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Z U S A M M E N FA S S U N G

H I N T E R G R U N D
Krebs ist eine direkte Konsequenz von genomischen Aberrationen,

wie somatische Kopienzahlveränderungen, die häufig im Krebsgenom
auftreten und nicht nur onkogene Gene betreffen, sondern auch mehr-
ere Passenger oder potentielle Ko–driver Gene. Eine intrinsische Eigen-
schaft, die aus einer solchen Störung des Genoms resultiert, ist die
Deregulierung der metabolischen Landschaft des Tumors. Tatsächlich
wurden mehrere metabolische Gene als Onkogene, Tumor-Suppres-
sor-Gene oder als Ziele onkogener Signalwege identifiziert.

E R G E B N I S S E
In dieser Arbeit legen wir dar, dass eine lineare Nähe metabolischer

und krebserregender Gene im Genom zu metabolischen Umgestal-
tungen durch Ko–variationen der Kopienzahl führen kann. Wir haben
beobachtet, dass Paare von Krebs unterstützenden metabolischen Gen-
en unerwartet oft nah beieinander im Chromosom positioniert sind
und sich in Bereichen mit veränderter Kopienzahl befinden, in de-
nen sie über alle analysierten Krebsarten hinweg entweder besonders
häufig ko-deletiert oder ko-amplifiziert sind. Wir haben die Analyse–
Pipeline Identification of Metabolic Cancer Genes (iMetCG) entwick-
elt, um die funktionellen Auswirkungen solcher Ko–variationen auf
den onkogenen Metabolismus herzuleiten und zu unterscheiden, wel-
che Gene den Krebsmetabolismus tatsächlich antreiben, und welche
neutral agieren. Zusätzlich beobachteten wir, dass die ermittelten met-
abolischen Krebsgene eine höhere Netzwerkkonnektivität haben, In-
dikatoren reduzierten Überlebens sind, und eine signifikanten Über-
lappung mit bekannten metabolischen Krebsgenen und deren Eigen-
schaften bezüglich Isoformdiversität und Selektionsdruck haben.

S C H L U S S F O L G E R U N G E N
Diese Doktorarbeit liefert neue Einsichten in die funktionellen Me-

chanismen der metabolischen Regulierung aufgrund von Ko–amplifi-
kationen und Ko–deletionen und deren Auswirkung auf die Verän-
derungen der metabolischen Landschaft. Unser krebsübergreifender,
von Genomdaten getragener Ansatz deckt einen bislang unbekannten
gen-erischen Mechanismus zur großflächigen metabolischen Umpro-
grammierung in Krebszellen auf, basierend auf linearer Gennähe,
und identifiziert 119 neue metabolische Krebsgene, die wahrschein-
lich an der Umgestaltung des Krebszell-Metabolismus beteiligt sind.
Darüber hinaus werden unsere neu identifizierten metabolischen Kreb-
sgene als eine wichtige Ressource der experimentellen tumormetabolis-
chen und Genom–orientierten Forschung dienen und deren Geltungsbe-
reich erweitern.
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S U M M A RY

B A C K G R O U N D
Cancer is a direct consequence of genomic aberrations, such as so-

matic copy number alterations that frequently occur in the cancer
genome affecting not only oncogenic genes, but also multiple pas-
senger and potential co-driver genes. An intrinsic feature resulting
from such a disruption of the genome is deregulation of the tumor
metabolic landscape, as a result of which, multiple metabolic genes
have been identified as oncogenes, tumor suppressor genes or targets
of oncogenic signaling.

R E S U LT S
Here we elucidate that linear proximity of metabolic and cancer-

causing genes in the genome can lead to metabolic remodeling throu-
gh copy number co-alterations. We observed that cancer-metabolic
gene pairs are unexpectedly often proximally positioned in the chro-
mosomes and share loci with altered copy number, thus being ei-
ther co-deleted or co-amplified across all cancers analyzed (19 cancer
types from The Cancer Genome Atlas). We have developed an anal-
ysis pipeline – Identification of Metabolic Cancer Genes (iMetCG), to
infer the functional impact on oncogenic metabolism from such co-
alteration events and delineate genes truly driving cancer metabolism
from those that are neutral. Using this approach, we have identi-
fied novel and well known metabolic genes that target crucial path-
ways relevant for tumors. Moreover, using these identified metabolic
genes we were able to classify tumors based on its tissue and devel-
opmental origins. We further observed that these putative metabolic
cancer genes (identified across cancers) had higher network connec-
tivity, were indicators for patient survival, had significant overlap
with known cancer metabolic genes and shared similar features with
known cancer genes in terms of their isoform diversity, evolutionary
rate and selection pressure.

C O N C L U S I O N S
This thesis provides novel insights into the functional mechanism

of metabolic regulation and rewiring of the metabolic landscape in
cancer cells. Our pan-cancer, genomic data driven approach revealed
a hitherto unknown generic mechanism for large scale metabolic re-
programming in cancer cells based on linear gene proximities and
identified 119 new metabolic cancer genes likely to be involved in re-
modeling tumor cell metabolism. Furthermore, our newly identified
metabolic cancer genes will serve as a vital resource to the experimen-
tal community engaged in tumor metabolism and genomics research
to further expand the scope of this field.

xxi





1
S C O P E

1.1 aims

1The major objective of this thesis is to combine the concepts
of gene order, cancer gene islands and cumulative gene dosage
to investigate the resulting consequences for metabolic alter-
ations in tumors. The linear arrangement of genes in chromo-
somes i.e. the gene order is now known to be non-random for
the human genome, potentially due to functional and evolu-
tionary constraints on genome organization. Furthermore, co-
expressed gene clusters in the chromosomes are often under
co-transcriptional control and these genes are simultaneously
regulated by local changes in the chromatin state. Also, with
the increasing availability of high throughput tumor genomics
data, a major focus of oncogenomics research is on differentiat-
ing “driver” and “passenger” mutations. However, at the same
time, a contrasting view of cancer gene islands and cumulative
gene dosage are emerging concepts in cancer genomics. The
large number of genes affected during carcinogenesis which
was previously thought to be non-functional, a result of collat-
eral damage from driving events is now believed to influence
cancer survival and proliferation. In context of these concepts,
we addressed the following issues in our study –

1. Is there any order in how metabolic and cancer genes are
linearly positioned in the chromosomes? Are the corre-
sponding gene-pairs relatively close or farther apart?

2. If there is an order, does it affect the occurrence frequency
of copy number co-alterations events between metabolic
and cancer genes?

3. Do co-altered metabolic genes have any functional impact
on tumor metabolism or are they just neutral events?

1.2 background

Tumorigenesis can occur through numerous mechanisms giv-
ing the malignant cells ceaseless proliferative advantages (Hana-
han and Weinberg, 2011). Clonal evolutionary processes result

1 Parts of this chapter have been taken from (Sharma et al., 2015)
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2 scope

in a perpetual conflict between the fitness of the host cell com-
munity and cancer initiating cells. The latter are governed by an
intrinsic driving force towards uncontrolled proliferation, and
if sustained, eventually lead to a neoplastic state. Somatic evo-
lutionary forces could have shaped inherent vulnerabilities in
the host genome, thus providing a cancer initiating potential, a
consequence of various genetic trade-offs during the selection
process. These trade-offs are reflected by changes to the fitness
balance that determine tumor progression or expulsion via pro-
tumorigenic or tumor suppressive mechanisms. The existence
of tumor suppressors and oncogenes in the genome makes this
evolutionary dilemma apparent (Merlo et al., 2006; Greaves and
Maley, 2012).

Several studies have shown that gene order is not random
in eukaryotes, but is subjected to natural selection driven by
functionality (Hurst et al., 2004; Singer et al., 2005; Semon and
Duret, 2006). Co-expressed genes, in particular housekeeping
genes, cluster together in the chromosomes, and are often from
the same biochemical pathways (Cohen et al., 2000; Caron et al.,
2001; Lercher et al., 2002; Lee and Sonnhammer, 2003). Accord-
ingly, these gene clusters can be co-regulated (Gierman et al.,
2007; Purmann et al., 2007; Davila Lopez et al., 2010) and ge-
nomic regions with a higher density of cancer genes could be
under co-transcriptional control (Glinsky et al., 2003).

Somatic copy number alterations (SCNA) in cancer cells can
affect large segments of the genome and these susceptible re-
gions often harbor genes affecting cellular proliferation. Typi-
cally, genes occupying these “cancer gene islands” were previ-
ously thought to be bystanders and collaterally affected from
SCNA targeting a cancer-specific gene. Interestingly, these co-
affected genes are now considered to contribute towards cancer
potency via “cumulative haploinsufficiencies” (Solimini et al.,
2012; Davoli et al., 2013). We would lose information on these
secondary effectors when focusing only on the major cancer
driving gene affected by such high frequency SCNA events.
However, a complete cellular process might be perturbed from
a global standpoint. Recent studies have also reported specific
SCNA-driven functional co-alterations between proximal can-
cer and metabolic genes in renal cell carcinomas, glioblastomas
and breast cancers (Bashashati et al., 2012; Gatto et al., 2014).
Moreover, co-deletion of MTAP with the CDKN2A/2B tumor
suppressor gene is a long known example that occurs across
multiple cancer types affecting the biochemical process of adeno-
sine and methionine salvage (Carson et al., 1988; Bertino et al.,
2014).



1.3 major findings and relevance 3

In this study we have systematically explored the metabolic
consequences of linear proximity between metabolic and cancer
genes and their concurrent copy number co-alterations across a
wide range of cancer types. Based on our incipient understand-
ing that altered metabolism is crucial to carcinogenesis (Kroe-
mer and Pouyssegur, 2008; Schulze and Harris, 2012; Sharma
and König, 2013), we assessed the functional relevance of such
events and elucidated their potential oncogenic effects and the
resulting impact on cancer metabolic remodeling.

1.3 major findings and relevance

In order to answer these pertinent questions, we have devel-
oped an analysis pipeline that primarily employs computational
oncogenomic analysis using robust statistical methods across
19 cancer types from The Cancer Genome Atlas (TCGA) for
the identification of a generic yet novel mechanism causing re-
programming of cancer metabolism. The major findings of this
work are –

1. Cancer causing (oncogenes or tumor suppressors) and met-
abolic genes are significantly closer together in the genome
than cancer-nonmetabolic gene pairs.

2. This linear proximity is exploited through increased prope-
nsity for copy number co-alterations of such gene pairs
across cancer types.

3. A computational pipeline, iMetCG, was developed that in-
tegrates copy number co-alteration and co-expression in-
formation for the identification of significantly altered and
proximal cancer-metabolic gene pairs.

4. These pairs are further prioritized for the discovery of
novel cancer metabolic genes using a priori defined func-
tionally relevant gene sets (like essential and rate-limiting
genes) and identifying those co-altered metabolic genes
whose network neighbors are also perturbed.

5. Co-altered metabolic genes identified using our pipeline
(i.e. a 113 metabolic gene signature from 16 cancers types)
enables tumor classification in tune to its tissue and devel-
opmental origins.

6. The identified cancer metabolic genes reprogram cancer
metabolism by targeting well known cancer metabolic path-
ways like nucleotide, lipid, amino acid and energy meta-
bolism.
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7. The evolutionary (dN/dS ratio, evolutionary rate, isoform
diversity and gene connectivity) and phenotypic proper-
ties (cancer survival and enrichment in known cancer meta-
bolic genes) of these novel metabolic cancer genes are very
similar to known cancer genes, thus supporting our hy-
pothesis that they are potentially metabolism specific onco-
genic drivers.

This thesis provides novel insights into the functional mech-
anism of metabolic regulation in cancer cells. It highlights a
hitherto unknown generic mechanism for rewiring of tumor
metabolic landscape based on linear gene proximities between
cancer causing and metabolism specific genes in the chromo-
somes. This linear proximity translates into their higher rates
of copy number co-alterations leading to large scale metabolic
reprogramming in tumors. In this work, through integrative
genomics based approaches and our newly developed statisti-
cal analysis pipeline iMetCG, we have identified 119 putative
metabolic cancer genes likely to be responsible for remodeling
cancer cell metabolism. Moreover, these identified metabolic
cancer genes will serve as a vital resource to the experimental
community engaged in tumor metabolism research.

1.4 outline of the thesis

In this thesis, the major focus is on the effect of genomic al-
terations, specifically the effect of SCNA on tumor metabolism
which will be presented in a typical cause and consequence
study format. The main motivation of this present work is to in-
fer causal genomic mechanisms leading to changes in the tumor
metabolic landscape using computational approaches. In the in-
troductory chapter (Chapter 2), three major concepts namely –
rewiring of cancer metabolism, gene order and effect of cumula-
tive gene dosage on carcinogenesis potential will be discussed
in detail. Linking these ideas form the backbone of this study.
In the next chapter (Chapter 3), the methodological aspects of
this work will be elaborated with regards to integration of var-
ious datasets and development of a novel statistical pipeline to
address the questions posed in this thesis. This will be followed
by the presentation of results and discussions (Chapter 4), here
the findings of this thesis in context of our current knowledge
will be analyzed. Finally, in the concluding chapter (Chapter 5),
a brief summary of the entire work will be presented highlight-
ing the novelty and relevance of this study along with sugges-
tions for future studies.



2
I N T R O D U C T I O N

2.1 cancer - genetic causes and consequences

1Cancer is one of the leading causes of mortality and morbidity
worldwide with an estimated 14.1 million new cancer related
cases, 8.2 million cancer caused deaths and 32.6 million people
living with cancer (diagnosed within the last 5 years) as of 2012

(Ferlay et al., 2015). To put these numbers into perspective 1 out
of 2 individuals in Germany, United Kingdom or the United
States will be diagnosed with cancer in their lifetime (Kaatsch
et al., 2014; Hayat et al., 2007)(Cancer Research UK, 2015). The
most common types of cancers diagnosed worldwide (in both
males and females) are of the lung, breast, prostate, cervix,
colon, stomach and liver (Ferlay et al., 2015). A common miscon- 1 out of 2 people will

be diagnosed with
cancer in their
lifetime

ception regarding cancer is the perception that it is a disease of
modern times, however, cancer has always ocuured during the
course of human history. The increased incidence of cancer seen
in recent times is mainly attributed to vastly improved health-
care resulting in increased life expectancies. In fact, the earliest
description of cancer dates back to almost 3000 BC recorded in
an Egyptian textbook describing a surgical method for breast
cancer while strong physical evidence in the form of fossilized
records suggestive of osteosarcoma has been discovered from
Egyptian mummies. Hippocrates (460–370 BC), considered as
the father of medicine, had already witnessed and studied tu-
mors in ancient Greece and is credited to have coined the word
carcinos and carcinoma while describing tumorous growth in his
patients (Mukherjee, 2010).

More than a century ago, Theodor Boveri, suggested that can-
cer might be a result of chromosomal alterations that leads to
uncontrolled cell division (Boveri, 2008). After decades of ex-
tensive cancer research, it is now firmly established that can-
cer is indeed a direct consequence of cumulative accumula-
tion of multiple genomic aberrations like mutations, somatic
copy number changes (SCNA) and translocations (Vogelstein
et al., 2013). Point mutations result in single nucleotide changes
which can be synonymous (i.e. silent or neutral) causing no
change in the type of amino acid being translated due to inher-
ent codon redundancy. Mutations can also be non-synonymous

1 Parts of this chapter has been taken from (Sharma and König, 2013)
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6 introduction

(i.e. missense, nonsense and frame-shift mutations) where there
is a change in the codon resulting in a concordant change in the
translated amino acid. This however may or may not affect pro-
tein function based on factors like physiochemical similarities
between the original and changed amino acids and the posi-
tion of amino acid change in the protein structure. For exam-
ple, a change of an amino acid at the protein loop regions may
have less severe effect on protein function when compared to
a change in the active site of a protein. In more extreme cases,
point mutations may lead to conversion of an amino acid cod-
ing codon into a stop codon (nonsense mutation) which would
result in premature termination of protein translation. Similarly,
a single nucleotide insertion/deletion (indel) in the genome can
cause a complete change in the sequence of amino acids being
translated, thus creating a non-functional protein. SCNA is the
most common type of genomic aberration in tumors that oc-
curs due to a defective replication machinery leading to devi-
ations from the diploid number of chromosomes (aneuploidy)
or focal addition/removal of DNA material (amplifications or
deletions). SCNA has a severe impact on the genomic blueprintCancer is a

consequence of
progressive

accumulation in
genomic aberrations

because it can simultaneously affect multiple genes causing a
drastic change in gene dosage. Such changes may affect the
entire chromosome, chromosomal arm or focally on relatively
smaller segments of the chromosome. Furthermore, chromoso-
mal alterations may result in fusion genes due to translocation
events (balanced, unbalanced or centromeric) where segments
of the chromosome are exchanged between the same or differ-
ent chromosome (Fig.1A) (Griffiths et al., 2010).

