retrieval and the pulse profiles obtained from
the derivative of the retrieved phase with respect to τ . The pulse durations are obtained
by fitting a Gaussian profile to the retrieved pulse. The deviation from the input values is
below 0.2% in all three cases. Also the peak ponderomotive potential agrees within 0.6%
with the input value of 350 meV. This demonstrates that the retrieval algorithm based on
the DCM is able to perform a pulse characterization directly from transient absorption
spectra with high accuracy and precision.
In addition to this validity check, a second – more demanding – test is carried out. In

order to make the scenario more realistic, the spectra are now convolved with a 20 meV
standard deviation Gaussian filter function, which simulates the finite resolution of the
XUV spectrometer. Furthermore, instead of a Gaussian input pulse a less trivial input
pulse that exhibits a post pulse is now used. The results of the pulse characterization are
summarized in Fig. 6.4. Figures (a) and (b) show the convolved simulated absorption
spectrum and its fit with the analytic DCM spectrum. As the figures reveal, except for
details on the left side of the main absorption line, the DCM model approaches the
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Fig. 6.4: Validity check of the in situ method. (a) Simulated transient absorption spectrum
of a ponderomotively dressed state. The absorption line is convolved with a 20 meV Gaus-
sian filter function to simulate the spectrometer resolution. The line evolves starting from its
natural shape at τ = −10 fs. At τ ≈ −1 fs, the laser has imprinted enough additional phase
so that the line shape is transformed to a symmetric Lorentzian-like profile. For positive time
delays, the profile is converted further to an inverted Fano-profile, and hyperbolic structures
start to emerge. For τ → ∞, the line shape will again turn into the natural one because the
laser dressing acts on an exponentially decreasing part of the wave function. (b) spectrum
of (a) fitted with the DCM spectrum of Eq. 6.9 in order to retrieve the laser-imprinted phase.
The agreement is generally good, except for the fact that the DCM produces a spectrum that
is more symmetric around the resonance frequency compared with the simulated spectrum.
(c) Retrieved phase (dotted curves) and pulse profile (solid lines) compared to the input pulse
(shaded area). The blue curves correspond to the unconvolved spectra, whereas the red curves
correspond to the convolved spectra.
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simulated data very well. This is inspite of the fact that the convolution with the Gaussian
function modifies the absorption line shape. Figure 6.4 (c) shows the phase obtained from
the fit procedure and the retrieved pulse shape compared to the input pulse (gray shaded
area). The red curves correspond to the spectra convolved with the 20 meV Gaussian
spectrometer resolution function as shown in figures (a) and (b), whereas the blue curves
correspond to unconvolved spectra, i.e. infinite spectrometer resolution. The overall pulse
shape for the unconvolved spectra is in excellent agreement with the input pulse. The
peak ponderomotive potential is underestimated by ≈ 1%. For the convolved spectra, the
pulse shape exhibits noticeable deviations from the input pulse on the trailing edge of the
pulse near the peak position, while the majority of the pulse shape agrees well with the
input pulse. The reconstructed peak intensity is about 3.3% below the input value. The
FWHM durations of retrieved pulse and input pulse agree on a sub-% level. Therefore,
even with a finite resolution altering the line shape the DCM based retrieval method
proves applicable to experimental data. However, as these tests reveal, the quality of the
retrieval can be directly improved by using a higher resolution spectrometer.
In principle, if the spectrometer response function is known, the fit can be performed
with the convolved DCM spectrum, which should compensate for the effect of the line
shape modification. Doing so in the presented case where the spectrometer response
is known exactly, eliminates the noticeable distortions of the pulse peak. Yet, the peak
intensity remains approximately the same, i.e. 3% below the input peak intensity. Thus,
a high spectrometer resolution is still the most favorable way to obtain accurate pulse
properties.

As a final check, the dependence of the pulse retrieval on the XUV pulse duration is
tested. The outcome of this test is that by going from a 150 as short excitation to an
XUV pulse duration of 2000 as, which covers most experimental situations, the retrieved
pulse duration (7 fs input) deviates by about 1.8%, which is usually below the time delay–
scanning resolution in the experiment (∆τ = 170 as corresponds to 2.5% at 7 fs pulse
duration). The retrieved intensity for the 2000 as XUV pulse also is reduced by only 0.4%.
In addition to that, a short train of attosecond pulses was also used to calculate spectra
and perform the pulse retrieval. The train consists of three pulses: one center pulse of
150 as duration and two satellites displaced by an NIR half cycle. The satellites have a
relative peak electric field of 1/4 with respect to the center pulse and the same duration.
In this case, the retrieved pulse duration is 3.6% longer compared with the pulse duration
retrieved with a 150 as XUV pulse. The peak intensity is underestimated by 2.0%.
These low systematic errors of the method for extended XUV pulse durations can be
accounted for by incorporating them into the measurement result.

