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Abstract

From the recent proliferation of social media channels to the immense amount of
user-generated content, an increasing interest in social media mining is currently being
witnessed. Messages continuously posted via these channels report a broad range of
topics from daily life to global and local events. As a consequence, this has opened
new opportunities for mining event information crucial in many application domains,
especially in increasing the situational awareness in critical scenarios. Interestingly,
many of these messages are enriched with location information, due to the wide-
spread of mobile devices and the recent advancements of today’s location acquisition
techniques. This enables location-aware event mining, i.e., the detection and tracking
of localized events.

In this thesis, we propose novel frameworks and models that digest social media
content for localized event detection, tracking, and recommendation. We first develop
KeyPicker, a framework to extract and score event-related keywords in an online
fashion, accounting for high levels of noise, temporal heterogeneity and outliers in
the data. Then, LocEvent is proposed to incrementally detect and track events
using a 4-stage procedure. That is, LocEvent receives the keywords extracted by
KeyPicker, identifies local keywords, spatially clusters them, and finally scores the
generated clusters. For each detected event, a set of descriptive keywords, a location,
and a time interval are estimated at a fine-grained resolution. In addition to the
sparsity of geo-tagged messages, people sometimes post about events far away from
an event’s location. Such spatial problems are handled by novel spatial regularization
techniques, namely, graph- and gazetteer-based regularization. To ensure scalability,
we utilize a hierarchical spatial index in addition to a multi-stage filtering proce-
dure that gradually suppresses noisy words and considers only event-related ones for
complex spatial computations.

As for recommendation applications, we propose an event recommender system
built upon model-based collaborative filtering. Our model is able to suggest events
to users, taking into account a number of contextual features including the social
links between users, the topical similarities of events, and the spatio-temporal prox-
imity between users and events. To realize this model, we employ and adapt matrix
factorization, which allows for uncovering latent user-event patterns. Our proposed
features contribute to directing the learning process towards recommendations that
better suit the taste of users, in particular when new users have very sparse (or even
no) event attendance history.
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To evaluate the effectiveness and efficiency of our proposed approaches, extensive
comparative experiments are conducted using datasets collected from social media
channels. Our analysis of the experimental results reveals the superiority and advan-
tages of our frameworks over existing methods in terms of the relevancy and precision
of the obtained results.
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Zusammenfassung
Motiviert durch die jüngste Ausbreitung sozialer Medien und der gewaltigen Menge
an Nutzer-generierten Daten lässt sich aktuell ein steigendes Interesse im Bereich des
social media mining beobachten. Die Nachrichten, die kontinuierlich über die Kanäle
sozialer Medien verschickt werden, decken eine große Breite an Themen ab – von
Informationen über alltägliche Dinge bis hin zu Informationen über lokale und globale
Events. Somit entstanden in der jüngeren Vergangenheit ganz neue Möglichkeiten, in
verschiedensten Anwendungsdomänen Informationen über Events zu entdecken, vor
allem um das Situationsbewusstsein in kritischen Szenarien zu erhöhen. Da mobile
Endgeräte immer weiter verbreitet sind und heutzutage standardmäßig Standortdaten
versenden können, sind viele dieser Nachrichten mit Ortsinformationen angereichert.
Dies ermöglicht ein ortssensitives Mining von Events, das heißt die Erkennung und
Weiterverfolgung von lokalisierten Events.

In der vorliegenden Arbeit werden neue Rahmenwerke und Modelle vorgeschla-
gen, die die Erkennung, Weiterverfolgung und Empfehlung von lokalisierten Events
aus den Inhalten sozialer Medien ermöglichen. Zunächst wird das Tool KeyPicker

entwickelt. Dabei handelt es sich um ein Rahmenwerk, mit dem Event-relevante
Schlüsselwörter während der Verarbeitung extrahiert und bewertet werden können,
wobei dem hohen Maß Rauschen, der zeitlichen Heterogenität sowie Ausreißern in den
Daten Rechnung getragen wird. Danach wird LocEvent vorgestellt, um basierend
auf einer vierstufigen Methode Events zu erkennen und weiterzuverfolgen. Somit
erhält LocEvent als Eingabe die durch KeyPicker extrahierten Schlüsselwörter,
identifiziert daraus die lokal-relevanten Wörter, gruppiert diese basierend auf räum-
lichen Informationen und bewertet schließlich die erstellten Gruppen. Für jedes ex-
trahierte Event werden somit eine ausdrucksstarke Menge an Schlüsselwörtern, ein
Ort sowie ein Zeitintervall bestimmt. Neben der geringen Menge an Nachrichten
mit Ortsinformationen im Vergleich zur Gesamtmenge an Nachrichten ist dabei auch
zu berücksichtigen, dass manche Nutzer auch über von ihnen weit entfernte Events
schreiben. Diese raumbezogenen Probleme werden mithilfe neuer Regularisierung-
stechniken adressiert, die Graphen- und Gazetteer-basiert arbeiten. Um die Skalier-
barkart zu gewährleisten wird dabei zusätzlich zu einem hierarchischen räumlichen
Index ein mehrstufiger Filterungsprozess verwendet, der nach und nach unpassende
Wörter filtert und nur Event-relevante Wörter für die komplexen räumlichen Berech-
nungen berücksichtigt.

Desweiteren wird ein Empfehlungssystem für Events vorgeschlagen, das, wie
aktuelle Empfehlungssysteme auch, auf einem collaborative filtering Ansatz basiert.
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Mithilfe des Models können Nutzern Events vorgeschlagen werden, wobei eine Menge
an Kontextinformationen berücksichtigt werden, wie z.B. soziale Verbindungen
zwischen Nutzern, die thematische Ähnlichkeit von Events sowie die räumliche und
zeitliche Nähe zwischen Nutzern und Events. Um das Modell zu realisieren, wird
die Methode der Matrixfaktorisierung verwendet und angepasst. Das ermöglicht ver-
steckte Nutzer-Event-Muster aufzudecken. Die für das Modell verwendeten Features
tragen dazu bei, den Lernprozess hin zu Empfehlungen von Events zu steuern, die
dem Interessen des Nutzers am nächsten kommen. Dies ist vorallem hilfreich, wenn
bei neuen Nutzern wenige oder gar keine Informationen vorliegen, an welchen Events
bereits teilgenommen wurde.

Um die Effektivität und Effizienz unserer vorgeschlagenen Ansätze zu evaluieren,
werden umfangreiche Experimente durchgeführt, wobei auf Datensätze verschiedener
sozialer Medienkanäle zurückgegriffen wird. Die Analyse der Evaluierungsergebnisse
belegt dabei die Überlegenheit und die Vorteile unserer Frameworks gegenüber ex-
istierenden Methoden bezüglich der Relevanz und Genauigkeit der erzielten Ergeb-
nisse.
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Chapter 1

Introduction

The recent and rapid advancements of social media sites such as Twitter1 and Face-
book2 have provided virtual and easy-to-use channels for users to communicate, to
report their thoughts, and to share what is happening. To date, a large number of
such social media services are being accessed by hundreds of millions of users who
publish content on a daily basis. Microblogging services such as Twitter are among
the leading services causing this dramatic increase in user-generated content [85].
Users constantly publish brief textual updates, coined “microblogs”, describing their
daily activities and surrounding phenomena. As of September 2015, about 316 million
monthly active users publish microblogs using Twitter3. To better imagine how large
this number is, it is slightly larger than the population of Indonesia (252 million)
and more than 3 times larger than that of Germany (80 million). For Facebook, the
current statistics are even more impressive, with about 1.35 billion active users per
month4.

Social media break the barriers between the real world and the virtual world,
facilitating new opportunities to understand individuals and to extract actionable
patterns from this content [137, 165]. Consequently, social media mining has recently
received considerable attention across various research areas, including data mining,
spatio-temporal data analysis, machine learning, and statistics, to name but a few.
Knowledge and meaningful patterns extracted from social media can be utilized in
many application domains such as event detection [4, 35, 130, 151], social opinion
analysis [86, 145], and recommender systems [36, 117].

1https://twitter.com/
2https://www.facebook.com
3https://about.twitter.com/company, accessed Sept. 2015
4http://blog.lewispr.com/2014/12/the-most-recent-social-media-statistics.html,

accessed Feb. 2015
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2 Introduction

Among the vast variety of applications in the field of social media mining, we focus
on studying the spatio-temporal characteristics of event-related words towards detect-
ing, tracking, and recommending real-world events. We first present the motivation
and the research objectives of our study in Section 1.1. Then, the key challenges
faced in achieving these goals are discussed in Section 1.2. The main contributions
of this thesis are summarized in Section 1.3 before concluding this chapter with the
thesis outline in Section 1.4.

1.1 Motivation and Research Objectives

The huge amount of content published via microblogging services can be viewed as an
up-to-date source of event-related information [30, 136, 156, 171]. Users participating
in or observing an event are motivated to publish a relatively large number of related
microblogs, and thus act as human sensors. The semantic dimension of this content
that is continuously published via these sensors adds great value to the event informa-
tion. Research has primarily focused on identifying and tracking events from social
media using the temporal context of messages [8, 28, 156]. Nowadays, however, the
availability of several location-acquisition systems, e.g., Global Positioning System
(GPS) or Radio-Frequency Identification (RFID), has led to enriching the stream of
microblogs with geographic information that is utilized either as place names embed-
ded within the text of microblogs or as geo-coordinates attached to these messages.
As a result, it becomes possible to study and detect another type of events having
a spatially-limited spread, namely, localized events. Localized events, e.g., festivals
and musical concerts, are real-world events stimulating people to gather at a specific
location for a limited period of time in order to participate, attend, or even observe
what is going on. Monitoring localized events over social data streams has many
applications. Some of those applications are outlined below.

• Crisis Management. Collecting event information from social media has a great
impact on increasing the overall situational awareness during crises [56, 130].
For example, at the height of 2011 South East Queensland floods during 10th
- 16th of January, more than 35,000 microblogs containing the hashtag #qld-
floods were sent using Twitter. These event-related microblogs covered different
important aspects of the crisis, such as reporting a sinking yacht in Brisbane
river and observing a bull shark swimming past the McDonald’s restaurant in
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Goodna1 etc. This real-time information helps first-aid officers to make suitable
responses on time and hence mitigate the consequences of such critical events.

• Decision Making. Many services can benefit from the up-to-date event infor-
mation extracted from social media. For example, the real-time detection of a
road jam helps navigation systems to provide more reliable routing information
in such a situation.

• Event Recommendation. User-contributed content published on a certain event
might give a better representation of previous instances of this event from an at-
tendee’s perspective [25], or might provide immediate relevant information such
as “tickets for Apple shop opening are sold out”. This event-centric information
is an important input to recommender systems to improve event recommenda-
tions.

Motivated by a vast variety of application domains and the vital role that event de-
tection plays, when conducted in a timely manner, we devote our efforts in this thesis
to studying the problem of localized event detection, tracking, and recommendation,
which will be defined in more detail below.

Localized event detection and tracking

We build a framework in support of detecting and tracking localized events in an on-
line fashion using the sliding window model. As the window slides and new microblogs
enter the system, the framework incrementally performs the following fundamental
tasks: (1) extracting event-related words, called keywords, and associating each with a
dynamic score reflecting its change in significance over time. (2) Identifying keywords
having a spatially limited extent, i.e., local keywords. (3) Using these local keywords
to form new event groups (clusters) or to update existing event clusters. (4) Scoring
each detected localized event in order to quantify its evolution over time. In addition,
for each detected event, a set of ranked keywords, a fine-grained geographic location,
start time, and end time are estimated.

Event recommendation

As an application, we propose a model for personalized event recommendation based
on the model-based collaborative filtering paradigm [89, 123]. A ranked list of future

1http://www.qt.com.au/news/ipswich-bull-sharks-spotted-flood-affected-streets/
743873/, accessed Feb. 2015



4 Introduction

events are suggested to a user, taking into account three contextual features: social,
topical, and spatio-temporal features. One major objective in this work is to exploit
such features in order to build a recommender system that can deal with the cold-start
problem, i.e., when recommending events to a new user who has no (or a very sparse)
activity history.

1.2 Key Challenges

The efficient extraction of reliable patterns from the wealth of event data that is
buried in the content of social media entails adopting non-traditional methodologies
to tackle several new challenges:

(1) Noisy and dynamic content. The textual content published via social media sites
contains a lot of typos, colloquial words, shortcuts, application-specific tokens
(e.g., hashtags in Twitter) etc. On the other hand, at every single moment, a
large number of new tokens that might hint to some new trending topics appear.
Existing event mining techniques assuming a predefined set of vocabularies fail
to easily and efficiently subsume this noisy and dynamic content.

(2) Temporal heterogeneity and outliers. As for temporal heterogeneity, the usage
patterns of the majority of words vary over time, leading to mistakenly identify
words as event-related keywords. For example, the sudden surge of word “work”
at 09:00 am does not mean that a work-relevant event has occurred, yet it is a
daily habit of people to talk about their work in the early morning. On the other
hand, people tend to post about events before/after they start/end, which, for
example, might prevent estimating accurate time intervals of events. This latter
phenomenon is called temporal outliers.

(3) Spatial sparsity and outliers. The sparse distribution of event-related microblogs
over space, in particular in low-populated regions, and the fact that these mi-
croblogs are published from locations distant from the actual locations of their
respective events are spatial problems that we refer to as spatial sparsity and
outliers, respectively. Both problems prevent an accurate estimation of the
location of an event.

(4) Volume of incoming microblogs. In Twitter, for instance, about 6000 mi-
croblogs/second are posted by users all over the globe. Hence, any practically
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relevant framework needs to be highly scalable in order to digest this huge data
stream and provide near real-time event information.

(5) Difficult evaluation: A standard method for evaluation in data mining is to com-
pare extracted patterns with some given ground truth. Unfortunately, ground
truth is often unavailable in the context of social media mining, making a stan-
dardized evaluation process almost impossible. Therefore, testing the validity
of extracted event patterns is non-trivial and mainly depends on domain knowl-
edge.

1.3 Contributions

This thesis includes several contributions in the field of event detection, tracking, and
recommendation in social media:

(1) We propose a 4-stage framework tailored to the online detection and tracking
of localized events from social media. This framework is based on the feature-
pivot paradigm (see Chapter 2) where, first, a set of keywords is extracted from
huge volumes of noisy terms. The spatial distributions of such keywords are
then analyzed to identify local ones. After that, local keywords are spatially
grouped to generate potential event clusters that are finally scored to capture
their evolution over time. We estimate for each detected event a set of descrip-
tive keywords, its start time, and spatial location.

(2) Since event-related keywords are the main building blocks in feature-pivot de-
tection, we analyze their spatio-temporal distributions and develop effective
solutions for a number of temporal and spatial problems. The concepts of time-
aware baseline and word recurrence are introduced to handle temporal hetero-
geneity and temporal outliers, respectively. To mitigate the adverse impact
of spatial outliers, we propose two novel signature regularization techniques:
graph- and gazetteer-based regularization. Finally, a non-parametric kernel
density estimate is employed to smoothen the spatial signals of keywords over
space and thus to cope with spatial sparsity.

(3) Identifying local keywords and estimating their (central) locations in a fine-
grained spatial resolution are computationally expensive tasks, yet essential
to determine the locations of localized events. For this, besides applying the
sliding window model to process only the most recent microblogs, we utilize a
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hierarchical space-partitioning index to ensure a fast pruning of the geographic
space and thus a scalable system. Furthermore, synopses (summaries) of the
spatial component of incoming microblogs are maintained within this index
structure that is updated constantly as the time window slides.

(4) We propose a context-aware event recommendation system that accounts for
social, topical, and spatio-temporal features to provide personalized event rec-
ommendations. Our proposed model is built upon the well-known matrix factor-
ization technique that is one of the most successful realizations of model-based
collaborative filtering. Matrix factorization shows better performance compared
to other methods in the Netflix1 recommendation challenge in terms of scala-
bility and accuracy. Furthermore, we show that our model is generic as new
contextual information can be integrated easily. This is achieved by only up-
dating one or a combination of the above three features that cover all possible
interactions between the system’s main entities, namely, users and events.

We have three publications in the context of event detection and tracking. First,
a proof-of-concept application that demonstrates our localized event detection frame-
work was published in: EvenTweet: Online Localized Event Detection from Twit-
ter (VLDB 2013) [4]. Our contributions in handling spatio-temporal problems of
event-related keywords were partially published in: Spatio-temporal Characteristics
of Bursty Words in Twitter Streams (ACMGIS 2013) [3]. An efficient solution to
the problem of local keyword identification and spatial focus estimation using a fine
spatial granularity was published in: On the Locality of Keywords in Twitter Streams
(IWGS/ACMGIS 2014) [2]. However, the work presented here extends these in signifi-
cant ways, including more detailed and alternative model descriptions, more extensive
experiments, and new application models.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

• Chapter 2. We first introduce some concepts, challenges, and applications of
social media mining. Then, we review the main techniques employed in Topic
Detection and Tracking (TDT) to extract event information from traditional
media such as newswire sources. Such techniques have been and are adapted

1http://www.netflixprize.com/, accessed Apr. 2015
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to cope with the noisy and large volumes of content published via social media
services. Therefore, in this chapter, a large number of related research efforts are
discussed and categorized based on the methodology adopted and the objective
of the event detection process.

• Chapter 3. We propose an incremental approach called KeyPicker to extract
keywords from a stream of microblogs. For this, we first present how incoming
microblogs are temporally indexed and preprocessed. Then, the concepts of
word signal and baseline are introduced to quantify the usage patterns of words
and thus to distinguish keywords among other noisy words. The results obtained
from the experimental evaluation using Twitter datasets reveal the efficiency and
reliability of the proposed approach in extracting and weighting keywords.

• Chapter 4. We propose a framework called LocEvent for the online detec-
tion and tracking of localized events using the sliding window model. We first
present the main stages of LocEvent that starts by spatially processing the
keywords extracted by KeyPicker. For this, the concept of spatial signature
is introduced and the major spatial problems in estimating sound signatures are
highlighted. We then present novel techniques to adjust spatial signatures and
show how adjusted signatures are efficiently used to identify local keywords. Lo-
cal keywords are then spatially clustered and the generated clusters are scored
based on the temporal characteristics of the contained keywords. We conducted
extensive experiments using Twitter data, and the results are evaluated to show
the efficiency, utility, and advantages of LocEvent compared to others.

• Chapter 5. In this chapter, we present our proposed context-aware event rec-
ommender system on the basis of model-based collaborative filtering, realized
using matrix factorization. We first describe our proposed contextual features:
social, topical, and spatio-temporal features and then show how to integrate
these features into the collaborative filtering model towards better event recom-
mendations. Using a dataset from Meetup platform, we evaluate the robustness
of our model and compare it against a number of alternatives where one or more
contextual features are not taken into account.

• Chapter 6. Finally, we summarize our work in this dissertation and present
open issues for further studies.



8 Introduction



Chapter 2

Background and Related Work

2.1 Overview and Objectives

As discussed in the previous chapter, this work aims at extracting spatio-temporal
event patterns from social media in an online fashion, which are then utilized in
building a spatio-temporal-aware event detection and tracking framework. What dis-
tinguishes our work from existing studies is that it gives more attention to the spatial
dimension of content, towards the detection and tracking of localized events using
a fine-grained spatio-temporal resolution. For this, techniques for spatio-temporal
data analysis, stream processing, natural language processing, and indexing are ex-
ploited to build effective and efficient models and algorithms. We begin this chapter
by briefly introducing general concepts, challenges, and applications of social media
(Sections 2.2). Then, in Section 2.3, we present the first serious attempts to de-
tect and track events from text streams, which started by the Topic Detection and
Tracking Project (TDT). Concepts and models related to data streams and stream
processing are addressed in Section 2.4. After that, the main approaches on event
detection in traditional media, e.g., newswire sources, are presented in Section 2.5.
Then, we show how these approaches have evolved and been refined to cope with the
new challenging and noisy nature of social media content (Section 2.6). The most
related are categorized here based on the methodology used and the objective of the
study. Finally, in Section 2.7, we conclude this chapter and discuss the main issues
still open in the field of event detection and tracking.

9
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2.2 Social Media

The rise of Web 2.01 technology has enabled users to generate their own content,
publish it, and interact with each other. This explains the increasing prevalence and
popularity of social media services nowadays, offering new virtual communication
channels for people to interact and to disseminate information that they likely would
not share otherwise using traditional channels, e.g., by email, phone, and IM [85, 169].

To date, a large number of social media services have been developed to fulfill
the social needs in sharing content and interacting with each other over the Inter-
net. Such services can be divided into several categories including, but not limited
to, social networking (Facebook and LinkedIn), microblogging services (Twitter and
Foursquare), photo sharing (Flickr and Instagram), video sharing (YouTube), news
aggregation (Google reader and Feedburner), social search (Google, Ask.com), to
name but a few [165]. Kaplan and Haenlein [88] defined social media as “a group
of Internet-based applications that build on the ideological and technological founda-
tions of Web 2.0, and that allow the creation and exchange of user generated content”.
On the other hand, people emotionally seem to use social media to achieve a level of
virtual connectivity with friends and the world [115].

2.2.1 Social Media Mining

Social media contributes to removing the boundaries between the real and the virtual
world by allowing users to publish very specific details about their activities, thoughts,
reactions towards natural phenomena etc., resulting in an amazingly tremendous vol-
ume of content being steadily published. This content hides a wealth of valuable
information to be extracted and analyzed. Therefore, social media mining can be
defined as the process of representing, analyzing, and extracting actionable patterns
from social media data [165]. This research area introduces basic concepts and algo-
rithms adapted for analyzing massive social media data. Different disciplines, such
as data mining, machine learning, statistics, optimization, and graph theory are em-
ployed to come up with models and techniques to process and reliably analyze the
content of social media.

However, mining useful patterns from the content of social media leads to a number
of new challenges, which can be summarized as follows:

1http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html, accessed Mar. 2015
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1. Immense volume of data: Nowadays, a large number of messages are being
continuously published via several social media services. For example, from
Facebook alone, about 115,740 text updates are posted per second all around
the globe. To extract hidden knowledge from this huge amount of content,
traditional batch-based processing techniques perform poorly and prevent a
reasonable response time.

2. Noisy content: Noise is defined as a random error or variance in a measured
variable [73, 158]. However, social media suffers from another sort of noisiness,
namely, textual noise. That is, the content of social media has a lot of typos,
colloquial terms, abbreviations, phonetic substitutions, ungrammatical struc-
tures etc. Therefore, data preprocessing and noise removal is inevitable in the
context of social media analysis.

3. Sparse data: Usually, in social media, informative observations that can be
linked to a certain interesting pattern or phenomenon to be detected and an-
alyzed are infrequent. To mitigate this sparsity, one needs to aggregate obser-
vations over a relatively long period of time to obtain statistically significant
and representative results. Moreover, one of the commonly used methods for
retrieving data from social media services is via application programming in-
terfaces (APIs). Using these APIs, only a limited rate of the actual stream is
available, which exaggerates the problem of data sparsity in social media [3, 24].

2.2.2 Applications of Social Media Mining

The prevalence of user-generated content via social media services has encouraged
the development of a wide range of applications. Examples of such applications are:

Detecting real-world events

The main stimuli that encourage people to share information via social media services
are real-world events, in particular, natural hazards, such as earthquakes and floods [4,
35, 130, 151]. The immediate detection of these events from the content of social
media helps mitigate their adverse consequences and increase the overall situational
awareness. In this thesis, we focus on identifying event-related keywords that exhibit
a surge in usage and analyze their spatio-temporal behavior, which can then be used
in detecting and tracking localized real-world events. For further details on event
detection and tracking from social media, see Section 2.6.
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Social opinion mining

The popularity of social media has fueled the need for opinion mining from user-
generated content [86, 145]. Enterprises compete nowadays to utilize natural lan-
guage processing and sentiment analysis techniques to understand the conversations,
to identify relevant content, and to know whether people like or dislike their prod-
ucts/services, which, in turn, helps them manage their reputation accordingly.

Recommender systems

These systems represent a wide category of Web applications that involve predict-
ing user responses to options [24, 58], e.g., product and movie recommendations. Of
course, the content of social media provides a context-aware and semantically-rich en-
vironment when utilizing the underlying link structure and attached spatio-temporal
information [126]. Hence, social media is helpful in improving the results obtained
from traditional recommendation systems.

2.2.3 Microblogging Services

One of the most popular category of social media platforms are microblogging ser-
vices such as Twitter, Tumblr1, and Foursquare2, which enable users to broadcast
brief text updates (called microblogs) about things occurring in their daily life, work
activities etc. For example, the users of Twitter share these microblogs with friends,
families, co-workers, or even with the public [169]. The increasing popularity of such
microblogging services makes them a strategic source of valuable information. In the
following, we give a more detailed description of Twitter as it is our main source for
datasets used throughout this thesis.

Twitter

Twitter is one of the most popular and fast-growing microblogging services, where
users all around the world publish short messages called tweets. At this time, about
500 million tweets, written in more than 35 languages, are posted per day via the
Twitter website, SMS, and mobile applications3. The majority of Twitter active
users (about 80%) publish their tweets using their mobile applications. Consequently,
the Twitter website is ranked among the top 10 most popular sites according to

1https://www.tumblr.com/
2https://foursquare.com/
3https://about.twitter.com/company, accessed Mar. 2015
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Figure 2.1: A sample tweet shared from account (BBCClick). The token “#CERN”
is a hashtag describing the topic of the tweet, and “@engadget” is called a mention
and used to draw the attention of user “engadget” to the topic of this tweet. .

Alexa traffic ranking1. A key characteristic of tweets is that they are limited to 140
characters and are much more concise than blog posts, allowing for effective and
timely dissemination of information over the Internet. Twitter is different from other
social media services by the following/follower relationship. If, for example, user u1

follows user u2, then u1 becomes a follower to u2 even without an approval from u2,
and as a result u1 can view the tweets posted by u2. In contrast, u2 cannot view the
tweets of u1 unless he/she follows u1.

Twitter currently provides a number of markup symbols, each of which has a
specific role (see Figure 2.1). For example, the “@” symbol that is placed before a
user name (“@username”) forms a mention. If a tweet contains a mention of a certain
user, this means that the sender wants to draw his/her attention to the topic of the
tweet [79]. When mentions are placed at the very beginning of a tweet, then it is
called a “reply”, indicating that the sender intended to respond to a tweet of the
mentioned user. The hashtag symbol “#” is utilized to attach some key phrases to a
tweet. Tweets having one or more common hashtags are assumed to be posted on the
same topic, i.e., the topic inferred from these hashtags. This allows users to regularly
track specific trends or events in real-time.

The content of Twitter messages covers a broad range of topics. Nevertheless, the
majority of published tweets do not contain valuable information. According to a
study accomplished by Pear Analytics [1], about 50% of the tweets are either point-
less babbles, self promotions, or spams. For this study, 2,000 tweets were manually
classified into six categories, as can be seen in Figure 2.2.

Twitter provides an application programming interface (API2) that allows for
accessing public tweets filtered by location, keyword, and author. The availability of
Twitter data collected using this API has attracted the attention of researchers to start

1http://www.alexa.com/siteinfo/twitter.com, accessed Mar. 2015
2https://dev.twitter.com/streaming/overview, accessed Mar. 2015
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Figure 2.2: Classification of the content of tweets according to Pear Analytics [1].

analyzing this huge noisy content and encouraged industry towards the development
of a large number of applications and tools on top of this content.

2.3 Topic Detection and Tracking

Topic Detection and Tracking (TDT) is a name given to a project that is considered
to be the first serious attempt towards the development of new technologies with
the aim of extracting events from news-oriented textual materials. The extracted
events, in turn, are utilized for conducting an event-centric organization of these
news stories accordingly. In this section, we start by discussing the motivation behind
initiating such a project (Section 2.3.1). Then, we present the main tasks of the TDT
project (Section 2.3.2), and finally, some main concepts (event, topic, and trends) are
described by showing the relationship between them and how their definitions have
evolved over time.

2.3.1 Query-free Information Retrieval

During the last two decades, a rapidly increasing amount of electronically available
information has led to the appearance of new challenges for information retrieval (IR)
technologies. A new type of queries has arisen, answering more generic questions such
as “what happened?” or “what is going on right now?”. These questions cannot be
answered using traditional query-driven IR techniques. Assume, for example, a person
who has just returned back home from work and wants to know quickly what events
are currently taking place. Navigating a number of news Web portals and reading
through several articles is a tedious task that needs much time and effort. In addition,
generating queries without prior information about ongoing events makes no sense.
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On the other hand, if the user has an idea about the event he/she is interested in,
the generated query might be either (1) too abstract, resulting in many irrelevant
articles (low accuracy), or (2) too specific, which leads to the loss of related articles
(low recall) [161].

Motivated by the difficulty in answering general questions by traditional query-
based IR technologies, a new research direction that aims at building automatic in-
telligent systems has been established and described as query-free IR. In the context
of event mining, such IR paradigm is capable of:

• detecting important events from large volumes of news articles.

• summarizing the content of detected events at different levels of abstraction.

• notifying users immediately as soon as a new event occurs.

• tracking the evolution of events as new articles arrive.

This research direction is called Topic Detection and Tracking (TDT) [12, 14]. The
name starts with “topic”; however, the goal is to detect and track dynamically chang-
ing topics, i.e., events. Later, we will show how the event definition evolves over time
and how to distinguish between the two concepts “event” and “topic”.

2.3.2 TDT Program

The U.S. government initiated the TDT research in 1996 and supported it for sev-
eral years. The aim was to develop technologies that search, organize, and conduct
event-based structuring of multilingual textual stories arriving from different types
of sources, e.g., newswire sources or TV and radio broadcasts. The Linguistic Data
Consortium (LDC) [51] transcribed hundreds of TV and radio news recordings, and
the corpus was divided into disjoint stories (documents)1, identifying a story as “a
topically cohesive segment of news that includes two or more declarative independent
clauses about a single event” [61]. For evaluation purposes, LDC prepared annotated
corpora, e.g., TDT1, TDT2, and TDT3, as ground truth to evaluate the performance
of the approaches proposed to accomplish the tasks defined by the TDT project. The
process of Topic Detection and Tracking consists of three main technical tasks [12]:

(1) The Segmentation Task: The input to the TDT process is a continuous
stream of text, in particular, transcribed speech, that needs to be segmented

1The terms “story” and “document” will be used interchangeably in this chapter.
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into stories. A key issue here is that the segmentation task should be accurate
enough to correctly locate the boundaries between adjacent stories.

(2) The Detection Task: Event detection is basically a discovery problem [162],
whereby the main objective is to identify events from a stream of documents.
Such events are unspecified in advance, and therefore, query-free approaches
are required to extract and represent these events. Story clustering appears to
be a natural approach for such an event discovery (detection) task. A main
assumption is that a story discusses at most one event, and hence, can be
assigned to at most one cluster. Based on the technique used to detect events
from a stream of documents, event detection is classified into:

• Retrospective Detection (RED): Given a corpus of stories, the task is to
retrospectively identify all events by forming potential event clusters. How-
ever, the timely detection of previously unseen events is not that important
in this category.

• Online Detection (NED): Given the most recent story from a stream of
stories, the aim is to determine whether or not a new event is discussed by
this story. If an arriving story is perceived as being discussing a previously
unseen event, the story is flagged YES and a new cluster is generated,
reporting the occurrence of a new event. Therefore, this task is also termed
first story detection FSD in the sense that the story flagged YES is the
first story discussing the new event. Of course, the posting time of such a
story is a good indicator of the start time of its respective event. On the
other side, if the arriving story pertains to an existing event, it is flagged
NO and assigned to the corresponding event cluster.

(3) The Tracking Task: Once a potential event cluster is generated and described
by a set of associated stories, the event is consequently defined to be “known”.
Tracking an existing event means trying to find unlabeled stories that can be
assigned to the cluster of this event. Different supervised and unsupervised
approaches are used for this task as discussed later in this chapter.

In addition to these primary TDT tasks, there is another secondary task called
“the linking task”, which mainly tries to answer the question of whether two stories
are discussing the same topic, i.e., the stories are “linked” by a common topic [61].
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2.3.3 Events versus Topics

An event is a fundamental concept in the TDT project. In the pilot study [12], an
event is defined as “some unique thing that happens at some point in time”, where
only the temporal aspect of events is considered. Later, the spatial dimension was
included, and hence, an event is defined as “something that happens at some specific
time and place” [161] as the majority of events occur at specific locations, despite
that some events have global nature, e.g., Mother’s Day. However, this definition
has a significant shortcoming when an event leads to a number of other events, con-
sequences, and activities. For example, the flooding that took place in Southern
Africa on January 1st, 2015, is considered an event. However, additional news stories
were published, talking about the relief campaigns sent to the event location, traf-
fic stoppage, the destruction of the electricity system etc. All these resulting events
and activities are treated as separate events under the former event definition. To
resolve this ambiguity, a new definition was introduced in [11], stating that an event
is “a specific thing that happens at a specific time and place along with all necessary
preconditions and unavoidable consequences”.

Regarding the notion of topic, it had a definition similar to the latter event def-
inition. But, later, TDT defines a topic as “a seminal event or activity, along with
all directly related events and activities” [11], where the notion activity means “a
connected set of actions that have a common focus or purpose”. For instance, the
relief campaigns in our previous example are types of activities for the flooding event
in Southern Africa. This topic definition exhibits a scope problem because the word
“related” can be interpreted differently without restricting rules. Therefore, the TDT
annotation was modified to include the “Rules of Interpretations” (ROI) [11]. The
ROI can be seen as a higher-level categorization of events [37]. For example, both a
car accident and a motorcycle accident relate to the same “accident” ROI. As a con-
clusion, an event can be described as an instance of a certain topic. In other words,
all related and resulted events and activities fall under the same domain (topic) [60].

2.3.4 Trends

A trending topic (also termed “trend” or “emerging topic”) is defined by Kontostathis
et al. [91] as “a topic area that is growing in interest and utility over time”. That
is, a trend may hint to the occurrence of a real-world event that led to the sudden
appearance of such a trend and its increasing popularity as well. Detecting trends
from news stories provides useful and immediate thematic descriptions for the trig-
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gering events. Furthermore, the amount and speed of growth necessary for a topic to
be identified as a trend varies based on the data source [25]. For example, trends on
Twitter generally change on an hourly basis, while those corresponding to a particular
interest on a certain research topic and observed in a number of publications rise and
fall less rapidly due to differences in temporal dynamics and the nature of the shared
content.

In case of natural hazards, e.g., earthquakes, detecting trends from social me-
dia content provides timely and valuable information for news reporter and decision
makers in a manner faster than via traditional reporting techniques, and thus helps
mitigate different kinds of crises more efficiently.

2.4 Data Streams

Recently a new category of data-intensive applications has become widely recog-
nized, where input data is modeled best as transient data streams and not as persis-
tent relations [19]. Examples of such applications include sensor networks, network
monitoring, social media analysis, to name but a few. For these and similar applica-
tions, it is not feasible to store, manipulate, and query arriving data using traditional
database management systems. This requires revisiting the way by which this data is
dealt with, and consequently, has given rise to introducing Data Stream Management
Systems (e.g., STREAM [16]) that provide good-equipped architectures to handle
complex and numerous continuous queries over data streams [148].

2.4.1 Data Stream Management Systems

A data stream is an ordered sequence of items (x1, x2, · · · , xN , · · · ) that arrive in a
continuous, rapid, and time-varying manner [19]. Figure 2.3 suggests a high-level
organization of a Data Stream Management System (DSMS). One or more streams
can enter the system. The items arriving within one stream might differ from those
of other streams in terms of data types, arrival rates etc. A streaming algorithm takes
as input a sequence of data items (data stream) such that the sequence is scanned
only once (or in only a few passes) in the increasing order of the indexes in order to
answer queries on the stream [126].

Although streaming algorithms are designed to process data incrementally (also
called single-pass algorithms), many query processing and mining algorithms require
an efficient execution, which is difficult to achieve with a fast data stream. In ad-
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Figure 2.3: Data Stream Management System

dition to the required computational power, another important challenge for DSMSs
is to deal with an infinite data stream using a limited amount of memory (denoted
working storage, as depicted in Figure 2.3). Generating approximate solutions for dif-
ferent related problems, such as query answering, are acceptable in many application
domains. These solutions can be categorized as follows:

(1) Maintaining synopses of the stream. Synopses are statistics or aggregates
that summarize the data items seen so far. These summaries are maintained in
some data structures and are used to produce exact or approximate answers to
some specified queries (called standing queries). For example, suppose that a
stream of temperature values is constantly retrieved from a certain sensor. A
query that we might be asked is the minimum temperature that is ever recorded
by this sensor. To answer this query, we can maintain a single summary that
is the minimum value of all stream items ever seen. Although, synopses are
very useful in reducing the required space and in efficiently answering queries,
they are query-oriented in a sense that different types of queries require dif-
ferent synopses structures. A variety of techniques have been introduced for
synopses construction. Some of these techniques are sampling methods, his-
tograms, wavelets, sketches, and micro-cluster-based summarizations [6, 126].

(2) Window monitoring. In this line of solutions, only a portion of the stream-
ing items is monitored and kept to answer queries. This is basically motivated
by the fact that most recent streaming items are more relevant, whereas old
items should have either none or minor impact on a query’s answer. Moreover,
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window monitoring is more appropriate when asking ad-hoc queries, i.e., arbi-
trary (unspecified) queries about the stream because the most recent items are
maintained themselves rather than synopses of them.