These genetic assaults sustained by a normal cell leads to
its neoplastic transformation which is manifested by increas-
ing cellular division and growth due to sustained growth sig-
nals, inhibition of growth suppressors, replicative immortality,
genome instability, inflammation, angiogenesis, metastasis, eva-
sion from apoptosis, circumvention of immune-surveillance and
metabolic reprogramming (Hanahan and Weinberg, 2011) (Fig.
1B). Among the different hallmarks typically exhibited by tu-
mors, studies on metabolic alterations in cancer cells is fast
gaining traction due to observations that in tumors, many meta-
bolic genes are mutated or are downstream targets of deregu-
lated signaling (Kroemer and Pouyssegur, 2008; Cairns et al.,
2011; Schulze and Harris, 2012). Almost all of the “cancer hall-
marks” are involved in crosstalk and metabolism seems to be
uniquely placed at the crossroads. For example, increased avail-
ability of growth signals or resistance to growth suppressors
leads to rapid cell proliferation. This typically involves high
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Figure 1: Cancer - causes and consequences. (A) Different types of genomic
aberrations that facilitate the emergence of the cancer phenotype. (B) The
typical “hallmarks of cancer”(Hanahan and Weinberg, 2011) exhibited by
tumors.

consumption of glucose and glutamine for high cellular biomass
generation. Similarly, metabolic reprogramming is involved in
metastasis where peripheral membrane proteins maintaining
the spatial fidelity of cells in context of its tissue organization
are altered leading to cellular detachment from the extracellu-
lar matrix. These membrane proteins are post-translationally Deregulation of the

tumor metabolic
landscape is an

“emerging hallmark
of cancer”

modified with complex metabolic products composed of fatty
acids and sugars like glycosylphosphatidylinositol, alterations
in which promotes cell invasion (Pinho and Reis, 2015). Fur-
thermore, the tumor microenvironment too plays a crucial role
in tumorigenesis where it has been elegantly shown using a
two compartment model that cancer and cancer associated stro-
mal cells are involved in metabolite exchange to optimize nu-
trient utilization. Lactate generated in glycolytic stromal cells
are taken up by the cancer cells to be utilized for energy gener-
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ation – a process called the “reverse Warburg effect” (Pavlides
et al., 2009). All these observations strongly support the fact
that metabolic alterations are indeed a fundamental require-
ment for tumorigenesis and is extensively involved in support-
ing the various so called non-metabolic functions of tumor cells.
In the following sections the crucial role of cancer metabolism
in tumorigenesis will be elucidated in detail.

2.2 the structure and function of human metabolism

Metabolism is the collective of thousands of chemical reactions
occurring at a given condition resulting from the intricate inter-
play of various regulatory processes. It is among the most basic
functional phenotype of the cell and is shown to be highly con-
served across species. The study of these dynamic metabolic
processes and their capabilities helps to identify the fundamen-
tal properties of living systems. Metabolism can be considered
as a thermodynamic open-system in which source substrates of
high value are being processed through a well established and
interconnected biochemical conversion system, strictly obeying
physiochemical principles, generating useful intermediates and
finally resulting in the release of byproducts (Sharma and König,
2013). In this section, the daunting complexity of the metabolic
network will be broken down into simpler recurring processes
and the rules by which metabolism is controlled will be ex-
plained highlighting that there is an inherent order in how
metabolic processes work.The complexity of

human metabolic
network can be

broken down into
small number of

recurring modules

The human metabolic network has around 7440 chemical re-
actions consisting of 5063 metabolites catalyzed by enzymes
translated from 1789 genes (Thiele et al., 2013). However, this
complex dimensionality of the metabolic network can be vastly
reduced by categorizing all of these reactions and metabolites
into 99 well defined subsystems/pathways and classifying en-
zymatic reactions into 6 major types of chemical transformation
process that they catalyze (Table. 1) (Thiele et al., 2013; Cornish-
Bowden, 2014). Metabolism can be further represented by a bi-
partite graph connecting each pair of reactions by a metabolite
which is the substrate of one and the product of the other reac-
tion. Such a representation facilitates analysis of the topological
properties for the metabolic network. Moreover, metabolic net-
works like any other scale-free network in biological systems
closely follows the power law as a result of which very few
metabolites are connected to most of the reactions in the net-
work (like pyruvate, glutamine, ATP, CoA etc). These highly
connected metabolites are called hubs while the rest of the
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Table 1: Major classes of metabolic enzymes and its catalytic function†.

EC class Name Function Example

1 Oxido-
reductases

Oxidation-
reduction,electron
transfer

Lactate
dehydrogenase
(LDH)

2 Transferase Chemical group
transfer

Alanine amino-
transferase
(GPT)

3 Hydrolases Transfer of a
chemical group to
water, breakage of
bonds to form two
fragments

Esterase D
(ESD)

4 Lyases Non hydrolytic
addition or
removal of
chemical groups,
double bonds
formed

Fumarate
hydratase (FH)

5 Isomerases Isomerization
reactions,
rearrangement of
atoms in a
molecule

Triose
phosphate
isomerase
(TPI)

6 Ligases or
synthetase

Joining of two
molecules with
ATP (or any
energy rich)
hydrolysis

Long-chain-
fatty-acid-CoA
ligase 1

(ACSL1)

†also see – http://www.chem.qmul.ac.uk/iubmb/enzyme/.

metabolites are connected to only handful of reactions. Also, it
has been observed that the network diameter is relatively small
which means that any two metabolites in the network can be
connected in few steps along the shortest path (Jeong et al.,
2000). In context of function, the metabolic system processes 4

major biomolecules required for cellular sustenance, which are
– carbohydrates, lipids, nucleotides and amino acids. Almost
all metabolic reactions driven to generate and transform these
metabolites can be broadly classified into catabolic and anabolic
processes where the substrates are either broken down to gen-
erate energy or the energy generated is used to synthesize new
products respectively. The complexity of metabolic networks
can be further decomposed into smaller functional units be-

http://www.chem.qmul.ac.uk/iubmb/enzyme/
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cause many reactions are related and they converge into cru-
cial metabolic hubs, similarly many reactions also diverge from
a common precursor molecule to generate a wide variety of
related metabolites (Berg et al., 2002; Nelson et al., 2008).

In 1930’s Hans Krebs first described the three steps of catabol-
ism which involves sequentially degradative processes converg-
ing into energy production through oxidation of consumed food.
Furthermore, these degradative processes are tightly coupled
to anabolic reactions and depending on the metabolic require-
ments, an optimal path is chosen by the cell while maintaining
the intricate balance between these complementary processes.
In the first phase, all carbohydrates, proteins and fats fromAcetyl-CoA is a

crucial metabolite
connecting anabolic

and catabolic
processes

the food source are degraded into their basic building blocks
namely the hexose sugars, amino acids and glycerol/fatty acids,
this is the preparatory phase and no energy is produced. In the
second phase, metabolic outputs of the previous stage undergo
chemical transformation through a series of reactions to finally
converge into acetyl-CoA generation. Carbohydrates are gen-
erally consumed in the form of (mono/di/poly)–saccharides
(like fructose, lactose, sucrose or starch) which are composed
of either aldoses (like glucose, mannose or galactose) or ke-
toses (like fructose), in both cases the sugars converge into the
glycolysis pathway where the sugar carbon backbone is oxi-
dized to generate pyruvate which is then further converted to
acetyl-CoA that goes into the tricarboxylic acid (TCA) cycle,
also known as the Krebs cycle (Fig.2) .

Proteins are first degraded into its constituents i.e. 20 possible
amino acids by proteases. These amino acids can be salvaged
and used for anabolic purposes. However, in the case of energy
requirement, they are further degraded to generate pyruvate
(which is further converted to acetyl-CoA) or intermediates of
the TCA cycle (like α-ketoglutarate or oxaloacetate). In all cases
of amino acid degradation the downstream products converge
into the TCA cycle (Fig.2).

Dietary fats are stored in the adipose tissues as energy re-
serves. During energy starvation these fatty acids are coupled
with coenzyme A (CoA) to generate fatty acyl-CoA which is
then transported into the mitochondria where through the pro-
cess of β-oxidation, either acetyl-CoA or succinyl-CoA is gen-
erated depending on the number of backbone carbons, both
of which converge into the TCA cycle. In the final stage, acetyl-
CoA is completely oxidized through the Krebs cycle to generate
electrons which is then transferred to reduced electron carriers
like (NAD+, FAD), this process creates a proton gradient which
is used to generate energy in the form of ATP during the oxida-
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tive phosphorylation process (OXPHOS) (Fig.2). Thus, despite
the high complexity of metabolic reactions there exist few basic
marcromolecules which undergo large number of diverse chem-
ical transformation steps to yield few key metabolic precursors,
all of which are processed through the same energy generating
processes. Similarly, in anabolic reactions few crucial metabo-

Figure 2: Three phases of food metabolism. Consumed food in the form
of carbohydrates, proteins or fats are initially degraded into its constituent
chemical units (pink panel). These endproducts are further transformed into
few crucial metabolic precursors that enter into the TCA cycle (yellow panel).
Finally, oxidative phosphorylation (OXPHOS) generates the bulk of cellular
energy by harvesting the chemical proton gradient into ATP. The catabolic
processes (shown in black arrows) are tightly coupled with biosynthetic re-
actions (shown in red arrows) that generate cellular biomass. G6P - Glucose-
6-phosphate, R5P - Ribose-5-phosphate, 3-PG - 3-phosphoglycerate, Ser -
Serine, Gly - Glycine, Cys - Cysteine, Ala - Alanine, Asp - Aspartate, Asn
- Aspargine, Pro - Proline, Arg - Arginine, Glu - Glutamate and Gln - Glu-
tamine.

lites through successive and connected chemical reactions can
generate the vast variety of biosynthetic end products. For ex- In recent years there

has been a
reemergence of
interest in tumor
metabolism research

ample, glycolytic intermediates (like 3-phosphoglycerate and
pyruvate) and TCA cycle intermediates (like α-ketoglutarate
and oxaloacetate) can generate all of the non-essential amino
acids in the cell which is then used for protein biosynthesis.
Also, in nucleotide metabolism a similar pyramidal structure
for coupled chemical reactions exists where ribose-5-phosphate,
glutamine and aspartate can produce the entire set of purines
and pyrimidines (mono/di/tri–)phosphates used for DNA syn-
thesis in the cell (Berg et al., 2002; Nelson et al., 2008).
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The high redundancy and connectivity exhibited by metabolic
networks makes its highly robust to external perturbations and
facilitates various rewiring mechanisms to maintain its optimal
efficiency. Such remodeling mechanisms and their functional
consequences in a highly deregulated genomic state like tumors
will be described in detail in the following sections.

2.3 cancer metabolism

Rapidly proliferating cells exhibit distinct metabolic features to
support their growth demands which typically manifest by in-
creasing rates of energy metabolism to support lipid, nucleotide
and amino acid biosynthesis. Moreover, the catabolic as well as
anabolic processes within the cell are uniquely balanced to aug-
ment these growth requirements. Utilizing the vast redundancyRapidly dividing

cells have have high
biomass production

and connectivity of the metabolic network, cells can rewire
metabolic routes to optimize its growth potential and increase
biomass (DeBerardinis et al., 2008; Kroemer and Pouyssegur,
2008; Dang, 2012; Schulze and Harris, 2012). This metabolic
remodeling of the tumor cell is tightly regulated by its mi-
croenvironment, cellular physiology and various (epi)genetic
mechanisms (Fig.3) (Cairns et al., 2011; Ward and Thompson,
2012). Detailed understanding of this reprogramming of cellu-

Figure 3: Tumor metabolism. Rapidly proliferating cells have high energy
demands to support the biosynthesis of cellular biomass consisting mainly
of nucleotides, lipid and proteins. These metabolic processes are tightly reg-
ulated within the tumor cell by the microenvironment, physiology and sig-
naling mechanisms.

lar bioenergetics is crucial in the context of cancer as it can high-
light critical links that fuels neoplastic growth which can be ex-
ploited to disrupt the diseased state using therapeutic interven-
tions (Galluzzi et al., 2013). Besides the known and well-studied
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causalities for tumorigenesis, conceptual progress within the
last decade has established that reprogramming of energy meta-
bolism is an “emerging hallmark of cancer” (Fig.1B) which
is now regarded indispensable for tumor formation (Hanahan
and Weinberg, 2011; Sharma and König, 2013). Furthermore,
it is increasingly becoming clear that changes in the tumor
metabolic landscape leads to rapid generation of reactive oxy-
gen species (ROS). This causes an enhanced genomic mutation
load, thus implicating altered metabolism as a direct cause for
genomic aberrations (Cooke et al., 2003; Cairns et al., 2011).
Over the last decade there has been a resurgence of active re-
search in the field of cancer metabolism that has rightfully pla-
ced metabolism back into the center stage of cancer research.
This is highlighted by an exponential growth in the number of
scientific publications in this field over the last few years (Fig.4).
This reemergence of scientific interest is mainly because recent

Figure 4: The reemergence of tumor metabolism research. A conser-
vative search for the phrase “cancer/tumor metabolism” or “metabolic
rewiring/reprogramming” was carried out in Pubmed (July, 2015) to get the
year wise counts for publications containing this phrase. Crucial events that
have defined the evolution of cancer metabolism research are highlighted
(also see(Koppenol et al., 2011)).

genome scale analysis of cancers and its high-throughput func-
tional studies have revealed that metabolic genes are crucial
oncogenes or tumor suppressor genes and are also major down-
stream targets of deregulated signaling programs in tumors.
This deregulation results in rewiring of the metabolic circuitry
conferring an exploitative metabolic advantage for the tumor
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cells which carries a distinct benefit for tumor survival and
lays the basis for its unbound progression. Hence, understand-
ing the aberrant mechanism of tumor metabolism is of central
interest in biomedical research (Sharma and König, 2013).

2.3.1 Alterations in central carbon metabolism pathways

The central carbon metabolism consists of a set of intercon-
nected metabolic subsytems (glycolysis, pentose phosphate path-
ways and Kreb’s cycle) that are involved in energy and biomass
production. Glycolysis involves the oxidative breakdown of six
carbon sugars (glucose) into three carbon products (two pyru-
vates) in ten successive chemical transformation steps, with
the generation of energy (2 molecules of ATP) and reducing
equivalents (2 molecules of NADH) (Nelson et al., 2008). Al-
most, every enzyme involved in glycolysis is targeted by dereg-
ulated signaling processes in tumors (see the section on reg-
ulation of tumor metabolism below), starting from the initial
glucose transporters (GLUTs, that supply glucose for glycolytic
processing) to lactate/pyruvate transporters (MCT1 and MPC1,
that funnel glycolysis end products outside the cell or into the
TCA cycle respectively) (Macheda et al., 2005; Kennedy and
Dewhirst, 2010; Schell et al., 2014). Among others, enzymesAlterations in the

central carbon
metabolism supports

the enhanced
metabolic

requirements in
tumor cells

deregulated in tumors include all of the major glycolytic flux
controlling enzymes like hexokinases (HK1/2) (Wolf et al., 2011),
pyruvate kinases (PKM2) (Vander Heiden et al., 2010), lactate
dehydrogensaes (LDHA) (Le et al., 2010) and phosphofructok-
inases (PFK1) (Mor et al., 2011) which are also responsible for
generating crucial intermediates for anabolic processes.

Intermediates of glycolysis are funneled into branching path-
ways for the generation of other essential metabolites. For ex-
ample, glucose-6-phosphate enters into the oxidative arm of the
pentose phosphate pathway (PPP) while fructose-6-phosphate
and glyceraldehyde-3-phosphate enter into the non-oxidative
arm of PPP, both leading to the production of ribose-5-phos-
phate which is an essential precursor for nucleotide biosyn-
thesis. Additionally, the oxidative arm also generates NADPH
which is used in many anabolic reactions (Berg et al., 2002). In
tumors, multiple enzymes involved in PPP are deregulated, for
example, the NADPH generating enzymes – glucose-6-phos-
phate dehydrogenase and 6-phosphogluconate dehydrogenase
are crucial for tumorigenesis and under tight oncogenic sig-
nalling control. Similarly, transketolases and transaldolases are
crucial enzymes in the non-oxidative arm of PPP and their ex-
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pression is elevated in multiple tumor types and is associated
with poor patient survival (Patra and Hay, 2014).

Figure 5: The role of central carbon metabolism in tumors. The cen-
tral carbon metabolism pathways (glycolysis, pentose phosphate pathway
and the TCA cycle) are highly altered in tumors. The commonly targeted
metabolic enzymes in tumors and those that generate ATP and NADPH
are shown in italics. Important metabolite transporters are shown in gray
ovals. Glutaminolysis is shown within the blue shaded region, reductive
carboxylation is shown within the pink shaded region and the mitochon-
drial compartment is highlighted in the gray shaded region. Glc - Glucose,
G6P - Glucose-6-phosphate, R5P - Ribose-5-phosphate, F6P - Fructose-6-
phosphate, FBP - Fructose bisphosphate, G3P - Glyceraldehyde-3-phosphate,
3PG - 3-phosphoglycerate, Ser - Serine, Gly - Glycine, Cys - Cysteine, PEP
- Phosphoenolpyruvate, Pyr - Pyruvate, Lac - Lactate, ACoA - Acetyl-CoA,
Oxa - Oxaloacetate, Cit - Citrate, α-KG - α-ketoglutarate, Mal - Malate, Gln
- Glutamine, Glu - Glutamate, Asp - Aspartate, Ala - Alanine, GlcA6P -
Glucosamine-6-phosphate, EAA - Essential amino acids.

