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Chapter 1

Introduction

Throughout the last decades new theories of decision making under uncertainty have

increasingly found their way into economic models and applications. One of the main

objectives of this thesis is to investigate which additional insights one gains by intro-

ducing ”Knightian uncertainty”, or ”ambiguity”, into well-established economic models.

By now, there is a large number of scientific articles from different areas of economics

and related sciences discussing the implications of ambiguity for their respective field. In

a sense, ambiguity has become highly topical and an interesting object of research for

economists around the world.

In this spirit, I consider ambiguity related to a variety of applications ranging from In-

dustrial Organization, Health Economics to Information Economics. Even though these

applications stem from different areas of economics, it turns out that there is a common

theme and methodology connecting them. Moreover, ambiguity might provide an addi-

tional source of explanation for a variety of observed deviations from standard expected

utility theory, in cases where reliable information is absent, incomplete, or when decision-

makers base decisions on unverifiable and contradictory information.

In the introductory chapter, I provide a brief overview on models of decision making

under uncertainty relevant for this thesis. In this respect, my primary concern is to pro-

vide the basic background knowledge needed to understand the term ”ambiguity” and
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Introduction 2

its significance for economics. The main focus is thereby to sketch briefly the historical

development of decision theory and resulting models by means of simple and manageable

examples. The introduction is divided into two parts. The first part deals with static

models of decision making and the second part considers extensions of the classical static

models to dynamic settings. Readers, who dispose of sound knowledge of decision theory,

might skip chapter 1 and proceed with chapter 2 right from the start.

The first field of application for ambiguity treated in this thesis is spatial competition

between firms. This is done in chapter 2, which is based on the article Kauffeldt and

Wiesenfarth [2014]. In this study, we analyze the impact of ambiguity and ambiguity

attitude on product differentiation in a Hotelling duopoly game. The main contribution

of this article is to investigate how partial probabilistic information on consumer demand

shapes equilibrium product designs. Therefore, we suggest a general and tractable for-

mal framework assuming that firms exhibit Choquet-expected utility preferences. More

specifically, we assume that firm managers’ beliefs are represented by neo-additive capac-

ities. In this context, we highlight the importance of partial probabilistic information for

observed product design behavior by shedding new light on a variety of real-world ap-

plications of Hotelling models under uncertainty treated in the literature. We find that,

in many cases, their interpretations are not robust with respect to this novel aspect of

uncertainty.

Chapter 3 of this thesis is based on the article Wiesenfarth [2015] and contemplates ambi-

guity in the context of preventive health care. Using a theoretical framework, I investigate

how information on the efficacy of a preventive measure affects patients’ preventive ac-

tivities under Knightian uncertainty. Information is modeled by means of an imprecise

signal, and patients’ preferences are assumed to be of the Choquet-type with beliefs in

the form of neo-additive capacities. It turns out that Knightian uncertainty can, depend-

ing on the underlying updating rule, provide an explanation for poor patient compliance

as well as excessive preventive behavior. Moreover, I can demonstrate that information

might reinforce extreme behavior under Knightian uncertainty, even if information is cor-

rectly communicated.
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Chapter 4 is based on a note published in the Journal of Mathematical Economics by

Heyen and Wiesenfarth [2015] and relates to a recent article by Çelen [2012]. The author

generalizes the well-known Blackwell’s theorem to MEU-preferences. We show that the

notion of the value of information used in Çelen [2012] generates dynamically inconsis-

tent behavior. The reason for this observation is that Çelen’sdefinition of the value of

information is in conflict with the principle recursively defined utility. As a consequence

of this finding, we propose an alternative, recursively defined value of information under

Knightian uncertainty.

In chapter 5, I contemplate the approach and results of this thesis from a meta-perspec-

tive. The connecting element between the different chapters of this thesis can be found in

the fact that I consider a variety of well-established economic models and investigate how

the introduction of ambiguity alters the conclusions drawn from these models. Inherent

to such research assignment is an underlying process of model selection and adjustment.

As it turns out, this process follows clear rules and procedures, which I present by means

of a very simple and tractable baseline model, the monopoly market with demand ambi-

guity. First, I treat the question of how to assess whether it is admissible and reasonable

to introduce ambiguity into a particular economic model or not. Next, I assume that the

first question can be answered positively. Due to the availability of a growing number of

competing models of decision making under uncertainty, it is not easy for practitioners

to see, which of these models is appropriate for a specific baseline model. For this reason,

I investigate the monopoly problem under demand ambiguity for a variety of preference

specifications and compare the conclusions drawn from each specification.

Chapter 6 provides a short conclusion of the main findings of this thesis.

1.1 Models of Decision Making Under Uncertainty

In contrast to a decision problem under certainty where one or several decision-makers

have to make a decision knowing which out of several consequences will be triggered
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off given a certain action, a decision problem under uncertainty is characterized by a

situation where this mechanism remains unclear. In order to illustrate this, contemplate

the following abstract example. There is a farmer selling his organic vegetables on a local

market. The farmer disposes of two different choices of action, he can sell his products

in city a or in city b. Due to his long-lasting experience over the last twenty years, the

farmer knows that organic food is more popular in city b than in city a. More precisely,

he knows that if he sells his vegetables in city a, he will get 100 e, if he sells his products

in city b, he will obtain 150 e. If the farmer prefers more money to less money, he will

decide to sell his products in city b. This problem is a decision problem under certainty,

the decision-maker knows how a certain action affects his future payoffs. The subsequent

example is an illustration for a decision problem under uncertainty. An ice-cream seller

with an ice cream cart can sell her ice-cream at two different locations c and d. Location

c is inside a shopping mall, location d is in the center of the city’s historical marketplace,

where many tourists pass by if the weather is nice. Due to her experience, the ice-cream

seller knows that if she decides to sell in the shopping mall, she will get 100 e if the

weather is nice, let me denote this event with ω1; and she will get 150 e if it rains, let

me denote this event with ω2. If she decides to sell her ice cream in the center of the

historical marketplace, she will get 150 e if the weather is nice, and 100 e if it rains.

This example can be illustrated in a simple diagram.

action no rain rain
mall 100 e 150 e
marketplace 150 e 100 e

Table 1.1: Decision Problem of the Ice-Cream Seller

In contrast to the farmer, the ice-cream seller’s decision problem is more intricate. Which

decision should she take? The answer depends on her information and assessment of the

events ”it rains” and ”it doesn’t rain”. If she knew on the one hand with certainty that it

was going to rain today, she would sell her ice-cream in the mall. On the other hand, if she
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knew with certainty that the weather was going to be fine, she would like to sell her ice-

cream at the marketplace. Thus, the ice-cream seller’s optimal answer depends on which

of the two states of the world ”rain” and ”no rain” is going to materialize. Evidently, it

is unrealistic to assume that the ice-cream seller knows every day with certainty which of

these events is going to occur. Assume, for example, that she heard in the local weather

forecast that the probability of rain is 20% today, and assume furthermore that she fully

trusts this weather forecast. In this case, her expected value or expectation given the

lottery1 L1 = (100e, 0.8; 150e, 0.2) is EV1 = 0.8 · 100 e+ 0.2 · 150 e= 110 e if she

goes to the mall. Given the lottery L2 = (150e, 0.8; 100e, 0.2), one obtains the expected

value EV2 = 0.8 · 150 e+0.2 · 100 e= 140 e if she goes to the marketplace. Thus, given

this calculation of expected values based on her ”belief” in the weather forecast, and the

assumption that the ice-cream seller prefers more money to less money, she would decide

to sell her ice cream at the local marketplace.

A closer look at the seller’s decision problem shows that her choice of different actions is

equivalent to a choice between two different lotteries L1 and L2, each one them defined

on a common set of possible consequences X = {100, 150} = {x1, x2}. In fact, both

levels of decision making are connected in a general way via the expected utility model

(henceforth EU model) axiomatized by Von Neumann and Morgenstern [1944].

The authors show that a decision-maker’s preference on the set of (finite) lotteries L

satisfies the axioms of completeness, transitivity, continuity, and independence if and

only if there exists a utility function U : L → R defined on the set of lotteries L and a

Bernoulli utility function u : X → R defined on the set of consequences such that

U(L) =
n∑
i=1

piu(xi) (1.1)

where pi = L(xi) the probability of the outcome xi. Thus, the above stated decision

1A (finite) lottery is a probability distribution defined on a (finite) state space Ω. The state space is
a set comprising all possible states of the world. In this example, we have Ω = {ω1, ω2}. Furthermore,
I introduce the notation Li = (x1, p1; ..., xn, pn) where xi denotes the outcome of the lottery in state ωi

and pi denotes the probability of state ωi for i = 1, ..., n.
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problem of the ice-cream seller implicitly assumes that her Bernoulli utility function is

given by the identity function u(x) = x.

One of the major challenges of the ice-cream decision problem is that the seller heavily

depends on the ”objectively” given rainfall probability provided by the local weather

forecast. Assume for example that due to some reason, the seller has no access to the

information provided by the weather forecast. Still, she has to make a decision. But on

which probability should her decision be based on? The underlying problem is extensively

discussed in the literature and dates back to Knight [1921], who differentiates between

”calculable” and ”incalculable risk”. Another term for incalculable risk is ”ambiguity”.

In the stylized ice-cream seller example, the risk calculation of the rainfall probability

has already been performed by the meteorological service. In absence of this crucial

information, the seller needs to rely on her individual observations and judgments to

form a purely subjective belief. What is the difference between objective and subjective

probabilities? A subjective probability is tied to a single individual and arises in situations

of scarce information on the underlying randomization process. An objective probability

is a probability that is based on reliable and and plausible data or background information

on the randomization device. Imagine, for instance, that we observe the outcome of a

pseudorandom number generator or of a coin toss with a fair coin. In both cases, we

know the underlying probability distribution that generates the outcomes. If, in one of

these cases, the ice-cream seller met another ice-cream seller disposing of the same reliable

information on the randomization process and acting rational2 like her, then both would

agree on the same objective probability.

At this particular point, the problem of subjective probabilities is that we do not know

whether they exist or not. A certain progress regarding this question has been achieved

by Ramsey [1931], who suggests a procedure of subjective belief elicitation by observing

an individual’s willingness to pay for certain bets. By showing preference for certain bets,

the decision-maker reveals which events he judges more likely than other events given his

2A decision-maker is considered rational when she consistently conforms to a certain set of laws or
axioms.
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or her current state of knowledge. Thus, the task associated to demonstrating whether

a subjective belief exists or not is to derive a probability distribution directly from an

individual’s preference. Given Ramsey’s result, it remains questionable which properties a

preference relation needs to satisfy in order to allow for belief elicitation. De Finetti [1937]

addresses this problem by providing a set of axioms on the decision-maker’s preference

such that a subjective probability exists. Moreover, the decision-maker selects an action

by comparing expectations based on this subjective belief. The problem of De Finetti’s

approach is that the agent compares bundles by comparing expectations with respect

to the implicitly given subjective belief, in contrast to Von Neumann and Morgenstern

[1944] who obtain a utility function and represent preferences over a set of objective

lotteries. Savage [1954] reconciles the advantages of Von Neumann and Morgenstern

[1944] and De Finetti [1937] by axiomatizing the so-called subjective expected utility

model (henceforth SEU-model). If a decision-maker’s preference conforms to Savage’s set

of axioms, we can infer that a subjective belief as well as a representing utility function

exist, and that the latter selects an action such that she maximizes her subjective expected

utility. Instead of selecting between different actions from a choice set, a decision-maker

in Savage’s world selects among different (Savage-)acts, which are functions g : Ω → X

mapping from states to consequences. For each state ω ∈ Ω, the value g(ω) denotes the

outcome the decision-maker obtains if ω materializes under the assumption that g was

selected. Translated into the example of the ice-cream seller, Savage’s concept of acts

would imply that the seller goes for one of the functions g and h, where g(ω1) = h(ω2) =

100 and g(ω2) = h(ω1) = 150, instead of simply selecting between going to the ”mall” or

to the historical ”marketplace”.

Even today, Savage’s subjective expected utility model is still considered as a benchmark

model of decision making under uncertainty. Its sound axiomatic foundation and intuitive

calculus made it popular for applications in all areas of economics. In the light of Savage’s

result, Knight’s problem seems solved since the seller can determine her optimal action

according to the SEU calculus. The problem with this approach is that the ice-cream seller

might not conform to the axioms postulated in Savage’s theory. Ellsberg [1961] shows
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with the famous Ellsberg paradox, that a subjective belief might not always exist, since

decision-makers might display a preference for bets with purely objective probabilities.

In the following, I illustrate the Ellsberg paradox within the scope of the example of the

ice-cream seller. Assume that, after a few years, the ice-cream seller has learned to further

differentiate how the weather conditions affect her payoffs. She knows that in the event

of rain, she obtains 150 e if she goes to the mall, and 100 e if she sells at the historical

market. In the event of a partly cloudy or cloudless skies, she obtains 100 e if she sells

at the mall, and 180 e if she sells outside. In the event of a cloudy sky without rain, she

obtains 120 e in the mall and in the historical market. Furthermore, she agreed with two

different intermediaries on a weather-dependent contract providing her with the option

to bring the ice-cream to one of them in the morning. Intermediary 1 pays her 100 e for

the ice-cream in the event of sunny or cloudy weather, and 150 e in the event of rain.

Intermediary 2 pays her 150 e in the event of sunny weather, and 100 e else. The new,

extended decision problem of the ice-cream seller is summarized by means of Table 1.2.

action sunny cloudy rainy
mall 100 e 120 e 150 e

marketplace 150 e 120 e 100 e
intermediary 1 100 e 100 e 150 e
intermediary 2 150 e 100 e 100 e

Table 1.2: Decision Problem for the Illustration of Ellsberg’s Paradox

Assume that the seller listens to the local weather forecast and obtains the information

that the probability of rain is 30% today, but she does not get any conclusive information

on the probability of cloudy or sunny skies. I denote with psunny, pcloudy and prainy the

respective subjective probabilities. Assume furthermore that the seller prefers interme-

diary 1 towards intermediary 2 and that, if she had to select between the marketplace

and the mall, she would prefer to sell at the marketplace. If the seller exhibits such a

preference, she displays behavior that is inconsistent with Savage’s SEU-theory. This can

be demonstrated by means of the following calculations. Preferring intermediary 1 to
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intermediary 2 implies

psunnyu(100e) + pcloudyu(100e) + prainyu(150e)

>psunnyu(150e) + pcloudyu(100e) + prainyu(100e)

Simplifying this inequality yields the statement

psunny < prainy

Similarly, preference for the marketplace implies

psunnyu(180e) + pcloudyu(120e) + prainyu(100e)

>psunnyu(100e) + pcloudyu(120e) + prainyu(150e),

which is equivalent to the statement

psunny > prainy

This contradicts the existence of a subjective probability for sunny weather.

The Ellsberg paradox has paved the way for a multitude of new theories of decision

making under uncertainty. Schmeidler [1989] provides an axiomatic foundation of the

Choquet-expected utility theory (henceforth CEU-theory). Instead of probabilities that

satisfy the properties of σ-additivity and finite additivity, the Choquet model implies that

a decision-maker’s belief is non-additive and represented by a more general mathematical

structure called ”capacity” or ”charge”. In the following, I give a definition of the term

capacity (charge).

Definition 1.1 (Cf. Chateauneuf et al. [2007], p. 540). Consider the measurable space

(Ω,Σ).3 A capacity (charge) is a set function ν : Σ→ Ω mapping events from the algebra

Σ to real numbers with two additional properties. The function is normalized, implying

3A measurable space is a pair (Ω,Σ) where Ω is the sample space or state space, and Σ is a σ-algebra
of events defined on Ω.
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ν(∅) = 0, ν(Ω) = 1 and monotonic with respect to the set inclusion relation ⊂, implying

A ⊂ B ⇔ ν(A) ≤ ν(B).

The definition of a capacity is rather abstract. Nevertheless, there are certain classes

of capacities which entail insightful behavioral interpretations for economic models. In

order to illustrate the term capacity and its properties, I relate this notion to the ice-cream

seller. To begin with, I denote with R the event of rainfall, S denotes the event of sunny

weather, and C denotes the event of cloudy skies. Furthermore, I denote with RS the

event that rainfall or sunny skies occur, RC denotes the event of rainfall or cloudy skies,

and SC denotes the event of sunny skies or cloudy skies. I define a capacity by ν(∅) = 0,

ν(Ω) = 1, and ν(A) = α for all other events where α ∈ [0, 1]. This is an example for a

Hurzwicz-capacity.4. The aforementioned capacity does not fulfill the property of finite

additivity; the probability, as measured by the capacity ν, of the union of two disjoint

events is not equal to the sum of the probabilities of the single events. For example R

and S are disjoint events, formally R ∪ S = ∅, but ν(RS) = α 6= ν(R) + ν(S). Another

example for a capacity is the so-called neo-additive or non-extreme outcome capacity that

I define in the following.

Definition 1.2 (Cf. Eichberger et al. [2009], p. 359). Let q be a probability measure on

Ω. Then, for real numbers α and δ, one can define a neo-additive capacity ν by ν(∅) = 0,

ν(Ω) = 1, ν(A) = δα + (1− δ)q(A) where A ∈ Σ\{∅,Ω} is a nonempty and strict subset

from the σ-algebra Σ.

In order to illustrate the notion of a neo-additive capacity, I relate this definition to the

ice-cream seller. Assume for example that the ice-cream seller listens every day to the

same weather forecast from the same provider. Due to the large amount of past obser-

vations, she considers this weather forecast as a very reliable source of information, and

she is confident that the probabilities of rainy, cloudy, or sunny weather reaped from this

forecast are very accurate. Suppose now that there is an alternative weather forecast from

4For the general definition of a Hurwicz-capacity see e.g. Chateauneuf et al. [2007], page 541.
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a new provider available. The ice-cream seller disposes of no evidence proving the reli-

ability of this forecast. One day, she listens to this alternative weather forecast because

she missed out on the weather prediction she usually resorts to. Assume furthermore

that the alternative weather prediction is detailed enough to provide her with probabil-

ities of sunny, cloudy, and rainy weather. A natural question in this context is whether

the ice-cream seller would trust the alternative weather forecast in the same way as her

usual weather forecast. Neo-additive capacities capture the ice-cream seller’s reliability

concerns with the confidence parameter δ. If δ is equal to zero, the ice-cream seller fully

trusts the probability distribution arising from the weather forecast. If δ is equal to zero,

the seller dismisses this underlying probability completely. For intermediate values of δ

the probability of an event A ∈ Σ\{∅,Ω} is given by a convex combination of the fixed

probability α and q(A). Suppose that both weather forecasts post the same probabil-

ities for rainfall, sunny, and cloudy weather inducing the same ”objective” probability

distribution q, then the seller’s concern with respect to the reliability of the alternative

weather forecast may be expressed by assuming that δ1 is smaller than δ2 where δi for

i = 1, 2 corresponds to the confidence parameter δ in the event of the usual weather

forecast (i = 1) and the alternative forecast (i = 2). The parameter α captures the ice-

cream seller’s attitude towards ambiguity. Assume for example that the seller dismisses

completely the alternative weather forecast. In this case, her belief is, by construction,

represented by a Hurzwicz-capacity, namely the same Hurwicz-capacity which has been

introduced as an illustration of Definition 1.1. The Hurwicz-capacity assigns to all events

A ∈ Σ\{∅,Ω} the same probability α. Thus, the ice-cream seller would assign the same

probability α to the event rain R, to the event sunshine S, and to the event rain or

sunshine RS. The smaller α, the more likely it is that the ice-cream seller underestimates

the probability of very likely events and overestimates the likelihood of events with very

small probabilities. A general behavior like that might be labeled ”pessimistic”, since

the ice-cream seller worries more about unlikely, small events and considers likely events

not as likely as they might seem. If, on the other hand, the ice-cream seller assigned a

probability α close to one to all events A ∈ Σ\{∅,Ω}, this would imply that the seller
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consistently underestimates small events and overestimates a larger number of very likely

events. With a similar reasoning, one can argue that such a behavior might be labeled

”optimistic”.

The Choquet-model presumes a different notion of acts than the SEU-model. In the same

way as in the framework developed by Anscombe and Aumann [1963], an act is defined

as a mapping f : Ω → L from the state space Ω to the set L of finite lotteries on X.

Henceforth, the set of possible acts is defined as

F = {f |f : Ω→ L}.

How does this novel definition of acts fit into the example of the ice-cream seller? Again,

as in the Savage case, we can identify each of the seller’s actions with a specific act. Con-

sider, for example, the action ”going to the mall”. For each weather condition, or state

of the world, Table 1.2 indicates the seller’s payoffs. The previous definition of an act as-

sumes that the entries of Table 1.2 specify lotteries. Instead of receiving a fixed outcome,

the seller obtains for each action a lottery. An act is thus a complete plan, specifying for

each state of the world, which lottery the seller is going to play. In the end, nature plays

out this lottery and determines the seller’s payoff. Of course, this is not an explanation

yet of how we can fit the ice-cream seller’s decision problem into this framework. This

task can be accomplished by identifying each fixed monetary outcome with a lottery that

pays out exactly the same amount of money with probability one. Now, everything is

in place to specify an act f associated with the action ”going to the mall”; f maps the

state ”sunny weather” to a lottery that pays out 100 e with probability one, the state

”cloudy weather” to a lottery that pays out 120 e with probability one, and the state

”rainy weather” to a lottery that pays out 150 e with probability one.

In the expected utility model, a decision-maker’s utility over the lottery space L is rep-

resented by an expectation5. In the Choquet model, this expectation is replaced by a

”generalized expectation” the Choquet integral, which is based on a broader notion of

5Cf. equation (1.1).



Introduction 13

integration than the ”usual” expectation. More specifically, a Choquet integral allows for

integration with respect to non-additive probabilities.

Definition 1.3 (Cf. Denneberg [1994], p. 62). Let (Ω,Σ) be a measurable space, ν :

Σ → R+ a monotonic set function and h : Ω → R a Σ-measurable function.6 Then the

Choquet integral of h with respect ν is defined as

∫
Ω

hdν :=

0∫
−∞

ν({ω|h(ω) > x})− ν(Ω)dx+

∞∫
0

ν({ω|h(ω) > x})dx (1.2)

where the integrals on the right-hand side of (1.2) are improper Riemann integrals.

Remark 1.1. If ν is a capacity, it satisfies the normalization ν(Ω) = 1.

Remark 1.2 (Cf. Denneberg [1994], page 62 et seq.). In many applications and decision

problems in economics, one deals with situations where the function h takes only finitely

many values on a partition of the state space Ω. Such functions are called step functions.

Let h be a step function where h takes the values d1 > d2 > ... > dn, dn+1 := 0 and let

(Ai)
n
i=1 be a partition of Ω with Ai ∩ Aj = ∅ for all i 6= j, ∪ni=1Ai = Ω and h(ω) = di if

ω ∈ Ai. The Choquet integral of a step function is given by

∫
Ω

hdν =
n∑
i=1

(di − di+1)ν

(
i⋃

j=1

Aj

)
.

Remark 1.3. For more details on integration with respect to non-additive measures see

Denneberg [1994].

In the following, I condense the notation slightly by assuming that for an act f the ex-

pression f(ω)[xi] denotes the probability of outcome xi given the lottery f(ω). Schmeidler

[1989] proposes a set of axioms on F that entail the following representation of CEU-

preferences:

6Measurability implies that the event {ω|h(ω) > x} is contained in the σ-algebra Σ for all x ∈ R.



Introduction 14

f % g iff

∫
Ω

∑
xi

f(ω)[xi]u(xi)dν ≥
∫

Ω

∑
xi

g(ω)[xi]u(xi)dν (1.3)

This representation involves double integration. The integrands are expected utilities with

respect to the lotteries f(ω) and g(ω) respectively. Thus, for each state, the decision-

maker is confronted with different lotteries and forms expected utilities given these lotter-

ies. The probability of a state ω ∈ Ω, however, is condensed in the capacity ν. What the

CEU decision-maker does, is forming an expectation or ”average”, based on non-additive

probabilities with respect to all expected utilities that might occur for different realiza-

tions of a given act. In the end, the agent ranks all acts according to the ranking induced

by these ”averaged expectations”.

The Choquet integral formed with respect to neo-additive capacities has a specific and in-

tuitive representation. In the following, I introduce the concept of null events and simple

functions, which are technical prerequisites for the aforementioned representation.

Definition 1.4 (Cf. Chateauneuf et al. [2007], p. 540 et seq.). A set A ∈ Σ is called null

or a null-event with respect to the capacity ν if ν(A) = 0.

Thus, a null-event is an event which carries zero probability where the term ”probability”

is generalized to capacities. For a given capacity, the set of null-events is henceforth

denoted with N . In the ice-cream seller example, the only null-event is the empty set ∅.

Definition 1.5 (Cf. Chateauneuf et al. [2007], p. 540-541). A function f : Ω → R is

called simple if it is Σ-measurable and finitely valued.

In cases where the underlying capacity is neo-additive, the Choquet integral has the

following representation:

Lemma 1.6 (Lemma 3.1 from Chateauneuf et al. [2007], page 541). The Choquet-expected

value of a simple function f with respect to a neo-additive capacity ν is given by

∫
Ω
fdν : = δ

(
αmax{x : f−1(x) 6∈ N}+ (1− α) min{y : f−1(y) 6∈ N}

)
+ (1− δ)Eπ[f ]
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Proof. Cf. Chateauneuf et al. [2007], page 542.

Assume that the ice-cream seller’s belief is represented by a neo-additive capacity. How

does she determine her optimal action? As pointed out, she selects among four different

acts f1, f2, f3, f4 ∈ F , each act arising from one of her four actions available.

act action

f1 sell at the mall

f2 sell at the marketplace

f3 instruct intermediary 1

f4 instruct intermediary 2

For each act, she contemplates the Choquet integral

∫
Ω

fidν

and selects the action that entails the highest Choquet expected value. The parameter

δ captures the seller’s confidence into the prior π arising from the weather forecast. If

δ = 0, the seller gives full weight to the expectation with respect to this π. In this case,

the seller fully trusts the posted probabilities and acts as an expected utility maximizer.

If δ = 0, she gives full weight to a convex combination of extreme outcomes that occur

with non-zero probability. What are these extreme outcomes? Since each act maps to

lotteries that select an outcome with probability one, she considers for each act the best

and worst-case monetary outcome associated with this act. In cases where the seller

selects ”selling at the mall”, the best-case outcome is 150e, and the worst-case outcome

is 100e; the seller considers the value α150e + (1 − α)100e. In cases where α equals

zero, the seller gives full weight to the worst case and no weight to the best case. In cases

where α equals one, the agent gives full weight to the best case and no weight to the

worst case. For intermediate values of δ the seller assigns an overall weight of δ to the

convex combination of extreme outcomes and of 1− δ to the expectation with respect to
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π.

The MMEU model and the Choquet model are interrelated. More specifically, there is a

certain class of capacities, called convex capacities, that allow for a representation of any

Choquet expected utility as a MMEU with a specific set of priors, the so-called core of

the capacity. In the following, I define the terms convexity and core.

Definition 1.7. A capacity ν is called convex, if for all events A,B ⊂ Ω the following

inequality holds:

ν(A) + ν(B) ≤ ν(A ∪B) + ν(A ∩B)

In the literature, cf. Schmeidler [1989], a convex capacity is frequently associated with

agents that display uncertainty averse behavior.7 A decision-maker whose belief is repre-

sented by a convex capacity underestimates the occurrence of smaller, single events.

Definition 1.8. Let ν be a capacity and Ω a finite state space. Then the core of the

capacity is defined as

core(ν) =
{
q : q(A) ≥ ν(A), q probability, q(Ω) = ν(Ω), A ∈ Σ

}
.

Schmeidler [1986] shows that for a convex capacity with nonempty core and any real-

valued Bernoulli utility u : X → R one has

∫
Ω

u dν = min
p∈core(ν)

∫
Ω

u dp

Another prominent model of decision making under uncertainty is the Multiple prior

model or MaxMin-expected utility model (henceforth MMEU-model) axiomatized by

Gilboa and Schmeidler [1989]. Similar to the Choquet model, acts are defined as map-

pings f : Ω→ L, and preferences are defined on the set of acts F . Gilboa and Schmeidler

[1989] provide the subsequent representation for MMEU preferences:

7This view is criticized by Epstein [1999].
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f % g iff min
p∈Q

∫
Ω

∑
xi

f(ω)[xi]u(xi)dp ≥ min
p∈Q

∫
Ω

∑
xi

g(ω)[xi]u(xi)dp (1.4)

Q is a nonempty and closed set of priors defined on the state space Ω, and u : X → R

is a utility function.8 Again, as in the case of the Choquet model, the decision-maker

compares averages of expected utilities. One major difference to the Choquet model

is that the averaging occurs with respect to additive probabilities. For each additive

prior in the set Q, the agent forms an averaged expected utility. When evaluating an

act, the decision-maker considers the lowest of all these expected utilities. In short, the

agent compares worst-case averaged expected utilities. A decision-maker displaying such

behavior is highly pessimistic. Among all probabilistic scenarios, the latter bases his

comparison of acts solely on the worst case. A model making use of multiple priors and

allowing for optimistic and pessimistic attitudes towards ambiguity is the so-called α-

MEU model developed by Ghirardato et al. [2004]. In their framework, a decision-maker

with a prior set Q considers for a given act f ∈ F a convex combination of best- and

worst-case expected utilities.

αmin
p∈Q

∫
Ω

∑
xi

f(ω)[xi]u(xi)dp+ (1− α) max
p∈Q

∫
Ω

∑
xi

f(ω)[xi]u(xi)dp (1.5)

Until now, the α-MEU model lacks a complete axiomatization. Ghirardato et al. [2004]

argue that the α-MEU model provides a clear separation between ambiguity and a

decision-maker’s attitude towards ambiguity. The α-MEU model is criticized by Eich-

berger et al. [2011]. The authors show that a decision-maker that conforms to the axioms

suggested in Ghirardato et al. [2004] can only display extreme attitudes towards ambigu-

ity characterized by extreme optimism α = 0, or extreme pessimism α = 1.

A generalization of the MMEU model is given by the variational representation of pref-

erences axiomatized by Maccheroni et al. [2006]. Given their set of axioms, Maccheroni

8Bewley [2002] proposes a model of decision making under uncertainty which allows for a similar
representation as the MMEU model. In contrast to Gilboa and Schmeidler [1989], Bewley’s model is
based on the assumption of incomplete preferences.
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et al. [2006] obtain the subsequent representation of preferences on F :

f % g ⇔ min
p∈Q

{∑
xi

f(ω)[xi]u(xi) + c(p)

}
≥ min

p∈Q

{∑
xi

g(ω)[xi]u(xi) + c(p)

}
(1.6)

The function c : ∆→ [0,∞] is a grounded9, convex, and lower semicontinuous function. If

the function c equals zero, the model reduces to the MMEU model. The rationale speaking

for the introduction of variational preferences is again the objective to separate ambiguity

and a decision-maker’s attitude towards ambiguity.10 A special case of the variational

model are the so-called multiplier preferences introduced by Hansen and Sargent [2001].

In their model, the authors specify c as a multiple of the so-called relative entropy,

which is a mathematical concept established by Kullback and Leibler [1951]. Given

two probability distributions p and p∗, the relative entropy R(p, p∗), or Kullback-Leibler

divergence, constitutes a distance measure between p and p∗ where q is usually referred

to as reference probability.

Definition 1.9. If p and p∗ can be represented by densities f and f ∗, then the Kullback-

Leibler divergence is defined as

R(p, p∗) =

∫ ∞
−∞

log
f(x)

f∗(x)
dx.

Multiplier preferences are based on the following functional form

UMUPR(f) = min
p∈Q

{∑
xi

f(ω)[xi]u(xi) + γR(p, p∗)

}
(1.7)

where f ∈ F is a simple act, and γ ≥ 0 is a parameter measuring the impact of the relative

entropy. If γ equals zero, the objective reduces to the objective of the MMEU model. For

large values of γ, the agent gives large weight to the Kullback-Leibler divergence. In this

case, the agent bases her decision on a prior in the prior set Q that (nearly) minimizes the

distance to the reference probability p∗. An axiomatic foundation of multiplier preferences

9Grounded means that the infimum value of c is zero, cf. Maccheroni et al. [2006], p. 1456.
10Maccheroni et al. [2006] state that attitude towards ambiguity is condensed in the function c.
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is provided by Strzalecki [2011].

Another model of decision making under uncertainty is the Smooth ambiguity or KMM

model introduced by Klibanoff et al. [2005]. Again, as in previous models of decision

making under uncertainty, there is a state space Ω and a σ-algebra Σ(Ω) of possible

events. Furthermore, the KMM model operates with second-order probabilities. In this

respect, I denote with ∆ the set of all probability distributions on Ω and Σ(∆) is a σ-

algebra of events defined on ∆. An event A ∈ Σ(∆) consists thus of a set of probability

distributions, each probability defined on the state space Ω. Let µ : Σ(∆) → [0, 1] be a

second-order probability distribution on ∆. Then, the value µ(A) for an event A ∈ Σ(∆)

denotes the probability that one of the probability distributions in A is the true underlying

probability. Given the set of axioms in Klibanoff et al. [2005] a decision-maker’s utility

U on the set of simple acts F takes the subsequent functional form:

UKMM(f) :=

∫
∆

Φ

(∫
Ω

∑
xi

f(ω)[xi]u(xi)dp

)
dµ(p). (1.8)

The function u : X → R is a Bernoulli utility, and Φ : u(X)→ R is a strictly increasing

function. The KMM functional can be interpreted in the following way: the inner integral

corresponds to an expected utility with respect to the additive subjective belief p. Similar

to previously introduced models of decision making under uncertainty, the decision-maker

forms an average of multiple expected utilities. In the context of the KMM model, this

averaging occurs with respect to the second-order probability µ. In the general case,

the function Φ distorts the inner expected utilities, unless Φ equals the identity. In this

special case, the model reduces to the model of Anscombe and Aumann [1963]. A special

feature of the KMM model is that the reduction of compound lotteries to simple lotteries

is in general not possible.

The KMM model is criticized by Epstein [2010]. The author argues by means of thought

experiments that the KMM’s axiomatic foundation is problematic from a normative point

of view and that separation between ambiguity and ambiguity attitude cannot be achieved
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by KMM. Furthermore, Epstein [2010] states that the benefits of the KMM model as com-

pared to the MMEU model remain unclear.

To conclude, I want to mention briefly that there are more models of decision making

under uncertainty, which I am not going to discuss hereafter, since they are not essential

for the understanding of this thesis. Among these models is the vector expected utility

model axiomatized by Siniscalchi [2009], a model using so-called source functions devel-

oped by Abdellaoui et al. [2011], the issue-preference model introduced by Ergin and

Gul [2009], the confidence function model developed by Chateauneuf and Faro [2009],

the model of uncertainty averse preferences introduced by Cerreia-Vioglio et al. [2011],

and the expected uncertain utility model axiomatized by Gul and Pesendorfer [2014].

For a discussion of all of these models, except the model by Abdellaoui et al. [2011], I

recommend the survey article by Machina and Siniscalchi [2014].

1.2 Dynamic Models of Decision Making Under Un-

certainty

By now, there is a variety of articles extending the static models of decision making under

uncertainty treated in the previous section to intertemporal settings. A major challenge

in this context is the problem that these extensions might induce decision-makers to

violate dynamic consistency. In the literature, one can find, depending on its context,

different notions and definitions of dynamic consistency. Roughly speaking, the idea of

dynamic consistency is tied to the view that any intertemporal decision problem can

be represented by an event or decision tree. Ex-ante the decision-maker determines an

optimal plan indicating which action he or she takes once arriving at a specific node of

the tree. Now, dynamic consistency requires the decision-maker to stick to the original

plan once a specific node at the tree is reached.11 This means that, even though the

decision-maker obtains the information that she arrived at a certain node she will not

11Cf. Machina [1989], page 1636 et seq.
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revise her plan, she still finds her ex-ante plan optimal. Ghiradato [2002] provides a formal

definition of dynamic consistency in a Savage framework. In order to further clarify the

definition in Ghiradato [2002], I introduce the subsequent notation.

Notation 1.1. For two acts f, g ∈ F and an event A ∈ Σ the act fAg denotes the act that

equals g on the complement Ac of A and equals f on the event A. The preference relation

%A denotes the so-called conditional preference relation. It refers to the decision-maker’s

preference after he or she obtained the information that the event A has occurred.

Furthermore, Ghiradato [2002] introduces Savage’s definition of null events, cf. Savage

[1954].

Definition 1.10 (Null event). An event A is called Savage-null with respect to % if and

only if for all acts f, g, h, h′ ∈ F

fA
c

h % gA
c

h′ if and only if f % g

Definition 1.10 says that no matter how we change the acts f and g on the event A, the

original preference relation remains unaffected. In the following, I denote with Σ′ the set

of all Savage non-null events.

Definition 1.11 (Dynamic consistency, cf. Ghiradato [2002], page 87). For all events

A ∈ Σ′ and acts f, g ∈ F , both the following conditions hold:

1. If f %A g then fAg % g

2. If fAg % g then f %A g

The first condition says that, if the decision-maker knows that A has occurred and he

prefers f over g given this information, then he should also prefer the act fAg, which is

just a modification of f on the complement Ac, from an ex-ante perspective. The second

condition implies the reverse logical direction. If the decision-maker prefers the modified
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act fAg from an ex-ante perspective, then he should prefer f over g when he knows that

A has occurred.

Dynamic consistency is a prerequisite for the applicability of the backward induction

principle. In the following, I give an example for an event tree and illustrate dynamic

consistency as well as the backward induction principle under risk. Assume that there

are three time points t = 0, 1, 2 and a decision-maker and that has two actions available

A and B at time t = 0. Furthermore, there are two states of the world ω1 and ω2 that

materialize at time t = 1. The agent knows the probability pi of each state ωi occurring.

At time t = 2 the agent selects among two different actions C and D and obtains her

payoffs immediately afterwards. The following event tree illustrates this decision problem

where pi ∈ R denote the decision-maker’s payoffs.

Figure 1.1: Decision Tree Under Risk

A complete plan for the decision-maker specifies what she does at each decision node, for

instance (A,C) stands for selecting action A at time t = 0 and action C at time t = 2.

The agent’s optimal plan can be determined with the backward induction principle. As-

sume for the sake of simplicity that the decision-maker is a risk neutral expected utility

maximizer, and thus that her utility function equals the identity. First, she determines

the optimal action at time t = 2. Therefore, she compares the expected utilities induced
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by the plan (A,C) with the expected utility induced by the plan (A,D). Similarly, she

compares the expected utility induced by the plan (B,C) with the expected utility in-

duced by the plan (B,D). In each of these cases, she selects the action yielding the

highest expected utility value. As a last step, she compares the highest expected utility

values induced by action A and B and selects the plan that induces the highest overall

expected utility value.

There is a variety of articles demonstrating the conflict of dynamic consistency with

non-expected utility models. Machina [1989] provides examples under which decision-

makers display dynamically inconsistent behavior when deviating from expected utility

theory. Karni and Schmeidler [1991] find that dynamic consistency12 and the indepen-

dence axiom of the EU-theory by Von Neumann and Morgenstern [1944] are equivalent if

decision-makers satisfy the reduction of compound lotteries axioms and consequentialism.

Furthermore, the article by Epstein and Le Breton [1993] demonstrates that if preferences

are based on beliefs13 and beliefs are updated by Bayes’ rule, the decision-maker holds a

single Bayesian belief. This finding is problematic for non-expected utility models since

it implies that one of the conditions postulated in Epstein and Le Breton [1993] need

to be relaxed in order to justify beliefs implied by the models of decision making under

uncertainty presented in the previous section. Ghiradato [2002] provides an axiomatiza-

tion of a dynamic version of Savage’s SEU model incorporating dynamic consistency and

another prominent axiom of dynamic models of decision making under uncertainty, called

consequentialism.

Definition 1.12 (Consequentialism, cf. Ghiradato [2002], page 88). For any A ∈ A′ and

all f, g ∈ F , f(ω) = g(ω) for each ω ∈ A implies f ∼A g.

Consequentialism requires that if two acts coincide on a non-null event A and the agent

obtains the information that A has occurred then she must be indifferent between both

12The terms dynamic consistency and consequentialism are defined in the space of compound lotteries.
13The preference relation % is based on beliefs if and only if there exists a relation %l defined on the

algebra Σ of events such that for all events A,B ∈ Σ the DM prefers to bet on event A if and only if
A %l B, cf. Epstein and Le Breton [1993], page 2.
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acts.

In the following, I give a short summary on dynamic extensions of decision-theoretic

models featuring ambiguity. Epstein and Schneider [2003] provide a dynamic extension

of the MEU model using a recursive structure. The authors maintain dynamic consistency

by restricting the set of priors to so-called rectangular prior sets and assuming that each

prior is updated by Bayes’ rule individually. The definition of rectangularity is thereby

tied to the agent’s underlying information structure, the so called filtration. In the

following, I discuss the terms filtration and rectangularity.

Definition 1.13. A filtration F = {Ft} is a sequence of sub-σ algebras of Ω where

Fs ⊂ Fl for s ≤ l.

Remark 1.4. The σ-algebra Ft represents the agent’s information on the decision prob-

lem at time t. In most relevant intertemporal decision problems it is assumed that the

state space Ω is finite. In these cases, there exists a finite partition of the state space

Ω and that this partition generates the σ-algebra Ft.14 In this case, one can identify

each sub-σ-algebra Ft with its generating partition. Moreover, denote with Ft(ω) the

component of the generating partition that contains ω. At time t, the decision-maker

cannot differentiate between states in the same component Ft(ω).

In order to define the term rectangularity, I introduce the following notation from Epstein

and Schneider [2003], page 7.

Notation 1.2. Consider the measurable space (Ω,Σ) and a probability p defined on that

space. Consider the sub-σ algebra Ft of the filtration F . By Remark 1.4 there exists a

finite partition of the state space

Ω =
n∑
i=1

Ati

14A collectionM of subsets of Ω generates the σ-algebra Σ if Σ is the smallest σ-algebra that contains
M where the term ”small” refers to set inclusion ⊆.
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such that this partition generates the sub-σ algebra Ft. For each ω ∈ Ω there exists a

unique event Atω in the partition such that ω ∈ Atω. In this context, I define

pt(·) := p(·|Atω)

as the conditional probability with respect to the sub-σ-algebra Ft and

p+1
t = pt|Ft+1

is the restriction of pt on the sub-σ algebra Ft+1 called one-step-ahead conditional prob-

ability. The one-step-ahead conditional can be interpreted in the following way: given

the information Ft(ω) at time t, the decision-maker might be able to exclude certain

realizations of the state space. More specifically, she knows that the observed realization

ω lies in the event Atω. At time t+ 1 the decision-maker knows that the realization lies in

the event At+1
ω , which is a subset of Atω. This is because, by definition, the filtration at

time t+ 1 is finer than the filtration at time t. More specifically, the partition generating

Ft+1 is finer than the partition generating Ft. Thus, at time t, it is possible to restrict

the partition generating Ft+1 to all events that are subsets of Atω. Now, the one-step-

ahead conditional probability assigns a probability to these events given the information

available at time t. Figure 1.2 illustrates graphically the remarks of this paragraph. The

state space is represented by the ellipse. Given the information structure of the problem,

the decision-maker knows at time t that the true ω lies either in the red part or in the

blue part of the ellipse. At time t + 1 the decision-maker knows that the true ω lies in

one of the events 1 to 7. Assume, for instance, that the decision-maker knows at time

t that the true ω lies in the red part of the ellipse. In this case, the decision-maker can

already exclude events 5 to 7. Given the information at time t the decision-maker forms

a prior defined on the events that constitute the remaining part of the ellipse. What is

for instance the probability that ω lies in event 1. It is the one-step-ahead probability
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Figure 1.2: Example for Filtrations and One-Step-Ahead Conditionals

p+1
t (B) where B is the event B = {ω lies in event 1}. Assume now that the decision-

maker’s belief structure at time t = 0 is represented by a set of priors P . In this case,

the decision-maker successively updates each prior by Bayes’ rule and obtains for each t

the so-called set of Bayesian updates

Pt(ω) := {pt(·) : p ∈ P}.

Similarly, the set of one-step-ahead conditionals at time t is defined as

P+1
t (ω) :=

{
p+1
t (·) : p ∈ P

}
.

In the following, I define the term rectangularity of a prior set.

Definition 1.14 (Rectangularity, cf. Epstein and Schneider [2003], page 8). The prior

set P is called Ft-rectangular if and only if

Pt(ω) =

{∫
Ω

pt+1(ω′)dm : pt+1(ω′) ∈ Pt+1(ω′) ∀ ω′,m ∈ P+1
t (ω)

}
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Subsequently, I give an intuitive interpretation of this definition. Consider a general

probability measure pt. Given the underlying filtration F , we can deduce its Bayesian

update pt+1 as well as its one-step-ahead conditional p+1
t . Since Epstein and Schneider

[2003] require dynamic consistency in their framework, agents with these preferences can

determine optimal plans by using the previously explained backward induction principle.

Working backwards, the decision-maker needs to reconstruct the probability pt from its

one-step-ahead conditional and its Bayesian update pt+1. Formally,

pt(ω) =

∫
Ω

pt+1dp
+1
t (ω) (1.9)

In a single prior world, this reconstruction is always possible due to the law of iterated

expectations, cf. Epstein and Schneider [2003], page 7. The decision-maker simply inte-

grates the Bayesian-update with respect to the one-step-ahead conditional distribution to

reconstruct the original distribution pt. In a world of multiple priors, the aforementioned

reconstruction process might fail, since the agent ignores which of the multiple one-step

ahead conditionals and Bayesian updates she needs to combine to generate the specific

distribution pt. Therefore, when applying the backward induction principle, the agent

might blend one-step-ahead conditionals with Bayesian updates that were not intended

to be combined together from an ex-ante perspective. This inevitably leads to an en-

larged prior set P̂t(ω) ⊃ Pt(ω) when working backwards. Now, rectangularity makes sure

that, given the filtration F , the prior set P is ”rich enough”, such that the updated prior

set Pt(·) corresponds to the prior set P̂t(·), which one would obtain when applying the

backward induction principle.