Much of stream data resides at a multi-dimensional space, where each dimension
can be thought of as a separate stream. Several examples of such streams have
high-arrival rates, e.g, the stream of messages published using Twitter services with
a rate of about 6000 tweets/second. Therefore, it might be impossible to fit these
huge multi-dimensional streaming items in memory even with monitoring only the
messages arrived within a certain time period (window). This, as a result, has given
rise to hybrid approaches that entail maintaining synopses over a monitored time
window [2, 8].

In social media mining, the line of streaming algorithms is favored over offline ones
in digesting and processing the stream of incoming microblogs [7]. In Section 2.5,
we elaborate more on streaming approaches that try to leverage from synopses and
window monitoring to efficiently detect and track events from social media content.

2.4.2 Window Models

Two categories of data stream monitoring can be identified: (1) point monitoring
and (2) window monitoring [172]. In point monitoring, only the latest data item
in a stream is considered. If this item fulfills some predefined condition, an action
is triggered accordingly. For example, we might have a query to trigger an alert
whenever the temperature exceeds 23 degree Celsius. Point monitoring does not need
much implementation efforts since only the most recent data item is considered. On
the other hand, window monitoring requires maintaining portions of the streaming
items (or synopses of them) based on certain time intervals (windows). The three
well-known window models that are adopted for stream processing are:

(1) Landmark windows. Synopses are calculated based on values observed be-
tween a specific time point (i.e., a landmark) and the current time.

(2) Sliding windows. Here, synopses are computed based on the last c values in
the data stream, where c is a predefined size of the sliding window. For example,
the average stock price of Microsoft during the last 10 days is calculated based
on a sliding window model.

(3) Damped windows. According to this model, the weights of data items de-
crease exponentially into the past. Assume, for example, a new data item x has
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arrived, the new average averagenew is computed as follows:

averagenew := p× averageold + (1− p) x, where (0 < p < 1). (2.1)

The sliding window model is the most popular among these window models as
it prevents stale data from influencing the maintained synopses and the quality of
the results. This model also acts as a tool for approximation in the presence of
bounded memory [19]. Several research efforts have been conducted in extending
summarizations techniques (synopses construction) to sliding window models, see,
e.g., [54, 66].

2.5 Event Detection from Traditional Media

A broad range of techniques have been proposed to detect and track real-world events
from traditional media outlets. The majority of these techniques try to detect and
extract event information by generating potential event clusters, where each cluster
contains objects describing the same event. We refer to these objects as event entities.
Two types of event entities are recognized in the literature, namely, documents and
features. Therefore, event detection approaches can be classified into two major
categories based on the event entity type:

(1) Document-pivot: the events are detected by clustering documents on the
basis of some established similarity criteria [35, 55, 124, 151, 156].

(2) Feature-pivot: representative features, e.g., bursty words, are extracted, and
then clustered to form potential events [46, 47, 53, 75, 90].

2.5.1 Document-pivot Detection

The core of this line of event detection approaches is to assign documents about the
same event to the same cluster. For this, a sequence of standard steps is usually
followed [162], namely, content preprocessing, document representation, and docu-
ment organization (clustering), as illustrated in Figure 2.4. Data preprocessing in-
cludes sentence tokenization, stop-word elimination, and word stemming. For data
representation, the Vector Space Model (VSM) is basically used, representing a doc-
ument as a vector of terms (term vector), each of which is given a weight. A term
is weighted based on the traditional Term Frequency-Inverse Document Frequency
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Figure 2.4: Main steps of document-pivot detection frameworks.

(TF-IDF) weighting scheme [133], which combines both a local term weight (TF)
with a global one (IDF). Several variations of TF-IDF have been proposed, where
according to [161], the ltc alternative yielded the best detection results. The weight
of term t in document d based on the ltc weighting scheme is defined as

wt,d :=
(1 + log2 tft,d)× log2( |D|

nt
)

‖~d‖
(2.2)

where tft,d is the frequency of term t in document d, nt is the number of documents
containing term t, |D| is the number of documents in the corpus D, and ‖~d‖ is the
2-norm of vector ~d, which acts as a normalization factor and is defined as

‖~d‖ :=

√∑
t

w2
t,d. (2.3)

The factor (log2( |D|
nt

)) in Eq. 2.2 is the inverse document frequency (IDF) whose value
increases as the number of documents containing term t decreases. The rational
behind using the global weight (IDF) is that the less documents a term is observed in,
the more significant the term is. In the last step, document organization (clustering),
and after normalizing the weights in term vectors, the similarity between these vectors
are quantified based on some similarity measures (e.g., cosine similarity and Pearson
correlation) and used to organize documents into clusters, each of which refers to a
potential event.

Estimating the similarity between documents is a key operation for text cluster-
ing [9]. The similarity between two documents (a, b) corresponds to the correlation
between their respective term vectors (~ta, ~tb), and is quantified as the cosine of the
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angle between these vectors [82], i.e.,

cosine(~ta, ~tb) =
~ta · ~tb
‖~ta‖‖~tb‖

, (2.4)

where ‖.‖ is the 2-norm of the enclosed vector. Since the weights in a term vector
are non-negative, the computed cosine similarity is also non-negative and bounded
between [0, 1]. A key characteristic of cosine similarity is its independence of document
length, making it one of the most popular document similarity measure, especially in
the field of information retrieval [23] and document clustering [97].

Unfortunately, the VSM model ignores the hidden semantics (e.g., named entities
and synonyms), the syntactic features (e.g., parts of speech), and the order of words in
each document. Moreover, the large dimensionality of term vectors adversely affects
a proper estimation of the similarity (dissimilarity) between documents, in particular,
when long text documents are used. To reduce the dimensionality of term vectors and
choose the most informative terms, Latent Semantic Analysis (LSA) [111] is employed,
leading to a better performance in clustering topically-related documents. Neverthe-
less, LSA cannot distinguish between events related to the same topic, namely, when
a large number of words are common between these events, e.g., the occurrence of
two different car accidents. To remedy this, both temporal and textual information
are jointly used in document clustering [160, 162] for both the retrospective (RED)
and online (NED) event detection.

Yang et al. [162] adopt an agglomerative-based group-average clustering (GAC) for
RED. First, temporally-close documents are placed into one bucket, giving a higher
priority to grouping consecutive documents. The clustering algorithm works in a
bottom-up fashion, whereby at each iteration, the process repeats and generates clus-
ters at higher and higher levels until some predefined top-level clusters are obtained.
On the other hand, for NED, they use a time window to limit the number of docu-
ments under investigation. An incremental clustering algorithm is used to organize
document into clusters. A new document x is absorbed by the most similar cluster
if the confidence score between x and the seed of that cluster is below a predefined
threshold; otherwise, the document x is treated as a seed for a new cluster. The
confidence score of document x is computed as follows:

score(x) := 1− arg max
i∈window

{
i

m
× cosine(~tx, ~ti)

}
(2.5)
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where the fraction i
m

is treated as a decaying weight such that old documents have
progressively less impact on the current decision. Similarly, the approach by Allan
et al. [14] processes a stream of documents in a strict online settings to detect new
events and track existing ones using a single-pass clustering algorithm. In addition to
incorporating temporal information besides content, a novel event-level thresholding
model is introduced to obtain adaptive confidence scores for each document when
compared with the seeds of existing clusters. A 2-stage approach for a better NED has
been proposed by Yang et al. [163]. First, each arriving document is classified into a
broad topic category. Then, named entities are extracted from each document, acting
as event-level features that are helpful in distinguishing between on-topic documents
but relating to different events. The weights of the named entities are optimized
relative to normal words for each topic.

A key issue for obtaining high-quality event clusters is the reliability of the adopted
term weighting scheme. Hence, several refinement steps have been introduced, trying
to come up with more informative and semantic-aware weighting schemes. Brants et
al. [37] found that documents from different sources have somewhat different vocab-
ulary usage. Therefore, a source-specific TF-IDF model has been applied where each
source has its own TF-IDF model. Furthermore, they have adjusted the way of mea-
suring the similarity between the current document x and document i by including
the average similarity Es(x),s(i) of documents on the same event, taking into account
the source pair <s(x), s(i)> that x and i are drawn from, respectively.

Kumaran and Allan [93] have shown that measuring the degree of overlap between
documents using cosine similarity might lead to erroneous results when the documents
are represented using the traditional TF-IDF-based weights. For more reliable results,
two additional term vectors are created for each document; one for named entities
and the other for non-named entities. For further improvements in weighting terms,
He et al. [77] make use of bursty features along with their bursty periods, which are
extracted from the document stream. First, bursty features are identified using the
method of Kleinberg [90] and then the TF-IDF weights are updated by boosting those
pertaining to bursty features by a certain factor.

Recall that tracking an event requires finding unlabeled documents (stories) that
can be assigned to the cluster of this event based on a certain similarity measure
(see Section 2.3.2). Apart from tracking events using unsupervised approaches, event
tracking can be reduced to a text classification problem [160, 161]. A major difficulty
in this track is the lack of positive training instances (documents) per event since most
of the documents are unlabeled. What exaggerates the problem is that the majority of
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events have a short time duration. To handle this, Yang et al. [160] introduced several
new variants of the Ricchio approach [131] and the k-Nearest Neighbor (kNN) [73]
algorithm in order to prevent negative examples from dominating the results of the
used scoring functions. As a result, their overall event tracking performance improved
and became one of the top-performing methods in the TDT3 official evaluation.

Li et al. [106] proposed a probabilistic model for the RED task, where an Expec-
tation Maximization (EM) algorithm is adopted to learn the model parameters and
to maximize the log-likelihood of the distribution function. However, besides being
computationally infeasible when applied to a large corpus, such algorithm requires
the number of events to be given a priori.

2.5.2 Feature-pivot Detection

An event detection framework based on feature-pivot detection methodology consists
of three main steps:

(1) Feature extraction. The content of each document is preprocessed and then
features (e.g., unigrams, bigrams, and n-grams) along with their respective
count statics are extracted. Several methods have been used to extract features
from documents, ranging from a simple single-pass ones, to a more complex
optimization-based extraction [104].

(2) Feature selection. Among the large number of extracted features, those that
can be identified as event entities are selected. Bursty features that show a
sudden surge in usage over a period of time are typical examples of features
selected as candidate event entities. For this, a variety of bursty feature selection
techniques are adopted, e.g., techniques based on the discrepancy principle [4,
96], wavelet analysis [156], and Discrete Fourier Transform [76].

(3) Feature clustering. In this step, the selected bursty features are clustered
using, e.g., model-based [171], graph-based [108, 164, 168], or density-based [35]
clustering algorithms.

Document-level TF-IDF-based weighting schemes assign relatively high weights
to terms that have multiple occurrences in a small number of documents. However,
when the popularity of a certain topic starts increasing (becoming a trend), a large
number of documents containing related terms appear, discussing related events and
activities. In this case, TF-IDF performs poorly as key terms will get low weights
due to the impact of the global factor (IDF). What makes the problem more severe
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Figure 2.5: Main steps of feature-pivot detection frameworks.

is when streaming algorithms are adopted, in particular, using a sliding window over
the most recent documents. To handle this, Bun and Ishizuka [40] leveraged term
occurrences in multiple channels and proposed a different term weighting scheme
called TF-Proportional Document Frequency (TF-PDF). It assigns higher weights to
terms appearing more frequently in many documents on several channels and lower
weights to the terms that are rarely mentioned. In spite of this added value of the
TF-PDF measure, it is unable to capture the variations in term popularity over time.
Therefore, Chen et al. [45] combined the TF-PDF measure with measures from the
Aging Theory [44] in order to build their own bursty word extraction framework with
more reliable results.

The core of feature-pivot detection is to find bursty features from a stream of doc-
uments, and then, to group these features based on some common characteristics, e.g.,
grouping features with similar temporal patterns [62, 90]. Kleinberg [90] proposed an
infinite-state automaton to model the inter-arrival times of a stream of documents in
order to extract bursty words showing significant increase in usage. Fung et al. [62]
model the temporal distribution of words in a corpus as a binomial distribution.
Based on this model, bursty words are identified by a heuristic-based thresholding
and then strongly interrelated bursty features are grouped, forming potential events.

He et al. [76] built a model to classify each word (called feature) along two cate-
gorical dimensions: periodicity and power, after converting its signal from the time
domain into the frequency domain using Discrete Fourier Transformation (DFT) [143].
Their approach identifies the bursty period among the entire trajectory of each fea-
ture having a high spectrum power from one side or long-term periodic or aperiodic
nature on the other side. For this purpose, a feature’s trajectory is modeled with a
Gaussian distribution, and the bursty period is chosen to be the one whose signals fall
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within one standard deviation from the mean. However, this spectral-based approach
does not scale well for a large number of streaming documents.

Lee et al. [101] built a new term weighting scheme, assessing the burstiness degree
of a term in terms of skewness, consistency, periodicity, and variation. By combing
these factors into one measure, they showed that their approach outperforms the
solutions by [45, 62, 76, 157] with respect to the quality of the results.

2.6 Event Detection from Social Media

As discussed in Section 2.2.1, user-generated content published via several social me-
dia services is a huge source of continuous and noisy textual messages. Although
this content hides useful event information, extracting it is a challenging task. Event
detection from social media is currently a hot research area, which draws on tech-
niques from various disciplines such as data mining, natural language processing,
information retrieval and extraction, machine learning, spatio-temporal analysis, to
name but a few. One can find related publications in conferences and journals with
diverse research directions, and consequently, there are a large number of research
contributions on event detection from social media. In this section, however, we do
not provide an exhaustive survey of existing techniques but rather select and discuss
representative ones. For each approach, we study (1) the methodology employed to
detect events and (2) the main objectives of the detection process. Based on these
aspects, the wide range of event detection approaches are classified according to the
detection methodology (Section 2.6.1) and the detection objectives (Section 2.6.2).
Note that these categories and subcategories that we will cover later are not mutually
exclusive, but rather represent either the type of the detection approach or the type
of the detected event.

2.6.1 Categorization By Methodology

We classify the major methodologies proposed for event detection along three cat-
egorical dimensions (see Figure 2.6): (I) Event entity type (document-pivot versus
feature-pivot techniques); (II) Detection task (NED versus RED techniques); and
(III) learning methodology (supervised versus unsupervised techniques).
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Figure 2.6: Categorization by methodology for event detection approaches.
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Document-pivot techniques. In Section 2.5, we showed that document-pivot tech-
niques have been widely employed to detect events from text streams by clustering
event-related documents. In the context of social media, however, this line of tech-
niques has the following limitations:

(1) Microblogs are inherently brief updates, which implies that although when some
microblogs pertain to the same event, they might share no keywords [45]. As a
result, and based on the typical TF-IDF weighting scheme, the distance between
their corresponding term vectors will be large. Hence, microblogs on the same
event might be assigned to different clusters. On the other hand, the chance
of having off-topic microblogs assigned to the same cluster is relatively high, in
particular when some ongoing events share a number of keywords, e.g., when
two soccer matches take place at the same time.

(2) TF-IDF weighting scheme is originally designed for tasks in Information Re-
trieval [23, 111] even though it performs well in text clustering problems [62].
Both the local (TF) and global (IDF) parts might result in unreasonable weights
in the context of social media. For the TF part, an event-related keyword will
generally obtain a small value in a microblog, because it is unusual to find a
microblog having multiple occurrences of this keyword. On the other hand, and
because of the noisy nature of social media, the existence of a very few occur-
rences of a certain word does not indicate that this word is significant, which
contradicts the role of the global IDF part.
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(3) The TDT research direction assumes that all documents are relevant to some
old or new events of interest [13]. However, in social media, microblogs on
real-world events are buried in a huge amount of noisy data (see Section 2.2.3).

Therefore, the majority of approaches on event detection from social media fall un-
der the feature-pivot category. However, some research efforts have adapted a number
of document-pivot techniques to cope with the uniqueness of social media content.
Shan et al. [139] proposed a novel burst-based VSM for a better representation of
documents. This is because the traditional VSM does not account for the temporal
dimension, which is essential in distinguishing between on-topic events as discussed
in Section 2.5. Bursty features are extracted from the stream using the approach by
Kleinberg [90], where only these bursty features are used to build the term vector of
each document in the stream.

Petrovic et al. [124] introduced a system on the first story detection task (FSD)
from a stream of Twitter posts using locality-sensitive hashing (LSH) [126]. When a
new tweet arrives, it is hashed into a bucket and the similarity between this tweet
and the ones in that bucket is calculated using cosine similarity. If the similarity to
the closest tweet is below a certain threshold, the tweet is placed in a separate bucket
and treated as a first story of a potential event; otherwise, the tweet is placed in
the bucket of the most similar tweet. Due to the noisy content and the short length
of tweets, a variation-handling procedure is adopted to improve the overall system
accuracy. Fast-growing clusters are then reported as real-world events.

Valkanas and Gunopulos [151] employ sentiment analysis based on notions from
emotional theories to detect events from Twitter streams. The rationale is that mes-
sages published about an event usually convey the emotional state of the users affected
by this event. First, each incoming tweet is classified into one of seven emotional
classes (anger, fear, disgust, happiness, sadness, surprise, and none). When a surge
in any emotional state is observed at a certain location, an event is reported at that
location and some term-weighting techniques, e.g., [42] and [27], are used to extract
representative keywords for each event.

In order to avoid considering the entire stream of messages when a specific event
type is investigated, Sakaki et al. [130] built a supervised classifier to filter out the
tweets that are irrelevant to a target event. Event-related tweets are then modeled
over time using a Poisson process to detect the occurrence of an event. They adopt
a temporal model that depicts the probability of a target event occurs at time t
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according to the following formula:

poccur(t) = 1− p
g(t)
f , (2.6)

where
g(t) =

n0(1− exp (−λ(t+ 1)))

(1− exp (−λ))
(2.7)

and pf refers to the probability that the expected number of sensors g(t) will
generate a false prediction at time t. The number of sensors producing predictions
at earthquake time is exponentially distributed, and n0 is the number of sensors at
time 0. Using their approach, when a new type of events is considered, the classifier
needs to be trained using a different set of event keywords, which is a limitation that
stands against applying their approach to generic events.

Feature-pivot Approaches. The basic idea of feature-pivot detection (as discussed
in Section 2.5.2) is to extract features (e.g., words, bigrams, and phrase segments)
from microblogs, to select a subset of these features as event candidates, and then to
group these features into clusters of potential events. Due to the high uncertainty and
noisiness of social media content [158, 165], the expected number of resultant clusters
is large, where most of these clusters are non-events (low precision). This undesirable
clustering of event entities is due to the fact that people share various types of content
such as personal updates, opinions, and random thoughts [118]. Moreover, assuming
that people share some event-related messages, the uncertainty in what they publish,
when, and where is very high. For example, they might publish messages on a certain
event after it ends. Several solutions have been proposed in an effort to mitigate
this problem and to improve the overall precision. These solutions involve one or a
combination of the following directions:

(1) improving feature selection. The temporal distributions of features in social me-
dia are very noisy; and hence, not all selected features refer to some events [151].
The aim is thus not to miss the identification of any event-related feature and
to minimize the number of “spurious” features, which results in high recall and
precision, respectively. A wide variety of feature selection techniques have
been proposed for this sake. Some of them are based on a simple, yet effi-
cient threshold-based bursty feature extraction [3, 96, 157]. Others study the
burstiness of bigrams [15, 121], or even phrase segments [103]. In addition, more



2.6 Event Detection from Social Media 33

sophisticated signal processing techniques are used to detect spikes in feature
usage over time, e.g., using Wavelet-based analysis [156].

(2) using noise-resilient clustering. This can be achieved by choosing a clustering
algorithm that is robust against outliers, e.g., DBSCAN [73].

(3) supervised filtering of clusters. The generated clusters are classified into events
or non-events using a classifier trained on an annotated set of features [35, 125,
152].

In [156], a wavelet-based signal processing framework, called EDCoW , is pro-
posed to capture important differences in the “energy” of individual words in a sliding
window. To perform word clustering and generate potential events, the cross correla-
tion between signals are measured, resulting in a symmetric correlation matrix. From
graph theoretical point of view, this matrix can be viewed as the adjacency matrix
of an undirected graph G = (V,E,W ). A modularity-based graph partitioning is
exploited to cut the graph G into subgraphs and generate event clusters. Assume
that the cross correlation between the words i and j is denoted Xij. The modularity
of the partitioning is defined as

P =
1

2m

∑
i

∑
j

(Xij −
di × dj

2m
)δci,cj, (2.8)

where dj =
∑

iXij, m =
∑

i
di
2

is the sum of all the edge weights in G, ci(j) is the
index of the subgraph that node vi(j) belongs to, and δci,cj is the Kronecker delta
such that δci,cj = 1 if ci = cj and δci,cj = 1 otherwise. The goal now is to split the
graph into subgraphs by maximizing P , which is solved using the approach proposed
by Newman [119]. This approach is based on reformulating the modularity in terms
of the eigenvectors of a new modularity matrix, resulting in more reliable results
in shorter running time. A major drawback of EDCoW is that building a signal
for each word and computing the cross correlation for each pair is computationally
expensive. To cope with this, the majority of words are filtered out based on a
statistical thresholding criterion. Unfortunately, this might lead to ignoring important
words belonging to events with sparse observations, i.e., small-scale events.

Likewise, Cataldi et al. [41] built a model in support of connecting emerging
keywords after navigating a topic graph. For this, they first assign a weight for each
word in a microblog using the augmented normalized term frequency [132]. To account
for the credibility of the source, namely, the publishing user, the social interactions
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are analyzed with the well-know Page Rank algorithm [38]. After that, a novel aging
theory is used to mine emerging keywords. From these keywords, a set of emerging
topics are finally identified based on the keyword co-occurrences inferred from a topic
graph.

Li et al. [103] introduced Twevent, a framework to detect real-world events from
tweets. First, segments (phrases that are semantically meaningful combinations of
words) are extracted from tweets. Then, bursty segments are identified within a time
window based on their frequencies, and finally, these bursty segments are clustered us-
ing Jarvis-Patrick algorithm [84]. They apply a heuristic-based filtering to distinguish
between event from non-event clusters using an external information source, namely,
Wikipedia. This type of filtering, however, leads to ignoring events that are not men-
tioned in the used external source. Instead of using heuristic-based techniques for
filtering out non-event clusters, Qin et al. [125] adopt a supervised approach, classify-
ing the generated clusters into events or non-events. The selected features fall under
three categories: statistical, social, and textual. These features are assumed to be
indicative of the significance of examined event clusters. The 10-fold cross validation
is utilized in the model learning process, which led to a precision of 0.84 compared to
0.76 by Twevent [103].

Parikh and Karlapalem [121] presented ET, another event detection framework
following a detection paradigm similar to Twevent [103]. However, to improve the
computational efficiency, ET (1) confines the extracted segments to bigrams, avoiding
a computationally expensive optimization; (2) uses an index, maintaining the bursty
time blocks of each segment; (3) exploits an agglomerative hierarchical clustering to
group the segments that are related to the same event. This clustering is applied to a
segment similarity matrix that encodes the similarity between each pair of segments.
The similarity of each pair of segments is quantified based on both their content and
temporal patterns. This type of clustering in both content and time has proven to be
efficient in detecting events. For example, in [135], a variation of the leader-follower
clustering algorithm was adapted to work in an online fashion and to account for the
temporal order of incoming microblogs.

Mathioudakis and Koudas [114] introduced TwitterMonitor, a two-step approach
to extract trends from a Twitter stream and, in a third step, to analyze the detected
trends. In the first step, bursty words are identified based on the queuing theory.
Then, these bursty words, using their co-occurrences in the most recent tweets, are
clustered to form potential trends. This bursty word clustering task utilizes a greedy
strategy in order to generate groups of bursty words using a small number of op-
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erations, which alleviates the computational overhead of tweets having high arrival
rates. Instead of treating unigrams as features to be clustered, Alvanaki et al. [15]
exploit tag-pairs associated with tweets to identify emergent topics. A sliding window
on a stream of microblogs is used to compute statistics about tag-pairs, which are
then used to identify unusual shifts in correlations between such tags, based on the
fact that these shifts are mainly driven by real-world events. To remedy the compu-
tational overhead caused by the pair-wise correlation computation, a subset of the
tags having high popularity are selected and used as seed-tags. For further tagging
enrichment, they make use of an entity tagging approach that extracts named entities
(people, organizations, and places) by identifying the phrases for which an article in
Wikipedia exists.

Detection Task

In Section 2.3, we discussed both NED and RED detection techniques, stating that
while RED techniques retrospectively extract events from a corpus of documents,
NED is tailored to process documents continuously as they arrive using streaming
algorithms. In contrast to RED, it is apparent that the NED approaches allow for
an immediate detection of real-world events, which is critical for different application
scenarios, e.g., detecting the occurrence of earthquakes in real-time [130].

NED. Using NED techniques, event entities are processed incrementally to either
report the occurrence of a new event or track existing ones (see Section 2.3). A major
challenge for applying streaming algorithms to social media content is the high-arrival
rate of microblogs, which not only results in too many non-event clusters, but also
requires huge computational resources. To remedy this, a number of techniques or a
combination of them have been proposed. Some of these techniques are described as
follows:

(1) Adapted feature selection: Apart from traditional bursty feature selection
methodologies that are based on identifying features with sudden surge in
usage (see Section 2.5.2), other types of selection mechanisms have been
proposed: (I) Heuristic-based techniques: They involve selecting features that
are assumed to be thematically representative of their respective events. For
example, Watanabe et al. [154] assume that localized events can be detected by
extracting place names (georeferences) and then forming clusters that contain
these place names along with co-occurring keywords. Moreover, source-specific
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keywords are selected and utilized as potential features, i.e., event entities. For
instance, in [87] and [108], hashtags are selected as event entities, describing
ongoing events. Guille and Favre [71], on the other hand, focused only on
dynamic links (mentions) observed in tweets. (II) supervised techniques (see
“Supervised Detection” in Section 2.6.1). Here, we argue that selecting specific
types of features leads to ignoring a wide range of keywords that belong to
small-scale event. In addition, the semantics of detected events will be degraded
when only focusing on a certain type of features.

(2) Locality-sensitive hashing (LSH): It is a randomized technique for finding the
nearest neighbor in vector space of a query point (e.g., microblog) in sub-linear
time [126]. For example, Petrovic et al. [124] adopt LSH to efficiently determine
if an arriving tweet represents the onset of a new event (FSD) or can be assigned
to an existing bucket (cluster).

(3) Sliding Windows : In many application scenarios, the most recent data is consid-
ered to be most important. Therefore, the majority of NED approaches adopt a
sliding window on a stream of microblogs, (see, e.g., [2], [99], and [110]). When
the window moves, outdated (expired) data is eliminated and new observations
are considered for further analysis.

(4) Randomized data structures : It is a class of data structures where each acts as
a frequency table of events1, absorbing a stream of data items. Hash functions
are used to map events to frequencies. A key characteristic of this class of
structures is that only sub-linear space is required while guaranteeing accuracy.
Sketch tables [6] are the most prominent randomized data structures that have
been used in the context of social media analysis to efficiently digest the large
number of incoming microblogs, see e.g., [39] and [8]. In [8], the authors used a
sketch table to efficiently compute the structural similarity between clusters.

(5) Sampling : To avoid digesting the entire sequence of arriving microblogs, only
a representative sample within a sliding window is maintained. An example
of approaches adopting this technique is described in [151], where the “chain-
sample” algorithm [20] is used.

(6) Indexing : Providing proper index structures for managing microblogs arriving
with high rates is important towards building practical detection frameworks [2,

1event entities in this context
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109, 135]. For example, Sankaranarayanan [135] chose to reduce the number of
distance computation operations required for online clustering using an inverted
index that confines the search to only those clusters that contain the features
(keywords) of the microblog to be clustered [135]. As for further optimization, a
list of active clusters, whose centroids are less than three days old, is maintained
as candidates to which a new tweet can be added. Magdy et al. [110] use a
hierarchical space-partitioning index structure (Pyramid [147]) that supports
the insertion of microblogs with high arrival rates and is able to expel outdated
microblogs efficiently.

(7) Parallel Processing : Nguyen and Jung [120] employed the well-known Apache
Hadoop1 framework to distribute the computation and storage required to pro-
cess microblogs arriving during a time window among multiple processing nodes.

It is noteworthy that most NED techniques receive a chronologically-ordered
corpus of microblogs to detect and analyze past events.

RED. Although most research discussed so far focuses on NED techniques for event
detection, making use of the timestamps associated with microblogs, some interest
has recently arisen in extracting events retrospectively from historical data. Hong et
al. introduced a generative model to reflect the generation of tweets across geographic
space with applications on content recommendation and topic tracking [80]. Zhang
et al. [166] went beyond feature co-occurrence. They extract spatial, temporal, and
spatio-temporal distributions of tags, and then represent them as vectors that can be
clustered to help users recognize the semantic relationship of tags.

Xu et al. [158] deal with recovering scarce and non-uniformly distributed phe-
nomena over spatio-temporal bins from social media. They reduce the problem of
signal recovery into a Poisson point process estimation. However, their approach
is devoted to static datasets and will perform poorly when applied to fine-grained
spatio-temporal settings.

Chen and Roy [46] exploit the spatio-temporal information of photos in Flickr
to discover tags related to events. They use Discrete Wavelet Transform to empha-
size dense spatial regions and suppress noise in the 3D space (location and time).
Their approach, however, operates at coarse spatio-temporal granularity (1-day time
intervals and 1-degree spatial shifts).

1http://hadoop.apache.org/
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Learning Methodology

The task of event detection is typically performed using unsupervised clustering-
based approaches [18]. However, supervised learning is sometimes used prior event
detection to eliminate irrelevant entities and/or to filter out non-event clusters in an
effort to mitigate the noisy nature of social media.

Unsupervised detection. The majority of techniques for unplanned event
detection rely on clustering approaches, as shown in Table 2.6. Manually labeled
data is not required for training purposes, and thus unsupervised techniques are
more suitable to the problem of event detection, which is inherently a query-free
problem. The clustering mechanism should be efficient and highly scalable given the
increasingly large amounts of content published via social media sites. The approach
by Abhik and Toshniwal [5] first selects event-related messages from different social
media sources using a simple rule-based mechanism. Then, the selected messages
are clustered using a single-pass threshold-based algorithm, see, e.g., [28], [124], and
[135]. Incremental clustering is more suitable for grouping continuously generated
event entities. This is performed by setting a maximum similarity between new
entities and any of the existing clusters. Aggarwal and Subbian [8] leverage both the
underlying network structure of social media and the content of messages to provide
a more effective clustering scheme and to improve upon the content-only similarity
metric.

Gao et al. [65] studied the spatio-temporal distribution of microblogs and analyzed
their content in Sina Weibo1 Website on realistic datasets. An adaptive K-means
clustering algorithm is used to group tweets published about a real-world event at a
certain geographic area. In [10], a novel event retrieval framework is devised to reliably
identify and rank real-world events. For this purpose, the framework combines (1)
evidence from the content of microblogs, namely, how relevant the tweets that are
posted from a certain location at a specific time to a user query and (2) the change
point analysis based on Grubb’s test [70]. The system described in [155] detects the
occurrence of events at a certain location by monitoring the frequencies of terms in
tweets across time and space. The log-likelihood ratio test is employed to quantify
the change in the usage behavior of terms. The extracted terms are then combined
based on the observed co-occurrence patterns to form potential events.

1http://weibo.com/



2.6 Event Detection from Social Media 39

Unsupervised event detection has also been considered through graph analysis.
Zhao and Mitra [170] define a real-world event as a set of relations between users on
a specific topic during a certain time interval. They represent the social text streams
as a graph where each node corresponds to a social actor and each edge refers to
the similarity between the textual content of the corresponding actors. Events are
extracted by combining text-based clustering, temporal segmentation, and graph
cuts of social networks. Sayyadi et al. [136] model the co-occurrence relationship
between extracted keywords using a graph, where each node reflects a keyword and
an edge between two nodes indicates that the corresponding keywords co-occur in a
number of documents above some threshold. By analogy, the graph is thought of as
a social network of relationships between keywords, whereby a community detection
technique based on the betweenness centrality [165] is used to extract connected
components from the graph. Each such component represents a keyword summary
of a potential event.

Supervised Detection. As stated earlier, in the context of event detection,
supervised techniques are mainly employed in one of the following:

(1) Filtering out spurious features (or documents) so that only event-related ones
undergo clustering. Although manually annotating a large number of microblogs
is a labor-intensive and time-consuming task, it is more feasible for detecting
specified events where some event descriptions, such as keywords, location, or
time are known in advance. As a result, this would reduce the number of mi-
croblogs messages that must be processed and allow the detection framework
to focus on a restricted set of microblogs. Li et al. [105] built a classification
model to increase the accuracy of extracting CDE-related1 tweets. They found
that the performance of their system is not acceptable when only the textual
content of tweets is considered as features for the classifier. Hence, they addi-
tionally exploit Twitter-specific tokens, e.g., hashtags, and CDE-specific features
like whether a tweet contains locations, numbers etc. The model by Sakaki et
al. [130] annotates each tweet as relevant or irrelevant to an event using SVM
where three set of features for each tweet are used: statistical, keyword, and
word context features.

(2) Classifying already generated clusters into event or non-event clusters. In [152],
a classifier is trained based on 41 features, including textual features, user

1CDE: Crime- and Disaster-related events
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counts, tweet counts, and other spatial-centric features. In addition to the
traditional temporal and topical features, the classification model proposed by
Becker et al. [28] incorporates social features, such as the percentage of tweets
containing retweets, replies, and mentions in a cluster for a better classification
capability.

2.6.2 Categorization By Objectives

Real-world events of different types, levels of detail, and associated meta-data (e.g.,
start time or location) are extracted from the content of social media. Some of the
approaches, for example, focus on detecting planned events and others on specifying
the location of the detected events. In general, the heterogeneous nature of both
the detected events and associated metadata plays a big role in designating the type
of detection approaches to use. Therefore, the systems on event detection can be
further categorized into the following: (I) query-driven versus query-free, referring
to whether a detected event meets a query posed by the user (query-driven), or the
system can detect the occurrence of any type of event (query-free); (II) awareness of
event location; and (III) planned versus unplanned event detection.

In this section, we address some representative approaches on event detection,
which are query-driven, location-aware, or devoted to extracting planned event, since
the other detection dimensions (query-free, location-unaware, unplanned event detec-
tion) are more popular and covered in different sections of this chapter. See Table 2.3
for a list of efforts classified based on the aforementioned objectives.

Query-driven Detection

Usually, no information about the events to be detected is given a priori, and hence,
event detection is basically defined as a discovery problem (see Section 2.3), where
query-free-based approaches are typically employed as a solution for such a prob-
lem. Nevertheless, some efforts try to exploit query-driven approaches in order to
detect and track some specified events, e.g., detecting the occurrence of car accidents.
Query-driven techniques prune the huge space of messages and process only those
microblogs that contain some predetermined keywords, which helps filter out noisy
and irrelevant microblogs at an early stage. However, the main shortcoming of query-
driven techniques is that a different query has to be provided each time a new type
of events is considered. Query-driven detection is therefore somewhat more linked to
Information Retrieval than to pattern discovery.
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Table 2.3: Comparison of several event detection approaches based on the objective
of the study.

REFERENCES
QUERY- LOCATION-AWARE

driven free geo-coordinates place names
Parker et al. [122] X

Guille and Favre [71] X
Valk. and Gunop. [151] X X
Petrovic et al. [124] X
Weng and Lee [156] X

Li et al. [105] X X X
Zhang et al. [168] X
Albakour et al. [10] X X

Sayyadi [136] X
Parikh and Karlapalem [121] X

Qin et al. [125] X
Lee [98] X X

Boettcher and Lee [35] X X
Lee and Sumiya [100] X X
Alvanaki et al. [15] X

Mathioudakis et al. [113] X X
Cataldi et al. [41] X

Mathioudakis and Koudas [114] X
Walther and Kaisser [152] X
Aggarwal and Subbian [8] X

Sakaki et al. [130] X X
Li et al. [103] X

Becker et al. [28] X
Sankaranarayanan et al. [135] X X

Xu et al. [158] X X
Lappas et al. [96] X X
Chen and Roy [46] X X

Lee et al. [99] X
Shan et al. [139] X X
Kwan et al. [94] X

Skovsgaard et al. [142] X X
Watanabe et al. [154] X X X

Budak et al. [39] X X
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A news processing system, called TwitterStand [135], was built to extract and
describe news from Twitter streams. In order to involve only news-related tweets in
the clustering process and to alleviate the undesirable consequences of noise, a naive
Bayes classifier [32] is used to discard tweets that clearly cannot be news. Parker et
al. [122] tried to track public health trends from medical tweets, where Wikipedia
is utilized to associate trending word sets with medical topics and filter out non-
medical trends. Then, medical trends are aggregated to detect shifts in public health
conditions.

TEDAS [105] is a framework to detect CDE (crime- and disaster- related events).
First, tweets are filtered to identify related tweets using a rule-based information
retrieval architecture that is based on a novel query expansion. The identified tweets
are then clustered and the clusters are ranked. Due to the short length of microblogs,
query expansion is useful for retrieving microblogs relevant to the initial query posed
by a user. For example, Chen et al. [48] present a novel algorithm to generate and
rank candidate expansion terms that are relevant to a topic word posed as a query
to the event detection system.

Marcus et al. [112] built TwitInfo, a Web portal to visualize and summarize tweets
using a timeline-based tweet counting. When a user posts a keyword, the system
draws a diagram showing the tweet frequency over time. Then, an off-line peak
detection algorithm is adopted to highlight hot spots that correspond to potential
real-world events.

