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Summary 

There has been significant reduction in the scale of the global HIV pandemic over the 
last decade due to increased awareness and the effectiveness of Highly Active antiretroviral 
therapy (HAART). However, new challenges have emerged which when not effectively 
addressed may hinder the progress made so far. One important area of difficulty in the 
management of HIV infection is the emergence and transmission of drug resistant mutations 
(DRM), which threatens the long-term use of current HAART. Also, there is a growing need for 
more effective and relatively cheaper markers for monitoring HIV especially in resource-limited 
areas. One of such potential markers is HIV-l intracellular (IC) DNA load. 

We analyzed plasma and buffy coat samples as well as clinical data of 86 HIV-1 
infected drug naïve patients and eight follow-up patients with persistently high viral loads after 
24 weeks of HAART from Nouna in Burkina Faso. The participants were predominantly 
females. Among drug naïve patients, paired RNA and DNA templates were polymerase chain 
reaction (PCR) amplified and Sanger sequenced for the detection of DRMs. Templates 
encompassed 1461 base pairs sequenced from the protease and reverse transcriptase region of 
HIV-1 pol. A total of eight patients harboured transmitted drug resistance mutations (TDRMs). 
Six had TDRMs to non-nucleoside reverse transcriptase inhibitors (NNRTIs), one to nucleoside 
reverse transcriptase inhibitors (NRTIs), and one to protease inhibitors (PIs). Given that interest 
is growing in the use of viral DNA sequencing to complement or replace RNA for DRM 
monitoring, we compared sequences from RNA and DNA templates, for similarities and 
differences in regions with DRMs and for nucleotide differences. A high level of concordance 78 
(94%) was observed in regions with DRMs. Also, nucleotide sequences of paired templates were 
highly similar (84%). Furthermore, observed nucleotide differences greater than 10 within viral 
sequence pairs were resolved with deep sequencing using the so-called “Nextera tagmentation” 
approach. Deep sequencing of thirteen RNA and DNA template pairs revealed predominantly 
major reverse transcriptase (RT) mutations M230I and M184I within the minority viral 
population. It also confirmed differences in DRMs observed in Sanger sequencing and showed 
that patterns of synonymous and non-synonymous nucleotide changes were similar to those seen 
in Sanger sequencing. Predominant HIV-1 subtypes found in patients were CRF02_AG and 
CRF06_cpx. With the eight follow-up patients, DRMs and HIV-1 subtyping were determined 
from RNA templates only. Drug resistance mutations contributing to virological failure after 
HAART were assessed. Major DRMs to RTIs mainly K103N, E138Q, G190A and M230L were 
detected.  

Finally we assessed the utility of HIV-1 IC DNA load as a tool for disease monitoring 
and found that HIV-1 IC DNA levels did not correlate with traditional HIV-1 disease monitoring 
markers such as CD4+ T-cell counts (r2=0.017; p=0.23) and plasma viral loads (r2=0.003; 
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p=0.60), as well as other markers of disease progression. Also, there was no association (p=0.26) 

found between HIV-1 IC DNA levels of drug resistant (median 2.96 log10 copies/106 cells, IQR 

2.30-3.52) and drug susceptible (median 2.62 log10 copies/106 cells, IQR 2.23-3.06) strains of 
HIV-1, signifying that the presence of TDRMs does not affect HIV-1 IC DNA levels. However, 
a significantly higher baseline HIV-1 IC DNA level (p=0.045) was found in patients failing 
HAART after 24 weeks of therapy (median 3.16 log10 copies/106 cells, IQR 2.75-3.62) as 
opposed to those who did not (median 2.63 log10 copies/106 cells, IQR, 2.12-3.04). 

Our findings show that the prevalence of TDRMs is high and new DRMs develop over 
time making it necessary to institute resistance testing for more effective clinical management. 
Also the high concordance in DRMs between viral RNA and DNA templates suggests that DNA 
could be used for resistance monitoring, as it is cheaper and relatively easy to handle. HIV-1 IC 
DNA load is an independent marker that could be used alone or together with plasma viral load, 
CD4+ T-cell counts and other markers to monitor disease progression. A larger follow-up study is 
recommended to confirm these findings.  

 

 

 

 



          Zusammenfassung  

iii 

 

Zusammenfassung 

Innerhalb des letzten Jahrzehnts haben sich die Krankheitslast und die Auswirkungen 
der globalen HIV (humanes Immundefizienz-Virus) Pandemie aufgrund des gesteigerten 
Interesses (z.B. die Aufnahme in die Millenium Development Goals der Vereinten Nationen) an 
der Erkrankung und der erhältlichen Therapie, bekannt als hochaktive antiretovirale Therapie 
(HAART), deutlich reduziert. Allerdings haben sich in dieser Zeit neue Herausforderungen 
herauskristallisiert, die, wenn sie nicht wirksam angegangen werden, die bisherigen Fortschritte 
kompromittieren. Ein großes Problem in der Behandlung der HIV-Infektion stellt die Entstehung 
und Übertragung von Mutationen (engl. drug resitant mutations, DRM) dar, die HI-Viren 
resistent gegen antiretrovirale Wirkstoffe machen und so den langfristigen Nutzen der aktuellen 
HAART beeinträchtigen. Auch gibt es einen zunehmenden Bedarf an effektiveren und 
verhältnismäßig billigeren Biomarkern zur Überwachung des Krankheitsverlaufs, insbesondere 
in Ländern mit unzureichenden finanziellen Mitteln. Ein solcher potenzieller Biomarker könnte 
die intrazelluläre DNA-Kopienzahl von HIV-1 darstellen. 

Wir analysierten Buffy-Coat- (Leukozytenfilm) und Plasmaproben mit den 
dazugehörigen klinischen Daten von 86 HIV-1-infizierten Therapie-naiven Patienten sowie 
longitudinale Daten von acht Patienten mit einer weiterhin hohen Viruslast nach einer 
24wöchigen hochaktiven antiretoviralen Therapie in Nouna, Burkina Faso. In der Gruppe der 
Therapie-naiven Patienten amplifizierten wir je RNA- und DNA-Abschnitte (engl.: templates) 
mittels Polymerase-Kettenreaktion (PCR) und sequenzierten diese mit der Sanger-Methode zum 
Nachweis von DRMs, die Abschnitte umfassten 1461 Basenpaare aus der HIV-1 pol-Region. Bei 
insgesamt acht Patienten konnten wir übertragbare Resistenzmutationen (engl. transmitted drug 
resistance mutations, TDRMs) nachweisen. Sechs hatten TDRMs für nicht-nukleosidische 
Reverse-Transkriptase-Hemmer (NNRTI), je ein Patient für nukleosidischen Reverse-
Transkriptase-Hemmer (NRTI) und für Proteaseinhibitoren (PIs). Da ein großes Interesse daran 
besteht, die DNA-Sequenzierung des HI-Virus als Ergänzung oder gar als Ersatz für die aktuell 
durchgeführte Therapiekontrolle mittels RNA-Amplifikation zu verwenden, verglichen wir 
zusätzlich die Sequenzen von RNA und DNA-templates in den Regionen, die für Resistenzen 
gegen antiretrovirale Wirkstoffe kodieren. Bei 78 Proben (94%) haben wir ein hohes Maß an 
Übereinstimmung zwischen den beiden templates in Regionen mit DRMs beobachtet. Auch 
wiesen die Nucleotidsequenzen von Proben, die als RNA- und DNA-template vorlagen, große 
Ähnlichkeiten (84%) auf. Bei mehr als zehn unterschiedlichen Nukleotiden zwischen DNA- und 
RNA-template haben wir noch weiterführende Untersuchungen mittels deep sequencing, dem 
sogenannten „Nextera tagmentation“ Verfahren, durchgeführt. Diese zusätzlichen 
Untersuchungen bei dreizehn Paaren von RNA und DNA-templates ergaben überwiegend die 
„major“ Mutationen M230I und M184I der reversen Transkriptase (Mutationen, die mit sehr 
wahrscheinlichen Auswirkungen auf die Resistenz gegen antiretrovirale Wirkstoffe assoziiert 
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sind) und die „minor“ Protease-Inhibitor (PI) Mutationen V11I und L89I (Mutationen, die nur 
wenig zur Resistenzentstehung beitragen) innerhalb einer kleinen Anzahl von Viren der 
Gesamtviruspopulation. Hiermit wurden auch die Unterschiede in den Sequenzen der 
Sangermethode bestätigt und zeigte, dass die Muster von synonymen und nicht-synonymen 
Nukleotidänderungen große Ähnlichkeiten mit der Sanger-Sequenzierung aufzeigten. Die 
überwiegend gefundenen HIV-1-Subtypen unserer Patienten waren CRF02_AG und 
CRF06_cpx. Für unsere acht longitudinalen Proben wurden DRMs und HIV-1 Subtypen von 
RNA-templates ermittelt. Extrahierte cDNA Amplikons von Patienten dienten zur 
Untersuchungen der Entstehung von DRMs, die möglicherweise zum virologischen Versagen 
nach HAART beitrugen. Wir detektierten hauptsächlich die „major“ Mutationen für RTIs: 
K103N, E138Q, G190A und M230L. Änderungen des dominierenden HIV-1-Subtyps wurde 
nicht beobachtet. 

Zum Abschluss haben wir noch den Nutzen der HIV-1-IC DNA Viruslast zur 
Therapieüberwachung untersucht. Hier zeigte sich, dass diese Methode keine Korrelation mit 
den herkömmlichen Methoden wie CD4+T-Zellzahl, RNA-Viruslast im Plasma oder anderen 
Biomarker aufweist. Des Weiteren haben wir keinen Zusammenhang zwischen HIV-1-IC-DNA-
Kopienzahl von resistenten und nicht-resistenten Virusstämmen von HIV-1 beobachtet. Dies 
könnte damit erklärt werden, dass die Anwesenheit von TDRMs die intrazelluläre HIV-1-DNA-
Kopienzahl nicht beeinflusst. Allerdings haben wir bei Patienten mit virologischem Versagen 
nach 24 Wochen HAART signifikant höhere HIV-1 IC DNA-Kopienzahlen beobachtet, als bei 
Patienten ohne virologischen Versagen. 

Unsere Ergebnisse zeigen, dass die Prävalenz von TDRMs bereits hoch ist und sich 
neue DRMs im Laufe der Zeit entwickeln. Dies erfordert wohl die Einführung von 
Resistenztestungen für ein effektiveres klinisches Management von HIV-infizierten Patienten. 
Die hohe Übereinstimmung zwischen viraler RNA und DNA in Bezug auf die Erkennung von 
DRMs könnte bedeuten, dass diese Methode mit viraler DNA zur Verlaufskontrolle von 
Resistenzen eingesetzt werden kann, zumal diese kostengünstig und relativ einfach in der 
Handhabung ist. Die HIV-1 IC DNA-Kopienzahl stellt einen unabhängigen Marker dar, der das 
Potenzial haben könnte, alleine oder in Kombination mit Plasma-Viruslast, CD4+T-Zellzahl und 
anderen Biomarkern  in der klinischen Überwachungen einer HIV-Infektion verwendet zu 
werden. Hierfür sind jedoch noch weitere Untersuchungen an einem größeren Patientenkollektiv 
notwendig. 
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1 Introduction 

1.1 The human immunodeficiency virus type 1  

The Human Immunodeficiency Virus was first discovered in the early 1980s at which 

time it was referred to as lymphadenopathy associated virus (Barre-Sinoussi et al., 1983) and as 

well as human T -cell lymphotropic virus III (HTLVIII). It was shown to be the etiological factor 

in Acquired Immune Deficiency Syndrome (AIDS) (Broder and Gallo, 1984; Essex et al., 1985), 

a condition in humans which compromises the immune system and makes patients liable to life-

threatening opportunistic infections (Coffin et al., 1986). HIV belongs to the retrovirus family 

and lentivirus group of viruses (Petropoulos, 1997). 