By now, there are frameworks that go beyond the recursive multiple prior model. Wang

[2003] axiomatizes updating rules for dynamic models of decision making under uncer-

tainty that are non-Bayesian. As a special case, the author obtains the so-called ”general-

ized Bayes rule” which corresponds exactly to the updating rule employed in the multiple

prior framework of Epstein and Schneider [2003]. Hayashi [2005] provides an axiomati-

zation of an intertemporal model of decision making under uncertainty that yields the
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recursive multiple prior framework of Epstein and Schneider [2003] and the model devel-

oped by Kreps and Porteus [1978] as special cases. As a consequence, the author refers to

this model as ”generalized recursive multiple priors utility”. In contrast to Epstein and

Schneider [2003], the model introduced by Hayashi [2005] allows the authors to disentan-

gle ambiguity, risk aversion, and intertemporal substitution.15

An intertemporal version of the Choquet model called iterated Choquet expected utility

is axiomatized by Nishimura and Ozaki [2003]. The question of dynamic consistency in

the Choquet model is addressed by Eichberger et al. [2005], who consider the class of

convex capacities and informational framework with an underlying fixed filtration. In

their framework, dynamic consistency can be implied if beliefs are additive over the final

stage of the underlying filtration.

A dynamically consistent and consequentialist extension of the Smooth ambiguity model

is axiomatized by Klibanoff et al. [2009].

A dynamic version of the vector expected utility model is treated by Siniscalchi [2011].

In the previous sections, I sketched briefly the historical development of decision theory

and introduced a variety of models of decision making under uncertainty. For a more

detailed summary on the development of decision theory and models of decision making

under uncertainty see, for instance, the surveys by Machina and Siniscalchi [2014] or

Etner et al. [2012].

15See the abstract of Hayashi [2005].



Chapter 2

Spatial Competition Under

Ambiguity

2.1 Introduction

Product development is one of the most influential processes for the success of an enter-

prise, see for instance Brown and Eisenhardt [1995]. Firms compete by creating products

with new or different characteristics, amongst others, in order to enter new markets, to

retain current customers or to attract new purchasers.

A well-known and widely studied model of product differentiation is the location-then-

price duopoly game introduced by Hotelling [1929].1 In his original framework, Hotelling

discussed a model with two firms and uniformly distributed consumers along a compact

interval facing linear transportation costs. At the first stage of the game, firms choose

simultaneously their locations on this interval. At the second stage, firms face price com-

petition.

1The ”location” in Hotelling’s game is typically interpreted as a position in a geographical or product
type space. In this paper, we focus in the following on the latter interpretation.

29
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A vast literature deals with a multitude of extensions of Hotelling’s model.2 In partic-

ular, d’Aspremont et al. [1979] show that, under linear cost functions, the existence of

a subgame-perfect Nash equilibrium (henceforth SPNE ) is not guaranteed. As a resort

to this complication, d’Aspremont et al. [1979] replaced Hotelling’s original assumption

of linear transportation costs by quadratic ones. In the literature, Hotelling models with

quadratic cost functions are frequently denoted by ”AGT-models”.3

Since in most real-world situations, firms are confronted with uncertain consumer pref-

erences, a part of the more recent literature analyzes the impact of demand uncertainty

on equilibrium product differentiation. Balvers and Szerb [1996] consider a Hotelling

framework incorporating random shocks on the quality of each firm’s product under the

assumption that there is no price competition. Harter [1996] considers a Hotelling model

with demand location uncertainty where firms enter the market sequentially. Similar to

Harter [1996], Casado-Izaga [2000]4, Meagher and Zauner [2004], and Meagher and Zauner

[2005] discuss extensions of Hotelling’s model where demand uncertainty is introduced by

enabling the midpoint of the consumer interval to be probabilistic. Meagher and Zauner

[2005] generalize Casado-Izaga [2000] by parametrizing the length of the support. They

find that equilibrium differentiation increases in the size of the support. Meagher and

Zauner [2004] restrict this support to compact subsets of the interval
[
−1

2
, 1

2

]
but allow

for a broad class of density functions. Again, Meagher and Zauner (henceforth MZ) come

to the conclusion that uncertainty constitutes a differentiation force, namely an increase

in the variance of the underlying probability distribution over the midpoint leads to more

pronounced equilibrium product differentiation.

All the contributions mentioned above imply that firms’ beliefs are represented by a

unique and common prior. However, in reality, this assumption may be violated for sev-

eral reasons. First of all, the assumption of a unique common probability distribution

for both firms is more restrictive than it may seem to be at first glance, especially in

2See e.g. Gabszewicz and Thisse [1992] for a survey.
3AGT stands for D’Asprémont, Gabszewicz and Thisse
4Casado-Izaga [2000] assume that consumers are uniformly distributed on the interval [Θ,Θ+1] where

Θ is drawn from a uniform distribution [0, 1]. Consequently, the midpoint of the consumer interval follows
implicitly a uniform distribution on [ 12 ,

3
2 ].



Chapter 2. Spatial Competition Under Ambiguity 31

situations where both firms are ex-ante completely uninformed or incapable to rely on

past experiences or observable data. Furthermore, critiques in favor of a unique common

probability distribution may argue that it is possible to apply the ”principle of insufficient

reason”5 in case of missing information. However, Ellsberg [1961] indicates in his famous

mind experiment that in situations of ”ambiguity” where probabilities are unknown, or

imperfectly known, a considerable share of individuals displays preferences which are

incompatible with probabilistic beliefs. By now, several decision theoretic models of am-

biguity have been developed. Prominent examples are the multiple prior model of Gilboa

and Schmeidler [1989], the Choquet expected utility (henceforth CEU ) model of Schmei-

dler [1989], and the smooth ambiguity model of Klibanoff et al. [2005].

Although ambiguity is prevalent in many real-world situations, there are almost no

Hotelling models incorporating this type of uncertainty. To our knowledge, Król’s [2012]

article is the sole contribution on this topic. Król [2012] introduces complete ambigu-

ity6 into the framework of Meagher and Zauner [2004] and examines, amongst others,

the influence of ambiguity attitude on firms’ decisions if firms use the Arrow/Hurwicz

α-maxmin criterion7. Król [2012] finds that uncertainty can be an agglomeration force if

firms are sufficiently pessimistic.

The present paper studies the impact of confidence and pessimism on product differen-

tiation. Inspired by the contributions of MZ and Król [2012], we develop a Hotelling

model with demand location uncertainty by using the framework of Meagher and Zauner

[2004] and Schmeidler’s concept of CEU. More specifically, we assume that firms’ beliefs

are represented by a neo-additive capacity introduced by Chateauneuf et al. [2007]. Our

framework provides additional analytical tools for understanding product differentiation

under demand uncertainty. Besides firms’ ambiguity attitude, we distinguish four differ-

ent sources of ambiguity and determine their influence on firms’ product design choices:

5The ”principle of insufficient reason” or ”principle of indifference”, enunciated in the works of
Pierre-Simon Laplace, see e.g. Laplace [1812], states that if decision-makers have no information about
the frequency of occurrence of elementary events, and therefore no reason to believe that one elementary
event will occur preferentially compared to another, they might consider them as equally likely.

6Complete ambiguity or ignorance refers to a situation where probabilistic information is absent.
7See Hurwicz [1951] and Arrow and Hurwicz [1972].
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(i) the variance of firms’ prior beliefs, (ii) the degree of ambiguity, (iii) the size of the sup-

port of the uncertainty and (iv) the magnitude of the parameter of consumers’ quadratic

cost functions. In particular, (ii) offers plausible possible explanations for real-life phe-

nomena. In fact, the models of Meagher and Zauner [2004]8 and Król [2012] are special

cases of the capacity model.

Our paper is organized as follows: In the following section, we give a detailed description

of our model. As a second step, we derive firms’ pure strategy subgame-perfect prod-

uct design choices for the Hotelling game under ambiguity. Thereby, we assume that

firms’ beliefs are represented by neo-additive capacities. In section 4, we carry out a

comparative static analysis with respect to all model parameters and study implications

for equilibrium product characteristics and Choquet expected profits. Section 5 presents

implications for possible applications of the Hotelling model under demand location un-

certainty. In particular, we reexamine the examples mentioned in Król [2012]. Finally,

section 6 concludes with a summary and a discussion of our findings.

8With a technical restriction. For more details see section 3, especially Remarks 3.1 and 2.3.
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2.2 Basic Framework

Our framework is inspired by the modified AGT-model of Meagher and Zauner [2004].

There are two firms, i = 1, 2, interacting in a two-stage Hotelling duopoly game. Each

firm produces a homogeneous commodity at constant marginal production costs which

are normalized to zero. At the first stage of the game, firms select simultaneously their

product characteristics xi from the real line under the assumption that x1 ≤ x2. At the

second stage, firms face price competition setting prices pi ∈ R+ simultaneously as well.

Furthermore, there is a unit mass of consumers, each consumer being uniquely charac-

terized by a specific taste, s ∈ R, representing her ideal commodity. Consumer tastes are

assumed to be uniformly distributed on an interval of the form [M − 1
2
,M + 1

2
] where

M ∈ R. A customer whose taste is located at s and consumes product i, faces a disutility

from not consuming her ideal product. Consumers’ utility losses depend on the squared

distance between s and the selected product design xi, formally t(s−xi)2 where t ∈ R++.9

In addition, customers need to pay the price pi of product i. As a consequence, total costs

are given by pi+ t(s−xi)2. Moreover, we assume that customers purchase one unit of the

homogeneous good from the firm that brings about the lowest total costs. Implicitly, this

guarantees that consumers’ outside option is non-binding, or in other words, that there

is no reservation price.

In the certainty model M and t are a fixed and exogenously given parameters known to

both firms throughout the game. In the risk model of Meagher and Zauner [2004] M

is unknown to both firms whereas the scaling parameter t is normalized to 1. In the

model of Król [2012] firms face ambiguity with respect to (t,M) resolving ambiguity with

the Arrow/Hurwicz α-maxmin criterion. Similar to these models, we presume that the

realization (t̂, M̂) of (t,M) is revealed to both firms before the price competition.

Assumption 1. Uncertainty is resolved at the second stage of the game.

9The parameter t allows for an up- or downward distortion of this quadratic disutility.



Chapter 2. Spatial Competition Under Ambiguity 34

As postulated in Assumption 1, the realization (t̂, M̂) is revealed to both firms after

the product design competition but before the price game. The rationale behind this

assumption lies in the fact that most firms are able to adjust prices more easily than

product designs, see e.g. Meagher and Zauner [2004]. If for instance actual sales volumes

differ from estimated sales volumes, firm managers are usually in the position to readjust

retail prices accordingly.

In addition, we assume that firms dispose of some probabilistic information condensed

in a common prior q. We refer to q as ”reference probability distribution” or ”reference

prior”. Similar to the risk case, one needs to make several assumptions concerning the

reference probability q which are summarized in Assumption 2.

Assumption 2. The reference prior q on (t,M) satisfies the subsequent requirements:

(R1) The variance of M exist: Eq|M2| <∞.

(R2) The expectation of M is normalized to zero: Eq[M ] = 0.

(R3) The distribution of M has no atoms.

(R4) The support of M is given by the symmetric interval [−L,L] ⊆
[
−1

2
, 1

2

]
.

(R5) The support of t is given by the interval [t, t] where t ∈ (0, 1] and t ≥ 1.

(R6) The expectation of t is normalized to 1: Eq[t] = 1.

(R7) The random variables t and M are uncorrelated.

Eq denotes the expectation formed with respect to the prior q.

At the first stage of the game, the random variable M enters quadratically into each

firm’s objective function.10 This observation provides a justification why firms’ product

design choices solely depend on the first and second moment of M . On these grounds,

Assumption (R1) guarantees the existence of best response functions. Moreover, taking

10See equation (2.1) and Lemma 2.5.
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(R1) and (R4) together, we can formulate the following lemma which proves to be very

useful for the mathematical considerations in the comparative statics section.

Lemma 2.1. The Requirements (R1) and (R4) imply

Eq[M ] ∈ [−L,L] and V arq(M) ∈
[
0, L2

]
Proof. The proof of this lemma is contained in the appendix.

The Requirements (R2) and (R6) are introduced for reasons of symmetry and tractability.

Requirement (R3) is purely technical in nature and can be replaced in order to allow for

discrete distributions or mixtures of continuous and discrete distributions. (R4) makes

sure that the support of M is a compact subset of the interval [−1
2
, 1

2
] restricting the size

of uncertainty to be relatively small. In addition, it assures that the extreme intervals

for possible realizations of the consumer distribution [−L− 1
2
,−L+ 1

2
] and [L− 1

2
, L+ 1

2
]

always have a non-empty intersection. This is a necessary assumption due to the following

reason: If the size of uncertainty is large enough, one encounters three possible cases.11

(1) The firm located left becomes a monopolist.

(2) Both firms share the market.

(3) The firm located to the right becomes a monopolist.

When the size of uncertainty is small, only the second case applies. In this paper, we

intend to restrict the analysis to the duopoly case. Furthermore, (R4) and (R5) imply

that the support of q is a subset of [t, t] × [−L,L]. Lastly, (R7) ensures that we can

disentangle the effects of t and M .

11See Meagher and Zauner [2005] for a detailed investigation of these additional cases for the risk
case.
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2.3 Introducing Ambiguity into the Game

We introduce ambiguity by assuming that firms’ beliefs are represented by non-additive

probabilities or capacities. A capacity is a normalized and monotonic set function.

Definition 2.1 (Compare Schmeidler [1989], page 578). Let Ω be a finite or infinite

non-empty set of states of the world and let Σ be an algebra of events defined on it. A

capacity is a real-valued function ν : Σ→ R such that

(1) ν(∅) = 0 and ν(Ω) = 1 (normalization)

(2) E,F ∈ Σ and E ⊆ F implies ν(E) ≤ ν(F ) (monotonicity).

A capacity can be seen as a generalized probability measure that does not necessarily

retain σ-additivity. The expectation with respect to a non-additive measure is formed by

using a Choquet integral12. In the present paper our analysis relies on a distinct class of

capacities, named neo-additive capacities, axiomatized by Chateauneuf et al. [2007].

Definition 2.2 (Compare Eichberger et al. [2009], page 359). Let q be a probability

distribution on Ω = [t, t] × [−L,L] satisfying Assumption 2. Then, for real numbers α

and δ, a neo-additive capacity ν is defined by ν(∅) = 0, ν(Ω) = 1, ν(A) = δα+(1−δ)q(A)

where A ∈ Σ is a nonempty and strict subset of Ω.

From our point of view, neo-additive capacities display several nice features. The param-

eter δ can be interpreted as a measure of ambiguity or of firms’ confidence in the common

reference prior q. Thus, one can contemplate our model as a setting where firms exhibit

uncertainty with respect to their prior beliefs due to imprecise or unreliable information.

Moreover, the parameter α describes firms’ attitude towards ambiguity. The higher α, the

more pessimistic firm managers are. As a result, neo-additive capacities allow for a clear

separation between the degree of ambiguity and firms’ ambiguity attitude which is, as we

12See Choquet [1955].
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want to argue in this paper, essential for many economic applications. Consequently, we

assume that the neo-additive capacity represents firms’ ex-ante uncertainty.

Assumption 3. Each firm’s belief on (t,M) is represented by a neo-additive capacity ν.

The rationale speaking for the introduction of neo-additive capacities lies in in the fact

that firms might not completely trust the information available at the time of making

their product choice. There are multiple reasons why this might be the case, e.g. firms

introducing newly innovated products into the market might dispose of data on similar

products that are already established in the market but have no data on the new good. It

seems plausible that firms use this data to predict the market outcome, still firms cannot

account for short-term trends in consumer tastes. Furthermore, data reliability is closely

tied to the comparability of the reference product with the newly innovated product. The

more heterogeneous both products are, the less plausible it seems to rely on available data

on the reference product. Neo-additive capacities allow for a model of partial information

where firms have a certain stock of data available whose reliability might be questionable

up to a certain degree. Interpreted in this way, the model developed by Król [2012] refers

to a situation where firms have ex-ante no information about the distribution of consumer

tastes or completely distrust information available at the time of making their product

design choices. Moreover, neo-additive capacities allow for an additional interpretative

component with respect to a multitude of possible real-world applications of Hotelling

models under uncertainty by adding an additional explanatory source for increasing or

decreasing product differentiation under ambiguity.

2.4 Solving the Game

In this section, we determine equilibrium product differentiation under ambiguity by

backward induction. In a first step, we solve the price subgame at the second stage where
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the midpoint M of the consumer distribution and the cost parameter t are fixed and

known to both firms.

2.5 Price Subgame

According to Assumption 1, the realization (t̂, M̂) is known to both firms at the second

stage. Equilibrium prices are zero if firms do not differentiate their products. Otherwise,

firms’ equilibrium prices depend on the distance between firms’ averaged product design

x̄ := x1+x2
2

and the realized midpoint M̂ . There is an interior equilibrium where each firm

charges a positive price:

Lemma 2.2. If x1 ≤ x2 and (M̂ − x̄) ∈ [−3
2
, 3

2
], firms charge the subsequent equilibrium

prices:

p∗1 =
2

3
t̂∆x

(
x̄− M̂ +

3

2

)
and p∗2 =

2

3
t̂∆x

(
−x̄+ M̂ +

3

2

)
Proof. See Anderson et al. [1997], page 107 and Meagher and Zauner [2004], page 203.

Apart from the interior equilibrium, there are two more boundary equilibria where one

of the two firms becomes a monopolist:

Lemma 2.3 (Boundary price equilibria). If x1 ≤ x2 and (M̂ − x̄) /∈ [−3
2
, 3

2
], firms charge

the subsequent equilibrium prices:

p∗1 = 2t̂∆x

(
x̄− M̂ − 1

2

)
and p∗2 = 0 if (M̂ − x̄) < −3

2

or

p∗2 = 2t̂∆x

(
M̂ − x̄− 1

2

)
and p∗1 = 0 if (M̂ − x̄) > 3

2
.

Proof. See Anderson et al. [1997], page 107 and Meagher and Zauner [2004], page 203.
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2.6 Product Design Competition

As shown in the previous section, one obtains for a fixed pair (x1, x2) of product charac-

teristics a unique equilibrium for the price subgame. By making use of the equilibrium

prices from Lemma 2.2 and 2.3, we obtain firms’ second stage profits for the realization

(t̂, M̂) depending on firms’ product characteristics:

Πi(xi, xj, t̂, M̂) =


t̂∆x

[
1 + 2 (−1)i(M̂ − x̄)

]
for (−1)i (M̂ − x̄) > 3

2

t̂∆x

[
3(−1)i + 2(M̂ − x̄)

]2

/18 for (M̂ − x̄) ∈ [−3
2
, 3

2
]

0 otherwise

(2.1)

where x̄ := x1+x2
2

, ∆x := x2 − x1 and j := 3− i.

In the following, we elaborate on each firm’s objective function at the first stage of the

game. In order to do so, we rely on the fact that the second piece of (2.1) is monotonic

in (t̂, M̂) as specified in Lemma 2.4 below.

Lemma 2.4. If the condition (M̂ − x̄) ∈ [−3
2
, 3

2
] is met, firm i’s profit function

Πi(x1, x2, t̂, M̂) is strictly increasing in t̂, strictly decreasing in M̂ for firm 1, and strictly

increasing for firm 2, provided that x1 < x2.

Proof. The proof of the lemma is contained in the appendix.

At the first stage of the game, the distribution of (t,M) is unknown. In accordance

with Assumption 3 and Definition 2.2, firms consider the Choquet expected value of their

first stage profits. We denote firms’ objectives as CEU[Πi(xi, xj, t̂, M̂)]. Note that the

Choquet-expected value is formed with respect to a neo-additive capacity. Following

Lemma 3.1 in Chateauneuf et al. [2007], page 541, we obtain the representation (2.2) of

firm i’s Choquet expected profit at the first stage of the game.
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CEU[Πi(x1, x2, t,M)] =

∫
Πi(xi, xj, t̂, M̂)dν = (1− δ)Eq[Πi(xi, xj, t,M)]

+ δ[(1− α) max{Πi(xi, xj, t̂, M̂) : (t̂, M̂) ∈ supp(t,M)}

+ αmin{Πi(xi, xj, t̂, M̂) : (t̂, M̂) ∈ supp(t,M)}]

(2.2)

Remark 2.1. These Choquet expected profits allow for a nice interpretation, namely

that they generalize Hotelling models treated in the literature before. For δ = 0 and a

constant scaling factor t = 1, we obtain the model of Meagher and Zauner [2004] with

a normalized mean of M . In case of δ = 1 and t = 1, the framework boils down to the

model of Król [2012]. Thus, we can consider these specifications as extreme cases of the

capacity model.

As a next step, we consider the second part of equation (2.2). Making use of Lemma 2.4,

we obtain for (M̂ − x̄) ∈ [−3
2
, 3

2
] the following explicit functional relationships:

max{Π1(xi, xj, t̂, M̂) : (t̂, M̂) ∈ supp(t,M)} = Π1(x1, x2, t,−L)

min{Π1(xi, xj, t̂, M̂) : (t̂, M̂) ∈ supp(t,M)}] = Π1(x1, x2, t, L)

max{Π2(xi, xj, t̂, M̂) : (t̂, M̂) ∈ supp(t,M)} = Π2(x1, x2, t, L)

min{Π2(xi, xj, t̂, M̂) : (t̂, M̂) ∈ supp(t,M)}] = Π2(x1, x2, t,−L)

(2.3)

Remark 2.2. One can interpret these results as follows. Firm 1’s best-case scenario

occurs when the realized midpoint M̂ of the consumer interval equals the lower support

boundary −L. This is true, since we assume, w.l.o.g., that firm 1 is the firm whose

product characteristic is located left of firm 2’s product characteristic. Therefore, it is

more convenient for firm 1 if the consumer distribution is located closer to its own product

design. Similarly, firm 1’s worst-case scenario occurs when the midpoint of the consumer

interval takes as realization the upper support boundary L. For firm 2 the reverse result

holds.

The first term of firm i’s Choquet expected profit equals the ”usual” expectation of

its profit function with respect to the reference prior Eq[Πi(x1, x1, t,M)]. In order to
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elaborate on this part, we need the following Lemma which can be considered as an

analogue to the global competition lemma in Meagher and Zauner [2004].13

Lemma 2.5 (Global competition). Under Assumptions 1,2, and 3, one has at any pure

strategy SPNE for the Hotelling game with ambiguous demand location uncertainty that

the support [−L,L] of M is contained in [x̄− 3
2
, x̄+ 3

2
], formally [−L,L] ⊂

[
x̄− 3

2
, x̄+ 3

2

]
.

Proof. The proof of the lemma is contained in the appendix.

Lemma 2.5 proves very useful when it comes to determining firms’ subgame-perfect prod-

uct design choices. In fact, due to Lemma 2.3, one could expect that there are equilibria

where, for some realizations of uncertainty, one or the other firm can monopolize the

market. However, according to Lemma 2.5, firm i’s objective function at the first stage

of the game is given by the Choquet expected value of the second piece of (2.1).

The global competition lemma implies that Eq[Πi(xi, xj, t,M)] depends solely on the the

mean vector Eq[(t,M)] = (µt, µM) and the variance-covariance matrix

Covq(t,M) =

 σ2
t 0

0 σ2
M

 .

The following lemma provides an explicit mathematical form for Eq[Πi(xi, xj, t,M)].

Lemma 2.6. If x1 ≤ x2 w.l.o.g., then, under Assumptions 1,2, and 3, at any pure strategy

SPNE for the Hotelling game under uncertainty, firms choose product characteristics,

13For the Hotelling model under certainty, Anderson et al. [1997] point out a similar property in
footnote 8.
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(x∗1, x
∗
2), such that firm i’s expected profit w.r.t. the reference prior q is

Eq[Πi(x
∗
i , x
∗
j , t,M)] = µt

L∫
−L

(−1)j
2

9
(x∗j − x∗i )

(
x̄∗ −

(
M +

3

2
(−1)i

))2

fq(M)dM

=
(−1)j

18
µt (x∗j − x∗i )

{
(2x̄∗ − 3(−1)i)2

− 4µM(2x̄∗ − 3(−1)i) + 4(µM + σ2
M)

}
(2.4)

where x̄∗ = x∗i + x∗j .

Proof. The proof of the lemma is contained in the appendix.

Next, after specifying firms’ first-stage objective functions, we derive subgame-perfect

product designs. Firm i’s best reply, R∗i (x̂j), given the product characteristic choice of

firm j, x̂j, is

R∗i (x̂j) := arg max
xi∈R

{
(1− δ)Eq[Πi(xi, x̂j , t,M)] + δ

[
(1− α)Πi(xi, x̂j , t,−L) + αΠi(xi, x̂j , t, L)

]}

Solving for firms’ mutual best replies, one obtain firms’ subgame-perfect equilibrium

differentiation as stated in the following proposition.

Proposition 2.1 (Equilibrium under ambiguity). Under Assumptions 1,2, and 3, there is

a unique pure strategy SPNE for the Hotelling game under ambiguity. Firms’ equilibrium

locations are given by

x∗1 =
δ
(
−(α− 1)(2L+ 3)2t+ α(3− 2L)2t− 4σ2 − 9

)
+ 4σ2 + 9

4(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)

x∗2 =
δ
(
(α− 1)(2L+ 3)2t− α(3− 2L)2t+ 4σ2 + 9

)
− 4σ2 − 9

4(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)
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The equilibrium differentiation, ∆∗x := x∗2 − x∗1, is

∆∗x =
δ
(
(α− 1)(2L+ 3)2t− α(3− 2L)2t+ 4σ2 + 9

)
− 4σ2 − 9

2(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)
,

and firms’ Choquet expected equilibrium profits are given by

CEU[Πi] = −
(
δ
(
−(α− 1)(2L+ 3)2t+ α(3− 2L)2t− 4σ2 − 9

)
+ 4σ2 + 9

)2
36(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)

where Π∗i := Πi(x
∗
1, x
∗
2, t,M).

Proof. Firms’ equilibrium product designs and the proof of this proposition are contained

in the appendix.

Remark 2.3. It is worthwhile to highlight and discuss some special cases of this equi-

librium. Setting δ = 1 and t = 1, which corresponds to a situation under complete

ambiguity, or without any confidence into the reference prior q, one obtains the equi-

librium of Król [2012] in its full generality. Setting δ = 0 and t = t = 1, we obtain

the equilibrium in Meagher and Zauner [2004] with the slight difference that we impose

a probability with zero mean. The normalization Eq[M ] = 0 ensures symmetry and is,

in our view, not a strong restriction. We can interpret this assumption in the following

way: Both firms determine the expected midpoint of the consumer interval and align

all possible product designs symmetrically around this mean. If the mean is nonzero,

firms can transform the set of all product characteristics to be centered around zero. Af-

ter determining their product characteristic choices in the normalized setting, firms may

retransform their product characteristic decision into the non-normalized product space

and obtain the optimal product design. For consumer distributions with nonzero mean

there are no solutions in closed-form for firms’ subgame-perfect product characteristic

choices. Nevertheless, it is plausible to argue that both firms shift their subgame-perfect

locations into the direction of this mean.
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2.7 Comparative Statics

The aforementioned Hotelling model under ambiguity yields interesting comparative

static results. In this section, we discuss and interpret basic properties of firms’ product

design choices with respect to changes in the underlying model parameters. Similar to

Król [2012], the following proposition examines ceteris paribus (henceforth c.p.) varia-

tions in the global ambiguity attitude α.

Proposition 2.2 (Variation in firms’ ambiguity attitude α). Under the Assumptions

1,2, and 3, one can observe at any SPNE of the Hotelling game under ambiguity the

subsequent effects on optimal product designs:

∂x∗1
∂α
≥ 0 and

∂x∗2
∂α
≤ 0

Proof. The proof of the proposition is contained in the appendix.

The results of Proposition 2.2 are related to the findings in Król [2012] stating that a

higher degree of pessimism leads to lower product differentiation. This finding extends

to our model, with the difference that the magnitude of the effect is weakened the more

confidence firms have in the reference prior q. In case of full confidence, or absence of

ambiguity, firms’ attitude towards ambiguity becomes irrelevant for their product differ-

entiation choices. To give some intuition: For a high degree of pessimism α, each firm

gives a larger weight on the maxmin criterion than on the maxmax criterion. Therefore,

the worst-case scenario becomes increasingly important. The worst-case of firm 1 is that

the expectation of M equals L. As the expectation moves to the right and firm 1 consid-

ers this expectation as relevant, firm 1 has an incentive to select a product characteristic

located on the right hand side of its initial characteristics. Similarly, for firm 2, the

worst-case scenario corresponds to left boundary of the support −L. Since firm 2 gives

increasingly more weight to this worst-case, there is an incentive for the latter to relocate

to the left. All in all, equilibrium differentiation decreases.
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To sum up these findings, we conclude that, contrary to the risk models of MZ, ambiguity

is not per se a differentiation force. What matters is ambiguity attitude of both firms. We

call this attitude the degree of global optimism or pessimism, since we consider a market

where both firms exhibit the same ambiguity attitude. Hence, attitude towards ambi-

guity becomes a global characteristic of the market and could be interpreted as ’market

sentiment’.

As a next step, we examine c.p. variations in the variance of the reference prior σ2.

Proposition 2.3 (Variation in the variance σ2). If 0 ≤ δ < 1 and the Assumptions 1, 2,

and 3 hold, one has at any SPNE for the Hotelling game under ambiguity that optimal

product designs react in the following way to an increase in σ2:

∂x∗1
∂σ2

< 0 and
∂x∗2
∂σ2

> 0

Proof. The proof of the proposition is contained in the appendix.

Uncertainty, as measured by the variance of the underlying distribution, constitutes a dif-

ferentiation force. The intuition here14 is that, in the Hotelling game, firms are confronted

with two countervailing effects. If a firm selects, at given prices, a product characteris-

tic that is more far away from the realized midpoint M̂ than the characteristic selected

by its competitor, it looses market share (demand effect). At the same time, however,

one can observe that increasing product differentiation weakens price competition and

leads to higher equilibrium prices (price effect). Due to the assumption of quadratic cost

functions, the price effect dominates the demand effect. If a firm faces demand location

uncertainty, the negative effect of loosing market shares in some realizations of uncer-

tainty is not so dramatic as in the certainty case since there are other realizations of

M where the latter’s product design is better located than before. Consequently, an in-

creasing variance of the underlying probability distribution strengthens the dominance of

the price effect. Therefore, equilibrium differentiation is even more excessive than under

14Compare Meagher and Zauner [2004].
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certainty. Of course, the same interpretation applies for the capacity model as long as

0 ≤ δ < 1 with the sole difference that the effect of a c.p. increase in σ2 is weaker the

less confident firms are in the reference prior q.

The following proposition examines c.p. variations in the lower and upper support bound-

ary of the transportation cost parameter.

Proposition 2.4 (Variations in the magnitude of the upper and lower support boundaries

of t). If 0 < α ≤ 1 and 0 < δ ≤ 1, then, under the Assumptions 1, 2, and 3, one has at

any SPNE for the Hotelling game under ambiguity that

∂x∗1
∂t

> 0 and
∂x∗2
∂t

< 0.

Similarly, for 0 ≤ α < 1 and 0 < δ ≤ 1, one obtains

∂x∗1
∂t

< 0 and
∂x∗2
∂t

> 0.

Proof. The proof of the proposition is contained in the appendix.

The first part of Proposition 2.4 is quite similar to the respective statement in Król [2012].

Variations in the support of the transportation cost parameter can be interpreted as

fluctuations in the magnitude of uncertainty around t. As t approaches one, the overall

size of uncertainty with respect to t decreases. A ceteris paribus increase in t solely

affects the pessimistic part of firms’ first-stage profit functions. This deceases firms’

equilibrium product differentiation. The following considerations explain why this is the

case. Comparing the Hotelling model with a standard symmetric Bertrand competition,

we observe the following important difference. In the standard Bertrand scenario, firms

offer homogeneous products. The only Nash equilibrium in pure strategies is that firms set

prices equal to marginal costs, implying zero profits for both firms. In a Bertrand world

with heterogeneous products this finding is no longer true. By introducing transportation

costs, the Hotelling framework adds an additional distinctive feature to a homogeneous
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and symmetric Bertrand competition rendering products per se more heterogeneous. It is

therefore intuitive that a higher transportation cost weakens competition between firms.

In the Hotelling model there are two countervailing incentives at work that determine

firms’ product design choices. One is that firms want to locate in the center of the

Hotelling interval in order to obtain a higher market share. This is because firms’ market

share depends on the so-called indifferent consumer ξ.15 All consumers located left of

ξ strictly prefer to purchase the good from the firm located left. On the other hand,

consumers located right of ξ strictly prefer to purchase the good from the other firm. If

the firm located left c.p. relocates to the right, then the indifferent consumer also shifts

to the right. In this case, the market share of this firm increases and, as a consequence,

also its profits. A similar argument holds for the rival firm. If the firm located at the

right c.p. relocates to the left, then its market share increases, and hence also its profit.

To sum up, the firm located left has an incentive to relocate to the right and the firm

located to the right has an incentive to relocate to the left.

The second incentive is that firms want to differentiate their products more in order

to weaken price competition. If product differentiation gets lower, price competition

gets stronger since both product become increasingly homogeneous. Therefore, in the

limit, the only distinguishing feature of a product boils down to its price. Now, if price

competition is weakened by a higher transportation cost, it is plausible that firms have

an incentive to reduce product differentiation in order to obtain a higher market share.

To summarize the results. Increasing uncertainty with respect to the transportation cost

parameter t entail a higher degree of product differentiation.

The following proposition explores a c.p. increase in firms’ confidence level δ.

15The indifferent consumer ξ can be obtained by equating total costs p1− t(ξ−x1)2 = p2− t(ξ−x2)2

and solving this expression for ξ.
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Proposition 2.5 (Variation in the confidence level δ). Under the Assumptions 1, 2, and

3, one has at any SPNE for the Hotelling game under ambiguity that

∂x∗1
∂δ

= −∂x
∗
2

∂δ
=


< 0 for 0 ≤ α < α∗

= 0 for α = α∗

> 0 for 1 ≥ α > α∗

where α∗ = α∗(δ, t, t, σ2, L) is a cutoff-value defined by

α∗ =
(2L+ 3)(3L− 2σ2)

(2L+ 3)t(3L− 2σ2)− (2L− 3)t(3L+ 2σ2)
.

Taking these results together we obtain for ∆∗

∂∆∗

∂δ
=


> 0 for 0 ≤ α < α∗

= 0 for α = α∗

< 0 for 1 ≥ α > α∗.

Proof. The proof of the proposition is contained in the appendix.

The findings of Proposition 2.5 can be summarized in the following way: If firms’ attitude

to ambiguity exhibits sufficiently strong optimism, one can conclude that a lower confi-

dence into the reference prior increases equilibrium differentiation. Adverse results hold

for sufficiently pessimistic firms. Furthermore, there is an intermediate value of global

pessimism α∗ such that firms’ equilibrium differentiation remains unchanged no matter

which global confidence level firms might assign to the reference probability distribution

of the midpoint M .
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Proposition 2.6 (Variation in the size of the support L). If 0 < δ ≤ 1 and Assumptions

1, 2, and 3 hold, on has at any SPNE for the Hotelling game under ambiguity that

∂x∗1
∂L

= −∂x
∗
2

∂L
=


< 0 for 0 ≤ α < α̂

= 0 for α = α̂

> 0 for 1 ≥ α > α̂

where α̂ ∈ [0, 1] is a cutoff-value with α̂ = α̂(δ, t, t, σ2). Taking these results together we

obtain for ∆∗

∂∆∗

∂L
=


> 0 for 0 ≤ α < α̂

= 0 for α = α̂

< 0 for 1 ≥ α > α̂.

Proof. The proof of the proposition is contained in the appendix.

An increase in the support fosters decreasing product differentiation if firms are suffi-

ciently pessimistic. For an intermediate value of pessimism firms do not relocate. If firms

are sufficiently optimistic, an increase in L yields higher equilibrium differentiation.

Size of the Support and Degree of Ambiguity

The degree of ambiguity, or of firms’ confidence in the reference prior, plays a central role

in this paper. For this reason, we discuss in the following its meaning in conjunction with

the support of the uncertainty. As Proposition 2.6 shows, our model replicates similar

comparative static results as in Król [2012] by varying the length L of the support of the

midpoint M . Even though similar product differentiation choices might be generated by

variations in the size of the support L, as compared to variations in the confidence level

δ, it indispensable to notice meaningful differences between the two sources of ambiguity.

First of all, variations in L and δ might go in similar directions, but the magnitude of

both effects is different. In fact, both effects are interrelated. An increase in the support
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has a stronger impact on equilibrium differentiation if firms’ confidence in the reference

prior is low. In case of full confidence, changes in the support do not affect firms’ product

design decisions. Secondly, there is a clear difference between both sources of uncertainty

concerning economic applications. The support of M consists of all possible midpoint

realizations of the consumer interval. Before firms perform their design choices, they

anticipate all possible demand realizations and summarize them in the support interval

[−L,L]. An increase in the support interval would imply that firms allow ex-ante for a

larger variety of feasible demand realizations. In our view, it is plausible to argue that, in

many economic applications, the size of the support L is an exogenously fixed variable.

What would it actually mean if L was an endogenous variable? It would mean that firms

adjust their views on possible demand realizations in the light of higher or lower uncer-

tainties by including or excluding certain market demand scenarios. Furthermore, this

would imply that firms were ex-ante wrongly informed or had not precise information

about lower and upper bounds of market demand in face of uncertainty. We do not want

to argue that such a scenario is completely implausible, our point is that the interpreta-

tion of support variations is closely tied to firms’ wrong perception of possible demand

realizations.

In contrast to the previous interpretation, c.p. variations in the confidence level δ depart

on the assumption of an exogenously fixed support length. Firms know possible upper

and lower bounds of demand and consider demand uncertainty defined on a fixed support.

The reference prior q might reflect firms’ ex-ante information about the market environ-

ment, e.g. firms might have observable data or can pursue market research to estimate

an underlying probability distribution for market demand. Under the assumption that

firm managers are sufficiently pessimistic, increasing product differentiation might have

different reasons. One explanation could be that firms become more optimistic, meaning

that due to a change in the market environment firms adjust their ambiguity attitudes to

account for this new situation. On the other hand, it might be the case that firms obtain

more reliable data on market outcomes, therefore increasing their confidence in the data

available but do not readjust their attitude towards ambiguity. In such a scenario, a
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higher confidence into the reference prior weakens the impact of pessimism on product

differentiation choices.

2.8 Examples and Applications

In this section, we apply our model to a variety of real-life examples. At first, we discuss

sports betting regarding horse racing and football games. The second application refers

to financial markets, or to be more precise to the mutual funds market. Furthermore, we

want to mention that similar cases were already discussed in Król [2012]. The purpose

of this section consists of providing the reader with additional insight into the mechanics

of the capacity approach. In particular, we want discuss implications of confidence and

pessimism for the interpretation of these examples. One reason why the aforementioned

applications are so apt to be discussed in a Hotelling framework, is given by the fact that

in these markets exists a relatively clear measure of firms’ product differentiation. We

will discuss these measures in the respective subsections. Moreover, consumer preferences

are often fluctuating depending on partially unobserved factors, e.g. individual subjective

evaluations. Due to firms’ imperfect probabilistic information regarding market demand,

it is plausible that ambiguity is prevalent in those markets.

Sports Betting

In case of sports betting, the odd of a bookmaker represents product characteristic. Fur-

thermore, the preferences of a bettor over odds are determined by subjective probability

estimations of the particular sporting event. Since bookmakers usually want to make a

profit regardless of the result of the sporting event, one can assume that they are worst-

case-oriented.16 If bookmakers were rather optimistic, they would constantly offer odds

16For more details see Król [2012].
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exceeding the expectation of the underlying distribution and eventually run the risk of

bankruptcy.

Horse racing

Smith et al. [2009] examine horse racing data from the UK. The authors provide evidence

for an increased fluctuation and divergence of betting exchange prices shortly before the

race. This can be interpreted as a higher degree of ambiguity with respect to bettors’

preferences. At the same time, bookmakers’ odds are getting increasingly similar.17 Sup-

posing that horse racing bookmakers exhibit a sufficiently high degree of pessimism, our

model provides a possible explanation for this observation. Recall that, given that firms

are sufficiently pessimistic, an increase of ambiguity leads to decreasing product differ-

entiation. The intuition here lies in the fact that pessimistic firms place more weight

on worst-case scenarios. Moreover, the worst-case scenario for the firm whose product

characteristic is located on the left hand side corresponds to the realization M = L.

Similarly, the worst-case scenario for the firm on the right hand side corresponds to the

realization M = −L. If firms become more pessimistic, the firm whose product design

is located left selects a product characteristic right from its initial characteristic. Hence,

the higher firms’ pessimism, the lower equilibrium product differentiation. The strength

of this effect increases with increasing ambiguity, δ, since firms’ confidence in their prior

belief determines the influence of the worst-case scenario on their decision process.

Football games

Bookmakers’ odds on football games exhibit an interesting feature. Typically, whenever

a rather strong team plays against a rather weak team there is little divergence between

bookmakers’ odds in favor of a victory of the strong team. In contrast, the odds for

a victory of the weak team are more volatile. In fact, odds become less volatile when

17As pointed out by Król [2012], one can verify that the differences between bookmakers’ odds are
decreasing in the corresponding time period by using price comparison websites.
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the perceived relative strength of both teams is fairly similar. This observation can be

verified by comparing bookmakers’ match day odds. In the examples below, we analyzed

the odds of ten bookmakers.

Remark 2.4. Both examples are games from match day 22 on February 23, 2014 of the

German Bundesliga.18 The first example refers to a game of Bayern Munich, representing

the strong team, versus Hannover 96 representing the weaker team. Stated odds are to

be considered as multiplication factors of the placed bet in case of winning the bet. For

instance, suppose one puts a bet of e1 in favor of a victory of Hannover 96 at bet365. In

case Hannover 96 wins, the bettor receives e10. The second game, SC Freiburg versus

FC Augsburg, is more balanced in terms of relative strength. Estimators used in our

examples are

x̄ =
1

n

n∑
i=1

xi for the mean and s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 for the variance.

Bookmaker Odd Hannover 96 Odd Bayern Munich
bet365 10 1.25
Sportingbet 11 1.222
Tipico 13 1.25
bwin 9.5 1.22
Interwetten 9 1.27
Bet-at-home 11.5 1.24
Betsson 12.5 1.19
mybet 14 1.22
Betvictor 10.5 1.25
Unibet 12 1.25

Estimated
Variances

2.5667 0.0005

Table 2.1: Example for the Constellation of a Strong Team Versus a Weak Team

If bookmakers agreed on a unique prior over the outcome of the game, this phenomenon

would be inexplicable. Again, the explanation might lie in bookmakers’ confidence in

their prior beliefs. Assume bookmakers’ choose their odds such that a bettor will always

18Data was collected online on February 19th, 2014 at 3:30 pm from the respective websites of the
bookmakers.
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Bookmaker Odd SC Freiburg Odd FC Augsburg
bet365 3.1 2.25
Sportingbet 3 2.3
Tipico 3.1 2.35
bwin 2.85 2.3
Interwetten 2.75 2.4
Bet-at-home 3 2.3
Betsson 3.1 2.27
mybet 3.2 2.3
Betvictor 3.125 2.3
Unibet 2.95 2.35

Estimated
Variances

0.0189 0.017

Table 2.2: Example for the Constellation of Two Balanced Teams

loose a fraction of his money if she bets on both teams, then odds on one team become a

function of the odds of the other team.19 In the situation described above, it is obviously

very likely that the strong team wins. Hence, bookmakers’ can be confident that the bulk

of bettors will bet on the very strong team. This leads to two effects. Firstly, in order to

avoid bankruptcy, bookmakers’ need to choose odds close to one for a win of the strong

team. Secondly, since bookmakers’ face little ambiguity over bettors’ preferences, they

can differentiate their odds for the weak team. This result is in line with Proposition 2.5.

Mutual Funds

Król [2012] provides the example of the managed mutual funds’ market. In this context,

one can interpret a position in the product space as a portfolio’s position ranging from

safe investments to risky portfolios. Król [2012] shows, based on data about the daily

returns of the fifteen most popular actively managed US mutual funds, that, after the

financial crisis 2008, fund managers tend to differentiate their products less. Król [2012]

argues that, before the crisis, financial firms’ did not consider the post-crisis range of

investor behavior as possible.20 For this reason, the crisis forced firms to revise their

19See Król [2012].
20In particular, the shift of consumer preferences toward safe investments due to decreasing stock

prices during the crisis.
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beliefs. Furthermore, the author interprets conservative stress test simulations following

the crisis as a signal sent out to the competitors that a firm uses a worst-case-based

approach for decision making. This is exactly the point where we want to add to the

debate. For instance, consider government-imposed stress tests after the crisis. If one

interprets such stress tests as signals, then the strategy of a firm is independent of its

type. Since each type sends the same signal, no new information is revealed to the other

firms. In our view, it is debatable whether stress test simulations induced a shift in

fund managers’ ambiguity attitude towards a more pessimistic preference approach, or

whether exactly those fund managers knew more clearly that investors would prefer more

secure assets after the crisis. If so, a possible explanation for lower post-crisis product

differentiation is that firms were less uncertain about investor preferences. In our view,

it is not implausible that fund managers’ ambiguity attitudes remained relatively stable

even though government stress tests were imposed. Furthermore, due to market research

and historical data21 it is likely that fund managers know the whole range of possible

individual investor behaviors.22 However, investor preferences are highly fluctuating since

they depend on investors’ subjective evaluations of the fund’s performance which itself is

based on numerous observed and unobserved factors as recent stock market developments

or individual future expectations. At the end and shortly after the financial crisis, firms’

were highly confident in terms of investor preferences since it was self-evident that, post-

crisis, the majority of investors would prefer assets which were rather safe. Again, this

finding is in line with our model.