Another line of query-driven approaches use instead spatio-temporal meta-data
as queries specifying the spatio-temporal context within which events might occur.
Skovsgaard et al. [142] introduce a scalable framework with the purpose of processing
top-k most popular term queries on a stream of microblogs in a user-specified spatio-
temporal range. A variation of the count-based frequent item algorithm, SpaceSav-
ing [116], is proposed to adaptively maintain exact counts for terms at various spatio-
temporal granularities. Magdy et al. [110] present Mercury, a system to support
real-time top-k spatio-temporal queries on microblogs within a memory-constrained
environment. Mercury helps retrieve microblogs related to a certain event provided
that the event location and time are known a priori.

Location-aware Detection

An event is basically defined as “something that happens at some specific time and
place” [161]. The process of event detection involves therefore the identification of
what the detected events are about, when they started/ended, and where they took
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place, using the content of related messages along with the associated spatio-temporal
metadata. To date, most of the research efforts that concentrate on detecting events
consider only the textual content of messages and the attached timestamps. However,
the proliferation of global positioning systems and the prevalence of GPS-equipped
mobile devices have recently increased the percentage of geo-tagged messages. For
example, from Twitter alone, about 10 million out of 500 million daily-published
tweets are geo-tagged1. This has encouraged researchers to incorporate the spatial
dimension of microblogs towards identifying the location of detected events.

The approach by Mathioudakis et al. [113] aims at finding the geographic locations
exhibiting a burst in the frequency of extracted keywords. The area of interest is
split based on a regular grid, and then, by minimizing a cost function, a subset of
the cells are labeled as bursty and others as non-bursty. The technique proposed
by Rattenbury et al. [127] aims at extracting place and event semantics from Flickr
tags. The rationale behind their approach is that significant usage patterns for event
and place tags should appear as a burst over a period of time or over parts of space.
However, these approaches are based on batch processing and are not scalable for a
large number of incoming microblogs.

Lee and Sumiya [100] present a system to detect unusual geo-social events by
leveraging the geographical regularities inferred from the normal behavior patterns of
geo-tagged microblogs. For this, they first partition the geographic space into regions
of interest (ROI) using the K-mean clustering method [74] applied to the geographical
coordinates (long/lat) of the collected microblogs. This type of clustering-based par-
titioning is used to better deal with heterogeneous regions differently. Then, for each
region, a regular pattern is summarized from the following statics: (1) the number
of microblogs, (2) the number of users inside the region, and (3) the number of users
entering the region. The statistics of these patterns are accumulated over historical
microblogs using a 6-hour time interval and called geographical regularity. The geo-
graphical regularity of each region is regarded as a baseline to statistically determine
whether the current geographical regularity indicates the occurrence of a geo-social
event at its respective region.

The approach by Walther and Kaisser [152] detect geo-spatial (localized) events
by generating candidate event clusters based on the spatio-temporal proximity of
tweets. This clustering mechanism is similar to DBSCAN [73], where the clustering
module checks, for each new incoming microblog, whether there are more than x other

1http://www.idigitaltimes.com/twitter-statistics-2014-new-interactive-map-shows-where-people-
tweet-and-how-muc h -398862, accessed Apr. 2015
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microblogs published in the last y minutes in a radius of z meters. These parameters
are set to 3, 30, and 200, respectively. The generated clusters are then examined
to filter out non-event clusters using a supervised machine learning technique (see
Section 2.6.1). Instead of conducting a spatial clustering at the microblog level,
Boettcher and Lee [35] follow the feature-pivot detection and examine the locality of
events at the word level. They built a framework that continuously extracts words
W published during a time window from Twitter streams and generates subsets of
length 1,2, and 3 words out of the powerset of W . Then, the DBSCAN clustering
algorithm is employed to identify the subsets having limited spatial extent based on
the geo-coordinates of the tweets in each potential event cluster. Finally, a classifier
is trained on a set of labeled events to filter out non-event clusters.

For the purpose of detecting small-scaled localized events, the main challenge is
the lack of microblogs that are geo-tagged. Hence, some efforts focus first on estimat-
ing the location of non-geo-tagged microblogs. In [151], the concept of virtual sensors
are introduced, where each sensor is in charge of monitoring a specific geographical
location. If an incoming tweet is not geo-tagged, it is passed on to a location extrac-
tor module that uses a local geo-coding service described in [150]. This geo-coder is
basically built on top of both the GeoNames gazetteer1 and Flickr data. Using this
geo-coding service, an administrative hierarchy of geographic concepts is built to re-
solve ambiguity resulting from the existence of different places having the same name.
After geo-coding, only geo-tagged tweets are mapped to their respective sensors. A
sensor triggers the occurrence of an event at its respective location when the mapped
tweets lead to changing the emotional state during a time window.

Watanabe et al. built a local event detection framework, called Jasmine [154].
It estimates the location of non-geotagged tweets to increase the chance of finding
small-scaled localized events. For this, they built a database of <place name, geo-
coordinate> pairs by making use of geo-tagged tweets. The non-geo-tagged tweets
are examined, looking for phrases that match the place names in the database. When
found, the corresponding geo-coordinates are assigned to that non-geo-tagged tweet.
To ensure a reliable geo-tagging procedure, ambiguous place names (e.g., “McDon-
ald’s”) that have a high-variance distribution of geo-coordinates are eliminated from
the database. After geo-tagging, they search for place names and count the number
of key terms co-occurring with each place name. However, their method fails to find
the localized events when no place names pointing to the locations of these events are
mentioned. On the other hand, Sankaranarayanan et al. [135] employ different sources

1http://geonames.org/
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of spatial information to mitigate the sparsity of geo-tagged tweets. Their approach
extracts news as clusters of news-related tweets. To enable spatial exploration of these
news clusters, the geographic focus of each is quantified using both toponyms (place
names) that are extracted from the content of tweets and the location metadata from
the user profile.

Lee [98] uses a two-phase approach to mine spatio-temporal information from
Twitter Streams. In phase-1, the BursT [99] framework is applied to dynamically as-
sign a weight to each word in the tweets published during a sliding window. Then, the
IncrementalDBSCAN [59] clustering mechanism is employed to group emerging topics
in real-time. In phase-2, the spatial distribution of the bursty words in each cluster
is analyzed to determine whether the cluster has a local or global spatial spread.
However, BursT relies on the frequency statistics collected during a sliding window
to distinguish significant (bursty) words from others. The main shortcoming of this
approach is that it is inable to filter out words that are published frequently and
repeatedly even at non-event scenarios, e.g., “lol”, “job”, and “morning”. A solution
to this problem is to use the discrepancy paradigm [96] that measures the deviation
between the current usage frequency and its expected baseline. However, the ad-
vantage of this two-phase approach is that, at the beginning, the spatial dimension
is ignored and non-bursty terms are excluded by utilizing the timestamps attached
to the arriving messages. Then, the spatial dimension is considered only for bursty
candidates. By this, the computational cost of analyzing the spatial information of
non-bursty terms is avoided, which is crucial in the context of social media where
huge and noisy content is arriving constantly. Likewise, Sakaki et al. [130] studied
the temporal distribution of some predefined words. If such words show burstiness in
usage, Particle and Kalman filters are applied to the geo-coordinates of event-related
tweets in order to estimate the location of corresponding events.

Lappas et al. [96] presented a framework that aims at tracking the spatio-temporal
burstiness of terms (words) using online settings. Two types of burstiness patterns
are studied: 1) combinatorial patterns resulting from aggregating the bursty streams
over an entire area of interest, and 2) regional patterns that refer to spatio-temporal
patterns aggregated from spatially-close streams. It is hard to apply their approach to
microblogging streams as microblogs are sparsely distributed over space, which might
lead to generating many spurious bursts and making the maintenance of a baseline
word usage for each stream intractable.

Budak et al. [39] introduced an algorithmic tool, called GeoScope, for detecting
geo-trends from social networks by reporting trending location-topic (l, t) pairs. These
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geo-trends are identified continuously using a sliding window approach. Geoscope
offers theoretical guarantees for extracting all correlated pairs while requiring only
sub-linear space and running time. However, in order to ensure scalability and to
maintain a manageable list of locations at which trending topic-location pairs can
be uncovered, only the locations that are at least θ-frequent in the current window
are considered. That is, to track geo-trends at a certain location li (e.g., city), the
number of pairs |(li, .)| should occur at least Nθ times where N is the number of
elements in the time window and θ ∈ [0, 1]. In this case, locations with frequencies
below this lower bound are likely to be filtered out, which prevents uncovering trends
with few occurrences.

Detecting Planned Events

A planned event is a scheduled event that people are aware of its topic, location,
and time in advance, while unplanned events are those that occur suddenly, e.g., car
accidents. Although people might know the nature and the consequences of unplanned
events beforehand, they usually cannot predict when and where they will take place.
To date, the majority of event detection approaches extract general event entities, i.e.,
entities for both planned or unplanned events. However, the detection of unplanned
events is more challenging, in particular, in the context of NED detection tasks, where
the timely detection of these events is important. This difficulty comes from the fact
that only a few number of event-related microblogs are published close to the event’s
start time.

On the other hand, some approaches are tailored to detect planned events using
the content of social media, which has proven to be useful in different application
scenarios, e.g., harvesting the social opinions about events [159] and constructing
event calenders [128].

For the sake of extracting planned events based on query-free detection, Ritter
et al. [128] introduced TwiCal, a system for generating an open-domain calendar
encompassing events extracted from a Twitter dataset. An NLP-based approach for
finding named entities and event phrases from tweets is used. In addition, they exploit
a probabilistic latent-variable model to divide the extracted events into categories.

The approach by Benson et al. [30] identifies tweets pertaining to concert events
using a statistical model that annotates artist and venue words in Twitter messages.
However, the detected events are limited to those with explicit artist and venue men-
tions. To overcome this limitation, Becker et al. [26] proposed a generic methodology
for extracting and aggregating information about planned events. Event features
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such as, title, description, time, and venue are retrieved from some event aggregation
sites (e.g., Last.fm1 and EventBrite2), and then these features are used as queries to
extract event-related content from a number of social media sites, namely, Twitter,
YouTube and Flickr.

2.7 Summary and Discussion

In this chapter, we introduced necessary concepts and techniques to extract event
information from social media content. For this, we first presented the Topic Detec-
tion and Tracking program (TDT), as a first systematic work on the task of event
detection and tracking. Then, we discussed basic concepts and models to process
data streams, forming the basis of designing systems in support of the online mining
of event information from a stream of documents. The main approaches on event
detection and tracking from traditional media were introduced, and then we showed
how these approaches have evolved and been adapted to suit the unique nature of
social media content.

A surprisingly large number of works have been conducted on detecting events
from social media. In this chapter, we have presented the most related efforts, clas-
sified based on the methodology adopted and the objective of the detection process.
Recall that we consider, in this thesis, the near real-time detection and tracking of
localized events. Therefore, while discussing existing approaches, we gave particular
attention to those that are adapted to social media, process messages in an online
fashion, and/or location-aware.

Existing approaches on event detection do not account for the spatial dimension of
published microblogs while tracking already detected events. However, we argue that
the role of this dimension in the tracking task is inevitable. Suppose, for example, two
musical concerts are taking place at the same time. The microblogs published about
both events hold the same general topic. As a result, this might lead to mapping
these messages to one event or might mistakenly assign the microblogs of a certain
event to the cluster of the other event, which is an incorrect event tracking. Of
course, incorporating the spatial dimension will be a typical solution that tackle such
a problem by providing a better spatial-centric clustering.

Recall that one of our main objectives in this work is to estimate the location
of detected small-scale events using a fine-grained spatial resolution. In fact, it is

1http://www.last.fm/
2https://www.eventbrite.de/
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a computationally infeasible process, especially when dealing with a huge stream of
incoming microblogs. Knowing that the majority of microblogs are not related to
real-world events, one solution to mitigate this is to eliminate non-event microblogs
at an early stage before considering their spatial dimension.

For a reliable event extraction, some existing approaches employ probabilistic
models to uncover latent event patterns from a corpus of documents. However, this
line of research suffers from the following limitations when applied to social media
content: (1) A fixed vocabulary set is assumed a priori. However, the content of
social media is very dynamic and, at each single moment, a large number of new
tokens (words) appear. (2) Fitting model parameters is computationally expensive,
in particular when continuously including new arriving microblogs in the learning
process. (3) Microblogs published on a small-scale event are usually very few, which
can be easily underestimated by current probabilistic models.

By revealing the limitations of existing techniques, we aim in this thesis at build-
ing an event detection framework that combines the following important features. (1)
Considering all dimensions of events, i.e., semantic, time, and location. (2) Track-
ing the evolution of localized events until they diminish by estimating a dynamic
score that changes over time for each detected event. (3) Robust against noise and
spatio-temporal problems arising when studying the spatio-temporal distribution of
keywords. (4) Providing a good trade-off between accuracy and scalability.



Chapter 3

Keyword Extraction from Social
Media

The online extraction of keywords is the first step towards the detection of ongoing
real-world events and trends. Once keywords are extracted, events can then be formed
from grouping semantically-related keywords based on some common features as dis-
cussed in Chapter 2. Keyword extraction is a well-established research area, where a
huge body of research has been conducted to extract keywords from traditional text.
However, for the streaming and noisy content of social media, the process of keyword
extraction is still in its infancy and needs to confront a number of challenges.

In this chapter, we introduce KeyPicker, a framework to perform a near real-
time extraction of keywords from a stream of microblogs. Different from existing
keyword extraction techniques, KeyPicker has a number of features making it both
reliable and practical for the noisy, heterogeneous, and dynamic nature of text in
social media. These features are summarized as follows:

(1) KeyPicker is inherently incremental, that is, when the content of a microblog
has been processed, it will not be considered again;

(2) It quantifies the significance of a word based on two characteristics: burstiness
and recurrence, both of which are helpful in handling the noisy nature of social
media content;

(3) To determine whether a word holds both characteristics, a variation of the
discrepancy paradigm is developed to measure the deviation between the current
usage pattern of a word and an expected baseline of it;
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(4) The historical data, from which the baseline parameters are estimated, is up-
dated and materialized to efficiently capture the dynamics of social media.

The experimental results show the effectiveness and efficiency of KeyPicker

compared to baseline and state-of-the-art approaches in extracting keywords and
tracking their evolution.

3.1 Introduction

Real-world events are the most influential stimuli that encourage users to publish
via different microbloging services. One or more trending topics come into existence
as a result of event occurrences. The words composing each trend are used more
frequently during an event than in normal situations. For example, directly after an
earthquake occurs, there is a remarkable surge in the number of related microblogs
published by users [130]. As a consequence, event-specific words will exhibit some
burstiness such as “OMG”, “earthquake”, and “shaking”. We refer to these words as
keywords for simplicity. The extraction of keywords from text streams is a broad
research area that has been studied extensively, see, e.g., [62, 90, 113, 172]. Keyword
extraction can be used, e.g., in building frameworks in support of real-world event
detection [127, 156], emerging topic extraction [114], and context-aware search [96].

In the context of social media, however, the task of keyword extraction is non-
trivial and faces many challenges. In this chapter, we tackle the following challenges:

1. High arrival rate of microblogs. The huge amount of incoming microblogs pub-
lished through social media sites requires a scalable and single-pass procedure
so that the large number of incoming microblogs can be processed efficiently.

2. Noisy content. As discussed in Chapter 2, the textual content of social media
has a lot of typos, shortcuts, abbreviations etc. Moreover, a large percentage of
published microblogs are pointless babble without event-related information1.
Therefore, traditional content preprocessing methods, e.g., word stemming and
in-dictionary word check, are not effective and will lead either to the loss of
informative words or the incorporation of useless ones.

3. Temporal outliers. These outliers refer to event-related keywords mentioned
before/after their respective events. Although such keywords describe the events

1http://www.pearanalytics.com/blog/2009/twitter-study-reveals-interesting-results-40-percent-
pointles s-babble/, accessed Jan. 2015
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Figure 3.1: KeyPicker system overview.

thematically, they might prevent an accurate estimation of time-specific event
information, e.g., the event’s start and end time.

4. Temporal heterogeneity. The number of contributions of a certain word may
substantially change based on the posting time. For instance, the word “morn-
ing” is used more frequently in the early morning than at noon.

Such challenges stands against a direct adoption of traditional data mining techniques
that mainly rely on batch processing and perform well only on “formally-written” text.

Motivated by the aforementioned objectives and challenges, we introduce KeyP-

icker, an incremental approach to extract keywords from a stream of microblogs
based on the concept of a sliding window. Figure 3.1 illustrates the main compo-
nents of KeyPicker and the interaction between them. As time progresses and the
window slides, KeyPicker digests incoming microblogs to extract new keywords or
update the state of already extracted ones. For this, the usage pattern at the current
snapshot t is quantified for each word. The words having abnormal usage patterns
are then identified as keywords. To uncover the abnormality of the usage pattern of
a word, a variation of the discrepancy paradigm that was proven to perform well in
streaming scenarios is adopted [57]. It is based on measuring the deviation between
the current usage pattern of a word and its expected usage baseline. The higher
the deviation value, the higher the likelihood that the word is a keyword. The ex-
pected usage baseline of a certain word is estimated from its respective historical
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observations. Moreover, a weight is estimated for each extracted keyword, reflecting
the evolution of its significance over time. These weights will mainly be exploited to
study the evolution of localized events, an aspect that will be discussed in more detail
in Chapter 4.

The contributions of this chapter are summarized as follows:

(1) We organize the microblogs published during the sliding window based on a two-
level index structure. This indexing scheme allows for a constant-time retrieval
of count statistics pertaining to words contained in these microblogs.

(2) We utilize the change in word inter-arrivals observed in the most recent snap-
shots (within the sliding window) in order to mitigate the impact of temporal
outliers and to remove noisy and rarely-mentioned words. That is, in addition
to quantifying how bursty a word at a particular snapshot is, we also measure
how recurrent it is in contiguous snapshots.

(3) We propose to estimate a time-aware usage baseline for each word observed in
history in order to cope with the temporal heterogeneity of the usage patterns
of words.

(4) To prevent baseline parameters from being outdated by time, we update the his-
tory by incrementally incorporating recent observations and eliminating expired
ones. Moreover, we ensure both a sound incremental update and an efficient
retrieval of usage baselines by aggregating and materializing the statistics that
are sufficient to estimate such baselines.

This chapter is organized as follows. First, in Section 3.2, research efforts related
to keyword extraction from social media are discussed. Then, we present the main
notations, concepts, and problem statement in Section 3.3. In Section 3.4, we address
the steps needed to preprocess and index microblogs before conducting the actual
extraction of keywords. The concepts of word signal and baseline are introduced in
Section 3.5, which will be used in Section 3.6 to quantify two keyword characteristics
based on the discrepancy paradigm. The details of our datasets and experimental
evaluation are presented in Section 3.7. Finally, we summarize this chapter and
discuss some applications on keyword extraction from social media in Section 3.8.



3.2 Related Work 53

3.2 Related Work

A large body of research efforts on extracting keywords from chronologically-ordered
text documents has been and is undertaken. We can group these efforts into two
categories:

Retrospective approaches. Here, the streaming nature of documents is ne-
glected and they are processed in an offline fashion [62, 114, 138, 156, 172]. Unlike
the traditional vector space model (VSM), a number of probabilistic models, e.g.,
LDA [34] and PLSA [78], are used to extract topics and rank their associated key-
words. Dynamic topic models have been proposed as extensions of these probabilistic
models by including the chronological sequence of documents in the learning pro-
cess [33, 81]. This is helpful in capturing the temporal evolution of extracted topics.
However, such models cannot process documents incrementally and extract keywords
at an early stage of their corresponding trends. The burst model proposed by Klein-
berg [90] has inspired a long sequence of related efforts. It models bursts using a
finite state automaton, such that each state represents a certain arrival rate based on
a Poisson arrival process. Then, finding the sequence of burst levels (states) is reduced
to an optimization problem of minimizing a cost function on the given time series of
word inter-arrivals. The complexity of this approach is high for large-scale analysis
knowing that this optimization is performed for each encountered word individually.

Online approaches. In this category, the keyword extraction approaches ac-
count for the streaming nature of documents and try to extract keywords as soon
as they appear. Guzman and Poblete [72] propose a scalable online approach based
on windowing variation. Their approach consists of five modules that are divided
into two main stages: 1) data preprocessing and 2) bursty keyword detection. In the
first stage, the received tweets are filtered to choose only the ones written in some
languages. Then, the chosen tweets are enqueued for posterior analysis, and finally,
packed into disjoint time windows. In the second stage, the relevance variation rate
is estimated for each keyword. The keywords having negative rates are discarded and
the remaining ones are sorted based on their variation rates.

Other efforts adopt the discrepancy paradigm [43, 57] to compare the current be-
havior of a word against its historical usage pattern and identify those with abnormal
rise in usage as keywords [3, 4, 95, 96]. Li et al. [103] built a framework to detect the
existence of bursty segments in Twitter messages. A segment reflects a phrase that is
a semantically-meaningful combination of words. First, segments are extracted from
tweets using an optimization [104]. After that, bursty segments are identified within
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a time window according to their frequencies. Sakaki et al. [130] have come up with a
promising approach to detect the occurrence of certain events in real-time using some
predefined keywords, which makes it inapplicable in detecting general bursty trends.

Lee et al. [99] attached a dynamic score combing the current usage frequency of
a word with its arrival rate for each word observed in the stream. The higher the
computed score, the more significant the word is. However, their approach, called
BursT , assigns high score values to commonly used words, such as “morning” and
“job”. This behavior can be handled by making use of the discrepancy paradigm. On
the other hand, the words of social media are temporally heterogeneous (see Section
3.5.3) in the sense that words have different usage patterns during a day.

He et al. [75] model bursts as dynamic phenomena borrowing concepts from
physics, i.e., mass and velocity, and derive momentum, acceleration, and force from
them. Although this methodology captures the dynamics of bursty topics well, it
does not consider word usage heterogeneity and outliers that are inherent in social
media content. Our framework KeyPicker accounts more for this noisy nature. To
handle temporal outliers, when people mention keywords before/after their respective
events, both keyword burstiness and inter-arrival are measured based on the discrep-
ancy paradigm. For temporal heterogeneity, the baseline parameters are estimated
from a history with periodic division. Moreover, the history of a word is updated
and materialized periodically to ensure both reliability and efficiency in extracting
keywords from social media.

3.3 Background and Problem Statement

In this section, first, we illustrate the temporal organization of microblogs along with
the notations used to access these microblogs and the contained word statistics. A
summary of these notations is described in Table 3.1. We conclude this section by
presenting the problem statement.

3.3.1 Temporal Organization of Microblogs

The time dimension is inherent and very important when dealing with data streams.
To cope with the huge amount of incoming microblogs, KeyPicker exploits a sliding
window on the stream of microblogs and incrementally processes the most recently
posted microblogs. The timeline is divided into snapshots.
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Table 3.1: Main notations used for extracting keywords and estimating a dynamic
weight for each.

Notation Description
t current snapshot
M t microblogs published at t, m is a microblog in M t

W sliding window
W t set of words mentioned at snapshot t
W t

w microblogs published at t and contains word w
c sliding window size (number of snapshots in W)
stw signal of word w at snapshot t
atw inter-arrival time of word w at snapshot t
Sw signal history of word w
Iw inter-arrival time history of word w
v history length
q periodic interval length
B materialized usage baseline
Kt keywords extracted at t

Definition 3.1 (Snapshot) Given a sequence (· · · , t − 2, t − 1, t) of fixed-length,
adjacent, and non-overlapping time intervals composing the timeline. Each such in-
terval is called “snapshot” and corresponds to the time interval during which a number
of microblogs is published. The snapshot t is assumed to be the current snapshot.

These snapshots are the main building blocks over which a sliding window W moves.
The granularity of these snapshots determines how fast the time window W slides.
The snapshot length can be set to a fine resolution, e.g., one minute, to achieve online
or near real-time processing of microblogs.

Definition 3.2 (Sliding window) The last c snapshots form a sliding window W
holding the most recent microblogs to be processed.

Let us denote the set of microblogs published at t byM t. Each microblog m ∈M t

consists of a number of fields.

Definition 3.3 (Microblog) A microblog m = (S, id, uid, loc, time) consists of a
set of words (S), a microblog identifier (id), a user identifier (uid), a creation time
(time), and geo-coordinates (loc).

In this chapter, we make use of all these fields except loc, which will be considered in
Chapter 4.
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This sliding-window-based processing paradigm is crucial when handling large
volumes of incoming microblogs. For this, processing the microblogs published during
the most recent snapshot t starts directly when the end time point of snapshot t is
reached. The next processing iteration will be triggered at t+1 to analyze microblogs
within M t+1, and so on. For efficiency reasons, we implement the sliding window W
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Figure 3.2: The temporal index of the microblogs published duringW . The keyW t of
the inverted index W points to a set of words. These words are also keys for another
inverted index W t. The postings of the key W t

w are the ids of microblogs published
at snapshots t and containing word w.

as an inverted index such that each microblog within W is indexed by the snapshot
during which it is published. For example, to directly access the microblogs published
during snapshot t, the time index W t is used. Moreover, we add another word-level
of indexing. In other words, the microblogs published during a certain snapshot t are
maintained in an inverted index accessed by W t. As can be seen in Figure 3.2, the
keys of this index are the words {w ∈ m.S|m.time ∈ t} and the postings are the ids
of microblogs containing these words. The microblogs published during snapshot t
and containing word w are denoted by W t

w. Therefore, constant time is required to
access the microblogs published during a certain snapshot and containing a certain
word.

3.3.2 Problem Statement

After a new snapshot t elapses, a set of keywords Kt is to be extracted from the
content of microblogs published during t, such that Kt ⊆ W t. For each k ∈ Kt, a
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dynamic weight, denoted weight(k, t), is computed to reflect how the significance of
k evolves over time.

To judge whether a certain word is a keyword or not, its current usage behavior
needs to be compared against an expected baseline. This baseline is represented as a
set of parameters that are estimated from historical observations. Hence, the task is to
estimate, for each word w, at each snapshot t, a time-dependent baseline. However,
the content of social media has a dynamic nature such that, by time, new words
appear and others diminish. Therefore, the computed baseline should be maintained
and updated over time. Moreover, a baseline of a single word might be requested
several times during a short period of time, and thus, appropriately materializing
corresponding baselines should reduce the computation time substantially.

3.4 Temporal Index Update

In Section 3.3.1, we described the structure of the temporal index that holds and
indexes the microblogs’ content published during the sliding window W . As time
progresses and the new snapshot t elapses, there is a need to include the recently
arrived content and to remove the content of the expired snapshot. Hence, in this
section, we describe the steps needed to update the temporal indexW , which includes
two main operations:

1. Inserting the content of microblogs published during snapshot t. First, text
preprocessing is conducted for each microblog to retrieve words representing
the postings of index W t. Then, the microblogs are stored according to the
words they contain as illustrated in Section 3.3.1.

2. Deleting the content of the microblogs published during the expired snapshot
t− c.

Algorithm 3.1 shows the steps needed to preprocess the content of microblogs
M t published during the current snapshot t and to update the index W accordingly.
First, in Line 1, a new inverted index W t is generated, maintaining the microblogs
published during the current snapshot t, and then, W t is appended to W . Before
inserting word entries in the index W t, some preprocessing steps are performed to
cope with the noisy nature of the content of microblogs. In fact, microblogs contain
a lot of spelling errors, colloquial expressions, shortcuts etc. Moreover, some social
media sites, e.g., Twitter, impose a size limitation on the length of a microblog’s
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content, which forces users to use shortcuts to convey information. In addition, the
vocabulary size of the textual content published through social media is virtually
unlimited; and therefore, content preprocessing is a must. In our framework, we
apply the following preprocessing operations for each microblog arriving during the
recent snapshot t:

1. Per-user aggregation of microblogs (Line 2): In the context of social media, one
should be careful when counting words, because some microblogs are repub-
lished several times for the sake of news distribution, advertisements etc. Mul-
tiple occurrences of such microblogs do not necessarily reflect a certain event.
To deal with such cases, the microblogs posted by a single user at snapshot t
are aggregated to form just one microblog.

2. discard special characters (e.g., #, ?, !, ”). (Line 6)

3. remove stop words, words having a length less than three, and URLs. (Line 7)

Words whose lengths are less than 3 are disregarded because they are usually
uninformative, e.g., smileys [94]. Furthermore, unlike traditional preprocessing tech-
niques, we do not use stemming as stemmers are not effective when the text stream
is flooded with a lot of typos and colloquial words. On the other hand, stemmers are
language-specific, which implies the need for a separate stemmer for each language.

The preprocessed version tmp of word w is then used to update W t as can be
seen in Lines 8-10. First, we check whether W t contains the posting tmp, and if not,
tmp is inserted and a reference to this posting is returned as W t

tmp (Line 9). Then,
microblog m is added to the list of microblogs published during t and containing word
tmp, namely the listW t

tmp. Finally, in Line 11 the memory space reserved to maintain
the content of microblogs posted during the expired snapshot t− c is de-allocated to
free space for new microblogs arriving at subsequent snapshots.

3.5 Word Usage Pattern and Baseline

In this section, we study the usage pattern and baseline of each word w ∈ W t. The
usage pattern describes the behavior of the word at the current snapshot t (Sec-
tion 3.5.1). This behavior is represented through two estimates: word signal and
inter-arrival time. In Section 3.5.2, we study the expected behavior of a word, called
word baseline, which will be estimated from historical observations. Both the usage
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Algorithm 3.1: Temporal index generation and content preprocessing.
Input: Index W , Microblogs M published during t, sliding window size c
Output: W t inverted index appended to W
// Index W t instantiation

1 W t ←W .appendIndex(t)
2 M ← aggregateMicroblogsPerUser(M)
3 foreach m ∈M do
4 foreach w ∈ m.S do
5 tmp← w // tmp holds a preprocessed version of w
6 tmp← tmp.omitSpecialCharacters() // #, !, ?, “, . . .
7 if !tmp.isStopWord() & len(tmp) > 2 & !tmp.isURL() then
8 if tmp /∈ W t then
9 W t

tmp ←W t.appendIndex(tmp)

10 W t
tmp.insert(m)

// remove content of expired snapshot
11 W .deleteIndex(t− c)
12 return W

pattern and baseline are then exploited in Section 3.6 to determine whether w is a
keyword and to compute its dynamic weight as well.

3.5.1 Word Usage Pattern

Assume that a certain event is taking place at snapshot t. Therefore, some related
words will exhibit a surge in usage at t and this bursty nature might last for some
time, i.e., for a number of snapshots. To better describe the current usage behavior of
a word, we account for not only how frequent this word is used at snapshot t but also
how often it appeared at previous snapshots withinW . For this, the usage pattern of
a word is quantified using two estimates:

(1) Word Signal : It represents a quantitative measure reflecting the relative fre-
quency of word w, which is reported at the end of snapshot t. The higher the
word signal, denoted stw, the more users mention w at t.

Definition 3.4 (Word Signal) The signal of word w at snapshot t is the ratio be-
tween the number of microblogs containing w and the total number of microblogs
published during the sliding window W, defined as

stw :=

∑t−c+1
i=t |W i

w|∑t−c+1
i=t |M i|

. (3.1)
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If some word w pertains to a certain event taking place at snapshot t, the signal of
w is expected to have a positive value larger than in normal situations.

(2) Word Inter-arrival : The inter-arrival time1 of word w at snapshot t is a good
indicator of how temporally-close the occurrence of word w at time t is to
its previous occurrence during W . The closer the recurrences of word w at
contiguous snapshots, the higher the evidence that the word relates to a certain
event.

Definition 3.5 (Word Inter-arrival) The inter-arrival time atw of word w at snap-
shot t is the number of snapshots the current occurrence of that word is temporally
apart from the preceding occurrence during W.

Formally, the inter-arrival time atw of word w at snapshot t is defined as

atw :=


0 if siw = 0 ∀i ∈ Q
t− arg max

i∈Q∧siw>0

i otherwise
(3.2)

where Q = {t−c+1, . . . , t−1} is the set of snapshots in windowW without snapshot
t. When word w appears only during the current snapshot t (case 1 in Eq. 3.2), the
inter-arrival time atw is set to zero. Otherwise, it is set to the difference between the
current snapshot t and the closest one during which w appeared (case 2 in Eq. 3.2).

Example 3.1 Assume that the word signals of word w during a 6-hour window are:
st−5
w = 0.2, st−4

w = 0.3, st−3
w = 0, st−2

w = 0.1, st−1
w = 0, and stw = 0.2. Then, the current

word inter-arrival atw is 2. This is because the first snapshot that has a positive signal
before the current snapshot t is t− 2, and thus, atw = t− (t− 2) = 2.

3.5.2 Time-aware Usage Baseline

In order to identify a word w as a keyword at snapshot t, its current usage pattern
discussed in the previous section should show an abnormal behavior. More precisely,
stw and atw have to hold unusually high and small values, respectively. This abnormal
usage pattern can be uncovered when compared to a usage baseline describing the
word’s non-bursty behavior. The usage baseline of word w is therefore a property
essential to determine whether w is considered a keyword. A reliable estimation of
such a baseline is important to obtain a high-quality keyword extraction procedure.

1inter-arrival for short
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In the following, we first show how to quantify word baselines, address the problem
of temporal heterogeneity, and finally discuss how to estimate time-aware baselines
to cope with this problem.

Baseline Parameters

The baseline of a certain word is basically estimated using observations collected
from a historical window (history for short) preceding the sliding window W (see
Figure 3.1). This baseline is quantified as baseline parameters describing the prob-
ability distributions underlying these historical observations. In the following, we
present what type of baseline parameters are required and how to estimate them.

Suppose that the microblogs collected during history are divided into a
chronologically-ordered sequence of sets of microblogs (M0,M2,M3, · · · ,M v−1),
where v is the history length (number of snapshots) and is set according to the
inequality v ≤ (t − c + 1). Using this inequality, history does not overlap with the
sliding window, yet a gap is allowed between history and the sliding windowW . This
gap imposes a certain level of independence, and thus, lowers the correlation between
historical observations and those corresponding to the sliding window.

To efficiently obtain a baseline for each word from history, the microblogs are
indexed based on a temporal index structure similar to the one described in Sec-
tion 3.3.1. We apply Algorithm 3.1 to create inverted indexes W i for each historical
snapshot i ∈ {0, 1, 2, · · · , v − 1}1. By this, we can retrieve count statistics for each
word w in history in constant time. Using the method discussed in Section 3.5.1, two
types of observations are extracted from these historical snapshots:

(1) Historical signals Sw: a sequence of chronologically-ordered signals of word w,
i.e., Sw := (s0

w, s
1
w, · · · , sv−1

w ). We assume that these signals are generated from
a normal distribution,

Sw ∼ N (µw, σw),

which is determined by two parameters: the mean (µw), and the standard
deviation (σw).

(2) Historical inter-arrivals Iw: a sequence of chronologically-ordered inter-arrivals
of word w, which indicate the temporal gaps between consecutive positive signals

1The colon in the superscript (0 : v − 1) represents a sequence of snapshots from 0 to v − 1, i.e.,
W0:v−1 = (W0,W1, · · · ,Wv−1).
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in Sw. These inter-arrivals are assumed to be exponentially distributed,

Iw ∼ Exp(λw),

where the inter-arrival rate λ is the only parameter to be estimated. The ex-
ponential distribution is usually used to describe the lengths of the inter-arrival
times in a homogeneous Poisson process [130].

The aforementioned parameters (µw,σw,λw) are the baseline parameters of word
w and estimated using maximum likelihood [31].

Temporal Heterogeneity and History Division

The usage patterns of the majority of words in social media suffer from temporal
heterogeneity in the sense that the observations in Sw and Iw vary over time exhibiting
some periodic usage patterns. This is mainly due to two main reasons:

(1) A large number of words are inherently periodic. For example, the word “morn-
ing” is frequently mentioned in the early morning, and then its usage frequency
keeps decreasing until it approaches zero at night. This heterogeneous usage
pattern recurs the following day, and so forth.

(2) The number of microblogs depends highly on the snapshot during which they
are published. Usually, there are many more messages published during day
time than during night.

Thus, the computed baseline parameters of word w, considering history in its en-
tirety, can over- or under-estimate the real value depending on the snapshot used to
determine a baseline. For instance, a small increase in the frequency of the word
“car” published as a response to a certain event taking place during night might be
erroneously ignored. This is because the word “car” is a common word, mentioned
in different contexts, and thus, has a relatively high mean µw, in particular, at day
time. Therefore, the estimated baseline for word w at the current snapshot t should
be time-aware. That is, if t refers to a time point in the morning, then the baseline
parameters have to be estimated from historical snapshots in the mornings of each
day in history.

To handle temporal heterogeneity, to capture the periodicity of a signal, and hence
to estimate a time-aware baseline, we divide the history of each word into a number
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of non-overlapping, consecutive, and fixed-length periodic intervals, i.e.,

W0:v−1
w = (W0:q−1

w ,Wq:2q−1
w , · · · ,Wv−q:v−1

w )

where q is the interval length, i.e., the number of snapshots composing this interval.
The rationale behind this division is the fact that snapshots corresponding to different
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Figure 3.3: Dividing history into n fixed-length periodic intervals.

periodic intervals and having the same relative offsets refer to the same timing. For
instance, if the ith snapshot in a certain periodic interval corresponds to 9am, then
the ith snapshot of other intervals refer also to the same time, i.e., 9am. The history
length (v) is chosen to be a multiple of q, i.e., v

q
= n ∈ N+, where n is the number of

periodic intervals (see Figure 3.3).