6.3 Application of the method

After introduction and validation of the pulse characterization scheme, it is now applied
to experimental data. The pulse characterization is performed on a subset of the states
shown in the overview spectra of Fig. 5.5, i.e. the sp2n+ Rydberg series of helium.
Figure 6.5 shows a detailed absorption spectrum of the highest lying states, whereas
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Fig. 6.5: Overview of the highly excited states of the sp2n+ manifold starting from n = 4. The
"twist" of the line shape is clearly visible from the time delay scan.

a detailed view on the sp23+ state is given by Fig. 5.7. The Rydberg series is quickly
converging to the 2s1/2p1 ionization threshold of helium at 65.40 eV, so that for n > 8
or E > 65.2 eV no individual states can be resolved. For the highest lying states, the
spectrometer resolution and the signal-to-noise ratio is too low to perform a reliable
analysis, by means of fitting an analytic line shape to the experimental data. Thus, the
analysis is focused on the sp23+, sp24+, sp25+, and sp26+ states. All of these states are
strongly affected by the NIR laser pulses due to their vicinity to the continuum. On the
other hand, except for the sp23+ state, the 2DAS representation in Fig. 5.6 reveals no
indications of resonant couplings among the highly excited states. Thus, the perturbation
can be treated as purely non-resonant.

As demonstrated numerically in Fig. 6.4, the line shape changes significantly as the NIR
dressing laser pulse is scanned over the XUV excitation pulse. This effect is due to the
time delay–dependent amount of phase imprinted on the resonances. Now, by applying
Eq. 6.9 in order to fit the experimental data, the additional phase acquired due to the pon-
deromotive dressing is extracted from the time-resolved spectrum. The fitting procedure
is almost identical to the one for the simulated data described above. The only differ-
ences are that, first, a region of the spectrum around each resonance is selected for the
fit to act on only one absorption line. And second, the spectrum is binned along the τ-
axis in order to improve the signal-to-noise ratio. The bin size amounts to 16 time-delay
steps, which corresponds to approximately one laser cycle. For the sp23+, which exhibits
a beating structure due to quantum interference with the 2s2p state (see Sec. 5.2), most
of the rippling is averaged out because of the binning. The binned time delay scans are
shown in Fig. 6.6 for the sp24+ (a) and the sp25+ (b) state. For the depicted intensity (ap-
proximately 6.4×1012 W/cm2 as will be shown later), the line shape is transformed to a
symmetric Lorentz-type profile at about τ ≈ −2 fs. The lifetime of the discussed states
is between 80 fs for the sp23+ and more than 0.6 ps for the sp26+ state, which renders the
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Fig. 6.6: Binned experimental time-delay scans fitted with the analytic DCM spectrum to
reconstruct the laser-imprinted phase. (a) and (b) show experimental time-resolved spectra
of the sp24+ and sp25+ states, respectively. (c) and (d) show the corresponding fits with the
imaginary part of Eq. 6.9 as fitting function. The fitting procedure is described in the main
text.

DCM approach applicable in the case of dressing laser pulses that extend only over a few
optical cycles. The fitted spectra are shown in Fig. 6.6 (c) and (d). Similar to the simu-
lated data, the fit results agree well with the experimental data, which demonstrates that
the delay-dependent line shapes of transiently perturbed dipole decay can be analytically
described in the frame of the DCM. The phase ∆φP retrieved by the fit for each time-delay
position is shown in Fig. 6.7. The general shape of the phase curves is as expected from
the theoretical investigations of the previous section. There is a significant tendency that
phase shift acquired up to a given time delay grows with the principal quantum number
of the state. This growth occurs in a convergent fashion: the difference between succeed-
ing states becomes smaller with increasing quantum number, which means that the phase
curves approach each other. The difference between the phase maximum of the sp25+ and
the sp26+ state is already less than 5%. This suggests that the highest lying states are close
to the ponderomotive limit of free electrons—or in other words—the AC Stark shift that
these states experience is close to the ponderomotive potential, which is the limit of the
AC Stark shift for continuum electrons. In contrast, for the more strongly bound states,
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Fig. 6.7: Phase retrieval and pulse reconstruction from experimental data. The scatter plots
show the phase retrieved from the experimental absorption spectra while solid lines are the
corresponding fit curves. The fitting function is an integrated sech2 profile. The shaded area
marks the pulse profile obtained from derivation of the phase profile of the sp25+ state.