21Financial firms’ can rely on past data of various historical economic crises including stock market
crashes (e.g. the Great Depression in the 1930s), bubbles (e.g. dot-com bubble in 2000), and financial
crises (e.g. Asian financial crisis in 1997).

22This would induce that variations in the support of the midpoint of the consumer distribution cannot
account for the observation of decreasing product differentiation.
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2.9 Conclusion

We present an extension of Hotelling’s model incorporating ambiguity in the form of

demand location uncertainty as well as uncertainty with respect to the intensity of trans-

portation costs. Ambiguity is introduced by representing firms’ beliefs with neo-additive

capacities. We analyze firms’ optimal product characteristic choices and find a unique

SPNE in pure strategies for the Hotelling game under ambiguity.

Our model incorporates a variety of different sources of uncertainty. First of all, there is

the variance σ2 of the reference probability q. As in the standard risk case of Meagher

and Zauner [2004], a higher variance implies that firms increase product differentiation.

Thus, if the measure of uncertainty is given by the variance of the underlying reference

probability, it can be considered as differentiation force.

Secondly, there is the length of the support interval of M . The larger the support of M ,

the larger the number of demand realizations that firms consider as possible market out-

comes. Hence, the length of the support interval might be interpreted as an additional

measure of uncertainty. As our results show, the effects on an increasing support are

strongly related to firms’ ambiguity attitude α and the degree of ambiguity δ. If firms are

rather pessimistic, a larger support results in lower equilibrium differentiation, if firms

are rather optimistic, a larger support engenders opposite results. All in all, uncertainty

as measured by the support length can be - depending on parameters - a differentiation

or agglomeration force.

A third measure of uncertainty is given by the confidence parameter δ reflecting firms

uncertainty on observables. Interpreted in this way, rising uncertainty is tied to lower

data reliability yielding lower confidence levels in the reference probability q. Again, sim-

ilar to the case of support variations, this can trigger off opposing effects. When firms

are pessimistic enough, equilibrium differentiation is going down, when firms a rather

optimistic product differentiation is going to increase. One can also argue the other way

round. For a given confidence level, increasing pessimism yields lower equilibrium differ-

entiation, whereas an increase in optimism increases equilibrium differentiation.
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Finally the last source of uncertainty lies in the support [t, t] of the transportation cost

parameter t. As the lower support boundary t decreases, firms’ equilibrium differentiation

remains the same in case of full optimism and full confidence and increases in all other

cases. Similarly, as the upper support boundary t increases, firm’ equilibrium differenti-

ation remains the same in case of full pessimism and full confidence and increases in all

other cases. Thus, excluding these boundary cases, we can say that the size of uncertainty

with respect to the transportation cost parameter constitutes an differentiation force.

As we can see from the preceding line of arguments, one should be very cautious when

it comes to drawing conclusions from real-world applications of Hotelling models under

uncertainty. In our view, it is indispensable to clearly identify the driving factors of

an observed increase or decrease in product differentiation since the interpretation and

conclusions from observed firm behavior might change in the light of different sources of

uncertainty. In particular, it seems worthwhile for policymakers to disentangle the effect

of confidence and ambiguity attitude on product differentiation, since it might really mat-

ter for official regulatory procedures whether observed product differentiation choices are

to be attributed to perceived changes in data-reliability or whether firms feature more or

less optimistic behavioral patterns.

2.10 Mathematical Proofs

Proof of Lemma 2.1. The support of M is restricted to the interval [−L,L] ⊂
[
−1

2
, 1

2

]
.

The mean and the variance of M exists. For the mean we can perform the following line

of estimates:

Eq[M ] =

∫
R

MdP ≤
∫
R

LdP = L

∫
R

1dP = L

and

Eq[M ] =

∫
R

MdP ≥
∫
R

−LdP = −L
∫
R

1dP = −L
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Similarly, for the second moment of M we obtain

E[M2] =

∫
R

M2dP ≤
∫
R

L2dP = L2 and Eq[M2] =

∫
R

M2dP ≥ 0

and for the variance σ2 we conclude

σ2
M = Eq[M2]− Eq[M ]2 ≤ Eq[M ]2 ≤ L2 and σ2

M ≥ 0.

Proof of Lemma 2.4. Lemma 2.5 implies that firms’ second-stage profits at the realization

(t̂, M̂) equal the second piece of (2.1):

Π1 =
1

18
t̂(x2 − x1)[−3 + 2(M̂ − x̄)]2

Π2 =
1

18
t̂(x2 − x1)[3 + 2(M̂ − x̄)]2

Both profit functions are continuously differentiable with respect to t̂ and M̂ . Differenti-

ation with respect to t̂ yields

∂Π1

∂t̂
=

2

9
(x2 − x1)

[
x1 + x2

2
− M̂ +

3

2

]2

> 0

∂Π2

∂t̂
= −2

9
(x1 − x2)

[
x1 + x2

2
− M̂ − 3

2

]2

> 0.

Differentiation with respect to M̂ yields

∂Π∗1

∂M̂
= −4

9
t̂(x2 − x1)︸ ︷︷ ︸

<0

[
x1 + x2

2
− M̂ +

3

2

]
︸ ︷︷ ︸

>0

< 0

∂Π∗2

∂M̂
=

4

9
t̂(x1 − x2)︸ ︷︷ ︸

<0

[
x1 + x2

2
− M̂ − 3

2

]
︸ ︷︷ ︸

<0

> 0.
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Proof of Lemma 2.5. The proof of the lemma follows exactly the same line of arguments

as in the proof of Lemma 3.1 in Król [2012], page 602 with a slight modification in case

3. There are three different cases to be considered.

1. Case 1 refers to a situation where either firm 1 or firm 2 can monopolize the market

for certain realizations of the midpoint M . If firm 1 can monopolize the market for

certain realizations of M , we can conclude that firm 1 will monopolize the market

if M̂ = −L, since w.lo.g. firm 1 is the firm left of firm 2. Similarly, we can conclude

that firm 2 can monopolize the market for M̂ = L. This is finding is impossible. If

firm 1 monopolizes the market for the realization M̂ = −L, we have by Lemma 3.1,

equation (2.3) that x1+x2
2
− 3

2
> −L. If firm 2 monopolizes the market, we have by

(2.3) that x1+x2
2

+ 3
2
< L. Thus, we must have that L+ x1+x2

2
> 3

2
and L− x1+x2

2
> 3

2

holds at the same time implying
∣∣x1+x2

2

∣∣ < L− 3
2
. This is a contradiction since L is

assumed to be smaller than 1
2
.

2. Case 2 describes a scenario where one of the two firms can monopolize the market

for each realization M̂ of uncertainty. If firm j is a monopolist, the other firm

can deviate from its original location in order to obtain a positive market share and

therefore make strictly positive profits. Król [2012] suggests the location x−j = −xj.

3. Case 3 refers to a situation where, w.l.o.g., firm 1 can monopolize the market for

some realizations of uncertainty, in particular the realization M̂ = −L and for

the remaining realizations, in particular the realization M̂ = L, there exists a

competitive equilibrium. Consider now the profit function of firm 2 in case of a

competitive equilibrium23 :

∂Π2

∂x2

(x1, x2, L, t) =
t (2L− 3x2 + x1 + 3) (2L− x2 − x1 + 3)

18

We want to show that

∂Π2

∂x2

(x1, x2, L, t) < 0.

23We consider the profit function of firm 2, Król [2012] considers the profit function of firm 1.
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We determine the sign of both brackets. Consider the expression in within the

second bracket first. We have

2L+ 3− x1 − x2 > 0 ⇔ 2L+ 3 > x1 + x2 ⇔ L+
3

2
> x̄

The last condition corresponds to the requirement for a competitive solution in

cases where the midpoint M = L realizes. Therefore it must be, by assumption,

positive. The second bracket is negative. The monopolistic outcome for the mid-

point realization M = −L requires L + x̄ > 3
2
. Solving this inequality for x2, we

obtain x2 > 3 − 2L − x1. By using this inequality, we can conduct an estimation

for the expression in the first bracket:

3 + 2L+ x1 − 3x2 < 8L− 6 + 4x1 < 8L− 8 < 0

The last inequality follows from the fact that L < 1
2

and x1 < 0. Thus, we proved

that

∂Π2

∂x2

(x1, x2, L, t) < 0.

This finding shows that firm 2 has an incentive to move leftwards in order to reduce

both firms’ product differentiation and that a strict competitive solution does not

exist under the above stated parameter restrictions. Since we consider a symmetric

scenario, a similar argument holds for a scenario where firm 2 becomes a monopolist.

For the remaining cases M̂ = L and M̂ = −L there is a competitive solution.

Proof of Lemma 2.6. The first part of firms’ Choquet expected profit is

Eq[Πi(x1, x2, t,M)] =

L∫
−L

(−1)j
2

9
t (xj − xi)

(
xi + xj

2
−
(
M +

3

2
(−1)i

))2

f(M)dM.
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This expectation is of the form

Eq[gi(t)hi(M)]

with real-valued Borel-measurable functions gi and hi for i = 1, 2. We define

gi(t) = t and hi(M) = (−1)j
2

9
t (xj − xi)

(
xi + xj

2
−
(
M +

3

2
(−1)i

))2

.

By (R7), t and M are uncorrelated. By Lemma 5.20 in Meintrup and Schäffler [2006],

page 131, we obtain that gi(t) and hi(M) are uncorrelated as well. Thus, we can conclude

Eq[Π∗i (x1, x2, t,M)] = Eq[gi(t)hi(M)] = Eq[gi(t)]Eq[hi(M)] = µt Eq[hi(M)].

In the following, we can rely on the results in Meagher and Zauner [2004], page 205, since

Eq[hi(M)] is equal to firm i’s expected profit function in the risk case. Thus,

Eq[Πi(x1, x2, t,M)] = tµ

L∫
−L

(−1)j
2

9
(xj − xi)

(
xi + xj

2
−
(
M +

3

2
(−1)i

))2

f(M)dM

=
(−1)j

18
tµ (xj − xi){(xi + xj − 3(−1)i)2

− 4µM(xi + xj − 3(−1)i) + 4(µM + σ2
M)}
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Proof of Proposition 2.1. We derive expected CEU profits at the first stage of the game.

We obtain for firm 1:

CEU[Π1(x1, x2, α, δ, t, t, σ
2, L)]

:= δ

(
2 (1− α) t (x2 − x1)

(
L+ x2+x1

2
+ 3

2

)2

9
+

2α t (x2 − x1)
(
−L+ x2+x1

2
+ 3

2

)2

9

)

+
(1− δ) (x2 − x1)

(
(x2 + x1 + 3)2 + 4σ2

)
18

.

(A.1)

Similarly, we obtain for firm 2

CEU[Π2(x1, x2, α, δ, t, t, σ
2, L)]

:= δ

(
2α t (x2 − x1)

(
L+ x2+x1

2
− 3

2

)2

9
+

2 (1− α) t (x2 − x1)
(
−L+ x2+x1

2
− 3

2

)2

9

)

+
(1− δ) (x2 − x1)

(
(x2 + x1 − 3)2 + 4σ

)
18

.

(A.2)

Taking the derivative of (A.1) with respect to x1 yields

∂CEU[Π1(x1, x2, α, δ, t, t, σ
2, L)]

∂x1

:=

−
2δ (1− α) t

(
L+ x2+x1

2
+ 3

2

)2

9
+

2δ (1− α) t (x2 − x1)
(
L+ x2+x1

2
+ 3

2

)
9

+
2δ α t (x2 − x1)

(
−L+ x2+x1

2
+ 3

2

)
9

−
2δ α t

(
−L+ x2+x1

2
+ 3

2

)2

9

−
(1− δ)

(
(x2 + x1 + 3)2 + 4σ

)
18

+
(1− δ) (x2 − x1) (x2 + x1 + 3)

9
.

(A.3)
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Similarly, we take the derivative of (A.2) with respect to x2

∂CEU[Π2(x1, x2, α, δ, t, t, σ
2, L)]

∂x2

:=

2δ α t
(
L+ x2+x1

2
− 3

2

)2

9
+

2δ α t (x2 − x1)
(
L+ x2+x1

2
− 3

2

)
9

+
2δ (1− α) t (x2 − x1)

(
−L+ x2+x1

2
− 3

2

)
9

+
2δ (1− α) t

(
−L+ x2+x1

2
− 3

2

)2

9

+
(1− δ)

(
(x2 + x1 − 3)2 + 4σ

)
18

+
(1− δ) (x2 − x1) (x2 + x1 − 3)

9

(A.4)

Now, we solve the following system of equations:

∂CEU[Π1(x1, x2, α, δ, t, t, σ
2, L)]

∂x2

= 0

∂CEU[Π2(x1, x2, α, δ, t, t, σ
2, L)]

∂x2

= 0

(A.5)

and obtain three solution pairs. The first solution pair (x∗1, x
∗
2) is given by:

x∗1 =
δ
(
−(α− 1)(2L+ 3)2t+ α(3− 2L)2t− 4σ2 − 9

)
+ 4σ2 + 9

4(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)

x∗2 =
δ
(
(α− 1)(2L+ 3)2t− α(3− 2L)2t+ 4σ2 + 9

)
− 4σ2 − 9

4(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)

The second pair of solutions (x∗∗1 , x
∗∗
2 ) is given by:

x∗∗1 =

(
−
(
δ(δ((α− 1)2(2L+ 3)2t

2
+ 2(α− 1)t(2L(6αLt− L+ 3)− 9αt+ 9)

+ αt(4L(α(L− 3)t+ L+ 3) + 9(αt− 2)) + 4σ2(−αt+ αt+ t− 1) + 9)

+ 4(α− 1)t((L− 3)L+ σ2)− 2αt(2L(L+ 3)

+ 2σ2 − 9) + 2(−9(α− 1)t+ 4σ2 − 9))− 4σ2 + 9
) 1

2

+ δ(−(α− 1)(2L+ 3)t+ α(3− 2L)t− 3) + 3

)

·
(

2(δ((α− 1)t− αt+ 1)− 1)
)−1

and
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x∗∗2 = −

((
δ(δ((α− 1)2(2L+ 3)2t

2
+ 2(α− 1)t(2L(6αLt− L+ 3)− 9αt+ 9)

+ αt(4L(α(L− 3)t+ L+ 3) + 9(αt− 2)) + 4σ2(−αt+ αt+ t− 1) + 9)

+ 4(α− 1)t((L− 3)L+ σ2)− 2αt(2L(L+ 3) + 2σ2 − 9)

+ 2(−9(α− 1)t+ 4σ2 − 9))− 4σ2 + 9
) 1

2

− δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3) + 3

)

·
(

2(δ((α− 1)t− αt+ 1)− 1)
)−1

Finally, the last pair of solutions (x∗∗∗1 , x∗∗∗2 ) is given by:

x∗∗∗1 =

((
δ(δ((α− 1)2(2L+ 3)2t

2
+ 2(α− 1)t(2L(6αLt− L+ 3)− 9αt+ 9)

+ αt(4L(α(L− 3)t+ L+ 3) + 9(αt− 2)) + 4σ2(−αt+ αt

+ t− 1) + 9) + 4(α− 1)t((L− 3)L+ σ2)− 2αt(2L(L+ 3) + 2σ2 − 9)

+ 2(−9(α− 1)t+ 4σ2 − 9))− 4σ2 + 9
) 1

2

+ δ(−(α− 1)(2L+ 3)t+ α(3− 2L)t− 3) + 3

)

·
(

2(δ((α− 1)t− αt+ 1)− 1)
)−1
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and

x∗∗∗2 =

((
δ(δ((α− 1)2(2L+ 3)2t

2
+ 2(α− 1)t(2L(6αLt− L+ 3)

− 9αt+ 9) + αt(4L(α(L− 3)t+ L+ 3) + 9(αt− 2)) + 4σ2(−αt+ αt

+ t− 1) + 9) + 4(α− 1)t((L− 3)L+ σ2)− 2αt(2L(L+ 3) + 2σ2 − 9)

+ 2(−9(α− 1)t+ 4σ2 − 9))− 4σ2 + 9
) 1

2

+ δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3

)

·
(

2(δ((α− 1)t− αt+ 1)− 1)
)−1

The first pair of solutions (x∗1, x
∗
2) satisfies the global competition condition according to

Lemma 2.5. We demonstrate this by using Wolfram Mathematica version 10.0.0.0. You

can find the code at the end of the proof section. The problem is analyzed in sections 5

to 7 of the code. Mathematica returns the value ”true” for the first pair of solutions.

The solution pairs (x∗∗1 , x
∗∗
2 ) and (x∗∗∗1 , x∗∗∗2 ) do not fulfill the global competition condition

L− 3

2
< x̄ < −L+

3

2
.

This is examined in sections 8 and 9 of our code. Therefore, we define, in a first step, the

means

x2 =
x∗∗1 + x∗∗2

2
and x3 =

x∗∗∗1 + x∗∗∗2

2
.

Using numerical optimization techniques, we obtain that the range of x2 is given by [1, 2].

Similarly, the range of x3 is given by [−2,−1]. Moreover, x2 attains its minimum value

1 for L = 1
2
. This implies that x2 ≥ 1. However, the global competition condition would

require that x2 < −1
2

+ 3
2

= 1. This is a contradiction. Similarly, x3 attains its maximum

value −1 for L = 1
2
. As a consequence, we can infer that x3 ≤ −1. In order to meet the

requirements of Lemma 2.5, x3 also needs to satisfy x3 >
1
2
− 3

2
= −1. This excludes

(x∗∗∗1 , x∗∗∗2 ) as a feasible solution.
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As a next step, we show that the first pair of solutions is indeed a maximizer for both

firms. The second order derivative of evaluated at (x∗1, x
∗
2) yields

∂2CEU[Πi(x
∗
1, x
∗
2, ·)]

∂x2
i

: =
(
δ(δ(3(α− 1)2(2L+ 3)2t

2

+ 2(α− 1)t(2L(10αLt− L+ 9)− 27αt+ 27)

+ αt(3α(3− 2L)2t+ 4L(L+ 9)− 54)

+ 4σ2(−αt+ αt+ t− 1) + 27) + 4(α− 1)t((L− 9)L

+ σ2)− 2αt(2L(L+ 9) + 2σ2 − 27)− 54((α− 1)t+ 1)

+ 8σ2)− 4σ2 + 27
)

·
(

18(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)
)−1

for both firms. First, I examine the sign of the denominator. It is

18(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)

= 36αδLt+ 36αδLt+ 54αδt− 54αδt− 36δLt− 54δt+ 54δ − 54

≤ 36δLt+ 18αδt+ 54δt− 54αδt− 36δLt− 54δt+ 54− 54

= −36αδt

≤ 0

Hence, the denominator is negative. Subsequently, we show that the numerator is non-

negative. Taking the derivative of the numerator with respect to t yields

− 2(1− α)δ(δ(3(α− 1)(2L+ 3)2t+ 2L(L(10αt− 1) + 9)

− 27αt− 2σ2 + 27) + 2((L− 9)L+ σ2)− 27)

Given the parameter restrictions of the model, this expression is non-negative. We verify

this in sections 13 and 14 of the Mathematica code. Hence, the numerator becomes

smaller as we insert the minimum value 1 for t. Doing so, we obtain after several steps
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of algebra

h =
(
α2δ2

(
4L2(t+ 3)(3t+ 1)− 36L

(
t2 − 1

)
+ 27(t− 1)2

)
− 2αδ

(
2L2(9δt+ 7δ + t− 1)

+ 18L(δ(−t) + δ + t+ 1)− (t− 1)(2(δ − 1)σ2 + 27)
)

+ 4δ(L((4δ − 1)L+ 9) + σ2)− 4σ2 + 27
)

What remains to be demonstrated is that this expression is non-negative. Using Mathe-

matica, we check whether h can be negative under the restrictions 0 ≤ α ≤ 1, 0 ≤ δ ≤ 1,

0 ≤ t ≤ 1, 0 ≤ L ≤ 1
2

and 0 ≤ σ2 ≤ 1
4
, see sections 15 and 16 of the code. Mathematica

returns the value ”false”.

We obtain the equilibrium profits by inserting the equilibrium locations x∗i for i = 1, 2

into (A.1) and (A.2). After several steps of algebra, we obtain

CEU[Πi] = −
(
δ
(
−(α− 1)(2L+ 3)2t+ α(3− 2L)2t− 4σ2 − 9

)
+ 4σ2 + 9

)2

36(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)
.

The competitive differentiation is given by

∆∗x = x∗2 − x∗1 = 2x∗2

=
δ
(
(α− 1)(2L+ 3)2t− α(3− 2L)2t+ 4σ2 + 9

)
− 4σ2 − 9

2(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)
.

Before starting with the proofs of the comparative static analysis, we want to point out

that for many of the estimations performed in the subsequent five proofs, we make use

of the following intrinsic parameter restrictions:

• upper and lower support boundaries for M : 0 < L ≤ 1
2

• upper and lower bound of the confidence parameter: 0 ≤ δ ≤ 1
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• upper and lower bound of ambiguity attitude: 0 ≤ α ≤ 1

• upper and lower bound of the variance of M : 0 ≤ σ2 ≤ L2 ≤ 1
4

• upper and lower bound of the transportation cost parameter: 0 < t ≤ 1 ≤ t

Proof of Proposition 2.2. The derivative of x∗1 with respect to α is given by

∂x∗1
∂α

= −δ(2L− 3)t(2δL(2L+ 3)t− (δ − 1)(3L+ 2σ2)) + (δ − 1)δ(2L+ 3)t(3L− 2σ2)

2(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)2

The denominator is positive. Therefore, the sign of the derivative is determined by its

numerator. We analyze the sign of this expression in two steps. The first part of the

numerator is

g1 := −δ(2L− 3)t(2δL(2L+ 3)t+ (1− δ)(3L+ 2σ2))

Due to the fact that L < 1
2
, one can infer that 2L − 3 < 0. Hence, one obtains g1 > 0.

The second part of the numerator is

g2 := (1− δ)δ(2L+ 3)t(3L− 2σ2)

Since σ2 < L2 < L, one can infer that

3L− 2σ2 > 3L− 2L = L > 0.

Therefore, one has g2 > 0 as well. This proves that
∂x∗1
∂α

> 0 and
∂x∗2
∂α

= −∂x∗1
∂α

< 0.

Proof of Proposition 2.3. The derivative of x∗1 with respect to σ2 is given by

∂x∗1
∂σ2

=
1− δ

δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3
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The numerator is non-negative since 1−δ ≥ 0 for 0 ≤ δ ≥ 1. It is strictly positive for 0 ≤

δ < 1. For the denominator, observe that δ(α−1)(2L+3)t ≤ 0 and δ(α(2L−3)t+3) ≤ 0,

since L < 1
2
. Hence, the denominator is smaller or equal −3 and therefore negative. Thus,

∂x∗1
∂σ2 ≤ 0 and

∂x∗2
∂σ2 = −∂x∗1

∂σ2 ≥ 0. For δ = 1 both x∗1 and x∗2 are independent of σ2. Therefore

∂x∗2
∂σ2 =

∂x∗1
∂σ2 = 0.

Proof of Proposition 2.4. We have

∂x∗1
∂t

=
αδ
(
2(α− 1)δL (4L2 − 9) t+ (δ − 1)(2L− 3)(3L+ 2σ2)

)
2(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)2

It is obvious that the denominator is positive. Turning to the numerator, we can see that

4L2 − 9 ≤ 0 since L < 1
2
. Therefore, we can conclude that

2αδ(α− 1)δL
(
4L2 − 9

)
t ≥ 0.

Similarly, since 2L− 3 < 0 and α− 1 ≤ 0, one can infer that

αδ(δ − 1)(2L− 3)(3L+ 2σ2) ≥ 0.

Consequently, the numerator is positive and
∂x∗1
∂t

> 0. Since x∗2 = −x∗1, it follows that

∂x∗2
∂t

= −∂x∗1
∂t

< 0. The derivative of x∗1 with respect to t is given by

∂x∗1
∂t

= −(α− 1)δ(2L+ 3)(2αδL(2L− 3)t+ (δ − 1)(3L− 2σ2))

2(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)2

Clearly, the denominator is positive. Turning to the numerator, observe that the factor

−(α− 1)δ(2L+ 3) is positive. Moreover, since L < 1
2
, one can infer

2αδL(2L− 3)t ≤ 0.
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As a next step, we can show that

3L− 2σ2 ≥ 3L− 2L2 > 3L− 2L = L > 0.

This implies (δ − 1)(3L− 2σ2)) ≤ 0. In total, the numerator is negative. Therefore, one

has
∂x∗1
∂t

< 0 and
∂x∗2
∂t

> 0.

Proof of Proposition 2.5. The derivative of x∗1 with respect to δ is given by

∂x∗1
∂δ

=
(α− 1)(2L+ 3)t(3L− 2σ2)− α(2L− 3)t(3L+ 2σ2)

2(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)2

It is straightforward to see that the denominator is positive. The first part of the numer-

ator is given by

g3 := (α− 1)(2L+ 3)t(3L− 2σ2).

Since

3L− 2σ2 ≥ 3L− 2L = L > 0,

one can infer that g3 ≤ 0. Defining

g4 := −α(2L− 3)t(3L+ 2σ2),

one obtains by 2L − 3 < 0 that g4 ≥ 0. As a consequence, one can infer that
∂x∗1
∂δ

> 0 if

g3 + g4 > 0 and
∂x∗1
∂δ

< 0 if g3 + g4 < 0. Moreover, one has
∂x∗1
∂δ

= 0 if g3 + g4 = 0. Solving

the equation −g3 = g4 for α, one obtains the unique solution

α∗ :=
(2L+ 3)(3L− 2σ2)

(2L+ 3)t(3L− 2σ2)− (2L− 3)t(3L+ 2σ2)

Besides, one can see that g3 + g4 > 0 whenever α > α∗ and g3 + g4 < 0 whenever α < α∗.

This establishes that the numerator has, for every parameter constellation, a unique zero

α∗ where
∂x∗1
∂δ

< 0 for all 0 ≤ α < α∗,
∂x∗1
∂δ

= 0 for α = α∗ and
∂x∗1
∂δ

> 0 for all 1 ≥ α > α∗.
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Since x∗2 = −x∗1, we obtain the postulated result for x∗2 without reexamining the respective

derivative.

Proof of Proposition 2.6. The derivative of x1
∗ with respect to L is given by

∂x∗1
∂L

=− δ((α− 1)t((δ − 1)(12L− 4σ2 + 9)− 24αδLt)

+ αt(−αδ(3− 2L)2t− (δ − 1)(12L+ 4σ2 − 9)) + (α− 1)2δ(2L+ 3)2t
2
)

· (2(δ((α− 1)(2L+ 3)t+ α(2L− 3)t+ 3)− 3)2)−1

As we can see, the denominator is positive. Therefore the sign of the derivative solely

depends on the numerator. Since δ ≥ 0 it is sufficient to consider the sign of numerator

divided by δ. We denote this expression with (∗). Inserting α = 0 into expression (∗)

yields

t
(
(δ − 1)(12L− 4σ2 + 9)− δ(2L+ 3)2t

)
≤ δ[−12L+ 4σ2 − 9]

≤ δ[−12L− 8]

= −4δ(3L+ 2)

< 0

This shows that the derivative is strictly negative for α = 0. Similarly, inserting α = 1

into (∗), we obtain

t
(
(δ − 1)(12L+ 4σ2 − 9) + δ(3− 2L)2t

)
(A.9)

We establish that expression (A.9) is strictly positive. It is

12L+ 4σ2 − 9 ≤ 6 + 1− 9 = −2 < 0.
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As a consequence, we obtain

(δ − 1)(12L+ 4σ2 − 9) ≥ 0.

This shows that the numerator is positive. Now, we demonstrated that
∂x∗1
∂L

< 0 for α = 0,

and
∂x∗1
∂L

> 0 for α = 1. The derivative is continuous. By the intermediate value theorem

for continuous functions, we obtain that there is α̂ ∈ (0, 1) such that
∂x∗1
∂L

= 0 for α = α̂.

What remains to be shown is that α̂ is unique. In this case, we know that x∗1 is strictly

decreasing in L for values of α smaller that α̂, constant for α = α̂, and increasing for

1 ≥ α > α̂. Solving expression (∗) for α, we know that we find at least one zero, the

zero α̂ in the interval [0, 1]. Since (∗) is a quadratic function in α, we can conclude that

it has one more root ˆ̂α. This root cannot be located in the interval [0, 1] as well. This

we show by making use of a proof by contradiction. Assume, w.l.o.g., that ˆ̂α was in the

interval [0, 1] as well and that α̂ < ˆ̂α. We can distinguish two cases. Case 1 is that the

quadratic function has a global maximum, and case 2 is that the quadratic function has a

global minimum. Since we can find both roots in the interval [0, 1], the global maximum,

or alternatively the global minimum, are also located in this interval. Assume now that

we have a quadratic function with a global maximum. In this case, we have that (∗) is

smaller zero for α < α̂, equal to zero for α ∈ {α̂, ˆ̂α}, and smaller zero for α ∈ ( ˆ̂α, 1].

The last statement contradicts that (∗) is larger zero for α = 1 what we already showed

above. For a global minimum a similar line of arguments holds. Since both roots are

located in the interval [0, 1], we can deduce that the minimum is located in this interval

as well. In this case we can conclude that (∗) is larger than zero for α < α̂, equal to zero

for α ∈ {α̂, ˆ̂α}, and again larger zero for α ∈ ( ˆ̂α, 1]. The first statement contradicts that

(∗) is smaller zero for α = 0. To sum up, we have only one root in [0, 1].



"1. Define Objectives for Firm 1 and Firm 2";

f1[x1_, x2_, alpha_, delta_, tlow_, thigh_, sigma_, L_] :=

delta * ((2 * thigh * (1 - alpha) * (x2 - x1) * (L + (x2 + x1) / 2 + 3 / 2)^2) / 9 +

(2 * alpha * tlow * (x2 - x1) * (-L + (x2 + x1) / 2 + 3 / 2)^2) / 9) +

((1 - delta) * (x2 - x1) * ((x2 + x1 + 3)^2 + 4 * sigma)) / 18;

f2[x1_, x2_, alpha_, delta_, tlow_, thigh_, sigma_, L_] :=

delta * ((2 * alpha * tlow * (x2 - x1) * (L + (x2 + x1) / 2 - 3 / 2)^2) / 9 +

(2 * (1 - alpha) * thigh * (x2 - x1) * (-L + (x2 + x1) / 2 - 3 / 2)^2) / 9) +

((1 - delta) * (x2 - x1) * ((x2 + x1 - 3)^2 + 4 * sigma)) / 18;

"2. Introduce Parameter Restrictions";

assumptions = And[L ⩵ 1 / 2, 0 ≤ alpha ≤ 1,
0 < tlow <= 1, 0 <= delta ≤ 1, 0 <= sigma ≤ L^2, thigh ≥ 1];

"3. Define the Midpoint Between Both Firms";

mean = (x1 + x2) / 2;

"4. Solving for Mutual Best Responses";

solutions =

FullSimplify[Solve[{D[f1[x1, x2, alpha, delta, tlow, thigh, sigma, L], x1] ⩵ 0,
D[f2[x1, x2, alpha, delta, tlow, thigh, sigma, L], x2] ⩵ 0}, {x1, x2}]];

"5. Store Solutions in a Table";

TableForm[Table[{solutions[[i, 1, 2]], solutions[[i, 2, 2]]},
{i, Length[solutions]}], TableHeadings → {{"1", "2", "3"}, {"x1", "x2"}},

TableAlignments → Center, TableSpacing → {3, 4}];

"6. Verify Whether Solution
Satisfies the Global Competition Condition";
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Table[{i, FullSimplify[(And[-3 / 2 < -L - mean, L - mean < 3 / 2] /. solutions[[i]]),
assumptions]}, {i, Length[solutions]}]

{1, True}, 2, 2 + 2 delta (-1 + thigh - alpha thigh + alpha tlow) >

√
9 - 4 sigma + delta -18 - 23 (-1 + alpha) thigh + 11 alpha tlow +

4 sigma (2 + (-1 + alpha) thigh - alpha tlow) + delta 9 + 16 (-1 + alpha)2

thigh2 + 4 sigma (-1 + thigh - alpha thigh + alpha tlow) + alpha tlow

(-11 + 4 alpha tlow) - (-1 + alpha) thigh (-23 + 12 alpha tlow) &&

2 delta (1 + (-1 + alpha) thigh - alpha tlow) <

2 +

√
9 - 4 sigma + delta -18 - 23 (-1 + alpha) thigh + 11 alpha tlow +

4 sigma (2 + (-1 + alpha) thigh - alpha tlow) + delta 9 + 16 (-1 + alpha)2

thigh2 + 4 sigma (-1 + thigh - alpha thigh + alpha tlow) + alpha tlow

(-11 + 4 alpha tlow) - (-1 + alpha) thigh (-23 + 12 alpha tlow),

3, 2 delta (1 + (-1 + alpha) thigh - alpha tlow) <

2 +

√
9 - 4 sigma + delta -18 - 23 (-1 + alpha) thigh + 11 alpha tlow +

4 sigma (2 + (-1 + alpha) thigh - alpha tlow) + delta 9 + 16 (-1 + alpha)2

thigh2 + 4 sigma (-1 + thigh - alpha thigh + alpha tlow) + alpha tlow

(-11 + 4 alpha tlow) - (-1 + alpha) thigh (-23 + 12 alpha tlow) &&

2 delta (1 + (-1 + alpha) thigh - alpha tlow) +
√
9 - 4 sigma +

delta -18 - 23 (-1 + alpha) thigh + 11 alpha tlow + 4 sigma

(2 + (-1 + alpha) thigh - alpha tlow) + delta 9 + 16 (-1 + alpha)2 thigh2 +

4 sigma (-1 + thigh - alpha thigh + alpha tlow) + alpha tlow (-11 +

4 alpha tlow) - (-1 + alpha) thigh (-23 + 12 alpha tlow) < 2

"7. Verify That the First Pair of Solutions
Satisfies the Global Competition Condition";

x1st = 9 + 4 sigma +

delta -9 - 4 sigma - (-1 + alpha) (3 + 2 L)2 thigh + alpha (3 - 2 L)2 tlow 

(4 (-3 + delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow)));

x2st = -x1st;

Simplify[x2st > 3 / 2 - L, assumptions]

3 delta + 4 sigma > 3 + 4 delta (sigma + alpha tlow)

Reduce[{3 delta + 4 sigma > 3 + 4 delta (sigma + alpha tlow), assumptions},
{alpha, delta, sigma, tlow}]

False

"8. Define the Mean for the
Second and Third Pair of Solutions";
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mean2 =

3 + delta (-3 - (-1 + alpha) (3 + 2 L) thigh + alpha (3 - 2 L) tlow) -
√

9 - 4 sigma +

delta 4 (-1 + alpha) ((-3 + L) L + sigma) thigh + 2 (-9 + 4 sigma -

9 (-1 + alpha) thigh) - 2 alpha (-9 + 2 L (3 + L) + 2 sigma) tlow +

delta 9 + (-1 + alpha)2 (3 + 2 L)2 thigh2 + 4 sigma

(-1 + thigh - alpha thigh + alpha tlow) + alpha tlow
(9 (-2 + alpha tlow) + 4 L (3 + L + alpha (-3 + L) tlow)) + 2 (-1 +

alpha) thigh (9 - 9 alpha tlow + 2 L (3 - L + 6 alpha L tlow)) 

(2 (-1 + delta (1 + (-1 + alpha) thigh - alpha tlow))) -

3 - delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow) +

√
9 - 4 sigma + delta 4 (-1 + alpha) ((-3 + L) L + sigma)

thigh + 2 (-9 + 4 sigma - 9 (-1 + alpha) thigh) - 2 alpha

(-9 + 2 L (3 + L) + 2 sigma) tlow + delta 9 + (-1 + alpha)2 (3 + 2 L)2

thigh2 + 4 sigma (-1 + thigh - alpha thigh + alpha tlow) + alpha
tlow (9 (-2 + alpha tlow) + 4 L (3 + L + alpha (-3 + L) tlow)) +

2 (-1 + alpha) thigh (9 - 9 alpha tlow + 2 L

(3 - L + 6 alpha L tlow)) 

(2 (-1 + delta (1 + (-1 + alpha) thigh - alpha tlow)))  2;

mean3 =

3 + delta (-3 - (-1 + alpha) (3 + 2 L) thigh + alpha (3 - 2 L) tlow) +
√

9 - 4 sigma +

delta 4 (-1 + alpha) ((-3 + L) L + sigma) thigh + 2 (-9 + 4 sigma -

9 (-1 + alpha) thigh) - 2 alpha (-9 + 2 L (3 + L) + 2 sigma) tlow +

delta 9 + (-1 + alpha)2 (3 + 2 L)2 thigh2 + 4 sigma

(-1 + thigh - alpha thigh + alpha tlow) + alpha tlow
(9 (-2 + alpha tlow) + 4 L (3 + L + alpha (-3 + L) tlow)) + 2 (-1 +

alpha) thigh (9 - 9 alpha tlow + 2 L (3 - L + 6 alpha L tlow)) 

(2 (-1 + delta (1 + (-1 + alpha) thigh - alpha tlow))) +

-3 + delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow) +

√
9 - 4 sigma + delta 4 (-1 + alpha) ((-3 + L) L + sigma) thigh +

2 (-9 + 4 sigma - 9 (-1 + alpha) thigh) - 2 alpha (-9 + 2 L (3 + L) +

2 sigma) tlow + delta 9 + (-1 + alpha)2 (3 + 2 L)2 thigh2 +

4 sigma (-1 + thigh - alpha thigh + alpha tlow) + alpha tlow
(9 (-2 + alpha tlow) + 4 L (3 + L + alpha (-3 + L) tlow)) + 2 (-1 +

alpha) thigh (9 - 9 alpha tlow + 2 L (3 - L + 6 alpha L tlow)) 

(2 (-1 + delta (1 + (-1 + alpha) thigh - alpha tlow)))  2;

"9. Determine the Mean's Range for
the Second and Third Pair of Solutions";

NMinimize[{mean2, 0 <= L ≤ 1 / 2, 0 ≤ alpha ≤ 1, 0 <= tlow <= 1, 0 <= delta ≤ 1,
0 <= sigma ≤ L^2, thigh ≥ 1}, {alpha, delta, tlow, thigh, sigma, L}]

{1., {alpha → 1., delta → 1., tlow → 0.878054, thigh → 1., sigma → 0.139562, L → 0.5}}

NMaximize[{mean2, 0 <= L ≤ 1 / 2, 0 ≤ alpha ≤ 1, 0 <= tlow <= 1, 0 <= delta ≤ 1,
0 <= sigma ≤ L^2, thigh ≥ 1}, {alpha, delta, tlow, thigh, sigma, L}]

2., alpha → 2.6438 × 10-9, delta → 1.,

tlow → 0.0272573, thigh → 2.23364, sigma → 0.234253, L → 0.5
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NMinimize[{mean3, 0 <= L ≤ 1 / 2, 0 ≤ alpha ≤ 1, 0 <= tlow <= 1, 0 <= delta ≤ 1,
0 <= sigma ≤ L^2, thigh ≥ 1}, {alpha, delta, tlow, thigh, sigma, L}]

-2., alpha → 2.6438 × 10-9, delta → 1.,

tlow → 0.0272573, thigh → 2.23364, sigma → 0.234253, L → 0.5

NMaximize[{mean3, 0 <= L ≤ 1 / 2, 0 ≤ alpha ≤ 1, 0 <= tlow <= 1, 0 <= delta ≤ 1,
0 <= sigma ≤ L^2, thigh ≥ 1}, {alpha, delta, tlow, thigh, sigma, L}]

-1., alpha → 1., delta → 1., tlow → 0.365717,

thigh → 1.79008, sigma → 1.80912 × 10-22, L → 0.5

"10. Second-Order Derivative Firm 1";

FullSimplify[ D[f1[x1, x2, alpha, delta, tlow, thigh, sigma, L], {x1, 2}]]

1

9
(-6 - 3 x1 - x2 + delta (6 + 3 x1 +

alpha tlow (-6 + 4 L - 3 x1 - x2) + x2 + (-1 + alpha) thigh (6 + 4 L + 3 x1 + x2)))

Secondorderderivative1[x1_, x2_, alpha_, delta_, tlow_, thigh_, sigma_, L_] :=
1

9
(-6 - 3 x1 - x2 + delta (6 + 3 x1 + alpha tlow (-6 + 4 L - 3 x1 - x2) +

x2 + (-1 + alpha) thigh (6 + 4 L + 3 x1 + x2)));

"11. Second-Order Derivative Firm 2";

FullSimplify[D[f2[x1, x2, alpha, delta, tlow, thigh, sigma, L], {x2, 2}]]

1

9
(-6 + x1 + 3 x2 + delta (6 - x1 +

(-1 + alpha) thigh (6 + 4 L - x1 - 3 x2) - 3 x2 + alpha tlow (-6 + 4 L + x1 + 3 x2)))

Secondorderderivative2[x1_, x2_, alpha_, delta_, tlow_, thigh_, sigma_, L_] :=
1

9
(-6 + x1 + 3 x2 + delta (6 - x1 + (-1 + alpha) thigh (6 + 4 L - x1 - 3 x2) -

3 x2 + alpha tlow (-6 + 4 L + x1 + 3 x2)))

"12. Second-Order Derivatives
Evaluated at Equilibrium Candidate Positions";
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FullSimplifySecondorderderivative19 + 4 sigma +

delta -9 - 4 sigma - (-1 + alpha) (3 + 2 L)2 thigh + alpha (3 - 2 L)2 tlow 

(4 (-3 + delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow))), -9 -

4 sigma + delta 9 + 4 sigma + (-1 + alpha) (3 + 2 L)2 thigh - alpha (3 - 2 L)2 tlow 

(4 (-3 + delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow))),

alpha, delta, tlow, thigh, sigma, L

27 - 4 sigma + delta

8 sigma + 4 (-1 + alpha) ((-9 + L) L + sigma) thigh - 54 (1 + (-1 + alpha) thigh) -

2 alpha (-27 + 2 L (9 + L) + 2 sigma) tlow + delta 27 + 3 (-1 + alpha)2

(3 + 2 L)2 thigh2 + 4 sigma (-1 + thigh - alpha thigh + alpha tlow) +

alpha tlow -54 + 4 L (9 + L) + 3 alpha (3 - 2 L)2 tlow +

2 (-1 + alpha) thigh (27 - 27 alpha tlow + 2 L (9 - L + 10 alpha L tlow)) 

(18 (-3 + delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow)))

FullSimplifySecondorderderivative29 + 4 sigma +

delta -9 - 4 sigma - (-1 + alpha) (3 + 2 L)2 thigh + alpha (3 - 2 L)2 tlow 

(4 (-3 + delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow))), -9 -

4 sigma + delta 9 + 4 sigma + (-1 + alpha) (3 + 2 L)2 thigh - alpha (3 - 2 L)2 tlow 

(4 (-3 + delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow))),

alpha, delta, tlow, thigh, sigma, L

27 - 4 sigma + delta

8 sigma + 4 (-1 + alpha) ((-9 + L) L + sigma) thigh - 54 (1 + (-1 + alpha) thigh) -

2 alpha (-27 + 2 L (9 + L) + 2 sigma) tlow + delta 27 + 3 (-1 + alpha)2

(3 + 2 L)2 thigh2 + 4 sigma (-1 + thigh - alpha thigh + alpha tlow) +

alpha tlow -54 + 4 L (9 + L) + 3 alpha (3 - 2 L)2 tlow +

2 (-1 + alpha) thigh (27 - 27 alpha tlow + 2 L (9 - L + 10 alpha L tlow)) 

(18 (-3 + delta (3 + (-1 + alpha) (3 + 2 L) thigh + alpha (-3 + 2 L) tlow)))

"13. Take the Derivative of
the Numerator With Respect to Thigh";

FullSimplify

D27 - 4 sigma + delta 8 sigma + 4 (-1 + alpha) ((-9 + L) L + sigma) thigh - 54

(1 + (-1 + alpha) thigh) - 2 alpha (-27 + 2 L (9 + L) + 2 sigma) tlow +

delta 27 + 3 (-1 + alpha)2 (3 + 2 L)2 thigh2 +

4 sigma (-1 + thigh - alpha thigh + alpha tlow) +

alpha tlow -54 + 4 L (9 + L) + 3 alpha (3 - 2 L)2 tlow + 2 (-1 + alpha)

thigh (27 - 27 alpha tlow + 2 L (9 - L + 10 alpha L tlow)), thigh

2 (-1 + alpha) delta

-27 + 2 ((-9 + L) L + sigma) + delta 27 - 2 sigma + 3 (-1 + alpha) (3 + 2 L)2 thigh -

27 alpha tlow + 2 L (9 + L (-1 + 10 alpha tlow))

"14. Check Whether the Derivative Can be Negative";

assumptions = And[0 <= L ≤ 1 / 2, 0 ≤ alpha ≤ 1,
0 < tlow ≤ 1, 0 <= delta ≤ 1, 0 <= sigma ≤ L^2, thigh >= 1];
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Reduce

2 (-1 + alpha) delta -27 + 2 ((-9 + L) L + sigma) + delta 27 - 2 sigma + 3 (-1 + alpha)

(3 + 2 L)2 thigh - 27 alpha tlow + 2 L (9 + L (-1 + 10 alpha tlow)) < 0,

assumptions, {alpha, delta, sigma, L, tlow, thigh}

False

"15. Evaluate the Numerator of
the Second-Order Derivative at Thigh=1";

Num[alpha_, delta_, tlow_, thigh_, sigma_, L_] :=

27 - 4 sigma + delta 8 sigma + 4 (-1 + alpha) ((-9 + L) L + sigma) thigh -

54 (1 + (-1 + alpha) thigh) - 2 alpha (-27 + 2 L (9 + L) + 2 sigma) tlow +

delta 27 + 3 (-1 + alpha)2 (3 + 2 L)2 thigh2 + 4 sigma (-1 + thigh - alpha thigh +

alpha tlow) + alpha tlow -54 + 4 L (9 + L) + 3 alpha (3 - 2 L)2 tlow +

2 (-1 + alpha) thigh (27 - 27 alpha tlow + 2 L (9 - L + 10 alpha L tlow));

FullSimplify[Num[alpha, delta, tlow, 1, sigma, L]]

27 - 4 sigma + delta 4 (L (9 + (-1 + 4 delta) L) + sigma) +

alpha2 delta 27 (-1 + tlow)2 + 4 L2 (3 + tlow) (1 + 3 tlow) - 36 L -1 + tlow2 -

2 alpha -(27 + 2 (-1 + delta) sigma) (-1 + tlow) +

18 L (1 + delta + tlow - delta tlow) + 2 L2 (-1 + tlow + delta (7 + 9 tlow))

27 - 4 sigma + delta 4 (L (9 + (-1 + 4 delta) L) + sigma) +

alpha2 delta 27 (-1 + tlow)2 + 4 L2 (3 + tlow) (1 + 3 tlow) - 36 L -1 + tlow2 -

2 alpha -(27 + 2 (-1 + delta) sigma) (-1 + tlow) +

18 L (1 + delta + tlow - delta tlow) + 2 L2 (-1 + tlow + delta (7 + 9 tlow))

27 - 4 sigma + delta 4 (L (9 + (-1 + 4 delta) L) + sigma) +

alpha2 delta 27 (-1 + tlow)2 + 4 L2 (3 + tlow) (1 + 3 tlow) - 36 L -1 + tlow2 -

2 alpha (-27 - 2 (-1 + delta) sigma) (-1 + tlow) +

18 L (1 + delta + tlow - delta tlow) + 2 L2 (-1 + tlow + delta (7 + 9 tlow))
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"16. Can The Numerator
Evaluated at Thigh=1 Become Negative?";

Reduce27 - 4 sigma + delta 4 (L (9 + (-1 + 4 delta) L) + sigma) +

alpha2 delta 27 (-1 + tlow)2 + 4 L2 (3 + tlow) (1 + 3 tlow) - 36 L -1 + tlow2 -

2 alpha -(27 + 2 (-1 + delta) sigma) (-1 + tlow) +

18 L (1 + delta + tlow - delta tlow) + 2 L2 (-1 + tlow + delta (7 + 9 tlow)) <

0, 0 <= L ≤ 1 / 2, 0 ≤ alpha ≤ 1, 0 <= tlow ≤ 1, 0 <= delta ≤ 1,

0 <= sigma ≤ L^2, {alpha, delta,

tlow,
sigma,

L}

False
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Chapter 3

Primary Prevention Under

Ambiguity

3.1 Introduction

A substantial part of everyday medical decision-making is concerned with preventive care.