For simplicity, we assume that the majority of words have a sequence pattern that
recurs daily. Thus, each periodic interval covers one day from history. In other words,
if a snapshot of size 1 hour is used, then the length of the daily periodic interval q
is 24 snapshots. Similarly, if one-minute snapshots are used, then the daily periodic
interval is 24 × 60 = 1440 snapshots.

Time-aware Baseline

After conducting history division, the next step is to select a subset of snapshots
from each periodic interval and use them to reach our target of estimating the time-
aware baseline parameters denoted µtw, σtw, and λtw for each word w at the current
snapshot t. For this purpose, both sequences Sw and Iw undergo the history division
described above. Then, a number of observations are chosen from each periodic inter-
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val (see Figure 3.4). The snapshots of these chosen observations should be temporally
consistent with the snapshots of the sliding window W .

Definition 3.6 (Temporally-consistent snapshots.) A snapshot m1 from the
sliding window is said to be temporally consistent with a snapshot m2 from a periodic
interval if and only if m1 and m2 are congruent modulo q, i.e., m1 ≡ m2 (mod q).

This congruence relation [129] guarantees that the chosen historical observations
from each periodic interval and those observed in the sliding window have the same
daily timing.

Example 3.2 Assume that a 1-hour-snapshot sliding window of size 3 is used. If
we want to estimate the time-aware baseline of the word “sun” at snapshot 13:00, the
snapshots (11:00, 12:00, 13:00) are chosen from each periodic interval.

Moreover, this congruence relation allows for an efficient access to historical obser-
vations in each periodic interval, which are temporally-consistent with the snapshots
of the sliding window W . To access such historical observations, their indexes are
calculated using

indexes := {(i− 1)q + (j mod q)},

for each periodic interval i ∈ {0, 1, · · · , n − 1}, and for each sliding window snap-
shot j ∈ {t − c + 1, t − c + 2, · · · , t}. Therefore, the chosen historical signals are
Stw := Sw[indexes] that are used to estimate the time-aware parameters µtw, σtw. Sim-
ilarly, the time-aware inter-arrival rate λtw is estimated from the chosen historical
inter-arrivals I tw := Iw[indexes]. Since both Stw and I tw are chosen from historical
snapshots that are temporally-consistent with the sliding window, their correspond-
ing distributions have less variability than the distribution of the entire set of obser-
vations, which helps mitigate the temporal heterogeneity problem.

3.5.3 History Update and Materialization

History Update

The vocabulary size of social media is virtually unlimited and the words mentioned in
published microblogs have dynamic usage patterns. For example, in Twitter, a large
number of hashtags appear everyday and others diminish after being used for a while.
Furthermore, the usage pattern of some words changes over time. In other words, a
word may exhibit a surge in usage as a result of a certain event. This increase in usage
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Figure 3.4: The time-aware baseline of word w at snapshot t is estimated from observa-
tions associated with temporally-consistent snapshots, indicated as diagonally-dashed
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might last for a long time and even after the event ends. As a consequence, the process
of conducting history update and maintenance over time is essential, ensuring that
the history includes the new words, getting rid of disappearing ones, and perfectly
matching the current usage patterns of existing words.

Before Update

TimeUpdate

After Update

W0:v−1

W0:rq−1

Wrq:v+rq−1

periodic intervals

new periodic intervals
expired periodic intervals

Wv:v+rq−1

Figure 3.5: Updating history by appending r new periodic intervals, each of which is
of size q, and by removing the same number of expired (oldest) ones. The resulting
historical snapshots after update are Wrq:v+rq−1

Updating the history requires the deletion of expired periodic intervals and the
insertion of new and subsequent ones. As can be inferred from Figure 3.5, by updating
the history of w, the system can now capture its usage dynamics by pushing its
corresponding history forward covering more recent snapshots.

The history update procedure is triggered by observing the gap between history
and W (see Figure 3.6). Initially, the gap is set to be a multiple of the length of a
periodic interval q, meaning that the gap is the number of periodic intervals separating
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the sliding window from history. It is not necessary to update history each time a
new snapshot elapses. In fact, this update procedure depends on the dynamics of
social media content and can be performed once every r×q snapshots, where r ∈ N+.
In this case, the gap between the history and the sliding window remains the same
over time and its original length is restored every r periodic intervals. If r is set to
1, then the history is updated each time a new periodic interval elapses, which is the
fastest update rate that can be achieved. Expired periodic intervals, new ones, and
the updated history are denotedW0:rq−1,Wv:v+rq−1, andWrq:v+rq−1, respectively (see
Figure 3.5).

Time
History Sliding window (W)

t0

c
gap

v

Figure 3.6: Historical window covering snapshots 0, 1, · · · , v − 1 (diagonally-dashed
filling), sliding windowW (solid filling). History is separated from the sliding window
by a gap.

Baseline Materialization

Recall that, for each word w mentioned at snapshot t, the baseline parameters
(µtw, σtw, λtw) need to be estimated on the fly using the historical observations Stw
and I tw. This estimation process is repeated as long as w is being mentioned in sub-
sequent snapshots, which requires a time complexity of O(|W t| × q), where q is the
periodic interval length and |W t| is the number of words at snapshot t.

To expedite this baseline estimation process, one solution is to materialize
the parameters (µiw, σiw, λiw) for each word in history at each periodic snapshot
i ∈ {0, 1, · · · , q − 1}.

Definition 3.7 (Periodic snapshots) These snapshots correspond to all possible
time points at which the time-aware baseline parameters need to be estimated. Once
a new snapshot t elapses, the corresponding periodic snapshot is calculated using the
congruence relation described in Definition 3.6. Periodic snapshots are referenced
using the indexes {0, 1, · · · , q − 1}.

Example 3.3 Assume that the periodic interval length is q = 24 and snapshot t is
244, then the periodic snapshot is 244 mod 24 = 4.
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Baseline parameters can be stored in a matrix-like data structure where the rows
represent words and the columns are the periodic snapshots. Each entry of this
matrix maintains the parameters (µ, σ, λ) for its corresponding word and snapshot.
Although this type of materialization allows for a direct access to baseline parame-
ters, it requires a relatively large maintenance time, in particular, when the history
is to be updated. This is because the entire parameter estimation procedure has
to be performed again, accounting for new periodic intervals and excluding expired
ones. For this, we choose instead to materialize synopses (summaries) of the word
signals, which are then used to estimate the baseline parameters in constant time.
These synopses include count statistics and sufficient statistics required to compute
the parameters (µ, σ, λ). The sufficiency is a well-known data reduction principle in
statistics, stating that observations can be reduced with statistics whose use involves
no loss of information, in the context of estimating unknown parameters for the prob-
abilistic model underlying these observations [31]. In other words, if the value of a
sufficient statistic is known, the observations do not contain any further information
for estimating the model parameters.

The synopses maintained to estimate both µtw and σtw are:

• xsum : the sum of historical signals in Stw.

• x2
sum : the sum of squared historical signals in Stw.

• xnum: the number of observations in Stw.

However, the synopses used to estimate the third baseline parameter λtw are:

• isum: the sum of inter-arrivals in I tw.

• inum: the length of I tw.

These five synopses for both Stw and I tw, which are sufficient to estimate the base-
line parameters (µtw, σtw, λtw), are referred to as materialized usage baseline.

Definition 3.8 (Materialized usage baseline) The materialized usage baseline of
word w mentioned during snapshot t, denoted Btw, is defined as:

Btw := (xsum, x
2
sum, xnum, isum, inum) (3.3)

The synopses of each word in history at each periodic snapshot {0, · · · , q− 1} are
maintained in a matrix referred to as B map as can be seen in Figure 3.7.
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Figure 3.7: Materialized usage baseline map B, maintaining synopses used to estimate
the time-aware baseline parameters for each word in history.

Once history update is triggered, the synopses maintained in B are updated based
on the following two operations:

(1) Insertion: accumulating the count statistics of words, observed in the new pe-
riodic intervals, in their corresponding entries in the B map (see Algorithm 3.2);

(2) Deletion: subtracting the count statistics of words mentioned in the expired
periodic intervals from their respective entries in B (see Algorithm 3.3).

Algorithm 3.2 details the steps required for the insertion operation. In Line 3, if a
previously unseen word w is encountered, a new row is created for w and appended to
the end of the B map. Then, we iterate over each snapshot j within the new r periodic
intervals (Lines 4-9). In Line 5, and before collecting statistics from snapshot j, its
respective periodic snapshot z is identified using the congruence relation described in
Definition 3.6. Then, the synopses corresponding to the new snapshot j are computed
and accumulated in existing statistics pertaining to word w at the periodic snapshot
z (Lines 9-9). Note that the inner loop is used to iterate over the snapshots that
are temporally-consistent with those of window Wz. The computed synopses from
observations corresponding to these snapshots are added to the map entry Bzw.

Algorithm 3.3 is invoked directly after Algorithm 3.2 to eliminate the statistics
of the expired periodic intervals W0:rq−1. Notice that these statistics are subtracted
from their respective materialized baselines, ensuring an incremental update for these
baselines. When no signal for word w is observed at any snapshot in history, i.e.,
(Bzw.xnum = 0) ∀z ∈ {0, 1, · · · , q − 1}, the entries of this word are removed from
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Algorithm 3.2: B Map Update (Insertion).
Input: new periodic intervals Wv:v+rq−1, window size c, map B, history size v,

number of inserted periodic intervals r.
Output: Updated B.

1 foreach w ∈ Wv:v+rq−1 do
2 if w /∈ B then
3 B.insert(w)

4 for j ← v to v + rq − 1 step 1 do
5 selected z ← j mod q
6 if z = 0 then
7 // To avoid inter-arrivals from different intervals
8 lastIndex← −1

9 for i← (c− 1) to 0 step (−1) do
10 Bzw.xsum += Sw[j − i]
11 Bzw.x2

sum += (Sw[j − i])2

12 Bzw.xnum += 1
13 if Sw[j − i] > 0 then
14 if lastIndex 6= −1 then
15 Bzw.isum += i− lastIndex
16 Bzw.inum += 1
17 lastIndex = i

18

19 return B

memory (Line 18). The process of accumulating statistics from the new periodic
intervals (Algorithm 3.2) is deliberately performed before removing those from the
expired intervals (Algorithm 3.3) in order to decrease the likelihood of removing
a materialized baseline from memory and then re-instantiating it again when new
signals appear directly in subsequent periodic intervals.

Now, when the time-aware baseline parameters µtw, σtw, and λtw of word w at
snapshot t are needed, it can be estimated in constant time, making use of its corre-
sponding statistics maintained in the materialized baseline Btw. Formally,

µtw =
Btw.xsum
Btw.xnum

. (3.4)

σtw =

√
Btw.x2

sum

Btw.xnum
− (µtw)2. (3.5)
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Algorithm 3.3: B Map Update (Deletion).
Input: expired periodic intervals W0:rq−1, window size c, map B, history size

v, number of removed periodic intervals r
Output: Updated B.

1 foreach w ∈ W0:rq−1 do
2 for j ← 0 to rq − 1 step 1 do
3 z ← j mod q
4 if z = 0 then
5 // To avoid inter-arrivals from different intervals
6 lastIndex← −1

7 for i← (c− 1) to 0 step (−1) do
8 Bzin.xsum −= Sw[j − i]
9 Bzw.x2

sum −= (Sw[j − i])2

10 Bzw.xnum −= 1
11 if Sw[j − i] > 0 then
12 if lastIndex 6= −1 then
13 Bzw.isum −= i− lastIndex
14 Bzw.inum −= 1
15 lastIndex = i

16 // if no signal is observed for w in history
17 if sum([B0:q−1

w ].xnum) = 0 then
18 B.delete(w)

19 return B

λtw =
Btw.inum
Btw.isum

. (3.6)

In the following section, we show how KeyPicker exploits these baseline param-
eters to identify event-related words (keywords) at the end of an elapsed snapshot.

3.6 Keyword Identification

To identify keywords among the huge stream of incoming words, we first describe
two characteristics important to uncover the (current) significance of a word: (1)
word burstiness, and (2) word recurrence. Then, we will show how we utilizes these
characteristics along with the time-aware baseline discussed in the previous section
to extract keywords and to estimate a dynamic weight for each.
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3.6.1 Word Burstiness

A word used by a larger number of users than in normal situations during a certain
period of time is referred to as bursty word. In the context of social media, the
discrepancy paradigm is used [4, 96] in extracting bursty words due to its efficiency
in incrementally processing words contained in the incoming stream of microblogs.
It measures the deviation between a current usage frequency of a word w and its
expected baseline. If this deviation exceeds a certain threshold, the word is considered
bursty. We apply a variation of the discrepancy paradigm, which uses the z-score
measure to identify bursty words. Based on the assumption that word signals are
normally distributed (see Section 3.5.2), a burstiness degree is computed for each
word w at snapshot t as

burst(w, t) :=
stw − µtw
σtw

(3.7)

where µtw and σtw are the time-aware mean and standard deviation of word w, respec-
tively (see Section 3.5.2).

Definition 3.9 (Bursty word) A word w is considered bursty if the burstiness de-
gree of w is at least two standard deviation above the mean, i.e., burst(w, t) ≥ 2.

Since the µtw±2σtw region contains 95% of the data under the assumption of a normal
distribution, the probability that stw is generated from the normal distribution when
burst(w, t) ≥ 2 is 1−0.95

2
= 0.025% and therefore w can be identified as bursty.

If w is a new word that has been not observed in history, i.e., having µtw = 0 and
σtw = 0, we assume a prior noise level of σtw = stw/f . That is, the initial noise level
is 1/f -th of the observed word signal. In our work, we set f = log2(|Ww

t |+ 1), so
that, and according to Definition. 3.9, word w should be observed at least 3 times
at snapshot t in order to treat it as bursty word. This restriction on the number of
occurrences of a new word is useful to mitigate the impact of the out-of-vocabulary
words appearing frequently in social media.

However, social media is very noisy with many words appearing suddenly and
diminishing directly. Moreover, event-related words are likely to be used before or/and
after their respective events. For example, a group of friends might talk about a soccer
match that they plan to attend a few hours before its actual start time. This leads
to a number of false positives (words that are wrongly identified as bursty), which
degrades the accuracy of the extraction procedure. We call the keywords mentioned
outside their event period temporal outliers. A main factor that helps in distinguishing
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actual keywords from temporal outliers is that the later is usually less frequently
recurring at consecutive snapshots. That is, actual keywords are more likely to recur
in temporally-close snapshots. In the following, we introduce another characteristic
of words, which helps mitigate the influence of these outliers.

3.6.2 Word Recurrence

In this section, we study the recurrence characteristic of a word published at the cur-
rent snapshot and provide a quantitative measure describing its repetitive occurrences
at close snapshots. Words recurring more frequently during W than during history
should be identified. As discussed in Section 3.5.2, the inter-arrivals are assumed to
be exponentially distributed, then the probability density function that models these
inter-arrivals is

f(atw;λtw) = λtw × e−λ
t
wa

t
w (3.8)

where λtw is the expected inter-arrival rate, as described in Section 3.5.2. To quantify
and normalize the degree of recurrence of a certain word at snapshot t, we divide the
likelihood of the observed inter-arrival time atw by the maximum value of f(atw;λtw),
which occurs at the mode (0 in case of exponential distributions), i.e.,

f(atw;λtw)

f(0;λtw)
= e−λ

t
wa

t
w . (3.9)

We define the recurrence score of word w at snapshot t as

recurrence(w, t) :=


1 if (atw > 0) and (λtw = 0)

e−λ
t
wa

t
w if (atw <

ln 2
λtw

) and (λtw > 0)

0 otherwise

(3.10)

Case 1 indicates that if word w is not observed in history (λtw = 0) and starts to
occur during W , then it is a new word, and thus, it acquires a weight of 1. In case
2, w is observed in history; however, it exhibits some recurrent pattern during W
because its observed inter-arrival atw is less than a specific cut-off threshold. We set
this threshold to the median ln 2

λtw
of the underlying exponential distribution. The third

case indicates that the word is not showing any significant recurrence pattern, and
hence, is set to 0. Moreover, if w is observed once during W , the recurrence score is
set to 0.
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Definition 3.10 (Recurrent word) A word w is considered recurrent at snapshot
t if the recurrence score of w is greater than 0, i.e., recurrence(w, t) > 0.

This recurrence characteristic of a word will be used in the following section to filter
out both temporal outliers and words that appear only once, such as typos.

3.6.3 Keyword Identification

In this section, we make use of both word characteristics, i.e., burstiness and recur-
rence, to identify keywords Kt at snapshot t and to assign a weight for each keyword
(see Figure 3.8).

< w, stw, a
t
w >

Time-aware
baseline

from history

Word
Burstiness

w

atw: inter-arrival of w at t

µtw: expected mean of w at t

σt
w: std. dev. of w at t

λtw: recurrence rate of w at t

weight(w, t)

Word
Recurrence

stw: signal of w at t

burst(w, t)

recurrence(w, t)

Figure 3.8: A block diagram for estimating a weight for word w.

We define a dynamic weight combining both characteristics as:

weight(w, t) := burst(w, t)× recurrence(w, t), (3.11)

which is the weight of word w at snapshot t. If w is related to a certain event, then its
weight is likely to receive a high value during the event. Therefore, we can redefine
the concept of a keyword as follows

Definition 3.11 (Keyword) A word w ∈ W t observed at snapshot t is a keyword
if and only if w is both bursty and recurrent. Therefore, the set of keywords extracted
from snapshot t is Kt = {w : weight(w, t) > 0 ∧ w ∈ W t}.

As a result, a set of keywords Kt is extracted and a weight is estimated for each
once a new snapshot elapses. At the next snapshot, the same steps are followed,
and hence, some new keywords appear, others previously extracted may vanish or
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have their weights changed. Some application examples on these keywords and their
dynamic weights are discussed in Section 3.8.

3.7 Experiments

In this section, after describing the datasets, we evaluate different aspects of KeyP-

icker. More precisely, we test its ability to extract event-related keywords (Sec-
tion 3.7.2), to place such keywords among the top-weighted ones during the event
period (Section 3.7.3) and to assign a dynamic weight evolving over time for each
keyword (Section 3.7.4). Then, in Section 3.7.5, we compare KeyPicker against a
baseline approach and a state-of-the-art framework. Finally, we evaluate the scala-
bility of KeyPicker in processing a large stream of incoming microblogs.

3.7.1 Datasets and Infrastructure

To evaluate the performance of KeyPicker, we use three datasets of tweets retrieved
using the public Twitter API1. In Table 3.2, a feature summary is given describing
each dataset: the bounding box from which the tweets originated, the interval during
which the tweets were collected, the history period used to estimate the usage baseline
parameters, and the average number of tweets published per snapshot.

Table 3.2: The specifications of the datasets MAD, UKR, and NYC.

MAD (Madrid) UKR (Ukraine) NYC (New York)

Bounding Box
lon lat

from -3.93 40.21
to -3.33 40.64

lon lat
from 23.99 45.20
to 40.51 53.26

lon lat
from -74.63 40.50
to -73.63 40.97

Time interval
from 2013/1/24
to 2013/2/08

from 2012/6/22
to 2012/7/08

from 2013/10/20
to 2013/11/30

History
from 2013/1/24
to 2013/1/28

from 2012/6/22
to 2012/6/29

from 2013/10/20
to 2013/10/30

# / snapshot 1772.4 648.5 6027.3

Due to the unavailability of a ground truth for evaluation purposes, we manually
checked several Web sources to retrieve some featured events (see Table 3.3) that
occurred during a time period covered by the three datasets. These events are treated
as study cases for evaluation purposes. Dataset MAD contains tweets originating
from the city of Madrid in Spain and encompasses two main events: (1) The Classico

1http://dev.twitter.com/pages/streaming\_api, accessed Apr. 2012
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match that started at 20:001 on Jan 30th, 2013 at Santiago Bernabeu stadium, and
(2) the Fitur2 event occurred during the time interval from Feb 30th, 2013 to Feb
3rd, 2013 at the trade fair center of Madrid (IFEMA)3. The second dataset UKR
includes a number of UEFA 2012 matches with the final match between Spain and
Italy being the most attractive event. The final match took place at 20:45 EET on
July 1st, 2012 at the Olympic stadium. In dataset NYC, five featured events are
chosen; two correspond to American football matches, one to the annual marathon in
NYC, one to Macay’s event, and the last to a musical concert. Recall that our main
goal in this chapter is not to detect events, yet evaluating the ability of KeyPicker

to extract related keywords, and to provide a dynamic weight for each keyword.
The length of the used snapshot and sliding window c were set to 1 hour and 6

hours, respectively. The experimental platform is based on an Intel Core i7 QuadCore
(2.4 GHz) with 8GB memory on Ubuntu 12.04 (with Java 6 framework). To simulate
the real-time processing of tweets, the tweets are chronologically-ordered, as described
in Section 3.4, and the stream is replayed, one snapshot at a time.

3.7.2 Keyword Extraction

In this section, we test the ability of KeyPicker to extract keywords that are related
to some real-world events and to filter out temporal outliers. Figure 3.9 shows the
temporal profile of both the signal and baseline of word “morning” in dataset NYC.
As can be seen, and due to using time-aware baselines, both estimates behave the
same at different points in time. However, the word “morning”, as well as other
periodic words, will exhibit a bursty behavior every day at the same time, which
increases the system’s false positives.

Figure 3.10 shows the word signals, usage baselines, and weights of the words
(“final”, “giants”, and “halamadrid”). On July 1st, 2013, the word “final” is identified
as a keyword at a number of snapshots due to the occurrence of the final match
in the UEFA 2012 champions league. This keyword is subject to suffering from
temporal outliers because it can be mentioned in different contexts. In particular, for
such a popular and attractive event, the keyword “final” tends to be mentioned even
before/after the match starts/ends. However, and as can be seen in Figure 3.10b,
KeyPicker can mitigate the impact of these outliers and assigns lower weights
to them compared to the weights assigned to this keyword at snapshots close to

1All timestamps mentioned in this thesis are based on GMT time unless otherwise specified.
2International Tourism Trade Fair; a global meeting point for tourism professionals.
3the trade fair center of Madrid
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Table 3.3: Featured events as case studies from dataset MAD, UKR, and NYC.

Dataset Eid Event Description Keywords Start time Location

MAD

E1 The Calssico Match

halamadrid,
classico,
santiago,
bernabu

2013/1/30
20:00

Santiago Bernabeu
stadium

E2 Fitur
fitur2013,
IFEMA,
stand

2013/1/30
11:00 IFEMA

UKR E3
Final match (UEFA

2012)
final, spain,
euro, uefa

2012/7/1
18:45

Olympic stadium,
kiev

NYC

E4
Raiders v.s. Giants

match

raiders,
giants,

rutherford,
stadium

2013/11/10
18:00 MetLife Stadium

E5
ING New York City

Marathon

marathon,
ing, nyc-
marathon

2013/11/03 NYC

E6 Saints vs. Jets

whodat,
saints,

saintsgame-
day

2013/11/03 MetLife Stadium

E7
Macy’s Parade
Balloon Inflation

macys,
inflation,
balloon,
marching,
parade

2013/11/27 NYC

E8
Krewella with
Gareth Emery

krewella,
gareth,
emery,

pieroffear

2013/11/01 Pier 94 Manhattan

E9
Argentina vs.

Ecuador

argentina,
equador,
argenti-

navsecuador,
mundial

2013/11/15
22:00 MetLife Stadium

E10
The Victoria’s

Secret Fashion Show

fashion,
secret,

victoria, vs-
fashionshow,
victoriasse-

cret

2013/11/13 69th Regiment Ar-
mory

the match time. For example, on June 30th, a number of relatively high signals
were observed for this word, as shown in Figure 3.10a. However, KeyPicker, by
incorporating the recurrence characteristic of a keyword (see Section 3.6), assigns
no positive weights to the keyword “final” up to 6 hours before the start time of
the match. For keyword “giants”, three peaks are identified, which pertain to three
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Figure 3.9: The dashed red curve depicts the time-aware baseline (mean) of the word
“morning” from dataset NYC, while the other line corresponds to the actual word
signal observed at each snapshot.

American football matches occurred during November 2013 in NYC (dataset NYC).

3.7.3 Top Keywords During Events

In the previous section, we evaluate our approach in assigning relatively high positive
weights to keywords pertaining to some events. In this section, we conduct a closer
analysis for the weights and investigate whether KeyPicker can place event-related
keywords among the top-weighted ones extracted at each snapshot. For this purpose,
and from the datasets MAD, UKR, and NYC, the top-10 keywords mentioned dur-
ing a number of selected snapshots are listed in a descending order by their weights.
From dataset MAD, as can be observed in Table 3.4, keywords related to E1 started
to obtain significant weights that increase as the start time of E1 approaches. For
instance, the word “clasico” received the weights (14.20, 23.25, 87.7) during the snap-
shots (18:00, 19:00, 20:00), respectively. The event E1 started at snapshot 20:00,
which justifies the reason that the keyword “clasico” obtained the highest weight at
that snapshot. Moreover, at snapshot 20:00, the majority of the top-10 keywords are
Classico-related, e.g., “santiago”, “bernabu”, “clasico”, and “halamadrid”.

Similarly, keywords related to the events E3 and E4 exhibited a bursty and recur-
rent nature. Thus, these keywords were dominant with respect to the weights they
obtained, as can be noticed in Table 3.4. For E3, which is the final match of the UEFA
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Figure 3.10: The temporal profile of three words (final, giants, and halamadrid) from
the datasets UKR, NYC and MAD, respectively. Figures a,b, and c plot both the
observed signals and the expected mean µ of the time-aware baseline of these words
at a number of snapshots. Figures b, d, and f show the snapshots during which these
words held positive weights, and thus, considered keywords.
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2012 champions league, related keywords held high weights during multiple snapshots
as shown in the middle part of the table. E3 stimulated people posting related tweets
before, during, and after the match time interval. An important feature of KeyP-

icker that is noteworthy and apparent in this example is that keywords from different
languages are extracted. This is because KeyPicker is language-independent and
does not require defining a set of words a priori. For instance, some of the extracted
keywords are Russian (“Ol�mp��s~ki�”, “Ispani�”, “Final”, “Smotrim” etc)1.

3.7.4 Keyword Evolution

One interesting characteristic of KeyPicker to be evaluated is its ability to track
the evolution of keywords over time, namely, its ability to assign dynamic weights for
keywords, reflecting how the significance of each keyword changes as time progresses.

In Figure 3.11a, we consider event E3 and demonstrate the behavior of some
keywords (final, spain, italy, nsc, uefa) observed in tweets from dataset UKR. The
match started at 20:45pm EET, and as can be seen in the diagram, the keywords
started to obtain significant weights at snapshot 19:00. Even after the match had
ended, the weights remained relatively high in subsequent snapshots, which is a good
indication of the important role that time-aware baselines play (see Section 3.5.3).
For example, the word “spain” kept taking on high weights after the match ended, in
spite of the drop in the number of users posting event-related tweets containing this
word. Based on the time-aware baseline, temporally-consistent snapshots have even
much smaller signals for “spain”, which highlights its current observed signal.

Figure 3.11b shows the weights of keywords relating to the events E1 and E2

during the interval (05:00 2013/1/30 to 16:00 2013/1/31) from dataset MAD. Three
groups (spikes) can be recognized in the figure. The first and third group refer to
the same event “Fitur” with prominent keywords such as “feria”, “fitur”, and “ifema”.
The second spike corresponds to the Classico match. We can observe that related
keywords, e.g., halamadrid, estadio, bernabu started to hold considerable weights
at snapshot 19:00. Using a finer temporal granularity (one-minute snapshots), Fig-
ure 3.12 shows that the word “euro” was recognized as a keyword at several snapshots
during July 1st, 2012.

1Ol�mp��s~ki�: Olympic, Ispani�: Spain, Final: final, Smotrim: watching
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Table 3.4: Top-10 extracted keywords relating to the events E1, E3, and E4.
snapshots from dataset MAD on Jan 30th, 2013 (Event E1)

16:00 17:00 18:00 19:00 20:00
Word Weight Word Weight Word Weight Word Weight Word Weight
fitur2013 56.43 anguila 38.90 motores 34.31 plataforma 28.12 clasico 87.76
stand 45.40 juas 23.08 ifema 22.87 contactar 25.04 santiago 61.43
loved 27.28 cubos 20.03 nao 20.59 clasico 23.25 bernabu 56.08
fitur 26.65 carajo 18.44 calentando 15.81 agotado 21.24 titularidad 54.26
sirven 13.88 fitur2013 9.97 clasico 14.20 vodafone 17.39 estadio 41.83
andaluca 10.88 pagamos 9.74 gregorio 10.63 bernabu 14.72 varane 41.47
amaneceres 10.73 caen 8.43 clsico 8.91 halamadrid 13.68 halamadrid 37.86
almeja 10.23 ministro 8.08 segovia 8.75 calentando 13.43 hala 30.76
calentar 8.46 orejas 7.87 aburres 8.64 asamblea 11.33 clasicazo 25.01
missed 8.25 dentista 7.86 fitur2013 6.75 ganara 10.63 realmadrid 22.95

snapshots from dataset UKR on July 1st, 2012 (Event E3)
18:00 19:00 20:00 21:00 22:00

Word Weight Word Weight Word Weight Word Weight Word Weight
final 13.46 final 27.56 final 76.35 Ispancy 47.76 Ispani� 117.7
stadium 12.45 olimpiyskiy 8.33 stadium 17.54 Boleem 9.60 bolel 92.30
fanzone 10.74 italia 8.16 Final 9.33 Qem 8.52 torres 18.70
olimpiyskiy 5.67 nsc 7.63 Ispani� 7.43 Ispani�, 5.93 ppc 6.78
2012 3.83 Ol�mp��s~ki� 7.63 viva 7.30 Futbol 5.40 KAK 6.36
Za 3.60 NSK 7.60 Smotrim 5.09 Italii 4.53 bl�d~ 6.20
euro 3.22 2012 4.66 espaa 4.86 evro 4.39 Ispani� 3.39
nsc 2.91 leto 4.48 ukraina 4.52 espana 3.93 Final 3.32
Ol�mp��s~ki� 2.80 Ispani� 4.38 2012 4.47 Ispani� 3.81 �alko 2.86
NSK 2.39 Posledni� 4.14 euro2012 3.59 forzaitalia 3.56 viva 2.16

snapshots from dataset NYC on November 10th, 2013 (Event E4)
14:00 15:00 16:00 17:00 18:00

Word Weight Word Weight Word Weight Word Weight Word Weight
mongodb 22.32 raiders 18.38 raiders 45.34 raiders 44.02 engadget 80.82
thor 13.19 thor 7.86 spurs 35.39 engadget 26.96 raiders 56.90
reservoir 10.59 giants 7.78 thor 22.74 oakland 21.20 artrave 44.67
foster 10.21 options 6.17 pho 16.56 spurs 19.86 thor 26.11
philippines 8.49 tailgating 4.49 engadget 15.54 miamidol... 14.29 spurs 20.18
chantelle 7.17 gmen 4.23 cloisters 10.48 idolo 9.59 nygiants 14.78
bryant 5.91 sunderland 3.97 thegarden 9.89 nyknicks 9.38 izod 12.14
intoxicated 5.67 parking 3.60 nyknicks 8.17 woodson 8.79 oakland 11.58
tailgating 5.16 stadium 3.51 giants 7.88 thor 8.63 expand 9.54
movember 5.16 film 2.90 arsenal 7.32 channing 8.41 bigblue 7.24

3.7.5 Qualitative Evaluation

In this section, the aim is to compare the performance of KeyPicker against a
baseline approach BW [3] and a state-of-the-art framework BursT [99] in extracting
high-quality event-related keywords. The core point of this comparison is to determine
the approach that can produce more informative keywords than the others. For the
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Figure 3.11: Tracking the evolution of keywords’ weights over time.

sake of evaluation, stop-words are not discarded in this experiment and used as a
ground truth. That is, the approach avoiding to identify stop-words as keywords has a
more informative nature than others. Figure 3.13a shows the percentage of stop-words
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Figure 3.12: Occurrences of keyword “euro” during (00:00 2012/06/22 ) to (23:59
2012/07/08). (a) The red curve shows the time-aware baseline (mean) of the word
“euro”, and the black curve corresponds to the actual word signal. (b) The weights of
the word “euro”.

at each snapshot during the period of study. The result is that KeyPicker considers
much less keywords as stop-words than BW. This property is important not only for
stop-words, but also for other words having a similar repetitive nature, e.g., “job”
and “birthday”. Similarly, KeyPicker outperforms BW in terms of the percentage of
extracted keywords that exist in the WordNet1 dictionary (see Figure 3.13b). The
premise here is that the more keywords that can be found in the dictionary are
extracted by a certain approach, the more reliable the approach is.

To conduct a more focused evaluation and to test how informative the keywords
that KeyPicker extracts are, we investigate the events E4, E5, E6, E7 and E8

and report some statistics related to the top 100 keywords extracted using BW, BursT,
and KeyPicker during the time period of each event. That is, the percentage
of the extracted event-related keywords among the entire set of studied keywords
(see Table 3.3) is computed for each approach. Figure 3.14 shows that KeyPicker

outperforms the others in bringing the keywords of ongoing events as top keywords
except for the event E5 that relates to NYC marathon. This is because this event
is popular enough and there is a large number of users publishing marathon-related
tweets. As a result, KeyPicker succeeds to perform well in the case of limited
and unpopular events, e.g., event E8 that is related to a musical concert. This is

1http://wordnet.princeton.edu, accessed Dec. 2013



3.7 Experiments 83

0 100 200 300 400 500 600 700

0.
00

0.
05

0.
10

0.
15

1−hour snapshots

%
 o

f s
to

p−
w

or
ds

BW
KEYPICKER

(a)

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−hour snapshots

%
 o

f i
n−

di
ct

io
na

ry
 w

or
ds

BW
KEYPICKER

(b)

Figure 3.13: Comparison between KeyPicker and BW in terms of (a) the percentage
of stop-words identified as keywords, and (b) the percentage of keywords existing in
the WordNet dictionary.

because KeyPicker considers not only the number of users mentioning a keyword
but also how frequent this keyword is repeated at subsequent snapshots. Furthermore,
KeyPicker determines whether a keyword is both bursty and recurrent, based on
time-aware baseline parameters estimated from historical data. This is important to
highlight the significance of a word even when it is mentioned by a small number of
users.

A word cloud is plotted for the top-300 keywords extracted using BW, BursT, and
KeyPicker for snapshot 2013/11/01 03:00. We chose this snapshot since it contains
some tweets related to two events differing in terms of popularity, namely, Halloween
and Krewella (see Table 3.3). From Figure 3.15a, we notice that KeyPicker is able to
highlight keywords of unpopular events, where only a small number of related tweets
are published. For example, the number of tweets related to event E8 is relatively
small, and thus, corresponding keywords such as “krewella”, “emery”, “gareth”, to
name a few, are not that frequent. However, KeyPicker gives high weights to
these keywords and puts them among the top keywords because it accounts for the
contiguous recurrence of keywords (See Section 3.6). The approach of BW, as shown in
Figure 3.15b, is sensitive to words appearing only once and diminishing in subsequent
snapshots, such as “halloweeeeeeen” and “ahahahahahaha”. BW considers them as
keywords and assigns a positive weight to each. In Figure 3.15c, BursT gives relatively
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Figure 3.14: The percentage of event-related keywords among the top-100 keywords.

high weights to the words used on a daily basis, e.g., “wow”, “happy”, and “day”. This,
of course, results in producing too many uninformative keywords, which degrades
the performance of applications utilizing such keywords, such as generating many
non-event clusters when these keywords are used in an event detection framework.

3.7.6 Scalability

In this section, we evaluate KeyPicker with respect to its computational efficiency
in processing a large-scale stream of microblogs. The goal is to show that our frame-
work can finish the task of extracting keywords at a certain snapshot before the
subsequent snapshot elapses. For this purpose, we chose the datasets MAD and
NYC and computed the running time (in millisecond) that is required to process the
tweets at each snapshot. In Figure 3.16a, the time needed to process the tweets in
dataset NYC is reported for two tasks: content preprocessing and keyword extrac-
tion. The pairs (number of tweets, runtime) of each task and at each snapshot are
aggregated, averaged, and ordered according to the number of tweets in each pair.
The figure shows that the runtime of each task grows linearly in the number of tweets.
Notice that the total time needed to process 11,000 tweets is about (20+60)=80 mil-
liseconds, which indicates that KeyPicker can process a number of tweets that
is about two times larger than the current actual Twitter stream rate (about 6,000
tweets/second). Figure 3.16b depicts the role of history materialization in improving
the framework’s efficiency. For example, only about 35 ms is required to process 4,000
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(a) (b)

(c)

Figure 3.15: The word clouds in (a), (b), and (c) depict the top-300 keywords ex-
tracted using KeyPicker, BW, and BursT, respectively.

tweets from dataset MAD using history materialization (WM), while it is 350 ms
without materialization (WOM).

On the other hand, it is obvious that KeyPicker can easily be parallelized. This
can be achieved as follows. After the temporal index update task has been performed
at snapshot t, the inverted index W t is partitioned and each partition is assigned to
a separate processing thread. Then, the extracted keywords from each thread will be
combined to form Kt. For further performance enhancement, the word history can be
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Figure 3.16: Computational efficiency of KeyPicker. (a) running time statistics
for two tasks: content preprocessing and keyword extraction. (b) comparison be-
tween the required time to process tweets with (WM) and without (WOM) history
materialization.

replicated and distributed among the processing threads to avoid the delay resulting
from thread synchronization.

3.8 Summary and Discussion

In this section, we conclude this chapter by briefly summarizing the main contri-
butions and outcomes of our keyword extraction framework and then present some
applications.