1.2 Global epidemiology of HIV 

HIV/AIDS has been a global pandemic for the past 3 to 4 decades (Maartens et al., 

2014; Piot and Quinn, 2013). In comparison to other global pandemics, HIV/AIDS has been the 

largest with an estimated 78 million infected since the initial case diagnosis and an estimated 39 

million deaths (UNAIDS, 2013b, 2014b). Since the advent of antiretroviral drugs (ARDs), the 

dynamics of HIV epidemiology has significantly changed with reducing incidence and 

increasing prevalence as mortality has drastically reduced (Maartens et al., 2014; Piot and Quinn, 

2013). The reason for this pattern of epidemiological change is that, while ARVs are effective in 

reducing viral load and preventing full blown AIDS, so far, they are unable to completely 

eradicate the virus from the system of a sufferer (Piot and Quinn, 2013). The incidence of HIV 

infections has fallen by 33% since 2001 (Maartens et al., 2014). According to the UNAIDS HIV 

epidemic update report in 2013 as indicated in figure 1, the worldwide estimation of people 

living with HIV at the end of 2012 were 35.3 million, an increase from 31 million within a 

decade. Sub-Saharan Africa has the largest population of infected people with an estimated 25.0 

million people presently living with HIV infection (Maartens et al., 2014; UNAIDS, 2013b, 

2014b).  Also in 2013, a total of 1.6 million new HIV infections and 1.2 million deaths among 

infected adults and children in sub-Saharan Africa were reported (UNAIDS, 2013b).  
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Figure 1: Worldwide HIV epidemic update in 2013.  

Reproduced from https://www.aids.gov/images/global-hivaids-overview.jpg. 

1.2.1 Worldwide distribution of HIV-1   

Due to its heterogeneity, HIV-1 has been subdivided into three major groups, M, N and 

O. Of the groups, group M accounts for majority of global infections. Group M is further divided 

into 10 subtypes or clades named subtypes A-K (Buonaguro et al., 2007). The distribution of the 

major HIV-1 subtypes across the globe varies widely (Abecasis et al., 2013; Lau and Wong, 

2013; Lihana et al., 2012). Global trends have shown changing patterns of recombination and 

spread of strains since the inception of the pandemic thus making it imperative that a keen 

interest should be taken to understand the dynamics of global subtype diversity (Lau and Wong, 

2013; Lihana et al., 2012). HIV-1 subtype diversity can affect viral fitness and pathogenicity and 

pose difficulties for vaccine development and optimal therapy (Lau and Wong, 2013; Lihana et 

al., 2012). Subtypes differ from each other by an average nucleotide percentage ranging from 

25–35% while intrasubtype variations are between 15-20% (Lau and Wong, 2013). The 

classification and distribution of HIV-1 is made more complex by the existence of many 

recombinant forms between the various clades of viruses. Circulating recombinant forms (CRFs) 

are defined as those viruses that have been fully sequenced and found in 3 or more 
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epidemiologically unlinked individuals (Hemelaar, 2012). Currently, there are 72 CRFs for HIV-

1. The recombined viruses that do not fall in the criteria of CRFs are called unique recombinant 

forms (URFs).  Also recombination may occur between CRFs and these are called second-

generation recombinants (SGRs) (Hemelaar, 2012). 

The West and Central African sub-regions harbour the widest diversity of HIV-1 

strains however, only a few subtypes and recombinant forms account for most infections 

worldwide (Lihana et al., 2012). The important global subtypes include A, B, C, D, G and CRFs 

(CRF01_AE, CRF02_AG and CRF07_BC) (Lau and Wong, 2013; Lihana et al., 2012).  In 

Europe, North America, Australia as well as parts of Asia and North Africa, Subtype B is the 

predominant HIV-1 subtype (Hemelaar, 2012). Subtype B is predominantly transmitted among 

homosexual men. It is therefore not surprising that a male to female ratio of 3:2 prevails in 

Europe (WHO, 2013b). The other major subtypes that circulate in Europe are A, C and G 

(Abecasis et al., 2013; Hemelaar et al., 2011) while the main circulating recombinant forms 

found in Europe includes CRF02_AG and CRFO2_AE (Abecasis et al., 2013; Hemelaar et al., 

2011).  

All the subtypes of HIV-1 have been reported in Africa (Buonaguro et al., 2007; 

Hemelaar et al., 2011) with significant regional variation in regional distribution (Lihana et al., 

2012). There is also a high recombination rate with increasing circulating and unique 

recombinant forms especially in West and Central Africa, the epicenter of HIV-1 diversity 

(Lihana et al., 2012). The HIV-1 epidemic in Africa is most severe in Southern Africa with the 

predominant strain being subtype C (Buonaguro et al., 2007). The predominance of subtype C in 

southern Africa and in India has contributed to subtype C becoming the most predominant HIV-1 

strain worldwide (Buonaguro et al., 2007; Neogi et al., 2012). Transmission is driven by 

heterosexual intercourse in Africa with more females infected than males (Muula, 2008). In West 

Africa, CRF02_AG (Buonaguro et al., 2007) is the dominant strain of HIV-1 involved in the 

epidemic with subtype G being the next most dominant (Hemelaar, 2012). Central Africa has the 

highest diversity of HIV-1 globally with the dominant strain being CRF01_AE. CRF01_AE 

originated in Central Africa and is becoming the most dominant recombinant form globally (Lau 

and Wong, 2013). Subtype A is the predominant HIV-1 subtype in East Africa followed by 
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subtype D (Buonaguro et al., 2007; Hemelaar, 2012). In south east Asia, CRF01_AE has been 

shown to be the predominant form of HIV-1 (figure 2) (Buonaguro et al., 2007). 

 

Figure 2: Distribution of HIV-1 subtypes around the world.  

Pie chart representing the distribution of major HIV subtypes in the various continents of the world  

Reproduced from (Hemelaar, 2012). 

1.3 HIV-1 genome structure and organization 

HIV-1 is composed at its core of two copies of positive sense single-stranded RNA, 

which constitutes its genome, and associated proteins enclosed by a fullerene conical capsid 

(Dudek, 2007). The capsid is further enclosed by a matrix, which has on the outer surface the 

viral envelope (env) protein (Dudek, 2007). The genome of HIV-1 is quite complex with 

multiple reading frames (Cohen et al., 1990), splice sights (Mueller et al., 2014), internal 

ribosomal entry sites and pseudoknots (Watts et al., 2009). The RNA is about 9.5 kilobases (Li et 

al., 1992; Ratner et al., 1985) with a 5′ cap and a poly A tail (Ratner et al., 1985). The RNA 

genome comprises of major genes as well as minor genes, as is characteristic of retroviruses 

(Watts et al., 2009). The three major genes code for gag pol and env proteins, responsible for 
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structure, enzymes and envelope protein synthesis respectively. These major genes are unspliced 

except to for env (Lutzelberger et al., 2006; Watts et al., 2009). On the other hand, minor and 

accessory proteins including vif, vpu and nef are expressed through a complicated system of 

alternate splicing of the genes ((Lutzelberger et al., 2006; Schwartz et al., 1990). The 5’ and 3’ 

ends of HIV-1 proviral DNA have repeat sequences called long terminal repeats (Ferrer et al.). 

LTR sites are important for binding of primers during proviral transcription and integration of 

viral DNA into the host genome (Delviks-Frankenberry et al., 2011). They also serve as 

promoter and enhancer regions for viral RNA synthesis (Delviks-Frankenberry et al., 2011). 

LTRs of HIV-1 are segmented into U3, R and U5 regions at both the 5’ and 3’ regions of the 

proviral DNA. While the LTR regions are complete in the proviral DNA, the HIV-1 viral RNA 

only contains the R and U5 segments at the 5’ end and U3 and R at the 3’ ends (figure 5) 

(Delviks-Frankenberry et al., 2011).  

Proteins that make up the viral particle are generally divided into structural, enzyme 

and accessory proteins. Structural proteins facilitate the integrity of the virus particle, support the 

internal organization and facilitate anchoring and infection of host cells (Frankel and Young, 

1998). Structural proteins include matrix proteins, capsid proteins and membrane proteins. The 

matrix proteins form a layer on the inner side of the membrane and help to organize the 

transmembrane part of the envelope proteins as well as trafficking viral replication particles early 

in its life cycle (Hill et al., 1996). Capsid proteins deliver the viral RNA into cells during 

infection (Pornillos et al., 2009). Envelope proteins gp41 and gp120 ensure viral binding and 

penetration into host cells (Kwong et al., 2000). The protein p7 associates and supports the RNA 

genome (Dawson and Yu, 1998) while p6 is an important membrane interacting protein for viral 

assembly (figure 3) (Solbak et al., 2013).  
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Figure 3: Genome organization of HIV-1.  

The figure illustrates the HIV genome above with the corresponding components of the viral particle they 

form below. (Reproduced from http://www.sciencedaily.com/releases/2011/12/111221140349.htm). 

1.4 Clinical presentation of HIV 

The clinical presentation of HIV/AIDS varies widely from persistently asymptomatic 

to a severe immune compromise and wasting with many opportunistic infections and ultimately 

death (WHO, 2007). For clinical and research purposes HIV-1 infection has been classified into 

stages by the CDC and WHO. Staging of the disease is important for timing of management 

strategies and monitoring of disease progression during therapy as well as for research and 

epidemiological purposes (Schneider et al., 2008).  

1.4.1 WHO clinical staging 

The WHO staging of HIV/AIDS is based essentially on clinical manifestations of the 

disease (Kassa et al., 1999; WHO, 1993, 2007). There is also an immunological classification 

based on CD4+ T-cell count (WHO, 2007).  The clinical emphasis enables clinicians in resource 
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poor environments, where many laboratory parameters cannot be readily assessed, to effectively 

stage the disease and make good judgment on initiation of opportunistic disease prophylaxis and 

ART (WHO, 2007). WHO has divided HIV-1 infection into four clinical stages (1-4) based on 

the severity of clinically staged HIV-1 infection, according to the following categories: 

Asymptomatic, mild symptoms, advanced symptoms and severe symptoms which generally 

coincide to four stages (WHO, 2007). 