The fundamental idea of prevention lies in the assumption that patients’ behavior and

commitments to preventive health care measures may actively influence their prospects

of certain future health states. The literature differentiates between different concepts of

prevention.1 First of all, there is primary prevention, referring to situations before the

incidence of disease. A potentially healthy agent can exert a distinct amount of effort

that itself influences his or her probability of contracting an illness in the future. There

are a multitude of preventive measures that fall into this category. Preventing obesity

by doing regular exercise or following nutritional guidelines from health experts, such as

limiting the daily amount of carbohydrates consumed, may significantly reduce the risk of

acquiring diabetes or cardiovascular diseases.2 Another example for primary preventive

1See for instance Kenkel [2000] or Etner and Jeleva [2013].
2For a detailed survey on the cost-effectiveness of primary preventive programs on diabetes and

cardiovascular diseases read the report by Korczak et al. [2011].
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measures are safety guidelines and schooling for workers exposed to certain health risks

at the workplace; you may think of workers exposed to dangerous substances, machinery,

or surroundings. In contrast to that, secondary and tertiary prevention is confined to

scenarios after the occurrence of disease. Secondary prevention refers to measures such

as cancer screenings where patients are unaware of their current health status. The term

tertiary prevention applies after the disease has been diagnosed. One can think of pre-

ventive measures that facilitate patients’ physical recovery, reduce their risk of relapse,

or ameliorate their general state of health. Throughout this paper, I am going to focus

on primary prevention and primary preventive programs.

An important observation related to primary preventive activities is that patients are

indeed aware that the commitment to a specific preventive measure reduces their risk

of contracting an illness. Imagine, for instance, that patients were asked whether they

believe that regular exercise reduces their risk of contracting cardiovascular diseases; one

would expect a large majority of patients to answer positively. If patients were, on the

other hand, asked to quantify the impact of preventive effort on their individual disease

probabilities, they would probably fail to give an accurate answer. Suppose, for instance,

that patients were asked how strongly their risk of contracting a cardiovascular disease

would decrease if they were engaged in one additional hour of sporting activities every

week. In this case, one would expect that patients are either unable to provide an estima-

tion, or come up with an estimation that they don’t feel very confident with. This absence

of knowledge can be explained by several possible reasons. First of all, patients need to

incorporate and evaluate the impact of imprecisely known factors, such as their genetic

predispositions to certain diseases, or lifestyle related factors3, to form a probabilistic

judgment. Secondly, even in the rather unrealistic situation that patients have direct ac-

cess to recent scientific studies on the matter, the provision of these might be only of little

help, since the findings of each survey are based on aggregate data for a certain sample of

participants. Knowing this, patients might find it difficult to contrast aggregate results

3Examples for lifestyle related factors might be for instance nutrition, exposition to environmental
risks, like pollution or hazardous substances, as well as stress.
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with individual factors. Thirdly, patients might be confronted with a situation where sci-

entific evidence on the respective programs is not available. This is, for instance, the case

when patients participate in newly developed preventive programs where reliable data on

its effectiveness is still absent. And finally, there might be confounding scientific or non-

scientific evidence on the efficacy of a certain preventive regime. As an example for this,

one might think of contradictory dietary recommendations, newly developed ”wonder di-

ets” promoted by some representatives of the pharmaceutical industry, or contradictory

information arising from patients’ eligibility for a second medical opinion. Consequently,

patients ignore the true underlying relationship between preventive effort and disease

probabilities. More importantly, they might consider a multitude of functional relation-

ships between effort and disease probability possible. This is illustrated by means of the

following stylized figure.

Figure 3.1: Preventive Relationships and the True Underlying Relationship

A key objective of any information campaign or health counseling on primary preven-

tion is to ensure that patients are better informed about the effectiveness of a preventive

regime. This objective is based on the premise that better informed agents are more

likely to make better decisions in terms of their preventive activities. In my view, this

assumption is highly problematic, since it is not clearly understood how patients process

additional information in the light of imprecise a priori knowledge. In this paper, im-

precise knowledge is modeled by ”Knightian Uncertainty”, or ”Ambiguity”, see Knight
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[1921]. The idea that ambiguity is relevant for decision making on health matters is sup-

ported by a relatively new strand of empirical literature. Han et al. [2011] highlight the

relevance of uncertainty for health care. The authors point out different sources and vari-

eties of uncertainty in medical care and emphasize that, until now, clinical practice does

not differentiate between different varieties of uncertainty as risk and ambiguity. One

example why ambiguity might arise is confounding information about scientific evidence.

Therefore, ambiguity might matter for communication schemes between physicians and

patients. Han et al. [2007] consider the issue of conflicting information more concretely

by empirically investigating the impact of contradictory mammography recommendations

on women’s behavior. The study finds that a higher degree of ambiguity yields a dimin-

ished uptake of mammography and lowers intentions for future mammography screenings.

Similarly, Han et al. [2006] investigate the importance of ambiguity with respect to can-

cer preventability and cancer prevention recommendations. The authors find a positive

correlation between ambiguity and perceived cancer risk or cancer worry. Furthermore,

the study suggests that perceived ambiguity has a strong negative effect on cancer pre-

ventability. Politi et al. [2007] treat the question of how to communicate uncertainties

about medical interventions to patients and state that further research is needed in order

to fully understand how patients respond to risk and ambiguity.

This paper intends to study, on a theoretical basis, how additional information on a pri-

mary preventive regime impacts on patients’ preventive activities when patients’ prior

knowledge is characterized by ambiguity. Note that the way information is processed

under risk significantly differs from the way information is updated under ambiguity. As

a consequence, it is not clearly understood how additional information on a preventive

regime and patients’ effort levels are interrelated under Knightian Uncertainty.

This paper intends to fill this gap by studying a model of physician counseling where

patients with imprecise prior knowledge seek information from a physician on the rela-

tionship between effort and disease probabilities. Patients’ imprecise a priori knowledge

is thereby modeled by Knightian Uncertainty. More specifically, I assume that patients’

preferences are of the Choquet-expected utility type. Beliefs are defined on a set of
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strictly ordered preventive relationships and represented by a neo-additive capacity, see

Chateauneuf et al. [2007], which is a non-additive probability which allows researchers

to model the magnitude of the imprecision of patients’ beliefs as well as their attitudes

towards ambiguity. The physician provides a random signal to patients. After receiving

the signal, patients update their prior belief and exert effort. The optimal level of preven-

tive activities is thereby determined according to a setting motivated by the self-insurance

and self-protection model developed by Ehrlich and Becker [1972]. The following diagram

illustrates the basic modeling framework.

Figure 3.2: Basic Model Framework

Ehrlich and Becker [1972] consider a model with two states of the world, a ”good” and

a ”bad” state, and a decision-maker that encounters a monetary loss in the bad state.

Furthermore, the decision-maker can, by exerting a certain amount of effort, either reduce

the amount of loss in the bad state (this is called ”self-insurance”), or reduce the under-

lying probability of the bad state (this is called ”self-protection”). To my knowledge, the

following modifications and extensions of Ehrlich and Becker’s model have been discussed

in the health domain, and more specifically in the context of prevention. Eeckhoudt et al.

[1998] relate Ehrlich and Becker’s model to medical prevention. In particular, the au-

thors introduce utilities depending on patients’ health state and find that tertiary and

secondary prevention are , whereas primary and tertiary prevention are complements.

Eeckhoudt et al. [2001] investigate the link between primary and secondary prevention.



Chapter 3. Primary Prevention Under Ambiguity 85

The paper demonstrates that policy-makers might reduce investment in primary preven-

tive measures as soon as diagnostic tests become available. Hence, primary prevention and

secondary prevention can be considered as substitutes. Zweifel et al. [2009] analyze the

relationship between moral hazard, insurance, and prevention. Etner and Jeleva [2013]

study the relationship between risk perception, prevention and diagnostic tests using the

recursive rank-dependent utility model developed by Cohen et al. [2008]. The authors

suggest a comprehensive framework incorporating primary and tertiary preventive ac-

tivities, assuming that patients know the relationship between effort and the objective

probability of disease, but might under- or overestimate this probability.

The idea to introduce Knightian uncertainty into Ehrlich and Becker’s model has already

been addressed by a number of papers. Snow [2011] incorporates ambiguity aversion

by using the so-called KMM or Smooth Ambiguity model developed by Klibanoff et al.

[2005]. The author introduces a model with two states of the world and concludes that,

if decision-makers are risk-averse and ambiguity-averse at the same time, optimal self-

insurance and self-protection increase with greater ambiguity aversion. Furthermore, the

author states that ”higher self-protection and self-insurance levels induce mean-preserving

contractions in the distribution of expected utility that are valuable to ambiguity-averse

decision-makers”, see Snow [2010], page 39. Huang [2012] considers a self-insurance and

self-protection model under ambiguity with KMM-preferences. The novelty of Huang’s

contribution consists in contemplating non-monetary costs of effort, higher order risk-

preferences, and ambiguous target distributions assuming a wealth distribution defined

on a compact support. The author concludes that ambiguity aversion entails higher effort

levels whenever the individual can shift the initial wealth distribution towards a ”pre-

ferred target distribution”. Alary et al. [2013] examine a generalized version of the model

in Snow [2011] with more than two states of the world and, using a willingness to pay

approach, derive conditions under which ambiguity aversion increases the incentive to

insure and self-insure but decreases the incentive to self-protect.4 Robert and Therond

[2014] use a theoretical approach by linking Yaari’s dual approach, compare Yaari [1987],

4See Alary et al. [2013], page 18.
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and ambiguity aversion with optimal prevention. The authors consider the so-called class

of concave distortion risk measures and conclude that the willingness to pay for a risk

reduction is always higher for a more ambiguity-averse decision-maker but not necessarily

for a more risk-averse decision-maker.5 Moreover, ambiguity-averse decision-makers exert

less preventive effort when ambiguity refers to a less risky distribution.5 Berger [2014]

considers a two-period model with a recursive KMM approach,6 where a decision-maker

invests in prevention in the first period in order to improve the final wealth distribution

or to influence the probability of being in an ambiguous state of the world in the second

period.7 The author concludes that the effect of ambiguity on self-protection cannot be

signed. In order to give a sufficient condition for ambiguity to increase the demand for

self-protection, Berger [2014] introduces a concept called ”ambiguity prudence attitude”,

or ”decreasing absolute ambiguity aversion”, linking the problem of self-protection under

ambiguity to the concept of prudence, which was until now only considered in the risk

case.8

In contrast to the existing literature on self-protection, I study preventive behavior in the

health domain, and more specifically in the context of primary prevention. The aim of

this research is to analyze how learning affects self-protection when patients ignore the

relationship between effort and disease probabilities. Until now, there is, to my knowl-

edge, no article combining learning, Ehrlich and Becker’s notion of self-protection, and

primary prevention when decision-makers face Knightian Uncertainty.

This paper is organized as follows: In the next section, I give a detailed description of

the model setup. The third section analyzes the impact of optimism and confidence

on optimal self-protection. Section 4 examines the impact of additional information on

preventive activities. Finally, section 5 describes my conclusions.

5Compare Robert and Therond [2014], page 11.
6See Klibanoff et al. [2009].
7Compare Berger [2014], page 4.
8Eeckhoudt and Gollier [2005] link prevention to prudence and find that prudence tends to reduce

prevention.
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3.2 Model

To begin with, suppose that there are two time points t = 0, 1 and a patient whose

state-contingent Bernoulli utility u : X → R is defined on the set X = R× Ω. The state

space Ω ⊂ R consists of two states of the world, Ω = {h1, h2} where w.l.o.g. h1 ≤ h2.

The state h1 refers to a situation where the patient contracts an illness, while h2 refers

to a situation where the patient remains healthy at t = 1. Each element x ∈ X is a

combination x = (w, hi) where w denotes the patient’s wealth level and hi denotes the

patient’s health status at time t = 1. As a next step, I make the following assumptions

with respect to patients’ utility function.9

Assumption 4. Patients’ Bernoulli utility satisfies the following conditions:

(A1) u is twice continuously differentiable

(A2) u is strictly increasing in wealth, in formal terms uw > 0

(A3) u is concave with respect to w, formally uww ≤ 0

Assumption (A1) is a purely technical assumption. (A2) asserts that patients prefer more

money to less money in both health states. Requirement (A3) is an assumption on risk-

preferences and presumes that patients are either risk-averse or risk-neutral.

Patients’ wealth in the bad state of the world is denoted by W1(V ), and by W2(V ) in the

good state. Wealth is effort-dependent, with the following requirements.

Assumption 5. Patients’ wealth functions satisfy the following conditions:

(W1) Both wealth functions Wi(V ) are twice continuously differentiable in V .

(W2) Wealth is decreasing in effort W ′
i (V ) < 0 for i = 1, 2.

9Please note that uw denotes the partial derivative of u with respect to the wealth level w. Similarly,
uww denotes the second order partial derivative of u with respect to w.
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Requirement (W1) is purely technical. Assumption (W2) reflects the fact that effort is

costly. Imagine for instance the case where a patient follows a regular workout program

to prevent obesity. A higher level of effort can be interpreted as additional time spent

in sporting activities every week. This is costly due to time spent, entry fees for health

centers, additional transportation costs, expenses for sporting equipment, etc.

As a next step, I make the assumption that there is a twice continuously differentiable and

convex function πreal : [0, 1] → [0, 1]. For each effort level V ∈ [0, 1] the value πreal(V )

denotes the objective probability that the patient contracts an illness at time t = 1.

Similarly, 1−πreal(V ) denotes the objective probability that the patient remains healthy

at time t = 1. Hence, πreal describes the true underlying relationship between effort

and disease probabilities. In this framework, πreal is unknown to patients for the reasons

pointed out in the introductory section of this paper. The term ”prevention” implies that

effort alters the likelihood of an event. Therefore, I assume that preventive effort alters the

true underlying patient-specific disease probability. More specifically, I assume that there

is scientific evidence demonstrating that there is a positive relationship between effort

and the probability of the ”bad state”, and that patients know that this relationship is

positive, but cannot exactly quantify the impact of effort on that probability.10 Formally,

patients know that the function πreal is decreasing in V . Patients’ a priori knowledge is

modeled by a set of preventive relationships

Φ ⊂
{
π| π : [0, 1]→ [0, 1]

}

with the following requirements:

Assumption 6. Patients’ preventive relationships πi ∈ Φ satisfy the following conditions:

(P1) Φ is finite and contains exactly n elements

(P2) πi is twice continuously differentiable for i = 1, ..., n.

10Without this assumption, the term prevention would not be justified, since it is not clear whether
the true underlying disease probability is positively affected by preventive activities.
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(P3) πi is strictly decreasing π′i(V ) < 0

Requirement (P1) says that patients consider n disease probability possible for a given

effort level V ∈ [0, 1]. These are denoted by πi(V ) for i ∈ {1, ..., n}. Assumption (P2)

is purely technical. (P3) says that patients believe that a higher level of effort translates

into lower disease probabilities.

Remark 3.1. Henceforth, I implicitly assume that Assumptions 1,2, and 3 are satisfied

throughout this paper.

In the introductory section, I argued that patients face Knightian uncertainty with respect

to the true relationship between effort and disease probabilities. Hence, patients consider

each πi ∈ Φ as a possible realization of a random variable with unknown distribution.

This can be illustrated graphically by means of the so-called Machina triangle for a fixed

level of effort V and the special case of three realizations where

Φ(V ) :=
{
π1(V ), π2(V ), π3(V )

}
.

Figure 3.3: Patients’ Beliefs in Case of Three Preventive Relationships
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Each point in the triangle represents a specific belief q(V ). Formally q(V ) is an element

of the simplex

∆(Φ(V )) :=

{
q(V ) = (q1(V ), q2(V ), q3(V ))

∣∣∣ qi(V ) ≥ 0 and
3∑
i=1

qi(V ) = 1

}

where qi(V ) denotes the probability that πi(V ) is the true underlying disease probability.

Under Knightian uncertainty, patients hold a subset of such beliefs. In the general case

with n possible preventive relationships, a belief takes the form q(V ) = (q1(V ), ..., qn(V )).

Throughout this paper, I assume that the belief q(V ) is independent of V . This implies

that there is a belief q = (q1, ..., qn) ∈ ∆(Φ) such that q = q(V ) for all V ∈ [0, 1]. This

assumption is less restrictive than it may seem at first glance. Patients’ effort is a choice

variable. If there were instances such that q(V1) 6= q(V2) for some V1, V2 ∈ [0, 1], one could

infer that patients’ beliefs regarding which of the mechanisms πi ∈ Φ describes the true

relationship between effort and disease probability depend on their choice of effort. Such

behavior seems implausible under the assumption that πreal is mostly based on external

factors which are either fixed, such as patients’ genetics, age, or gender, or not part of

the preventive program, such as patients’ job situation or place of residence.

One could argue that, even under Knightian Uncertainty, patients might still conform

to Savage’s [1954] subjective expected utility model.11 Thus, a prevention model with

purely subjective beliefs would be sufficient to account for the phenomenon of impre-

cise probabilistic knowledge. Contrary to this line of argument, Ellsberg’s [1961] findings

suggest that such an approach is severely problematic since a substantial share of decision-

makers facing ambiguity does indeed display preferences that contradict the existence of

a well-defined subjective belief. A decision-theoretic model which allows for deviations

from SEU and accounts for Ellsberg’s paradox is the so-called Choquet-expected utility

model, pioneered by Schmeidler [1989]. Patients conforming to the Choquet model make

decisions by maximizing a Choquet integral, which can be considered as a generalized

11An additional assumption to be made is that patients are able to reduce compound lotteries to
simple lotteries. See for instance Segal [1990], page 353 for a formal description of the reduction of
compound lotteries axiom.
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expectation for non-additive probability measures. In this paper, patients’ beliefs are

represented by a special class of capacities, termed neo-additive capacities.12 The follow-

ing definition of a neo-additive capacity is adopted from Eichberger et al. [2009], page

359:

Definition 3.1. Let q = (q1, ..., qn) be a probability measure on (Φ,Σ) where Σ denotes

a σ-algebra of events on Φ. Then, for real numbers α and δ one can define a neo-additive

capacity ν by ν(∅) = 0, ν(Φ) = 1, ν(A) = δα + (1− δ)q(A) where A ∈ Σ is a nonempty

and strict subset of Φ.

Subsequently, I presume that patients hold a neo-additive belief ν defined on Φ. In this

case, each patient’s objective function can be specified by evaluating a Choquet-integral13

with respect to a neo-additive capacity. A functional representation14 of such an integral

is given by

∫
Φ
fdν = (1− δ)Eq[f ] + δ

(
αmax{x : f−1(x) /∈ N}+ (1− α) min{x : f−1(x) /∈ N}

)
(3.1)

where f : Φ → R is a simple function,15 N = {A ∈ Σ : ν(A) = 0} denotes the col-

lection of null-events of the capacity ν, Eq[f ] denotes the expectation of f with respect

to the probability distribution q, max{x : f−1(x) /∈ N} is the set of those states of the

world that induce the highest possible value of f , or the best case of f , under the as-

sumption that each one of these states is not the realization of a null-event. Similarly,

min{x : f−1(x) /∈ N} denotes the set of those states of the world that induce the lowest

possible value of f , or the worst case of f , under the assumption that each one of these

states is not the realization of a null-event. This representation of the Choquet integral

has an intuitive interpretation. A decision-maker with a neo-additive belief compares the

expectation Eq[f ] with a combination of extreme outcomes, namely a convex combina-

tion of the best and worst case. The parameter δ is called the confidence parameter, and

12See Chateauneuf et al. [2007] for an axiomatization of neo-additive capacities.
13For more details, see Choquet [1955].
14See Lemma 3.1 by Chateauneuf et al. [2007], page 541.
15A simple function is measurable, real-valued function with a finite range, see Chateauneuf et al.

[2007], page 540.
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measures how strongly the decision-maker incorporates extreme cases into his evaluation.

The parameter α is called the optimism parameter, and captures the magnitude to which

decision-makers incorporate the worst case into the extreme-outcome part of their eval-

uation.

In order to derive a patient’s objective function, one needs to answer the question of how

the simple function f is defined in the context of health prevention. If patients knew the

underlying preventive relationship πreal, the optimization problem would be given by

max
V ∈[0,1]

πreal(V )u(W1(V ), h1) + (1− πreal(V )u(W2(V ), h2).

This is the standard expected utility case with effort-dependent disease probabilities and

wealth functions. Under Knightian uncertainty, πreal is unknown. Hence, patients ignore

whether they maximize an expected utility with respect to the relationship πi ∈ Φ, or

whether they maximize an expected utility with respect to πj ∈ Φ where i, j ∈ {1, ..., n}

and i 6= j. This observation provides information on how the simple function f needs to

be defined. In the general case, f is a mapping from a state space Ω̃ to a finite set of

consequences X ⊂ R. This means f assigns to every possible state of the world a resulting

outcome for the decision-maker. In the context of the prevention model, the states are

given by the preventive relationship πi ∈ Φ. The consequences are effort-dependent

expected utilities

X(V ) :=
{
πi(V )u(W1(V ), h1) + (1− πi(V ))u(W2(V ), h2) : 1 ≤ i ≤ n

}
.

Hence, one obtains for each fixed V ∈ [0, 1] the simple function

f(πi|V ) = πi(V )u(W1(V ), h1) + (1− πi(V ))u(W2(V ), h2).
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Making use of the functional representation (3.1), one obtains the objective function:

U(V |α, δ) :=

∫
Φ

f(πi|V )dν = (1− δ) Eq[f(·|V )] + δ
{
αZmax(V ) + (1−α)Zmin(V )

}
(3.2)

where

Zmax(V ) := max
πi∈Φ

{
πi(V )u(W1(V ), h1) + (1− πi(V ))u(W2(V ), h2)

}
Zmin(V ) := min

πi∈Φ

{
πi(V ) u(W1(V ), h1) + (1− πi(V )) u(W2(V ), h2)

} (3.3)

and Eq[f(·|V )] denotes the expectation

n∑
i=1

qif(πi |V ).

The patient’s optimization problem is given by

max
V ∈[0,1]

U(V |α, δ).

The following corollary gives an alternative representation of the objective function U .

Corollary 3.1. The objective function can be expressed in the form

U(V |α, δ) = πCEU(V |α, δ) u(W1(V ), h1) + (1− πCEU(V |α, δ)) u(W2(V ), h2) (3.4)

where

πCEU(V |α, δ) = (1− δ)πq(V ) + δ(απmax(V ) + (1− α)πmin(V )) (3.5)

and

πq(V ) :=
n∑
i=1

qiπi(V ),

πmax(V ) := arg max
πi∈Φ

{
πi(V )u(W1(V ), h1) + (1− πi(V ))u(W2(V ), h2)

}
,

πmin(V ) := arg min
πi∈Φ

{
πi(V ) u(W1(V ), h1) + (1− πi(V )) u(W2(V ), h2)

}
.



Chapter 3. Primary Prevention Under Ambiguity 94

Proof. The proof is contained in the appendix.

Corollary 3.1 says that patients’ objectives under Knightian uncertainty can be expressed

in expected utility form with respect to the distorted probability πCEU. The distortion

itself is a convex combination of an ”expected probability” and a combination of worst and

best-case probabilities. The following proposition gives an important technical property

of the objective function and the existence of a solution for the patient’s optimization

problem.

Proposition 3.1. The patient’s objective is continuous and the underlying optimization

problem has a solution.

Proof. The proof is contained in the appendix.

The objective is continuous but not necessarily continuously differentiable. This can be

seen by means of Example 3.5, which is contained in the appendix. The reason why the

objective is not differentiable in the previous example lies in the fact that the minimizing

preventive relationship changes from one preventive relationship to another preventive

relationship at a point V̂ ∈ (0, 1). Such a change of the minimizer (or maximizer) can

occur when there are two preventive relationships π̂1, π̂2 ∈ Φ such that π̂1 crosses π̂2 from

above, or from below, at some point V̂ ∈ (0, 1). In this case, one calls V̂ a crossing point.

Subsequently, I give a formal definition of the term crossing point.

Definition 3.2. Consider two real-valued functions fi : D → R for i = 1, 2 where

D ⊆ Rn. A point x̂ ∈ D is called a crossing point if there is δ > 0 such that f1(x̂) = f2(x̂),

f1(x) < f2(x) for x ∈ (x̂− δ, x̂) and f1(x) > f2(x) for x ∈ (, x̂, x̂+ δ).

So far, I have identified crossing points of functions in Φ as possible sources for points

where the objective is not differentiable. A second source for crossing points can emerge in

the context of the utility functions u(W1(V ), h1) and u(W2(V ), h2). Again, the objective
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is not necessarily differentiable at such crossing points. This is demonstrated by means

of Example 3.6, which is also contained in the appendix.

Examples 3.5 and 3.6 demonstrate that crossing points are a possible source for points

where the objective function is not differentiable. Henceforth, Cprob denotes the set of

crossing points of functions in Φ and Cutility denotes the set of crossing points of the two

utilities u(W1(V ), h1) and u(W2(V ), h2) on [0, 1]. These sets can be defined formally as

follows:

Cprob :=
{
V̂ ∈ [0, 1] : ∃ i, j ∈ 1, ..., n s.t. V̂ is a crossing point of πi and πj

}
Cutility :=

{
V̂ ∈ [0, 1] : V̂ is a crossing point of u(W1(V ), h1) and u(W2(V ), h2)

}

The following proposition gives conditions under which differential calculus can be used

to analyze the patient’s optimization problem.

Proposition 3.2. The patient’s objective function is twice continuously differentiable

when there are no crossing points, formally Cprob = Cutility = ∅. The objective is at least

piecewise differentiable when both Cprob and Cutility are finite.

Proof. The proof is contained in the appendix.

The condition Cprob = ∅ ensures that the preventive relationships in Φ can be ordered in

a strict sense. This excludes the possibility that a preventive relationship πi ∈ Φ yields a

higher disease probability for a certain effort value V1 ∈ [0, 1] than another relationship

πj, and a lower disease probability than πj for a different effort value V2 ∈ [0, 1]\{V1}.

The condition Cutility = ∅ ensures that for every V ∈ [0, 1] the utility in one state of the

world is always larger than in the other state of the world. Assume for instance the case

u(W1(V ), h1) < u(W2(V ), h2).
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In this scenario, patients prefer to be healthy than to contract the illness irrespective of

the effort level chosen.

Let V ∗ denote the set of solutions of the patient’s optimization problem. If V ∗ is a

singleton, one can differentiate between three different cases:

(1) Corner solution 1: No prevention is optimal.

(2) Corner solution 2: Maximum prevention is optimal.

(3) Interior solution: Partial prevention is optimal.

The following proposition gives conditions under which the objective is strictly concave.

Proposition 3.3 (Strict Concavity). The objective function U is strictly concave if the

following conditions are satisfied:

(SC1) Cprob = Cutility = ∅

(SC2) u(W1(V ), h1) < u(W2(V ), h2) for all V ∈ [0, 1]

(SC3) πCEU is strictly convex

(SC4) Both wealth functions Wi for i = 1, 2 are concave W ′′
i (V ) ≤ 0.

(SC5) The inequality

W ′
1(V )u′(W1(V ), h1)−W ′

2(V )u′(W2(V ), h2) ≥ 0 (3.6)

holds for all V ∈ [0, 1].

Proof. The proof is contained in the appendix.

Remark 3.2. Requirement (SC3) is satisfied if every πi ∈ Φ is convex and there is at

least one πj ∈ Φ that is strictly convex.
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Remark 3.3. The statement of Proposition 3.3 remains true if the Assumptions (SC3)

and (SC4) are replaced by the following set of requirements: (S̃C3) πCEU is convex, (S̃C4)

both wealth functions Wi are concave Wi ≤ 0, and at least one wealth function is strictly

concave.

Requirement (SC1) excludes crossing points and ensures therefore that the objective is

twice continuously differentiable. Assumption (SC2) says that, irrespective of the effort

level selected, patients always have a lower utility when they contract a disease than

in a situation where they remain healthy. (SC3) and (SC4) are technical requirements.

Condition (SC5) can be expressed as

∂u1
∂V
∂u2
∂V

≤ 1

where u1(V ) = u(W1(V ), h1) is patients’ utility in the bad health state and u2(V ) =

u(W1(V ), h1) denotes patients’ utility in the good state. This representation has the fol-

lowing interpretation: on the left hand side is the marginal rate of substitution for more

prevention in the bad versus the good health state. Hence, (SC5) implies that patients

would at least weakly prefer to exchange an additional unit of prevention in the bad

health state for an additional unit of prevention in the good health state. The condition

is automatically fulfilled if one of the marginal utilities ∂ui
∂V

is positive and the other neg-

ative.

The assumptions of Proposition 3.3 guarantee that there is either a unique interior maxi-

mizer or no interior maximizer. When there is no interior maximizer, the global optimum

can be found at the boundary of the interval [0, 1]. The following proposition gives addi-

tional conditions under which no prevention or maximum prevention are feasible corner

solutions.
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Proposition 3.4 (Corner Solutions). Let the patient’s objective function U be strictly

concave. Consider the following requirements:

(CS1) limV→0+
∂
∂V
U(V |α, δ) < 0

(CS2) limV→1−
∂
∂V
U(V |α, δ) < 0.

Requirement (CS1) guarantees that V ∗ = 0 is a local maximizer. Condition (CS2) makes

sure that V ∗ = 1 is a local maximizer. If the first order condition has no solution, either

V ∗ = 0 or V ∗ = 1 is the global maximizer. Moreover, there is either no corner solution

or exactly one corner solution but there are never two corner solutions.

Proof. The proof is contained in the appendix.

3.3 Comparative Statics

In this section, I conduct a comparative static analysis for the prevention model presented

in the previous section. This section is divided into two main parts. In the first part,

I address the question of how preventive activities relate to the pessimism parameter α.

It turns out that there is no clear-cut answer to this question, since the overall effect of

pessimism on preventive effort depends on two concurrent effects, which will be explained

in detail by means of simple numerical examples. As a next step, I treat the general case

by looking at the overall effect of an increase in optimism on prevention. Subsequently,

I give some general conditions under which the effect of pessimism can be clearly signed.

In the second part, I relate the confidence parameter δ to preventive activities. It turns

out that the comparative static analysis for the confidence parameter can be conducted

in analogy to the case of the pessimism parameter α. Again, there are two concurrent

effects at work, which entail a variety of different cases to be considered.

For technical reasons, I make the following set of assumptions throughout the rest of the

paper.
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Assumption 7. Patients’ objectives satisfies the following requirements:

(CPS1) The are no crossing points Cutility = Cprob = ∅ .

(CPS2) Patients’ utility in the good state is always higher than in the bad state irre-

spective of the effort level V [0, 1] chosen. In formal terms,

u(W2(V ), h2)− u(W1(V ), h1) > 0.

(CPS3) Patients’ optimization problem has a unique solution.

Remark 3.4. Both the first and the second condition correspond to the Requirements

(SC1) and (SC2) of Proposition 3.3. The last condition is imposed for technical reasons

to simplify the analysis of the problem. Note that (CPS3) becomes devoid of purpose

if one assumes that the objective is strictly concave. Following Proposition 3.3, this

can be achieved by implementing Requirements (SC3) to (SC5). Condition (CPS3) is

less restrictive than the Requirements (SC3) to (SC5) taken together, since a unique

maximizer cannot be ruled out when the strict concavity conditions are violated.

As a direct consequence of Assumption 7, we can use differential calculus; there is either a

unique interior maximizer or a unique corner solution. Henceforth, let V ∗(α, δ) be defined

as the solution of the patient’s optimization problem given the parameter constellation

(α, δ):

V ∗(α, δ) := arg max
V ∈[0,1]

{
πCEU(V |α, δ) u(W1(V ), h1) + (1− πCEU(V |α, δ)) u(W2(V ), h2)

}
.

Notation 3.1. Throughout this section, I condense the notation slightly, writing V ∗

instead of V ∗(α, δ) and U instead of U = U(V ∗) if not otherwise specified.
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Pessimism and Preventive Activities

In this subsection, I analyze the effect of optimism on preventive activities. Assume for

now that V ∗ is a unique interior solution. In this case, one can use the implicit function

theorem to analyze the problem. It is

dV ∗

dα
= −

∂2U
∂α∂V
∂2U
∂V 2

. (3.7)

As the objective is assumed to be strictly concave, one can infer that the denominator of

the α-derivative of V ∗ is negative and that the overall sign of (3.7) is determined by the

sign of

∂2U
∂α∂V

= ∆u
d2

dαdV
πCEU +

(
d

dV
∆u

)
d

dα
πCEU

where

∆u := u(W1(V ∗), h1)− u(W2(V ∗), h2).

Hence, the sign of (3.7) depends on the two determinants, ∆1 and ∆2, which are defined

by

∆1 := ∆u
d2

dα dV
πCEU and ∆2 :=

(
d

dV
∆u

)
d

dα
πCEU.

∆1 is termed perceived efficacy effect, and ∆2 is denoted as expected marginal utility effect.

As a next step, I discuss both influencing factors ∆1 and ∆2 in detail, starting with ∆1.

Perceived Efficacy Effect

Note that ∆1 can be positive, negative or zero. This is demonstrated by means of the

following example, which considers three scenarios where ∆1 is considered in isolation.
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This is done by selecting utilities u(W1(V ), h1) and u(W2(V ), h2) with the same marginals

for every possible effort level V ∈ [0, 1].

Example 3.1. Throughout this example, I specify the utilities by

u(W1(V ), h1) = 8− 2V 2 and u(W2(V ), h2) = 12− 2V 2.

Moreover, the confidence parameter is given by δ = 1
2
, and the prior q = (q1, q2) is

defined by q1 = q2 = 1
2
. I compare three scenarios. In each scenario, a specific set of

belief functions Φi is defined, and patients exhibit either extreme optimism α = 1 or

extreme pessimism α = 0.

Scenario I

The first scenario shows that there are instances where a higher degree of pessimism

yields a higher degree of preventive activities. Let Φ1 = {π1, π2} where π1(V ) = 1− 7
15
V

and π2(V ) = 1
2
− 2

16
V . Figure 3.4 displays the respective objectives in one diagram.

Evidently, patients exert a higher level of effort in cases of extreme pessimism. Hence,

Figure 3.4: Pessimism Increases Preventive Activities

there are specifications where pessimism increases preventive activities.
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Scenario II

The following scenario provides the opposite statement. Let Φ2 = {π3, π4} where π3(V ) =

1 − 2
15
V and π4(V ) = 1

2
− 7

15
V .16 Figure 3.5 represents the respective objectives under

extreme pessimism and extreme optimism.

Figure 3.5: Pessimism Decreases Preventive Activities

Clearly, patients exert a lower level of effort in cases of extreme pessimism for this model

specification. Hence, there are instances where pessimism decreases preventive activities.

Scenario III

The last scenario provides a specification where pessimism has no influence on patients’

preventive activities. Let Φ3 = {π5, π6} where π5(V ) = 1 − 7
15
V and π6(V ) = 1

2
−

7
15
V . Figure 3.6 displays the objectives for the case of extreme pessimism and extreme

optimism. Obviously, extreme pessimism and extreme optimism yield the same preventive

activities.

In order to provide an explanation for the results of Example 3.1, a more profound analysis

of the problem is required. Note that the Assumptions 1, 2, and 3 of the model framework

are satisfied. Besides, there are no crossing points Cutility = Cprob = ∅. The only difference

lies in the set of preventive relationships Φi for = 1, 2, 3. Since ∆u is strictly negative

16Note that π3 has the same intercept as π1, and π2 has the same intercept as π4. Besides, the slope
of π3 corresponds to the slope of π2, and the slope of π4 corresponds to the slope of π1.
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Figure 3.6: Pessimism Does Not Affect Preventive Activities

by Assumption (CPS2), we can infer that πmin is given by π1 in the first, by π3 in the

second, and by π5 in the third part of the example. Similarly, πmax is given by π2 in the

first part of the example, by π4 in the second part of the example, and by π6 in the last

part.

An obvious distinguishing feature between the three model specifications emerges when

comparing the slopes of πmin and πmax on a case-by-case basis. Figure 3.7 gives a graphical

representation for the functions in Φ1, Φ2 and Φ3.

(a) Pessimism Leads to More Prevention (b) Pessimism Leads to Less Prevention

(c) Pessimism has no Effect on Prevention

Figure 3.7: Perceived Efficacy Effect
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In the first part of the example, πmin decreases more sharply than πmax for every effort

level V ∈ [0, 1]. In the second part, this relationship is reversed, whereas in the last

part both πmin and πmax have identical slopes. How can we interpret the fact that πmin

decreases more sharply than πmax? For every marginal increase in effort invested in

the preventive measure, the marginal reduction of patients’ perceived disease probability

is larger in the pessimistic case than in the optimistic one. This observation can be

formalized by means of the following definition.

Definition 3.3. Let π and π̂ denote two differentiable preventive relationships. The

relationship π is termed more effective than the relationship π̂ if and only if

∣∣∣π′(V )| >
∣∣∣π̂′(V )

∣∣∣ for all V ∈ [0, 1].

Remember, ∆2 is zero in Example 3.1 since both utilities u(W1(V ), h1) and u(W2(V ), h2)

have identical slopes. Hence, the overall effect of optimism on preventive activities de-

pends on the sign of

d2

dαdV
πCEU(V0|α, δ) (3.8)

only. The derivative (3.8) describes how patients’ perceived effectiveness of the preventive

measure changes as they become more optimistic. In the first scenario, patients’ perceived

effectiveness of the preventive measure decreases with increasing optimism. As a result,

pessimists deem the preventive measure more effective than optimists irrespective of the

effort level chosen. In the second scenario, this relationship is reversed. Hence, optimists

consider the preventive measure more effective than pessimists. Finally, in the third

scenario, patients’ perceived effectiveness is independent of the pessimism parameter α.

As a consequence, optimists and pessimists consider the preventive measure as equally

effective for all possible effort constellations.

The following proposition illustrates more clearly how patients’ perceived effectiveness

and preventive activities are interrelated.
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Proposition 3.5 (Effectiveness and Prevention). Let π and π̂ be two differentiable pre-

ventive relationships. Moreover, define

V π := arg max
V ∈[0,1]

π(V )u(W1(V ), h1) + (1− π(V ))u(W2(V ), h2) (3.9)

and

V π̂ := arg max
V ∈[0,1]

π̂(V )u(W1(V ), h1) + (1− π̂(V ))u(W2(V ), h2). (3.10)

It is V π̂ ≥ V π if the following conditions are satisfied:

(1) π̂ is more effective than π.

(2) π̂(V ) ≥ π(V ) for all V ∈ [0, 1].

Proof. The proof is contained in the appendix.

Remark 3.5. Proposition 3.5 examines how preventive activities react when the underly-

ing distorted probability π is replaced by a more effective distorted probability π̂. It turns

out that prevention increases weakly if π̂ entails a higher perceived disease probability

for every V ∈ [0, 1].

Expected Marginal Utility Effect

In this section, the expected marginal utility effect ∆2 is analyzed. First of all, note that

∆2 can be rewritten in the following way:

∆2 =
d

dα
EπCEU

[
d

dV
u

]
(3.11)

where EπCEU denotes an expectation operator with respect to the distorted probability

πCEU. Thus, ∆2 describes how patients’ expected marginal utility changes α as they

become more optimistic. Like in the case of the perceived efficacy effect, ∆2 can be
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positive, negative or zero. This is proved by means of the following numerical example.

Note that the case where ∆2 equals zero has been implicitly treated in Example 3.1.

Therefore, it is sufficient to cover only cases where ∆2 is either strictly positive or strictly

negative.

Example 3.2. Throughout this example, I define the set of beliefs by Φ4 = {π7, π8}

where π7(V ) = 1 − 6
15
V and π8(V ) = 1

2
− 6

15
V . The confidence parameter is given by

δ = 1 and the prior q = (q1, q2) by q1 = q2 = 1
2
. I compare two scenarios. In each scenario,

a pair of utilities u(W1(V ), h1) and u(W2(V ), h2) is defined. Moreover, I contrast extreme

pessimism α = 0 with extreme optimism α = 1 in each scenario.

Scenario I

The first scenario provides a model specification where ∆2 is strictly positive. The utilities

are specified by u(W1(V ), h1) = 10−8V 3 and u(W2(V ), h2) = 20−2V 3. Figure 3.8 displays

the patient’s objective for the case of extreme pessimism α = 0 and extreme optimism

α = 1.

Figure 3.8: Less Prevention Under Pessimism

Figure 3.8 shows that, given the model specification above, patients’ preventive activities

are lower under extreme pessimism than under extreme optimism.
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Scenario II

The following model specification provides the converse result. As a consequence, ∆2 is

strictly negative. Let the utilities be defined by

u(W1(V ), h1) = 10− 2V 3 and u(W2(V ), h2) = 20− 8V 3.

Figure 3.9 represents patients’ objective functions under extreme pessimism and extreme

optimism.

Figure 3.9: More Prevention Under Pessimism

Obviously, patients exert more effort under extreme pessimism than under extreme opti-

mism.

The findings of Example 3.2 can be explained in the following way: Since the set of belief

functions is the same in both scenarios, we can conclude that ∆1 equals zero in both

model specifications. Consequently, pessimists and optimists have the same perceived

effectiveness of the preventive regime for every possible effort level V ∈ [0, 1]. As a

result, the overall effect of α on prevention depends on the sign of ∆2 only. Increasing

optimism leads to decreasing preventive activities when the expected marginal utility

from prevention is lower under optimism than under pessimism. But when is that the
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case? Obviously, the sign of ∆2 is determined by the sign of

−∆′u :=
d

dV
(u(W2(V ), h2)− u(W1(V ), h1))

=W ′
2(V )u′(W2(V ), h2)−W ′

1(V )u′(W1(V ), h1)

Note that −∆′u ≤ 0 if and only if Condition (SC5) is satisfied. Remember, (SC5) can be

expressed in a marginal rate of substitution form

∂u1
∂V
∂u2
∂V

≤ 1.