3.8.1 Summary

In this chapter, we have introduced KeyPicker, a framework to extract keywords,
i.e., words related to real-world events, from social media streams in a near real-time
fashion. To capture this online settings, we exploit a sliding window on the streaming
microblogs, so that each time the window slides, the most recent incoming microblogs
are processed incrementally.

To judge whether a word can be considered a keyword or not, two word char-
acteristics are described and quantified: word burstines and recurrence. A word is
treated as a keyword if and only if it is bursty and recurrent. Combining these two
characteristics into one estimate allows for handling the dynamics and noisiness of
social media content and for filtering out temporal outliers (Section 3.6). These two
characteristics are quantified based on the discrepancy paradigm, which measures the
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distance between the current usage pattern of a word and an expected baseline of it.
Such a baseline of each word is represented as a set of parameters that are estimated
from historical observations. To produce trustworthy word characteristics, these pa-
rameters need to obtain up-to-date and reliable estimates. For this, our contributions
regarding managing and estimating the baseline parameters from history are sum-
marized as follows: 1) history update: including new words, e.g., new hashtags in
Twitter, and excluding diminished ones. This is important to capture the dynamics
of social media content. 2) Time-aware baseline estimation: coping with temporal
heterogeneity that occurs due to the fluctuation of word usage at different snapshots
(Section 3.5.3) by conducting a periodic history division. 3) history materialization:
maintaining only the statistics that are sufficient to estimate the baseline parameters
and are helpful in updating the history efficiently.

The experimental results show the performance of KeyPicker in incrementally
extracting keywords from social media streams and assigning a dynamic weight for
each keyword. KeyPicker outperforms both BW [3] and BursT [99] as a result of
its ability to handle temporal outliers and to estimate baseline parameters from a
separate history period not overlapping the sliding window, which is important in
breaking the correlation between contiguous snapshots.

More on temporal heterogeneity. For simplicity, and based on domain knowl-
edge, we divide the history of each word into periodic intervals of length one day,
assuming that the majority of words have usage patterns that recur daily. However,
some words are periodic, but recur differently, e.g., weekly or monthly. Hence, using
the daily periodic intervals for such words to estimate their baseline parameters leads
to identifying these words as keywords each time they appear, which increases the
false positives and declines the accuracy of KeyPicker. This shortcoming of KeyP-

icker can be tackled by accomplishing a dynamic division of word history, which can
be realized as a module to be plugged into KeyPicker.

3.8.2 Applications of Extracted Keywords

The keywords extracted at each snapshot, along with their respective weights, can
be used as building blocks for various useful applications. Apart from the traditional
trending topics identification, one can think of other types of applications such as:

Event-related microblog identification. The majority of content published
via social media sites is noisy and contain no useful information about real-world
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events. Thus, excluding such content is a key issue and an important preprocessing
step to data mining in social media. In the context of event detection, identifying
event-related microblogs among the noisy ones will lead not only to extract reliable
event information, but also to improve the computational efficiency. This is because
the majority of microblogs will be disregarded at an early stage. The principle
here is that the more keywords with high weights a microblog has, the more likely
the microblog pertains to a certain ongoing event. This particular application of
extracted keywords is discussed in more detail in Chapter 4.

Localized events detection and tracking. The keywords extracted from
social media might belong to one or more events occurring at different locations.
On the other hand, the steadily increasing adoption of GPS-enabled mobile devices
has recently increased the percentage of geo-tagged microblogs, which in turn, has
allowed for the detection of another form of events, i.e., localized events. A localized
event is an event that occurs at a certain location, e.g., musical concerts. In the
next chapter, we will investigate the spatial dimension of each extracted keyword,
handling related spatial problems and identifying those keywords with limited spatial
focus, i.e., local keywords. In Chapter 4, as an application, we exploit the extracted
keywords, along with their respective weights and spatial focuses to generate poten-
tial localized events and to track their evolution over time using the dynamic weights
associated with each keyword.



Chapter 4

From Local Keywords to Localized
Events – Detection and Tracking

In the previous chapter, we have studied the temporal characteristics of words pub-
lished via social media sites. As a result, we are able to provide a reduced space
of event-related keywords by filtering out noisy words. This process is performed in
an online fashion to deal with the immense amount of incoming messages. In this
chapter, we focus on the spatial characteristics of such informative keywords towards
the main goal of detecting and tracking real-world events. These events, referred to
as localized events, take place within a specific geographic region and last for a certain
period of time, e.g., musical concerts or soccer matches.

4.1 Introduction

The timely detection and analysis of events from social media has been and is an
active research area as it can provide information about real-world events faster than
via news agencies. For example, Chunara et al. [50] proved that the trends of Cholera
epidemic occurred in Haiti in 2010 were observed in Twitter messages and correlated
in time with official sources, yet they were available 2 weeks earlier. Furthermore,
the introduction of GPS technology and the availability of GPS-enabled mobile de-
vices contribute to increasing the number of geo-tagged microblogs, i.e., microblogs
enriched with location meta-data, in particular, geo-coordinates. As a result, it be-
comes possible to start studying and detecting localized events that occur at specific
locations. The real-time detection and analysis of such events raises the level of the
situational awareness, especially in disaster scenarios, and supports building location-
aware recommendation systems.

89
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However, an effective and efficient detection of localized events from social media
faces a number of challenges: (1) The dynamics of social media content: microblogs
have a high arrival rate, which requires a scalable system that can digest a large
number of incoming microblogs and promptly update the state of previously detected
events. (2) Spatial outliers: an event-related keyword might show a non-local behavior
when people mention it far away from the event location. A mechanism is needed
to regularize the spatial distribution for such a keyword in order to regain its actual
local characteristics. (3) Spatial sparsity: relying only on geo-tagged microblogs
results in a sparse distribution that does not reflect the actual geographic extent of
a keyword, especially when using a fine-grained spatial resolution. (4) Studying the
spatial distribution of each single keyword over space using a fine granularity is in
general a computationally expensive process, especially when accumulating statistics
from microblogs published during a certain time window.

Motivated by these aspects, we present LocEvent, a framework in support of de-
tecting and tracking localized events in an online fashion. As can be seen in Figure 4.1,
LocEvent depends on the well-known feature-pivot paradigm (see Chapter 2) that
is based on extracting features (event-related keywords) and then clustering them to
form potential events. To ensure an online processing of incoming microblogs, the
sliding window model described in Chapter 3 is used here as well. Each time a new
snapshots t elapses, LocEvent performs the following 4-stage procedure:

(1) Keyword extraction: A set of keywords are extracted using the approach de-
scribed in Chapter 3.

(2) Focus of local keywords. In this stage, the keywords having a spatially limited
extent are identified and their central locations, called spatial focus, are esti-
mated. For this, the following operations are performed: (a) The microblogs
containing at least one keyword are inserted into a spatial index to speed up the
computation. (b) The spatial signature (distribution) of each keyword is esti-
mated and adjusted to handle spatial outliers and sparsity. (c) Keywords having
local geographic scope are identified. (d) The spatial focus of each keyword is
estimated using a fine-grained spatial resolution.

(3) Event cluster generation. The keywords pertaining to localized events are then
incrementally clustered based on their spatial focus using a density-based clus-
tering algorithm.
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(4) Cluster scoring. Each cluster is scored using some features describing its struc-
ture. A cluster’s score reflects its evolution and significance over time.

LocEvent follows this 4-stage procedure at the next snapshot to incorporate new
local keywords in the clustering, and so forth. Updating the spatial index requires
adding content from the recent snapshot and eliminating the content of the expired
snapshots. The contributions of LocEvent are summarized as follows:

(1) LocEvent handles both spatial sparsity and outliers. As for handling spatial
outliers, two novel spatial regularization techniques are proposed: graph- and
gazetteer-based (Section 4.5.1) regularization. Then, we use a non-parametric
kernel density estimation to cope with spacial sparsity. Our work published
in [3] builds the basis of these regularization techniques.

(2) A hierarchical space-partitioning index structure is employed to ensure a fast
pruning of the geographic space while checking the locality of keywords and es-
timating their spatial focus. Our basic approach for local keyword identification
was published in [2]. However, in this chapter, we build upon this approach and
utilize this index structure to boost scalability.

(3) LocEvent tracks down the evolution of each detected event until it diminishes
by assigning a dynamic score to each cluster. This score is also important in
describing the relative significance of its respective cluster and in distinguishing
event clusters from noisy ones.

The chapter is organized as follows. In Section 4.2, we discuss research efforts
aiming at detecting real-world events from the content of social media. Related
notations, concepts and the problem statement are considered in Section 4.3. In
Sections 4.4, the spatial signature of keywords is defined and estimated. Then, the
proposed approaches on adjusting the spatial signatures of keywords are presented in
Section 4.5. The adjusted signatures are employed in Section 4.6 to identify local
keywords and estimate their spatial focus. In Section 4.7, the steps required to
spatially cluster local keywords and to score generated clusters are described. The
experimental evaluation of our event detection framework is presented and discussed
in Section 4.8. Finally, we conclude and discuss ongoing work in Section 4.9.
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Figure 4.1: System overview of LocEvent. After extracting keywords in Stage-1, the
spatial distribution of each keyword is estimated and spatial problems are handled. In
Stage-2, the spatial focus of local keywords is estimated and used to spatially cluster
such keywords in Stage-3. The generated event clusters are scored in Stage-4.
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4.2 Related Work

A surprisingly increasing interest in detecting and tracking real-world events from
social media has recently been witnessed. A large number of related research papers
have been published in this context. In Chapter 2, a number of these event detection
methodologies have been studied and categorized along three dimensions: (1) Event-
entity type (document-pivot versus feature-pivot); (2) Detection task (NED versus
RED techniques); and (3) Learning task (supervised versus unsupervised learning).

To narrow down the space of related studies to those having problem settings and
objectives similar to LocEvent, we focus on the approaches that are adapted for
social media content, are feature-pivot methods, and run in an online fashion. First,
we discuss the efforts trying to extract event information by considering only the
temporal dimension. Then, the studies that account for both spatial and temporal
dimensions of messages are addressed.

Events over time. Li et al. [103] introduced Twevent, a framework to iden-
tify bursty word segments from tweets and cluster them using a k-nearest neighbor
graph. They exploit Wikipedia to filter out non-event clusters. The approach by
Parker et al. [122] tracks public health trends from medical tweets. Wikipedia is
also utilized to associate the trending word sets with medical topics and screen out
non-medical trends. Finally, medical trends are aggregated to detect shifts in public
health conditions. Aggarwal and Subbian [8] utilize both the social links and the con-
tent of microblogs to improve upon the content-only similarity metric. Furthermore,
they used a sketch-based technique to efficiently compute the structural similarity
between clusters. Cataldi et al. [41] model the life cycle of terms using a novel aging
theory and connect related emerging keywords after navigating a topic graph. For
these approaches and similar contributions [15, 28], the spatial dimension is not con-
sidered, and hence, the resulting events are of global nature or large-scale local events.

Events over time and space. Sakaki et al. [130] built a supervised classifi-
cation model to distinguish event from non-event tweets using a SVM classifier. The
number of event tweets is modeled over time using a Poisson process to detect the
occurrence of an event. Then, they apply Particle and Kalman filters to estimate the
location of the detected event. To detect a new event, the classifier should be trained
using a different set of event keywords, which is a limitation of their approach,
standing against applying their approach to detect a broad range of events.
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In the context of event detection from social media, feature-pivot detection is
favored over document-pivot detection due to the noisy nature of social media and
the short length of published messages. Feature-pivot detection is based on extract-
ing event entities, e.g., bursty words, and then, clustering them to form potential
events [46, 90]. Among a number of feature extraction techniques, those based on
the discrepancy principle [57] have recently become popular by combining good scal-
ability and effectiveness [3, 96]. The discrepancy paradigm measures the deviation
between the current observation of a certain feature and its expected usage baseline.

Boettcher and Lee [35] proposed a framework that retrieves words W published
during a time window from Twitter stream and builds subsets of length 1,2, and 3
words out of the power set of W . Then, the DBSCAN clustering algorithm is em-
ployed to find the subsets having limited spatial extent based on the geo-coordinates
associated with the tweets of each potential event cluster. Finally, a classifier is
trained to filter out non-event clusters. Watanabe et al. [154] estimate the location of
non-geo-tagged tweets to increase the chance of finding localized events. Then, they
search for place names and count the number of key terms that co-occur with each
place name. However, their method fails to find the localized events when no place
names pointing to the locations of these events are mentioned.

In summary, the approaches that are based on the feature-pivot paradigm and
used to detect localized events from social media do not handle spatial outliers, i.e.,
when people mention event-related keywords far away from the locations of their
respective events. This results in many non-event clusters and degrades the detection
accuracy. Furthermore, to track the evolution of a newly-detected event cluster, one
should keep track of its instances over consecutive snapshots using some similarity
measures. However, LocEvent is proposed to cope with spatial outliers and to
incrementally track the evolution of each detected event cluster over time. This is
achieved using a 4-stage procedure as illustrated in Figure 4.1, where a spatial index
structure is employed to expedite the detection process.

4.3 Preliminaries

In the following, we present the notations and concepts used in this chapter. Some of
them are deeply discussed in Chapter 3, in particular, those related to the temporal
organization of microblogs. For the sake of completion, we briefly revisit those re-
quired in this chapter. Then, we introduce the problem statement and the challenges
to tackle.
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4.3.1 Spatial Organization of Keywords

Each microblog m = (S, id, uid, loc, time) contains a set of words S, a microblog
identifier id, a user identifier uid, a creation time time, and geo-coordinates loc =

(lat, lon)1. We assume that each geo-tagged microblog originates from within some
geographic space G. The components (id, S, uid, and time) exist for each microblog,
while only a small subset of the microblogs are geo-tagged, due to privacy reasons or
the lack of underlying positioning infrastructure.

In order to apply a streaming algorithm based on a sliding window model, the
timeline is split into fixed-length time intervals called snapshots (· · · , t− 2, t− 1, t),
where t is the current snapshot. The last c snapshots correspond to the sliding win-
dow W holding the most recent microblogs. After snapshot t elapses, the published
microblogs are processed using the methodology described in Chapter 3 to extract a
set of event-related keywords Kt ⊆ W t where W t is the set of words published at
t. In the previous chapter, we detailed our temporal index, where the words W t are
keys for an inverted index that allows for accessing the microblogs containing at least
one keyword k ∈ Kt in sub-linear time. That is, the set of microblogs published at
snapshot t and containing keyword k is accessed using W t

k.

Space G

g

Figure 4.2: Partitioning space G using a regular grid.

As illustrated in Figure 4.2, the geographic area G of interest is viewed as a regular
grid with a specific cell width. That is, the set G = {g1, g2, ..., g|G|} contains the cells
composing the space G. Each microblog m is mapped to one of the cells based on its
location m.loc. The cell width is treated as a configurable parameter that is chosen
according to the level of granularity one needs to reach. We elaborate on choosing a
suitable cell width for the adopted regular grid in Section 4.4.

1lat=latitude, lon=longitude
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4.3.2 Localized Events

Localized events, such as festivals and musical concerts, are real-world events that
take place at specific locations and last for a limited period of time. Such spatially
limited events stimulates people to attend and/or participate. At the locations of
these events, related microblogs, referred to as social evidences, are published by those
people. Formally, we denote a localized event e as a tuple e = (W t, ht, start, end)

where W t is the set of keywords describing event e, ht is a convex hull representing
the estimated location of e, start is the estimated start time of e, and end is the
estimated end time of e. The first two parts, W t and ht, are time-dependent as our
approach can capture the dynamics of localized events and shows how they evolve
over time.

4.3.3 Problem Statement

Once the end point of snapshot t has been reached, there might be some localized
events occurring somewhere in space G. From the microblogs published during the
current snapshot t, we aim at detecting the occurrence of new localized events or
tracking the state of existing events. For each detected event e = (W t, ht, start, end),
we want to extract a list of ranked words (W t) describing e well. Moreover, we need
to provide an estimation for the location (ht) of e, its start time (start), and end time
(end) at a fine-grained spatio-temporal resolution. For those events detected before
snapshot t, we are interested in observing how localized events evolve over time until
they diminish.

Keywords are the basic elements that make up localized events. For this, detailed
analysis of these keywords is conducted with respect to their spread over space, iden-
tifying two spatial problems: spatial outliers and sparsity. Given the high rate of
incoming microblogs, it is a challenging task to detect and track localized events in an
online setting taking into account such spatial problems.

4.4 Spatial Distribution of Keywords

In this section, we first show how the spatial distribution of each extracted keyword
k ∈ Kt is computed. This spatial distribution is important to decide about the
locality of keywords (Section 4.4.2). In Section 4.4.3, we address the spatial problems
that contribute to distort the spatial distribution of extracted keywords, preventing
proper decisions about the locality of keywords.
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4.4.1 Spatial Signature

To describe the spatial spread of a keyword k ∈ Kt, we study the usage pattern of k
at each cell g ∈ G. For this, we define the spatial signal of keyword k as follows.

Definition 4.1 (Spatial Signal) The spatial signal of a keyword k observed at cell g
during the sliding window W is the ratio between the number of users (N g

k ) publishing
microblogs containing k and the number of all publishing users (N g) at that cell, i.e.,

Sgk :=
N g
k

N g
. (4.1)

Recall that in Chapter 3, we computed the signal for each word over the entire
space G to identify keywords Kt. Here, we estimate the signals of only such keywords
at a finer spatial resolution, namely at the cell level. Normalizing by the number
of all publishing users N g has a major impact on correcting the population bias.
Without normalization, high-populated cells may lead to larger spatial signals even if
the center of an event is located at another low-populated cell. To get a probability
distribution for each keyword over cells, we estimate the density of a keyword k at a
cell a by normalizing over its spatial signals in all cells:

Sgk =
Sgk∑
i∈G S ik

(4.2)

To refer to the spatial spread of a keyword k over the entire space G, we introduce
the notion of spatial signature.

Definition 4.2 (Spatial Signature) The spatial signature of a keyword k is the
density distribution of the spatial signals of k in space G during W, denoted Sk. It is
represented by the vector Sk := (S1

k ,S2
k , ...,Sjk)T .

The vector Sk retains only non-zero signals, which implies that j � |G| as the distri-
bution of microblogs over space is sparse, especially when using a fine spatial resolu-
tion.

4.4.2 Locality of Spatial Signatures

Recall that an important step in feature-pivot detection techniques is to identify
event-related keywords. In the context of detecting localized events, such keywords
are assumed to have a spatially limited extent and thus appear only in small parts of
the geographic space. We call these keywords local keywords.
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To test the locality of keyword k, the entropy measure [140] is used and applied
to the spatial signatures Sk of k. It measures the minimum number of bits needed
to represent the spatial spread of a keyword. If keyword k is equally distributed over
|G| cells, then the entropy is maximized and has the value of log2(|G|). However, if
it appears in exactly one cell, then the entropy will be 0. The entropy of the spatial
signature Sk of keyword k over the entire space G is determined as follows:

H(Sk) = −
∑
g∈G
Sgk × log2(Sgk). (4.3)

Using this measure, a local keyword is defined as

Definition 4.3 (Local Keyword) A keyword k ∈ Kt is considered local if and only
if H(Sk) ≤ φ.

The value of the threshold φ is chosen based on the locality level one needs to
obtain. The smaller the threshold, the more strict decision is established. For ex-
ample, when φ is set to 0, then only those keywords occurring at exactly one cell
are considered local. Moreover, the resulting entropy value depends on the the cell
width of the used grid. The cell width is chosen according to the level of granularity
one needs to reach. For example, if the aim is to check the locality of keywords at
the country level, a relatively large cell width, i.e., a cell width of 10km or more, is
chosen. However, if one is interested in extracting local keywords related to localized
events at the city level, a smaller cell width is considered, e.g., a cell width of 1km or
less.

4.4.3 Spatial Problems

A manual inspection of the spatial signatures of some event-related keywords revealed
undesirable distribution patterns that we refer to as spatial problems. Here, we present
two types of such problems: spatial outliers and spatial sparsity.

Spatial Outliers

For some popular localized events, people who are not attending such events are
stimulated to publish relevant microblogs, which implies that some related keywords
will be mentioned far away from the event location. This type of keyword occurrences
is called spatial outliers.
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Figure 4.3: The impact of spatial outliers on the entropy of an event-related keyword.
If this keyword is mentioned 10 times at the cell of the event, i.e., a low-populated cell,
at least 3 spatial outliers make the entropy reach the locality threshold, identifying the
keyword as non-local. While 8 outliers are needed to consider the keyword non-local
in case of a high-populated cell that has 100 keyword occurrences.

Example 4.1 Assume that the frequency of the keyword “final” at a certain snapshot
at a cell containing a stadium is 100 while the total number of microblogs from that cell
is 10,000. Then, the corresponding spatial signal will be 100/10, 000 = 0.01. Now,
assume that there are 5 messages containing the keyword “final” out of 100 words
observed at a low-populated cell far away from the stadium. This would give a spatial
signal of 5/100 = 0.05, which is larger than the spatial signal observed at the stadium.

Spatial outliers contribute to the distortion of the spatial signature we wish to
obtain for local keywords. Therefore, they will increase the entropy of the underlying
distribution, leading to mistakenly considering local keywords as non-local. In addi-
tion, having a localized event taking place in a low-populated cell exaggerates this
problem as the distribution in this case is more sensitive to outliers as they make
the distribution approach faster to the uniform distribution as can inferred from Fig-
ure 4.3.

Spatial Sparsity

During a certain localized event, it is likely to notice some cells within the range of the
event’s location that contain no keywords describing the event. This is because the
percentage of geo-tagged microblogs is in general low and not all cells are populated
with users/microblogs. For instance, if a fire starts in a forest, there will be no
microblogs posted from that place if there are no users. However, users from nearby
cells could post such messages. We refer to this type of problem as spatial sparsity.
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4.5 Spatial Signature Adjustment

In this section we present our solutions that adjust the spatial signatures of keywords
and mitigate the adverse impact of spatial problems. In Section 4.5.1, two signature
regularization techniques to handle spatial outliers are presented. We then detail a
non-parametric signature smoothing technique to cope with the sparsity problem. As
an application on this high-quality and adjusted signatures, we present in Section 4.5.3
a ranking methodology to distinguish social evidences among non-event microblogs.

4.5.1 Spatial Signature Regularization

Let us assume that keyword k that is related to a localized event occurring at cell
g′ suffers from spatial outliers. Our approach to handle this problem is to boost the
density pg

′

k and lower the densities at other cells. As a result, this will decrease the
entropy H(pk), hoping that it reaches the desired locality threshold.

Graph-based Regularization

Given a set of keywords with spatial signatures affected by the spatial outliers, we
aim at estimating regularized versions of such signatures. In other words, we want
their spatial distributions reflect the spatial spread of potential events well.

Fortunately, and especially for localized events, one can find some keywords that
are inherently localized and have a very limited spatial spread, i.e., they have a low
entropy. For example, during a soccer match, there will be some keywords (e.g., the
name of the stadium) that are rarely used far away from the stadium. The spatial
signatures of such keywords are assumed to be stationary and perfectly represent
the spatial scope of the event. We call such keywords anchor keywords. Through
comparison of co-occurrence patterns of anchor keywords with those of non-anchor
keywords, we regularize the spatial signatures of the latter accordingly and refer to
them as regularized spatial signatures. Based on this rationale, the following general
steps are used to regularize the spatial signatures of keywords:

(1) modeling keyword co-occurrences as a graph;

(2) choosing a subset of the keywords as anchor keywords that have spatial signa-
tures of a high confidence, and

(3) traversing the graph’s vertices and regularizing the spatial signatures of non-
anchor keywords based on their connectivity to anchor keywords.



4.5 Spatial Signature Adjustment 101

Co-occurrence Graph. First, a graph G = (V,E) with a set of vertices V and a set
of edges E is built to capture the co-occurrence of keywords KW mentioned during
the window W . Each vertex vi ∈ V is mapped to exactly one keyword ki ∈ KW ,
establishing a bijection between elements in V and KW . A weight is associated with
each vertex vi reflecting the ratio between the number of cells at which the keyword
ki occurs during W and the total number of cells. This measure is called support,
defined as

supp(vi) :=

∑
t∈W

∑
g∈G

I(N t,g
vi
> 0)

c× |G| , (4.4)

where I(.) is the identity function and N t,g
vi

is the number of messages containing vi
and published from within cell g during t. An edge (vi, vj) ∈ E between two vertices
vi, vj is established if and only if the corresponding keywords co-occur at least once
in cell g ∈ G during W . A weight is associated with each edge (vi, vj) indicating
the percentage of cells at which the co-occurrence of the keywords ki, kj is observed
during W . Likewise, such a weight is defined using the concept of support:

supp(ki, kj) :=

∑
t∈W

∑
g∈G

I(N t,g
vi
> 0 ∧N t,g

vj
> 0)

c× |G| (4.5)

Anchor Keyword Selection. As mentioned above, spatial signatures affected by
spatial outliers can be regularized by leveraging the spatial signatures of anchor key-
words. The aim now is to identify such anchor keywords.

The main rationale behind identifying anchor keywords is that they potentially
show high locality and geographic focus, in particular, when the anchor keywords
relate to some localized events. Thus, these keywords tend to have more informative
spatial signatures with low entropy values. We assume that anchor keywords are
rarely used far away from the center of a localized event. Typical examples of anchor
keywords are names of streets, cities, towns, landmarks etc. Let the set of anchor
keywords extracted during snapshot t be denoted AKt. We assume that non-anchor
keywords are more affected by spatial outliers since they are more likely to be used far
away from the location of an event. A simple step to extract AKt is to choose those
keywords that have spatial signatures with entropy values less than a given threshold,
i.e., AKt = {k|H(Sk) < φ∧ k ∈ Kt} In Section 4.8.3, we show how to choose a value
for φ that yields the best results.
Signature Regularization. Given a co-occurrence graph and a subset of its vertices
labeled as anchors from the above two steps. Algorithm 4.1 regularizes the spatial
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signatures of non-anchor keywords in a given co-occurrence graph G based on their
connectivity with anchor keywords. A set of regularized keywords RK is maintained
to hold the keywords whose spatial signatures have been regularized. In Line 2, a
set RK of anchor keywords is extracted using the approach discussed above based on
the premise that such keywords have informative signatures. Thus, there is no need
to regularize them. Then, the non-anchor keywords in V are traversed (Line 3) to
regularize each of them.

Algorithm 4.1: Signature Regularization
Input: Co-occurrence graph G = (V,E)
Output: Set RK with regularized spatial signatures
// Anchor keyword selection

1 AKt ← getAnchors(V )
2 RK.add(AKt)
// Traversing non-anchor keywords

3 foreach k ∈ (V −RK) do
4 RN ← getRegularizedNeighbors(k,RK)
5 if ¬RN.isEmpty() then

/* storing the keyword having the highest support with k */
6 MC ← null
7 maxSupp← −∞ // the maximum support with k
8 foreach ak ∈ RN do
9 p(k, ak) = supp(k, ak)

10 if p(k, ak) > maxSupp then
11 MC ← ak
12 maxSupp← p(k, ak)

13 confidence← supp(k,MC)
supp(MC)

// Updating the signature of k using the signature of MC
14 Sk ← (1− confidence) · Sk + confidence · SMC

15 RK.add(k)

16 return RK

At each iteration, a set of regularized keywords RN that are neighbors of corre-
sponding non-anchor keyword is returned (Line 4). If such a non-anchor keyword k
is adjacent to at least one anchor keyword, then the anchor keyword MC that has
the highest support is chosen to be the one with which the spatial signature of k is
regularized (Line 8). In Line 13, the confidence that MC leads to k is computed by
determining the conditional probability of the occurrence of keyword k given MC. If
the non-anchor keyword k is observed at all cells where the anchor keyword MC is
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Figure 4.4: Example of a co-occurrence graph. The value in each vertex represents
the support of the corresponding keyword. The value associated with each edge
corresponds to the support of the vertices of that edge.

observed, then the confidence that MC leads to k is 1. This confidence metric takes
on values in the range [0, 1], and from the equation in Line 14, we notice that the
larger the confidence value, the more the spatial signature Sk is affected by that of
SMC .

Example 4.2 Figure 4.4 shows a simple example of a co-occurrence graph with two
anchor and two non-anchor keywords. The non-anchor keyword k2 co-occurs with the
two anchors rk1, rk2, and thus, one of them should be chosen to regularize the spatial
signature of k2. Since the value of supp(k2, rk1) is greater than supp(k2, rk2), the
spatial signature of rk1 is used to regularize that of k2 with confidence = supp(k2,rk1)

supp(rk1)
=

5
7
. As a consequence, the regularized version of Sk2 is computed as follows:

Sk2 =
2

7
· Sk2 +

5

7
· Srk1 .

If a non-anchor keyword is not pertaining to any localized event, we expect that the
co-occurrence pattern of this keyword with anchor keywords will be minimal. Thus,
it will not be highly affected by the regularization procedure. That is, non-anchor
keywords of global events, e.g., Mother Day, preserve their broad spatial distribution.
Hence, our signature regularization is effective in producing sound spatial signatures
for keywords of both local and global events.

Gazetteer-based Regularization

We propose here another signature regularization technique that is based on utilizing
the co-occurrence patterns between keywords and georeferences (place names) that
are extracted by means of a gazetteer. The intuition is that if keyword k ∈ Kt relates



104 From Local Keywords to Localized Events – Detection and Tracking

gr1
gr1, k1

gr1, k1

gr1, k1

gr1, k2

k1

k2

gr2
gr2, k2

gr2, k1

gr2, k2

k1

k2

a microblog without georeferences

a microblog with a georeference

Area of interest G

Figure 4.5: Keyword k1 co-occurs more frequently with georeference gr1 than with
georeference gr2, and thus, the signature of k1 is affected more by gr1. For the same
reason, gr2 has a larger impact on the spatial signature of k2.

to a localized event, then k tends to co-occur more frequently with georeferences
referring to the event location than with other georeferences. By this, it is possible to
identify the cells that are candidates for the localized event described by keyword k
and to determine how likely each candidate cell corresponds to that localized event.
Figure 4.5 shows an example of how the location of two keywords k1 and k2 that
co-occur with two georeferences gr1 and gr2 should be influenced.

We first build a keyword-georeference map that captures the co-occurrence pat-
terns between keywords and georeferences, and then, a geo-filter is produced for each
keyword in this map, which is used in regularizing its signature.

Keyword-Georeference Map. A georeference (also called toponym) is a phrase
embedded in the content of a microblog and refers to a specific place on Earth. If a
musical concert occurs at location gr during snapshot t, then there will be more mi-
croblogs containing keyword “music” together with gr than with other georeferences.
This is because people tend to mention the location at which they observe or attend
an event [2].

Suppose that the set of georeferences co-occurring with keyword k during t is
denoted Ωk = {gr1, gr2, · · · , grv}, where each Ωk[gri] = (text, count, loc) is a tuple
consisting of the textual phrase (place name), the number of times georeference gri co-
occurs with keyword k, and the geo-coordinates loc = (lat, lon) of that georeference,
respectively. Hence, Ω refers to the set of keywords published during snapshot t and
co-occurring with at least one georeference. The set Ω is called keyword-georeference
map. Due to the sparse nature of this map, as only a subset of the extracted keywords
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Figure 4.6: Keyword-Georeference Map. This map is realized as an inverted index
where its keys are keywords and the postings of each key are the georeferences co-
occurring with corresponding keyword.

map to one or more georeferences, it is implemented as an inverted index, as can be
seen in Figure 4.6.

Algorithm 4.2 lists the steps needed to build the map Ω at snapshot t. In
Line 2, the microblogs posted during t are processed to extract keyword-georeference
pairs and to update map Ω accordingly. For each microblog, the embedded

Algorithm 4.2: Building Keyword-Georeference Map
Input: Keywords Kt, microblogs W t

Output: Ω map
1 Ω = {}
// only considering geo-tagged microblogs

2 foreach mi ∈ W t ∧ loci 6= {} do
// extracting georeferences using OSM data source

3 gr ← extractGeoreference(Si)
4 if (gr 6= {}) ∧ (dist(gr.loc, loci) < ρ) then
5 foreach k ∈ (Si − gr.text) ∧ k ∈ Kt do
6 if (k, gr) /∈ Ω then
7 Ω.insert(k, gr)
8 Ωk[gr].count = 1

9 else
10 Ωk[gr].count += 1

georeference, if any, is extracted assuming that each microblog contains at most
one georeference (Line 3). OpenStreetMap1 (OSM for short) data is employed to

1http://www.openstreetmap.org/
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extract the georeferences. Despite that there are several Web services allowing for
this type of georeference extraction, e.g., Open MapQuest2, OSM data pertaining
to space G is materialized and indexed to provide efficient and offline geocoding.
Using this gazetteer-based georeference extraction procedure, we found that about
5.4% of the microblogs have georeferences. In addition, a geo-tagged microblog
mi contributes to building Ω only if mi is published from within a circular buffer
whose center and radius are gr.location, and ρ, respectively (Line 4). The parameter
ρ is assigned a value of 500m to avoid place ambiguity, and the Haversive [141]
formula is used to calculate the distance between the microblog and the georeference.
Then, in Lines 5-10, each keyword k in microblog mi (excluding those extracted
as a georeference gr.text) is mapped to gr, and Ω is updated to include the (k, gr) pair.

Keyword Geo-filter. Now, we discuss how each georeference contributes to
regularize the spatial signature Sk of keyword k over space G. First, for each keyword
k, a probability distribution over the georeferences co-occurring with k is computed.
For this, we utilize Ωk[gr].count, the number of times keyword k co-occurs with a
certain georeference gr. We define the confidence αgk as the ratio between the number
of times keyword k co-occurs with georeferences in cell g and the total number of
times k co-occurs with georeferences over the entire space G at snapshot t. More
formally, we have

αgk := p(g|k) =

(∑
gr∈g

Ωk[gr].count

)
+ 1(∑

g∈G

∑
gr∈g

Ωk[gr].count

)
+ |G|

(4.6)

where Laplacian Smoothing is used to mitigate sparsity and to eliminate zero prob-
abilities. This confidence value reflects how likely the spatial signal Sgk of keyword
k at cell g will be affected in order to get the mode of the distribution close to the
candidate event cell. As a consequence, if k belongs to a localized event and co-occurs
with related georeferences, the entropy will decrease. The set of confidence measures,
denoted αk, of keyword k over G is referred to as the geo-filter of keyword k. After
that, the spatial signals of k over G are regularized by multiplying each signal by its
correspondence confidence in αk and then by normalizing by the sum of the updated

2http://open.mapquestapi.com/nominatim, accessed June 2014
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signals over the entire space, i.e.,

Sgk :=
Sgk × αgk∑

g′∈G
Sg′k × αg

′

k

∀g ∈ G (4.7)

To recap, in this section, we have presented two methodologies towards handling
spatial outliers: graph-based and gazetteer-based regularization. In the following
section, we will discuss how to handle the spatial sparsity problem.

4.5.2 Spatial Signature Smoothing

The spatial signal of a keyword referring to some localized event is expected to appear
in a limited part of the geographic space. However, the spatial signatures encapsulat-
ing such signals are sparse, especially when a fine-grained spatial resolution is used,
i.e., a regular grid with a large number of cells. This sparsity implies that a small
number of cells might hold no signals while their neighbors do. In the following, we
discuss how to smooth the spatial signals of a spatial signature by considering nearby
cells, so that the influence of each signal is propagated to nearby cells.

In order to estimate a spatial signal of a keyword in a certain cell based on signals
of surrounding cells, we employ a non-parametric kernel density estimation. Suppose
that a keyword k is mentioned n times in space G. Each observation is represented
as a 2D vector x including the location (longitude, latitude) of the cell at which k

is observed. Hence, we have a bivariate random variable X from which the sam-
ples x1,x2,x3, . . . ,xn (observations for keyword k) are drawn. The kernel density
estimation then is

f̂(x) =
1

n

n∑
i=1

KH(x− xi) (4.8)

where KH is a bivariate density function that integrates to one. We use the common
bivariate normal kernel defined as

KH(x) :=
1√
|H|

K(H−1/2x), (4.9)

where K(x) = 1
2π

exp(−1
2
xTx). Matrix H is the covariance matrix that controls the

amount and orientation of the smoothing process [153].

To use the regularized spatial signatures, we redefine Eq. 4.8 in terms of the spatial
signature Sk. For this, we group the observations into their corresponding cells and
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sum over these cells instead of summing over the n observations. Thus,

f̂(x) =
1

n

|Sk|∑
i=1

oi ×KH(x− xi), (4.10)

where oi is the number of observations of keyword k at cell xi. In fact, oi is simply
a proportion of the n samples determined by the density of the keyword k at cell i,
i.e., oi = n × S ik. Therefore, the kernel density estimation of keyword k at cell x is
redefined as follows:

Ŝx
k = f̂(x) =

|Sk|∑
i=1

Sk[i]×KH(x− xi) (4.11)

After applying the spatial signature regularization in Section 4.5.1 and signature
smoothing as described in this section, an adjusted signature Ŝk is estimated for each
k ∈ Kt, capturing the sound spread of the keyword signals over space G after handling
the spatial outliers and sparsity problems.

4.5.3 Social Evidence Identification

As an application, we design an online filtering system with the aim of identifying
social evidences and filtering out noisy microblogs. At each new snapshot t, the system
utilizes the extracted keywords, their spatial signatures and their weights discussed
in Chapter 3, to accomplish this task. For this, we assign a score to each microblog
in order to reflect its significance and evolution over time.