1.4.2 CDC classification system of HIV-1 infection  

While the WHO classification is essential for clinical management and patient care, the 

CDC staging is essentially based on measurement of CD4+ T-cell counts with other associated 

clinical conditions (CDC, 1992; Schneider et al., 2008). Case definitions based on the CDC 

criteria are mainly oriented at public health surveillance, epidemiologic monitoring and control 

rather than for clinical management (Schneider et al., 2008). The CDC stages are also further 

classified based on age groups, namely; adults, adolescents and children (Schneider et al., 2008). 

Initial CDC classification for adults and adolescents is in three categories (1, 2 and 3) based on 

CD4+ T-cell counts. Category 1 represents laboratory diagnoses of HIV-1 infection with CD4+ 

T-cell counts greater than 500 cells/µl of blood. CD4+ T-cell counts between 499 and 200 

cells/µl of blood and counts less than 200 cells/µl of blood represent categories 2 and 3 

respectively (CDC, 1992). The CD4+ T-cell counts categories were further placed under 3 

clinical groups categorized as A, B and C (CDC, 1992). 

The CDC revised the classification using a simpler classification and retaining all the 

AIDS defining conditions of category C. The stages are as follows: stage 1, stage 2, stage 3 and 

stage unknown (Schneider et al., 2008). Since the CD4+ T-cell count or percentage are critical 

for CDC staging, it is recommended that every effort should be made to acquire CD4+ T-cell 

count information although the stage can still be classified as unknown. CDC stage 1 is defined 

as laboratory diagnosed HIV-1 infection with a CD4+ T-cell count greater than 500 cells/µl of 

blood or CD4 percentage of greater than twenty-nine. Stage 2 refers to CD4+ T-cell counts 

between 200 and 499 cells/µl of blood or a CD4 percentage between 14 and 28. In stage 3, the 

CD4+ T-cell count is less than 200 cells/µl of blood or a CD4 percentage of less than 14 

(Schneider et al., 2008). 
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1.5 Life cycle  

HIV-1 gains access to the body mainly via parenteral routes. By far most of the cases 

in the global pandemic were transmitted through heterosexual intercourse (Maartens et al., 

2014). On gaining entrance into the body, HIV-1 primarily infects mononuclear cells (Fu et al., 

2011). The cells mainly targeted by HIV-1 are CD4+T helper cells, monocytes, macrophages and 

dendritic cells (Coleman and Wu, 2009). These cells express CD4 on their cell surface, which 

serves as the major receptor for the viral membrane protein gp120 (Weiss, 2013). Besides CD4, 

co-receptors that facilitate viral attachment and tropism include the chemokine receptors CCR5 

and CXCR4 (Weiss, 2013). CCR5 facilitates viral entry early during infection while CXCR4 is 

thought to be more important in the later stages of the infection (Weiss, 2013). However some 

HIV-1 strains can utilize both CCR5 and CXCR4 and are referred to as R5X4 viruses (Lamers et 

al., 2008).  

Upon receptor recognition and attachment using gp120, the HIV-1 surface 

glycoprotein gp41 is important in membrane fusion and eventual entry onto the cells (Garg and 

Blumenthal, 2008). Within the cytoplasm of infected cells, the HIV-1 genome is reverse 

transcribed by reverse transcriptase to DNA (Hu and Hughes, 2012). Reverse transcription is a 

complicated process that involves two obligated template-switching steps involving both the 

minus and plus strands of the synthesized DNA (Delviks-Frankenberry et al., 2011).  

The resulting HIV-1 DNA product of reverse transcription is referred to as a pre-

integration complex (PIC), which is actively transported into the nucleus for integration into the 

genome as provirus (Engelman, 2009; Piller et al., 2003). Integration is effected by the virus 

encoded protein integrase (Albanese et al., 2008). Figure 4 illustrates the entire process. 
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Figure 4: The HIV life cycle.  

The figure illustrates viral entry followed by reverse transcription and integration into the host genome. Viral 

RNA transcription follows with assembly and formation of a new infectious particle.  (Reproduced from 

http://www.slideshare.net/sudhakorwar/presentation-6608205) 

1.5.1 The fate of HIV viral DNA 

A small percentage of the linearized dsDNA gets integrated into the genome of the 

host to form the provirus.  The provirus acts as a latent reservoir and ensures persistence of 

infection (Demetriou et al., 2010). The remaining linearized dsDNA is circularized to form 2-

LTR circles (Butler et al., 2001; Vandegraaff et al., 2001). Homologous recombination in 2-LTR 

circles results in 1-LTR circles. Auto integration into LTR circles can also result in various 

rearranged circular products. Also, most of the HIV-1 DNA remain un-circularized and un-

integrated and add up to the episomal population of HIV-1 viral DNA. The entire nonintegrated 

DNA is a dead end product, which may be degraded or persists in the nucleus of the cell (Butler 

et al., 2001; Vandegraaff et al., 2001). The HIV-1 DNA forms are illustrated in figure 5 

(Kostrikis et al., 2002a) 
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Figure 5: Schematic representation of the intermediate products formed during the process of HIV-1 reverse 

transcription of the viral RNA to form the HIV-1 second template switch DNA. 

The figure illustrates the formation of the linear dsDNA and its possible outcomes; the various LTR circles 

and the integrated provirus. Reproduced from (Kostrikis et al., 2002a). 
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1.6 Management of HIV/AIDS  

Management of HIV/AIDS has evolved significantly since the initial diagnosis in the 

early 1980s. While clinical management was ineffective in the early stages of the pandemic, the 

development of effective antiretroviral drugs has significantly improved clinical outcomes over 

the last couple of decades (Maartens et al., 2014). Till date, over 24 licensed drugs have been 

approved for treatment of HIV/AIDS (Maartens et al., 2014).  

Antiretroviral drugs are generally classified based on the stage of the viral life cycle 

targeted. Currently there are 5 main classes of ARVs approved by the FDA for clinical use, 

which are: Viral Entry inhibitors, nucleoside reverse transcriptase inhibitors (NRTIs), non-

nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and viral 

integration inhibitors (figure 6) (Arts and Hazuda, 2012). HIV-1 drug resistance mutations are 

quite common and with over 70% resistant rates for some individual ARVs (Nii-Trebi et al., 

2013; Richman et al., 2004). Drug resistant mutations arise from key changes in base pairs that 

confer an escape for a sub population of the virus from the ARV effects. While resistance may 

develop rapidly to some antiretroviral drugs, the process can be slow and occur over time with 

accumulation of mutations that will ultimately confer resistance (Das and Arnold, 2013). 

Mechanisms of drug resistance development vary between drug families (Das and Arnold, 2013). 

Below are descriptions of the actions of the various groups of ARTs and their mechanisms of 

action and resistance. 
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Figure 6: The HIV-1 life cycle and drug targets at different stages of viral processing. 

The figure illustrates the various points in the HIV-1 life cycle targeted by the various approved classes of 

drugs with specific examples of each group. Reproduced from (Chabria et al., 2014).  

1.6.1 Nucleoside/Nucleotide reverse transcriptase inhibitors 

The critical importance of RT to the life cycle of HIV-1 has led to the development of 

many drugs targeting it. Nucleoside reverse transcriptase inhibitors (NRTIs) are nucleoside 

analogues that incorporate into the DNA chain synthesized by RT and hence interrupt 

elongation. NRTIs lack a 3’ OH group and thus prevent the addition of additional nucleotides 

(figure 7A and 7B). Examples of NRTIs include zidovudine, lamivudine and abacavir (Das and 

Arnold, 2013).  

Resistance to nucleoside reverse transcriptase inhibitors (NRTIs) occurs through two 

basic mechanisms. The primary mechanism involves mutations (M184V, Q151M) in the drug 

binding site that increases discrimination against drug binding and hence resistance (Johnson et 



           Introduction  

13 

 

al., 2010; Larder and Kemp, 1989). The other mechanism involves increased ability of the 

reverse transcriptase enzyme to remove incorporated NRTIs from the chain by a process called 

pyrophosphorolysis and hence reduces their ability to inhibit reverse transcription of viral RNA 

(Arion and Parniak, 1999; Sluis-Cremer et al., 2000) (figure 7A and 7B). Some studies have 

demonstrated that pyrophosphorolysis is augmented by the presence of thymidine analogue 

mutations (TAMs) in reverse transcriptase (Ray et al., 2003; von Kleist et al., 2012). Common 

TAMs include M41L and L210W among several others (Hu et al., 2006).  

Development of resistance to NRTIs has been shown to vary based on virus subtype 

and region (Wainberg et al., 2011). For example patients with subtype C treated in Botswana 

with zidovudine and didanosine were shown to have higher TAMs as compared to patients 

infected with subtype C in India, South Africa and Malawi (Wainberg et al., 2011). Also, it was 

shown that patients with CRF06_cpx viruses are predisposed to having higher TAMs than those 

carrying CRF02_AG recombinant viruses in Burkina Faso (Wainberg et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Mechanisms of action of nucleoside reverse transcriptase inhibitors and development of resistance. 

 NRTIs are incorporated into the growing chain and prevent elongation. Mutations in the binding pocket of 

the enzyme prevent incorporation of the NRTI thereby leading to resistance development (A). NNRTIs can 

also prevent ATP binding to prevent reverse transcription. Mutations that allow ATP to bind can result in 

removal of the NRTI for generation of resistance. Reproduced from (Clavel and Hance, 2004). 

A B
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1.6.2 Non-nucleoside reverse transcriptase inhibitors 

Non-nucleoside reverse transcriptase inhibitors (NNRTI) bind to a hydrophobic pocket 

of reverse transcriptase and allosterically reduce the catalytic ability of the enzyme (Das and 

Arnold, 2013) (Figure 8A, 8B and 8C). Examples of NNRTIs include nevirapine and efavirenz 

(Das and Arnold, 2013). Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) 

occurs due to mutations that lower drug binding and prevents allosteric inhibition of reverse 

transcriptase (Akinsete et al., 2004; Tambuyzer et al., 2009). The mutation K103N is one of 

several mutations that confer resistance against almost all NNRTIs (Akinsete et al., 2004; 

Tambuyzer et al., 2009). 

 

A.  

 

 

 

B. 

 

 

 

C. 

 

 

 

Figure 8: Mechanism of action and resistance of HIV to Non-nucleoside Reverse-Transcriptase Inhibitors.  

NNRTIs bind to an allosteric pocket of the RT and reduce activity at the active site of the enzyme. Mutations 

that preventing drug binding of the enzyme in the binding pocket confers resistance. Reproduced from 

(Clavel and Hance, 2004).  
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1.6.3 Protease inhibitors 

Protease inhibitors inhibit the HIV-1 protease enzyme, a heterodimer that cleaves HIV-

1 polyproteins into functional forms without which the infectious virus cannot be formed (Fun et 

al., 2012). Protease cleaves the HIV-1 large precursor polyproteins gag and gag-pol into 

functional proteins, which include p7, p24, p17 and p6 as well as viral enzymes reverse 

transcriptase, protease and integrase (Baca and Kent, 1993; Fun et al., 2012). Protease inhibitors 

bind the substrate-binding site of the enzyme heterodimer and by that they inhibit cleavage of the 

polyproteins (Fun et al., 2012). Mutations in the substrate-binding pocket of the enzymes reduce 

affinity for the drugs but not the natural substrates and thus confer resistance to the protease 

inhibitors (Fun et al., 2012). 