Hence, optimism decreases preventive activities as long as patients prefer to exchange

a marginal unit of prevention in the bad state with a marginal unit of prevention in the

good health state. The converse statement is true when patients prefer an additional

marginal unit of prevention in the bad state. In other words, ∆2 is negative when a

marginal increase in prevention is better in the good health state. To be more precise,

patients’ utility in the good state increases more strongly than in the bad state when

prevention is beneficial, and decreases less strongly than in the bad state when prevention

is detrimental. This is exactly the case in the second part of Example 3.2.

Overall Effect of Pessimism on Prevention

The effect of pessimism on preventive activities is driven by two concurrent effects. The

perceived efficacy effect describes how patients’ perception of the efficacy of the preventive

regime changes as α increases. Three different cases can occur, depending on whether

a pessimistic patient deems a preventive measure more, less, or equally effective than a

more optimistic patient. The expected marginal utility effect comes into being because

an increase in α reduces the impact of patients’ expected marginal utility on preventive

activities. Again, three cases are possible depending on the constellation of patients’



Chapter 3. Primary Prevention Under Ambiguity 109

marginal utilities in the good and the bad health state. The overall effect of pessimism

on prevention can be clearly identified when both ∆1 and ∆2 have the same sign, or

when at least one of the two effects is zero. The effect cannot be clearly signed when

∆1 and ∆2 have opposite signs. This is the case when ∆1 > 0 and ∆2 < 0, or when

∆1 < 0 and ∆2 > 0. In both cases, the overall effect is determined by the magnitude of

each individual effect. As a consequence, three scenarios can materialize: |∆1| > |∆2|,

|∆1| < |∆2| and |∆1| = |∆2|

In the first scenario, the perceived efficacy effect dominates the expected marginal utility

effect. Whether optimism increases or decreases prevention depends on the sign of ∆1. In

the second scenario, the expected marginal utility effect dominates the perceived efficacy

effect. As a result, prevention increases when ∆2 is positive, prevention decreases when

∆2 is negative, and prevention remains stable when ∆2 is zero. Finally, in the third

scenario, both effects have the same magnitude. Consequently, optimism does not affect

preventive activities.

In the following, I give a set of conditions under which an increase in α can be clearly

signed. First of all, remember that under strict concavity, which is ensured by the Con-

ditions (SC1) to (SC5) of Proposition 3.3, we can infer that the expected marginal utility

effect is non-positive.17 As a consequence, we can conclude that the overall effect of

optimism on prevention is negative when the perceived efficacy effect ∆1 is negative or

zero.

Corollary 3.2. The perceived efficacy effect is negative or zero ∆1 ≤ 0 when the worst-

case relationship πmin is more effective than the best-case relationship πmax.

Proof. The proof is contained in the appendix.

Remark 3.6. The slope ordering condition between πmin and πmax says that patients

whose beliefs reflect a higher probability of disease perceive the preventive measure as

more effective than those who base their decision on a lower perceived disease probability.

17This is implied by Condition (SC5).
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Remark 3.7. ∆1 can be zero even if δ > 0 due to the possibility of corner solutions.

The following proposition summarizes how optimism relates to preventive activities when

the strict concavity conditions of Proposition 3.3 are imposed and the best- and worst-case

preventive relationships can be ranked by their effectiveness.

Proposition 3.6 (Optimism). Let V ∗(α, δ) be an interior solution. Under the Assump-

tions (SC1) to (SC5), the following comparative static results hold with respect to α:

(a) In cases of full confidence δ = 0, a marginal increase in α has no effect on prevention.

(b) If patients give a positive weight δ > 0 to extreme outcomes, the sign of the overall

effect depends on the effectiveness ranking between πmin and πmax. When πmin is

more effective than πmax, patients decrease preventive activities. In cases where

πmax is more effective than πmin, the overall effect depends on the magnitude of ∆1

and ∆2. If the perceived efficacy effect ∆1 is stronger than the expected marginal

utility effect ∆2, we can conclude that optimism increases prevention. The converse

is true when the expected marginal utility effect dominates the perceived efficacy

effect. When both effects have the same magnitude, it can be demonstrated that

optimism does not affect preventive activities.

Remark 3.8. Preventive activities decrease in case of an interior solution if πmin is more

effective than πmax. In case of the corner solution V ∗ = 0, there is no effect on optimal

prevention. If V ∗ = 1, preventive activities either remain the same or decrease.

Confidence and Preventive Activities

In this section, I examine the relationship between confidence and preventive activities. It

turns out that the analysis in this paragraph can be performed in analogy to the analysis

of the optimism parameter α. If V ∗ is an interior solution, we obtain

dV ∗

dδ
= −

∂2U
∂δ∂V
∂2U
∂V 2

(3.12)
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where ∂2U
∂V 2 is strictly negative. Hence, whether confidence increases or decreases preventive

activities depends on the sign of

∂2U
∂δ ∂V

= ∆u
∂2

∂δ ∂V
πCEU +

(
d

dV
∆u

)
∂

∂δ
πCEU.

One can see that the overall effect depends on two concurrent factors, ∆3 and ∆4, which

are defined by

∆3 := ∆u
∂2

∂δ ∂V
πCEU and ∆4 :=

(
d

dV
∆u

)
∂

∂δ
πCEU.

In analogy to the comparative static section on the pessimism parameter α, I denote ∆3

as δ-perceived efficacy effect and ∆4 as δ-expected marginal utility effect. In the following,

both effects are analyzed in detail.

δ-Perceived Efficacy Effect

The δ-perceived efficacy effect describes how patients adjust their perception of the pre-

ventive regime’s effectiveness as they become less confident in the reference probability

πq. An increase in δ leads patients to give a higher weight to extreme outcomes and a

lower weight to the reference belief πq. This means patients become less confident that

the reference function describes the true underlying preventive relationship. Whether ∆1

is positive, negative, or zero depends on the effectiveness ranking between the reference

function πq and the extreme-outcome combination

πα := απmin + (1− α)πmax.

This is illustrated numerically by means of Example 3.7 in the appendix, where ∆3

is contemplated in isolation. The following corollary more closely examines how the

effectiveness ranking between πq and πα and the sign of ∆3 are interrelated.
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Corollary 3.3. Let V ∗(α, δ) be an interior solution. ∆3 is positive if πα is more effective

than πq. ∆3 is negative if πq is more effective than πα, and zero if πα = πq.

Proof. The proof is contained in the appendix.

Remark 3.9. Corollary 3.3 extends in the following way to the case of corner solutions:

In a case where patients exert zero prevention, we can conclude that ∆3 is non-negative

if πα is more effective than πq. ∆3 is zero if πq is more effective than πα. In cases where

patients exert maximum effort, we can infer that ∆3 is non-positive if πq is more effective

than πα. ∆3 equals zero if πq is less effective than πα.

An increase in δ can be interpreted as lowering confidence in the reference probability πq.

As a consequence, the underlying prevention function πCEU(α, δ) shifts towards another

prevention function π̂CEU(α, δ′) that gives larger weight to the extreme-outcome part πα.

This implies that the overall effect on prevention depends on the effectiveness ordering

between πq and πα. If πα is more effective than πq, we can conclude that preventive

activities increase or remain the same as δ increases. This is because the patient gives

a higher weight to the more effective part of his belief functional. The converse is true

when the effectiveness ordering between πq and πα is reversed.

δ-Expected Marginal Utility Effect

The δ-expected marginal utility effect ∆4 can be rewritten in the form

∆4 =
d

dδ
πCEU ·∆′u =

d

dδ
EπCEU

[
d

dV
u

]
(3.13)

where EπCEU denotes the expectation with respect to the distorted probability πCEU,

and d
dV
u denotes patients’ marginal utility in the different health states. ∆4 describes

how patients’ expected marginal utility is affected as their beliefs give a larger weight

to the extreme-outcome combination πα. In the following, I analyze this effect in detail.
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Note that ∆4 can be positive, negative, or zero. The overall sign of ∆4 depends on the

individual signs of d
dδ
πCEU and ∆′u. Note that ∆4 is only zero when at least one of the

following conditions holds:

(a) πq = πα

(b) Both utilities u(W1(V ), h1) and u(W2(V ), h2) have the same marginal utility.

Scenario (a) corresponds to a situation where patients hold a subjective belief. In this

context, the objective is independent of α and δ. Consequently, δ has no effect on pre-

ventive activities. In scenario (b), patients’ marginal utilities are the same in both health

states. Hence, patients’ expected marginal utility is a constant and therefore independent

of πCEU.

The derivative

d

dδ
πCEU = −πq + απmax + (1− α)πmin

is positive when the reference probability πq induces a lower perceived disease probability

than the extreme-outcome combination πα. This is the case when patients are sufficiently

pessimistic. To be more precise, let α̂(V ) denote the pessimism parameter for which both

the reference probability and the extreme outcome combination yield the same perceived

disease probability for a fixed level of effort V ∈ [0, 1]. Then,

πq(V ) = α̂(V )π1(V ) + (1− α̂(V ))πn(V ). (3.14)

Solving equation (3.14) for α̂(V ), we obtain

α̂(V ) =
πq(V )− πn(V )

π1(V )− πn(V )
.

Hence, the disease probability induced by πq is smaller than the disease probability in-

duced by πα for α < α̂(V ). The converse is true when πq features a higher perceived dis-

ease probability than πα. This is when patients are sufficiently optimistic with α > α̂(V ).
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The sign of ∆′u is discussed in the comparative static section on the parameter α. Re-

member, ∆′u is positive when patients prefer to exchange a marginal unit of prevention in

bad health with a marginal unit of prevention in good health. Conversely, ∆′u is negative

when patients would at least weakly prefer to exchange prevention in the good state with

prevention in the bad state. This proves the following corollary.

Corollary 3.4. ∆4 is negative if patients are either sufficiently pessimistic α < α̂(V ∗) and

prefer to exchange prevention in the bad health state with prevention in the good health

state, or if they are sufficiently optimistic α > α̂(V ∗) and prefer to exchange prevention in

the good health state with prevention in the bad health state. ∆4 is positive if patients are

either sufficiently pessimistic α < α̂(V ∗) and prefer to exchange prevention in the good

state with prevention in the bad state, or if they are sufficiently optimistic α > α̂(V ∗)

and prefer to exchange prevention in the bad state with prevention in good state.

Overall Effect of Confidence on Prevention

Clearly, whether confidence increases or decreases preventive activities depends on two

concurrent effects, the δ-perceived efficacy effect and the δ-expected marginal utility effect.

Similar to the analysis with respect to the pessimism parameter α, one can distinguish

different cases. When both effects are strictly positive, or at least one effect is positive and

the other effect is zero, we can conclude that the overall effect on prevention is positive.

When both effects are zero, the overall effect is zero. When both effects are negative, or

at least one effect is positive and the other negative, we can infer that the overall effect

is negative. When one of the effects is strictly positive and the other strictly negative,

the overall sign depends on the magnitude of each individual effect. When both effects

have the same magnitude, the overall effect is zero. When one effect outweighs the other

effect, the overall effect has the same sign as the effect with the larger magnitude.

In the following, I examine how preventive activities react to an increase in δ when the

objective function is strictly concave.



Chapter 3. Primary Prevention Under Ambiguity 115

Corollary 3.5. Under the Requirements (SC1) to (SC5), ∆4 is negative if patients are

sufficiently optimistic α > α̂(V ∗), positive if patients are sufficiently pessimistic α <

α̂(V ∗), and zero for the intermediate pessimism parameter α = α̂(V ∗).

Proof. The proof is contained in the appendix.

As a next step, we can analyze the overall effect of confidence on prevention under the

assumption that πα and πq can be ranked according to their effectiveness.

Proposition 3.7 (Confidence). Let V ∗ be an interior solution. Moreover, πα and πq

can be ranked according to their effectiveness. Under the Requirements (SC1) to (SC5),

preventive activities react in the following way to marginal increases in δ.

(a) Prevention increases if both πα is more effective than πq and patients are sufficiently

pessimistic α < α̂. For α = α̂ preventive activities remain unchanged. In cases of

strong enough optimism α > α̂, the overall effect depends on the magnitude of ∆3

and ∆4. If the δ-perceived efficacy effect is stronger than the expected marginal

utility effect, we can conclude that an increase in δ entails intensified prevention.

The converse is true when the δ-expected marginal utility effect dominates the δ-

perceived efficacy effect. When both effects have the same magnitude, preventive

activities remain unchanged.

(b) Prevention decreases if both πα is less effective than πq and patients are sufficiently

optimistic α > α̂. For α = α̂ preventive activities remain unchanged. In cases

of sufficient pessimism α < α̂, the overall effect depends on the magnitude of ∆3

and ∆4. If the δ-perceived efficacy effect is stronger than the δ-expected marginal

utility effect, we can conclude that an increase in δ yields lower preventive activities.

The converse is true when the δ-expected marginal utility effect dominates the δ-

perceived efficacy effect. When both effects have the same magnitude, preventive

activities remain unchanged.



Chapter 3. Primary Prevention Under Ambiguity 116

Proof. The proof is a direct consequence of Corollaries 3.3 and 3.5.

In short, Proposition 3.7 says that the effect of confidence on preventive activities de-

pends on two factors. The first factor is the effectiveness ranking between the reference

probability πq and the extreme-outcome combination πα. The second factor is patients’

attitude towards ambiguity relative to α̂.

3.4 Preventive Effort When Patients Receive New

Information

Modeling Information

This section studies how information on the underlying preventive regime affects patients’

preventive activities. Throughout the rest of the paper, I assume that the Conditions

(SC1) to (SC5) of Proposition 3.3 are satisfied. Hence, there is always a unique interior

maximizer or a unique corner solution. Information is modeled by means of signal s

conveyed by the physician. The signal is the realization of a random variable S with

values in {1, ..., n}. The index of the true underlying preventive relationship is denoted

by θ ∈ {1, ..., n}. Moreover, the patient knows the conditional distribution PS|θ of the

signal given θ. Henceforth, I denote with pij = P(S = i|θ = j) the conditional probability

that the physician conveys relationship i to be the true relationship given θ = j. In

addition, pij denotes the probability that the physician conveys the wrong relationship i

for i 6= j, and pii is the probability that the physician conveys a correct signal.

As a next step, patients’ beliefs are updated. In the special case δ = 0, the neo-additive

belief reduces to a purely Bayesian belief q = (q1, ..., qn), which is updated via Bayes’

Rule. Under the assumption that the patient observes the signal s = i, the posterior
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probability qBayesj of qj is given by

qBayesj =
qjpij

n∑
k=1

qk pik

(3.15)

Given the updated prior

qBayes = (qBayes1 , ..., qBayesn )

patients maximize

πqBayes(V ) u(W1(V ), h1) + (1− πqBayes(V )) u(W2(V ), h2). (3.16)

In the general case δ ∈ [0, 1], patients revise a neo-additive belief. Contrary to the

Bayesian scenario, there are multiple ways to update non-additive probabilities. Eich-

berger et al. [2010] suggest three different ways of updating neo-additive capacities: an

optimistic updating rule, a pessimistic updating rule, also called a Dempster-Shafer up-

dating rule, and the so-called generalized Bayesian updating rule. All of these rules are

motivated by prominent updating rules for capacities discussed in the literature. By

Proposition 1, page 93 in Eichberger et al. [2010], one knows that, under each of these

rules, the update of a neo-additive capacity ν(α, δ) is still neo-additive with new optimism

and confidence parameters ν(α′, δ′), and a reference probability qBayes that corresponds

to the Bayesian update of the prior reference probability q.

In cases where patients resort to the optimistic updating rule, the parameter α is up-

dated to αO = 1. Under the pessimistic updating rule, patients revise α to αP = 0, and

under the generalized Bayesian updating rule α is not affected by the patient’s updating

process, hence αGB = α. The update of the confidence parameters depends on the signal

realization s. Assume that the patient observes the signal s = i. Then, the confidence

parameter δ is updated to

δO =
δα

(1− δ)qi + αδ



Chapter 3. Primary Prevention Under Ambiguity 118

in case of the optimistic updating rule. The confidence parameter under the pessimistic

updating rule is given by

δP =
δ(1− α)

(1− δ)qi + (1− α)δ
.

Under the generalized Bayesian updating rule, we obtain the revised confidence parameter

δGB =
δ

(1− δ)qi + δ
.

The following corollary characterizes patients’ objectives for each of the previously dis-

cussed updating rules.

Corollary 3.6. After observing the signal realization s, patients maximize the objective

πUCEU(V |·) u(W1(V ), h1) + (1− πUCEU(V |·)) u(W2(V ), h2)

where πUCEU(V |·) is a rule-dependent distorted probability. It is

πUCEU = (1− δO)πBayesq + δOπmax

in case of the optimistic updating rule. For the pessimistic updating rule, we obtain

πUCEU = (1− δP )πBayesq + δPπmin.

In cases where the generalized Bayesian updating rule applies, we have

πCEU = (1− δGB)πBayesq + δGBπα.

Proof. The proof is contained in the appendix.
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Information and Preventive Activities

The following proposition compares patients holding a Bayesian belief δ = 0 with pa-

tients holding a Non-Bayesian belief 0 < δ ≤ 1 after observing the signal realization s.

Henceforth, I denote patients with δ = 0 as Bayesian patients and patients with δ > 0 as

Knightian or Non-Bayesian patients.

Proposition 3.8. Assume that there are two types of patients: a Bayesian patient with a

belief q and a Non-Bayesian patient holding a neo-additive belief with the same reference

belief q. Moreover, let V ∗ ∈ (0, 1) be an interior solution for the Bayesian patient.

(a) The Non-Bayesian patient exerts less effort than the Bayesian patient under the

optimistic updating rule if πmax is less effective than πBayesq .

(b) The Non-Bayesian patient exerts more effort than the Bayesian patient under the

pessimistic updating rule if πmin is more effective than πBayesq .

(c) The Non-Bayesian patient exerts less effort than the Bayesian patient under the gen-

eralized Bayesian updating rule if πBayesq is more effective than πα and πBayesq (V ) >

πα(V ) for all V ∈ [0, 1].

(d) The Non-Bayesian agent exerts more effort than the Bayesian patient under the

generalized Bayesian updating rule if πBayesq is less effective than πα and πBayesq (V ) <

πα(V ) for all V ∈ [0, 1].

Proof. The proof is contained in the appendix.

The results of Proposition 3.8 show that the underlying updating rule plays a crucial role

in explaining heterogeneous choices in preventive activities. If we consider the Bayesian

agent as a rational, representative patient, the Non-Bayesian patient’s behavior might be

regarded as a deviation from this representative patient. Depending on the underlying

updating rule, the Non-Bayesian agent’s choice might lead to more or fewer preventive
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activities compared to the prevention level selected by the Bayesian patient.

The proof of Proposition 3.8 is based on Proposition 3.5, which says that replacing the

distorted probability πCEU with a more effective distorted probability π̂CEU leads to

intensified prevention if π̂CEU exhibits a higher perceived disease probability than πCEU

for every possible effort level V ∈ [0, 1]. Due to the fact that the inequality

πmax(V ) ≤ πBayesq (V ) ≤ πmin(V )

holds for every V ∈ [0, 1], we can infer that the latter condition is satisfied for the

optimistic and pessimistic updating rule.18 In cases where the generalized updating rule

applies, πBayesq and πUCEU can be ranked according to their disease probabilities when

there is a clear ranking between the extreme-outcome combination πα and the Bayesian

update πBayesq . Example 3.8 in the appendix demonstrates that there are instances where

such a clear ranking does not exist even when there are no crossing points Cprob = ∅.

This raises the question: under which conditions is a clear ordering between πq and πα

possible? The following corollary provides the answer.

Corollary 3.7. There is a maximum pessimism parameter αmin such that πq < πα for

all α < αmin. Furthermore, there is a minimal pessimism parameter αmax ≥ αmin such

that πq > πα for all α > αmax. There is no clear ordering between πq and πα when

α ∈ (αmin, αmax).

Proof. The proof is contained in the appendix.

In other words, πq always features a lower perceived disease probability than πα if patients

are sufficiently pessimistic, and πq always exhibits a higher perceived disease probability

than πα if patients are sufficiently optimistic. For intermediate values of the pessimism

parameter, there is no clear ordering between πα and πq.

18In particular, we have πBayes
q (V ) > πU

CEU (V ) for all V ∈ [0, 1] in cases where the optimistic updating

rule applies and πBayes
q (V ) < πU

CEU (V ) for all V ∈ [0, 1] in cases where the pessimistic updating rule
applies.
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Another interesting question related to the comparison between Bayesian and Knightian

patients is how the preventive gap between Bayesian and Non-Bayesian patients reacts

to the arrival of new information.

Definition 3.4. Let V old(α, δ) denote the solution of patients’ optimization problem

before observing the signal and let V new(α, δ) be the solution after observing the signal.

Information increases the gap between Bayesian and Non-Bayesian patients if

|V old(α, 0)− V old(α, δ)| < |V new(α, 0)− V new(α, δ)|.

Information decreases the gap between Bayesian and Non-Bayesian patients if

|V old(α, 0)− V old(α, δ)| > |V new(α, 0)− V new(α, δ)|.

The gap between Bayesian and Non-Bayesian patients is not affected by the arrival of

new information if

|V old(α, 0)− V old(α, δ)| = |V new(α, 0)− V new(α, δ)|.

Does the preventive gap between Bayesian and Non-Bayesian patients always decrease

as new information becomes available? The following numerical example shows that this

is not necessarily the case. In particular, one can find feasible model specifications such

that both an increase and a reduction of the preventive gap is possible.

Example 3.3. In the following, three preventive relationships are considered with

π1(V ) = 1− 2

3
V, π2(V ) =

1

2
− 1

4
V, and π3(V ) =

1

4
− 1

8
V.

Obviously, πmin = π1 and πmax = π3. The utilities are defined by

u(W1(V ), h1) = 10− 2V 2 and u(W2(V ), h2) = 20− 2V 2.
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The conditional probabilities pij = P(S = i|θ = j) are specified by the stochastic matrix

P =


1
3

1
3

1
3

2
5

2
5

1
5

1
5

3
5

1
5

 .

The initial prior q = (q1, q2, q3) is given by q1 = 1
5
, q2 = 2

5
and q3 = 2

5
. Assuming that the

patient receives the signal s = 3, the Bayesian update qBayes of q is given by

qBayes1 =
1
25

1
25

+ 6
25

+ 2
25

=
1

9

qBayes2 =
6
25

1
25

+ 6
25

+ 2
25

=
2

3

qBayes3 =
2
25

1
25

+ 6
25

+ 2
25

=
2

9
.

As a next step, we can determine patients’ objectives in the Bayesian case δ = 0. Using

simple algebra, one can show that the objective function is given by

Uold1 (V ) = 15 +
17

6
V − 2V 2

before observing the signal. This is a quadratic function with the global maximizer

V old
1 = 17

24
≈ 0.71. Similarly, one can show that the objective is given by

Unew1 (V ) = 15 +
145

54
V − 2V 2

after observing the signal with the maximizer V new
1 = 145

216
≈ 0.67. For the Non-Bayesian

case, it is assumed that α = 1 and δ = 1
2
. Besides, the patient makes use of the generalized

Bayesian updating rule. Remember, under the generalized Bayesian updating rule the
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parameter α remains unchanged and δ is updated to

δGB =
δ

(1− δ)q3 + δ
=

5

7
.

The objective function before observing the signal is given by

Uold2 (V ) =
65

4
+

49

24
V − 2V 2

with the global maximizer V old
2 ≈ 0.51. After observing the signal, the objective is given

by

Unew2 (V ) =
235

14
+

1255

756
V − 2V 2

with the global maximizer V new
2 ≈ 0.41. It is |V old

1 −V old
2 | ≈ 0.2 and |V new

1 −V new
2 | ≈ 0.26.

This demonstrates that

|V old
1 − V old

2 | < |V new
1 − V new

2 |.

Hence, there are instances where information increases the difference in preventive activ-

ities between Bayesian and Non-Bayesian patients.

The following model specification demonstrates the converse results. Let α = 0.75. The

patient observes again s = 3. The remaining parameters are the same as in the first

part of the example. Since the Bayesian objective is independent of α, we have the same

objective in the Bayesian case. The Non-Bayesian objective is given by

Uold3 (V ) =
245

16
+

87

32
− 2V 2

before observing the signal. The global maximizer is V old
3 ≈ 0.68. After observing the

signal, one obtains the objective

Unew3 (V ) =
865

56
+

1135

432
V − 2V 2
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with the global maximizer V new
3 ≈ 0.66. It is |V old

1 −V old
3 | ≈ 0.03 and |V new

1 −V new
3 | ≈ 0.01.

Consequently,

|V old
1 − V old

3 | > |V new
1 − V new

3 |.

Hence, there are instances where the gap between Bayesian and Non-Bayesian patients

decreases with the arrival of new information.

Example 3.3 is interesting because it demonstrates that Bayesian and Non-Bayesian

agents might react entirely differently to new information. Moreover, it becomes clear that

information can reinforce or attenuate extreme behavior, depending on the underlying

parameter constellations. Undoubtedly, extreme behavior is not a desirable consequence

of information campaigns or health counseling.

Excessive Preventive Behavior and Preventive Inertia

The previous section provides an outline on how Bayesian and Non-Bayesian agents react

to the arrival of new information by comparing their respective preventive activities.

Non-Bayesian agents deviate from Bayesian agents and exert lower or higher levels of

prevention. An issue of major importance is how strongly patients deviate from the true

underlying relationship πθ before and after observing the signal realization s. If patients

knew πθ, they would select effort by solving

max
V ∈[0,1]

πθ(V )u(W1(V ), h1) + (1− πθ(V ))u(W2(V )h2). (3.17)

In the following, V ∗θ denotes the solution of (3.17). By assumption, V ∗θ is unique.

Definition 3.5. Let V ∗(α, δ) be the solution of patients’ optimization problem under

Knightian uncertainty. Patients exhibit excessive preventive behavior if they select a

higher level of effort under Knightian uncertainty than under a situation where they

know true relationship πθ. Formally, V ∗(α, δ) > V ∗θ . Patients exhibit preventive inertia
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if they select a lower level of effort under Knightian uncertainty than under a situation

where they know πθ. Formally, V ∗(α, δ) < V ∗θ .

An important question is how excessive preventive behavior or preventive inertia of

Bayesian patients relates to excessive preventive behavior or preventive inertia of Knigh-

tian patients. Before treating the general case, the following special case is examined.

Patients Can Perfectly Infer the Correct Relationship

Patients can perfectly infer the correct preventive relationship from a signal realization

when there is a signal i such that

pil = P (S = i|θ = l) = 1

for some i, l ∈ {1, ..., n}. In the special case i = l, the physician provides with probability

one the correct signal realization as s = i is observed. Otherwise, if i 6= l, physicians

always communicate the wrong preventive relationship. Still, patients can infer the correct

relationship from the wrong signal since they know how to relate the signal to the correct

relationship πθ. In cases where s = i is observed, the Bayesian update of q is given by

qBayesj =


1 for j = θ

0 for j 6= θ.

Consequently, Bayesian patients solve the ”correct” optimization problem after the signal

is observed. Thus, excessive preventive behavior and preventive inertia vanish by process-

ing the signal realization s. As a next step, we examine cases where patients beliefs are

represented by a neo-additive capacity with δ > 0. By proposition 1 in Eichberger et al.

[2010], we can infer that, under the optimistic updating rule, the updated neo-additive

capacity is of the form

νO(A) = (1− δO)πE(A) + δO
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where πE(A) denotes the Bayesian update of the reference probability π, E is the condi-

tioning event, and A is the event measured by the underlying capacity. In our example,

πE(A) corresponds to qBayesi as the signal s = i is observed. Therefore, we can deduce

that

νO(s = θ) = (1− δO) + δO = 1

Note that the same statement holds for the optimistic and pessimistic updating rule under

Knightian uncertainty. Consider first the case of the optimistic updating rule. Hence,

patients assign a probability of one to the correct relationship after observing the signal.

In cases where patients rely on the pessimistic updating rule, a similar reasoning applies.

The capacity is of the form

νP (A) = (1− δP )πE(A)

Again, since πE(A) corresponds to qBayesi , we can infer that

νP (s = θ) = (1− δP ) = 1

since δP =

such statement is not true when δ > 0. This can be seen by looking at the updated

distorted probability πUCEU for each of the updating rules discussed at the beginning of

this section. Since the revised confidence parameters δO, δP and δGB are in general not

equal to zero, we can conclude that πUCEU differs from

πqBayes = πθ.

Hence, Non-Bayesian patients still deviate from the true underlying relationship even

in a highly idealized world where physicians always communicate the correct preventive

relationship. As a consequence, preventive inertia and excessive preventive behavior

persist under Knightian uncertainty and cannot be eliminated by information campaigns

and or physician counseling. Under the assumptions of Proposition 3.8, we can clearly
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identify whether Knightian patients exhibit preventive inertia or excessive preventive

behavior after observing the signal.

Corollary 3.8. Let i ∈ {1, .., n} be a signal such that patients can perfectly infer the

correct relationship

pij = P (S = i|θ = j) = 1.

Then, excessive preventive behavior and preventive inertia vanish if δ = 0 and persist for

δ > 0. Knightian patients exhibit excessive preventive behavior under the pessimistic up-

dating rule if πmin is more effective that πq, as well as the generalized Bayesian updating

rule if πBayesq is more effective than πα and α < αmin. Knightian patients exhibit preven-

tive inertia under the optimistic updating rule if πmax is less effective than πq, as well as

the generalized Bayesian updating rule, if πq is less effective than πα and α > αmax.

Proof. The proof is a direct consequence of Proposition 3.8 and Corollary 3.7.

What happens if the idealized assumption that patients can perfectly infer the correct

signal realization is abandoned?

Physicians Provide a Wrong and a Correct Signal with Positive Probability

In this general case, preventive inertia and excessive preventive behavior persist even for

Bayesian patients. This is because πUCEU 6= πθ. The following corollary investigates how

excessive preventive behavior of Bayesian patients relates to excessive preventive behavior

of Knightian patients after observing the signal.

Corollary 3.9. Let V ∗(α, 0) be an interior solution for the Bayesian patient after ob-

serving the signal realization. Besides, let V ∗(α, 0) feature excessive preventive behavior.

Formally, V ∗(α, 0) > V ∗θ . Knightian patients exhibit stronger ex-post excessive preventive

behavior than Bayesian patients under

• the pessimistic updating rule if πmin is more effective than πmax and
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• under the generalized Bayesian updating rule if πBayesq is more effective than πα and

patients are sufficiently pessimistic α < αmin.

Knightian patients exhibit a lower level of ex-post excessive preventive behavior than

Bayesian patients

• under the optimistic updating rule if πmax is less effective than πmin, and

• under the generalized Bayesian updating rule if πBayesq is less effective than πα and

patients are sufficiently optimistic α > αmax.

Similarly, we can examine how preventive inertia of Knightian patients relates to preven-

tive inertia of Bayesian patients after the signal is observed.

Corollary 3.10. Let V ∗(α, 0) be an interior solution for the Bayesian patient after

observing the signal realization. Besides, let V ∗(α, 0) feature preventive inertia. For-

mally, V ∗(α, 0) < V ∗θ . Knightian patients exhibit stronger ex-post preventive inertia than

Bayesian patients

• under the optimistic updating rule if πmax is less effective than πmin, and

• under the generalized Bayesian updating rule if πBayesq is less effective than πα and

patients are sufficiently optimistic α > αmax.

Knightian patients exhibit a lower level of ex-post preventive inertia than Bayesian pa-

tients

• under the pessimistic updating rule if πmin is more effective than πmax, and

• under the generalized Bayesian updating rule if πBayesq is more effective than πα and

patients are sufficiently pessimistic α < αmin.

Proof. The proof of Corollary 3.9 and 3.10 is a direct consequence of Proposition 3.8.
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Evidently, information can reinforce extreme behavior when the wrong signal is commu-

nicated. Assume for instance a situation where a Bayesian patient would already exhibit

excessive preventive behavior before observing the signal. Moreover, the patient trusts

highly the physician to communicate the correct signal. This implies conditional probabil-

ities pii close to 1 for all i = 1, ..., n. In cases where the physician wrongly communicates

a relationship, inducing excessive preventive behavior, patients adjust their beliefs by

assigning a larger posterior probability to this relationship. As a consequence, it is very

likely that excessive preventive behavior is reinforced.19 On the other hand, if the physi-

cian communicates the correct signal, we can conclude that πq comes closer to the true

relationship πθ in the sense that the posterior qBayes assigns a larger posterior probability

to the correct relationship πθ. But does this mean that excessive preventive behavior and

preventive inertia automatically diminish? The following example illustrates that this is

not the case, even when δ equals zero.

Example 3.4. Reconsider Example 3.3 by replacing the initial prior q with

q̂ =

(
3

10
,

3

10
,
2

5

)
.

The patient observes the signal s = 2 and the true underlying relationship is given by

πθ(V ) = π2(V ) =
1

2
− 1

4
V.

If patients knew the true relationship πtheta, they would maximize

U real(V ) = π2(V )u(W1(V ), h1) + (1− π2(V ))u(W2(V ), h2)

Using simple algebra, we obtain

U real(V ) = 15 +
5

2
V − 2V 2

19The statement is wrong when the updating process strongly reduces the probability of other preven-
tive relationships which would, by themselves, induce even stronger excessive preventive behavior than
the relationship communicated by the physician.
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with the maximizer

V ∗θ =
5

8
= 0.625.

Patients exhibit preventive inertia if V ∗(α, δ) < 0.625 and excessive preventive behavior

if V ∗(α, δ) > 0.625. The Bayesian update of q̂ is given by

q̂Bayes1 =
3
25

3
25

+ 3
25

+ 2
25

=
3

8

q̂Bayes2 =
3
25

3
25

+ 3
25

+ 2
25

=
3

8

q̂Bayes3 =
2
25

3
25

+ 3
25

+ 2
25

=
1

4

Henceforth, it is assumed that δ equals zero. Consequently, patients’ objectives are

independent of α. Before observing the signal, the objective is given by

Uold(V |α, 0) :=
29

2
+

13

4
V − 2V 2

with the maximizer V̂1 = 13
16
≈ 0.81. After observing the signal, we obtain the objective

Unew(V |α, 0) :=
55

4
+

15

4
V − 2V 2

with the maximizer V̂2 = 15
16
≈ 0.94. Obviously, patients exhibit excessive preventive

behavior before and after observing the signal realization. Besides, we have |V ∗θ − V̂1| =
3
16
≈ 0.19 and |V ∗θ − V̂2| = 5

16
≈ 0.31. This implies

|V ∗θ − V̂1| < |V ∗θ − V̂2| =
5

16
≈ 0.31.

Hence, excessive preventive behavior is reinforced, even in the ”reduced” Bayesian case

and under the ”favorable” assumption that the physician provides the correct signal

realization.

The reason for this observation lies in the prior q̂ and the signal structure. Observe that
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q̂1 = q̂2 and

P (S = 2|θ = 1) = P (S = 2|θ = 2).

This implies that the updates of q̂1 and q̂2 coincide. Hence, if the correct signal realization

is provided, patients increase their posterior probability for π2. At the same time, the

posterior probability for π1 increases with the same magnitude. The posterior probability

for the third relationship π3 decreases. Since πi is more effective than πj for i < j, and

since π1(V ) > π2(V ) > π3(V ) for all V ∈ [0, 1], Proposition 3.5 shows that

V ∗θ=1 > V ∗θ=2 > V ∗θ=3.

Due to the fact that the posterior assigns a larger probability to θ = 1 and θ = 2 and

a smaller probability to θ = 3, we can infer that preventive activities increase after

observing the signal. Since patients already exhibit excessive preventive behavior before

observing the signal, we can draw the conclusion that information intensifies excessive

preventive behavior.

Example 3.4 demonstrates that information does not necessarily bring patients’ preventive

activities closer to their optimal levels, even in a favorable environment where physicians

communicate the correct relationship and probabilities are not distorted. Even worse,

there is the possibility that information induces patients to intensify excessive preventive

behavior or preventive inertia. The following paragraph shows that there are instances

where information does not affect preventive activities.

Communication of Uninformative Signals

In the following, a special case is considered where patients receive ”uninformative” sig-

nals. Henceforth, a signal s = i is called ”uninformative” if its conditionals are given

by

pij = P (S = i|θ = j) =
1

n
for j = 1, ..., n.
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Given this specification of the signal structure, we obtain

qBayesj =
qi

1
n

n∑
j=1

qj
1
n

= qi

as the Bayesian update of q. Hence, information does not affect the prior distribution.

In a sense, such a signal is completely uninformative for a Bayesian patient since it

precludes the possibility to draw any further inferences on the true underlying θ. As

a consequence, the objective function of Bayesian patients δ = 0 remains unaffected

and excessive preventive behavior or preventive inertia persist in the same magnitude as

without observing the signal. But how do Non-Bayesian patients react to uninformative

signals? Again, the answer depends on the updating rule. Since δO, δP and δGB are

in general not equal to zero, we can infer that πCEU 6= πUCEU. Hence, contrary to the

Bayesian case, Knightian patients adjust their beliefs even in the light of uninformative

signals.

3.5 Conclusion

This paper studies how patients adjust their primary preventive activities in the light of

new information when the relationship between preventive effort and disease probabilities

is characterized by Knightian uncertainty. Patients are assumed to be Choquet-expected

utility maximizers with beliefs that are represented by so-called non-extreme outcome

capacities.

In a first step, I derive conditions for the existence and and uniqueness of interior and

corner solutions of the underlying optimization problem. Subsequently, I conduct a com-

parative static analysis with respect to the pessimism parameter α and the confidence

parameter δ. It turns out that the effect of optimism on preventive activities depends

on two concurrent effects which are denoted as ”perceived efficacy effect” and ”expected



Chapter 3. Primary Prevention Under Ambiguity 133

marginal utility effect”. The perceived efficacy effect covers the fact that optimistic pa-

tients might judge the preventive regime’s capability to reduce the underlying probability

of disease differently from pessimistic patients. This is captured by the slope of the effort-

dependent distorted probability function πCEU(V ). The sign of the effect depends on the

effectiveness ranking between the worst-case relationship πmin and the best-case relation-

ship πmax. For instance, if πmax is less effective than πmin, we can infer that optimistic

patients deem the preventive regime less capable of reducing the disease probability than

pessimistic ones. In this case, the perceived efficacy effect is negative and optimistic

patients reduce preventive activities. The expected marginal utility effect captures how

patients’ expected marginal utility changes as they become more optimistic. It is negative

as long as patients prefer to exchange a marginal unit of prevention in the bad health

state with a marginal unit of prevention in the good health state. The overall effect of

optimism on prevention is determined by the sum of both individual effects.

Variation in the confidence parameter δ can be analyzed in a similar fashion. Again, there

are two concurrent effects, termed ”δ-perceived efficacy effect” and ”δ-expected marginal

utility effect”, with similar interpretations. The δ-perceived efficacy effect captures the

fact that confidence variations might entail a shift in the assessment of the preventive

regime’s capability to reduce the probability of disease. Similarly, the expected marginal

utility effect captures how patients’ expected marginal utility from prevention changes as

they become less confident. Again, the overall effect is given by the sum of both individ-

ual effects.

As a next step, I introduce information in the form of a random signal provided by the

physician. Using the pessimistic, optimistic and generalized Bayesian updating rule for

non-extreme outcome capacities, I examine how preventive activities of Knightian pa-

tients relate to preventive activities of Bayesian patients whose beliefs are represented by

a standard subjective probability. It turns out that, after observing the signal, preventive

activities of Knightian patients are consistently lower than those of Bayesian patients un-

der the optimistic updating rule if the best-case relationship πmax has a lower perceived
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effectiveness than the updated Bayesian relationship πBayesq . The same holds for the gen-

eralized Bayesian updating rule if the extreme-outcome relationship πα is less effective

than πBayesq and patients are sufficiently optimistic. Preventive activities of Knightian

patients exceed those of Bayesian patients for the pessimistic updating rule if the worst-

case relationship πmin is more effective than the updated Bayesian relationship πBayesq .

The same result holds for the generalized Bayesian updating rule if πBayesq is less effective

than πα and patients are sufficiently pessimistic. As a next step, I introduce the term

”preventive gap” as the difference between Bayesian and Knightian patients with respect

to their preventive activities. It turns out that information can increase or decrease the

preventive gap between Bayesian and Non-Bayesian patients.

Finally, I compare patients to an important benchmark case, which is a situation where

the true underlying relationship πθ is known. ”excessive preventive behavior” describes

a situation where patients exert a higher level of effort than in the benchmark case. Sim-

ilarly, the term ”preventive inertia” refers to a situation where patients exert a lower

level of effort than in the benchmark case. It turns out that information can reinforce or

attenuate excessive preventive behavior and preventive inertia. This observation has im-

portant policy implications, since it demonstrates that extensive information campaigning

potentially reinforces extreme preventive behavior among patients. This is a problematic

finding, since it questions the justification of information campaigns, at least for certain

subgroups of patients.

3.6 Mathematical Proofs

Throughout this section, I write u′ and refer to the partial derivative ∂u
∂V

. Similarly, I

write u′′ and refer to the second-order partial derivative ∂2u
∂V 2 if not specified differently.
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Proof of Corollary 3.1. The proof is straightforward. One obtains

Eq[f(·|V )] =
n∑
i=1

qi

{
πi(V )u(W1(V ), h1) + (1− πi(V ))u(W2(V ), h2)

}
= u(W1(V ), h1) ·

( n∑
i=1

qiπi(V )
)

+ u(W2(V ), h2) ·
(

1−
n∑
i=1

qiπi(V )
)

= πq(V )u(W1(V ), h1) + (1− πq(V ))u(W2(V ), h2).

Defining

πmax(V ) := arg max
πi∈Φ

{
πi(V )u(W1(V ), h1) + (1− πi(V ))u(W2(V ), h2)

}
πmin(V ) := arg min

πi∈Φ

{
πi(V ) u(W1(V ), h1) + (1− πi(V )) u(W2(V ), h2)

}
,

one can express Zmin and Zmax as

Zmax(V ) = πmax(V )u(W1(V ), h1) + (1− πmax(V ))u(W2(V ), h2)

Zmin(V ) = πmin(V )u(W1(V ), h1) + (1− πmin(V ))u(W2(V ), h2)

With this notation, the objective can be rewritten as

U(V |α, δ) = πCEU(V |α, δ)u(W1(V ), h1) + (1− πCEU(V |α, δ))u(W2(V ), h2) (3.18)

where

πCEU(V |α, δ) = (1− δ)πq(V ) + δ(απmax(V ) + (1− α)πmin(V )) (3.19)

Proof of Proposition 3.1. The objective is continuous if the functions Eq[f(·|V )], Zmin

and Zmax are continuous. By Corollary 3.1, it follows that

Eq[f(·|V )] = πq(V )u(W1(V ), h1) + (1− πq(V ))u(W2(V ), h2).
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The function πq is continuous since it is a sum of continuous functions. Since u is contin-

uous, we can conclude that Eq[f(·|V )] is continuous, since sums and products of contin-

uous functions are continuous. Hence, what remains to be shown is the continuity of the

functions Zmin and Zmax. This can be shown because the minimum and the maximum

of continuous functions is again continuous. Let (Vn)n∈N be a sequence in [0, 1] with

Vn → V ∗ for n → ∞. Due to the fact that [0, 1] is closed, it follows that V ∗ ∈ [0, 1].

Since πi is continuous for i = 1, ..., n, we can infer that πi(Vn) → πi(V
∗) for n → ∞.

This implies that π(Vn) converges to πi(V
∗) for all i = 1, .., n. If all sequences converge,

we can conclude that the sequence of minima and the sequence of maxima also converge.

Moreover, the limit of min{π1(Vn), ...., πn(Vn)}, or of max{π1(Vn), ...., πn(Vn)} must be

contained in the set of limiting values {π1(V ∗), ...., πn(V ∗)}. Otherwise, we could find

a natural number n0 ∈ N such that min{π1(Vn), ...., πn(Vn)} 6∈ {π1(Vn), ...., πn(Vn)} for

n ≥ n0. This is a contradiction proving that Zmin and Zmax are continuous.

Since [0, 1] is compact, and since the objective U(V |α, δ) is continuous on [0, 1]. We can

use Weierstrass’ theorem to show that a solution of max
V ∈[0,1]

U(V |α, δ) exists.

Proof of Proposition 3.2. In this proof, I call a function C2 if it is twice continuously

differentiable on its domain. The objective U is C2 if the functions Eq[f(·|V )], Zmin and

Zmax are C2. By Corollary 3.1, we obtain

Eq[f(·|V )] = πq(V )u(W1(V ), h1) + (1− πq(V ))u(W2(V ), h2).

The function πq is C2, since it is a sum of C2-functions. Since u is C2, we can conclude

that Eq[f(·|V )] is C2, because sums and products of C2-functions are C2. Hence, what

remains to be shown is that Zmin and Zmax are C2 when there are now crossing points

and at least piecewise continuously differentiable if the sets Cprob and Cutility are finite.