Dihydroxyacetone phosphate (DAP), another intermediate of
glycolyss is utilized for the generation of phosphatidic acid
(PA), the backbone for all glycero(phospho)lipids. In tumors, it
has been observed that enzymes involved in the conversion of
DAP to PA are highly expressed and that phosphatidic acid is
a crucial metabolic regulator of mTOR, which in turn regulates
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diverse metabolic functions in cancer cells (Athenstaedt and
Daum, 1999; Foster, 2007). Similarly, other glycolysis products
like pyruvate and 3-phosphoglycerate are precursors for non-
essential amino acid biosynthesis(Nelson et al., 2008). Apart
from glycolysis, pyruvate can also be generated by the malic
enzymes using malate from the TCA cycle, this process gen-
erates NADPH which is an essential reductant currency for
tumors (Jiang et al., 2013). Furthermore, pyruvate can be con-
verted into alanine which is used for protein biosynthesis and
is also heavily secreted by the cancer cells, the reason for which
is not clearly established (Ahn and Metallo, 2015). In breast
cancers, it has been observed that 3-phosphoglycerate from gly-
colysis is utilized for serine and glycine production through the
amplified PHGDH enzyme, which can be further utilized in nu-
cleotide biosynthesis and one-carbon metabolic pathways (Pos-
semato et al., 2011; Locasale et al., 2011). Also, the glycolyticMetabolic

remodeling of the
central carbon

metabolism supports
both anabolic and

catabolic
requirements of the

cancer cell

intermediate, fructose-6-phosphate feeds into the hexosami-ne
(amino sugars) biosynthetic pathway whose major function in-
volves protein glycosylation and lipid modification. The amino-
transferase enzyme GFPT2, utilizes glutamine and fructose-6-
phosphate for the generation of the amino sugar, glucosamine-
6-phosphate, which is further used in N-/O- linked glycosyla-
tion based modification of crucial membrane bound signaling
receptors, the disruption of which perturbs tumor growth (Guil-
laumond et al., 2013).

As described above, the end product of glycolysis, pyruvate,
enters into the Kreb’s cycle for its complete oxidization into
CO2. This process generates 8 NADH, 2 FADH2, 2 ATP and
a proton gradient which is used to further harvest ATP dur-
ing oxidative phosphorylation (OXPHOS) as a result of which
there is net gain of 36 ATP upon complete oxidization of glu-
cose (Nelson et al., 2008). Furthermore, the TCA cycle interme-
diates too contribute towards major biosynthetic processes like
nucleotide, lipid, heme and amino acid biosynthesis (Fig. 5).
Alterations in TCA cycle enzymes, their role and regulation in
tumor metabolism is explained in the following sections.

In total, pathways involved in central carbon metabolism form
the a fundamental unit of the human metabolic network as
they are involved in supplying essential precursors and en-
ergy to the rest of the metabolic processes. Hence, the cen-
tral carbon/energy metabolism is tightly regulated and is of-
ten perturbed during tumorigenesis causing a drastic shift in
metabolic requirements compared to a normal cell.



2.3 cancer metabolism 17

2.3.2 The Warburg effect and glutaminolysis in cancers

The metabolic phenotype typically exhibited by most tumor
cells involves elevated levels of glucose and glutamine con-
sumption. These crucial metabolites serve as the bulk of carbon
and nitrogen sources in tumors, expectedly, pathways involved
in the utilization of these metabolites are among the most dereg-
ulated in cancer and under the tight control of oncogenic sig-
naling (Dang, 2012).

Pioneering investigations by Otto Warburg in the 1920s re-
vealed that cancer cells preferentially oxidize glucose through
a fermentative glycolytic process even in the presence of suffi-
cient oxygen. This metabolic phenotype shown by most cancer
cells is called the Warburg effect which results in high levels
of cellular lactate secretion (Warburg et al., 1956). The cause
for this unique phenotype has been widely debated and sev-
eral plausible mechanisms have been suggested. However, one
of the initially proposed mechanism by Warburg himself sug-
gesting a non-functional mitochondria in cancer cells has been
ruled out (Koppenol et al., 2011). In fact, since then it has been The Warburg effect

or aerobic glycolysis
is a typical metabolic
phenotype shown by
most tumor cells

shown that in many cancer cells OXPHOS actively generates
ATP (Jose et al., 2011; Tan et al., 2015). Furthermore, it has been
shown that cancer cells exhibit about 10 times higher glucose
uptake and that for every 13 molecules of glucose consumed, 1

molecule of glucose goes through complete oxidation via OX-
PHOS while the remaining 12 glucose molecules undergo fer-
mentative glycolysis producing lactate. Also, glucose oxidation
in glycolysis and OXPHOS produces 2 and 36 molecules of ATP
(18 times higher ATP in OXPHOS) respectively. However, with
this reaction stoichiometry, in cancer cells with high glucose up-
take, glycolysis alone can generate 24 molecules of ATP which
is 2/3 of OXPHOS dependent ATP production (Koppenol and
Bounds, 2009). It has also been suggested that in rapidly di-
viding cancer cells, the Warburg effect optimizes proliferation
by generating high biomass for cellular maintenance leading to
the Warburg phenotype. Furthermore, glycolytic dependency
shown by tumors is also attributed to the fact that interme-
diate metabolites of this pathway serve as crucial precursors
for macromolecular biosynthesis (Fig. 5) (Vander Heiden et al.,
2009; Shlomi et al., 2011). Moreover, from an evolutionary view-
point, it has been suggested that cancer cells adapt to the gly-
colytic phenotype because of hypoxic tumor microenvironment
as a result of which these cells have to tolerate acidic conditions,
those cancer cells surviving such harsh conditions are highly
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aggressive and resistant leading to its increased proliferation
(Archetti, 2014).

Glutaminolysis is the conversion of glutamine into α-keto-
glutarate via glutamate by glutaminase (GLS1/2), glutamate de-
hydrogenase (GLUD1/2) or aminotransferases (GOT1/2, GPT1/2
etc). Glutamine is an important source of carbon and nitrogen
in tumor cells where it is used extensively for replenishing nu-
cleotides, lipids and non-essential amino acids (Fig. 5). Further-
more, a major role of glutamine is to maintain the redox balance
in cancer cells by generating reducing equivalents (like NADH,
NADPH) and glutathione pools (DeBerardinis and Cheng, 2010).
Enzymes involved in glutaminolysis are deregulated in tumors
and are targets of Myc and Kras oncogene dependent signaling
(Wise et al., 2008; Son et al., 2013). Glutaminolysis is affected
among others, in glioblastomas (DeBerardinis et al., 2007), breast
cancer (Korangath et al., 2015) and pancreatic cancer (Son et al.,
2013), all of which exhibit an increased dependency on glu-
tamine for cellular metabolism, such that disruption of active
glutaminolytic enzymes severely decreases tumor proliferation
and is described as the “glutamine addiction” phenotype.

2.3.3 Alterations in lipid metabolism

In this section, various enzymes in lipid and fatty acid meta-
bolism that show altered behavior in tumors are described, fur-
thermore the metabolic routes rewired to support the biosyn-
thetic demands are explained, highlighting how specific target-
ing of these changes makes the cancer cell vulnerable, suggest-
ing the essential role of such metabolic reprogramming events.

Fatty acids are crucial building blocks within the context of
cellular physiology and are involved in, among others – cellular
structure maintenance, balancing energy homeostasis, signal-
ing and anchorage for protein complexes. These cellular pro-
cesses are disrupted in tumorigenesis and expectedly it has
been shown that alterations in lipid metabolism through dereg-
ulation of specific enzymes involved in both fatty acid degrada-
tion and biosynthesis are essential features exhibited by rapidly
dividing cells. Within cells, fatty acid requirements are satisfied
by both endogenous (de-novo synthesis) or exogenous (uptake
of food/nutrients via the bloodstream or from adipose tissues)
nutrient pools through overlapping metabolic routes (Santos
and Schulze, 2012).

Citrate is a crucial precursor metabolite in fatty acid biosyn-
thesis and its sub-cellular localization has important implica-
tions on its metabolic fate. For instance, mitochondrial citrate
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feeds into the TCA cycle while cytosolic citrate is routed through
fatty acid biosynthesis via acetyl-CoA. Furthermore, there is ac-
tive shuttling of citrate molecules between the mitochondrial
and cytoplasmic compartments through the citrate transport-
ing proteins (CTP), also known as citrate carriers (CiC), these
proteins mainly belong to the SLC25 family of transporters like
the SLC25A1 (Fig. 6). This transport process involves electroneu-
tral exchange of di(tri)carboxylate molecules like citrate or isoc-
itrate for malate, succinate or phosphoenolpyruvate (Mycielska
et al., 2009; Gnoni et al., 2009). Given the essentiality of fatty
acid biosynthesis for tumor survival/progression and the cen-
tral role of citrate in this process, it has been hypothesized that
enzymes involved in citrate metabolism may play a role in tu-
mors (Santos and Schulze, 2012; Currie et al., 2013). Citrate is Lipids are among the

most important
constituent of
cellular biomass and
is actively produced
in rapidly
proliferating cells

generated in the first step of the TCA cycle via a condensation
reaction between acetyl-CoA and oxaloacetate catalyzed by the
CS genes and is considered the rate limiting step in the Kreb’s
cycle. It has been shown in cervical carcinoma cells that knock-
down of CS causes epithelial-mesenchymal transition resulting
in increased proliferation, metastasis and high dependency on
the Warburg effect like phenotype (Lin et al., 2012). However,
in ovarian cancer cells CS knockdown led to decreased prolif-
eration, invasion and drug resistance suggesting tumor specific
metabolic adaptation upon CS perturbation (Chen et al., 2014).
Moreover, expression of the citrate transporter SLC25A1 is ele-
vated in many tumor cells which correlates with poor patient
survival. Genetic knockdown of SLC25A1 in breast cancer cells
in vitro causes reduced cell viability by disrupting mitochon-
drial homeostasis and causes reduced tumor development in
vivo (Catalina-Rodriguez et al., 2012).

A crucial central metabolite in both anabolic and catabolic
processes of lipid metabolism is acetyl-CoA. It is generated
within the cell by multiple metabolic pathways like amino acid
degradation, glycolysis and β-oxidation of fatty acids. Acetyl-
CoA serves as the primary precursor molecule which is then
processed into the vast repertoire of lipids and fatty acids seen
within a cell, furthermore it is also passed through the TCA
cycle to generate cellular energy currency and reducing equiv-
alents as ATP and NADPH/FADH respectively (Currie et al.,
2013). Interestingly, in multiple tumor derived cells, it has been
shown using isotope labeling experiments that a unique meta-
bolic reprogramming event leads to the production of acetyl-
CoA under oxygen limiting conditions (hypoxia). It is observed
that α-ketoglutarate produced through glutaminolysis is con-
verted into citrate via reductive carboxylation of glutamine us-
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ing the cytosolic NADP+ dependent IDH1 enzyme. This re-
action occurs in the opposite direction compared to the nor-
mal TCA cycle, hence is also called the “reversed TCA cycle”
(Mullen et al., 2012; Metallo et al., 2012). This citrate pool is fur-
ther converted into acetyl-CoA and oxaloacetate in an energy
dependent reaction catalyzed by ACLY, this reaction acts as the
crucial precursor step that connects carbohydrate metabolism
to fatty acid biosynthesis (Fig. 6, 5). Moreover, this reductive

Figure 6: Lipid metabolism in tumors. A broad overview of various reac-
tions involved in tumor’s lipid metabolism is shown. Important enzymes
altered in tumors are shown in italics. The red dotted line represents β-
oxidation of fatty acids. The gray and pink shaded regions is used to differ-
entiate the TCA cycle and the reverse TCA cycle (reductive carboxylation) re-
spectively. G3P - Glyceraldehyde-3-Phosphate, α-KG - α-ketoglutarate, CiC -
Citrate transporter, FA - Fatty acids, PA - Phosphatidic acid, DAG - Diacyl-
glycerol, TAG - Triacylglycerol, GPL - Glycerophospholipids, PC - Phospho-
tidylcholine, PE - Phosphotidylethanolamine, PS - Phosphotidylserine.

carboxylation phenotype is also exhibited in renal carcinoma
cells harboring a loss of function mutation in the VHL gene,
where these cells become exclusively dependent on glutamine
derived lipogenesis (Metallo et al., 2012). As expected, given
the importance of ACLY in lipid metabolism, it has been shown
in multiple tumor cells that genetic knockdown of ACLY causes
cell cycle arrest and induction of apoptosis (Zaidi et al., 2012;
Hanai et al., 2012). Furthermore, chemical inhibitors against
ACLY in glycolytic tumors had similar effects (Hatzivassiliou
et al., 2005).

Fatty acid synthase (FAS), encoded by the FASN gene, is
the major multi-enzyme complex involved in lipid biosynthe-
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sis. Mammalian FAS is a multifunctional protein consisting of
7 functional domains that iteratively carry out a set of 4 cat-
alytic steps – condensation, reduction, dehydration and reduc-
tion. This process starts with condensation between acetyl-CoA
and malonyl-CoA to form acetoacetyl-ACP (i.e. acetoacetyl con-
jugated with the acyl carrier protein) and ends with the final
reduction step forming butyryl CoA-ACP. These set of 4 steps
are repeated 7 times to generate palmitate (16:0), which then
serves as the precursor for the vast range of fatty acids seen
within the cells (Fig. 6)(Leibundgut et al., 2008). The initial con-
densation step, which is also the commitment step into fatty
acid biosynthesis is catalyzed by ACC and is under tight sig-
naling and allosteric regulation (Currie et al., 2013). In tumor
cells, fatty acid biosynthesis is mainly carried out by de novo
mechanisms. Unlike normal cells, where FASN exhibits tissue
specific expression mainly in hepatocytes and adipocytes, it has
been observed that FASN is highly expressed in multiple can-
cer types and its oncogenic role has been linked to poor sur-
vival prognosis (Menendez and Lupu, 2007). Furthermore, use
of small inhibitors against FASN or its genetic knockdown leads
to apoptosis and improves survival (Lupu and Menendez, 2006;
Flavin et al., 2010), however direct pharmacological targeting of
FASN is probably futile as it leads to severe side effects (Loftus
et al., 2000).

2.3.4 Regulation of tumor metabolism

Metabolism is an essential and highly conserved cellular pro-
cess that supplies the fuel required to sustain the survival and
fitness of multicellular organisms. This process is tightly reg-
ulated by both intra- and extracellular environment through
complex information signaling and metabolic homeostasis whi-
ch maintains an optimal metabolic state for the organism. In
rapidly proliferating cancer cells, various signaling programs
interact and crosstalk eventually targeting downstream meta-
bolic targets thus regulating their catalytic activity. It is increas-
ingly being understood that metabolic remodeling is driven
by increased oncogenic function and loss of tumor suppres-
sive mechanisms (King et al., 2006; Jones and Thompson, 2009;
Ward and Thompson, 2012). Often metabolites themselves reg-
ulate the flux through pathways via allosteric regulation which
leads to flux control through both negative or positive feedback
loops (Ros and Schulze, 2013; Gui et al., 2013). Also, metabo-
lites can directly modify proteins and DNA via posttransla-
tional modifications (like acetylation of histones or glycosyla-
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tion of receptors) (Lin et al., 2014; Metallo and Vander Hei-
den, 2010) or epigenetic regulation (methylation of nucleotides)
(Ulanovskaya et al., 2013). Therefore, rewired metabolic and
signaling networks within the cell complement and coordinate
with one another to feed the biosynthetic and bioenergetic de-
mands of tumors thus maintaining its growth and proliferation.