1.7 HIV Resistance Development and Transmission of Resistance 

The high rate of mutation in HIV-1 generates numerous HIV-1 strains within a patient 

referred to as viral quasispecies (Domingo et al., 2012). In a patient, one of HIV quasispecies is 

predominant at the initial stages of infection (Metzner, 2006). In ARV treated individuals, the 

balance of the quasispecies is altered and minority species that can overcome the bottleneck due 

to the ARVs become the dominant species, as they are fitter under the unique circumstance of 

therapy (Metzner, 2006). The ability of a strain of HIV to overcome adverse conditions in the 

host, based on its unique DNA alterations, is referred to as viral fitness (Buckheit, 2004). The 

concept of viral fitness is described by the Red Queen hypothesis where viral quasispecies in 

competition tend to increase in replication ability (Fitness) with successive generations 

(Domingo et al., 2012). Understanding of HIV resistance mutation development and viral fitness 

is critical to understanding the long term virulence and transmission as well as drug susceptibility 

and therapeutic strategies (Arnott et al., 2010; Domingo et al., 2012). 

1.7.1 Transmitted drug resistance mutations 

Highly active antiretroviral drugs (HAART) have in recent times become increasingly 

available to patients infected with the human immunodeficiency virus (HIV-1) in Africa and 

large scale programs have been implemented in many African countries for the administration of 
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these drugs (UNAIDS, 2013a). The implementation of HAART has evidently led to a significant 

decrease in morbidity and mortality among infected individuals. However, the increasing use of 

HAART across the world has led to the emergence of drug resistant virus strains, known to 

reduce susceptibility to the ART and which can also be transmitted to treatment naive patients 

(Avila-Rios et al., 2014) (Johnson et al., 2010). This implies that an increasing number of drug 

naive patients are being infected with viruses that are already resistant to ARTs termed 

transmitted drug resistant viruses (Pillay et al., 2006). These viruses pose a major clinical and 

public health issue. On the other hand, resistant mutations developed by an individual on ART 

are termed acquired drug resistance mutations (DRMs). These mutations usually occur as a result 

of a drug selection pressure (Metzner et al., 2009).   

1.7.2  Prevalence of transmitted drug resistant mutations in HIV-1 newly 

diagnosed patients 

Transmitted drug resistant mutations surveillance is becoming an important factor in 

the global management of HIV-1. In 2012, The WHO HIV-1 drug resistance report estimates 

indicate increasing trends in TDRM globally due to increasing use of ARVs (WHO, 2013b). In 

developed territories like Europe, USA and Japan, 10 to 17 percent of newly diagnosed HIV-1 

patients have at least one TDRM (WHO, 2012). In developing countries as well, the WHO 

reports an increasing trend of TDRM between 2003 and 2010 (WHO, 2012). The implications of 

TDRMs to success of ARV therapy was demonstrated in a large European study which showed 

significant increase in treatment failure in patients who had TDRMs as compared to those who 

did not (Wittkop et al., 2011). 

With increasing ARV therapy availability in Africa, it follows that the prevalence of 

TDRMs will also increase, highlighting the importance of TDRM monitoring (WHO, 2012). 

Recent studies conducted among a cohort of sub-Saharan Africans in eight clinical research 

centers (Kigali, Rwanda; Lusaka, and Copperbelt, Zambia; Masaka and Entebbe, Uganda; 

Nairobi and Kilifi, Kenya; and Cape Town, South Africa) have confirmed low but increasing 

trends of TDRM (Price et al., 2011b). The prevalence of transmitted drug resistant mutations 
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(TDRM) in newly diagnosed patients in most African countries ranges from 3% and 17% 

(Derache et al., 2008; Ndembi et al., 2011; Ojesina et al., 2006).  

1.8 Assays for HIV drug resistance 

The development of assays that can detect resistant mutations has enabled testing for 

drug resistance and enable decision-making on the choice of ARVs and alterations in therapy 

(Hirsch et al., 2008). Phenotypic and genotypic resistance assays are the two types of assays that 

are currently in use for the assessment of DRMs. Genotypic resistance assays use data from 

sequenced HIV genes from patients to detect mutations that may confer resistance to a given 

ARV. Phenotypic resistance assays are cell culture based assays that assess viral replication 

capabilities in the presence or absence of a given ARV (Hirsch et al., 2008).   

1.8.1 Genotypic resistance assays  

Genotypic resistance assays can be done using standard kits or in-house assays based 

on resources of a given lab. In-house assays use regular sequencing techniques like the Sanger 

sequencing to determine nucleotide sequences of patient derived viruses. To perform Sanger 

sequencing, the viral RNA is reverse transcribed to DNA prior to sequencing usually targeting 

the RT and PR regions (Geretti et al., 2014; Hirsch et al., 2008). The FDA approved the 

Truegene HIV-1 kit for use in genotypic monitoring in 2001 (Grant et al., 2003). In genotypic 

assays, rule-based algorithms on HIV databases (Hirsch et al., 2008) are used for predictions on 

the relevance of mutations for clinical decision-making.   

Genotypic resistance testing is recommended for routine resistant mutation testing 

among drug naïve patients (WHO, 2006). However several limitations are recognized with 

genotypic resistance assays. First, there is the general difficulty in predicting clinical outcomes 

entirely based on algorithms. Secondly, there is the difficulty in assessing viral strains due to the 

heterogeneity of the viral genome of an infected patient (Hirsch et al., 2008). This normally leads 

to the production of patient derived viral chromatographs that are difficult to interpret. Since 

most tests have been based on B-subtypes, non-B and C subtypes pose some difficulty in 

interpreting mutations that affect drug susceptibility (Hirsch et al., 2008). There is also the 
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difficulty of detection when HIV viral load is low. Recently however, some groups have 

demonstrated the ability to do resistance testing with viral loads less than 1000 copies /ml of 

plasma with a significant success rate below 50 copies/ml of plasma (Gonzalez-Serna et al., 

2014; Santoro et al., 2014). 

1.8.2 New trends in drug resistance assays 

Besides standard phenotypic and genotypic assays, other assays are used for viral 

fitness tests. They include allele-specific PCR assays, ultra-deep and single genome sequencing. 

These assays are used to investigate minority variants with mutations that are hard to detect by 

standard approaches (Hirsch et al., 2008).  

1.8.2.1  Deep sequencing 

Population based Sanger sequencing has been the standard method that has been used 

in DNA sequencing over the past decades but in recent times next generation or deep sequencing 

is revolutionizing the field of genomics including clinical virology (Gibson et al., 2014; 

Quinones-Mateu et al., 2014). 

During Sanger sequencing, the DNA template is only read once, thus increasing the 

chances of errors within the growing nucleotide sequence and also making it difficult to 

differentiate single nucleotide polymorphisms from resistant mutations (Chabria et al., 2014). 

Other limitations of Sanger sequencing includes inability to read minority strains less than 20% 

of viral quasi species (Chabria et al., 2014). It is known that minority variants gain fitness in the 

presence of drugs and can become dominant and therefore, knowledge of such variants is 

important for clinical practice (Chabria et al., 2014). 

Deep sequencing employs next generation sequencing (NGS) strategies that allow 

multiple reading of a single nucleotide in the DNA sequence and thus increase the precision (Fox 

et al., 2014). In the clinical virology settings, when it comes to dealing with minority variants in 

DRMs, deep sequencing techniques, allow for reading of sequences of minority variants as low 

as 0.5-1% in the viral quasi species (Gibson et al., 2014; Quinones-Mateu et al., 2014).  In deep 

sequencing the average number of times a nucleotide is read is referred to as coverage (Sims et 

al., 2014).  Various platforms have been developed for deep sequencing using specific methods 
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however; they all employ the use of reverse transcription of viral RNA and PCR in order to 

generate amplicons for sequencing. Multiple primers ad adapters are used in order to capture all 

the sequences. Examples of NGS platforms currently in use include Roche, Illumina ad Ion 

Torrent (Chabria et al., 2014). Deep sequencing however has some drawbacks including the use 

of different primer pairs that can result in a distortion in the composition of the viral quasi 

species as primer efficiency could vary (Chabria et al., 2014; Jabara et al., 2011) and the 

occurrence of PCR recombinants that result in false strain identification (Chabria et al., 2014; 

Jabara et al., 2011; Kozal et al., 2011).  

1.9 Comparing HIV proviral DNA and RNA for mutations 

During HIV treatment, the selective pressure on the virus quasispecies results in 

selection of resistant mutations (Nikolenko et al., 2011). The mutations are generally measured 

in the viral RNA, which is mainly extracellular. However while mutations occurring in 

intracellular DNA may be similar to the RNA forms, discordance has been shown to exist 

between them as well (Banks et al., 2012). In resource poor countries however, DNA analysis for 

mutation may be cheaper to undertake in comparison to RNA (Banks et al., 2012). Some studies 

have shown that proviral DNA may differ in mutations compared to RNA. One reason for 

possible disparities is the difference in turnover rates (Banks et al., 2012; Delaugerre et al., 

2012). In one study done in Zimbabwe, discordance between viral RNA and DNA drug 

resistance mutations were reported for PIs, NRTIs and NNRTIs (Banks et al., 2012). On the 

other hand, a high concordance between viral RNA and DNA has been reported in several 

studies (Ferrer et al., 2013; Mayers et al., 1998). 

1.10  Therapeutic goals and treatment outcomes during HIV 

management 

The primary goal of current HIV treatment is to reduce viral load of patients to below 

detectable levels (Okulicz et al., 2014) and restore immune function (Okulicz et al., 2014) 

although efforts are being made to completely eradicate the virus (de Mendoza et al., 2014) or 

attain cure based on prevention of reservoir development or viral endogenization (Ananworanich 
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et al., 2015; Colson et al., 2014). Also treatment and prevention of opportunistic infections and 

improvement of overall quality of life are important aims of the management of HIV/AIDS 

patients (Dybul et al., 2002).  

Although the mainstay of clinical management of HIV is antiretroviral therapy, a 

critical issue has been the optimal time to initiate therapy (Ananworanich et al., 2015; Okulicz et 

al., 2014). Some studies have demonstrated that a short course antiretroviral therapy soon after 

infection may significantly slow disease progression (Ananworanich et al., 2015; Saez-Cirion et 

al., 2013). However there are questions about the benefits of early treatment in the face of 

increasing drug resistance (Maartens et al., 2014). Generally, patients are initiated on ARVs 

when their CD4+ T-cell counts are below 350 cells/µl, however patients with CD4+ T-cell counts 

over 350 cells/µl who show signs of complications of AIDS are started on ARVs (Maartens et 

al., 2014). In spite of the limited scope of trials in early initiation of therapy, the consensus on 

initiation of ARVs is inclined to early initiation of therapy where possible as this has been shown 

to improve and sustain viral load reduction, as well as optimize immune recovery 

(Ananworanich et al., 2015; Okulicz et al., 2014). 