Consider first a point V̂ ∈ [0, 1] that is not a crossing point of functions in Φ or the

utilities u(W1(V ), h1) and u(W2(V ), h2). This means V̂ 6∈ Cprob ∪ Cutility. Then, there is
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a δ > 0 such that

πi1(V ) > πi2(V )... > πin(V )

for all V ∈ (V̂ − δ, V̂ + δ) where ij ∈ {1, ..., n} for j ∈ {1, ..., n}. This means we can find

a neighborhood of points around V̂ such that the ordering between the functions πi ∈ Φ

remains stable in this neighborhood. Now, we can differentiate between the following

cases:

(a) u(W1(V̂ ), h1) > u(W2(V̂ ), h2)

(b) u(W1(V̂ ), h1) = u(W2(V̂ ), h2)

(c) u(W1(V̂ ), h1) < u(W2(V̂ ), h2)

Consider first case (a). Since u is continuous, we can conclude that there is ε1 > 0 such

that u(W1(V ), h1) > u(W2(V ), h2) for all V ∈ (V̂ − ε1, V̂ + ε1). This implies

Zmin(V ) = πin(V )u(W1(V ), h1) + (1− πin(V ))u(W2(V ), h2)

for all V ∈ (V̂ −min{ε1, δ}, V̂ +min{ε1, δ}). This shows that Zmin is, as sum and product

of C2-functions, C2 on (V̂ −min{ε1, δ}, V̂ + min{ε1, δ}), and therefore also C2 in V̂ . A

similar argument holds for case (c) with the difference that there is an ε2 > 0 such that

u(W1(V ), h1) < u(W2(V )h2) for all V ∈ (V̂ − ε2, V̂ + ε2). Hence,

Zmin(V ) = πi1(V )u(W1(V ), h1) + (1− πi1(V ))u(W2(V ), h2)

for all V ∈ (V̂ −min{ε2, δ}, V̂ + min{ε2, δ}). Again, we can conclude that Zmin is C2 on

(V̂ −min{ε2, δ}, V̂ + min{ε2, δ}). In case (b), three subcases can occur.

(d) there is ε3 > 0 such that u(Wl(V ), hl) < u(Wk(V ), hk) for all V ∈ (V̂ − ε3, V̂ +

ε3)\{V̂ } and l, k ∈ {1, 2} with l 6= k
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(e) there is ε4 > 0 such that u(Wl(V ), hl) = u(Wk(V ), hk) for all V ∈ (V̂ − ε4, V̂ + ε4)

and l, k ∈ {1, 2} with l 6= k

(f) there is ε5 > 0 such that u(Wl(V ), hl) < u(Wk(V ), hk) for all V ∈ (V̂ − ε5, V̂ ) and

u(Wl(V ), hl) > u(Wk(V ), hk) for all V ∈ (V̂ , V̂ + ε5)

Subsequently, I consider w.l.o.g. the case l = 1 and k = 2. In case (d), we can conclude

that

Zmin(V ) = πi1(V )u(W1(V ), h1) + (1− πi1(V ))u(W2(V ), h2)

for all V ∈ (V̂ −min{ε3, δ}, V̂ +min{ε3, δ}). Hence, Zmin is C2 in V̂ . In case (e), we have

Zmin(V ) = u(W1(V ), h1) = u(W2(V ), h2)

for all V ∈ (V̂ −min{ε4, δ}, V̂ + min{ε4, δ}). As in the previous cases, we can conclude

that Zmin is C2 in V̂ . In the remaining case (f), we can infer that V̂ is a crossing point

of the utility functions u(W1(V ), h1) and u(W2(V ), h2). Formally, V̂ ∈ Cutilities. Since

Cutilities = ∅ by assumption, we can exclude case (f). Hence, Zmin is C2 in V̂ . The

same proof applies for the function Zmax with the difference that one needs to replace the

minimizing relationship πmin with the respective maximizing relationship πmax for each

of the cases (a) to (f). Since Cprob ∪Cutility is a finite set, we obtain that the objective is

C2 up to finitely many points. If Cprob ∪ Cutility = ∅, the objective is C2.

Proof of Proposition 3.3. Due to Requirement (SC1), Proposition 3.2 shows that the ob-

jective is twice continuously differentiable. The second order condition of U is given
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by:

∂2U
∂V 2

=π′′CEU(V |α, δ) · (u(W1(V ), h1)− u(W2(V ), h2))

+ 2π′CEU(V |α, δ)(W ′
1(V )u′(W1(V ), h1)−W ′

2(V )u′(W2(V ), h2))

+ πCEU(V |α, δ)W ′′
1 (V )u′(W1(V ), h1) + (1− πCEU(V |α, δ))W ′′

2 (V )u′(W2(V ), h2)

+ πCEU(V |α, δ)W ′
1(V )2u′′(W1(V ), h1) + (1− πCEU(V |α, δ))W ′

2(V )2u′′(W2(V ), h2)

(3.20)

By Requirement (SC2), we obtain u(W2(V ), h2) > u(W1(V ), h1). Together with Require-

ment (SC3), it follows that

π′′CEU(V |α, δ)(u(W1(V ), h1)− u(W2(V ), h2)) < 0 (3.21)

By using Requirement (SC5) and the fact that π′CEU < 0, we obtain

2π′CEU(V |α, δ) · (W ′
1(V )u′(W1(V ), h1)−W ′

2(V )u′(W2(V ), h2)) ≤ 0. (3.22)

Due to Requirement (SC4), we can infer

πCEU(V |α, δ)W ′′
1 (V )u′(W1(V ), h1) + (1− πCEU(V |α, δ))W ′′

2 (V )u′(W2(V ), h2) ≤ 0. (3.23)

Furthermore, we can conclude from u′′ ≤ 0 and πCEU(V |α, δ) ∈ [0, 1] that

πCEU(V |α, δ)W ′
1(V )2u′′(W1(V ), h1)+(1−πCEU(V |α, δ))W ′

2(V )2u′′(W2(V ), h2) ≤ 0. (3.24)

Due to the inequalities (3.21), (3.22), (3.23), and (3.24), the claim is proved.

Proof of Proposition 3.4. The Lagrangian is of the form

L(V, λ1, λ2) := πCEU(V |α, δ)u(W1(V ), h1)+(1−πCEU(V |α, δ))u(W2(V ), h2)+λ1V+λ2(1−V )
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The first order condition

∂L

∂V
(V0) = 0

yields

∂U
∂V

(V0|α, δ) + λ1 − λ2 = 0.

Furthermore, we obtain the non-negativity conditions λi ≥ 0 for i = 1, 2, the inequal-

ity constraints V ≥ 0 and V ≤ 1, as well as, the following complementary slackness

conditions:

λ1(−V0) = 0

λ2(V0 − 1) = 0

In order to solve the optimization problem, four different cases must be considered.

1. λ1 > 0 and λ2 > 0: In this case, we have V0 = 0 and V0 = 1, which is a contradiction.

2. λ1 = 0 and λ2 = 0. This is the case of an interior solution; the first order condition

is equivalent to ∂U
∂V

= 0.

3. λ1 = 0 and λ2 > 0: In this case, we can conclude V0 = 1. Plugging these conditions

into the first order condition, we obtain in the limit

lim
V0→1−

∂U
∂V

(V0|α, δ)− λ2 = 0.

Since λ2 is required to be strictly positive, we need to rely on the condition

lim
V0→1−

∂U
∂V

(V0|α, δ) > 0

to guarantee that the corner solution V0 = 1 is a feasible solution.

4. λ1 > 0 and λ2 = 0: From the complementary slackness conditions, we can conclude

that V0 = 0. Resorting to an argument similar to the one in the previous case, we
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obtain the following limit for the first order condition:

lim
V0→0+

∂U
∂V

(V0|α, δ) + λ1 = 0

Since λ1 is assumed to be strictly positive, it follows that the condition

lim
V0→0+

∂U
∂V

(V0|α, δ) < 0

needs to be satisfied in order to guarantee that V0 = 0 is a feasible corner solution.

It remains to be shown that there can never be more than one corner solution. Assume

that the conditions limV0→1−
∂U
∂V

(V0|α, δ) > 0 and limV0→0+
∂U
∂V

(V0|α, δ) < 0 hold at the

same time. Since U is continuously differentiable, we can deduce that the derivative UV

is continuous on [0, 1]. By the intermediate value theorem, we can conclude that there

exists V̂ ∈ (0, 1) such that UV (V̂ ) = 0. Furthermore, the derivative changes its sign from

negative to positive at V̂ . Therefore V̂ must be a minimizer. This is a contradiction to

the assumption that U is strictly concave.

Proof of Proposition 3.5. Consider two preventive relationships π and π̂, where π̂ is more

effective than π. The derivative of

π(V )u(W1(V ), h1) + (1− π(V ))u(W2(V ), h2)

with respect to V is given by

∂U
∂V

= π′(V )[u(W1(V ), h1)− u(W2(V ), h2)]

+ π(V )W ′
1(V )u′(W1(V ), h1) + (1− π(V ))W ′

2(V )u′(W2(V ), h2).

I define

g(V ) := π′(V )[u(W1(V ), h1)− u(W2(V ), h2)]

and
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b(V ) :=π(V )W ′
1(V )u′(W1(V ), h1) + (1− π(V ))W ′

2(V )u′(W2(V ), h2)

=W ′
2(V )u′(W2(V ), h2) + π(V ) (W ′

1(V )u′(W1(V ), h1)−W ′
2(V )u′(W2(V ), h2))

=W ′
2(V )u′(W2(V ), h2) + π(V )∆′u

Since ∆u = u(W2(V ), h2)− u(W1(V ), h1) ≥ 0 and π′(V ) < 0, we can conclude g(V ) ≥ 0.

Similarly, it follows that b(V ) ≤ 0. Due to the fact that ∆′u ≥ 0 by Condition (SC5) and

π̂(V ) ≥ π(V ) for all V ∈ [0, 1], we can conclude that

b(V ) ≤ π̂(V )W ′
1(V )u′(W1(V ), h1) + (1− π̂(V ))W ′

2(V )u′(W2(V ), h2).

Moreover, since π′(V ) ≥ π̂′(V ) for all V ∈ [0, 1], it follows that

g(V ) ≤ π̂′(V )[u(W1(V ), h1)− u(W2(V ), h2)].

Consequently,

g(V ) + b(V ) ≤ ∂U π̂

∂V

where ∂U π̂
∂V

denotes the derivative of

π̂(V )u(W1(V ), h1) + (1− π̂(V ))u(W2(V ), h2)

with respect to V . As a consequence, we obtain

∂U
∂V
≤ ∂U π̂

∂V
.

Since for an interior maximum, the derivative ∂U
∂V

changes its sign from positive to neg-

ative, we can conclude that preventive effort given π is smaller than prevention under

relationship π̂.

If V ∗ = 0 is the global maximizer of U on [0, 1], we can deduce that U is strictly decreasing
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in V . In this case there are two possibilities. The first one is that the partial derivative

of U π̂ is still strictly decreasing in V = 0. Then, the solution of max
V ∈[0,1]

U π̂ is still given by

V ∗ = 0. Hence, a higher effectiveness has no effect on preventive activities. The second

possibility is that U π̂ is not strictly decreasing in V = 0 anymore. In this case, the first

order condition has a zero V ∗ ∈ (0, 1). Since U π̂ is strictly concave, V ∗ is the unique

global maximizer. If V ∗ = 1 is the global maximizer of U on [0, 1], we obtain that U is

strictly increasing on [0, 1]. Besides, we have 0 ≤ ∂U
∂V
≤ ∂U π̂

∂V
. Hence, U π̂ is still strictly

increasing in V . Thus, V ∗ = 1 remains the solution.

Proof of Corollary 3.2. It is

∆1 = ∆u
d2

dα dV
πCEU = ∆uδ [π′max(V )− π′min(V )]

By assumption, we have ∆u < 0 and π′max(V )−π′min(V ) > 0. Therefore, we can conclude

that ∆1 < 0 for δ > 0 and ∆1 = 0 for δ = 0.

Proof of Proposition 3.6. The proof is straightforward. The result of part (a) is trivial

since the objective is independent of α in cases of full confidence. If the agent gives

a positive weight to extreme outcomes, the parameter α influences prevention. This is

the case for part (b). As α increases, the patient becomes more optimistic. In cases

where πmin has a higher perceived effectiveness than πmax, we can conclude that the

belief function πCEU(·|α, δ) shifts towards another belief function πCEU(·|α′, δ) which has

a lower perceived effectiveness. By Corollary 3.2, we obtain ∆1 ≤ 0. Moreover, ∆2 is

negative due to Requirement (SC5). Together, this implies that prevention either remains

unchanged or decreases. Where there is an interior solution, we have ∆1 < 0. Where

there is a corner solution, we have ∆1 = 0 for V ∗ = 0 and ∆1 ≤ 0 for V ∗ = 1. On the

other hand, if πmax is more effective than πmin, we can deduce that ∆1 ≥ 0. Hence, the

overall effect is positive if ∆1 > ∆2, negative if ∆1 < ∆2, and zero if ∆1 = ∆2.
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Proof Corollary 3.3. It is

∆3 = ∆u ·
∂2πCEU(V |α, δ)

∂δ∂V
= ∆u ·

(
−π′q(V ) + απ′1(V ) + (1− α)π′n(V )

)

Consequently, it is necessary to differentiate between the following cases:

(1) ∆3 > 0 iff απ′1(V ) + (1− α)π′n(V ) < π′q(V )

(2) ∆3 < 0 iff απ′1(V ) + (1− α)π′n(V ) > π′q(V )

(3) ∆3 = 0 iff απ′1(V ) + (1− α)π′n(V ) = π′q(V )

Now, the statement of the corollary follows directly from Definition 3.3.

Proof of Corollary 3.5. Due to Condition (SC5), we can infer that ∆′u ≥ 0. Therefore,

the sign of the δ-expected marginal utility effect is determined by the sign of d
dδ
πCEU. It

is

sign

(
d

δ
πCEU

)
=


+1 for α < α̂(V ∗)

0 for α = α̂(V ∗)

−1 for α = α̂(V ∗).

Proof of Corollary 3.6. Since neo-additive capacities remain neo-additive with revised pa-

rameters α′ and δ′, we can replace the ex-ante capacity ν(α, δ) with the updated capacity

ν(α′, δ′). By using Corollary 3.1, we can see that patients maximize

U(V |α′, δ′) = πCEU(V |α′, δ′)u(W1(V ), h1) + (1− πCEU(V |α′, δ′))u(W2(V ), h2)

where

πCEU(V |α′, δ′) = (1− δ′)πq(V ) + δ′(α′πmax(V ) + (1− α)πmin(V ))
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with rule-dependent α′ and δ′. Replacing these parameters by αO and δO in case of the

optimistic updating rule, by αP and δP in case of the pessimistic updating rule, and by

αGB and δGB in case of the generalized Bayesian updating rule concludes the proof.

Proof of Proposition 3.8. In this proof, each updating rule is examined separately.

Optimistic Updating Rule

Under the optimistic updating rule, the Non-Bayesian patient maximizes the objective

with respect to the preventive relationship

πOCEU(V ) = (1− δO)πBayesq (V ) + δOπmax(V ).

First of all, note that

πBayesq − (1− δO)πBayesq (V )− δOπmax(V ) = δO(πBayesq (V )− πmax(V )) ≥ 0.

Since

(πBayesq )′(V ) ≤ (1− δO)πBayesq (V )′ + δOπmax(V )′,

if πmax is less effective than πBayesq , we can conclude that πOCEU is less effective than πBayesq .

By using Proposition 3.5, we obtain the claims for the optimistic updating rule.

Pessimistic Updating Rule

Similarly, for the pessimistic updating rule, the Non-Bayesian agent relies on the rela-

tionship

πPCEU(V ) = (1− δO)πBayesq (V ) + δOπmin(V ).

It is

πBayesq − (1− δO)πBayesq (V )− δOπmin(V ) = δO(πBayesq (V )− πmin(V )) ≤ 0.
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Since πmin is more effective than πq, we can infer that

(πBayesq )′(V ) ≥ (1− δP )πBayesq (V )′ + δPπmin(V )′.

Hence, πBayesq is less effective than πPCEU. Again, by using Proposition 3.5, we can infer

the claim for the pessimistic updating rule.

Generalized Bayesian Updating Rule

In case of the generalized Bayesian updating rule, the Non-Bayesian patient maximizes

an expected utility with respect to the distorted probability

πGBCEU(V ) = (1− δGB)πBayesq (V ) + δGB(απmin(V ) + (1− απmax(V )).

Again, we can consider the difference

πBayesq (V )− (1− δGB)πBayesq (V )− δGB(απmax(V ) + (1− α)πmin(V ))

= (1− δGB)(πBayesq (V )− απmax(V )− (1− α)πmin(V ))

As a consequence, we can distinguish three possible cases:

(1) πBayesq (V ) > πα(V )

(2) πBayesq (V ) = πα(V )

(3) πBayesq (V ) < πα(V )

In case (1), we have πBayesq > πGBCEU, in case (2), we can infer πBayesq = πGBCEU, and in case

(3), we can deduce that πBayesq < πGBCEU. The remaining part of the proof follows directly

from Proposition 3.5.

Proof of Corollary 3.7. Remember that the condition πBayesq (V ) < πα(V ) is fulfilled when

patients are sufficiently pessimistic with α < α̂(V ). Similarly, the condition πBayesq (V ) >
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πα(V ) is fulfilled when patients are sufficiently optimistic with α > α̂(V ). Hence, a clear

ordering between πq and πα is possible whenever α < α̂(V ) for all V ∈ [0, 1] or α > α̂(V )

for all V ∈ [0, 1]. Defining

αmin := min
V ∈[0,1]

α̂(V ) and αmax := max
V ∈[0,1]

α̂(V ),

we obtain πq(V ) < πα(V ) for all V ∈ [0, 1] if and only if α < αmin. Similarly, πq(V ) >

πα(V ) for all V ∈ [0, 1] if and only if α > αmax.

3.7 Examples

Example 3.5. Let Φ = {π1, π2 π3} with π1(V ) = 1− 1
2
V , π2(V ) = 1− V 2, and π3(V ) =

1 − V . Obviously, each πi is twice continuously differentiable and strictly decreasing on

[0, 1]. Figure 3.10 illustrates these functions graphically in one diagram.

Figure 3.10: Preventive Relationships with a Single Crossing Point

At the point V̂ = 1
2
, π1 and π2 intersect. Moreover, we can see that π1 is smaller than π2

for all 0 ≤ V < V̂ and larger than π2 for all V̂ < V ≤ 1. Assume furthermore, that the

utility in the bad state is always lower than the utility in the good state

u(W1(V ), h1) < u(W2(V ), h2)
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for all V ∈ [0, 1]. Then, we obtain for πmin:

πmin(V ) =


1− V 2 for 0 ≤ V < V̂

3
4

for V = V̂

1− 1
2
V for V > V̂

For πmax, we have πmax = π3. This implies that πmax is continuously differentiable.

Obviously, πmin is not continuously differentiable due to a kink at V = 1
2
. Formally,

lim
V→V̂ −

d

dV
πmin(V ) = −1 6= lim

V→V̂ +

d

dV
πmin(V ) = −1

2
.

This implies that the objective is not necessarily continuously differentiable at V̂ = 1
2
.

This becomes clear, as we consider the special case α = 0, δ = 1, u(w, h) = w, W2(V ) =

5− V , W2(V ) = 10− V and q1 = q2 = 1
2
. Then, the objective is given by

U(V |α = 0, δ = 1) =


10− 7

2
V for 0 ≤ V ≤ 1

2

33
4

for V = 1
2

10− V − 5V 2 for 1
2
< V ≤ 1.

For the limit of the derivatives from the left and from the right, we obtain

lim
V→V̂ −

d

dV
U(V |α = 0, δ = 1) = −7

2
6= lim

V→V̂ +

d

dV
U(V |α = 0, δ = 1) = −6

This proves that U is not differentiable at V̂ = 1
2
.

Example 3.6. Let π1(V ) = 1−V , π2(V ) = 1− 1
4
V , W1(V ) = 10− 1

2
V , W2(V ) = 10−V 5,

u(w, h) = w, δ = 1, q1 = q2 = 1
2
, and α = 0. Obviously, the Assumptions 1,2 and 3 are

fulfilled for this model specification. Moreover, there is no crossing point of π1 and π2 on

the domain D = [0, 1]. The utilities u(W1(V ), h1) = W1(V ) and u(W2(V ), h2) = W2(V )
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have a crossing point at V̂ = 4

√
1
2
. The objective function is of the form

U(V |α = 0, δ = 1) = πmin(V )u(W1(V ), h1) + (1− πmin(V ))u(W2(V ), h2)

where

πmin(V ) =


π1(V ) for 0 ≤ V ≤ V̂

π2(V ) for V̂ ≤ V ≤ 1

Figure 3.11 gives a graphical representation of the objective function. Obviously, the

0.2 0.4 0.6 0.8 1.0
Effort

9.4

9.5

9.6

9.7

9.8

9.9

10.0

Objective

Figure 3.11: Objective Function with a Kink

objective has a kink at V̂ . Hence, U is not differentiable at the point V̂ .

Example 3.7. Throughout this example, assume that

u(W1(V ), h1) = 10− 2V 3 and u(W2(V ), h2) = 20− 2V 3

as well as q1 = q2 = 1
2
. I contemplate three scenarios. For each scenario, I compare the

following parameter constellations:

(1) Full Confidence: δ = 0

(2) Extreme Optimism: δ = 1 and α = 1

(3) Extreme Pessimism: δ = 1 and α = 0.
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Furthermore, I specify for each scenario a different set of belief functions Φi for i = 5, 6, 7.

Scenario I

Let the set of preventive relationships be given by Φ5 = {π9, π10} where π9(V ) = 1− 2
15
V

and π10(V ) = 1
2
− 7

15
V . Figure 3.12 displays the objective for each scenario.

Figure 3.12: Confidence Increases Preventive Activities for Pessimists

Observe that a higher degree of confidence20 yields lower preventive activities when pa-

tients are optimistic, and more preventive activities when patients are pessimistic. The

following model specification demonstrates the converse result.

Scenario II

Let Φ6 = {π11, π12} where π11(V ) = 1− 7
15
V and π12(V ) = 1

2
− 3

15
V . Figure 3.13 represents

the objective for the case of full confidence, extreme optimism and extreme pessimism.

Given this new constellation of beliefs, we obtain that confidence increases preventive

activities when patients are optimistic and decreases prevention when patients are pes-

simistic. The following model specification shows that ∆3 can be zero.

20This means δ decreases.
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Figure 3.13: Confidence Increases Preventive Activities for Optimists

Scenario III

Let Φ7 = {π13, π14} where π13(V ) = 1 − 2
15
V and π14(V ) = 1 − 2

15
V . The following

diagram displays the objective function in cases of full confidence, extreme optimism and

extreme pessimism.

Figure 3.14: Confidence Has No Influence on Preventive Activities

Obviously, there is no influence of confidence on preventive activities given this constel-

lation of parameters.

Example 3.8. Let π1(V ) = 1− 3
4
V , π2(V ) = 1

2
− 1

4
V , and π3(V ) = 1

4
− 1

5
V . The prior q is

given by q = (0, 1, 0) and α = 1
2
. Hence, we have πq = π2 and πα(V ) = π 1

2
(V ) = 5

8
− 19

40
V .

Figure 3.15 displays the extreme outcome function π 1
2

and the reference function πq in

one diagram. Obviously, π 1
2

and πq have a crossing point at V0 = 5
9
. As a consequence,
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Figure 3.15: Example Showing That There Is No Clear Ranking Between πα and πq

π 1
2
(V ) > πq(V ) for V < V0 and π 1

2
(V ) < πq(V ) for V > V0.



Chapter 4

Value of Information

4.1 Introduction

For decades economists have been studying the relationship between decision-making

under uncertainty and the so-called value of information. A famous and well-known result

in this context is Blackwell’s theorem (Blackwell 1953), stating that an experiment is more

valuable than another if and only if the same experiment is more informative than the

latter. In order to obtain this equivalence (e.g. Crémer 1982), a standard assumption has

been that decision-makers are subjective expected utility (seu) maximizers, cf. Savage

[1954].

Over the last decades, seu preferences have been subject to severe criticism, e.g. Ellsberg

[1961] showed with the prominent Ellsberg paradox, that a decision-maker may display

preferences which do not allow for subjective probabilities, thus showing an incompat-

ibility with Savage’s seu theory. A well-established model of decision-making under

uncertainty incorporating behavioral patterns that are in line with preferences displayed

in the Ellsberg paradox, is given by the so-called maxmin expected utility (meu) model.

Maxmin preferences were axiomatized by Gilboa and Schmeidler [1989].

153
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In recent years, multiple prior models have been used extensively in a wide range of

economic fields like finance and behavioral economics (Gilboa et al. 2010, Riedel 2009).

Given the importance of multiple priors and meu in particular, it is worthwhile to know

whether Blackwell’s theorem extends to this class of preferences. This has been the

objective of Çelen [2012], who offers a simple proof for the validity of Blackwell’s theorem

under meu preferences.

In this comment, we demonstrate that Çelen’s proof relies on a value of information for

meu preferences that is not defined via backward induction and thus is incompatible

with the intertemporal extension of meu introduced by Epstein and Schneider [2003].

In particular, optimal strategies in Çelen’s framework prescribe decisions conditional on

signal realizations that a meu decision-maker will not find optimal to adhere to once

those signal realizations have been observed. In this sense, Çelen’s framework features

dynamic inconsistency.

4.2 Framework and Definition of the Value of Infor-

mation in Çelen’s Model

In the following, we adopt Çelen’s framework and notation. Let Ω := {ω1, . . . , ωn} be the

finite set of states of the world and X := {a1, . . . , aχ} the finite set of actions available

to a decision-maker. Moreover, we denote by ∆(Ω) and ∆(X) the set of all probability

distributions defined on Ω and X, respectively. Let further u : Ω × X → R be a utility

function and u with uij = u(ωi, aj) the corresponding utility matrix. An seu decision-

maker is characterized by (π,u), where π ∈ ∆(Ω) is a prior over the states.

An experiment is a tuple (S,p) with the signal space S = {s1, . . . , sσ} and the Markov

matrix p with pij = Pr(sj|ωi) for sj ∈ S. Çelen introduces a strategy as a vector valued

mapping f : S → ∆(X), thus characterizing all (mixed) actions the decision-maker plans
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to take after observing certain signal realizations s. The σ × χ-matrix f is defined such

that (fi1, · · · , fiχ) := f(si).

In this framework, Çelen determines the value of the experiment (S,p) for a given strategy

f as

Uf(π,u)(S,p) =
∑
j

Pr(sj)
∑
i

Pr(ωi|sj)
∑
k

fjku(ωi, ak) (4.1)

=
∑
j

∑
i

pijπi
∑
k

fjkuik (by Bayes’ rule) . (4.2)

With a strategy f ∗ maximizing (4.2), Çelen defines U∗(π,u)(S,p) = Uf
∗

(π,u)(S,p) as the value

of the experiment for an seu decision-maker.

Building on this, Çelen extends the definition of the value of an experiment to the class

of meu preferences. For that purpose, he characterizes an meu decision-maker by (A, u),

where A ⊂ ∆(Ω) is a convex and compact set of priors. As a counterpart of U∗(π,u)(S,p),

he defines

W∗(A,u) = max
f

min
π∈A

Uf(π,u)(S,p) (4.3)

as the value of an experiment (S,p) for an meu decision-maker. It is expression (4.3)

that Çelen relies on in his proof of the generalized Blackwell theorem.

4.3 A Recursively Defined MEU Value of Informa-

tion

It is insightful to note that Çelen’s framework basically describes an intertemporal setting

with two periods, a useful distinction that could be concealed by the fact that the decision-

maker only acts once. In the second period, after observing a signal realization, the

decision-maker takes a (mixed) action. In the first period, before observing the signal

realization, the value of the experiment (S,p) is determined. Çelen accounts for the
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intertemporal structure insofar as he considers strategies, that is complete contingent

plans for appropriate play after observing signal realizations.

His formulation, however, is in contrast to the usual intertemporal formulation of meu

preferences that was provided by Epstein and Schneider [2003]. One of the main charac-

teristics of the recursive definition of intertemporal meu in Epstein and Schneider [2003]

is the compatibility with backward induction. We follow their approach and present here

an alternative definition of the value of information for meu preferences. According to

backward induction, the first step to define a value of information is to determine an

optimal action after observing signal realization sj, j = 1, . . . , σ, which is given by

g∗j ∈ argmax
g∈∆(X)

min
µ∈M(sj)

Eµ[u] . (4.4)

Here, M(sj) is the set of posteriors after observing signal realization sj, formally

M(sj) := {p(·|sj) : p ∈ A} , (4.5)

where p(·|sj) denotes the conditional probability of the prior p ∈ ∆(Ω) given the signal

sj. We obtain p(·|sj) via Bayes’ rule and update each prior p in this way.1

According to the principle of backward induction, we determine the value of information

in the first period on the assumption of optimal actions in the second period. Thus, we

suggest the following definition of the value of an experiment (S,p) for meu preferences:

W̃∗(A,u) = min
π∈A

∑
i,j

πipij
∑
k

g∗jkuik . (4.6)

Here, g∗j denotes an optimal decision after observing signal realization sj, given in (4.4).

This alternative way of defining the value of an experiment is in line with the intertemporal

1Epstein and Schneider [2007] show that further restrictions on the setM can be made. For the sake
of simplicity, you may think of full Bayesian updating.
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model of recursive utility under multiple priors as pointed out in Epstein and Schneider

[2003, 2007].

The key characteristic of (4.6) is that optimal actions are determined with the meu rule

for each signal realization sj individually. In particular, the worst posterior in (4.4) in

general depends on the signal realization sj. This is in contrast to (4.3). By following the

derivation of the seu counterpart, essentially the step from (4.1) to (4.2), Çelen silently

assumes that the worst prior from the ex-ante perspective coincides with the preimage

of all worst posteriors, irrespective of the signal realization. For the seu decision-maker

this argumentation is innocent as there is a unique prior, and thus a unique posterior as

well. For the meu decision-maker, however, this argument is in conflict with backward

induction.

In the appendix, we demonstrate that the conflict of Çelen’s framework with intertemporal

recursive utility can be made even more concrete. We provide an example in which the

optimal strategy derived in Çelen’s framework prescribes actions that are different from

what a meu decision-maker will actually do after observing those signals realizations.2

This supports our claim that the value of information for meu preferences should be

defined by (4.6). By construction, our definition of the value of information is compatible

with dynamic consistency.

2One could think that the reason we observe this form of dynamic inconsistency is the missing
assumption of rectangularity of the prior set, a key assumption in Epstein and Schneider [2003] to ensure
dynamic consistency within an intertemporal setting of recursive utility. But this is not the case. Even
though Çelen’s setting is not fully transferable to the setting of Epstein and Schneider, in particular
the analysis in Epstein and Schneider [2007] suggests that rectangularity is no issue in this setting,
simply because the learning process is defined via conditional one-step-ahead conditionals, as required
by Epstein and Schneider [2003]. The reason for the peculiar properties of Çelen’s framework lies in the
fact, that utilities are defined in a non-recursive way. His framework is thus incompatible with Epstein
and Schneider right from the start.
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4.4 Results and Discussion

We have shown that Çelen’s proof of the Blackwell theorem only applies to a value of

information that is defined in a non-recursive utility framework. We have offered a defi-

nition for the value of information derived via backward induction, thus compatible with

the dynamic consistent intertemporal axiomatization of Epstein and Schneider [2003].

Consequently, we suggest that the proof of the Blackwell theorem should deal with ex-

pression (4.6) as the definition of the value of information for meu preferences. This proof

is still pending.

4.5 Example Demonstrating That Çelen’s Value of

Information Is No Dynamically Consistent

After observing a certain signal realization, an meu decision-maker will in general not

adhere to actions she determined to be optimal before the signal realization has been

observed. In other words, an optimal strategy f ∗ determined in Çelen’s framework in

general prescribes, for all signal realization contingencies, actions that are different from

what an meu decision-maker will actually do after observing those signal realizations.

We demonstrate this with a simple example. We restrict the number of states of the world

Ω = {ω1, ω2}, actions, X = {a1, a2} and signal realizations S = {s1, s2} to two. By that,

we can write a prior π as (π1, 1−π1). Moreover, the Markov matrix p is fully specified by

p11 = p22 = λ and p12 = p21 = 1− λ with 1/2 < λ < 1. We assume 1/2 < λ < 3/4. Due

to the restriction on two signal realizations, we can write f12 = 1− f11 and f21 = 1− f22.

To further simplify our example, we specify payoffs by u11 = 1, u12 = −1, u22 = 2 and

u21 = 0. This is a simple example of a setting in which the decision-maker wants to learn

the true ω because action a1 is optimal if ω = ω1 and action a2 is optimal if ω = ω2.
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With these specifications, (4.2) reduces to

Uf(π,u)(S,p) = (2f11 − 2f22 − 1) π1 + 2− 2 (1− f22)λ− 2f11(1− λ) . (4.7)

For the set of priors, we specify A = {(π1, 1− π1) : 1/4 ≤ π1 ≤ 3/4}.

In order to determine Çelen’s optimal strategy f ∗ in equation (4.3), we first calculate,

for a given strategy f , the prior that minimizes (4.7). This is given by

πworst =



(
1
4
, 3

4

)
if f11 − f22 >

1
2

any π ∈ A if f11 − f22 = 1
2(

3
4
, 1

4

)
if f11 − f22 <

1
2
.

(4.8)

Building on this, we can derive the optimal strategy f ∗. We calculate

f ∗(s1) = (1, 0) , f ∗(s2) =
(

1
2
, 1

2

)
. (4.9)

In words, the optimal strategy in the Çelen framework consists of taking action a1 if

s = s1 and mixing over actions a1 and a2 with equal weights if s = s2.

We now demonstrate that an meu decision-maker that determines her optimal strategy

via (4.3) would actually revise her optimal plan as soon as the signal materializes. The

decision rule after observing a signal realization sj is given by (4.4), where g is a random-

ization over actions a1 and a2, andM⊂ ∆(Ω) is the set of posteriors that depends on the

set of priors A, the likelihood p and the signal realization sj observed. In our example,

the expected value of the decision g under the posterior µ is

Eµ[u] = µ1 (g1 · 1 + (1− g1) · (−1)) + (1− µ1) (g1 · 0 + (1− g1) · 2)

= (4g1 − 3)µ1 + 2(1− g1) .
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Using the notation µ
1

:= minµ∈M µ1 and µ̄1 := maxµ∈M µ1, the worst posterior is

µworst =



(
µ

1
, 1− µ

1

)
if g1 >

3
4

any µ ∈M if g1 = 3
4

(µ̄1, 1− µ̄1) if g1 <
3
4
.

(4.10)

We rewrite Eµ[u] = g1 (4µ1 − 2) + 2 − 3µ1. From that we can infer that g1 is chosen

minimal if the relevant posterior fulfills µ1 < 1/2 and g1 is chosen maximal if the relevant

posterior fulfills µ1 > 1/2. Our assumption λ < 3/4 implies for all signal realizations

µ
1
< 1/2 and µ̄1 > 1/2. Thus for g1 ≥ 3/4, it is optimal to lower g1 as much as possible.

Considering the case g1 ≤ 3/4, it is optimal to increase g1 as much as possible. Taken

together, this shows g∗ = (3/4, 1/4), independent of the signal realization. In words, the

optimal action of the meu decision-maker (both after receiving s = s1 and s = s2) is to

mix over actions a1 and a2 with the ratio 3 to 1.

As we have shown above, this is different from the behavior prescribed in Çelen’s frame-

work, given in expression (4.9). This shows the dynamic inconsistency and thus illustrates

the incompatibility of Çelen’s framework with the recursive setting of Epstein and Schnei-

der [2003, 2007].
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Implementing Ambiguity - the

Monopoly Market

5.1 Models with Perfect and Imperfect Information

Every economic model is an attempt to provide a simplified description of the world

with the inherent objective to obtain a better understanding of real-world phenomena

as well as complex economic interrelations and interactions. Since every model is just

a simplification of the real world, it neglects a certain number of influencing factors or

determinants and is therefore strictly speaking ”always wrong”, compare Box and Draper

[1987], page 424. As such, constructing a model goes hand in hand with a process of for-

mal abstraction in which the modeler is required to identify and select a certain number of

influencing factors, or variables, that he or she deems relevant for the underlying analysis.

The primitives of each model specify these variables and establish logical relationships

between them. Deardorff [2001] gives the following definition of an economic model: An

economic model is ”a collection of assumptions, often expressed as equations relating vari-

ables, from which inferences can be derived about economic behavior and performance.”

161
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Let me hereafter introduce a simple and well-known example for a stylized ”economic

model” that is going to serve as a template for the considerations of this chapter.

Example 5.1 (Monopoly with Linear Demand under Certainty). Consider a monopoly

market and a firm that produces a homogeneous good. Market demand is linear and

given by

D(p) = max{0, a− bp, 0}

where a, b > 0 are parameters and p denotes the price of the good. The parameter

a can be interpreted as the maximum number of possible customers whereas the slope

parameter b captures how fast demand decreases when prices increase. Moreover, the

firm faces a marginal cost of c > 0 for producing one unit of the good and no fixed costs.

The firm is assumed to set a price such that its profit

Π(p) = (p− c)D(p)

is maximized. The profit function is continuous, since sums and products of continuous

functions are continuous. Moreover, the objective is piecewise continuously differentiable

with a kink at p0 = a
b
. The following proposition describes the solution of the monopolist’s

Figure 5.1: Objective in the Certainty Case

optimization problem in the certainty case.
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Corollary 5.1. The solution of the monopolist’s optimization problem under certainty

is given by

pcertainty =


pM = a+bc

2b
a > bc

[p0,∞) a ≤ bc

Proof. The proof is contained in the last section of this chapter.

The result of Proposition 5.1 can be interpreted in the following way: As long as the

marginal cost parameter is small enough, the monopolist charges the monopoly price pM .

As marginal costs increase, the monopoly price pM increases as well. As soon as the

monopoly price exceeds the threshold value p0 = a
b
, demand is zero. As a consequence,

the best the monopolist can do in such cases is to secure a profit of zero by setting a price

p ≥ p0.

Implicitly, this model features assumptions on the firm’s state of knowledge with respect

to the underlying variables and relationships. To be more precise, the calculation of the

monopoly price presumes that the firm manager knows the relationship between prices

and market demand, as well as the underlying cost structure of the firm. The start-

ing point for the introduction of ambiguity into preexisting economic models consists in

identifying each agent’s degree of information with respect to the underlying parameters.

Doing so, one can roughly distinguish between two different cases which are treated in

the following. The case of perfect information, where the decision-maker knows a certain

parameter or functional relationship, and the case of imperfect information where this

knowledge is at least partially absent. The simple monopoly model is an example for

perfect information, since all relevant parameters are assumed to be known.

Whether it is reasonable to drop the assumption of perfect information for a specific

variable or not strongly depends on the modeling context and the narrative of the under-

lying problem. Assume, for instance, that the monopolist can rely on a number of high

quality market studies, and that all of these studies indicate that market demand in the
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current state of the economy is given by D(p). Moreover, assume that the monopolist

has been operating successfully in the market for many years and that the results of the

market research studies correspond to the monopolist’s experience from past years. In

such a case, it seems inappropriate to assume that, given the overwhelming evidence, the

monopolist would perceive market demand as uncertain in the current state of the econ-

omy. On the other hand, if we consider situations where performing market studies is too

costly or time-consuming, or where the monopolist issues a completely new product into

the market, one can more easily support the hypothesis that the assumption of perfect

information is doubtful.

Imperfect information prescribes the presence of uncertainty. According to Knight [1921],

uncertainty can be classified into two categories: risk and ambiguity. In cases where uncer-

tainties are captured by risk, decision-makers ignore a crucial parameter or relationship,

but they know the set of possible outcomes for this parameter and the probability for

each of these outcomes. The following section extends Example 5.1 to a scenario where

the monopolist ignores the overall number of consumers a.

Example 5.2 (Monopoly with Linear Demand under Risk). Suppose the monopolist

knows that there are two scenarios: In the first scenario, the overall number of consumers

is high and denoted by aH > 0; in the second scenario, there is a smaller, but positive,

number of consumers 0 < aL < aH .1 Besides, the monopolist knows the probability of

each scenario. Let s ∈ (0, 1) denote the probability that aH is the true underlying pa-

rameter.2 Then, market demand is given by D1(p) = max{0, aH − bp, 0} with probability

s and by D2(p) = max{0, aL − bp, 0} with probability 1− s. Under the assumption that

the monopolist maximizes his expected profit, we obtain the following objective:

Es[Π](p) := (p− c) (sD1(p) + (1− s)D2(p))

1If we had aH = aL, we would be back in the certainty case.
2At this point, I exclude the extreme cases s = 0 and s = 1, since the solution of these cases

corresponds to the certainty case treated in Example 5.1. This can be achieved by replacing the demand
function D(p) with D1(p) or D2(p) respectively.
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Throughout the rest of the paper, I condense the notation slightly writing Es[Π] instead

of Es[Π](p) if not otherwise specified. Knowing that sums and products of continuous

functions are continuous, we can infer that the monopolist’s profit function is also con-

tinuous. Furthermore, the objective is only piecewise continuously differentiable. This is

because it has two kinks at p0 = aL
b

and p1 = aH
b

, see Figure 5.2 for an illustration. The

Figure 5.2: Objective Function Under Risk

following proposition characterizes the solution of the monopoly model under risk.

Proposition 5.1. The following prices are possible solutions of the monopolist’s opti-

mization problem under risk:

1. p∗ = saH+(1−s)aL+bc
2b

2. p∗∗ = aH+bc
2b

3. p∗∗∗ ∈ [p1,∞].

Which of these candidates is the global maximizer depends on the underlying parameter

constellations and the threshold value

ŝ =
(b c− aL)2

(aL − aH)2 .

The price p∗ is the only solution of the optimization problem if one of the following sets

of conditions is met:
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1. C1: bc < 2aL − aH

2. C2: aH ≥ max{bc, 2aL − bc}, 2aL − saH − (1− s)aL ≥ bc, and s ∈ [0, ŝ) ∪ {1}

3. C3: aH ≥ max{bc, 2aL − bc}, 2aL − saH − (1− s)aL ≥ bc, and ŝ > 1

The price p∗∗ is the only solution of the optimization problem if one of the following sets

of requirements holds:

4. C4: aH ≥ max{bc, 2aL − bc}, 2aL − saH − (1− s)aL ≥ bc, and s ∈ (ŝ, 1)

5. C5: aH ≥ max{bc, 2aL − bc} and 2aL − saH − (1− s)aL ≤ bc

Both p∗ and p∗∗ are the solution of the optimization problem if the following assumptions

are met:

6. C6: aH ≥ max{bc, 2aL − bc}, 2aL − saH − (1− s)aL ≥ bc, and s ∈ {ŝ, 1}

Every p∗∗∗ ∈ [p1,∞] is a solution of the optimization problem if the following condition

is satisfied:

7. C7: aH < bc

Proof. The proof is contained in the last section of this chapter.

The result of Proposition 5.1 can be summarized in the subsequent manner: The optimal

monopoly price crucially depends on marginal costs. There are three cases. In the first

case, marginal costs are so small such that the demand remains positive in both potential

scenarios aH and aL. The second case deals with intermediate values of c; it can either

occur that the monopoly price yields positive demand for both scenarios, or that the

demand in the low number of consumers scenario aL is zero but remains positive in the

high number of consumers scenario aH . Whether p∗ or p∗∗ is the solution depends on the
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probability s and the threshold value ŝ. If s equals one, the model reduces to a model

of certainty with a = aH . In this case p∗ = p∗∗ is the optimum. For small values of s,

the monopolist expects the low consumer scenario aL to materialize. Consequently, the

monopolist’s objective gives a small weight to scenario aH and a large weight to scenario

aL. Under these assumptions, the price p∗ is optimal. The threshold value ŝ has no bite

when both scenarios aL and aH are sufficiently similar. In cases where difference between

aH and aL is large enough3, p∗∗ is optimal if the monopolist’s belief s gives sufficiently

weight to scenario aH . Finally, if marginal costs are so large that the corner solution price

p∗∗ exceeds the value p1 = aH
b

, we can infer that D1(p∗∗) = D2(p∗∗) = 0. Hence, the best

the monopolist can do is to secure a profit of zero. This can be achieved by any price

p∗∗∗ ∈ [p1,∞).

Note that the higher the probability s of the high demand scenario, the higher the result-

ing monopoly price p∗. In cases where one of the corner solutions p∗∗ or p∗∗∗ is optimal,

the monopoly price is independent of s.

5.2 Why Ambiguity?

Whether the monopolist’s imperfect information with respect to an underlying variable

should be modeled by a decision-theoretic framework featuring risk, or by a framework

featuring ambiguity, is a challenging question that cannot be answered completely satis-

factorily. Under ambiguity, the decision-maker knows the set of possible outcomes but is

confronted with a lack of (reliable) probabilistic information. In fact, ambiguity presumes

that, due to the absence of crucial information, the monopolist is incapable of assigning a

well-defined probability to the events {aH} and {aL}. Therefore, the real underlying issue

is to assess whether we can justify the existence of a well-defined probability distribution

that the monopolist may use as a basis for his decision-making process.

The existence problem is at the same time mathematical and philosophical in nature and

3The threshold value ŝ converges to zero if the difference ∆a = |aH −AL| converges to infinity.
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broadly discussed in the literature. From a mathematical point of view, a probability is

defined via Kolmogorov’s axioms, see Kolmogorov [1950] for more details. Kolmogorov’s

axioms result in a sound formal theory but leave room for interpretation when it comes to

answering the question where probabilities come from and how to interpret them. This is

exactly the point where the philosophical discussion on probabilities sets in. The problem

of appropriately defining probabilities has been addressed by different schools of thought.

A discussion of these can be found in many textbooks on decision-theory and philosophy.

In the following, I summarize and discuss briefly the main interpretations of probabilities

introduced in Peterson [2009] starting with Laplace’s classical definition of probabilities,

see Laplace and Truscott [1814].