Gain in oncogenic function

The major oncoproteins that regulate tumor metabolism are
PI3K/Akt, Myc, Kras and HIF1-α interestingly all of their roles
converge into regulating glucose/glutamine uptake and their
metabolic transformations into subsequent products (Ward and
Thompson, 2012; Cairns et al., 2011). The phosphoinositide-3-
kinase/Akt (PI3K/Akt) signaling pathway plays a crucial role
in glucose metabolism. The PI3K heterodimer, upon its activa-
tion through binding of extracellular growth signals to recep-
tor tyrosine kinases (like EGFR), phosphorylates phosphatidyl-
inositol-4,5-bisphosphate in the cell membrane to generate pho-
sphatidylinositol-3,4,5-trisphosphate which acts as an anchor
for Akt (a serine/threonine kinase). Akt mediates the down-
stream effects of activated PI3K by increasing glucose uptake
and glycolytic flux (Elstrom et al., 2004; Engelman et al., 2006).
Akt increases the translation and membrane localization forGlucose and

glutamine
metabolism are

tightly regulated by
oncogenes and

tumor suppressor
genes

glucose transporters (like GLUT1). Furthermore, Akt enhances
the activity of the glycolytic enzymes hexokinase (HK1) and
phosphofructokinase (PFK1) (Deprez et al., 1997; Gottlob et al.,
2001; Rathmell et al., 2003). Also, Akt increases the utilization
of cytosolic acetyl-CoA for fatty acid biosynthesis by activat-
ing ATP-citrate lyase (ACL) (Berwick et al., 2002). Moreover,
Akt activates the Sterol Regulatory Element Binding Protein
transcription factors (SREBP) which in turn activate genes like
ACLY, ACC and FASN that are crucial in cholesterol and fatty
acid biosynthesis (Krycer et al., 2010). Akt can further regulate
crucial transcriptional factors like FOXO, mTOR and HIF1, the
overall interplay among these oncoproteins causes increased
glycolysis and protein biosynthesis (Hemmings and Restuccia,
2012; Ward and Thompson, 2012). The oxygen sensing tran-
scription factor HIF1-α is active under hypoxic conditions and
is an important player in the Warburg effect. HIF1-α itself is acti-
vated by mTOR and this causes increased glycolysis by enhanc-
ing glucose uptake and activating glycolytic enzymes (Cairns
et al., 2011; Ward and Thompson, 2012; Schulze and Harris,
2012). Furthermore, HIF1-α activates lactate dehydrogenase (LD-
HA) that leads to higher lactate production and also inhibits
pyruvate dehydrogense (PDH) by activating pyruvate dehydro-
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genase kinase (PDK) (Semenza, 2011). Oncoproteins like Myc
and Kras mainly affect glutamine uptake by over expressing
glutamine transporters and regulating glutaminolysis enzymes.
For example, in pancreatic ductal adenocarcinoma it has been
shown that Kras regulates the non-cannonical glutaminolysis
pathway by suppressing the expression of GLUD1 and activat-
ing GOT1 (Son et al., 2013). Similarly MYC can activate the en-
zyme glutaminase (GLS1) involved in conversion of glutamine
into glutamate while overexpressing high affinity glutamine
transporters (like SLC38A5 and SLC1A5) involved in glutamine
uptake (Wise et al., 2008). Moreover, Myc and Kras are also in-
volved in regulating glycolysis by activating among other gly-
colysis enzymes, LDHA and GLUT1 respectively (Shim et al.,
1997; Yun et al., 2009). Myc and Kras oncoproteins also play
a prominent role in nucleotide biosynthesis, it has been shown
that Kras drives excess glycolytic carbons into the non-oxidative
arm of the pentose phosphate pathway to generate riboses re-
quired for nucleotide biogenesis (Ying et al., 2012) while Myc
directly regulates the expression of genes (like PRPS2, TS, IM-
PHD1/2, CAD) involved in both purine and pyrimidine biosyn-
thesis (Miltenberger et al., 1995; Mannava et al., 2008; Liu et al.,
2008; Cunningham et al., 2014). Constitutive activation of these
oncogenes due to mutations drastically transforms the metabolic
landscape of tumor cells towards increased biomass production
through glycolytic and glutaminolytic intermediates that are
important precursors for various anabolic processes.

Loss of tumor suppressive function

Tumor suppressor genes are involved in maintaining the cellu-
lar homeostasis, a genomic disruption of such genes may lead
to the cancer phenotype. In context of tumor metabolism, multi-
ple tumor suppressor genes are disrupted to overcome the reg-
ulatory effects exerted by these genes as a result of which cell
undergo rapid proliferation by tuning metabolism to increase
the rate of biomass synthesis (Jones and Thompson, 2009). It
has been shown that the master regulator p53 controls flux
through glycolysis by activating PTEN which is a negative reg-
ulator of PI3K/Akt pathway as a result of which the rate of gly-
colysis is reduced (Stambolic et al., 2001). Furthermore, it can
directly regulate glycolysis by inhibiting the expression of glu-
cose transporters (GLUT1/4) (Schwartzenberg-Bar-Yoseph et al.,
2004). Also, p53 controls glycolysis through TP53-induced gly-
colysis and apoptosis regulator (TIGAR) that specifically in-
hibits fructose-2,6 bisphosphate, a crucial intermediate in gly-
colysis (Bensaad et al., 2006). Interestingly, wild type p53 pro-
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motes oxidative phosphorylation in normal condition by acti-
vating SCO2 which is required for cytochrome c oxidase func-
tion in the electron transport chain (Matoba et al., 2006). Ac-
tivated p53 also increases beta-oxidation by over expressing
CPT1, a crucial transporter of fatty acids in the mitochondria
(Zaugg et al., 2011). Another important tumor suppressor is
LKB1 which regulates metabolism by activating AMPK which
is an important energy sensor of the cell (Shackelford and Shaw,
2009). It functions antagonistic to mTOR leading to HIF1-α in-
hibition, consequently, the rate of glycolysis and protein syn-
thesis is reduced (Shackelford et al., 2009; Faubert et al., 2014).
This effect on glycolysis control is further reinforced in nutrient
and energy limiting conditions where AMPK acts as an activa-
tor of p53 (Vousden and Ryan, 2009). In some cases metabolic
genes themselves have tumor suppressive function like the two
consecutive metabolic genes in the TCA cycle, succinate de-
hydrogenase (SDH) and fumarate hydratase (FH). It has been
suggested that mutations in these enzymes leads to accumu-
lation of their catalytic products, succinate and fumarate that
can stabilize HIF1-α under normoxic conditions through inter-
actions with HIF1-α regulator prolyl hydrolylase (PHD) (King
et al., 2006). In tumors, these metabolic checkpoints regulated
by tumor suppressor genes are disrupted due to genomic aber-
rations in these genes as a result of which cancer cells go into
overdrive, rapidly generating essential building block for their
survival and proliferation.

Allosteric regulation and oncometabolites

Metabolites themselves can regulate the production and con-
sumption of other metabolites in the cell through allosteric reg-
ulation by binding to a non-active site of metabolic enzymes
and regulating their activity. In many instances, tumor meta-
bolism is directly regulated by cellular metabolite levels sug-
gesting its important role in non-canonical (non-signaling based)
regulation of tumor metabolism. A well studied example is the
allosteric regulation of a key glycolysis enzyme pyruvate ki-
nase M2 isoform (PKM2), implicated in causing the Warburg
effect. It has been shown that PKM2 (a less active catalytic iso-
form) decreases the rate of glycolysis as a result of which cru-
cial intermediates of this process are diverted into biosynthetic
pathways leading to increase in biomass production. PKM2 cat-
alyzes the final step of glycolysis in its active tetrameric form
where phosphoenolpyruvate is converted into pyruvate (Van-
der Heiden et al., 2010). It has been shown that fructose-1,6-
bisphosphate (a product of glycolysis) and serine (a anaplerotic
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product of glycolysis) acts as strong activators of PKM2 func-
tion by stabilizing its active enzymatic structure (Dombrauckas
et al., 2005; Chaneton et al., 2012; Gui et al., 2013)while L-alanine
(which is generated from pyruvate, a PKM2 catalyzed prod-
uct) is shown to inhibit PKM2 activity (Van Veelen et al., 1977).
In nucleotide metabolism, maintenance of deoxynucleoside tri-
phosphate (dNTP) pools is of critical importance to cancer sur-
vival. It has been shown that the dNTP triphosphohydrolase Metabolites can act

as non-canonical
regulators of the
metabolic process

(SAMHD1) and ribonucleotide reductase (RNR), involved in the
salvage and de novo nucleotide biosynthesis is tightly regulated
allosterically by dNTP concentrations. Interestingly, as these
enzymes have opposing functions, dNTP pools regulate their
complementary functions through a feedback loop (Kohnken
et al., 2015). Sometimes metabolites can directly regulate sig-
naling proteins, for example, a low ATP:AMP ratio (energy
deficit condition) is the activating signal for AMPK which regu-
lates a plethora of signaling programs that control metabolism
(Cairns et al., 2011). Similarly, the TCA cycle products succi-
nate and fumarate can directly activate HIF1-α by inhibiting
PHD (a negative regulator of HIF1) through competitive inhi-
bition with α-ketoglutarate as described in the previous sec-
tion (King et al., 2006). Such metabolites implicated in direct
oncogenic roles are called “oncometabolites”. A well studied
example is the gain of function mutation in isocitrate dehydro-
genase (IDH1/2) enzyme first observed in gliomas which leads
to the increased production of D-2-hydroxyglutarate (2-HG). 2-
HG competitively inhibits the binding of α-ketoglutarate with
α-ketoglutarate dependent dioxygenases like PHD thus affect-
ing HIF1-α dependent signaling (Cohen et al., 2013). Moreover,
2-HG causes widespread DNA methylation changes (hyperme-
thylation phenotype - G-CIMP) by interacting with histone de-
methylases (KDM’s) and DNA hydroxylases (TET) leading to
vast changes in the expression of genes involved in cell differ-
entiation and malignancy (Yang et al., 2012; Turcan et al., 2012).

2.4 genome organization and its role in cancer

Genes are broadly organized within the genome at linear and
spatial levels. At both these levels of genome organization, it
has been shown that proximal genes interact which results in
phenotypic effects. Linear organization refers to the sequential
arrangement of genes in each chromosome i.e. in one dimen-
sion and is also called the gene order, while the spatial organi-
zation is the position of the genes with respect to each other in
three dimensions. Spatial arrangement of genes can be further



26 introduction

differentiated as intra-chromosomal or inter-chromosomal or-
ganization. Intra-chromosomal associations between genes oc-
cur due to genome organization emerging from chromatin dy-
namics events (within single chromosomes) like chromatin loop-
ing, while inter-chromosomal association among genes arises
from the arrangement of freely diffusing chromatin structures
within the boundaries of the cell nucleus (Hurst et al., 2004).
In this section, the main focus will be on the linear gene or-
ganization and its influence on gene expression. Moreover, the
regulation of these proximal gene clusters, its phenotypic ef-
fects and the role of genome evolution on such organizational
designs will be explored. In addition, the role of gene position-
ing in the genome and its effect on the proliferative fitness of
cancer cells will be described, supporting the emerging idea in
cancer genomics that cancer is not necessarily the consequence
of binary states – driver and neutral mutations, but rather a re-
sultant product of additive gene dosage effects (Solimini et al.,
2012; Davoli et al., 2013).

2.4.1 Linear gene organization and expression

Before the complete sequencing of eukaryotic genomes was fea-
sible, the gene order was considered to be random and inde-
pendent of the gene expression patterns. However, certain ex-
ceptions to this perceived notion of random gene order were
known, like the Hox and β-globin gene clusters that arose from
gene duplication events. Now, with the availability of high res-
olution gene maps for large numbers of eukaryotic genomes,
it is firmly established that gene order is actually non-random.
Furthermore, it has been observed that the linear arrangementGene order is

non-random,
proximal genes are

co-expressed and are
enriched in

functionally related
genes

of genes in the genome affects gene expression independent
of shared promoter sequences or transcription factors. Interest-
ingly, in all major eukaryotic model systems like S.cerevisiae,
C.elegans, D.melanogaster and human derived cells, linearly prox-
imal gene clusters in the chromosome exhibit coordinated co-
expression patterns and often belong to similar functional gro-
ups and pathways (Hurst et al., 2004). Chromatin dynamics
seems to play a major role in co-expression of proximal genes.
Chromatin can exist in euchromatic (transcriptionally active)
or heterochromatic (transcriptionally inactive) states and it has
been argued that transcriptionally active, open chromatin struc-
tures causes a ripple effect on neighboring genes leading to co-
ordinated gene expression (Ebisuya et al., 2008). Furthermore,
it has been seen that histone proteins bound at these regions
have increased acetylation levels (Sproul et al., 2005; Batada
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Figure 7: Gene order and co-expression gene cluster. Shared regulatory
features control the coordinated expression of proximal gene clusters which
also exhibit co-functionality.

et al., 2007). Co-expression of gene clusters is also attributed to
sharing of common regulatory elements (Fig.7) (Davila Lopez
et al., 2010; Trinklein et al., 2004; Wei et al., 2011; Semon and
Duret, 2006). An interesting cause of gene expression is the
“bystander effect” where a gene may be expressed solely be-
cause of its favorable position proximal to a highly expressing
gene. For example, it has been shown that the gene CD79b, a
B-cell specific expressing enzyme, is located between the hu-
man growth hormone cluster (hGH) and its regulatory element,
the locus control region (hGH LCR). hGH is a pituitary specific
expressing gene which influences the coordinated expression
of CD79b in pituitary through hGH LCR, independent of the
transcription factors required for CD79b expression in its native
B-cells where surprisingly hGH LCR has no role in CD79b ex-
pression (Cajiao et al., 2004; Ho et al., 2006). Also, co-expressed
gene clusters exhibit co-functionality i.e proximal genes often
play similar functional roles. Housekeeping genes are associ-
ated with crucial cellular processes that are generic to multi-
ple tissue types and often exhibit a similar expression pattern
across tissues, such genes were observed to be positionally clus-
tered in the genome and exhibited strong gene co-expression
(Lercher et al., 2002). Similarly, it has been shown that 68%
of all metabolic pathways annotated from Kyoto Encyclopedia
of Gene and Genomes (KEGG) are clustered in the in human
genome. Furthermore, adjacent gene pairs are significantly en-
riched in similar GO terms (Lee and Sonnhammer, 2003; Vogel
et al., 2005; Al-Shahrour et al., 2010). Additionally, it has been
shown that genes coding for co-functional proteins belonging
to the same complex or interacting proteins in protein-protein
interaction networks are localized on fewer chromosomes and
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proximally positioned in the same chromosome than expected
by chance (Thévenin et al., 2014). Multi-species studies have
shown that the cause for such co-expressed proximal gene clus-
ters is natural selection, suggesting that these observed features
are functional due to evolutionary selection (Singer et al., 2005).
Moreover, it has been shown that broadly expressing (simi-
lar expression across multiple tissue types) and co-expressed
proximal gene clusters are under purifying natural selection
based on observations that highlight a lack of chromosomal
breakpoints in these gene clusters between mouse and human
genomes (Semon and Duret, 2006; Purmann et al., 2007).

2.4.2 Role of gene order in cancer

A classical model for carcinogenesis is the Kundson two hit hy-
pothesis in which two successive mutations are required for
a recessive tumor suppressor gene like Rb to initiate cancer
(Knudson, 1971). Similarly, for a dominant oncogene, a single
mutation is sufficient to cause tumorigenesis. In many tumors
a simple sequential steps of genetic aberrations causes tumori-
genesis, for example in colorectal carcinomas successive alter-
ations involving APC, KARAS, SMAD2/4 and TP53 leads to tu-
mor formation (Fearon, 2011). These observations have drivenProximal genes in

the genome are often
co-altered by copy

number changes and
elicit a concerted

functional
phenotype.

the concept of “driver” and “passenger” mutations in cancer
genomics, where mutations arising in a handful of cancer caus-
ing genes are sufficient to drive cancer and the large number
of other observed mutations are simply neutral with no func-
tional effect (Vogelstein et al., 2013). However, a recently pro-
posed model of cancer genomics is that of “cumulative haplo-
insufficiency and triplo-sensitivity”, in which cancer growth
is rampantly affected by the cumulative gene dosage effects
of multiple haplo-insufficiency (loss of an allele) or triplo-sen-
sitivity genes (gain of an allele). It was shown that additive gene
dosage effects from many passenger mutations (but not indi-
vidually) can exert a strong effect on tumorigenesis (Solimini
et al., 2012; Davoli et al., 2013). Furthermore, it has been shown
that regions of hemizygous deletions in the cancer genomes are
enriched for genes that negatively regulate (STOP genes) and
depleted for genes that positively regulate (GO genes) cancer
cell proliferation, such regions are called “cancer gene islands”
that undergo hemizygous deletions and optimize the cancer fit-
ness through cumulative haploinsufficiencies (Fig.8) (Solimini
et al., 2012; Davoli et al., 2013).