e.g. the sp23+ state, the phase shift clearly differs from the ponderomotive behavior. This
is in agreement with the intuitive picture that the deeply bound states are less sensitive to
the presence of the NIR laser pulse, whereas the weakly bound states are more affected
by the electric field. By means of the phase retrieval, this finding can be quantified. The
laser-imprinted phase can be regarded as the action the electron accumulates due to the
presence of the laser. In the presented case, the action that the electron in the sp26+ state
experiences is about 60% higher compared with the sp23+ state. If the temporal evolution
of the action or the phase is equal in both states, which is approximately the case, this
transfers to a difference in the energy shift of also 60%.
The absolute value of the phase maximum is approximately π in the case of the sp25+
state. All states have in common that the phase maximum is reached after a delay of
τ ≈ 5 fs. For larger time delays, and especially for the highly excited states, the retrieved
phase starts to decline for yet unknown reasons. This behavior is not directly under-
standable within the DCM nor the numerical simulations presented in the last section.
Intuitively one would assume the phase to be a monotonic function of the time delay,
since it is the integrated energy shift, which is not expected to switch its sign during the
course of the pulse (at least for the highest states where the ponderomotive effect domi-
nates, which causes always a positive energy shift). In principle there are two approaches
to explain this decline: either the phase really declines or the phase decline is not real
and the phase retrieval algorithm introduces an error. A possible explanation for the first
approach is the displacement of the beam caused by the motion of the split mirror intro-
ducing the time delay as described in Sec. 5.2.1. The foci are displaced by about 1 µm
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per femtosecond time delay. Making a rough approximation where the beam is treated as
a Gaussian (FWHM of d) as well as the pulse profile (FWHM of T ), the pulse energy e
corresponding to a peak intensity of I0 is given by:

e =
(

π

Log 2

)3/2

I0 d2 T (6.10)

Plugging in the values of I0 and T obtained later, assuming these values are obtained
at the center of the beam, and assuming a pulse energy of 0.1 mJ leads to an FWHM
spot size of about 160 µm. Under these assumptions, a displacement of the beam by
20 µm, which corresponds to 20 fs in time delay, would still lead to an intensity of 99%
of the peak value. Thus, the observed behavior could only be explained if the XUV
beam is completely displaced already at τ = 0, which is rather unlikely, because the
inner mirror was aligned carefully with respect to the outer mirror initially and was not
modified since then. The second approach to explain the declining phase could be the
close proximity of the highly excited resonances, which causes a slight delay-dependent
overlap of the lines due the limited resolving power of the XUV spectrometer. This
idea is supported by the growing error bars, which indicate that the fitting algorithm
begins to struggle at larger τ . As it was the case concerning the simulation with the
convolved absorption line, also in this case the method would directly benefit from a
higher spectrometer resolution. Another possibility is the sub-ps pedestal, which usually
accompanies femtosecond pulses from amplified lasers, and which can affect the atomic
line shape. Such an additional field with a duration on the order of the state lifetime is
currently not considered in the reconstruction method, which is based on the DCM, and
thus assumes laser pulses much shorter than the lifetime of the studied states. As a result
of this not completely understood phase decline, the data range used for the laser pulse
measurement will be restricted to τ < 5 fs.