First, we estimate a score for each word in a microblog m separately. Then, an
aggregate function is used to compute a score for the entire microblog. To estimate
a score for each word w ∈ m.S, we consider two factors:

(1) the significance sig(w, t) of its current weight weight(w, t) among the values
estimated during W ; and

(2) the current adjusted spatial signal Ŝm.locw of that word at the location of the
microblog m.loc.

Formally:

score(w) :=

δ · sig(w, t) + (1− δ) · Ŝm.locw if w ∈ Kt

0 otherwise
(4.12)
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The value of sig(w, t) for word w at snapshot t is estimated as a ratio showing
how close the current weight is to the maximum one observed within W , i.e,

sig(w, t) :=
weight(w, t)

max{weight(w, i)}i∈W
. (4.13)

The parameter δ ∈ [0, 1] is for normalization and gives a weight for each factor. We
choose δ = 0.5 to distribute the influence of the two factors equally in the case of
geo-tagged microblogs. However, for non-geo-tagged microblogs, we set δ > 0.5 to
give more weight to the significance factor as the location information is absent.

As can be inferred from Eq. 4.12, the value of score(w) describes the spatio-
temporal importance of word w ∈ m.S. In other words, if the word w appearing at
the current snapshot t obtains the highest weight during W , then sig(w, c) has the
value 1. At the same time, if the microblog m containing that word is posted from the
center of a localized event, we will expect a high spatial signal value that approaches
1. Consequently, the overall score of word w will be close to 1 implying a considerable
significance. Finally, a score for the entire microblog tw is computed by applying the
mean as an aggregation function for all the scores score(w)w∈m.S, i.e.,

score(m) :=
1

|m.S| ·
∑
w∈m.S

score(w) (4.14)

We expect that top-scored microblogs are of huge significance and that they hold
useful information to analyze the triggering events. Different NLP techniques, e.g.,
text summarization and sentiment analysis, can be applied on these microblogs to
extract further information about the events.

4.6 Spatial Focus of Local Keywords

After adjusting the spatial signatures of keywords as discussed in Section 4.5 and
having more reliable spatial signatures for keywords, the next tasks to be performed
towards detecting localized events are

(1) checking the locality of each keyword k ∈ Kt, and then,

(2) estimating the spatial focus (central location) of local keywords.

In Section 4.6.1, we define the concept of spatial focus and lists the main focus
estimation steps. Then, in Section 4.6.2, we describe the spatial index employed to
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accelerate the computation, and finally, we show how to exploit this index for locality
check and focus estimation (Section 4.6.3).

4.6.1 Spatial Focus

Recall that one of the main objectives in this study is to estimate of the location
of a detected event at a fine-grained resolution. This entails exploiting the location
metadata associated with microblogs, namely, geo-coordinates, to find the spatial
focus of local keywords.

Definition 4.4 (Spatial Focus Fk) The spatial focus Fk = (lon, lat) of keyword k
is the geographic midpoint of a set of geo-coordinates associated with the geo-tagged
microblogs that contain k.

The geographic midpoint1 is favored over the normal mean of points because it
accounts for the spherical shape of Earth. Although the difference between the focus
estimated using the geographic midpoint and that estimated using the normal mean
can be neglected in the case of localized events, we choose to apply the geographic
midpoint to generalize the detection approach. That is, when events of a larger spatial
extent are to be detected, e.g., events at the country level, a grid of coarse-grained
resolution (10km by 10km cells or even larger) is utilized. To compute the focus of a
set of points using the geographic midpoint (see Section 4.6.2 for more details):

(1) the lon/lat coordinates of each point is converted into Cartesian (x, y, z) coor-
dinates, then

(2) the mean of these coordinates is computed to get the midpoint in the Cartesian
3D space, and finally,

(3) this midpoint is converted back to lon/lat coordinates.

Checking the locality of each keyword k ∈ Kt and computing the spatial focus of
local ones is a computationally-expensive process, especially when using (1) a fine-
grained spatial resolution and (2) a relatively large widow size. To cope with that,
in the following section, we present a space-partitioning index structure where count
and location information is maintained at multiple hierarchical levels, which provides
efficient and incremental updates of such information.

1http://www.geomidpoint.com/, accessed June 2014
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4.6.2 Hierarchal Space-Partitioning Index

In order to efficiently process microblogs with high-arrival rates, we employ a hierar-
chical space-partitioning index structure [134]. This type of spatial indexing recur-
sively partitions the space into non-overlapping cells, starting at the root cell until
a certain capacity threshold or a target resolution is reached. These partitions are
organized in a hierarchical structure with the root cell referring to the entire space
G and the last level referring to the finest (target) resolution as can be seen Fig-
ure 4.7. Quadtrees and pyramid index structures are typical examples of hierarchical
indexing [147].

In this work, we adopt the pyramid index, because it allows for maintaining statis-
tics (synopses), e.g., keyword counts, in internal nodes, which summarizes the infor-
mation stored in the leaf nodes. Maintaining synopses in internal nodes, as will be
discussed later, helps expedite the process of updating the index structure, deciding
about the locality of keywords, and estimating their spatial focus.

Dynamic Pyramid Structure

The pyramid index structure is viewed as a tree T of height h. The nodes of the tree
are divided into levels (0, 1, · · · , h− 1) where level 0 and h− 1 hold the root and the
leaves, respectively. Each level corresponds to a regular grid partitioning the space
into non-overlapping cells, such that each node in that level is mapped to exactly
one geographic cell. The higher the level, the finer the spatial granularity used to
partition space G. Let us denote the node j at level i in T as T pi [j], where p refers
to the parent node at level i− 1. The children of the node Ti[j] are denoted by T ji+1

and represent the cells covered by the bounding box of the parent cell Ti[j]. The root
node T0[0] corresponds to a bounding box covering the space G, and the leaves Th−1

reflect the finest spatial resolution to be targeted.

Maintaining synopses for the entire set of keywords published duringW in internal
cells of a pyramid requires extra space and additional overhead to update the index
due to the high-arrival rate of microblogs. Therefore, we present a variation of the
pyramid structure, called dynamic pyramid that has the following characteristics:

(1) A leaf node is created only if at least one keyword appears at the corresponding
cell. In contrast to the partial pyramid [110], all leaves reside at the same
level. Thus, it is a compromise between a partial pyramid and a complete
pyramid [147].
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(2) At level i, the number of partitions (cells) is at most l2i. Our dynamic pyramid
differs from other space-partitioning structures in its ability to assign a value
larger than 2 to l resulting in a wider tree, and hence, a lower tree height when
a specific spatial resolution is targeted.

(3) Not all data synopses maintained in leaf cells are summarized in parent cells.
As we will show below, the used synopses are divided into two categories: (a)
keyword count : it is used to estimate the spatial distribution of a keyword
at each level in order to decide about its locality. This type of statistics is
maintained in each cell of the pyramid. (b) keyword location: it is a summarized
location information for a keyword and is used to estimate its spatial focus.
These synopses are maintained only in the leaves of the pyramid.

Level-0 (G)

Level-1

Level-2 (Target
granularity)

T0[0]

T 0
1 [j]

T j
2 [i]

j

i

- countT
- countK
- children

- countT
- countK
- listK

ke
yw

or
ds

nSk1
Sk2

x y z

n x y z

n x y z

Figure 4.7: Dynamic pyramid to spatially index the microblogs published during W .
Internal cells hold count statistics required for locality check, while leaf cells contain,
in addition to count statistics, location information needed in focus estimation.

As can be seen in Figure 4.7, each internal node T [j] in the tree contains:

(1) countT : the number of microblogs published from T [j] duringW , which is used
to both estimate the spatial signal at T [j] and accelerate updating the tree as
discussed later.

(2) countK : the number of microblogs containing a keyword and originating from
within T [j] during W . countK is maintained to check the locality of keywords.
There is only one instance of countK at each cell, and therefore, once a new
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keyword is examined, the value of countK is reset and initialized with respective
count statistics accumulated from leaf cells.

Each leaf cell contains, in addition to the previous statistics, a list listK =

(Sk1 , Sk2 , · · · ), containing synopses required to check the locality of keywords and
compute their spatial focus. Each Sk = (n, x, y, z) maintained in the leaf node Th−1[i]

has the following components: (a) Sk.n: the number of microblogs originating from
Th−1[i] and containing keyword k. (b) the values (Sk.x, Sk.y, Sk.z) are the sum of the
Cartesian coordinates of each microblog containing k and mapped to that cell. These
synopses are sufficient to estimate the spatial focus of keywords. Next, we will show
how to update their values as new microblogs are inserted at snapshot t and others
are eliminated when their snapshots expire.

Spatial Index Update

Updating the tree T is essential to ensure an up-to-date state of the maintained
synopses. The update procedure is triggered once a new snapshot t elapses and
involves the insertion and the deletion of the microblogs published during t and t− c,
respectively.

Insertion. For each microblog mi containing at least one keyword, i.e., mi ∈
W t

k ∧ k ∈ Kt, the tree is traversed from the root to the corresponding leaf node
based on the geo-coordinates mi.loci. The value countT of each traversed node is
incremented by 1. When the leaf node is reached, Sk.n is incremented by 1 and the
remaining elements (Sk.x, Sk.y, Sk.z) are updated as follows

Sk.x += cos
(
loci.lon×

π

180

)
× cos

(
loci.lat×

π

180

)
(4.15)

Sk.y += cos
(
loci.lon×

π

180

)
× sin

(
loci.lat×

π

180

)
(4.16)

Sk.z += sin
(
loci.lon×

π

180

)
(4.17)

These equations convert the longitude/latitude coordinates of microblog mi into the
Cartesian coordinate system and accumulate the results into their respective elements
(Sk.x, Sk.y, Sk.z).
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However, microblogs pertaining to a certain event might contain more than one
keyword. Hence, the tree will be traversed more than once to insert the keywords
of one microblog. To overcome this, we build a temporary inverted index having
the microblog ids as keys and the keywords as postings. This helps reduce the time
needed for insertions.

Deletion. Similarly, the microblogs {W t−c
k }∀k∈Kt of the expired snapshot t − c,

which contain at least one keyword, are used to traverse the tree and to remove
the corresponding statistics. This time, however, the statistics of these microblogs
are subtracted from the maintained synopses. For the same efficiency reason, a
temporary inverted index is created so that the tree is traversed once for each
microblog. To improve the efficiency of the deletion process, each time a new node
is visited, countT is decremented by 1. If it becomes 0, the current node and all its
children are removed from the tree.

4.6.3 Focus Estimation

In this section, we use the pyramid structure along with the maintained synopses
in order to incrementally identify local keywords Kt

local and to estimate the focus
Fk of each k ∈ Kt

local. Algorithm 4.3 details the steps needed to accomplish these
tasks for each k ∈ Kt. These steps can be categorized into: (1) count initialization
(Line 3), (2) count update and locality check (Lines 4-21), and (3) focus estimation
(Lines 22-24).

Count initialization. Recall that each node in the tree maintains the field
countK to store the number of microblogs containing keyword k. In this step, a value
is assigned to countK of each node in T . For leaf nodes, these counts can simply be
initialized as countK = Sk.n. Then, the tree T is traversed recursively to accumulate
these counts and propagate the sums up the tree hierarchy until the root node is
reached. We end up having the field countK of each internal node holding the sum
of corresponding fields in its children, i.e.,

Ti[j].countK =
∑
g∈T ji+1

g.countK ∀i ∈ {0, . . . , h− 2} (4.18)

Count update and locality check. In Line 4, n refers to the index of the cell that
is assumed to be a candidate location for the localized event described by keyword
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Algorithm 4.3: Locality Check and Focus Estimation
Input: Keywords Kt , tree T , entropy threshold φ
Output: Local keywords Kt

local, focus Fk foreach k ∈ Kt
local

1 Kt
local ← {}

2 foreach k ∈ Kt
local do

3 initializeCounts(k)
// index of root node

4 n← 0
5 isLocal← true
6 for l = 1 to h− 1 do
7 sum← 0
8 foreach g ∈ T nl do
9 Sgk := g.countK

g.countT
// spatial signal estimation

10 sum← sum+ Sgk
11 Sk ← Sk/sum // signature normalization
12 Ŝk ← signatureAdjustment(Sk) // Section 4.5
13 ent← 0

14 foreach (g ∈ T nl ) ∧ (Ŝgk > 0) do
15 ent += Ŝgk × log2(Ŝgk)

// the entropy of keyword k at level l
16 entropy ← −1× ent
17 if entropy ≤ φ then

18 n← arg max
g′∈T nl

(
ˆSg′k )

19 else
// in case keyword k is identified as non-local

20 isLocal← false
21 break

22 if isLocal == true then
// if keyword k is local, it will be added to Kt

local

23 Kt
local ← Kt

local ∪ k
24 Fk ← geomid(k, Th−1[n])

k. The index n is initialized to 0 referring to the root at level 0. Then, the tree is
traversed top-down and level-wise starting from the coarsest level (i.e., level 1) to the
finest one (level h− 1) to locate the leaf node (cell) with the highest density in case
keyword k is identified as local. In order to consider keyword k a local keyword, it
should pass the locality check at each level. Before checking the locality of k at level
l using the entropy-based method discussed in Section 4.4.2, the spatial signature of
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keyword k is estimated, normalized (Section 4.4), and adjusted (Section 4.5) as can
be seen in Lines 7-12. Then, the entropy of the adjusted signature over the entire
set of cells T nl is computed (Lines 13-16). If it falls in the range [0, φ], then keyword
k is considered local at level l and the index of the cell having the highest density
is returned and stored in n. This will prune the spatial space, because only the tree
branch of this cell will be handled in the next iteration (at level l + 1).

Focus estimation. Once keyword k is recognized as local, it will be added to
Kt
local (Line 23), and the focus of k (Line 24) is computed as follows

Fk.lon = atan2

(
Sk.y

Sk.n
,
Sk.x

Sk.n

)
× 180

π
(4.19)

Fk.lat = atan2

Sk.z

Sk.n
,

√(
Sk.x

Sk.n

)2

+

(
Sk.y

Sk.n

)2
× 180

π
(4.20)

where the middle point of the Cartesian coordinates accumulated in (Sk.x, Sk.y, Sk.z)

is computed and converted back into lon/lat coordinates.

At snapshot t, each local keyword k ∈ Kt
local, along with its focus Fk, is used to

form an event entity (entity for short), denoted by ee = (k,Fk, t). These entities
are appended to a queue called Event Queue (EQueue) that holds entities generated
duringW . In the next section, we show that once an entity is appended to this queue,
it will be immediately assigned to a group (cluster) that relates to a certain event or
labeled as noise.

One last issue we consider is when multiple events on the same topic are taking
place at the same time over G. In this case, some shared keywords, referred to
as topical keywords, are distributed broadly over space, and hence, are mistakenly
identified as non-local. For example, when two soccer matches occur simultaneously,
topical keywords like “match” and “goal” will be mentioned at the location of both
events. To recover the locality of such keywords, we exploit the spatial co-occurrence
between topical and local keywords Kt

local. The intuition here is that a keyword
identified as non-local might pertain to one or more localized events if it shows a
certain level of co-location with at least one of the events’ local keywords. For this,
we employ the Pearson correlation coefficient as detailed in Algorithm 4.4.

In Line 1, the notation T refers to the set of all possible topical keywords. They
are traversed to extract those that can be recovered as local keywords (Lines 3-10).
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Algorithm 4.4: Topical-to-local keyword recovery procedure.
Input: Keywords Kt, local keywords Kt

local, spatial signatures Ŝk ∀k ∈ Kt,
and a threshold γ.

Output: Updated EQueue
1 T ← Kt −Kt

local // set of topical keywords
2 cells← {}
// only considering geo-tagged microblogs

3 foreach tk ∈ T do
4 foreach lk ∈ Kt

local do
5 if cells ∩ cellOf(Flk) == {} then
6 if ρtk,lk ≥ γ then
7 ee← (tk,Flk, t)
8 EQueue.append(ee)
9 cells← cells ∪ cellOf(Flk)

10 cells← {}

The correlation between the two probability distributing Ŝtk and Ŝlk is measured
using the Pearson correlation coefficient defined as

ρtk,lk :=
cov(Ŝtk, Ŝlk)
σŜtk
× σŜlk

, (4.21)

where cov(Ŝtk, Ŝlk) is the covariance that is estimated as E[(Ŝtk − µŜtk)(Ŝtl − µŜtl)]
and σŜtk

, σŜlk
are the standard deviation of Ŝtk and Ŝlk, respectively. The correla-

tion coefficient yields a value in the range [−1, 1], where 1 implies a perfect positive
correlation and -1 means a perfect negative correlation. If the correlation between
the signatures of the topical keyword tk and the local one lk is above or equal to a
certain threshold γ, tk is considered local, and thus, a new event entity ee is generated
and appended to EQueue (Lines 5-8). The set cell holds the geographic cells that
the topical keyword has been assigned to so far, which prevents generating multiple
entities that have a focus in same cell and significantly improve efficiency as only a
subset of the local keywords are compared against the topical keyword tk.

4.7 Event Cluster Generation and Scoring

At snapshot t, a number of event entities that are assumed to refer to some localized
events are generated. However, until now it is not obvious which entity belongs to
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which localized event. Our focus in this section is to group (cluster) related event
entities in order to generate potential localized events and to score them.

4.7.1 Spatial Clustering

According to the first low of geography by Tobler [149], which states that “Everything
is related to everything else, but near things are more related than distant things”,
spatially-close event entities are grouped together (clustered) to form potential local-
ized events. To account for the streaming nature of microbloging services and for the
arbitrarily-distributed entities over space, we need the clustering algorithm to fulfill
the following requirements:

(1) density-based: This enables generating clusters based on the density distri-
bution of entities over space, whereby generated clusters can have arbitrary
shapes reflecting the spatial spread of real-world events. Since the number
of localized events is unknown, density-based clustering is a good choice as it
does not require specifying the number of clusters a priori. Moreover, density-
based clustering is more resistant to noise [73], which is an important property
of clustering when dealing with messages that are heterogeneously distributed
over space.

(2) incremental: The streaming nature of published microblogs requires the adop-
tion of a single-pass clustering algorithm, so that once an entity is assigned to
a certain cluster, it would not be revisited again.

With these clustering requirements in mind, we chose to apply IncrementalDB-
SCAN [59] to incrementally cluster the entities appended to EQueue and form poten-
tial localized events (e1, e2, · · · ). In Section 4.7.1, we will present the basic concepts
and notations important to describe the clustering mechanism underlying DBSCAN.
Then, the update operations of the IncrementalDBSCAN algorithm are addressed in
Section 4.7.1.

Basics of DBSCAN

To form a cluster using the density-based clustering algorithm, DBSCAN, at least
one cluster member should have at least MinPts neighbors within the circular buffer
of radius Eps, where MinPts and Eps are the only required parameters.

Given a set of objects D that are to be clustered using DBSCAN. An object p is
said to be directly density-reachable from object q w.r.t. MinPts and Eps if:
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(1) p ∈ NEps(q): where NEps(q) is a subset of D, which contains objects in the
Eps-neighborhood of q.

(2) |NEps(q)| ≥MinPts.

On the other hand, an object p is density-reachable from q w.r.t. MinPts and Eps
if there is a chain of objects p1, p2, · · · , pn where p1 = q, pn = p such that pi+1 ∈ D
is directly density reachable from pi ∈ D. Two “border objects” of a certain cluster
might not be density reachable from each other due to the lack of enough objects
in their Eps-neighborhoods. To capture this indirect relationship between border
objects, the notion of density-connectivity was introduced. An object p is density-
connected to an object q if there is an object r ∈ D such that both p and q are
density-reachable from r1. Therefore, as illustrated in Figure 4.8, object r acts as an
intermediate object that connects the objects p and q if both are border objects in
the same cluster.

p

q

r

p is density-reachable from r

q is density-reachable from r

p and q are density-connected to each other by r

o

o is directly density-reachable from r

Figure 4.8: An example describing the basic concepts of DBSCAN: density-
reachability and density connectivity.

In the context of event detection, a potential event cluster generated by a density-
based clustering algorithm consists of a set of density-connected entities2, which is
maximal w.r.t. density reachability. In other words, a cluster C is a non-empty subset
of D satisfying the following conditions:

(1) Maximality: ∀p, q ∈ D, if p ∈ C and q is density-reachable from q, then q ∈ C.

(2) connectivity: ∀p, q ∈ C, p is density-connected to q and vice versa.

There are two different types of entities in a clustering: core entities that satisfies
the second condition of the directly density-reachable property and non-core entities
otherwise. The non-core entities are classified into two (1) border entities that are not

1The phrase “w.r.t. to MinPts and Eps” is omitted from now on whenever it is clear from the
context

2we replace the notion of objects by event entities (entities for short).
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core entities but density-reachable from at least one core entity and (2) noise entities
that are not core entities nor density-reachable from any other core entities.

First, an entity p is randomly-chosen and all other entities that are in the Eps-
neighborhood NEps(p) of p are retrieved. If |NEps(p)| < MinPts, then p is marked
as noise. Noisy entities might later be assigned to existing clusters in case they are
density-reachable from at least one core object that can be recognized later on. On
the other hand, if |NEps(p)| ≥ MinPts, then p is a core entity and a new cluster
is created. All entities in the Eps-neighborhood NEps(p) of p are assigned to this
cluster as well. Then, an iterative process aiming at expanding the cluster with new
entities starts. It involves discovering new core objects that are density-reachable
from p, identifying non-core objects that are density-reachable from p or other core
objects from the same cluster, and assigning all of them (core and non-core entities)
to that cluster. This process continues until no further expansion is possible. Then,
DBSCAN considers a new unvisited and repeats the previous process again, trying
to form a new cluster.

Update Operations in IncrementalDBSCAN

A core characteristic of IncrementalDBSCAN is that it does not revisit the entire set
of entities D whenever a new entity is inserted or an expired one is deleted. Ester et
al. [59] show that the modifications on some clustering of a database D are limited
to a neighborhood of an inserted or deleted entity p. In other words, it is sufficient to
apply DBSCAN to the set of entities affected by inserting or deleting p. Moreover, it
was proved that instead of considering all affected entities when reapplying DBSCAN,
only a few number of entities called “seed entities” are considered. Loosely speaking,
seed entities are core entities in the Eps-neighborhood of other entities that change
their core entity property as a result of the update. These seed entities are identified
based on the required type of update as follows:

• UpdSeedIns :=

{q|q is core in D∪{p},∃q′ : q′ is core in D∪{p} but not in D and q ∈ NEps(q
′)}

• UpdSeedDel :=

{q|q is core in D\{p}, ∃q′ : q′ is core in D\{p} but not in D and q ∈ NEps(q
′)}

In the following, we detail the insertion and deletion operations of Incremen-
talDBSCAN. They are applied to the seed entries in order to create new event
clusters, to update, or to remove others.
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Figure 4.9: EQueue holding event entities during W . At snapshot t, new event
entities are queued and clustered using IncrementalDBSCAN. Expired entities are
removed from EQueue.

Entity insertion. Inserting a new entity might lead to establishing new density-
connections, while no others are removed. The entities generated at snapshot t are
inserted as shown in Figure 4.9. For each inserted entity p, there are 4 possible cases:

(I) Noise: p is considered a noise entity because UpdSeedIns is empty and there are
no new core entities after inserting p.

(II) Creation: Before inserting p, the entities in UpdSeedIns were noise entities. A
new cluster containing these noise entity as well as p is created, because these
noise entities became core entities after inserting p.

(III) Absorption: The entity p and possibly some noise entities are assigned to an
existing cluster cl if UpdSeedIns is containing core entities that were member
of cluster cl before inserting p.

(IV) Merge: The core entities in UpdSeedIns were members of multiple clusters before
the insertion. All these clusters and the entity p are merged into one cluster.

Entity deletion. When deleting an entity p, the density-connectivity property be-
tween two or more entities might get lost, but no new density-connections are created.
The entities from the expired snapshot t − c are deleted. For each deleted entity p,
one of the following cases occurs:

(I) Removal: When UpdSeedDel is empty, p is deleted and other entities in the
Eps-neighborhood of p change from being assigned to a certain cluster cl to



122 From Local Keywords to Localized Events – Detection and Tracking

noise. Also, cluster cl is removed, because cl cannot have core entities outside
of NEps(p).

(II) Reduction: All core entities in UpdSeedDel are density-reachable from each
other. In this case, p is deleted and some entities in NEps(p) might become
noise.

(III) Potential Split: deleting a clustered entity p may lead to split the cluster based
on the connectivity of p with its neighbors in that cluster.

For more details on entity insertion and deletion in IncrementalDBSCAN, see
Ester et al. [59]. Such operations require successive computationally-expensive region
queries to retrieve the neighbors of entities. To cope with this, we exploit the spatial
index method R*-tree [29].

4.7.2 Cluster Scoring

Given a set of potential event clusters Et = {et1, et2, . . . , et|Et|} generated at snapshot
t or updated from snapshot t− 1, the goal in this section is to assign a score to each.
Assigning a score for cluster et is important, because it captures two aspects:

(1) Cluster Significance. The higher the score, the more likely cluster et refers
to an event cluster, i.e., a cluster referring to a real-world event. Building a
supervised classifier that can distinguish between event and non-event clusters,
e.g., a cluster of keywords mentioned at an airport, is out of the scope of this
chapter. However, we will show in the experiments that this score is a useful
feature for such a classifier.

(2) Cluster Evolution. The score of et is computed at each snapshot, which signifies
its progress over time.

Before discussing how to score clusters, we present some properties describing the
state of a cluster eti:

1. Start Time eti.st: It represents the snapshot at which the cluster was created.

2. Keyword Descriptors eti.Y : The entities forming cluster eti are aggregated
based on their keywords. This results in a set of tuples referred to as keywords
Descriptors. Each descriptor eti.Y [k] = (accWeight, EE) belongs to a certain
keyword k and consists of the accumulated sum of weights (discussed in Chap-
ter 3) that keyword k got during W , and the keyword’s entities assigned to eti
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during W , respectively. The entities EE are chronologically ordered by main-
taining them in a queue as they arrive, which is important to access the most
recent entity in constant time. The entire set of entities in cluster et is denoted
by eti.EE.

3. Previous Cluster Size eti.prevSize: It refers to the number of entities assigned
to cluster eti at snapshot t−1. When eti receives more event entities at snapshot
t than the entities it loses at the expired snapshot t − c, its size increases
indicating that the corresponding event is still taking place, yet is getting more
popular. Therefore, maintaining the size of et at the previous snapshot helps in
controlling the evolution of its score based on the change in the cluster size as
discussed below.

The cluster scoring scheme we propose relies on the keywords a cluster contains
during W . Thus, the score score(eti) of cluster eti at any snapshot depends on the
number of keywords it contains and the weights of these keywords. First, we present
how to score each keyword in a cluster, and then, how to aggregate the scores of
individual keyword to generate a score for the cluster.

To assign score for individual keywords, we assume that the score score(k, eti) of
k depends on the following factors:

(1) Power: The weight that is computed for keyword k (discussed in Chapter 3)
at each snapshot in W is a useful indication of the significance of k. The more
people use this keyword in their microblogs at temporally close snapshots, the
higher the weight it obtains. Thus, we define the power of keyword k as the
average weight of k in cluster eti during W . More formally,

power(k, eti) :=
eti.Y [k].accWeight

|eti.Y [k].EE| . (4.22)

(2) Presence: When cluster eti receives keyword k more frequently than other
keywords, the confidence that this keyword belongs to the event corresponding
to eti should be boosted. Thus, the presence of k in cluster eti is defined as the
percentage of times keyword k is clustered to eti during W , i.e.,

presence(k, eti) :=
|eti.Y [k].EE|

c
, (4.23)

where c is the time window length (measured in snapshots).
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(3) Recency: It indicates the closeness of the time of the last appearance of k
in cluster eti to the current snapshot t. The larger this temporal gap, denoted
tgap(k, et), is, the lower the score k will obtain. For this, we use an exponential
decay function

recency(k, eti) := a(1− r)tgap(k,eti) (4.24)

where the initial value of a is set to 1, and the decay rate r is set to 0.5. Thus,
keyword k will get a maximum recency of 1 if it is clustered in eti at the current
snapshot t. Moreover, the recency will decline exponentially by time if k is not
being clustered in eti at subsequent snapshots.

Hence, we define the individual keyword score score(k, eti) at cluster eti as the
product of the previous factors, i.e.,

score(k, eti) := power(k, eti)× presence(k, eti)× recency(k, eti), (4.25)

which can be reduced to

score(k, eti) :=
eti.Y [k].accWeight

c
× recency(k, eti), (4.26)

because the factor |eti.Y [k].EE| in Eq. 4.22 and Eq. 4.23 are canceled out.

Now, the score of cluster eti at snapshot t is defined as the sum of individual scores
of the keywords composing eti, i.e.,

score(eti) :=
∑
k∈e.Y

score(k, eti) (4.27)

By inspection, we noticed that the clusters’ scores drop down slowly after their
respective events end. In other words, a cluster keeps obtaining high scores for a
relatively long period of time even after the event ends. This undesirable phenomenon
occurs because: 1) people keep sharing messages with related lkeywords even after
an event ends and 2) a relatively large window size is usually chosen to aggregate
the sparse spatio-temporal statistics of keywords. To handle this phenomenon, we
maintain the size of clusters at the previous snapshot t − 1 and exploit the Sigmoid
function to rapidly lower the their scores as the size decreases over time. Therefore,
we redefine the score of cluster et as:

score(eti) :=

∑
k∈eti.Y score(k, e

t
i)

1 + exp{−(|eti.EE| − eti.prevSize)}
, (4.28)
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Note that when the number of entities increase over time and the value of |eti.EE| be-
comes much larger than eti.prevSize, then the denominator will approach 1, meaning
that the cluster gets the maximum possible score as defined in Eq. 4.27. On the other
hand, after the corresponding event ends, the number of entities starts decreasing,
leading to a lower score.

Finally, from the definition of a localized event ei = (W t, ht, start, end) discussed
in Section 4.3.2, each event component is set as follows. The event keywords W t are
the keyword descriptors of the corresponding cluster eti, i.e., W t := eti.Y . The start
time start of the event is the creation time of the cluster eti, namely, start := eti.st.
The end time end of the event is set as

end := arg min
t′

{(t′ > start) ∧ (score(et
′

i ) < score(estarti ))}, (4.29)

meaning that the first snapshot that follows the event’s start time start and, at which,
the cluster gets a score lower than what it has obtained at snapshot start is the event
end time. The location ht of ei is the convex hull of the event entities eti.EE, which
is computed using Graham Scan algorithm [69].

4.8 Experiments

4.8.1 Experimental Setup

Datasets. We used the three Twitter datasets presented in the previous chapter:
MAD, UKR, and NYC, which contain tweets published from the city of Madrid,
Ukraine, and highly- populated parts of New York, respectively. For more details
on the time intervals and other aspects related to these datasets, see Section 3.7.1.
These datasets were created using our TWIPA1 (TWItter rePository mAnager) tool.
TWIPA is a pipeline framework in support of digesting the huge amount of Twitter
content and transferring the demanded tweets from files to a fast-access and indexable
database, namely a MongoDB-based database.

As can be inferred, the datasets differ in terms of the average number of tweets
per hour and the covered geographic areas, which allows us to test LocEvent us-
ing datasets having different spatio-temporal sparsity. The tweets are ordered by
their timestamps and sent to the framework as a stream of messages, imitating the
streaming nature of Twitter.

1http://dbs.ifi.uni-heidelberg.de/index.php?id=twipa
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Figure 4.10: The impact of φ on identifying local keywords.

Parameter Setting. The length of the used snapshot and sliding window c were
set to 1 hour and 6 hours, respectively. We set the cell width of the used grid to 1.1
km. The locality threshold φ for this and the following experiments is set as follows.
We plot the percentage of keywords recognized as local over a number of locality
thresholds. As can be seen in Figure 4.10, a significant change (about 17%) in the
percentage of local keywords is observed when varying φ from 0.5 to 1.0, and thus,
we decided to assign 0.5 to φ as a cutoff locality threshold. We empirically set the
bandwidth H used for the kernel density estimate (see Section 4.5.2) to (2×I2) where
I2 is the 2×2 identity matrix.

Platform. The experimental evaluation is performed using a platform having an Intel
Core i7 (3.40 GHz) with 16 GB main memory. We ran LocEvent under Ubuntu
12.04 (with Java 7 framework).

4.8.2 Evaluation of Spatial Signature

In this section, we test the ability of LocEvent to provide an adjusted spatial
signature for each keyword. As for the graph-based regularization technique, we
generated a base signature Sbase to reflect the typical spread of a localized event.
Then, we computed the cosine similarity between that Sbase and the signature of
relevant keywords. In the context of spatial signatures, this cosine check will result
in values in the range [0,1] with the value of 1 being an exact match.

From dataset MAD, we considered the event of the “classico” match, and chose a
set of relevant keywords (estadio, bernabu, santiago, elclasico, empieze, hastaelfinalva-
mosreal, madrid, barca). Then, we generated Sbase such that Sbase[(−3.68, 40.45)] = 1,
where (long: -3.68, lat: 40.45) refers to the cell containing the Santiago Bernabeu Sta-
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dium. Similarly, we constructed another base signature for dataset UKR referring to
the event of the final UEFA 2012 match at the Olympic stadium in Kiev. The chosen
keywords for this event are: final, 2012, stadium, kiev, euro2012, zone, euro, olympic.
The cosine similarity is computed between the spatial signature of each keyword and
the corresponding base signature Sbase. This similarity check was performed before
and after the graph-based spatial adjustment. Then, we took the mean of the result-
ing similarity values for all specified keywords. This process is conducted during a
number of snapshots as shown in Figure 4.11. In this Figure, the adjusted spatial
signatures are more similar to the expected Sbase than non-adjusted signatures, es-
pecially during the events’ time. This means that during localized events, adjusted
spatial signatures are of more focus on the location of an event, which mitigates the
spatial noise and sparsity problems discussed in Section 4.4.
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Figure 4.11: Comparing the spatial signatures of keywords before and after the graph-
based signature adjustment. (a) Dataset MAD (Madrid), from 2013/1/30 12:00 to
2013/1/31 7:00. (b) Dataset UKR (Ukraine), from 2012/7/1 7:00 to 2012/7/2 7:00

The spatial signature of a certain keyword can be visualized on a map before
and after the graph-based adjustment as shown in Figure 4.12. It depicts the spa-
tial distribution of keyword “kiev” aggregated over one-hour snapshots from (17:00
2012/7/1) to (2:00 2012/7/2). This word refers to the city where the final EUFA 2012
match took place. The spatial distribution is expected to be focused on (and close
to) the stadium of the match. However, and as can be seen, the spatial signals of this
word are distributed over many cells around the stadium, which can be justified by
the effect spatial outliers. After performing signature adjustment for this keyword,
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Figure 4.12: Visualizing the spatial signature of word “kiev” before the graph-based
signature adjustment (left) and after adjustment (right).

an updated signature is obtained with more focus on the match stadium as shown in
the right part of the figure.

To test the impact of the gazetteer-based signature regularization in providing a
reliable decision about the locality of keywords, we chose some events from Table 3.3
and collected statistics pertaining to the considered keywords before and after elim-
inating spatial outliers. In Table 4.1, the second and third column show how the
entropy mean of the keywords decreases drastically after eliminating spatial outliers,
which, of course, increases the chance of identifying them as local keywords. The
forth column illustrates the percentage of spatially-adjusted keywords that become lo-
cal and have a focus at the event location after the adjustment. The more important
and popular the localized event, the higher is the percentage. The fifth column shows
the precision of the adjusted keywords, i.e., these keywords that actually refer to the
corresponding event. As a result, the majority of the adjusted keywords that have a
focus at the event location pertains to that event.

Table 4.1: The performance of spatial outliers elimination using the gazetteer-based
regularization.

EID Before Adjust. After Adjust. Spatially-adjusted Precision
E6 0.803 0.1603 56.2% 70

104 = 0.67

E8 0.49 0.028 39.6% 16
20 = 0.8

E9 0.478 0.027 41.4% 41
56 = 0.732

E10 1.345 0.807 33.6% 34
40 = 0.85

In Figure 4.13, the keyword “krewella” of event E8 is considered and the temporal
profile of the keyword’s entropies during 10 1-hour snapshots is plotted. We notice
that the entropy values increase over time due to the fact that more and more people
will be aware of the event occurrence by time through TV, friends etc. After elimi-
nation of outliers (discussed in Section 4.5.1), these values become smaller (below φ
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Figure 4.13: The impact of outliers elimination using gazetteer-based regularization
for keyword “krewella” of event E8 during 10 1-hour snapshots.

most of the time), and thus, the impact of these outliers on the spatial distribution
of keyword is minimized.

4.8.3 Keyword Locality Evaluation

We evaluate another important aspect of LocEvent, which is how much informa-
tion is needed to handle spatial outliers and regain the expected spatial distribution
of keywords. For this, a number of tweets are injected into dataset NYC at snap-
shot (2013/11/13 03:00), having the geo-coordinates (lon: -73.983, lat: 40.738) of
an assumed event location. These tweets contain the words: “fire”, “shooting”, and
the georeference “pizza pub” that is close to the event location. In Figure 4.14, we
plot two diagrams for both keywords, and show how the entropy decreases as the
number of such tweets increases. To highlight the value added by LocEvent, we
compare its performance against a baseline that does not perform outlier elimination,
denoted as SO. In Figure 4.14a, it is observed that 120 tweets are required to make
the keyword “fire” local using SO. This is because this word is usually mentioned in
different contexts, and thus, it has a broad spatial coverage. However, LocEvent

entails only 8 tweets to reach the locality threshold φ. On the other hand, and as
can be seen in Figure 4.14b, the keyword “shooting” has reached φ only with 3 tweets
using LocEvent since it is sparsely used over space.
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Figure 4.14: Impact of increasing the number of a keyword’s occurrences on entropy
using LocEvent and SO.