It has been shown that in multiple epithelial malignancies
like cancers of prostate, breast, colon and ovary, there exists
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Figure 8: Cumulative gene dosage model for cancer. The concept of “can-
cer gene islands” and cumulative haploinsufficiency and triplosensitivity
proposed by (Solimini et al., 2012; Davoli et al., 2013) is shown here. The
main idea being that a large number of genes with altered gene dosage can
cumulatively affect cancer potential as strongly as a single cancer driving
oncogene or a tumor suppressing gene.

transcriptomeres i.e groups of cancer causing genes that tightly
cluster together in the genome and are under co-transcriptional
control (Glinsky et al., 2003). Furthermore, it has been observed
in breast and ovarian carcinomas that tumor-related genes were
enriched in having bidirectional promoters, many of which also
shared common transcription factor binding sites (Yang et al.,
2007). In melanoma cells, broad loss of heterozygosity due to
deletions in chromosomes 6, 10 and 11 resulted in decreased ex-
pression of those regionally targeted genes and were involved
in controlling tumor growth (Kwong and Chin, 2014). Simi-
lar synergistic and co-suppression effects were also observed
in hepatocellular carcinoma for genes residing in chromosome
8. Down-regulation of these gene clusters (and not a single
gene individually) correlated with poor survival (Xue et al.,
2012). Studies using a functional screening approach to tar-
get genes amplified in hepatocellular carcinoma identified that
CCND1 (a well known driver gene) to be co-amplified with
its proximal FGF19 gene in chromosome 11 and established
that the latter was an equally important driver that affected
carcinogenicity and cancer growth. Additionally, in the same
chromosome BRIC2 and YAP1 were identified as co-amplified
and co-driving adjacent oncogenes (Zender et al., 2006; Sawey
et al., 2011). In lung squamous cell carcinomas, it has been
shown that knocking down the co-amplified proximal onco-
gene cluster in chromosome 3 consisting of SENP2, DCUN1D1
and DVL3 led to cancer growth inhibition. Furthermore, their
expression levels enabled stratifying the patients based on ad-
juvant chemotherapy response (Wang et al., 2013). Also, in the
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same cancer type and chromosome, an interesting mechanism
of functional co-operation between co-amplified adjacent genes
PRKC1 and SOX2 was observed. PRKC1 phosphorylates SOX1
and recruits it to the HAAT promoter region directly regulat-
ing Hedgehog signaling to maintain cancer stemness (Justilien
et al., 2014). Clear cell renal carcinomas are typically character-
ized by deletion or loss of function mutation in the tumor sup-
pressor gene VHL. In the context of tumor metabolism it has
been shown that loss of heterozygousity in genes proximal to
VHL affect metabolism. Furthermore, this co-deletion of mul-
tiple genes clustered together in chromosome 3 around VHL
gene shapes the typical metabolic landscape observed in clear
cell renal carcinomas which was found to be very distinct from
all other cancers (Gatto et al., 2014). Similarly, in many tumors
it has been shown that co-driving metabolic genes proximal
to a well characterized cancer gene undergo copy number co-
alterations leading to a functional effect on tumor metabolism.
For instance in breast cancer PNMT/ERBB2 and PAK1/NDUFC2
are strongly co-amplified and are considered cancer co-driving
genes (Bashashati et al., 2012). Likewise, the co-deletion of CDK-
N2A with MTAP has been long known example and is observed
in multiple cancer types (Carson et al., 1988; Bertino et al.,
2014).
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M E T H O D O L O G Y

1We describe here the various methodological procedures used
in the analysis of pan-cancer genomics data for identifying uni-
que metabolic reprogramming events. Essentially, we integrated
various data sources into a coherent analytical framework to
study the dependency of metabolic alterations in tumors on
copy number changes and gene proximities. The major task
here was to filter out crucial co-driving metabolic genes from
a vast set of copy number co-altered gene pairs. We assembled
relevant data (cancer genomics and a priori biological knowl-
edge) from various large datasets for both exploratory and tar-
geted analysis. Furthermore, we gleaned novel insights from
these integrated data sources by developing a statistical analy-
sis pipeline, constructing a gene centric metabolic network and
performing robust statistical tests to validate our predictions.

3.1 assembly of different datasets

3.1.1 Assembling protein coding genes

Our analysis involved measuring specific gene pair distances
and identifying genes that led to measurable phenotypic effects,
thus we focused on protein coding genes with defined chromo-
somal locations. A unique set of well annotated known protein
coding genes with unambiguous (i.e having matching Entrez
Gene IDs and HGNC symbols both in Biomart and HUGO
databases) gene identifiers were downloaded from Ensembl Bio-
mart and HUGO (GrCh38 release, downloaded on 12th Aug,
2014). To avoid major gender biases, only genes from autosomal
chromosomes were selected for further analysis. Additionally,
genes without a specific annotated chromosomal location were
removed. This resulted in a total of 17,464 protein coding genes.
This dataset was primarily used for three purposes – (1) to map
gene annotations from all other datasets used in this study to
maintain consistency (2) to compute all gene pair distances be-
tween genes from each chromosome and (3) obtain positional
information for every cancer and metabolic genes in each chro-
mosome. Furthermore, we also downloaded from Biomart, the
isoform count for each of these protein-coding genes and ex-

1 This chapter has been taken from (Sharma et al., 2015)
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tracted the rates of synonymous (dS) and non-synonymous (dN)
substitutions for a subset of these genes that were orthologous
between human and the mouse genome. Isoform count and
nucleotide substitution rates were used later in our study to
identify similarities between cancer and metabolic genes based
on these genic properties.

In one dimension (i.e. along the length of a chromosome), the
Euclidean distance D between any two gene pairs (i, j) within
a chromosome having midpoints gm and its start and end posi-
tions gstart, gend respectively, can be calculated as –

gm =
gstart + gend

2
(1)

Dij =
√(

gmi − gmj
)2 (2)

using (1) and (2), the Euclidean distance matrix Md for all gene
pairs in a chromosome is given by –

Md = ‖gmi − gmj‖2
2 (3)

Gene pair distance information was used to measure differ-
ences between cancer-metabolic and cancer-nonmetabolic gene
pairs, to assess concordant effects on copy number co-alterations
and to threshold co-altered gene pairs separated by less than
1Mb distance. The 1Mb cutoff was selected because it was re-
cently shown in a pan-cancer somatic copy number alteration
(SCNA) study that the average size of focal SCNAs away from
the DNA telomeres in both amplification and deletion events is
less than 1Mb (Zack et al., 2013).

3.1.2 Somatic copy number variations and expression data

Copy number variations and microarray or RNAseq based tran-
scriptome expression data was downloaded from the Firehose
portal hosted at the Broad GDAC genomic data repository of
the Broad Institute (http://gdac.broadinstitute.org/, release
2014-07-15) for 19 different cancer types (Fig. 9 and Table 2).
These datasets had no restriction on usage according to the
The Cancer Genome Atlas (TCGA) publication guidelines of 3

rd

Dec, 2014 (see http://cancergenome.nih.gov/publications/
publicationguidelines). GDAC is a comprehensive reposi-
tory of all cancer genomic datasets originating from the TCGA
project followed by standardized processing pipelines. In this
study we have used preprocessed copy number data generated
using the Genomic Identification of Significant Targets in Can-
cer 2 (GISTIC2) algorithm, GISTIC2 identifies chromosomal re-

http://gdac.broadinstitute.org/
http://cancergenome.nih.gov/publications/publicationguidelines
http://cancergenome.nih.gov/publications/publicationguidelines
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Figure 9: Sample sizes for the TCGA data. Sample sizes for 19 different
cancer types used in our analysis, for all cancers there were more than 200

samples (dashed line) except for acute myeloid leukemia (LAML) (samples
with LAML expression data (EXP) N=173 and copy number data (SCNA)
N=191)

gions with significantly altered copy numbers by incorporat-
ing improved information on background alteration rates (Mer-
mel et al., 2011). It does so by estimating the background al-
teration rates separately for focal or arm level SCNA events.
This is crucial because it has been shown that SCNA frequency
varies inversely with length (Zack et al., 2013), thus it is impor-
tant to consider this inherent bias while predicting significantly
changed gene copy numbers. The GISTIC2 derived data con-
sisted of discretized values of -2, -1, 0, +1, +2 representing high
level deletions, low level deletions, no copy number change,
low level amplifications and high level amplifications, respec-
tively. In all our analysis, we have used only high level deletions
(-2) or amplifications (+2) as an indication of copy number al-
terations for a gene. For expression data, the platform (Agilent,
Affymetrix, Illumina gene arrays or RNAseq) with the highest
sample coverage was chosen . Pre-processed microarray data
were used, that were RMA normalized and log2transformed
while for RNAseq data, gene wise averaged log2RSEM values
that were used, except for stomach adenocarcinoma (STAD).
For STAD, RSEM values were unavailable therefore, the gene
averaged and normalized log2RPKM values were used. In total,
data from 8,515 and 9,116 cancer genomes were used for copy
number and gene expression analyses respectively.

3.1.3 Assembling a set of cancer causing genes

The list of cancer causing genes was assembled using the fol-
lowing four different sources: (1) Cancer gene census (CGS)
from the Catalogue of Somatic Mutations in Cancer (COSMIC).
The list was downloaded from http://cancer.sanger.ac.uk/
cancergenome/projects/cosmic on 13th Jan, 2014 (N=391). The

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic
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Table 2: Abbreviations and sample sizes for the TCGA data†.

Cancer Description
Expression

data
SCNA
data

BRCA Breast cancer 1176 1044

CORD
Colon & rectal

adenocarcinoma
647 600

OV Ovarian carcinoma 593 569

KIRC Clear cell kidney carcinoma 591 527

GBM Glioblastoma multiforme 538 571

UCEC
Uterine corpus endometrial

carcinoma
563 524

THCA Papillary thyroid carcinoma 561 494

HNSC
Head and neck squamous

cell carcinoma
541 511

LUAD Lung adenocarcinoma 548 493

LGG Lower Grade Glioma 527 512

LUSC
Lung squamous cell

carcinoma
539 490

PRAD Prostate adenocarcinoma 426 419

SKCM Cutaneous melanoma 385 299

STAD Stomach adenocarcinoma 307 369

BLCA Urothelial bladder cancer 286 264

LIHC
Liver hepatocellular

carcinoma
262 208

KIRP Papillary kidney carcinoma 243 224

CESC Cervical cancer 210 206

LAML Acute Myeloid Leukemia 173 191

Total 9116 8515

†Complete names for abbreviations (standard TCGA cancer identifiers) used
for the cancer types in this study and its respective sample sizes for expres-
sion and copy number data (also see Fig. 9). The standard identifier for
colon and rectal adenocarcinoma is CORDREAD, which for simplicity is
abbreviated as CORD here. For GBM and OV microarray expression data
was available for more samples than RNAseq data, hence in our study we
selected Affymetrix based microarray data for these two cancer types. For
the remaining cancers RNAseq data was used. The cancers shown in italics
(LAML, KIRP and THCA) did not have any gene pairs that passed our se-
lection criterion during the statistical prioritization step and were not used
for the downstream functional prioritization steps.
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cancer gene census is a manually curated database which aims
to catalog all genes implicated in carcinogenesis from exper-
imentally verified and literature sources. (2) The Tumor sup-
pressor and Oncogenes Explorer (TUSCON) (N=244) provided
a list of novel tumor suppressor genes and oncogenes. We se-
lected only those cancer genes with a false discovery rate (FDR)
<0.05 from the list provided by Davoli and coworkers. Within
this computational method, more than 8,000 tumor and nor-
mal genome sequences were analyzed to identify 22 param-
eters that could strongly predict known cancer genes, using
the best predictors they identified novel cancer causing genes
(Davoli et al., 2013). (3) A list of known tumor suppressor genes
were taken from the TSGene database, downloaded on 13th Jan,
2014 (N=592). This database provided a list of tumor suppres-
sor genes with literature evidence (Zhao et al., 2013). (4) We fur-
ther used a list of cancer genes published in (Vogelstein et al.,
2013) which provides a set of well known, high confidence can-
cer drivers (N=106). The union of these sources (1–4) was taken
resulting in 1,065 cancer causing genes (Fig. 10A).

3.1.4 Assembling a set of essential genes

Our analysis required means for functionally prioritizing meta-
bolic genes, identifying those that could have a major functional
impact. Essential genes are indispensable for cellular survival
and often involved in central cellular processes. We assembled
a list of essential genes from four different sources, i.e. from
(1) the Database for Essential Genes (DEG). This database lists
essential genes from different organisms that have been exper-
imentally verified. Only human specific essential genes were
selected (N=101) (Luo et al., 2014); (2) the Online Gene Essen-
tiality Database (OGEE), it provides essential genes identified
from the literature for several organisms. Here again we se-
lected genes being essential in human (N=1,380) (Chen et al.,
2012); (3) genes from (Georgi et al., 2013) in which an evolu-
tionary conservation approach was followed to map essential
genes between mouse and human orthologues (N=2,331), and
(4) the list of essential cancer genes identified across a panel
of cancer cell lines, we selected only the list of “core essential
genes” (N=749) (Hart et al., 2014). A union of genes from these
sources resulted in a total of 3,839 unique essential genes which
was used for functional association analysis with our list of pre-
dicted metabolic cancer genes (Fig. 10B).
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3.1.5 Human metabolic genes

We extracted the list of metabolic genes (N=1,570) from the
Kyoto Encyclopedia of Gene and Genomes (KEGG) restricting
to human metabolic pathways (N=92 pathways). The KEGG
database was accessed using the Bioconductor package KEG-
GREST (version 1.2.2). iPATH2 is a web based tool for visualiz-
ing metabolic pathways from KEGG, furthermore external data
can be used to annotate these metabolic maps. We used iPATH2

for mapping copy number altered metabolic genes (identified
using our analysis pipeline) into the global human metabolic
network to visualize metabolic subsystems/modules targeted
by these genes (Yamada et al., 2011). It has been shown that
metabolic genes coding for enzymes catalyzing biochemical re-
actions at crucial nodes in a metabolic pathway majorly con-
trol the flux through the whole pathway. These nodes are usu-
ally at the beginning or end of a pathway and are often un-
der tight transcriptional control. A list of such bottleneck genes
for the human metabolic network (N=277) was provided by
the authors of this study which was used in our analysis for
functional validation studies of our predicted metabolic can-
cer genes (Wessely et al., 2011). The overlap of metabolic genes
with other functionally defined gene lists used in this study is
shown in Fig. 10C.

Figure 10: Venn diagrams representing the overlap between various a
priori defined gene lists. Datasets used for annotating (A) cancer causing
genes (B) and essential genes. (C) Overlap between various gene lists used
for identifying metabolic functionality.
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3.2 the metabolic gene centric network

We constructed a metabolic gene centric network to analyze
how often a copy number co-altered metabolic gene also has the
expression of its neighboring network genes changed between
the groups of cancer samples defined by the copy number sta-
tus of the former. A metabolic network G can be represented as
a bipartite graph consisting of M metabolites as nodes and R
reactions as edges –

G = (M, R) (4)

where,

M = {m1, m2, · · · , mM} (5)

and,

R = {r1, r2, · · · , rR} (6)

In the metabolic network, a pair of reactions, for example r1,r2
will be connected if the substrate of one reaction served as the
product of the other and/or shared common metabolites. We
used such a metabolic network construction from KEGG and
converted it into a reaction centric network representation by
interchanging the nodes and edges of the network. We further
mapped these reactions to their corresponding genes yielding
a gene centric metabolic network (Fig. 11).

We used the KEGGREST package from Bioconductor, to ex-
tract data from the KEGG database pertaining to specific path-
ways of human metabolism for constructing this network. Ini-
tially for each metabolite, its connectivity (number of genes di-
rectly connected to a metabolite) to genes was measured and
those with connectivity ≥45 were discarded, (except L-glutam-
ate). These discarded hub metabolites (N=24) were mainly pool
metabolites (like H2O, H+, O2 etc.) and common co-factors (like
ATP, NADPH, CoA etc). Using the remaining set of 1,851 metabo-
lites, a gene centric metabolic network with 1,381 genes was
constructed having at least 2 connections (avoiding dangling
ends). The connectivity of this network ranged between a min-
imum of 2 and a maximum of 143 with median connectiv-
ity of 29. The connectivity value for each metabolic gene was
later used in our functional analysis to identify if our predicted
metabolic cancer genes had higher network connectivity than
others. The statistical and graph properties of this metabolic
network which represents a scale free network is elaborated in
Appendix Table. 5.
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Figure 11: Gene centric metabolic network construction. A schematic rep-
resentation of the metabolic network construction is shown which involves
(i) extraction of data for human metabolic pathways from KEGG, (ii) de-
composition of pathway information into their individual reactions and (iii)
interchanging nodes into edges and mapping reactions to genes, such that
two genes are connected if they share common metabolites.

3.3 the analysis pipeline

The iMetCG analysis pipeline employed a two-fold prioritiza-
tion process to identify functionally relevant co-altered cancer-
metabolic gene pairs. The statistical prioritization step identi-
fied significantly co-altered gene pairs across cancer types. This
was followed by a functional prioritization step, which filtered
for gene pairs by comparing corresponding gene expression,
evaluating expression perturbation in the metabolic gene net-
work of neighboring genes and identifying metabolic genes that
were present in a priori defined functionally important gene sets
comprising of essential and bottleneck genes. A schematic rep-
resentation of the iMetCG analysis pipeline is given in Fig. 12.

Statistical Prioritization

To identify cancer-metabolic gene pairs with significantly higher
co-alteration events than expected by chance, we employed the
method of pointwise mutual information (Bouma, 2009). For
every investigated gene pair gi, gj in a cancer type with N sam-
ples, alteration events were coded as binary values. These bi-
nary values represented presence or absence of a high level
SCNA. The statistical measure for the strength of co-alteration
of gi, gj was calculated using a modified metric of pointwise
mutual information pMI henceforward called the robust nor-
malized pMI (RnpMI). pMI measures ratio of the probability
of co-occurrence to the probability of occurrence for individ-
ual terms under the assumption of independence between the
terms. Normalizing pMI yields npMI bounded to a fixed range
of (-1, 1) making comparisons of information content among
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Figure 12: The iMetCG analysis pipeline. Schematic representation of the
iMetCG pipeline. There are four major steps: (i) collection of transcriptomics
and somatic copy number alteration data for 19 different cancer types from
TCGA, (ii) statistical prioritization of all gene pairs in each cancer type, (iii)
selection of cancer-metabolic (CG-MG) gene pairs and (iv) functional pri-
oritization for the identification of putative metabolic cancer genes, which
includes integration of expression and copy number data and further prior-
itization of hits using a priori defined biologically relevant functional gene
lists.

co-altered gene pairs across cancer types easier to interpret.
RnpMI is the normalized pointwise mutual information (npMI)
value corrected for the low frequency problem (for details, see
(Bordag, 2008)). In brief, the low frequency problem is that co-
occurrences at low frequencies (being less likely) lead to the
same npMI value as high frequencies (being more likely). To
account for this, we used a method suggested by Washtell and
coworkers and multiplied npMI by a frequency correction fac-
tor that takes the absolute frequency magnitude into considera-
tion (Washtell and Markert, 2009), thus giving us a robust score
for calculating significant co-occurrences, i.e.