The three lines that exhibit the strongest absorption signal and that are spectroscopically
resolved best are the sp23+, sp24+, and sp25+ lines. The phase curves ∆φ(τ) can be
reliably fitted with an integrated pulse profile P:

∆φfit =
∫

τ

−∞

P(τ)dτ. (6.11)

The highest lying state, i.e. sp26+, agrees well with the sp25+ for most parts of the phase
evolution. However, around τ = −4 fs the phase exhibits a shoulder, which is not com-
mon among the other states. Fitting the sp26+ curve with a single pulse profile is not
appropriate in respect of the shoulder, so that the information gained from this state is
treated separately.
The fit with ∆φfit converges better if a sech2 profile is used instead of the standard Gaus-
sian. Figure 6.7 shows the fit results as solid lines. The FWHM pulse durations obtained
from the fit are given by

T25+ = 6.9±0.2fs T24+ = 7.2±0.2fs T23+ = 7.2±0.5fs,

T NIR = 7.1fs
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which corresponds to three optical cycles (T NIR is the mean value). The good agreement
of all three values proves the reliability of the method, and shows that the determination
of the pulse duration is relatively insensitive to the choice of the state or to the proximity
to the ponderomotive limit. As visible from the Fig. 6.7, the data points according to
the sp23+ state oscillate about the fit curve. This is a result of the residual beat signal
that survived the cycle-averaging due to the binning. Hence, despite the strong resonant
modulation of the sp23+ absorption line, the method is able to determine the underlying
non-resonant phase shift well enough, to allow for a precise characterization of the driving
laser pulse.
Concerning the determination of the absolute intensity of the femtosecond laser pulse, the
choice of the state is not arbitrary. Only for the highest excited states the relation

h̄
d∆φ

dτ
= ∆E(τ)≈UP(τ) (6.12)

holds, where ∆E(τ) is the general AC Stark shift of the state energy. Taking the derivative
of the fitted phase curves with respect to τ yields the instantaneous AC Stark shift for the
three states. The peak values reached at the laser pulse maximum read:

∆Emax
25+ = 0.28eV ∆Emax

24+ = 0.24eV ∆Emax
23+ = 0.18eV.

These values exhibit the same tendency as expected from the comparison of the individual
phase maxima. Based on the overall good agreement of the phase evolution of the sp25+
and the sp26+ state, the peak energy shift of the latter can be estimated by taking the value
of the sp25+ state (∆Emax

25+ = 0.28eV) and correcting it for the 5% higher phase maximum
of the sp26+. This yields

∆Emax
26+ = 0.29eV≈Umax

P . (6.13)

As this energy shift is supposed to be very close to the ponderomotive potential of the
dressing NIR laser, it can be used to determine the intensity, which the target was exposed
to in the present study. Using Eq. 2.52 with a laser carrier wavelength of 730 nm, the peak
intensity reads I = 5.9× 1012 W/cm2. The reconstructed instantaneous intensity for the
whole pulse is shown as the grey area in Fig. 6.7. Assuming a situation of a short train of
attosecond pulses as done in the validity check of the method slightly changes the values
of the measurement result to T NIR = 6.9 fs and I = 6.0×1012 W/cm2.

This technique based on the DCM and the corresponding experiment demonstrate—up
to now—the first characterization of a strong-field few-cycle laser pulse performed by
means of attosecond transient absorption spectroscopy. The instantaneous intensity, and
thus also the duration and the peak intensity, of the laser pulse are determined in situ.
This means, the pulse characterization takes place at the location where the investigated
sample interacts with the intersecting NIR and XUV pulses or—in other words—where
the physics of quantum dynamics experiments with short and strong laser fields happens.
This combines quantum dynamics measurement and pulse characterization in one single
experiment, which allows for direct data analysis and comparison between experiment
and theory.
Finally, the limits of the method as well as its potential in the future is discussed.
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6.3.1 Current limits—future outlook