1.10.1  Disease monitoring in HIV  

Monitoring of HIV-1 infection and disease progression is an important part of 

management especially in the current era of ARV. Monitoring disease progression determines 

decision-making, especially the timing of initiation of ARVs or opportunistic infection 

prophylaxis and also when to alter therapy (Laurent et al., 2011). There are several markers that 

have been used over the years to monitor HIV and disease progression but the most widely used 

are plasma viral load and CD4+ T-cell counts (Mellors et al., 1995; Mellors et al., 1997a). 

Besides viral load and CD4+ T-cell counts, there are other surrogate markers for HIV disease 

progression and these include hemoglobin (Ioannidis et al., 2001a), serum albumin, total 

lymphocyte count, liver enzymes (Venkataraman, 2013) and in recent times intracellular viral 

DNA levels (Williams et al., 2014). 
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1.10.2  Response to antiviral drug therapy 

Although drug therapy has significantly revolutionized clinical management of 

HIV/AIDS, the response to therapy can vary in practice (Maartens et al., 2014). A good 

understanding of response to drug therapy and its implications is important for optimal clinical 

management. Given that the goal of therapy is to restore immune response and reduce viral load 

to below detection levels, response to therapy is divided into immune response and virological 

response as well as clinical response (Phillips et al., 2001). While response to drug therapy has 

been associated with time of initiation and baseline CD4+ T-cell counts, no significant 

association has been made between virus subtype and response to therapy (Phillips et al., 2001). 

After initiation of ART, viral load usually reduces to below detection limits for most 

assays. This usually occurs within 3 months of treatment initiation (Maartens et al., 2014). In 

contrast to virological response, immunological response lags behind and is usually achieved 

within 6 months of therapy (Maartens et al., 2014). While virological response is usually 

followed by immunological response during therapy, some proportions of treated patients have a 

discordant response to treatment. In one study, 56% of treated patients had a good virological 

and immunological response, 19% of patients had good virological response with poor 

immunological response and 14.8% had a good immunological response with poor virological 

response (Maartens et al., 2014; Tuboi et al., 2007). 

1.11  Determinants of disease progression 

Determinants of disease progression in HIV-1 infection have been an area of intense 

research due to its importance in clinical practice (Singh and Spector, 2009). Being able to 

predict disease progression can help clinicians tailor management regimes to suit individual 

cases in the hope for successful outcomes of therapy. Factors that determine disease progression 

include those due to viral characteristics, host genetic polymorphisms (Ioannidis et al., 2001b; 

Singh and Spector, 2009) and host immune characteristics (Hogan and Hammer, 2001). The viral 

load prior to therapy has been identified as a key determinant in disease progression (Mellors et 

al., 1997b). The viral load usually assessed is the viral load in plasma. However, it has recently 
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been determined that intracellular viral load may be an important and independent determinant of 

disease progression (Demetriou et al., 2010; Kostrikis et al., 2002b).  

1.12  Transmitted drug resistant mutations and disease progression 

Transmitted drug resistant mutations and disease progression in HIV-1 infection 

remains an area not completely clarified. Some studies have indicated that ART resistance is not 

a major determinant of disease progression and that continued adherence to HAART could still 

be protective in the face of drug resistant mutations (Lucas, 2005; Lucas et al., 2004; Recsky et 

al., 2004). However others studies have indicated a clear correlation between number of resistant 

mutations and virological outcomes (Ledergerber et al., 2004), which presupposes that, 

transmitted drug resistance may increase the risk of virologic failure (Daar and Richman, 2005). 

In 2005, a multi-resistant strain was identified in a New Yorker who progressed rapidly to AIDs, 

however, the prevalence of this strain was found to be low (Blick et al., 2007). Thus far, the role 

of drug resistance on disease progression requires a lot more research in order to clarify its 

relevance clinically. 

In Africa, TDRM have been reported (Price et al., 2011b; WHO, 2012) however, not 

much has been studied on its effect on disease progression. Since Africa bears the brunt of the 

world’s HIV-1 burden, it would be worth determining the effect of resistant mutations on disease 

progression, as it would duly inform clinical practice in the wake of the increasing development 

of mutants. 

1.13  HIV-1 intracellular DNA load and disease progression 

Plasma HIV-1 viral load has been shown to be one of the most important and 

independent determinants of HIV-1 disease progression (Mellors et al., 1995; Mellors et al., 

1996). While the clinically determined viral load is RNA, the form of the virus in the nucleus of 

the cell is DNA (Craigie and Bushman, 2012; Demetriou et al., 2010). HIV-1 IC DNA load is a 

marker associated with the viral reservoir and with the spread of the virus (Parisi et al., 2012). 

Studies in patients with primary HIV-1 infection and advanced HIV-1 disease have demonstrated 

that early levels of HIV-1 IC DNA load prior to initiation of highly active anti-retroviral therapy 

(HAART) in peripheral blood mononuclear cells (PBMC) and in CD4+T -cells have a predictive 
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value for long-term virological outcome and for disease progression, independently of CD4+ T-

cell counts and plasma viral RNA load (Russell et al., 2001; Saitoh et al., 2002; Verhofstede et 

al., 1994). Recently, Williams et al showed that HIV-1 intracellular viral DNA may even be a 

better predictor of disease progression than plasma RNA viral load (Williams et al., 2014). 

Thus far, the factors that determine HIV-1 IC DNA levels are not well understood. In a 

recent study conducted in a cohort of newly diagnosed Europeans with HIV infection, it was 

found that the resistant viral strains did not have any correlation with HIV-1 intracellular viral 

DNA load prior to initiation of treatment as compared to non-resistant viral strains (Demetriou et 

al., 2010). 

1.14  Therapy failure with HAART   

The WHO defines treatment failure by plasma viral load and CD4+ T-cell count 

decline (Hirnschall et al., 2013). According to the WHO, HIV viral load monitoring is the 

preferred approach for assessing response to treatment and treatment failure (Hirnschall et al., 

2013). Two parameters are defined with respect to changes in viral load following initiation of 

therapy. Viral suppression refers to a reduction in viral load below detection for the assay, 

usually below 50 copies cells/ml of plasma however, virologic failure is said to have occurred 

when viral load persistently remains above 1000 copies cells/ml of plasma after 6 months of 

ART (WHO, 2013a). While immunological response and clinical outcomes may be used for 

complementing viral load and monitoring ART success, they have a poor sensitivity and positive 

predictive value for identifying virologic failure in adults and children (Hirnschall et al., 2013). 

Where it is impossible to measure viral load during ART, it is also recommended that 

immunological and clinical responses should be used to assess success of therapy (Laurent et al., 

2011; WHO, 2013a). WHO defines immunological failure as CD4+ T-cell counts falling to 

baseline or below or persistent CD4+ T-cell counts below 100 cells/µl of blood (WHO, 2013a) 

and clinical failure represent a new or recurrent event as a result of severs immunological 

dysfunction after 6 months of therapy (WHO, 2013a). 

During treatment with HAART, some patients responding to treatment with 

undetectable viral loads experience a period of low-level detectable viremia, followed by 

suppression of viral replication (Miller et al., 2004). These transient increases in viral load, are 
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referred to as blips (Fidler et al., 2014; Miller et al., 2004). Between 10 to 20 percent of patients 

on HAART experience blips (Fidler et al., 2014; Ibrahim et al., 2012) although up to 90 percent 

has been reported in one study (Nettles et al., 2005). The mechanism of virological blips is not 

clearly understood, however, it has been suggested that changes in immune activation and 

reservoir by stimuli like infections may account for it (Jones and Perelson, 2007). Virological 

blips have been attributed to random biological and statistical variations around mean viral levels 

(Nettles et al., 2005) and not poor adherence to medication (Miller et al., 2004). Virological blips 

are however not predictive for virologic failure (Fidler et al., 2014; Ibrahim et al., 2012; Nettles 

et al., 2005). 

1.15  Overview of HIV in Burkina-Faso 

HIV was first diagnosed in Burkina Faso in 1986 (WHO, 2005). The HIV prevalence 

in Burkina Faso varies widely with high rates in urban centers. A study conducted in urban 

Burkina Faso (Bobo-Dioulasso) reported a prevalence of 5.2% in 2004 (Lagarde et al., 2004). 

However the general prevalence of HIV in adults between the ages of 15 and 49 years is 

generally low, estimated at 1.1% (UNAIDS, 2013b). The predominant strains of HIV in Burkina 

Faso are CRF02_AG and CRF06_cpx although several strains are present (Tebit et al., 2006; 

Tebit et al., 2009).  

Up-scale of HAART was initiated in Burkina Faso in 2003 and this has resulted in an 

increase of individuals on treatment alongside with the development of drug resistant mutations 

in treated and drug naïve patients (Somda et al., 2012; Tebit et al., 2008; Tebit et al., 2009). One 

important contribution to resistance mutation development is the use of nevirapine in the 

prevention of mother to child transmission (Tebit et al., 2006; Tebit et al., 2008).  According to 

Tebit et al, the prevalence of resistance mutations in patients failing therapy was 40% to PIs, 

76% NNRTIs and 85% to NRTIs (Tebit et al., 2008). Several studies have assessed the 

prevalence of DRMs among urban populations in Burkina Faso. Among pregnant women, a 

moderate (5-15%) rate of drug resistance mutations was reported (Somda et al., 2012). Also, 

Tebit et al reported a TDRM rate of 12.5% in a study in Ouagadougou (Tebit et al., 2009). In 

rural Burkina Faso, where the present study was conducted, there has been no study reporting 

TDRM mutations and how it correlates with markers of disease progression. 



           Introduction  

25 

 

1.15.1  Rationale of the study 

The improvement in survival of HIV infected individuals due to the introduction of 

HAART has been a major milestone in the global HIV pandemic. However, new challenges have 

arisen by virtue of the lifelong nature of therapy and the potential for treatment failure due to 

development of drug resistant strains of the virus. Also, there is the need for development of 

more sensitive markers for predicting disease progression in the clinics.  

Plasma HIV RNA load and CD4+ T-cell counts are important determinants of disease 

progression clinically. However in recent times, HIV-1 IC DNA has been shown to be an 

important independent predictor of disease progression (Kostrikis et al., 2002a). The use of HIV-

1 IC DNA could provide an alternative for viral RNA measurements and also can be assessed in 

the case of undetectable RNA levels.  

Although most of the global burden of HIV is in sub-Saharan Africa, studies on 

TDRMs and its implications on HIV-1 IC DNA have only been carried out in developed 

countries. In this study, we assessed the effect of TDRMs on HIV-1 IC DNA levels and the 

utility of HIV-1 IC DNA as a predictor of disease progression in a group HIV infected patients 

from Nouna Burkina Faso in sub-Saharan Africa. 

1.15.2  General objectives 

Using samples from HIV-1 infected patients from Nouna Burkina-Faso, West Africa, 

this study assessed the following: 

1. The predominant DRMs in the protease (PR) and reverse transcriptase 

(RT) region of HIV-1 pol from RNA and DNA templates of treated 

and drug naïve HIV-1 infected patients starting ART.  