According to Laplace’s notion of probabilities, a probability is defined as a ratio, namely

the number of favorable cases divided by the total number of cases where each case is

presumed to be ”equally possible”. As an example of the classical definition of a proba-

bility, consider, for instance, an urn containing r1 red balls and r2 blue balls. Then, the

probability of drawing a red ball is the number of favorable cases r1 divided by the total

number of cases r1 + r2. The classical definition of probabilities has its limitations. It

is, for instance, not clear whether events can always be divided in such a way that they

are equally possible. Moreover, the procedure of dividing the state space into equally

possible events needs to be done by using symmetry arguments, such as the principle of

insufficient reason, in order to avoid the problem of circular logical arguments,4 compare

Hájek [2012]. Secondly, the classical definition only applies to finite state spaces.

The second notion for probabilities is the so-called frequentist definition. Frequentism

presumes that probabilities directly arise from empirical observations; therefore, a prob-

ability is defined as relative frequency. Formally, the probability of an event A is defined

as the number of observations in which A occurred divided by the total number of ob-

servations, see for instance Peterson [2009], pp. 136-137. The problem of the frequency

definition is that different series of observations give rise to different probabilities. An

4Otherwise, one would implicitly assume that ”equally possible” has the same meaning as ”equally
probable”.
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extension of the frequentist view is proposed by Venn [1888], who attempts to resolve

the problems of the relative frequency definition by assuming that the probability of an

event equals the limit of the relative frequency if the underlying experiment was repeated

infinitely many times. The problem of this alternative definition is that it is not clear

whether it is always possible to repeat an experiment infinitely many times, or whether

the relative frequency really converges, since we cannot observe the whole sequence of

trials.

The third interpretation of probabilities is the propensity definition pioneered by Karl R.

Popper.5 Peterson [2009], pp.139-140, provides the subsequent definition of a probability

according to the propensity approach:

”[...] probabilities can be identified with certain features of the external world, namely

the disposition or tendency of an object to give rise to a certain effect.”

The propensity interpretation is criticized for a variety of reasons. The first one is that

the term ”propensity” is dubious, since it cannot be defined in a clear manner. The

second objection frequently put forward against propensities is that they entail a tempo-

ral structure which precludes Bayes’ theorem.6 See for instance Humphreys [1985] for a

critique on the propensity approach.

The fourth interpretation of probabilities is the so-called logical or epistemic notion of

probabilities. According to Hájek [2012], the logical interpretation dates back to Keynes

[1921], Johnson [1921], Jeffreys [1939], and Carnap [1962]. The logical approach assigns

probabilities to hypotheses which are, by definition, unverified logical statements. More

precisely, the logical interpretation presumes that probabilities can be logically deduced

from evidence E supporting a certain hypothesis H, compare Peterson [2009], page 141.

Mathematically speaking, the logical probability p(H|E) assigns a probability to the event

that the hypothesis H is true. Assume, for instance, that we intend to assign a probabil-

ity to the hypothesis that the so-called ”giant impact hypothesis” regarding the moon’s

5Compare Popper [1957] and Popper [1959].
6Compare Peterson [2009], pp. 140-141.
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origin is true. In this case, the underlying logical probability describes how strongly the

giant impact hypothesis is supported, given current scientific evidence at hand. One focus

of the criticism put forward against logical probabilities is the way evidence is connected

to probabilities in Carnap’s approach7 and the fact that probabilities are solely evidence-

dependent excluding the possibility of guesses.8

At this point, I want to mention that there are different perceptions in the literature on

how to define objective probabilities. Anscombe and Aumann [1963] tie the definition of

objective probabilities to interpersonal agreement. When two persons’ subjective beliefs

coincide, then they are called objective in the sense of Anscombe-Aumann. This approach

is criticized in Gilboa [2009], pp. 138-139. Loosely speaking, the critique is that according

to Anscombe-Aumann’s definition objectiveness might just be the result of a coincidental

match of beliefs. But why should we think that coincidence can be a foundation of an

objective probability? In this thesis, I adopt a more restrictive view on what should be

called an objective probability. Therefore, I adopt the definition proposed in Peterson

[2009], page 133, that objective probabilities are derived from facts in the external world

and not from personal judgment. With this definition in mind, I subsume the classical,

frequentist, logical, and propensity approaches to probability under the term ”objective

probabilities”.

In contrast to objective probabilities, subjective probabilities arise from the agents them-

selves, the ”subjects”, and can be interpreted as individual assessments of risky situations.

Therefore, subjective probabilities are frequently denoted as ”beliefs”. The subjective def-

inition does not require the agents to derive probabilities from facts or knowledge, the

”objects”, related to the problem. Major contributions for the subjective interpretation

originate from Ramsey [1931], De Finetti [1937], and Savage [1954]. Briefly summarized,

the subjective approach allows us the elicitation of beliefs by offering hypothetical bets.

Note that according to Ramsey [1931], agents are not required to ”know” their subjective

probability. It is rather that, if agents conform to Savage’s axioms, one can infer their

7There is the need to introduce some weighting between different pieces of evidence, compare Hájek
[2012], page 11, for more details.

8See Peterson [2009], page 141.
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subjective beliefs by observing their betting behavior. The subjective interpretation of

probabilities is criticized for the fact that beliefs are attached to preferences. In a sense,

it is not excluded that a preference for certain states of the world influences an agent’s

personal probabilistic judgments, compare Hájek [2012] for more details.

Following the discussion of the different schools of thought on probability, I return to the

initial question of this section, namely which prerequisites need to be satisfied such that

the implementation of ambiguity into preexisting economic models is justified. In order

to answer this question, we should keep in mind that the concept of ambiguity obviously

originates from the subjective school of thought on probabilities. Both the subjective

school and the advocates of ambiguity models share the view that beliefs can be purely

subjective in nature. But wherein lies the difference? Remember, the development of

non-expected utility models originates from Ellsberg’s discovery that agents’ behavior

might contradict the existence of a single subjective belief.

Taking these considerations together, one realizes that modelers face two major obstacles

when implementing ambiguity preferences.

The first obstacle is to provide a sound justification of why objective probabilities seem

inappropriate in the context of the model setup. Given the strict definition of objec-

tive probabilities in Peterson [2009], one can see that the derivation of such probabilities

presumes the availability of facts or evidence from the external world. Conversely, this

means that the justification of objective probabilities is not guaranteed whenever agents

are insufficiently informed about these facts and therefore prone to rely on individual

probabilistic judgments.

Frequently, the rationale in this step boils down to one, or several, of the following rea-

sons: First of all, agents might lack crucial data; data might be absent or inaccessible

and its procurement time-consuming or associated with high costs. Secondly, even if data

was available, it could originate from an unreliable source of information and therefore be

judged as insufficient or imprecise. Finally, there is the possibility that agents dispose of

contradictory information, or information highlighting different aspects of the underlying

uncertainty.
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The second obstacle to ambiguity is to argue why agents violate SEU. Suppose that a set

of conditions was identified such that the hypothesis of subjective probabilities can be

supported. If the agents conform to the axioms of Savage [1954], one can ”replace” ob-

jective probabilities with subjective ones and conduct an analysis based on the expected

utility calculus. Since SEU is widely considered as the benchmark model of decision mak-

ing under uncertainty, it is indispensable to point out why the agents might not conform

to this model. The main argument frequently put forward to support this hypothesis

is the Ellsberg paradox by Ellsberg [1961]. It demonstrates that, in situations where

probabilities are not objectively given, decision-makers might display preferences that

refute the hypothesis of subjective probabilities. The validity of the Ellsberg paradox has

been confirmed by a variety of experimental studies such as Camerer and Weber [1992]

or Halevy [2007].

On the whole, modelers are confronted with two major challenges when arguing in favor

of ambiguity models. The first one is to support the hypothesis that probabilities are

unlikely to be objective, and the second one is to refute the SEU model.

At the end of this section, I want to point out that whenever one decides to generalize

a baseline model by making use of non-expected utility models, you find yourself implic-

itly in the tradition of the Non-Bayesian school of thought on probabilities and decision

making. The decision whether or not to include ambiguity into economic models is not

necessarily a question of ”right” or ”wrong” that can be easily determined along a series

of clear-cut objective criteria. It is rather a commitment to the Non-Bayesian approach

which needs defense on the grounds of plausible reasoning.

5.3 Implications of Ambiguity for Monopoly Pricing

The previous section of this chapter addresses the question whether it is appropriate to

introduce ambiguity into a preexisting baseline model or not. In the following, I discuss

the implications of the most prominent models of decision making under uncertainty for
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the baseline monopoly example. Note that the problem of monopoly pricing under am-

biguity is addressed by a novel strain of literature in Industrial Organization. Asano and

Shibata [2011] consider a continuous-time dynamic pricing model where a monopolist

can make irreversible quality investments. The authors find that, contrary to risk, the

presence of Knightian uncertainty decreases prices and optimal quality. Bergemann and

Schlag [2011] investigate monopoly pricing under MEU and the minimax regret criterion.

The authors find that both decision criteria lead to lower monopoly prices than under a

certainty. Using a maxmin rule, a recent paper by Zheng et al. [2015] investigates optimal

non-linear monopoly pricing under ambiguity. There is a continuum of different types

of buyers. Each type is characterized by a certain valuation for the product. Knightian

uncertainty is modeled by so-called ε-contaminations, see Eichberger and Kelsey [1999]

for more details. The authors find that, under Knightian uncertainty, the monopolist

assumes a larger portion of buyers to have the lowest possible valuation of the product.

Besides, the monopolist adjusts her pricing strategy under ambiguity by offering a larger

discount to all consumers.

The objective of this section is to investigate the pricing problem in a simple static

framework for the most prominent models of decision making under uncertainty. In this

context, I assume that the monopolist is risk-neutral and faces demand ambiguity with

respect to the intercept a. Moreover, I abstract from quality investments. Contrary to

Asano and Shibata [2011] and Bergemann and Schlag [2011], I can demonstrate that

Knightian uncertainty can increase or decrease optimal prices. Besides, I can show that,

due to the possibility of corner solutions, there are instances where ambiguity has no

effect on optimal prices.

An important point to be considered is whether the monopolist’s attitude towards am-

biguity should be included into the model framework or not. Naturally, this question

is closely related to the research agenda intended by the introduction of ambiguity. If,

for instance, the aim of research solely consists in comparing a risky environment with

an ambiguous situation characterized by extreme pessimism, then the MMEU model de-

veloped by Gilboa and Schmeidler [1989] might be the right choice, since it features a
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simple and parsimonious formal structure, which is sufficient to address the underlying

question. In terms of the monopoly example the underlying question would be how the

monopoly price is affected if the monopolist features extreme pessimism with respect to

the maximum number of consumers.

Example 5.3 (Monopoly with Linear Demand and MMEU-Preferences). MMEU-pre-

ferences presume that the monopolist’s beliefs are represented by a nonempty, closed,

and convex set of priors P , see Gilboa and Schmeidler [1989], page 145. Since I consider

only a model with two outcomes, we can associate every prior (s, 1− s) with the number

s ∈ [0, 1]. By using this simplified notation, we can represent P by means of a compact

interval P = [s, s] where 0 ≤ s < s ≤ 1. Under MMEU, the monopolist’s optimization

problem is given by

max
p≥0

min
s∈[s,s]

Es[Π] (5.1)

where

Es[Π] = (p− c)(sD1(p) + (1− s)D2(p))

denotes the expected profit given the belief (s, 1 − s). As in the risk case, the objective

function has two kinks at p0 = aL
b

and p1 = aH
b

. The following corollary states the

monopolist’s worst-case priors.

Corollary 5.2. The prior sworst inducing worst-case expected profits is given by

sworst :=



s for p < c

[s, s] for p = c

s for c < p < aH
b

[s, s] for p ≥ aH
b

Proof. The proof is contained in the last section of this chapter.
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By using Corollary 5.2, we obtain the following representation for the reduced objective:

Esworst [Π] =: Ψ(p) =


Es[Π] for 0 ≤ p < c

Es[Π] for p ≥ c

Note that

Es[Π] = Es[Π] = Es[Π] = 0

for p = c and p ≥ aH
b

. Therefore, we can replace Esworst [Π] by Es[Π] in cases where p

equals the marginal cost parameter c or where p exceeds the threshold value aH
b

. The

monopolist’s problem can be expressed as

max
p≥0

Ψ(p). (5.2)

The subsequent corollary characterizes the solution of problem (5.1).

Corollary 5.3. The following prices are possible solutions of the monopolist’s optimiza-

tion problem under MMEU-preferences:

1. p∗pess = saH+(1−s)aL+bc
2b

2. p∗∗pess = aH+bc
2b

3. p∗∗∗pess ∈ [p1,∞]

Which of these candidates is the global maximizer depends on the Conditions C1 to C7

and the threshold value ŝ defined in Proposition 5.1. Note that it is necessary to replace

the probability s with the worst-case prior s in Conditions C2 to C6. The price p∗pess is

the only solution of the optimization problem if one of the Conditions C1, C2, or C3 is

satisfied. The price p∗∗pess is the only solution of the optimization problem if the Condition

C4 or the Condition C5 holds. Both p∗pess and p∗∗pess are global maximizers if Requirement

C6 is met. Every p∗∗∗pess ∈ [p1,∞] is a solution of the optimization problem if C7 holds.
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Proof. The proof is contained in the last section of this chapter.

Note that the risky monopoly price p∗, which is defined in Example 5.2, is at least as large

as the pessimistic monopoly price p∗pess in cases where the belief s is not smaller than the

worst-case belief s. This condition is automatically fulfilled when the monopolist relies

on a full prior set P = [0, 1]. In cases where P is a strict subset of [0, 1], we can conclude

that p∗ is smaller than p∗pess if s < s. Such a scenario is not very plausible, since it

presumes that the monopolist exhibits stronger pessimistic under risk than in the worst-

case scenario under ambiguity. The concept of a prior set, however, implicitly assumes

that P contains all conceivable priors from an ex-ante perspective. For this reason, one

could argue that, in such cases, the prior set P lacks a crucial belief.

What we learned so far from the MMEU-approach is that extreme pessimism with respect

to the maximum number of consumers leads to a lower monopoly price than in a scenario

where the monopolist holds a subjective belief s with s > s. These results are consistent

with the findings of Asano and Shibata [2011] and Bergemann and Schlag [2011]. A

legitimate question, which cannot be answered by the MMEU-model, is, what happens if

the monopolist displays optimism instead of pessimism. It remains unclear how ambiguity

affects monopoly pricing for intermediate cases of optimism and pessimism. Is it that an

increase in optimism always yields a higher monopoly price? A model accommodating

different attitudes towards ambiguity is the α-MEU model by Ghirardato et al. [2004].

Example 5.4 (Monopoly under α-MEU). A monopolist making use of the α-MEU heuris-

tics maximizes the objective

max
p≥0

{
α min
s∈[s,s]

Es[Π] + (1− α) max
s∈[s,s]

Es[Π]

}
(5.3)

where

Es[Π] = (p− c)(sD1(p) + (1− s)D2(p))
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denotes the expected profit given the belief (s, 1 − s). Following a reasoning similar to

the one developed in Example 5.3, I identify the monopolist’s worst- and best-case priors

before deriving optimal prices. Since the worst-case priors are the same as in the MMEU

case, see Corollary 5.2, I proceed by characterizing the best-case priors.

Corollary 5.4. The monopolist’s best-case priors

sbest := arg max
s∈[s,s]

Es[Π]

are given by

sbest =



s for p < c

[s, s] for p = c

s for c < p < aH
b

[s, s] for p ≥ aH
b
.

Proof. The proof is contained in the last section of this chapter.

By using Corollary 5.2 and Corollary 5.4, the α-MEU-objective can be rewritten in the

following way:

Ψα(p) =


αEs[Π] + (1− α)Es[Π] for 0 ≤ p < c

αEs[Π] + (1− α)Es[Π] for p ≥ c

(5.4)

Corollary 5.5. Objective (5.4) can be rewritten in the subsequent manner:

Ψα(p) =


Es1(α)[Π] for 0 ≤ p < c

Es2(α)[Π] for p ≥ c

where

s1(α) := αs+ (1− α)s and s2(α) := αs+ (1− α)s.
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Figure 5.3: Objectives for α = 0, α = 1
2 , and α = 1

Moreover, we can interpret si(α) as a distorted probability

0 ≤ si(α) ≤ 1.

Proof. The proof is contained in the last section of this chapter.

The following corollary characterizes the solution of the monopolist’s optimization prob-

lem under α-MEU.

Corollary 5.6. The following prices are possible solutions of the monopolist’s optimiza-

tion problem under α-MEU preferences:

1. p∗α = s2(α)aH+(1−s2(α))aL+bc
2b

2. p∗∗α = aH+bc
2b

3. p∗∗∗α ∈ [p1,∞]

Which of these candidates is the global maximizer depends on the Conditions C1 to C7

and the threshold value ŝ defined in the risk case. Note that it is vital to replace the

probability s with s2(α) in Conditions C2 to C6. The price p∗α is the only solution of the

optimization problem if one of the Conditions C1, C2, or C3 is satisfied. The price p∗∗α
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is the only solution of the optimization problem if Requirement C4 or Requirement C5

holds. Both p∗α and p∗∗α are the solution of the optimization problem if Condition C6 is

met. Every p∗∗∗α ∈ [p1,∞] is a solution of the optimization problem if Condition C7 holds.

Proof. The proof is contained in the last section of this chapter.

Now, we can answer the initial question of this paragraph. How does the monopoly price

change if the monopolist is more optimistic? Taking the derivative of p∗α with respect to

α yields

∂p∗α
∂α

=
(s− s)(aH − aL)

2b
< 0.

Hence, a higher degree of optimism yields a higher monopoly price in cases where the

interior solution p∗α is optimal. The monopoly price is independent of α in cases where

the corner solutions p∗∗α and p∗∗∗α are optimal. Moreover, the α-MEU approach contains

the the MMEU-example as a special case for α = 1.

The problem of the α-MEU model is that it still lacks a sound axiomatic foundation. As

a consequence, agents’ choices are based on a heuristic approach. This complicates the

empirical validation of the model as well. If an axiomatic foundation is desirable or nec-

essary, the modeler needs to discard the α-MEU model. Another argument against the

α-MEU and MMEU model is that both frameworks cannot accommodate how strongly

decision-makers are exposed to ambiguity. Is it really realistic to assume that the magni-

tude of ambiguity has no influence on the monopolist’s decisions? Imagine, for instance,

that the monopolist can rely on a data set on market demand, which has some predictive

power. However, due to personal experience, the monopolist knows that she cannot fully

trust this data set. The α-MEU approach would prescribe that the monopolist ignores

the data set. Instead, she would look at a convex combination of the worst and best pos-

sible outcome and make her decision according to this decision rule. Prominent models

of decision making under uncertainty accommodating the magnitude of ambiguity are

the Choquet-expected utility model, the variational model of preferences, and the KMM
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model.

Among these models, the Choquet-expected utility model provides the most striking

difference from a structural point of view, since it is the only decision-theoretic model

dismissing the assumption of additive probabilities. The variational and the KMM model

retain additivity9 and rely therefore on a set of priors. Hence, the special appeal of the

CEU-model results from the fact that it can model beliefs with a single structural com-

ponent, the underlying capacity. One of the main advantages of the Choquet model lies

in its tremendous flexibility in modeling beliefs. An interesting class of capacities are

neo-additive capacities, since they allow for the separation of confidence, or the degree of

ambiguity, and a decision-maker’s attitude towards ambiguity. In addition, neo-additive

capacities incorporate the α-MEU heuristics and the MMEU model as special cases.

Example 5.5 (Monopoly under Neo-Additive Capacities). In this example, a more for-

mal approach is required to derive the monopolist’s objective. To begin with, assume

that there is a state space Ω consisting of two elements ω1 and ω2 with the following

interpretations: The event {ω1} occurs when the monopolist faces the high consumer

scenario aH . Similarly, the event {ω2} occurs in the low consumer scenario aL. Moreover,

the monopolist’s beliefs are represented by a finite set of priors P ⊂ ∆(Ω) where ∆(Ω)

denotes the simplex

∆(Ω) :=
{

(s1, s2) : s1 + s2 = 1, s1 ≥ 0, s2 ≥ 0
}
.

Since the state space consists of two elements only, we can represent every prior in

(s1, s2) ∈ ∆(Ω) by its first component s1 ∈ [0, 1], which is the probability of the high

demand scenario. Using this simplified notation, we can describe the prior set P by

P =
{
s1, ..., sn : si ∈ [0, 1], si 6= sj for i 6= j

}
.

9To be more precise: the KMM model relies on a set of second-stage priors.
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Without loss of generality, I assume that the probabilities in P are ordered in the following

way:

0 ≤ s := s1 < s2 < ... < sn =: s ≤ 1

If the monopolist knew the true underlying probability s, she could proceed by maximizing

her expected profit with respect to s. In this case, the solution would correspond to the

risk case treated in Example 5.1. In this example, s is unknown. In fact, the monopolist

can derive for every fixed price p ≥ 0 and every prior si ∈ P an expected profit of the

form

Esi [Π](p) := (p− c)
(
siD1(p) + (1− si)D2(p)

)
.

Henceforth, X(p) denotes the collection of these expected profits. Formally,

X(p) :=
{
Esi [Π](p) : si ∈ P

}
.

In the following, I assume that there is a second-stage belief ν defined on the set of first-

stage priors P , which reflects the monopolist’s uncertainty with respect to the beliefs in

the prior set P . The value ν(s) denotes the monopolist’s belief, or subjective probability,

that (s, 1− s) is the true distribution of possible demand realizations in the future. The

belief ν is assumed to be a neo-additive capacity. The following definition of a neo-additive

capacity is adopted from Eichberger et al. [2009], page 359:

Definition 5.1. Let q = (q1, ..., qn) be a probability measure on (P ,Σ) where Σ denotes

a σ-algebra of events on P . Then, for real numbers α and δ we can define a neo-additive

capacity ν by ν(∅) = 0, ν(Φ) = 1, ν(A) = δα + (1− δ)q(A) where A ∈ Σ is a nonempty

and strict subset of P .

The monopolist is assumed to be a Choquet-expected utility maximizer, see Schmeidler

[1989] for an axiomatization of Choquet expected utilities. The Choquet model pre-

sumes that a decision-maker maximizes a Choquet integral with respect to a capacity.
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Chateauneuf et al. [2007] demonstrate for the class of neo-additive beliefs that the re-

spective Choquet integral can be expressed in the following way:10

∫
P
fdν = (1− δ)Eq[f ] + δ

(
αmax{x : f−1(x) /∈ N}+ (1− α) min{x : f−1(x) /∈ N}

)
(5.5)

In this context, f : P → R denotes a measurable function with finite range. N = {A ∈

Σ : ν(A) = 0} is the collection of null-events of ν, Eq[f ] is the expectation of f with

respect to the probability distribution q, max{x : f−1(x) /∈ N} denotes the best case of

f given x is not the realization of a null-event and min{x : f−1(x) /∈ N} denotes the

worst-case of f given x is not the realization of a null-event.

In this example, f depends on prices and assigns to each prior si ∈ P an expected profit

Esi [Π](p). Formally, we consider for each fixed p a mapping

f(si|p) := Esi [Π](p). (5.6)

This definition of f corresponds to the intuition that the monopolist maximizes a gener-

alized average of expected profit functions. The difference to a standard risk approach is

that this average is taken with respect to a distorted probability ν. Using the definition

of f(·|p), we can derive the monopolist’s objective. It is

U(p) :=

∫
P
f(·|p)dν = (1− δ)

n∑
i=1

qiEsi [Π](p)

+ δ

[
αmax
si∈P

Esi [Π](p) + (1− α) min
si∈P

Esi [Π](p)

] (5.7)

The expectation
n∑
i=1

qiEsi [Π](p) can be rewritten in the following way:

10See Lemma 3.1 in Chateauneuf et al. [2007], page 541.
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n∑
i=1

qiEsi [Π](p) =
n∑
i=1

(p− c)qi(siD1(p) + (1− si)D2(p))

= (p− c)
n∑
i=1

(qisiD1(p) + qi(1− si)D2(p))

= (p− c)(s̃D1(p) + (1− s̃)D2(p))

= Es̃[Π](p)

where

s̃ =
n∑
i=1

qisi.

Hence, we obtain the following representation of the objective:

U(p) = (1− δ)Es̃[Π] + δ

(
αmin

s∈P
Es[Π] + (1− α) max

s∈P
Es[Π]

)
(5.8)

The following corollary gives the solution of the monopolist’s problem under neo-additive

capacities.

Corollary 5.7. The following prices are possible solutions of the monopolist’s optimiza-

tion problem under neo-additive capacities:

1. p∗α,δ = s2(α,δ)aH+(1−s2(α,δ))aL+bc
2b

2. p∗∗α,δ = aH+bc
2b

3. p∗∗∗α,δ ∈ [p1,∞]

The parameter s2(α, δ) is defined as

s2(α, δ) = (1− δ)s̃+ δ(αs+ (1− α)s)

= (1− δ)
n∑
i=1

qisi + δ(αs1 + (1− α)sn)
(5.9)
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and can be interpreted as a distorted probability. Which of these price candidates is the

global maximizer depends on the Conditions C1 to C7 and the threshold value ŝ defined in

the risk case. Note that it is vital to replace the probability s with s2(α, δ) in Conditions

C2 to C6. The price p∗α,δ is the only solution of the optimization problem if one of the

Conditions C1, C2, or C3 is satisfied. The price p∗∗α,δ is the only solution of the optimization

problem if Condition C4 or Condition C5 holds. Both p∗α,δ and p∗∗α,δ are the solution of the

optimization problem if Requirement C6 is met. Every p∗∗∗α,δ ∈ [p1,∞] is a solution of the

optimization problem if C7 holds.

Proof. The proof is contained in the last section of this chapter.

Corollary 5.8. In cases where the interior solution p∗α,δ is optimal, the following c.p.

comparative static results hold:

1. A higher degree of optimism yields a higher monopoly price.

2. There exists a threshold value α̂, which is given by α̂ = 1− s̃, such that an increase

in δ yields a higher monopoly price for α < α̂ and a lower monopoly price for α > α̂.

In the special case α = α̂, the monopoly price is independent of δ.

Proof. The proof is contained in the last section of this chapter.

Figure 5.4: Objectives for δ = 0, δ = 0.5, and δ = 1 in Case of Extreme Optimism
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Figure 5.5: Objectives for δ = 0, δ = 0.5, and δ = 1 in Case of Extreme Pessimism

Figure 5.6: Objectives for δ = 0, δ = 0.5, and δ = 1 in the Intermediate Case α = α̂

The results of Corollary 5.8 can be interpreted in the following way: The fact that a

higher degree of optimism yields a higher monopoly price is in line with the results from

the MMEU and α-MEU example. As the monpolist expects a lower demand, she adjusts

prices downwards. The special feature of the neo-additive model is the parameter δ,

which captures how strongly the monopolist incorporates the expected profit Es[Π] into

the objective function. When δ increases, the monopolist gives a lower decision weight

to the expectation Es[Π]. Whether the monopolist adjusts prices up- or downwards

depends on the optimism parameter α. If the monopolist is extremely optimistic, then

a higher value of δ increases the monopoly price. The converse statement holds if the

monopolist is extremely pessimistic. For an intermediate value α = α̂ the monopoly price

is independent of δ and remains unchanged as δ increases.
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An alternative to the Choquet model is the variational model of preference developed by

Maccheroni et al. [2006], which incorporates the so-called multiplier preferences developed

by Hansen and Sargent [2001], and the MMEU-model as special cases. An important

distinguishing feature of the variational model is that it allows preferences to change

whenever there are either changes in the variability of outcomes, or outcomes are shifted

up- or downwards, see Machina and Siniscalchi [2014], page 32. The variational model

applies to situations where the commitment to a particular probabilistic scenario incurs

a cost to the decision-maker. In the multiplier model, this cost takes a specific form,

which can be interpreted as the cost of deviating from an underlying reference probability

function.

Example 5.6 (Monopoly under Multiplier Preferences). Given multiplier preferences,

the monopolist’s optimization problem is given by

max
p≥0

min
s∈[s,s]

{
Es[Π] + γR(s, s∗)

}

where R(s, s∗) denotes the relative entropy, or Kullback-Leibler divergence, of s∗ from s;

γ ≥ 0 is a parameter and P = [s, s] is a compact and convex set of priors with 0 ≤ s <

s ≤ 1. In cases where γ equals zero, we obtain the MMEU objective. Consequently, the

solution for this special case is already known. For γ > 0, the monopolist gives positive

weight to the relative entropy. The relative entropy is always non-negative due to Gibb’s

inequality, see Falk [1970] for a proof. Moreover, we can infer that R(s, s∗) = 0 if the

distributions of s and s∗ coincide almost everywhere. The Kullback-Leibler divergence is

a distance measure for probability distributions. Hence, if γ is positive, the monopolist

faces two countervailing effects as he determines his worst-case prior. One of these effects

arises from minimizing the expected profit Es[Π]. As a consequence of Example 5.3, the

worst-case prior of Es[Π] is given by the upper or lower boundary of the interval [s, s],

depending on whether prices are strictly smaller or larger than marginal costs. The second

effect arises from minimizing the relative entropy R(s, s∗). Since R attains the minimum

for s = s∗, the monopolist faces a cost for not selecting a prior close to s∗. Throughout
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this example, I assume that s∗ ∈ [s, s]. This restriction makes sense for the following

reason: The monopolist considers s∗ as a reference probability; if γ is strictly larger than

zero, the monopolist takes into account the distance between the worst-case prior s and

s∗, large distances from s∗ are ”punished” by a larger relative entropy. If that is the case,

why should the monopolist discard s∗ as a possible probabilistic scenario? An exclusion

of s∗ could therefore be considered as logically inconsistent.

In order to solve the optimization problem, I proceed by solving the prior-minimization-

problem first.

Proposition 5.2. The minimizing prior

smin := arg min
s∈[s,s]

{
Es[Π] + γR(s, s∗)

}
in the monopoly model with multiplier preferences is given by

smin =



sworst for γ = 0

s for γ > 0 ∧ p ∈ A1 = [0,min{c, p̂1}]

s∗f1
s∗f1+(1−s∗)f2

for γ > 0 ∧ p ∈ A2 =
[
max{0, p̂1},min{aLb , p̂2}

]
s for γ > 0 ∧ p ∈ A3 =

[
max{c, p̂2}, aLb

]
or 0 < γ ≤ γ̂ ∧ p ∈ A4 =

[
max{aLb , p̂3},min{p̂4,

aH
b }
]

s∗f3
s∗f3+(1−s∗)f4

for 0 < γ ≤ γ̂ ∧ p ∈ A5 =
[
aL
b ,min{p̂3,

aH
b }
]

or 0 < γ ≤ γ̂ ∧ p ∈ A6 =
[
max{aLb , p̂4}, aHb

]
or γ > γ̂ ∧ p ∈ A7 =

[
aL
b ,

aH
b

]
s∗ for 0 < γ ∧ p ∈ A8 = [aHb ,∞)

or 0 < γ ∧ p ∈ A9 = {c}

where sworst denotes the worst-case prior derived in Corollary 5.2 and

(1) f1 = e
aHc+aLp

γ , f2 = e
aLc+aHp

γ , f3 = e
aHc+bp

2

γ , f4 = e
(aH+bc)p

γ
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(2) h1 = s(1−s∗)
s∗(1−s) , h2 = s(1−s∗)

s∗(1−s)

(3) p̂1 = c− log(h1)γ
aH−aL

(5) p̂2 = c− log(h2)γ
aH−aL

(6) p̂3 = aH+bc
2b
−
√

(aH+bc)2

4b2
− aHc+ γ log(h2)

(7) p̂4 = aH+bc
2b

+
√

(aH+bc)2

4b2
− aHc+ γ log(h2)

(8) γ̂ =
[
aHc− (aH+bc)2

4b2

]

Proof. The proof is contained in the last section of this chapter.

By making use of Proposition 5.2, we obtain the reduced optimization problem

max
p≥0

{
Esmin [Π] + γR(smin, s

∗)
}
.

Corollary 5.9. The monopoly problem with multiplier preferences has a solution.

Proof. The existence of a solution is guaranteed for γ = 0, since the objective reduces

to the objective of the MMEU case. Hence, we continue by considering cases where

γ > 0. From Proposition 5.2, we can infer that the minimum prior is at least a piecewise

continuous function in p. To be more precise, we observe that the minimum prior smin

is continuous on each of the intervals Ai for i = 1, ..., 9. Since sums and products of

continuous functions are continuous, we can deduce that the restriction of the objective

to Ai is a continuous function. All intervals Ai are compact, except A8. By using

Weierstrass’ theorem, we obtain that there is a nonempty set of maximizers Si 6= ∅ for

each domain restriction of the objective, except for the interval A8. On the interval

A8 = [aH
b
,∞), the objective is zero. Hence, all p ≥ aH

b
are maximizers on A8. As a

consequence, S8 = A8. Since there is only a finite number of sets Si, and since each set Si

is nonempty, we can conclude that the set of global maximizers is nonempty as well.
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The monopoly problem with multiplier preferences has in general no closed-form solution.

This is because the objective’s first order condition can only be solved numerically.

Corollary 5.10. The minimum prior smin satisfies the subsequent limit property:

lim
γ→∞

smin(γ) = s∗.

Henceforth, let p(γ) denote the solution of the monopoly problem under multiplier pref-

erence for a given parameter γ. Then,

lim
γ→∞

p(γ) = prisk(s∗)

where prisk(s∗) denotes the solution in the risk case with the prior s = s∗. Moreover, the

following comparative static result holds: If p(γ1) and p(γ1) are two interior solutions,

which satisfy the requirements

1. c ≤ p(γi) ≤ aL
b

2. 0 < γ̂ < γ1 < γ2 <∞,

we can conclude that p(γ1) ≤ p(γ2). Note that the parameter γ̂ denotes the threshold

value defined in Corollary 5.2.

Proof. The proof is contained in the last section of this chapter.

Figure 5.7 displays the monopolist’s objective for different values of γ. The monopoly

model with multiplier preferences incorporates two extreme cases. For γ = 0, we obtain

the MMEU model with a monopolist exhibiting extreme pessimism and a low monopoly

price. For γ →∞, the monopolist increasingly assumes that the reference prior s∗ is the

true underlying distribution. Hence, he or she, adjusts prices upwards. Consequently,

the parameter γ can be considered as a measure for the monopolist’s attitude towards
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Figure 5.7: Objectives for γ = 3, γ = 20, γ = 100, and γ = 1000

ambiguity. The difference to the α-MEU and Choquet model with neo-additive capacities

is that the monopolist compares the worst case with a distance measure for probability

distributions, and not with the best-case distribution. A problem of the multiplier ap-

proach is that, contrary to the Choquet model with neo-additive capacities, there is no

clear separation between the monopolist’s attitude towards ambiguity and his confidence

into the reference probability s∗. In fact, as γ increases, the monopolist’s confidence into

the reference probability s∗ increases. At the same time, the monopolist exhibits a lower

degree of pessimism, since the relative weight of the worst-case scenario decreases. An-

other drawback of the multiplier model is that it does not generate a tractable closed-form

solution for the monopoly price.

A prominent model of decision making under uncertainty is the KMM or Smooth Ambi-

guity Model. From a practical point of view, the Smooth model has the advantage that

it allows for the application of differential calculus, and is therefore frequently considered

as a framework which generates tractable results.11 The KMM model allows for a broad

spectrum of different attitudes towards ambiguity which are condensed in a so-called

distortion or transformation function. One of the most important features of the KMM

11See Machina and Siniscalchi [2014], page 27.
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model lies in the fact that it differentiates between first- and second-order beliefs, and

that it precludes, in general, the reduction of compound lotteries.

Example 5.7 (Monopoly with KMM preferences). Assume that there is a set of first-

stage priors P1, which consists of two elements s and s with 0 ≤ s < s ≤ 1. Hence,

there are two probabilistic scenarios, an optimistic one where the monopolist assumes

that the probability for the high demand scenario is given by s, and a pessimistic one

where probability for the high demand scenario is given by s. Moreover, suppose the

monopolist has a second-stage prior (q, 1 − q). The parameter q is the monopolist’s

subjective probability that the pessimistic scenario s is the true probabilistic scenario.

Similarly, 1−q denotes the monopolist’s subjective probability that the optimistic scenario

s reflects the true underlying distribution. In general, the KMM model allows for more

than one second-stage distribution. For the sake of simplicity, I restrict the analysis to

cases with a single second-stage probability. Under these assumptions, we obtain the

following objective for the monopolist:

ΠKMM
Φ = Eq[Φ(Es[Π])] = qΦ(Es[Π]) + (1− q)Φ(Es[Π]) (5.10)

A distinguishing feature of the KMM-model is the distortion function Φ. If Φ equals

the identity, the decision-maker is termed ”ambiguity-neutral”, compare Klibanoff et al.

[2005] page 1862 for a definition. Similarly, an agent is called ”ambiguity-averse” in cases

where Φ is concave and ”ambiguity-loving” in cases where Φ is convex. An ambiguity-

neutral decision-maker is able to reduce compound lotteries to a simple lottery. This

special case can be illustrated by means of the monopolist’s objective. We obtain

ΠKMM
Id = qEs[Π] + (1− q)Es[Π] = Eqs+(1−q)s[Π].

As a consequence, the solution of the monopolist’s optimization problem can be derived

from Proposition 5.1 by replacing s with the prior qs + (1 − q)s. For the general case,

there is no closed-form solution for the monopoly price. Nevertheless, we can compare the
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monopoly price under ”neutrality” with situations where the monopolist is ambiguity-

averse or ambiguity-loving.

Proposition 5.3. Consider two twice continuously differentiable transformation func-

tions Φ1 and Φ2 where Φ1 is strictly concave and Φ2 is strictly convex. Moreover, I

denote with pΦi the respective monopoly prices under KMM-preferences. Then,

pΦ1 < pId < pΦ2

if both prices are interior solutions with Di(pΦj) > 0 for all i, j = 1, 2. In all other cases,

we can infer that pΦ1 = pΦ2 .

Proof. The proof is contained in the last section of this chapter.

An important class of distortion functions is the so-called class of transformations dis-

playing constant ambiguity aversion, see Klibanoff et al. [2005], which is defined by

Φa(x) =


1−e−ax
1−e−a for a 6= 0

x for a 6= 0.

(5.11)

Obviously, this definition of constant ambiguity aversion is adopted from the constant

absolute risk aversion utility function, see Pratt [1964]. The parameter a captures the

monopolist’s attitude towards ambiguity. If a is negative, the monopolist is called am-

biguity loving, if a = 0, the monopolist is called ambiguity neutral, and if a > 0, the

monopolist is called ambiguity-averse. Surprisingly, it is not true that a higher c.p.

degree of absolute ambiguity aversion translates into a lower monopoly price. This is

demonstrated by means of Table 5.1.

The reason for this behavior lies in the curvature of the constant absolute ambiguity

transformation. It is

∂2Φa(x)

∂x2
= − a2e−ax

1− e−a
.
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Parameter a Optimal Price
0.1 9.06
1.1 5.99
2.1 5.75
3.1 4.72
4.1 4.96
5.1 4.89
6.1 5.69

Table 5.1: Monopoly Price for Different Degrees of Absolute Ambiguity Aversion
Rounded to Two Decimal Places

Taking the derivative of this function with respect to a yields

∂3Φa(x)

∂x2∂a
=
aea−ax (a(−x) + ea(ax− 2) + a+ 2)

(ea − 1)2 .

We can readily see that the sign of this function is dependent on x. In fact, one can

show for positive values of a that there is a threshold value x̂ such that ∂3Φa(x)
∂x2∂a

is positive

for x > x̂, zero for x = x̂, and negative for x < x̂. This implies that an increase in the

parameter a can reduce or increase the concavity of Φa depending on the value of x. Note

that this observation is a direct consequence of a well-known property of the constant

absolute risk aversion utility, since a decision-maker’s risk attitude is dependent on the

initial wealth level. Naturally, the same holds for the KMM-model under ambiguity where

the initial ”wealth levels” are given by the expectations Es[Π] and Es[Π].

5.4 Conclusion

This chapter provides a comparison of the most prominent models of decision making

under uncertainty by means of a simple baseline model, the monopoly market with lin-

ear demand. The monopolist is assumed to be risk-neutral. Ambiguity is introduced in

the form of demand uncertainty. In particular, I consider a scenario with two possible

demand realizations. Both demand realizations have the same slope but different inter-

cepts. As it turns out, there is a closed form solution for the monopoly price for the MEU
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Figure 5.8: Objective for Different Values of the Absolute Ambiguity Aversion Pa-
rameter a.

model, the α-MEU model and the Choquet model with neo-additive capacities. There

is no-closed-form solution for the multiplier model and the Smooth Ambiguity Model.

Depending on the underlying parameter constellations, three types of solutions can oc-

cur. The first one is that there is a unique monopoly price where demand is positive in

both states of the world. The second class of solutions occurs when the monopoly price

exceeds the threshold value aL
b

but remains smaller than the threshold value aH
b

. In this

case, demand for the low consumer case becomes zero and remains positive for the high

number of consumers case. Again, there is a unique monopoly price. The third class

of solutions emerges if the monopoly price exceeds the threshold value aH
b

. In this case,

demand is zero in both states of the world. Hence, all prices p ≥ aH
b

are optimal.

The monopoly price in the MEU preference specification is smaller than the monopoly

price under certainty. Hence, extreme pessimism yields a lower monopoly price. A com-

mon feature between the α-MEU model and the Choquet model with neo-additive ca-

pacities is that a higher degree of optimism yields a higher monopoly price. Additionally,

the Choquet model with neo-additive capacities allows for a ceteris paribus analysis with

respect to the confidence parameter δ. If the monopolist is sufficiently pessimistic, we can

conclude that a higher degree of confidence (lower value of δ) yields a higher monopoly
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price. On the other hand, if the monopolist is sufficiently optimistic, an increase in con-

fidence translates into a lower monopoly price. For an intermediate pessimism value α̂,

the monopoly price remains unchanged as δ decreases. In cases where preferences are

modeled within the multiplier framework, we observe that a higher value of γ yields a

higher monopoly price. In contrast to the Choquet model with neo-additive capacities,

the multiplier model cannot clearly differentiate between optimism and confidence. In

particular, an increase in γ can be interpreted as an increase in confidence and optimism

at the same time. We obtain that a higher value of γ yields an increasing monopoly

price. This is in line with the results of the α-MEU model and the Choquet model with

neo-additive capacities. Under the KMM model, we obtain that the monopoly price

under ambiguity aversion is lower than the monopoly price under neutrality. Similarly,

the monopoly price exceeds the monopoly price under neutrality in cases where the mo-

nopolist is ambiguity-loving. A widely-used class of distortion functions for the KMM

model is the class of transformations displaying constant ambiguity aversion. Contrary

to the optimism parameter α of the α-MEU and the Choquet model with neo-additive

capacities, it is not necessarily true that a higher absolute ambiguity aversion parameter

a entails a lower monopoly price under KMM preferences.

5.5 Mathematical Proofs

Proof of Corollary 5.1. The optimization problem is solved in two steps:

(1) Step 1 : Identify the local maxima of Π(p) for 0 ≤ p ≤ p0 and p ≥ p0.

(2) Step 2 : Determine the global maximum.

By solving the first order condition Π′(p) = 0 of the unconstrained profit function Π(p) =

(p− c)(a− bp) for p, we obtain the well-known monopoly price

pM =
a+ bc

2b
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The profit function evaluated at pM yields

Π
(
pM
)

=
(a− bc)2

4
.

As Π is strictly concave Π′′(p) = −2b < 0 and non-negative at the point pM , we can

infer that pM is the unique solution of the firm’s optimization problem if pM ∈ (0, p0).

Since a and b are assumed to be strictly positive, we can deduce that pM > 0. In cases

where pM ≥ p0, we can conclude that the unconstrained profit function is monotonically

increasing in p. This is because (p − c)(a − bp) is a parabola opening downwards with

a unique global maximum at pM . Since pM > p0, the profit function Π(p) is strictly

increasing as long as p ≤ p0, otherwise pM would not be the global maximum of the

unconstrained profit function. Therefore, the local maximum of Π(p) on [0, p0] is attained

for p = p0. The profit function equals zero for p > p0. Thus, Π(p) = 0 for p ≥ p0.

Moreover, due to the fact that Π is strictly increasing for p < p0, we have Π(p) < 0 for

p < p0. To sum up, the monopolist can secure a profit of zero for all prices p ≥ p∗,

which are therefore optimal. Finally, the condition pM < p0 is equivalent to the condition

a > bc.

Proof of Proposition 5.1. The optimization problem is solved in two steps: First, the

local maximizers of the objective are determined for the subsequent cases:

(1) 0 ≤ p ≤ p0

(2) p0 ≤ p ≤ p1

(3) p ≥ p1

Secondly, the overall global optimum is identified by comparing all local optima.
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Case 1: 0 ≤ p ≤ p0

Solving the first order condition for p, we obtain the price

p∗ =
saH + (1− s)aL + bc

2b
.

The profit function evaluated at p = p∗ yields

(aL s− aH s+ b c− aL)2

4 b

The objective function is strictly concave with Es[Π]′′ = −2b < 0. Therefore, p∗ is a local

maximizer if 0 ≤ p∗ ≤ p0. The case p∗ < 0 is obsolete, since aL > 0, aH > 0, b > 0, and

c > 0 by assumption. It follows that p∗ ≤ p0 if and only if

2aL − saH − (1− s)aL ≥ bc. (5.12)

If p∗ > p0, we can deduce that the objective is strictly increasing for 0 ≤ p ≤ p0. Thus,

the maximum is attained for p∗ = p0. The results of this case can be summarized as

follows:

arg max
0≤p≤p0

Es[Π](p) =


p∗ for 2aL − saH − (1− s)aL ≥ bc

p0 for 2aL − saH − (1− s)aL < bc

Case 2: p0 ≤ p ≤ p1

In the second case, p0 ≤ p ≤ p1, we can infer that D2(p) = 0. The objective reduces to

s(p− c)D1(p).