In the future, CEP-stabilized NIR pulses will be used, which should enable characteri-
zation of the cycle structure of the laser pulse intensity. As both the attosecond pulse
duration as well as the time delay–step size can in todays experiments be shorter than
100 as, the characterization of laser pulses shorter than one optical cycle (≈ 2.4 fs) should
be feasible. Also a live implementation of the method is in principle possible, which
would allow for direct dispersion optimization of the NIR pulses to match the experi-
mental needs. To give an example: A delay range of −5 to +5 fs with 11 data points
should be sufficient to characterize a few-cycle pulse roughly. Such a measurement can
be performed in approximately 1 second (100 ms per integration time per delay step) if
the pulse-to-pulse stability and the XUV flux are sufficiently high. The phase retrieval al-
gorithm for 11 spectra is faster than the recording of the spectra (and can run in parallel),
so that the pulse duration can be updated at least every 1.5 seconds, which is convenient
for online optimization of the pulses.
Up to now, the sensitivity of the method is limited to about 5× 1011 W/cm2, which is
mainly because of measurement noise due to pulse-to-pulse fluctuations. These fluctua-
tions are imposed by the laser system itself and by air fluctuations along the beam path.
Inside the hollow-core fiber and the HHG gas cell, initial fluctuations get amplified due
to nonlinear effects (mainly self-phase modulation and harmonic generation). Thus, a
stable laboratory environment and a laser system with low shot-to-shot fluctuations of the
pulse parameters, e.g. a regenerative amplifier, would contribute to the sensitivity of the
method. As mentioned before, an increased resolution of the XUV spectrometer would
also enhance the pulse characterization technique in basically two points. First, the line
shape becomes less affected by the spectrometer resolution, which improves the fit of the
recorded spectra with the analytic spectrum. Second, the reduced width causes the lines
to be better separated. Thus, overlapping of the absorption lines becomes less of an is-
sue, and more highly excited states can be resolved, which allows for even more precise
determination of the pulse. Instead of going further to the ponderomotive limit, the accu-
racy of the method could also be improved by theoretical calculations of the laser-induced
Stark shift, which can be compared to the experimentally obtained energy shift in order
to retrieve the laser intensity.
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Chapter 7

Conclusion

The main topic of this thesis is the impulsive control of quantum dynamics in highly
excited atoms by means of NIR laser pulses spanning only a few optical cycles. The
range of proposed, observed and utilized processes of light–matter interaction within this
thesis involves resonant coupling of states, non-resonant strong-field ionization intro-
ducing a quasi-coupling of states, and the transient shift of state energies caused by the
non-resonant ponderomotive effect. The link between the physics of these light-induced
quantum dynamics and the experimental outcome is established by means of an analytic
framework—the dipole control model (DCM). Based on this model, two improvements
to the promising technique of attosecond transient absorption spectroscopy (ATAS) are
proposed and experimentally demonstrated. First, the (traditional) time delay–resolved
representation of spectroscopic data is complemented by a two-dimensional–spectral
representation, which allows for a deeper insight into individual processes of laser–atom
interaction. And secondly, an in situ method for characterization of few-cycle strong-field
laser pulses from transient absorption spectra is implemented.

The dipole control model is initially formulated in the time domain. Both light pulses—
the attosecond XUV and the time delayed femtosecond NIR—are treated as infinitesi-
mally short Dirac-δ functions. This allows to analytically describe the dipole response of
an isolated state, which is the central quantity of the model, triggered by the XUV pulse
and later perturbed by the NIR pulse. The interaction of the NIR pulse with the atom is
condensed to a single complex parameter—the dipole control parameter A(τ). Two dif-
ferent general forms of A(τ) could be found that describe either resonant or non-resonant
processes. One of the strengths of this model is that the transition to the frequency domain
can be performed fully analytically yielding the optical density as a function of photon
energy and time delay. This allows to directly trace the impact of the light–matter interac-
tion from the time domain to the experimentally accessible spectral domain, which helps
to extract quantum dynamics from measured spectra.
The key assumption of the model is that both pulse durations are short compared to the
lifetimes of the investigated state. The time delay between excitation and interaction,
however, is completely arbitrary. A notable special case occurs for time delays that are
negligible compared to the state lifetime. Here, the intensely studied Fano phase formal-
ism arises, which has allowed to describe the transformation of spectroscopic line shapes
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from Lorentz to (the general asymmetric) Fano and vice versa in terms of an NIR-induced
phase jump close to the temporal overlap [7, 26, 88]. In contrast, the full DCM allows for
the complete dynamics of the interaction to be described. This involves spectroscopic
line shapes beyond Fano (including Lorentzian for q� 1), which can be generated and
understood. Hence, the insight into light–matter interaction that is granted by ATAS is
improved even further.
Besides being introduced theoretically, the DCM is applied to develop two independent
methods that help to improve the ATAS technique, and thus further support the under-
standing and control of ultrafast electron dynamics.