2. How TDRMs affect HIV-1 IC DNA levels in HIV-1 infected drug 

naïve patients.  
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3. The correlation between baseline HIV-1 IC DNA levels of infected 

patients and established primary markers of disease progression such 

as plasma RNA viral load, and CD4+ T-cell count as well as other 

indicators associated with disease progression. 
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2 Materials and Methods 

2.1  Materials  

2.1.1 Media and buffers 

Table 1: List of prepared media and buffers used in this study 

 

 

 

 

 

 

 

 

 

 

 

PCRs and Extractions

Tris-EDTA buffer

TaqMan qPCR buffer A

100% glycerol, 2.5% bromphenol blue and 2.5% 
xylene cyanol

with HCl

500 mM KCI, 100 mM Tris-HCI, 0.1 mM EDTA, 
600 nM Passive Reference 1 (Rox dye), pH 8.3 at 
room temperature (solution was autoclaved) 

LB-ampicillin or kanamycin aga
50x TAE buffer 

10x DNA loading buffer 

13 % agar in LB medium
100 µg/ml ampicillin or kanamycin
2 M Tris, 1 M NaAc, 0.1 M EDTA

LB agar 
LB medium 
Bacterial culture Constinuents

1 % peptone, 0.5 % yeast extract, 171 mM NaCl



               Materials and Methods  

28 

 

2.1.2 Commercial reagents kits and instruments 

Table 2: List of commercial kits and consumables used in this study 

Commercial kit or consumable Supplying company   

Viral DNA extraction kit  
QIAmp viral DNA mini kit, Qiagen, Hilden, 
Germany 

Viral RNA extraction kit  
QIAmp viral RNA mini kit, Qiagen, Hilden, 
Germany 

SS III One Step HIFI RT-PCR amplification 
kit  

Life Technologies, Darmstadt, Germany 

Platinum PCR SuperMix Life Technologies, Darmstadt, Germany 

Taq DNA Polymerase with Standard Taq 
Buffer PCR Kit 

Life Technologies, Darmstadt, Germany 

Phusion high fidelity DNA polymerase New England BioLabs, Frankfurt, Germany 
Verbatim high fidelity DNA polymerase 
enzyme  

Life Technologies, Darmstadt, Germany 

Qiaquick PCR purification kit 
 Qiagen, Hilden, Germany 
Nucleospin Extract II kit, Macherey-Nagel, Düren, 
Germany 

Nucleospin Gel and PCR Clean-up kit  Macherey-Nagel, Düren, Germany 
NucleoBond MaxiPrep Kit  Macherey-Nagel, Düren, Germany 

TaqMan PCR Core Reagent with AmpliTaq 
Gold DNA polymerase  

Life Technologies, Darmstadt, Germany 

    
TOPO® TA Cloning® Kit  Life Technologies, Darmstadt, Germany 
DNA LoBind eppendorf tubes 1.5 ml Eppendorf AG, Hambug, Germany 
    

Agencourt AMPure XP PCR purification 
system  

Beckman Coulter, Inc., Beverly, Massachusetts, 
USA 

Quant-iT Picogreen dsDNA reagent and kits  Invitrogen, Life Technologies 

Nextera XT DNA Library Preparation Kit for 
the MiSeq® System 

Illumina, Inc., San Diego, CA,  USA 
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2.1.3 Reagents and chemicals 

Table 3: List of reagents and chemicals used in this study 

Reagents and Chemicals Supplying company 

Agarose Carl Roth, Karlsruhe, Germany  
Ethanol (99%) Sigma-Aldrich, Steinheim, Germany 
Pure glycerol (100%) AppliChem GmbH, Darmstadt, Germany 

Deoxyribonucleoside triphosphate mix 
(dNTP mix)  

Fermentas, Thermo Scientific, Schwerte, 
Germany  

Ampicillin Carl Roth, Karlsruhe, Germany  

Midori Green Advanced DNA stain  
NIPPON Genetics Europe GmbH, Düren, 
Germany  

Kanamycin  Carl Roth, Karlsruhe, Germany 
RNASE Away Life Technologies, Darmstadt, Germany 
DNAZAP Life Technologies, Darmstadt, Germany 

GeneRuler 1kb Plus DNA ladder mix  
Fermentas, Thermo Scientific, Schwerte, 
Germany  

100 bp DNA Ladder New England BioLabs, Frankfurt, Germany 

Nuclease free water  Life Technologies, Darmstadt, Germany 
MiSeq Reagent Kits v2 Illumina, Inc., San Diego, CA, USA 
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2.1.4 Primers and molecular-beacons 

Table 4: List of oligonucleotide primers and molecular-beacons used in this study 

 

Name                 
Target 
region  

Position 
length of 
amplified 
region     

Reference

PCR primers
1832 ( F1 )            pol              1832–1856    1751 Kousiappa et al., 2009

3583 (R1)             pol                3555–3583                                               Kousiappa et al., 2009

2078 (F2)    pol                        2078–2109  1461 Kousiappa et al., 2009
3539 (R2)              pol                3510-3539                                           Kousiappa et al., 2009

BFp1 (F1)             pol                 2324–2347    491 Tebit D.M et al., 2006
BFp4b (R1)          pol               2790–2815      Tebit D.M et al., 2006
BFp3 (F2)            pol               2388–2407   406 Tebit D.M et al., 2006
BFp4c (R2)            pol              2761–2794 Tebit D.M et al., 2006
RT1 (F)                pol                2480-2509   1054 Kanokporn 2009
RT-Rev-Stu1 (R) pol               
                                                  3479-3534                                               1423 Kanokporn 2009
Pol1 (F1)                pol               2111-2132 Kanokporn 2009

Prot-for-EcoRI (F)  pol                2223-2259 1269 Kanokporn 2009

RT4- Rev            pol                3453-3483 Kanokporn 2009
RT3- For              pol                2514-2547   964 Kanokporn 2009
NewF1 pol               2132-2152 1429 This work
NewR1 pol               3537-3561 This work
NewF2 pol               2146-2165 1304 This work
NewR2 pol               3428-3450 This work

Sequence  5 ́-3 ́                                                                                    

CAGCATGYCAGGGAGTRGGRGGACC                                

GGYTCTTGRTAAATTTGATATGTCCATTG                           

TCCCAGAAGTCTTGAGTTCTCTTATT                            
ATGATAGGGGGAATTGGAGG                                               
TTATTGAGTTCTCTGAAATCTACTAATTTTCTCC        

AGGCTAATTTTTTAGGGAARATYTGGCCTTCC                    
CTGTATTTCTGCTAYTAAGTCTTTTGATGG                          

AGACACAGGAGCAGATGATACAGT                                    

TCAAGGGAAGGCCAGGGAATTT                                          
GAGGGACAAGGAATTCTACCCTCCTTTAGCTTCC
CTCAAA
CTTTTAGAATTTCCCTGTTCTCTGCCAATTC                        

AGTAGGACCTACACCTGTCAACATAATTGG                      
TTTCTGCTACTAGGCCTTTTGCTGGGTCATAA-                                                                                                         
TAGACTCCATGTACAGGTTCTTTT                                        

CCGGAACCATCAGCCCCACC
ACTCTGCTTCCTCAGTCAGTGGT

AATATGTTGACTCAGATTGGTTGTACTTTAAAT             
TCCCCCAGAGCAGACCGGAAC
TCCATTGGTCTTGCCCTTGTTTCTG
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Table 4 continued. 

 

F1 and R1 represent forward and reverse primers respectively of the first round PCR reaction and F2 and R2 represent forward and reverse primers respectively 
of the second round PCR reaction. 

  

Name                 
Target 
region  

Position 

2136 (F)            pol               2136–2162                                                
2216 (F)               pol                 2216–2232                                               
2454 (F)              pol                 2454–2475                                                

2610 (R)             pol                 2593–2610                                                

2650 (R)               pol                2621–2650                                                

2734 (R)       pol                 2703–2734                                            

3003 (F)               pol                GGATGGAAAGGATCACC                                                 3003–3019                                               

3019 (R)               pol                GGTGATCCTTTCCATCC                                                             3003–3019                                              

3462 (R)            pol                 CTGCCARTTCTARYTCTGCTTC                                                                             3441–3462                 

CYTTTGGGCCATCCATTC                                                         

AATGCTTTTATTTTYTCTTCTGTCAATGGC                             Kousiappa et al. 2009

Kousiappa et al. 2009

Kousiappa et al. 2009

Kousiappa et al. 2009

Kousiappa et al. 2009

Reference

Kousiappa et al. 2009
Kousiappa et al. 2009

Sequence  5 ́-3 ́                                                                                    

Sequencing primers
 YCAGARCAGACCAGAGCCAACAGCCCC                             
AGGAGCMGAWAGACARG                                                     
GGAMAWAARGCTATAGGTACAG                                       Kousiappa et al. 2009

Kousiappa et al. 2009

GCAAATAYTGGAGTATTRTATGGATTTTCAG                      
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Table 4 continued. 

 

The reporters; FAM and TET stand for fluorescein and Tetrachloro-69-carbofluorescein respectively. The quencher Dabcyl stands for 4-(49-dimethylamino 
phenylazo) benzoic acid. Underlined sequences within the molecular-beacons represent the target recognition sequences within HIV and CCR5. The underlined 
sequences at the 5 ́ and 3 ends represent complementary sequences forming the hairpin. ́ 

  

Name                 
Target 
region  

Position 

MB684  LTR 684–705  

623 For LTR 623–646 
788 Rev                 LTR 765–788  

LK155   CCR5 623–641 

LK46  For         CCR5 478–501 
LK47.new Rev       CCR5 690–713

M13 (F) 

M13 (R)
T3
T7

FAM-
CCGCTGCAAGCCGAGTCCTGCGTCGAGACAGCG
G-Dabcyl 
AAATCTCTAGCAGTGGCGCCCGAA                                        
TCTCTCCTTCTAGCCTCCGCTAGT                                            

TET-GCGCCTATGACAAGCAGCGGCAGGAGGCGC-
Dabcyl                 
GCTGTGTTTGCGTCTCTCCCAGGA                                             

GTAAAACGACGGCCAG

CAGGAAACAGCTATGAC
ATTAACCCTCACTAAAGGGA
TAATACGACTCACTATAGGG

CCR5 quantification molecular-beacons and primers

TOPO TA sequencing primers

Demetriou et al. 2010
Demetriou et al. 2010

Kostrikis et al., unpublished data

Kostrikis et al., unpublished data 
Kostrikis et al., unpublished data

http://tools.lifetechnologies.com/con
tent/sfs/manuals/topotaseq_man.pdf

Reference

Demetriou et al. 2010

HIV-1 quantification molecular-beacons and primers

Sequence  5 ́-3 ́                                                                                    

CACAGCCCTGTGCCTCTTCTTCTCA                                          
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2.1.5 Machines and instruments 