Solving the first order condition for p yields

p∗∗ =
aH + bc

2b
.
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Since the reduced objective function is strictly concave with Es[Π]′′ = −2sb < 0, we can

deduce that p∗∗ is the global maximizer of s(p−c)D1(p). In order to fully solve the second

case, we must distinguish between the following subcases:

(2a) p∗∗ < p0

(2b) p∗∗ ∈ [p0, p1]

(2c) p∗∗ > p1

Observe that in Subcase (a), the global maximizer of s(p − c)D1(p) is smaller than p0.

The case defining condition p∗∗ < p0 is equivalent to the condition bc < 2aL − aH . Since

s(p−c)D1(p) is a parabola opening downwards, the local maximum is attained at p = p0.

In Case (b), the interior solution p = p∗∗ is the local maximum. The case defining condi-

tions p∗∗ ≥ p0 and p∗∗ ≤ p1 are equivalent to aH ≥ bc and aH ≥ 2aL − bc. Consequently,

aH ≥ max{bc, aL − bc}.

In Subcase (c), the global maximizer of s(p− c)D1(p) is larger than p1. The case defining

condition p∗∗ > p1 is equivalent to the condition aH < bc. Again, since s(p− c)D1(p) is a

parabola opening downward, we can infer that the maximum is attained at p = p1. The

results for Case 2 can be summarized in the following way:

arg max
p0≤p≤p1

Es[Π](p) =


p0 for bc < 2aL − aH

p∗∗ for aH ≥ max{bc, 2aL − bc}

p1 for aH < bc

Case 3: p ≥ p1

In the third case p ≥ p1, the objective is constantly zero. Hence, all points p ≥ p1 are

optimal.

arg max
p≥p1

Es[Π](p) = [p1,∞)
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Determine the Overall Solution

The second step of the analysis consists in comparing the local optima derived for the

different cases discussed above. The subsequent lemma reduces substantially the number

of cases to be considered.

Lemma 5.2. In the monopoly model under risk the subsequent statements hold:

(I) (2a) implies inequality (5.12).

(II) (2c) implies the negation of inequality (5.12).

Proof of Lemma 5.2. The lemma is verified by proving statements (I) and (III) sepa-

rately.

Statement (I):

The case defining condition of Subcase (2a) is given by 2aL − aH > bc. This implies

2aL − saH − (1− s)aL ≥ bc, since saH + (1− s)aL < aH .

Statement (II):

The case defining condition of Subcase (2c) is given by aH < bc. This implies aL < bc,

since aL < aH by assumption. Hence, 2aL− saH − (1− s)aL < 2aL− aL = aL < bc which

is the negation of (1).

Taking into account the results of Lemma 5.2, we can derive the solution of the monop-

olist’s optimization problem for the Subcases (a) and (c).
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Subcase (2a):

In Subcase (2a), the optimum is given by p∗. The local maximizer on the interval [0, p0] is

p∗. Similarly, we obtain p0 as the local maximizer on the interval [p0, p1]. Besides, the set

of local maximizers on the interval [p1,∞) is given by the complete interval [p1,∞). Since

Es[Π](p) is a continuous function, and since p∗ is the global maximum of the unconstrained

profit function

(p− c)(s(aH − bp) + (1− s)(aL − bp)),

we can conclude that

Es[Π](p∗) ≥ Es[Π](p0).

Furthermore, as the profit function evaluated at p∗ is non-negative, we can deduce that

Es[Π](p∗) ≥ Es[Π](p0) ≥ 0 = max
p≥p1

Es[Π](p).

Hence, p∗ is the global maximizer.

Subcase (2c):

In Subcase (2c), the solution is given by the interval [p1,∞). The local maximum on

[0, p0] is given by p0, on [p0, p1] by p1 and on [p1,∞) by the complete interval [p1,∞).

The objective is strictly increasing on [0, p1], since it is strictly increasing on each of the

sub-intervals [0, p0] and [p0, p1]. Furthermore, by continuity

Es[Π](p1) = 0 = max
p≥p1

Es[Π](p)

for all p > p1. Hence, the solution of the monopoly problem is given by [p1,∞).
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Subcase (2b):

Remember, that the condition aH ≥ max{bc, aL − bc} holds throughout the case. There

are three candidates for the global optimum, p∗, p0, and p∗∗.12 Contrary to the Subcases

(2a) and (2c), we cannot prove or disprove inequality (5.12). Consequently, we must

differentiate between two cases. Under the assumption that (5.12) holds, we can infer

that p∗ ∈ [0, p0]. Hence, p0 can only be a solution of the monopolist’s optimization

problem if p∗ = p0. Thus, we can restrict the analysis to the following instances:

• p∗ is the unique global maximizer

• p∗∗ is the unique global maximizer

• Both p∗ and p∗∗ are global maximizers

The price p∗ is the only solution of the monopolist’s problem if

Es[Π](p∗) > Es[Π](p∗∗). (5.13)

Both p∗ and p∗∗ are global maximizers if

Es[Π](p∗) = Es[Π](p∗∗). (5.14)

The price p∗∗ is a unique solution if

Es[Π](p∗) < Es[Π](p∗∗). (5.15)

Solving the quadratic equation (5.14) for s, we obtain the subsequent pair of solutions:

s1 = (b c−aL)2

(aL−aH)2
and s2 = 1. Thus, we derived the threshold value ŝ := s1. More specifically,

we can conclude that inequality (5.13) holds for s < s1 < 1. Observe that s < s1 < 1 im-

plies the inequality s < bc−aL
aL−aH

, which is equivalent to inequality (5.12). This demonstrates

12The interval [p1,∞) can be excluded, since Es[Π](p1) and Es[Π](p0) are both non-negative.
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that p∗ is the global maximizer. Moreover, inequality (5.15) holds for s1 < s < 1 implying

that p∗∗ is the global maximizer. Besides, we can infer that Es[Π](p∗) = Es[Π](p∗∗) for

s ∈ {s1, 1}, in which case both p∗ and p∗∗ are global maximizers. If the threshold value s1

is larger than one, inequality (5.13) holds for all 0 ≤ s ≤ 1. Moreover, the only solution

of equation (5.14) is given by s = 1.

The case where the negation of inequality (5.12) holds can be analyzed in a similar fash-

ion. Clearly, p∗ can be ruled out as global maximizer, since p∗ 6∈ [0, p0]. Consequently,

there are only two candidates, p0 and p∗∗, for the global optimum. We can distinguish

the following cases:

• p0 is the unique global maximizer

• Both p∗∗ and p0 are global maximizers

• p∗∗ is the unique global maximizer

The first and the second case can be excluded. By Condition (2b), we can infer that

p∗∗ ∈ [p0, p1]. This implies that Es[Π] is strictly increasing on [p0, p
∗∗] Moreover, we

know that Es[Π] is strictly increasing on the interval [0, p0]. Due to the fact that Es[Π]

is continuous, we can conclude that Es[Π](p0) < Es[Π](p∗∗). Hence, p∗∗ is the only

maximizer when the negation of inequality (5.12) holds.

Proof of Corollary 5.2. Since D1(p) > D2(p) for all c < p < aH
b

, we can infer that the

monopolist’s profit in scenario aH is always larger than the profit in scenario aL for a

given price c < p < aH
b

. Formally,

Π1(p) = (p− c)D1(p) > Π2(p) = (p− c)D2(p)

for all c < p < aH
b

. Consequently, every prior that gives a smaller weight to the first

scenario induces smaller expected profits. This can be expressed formally in the following
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way. For every 1 ≥ s1 ≥ s2 ≥ 0, we have

(p− c)(s1D1 + (1− s1)D2) ≥ (p− c)(s2D1 + (1− s2)D2),

for all c ≤ p ≤ aH
b

. Thus, the minimizing prior is given by sworst = s. If p is strictly smaller

than c, profits are negative in both scenarios. Hence, Π1(p) < Π2(p) for all 0 ≤ p < c and

the prior inducing minimum expected profits is given by sworst = s. If p = c or p ≥ aH
b

,

the objective is zero. Therefore, all priors p ∈ [s, s] are minimizing priors. Taking these

results, we obtain

sworst :=



s for p < c

[s, s] for p = c

s for c < p < aH
b

[s, s] for p ≥ aH
b
.

Proof of Corollary 5.3. The reduced optimization problem (5.2) is structurally the same

problem as the optimization problem in the risk case. This is because a price smaller than

c induces negative profits for every s ∈ [0, 1]. Thus, a price p < c can never be a global

optimum, since the monopolist can secure zero profits for price p ≥ p1. Note furthermore

that

Ψ(p) = Es[Π] = 0

for p ≥ aH
b

. As a consequence, the global optimum remains unchanged if we replace the

objective Ψ(p) with Es[Π]. In formal terms,

max
p≥0

Ψ(p) = max
p≥c

Ψ(p) = max
p≥c

Es[Π] = max
p≥0

Es[Π]

The last equality holds because a price 0 ≤ p < c cannot be a global maximizer of Es[Π]

This is because the monopolist can secure a profit of zero. Thus, we obtain the solution
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under MMEU by replacing the prior s defined in Proposition 5.1 by the worst-case prior

s.

Proof of Corollary 5.4. The proof is similar to the proof of Corollary 5.2. Since D1(p) >

D2(p) for all c < p < aH
b

, we can conclude that the monopolist’s profit in scenario aH is

always larger than the profit in scenario aL for a given price c < p < aH
b

. Formally,

Π1(p) = (p− c)D1(p) > Π2(p) = (p− c)D2(p)

for all c < p < aH
b

. Consequently, every prior that gives a larger weight to the first

scenario induces higher expected profits. This can be expressed formally in the following

way. For every 1 ≥ s1 ≥ s2 ≥ 0, we have

(p− c)(s1D1 + (1− s1)D2) ≥ (p− c)(s2D1 + (1− s2)D2),

for all c ≤ p ≤ aH
b

. The maximizing prior is given by sbest = s. If p < c profits are

negative in both scenarios. Hence, Π1(p) < Π2(p) for all 0 ≤ p < c and the prior inducing

maximum expected profits is given by sbest = s. If p = c, or p ≥ aH
b

, the objective equals

zero. Therefore, all priors p ∈ [s, s] are maximizing priors. Taking these results, we obtain

sbest :=



s for p < c

[s, s] for p = c

s for c < p < aH
b

[s, s] for p ≥ aH
b
.
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Proof of Corollary 5.5. Assume, without loss of generality, that p ≥ c. In this case, the

objective is given by

Ψ(p) = αEs[Π] + (1− α)Es[Π]

= (p− c)α[sD1(p) + (1− s)D2(p)] + (1− α)(p− c)[sD1(p) + (1− s)D2(p)]

= (p− c)
[
α(sD1(p) + (1− s)D2(p)) + (1− α)(sD1(p) + (1− s)D2(p))

]
= (p− c)[(αs+ (1− α)s)D1(p) + (α(1− s) + (1− α)(1− s))D2(p)]

= (p− c)[s2(α)D1(p) + (1− s2(α))D2(p)]

where

s2(α) := αs+ (1− α)s.

The prior s2(α) is non-negative, since s ≥ 0, α ≥ 0, and s ≥ 0. Moreover,

s2(α) ≤ s ≤ 1.

A similar proof holds for 0 ≤ p < c with the difference that Ψ(p) equals

αEs[Π] + (1− α)Es[Π].

In this case, we can rewrite the objective by Ψ(p) = Es1(α)[Π] where

s1(α) := αs+ (1− α)s.

Using the same reasoning as in the case p ≥ c, we can conclude that 0 ≤ s1(α) ≤ 1.

Proof of Corollary 5.6. The simplified objective Es(α)[Π] is structurally equivalent to the

objective of the risk case with the prior s = s2(α). This is the case because the monopolist

can secure a profit of zero for prices p ≥ p1. A price p < c induces negative profits and is

therefore never optimal. Hence, we can rewrite the optimization problem in the following
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way:

max
p≥0

Ψ(p) = max
p≥c

Ψ(p) = max
p≥c

Es2(α)[Π] = max
p≥0

Es2(α)[Π]

The last equality holds since prices smaller than the marginal cost parameter cannot

be optimal for s2(α) ∈ [0, 1]. Consequently, we obtain the solution under α-MEU by

replacing the prior s defined in Proposition 5.1 by the prior s2(α).

Proof of Corollary 5.7. In a first step, I demonstrate that the monopolist’s objective is

equivalent to

Ψα,δ(p) =


Es1(α,δ)[Π] for 0 ≤ p < c

Es2(α,δ)[Π] for p ≥ c

where

s1(α, δ) = (1− δ)s̃+ s1(α)δ and s2(α, δ) = (1− δ)s̃+ s2(α)δ

and

s1(α) = αs+ (1− α)s and s2(α) = αs+ (1− α)s.

By making use of Corollary 5.5, we can rewrite the monopolist’s objective as

Ψα,δ(p) =


(1− δ)Es̃[Π] + δEs1(α)[Π] for 0 ≤ p < c

(1− δ)Es̃[Π] + δEs2(α)[Π] for p ≥ c.

The objective can be further simplified. It is

Ψα,δ(p) = (p− c)[((1− δ)s̃+ s1(α)δ)D1(p)

+ ((1− δ)(1− s̃) + δ(1− s1(α)))D2(p)].

for 0 ≤ p < c. Defining

s1(α, δ) = (1− δ)s̃+ s1(α)δ,
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we obtain

Ψα,δ(p) = (p− c)[s1(α, δ)D1(p) + (1− s1(α, δ))D2(p)]

= Es1(α,δ)[Π]

for 0 ≤ p < c. By a similar line of arguments, we can define

s2(α, δ) = (1− δ)s̃+ s2(α)δ

and obtain

Ψα,δ(p) = (p− c)[s2(α, δ) D1(p) + (1− s2(α, δ)) D2(p)]

= Es2(α,δ)[Π]

for p ≥ c. This demonstrates that

Ψα,δ(p) =


Es1(α,δ)[Π] for 0 ≤ p < c

Es2(α,δ)[Π] for p ≥ c.

The monopolist can secure a profit of zero by setting a price p ≥ p1. Consequently, a

price below marginal costs cannot be a global maximizer, since it would induce strictly

negative profits. Thus, the optimization problem can be rewritten in the following way:

max
p≥0

Ψα,δ(p) = max
p≥c

Ψα,δ(p) = max
p≥c

Es2(α,δ)[Π]

Since the expectation Es2(α,δ)[Π] is negative for prices smaller than marginal costs, it

follows that the global maximizer remains unchanged when the domain of the optimization

problem is increased to all prices p ≥ 0. Thus,

max
p≥0

Ψα,δ(p) = max
p≥c

Es2(α,δ)[Π] = max
p≥c

Es2(α,δ)[Π] = max
p≥0

Es2(α,δ)[Π].
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Since 0 ≤ s2(α, δ) ≤ 1, we can proceed with the analysis of the risk case by replacing the

prior s with s2(α, δ).

Proof of Corollary 5.8. The derivative of p∗α,δ with respect to α is given by

∂p∗α,δ
∂α

=
aL δ − aH δ

2 b
< 0.

The derivative of p∗α,δ with respect to δ is

∂p∗α,δ
∂δ

=
aL (s̃+ α− 1) + aH (−s̃− α + 1)

2 b

=
(aH − aL) (−s̃− α + 1)

2 b
.

Hence, the sign of the derivative depends on the sign of −s̃ − α + 1. Define α̂ := 1 − s̃.

Then,
∂p∗α,δ
∂δ

> 0 for α < α̂,
∂p∗α,δ
∂δ

= 0 for α = α̂, and
∂p∗α,δ
∂δ

< 0 for α > α̂.

Proof of Proposition 5.2. Note first that the objective reduces to the objective of the

MMEU case for γ = 0. Hence, smin = sworst for γ = 0. Let γ > 0 for the rest of the

analysis. By using the definition of the Kullback-Leibler divergence, we can rewrite the

objective in the following way:

Es[Π] + γR(s, s∗) = (p− c)(sD1(p) + (1− s)D2(p))

+ γ

{
s log

( s
s∗

)
+ (1− s) log

(
1− s
1− s∗

)} (5.16)

The objective function is continuous in s, since sums and products of continuous func-

tions are continuous. Furthermore, the constraint set P is compact. Using Weierstrass’

theorem, we can conclude that a minimum prior smin exists. The objective function is

piecewise continuously differentiable with kinks at p0 := aL
b

and p1 := aH
b

. Hence, it is

necessary to differentiate between the cases 0 ≤ p ≤ p0, p0 ≤ p ≤ p1, and p ≥ p1.
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Case 1: p ≥ p1

In cases where p ≥ p1, the expected profit part of the objective equals zero for all s ∈ [0, 1].

Consequently, the objective is given by γR(s, s∗). Due to Gibb’s inequality, the Kullback-

Leibler divergence takes the value zero if and only if s = s∗. Thus, we can conclude that

smin = s∗ is the minimizing prior. The same holds if p = c, since the objective reduces

to γR(s, s∗).

Case 2: 0 ≤ p ≤ p0

In the second case, the objective is twice continuously differentiable in s for given 0 ≤

p ≤ aL
b

. Taking the second-order derivative with respect to s yields

∂2(Es[Π] + γR(s, s∗))

∂s2
= γ

(
1

1− s
+

1

s

)
> 0.

Hence, the objective is strictly convex in s if γ > 0 and s ∈ (0, 1). Two major cases can

occur:

(a) There is a unique interior minimizing prior smin.

(b) The minimizing prior is located at the boundary of [s, s].

In Case (a), there is a closed form solution for smin. This can be seen by looking at the

first order condition. It is

∂(Es[Π] + γR(s, s∗))

∂s
= (p− c)(aH − aL) + γ

∂R(s, s∗)

∂s

= (p− c)(aH − aL) + γ

(
log
( s
s∗

)
+ log

(
1− s∗

1− s

))
.

Solving the first order condition for s, we obtain

smin =
s∗f1

s∗f1 + (1− s∗)f2

(5.17)
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where

f1 = e
aHc+aLp

γ and f2 = e
aLc+aHp

γ .

Hence, a unique interior solution exists. Case (b) can only occur if the interior solution

is not located in the interval [s, s]. It is

s∗f1

s∗f1 + (1− s∗)f2

< s∗ ⇔

s∗f1 < s∗(s∗f1 + (1− s∗)f2) ⇔

f1 < s∗f1 + (1− s∗)f2 ⇔

f1 < f2.

(5.18)

Plugging the definitions of f1 and f2 into the last inequality, we obtain

e
aHc+aLp

γ < e
aLc+aHp

γ ⇔

aHc+ aLp < aLc+ aHp ⇔

(aH − aL)c < (aH − aL)p ⇔

p > c.

In a similar way, we can conclude that smin > s∗ for p < c, and smin = s∗ for p = c.

Hence, we know that smin ∈ (s∗, 1] for p < c, smin = s∗ for p = c, and smin ∈ [0, s∗)

for p > c. In order to make smin a valid solution, it is necessary to verify under which

conditions the following statements hold:

(c) smin < s for p < c

(d) smin > s for p > c
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Statement (c):

It is

smin < s ⇔
s∗f1

s∗f1 + (1− s∗)f2

< s ⇔

s∗f1 < s(s∗f1 + (1− s∗)f2) ⇔

s∗f1(1− s) < s(1− s∗)f2 ⇔
f1

f2

<
s(1− s∗)
s∗(1− s)

:= h1.

Plugging the definitions of f1 and f2 into the last inequality, we obtain

e
aHc+aLp−aLc−aHp

γ < h1 ⇔

e
(aH−aL)(c−p)

γ < h1 ⇔
(aH − aL)(c− p)

γ
< log(h1).

(5.19)

It is a well-known fact that log(h1) > 0 iff h1 > 1.

log(h1) > 0 ⇔
s(1− s∗)
s∗(1− s)

> 1⇔

s− ss∗ > s∗ − s∗s⇔

s > s∗

This condition is true by assumption. Solving inequality (5.19) for p, we obtain the

equivalence

smin < s ⇔ p > c− log(h1)γ

aH − aL
=: p̂1.

As a consequence, the minimizing prior is given by smin = s for p ≤ p̂1 and by

smin =
s∗f1

s∗f1 + (1− s∗)f2
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for p ≥ p̂1. This case can be summarized as follows:

smin =


s for 0 ≤ p ≤ c ∧ p ≤ p̂1

s∗f1
s∗f1+(1−s∗)f2

for 0 ≤ p ≤ c ∧ p ≥ p̂1

This expression can be simplified. It is

smin =


s for p ∈ [0,min{c, p̂1}]

s∗f1
s∗f1+(1−s∗)f2

for p ∈ [max{0, p̂1}, c].

Statement (d):

Similar to the previous case, we can show that the condition smin > s is equivalent to the

condition

f1

f2

>
s(1− s∗)
s∗(1− s)

:= h2. (5.20)

Plugging f1 and f2 into inequality 5.20, we obtain that the initial condition is equivalent

to

(aH − aL)(c− p)
γ

> log(h2).

Moreover,

h2 =
s(1− s∗)
s∗(1− s)

< 1 ⇔

s− ss∗ > s∗ − ss∗ ⇔

s∗ > s,

(5.21)

which is an assumption of the case under consideration. Solving inequality 5.20 for p, we

obtain the equivalence

smin > s ⇔ p < c− log(h2)γ

aH − aL
=: p̂2.
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Hence, the minimizing prior is given by smin = s for p ≥ p̂2 and by

smin =
s∗f1

s∗f1 + (1− s∗)f2

for p < p̂2.

This case can be summarized as follows:

smin =


s for p ≥ c ∧ p ≥ p̂2 ∧ p ≤ aL

b

s∗f1
s∗f1+(1−s∗)f2

for p ≥ c ∧ p ≤ p̂2 ∧ p ≤ aL
b

The last expression can be simplified. It is

smin =


s for p ∈ [max{c, p̂2}, aLb ]

s∗f1
s∗f1+(1−s∗)f2

for p ∈ [c,min{aL
b
, p̂2}].

Case 3: p0 ≤ p ≤ p1

The objective function reduces to

Πred := s(p− c)D1(p) + γ

{
s log

( s
s∗

)
+ (1− s) log

(
1− s
1− s∗

)}
. (5.22)

The derivative of Πred with respect to s is given by

(p− c)(aH − bp) + γ

(
log
( s
s∗

)
+ log

(
1− s∗

1− s

))
.

Solving the first order condition, we obtain

scand =
s∗f3

s∗f3 + (1− s∗)f4

with

f3 = e
aHc+bp

2

γ and f4 = e
(aH+bc)p

γ
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as a candidate for the solution of the minimization problem. As in the previous case, the

second-order derivative with respect to s is given by

∂2Πred

∂s2
= γ

(
1

1− s
+

1

s

)
> 0.

Consequently, the objective is strictly convex. The following cases can occur:

(e) The candidate prior scand is the unique interior minimizer.

(f) The minimizer is either s or s.

In the following, I determine the conditions under which either (e) or (f) holds. The

interior prior is not the minimizer if either scand > s or scand < s. Note that the condition

scand < s∗ is equivalent to the condition f3 < f4. This can be demonstrated by replacing

f1 by f3 and f2 by f4 in the proof of Statement (d). Hence,

e
aHc+bp

2

γ < e
(aH+bc)p

γ ⇔

aHc+ bp2 < aHp+ bcp ⇔

bp(p− c) < aH(p− c) ⇔

p <
aH
b
,

which is true by assumption. As a consequence, the case scand > s can be excluded, since

s∗ ∈ [s, s] by assumption. The condition scand < s is equivalent to the condition

f3

f4

< h2.

Then,

scand < s ⇔

e
aHc+bp

2−(aH+bc)p

γ < h2 ⇔

bp2 − (aH + bc)p+ aHc− γ log(h2) < 0.

(5.23)
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The quadratic equation on the left-hand side has the solution

p̂3/4 =
aH + bc

2b
∓
√

(aH + bc)2

4b2
− aHc+ γ log(h2).

Since the function on the left-hand side of the last inequality is a parabola opening

upwards, we can infer that the inequality holds for p̂3 < p < p̂4. Taking all the conditions

of this case together, we obtain that scand is the minimizing prior if one of the following

sets of requirements is satisfied:

(h) p ≥ aL
b

, p ≤ aH
b

, p ≤ p̂3

(i) p ≥ aL
b

, p ≤ aH
b

, p ≥ p̂4

The conditions in (h) are equivalent to

p ∈
[aL
b
,min

{
p̂3,

aH
b

}]
.

The conditions in (i) are equivalent to

p ∈
[
max

{aL
b
, p̂4

}
,
aH
b

]
.

The condition scand < s holds if

(j) p ≥ aL
b

, p ≤ aH
b

, p ≥ p̂3, p ≤ p̂4.

The conditions in (j) are equivalent to

p ∈
[
max

{aL
b
, p̂3

}
,min

{
p̂4,

aH
b

}]
.

A solution of the quadratic equation exists as long as

(aH + bc)2

4b2
− aHc+ γ log(h2) ≥ 0.
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Solving the inequality for γ, we obtain

γ ≤ 1

log(h2)

[
aHc−

(aH + bc)2

4b2

]
:= γ̂.

Thus, scand > s for all γ > γ̂.

Proof of Corollary 5.10. It is

lim
γ→∞

f1(γ) = lim
γ→∞

f2(γ) = lim
γ→∞

f3(γ) = lim
γ→∞

f4(γ) = 1.

Consequently,

lim
γ→∞

s∗f1

s∗f1 + (1− s∗)f2

= lim
γ→∞

s∗f3

s∗f3 + (1− s∗)f4

= s∗.

What remains to be shown is that the corner solutions s and s vanish in the limit. It is

• lim
γ→∞

p̂1 = −∞

• lim
γ→∞

p̂2 =∞

Besides, the limits lim
γ→∞

p̂3 and lim
γ→∞

p̂4 do not exist, since both zeros p̂i for i = 3, 4 are

only defined for γ ≤ γ̂ <∞. As a consequence,

lim
γ→∞

A4(γ) = lim
γ→∞

A5(γ) = lim
γ→∞

A6(γ) = ∅.

Moreover,

lim
γ→∞

A1(γ) = lim
γ→∞

A3(γ) = ∅

because of the limiting properties of p̂1 and p̂2 and

lim
γ→∞

A2(γ) =
[
0,
aL
b

]
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for the same reason. Hence,

lim
γ→∞

smin(γ) =



lim
γ→∞

s∗f1
s∗f1+(1−s∗)f2

for p ∈ [0, aL
b

]

lim
γ→∞

s∗f3
s∗f3+(1−s∗)f4

for p ∈ [aL
b
, aH
b

]

s∗ for p ∈ [aH
b
,∞)

which proves the claim due to the fact that the limit of the component functions is given

by s∗ as well. The property

lim
γ→∞

p(γ) = prisk(s∗)

is an immediate consequence of the limit of the minimizing prior. What remains to be

demonstrated is that p(γ) converges against prisk(s∗) from below for c ≤ p(γ) ≤ aL
b

and

γ > γ̂. The minimum prior function smin(γ) is piecewise continuously differentiable. In

cases where smin(γ) equals s∗, we can conclude that the minimum prior is independent

of γ and therefore constant. Subsequently, I investigate how the interior solution

h =
s∗f1

s∗f1 + (1− s∗)f2

reacts to an increase in γ. The derivative of h with respect to γ is given by

∂h

∂γ
=
s∗(1− s∗)f1f2(p− c)(aH − aL)

γ2(s∗f1 + (1− s∗)f2)2
. (5.24)

The sign of (5.24) depends on the sign of p − c only. Hence, h is negative for p < c,

zero for p = c, and positive for p > c. This establishes that h is strictly increasing

for p > c. Consequently, we can infer that smin(γ) converges to s∗ from below. Let

0 < γ̂ < γ1 < γ2 <∞. Then, smin(γ1) ≤ smin(γ2) and Esmin(γ1)[Π] ≤ Esmin(γ2)[Π]. Taking

the derivative of h with respect to p yields

∂h

∂p
= −(aH − aL)e

(aH+aL)(c+p)

γ (1− s∗)s∗

γ(s∗f1 + (1− s∗)f2)2
.
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Obviously, this derivative is negative. Consequently, smin(p) moves further away from s∗

as p increases. Hence, R(smin(p), s
∗) is increasing in p. Thus, the monopolist always has an

incentive to increase prices if the objective was given by the Kullback-Leibler divergence.

What remains to be analyzed is the expected profit part Es[Π] of the objective. As

the minimum prior smin increases with γ, the monopolist expects the high number of

consumers scenario to be more likely. Therefore, he or she, has an incentive to increase

prices, see for instance Example 5.2. Since both effects go the same way, the monopolist

has an overall incentive to raise prices.

Proof of Proposition 5.3. In a first step, I demonstrate that the objective function

g = qEs[Π] + (1− q)Es[Π] (5.25)

yields a lower monopoly price than

qΦ(Es[Π]) + (1− q)Φ(Es[Π]), (5.26)

if Φ is a concave distortion function. The objectives (5.25) and (5.26) are only piecewise

differentiable with kinks at p0 = aL
b

and p1 = aH
b

. Therefore, we derive the set of global

maximizers on a case-by-case basis.

Case 1: p ≥ p1

We define D1 = {p : p ≥ p1} and obtain

arg max
p∈D1

{
qΦ(Es[Π]) + (1− q)Φ(Es[Π])

}
= arg max

p∈D1

{
qΦ(0) + (1− q)Φ(0)

}
= arg max

p∈D1

Φ(0) = D1.
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Moreover, we can conclude that

arg max
p∈D1

qEs[Π] + (1− q)Es[Π]

= arg max
p∈D1

0 = D1.

Hence, the set of local maximizers is the same for (5.25) and (5.26).

Case 2: p0 ≤ p ≤ p1

We define D2 = [p0, p1]. This case needs to be subdivided into three subcases.

(a) The maximum of g is located at p = p1. (corner solution 1)

(b) The maximum of g is located at p = p0. (corner solution 2)

(c) The maximum of g is located in the interior of D2. (interior solution)

In Case 2, the first objective (5.25) reads

qEs[Π] + (1− q)Es[Π] = qs(p− c)(aH − bp) + s(1− q)(p− c)(aH − bp)

= (p− c)(aH − bp)(qs+ s(1− q)).

Case (2a):

Since g is quadratic in p, we can conclude that qEs[Π] + (1− q)Es[Π] is strictly increasing

on D2. Moreover, if qEs[Π]+(1−q)Es[Π] is strictly increasing in p, we can infer that both

s(p− c)[aH − bp] and s(p− c)[aH − bp] are strictly increasing in p. This is because multi-

plications with positive constants leave a function’s monotonicity properties unaffected.

Since Φ is a strictly increasing transformation, it follows that Φ(Es) and Φ(Es) are both

strictly increasing in p. This implies that objective (5.26) is also strictly increasing in

p. Consequently, the local maximizer equals p1 for both functions and is therefore not
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affected by the transformation Φ.

Case (2b) and Case (2c):

With the same arguments as in Case (2a), we can establish that both objectives have the

same monotonicity properties, and therefore the same maximizer.

Case 3: p < c

We define D3 = {p : 0 ≤ p < c}. This case can be excluded. A price p ∈ D3 cannot

be a global maximizer of objective (5.25), see Example 5.2. Similarly, p cannot be a

global maximizer of objective (5.26). This is because p cannot be a maximizer of Es[Π].

Similarly, p cannot be a maximizer of Es[Π] as well. This implies that p ∈ D3 is not a

maximizer of Φ(Es[Π]) and Φ(Es[Π]). Hence, p is not a maximizer of objective (5.26).

Case 4: c ≤ p ≤ p0

We define D4 = {p : c ≤ p ≤ aL
b
}. This case needs to be subdivided into three subcases.

(a) The maximum of g is located in the interior of D3. (interior solution)

(b) The maximum of g is located at the lower boundary p = c. (corner solution 1)

(c) The maximum of g is located at the upper boundary p = p0. (corner solution 2)

Case (4a):

The local maximizers of (5.25) and (5.26) are defined by

pKMM
1 := arg max

p∈D4

{qEs[Π] + (1− q)Es[Π]}

pKMM
2 := arg max

p∈D4

{qΦ(Es[Π]) + (1− q)Φ(Es[Π])} .
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Since g is quadratic in p, we can infer that objective (5.25) is strictly increasing for

p0 ≤ p < pKMM
1 and decreasing for pKMM

1 < p < p1. As a next step, I investigate the

monotonicity properties of Es[Π] and Es[Π]. Therefore, I denote with ps the maximizer

of Es[Π], and I denote with ps the maximizer of Es[Π] on D4. From Proposition 5.1, we

can conclude that ps < pKMM
1 < ps. Table 5.2 summarizes the monotonicity properties

of objective (5.25) on the following partition of D4:

1. I1 := {p : p0 ≤ p ≤ ps},

2. I2 := {p : ps ≤ p ≤ pKMM
1 },

3. I3 := {p : pKMM
1 ≤ p ≤ ps},

4. I4 := {p : ps ≤ p ≤ p1}.

Interval Objective 1 Es[Π] Es[Π]
I1 ↑ ↑ ↑
I2 ↑ ↓ ↑
I3 ↓ ↓ ↑
I4 ↓ ↓ ↓

Table 5.2: Monotonicity Properties

A direct consequence of Table 5.2 is that pKMM
2 is contained in the union I2 ∪ I3, since

objective (5.26) is strictly increasing on I1, and strictly decreasing on I4. This is due

to the monotonicity properties of Es[Π] and Es[Π]. What remains to be shown is that

pKMM
2 /∈ I3\{pKMM

1 }. In order to prove this statement, we contemplate the partial

derivative of objective (5.26) with respect to p:

qΦ′(Es[Π])Es[Π]′ + (1− q)Φ′(Es)Es[Π]′

Assuming p ∈ I3, we can infer that Es[Π]′ < 0 and Es[Π]′ > 0. Moreover, Es[Π] ≤ Es[Π]

for p ≥ c. Furthermore, since Φ′′ < 0, we can deduce that

Φ′(Es[Π]) ≥ Φ′(Es[Π]).
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Consequently,

qΦ′(Es[Π]) · Es[Π]′ + (1− q)Φ′(Es[Π]) · Es[Π]′ ≤ Φ′(Es[Π]) (qEs[Π]′ + (1− q)Es[Π]′) .

Besides, we can infer that

qEs[Π]′ + (1− q)Es[Π]′ = sq(aH − aL) + s(aH − aL)(1− q) + aL − 2bp+ bc. (5.27)

Expression (5.27) is negative, if and only if,

p >
aH(qs+ (1− q)s) + aL(1− qs+ (1− q)s)

2b
= pKMM

1 . (5.28)

Hence, the p-derivative of objective (5.26) is negative for p ∈ I3. As a result, the optimum

is located in I2 and pKMM
1 > pKMM

2 .

Case (4b):

In cases where pKMM
1 equals the marginal cost parameter c, we can conclude that objec-

tive (5.25) is strictly decreasing on D4. Due to inequality (5.28), objective (5.26) is also

strictly decreasing on D4. Hence, pKMM
2 = c is the unique local maximizer of (5.26) on

D4. Consequently, both objectives have the same local maximizer, and this maximizer is

unique.

Case (4c):

In cases where pKMM
1 equals the upper boundary p0 of the interval D3, we can conclude

that objective (5.25) is strictly increasing on D4. Due to inequality (5.28), objective

(5.26) is also strictly increasing on D4. Hence, pKMM
2 = p0 is the unique local maximizer

of (5.26) on D4. Consequently, both objectives have the same local maximizer, and this

maximizer is unique.
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Note that pKMM
1 = pKMM

2 in all cases, except in Case (4a). The fact that pKMM
1 equals

pKMM
2 in these instances is independent of the curvature of Φ. Hence, even if Φ is

assumed to be convex, we can conclude that pKMM
1 = pKMM

2 for all cases, except in Case

(4a). As a result, it is sufficient to reexamine Case (4a) under the assumption that Φ is

strictly convex. Remember, that objective (5.26) is strictly increasing on I1 and strictly

decreasing on I4. This excludes the possibility that pKMM
2 is an element of I1 or I4.

What remains to be shown is that pKMM
2 is not an element of I2\{pKMM

1 } either. This

is demonstrated by means of a proof by contradiction. Assume that pKMM
2 is an element

of I2\{pKMM
1 }. Then, Es[Π]′ < 0 and Es[Π]′ > 0. Furthermore, since Φ′′ > 0, we can

deduce that

Φ′(Es[Π]) ≤ Φ′(Es[Π]).

Consequently, we obtain the following estimate for the p-derivative of objective (5.26):

qΦ′(Es[Π]) · Es[Π]′ + (1− q)Φ′(Es[Π]) · Es[Π]′ ≥ Φ′(Es[Π]) (qEs[Π]′ + (1− q)Es[Π]′) .

From Case (4a), we know that qEs[Π]′ + (1 − q)Es[Π]′ is positive for p < pKMM
1 and

negative for p > pKMM
1 . Consequently, the p-derivative of objective (5.26) is positive

on I2\{pKMM
1 }. Hence, pKMM

2 cannot be located in the interval I2. This proves the

claim.
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Conclusion

This thesis applies the concept of ambiguity to different fields of research in economics

with a focus on Industrial Organization and Health Economics. In the first chapter, I

provide a basic overview on the development of decision-theoretic models under uncer-

tainty.

The second chapter focuses on a Hotelling location-then-price duopoly game under de-

mand ambiguity. Using a Choquet model with neo-additive capacities, this chapter pro-

vides a unifying framework for the Hotelling model under risk developed by Meagher and

Zauner [2004], and the Hotelling model under ambiguity with α-MEU preferences devel-

oped by Król [2012]. It turns out that there is a unique subgame-perfect pure strategy

Nash equilibrium for firms’ location choices in this general framework. Moreover, this

equilibrium features interesting comparative static results with respect to the confidence

and optimism parameter of the underlying capacity. One obtains the result that a higher

degree of pessimism decreases equilibrium differentiation. A higher degree of confidence

decreases equilibrium differentiation if firms are rather pessimistic and increases equi-

librium differentiation if firms are sufficiently optimistic. For an intermediate optimism

value α̂ equilibrium differentiation is independent of δ. More important than these com-

parative static results is that the neo-additive approach provides an additional source of

explanation for a variety of observed product design choices. In this sense, we reinterpret

224
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the real-world examples provided by Król [2012] within the neo-additive framework. An

important example relates to the mutual funds market. The observation here is that fund

managers tend to differentiate their products less after the financial crisis. The explana-

tion put forward by Król [2012] is that the ambiguity attitude parameter α has changed

due to the financial crisis. Hence, fund managers have become increasingly pessimistic

after the financial crisis. In our view, this conclusion is problematic, since it is not clear

whether managers became more pessimistic (change in α), or whether they perceived

the market environment to be less reliable (change in δ). If fund managers are rather

ambiguity-averse, one can conclude with the neo-additive approach that decreasing con-

fidence lowers product differentiation.

The third chapter of this thesis considers ambiguity in the context of Health Economics,

and more specifically in the context of primary prevention. The underlying research

question of this project is to examine how patients adjust preventive activities in the

light of new information when the relationship between effort and disease probabilities

is characterized by Knightian uncertainty. Information is modeled by a random signal.

After receiving the signal, patients update their prior beliefs and select an optimal level

of effort.1

In a first step, I present the primitives of the model and proceed by analyzing the un-

derlying optimization problem. In this context, I specify conditions for the existence

and uniqueness of interior and corner solutions. Subsequently, I conduct a comparative

static analysis with respect to the optimism parameter α and the confidence parameter

δ. It turns out that the effect of optimism on prevention is determined by two concurrent

effects, which are denoted as ”perceived efficacy effect” and ”expected marginal utility

effect”. The perceived efficacy effect captures the fact that optimists and pessimists might

differ in their assessment of the preventive regime’s capability to reduce the underlying

probability of disease. The expected marginal utility effect takes into account that a shift

in the perceived disease probability might increase or decrease marginal gains or losses

from additional units of prevention. The overall effect of optimism on prevention is the

1Effort is interpreted as level of adherence to a preventive regime.
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sum of both effects and can be positive, negative or zero. A similar analysis applies to

the confidence parameter δ.

Having explored the connection between optimism, confidence and prevention, I continue

by looking at the relationship between prevention and information. By using the three

updating rules for neo-additive capacities discussed in Eichberger et al. [2010], I derive

patients’ ex-post optimization problem. The following section analyzes the effect of in-

formation on prevention. Therefore, I introduce two benchmark measures for preventive

behavior under Knightian uncertainty. The first benchmark is a Bayesian patient whose

prior belief is represented by a unique subjective probability. An interesting finding re-

sults from the comparison of Bayesian and Non-Bayesian patients when the prior belief of

the Bayesian patient corresponds to the reference prior in the Non-Bayesian case. Non-

Bayesian patients exhibit a higher ex-post level of prevention, relative to the Bayesian

benchmark patient, under the pessimistic updating rule when the worst case relationship

πmin is less effective than the updated Bayesian relations πqBayes . Similarly, Bayesian

patients feature a lower level of ex-post prevention under the optimistic updating rule

if πmax is less effective than πqBayes . Under more restrictive requirements, one can show

that the generalized Bayesian updating rule induces lower (higher) ex-post preventive

activities than the Bayesian benchmark patients when patients are sufficiently optimistic

(pessimistic). More interestingly, information does not necessarily close the gap in preven-

tive activities between Bayesian and Non-Bayesian patients. On the contrary, information

has the potential to render extreme patients even more extreme. The second benchmark

is a Bayesian patient that is aware of the true underlying preventive relationship. In this

context, I introduce the terms ”excessive preventive behavior” and ”preventive inertia”.

Patients exhibit excessive preventive behavior when their level of effort under Knightian

uncertainty exceeds the optimal level of prevention under perfect information. Similarly,

patients display preventive inertia when they exert less effort under Knightian uncertainty

than in a situation where they know the relationship between effort and the probability

of disease. One can show that excessive preventive behavior and preventive inertia vanish

for the Bayesian benchmark patient when the correct preventive relationship πθ can be
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perfectly inferred.2 Surprisingly, this is not true for Knightian patients. In the general

case, excessive preventive behavior and preventive inertia persist even for the Bayesian

benchmark patient. Moreover, one cannot conclude that excessive behavior is attenu-

ated even if the correct signal is observed. Clearly, if the correct signal is sent, patients

update their prior belief such that the posterior probability gives a larger weight to the

true underlying relationship. When the signal structure is such that this increase of the

posterior is strong enough, one obtains that excessive preventive behavior or preventive

inertia is reduced. In cases where the posterior of the correct relationship increases only

slightly, the result depends on the posterior probabilities for the remaining relationships.

For instance, in a situation where patients feature preventive inertia before observing the

signal, preventive inertia can be reinforced if the posterior for those preventive relation-

ships increases strongly enough which would ”by themselves” induce preventive inertia.

The fourth chapter relates to the contribution made by Çelen [2012], who extends the

well-known Blackwell’s theorem to MEU-preferences. We observe that the value of infor-

mation defined in Çelen [2012] entails dynamically inconsistent behavior. The reason is

that it is not defined according to the principle of recursively defined utility. In order to

account for this observation, we propose an alternative definition for the value of infor-

mation under MEU-preferences which is, by construction, consistent with the backward

induction principle.

The fifth chapter of this thesis should be understood as a guide for those interested in

implementing models of decision making under ambiguity to address research problems

in economics. By means of a simple baseline model, a static monopoly market with

linear demand, I explain which arguments can be used to justify a modeling approach

that prescribes models of decision making under ambiguity. In order to do so, I outline

the philosophical discussion on probabilities to clearly define the notions of objective and

subjective probabilities. In the end, the justification for ambiguity boils down to two

necessary requirements. The first one is to provide a rationale why probabilities are not

2This is for instance the case when there is a signal s such that the conditional probability to receive
this signal given the true parameter is a Dirac measure.
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objectively given in the choice situation under consideration. If this claim can be un-

derpinned with credible arguments, one knows that probabilities are either subjective or

that decision-makers hold beliefs that violate the notion of subjective probabilities. The

second requirement is to refute subjective probabilities. This can be done by referring

to Ellsberg’s paradox, see Ellsberg [1961], which has been experimentally confirmed by

Camerer and Weber [1992]. Since there is a variety of decision theoretic models consistent

with Ellsberg’s paradox, I demonstrate the implications of the most prominent models of

decision-making under ambiguity for the monopoly pricing problem. I assume a simple

scenario with two states of the world and a monopolist facing demand ambiguity. The

demand functions are assumed to be linear with the same slope parameter but different

intercepts. Contrary to the existing literature on monopoly pricing under Knightian un-

certainty, I can demonstrate that ambiguity might increase or decrease optimal prices.

Besides, in special cases where corner solutions occur, ambiguity has no influence on

optimal pricing. Depending on the underlying parameter constellations, three types of

solutions can occur: a unique interior solution where demand is positive in both states of

the world, a corner solution where demand is only positive in one of the two states, and a

third scenario where demand is zero in both states of the world. It follows that extreme

pessimism induces lower monopoly prices throughout all model specifications. In particu-

lar, one can conclude that a higher degree of pessimism in the α-MEU or Choquet model

with neo-additive capacities yields a lower monopoly price in cases where the interior

solution is optimal. 3 A comparable statement does not hold for the KMM model with

a constant absolute ambiguity transformation function. One can observe that a higher

degree of absolute ambiguity aversion does not necessarily translate into lower monopoly

prices.

3In cases where corner solutions apply, the monopoly price is independent of α.
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