In addition, we compare LocEvent against the model of Backstrom et al. [21],
which we denote as SV. SV is a probabilistic model that captures the spatial variation
of geo-tagged search queries and gives an estimation of the central location of a
query and its spatial dispersion. The dispersion indicates whether the query has a
local interest or broader regional or national appeal, and is quantified by estimating
a value for the dispersion parameter α. The larger α, the faster the query decays
away from the center and the more localized it is. In this context, we consider the
preprocessed content of a tweet as a query in order to be able to utilize SV and compute
the dispersion of a particular keyword. Figure 4.15 shows the effects of varying the
number of injected tweets from 0 to 30 on a normalized versions of −α, the entropy
from LocEvent, and the entropy from SO. In Figure 4.15a, both LocEvent and SV

exhibit a similar and fast response to the increase in the number of tweets containing
the keyword “fire”. Both approaches outperform SO, because SO relies only on a
word’s spatial distribution whose entropy decreases slowly in the case of widely-used
keywords such as “fire”. Figure 4.15 shows that SO has a better response to the increase
in tweets containing the keyword “shooting” due to its sparse spatio-temporal usage.
However, LocEvent outperforms both SO and SV, which highlights its effectiveness
in providing a rapid locality detection for a sparsely-used keyword.

Finally, we compare the accuracy of LocEvent in computing the spatial focus
of local keywords against SO and SV. For this, we chose some events from Table 3.3,
computed the focus of each keyword using the three approaches, and plotted the av-
erage distance error (see Figure 4.16). A keyword k focus obtained from the baseline
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Figure 4.15: Effect of the number of tweets on normalized dispersion measures from
LocEvent, SO, and SV.
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Figure 4.16: Comparison between LocEvent, SO, and SV in terms of the average
distance error for a number of events.

approach SO is estimated from the tweets containing k by computing the weighted
center of gravity of their geo-coordinates. To calculate the error distance for a partic-
ular keyword, we manually specify a location for each localized event as the central
geographic point of the event venue, and then apply the Haversine formula [141] to
determine the distance between the keyword focus and the event’s central point. Fig-
ure 4.16 shows that LocEvent outperforms the other approaches in estimating an
accurate focus for all events, which can be explained by the fact that LocEvent

not only eliminates outliers, but also preserves a location summary for each keyword
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inside each cell. The approaches SO and SV exhibit an almost similar behavior, and,
of course, spatial outliers lead to relatively large error distances.

4.8.4 Social Evidence Evaluation

In this section, we present our evaluation of the method discussed in Section 4.5.3
to identify social evidences. Table 4.2 shows the top 5 scored tweets at snapshot
2012/7/1 20:00 from dataset UKR. Each row corresponds to a single tweet showing
its content, geo-location and score. The geo-location represents the lower left corner
of the cell from which a tweet originates. The listed tweets touch the topic of a soccer
match. These tweets got the highest scores since (1) they contain keywords (e.g.,
UEFA, EURO, Final etc.) that are relevant to the final UEFA 2012 match, and (2)
they originate from the central cells (in this case, the cell of the stadium and its
neighbors) of the match.

Table 4.2: Top-5 scored tweets extracted from dataset UKR during snapshot
2012/7/1 20:00

Tweet (long, lat) Score

España <3 @ Official Fan Zone of UEFA EURO 2012
http://t.co/XYiMePtF

30.52, 50.44 0.86

Go Spain @ NSK Ol�mp��s~ki� / NSC Olimpiyskiy
http://t.co/8YBUkOgD

30.52, 50.43 0.84

Euro 2012 final. @ NSK Ol�mp��s~ki� / NSC
Olimpiyskiy http://t.co/Kg0ny6FL

30.52, 50.43 0.80

Final euro :D (@ NSK Ol�mp��s~ki� / NSC
Olimpiyskiy w/ @2easy4dony) http://t.co/z8quWYim

30.52, 50.43 0.80

I’m at Official Fan Zone of UEFA EURO 2012 w/
@mashalet http://t.co/QW0alqst

30.52, 50.44 0.76

In addition, we computed the score of each tweet posted during the snapshots
15:00, 16:00, ..., 23:00 on July, 1st 2012 from dataset UKR. Then, we retrieved
the tweets from each snapshot whose scores are greater than or equal to 0.5, and
called them potential social evidences. These potential evidences were then given to
a human annotator who labeled each of them as “evidence” or “non-evidence”. We
assume that during this time interval the only event occurred was the final EUFA 2012
match, and thus, a tweet is annotated as “evidence” if it talks about this event. After
that, we computed the precision at each snapshot as the ratio between the number of
tweets labeled as “evidence” and the number of potential social evidences. Figure 4.17
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Figure 4.17: (a) The number of potential social evidences per one-hour snapshots.
(b) The precision of correctly identified social evidences per each snapshot.

shows that the number of potential social evidences increases when getting close to
the start time of the final match. That is, the final match stimulates more users to
publish tweets containing related keywords at the cell of the stadium. Furthermore,
the precision of tweets that are correctly labeled as “evidence” was at maximum (96%)
at snapshot 20:00 (the match started at 20:45 EET).

4.8.5 Overall Performance of LocEvent

Evaluation Metric

The typical performance measures used in this context are precision and recall. The
precision refers to the fraction of actual event clusters to the entire set of generated
clusters. Following [103], if two clusters pertain to the same event, both are considered
correct in terms of precision. The recall corresponds to the fraction of actual event
clusters to the entire set of events that can be extracted from a dataset. While it
is easy to estimate the precision, it is not for the recall, because of the absence of a
ground truth. In fact, it is not feasible to enumerate all possible events in a dataset
trying to build such a ground truth, and thus, we will only focus on the precision.
Since the recall is an important metric reflecting the performance of LocEvent in
finding a large number of event clusters, we estimated a variation of the recall based
on a simplified assumption discussed below. Then, this estimation is exploited to set
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the value of one of the clustering parameter minPts that, if carefully chosen, results
in a higher precision and a larger number of formed event clusters.

Clustering Parameters

Generating event clusters from entities using IncrementalDBSCAN requires setting
two parameters: Eps and MinPts. We set Eps to 100m, a relatively small value, in
order to (1) ensure the detection of small-scaled events and to (2) reduce the chance
of generating non-event clusters from noisy event entities that are sparsely distributed
over space. The parameter MinPts has a large impact on precision. Small values
of MinPts result in producing a large number of clusters and increase the chance
of forming non-event clusters (low precision), and vice versa. Thus, we opt to use
the harmonic mean (F-score) that provides a balanced value between precision and
recall. Here, we describe how to assign a value to MinPts using F-score in the
absence of a ground truth. First, we set MinPts to 10 and ran LocEvent over only
a one-day interval from dataset NYC, because the manual annotation for the entire
dataset on a variety of parameter values is a time consuming process. The chosen date
was Nov. 23rd, 2013 because, on that day, the largest number of generated clusters
was observed. Then, we ran LocEvent again using other values of MinPts, i.e.,
MinPts = 15, 20, 25. As shown in Figure 4.18, increasing MinPts leads to a better
precision. To estimate the F-score for each value of MinPts, we should have the
corresponding recall values, which is theoretically impossible without a ground truth.
To cope with this, we took the first configuration MinPts = 10 as a baseline and
assumed that all event clusters on that day are generated, and hence, we had a recall
of 1. Then, we computed the recall using the other values, i.e., MinPts = 15, 20, 25

w.r.t. this assumption. The values MinPts = 10, 15 yielded the highest F-score.
Furthermore, we chose an intermediate value of MinPts = 12 that even resulted in
a higher F-score; and thus, MinPts is set to 12.

Detection Results

We compare LocEvent against the state-of-the-art local event detection approach
Jasmine [154] after running both systems over tweets from dataset NYC. Jasmine
represents local events as clusters of georeferences associated with key terms that co-
occur with these georeferences. To increase the chance of finding small-scaled events,
Jasmine uses a gazetteer that provides a mapping between place names and physical
locations. To build this gazetteer, place names from geo-tagged tweets are extracted
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Figure 4.18: The impact of MinPts parameter on precision, recall, and F-score.

using a rule-bases NER technique, and then, these names are associated with the mean
of the geo-coordinates of tweets containing these place names. To resolve ambiguity,
the place names having high geographical variance are ignored as they might refer to
ambiguous place names such as “Burger King”. We implemented Jasmine and ran it
over the tweets published during Nov, 23rd. It produced 93 clusters with a precision
of 33.33% as shown in Figure 4.19. LocEvent yielded a precision of 75.36% and
extracted 8 more localized events than Jasmine. This high precision achieved by
LocEvent is due to (1) the strict filtering of words to identify the keywords that are
both event-related and local and (2) the usage of a density-based clustering algorithm
that is noise-tolerant. Moreover, LocEvent produced more event clusters because,
unlike Jasmine, it does not rely on building clusters around georeferences. However,
LocEvent can form clusters anywhere within the geographic space G. After that, we
ran LocEvent over the entire dataset NYC and extracted 442 distinct events with
an overall precision of 68.22%. Interestingly, this precision is promising as LocEvent

does not rely on a supervised learning approach to filter out non-event clusters [35],
nor on an external data source, such as Wikipedia, as done in [103]. Moreover, we
investigated the role that the score of a cluster plays in distinguishing event from
non-event clusters. For this, we divided the range of yielded scores into sub-intervals
and plotted the aggregated precision. As can be seen in Figure 4.20, the higher the
score of a cluster is, the more likely the cluster is referring to a real-world event. For
example, all clusters obtained scores larger than or equal to 15 were event clusters.
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Therefore, these scores can be used as a useful feature for a supervised classifier to
automatically filter out non-event clusters.
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Figure 4.20: The relationship between the scores assigned to clusters and the resulting
precision. Higher scores lead to improve precision.

Event Cluster Evolution

LocEvent has an additional advantage over Jasmine as it can track the evolution of
a detected event by assigning a dynamic score to its respective cluster. Table 4.3 lists
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Figure 4.21: The evolution of event e4 (soccer match between Argentina and Ecuador)
over time. The figure depicts the dynamics of the event location, estimated as a convex
hull covering a part of the stadium.

the top event clusters with respect to their scores. For each event, we show the top-
10 keywords, the highest score the event obtained, its estimated start time (GMT),
and a description for the event. Interestingly, these significant events took place at
either Madison Square Garden or MetLife Stadium, where prominent concerts and
sport events are hosted, respectively. Moreover, LocEvent, in addition to its ability
to extract relevant keywords for each event, can estimate fine-grained location, start
time, and end time information. For example, in Table 4.3, e4 corresponds to the
soccer match between Argentina and Ecuador, which took place at MetLife Stadium
at 11/16 00:30 GMT. The snapshot of the estimated start time is (11/16 00:00),
meaning that LocEvent could precisely determine the hour at which the match
started. Furthermore, LocEvent captures the dynamics of each cluster by tracking
the semantics (also called concept drift) and the spatial evolution of clusters over
time. As shown in Figure 4.21, the score of cluster e4 is updated over time to reflect
its changing significance until it diminished. Two versions of the scoring scheme are
plotted: the normal and sigmoid-adjusted schemes, discussed in Section 4.7.2. As
can be seen, the sigmoid-adjusted version tries to drop the cluster score down quickly
after the end time of the soccer match, ensuring a better estimation of the event’s
time interval.
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Table 4.3: A sample from the most significant event clusters identified by LocEvent
from dataset NYC.

ID Keywords Score Start
Time Description

e1

yeezus, tribe, quest, kanye,
kanyewest, yeezy, garden, madison,
kanyemsg, yeezustour

197.363 11/24
23:00

A concert tour by the
rapper Kanye West at
Madison Square
Garden

e2

timberlake, jtimberlake, justin,
justintimberlake, worldtour,
shadows, tijucaemny, experiencetour,
jttour, fallon

127.373 11/07
01:00

A concert for Justin
Timberlake at Barclays
Center

e3

nyr, nyrangers, rangers, thegarden,
hat, hattrick, garden, msg, posted,
lgr

118.616 11/30
17:00

A hockey game btn
Canucks & Rangers @
Madison Square
Garden

e4

ecuador, argentina, fef, soddy, rueda,
ambiente, mundial, seleccin,
ecuadorvsargentina, ecua

103.405 11/16
00:00

A soccer game btn
Argentina and Ecuador
@ MetLife Stadium

e5
saints, orleans, jets, rex, seats, game,
jetup, brees, tailgating, nfl

79.935 11/03
15:00

New York Jets vs. New
Orleans Saints @
MetLife Stadium

e6

raiders, giants, nygiants, nyg, oak,
rutherford, bigblue, gmen, east,
stadium

76.306 11/10
16:00

American football btn
Raiders & Giants @
MetLife Stadium

e7

paramore, macklemore,
yelyahwilliams, macklemoreconcert,
paramoremsg, crushcrushcrush,
macklamore, confetti, tourlife, metric

70.193 11/14
03:00

American rock trio
from Franklin,
Tennessee.

e8

dallascowboys, cold, giants, degrees,
cowboysnation, tied, cowboys, gmen,
freezing, nyg

60.305 11/24
19:00

Dallas Cowboys vs.
New York Giants
MetLife Stadium

e9

macklemore, rockets, lewis, linsanity,
houston, theater, lin, ryan, yorker,
alisonmoyet

50.485 11/14
15:00

an American hip hop
duo

e10

staten, island, marathon,
ingnycmarathon, runners, whitehall,
line, start, ferry, statenislandferry,
gooooo

49.648 11/07
01:00

the start line of NYC
Marathon @ Staten
Island

e11

spurs, nyknicks, knicks, garden,
thegarden, manuginobili,
knicksspurs, blowout, msg, usaf

34.53 11/10
16:00

Spurs vs. Knicks @
Madison Square
Garden
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Figure 4.22: The temporal evolution of three events described in Table 4.3. Due to
the impact of the sigmoid-based score adjustment, a drop in the number of entities
leads to a drastic decrease in the score of an event.

In Figure 4.22, the temporal distributions of the scores and the number of event
entities pertaining to three events from Table 4.3 are plotted. As can be seen, Lo-

cEvent, by tracking the evolution of event clusters, is able to approximate the time
interval of an event. For instance, the estimated start time of event e2 is (11/07 01:00)
which is the actual start time of this event, i.e., (11/06 20:00 EST)1. The estimated
end time of this event is (11/07 08:00). We empirically found that estimating the end
time of events is non-trivial as people usually tend to stay at the location of an event
for a relatively long time after it has ended and keep publishing about the event. In
spite of using the sigmoid-based adjustment method described in Section 4.7.2, there
is a need to extract temporal expressions from event-related tweets and use them
for a better end time estimation, an aspect we leave for future work, as discussed in
Chapter 6.

1http://www.songkick.com/concerts/17479019-justin-timberlake-at-barclays-center,
accessed June 2014
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Figure 4.23: (a) Running time against the number of tweets per snapshot. (b) the
impact of window size c and clustering parameter Eps on runtime.

Scalability of LocEvent

After running LocEvent over dataset NYC, 4.37 minutes are needed to process 3.8
million tweets and generate the scored clusters. This time includes tweets preprocess-
ing, keyword extraction, the four stages of LocEvent, and the index update. Hence,
in average, 0.069 ms is required to process each tweet. In Figure 4.23a, we compare
LocEvent against LocEvent_rg, a baseline version without spatial indexing.
LocEvent outperforms LocEvent_rg, because of its ability to accomplish fast
pruning of the space until the event cells event are reached. Figure 4.23b illustrates
the impact of the window size (c) and the clustering parameter Eps on the computa-
tional efficiency of LocEvent. Increasing both parameters results in larger running
time. For Eps, the increased running time is due to traversing more event entities
for a neighborhood check in spite of using the R*-tree index. On the other hand,
the window size c shows larger impact on the system’s efficiency because (1) more
snapshots are considered to compute the current recurrent rate of each word and (2)
the spatial index T will have a larger size as more information is aggregated when
using a larger time window.

Another aspect that supports the scalability of LocEvent is that it can be easily
parallelized. Fortunately, each word is processed separately in the keyword extraction
(Section 3), focus estimation of local keywords stages. This makes it easy to split the
set of wordsW t published during snapshot t among multiple processing threads. Each
thread processes some words through the first two stages and generates a set of event
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entities. Then, the generated entities from all threads are appended to a synchronized
version of the event queue EQueue.

4.9 Summary and Discussion

In this chapter, we proposed LocEvent, a novel framework to detect localized events
from social media streams and to track the spatio-temporal evolution of detected
events in an online fashion. LocEvent adopts the sliding window model to conduct
a near real-time event detection and tracking. Each time the window slides and a new
snapshot elapses, LocEvent follows a 4-stage procedure: (1) Keyword extraction:
event-related keywords that exhibit significant increase in usage are extracted using
KeyPicker discussed in Chapter 3. (2) Focus of local keywords: local keywords
having spatially limited spread are identified and the spatial center (focus) of each
local keyword is estimated. (3) Event cluster generation: local keywords are spatially
clustered, which generates potential event clusters. (4) Cluster scoring: the generated
clusters are finally scored based on the temporal characteristics of the keywords they
contain. This type of scoring helps determine the significance of a cluster and how it
evolves over time.

LocEvent combines a number of key features, setting it apart form existing
approaches.

(1) LocEvent conducts a multi-stage noise elimination procedure. That is, non-
event words are screened out in Stage-1 while non-local keywords are eliminated
in Stage-2. In Stage-3, we utilize a noise-resilient clustering algorithm and, in
Stage-4, clusters are scored so that non-event clusters obtain low scores.

(2) In addition to handling temporal problems, as discussed in Chapter 3, Lo-

cEvent tackles two spatial problems, namely, spatial outliers and spatial spar-
sity, which adversely affect a reliable estimation of spatial signatures. To cope
with spatial outliers, we proposed two novel regularization procedures: graph-
and gazetteer-based regularization. Spatial sparsity is handled by exploiting a
non-parametric kernel density estimate.

(3) To ensure scalability, LocEvent employs a space-partitioning index that is in-
crementally updated as time progresses by accumulating summarized statistics
(synopses). Such synopses are important in identifying local keywords and in
estimating their spatial focus. Using this type of indexing, the geographic space
can be quickly pruned, resulting in an efficient local keyword identification.
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(4) For each detected event, a set of descriptive keywords, a location, and a time
interval are estimated.

We have conducted extensive evaluations using datasets collected from Twitter.
The experimental results reveal that LocEvent has high precision, when compared
to related approaches. Moreover, the results show its scalability, ability to capture
the dynamics of events, and robustness against noise and outliers.



Chapter 5

Context-Aware Event
Recommendation in Social Media

In the previous chapter, we have discussed the online detection of localized events from
a stream of microblogs. For each detected event, our proposed framework extracts
a list of descriptive keywords, estimates their locations and time intervals at a fine-
grained spatio-temporal resolution. In this chapter, as an application, we consider
the personalized event recommendation problem. The aim is to provide users with a
ranked list of future events that suit their preferences by proposing a context-aware
event recommendation model.

5.1 Introduction

Today, the proliferation of information about social events, disseminated through a
large number of location-based social networks (LBSNs) such as Foursquare is driving
the development of new services and applications towards a better user interaction.
Such event information is either hidden within an immense amount of noisy content
and needs to be extracted using some event detection methodology [3, 104, 156], or
it is explicitly provided by one of the event-based social networks (EBSNs) such as
Meetup1 and Plancast2. Meetup, for instance, provides an online platform for users
to create and organize social events that are to be held at some locations [107]. In
addition, Meetup enables its members to join virtual groups, where events are created
by and announced to their members. Users can then show their intent to attend these
events by choosing “yes”, “no”, or “maybe”. On the other hand, the introduction of

1http://www.meetup.com/
2http://plancast.com/
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location-acquisition technologies that are embedded in today’s smartphones allow
for enriching both events and users with location information. As a consequence,
the activity history of users can be analyzed to mine useful user-event attendance
patterns, fostering the development of context-aware recommendation systems.

Our goal in this chapter is to uncover latent patterns of user interest in attending
social events, which are buried in the content of LBSNs and EBSNs. These patterns,
in turn, provide personalized recommendations that suit users’ tastes. Building rec-
ommender systems is a well-established research area that includes a large number of
recommendation models adapted to different application domains. Generally speak-
ing, these recommender systems rely on one of the following strategies:

(1) Content filtering : It is based on generating a profile for each user and event. For
instance, the profile of an event could include characteristics showing its genre,
the age range of participants, location, and so forth. Likewise, a user profile
might include demographic information, age, gender etc. These profiles are then
used to rank the events with respect to a certain user and to recommend, for
example, the top-k ranked events to that user. Applying such content-based
approaches requires collecting external information that might be unavailable
or not easy to collect [92].

(2) Collaborative filtering : This strategy only depends on the past behavior of users,
which is mined from their attendance to past events. Collaborative filtering [67]
uncovers and quantifies the relationships between both users and events towards
identifying new user-event associations. One important aspect of collaborative
filtering is its domain-free nature in the sense that it provides a generic mech-
anism to address (latent) data characteristics that are difficult to profile using
content-based techniques.

Therefore, collaborative filtering (CF, for short) in general yields more reliable
results than content-based techniques [92]. However, it suffers from the cold-start
problem, meaning that it cannot recommend events to new users who have no (or
sparse) event attendance history and fails to suggest future events to them. Addi-
tionally, the direct application of CF in the domain of event recommendation has a
number of other challenges due to the unique nature of this domain. These challenges
are summarized as follows:

(1) Sparse event attendance history. A user can only attend a limited number
of social events, which degrades the performance of CF in extracting common
patterns for users who have similar event preferences [102].
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(2) Events, as items to be recommended, are time-specific. That is, only future
events can be recommended to users. Future events usually receive their ratings
(or assigned as attended) shortly before they start or after they ended.

(3) Spatio-temporal proximity matters. The temporal distance between the current
time and the start time of an event on one hand and the spatial proximity be-
tween the location of the user and the event on the other hand jointly contribute
to directing the recommendation process.

To this end, we propose a context-aware event recommender system on the basis
of model-based CF techniques that are also referred to as latent factor models. More
precisely, our model is built upon the well-known matrix factorization that is one
of the most successful realizations of model-based CF. Using matrix factorization,
each user and event is characterized by a factor vector whose factors are iteratively
estimated by minimizing a cost function. We adapt this model by accounting for the
(1) social interactions between users, (2) content similarity between events, and the
(3) spatio-temporal proximity between users and events. The aim behind including
the social interaction is to recommend similar events to users having a large degree
of interaction, e.g., when two users mention each other frequently in their tweets.
Likewise, incorporating the content similarity between events helps in recommending
future events to users who have attended past events with similar topics (themes).
Finally, the spatio-temporal proximity guarantees that the events that are in the
vicinity of a user receive higher ranks than distant events on the same topic. In this
work, we jointly account for both spatial and temporal aspects in order to avoid,
for example, recommending distant events that are about to start. The primary
contributions of our event recommender system are summarized as follows:

• We argue that enriching the pure model-based CF with social, topical, and
spatio-temporal features helps in proving a better modeling for user preferences
and in mitigating data sparsity that leads to the cold-start problem. This is
because these features can be viewed as a content-based enrichment for the
traditional CF techniques.

• In our model, we consider all possible associations between the two main enti-
ties, i.e., users and events, which are the user-user, event-event, and user-event
associations. We also show how to regularize each of these associations with a
proper contextual feature. As a result, our model is generic in the sense that
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it provides a straightforward embedding and mapping of new features to their
respective associations.

The rest of the chapter is organized as follows. In Section 5.2, research efforts
related to event recommendation in social media are discussed. Then, we present the
main notations, concepts, and problem statement in Section 5.3. In Section 5.4, the
contextual features used to refine the model-based CF are addressed besides describing
the steps required to integrate them into the CF model. Then, we show how to
estimate the model’s parameters using the gradient descent algorithm in Section 5.5.
The details of our dataset and experimental evaluation are presented in Section 5.6.
Finally, we conclude this chapter and discuss ongoing work in Section 5.7

5.2 Related Work

Predicting event attendance in social media has recently received a considerable atten-
tion. Apart from its vast range of applications where such systems can play a big role,
the increasing interest in modeling, designing and implementing event recommender
systems is mainly driven by their challenging and unique nature.

Event recommendation is closely related to predicting human mobility, which have
been extensively studied in the literature. Gao and Cao [64] use the Hidden Markov
Model (HMM) to characterize the behavior of user mobility. However, HMM does
not take into account important factors that influence a user’s choice, such as the
time and location of the events and the taste of the community he/she belongs to.
Asahara et al. [17] proposed a method to predict the next move of a user on the basis
of the Mixed Markov Model (MMM). Their results show that their MMM-based
method is substantially more accurate than MM- and HMM-based methods, because
it relies not only on the user’s previous status, but also on his/her personality as
an unobservable parameter. Although these methods can capture human mobility,
they fail to detect the irregular movements of users, i.e., event attendance. Boutsis et
al. [36] introduced a MMM-based model, called PRESENT, allowing for personalized
event recommendation by extracting the behavioral patterns of users in social groups.
One drawback of their approach is that it confines recommended events to those that
are to be attended by the members of the same social group.

Collaborative filtering is among the most popular techniques employed for event
recommendation [52, 89, 117]. However, for time-specific items, e.g., events, these
techniques have difficulties in dealing with events as they typically receive their rat-
ings only after an event ends. Although some EBSNs, such as Meetup, provide
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users the ability to respond to formal upcoming event invitations (RSVPs) that show
which users will attend which events, a broad range of events are not covered by
this new invitation procedure. To cope with that, Minkov et al. [117] proposed a
model that combines both content-based and collaborative filtering and showed that
collaborative predictions of future events are more effective than pure content-based
recommendations. A similar hybrid content and collaborative filtering approach CF-
CB for event recommendation was proposed by Cornelis et al. [52], which models
users and items similarities in a fuzzy relational framework. The underlying goal of
both efforts [52, 117] is recommending upcoming events if they are similar to past
events that similar users have attended. Our approach follows this line of adapted
collaborative filtering. However, we go further and include the user interaction as a
constraint that influences the similarity between users’ tastes on one hand, and the
spatio-temporal features, which considerably affect the interest of users in attending
events.

5.3 Preliminaries and Problem Statement

In this section, we present the notations, main concepts, and problem statement
required for describing our event recommendation model.

Table 5.1: Main notations used for describing our event recommendation model.

Notation Description
n number of users
m number of events
U set of users
E set of social events
k dimensionality of latent factor space
ui k-dimensional representation of user i
ej k-dimensional representation of event j
A user-event attendance matrix

uli(elj) geo-coordinates of user i (event j)
tj start time of event j
Tj a set of tags describing event j

Table 5.1 lists the notations used throughout this chapter. In Section 5.3.1, we
begin by describing the main two input entities of our model: users and events.
Then, the technique upon which we build our context-aware recommender system is
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briefly discussed in Section 5.3.2, and finally, we present our problem statement and
explicitly address the major challenges we aim to tackle.

5.3.1 User-event Attendance Representation

The main objective behind building event recommender systems is to provide users
with a list of ranked events that match their preferences. Therefore, the two input
entities for such systems are:

(1) a set of users U . Each user u ∈ U is associated with geo-coordinates lu =

(lat, lon) representing his/her current location.

(2) a set of events E. Each event e ∈ E has a geo-location le = (lat, lon), start
time te, and a set of tags Te reflecting the event’s main theme.

In the context of event recommendation, one is commonly given a user-event at-
tendance matrixA encapsulating the event attendance history of users. The temporal
aspect is important since only upcoming events can be recommended to users, and
hence, events are divided into past and upcoming events1. For past events, as can be
seen in Figure 5.1, corresponding entries in A are either set to 1 when an event was
attended by a user or to 0 otherwise. However, the entries of upcoming events2 have
no values, i.e., missing values. The goal is to estimate the values of such entries in
order to predict whether a user is interested in attending an upcoming event or not.
Some of these entries might be assigned 1 when a user shows his/her willing to attend
an upcoming event by, for example, responding to a formal event invitation (RSVP)
as done in Meetup.

New users who have recently added to the system and have no (or a very sparse)
attendance history cause the so-called cold-start problem that needs special emphasis
while applying collaborative filtering. This problem stands against producing reliable
recommendations for such new users.

An event recommendation algorithm takes the set of users U and the set of events
E as input and learns a function Â such that

Â : U × E → R (5.1)

1An ongoing event is considered a future event. By this, a user is given the chance to attend this
event, in particular, if it suits his/her taste and is taking place in the vicinity.

2The terms “future” and “upcoming” events are used interchangeably in this chapter.
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Figure 5.1: User-event Attendance matrix. For past events, an entry is set to 1 if
it pertains to a user who attended the corresponding event, and to 0 otherwise. For
future events, the entries have no values and need to be estimated by the model.

Using function Â, a real value Âe
u is estimated and assigned to each user-event pair

(u, e), capturing the expected degree of interest of user u in attending event e. One
way to realize and learn such a function is using model-based collaborative filtering,
whereby the entries of matrix A are assumed to be governed by an underlying model
and are not generated at random. This requires uncovering latent factors (features)
that perfectly describe the interaction between users and events. Therefore, model-
based collaborative filtering is sometimes referred to as latent factor models. The
goal then is to approximate such models and to use them in estimating Âe

u for each
u ∈ U and e ∈ E. These methods have recently become popular due to their good
scalability and the accuracy of the results [92].

5.3.2 Regularized Singular Value Decomposition

Among a number of model-based techniques that can be employed to extract latent
features, reflecting the user-event attendance patterns, we consider the method of
matrix factorization. Loosely speaking, matrix factorization characterizes both users
and events by vectors of factors inferred from the user-event attendance patterns in
A. Each vector consists of k latent factors such that k � min(m,n), in a sense that
these vectors can be viewed as k-dimensional representations of the rows and columns
of matrix A. In this reduced k-dimensional space, the noisy nature of A is mitigated
and thus similar points becomes much closer [165]. By this, the interaction between
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users and events are modeled as dot products in that reduced space. Each user u is
represented by a factor vector u ∈ Rk, and each event e is characterized by the factor
vector e ∈ Rk. The overall interest of user u in attending event e is then the dot
product of their respective vectors, i.e.,

Âe
u = u · e (5.2)

The main task now is to estimate proper values for each vector of both users and
events. For this, the well-established Singular Value Decomposition (SVD) is used
for collaborative filtering [63]. SVD has been effectively used in estimating the latent
semantic factors in the domain of natural language processing [68]. Using SVD, the
latent factors are estimated by minimizing the sum of squared residuals for each user
u ∈ U and each event e ∈ E. Formally,

arg min
∀u∈U,∀e∈E

1

2

∑
u∈U

∑
e∈E

(Ae
u − (u · e))2. (5.3)

However, A is a relatively dense matrix, in particular, the matrix portion relating
to past events, which results in a computationally-expensive learning procedure. To
mitigate this, entries set to 0 can be ignored, i.e., treated as missing values, and
directly modeling the observed entries that assigned a value of 1 [123]. To ensure
that the missing values do not contribute to the summation being minimized, Eq. 5.3
is changed to

arg min
∀u∈U,∀e∈E

1

2

∑
u∈U

∑
e∈E

Ie(Ae
u − (u · e))2 +

λ

2

∑
u∈U
‖u‖2 +

λ

2

∑
e∈E
‖e‖2, (5.4)

where

Ie :=

0 if (e is an upcoming event)

1 otherwise
(5.5)

Consequently, the recommendation algorithm learns the model parameters by fitting
the observed entries of past events, resulting in accurately estimating these observed
patterns. However, the algorithm might fail to estimate the attendance patterns for
missing values because of the overfitting problem. To avoid this, the learned factors
are regularized using the terms (λ

2

∑
u∈U ‖u‖2) and (λ

2

∑
e∈E ‖e‖2), where ‖u‖ and
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‖e‖ refers to the 2-norm of u and e, respectively. The 2-norm of u is calculated as

‖u‖ =

√√√√ k∑
i=1

u2
i , (5.6)

where ui is the i-th factor of vector u. The magnitudes of the regularized factors are
penalized so that only important factors are considered to represent the observations,
which is achieved by having small vector norms for both u and e. Therefore, these
models are referred to as Regularized SVD [123]. The parameter λ is a predetermined
constant that controls the impact of the regularization terms on the optimization
process. A small λ might not help solving the overfitting problem, while a large
value of λ leads to reduce the influence of the activity history of users in directing
the ranking process. In Section 5.6, we show how to set the value of λ using a
cross-validation-like method.

5.3.3 Problem Statement

The problem of event recommendation can be stated as follows. Given a certain user
u, the main task is to provide u with a ranked list of future events Eu that match
his/her preferences. The traditional CF fails to accurately estimate this ranked list
because of (1) the sparse nature of the attendance matrix A, which leads to the cold-
start problem and (2) its inability to capture contextual aspects, e.g., social links
and the topics of events, which are are essential for a more reliable recommendation.
Therefore, the major objective of this study is to define a set of features, namely,
social, topical, and spatio-temporal features, that can be viewed as content-based
enrichment to CF. Moreover, we will show how to integrate these features into the
regularized SVD model.

5.4 Context-aware Event Recommendation

In this section, we describe our context-aware event recommender system. First,
in Section 5.4.1, the proposed contextual features are listed and detailed. Then, in
Section 5.4.2, we show how to include these features in the matrix factorization model
towards building a context-aware recommender system.
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5.4.1 Contextual Features

Three types of features including social, topical, and spatio-temporal features are
proposed and used to refine the traditional model-based collaborative filtering.

Social feature

People prefer to attend events that their close friends, relatives, or colleagues are
willing to attend. Therefore, the interaction between users, i.e., social links, is an
important factor for event recommender systems [165]. Quantifying and including
this interaction as an additional feature to these systems helps direct the learning
process so that the taste of user u, which is encoded in vector u, is affected more by
the taste of the users he/she interacts with.

We model the user interaction as an undirected graph where each node represents
exactly one user. An edge is established between two nodes if and only if a certain
relationship is recognized between corresponding users. The edges are weighted and
each weight reflects the degree of interaction between users.

Example 5.1 In Meetup, the weight of an edge between two users might refer to the
number of groups they join in common. However, in Twitter, this weight might reflect
the number of times they mention each other during a time window.

Let wi,j denote the weight of the edge linking user ui and user uj. Then, the
interaction degree between both users is defined as

Definition 5.1 (Interaction Degree) The interaction degree Ii,j between user ui
and user uj is the ratio between the weight wi,j and the sum of the weights of the edges
connecting node i with its direct neighbors Ai, i.e,

Ii,j :=
wi,j∑
a∈Ai wi,a

. (5.7)

Note that Ii,j is not necessarily equal to Ij,i because the users ui and uj might
have different neighbors, i.e., Aj 6= Ai.

Topical feature

This feature captures the semantic similarity between events. The aim is to identify
similar events, to quantify this similarity, and then, to direct the learning process so
that the distance between the vectors of on-topic events is reduced. As a result, the
recommender system will favor the events that are semantically-compatible with what
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a user has already attended over other events. To estimate the thematic similarity
between the events ei and ej, we use Jaccard similarity coefficient [126], i.e.,

Ti,j =
|Ti
⋂
Tj|

|Ti
⋃
Tj|

, (5.8)

where Ti and Tj are the set of tags, e.g., uni-grams and bi-grams, that are associated
with events ei and ej, respectively. We choose to use this simple text similarity
measure based on the assumption that tags attached to each event are commonly
encompassing a list of preprocessed and representative keywords with less noise.

Spatio-temporal features

To provide a spatio-temporal-aware system that better suits the preference of users,
we incorporate spatial and temporal features into our context-aware event recom-
mender system. In the following, we first show how to extract the spatial feature fs
and temporal feature ft, which are then combined as a single spatio-temporal feature
Seu that reflects the interaction between both dimensions.

Spatial feature. The spatial proximity between the current location lu of user u and
the location le of event e is a key factor that affects the attendance patterns. That
is, the closer u is to the location of event e, the more likely it is that u will attend
event e. To model this spatial feature, we choose to apply the Gaussian function:

fs(d
e
u) = a e−

(deu−b)
2

2σ2 , (5.9)

where deu is the Haversine [141] distance between lu and le, and the constants a, b, σ
refer to the height of the peak of the function’s curve, the point at which fs is
maximized (mode), and the standard deviation that controls the width of the curve,
respectively. This function is monotonically decreasing and therefore assigns higher
weights to closer distances between users and events. To get a maximum value of 1

when deu = 0, we set a and b to 1 and 0, respectively. Therefore, the spatial feature
fs(d

e
u) capturing the likelihood that user u attends event e is given by

fs(d
e
u) = e−

(deu)
2

2σ2 . (5.10)

We tune the parameter σ using cross-validation as will be discussed in Section 5.6.
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Temporal feature. Users usually need enough time to make a decision on
whether to attend an event so that their current plans are not affected. For this, the
likelihood that a user will attend an event can be estimated based on the temporal
gap (measured in hours) between the start time te of e and the current time t. In
case that a user did not know about an event a priori, but shortly before it starts, the
chance that he/she will attend it is in general low. The temporal feature is estimated
based on this premise using the Sigmoid function defined as

ft(∆te) =
1

1 + e−s∆te
. (5.11)

where ∆te = te − t is the time left for event e to start. The larger the temporal gap
∆te, the closer the returned value to 1 is. To force this function to return a value in
the range [0, 1], two translation operations are applied to this function: 1) moving the
function down 0.5 unit, 2) stretching the function by multiplying it by 2. Formally,

ft(∆te) = 2

(
1

1 + e−s∆te
− 0.5

)
. (5.12)

Therefore, the temporal feature of event e is defined as

ft(∆te) =
1− e−s∆te
1 + e−s∆te

(5.13)

where the parameter s controls the steepness of the curve, i.e., how fast the returned
value approaches 1 as ∆te increases. Heuristically, we set s to 0.03 so that the
temporal feature becomes close to 1 when ∆te is about one week, as illustrated in
Figure 5.2.