40 methodology

RnpMI =
pMI
NF
× CF = npMI × CF (7)

NF and CF denotes the normalizing factor and the low fre-
quency correction factor respectively. Equation (7) corresponds
to –

pMI = log

(
p
(

gi = 1, gj = 1
)

(p(gi = 1)× p
(

gj = 1
)) (8)

NF = −log
(

p
(

gi = 1, gj = 1
))

(9)

CF =
√

min
(
(p(gi = 1)× p

(
gj = 1

))
(10)

Assembling all of which, gives us the full expression as –

RnpMI =

log

(
p
(

gi = 1, gj = 1
)

(p(gi = 1)× p
(

gj = 1
))

−log
(

p
(

gi = 1, gj = 1
)) ×√

min
(
(p(gi = 1)× p

(
gj = 1

))
(11)

with this, strongly co-altered cancer gene-metabolic gene pairs,
with RnpMI scores higher than the 99% quantile from each can-
cer type were selected. Additional selection criteria were im-
posed, where we further filtered for gene pairs separated by
less than 5Mb chromosomal distance and had at least 5% co-
alteration frequency.

Functional prioritization

Functional prioritization was performed by considering the ex-
pression of the selected pairs of amplified cancer and metabolic
genes. Firstly, the differential expression of the metabolic gene
in its altered and diploid samples was calculated proceeded
by calculating the differential expression of the metabolic gene
in the sample sets with copy number altered and diploid can-
cer genes. Only pairs with significant differential expression in
both case were selected (p ≤0.05, corrected for multiple testing
using the method given in (Benjamini and Hochberg, 1995)). To
further filter and prioritize cancer-metabolic gene pairs, meta-
bolic genes of functional importance were identified using our
lists of essential genes and metabolic bottleneck genes. Fur-
thermore, cancer-metabolic gene pairs were selected in which
the nearest neighbors of the metabolic gene (in the metabolic
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network) were enriched (p≤0.05) for differential expression be-
tween altered and diploid samples of the cancer gene.

3.4 statistical analysis

All p-values were calculated using a one-sided Wilcoxon rank
sum test unless otherwise specified. Two sided Welch t-tests
were used for differential gene expression analysis in functional
prioritization steps (co-expression and network analysis). All
enrichment tests were performed using one-sided Fisher’s ex-
act tests. Hierarchical clustering was performed using binary
distances and the Ward’s linkage method using the dist and
hclust base functions of R. All data analysis, processing and
statistics were carried out within the CRAN R statistical pro-
gramming environment (www.r-project.org, version 3.0.0).

3.4.1 Differential gene analysis

We measured if gene expression of a metabolic gene was signif-
icantly different in its diploid (gdip) and altered (galt) (i.e either
amplified or deleted) copy number states. Additionally, differ-
ence in gene expression of the same metabolic gene was also
measured between patients groups divided on copy number
status of the proximal cancer gene. The co-altered metabolic
genes which were differentially expressed in both cases above
were selected. These were used to further prioritize those meta-
bolic gene whose neighboring metabolic network genes also
exhibited differential gene expression between patient groups
stratified on altered (galt) or diploid (gdip) copy number states
for the proximal cancer gene. Differential gene expression anal-
yses was performed using the Welch t-statistics (t). The Welch
t-test unlike the commonly used Student t-test is suitable and
more reliable when sample sizes and sample variations are un-
equal. However, the assumption of normal sample distribution
is same for both tests. The Welch t-statistics is calculated as –

t =
galt − gdip√√√√ v2

alt
nalt

+
v2

dip

ndip

(12)

where, v2 and n represents the sample variance and sample size
for the respective groups defined by their copy number status.

www.r-project.org
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3.4.2 Over-representation analysis

Standard enrichment tests were performed to calculate the sta-
tistical significance for association between different variables.
The patient samples were divided into two groups based on
the copy number status of the cancer gene co-altered with a
metabolic gene in the respective cancer type (see step (2 in
3.4.1) and the subsection functional prioritization above) and
differential gene analysis was performed between these two
groups. Let us suppose a to be the number of differentially
expressed metabolic network neighbors, b to be the number
of non-differentially expressed network neighbors, c to be the
number of differentially expressed metabolic genes that are not
network neighbors and d to be the number of non-differentially
expressed metabolic genes that are also not network neighbors.
Using these counts we performed Fisher’s exact test to mea-
sure if metabolic network neighboring genes of the co-altered
metabolic gene was significantly associated to the copy number
status of the altered cancer gene partner.

Also, we measured the significance of known metabolic can-
cer genes (MCG) to be enriched in our list of predicted metabolic
cancer gene (pMCG), similarly, let us suppose a to be the num-
ber of MCG in our list of pMCG, b to be the number of MCG not
in our list of pMCG, c to be the number non-MCG metabolic
genes in our list of pMCG and d to be the remaining metabolic
genes that are neither MCG or pMCG.

Furthermore, we analyzed the association of pMCG to tu-
mor survival, here we computed the survival difference for all
metabolic genes (altered in at least 5% of the samples) in each
cancer type between it copy number altered and non-altered
groups using log-rank test and tested if the proportion of pMCG
associated with metabolic genes had a significant survival dif-
ference while combining all cancer types. Again, like in previ-
ous cases, let us suppose a and b to be the number of pMCG
and other metabolic genes (non pMCG) with significant sur-
vival difference while c and d are the number of pMCG and
other metabolic genes (non pMCG) with no significant effect
on survival. Using the counts a, b, c and d and the sum of all
counts n, from each of the above 3 cases we constructed the
confusion matrix M.

M =

[
a b
c d

]
(13)
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Using M, a one-sided Fisher’s exact test was performed to cal-
culate the probability p for the variables involved in each case
to be significantly associated.

p =
(a+b

a )(c+d
c )

( n
a+c)

(14)

3.4.3 Clustering analysis

Unsupervised agglomerative clustering analysis was performed
using the Ward’s linkage method (Ward Jr, 1963) to identify co-
altered metabolic genes that were commonly targeted in multi-
ple cancer types. We wanted to identify if co-altered metabolic
gene signatures could be used to group tumors into distinct
phenotypic sub-groups. Any clustering method requires a dis-
similarity matrix for the attributes, therefore we constructed a
binary matrix, Mg×n with g genes and n cancer types such that
Mij = {1, 0}, representing the presence/absence of a co-altered
metabolic gene in that cancer type. For this matrix M, we then
computed the pairwise binary distance matrix D between each
pair of attributes (cancer samples) as –

Dij = 1− a
a + b + c

(15)

where a is the number of co-altered metabolic genes common
between a pair of tumor types, b and c is the number of co-
altered metabolic genes in one tumor but not the other and vice
verse respectively.





4
R E S U LT S & D I S C U S S I O N

1We compared distances between human chromosomal cancer-
metabolic and cancer-nonmetabolic gene pairs, and statistically
assessed co-alteration frequencies for proximal cancer-metabolic
and cancer-nonmetabolic pairs. The iMetCG analysis pipeline
was applied to each cancer type to identify co-altered cancer-
metabolic gene pairs exerting a functional impact on cancer
metabolism. We then prioritized cancer-metabolic gene pairs
with high co-alteration and co-expression. These pairs were
then functionally prioritized by selecting metabolic genes kno-
wn to code for essential or bottleneck enzymes in a metabolic
pathway. In parallel, we prioritized pairs for which expression
perturbations extended to network neighbors of the metabolic
genes in expression profiling data from that cancer entity. We
investigated network connectivity, cancer survival and overlap
with known cancer metabolic genes for the prioritized metabolic
cancer genes. To evaluate the propensity to which these priori-
tized metabolic cancer genes are relevant for cancer, we further
compared their selection pressure, evolutionary rate and iso-
form diversity to known cancer genes.

4.1 cancer-metabolic gene pairs are closer together in

the genome than cancer-nonmetabolic gene pairs

The Euclidean distances between the protein-coding gene mid-
points were calculated for each cancer-metabolic gene pair har-
bored together on a single chromosome. Using these gene pair
distances calculated from all chromosomes (frequency counts
for gene pairs across all chromosomes in Fig.13 and associated
distance distribution statistics in Appendix Table 4), proximal
pairs was defined as less than 1Mb apart. The 1Mb cutoff was
selected because it was recently shown in a pan-cancer somatic
copy number alteration (SCNA) study that the average size
of focal SCNAs away from the DNA telomeres in both am-
plification and deletion events is less than 1Mb (Zack et al.,
2013). Furthermore, the distribution frequency for gene pair
distances measured across chromosomes revealed that there
exits almost ~10 times more cancer-nonmetabolic than cancer-
metabolic gene pairs. The distances between cancer-metabolic

1 This chapter has been taken from (Sharma et al., 2015)

45
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Figure 13: Distribution frequency for gene pairs counts across chromo-
somes. Gene pair counts in each chromosome for all gene pairs (ALL),
cancer-nonmetabolic (CG-NMG) gene pairs and cancer-metabolic (CG-MG)
gene pairs The y-axis has been drawn logarithmically and bars are sorted
based on CG-MG gene pairs counts.

gene pairs were significantly smaller (p=0.023, median distance
difference=33Kb) than those between cancer-nonmetabolic gene
pairs (Fig. 14A). To assess whether the shorter separation be-
tween cancer-metabolic gene pairs that we observed did not oc-
cur by random chance, we shuffled the gene labels 10,000 times
keeping the chromosomal gene density and gene occupancy
constant. We re-computed the distance difference between can-
cer-metabolic and cancer-nonmetabolic gene pairs using the
1Mb cut-off in these randomized genomes, and found strik-
ingly significant differences between our observed values and
values calculated from the random genomes. None of these ran-
dom differences were lower than our observed value of 33Kb
(p=1e-04, Fig. 14B). Furthermore, we observed that 63% of all
metabolic genes reside within 1Mb from all cancer genes. Within
the same range, 83% of all metabolic pathways have at least 50%
of its genes present proximal to a cancer gene. We observed aMost cancer genes

have metabolic genes
in close proximity in

the genome

high coverage for several cancer-relevant metabolic pathways,
such as oxidative phosphorylation (OXPHOS), purine and pyr-
imidine metabolism, glycolysis and synthesis of glycero-phosp-
holipids and amino acids (Fig. 15B). We show the relative fre-
quency of cancer and metabolic genes as fractions of all protein-
coding genes for each chromosome as well as the distribution
of their genomic locations in (Fig. 15A). From these data we con-
clude that on average, metabolic genes are distinctively closer
to cancer genes than non-metabolic genes. The consequences of
this observed linear contiguity on genomic co-aberration events
is elucidated in the following sections.
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Figure 14: Comparison of cancer-metabolic and cancer-nonmetabolic gene
pair distances. (A) Comparison of intra-chromosomal distances between all
cancer-metabolic (CG-MG) and cancer-nonmetabolic (CG-NMG) gene pairs
separated by <1Mb distance. (B) Permutation analysis using 10,000 random
genomes (10K), CG-MG gene pair distances in the human genome were sig-
nificantly shorter than in random genomes. The histogram shows the distri-
bution for median distance differences between CG-MG and CG-NMG pairs
in the random genomes, the black dashed line represents median distance
difference in the real genome.

4.2 cancer-metabolic gene pairs have higher copy num-
ber co-alterations

We investigated whether cancer-metabolic gene proximity also
results in higher occurrences of cancer-metabolic gene co-alter-
ation. We compared the co-occurrence of copy number alter-
ations for cancer-metabolic and cancer-nonmetabolic gene pairs
that were altered in at least one cancer sample across all 19 dif-
ferent cancer types studied. We selected a 1Mb cutoff and a
minimum of 5% absolute co-occurrence frequency to observe
SCNA effects within relevant gene pair distances. Co-alteration
was measured by the information content of all selected cancer-
metabolic and cancer-nonmetabolic gene pairs using normal-
ized pointwise mutual information (npMI). A high npMI value
corresponds to a high information content of co-occurring al-
terations, thus a highly non-random event. We observed signif-
icantly higher co-occurrences for cancer-metabolic gene pairs
(p=1e-09, Fig. 16A). This is in accordance to the smaller cancer-
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Figure 15: The distribution of cancer and metabolic genes in the genome.
(A) The midpoints of all cancer genes (CG) and metabolic genes (MG) re-
siding in its respective chromosomes are visualized. The fraction of pro-
tein coding CG and MG in each chromosome is shown on the right panel.
(B) The coverage of MG (in context of metabolic pathways) within 1Mb
distance of a CG is given. Pathway size is the number of genes in that
metabolic pathway and coverage is the fraction of those genes within 1Mb
distance to a cancer gene. Representative examples of pathways that have
concurrently larger sizes and coverages are shown (amino acid biosynthesis,
glycero-phospholipid metabolism, oxidative phosphorylation (OXPHOS),
carbon metabolism, glycolysis, purine and pyrimidine metabolism), the gray
dashed line represents a coverage of 50%.

metabolic gene distances that we observed in the previous sec-
tion. To further confirm our findings, we performed a binnedProximity of

cancer-metabolic
genes in the genome
leads to higher rates

of their copy number
coalteration across

cancer types

distance analysis using the assumption that proximal genes in
a SCNA-susceptible locus have higher chances of co-alteration.
We binned the gene pair distances and compared cancer-meta-
bolic and cancer-nonmetabolic gene pairs of similar distances
(within 1Mb, using a sliding window of 250 Kb for 0-250Kb,
250-500kb, 500-750Kb and 750-1000Kb bins).We observed sig-
nificant differences (p≤0.05), with mean cancer-metabolic gene
pair npMI values higher than cancer-nonmetabolic gene pairs
in all bins except the first with <250Kb separation (Fig. 16B).
Our results support the fact that the proximity of cancer-meta-
bolic gene pairs is exploited by cancer cells to alter metabolic
gene copy numbers. We propose that these might not just be
neutral bystander effects, but functional for at least a subset of
these co-alterations where the affected metabolic gene produces
a phenotype beneficial for cancer. These often co-occurring al-
terations targeting crucial cancer-relevant pathways could ful-
fill vital bio-energetic requirements for tumor cells, which we
investigated in the next sections.
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Figure 16: Comparing co-occurrences of copy number alteration between
cancer-metabolic and cancer-nonmetabolic gene pairs. (A) Comparison of
co-occurrences of copy number alterations (measured as information con-
tent, npMI) between all CG-MG and CG-NMG pairs from 19 cancer types.
(B) Binned distance analysis for co-alterations between CG-MG and CG-
NMG pairs separated by similar distances up to 1Mb using a sliding win-
dow of 250 Kb. The difference in the first bin is not significant.

4.3 identifying oncogenic functionality of co-altered

cancer-metabolic gene pairs

We set up the iMetCG analysis pipeline to prioritize cancer-
metabolic gene pairs with the objective of identifying metabolic
genes involved in crucial metabolic reprogramming processes
leading to functional consequences in tumorigenesis. The iMet-
CG pipeline (workflow in Fig. 12) performs statistical prioriti-
zation and exploits the concept of “guilt by association” for
functional prioritization to identify metabolic genes involved
in cancer metabolism. The pipeline was run on the 19 different
cancer entities (Fig. 9 and Table 2) from The Cancer Genome
Atlas (TCGA).
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Figure 17: Distribution frequency for co-altered gene pairs counts across
tumors. Co-altered gene pair counts in each cancer type analyzed, for all
gene pairs (ALL), cancer-nonmetabolic (CG-NMG) gene pairs and cancer-
metabolic (CG-MG) gene pairs The y-axis has been drawn to log scale and
bars are sorted based on co-altered CG-MG gene pairs counts. These fre-
quencies reflect only those that fulfilled our selection criteria at the statistical
prioritization step.

Statistical Prioritization

Firstly, the information content was calculated for every gene
pair in the 22 autosomes using robust normalized pointwise
mutual information (RnpMI) as a statistical measure of its copy
number co-alteration (RnpMI score distribution for all cancer
types is given in Appendix Fig. 28). The RnpMI scores posi-
tively correlated with absolute co-occurrence probabilities (Ap-
pendix Fig.29). We used stringent RnpMI score filtering criteria
to select distinctively co-altered gene pairs from each cancer
type: (1) >99% quantile of the score distribution and (2) an ab-
solute co-occurrence probability >5% using a relaxed gene pair
distance of <5Mb. The frequency counts for these statistically
prioritized gene pairs across all cancers is shown in Fig. 17. We
selected only the cancer-metabolic gene pairs from this unbi-
ased list of total significantly co-altered gene pairs from each
cancer type for functional prioritization.