Table 5: List of machines and instruments used in this study 

Machines and Instrumets Supplying company   

Incubators Infors, Einsbach GmbH, Germany 
NanoPhotometer P300  Implen, München, Germany  
Laminar flow Labotect GmbH, Göttingen, Germany 
Gel Running Chambers Minigel-Twin Biometra, Göttingen, Germany 
Tabletop ultracentrifuge TL-100  Beckman Coulter, Fullerton, CA, USA 
Biofuge fresco microcentrifuge  Heraeus, Kleinostheim, Germany 

Centrifuges J2HC or J2HS with rotors JA-10, 
JA-17 and JA-20 

Eppendorf Deutschland, Hamburg, Germany  

PTC-200 PCR Thermo cycler  GMI, Ramsey, MN, USA 

    

Spectrophotometer DU 640 Beckman Coulter, Fullerton, CA, USA 

Computer Monitor and CPU Manufactures   
ABI 7500 real-time PCR system Thermo Scientific, Darmstadt, Germany 
Tabletop ultracentrifuge TL-100 Beckman Coulter, Fullerton, CA, USA 

Abbott RealTime HIV-1 m2000rt viral load 
assay equipment with automated nucleic acid 
extraction station 

Abbott Molecular Inc., Des Plaines, IL, USA   

FLUOstar OPTIMA SP002 BMG  BMG LABTECH, Ortenberg, Germany 

Illumina MiSeq™ Illumina, Inc., San Diego, CA, USA 

 

2.2 Study population 

The study population consisted of 86 HIV-1 infected drug naïve patients originating 

from Nouna Burkina Faso who were mostly followed up either for a period of 48 weeks or 72 

weeks. Eligible patients were identified when HIV infected patients came to the Nouna district 

hospital in Nouna Burkina Faso, for HIV counseling and care. This study was made possible 

through an established collaboration between the Virology Unit of the Department of Infectious 

Diseases of the University Hospital, University of Heidelberg and the Centre de Recherche en 
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Sante de Nouna (CRSN) in Burkina Faso. Blood samples as well as all other clinical and socio-

demographic data were collected within a period of six years. The blood samples were separated 

into plasma and buffy coats. The patients were then followed up and blood samples were 

consecutively collected from January 2009 to August 2010 in Nouna. The longitudinal patient 

samples were collected at 2, 4, 12, 24, 36 and 48 weeks after patients had been put on HAART. 

In a few instances patients were followed up at 68 and 72 weeks post HAART and had their 

blood samples collected. Patients followed over time were on a first line HAART regimen of two 

NRTI (3TC, d4T or AZT, d4T) and 1NNRTI (NVP or EFV).  

2.3 Study design and sample size 

This consisted of two parts, a cross-sectional part, consisting of 86 HIV-1 infected 

drug naïve patients attending the Nouna district hospital in Nouna Burkina Faso whose paired 

templates of DNA and RNA were genotyped and sequenced for the presence of DRMs in the 

protease-reverse transcriptase ((PR/RT) region. This was followed by resolving differences in 

resistance mutations and nucleotides changes within patient cDNA and DNA sequences of the 

same patient with deep sequencing (details are summarized in figure 9). The HIV-1 IC DNA 

levels of all the drug naïve patients were also quantified using a molecular-beacon-real-time 

qPCR assay. The second part was a longitudinal study consisting of 8 patients whose plasma 

samples were genotyped and again sequenced for the presence of DRMs in the PR/RT region of 

HIV-1 over time. The follow-up for DRMs over time was done because these patients did not 

attain virologic suppression at 24 weeks of therapy (see section 2.3.1 for details on sample 

groupings).  

 The CD4+ T-cell counts and plasma viral load of patients prior to initiation of HAART 

and at all-time points during the follow-up period were determined in Burkina Faso, West Africa 

and undetermined plasma viral loads were determined in Heidelberg Germany. 
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Figure 9: Flow chart on genotyping and sequencing of HIV-1 infected samples from Nouna Burkina Faso. 

2.3.1 Sample groupings and characteristics 

Various groups of HIV-1 infected samples were genotyped for the presence of DRMs. 

The first group of samples was paired samples of viral RNA and DNA extracted from plasma 

and buffy coats of 86 drug naïve patient samples and used as starting templates for drug 

resistance genotyping and HIV subtyping. HIV-1 genotyping and sequencing were used to 
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determine the presence of transmitted drug resistance mutations (TDRMs) and to determine 

similarities existing between RNA and DNA template pairs of the same patient. Three patient 

samples were eliminated from the analysis because the sequences were too heterogeneous and 

could not be read. The remaining 83 pairs were used in the analysis. The workflow for the entire 

genotyping and sequencing process is shown in figure 9. 

The second group consisted of 8 selected patient plasma samples followed 

longitudinally over time from the drug naïve stage. These patients had high plasma viral loads (≥ 

1000 copies per ml of plasma) at 24 and/or 48 weeks of antiretroviral therapy (ART). Patients 

with plasma viral loads depicting viral blips due to for example non-adherence to therapy were 

excluded from this group. The additional criteria for the selection of these 8 samples was that the 

patients had plasma samples available for at least two of the following time points 24, 48, 64 and 

72 weeks post ART and a plasma viral load of ≥1000 copies per ml of plasma. The later criterion 

was to enable amplification of a PCR product that could be sequenced. The genotyping and 

sequencing process was the same as indicated in figure 9 except that samples were longitudinal 

samples collected over time. Drug resistance patterns were assessed.  

The third group was made up of retrospective genotyping and sequencing of 5 patient 

plasma samples over all other remaining time points (4, 12 and 36 weeks post ART). These 

patients were selected from the second group above. The criterion for the selection was based on 

the evidence that the patient had major DRMs in RT. This mutation(s) should have either 

persisted at all time points or an additional mutation(s) developing over the course of infection 

from one time point to the other or a mixture of both of the aforementioned scenarios occurring 

simultaneously.  

The fourth and final group comprised of selected drug naïve paired patient samples 

whose RNA and DNA were extracted from plasma and buffy coats respectively and used as 

starting templates in deep sequencing. These deep sequenced samples had two main 

characteristics. Firstly mutations found in the PR/RT region of paired RNA and DNA templates 

from the same patient using traditional Sanger sequencing were differing and secondly aligned 

nucleotide sequence pairs derived from Sanger sequenced paired RNA and DNA as stating 

templates had more than 10 changes. 
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2.4 Ethical clearance 

Ethical clearance was obtained from the Centre de Recherche en Santé de Nouna 

(CRSN), Nouna Burkina Faso and the Virology Unit of the Department of Infectious Diseases of 

the University Hospital, Heidelberg (refer to appendix I and II for samples of the ethical 

clearances). All ethical considerations were strictly adhered to. 

2.5 Informed consent 

Patients who agreed to be part of the study filled informed consent forms before being 

recruited into the study.  

2.6 Questionnaires and clinical data on patients 

Each patient had their clinical and socio-demographic data recorded via laboratory 

diagnosis and interactive sessions respectively. Clinical data obtained included the patient’s HIV 

status, co-infection with Hepatitis B and C (HBV and HCV), presence or absence of secondary 

bacterial or parasitic infections such as candidiasis, tuberculosis, salmonellosis and 

toxoplasmosis, Hb levels, CDC clinical staging of the HIV-1 infection, the type of anti-retoviral 

treatment, body mass index as indicated by the patient’s weight in kilograms and their height 

squared (Beaudrot et al., 2015). The socio-demographic data consisted of age, gender, marital 

status, level of education, number of children, knowledge of the HIV status and possible 

exposure of sexual partner to HAART. 

2.7 Inclusion and exclusion criteria 

All HIV-1 infected drug naïve patients attending the Nouna district hospital in Nouna 

Burkina Faso and were not on any ARTs were included in the study. All patients registered at the 

Nouna district hospital in Nouna Burkina who were already on ARTs were excluded from the 

study. 
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2.8 Viral load and CD4
+
 T-cell count determination 

Patient plasma viral load determination was carried out at the Virology Unit of the 

Center Hospital Universitaire Yalgado Ouedraogo (CHUYO) in Ouagadougou with the Abbott 

RealTime HIV-1 assay with the automated m2000 system (Abbott Molecular Inc., Des Plaines, 

IL, USA) and for those samples where viral load was not determined before being shipped to 

Heidelberg, Germany, viral load was determined by the Abbott RealTime HIV-1 assay with the 

automated m2000 system (Abbott Molecular Inc., Des Plaines, IL, USA) at Virology Unit of the 

Department of Infectious Diseases of the University Hospital, Heidelberg. The CD4+ T-cell 

counts of infected patients were determined from whole blood within 6 hours of sample 

collection with a fluorescence activated cell sorter (FACS) count flow cytometer (Becton 

Dickinson and Company, San Jose, USA).  

2.9 Genomic DNA extraction from buffy coats 

Genomic DNA of drug naïve and selected longitudinal samples were extracted from 

140 µl of each patient buffy coat using the QIAmp DNA Blood Mini kit (Qiagen, Hilden, 

Germany) and eluted twice with 50ul elution buffer following the manufacturer’s instructions. 

DNA quality and quantity was checked for all samples by UV spectrophotometry using 

NanoPhotometer P300 (Implen, München, Germany). DNA concentrations of patient samples 

ranged from 40 ng/µl to 195 ng/µl and were enough for PCR reactions. 

2.10  Viral RNA extraction from plasma 

Viral RNA was extracted from 140ul or 500ul (depending on the plasma viral load) of 

each patient plasma sample using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) 

and eluted twice with 40 µl elution buffer following the manufacturer’s instructions. The quality 

and quantity of viral RNA was checked for all samples with UV spectrophotometry using 

NanoPhotometer P300 (Implen, München, Germany). RNA concentrations of patient samples 

ranged from 33ng/ul to 108ng/ul and were also sufficient for PCR reactions. 
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2.11  Reverse transcriptase polymerase chain reaction and nested 

PCR of viral RNA and genomic DNA samples 

HIV-1 sequences encoding approximately 1461bp of gag (p6) and the pol gene 

consisting of the entire PR region of 99 amino acids (aa) and 2/3 of the RT region (between 312 

to 335 aa) as indicated in figure 10 were amplified from each patient sample by both nested 

polymerase chain reaction (PCR) and RT-PCR, using extracted genomic DNA and viral RNA 

respectively. Predominant genotypic DRMs to antiretroviral drugs (Sage et al. 2010) were 

determined by sequencing of purified PCR amplicons within the pol gene of HIV-1 group M 

strains. The PCRs were performed with primers spanning the p6 of HIV-1 gag, PR and p51 of 

the RT region of the HIV-1 pol gene thus from nucleotide position 2078 to 3539 (see table 4 for 

PCR and sequencing primers and their respective HBX2 positions as well as alternative primers 

used for sequencing and figure 10, for a schematic diagram of the region amplified). The outer 

primers were1832 (F1) and 3583 (R1) corresponding to the HBX2 positions 1832-3583 within 

the HV-1 pol region. The inner primers were 2078 (F2) and 3539 (R2) also corresponding to the 

HBX2 positions 2078- 3539 within the HV-1 pol region (Kousiappa et al., 2009). 