As the number of simultaneously occurring effects of laser–atom interaction involving
strong and ultrashort laser pulses can be numerous, time delay–dependent absorption
spectra tend to be complicated to be read and understood. Therefore, the concept for
an alternative representation of the experimental data is investigated in this thesis. By
taking the Fourier transform along the time-delay axis, the data is cast into a two-
dimensional–spectral representation. This technique and the respective spectral map are
named two-dimensional absorption spectroscopy/spectrum (2DAS). The starting point
for developing the concept and interpreting the 2DAS data are time delay–dependent
absorption spectra calculated by means of the DCM. Fourier transform again yields an
analytic expression for the 2DAS, which allows to interpret the signatures that different
types of light–matter interaction imprint on the 2DAS. The main advantage of 2DAS
compared with the time delay–resolved representation is that different interaction path-
ways are spectroscopically separated according to the frequency at which they modulate
the spectrum, whereas in the traditional representation, all pathways interfere giving rise
to a strongly modulated spectrum. Therefore, even faint modulations of the spectrum,
which otherwise could be overlooked or interpreted as noise, can be detected as they are
separated from the rest. Moreover, since the 2DAS is a complex-valued map, also phase
information can be extracted and attributed to the individual interaction process.
After the basic structure of the 2DAS is understood with the help of the DCM, the
technique is applied in order to investigate the ultrafast dynamics of quantum wave
packets in two systems. In both cases the wave packet is triggered by the coherent
excitation of states via the XUV pulse. However, the probing of the wave packet via the
NIR pulse involves very different physics.
In the first case, the XUV pulse lifts both electrons of the helium atom into so-called
doubly excited states. The NIR pulse transiently couples two of these states via an
intermediate dipole-forbidden state by means of a resonant–two-photon transition. The
different eigenfrequencies of the two states give rise to an ultrafast modulation of the
optical density, as a result of quantum interference. In the 2DAS, this signature oscillation
across the time-delay scan corresponds to a single peak structure. Reading the phase
and laser-intensity dependence of the peak magnitude gives additional insight into the
response of the system with respect to the NIR pulse. The results match the theoretical
predictions, which validates the method.
In the second study, a 4d-shell electron of xenon is lifted to the np (n ≥ 6) shell by
the XUV pulse. These excited states are affected by the spin–orbit interaction leading
to two final-state manifolds with an energy separation of 1.92 eV for the lowest states
(n = 6). The coherently excited wave packet of the

(
D5/2

)
6p and the

(
D3/2

)
6p state
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correspondingly has an expected beating period of 2.1 fs. However, a direct probing of
the wave packet, as done in the helium case via two-photon coupling, is not possible
with the available bandwidth of the NIR. Thus, an alternative process to probe the wave
packet by means of strong-field ionization of the excited electron is proposed. Here,
the selectivity of the ionization rate with respect to the magnetic quantum number ml
in the (l,ml)-basis is used to effectively project both wave-packet states onto the same
(l,ml) state. As in the case of direct coupling, this should result in a beating of the
state populations, which can be detected by absorption spectroscopy. However, for the
given pulse parameters of the current experimental setup, the beat signal is expected to
be very weak because the probing of the wave packet is not resonant with respect to its
frequency. This results in a loss of coherence and measurable signal for pulses longer
than 1.5 optical cycles. Nevertheless, first experiments show indications of the existence
and successful probing of the wave packet but further experiments are necessary in order
to unambiguously prove this.

The second method that is demonstrated within this thesis allows to characterize the few-
cycle strong-field laser pulses, which are used to drive (nonlinear) quantum dynamics in
ATAS experiments, directly inside the spectroscopy target. Up to this point, ATAS was
lacking such an in situ measurement of laser pulse properties, which was one of the major
drawbacks compared to attosecond streaking. Here, the transiently applied ponderomo-
tive shift of loosely bound–XUV-ecited states is used to imprint a phase onto the dipole
response. This phase represents the integrated ponderomotive potential of the NIR pulse.
Similar to attosecond streaking, as the XUV pulse is scanned over the NIR pulse, the
bound of integration is moved so that the NIR pulse profile is temporally resolved with
sub-fs precision. The amount of phase imprinted on the resonance is encoded in the ab-
sorption spectrum. With the help of the DCM formalism the laser imprinted phase, and
thereby its intensity distribution, is directly retrieved from the measured line shape. This
in situ characterization of laser pulses, will enhance the scope of ATAS towards quantita-
tive measurement and precise control of quantum dynamics on electronic time scales. In
addition, as the laser pulse properties are an important degree of freedom in theoretical
calculations, knowledge of these properties will increase the comparability of experiments
and theory.
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