Functional Prioritization

Co-expression analysis

Statistically prioritized gene pairs were functionally prioritized
by associating gene expression profiles from the matched can-
cer type to their copy number status. For each cancer type,
we selected cancer-metabolic gene pairs for which metabolic
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gene expression differed significantly (p≤0.05 with Benjamini-
Hochberg correction for multiple testing) between all tumor
samples harboring or lacking the copy number alteration (in
both metabolic and cancer gene) relevant for the cancer-meta-
bolic gene pair. None of the gene pairs reached our selection
threshold from acute myeloid leukemia, papillary thyroid car-
cinoma or papillary kidney carcinoma, and these cancers were
not considered in further steps. A unique set of 243 metabolic
genes, irrespective of their co-alteration partners, was gener-
ated, for which 201 were associated with copy number ampli-
fications and 43 were associated with deletions. WHSC1L1 was
implicated in both SCNA types. Interestingly, co-amplification

Figure 18: Prioritization process of CG-MG pairs in iMetCG analysis
pipeline. (A) Cancer-metabolic gene pair counts at various filtering and
prioritization steps in the iMetCG analysis pipeline. (B) Distribution of puta-
tive metabolic cancer genes in different a priori defined functionally relevant
gene lists.

events were more common than co-deletion events in these
identified pairs, suggesting that the cancer has additional ben-
efits from retaining genes and reprogramming its expression
than losing genes in deletion events. An overview of the path-
ways targeted with these co-altered metabolic genes in the glo-
bal human metabolic map is shown in Fig. 24. We refer to these
identified pairs as “prioritized and co-expressed cancer-meta-
bolic gene pairs” and refer to the unique set of individual meta-
bolic genes as the “core metabolic gene set”.
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Integration of a priori defined gene lists and network analysis

The iMetCG pipeline further filtered the prioritized and co-exp-
ressed cancer-metabolic gene pairs by integrating metabolic fun-
ctionality features with the data. We hypothesize that metabolic
genes important for normal metabolism, as defined by their es-
sentiality, rate-limiting property and high connectivity in the
metabolic network, would also exert a functional phenotype
when co-altered in the cancer. This relationship to existing meta-
bolic functionality was analyzed by identifying genes from the
core metabolic gene set belonging to an a priori defined gene
list of essential and bottleneck metabolic genes. We also em-
ployed a gene-centric global human metabolic network to iden-
tify meta-bolic genes whose nearest neighbors (N≥5) in the net-
work were enriched for differentially expressed genes in expres-
sion profiling datasets from tumors with copy number alter-
ations in the proximal cancer genes. This resulted in a uniqueiMetCG analysis

pipeline identifies
significantly

co-altered
cancer-metabolic

gene pairs that have
a functional effect in

tumors

set of 119 metabolic genes, 95 of which were associated with
amplifications and 25 of which were associated with deletions.
WHSC1L1 was again implicated in both SCNA types, and in-
volved 34 genes identified from the network analysis, 78 es-
sential genes and 31 bottleneck metabolic genes (Fig. 18B). We
term these “putative metabolic cancer genes”, identified after
selection using metabolic functionality and multiple levels of
prioritization. Taken together, our iMetCG analysis started with
89,889 cancer-metabolic gene pairs, and identified 119 putative
metabolic cancer genes. A total of 919 pairs were obtained fol-
lowing statistical prioritization and co-expression analysis, and
a final set of 528 gene pairs were identified upon functional
prioritization (Fig. 18A). These identified gene pairs provide
an elaborate set of novel and known metabolic cancer genes
very likely to be involved in metabolic reprogramming of tu-
mor cells, of which, we give some intriguing examples of in the
next sections.

4.4 identification of synergistic metabolic clusters

Data were assembled into a binary table that counted only the
presence or absence of a co-altered gene pair in a cancer type.
Clustering analysis using the binary distance and Ward’s link-
age of pairs identified in at least 2 out of 16 cancer types clus-
tered the 405 pairs into well defined metabolic modules sug-
gesting a common rewiring mechanism operating in related
cancer types (Fig. 19, the complete heatmap with gene pair
information in Appendix Fig. 30). These prioritized and co-
expressed cancer-metabolic gene pairs include many well kno-
wn tumor suppressors and oncogenes that were identified in



4.4 identification of synergistic metabolic

clusters 53

Figure 19: Heatmap of the identified cancer-metabolic gene pairs co-
altered across cancers. A binary (alteration present: red/green, alteration
absent: gray) heatmap for all cancer-metabolic gene pairs identified in at
least two cancer types using the iMetCG analysis pipeline.

Table 3: Representative examples of copy number co-altered cancer-
metabolic gene pairs which are well-characterized tumor suppressor and
oncogenes†.

Known oncogenes or
tumor suppressors

Proximal co-altered metabolic genes

CDKN2A/2B MTAP

MYC SQLE, NDUFB9

RECQL4
DGAT1 ,CYC1, GPAA1, TSTA3, OPLAH,
PYCRL

SOX2
ABCC5, PIK3CA, ALG3, MCCC1, POLR2H,
EHHADH, B3GNT5, DGKG, NDUFB5

EGFR PSPH

CCNE1 UQCRFS1

FGFR1 WHSC1L1

SDHC B4GALT3, NDUFS2, PPOX, PIGM

†Examples taken from from Fig. 19

recent pan-cancer SCNA studies (Kim et al., 2013; Zack et al.,
2013), suggesting that well known SCNA events occurring in
the cancer genome often target proximal metabolic genes (Table
3). Analysis of frequency distribution of these co-altered pairs
across cancer types and the common chromosomes involved
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in such events revealed that most of these co-alteration events
arise from few chromosomes suggesting an intrinsic genome
dependent mechanism at play, which results in higher rates of
SCNA co-alteration susceptibility for these chromosomes irre-
spective of the cancer type (Fig. 20). We observed a high re-Many well known

cancer causing
genes are often
co-altered with

crucial metabolic
genes in cancer

dundancy in the co-altered partners shared by different cancers
from metabolic-cancer gene pairs separated by <1 Mb. We inter-
pret these data to mean that a single cancer gene can have mul-
tiple metabolic genes in its proximity and vice verse, or that ge-
nomic clusters of multiple metabolic and cancer genes may ex-
ist. Such genomic regions targeted by SCNA would create mul-

Figure 20: Distribution of cancer-metabolic gene pairs in each cancer and
chromosome. Frequency distributions of co-altered CG-MG gene pairs af-
ter statistical prioritization and co-expression analysis in each chromosome.
The data is from all cancer types (for full names of the cancers, refer Table
2). Numbers on top of each bar indicate the number of cancers in which the
respective chromosome has at least one co-altered gene pair. The bars are
sorted according to the number of co-altered CG-MG pairs.

tiple co-alteration partners for a single cancer or metabolic gene.
We identified most commonly altered metabolic and cancer
genes with different partners across cancers, thus, identifying
susceptible loci in the genome where the chances of a metabolic
gene being co-altered with a cancer gene is higher simply due
to its proximity to multiple cancer genes. We identified two
such SCAN-susceptible loci on chromosome 1, between q21.2
and q23.3 for amplification, and for deletion between p22 and
p21.3 on chromosome 8. SCNA events in these loci that are
densely populated with cancer and metabolic genes, presum-
ably targeting a driver gene, consequently perturb multiple
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Figure 21: Proximal metabolic and cancer gene rich genomic clusters coal-
tered in tumors. Genomic regions in chromosome arms 1p and 8q, harbor-
ing cancer and metabolic gene rich clusters. These loci are affected in multi-
ple cancer types, however only those cancers (breast - BRCA and prostate -
PRAD) with the highest median alterations are shown.

metabolic genes and are observed in different cancer types (Fig.
21). We further used the core metabolic gene set of 113 genes Many metabolic

genes are commonly
co-altered across
cancer types either
with the same or
different cancer gene
partner

affected in at least 2 cancers in a second clustering analysis to
identify metabolic genes altered across cancer types irrespec-
tive of its co-alteration partner. (Fig. 22 shows metabolic genes
altered in at least 25% of cancer types studied. The heatmap for
all metabolic genes is given in Appendix Fig. 31). The common
core metabolic genes identified here were perturbed synergisti-
cally across multiple tumor types again suggesting a common
rewiring mechanism. We used these to classify tissues and de-
velopmental origins of the tumor types in the next section.

4.5 tumor classification based on tissue and de-
velopmental origins

Cancers are traditionally classified by histology and/or devel-
opmental origins to best define fitting diagnostics and treat-
ment protocols (Berman, 2004) (also see, International Classifi-
cation of Diseases for Oncology, http://codes.iarc.fr/home).
It is increasingly acknowledged, however, that similar cancer

http://codes.iarc.fr/home
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Figure 22: Commonly co-altered metabolic genes across cancer types. The
iMetCG identified core metabolic gene set (for easier visualization, showing
only those observed in at least 4 out of 16 cancers) across multiple cancer
types after statistical prioritization and co-expression analysis, the color bar
on the left shows the putative metabolic cancer genes (in black) identified
in later steps.

types, a single type or even single tumors harbor vast molecular
heterogeneity. Recent pan-cancer efforts have identified genetic
commonalities across cancers suggesting core mechanisms for
carcinogenesis. These genetic similarities stratify cancers into
their tissues of origin (Network et al., 2013; Kim et al., 2013;
Hoadley et al., 2014). Using the core metabolic gene set altered
in at least 2 cancer types identified by the iMetCG pipeline, we
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were able to group tumors into clusters that fit their previously
described developmental or tissue origins and further identify
novel clusters (Fig. 23). Since we analyzed more TCGA cancer
types than prior studies, we also added novel information to ex-
isting tumor groups. We re-identified groups having lung ade-
nocarcinomas, urothelial bladder cancers and head and neck as
well as lung squamous cell carcinomas, as reported elsewhere
(Hoadley et al., 2014). Our analyses also clustered cervical cell
cancers, a squamous cell carcinoma not included in the pre-
vious study, with other squamous cell cancers. Our analyses
also classified tumors into mesenchymal-like clusters contain-
ing ovarian cancers and endometrial carcinomas, which have
mesodermal origins, and stomach adenocarcinomas. Stomach

Figure 23: Tumor classification. Classification of tumors based on its devel-
opmental and tissue of origins using the core metabolic gene set.

adenocarcinoma tissues, though not of mesodermal lineage, are
known to undergo epithelial-mesenchymal transition during
tumorigenesis, (Katoh, 2005) which may be why they cluster
with this group. Cancers from ecto- and endodermal lineages iMetCG identified

metabolic genes
enable classification
of tumors into
distinct groups
based on
developmental or
histological origins

clustered into three groups: (1) from organ epithelium, includ-
ing hepatocellular carcinomas and breast cancer, (2) from sur-
face epithelium, including colorectal and prostate adenocarci-
nomas, and (3) of neuroectodermal origin, including glioblas-
tomas, lower grade gliomas and cutaneous melanomas. Taken
together, our results show that the iMetCG pipeline performs
well in identifying a core subset of metabolic genes that can
correctly classify tumors by its histological and developmental
origins. This is remarkable considering that a rather small 113

metabolic gene signature is sufficient for this physiologically
complex class separation.
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4.6 perturbations targeting metabolic pathways

To identify biochemical pathways affected across cancer types,
we mapped the core metabolic gene set identified by iMetCG
into a global human metabolic network based on pathway def-
initions using the Kyoto Encyclopedia of Genes and Genomes
(KEGG http://www.genome.jp/kegg/). We observed that ma-
jor metabolic processes relevant for cancer, including metabolic
pathways for nucleotides, lipids/glycans, energy/carbohydrates
and amino acids, were targeted by genes altered in various
cancer types (Fig. 24). We focused our interpretations mostly

Figure 24: Cancer-metabolic gene pair copy number co-alteration induced
perturbations in the global human metabolic network. Major cancer spe-
cific metabolic pathways targeted by the core metabolic gene set identified
by the iMetCG pipeline are mapped onto the global KEGG human metabolic
network.

on co-amplification events, unless otherwise stated, since these
were most commonly observed in our analysis. Genes coding
for enzymes in nucleotide metabolism (NME7, GMPS, ADSS,
RRM2B, UCKL1 and UCK2), which convert the monophosphate
forms of purines or pyrimidines and their deoxy-counterparts
to their respective di/tri phosphates, were identified using our

http://www.genome.jp/kegg/
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core metabolic gene set as being affected across cancer types
as were the RNA polymerase subunits, POLR3C, POLR2K and
POLR2H. The MTAP gene was co-deleted with the CDKN2A/2B
tumor suppressor gene in 6 of 16 cancers. MTAP is crucial for
salvaging adenine and methionine in the cell. This co-deletion
is an example of a previously described event in multiple cancer
types, validating our methodology to identify meaningful alter-
ations for cancer (Fig. 26) (Bertino et al., 2014). Genes coding for
critical enzymes from glycolysis, tricarboxylic cycle and fruc-
tose/mannose metabolism, such as PFKFB2, PKLR, SDHC and
SDHA, were identified as altered across cancer types. Interest-
ingly, we also identified enzymatic reactions known to produce
intermediate metabolites in glycolysis involved in the allosteric
control of glycolytic flux. The bi-functional enzyme, PFKFB2, iMetCG identified

metabolic genes
belong to pathways
related to biomass
and energy
production

that converts fructose-6-phosphate to fructose-2,6-bisphosphate,
has been shown to tightly control this reversible reaction. The
level of fructose-2,6-bisphosphate further controls the rate of
glycolytic flux by regulating the conversion of fructose-6-phos-
phate to fructose-1,6-bisphosphate, while the latter is an allo-
steric regulator of the terminal glycolytic reaction step, where
phosphoenolpyruvate is converted to pyruvate (Ros and Schulze,
2013). In addition to carbohydrate metabolism, we identified
many genes involved in oxidative phosphorylation, particularly
of the NADH dehydrogenase complex. Evidence is accumu-
lating that oxidative phosphorylation is active and functional
in many cancers, and tightly regulated by tumor suppressors
and oncogenes (Jose et al., 2011). We identified NDUFB2, ND-
UFA9, NDUFB9, NDUFS2, NDUFS6 and NDUFB5, all coding
for subunits of the NADH dehydrogenase complex, as being
co-amplified with cancer genes and belong to different chromo-
somes suggesting a common mechanism of co-alteration based
metabolic remodeling for this complex. We also identified the
genes for the cytochrome c oxidase/reductases complex, CYC1,
UQCRFS1, UQCRB and COX6C, and genes for the ATPase com-
plex, ATP6V1C1 and ATP5E, as being altered across cancer types
(Fig. 25). Glycerolipids are the basis for phospholipids, which
are essential components of cell membranes. Phosphatidic acid
has also been shown to tightly regulate mTOR function (Fos-
ter, 2007), hence, energy metabolism. Our analysis also iden-
tified genes involved in glycero(phospho)lipid metabolism, in-
cluding AGPAT6, PLD1, DGKG, ETNK2 and PCYT1A, as being
affected across multiple cancers. These enzymes assist produc-
tion of phosphatidic acid, which is a vital precursor for almost
all glycerolipids (Athenstaedt and Daum, 1999). HMGCS1, PMVK,
ID1 and FDPS were also affected, which are involved in the
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Figure 25: Representative examples of co-altered metabolic genes target-
ing energy and amino acid metabolism. Bold red arrows (single step reac-
tions) or dashed red arrows (involving multiple reactions steps) represent
genes identified by iMetCG. Gray arrows (both bold and dashed) are used
to represent the context and continuity of the pathway (MG were not iden-
tified for these reactions). Blue dashed lines indicate the regulatory effect of
the metabolite involved, (+) for positive and (–) for negative effects.

mevalonate pathway that ultimately produces farnesyl phos-
phate, an important precursor of many anabolic processes. The
SQLE gene was most frequently altered across cancers (in 10/16

cancers), which encodes the rate limiting enzyme in steroid
biosynthesis, suggesting an important role of steroid anabolism
across tumors types (Fig. 26). In amino acid metabolism, sev-
eral genes for branched chain amino acid metabolism were af-
fected that are also common to fatty acid metabolism, including
EHHADH, MCCC1, PCCB and OXCT1. Other affected genes
from the amino acid metabolic pathway were PSPH and PY-
CRL from serine and proline metabolism, respectively, and GPT
and OPLAH from glutaminolysis (Fig. 25). In total, the iMetCG
pipeline performs well in identifying both known and novel
metabolic processes and its genes crucial for cancer metabolism.
Many of these identified genes have been shown to be impor-
tant in cancer while the novel genes highlight interesting and
unknown aspects of metabolic network remodeling.
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Figure 26: Representative examples of co-altered metabolic genes target-
ing nucleotide and lipid metabolism. Annotation and representational de-
tails is same as in Fig. 25 above.

4.7 putative metabolic cancer genes share similar

properties with cancer genes

4.7.1 Putative metabolic cancer genes are enriched for known cancer
genes and affect cancer survival

We compared putative metabolic cancer genes identified in iMet-
CG with a list of known cancer-causing metabolic genes then
performed an enrichment test to determine if the former was
overrepresented in this list. Indeed, we observed that the rela-
tive percentage of putative metabolic cancer genes was signifi-
cantly higher than non-metabolic cancer genes (p=0.006, using
a one-sided Fisher’s Exact test, Fig. 27A). We also evaluated the
effect of putative metabolic cancer genes on cancer survival us-
ing a log-rank test for every metabolic gene having high-level
copy number alterations (amplifications or deletions) in at least
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5% of the samples. This analysis computed the survival differ-
ence between cancer samples harboring or lacking copy num-
ber alterations. Strikingly, the relative percentage of survival
events involving a putative metabolic cancer gene was signif-
icantly higher than survival events involving other metabolic
genes (p=0.002, using a one-sided Fisher’s Exact test, Fig. 27B),
suggesting that these genes are a crucial determinant of cancer
survival across the investigated cancer types.