Finally, we define the spatio-temporal feature Seu as a linear combination of both
the spatial fs(deu) and temporal ft(∆t) features as follows.

Seu := 0.5fs(d
e
u) + 0.5ft(∆te), (5.14)

This spatio-temporal interaction, defined in Eq. 5.14, helps avoid underestimating
or overestimating the preference of a user, which occurs when each dimension is
handled separately. For example, the value of the spatial feature fs(deu) ≈ 0 when
the location of e is too far from the location of user u. However, user u might still
be interested in attending e if he/she has enough time to arrange for the attendance,
which is realized by the temporal feature ft(∆te) ≈ 1. As a result, in this particular
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Figure 5.2: Impact of varying the parameter s in Eq. 5.13 on the temporal feature.

scenario, the spatio-temporal feature describing the likelihood that user u will attend
this spatially-far event e is Seu ≈ 0.5 instead of 0.

5.4.2 Context-aware SVD model

In Section 5.3.2, we described the regularized SVD model that is used to estimate
the k-dimensional factor vectors u (∀u ∈ U) and e (∀e ∈ E). These vectors are then
utilized to approximate the probability that user u will attend event e by multiplying
both vectors u and e as shown in Eq. 5.2. In this section, the contextual features
addressed in Section 5.4.1 are employed to adapt the regularized SVD, making it
social-, topical-, and spatio-temporal-aware model. In the following, we discuss how
to integrate these contextual features into the regularized SVD model.

When two users ui, uj have a high-degree of interaction (a high value of Ii,j), the
similarity between their respective factor vectors ui,uj needs to be maximized. In
mathematical terms, this is equivalent to maximizing the term

n∑
i=1

n∑
j=1

Ii,j × cosine(ui,uj), (5.15)

where cosine(ui,uj) is the cosine similarity between the vectors ui, uj, which is given
as

cosine(ui,uj) =
ui · uj

‖ui‖ × ‖uj‖
. (5.16)
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Likewise, the similarity between two events that share some keywords, i.e., on-
topic events, needs to be emphasized by maximizing the similarity between their
respective vectors. This is accomplished by maximizing the term

m∑
i=1

m∑
j=1

Ti,j × cosine(ei, ej). (5.17)

As for including the spatio-temporal feature into the regularized SVD, we need to
do the following:

(1) Imputation: Since we are only interested in recommending upcoming events
to users, the entries in matrix A, corresponding to such events, are set to 1.
Therefore, the entries of A are reset as follows.

Aj
i :=

1 if tj > t

Aj
i otherwise

(5.18)

(2) Spatio-temporal regularization: The imputation in the first step implies that
users are interested in attending all future events, which is, of course, inac-
curate. Therefore, the spatio-temporal feature is used to mitigate the impact
of the imputation by regularizing the user-event interaction. That is, the role
of the spatio-temporal feature Sji is to control the influence of minimizing the
squared residual in case of user ui and event ej. By applying this spatio-temporal
regularization, the sum of squared residuals term in Eq. 5.4 becomes

n∑
i=1

m∑
j=1

Sji Ij(Aj
i − (ui · ej))2. (5.19)

To ignore this type of regularization for past events, we reset their respective
spatio-temporal features to 1, i.e.,

Sji :=

1 if tj < t

Sji otherwise
(5.20)

where t is the current time. We call the terms in Eq. 5.15, Eq. 5.17, and Eq. 5.19 the
social, topical, and spatio-temporal constraints, respectively, which can be introduced
as new additive terms in Eq. 5.4. Therefore, our final goal is to minimize the cost
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function L(U,E) defined as:

L(U,E) =
1

2

n∑
i=1

m∑
j=1

Sji Ij(Aj
i − (ui · ej))2 − θ

n∑
i=1

n∑
j=1

Ii,j × cosine(ui,uj)

− β
m∑
i=1

m∑
j=1

Ti,j × cosine(ei, ej) +
λ

2

n∑
i=1

‖ui‖2 +
λ

2

m∑
i=1

‖ei‖2, (5.21)

where the parameters θ and β are the social and topical coefficients, respectively.
They control the influence of their respective constraints. The negatives of both
the social and topical constraints are used because maximizing a certain function is
equivalent to minimizing the same function but with a sign change. Finding a local
minimum for this optimization problem can be achieved using gradient-descent, which
is used to approximate the vectors u (∀u ∈ U) and e (∀e ∈ E), as discussed in the
following section.

It is noteworthy that our model as can be inferred from Eq. 5.21 covers all possible
interactions between the system’s main entities: users and events. Therefore, one can
easily include new features by updating one (or a combination) of the features Ii,j, Ti,j,
and Sji . For example, if one needs to allow the recommender system to incorporate
synonyms into the learning process, only the topical feature Ti,j is updated without
any further modifications.

5.5 Learning Algorithm

An important step to figure out whether user i is interested in attending event j
is to estimate the factors (parameters) of their respective vectors ui and ej. As-
sume that the set of factor vectors is denoted U ∈ Rn×k and E ∈ Rm×k such that
U = {u1,u2, · · · ,un} and E = {e1, e2, · · · , em} for users and events, respectively.
Estimating the factor vectors U and E requires minimizing the cost function given
in Eq. 5.21. One of the well-known algorithms used for minimizing such a function is
gradient descent [144].

In Section 5.5.1, we describe the basic idea behind gradient descent and how
to apply it for our problem settings. Then, we detail the steps needed to derive
and estimate the gradients that are used to direct the convergence of the learning
algorithm in Section 5.5.2.
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5.5.1 Gradient Descent Algorithm

Gradient descent (GD) algorithm is a search algorithm that is mainly used for function
minimization. To minimize our cost function L(U,E) using gradient descent, the
parameters1 U,E are randomly-initialized and GD moves toward a set of parameter
values that minimize L(U,E). In each iteration of GD, the algorithm takes a step
in the negative direction of the gradient, i.e., a step in the direction of the steepest
decrease of L(U,E), until convergence. Algorithm 5.1 lists the main steps required
to update the parameters using GD.

Algorithm 5.1: Main steps of Gradient Descent.
Input: user vectors U and event vectors E
Output: updated U and E, which minimizes L

1 initialize U and E randomly
2 while not converged do

// Updating user vectors
3 for r = 1 to n do
4 for p = 1 to k do
5 upr ← upr − α ∂

∂upr
L(U,E)

// Updating event vectors
6 for r = 1 to m do
7 for p = 1 to k do
8 epr ← epr − α ∂

∂epr
L(U,E)

9 return U,E

The parameters U and E are updated simultaneously so that updating one pa-
rameter does not affect the values of other parameters within the same iteration. The
parameter α is called the learning rate and is used to control how fast the algorithm
converges to a stationary point. Too small values of α result in a slow convergence,
while high values might lead to an undesirable divergence. The terms ∂

∂upr
L(U,E) and

∂
∂epr
L(U,E) are called the gradients of the function, and their values are iteratively

used to update the user and event vectors, respectively. In the following section, we
present how to estimate these gradients.

1The notion “parameters” refers to the factors of the vectors of both U,E
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5.5.2 Gradient Estimation

The gradient ∂
∂upr
L(U,E) of the function at upr, which is the partial derivate of L with

respect to upr, is given as

∂

∂upr
L(U,E) =

∂

∂upr

(
1

2

n∑
i=1

m∑
j=1

Sji Ij(Aj
i − (ui · ej))2

)
+

∂

∂upr

(
λ

2

n∑
i=1

‖ui‖2

)
︸ ︷︷ ︸

T1

− ∂

∂upr

(
θ

n∑
i=1

n∑
j=1

Ii,j × cosine(ui,uj)
)

︸ ︷︷ ︸
T2

,

(5.22)

In Eq. 5.22, Term T1 refers to the partial derivative of both the sum of squared
residuals and the user regularization term with respect to upr and can be reduced to1

T1 =

(
m∑
j=1

SjrIj(Aj
r − (ur · ej)) epj

)
+ λupr, (5.23)

where the squared residuals are affected more by larger spatio-temporal features Sjr .
This enables the model to avoid recommending events to users for low values of Sjr ,
e.g., when the user is located far away from the event and the event is occurring soon.

Term T2 corresponds to the partial derivative of the social constraint. Substituting
cosine(ui,uj) in term T2 by the result of Eq. 5.16, term T2 becomes

T2 =
∂

∂upr

(
θ

n∑
i=1

n∑
j=1

Ii,j
ui · uj

‖ui‖ × ‖uj‖

)

=θ
n∑
j=1

Ir,j
∂

∂upr

(
ur · uj

‖ur‖ × ‖uj‖

)
+ θ

n∑
i=1

Ii,r
∂

∂upr

(
ui · ur

‖ui‖ × ‖ur‖

)
.

(5.24)

Since both summations in Eq. 5.24 sums over the same items (users), and according
to the commutative law, we restructure the equation as follows:

T2 = θ

n∑
i=1

(Ii,r + Ir,i)
∂

∂upr

(
ui · ur

‖ui‖ × ‖ur‖

)
︸ ︷︷ ︸

T3

. (5.25)

1Note that the partial derivative of both the topical constraint and the event regularization term
are 0, and hence, are omitted from Eq. 5.22.
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Using calculus, term T3 can be calculated as follows:

T3 =(ui · ur)×
∂

∂upr

(
1

‖ui‖ × ‖ur‖

)
+

1

‖ui‖ × ‖ur‖
× ∂

∂upr
(ui · ur)

=− (ui · ur)× upr√
‖ur‖ × ‖ui‖3

+
upi

‖ui‖ × ‖ur‖

(5.26)

Finally, by applying the result of Eq. 5.26 to its corresponding term in Eq. 5.25
and by substituting T1 and T2 in Eq. 5.22 by the results of Eq. 5.23 and Eq. 5.25, the
gradient ∂

∂upr
L(U,E) of the function at upr is estimated as

∂

∂upr
L(U,E) =

(
m∑
j=1

SjrIj(Aj
r − (ur · ej)) epj

)
+ λupr

− θ
n∑
i=1

(
(Ii,r + Ir,i)

[
(ui · ur)× upr√
‖ur‖ × ‖ui‖3

+
upi

‖ui‖ × ‖ur‖

])
(5.27)

To update the event parameters E, the partial derivative ∂
∂epr
L(U,E) needs to be

computed. It is obtained by

∂

∂epr
L(U,E) =

∂

∂epr

(
1

2

n∑
i=1

m∑
j=1

Sji Ij(Aj
i − (ui · ej))2

)
+

∂

∂epr

(
λ

2

m∑
i=1

‖ei‖2

)
︸ ︷︷ ︸

T1

− ∂

∂emr

(
β

m∑
i=1

m∑
j=1

Ti,j × cosine(ei, ej)
)

︸ ︷︷ ︸
T2

(5.28)

Term 2 in Eq 5.28 refers to the topical constraint that contributes to reducing the dis-
tance between event vectors when they share similar tags, i.e., on-topic events. Similar
to the simplification steps that are applied to Eq. 5.22, the gradient ∂

∂epr
L(U,E) of

the function at epr can be rewritten as

∂

∂epr
L(U,E) =

(
n∑
i=1

Sri Ir(Ar
i − (ui · er)) epi

)
+ λepr

− β
m∑
i=1

(
Ti,r
[

(ei · er)× epr√
‖er‖ × ‖ei‖3

+
epi

‖ei‖ × ‖er‖

])
(5.29)

As a result, we have an estimated value for both gradients ∂
∂upr
L(U,E) and

∂
∂epr
L(U,E), which are used to update the values of the factors upr and epr, respec-
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tively, as illustrated in Algorithm 5.1. The factors of both U and E are iteratively
updated until convergence.

Finally, it is noteworthy that we have implemented this model completely since,
to the best of our knowledge, there is no existing SVD-based learning package that
enables the inclusion of additional features similar to those proposed in this work.

Runtime Complexity

We discuss now the runtime complexity of our model with n users, m events, and
k-dimensional vectors. Since the regularized version of SVD is employed, we do not
iterate over all possible permutations of the model’s entities. For example, Eq. 5.23
can be rewritten as

T1 =

(∑
j∈Eu
Sjr (Aj

r − (ur · ej)) epj

)
+ λupr. (5.30)

That is, to compute T1, we need |Eu| iterations instead of m, where Eu is the set of
events that u has attended. Of course, |Eu| is much smaller than m. This is also valid
when computing the topical and social constraints. For example, when computing T2

in Eq. 5.25 for user ur, we need to iterate over only the users who interact with ur.
Based on this, the following statistics are needed to compute the time complexity:

• ε: the number of pairs of users interacting with each other. In fact, ε � n2−n
2

because a user generally interacts with a small subset of U .

• ρ: the number of pairs of events that share at least one tag in common. Likewise,
ρ � m2−m

2
due to the heterogeneity of topics and the assumed informative

nature of tags describing each event.

• µU : the average number of users per event.

• µE: the average number of events per user.

At each iteration, the following statistics required for subsequent steps are esti-
mated and cached:

(1) user and event norms, i.e., ‖u‖ and ‖e‖. This requires nk and mk operations
for all users and events, respectively.

(2) the dot product of all interacting users, which needs nkε operations.
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(3) the dot product of all events having at least one tag in common. This step
requires mkρ operations.

(4) the dot product (u · e) for all users and only the events they have attended,
requiring nµEk operations.

To compute the gradient ∂
∂upr
L(U,E), about (µE + ε) operations are required.

Hence, the total number of operations performed to update the k factors of each user
u ∈ U is roughly nk(µE + ε). As for computing the gradient ∂

∂epr
L(U,E), approxi-

mately (µU + ρ) operations are performed, which results in mk(µU + ρ) operations to
update the k factors of each event e ∈ E. Therefore, the total number of required op-
erations per iteration is about nk+mk+nkε+mkρ+nkµE+nk(µE+ε)+mk(µU +ρ)

operations. As a result, the runtime complexity of our proposed model is

O(nk(µE + ε) +mk(µU + ρ))

Updating the vectorsU and E, as illustrated in Algorithm 5.1 (Lines 3-7), requires
computing the gradients of all users and events, which is a computationally-expensive
operation. To speedup computation, we make use of parallel processing by splitting
the set of users and events among multiple processing cores (threads) when updating
the user and event vectors, respectively.

5.6 Experimental Evaluation

To evaluate the performance of our model, we first present our dataset, the employed
evaluation metrics, and the parameter settings in Section 5.6.1. Then, in Section 5.6.2,
we report the results and compare our model with a number of baseline methods
including the traditional CF.

5.6.1 Experimental Settings

Dataset

The dataset used in the evaluation was obtained from the popular Meetup social
network from October 2011 to January 2012, which is publically available over the
Internet [107]. This dataset includes a large and sparse attendance matrix, where
one can find a large number of users who attended only one event that has not
been attended by someone else. To mitigate this sparsity, we selected the users who
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attended at least 8 events, resulting in a total of 10511 users and 2269 events, where
about 0.6% of the attendance matrix’s entries hold 1s. The users are distributed
in groups, where each user can register in several groups. These groups are viewed
as communities of users, reflecting the user interaction considered in this study as
an important context-aware feature. All the data are anonymized, so that the user,
group, and event ids in this dataset have no one-to-one mapping to real ids in Meetup.

The total number of distinct tags retrieved from this dataset is 1010 tags. In fact,
the crawled events are not directly associated with tags. However, the crawled data
contain two types of associations that can help in enriching events with tags. More
specifically, the dataset provides both user-group and group-tag pairs. For each event,
we first identified the groups that contain at least one user who attended the event,
and then assigned the intersection of their tags to that event, based on the premise
that the tags of each group is a good semantic dimension reflecting the overall interest
of users belonging to that group.

Evaluation Methods

To conduct an overall evaluation of the effectiveness of our proposed model, we first
present the following three recommendation scenarios:

(1) New Users NU: To test the ability of the system to recommend events to new
users having no attendance history, we randomly select 10% of the users, reset
their corresponding entries in A to 0, and kept the original values as ground
truth. The dataset containing only the selected users is referred to as NUh,
while the entire dataset is denoted NUd.

(2) New Events NE: We aim here at evaluating the performance of the system in
suggesting future events to the users. About 16% of the events are randomly
selected as future events. We reset their entries to 0 and kept the original values
as ground truth. Therefore, the dataset by this scenario is denoted NEh and
NEd for the selected entries and the entire data, respectively.

(3) New Users and Events NUE: The most difficult scenario is to recommend future
events to new users. To evaluate our model with respect to this scenario, we
reset the users and events selected in the aforementioned two scenarios to 0 and
kept the original values as ground truth. Likewise, we call the entire dataset
NUEd and the selected dataset NUEh.
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The model is evaluated in terms of its ability (1) to recover the attendance history
and (2) to rank events based on relevancy.

Recovery of attendance history. The performance of the system in recov-
ering the entries of the attendance matrix A, in particular, the hidden entries as
specified in NU, NE, and NUE scenarios, is tested. This proves that the system can
handle the cold-start problem well. For this, we normalize the estimated predictions
after fitting the model’s parameters in order to have a value in the range [0, 1]. That
is, the predicted interest (ui · ej) of user i in attending event j is normalized as
follows:

N j
i :=

ui · ej −min
max−min , (5.31)

where min = min{ui · ej|∀i ∈ U,∀j ∈ E} and max = max{ui · ej|∀i ∈ U,∀j ∈ E}.
By this, our model is treated as a binary classifier that returns a value in the range
[0, 1] for each entry in A. Now, by choosing a cutoff threshold in that range, the
confusion matrix [111] is built as shown in Table 5.2.

Table 5.2: General confusion matrix.

Predicted class
true false Total

Actual class true TP FN P
false FP TN N
Total P′ N′ P+N

The confusion matrix [73], also called “contingency table”, is a useful tool for
studying how well a classifier can recognize records of different classes. The entries
TP and TN indicate that the system is correctly classifying records, while FP and
FN show cases when the records are wrongly annotated. Based on that, we use the
following measures to evaluate the ability of our model in recovering entries in A.

• AUC (Area Under ROC Curve). It is a statistically-consistent and discrim-
inating metric that is tailored for evaluating the performance of binary clas-
sifiers [83]. The ROC curve plots the true positive rate TPR versus the false
positive rate FPR at different threshold settings. The value of TPR, also called
“recall” or “sensitivity”, is given as

TPR =
TP

TP + FN
, (5.32)
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while the FPR, also coined “fall-out”, is defined as

FPR =
FP

FP + TN
(5.33)

The closer the curve is to the upper-left corner, the larger is the area under
curve ROC and the better the classifier.

• Accuracy: It reflects how well the model specifies the class of entries in A and
is defined as the percentage of entries that are correctly classified by the model,
i.e.,

accuracy =
TP + TN

P +N
. (5.34)

In fact, the entries in A are class-imbalanced, meaning that the majority of
these entries represent the negative class. Therefore, the ROC curve is more
appropriate than accuracy in testing the performance of classifiers in such a
case [73]. However, we keep utilizing the accuracy measure to capture the
relative differences between alternative methods.

Relevancy-oriented ranking. Here, we go beyond evaluating the performance of
our system in recovering the hidden entries, yet study the matching degree between
the top-k recommended events and the users’ preferences. That is, we aim at figuring
out whether the top-k ranked future events Ek

i recommended to user i match his/her
taste. In fact, it is difficult to acquire a ground truth to perform such a test, and
thus, we rely on the following heuristics: if at least one user who interacts with user
i has attended the event recommended to i, then this event is assumed to be relevant
to i. For this, we examine the top-k events Ek

i recommended to user i, and calculate
the percentage of these events that at least one of his/her group’s members is going
to attend. By this, an overall precision prec@k is computed for all users as follows

prec@k :=

∑
i∈U
∑

f∈Eki I(∃j ∈ U : (Ii,j > 0 ∧ Af
j = 1))

n× k , (5.35)

where I(.) is the identity function.

Parameters Setting

Tuning model parameters is critical to its performance. As for the dimensionality of
the factor space k and the learning rate α, we follow existing work [167] and set them
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Figure 5.3: The impact of varying the learning parameters α on the convergence of
the model.

to 20, 0.001, respectively. Figure 5.3 shows that choosing smaller values for α leads
to a slower convergence, but closer to the local minimum.

In order to tune the regularization constant λ, the social coefficient θ, and the
topical coefficient β, we conduct a cross-validation-like method. That is, we randomly
choose 1% of the users as a hold-out set and set their respective entries in A to 0.
Then, we evaluate the system’s performance on a certain parameter setting, repeat
the process a few times, and average the result at this parameter value. Since each
repetition requires running the learning algorithm on the whole dataset, we randomly
select 10% of the system’s users for parameter tuning purposes in order to speed up
this tuning process.

Figure 5.4a shows the ROC curve at different values of λ. When λ = 0, the
least AUC was obtained because of the overfitting problem. We set λ to 0.2 since
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Figure 5.4: (a) Impact of varying the regularization constant λ on AUC. (b) Impact
of varying both the social θ and topical β coefficients on AUC.

the AUC started to get higher values as λ increases until λ = 0.2 and dropped down
thereafter. Regarding θ and β, we found, by inspection, that the system’s performance
degrades considerably when both parameters have values above 1. Therefore, we
varied their values from 0 to 1 and jointly studied their impact on the AUC. The
highest AUC=0.768 is obtained when θ = 0.8 and β = 0.4 as illustrated in Figure 5.4b.
Figure 5.5 gives the accuracy at the hold-out dataset with varying σ from 0 to 150.
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Figure 5.5: Impact of varying the standard deviation σ on accuracy

The highest value of 0.902 is achieved when σ = 50. The learning process continues
until the value of AUC remains stable in consecutive iterations of the GD algorithm.
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5.6.2 Experimental Results

Since our proposed event recommender system is a combination of the latent factor
model and three contextual features, we concentrate on showing that our hybrid
model is suitable for the problem of recommending future events and it outperforms
any single method. Moreover, we aim at verifying the effectiveness of each single
feature. With these goals in mind, the adopted baselines in this work are listed as
follows:

• Collaborative Filtering (CF): It is the basic model-based CF that is built
based on the regularized SVD discussed in Section 5.3.2, which is commonly
used to extract latent factors. No contextual feature is used in CF.

• Social-aware Collaborative Filtering (SCF): This method only considers
social features as an enrichment to the basic CF. We will demonstrate the impact
of this method on handling the cold-start problem caused by new users having
no attendance history.

• Topical-aware Collaborative Filtering (TCF): Likewise, this method only
accounts for the topical feature and ignores the rest. As we will show later
in this section, this method helps uncover the semantic relationship between
events and thus leads to a better recommendation for future events.

• Spatio-temporal-aware Collaborative Filtering (STCF): STCF only con-
siders the spatio-temporal features and ignores others.

• Context-aware Collaborative Filtering (CCF): This methods represents
our hybrid method that integrates our proposed features into the regularized
SVD-based model as described in Section 5.4.

AUC and Accuracy

Figure 5.6a shows the ROC curve depicting the advantage of SCF over CF using
NUd (left) and NUh (right) datasets. SCF scores better that CF in both cases,
indicating that the social feature has a key role in mitigating the cold-start problem,
in particular, when new users having no event attendance history are encountered.
On the other hand, the topical feature scores best in terms of AUC in the NE scenario,
i.e., when future events are sparsely (or even not) assigned to be attended by users. As
can be seen in Figure 5.6b, TCF has led to an increase in AUC by 0.035 for NEd and
0.153 for NEh. This is because the topical feature uncovers the semantic relationship
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between past and future events, and thus, the recommended future events will be
semantically-consistent with the event that users attended in the past.
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(a) left: ROC curve from NUd dataset, right: ROC curve from NUh dataset
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(b) left: ROC curve from NEd dataset, right: ROC curve from NEh dataset

Figure 5.6: ROC curves showing the impact of individual features using different
scenarios. (a) The impact of the social feature using the NU scenario. (b) The
impact of the topical feature using the NE scenario. A classification model is better
if its ROC curve is closer to the upper-left corner. The ROC curve of the random
classifier is represented by the reference line in the diagonal.

Figure 5.7 illustrates the role our model CCF plays in improving the performance
of the recommendation system over CF when the NUE scenario is considered. This
scenario dictates the existence of new users and new (future) events in the dataset,
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which is a real-world scenario. As can be inferred from the figure, CCF outperforms
CF in case of both NUEd and NUEh. This means that CCF has a good classification
ability when applied to the real and extreme scenarios where the attendance matrix
have entries for new users and upcoming events.
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Figure 5.7: ROC curves showing the impact of CCF with respect to the NUE scenario.
ROC curve from NUEd (Left) and ROC curve from NUEd (right).

Table 5.3 lists the AUC values and the accuracy of the five alternative methods
under all scenarios: NU, NE, and NUE. As for NU, SCF scores best for both AUC
and accuracy which proves the effectiveness of the social feature. This is because CCF
consider other contextual aspects. Regarding the NE scenario, TCF shows superiority
since it tries to minimize the distance between the factor vectors of past and future
events. We notice that our CCF did not score best under both NU and NE, but
came in the second place. This can be justified by the fact that CCF accounts for
multiple contextual features; however, each of NU and NE scenarios entails reseting
some of the entries of either users or events, which can be easily recovered by a
certain contextual feature. For example, the entries of some users are hidden under
the NU scenario. The social feature could easily capture the relationship between
users and enables the suggestion of future events to new users whose group members
have previously attended. It is noteworthy that event recommendation is not a simple
retrieval problem. Therefore, we should go beyond recovering the hidden entries and
investigate the top-k recommended events as discussed later in this section.

Finally, our hybrid model CCF outperforms the other methods under the real-
world scenario NUE with AUC=0.671 and accuracy=0.879, where many new users
and future events exist. This implies that the entire set of contextual features can
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Table 5.3: Comparing various methods built with all features and those built with
no or individual features using different scenarios. The reported results are retrieved
based on the hold-out datasets of each scenario, i.e., NUh, NEh, and NUEh.

CF SCF TCF STCF CCF

NU
AUC 0.478 0.7368 0.548 0.503 0.723

Accuracy 0.863 0.911 0.902 0.892 0.882

NE
AUC 0.59 0.528 0.7519 0.594 0.722

Accuracy 0.679 0.383 0.814 0.738 0.791

NUE
AUC 0.51 0.506 0.517 0.567 0.671

Accuracy 0.465 0.776 0.843 0.715 0.879

collaboratively improve the performance of the classifier. STCF comes next, showing
its effectiveness in such a strict scenario. Moreover, the traditional CF did not perform
well under all scenarios, which highlights the important role the contextual features
play in adapting CF for the unique nature of event recommendation.

Precision at top-k events

We turn here to evaluate the top-k recommended events and to investigate whether
they math the preferences of corresponding users using prec@k measure.
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Figure 5.8: Comparison between CF and SCF in terms of prec@k after running the
system on the NUEd dataset.
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Figure 5.8 illustrates the impact of the social feature on prec@k after running the
system on NUEd dataset. It is obvious that the social feature leads to an increase in
the number of events that are ranked top and are attended by users from the same
community (group). In Figure 5.9, we plot the values of prec@k by varying k from
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Figure 5.9: Comparison between the different alternative methods in terms of prec@k
using dataset NUEh

10 to 100. The results are collected after running the system under the NUE scenario
on the NUEh dataset. As can be seen, both SCF and CCF have in general close
values of prec@k, which are higher than what achieved by other methods. However,
SCF scores better than CCF for k = 10, 20 and 30. This is because SCF only focuses
on the social features and ignores the impact of others as described in Section 5.6.1.
The methods of STCF and TCF, relying on the spatio-temporal and topical features,
respectively, perform worse than the traditional CF since both of them direct the
learning process to cover individual aspects that do not serve the social-oriented
prec@k measure. For instance, STCF favors spatially-close events that might not
be attended by users belonging to the same group. As a consequence, CCF can be
considered as a compromise event recommender systems that jointly serves different
aspects of user preferences.

5.6.3 Evaluation of Runtime

In this section, we report the the runtime of the parameter estimation step for a
number methods, namely, CCF, CF, SCF, and TCF. The method STCF is excluded
from this evaluation because it does not require summing over users or events, and
hence, will act in a way similar to CF. The experimental evaluation is conducted
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using a platform with Intel(R) Xeon(R) CPU (2.27 GHz), 16 cores, and 64 GB main
memory. We ran the experiments under Ubuntu 10.04.4 LTS (with Java 6 framework).
As can be seen in Figure 5.10, The runtime required for each iteration of each method
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Figure 5.10: Average runtime required by each method for one iteration of the learning
process.

is averaged and reported for three scenarios, i.e., using 1 core, 4 cores, and 8 cores of
our multi-core platform. The reduction in runtime when using 4 cores instead of 1
core is as expected. However, Using 8 cores is not reducing the required runtime at the
same rate. This can be justified by the existence of shared data that is concurrently
accessed by multiple cores, a phenomenon that imposes conducting synchronization
mechanisms that cause a delay in execution. Interestingly, the use of a multi-core
computation does not serve CF because it is less complex than others and does not
have regularization terms that involve iterating over users and/or events to update
the model’s parameters. One important aspect that can greatly ensure a scalable
recommendation system is the use of stochastic gradient descent, a concept we leave
for future work.

5.7 Summary

In this chapter, we addressed the event recommendation problem. Given a certain
user, the proposed model generates a ranked list of future events that suit his/her
preferences. For this type of recommendations, we chose to employ model-based
collaborative filtering, as a well-established recommendation paradigm. Our model
can thus uncover latent features characterizing both users and events, which is an
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important aspect that is not possible with using only content filtering. However, col-
laborative filtering suffers from the cold-start problem, in particular in the context of
event recommendation. Unfortunately, a small number of events are usually ranked or
assigned as “attended”, which exaggerates the cold-start problem. On the other hand,
events are time-specific in the sense that only future events can be suggested to users.
Moreover, the spatial and temporal dimensions of events can not be ignored during
recommendation, which are not explicitly modeled by the traditional collaborative
filtering. These challenges for event recommendation require a careful adaptation of
collaborative filtering models for better recommendation results.

To this end, we proposed a context-aware event recommender system that accounts
for social, topical, and spatio-temporal features. The well-known matrix factorization
is employed to realize our model, where the regularized Singular Value Decomposition
(SVD) is used to estimate the model’s parameters. The contextual features we dis-
cussed above can be viewed as regularization terms for this regularized SVD. These
regularization terms, in turn, can direct the learning process to produce recommen-
dations that better match the preferences of users. The experimental evaluation of
our proposed model, which is conducted using a Meetup dataset, revealed the im-
portant role the proposed contextual features play in providing personalized event
recommendations and in handling the cold-start problem.



Chapter 6

Conclusions and Future Work

Detecting real-world events that unfold over space and time from streaming mi-
croblogs provides actionable and situational knowledge to a variety of applications,
e.g., event recommendation and context-aware information retrieval. To best uti-
lize these applications, event information should be extracted and incorporated in a
timely manner. Hence, event detection from social media must efficiently and accu-
rately uncover event-related information that is buried within large amounts of noisy
and mundane content, e.g., meaningless, polluted, and rumor messages. As a conse-
quence, this has motivated extensive research in various fields such as databases, data
mining, and natural language processing to focus on identifying and tracking events
from social media.

In this thesis, we gave particular attention to localized events, i.e., real-world
events occurring at certain geographic places. The fundamental tasks defined and
studied are (1) localized event detection and tracking and (2) localized event recom-
mendation. In the following, we first highlight our key results of this thesis and then
give an outlook for further studies.

6.1 Summary

Current solutions to the problem of event detection in social media suffer from many
limitations. In general, these solutions do not achieve a good trade-off between accu-
racy and scalability, are not robust against the high-levels of noise and spatio-temporal
problems of keywords, and/or do not consider all dimensions of events, i.e., semantic,
location, and time. To overcome this, we proposed a novel 4-stage framework called
LocEvent that is the first to tackle all these aspects at once. LocEvent is built
upon the sliding window model and thus incrementally processes a stream of incoming

175
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messages and generates event clusters that are updated (tracked) as time progresses.
It also employs a multi-stage noise elimination mechanism that starts, in Stage-1, by
extracting event-related keywords, followed by excluding non-local keywords in Sta-
ge-2. Furthermore, in Stage-3, it adopts a noise-resilient clustering algorithm, where,
in Stage-4, each cluster is scored so that non-event clusters get low scores. In addi-
tion, LocEvent estimates, for each detected event, a set of informative keywords, a
time interval, and a location at a fine-grained resolution.

For keyword extraction, Stage-1 of LocEvent and a fundamental task in feature-
pivot detection, we proposed a novel framework KeyPicker that exploits a two-
level temporal index to organize messages based on the attached timestamps and
the contained words. KeyPicker tackles two temporal problems, namely, temporal
heterogeneity and temporal outliers. To handle heterogeneity, we utilize the concept of
time-aware baseline and applied the discrepancy paradigm for an efficient and reliable
keyword extraction. Keywords are identified by quantifying and integrating two word
characteristics: burstiness and recurrence, which helps mitigate the consequences of
temporal outliers. Finally, keywords are assigned dynamic scores that evolve over
time, capturing the life cycle of each keyword.

Since local keywords are the main building blocks of localized events, we employed,
in Stage-2 of LocEvent, an entropy-based method to distinguish local keywords
among others having broad geographic extents. However, the direct application of
this method suffers from two major problems: spatial outliers and spatial sparsity,
which we handle by two novel regularization procedures and a non-parametric kernel
density estimation, respectively. To ensure scalability given a huge stream of incoming
messages, we applied (1) a stage-wise pruning of words, (2) a hierarchical space-
partitioning index structure, and (3) an incremental clustering algorithm for a single-
pass processing of event entities. To evaluate LocEvent, different datasets collected
from Twitter were used, and the analysis of the experimental results shows that our
frameworks outperform existing methods in terms of the relevancy and precision of
the mined event patterns.

Finally, as an application, we proposed a context-aware event recommender system
on the basis of model-based collaborative filtering that is realized using the well-
known matrix factorization. We utilized three contextual features: social, topical, and
spatio-temporal features, which are leveraged to adapt the regularized Singular Value
Decomposition (SVD) model. A dataset collected from Meetup was used to evaluate
the model and the obtained results showed that the system provides recommendations
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that better suit the interests of users and are effective in the presence of the cold-start
problem.

6.2 Future Work

In the following, we outline a number of promising ideas emerged during the study,
which could be considered to extend our work:

• Geo-tagging of microblogs. Only a small percentage of published microblogs
are geo-tagged with geo-coordinates. This exaggerates the problem of spatial
sparsity and lowers the chance of detecting small-scale events. Therefore, es-
timating location information for non-geo-tagged microblogs can improve the
performance of LocEvent and helps in detecting more events. Recently, sev-
eral research studies have considered the problem of microblog geo-tagging,
leveraging several aspects including social relationships [22], the content of mi-
croblogs [49], or embedded geo-references [154]. Recall that, in Chapter 4,
geo-references (place names) are extracted from goe-tagged microblogs and cor-
related with event-related keywords in order to generate geo-filters. In fact,
observing a geo-reference along with at least one of its correlated keywords
in a non-geo-tagged microblog can accurately hint to the microblog’s location.
Based on this, LocEvent can be extended by including a geo-tagger module
before the stage of local keyword identification. Other features such as social
links and address information of users can be integrated within a statistical
model, e.g., the maximum entropy model, for better geo-tagging.

• Extracting temporal expressions. LocEvent depends on both the cre-
ation time of generated clusters and the temporal characteristics of keywords to
estimate the time intervals of detected events. Extracting temporal expressions
from the content of microblogs and identifying co-occurrence patterns between
these expressions and event-related keywords provide a better estimation of the
time interval of a detected event. Existing systems for temporal tagging, e.g.,
HeidelTime [146] can be used in the keyword extraction stage of KeyPicker to
enrich the temporal index with temporal expressions. These expressions, when
assigned to event clusters, can be utilized to adjust the estimated time inter-
vals. Applying a temporal tagger affects the scalability of LocEvent. That is,
we empirically found that utilizing temporal taggers is infeasible without im-
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proving the computational efficiency of the system using strategies like parallel
processing.

• Parallelized LocEvent. As illustrated in Chapter 4, words retrieved from
the temporal index are processed separately in the first two stages of Lo-

cEvent. Therefore, these words can be distributed among multiple cores
(threads). Each of these processing threads extracts keywords, identifies lo-
cal ones, and then appends these local keywords to a synchronized queue for
further processing, i.e., clustering and scoring.

• Classifying event clusters. In the clustering stage of LocEvent, clusters are
formed by grouping spatially-close local keywords. In spite of using both a multi-
stage noise elimination approach and a noise-resilient clustering mechanism,
there are still some clusters that do not correspond to actual real-world events.
A supervised classification method can be used to filter out such clusters. For
this, features describing event clusters are to be extracted and annotated to
prepare a training dataset. Then, a classifier is trained to distinguish event
from non-event clusters. As discussed in Chapter 4, the score estimated for
each cluster is considered an important feature for this classification task as
non-event clusters tend to obtain small values compared to event clusters.
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