4.7.2 Putative metabolic cancer genes have higher network connec-
tivity

In the context of a human metabolic network, like any other cel-
lular network, disrupting highly connected genes or hubs can
have a drastic impact on function (Jeong et al., 2001). Along
these lines, we propose that cancer-driving metabolic gene can-
didates should be highly connected compared with other meta-
bolic genes in the network, such that cancer cells can reprogram
metabolism more effectively. We estimated gene connectivity
for each metabolic gene using our gene-centric metabolic net-
work, and compared network connectivity of putative metabolic
cancer genes with other metabolic genes. We observed that the
average connectivity of these iMetCG-identified genes was sig-
nificantly higher than other metabolic genes in the network
(p=0.05, Fig. 27C), suggesting their disruption is more likely to
affect central nodes in the metabolic network and, hence, more
likely to remodel the cancer metabolic landscape.

4.7.3 Putative metabolic cancer genes and their evolutionary context

Cancer genes are highly conserved, while different isoforms
can be important determinants of cancer progression and ma-
lignancy (Thomas et al., 2003; Oltean and Bates, 2014). A well-
known example is the gene isoform PKM2, which plays a cru-
cial role in anabolic metabolism promoting aerobic glycolysis
and tumor growth (Vander Heiden et al., 2010). We investigated
whether iMetCG-prioritized putative metabolic cancer genes sh-
are similar features of evolutionary conservation, namely selec-
tion pressure and evolutionary rate, and/or similar transcript
isoform diversities. The ratio of non-synonymous (dN) to syn-
onymous (dS) substitutions in orthologous genes of distant spe-
cies gives a robust measure for selection pressure. A dN

dS < 1
implies purifying selection (higher conservation), while a dN

dS >
1 suggests positive selection and lower conservation (Kimura,
1977). We used the GRCh38 Ensemble release for human and
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Figure 27: Known cancer genes and the identified putative metabolic can-
cer genes share similar features. Enrichment of putative metabolic cancer
genes (pMCG) – (A) in the list of known metabolic cancer genes (MCG)
(B) among other metabolic genes affecting cancer survival. ~pMCG denotes
non-pMCG, i.e those metabolic genes that were not identified in our analy-
sis as cancer causing genes. (C) Comparison of network connectivity (i.e. the
number of nearest neighbors in the gene centric human metabolic network)
between putative metabolic cancer genes and all other metabolic genes, the
numbers below the boxplot represent the sample sizes. Comparison of ge-
nomic parameters – (D) selection pressure (E) evolutionary rates and (F) iso-
form diversity among cancer genes, metabolic genes and putative metabolic
cancer genes. Dashed black lines represent the median values of each feature
analyzed for all genes. Sample sizes are shown under respective boxplots.

GRCm38.p2 for mouse in Biomart to obtain dN
dS ratios for human-

mouse orthologous genes. It has been recently shown that can-
cer and metabolic genes are evolutionarily more conserved and
under stronger purifying selection than other genes (Cheng
et al., 2014). We made a similar observation while comparing
the distributions of dN

dS ratios for cancer and metabolic genes
(p=1e-05) (Fig. 27D). Interestingly, we observed that iMetCG-
identified putative metabolic cancer genes share similar median
dN
dS ratios with cancer genes, which is lower compared to the re-
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maining metabolic genes (p=0.04). We also compared the evolu-
tionary rates among cancer, metabolic and putative metabolic
cancer genes using data calculated elsewhere (Bezginov et al.,
2013). In concordance to our calculated dN

dS ratios, we observed
that putative metabolic cancer genes have distinctively lower
evolutionary rates than other metabolic genes (p=0.002, Fig.
27E). We also observed that isoform diversity of putative meta-“Guilty by

association”-
iMetCG predicted

metabolic cancer
genes share similar
phenotypic, genetic

and evolutionary
properties with

known cancer genes

bolic cancer genes shared similar isoform counts with cancer
genes but have higher than average isoform count compared to
the remaining metabolic genes in the genome (p= 0.05, Fig. 27F).
Based on various cancer relevant features we analyzed, the
iMetCG-identified putative metabolic cancer genes were noted
to be very similar to known cancer genes while being distinc-
tively different from remaining metabolic genes. Since feature
conservation generally translates into functional relatedness in
biology, this goes in line with our hypothesis that these genes
are central to cancer cell metabolism.
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C O N C L U S I O N S

1In this thesis it was hypothesized that, if genome evolution
has preferentially positioned genes vital for cellular prolifera-
tion near cancer drivers in the genome or vice versa, then they
(cancer causing and their proximal genes) would be more sus-
ceptible to copy number co-alterations events. Our hypothe-
sis is based on recent findings that highlight the tumorigenic
potential of genes closely positioned to cancer causing genes
in the genome (Solimini et al., 2012). Furthermore, exploiting
this proximity advantage to concomitantly affect these crucial
nearby genes would present a highly beneficial strategy to can-
cer progression. In this study, we specifically focus on pairs of
proximal metabolic and cancer causing genes and show how
they are affected by copy number co-alterations across multiple
tumor types. Moreover, we show that this linear proximity be-
tween oncogenes/tumor suppressor genes and metabolism spe-
cific genes in the chromosomes affects reprogramming of tumor
metabolism. It was observed that cancer-metabolic gene pairs
were significantly closer together in the genome compared to
cancer-non-metabolic genes. Furthermore, we found across tu-
mor types that the cancer-metabolic gene pairs were more often
co-altered than cancer-nonmetabolic genes (Fig. 14,16).

This observed proximity between cancer-metabolic genes and
their higher rates of copy number co-alterations suggested that
these co-altered metabolic genes might affect tumor metabolism
through its increased (amplifications) or decreased (deletions)
gene dosage. It was hypothesized that the cumulative changes
in gene dosage may play a major role in remodeling tumor
metabolism. We propose that copy number co-altered metabolic
genes individually might not yield an oncogenic effect but the
cumulative effect of all these alterations together can support
the cancer phenotype. This concept stems from the fact the can-
cer genomes harbor a large number of presumably neutral mu-
tations that are considered to have no functional effects. How-
ever, recent studies have shown that there exists a vast number
of oncogenes and tumor suppressor genes that exert their func-
tional effect via triplosensitivity and haploinsufficiency respec-
tively (Solimini et al., 2012; Davoli et al., 2013). Another inter-
esting possibility is the “non-oncogenic addiction” of a cancer

1 Parts of this chapter has been taken from (Sharma et al., 2015)
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cell on the co-altered metabolic genes identified in this study.
Non-oncogenic addiction refers to the conditional dependency
of a cancer cell on certain genes (for example, genes involved in
stress response) which are however non-essential for a normal
cell (Luo et al., 2009). These genes on its own cannot cause an
oncogenic transformation of a normal cell. However, its func-
tion becomes essential for the survival of a cancer cell once it
has transformed due to mutations in other driving oncogenes
or tumor suppressor genes (Luo et al., 2009). Moreover, such
genes are effective therapeutic targets as the survival of the can-
cer cell is dependent on it while it is dispensable for the normal
cell (Raj et al., 2011; Riabinska et al., 2013). It is to be noted that
these genes play important functional roles even in a normal
cell, although such genes are not required or used given that the
physiological and the microenvironment conditions of a nor-
mal cell is vastly different from a cancer cell (Luo et al., 2009). In
the context of metabolism it has been suggested that cancer spe-
cific dependency on glutamine and serine metabolism can be
consequences of non-oncogenic addiction (Galluzzi et al., 2013).
Overall it was expected that, if our identified metabolic genes
supported crucial nutrient requirements in tumors then these
co-altered metabolic genes will prove indispensable for tumor
growth and proliferation. Hence a subset of these co-altered
metabolic genes may in fact be crucial co-driving cancer genes
expressing its non-oncogenic yet cumulatively essential roles in
tumorigenesis.

The iMetCG analysis pipeline was developed in order to iden-
tify such copy number co-altered metabolic genes and strin-
gently prioritize them to elucidate enzymes playing an essen-
tial role in tumor metabolism (Fig. 12). The iMetCG approach
was systematically applied to 19 different cancer types. Using
mutual information based scores we identified distinctively co-
altered metabolic genes. This was followed by expression analy-
sis where the copy number alterations of metabolic genes were
correlated with their expression levels. Additionally, using a
priori biological knowledge, network analysis and several se-
lection criteria we determined the functionality of co-altered
metabolic genes in tumors. Recent pan-cancer SCNA studies
on co-occurring copy number alterations have avoided looking
into co-alteration events on the same chromosome because of
difficulty in interpreting the results due to spatial gene prox-
imity (Klijn et al., 2010; Zack et al., 2013; Kim et al., 2013). In
order to overcome this restriction and identify metabolic genes
that might play a functional role in tumor metabolism, several
additional steps for functional prioritization in the context of
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metabolism and cellular functionality was performed. This was
done to distinguish the relevant co-occurring copy number al-
tered cancer-metabolic gene pairs from artifacts. These selection
criteria involved exploiting known a priori biological knowledge
for functional prioritization by selecting metabolic genes based
on their essentiality and if they occupied crucial positions in a
metabolic pathway such that they could control the metabolic
flux. It has been shown that metabolic genes that are coding for
either the initial or terminal enzymes in a pathway are usually
under tight transcriptional regulation and also control the flux
passing through that pathway. These gatekeepers, if perturbed
can disrupt the whole pathway flux distribution with severe
consequences (Wessely et al., 2011). Furthermore, a gene centric
metabolic network was constructed and co-altered metabolic
genes were prioritized if their copy number changes also led to
similar expression changes in the genes with which they were
directly connected to in the network (Fig. 12).

Interestingly, many metabolic genes identified using the iMet-
CG analysis pipeline were similarly co-altered in multiple can-
cer types. This observed pan-cancer redundancy further sup-
ported the idea that they play an important role in tumor meta-
bolism (Fig. 22). Metabolic remodeling is a crucial hallmark
of cancer, a rapidly proliferating cancer cell requires more nu-
cleotides, amino acids and lipids to maintain high biomass pro-
duction. Consequently, to supplement these increased nutrient
demands, energy metabolism within the cell must be high and
needs to be adjusted to facilitate the changing tumor metabolic
landscape (DeBerardinis et al., 2008). Moreover, these require-
ments are tightly regulated by signaling cascades and depends
on tumor physiology (metastatic, angiogenic etc), location (tis-
sue of origin) and microenvironment (hypoxia, pH etc) (Fig.
3). Indeed, copy number co-altered metabolic genes identified
using the iMetCG framework belonged to many metabolic path-
ways indispensable to cancer proliferation, such as nucleotide,
amino acid, energy and lipid metabolism. Also, many of the
identified genes are already known to play a crucial role in tu-
mor metabolism suggesting that the iMetCG pipeline can cor-
rectly identify crucial cancer relevant metabolic targets (Fig.
24). Interestingly, using the iMetCG identified core metabolic
genes, defined as those that were co-altered in at least two
of the cancer types analyzed, enabled successful grouping of
cancers into their tissue and developmental origins. This also
suggests a rather specific metabolic role of these enzymes for
the particular subgroups of cancer types. This is remarkable
considering that a small signature of 133 metabolic genes de-
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rived from their co-alteration propensity with proximal cancer
causing genes could reproduce this biologically complex his-
tological classification (Fig. 23). Additionally, this observation
may have a substantial clinical relevance, since a therapeutic
agent inhibiting one of these metabolic gene could effectively
be used in multiple cancers of similar origin and would pre-
sumably have comparable drug-induced effects. The final set of
putative metabolic cancer genes was identified after a priori bio-
logical knowledge integration and these genes shared very sim-
ilar characteristics with known cancer genes. Here, the concept
of “guilt by association” was used where it was assumed that
if the identified putative metabolic cancer genes and known
cancer genes shared genotypic-phenotypic properties that typi-
cally define an oncogene or a tumor suppressor gene then it is
likely that the metabolic gene is a yet undiscovered cancer caus-
ing gene. Indeed, it was observed that these genes shared sim-
ilar evolutionary parameters (evolutionary rate and dN/dS ra-
tios) and isoform diversity with known cancer genes. Addition-
ally, based on these properties, the identified putative metabolic
cancer genes were significantly different from other metabolic
genes. Furthermore, these metabolic genes were significantly
enriched in known cancer-causing metabolic genes, had high
network connectivity and were associated with patient survival.
Overall these indicators strongly suggest a potential tumoro-
genic role for these predicted metabolic cancer genes (Fig. 27).

In this study, a novel resource for cancer-associated metabolic
genes was generated using integrative genomic based approach
and robust computational and statistical methods on large can-
cer datasets. A novel mechanism governing tumor metabolic re-
programming across multiple tumors has been presented where
cancer-associated metabolic genes were derived from linearly
proximal cancer-metabolic gene pairs which were significantly
affected by copy number co-alterations. To systematically iden-
tify all such gene pairs across tumor types we have developed
the iMetCG analysis pipeline. These identified putative meta-
bolic cancer genes most likely play a vital role in cancer pro-
gression and survival by serving the atypical metabolic needs
of cancer cells. Furthermore, this resource of novel predicted
cancer-affecting metabolic genes will be useful to the scientific
community to further evaluate and elucidate detailed mecha-
nisms and consequences of such individual co-alteration events.
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Table 4: Distribution statistics (in Kb) for gene pair distances less than 1Mb
in all chromosomes.

Chr. Min. 1st Qu. Median Mean 3rd Qu. Max. Size

1 0.55 213.9 461.5 474.7 727.7 1000 26770

2 0.067 198 431.7 454.8 697.8 999.8 9834

3 0.352 206.9 439.2 459.7 703 999.9 9927

4 0.718 211.4 446.3 465.9 710.5 999.7 4346

5 0.797 200.7 448.2 467.7 727 999.8 5614

6 0.383 197.6 435.4 456.4 700.5 1000 11856

7 0.271 209.9 448.3 463 704.1 999.9 7994

8 0.041 204.7 434.3 456.9 700.1 999.5 5239

9 0.871 186 407.3 440.5 681.2 999.6 9234

10 0.133 208.2 451 467.3 715.7 1000 5401

11 0.044 216.3 466.8 477.8 735.1 999.9 21960

12 0.01 214.6 452.1 472.1 724.9 999.9 13120

13 6.572 221.8 454.9 472.3 702.5 999.4 1449

14 0.588 179.3 399.8 435.8 676.7 999.9 6413

15 2.4 228.2 468.4 479.2 721.5 1000 5280

16 0.296 204.1 437.6 457.6 703.2 999.9 14568

17 0.093 212.9 447.1 468.4 718.4 1000 23014

18 4.956 209.3 418.7 454.1 692.7 996.8 1182

19 0.53 232.7 481.8 487.9 738.6 999.9 35591

20 1.737 209 447.5 466 710.9 999.7 6667

21 1.23 149.5 343.4 408.9 651.7 998.7 2206

22 2.41 220.1 470.6 475.7 720.3 999.9 5845

69



70 appendix

Table 5: Statistical and graph properties of the constructed gene-centric
metabolic gene network.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Degree 1 12 28 32.45 46 168

Eccentricity 1 7 7 7.377 8 12

Shortest paths 1 3 3 3.48 4 12

Betweeness (node) 0 0.5 269.4 1571 1655 38930

Betweeness (edge) 1 20.92 64.84 135.8 148.1 9347

Clique sizes 2 4 7 9.497 12 53

Transitivity (local) 0 0.528 0.713 0.709 0.977 1

Number of nodes 1389

Number of edges 22538

Maximal clique 750

Transitivity (global) 0.557
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Figure 28: Distribution of RnpMI scores across all cancer types. The distri-
bution of information content calculated from copy number co-alterations
of all gene pairs separated by <5Mb. The 99% quantile of RnpMI score dis-
tribution was used as a threshold to prioritize the most affected gene pairs
(shown as dashed black lines) in each investigated cancer type. For complete
names of the cancers refer Table 2.
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Figure 29: Correlation between RnpMI scores and the absolute co-
occurrence frequency. A strong positive correlation (Spearman’s correla-
tion) was observed between the RnpMI based information content and the
absolute percentage of co-altered gene pairs across all cancer types studied.
The data is shown only for those gene pairs passing our selection criterion
at the statistical prioritization step. The red dashed line represents the re-
gression line. For full names of the cancers, refer Table2.
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Figure 30: Heatmap of all statistically prioritized and expression inte-
grated cancer-metabolic gene pairs. Heatmap of all cancer-metabolic gene
pairs (N=405) identified after statistical priorization and co-expression anal-
ysis in at least 2 cancer types using the iMetCG pipeline. This heatmap shows
the complete data of Fig. 19. Red and green boxes represent amplification
and deletion events, respectively. The column bar on the left highlights the
putative metabolic cancer genes (in black) identified in later functional pri-
oritization steps.
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Figure 31: Heatmap of the core metabolic gene set. The identified metabolic
genes found to be significantly co-altered in at least two cancer types
(N=113) irrespective of its co-altered cancer gene partners. This heatmap
shows the complete data of Fig. 22. The underlying data was used for clus-
tering of the tumors (Fig. 23). Red and green boxes represent amplification
and deletion events, respectively. The bar on the left shows the putative
metabolic cancer genes (in black) identified in later steps.
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