Viral RNA samples were reverse transcribed with the SuperScript III One-Step RT-

PCR System (Life Technologies, Darmstadt, Germany) by following the manufacturer’s 

protocol. The first round RT-PCR amplification mix for HIV-1 gag-pol region was prepared in 

0.5ml PCR Eppendorf tubes (Eppendorf, North America) as follows; 15 µl of 33- 108 ng/µl l of 

viral RNA template, 25 µl of 2x RT-PCR reaction mix, 2 µl of 10 µM/µl outer primer (F1), 2 µl 

of 10 µM/µl outer primer (R1), 1 µl of 5 units SuperScript III RT/ Platinum Taq high fidelity 

enzyme mix and nuclease free water (Life technologies, Darmstadt, Germany) added to make a 

total unit volume of 50 µl. The thermocycling conditions was as follows; one cycle at 52°C for 1 

h, 1 cycle at 94°C for 2 min, 40 cycles at 94°C for 15 s, 52°C for 30 s, 68°C for 2 min, one cycle 

at 68°C for 5 min and 4 °C at infinity (Kousiappa et al., 2009).  

The first round PCR reaction mix for the genomic DNA included approximately 60–

100 ng of patient DNA with 2 µl of 10 µM/µl each forward and reverse outer primers F1 and R1 

(table 4) and 43µl of 1.1X Platinum PCR SuperMix (Life Technologies, Darmstadt, Germany) in 

a 50 µl unit volume. The thermocycling conditions were as follows, one cycle at 94°C for 2 min, 
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45 cycles at 94°C for 20 s, 52°C for 30 s, 72°C for 2 min, and one cycle at 72°C for 10 min 

(Kousiappa et al., 2009). 

The second round PCR reactions of the cDNA and the genomic DNA included 60–100 

ng or 3 µl of amplified patient DNA with 2 µl of 10 µM/µl each forward and reverse inner 

primers F2 and R2 (table 4) and 43µl of 1.1X Platinum PCR SuperMix (Life Technologies, 

Darmstadt, Germany) in a 50 µl unit volume. The thermocycling conditions were as follows, one 

cycle at 94°C for 2 min, 45 cycles at 94°C for 20 s, 52°C for 30 s, 72°C for 2 min, and one cycle 

at 72°C for 10 min (Kousiappa et al., 2009). The Eppendorf Master Cycler (Eppendorf, 

Hamburg, Germany) or the PTC-200 PCR Thermo cycler (GMI, Ramsey, MN, USA) was used 

for all the PCR amplifications. 

 

 

Figure 10: A schematic diagram highlighting the PR/RT of HIV-1 pol from the M group. 

This drawing shows the region genotyped among HIV-1 infected patients and assessed for the presence of 

HIV-1 genotypic drug resistance.(A) Shows the entire HIV genome architecture (as can be seen from the 

GenBank accession number K03455) and the corresponding HXB2 regions shown on the rulers above and 

beneath represent demarcations for each genetic region of the viral genome. The rulers above and beneath 

the viral genome also have segments of 100 base pairs from which the length of each of the regions in the viral 

genome can be estimated. The gag (p6) and pol (PR and p51 RT) regions amplified in all patient derived RNA 

and DNA samples are shaded in grey. (B) This shows the region genotyped in the nested PCR and RT-PCR 

reactions for all patients. The first round PCR primers corresponded to the HXB2 positions1832 and 3583 
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and these were also used as primer names for both the forward (FI: 1832) and reverse (R1: 3583) primers in 

the PCR mix. The second round PCR primers also corresponded to the HXB2 positions 2078 and 3539 and 

these were also the primer names for both the forward (F2: 2078) and reverse (R2: 3539) primers in the PCR 

mix (Demetriou et al., 2010). 

2.11.1  PCR optimizations 

 Ribonucleic acid and DNA PCR reactions for the HIV-1 pol region were set-up with 

in-house protocols as shown in appendix III at 50°C annealing temperatures for both RNA and 

DNA reactions. PCR conditions for the HIV-1 pol region were optimized for cDNA synthesis 

and first round PCR initially with SuperScript™ III One-Step RT-PCR System with Platinum® 

taq polymerase High Fidelity enzyme (Life Technologies, Invitrogen) and components were 

pipetted as indicated in appendix III. Template RNA concentrations were increased by 5 µl for 

each trial as shown in appendix III. Primer sequences were as indicated in the table 4. A nested 

PCR reaction with the verbatim high fidelity DNA polymerase enzyme (Thermo Scientific, 

Darmstadt, Germany) was set-up as indicated in appendix III. The PCR primer sequences for the 

second round reaction are given in table 4 above. The PCR consisted of 40 cycles with 1°C 

increments in annealing temperature of up to 60°C. Upon gel electrophoresis, no PCR band was 

realized although viral load of samples used was ≥ 500,000 copies/ml of plasma. Nested PCR for 

DNA samples were carried out with the same primers pairs and first and second round PCRs 

were done as shown in appendix III, but there were also no PCR bands found on agarose gels. 

Note that only one condition was changed at a time for each round of optimization.  

Upon recommendations from a more experienced lab member who also worked on a 

similar project, primers were changed to the following combinations: cDNA and first round 

synthesis; 2.5 µl of 10 µM/µl each of Pol1 forward and RT-rev-stu1 reverse primers and the 

second round nested PCR reaction contained the same amounts of primer concentrations for 

Prot-for-EcoR1 forward primer and RT4 reverse primer as given in table 4. Nested PCR 

conditions were the same as shown in appendix III. No bands were seen on agarose gel 

photographs. PCR reagents were changed to the phusion high fidelity DNA polymerase (New 

England BioLabs, Frankfurt, Germany) and the same PCR conditions were repeated with the 

same primers and primer concentrations as mentioned above with 10 µl of 5x Phusion high 

fidelity or GC rich buffer but again no bands were seen after taking gel photographs. 
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Polymerase chain reactions were again tried with various primer combinations as 

shown in appendix III using the phusion high fidelity DNA polymerase (New England BioLabs, 

Frankfurt, Germany), the same PCR cycling conditions as described in the paragraph above. This 

procedure also yielded no results. 

Three plasma samples were selected and tried on the ViroSeq HIV-1 Genotyping Kit 

(Abbott GmbH & Company, Wiesbaden, Germany) at the Diagnostic section of the University 

hospital, Heidelberg Germany following the manufacturer’s protocol and amplification was 

sucessful. The experiment therefore proved that patient RNA samples were still viable for PCR 

reactions. In order to preserve patient samples for the actual experiments, 10 plasma samples 

from HIV infected patients from the diagnostic unit of the Heidelberg University Hospital were 

obtained and RNA extractions were done with the   ViroSeq HIV-1 RNA extraction Kit (Abbott 

GmbH & Company, Wiesbaden, Germany) and the QIAamp Viral RNA Mini Kit (Qiagen, 

Hilden, Germany). PCR was again repeated with the  ViroSeq HIV-1 Genotyping Kit which had 

its own primer sets (Abbott GmbH & Company, Wiesbaden, Germany) and the SuperScript™ III 

One-Step RT-PCR System with Platinum® Taq polymerase High Fidelity enzyme (Life 

Technologies, Invitrogen) and the  Phusion High Fidelity DNA Polymerase PCR kit (New 

England BioLabs, Frankfurt, Germany). The ViroSeq protocol worked but the SuperScript RT-

PCR System with the Phusion PCR protocols did not work.  The annealing temperature was at 

55°C for 45 minutes during the cDNA synthesis and at 55°C for 30s for both first and second 

round DNA synthesis. The ViroSeq primers could not be used with my PCR protocol because the 

primer sequences and concentrations were unknown. 

 As a proof of concept, further proceeded by using previously designed primers sets 

that specifically amplify a 400bp region spanning the 5’ end of HIV-1 RT to amplify the Burkina 

Faso samples (Tebit et al., 2006). These primers were tried again on 5 pairs of RNA samples 

extracted with the ViroSeq HIV-1 RNA extraction Kit (Abbott GmbH & Company, Wiesbaden, 

Germany) and the QIAamp Viral RNA Mini Kit. PCRs were performed with the combination of 

the SuperScript RT-PCR System with the Phusion PCR protocols using the same conditions as 

described in the previous paragraph and all 5 pairs of samples were amplified. This suggested 

that the PCR primers used previously were not working and had to be changed. The primers were 

BFp1 for and BFp4b rev were first round primers and BFp3 for and BFp4c rev were second 



         Materials and Methods  

43 

 

round primers (table 4). Although these set of primers worked well, they could not be used to 

amplify the expected region for the purpose of this study. 

New sets of HIV-1 pol primers were designed with the help of Stefan Seitz from the 

Molecular Virology Department of the UniversitätKlinikum, at the Otto Meyerhof Centre in the 

Heidelberg University Hospital. We designed HIV-1 sequences encoding approximately 1300bp 

of gag (p6), PR and about 255 aa in RT. These primers were designed based on consensus 

sequences of an HIV-1 CRF02_AG subtype isolated in 2006 with the GenBank accession 

number AB231895. These primer pairs were namely New F1 and New R1 used in the first round 

PCR reaction and New F2 and New R2 used in the second round PCR reaction. These primers 

were used together with the SuperScript RT-PCR System and Phusion PCR protocols, which 

gave non-specific bands including the band of interest on agarose gel. Gradual 1°C increments of 

annealing temperatures and 30s increments on annealing times did not resolve the problem. 

Activation of PCR reactions at 95°C for 5 min to denature pre-annealed primers, before addition 

of the polymerase also did not resolve the problem. 

Since the protocol described above did not work efficiently, new PCR protocols were 

adapted from Kousiappa et al 2009. The protocol did work along with its published primers 

(table 4) and with minor modifications as described in section 2.11. The amplified region was 

about 1460bp of the HIV-1 pol region.  

2.12  Agarose gel electrophoresis and DNA quantification   

Ten microliters of amplified products were loaded onto ethidium bromide or 0.05% 

midori green (NIPPON Genetics Europe GmbH, Düren, Germany) stained 1.0 % agarose gels in 

1 × TAE buffer (Brody et al, 2004; Sambrook et al, 2001). A 1kb plus molecular weight marker 

(Fermentas, Thermo Scientific, Schwerte, Germany) was always loaded on gels along with PCR 

products, to confirm expected molecular weight of the amplification products which were run at 

90 volts for 45minutes. Gel products were then visualized under a spectrophotometer or a 

transilluminator (Beckman Coulter, Fullerton, CA, USA). If a single distinct band of the 

expected molecular weight was seen in lanes containing patient amplicons, then PCR 

purifications were carried out on the remaining 40 µl of amplified PCR products. On the other 

hand, for instances where non-specific bands were seen along with the expected bands, the 
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remaining 40 µl of amplified PCR products were run again on 1% agarose gels and the expected 

bands were excised from the gel and used in a gel purification assay. DNA concentrations of 

purified products were afterwards quantified by UV absorbance spectrophotometry using the 

NanoPhotometer® P 300 (Implen, München, Germany). 

2.13  Purification and sequencing of amplified PCR products 

Amplified products generated from the second round PCRs were purified using the 

NucleoSpin Extract II PCR clean-up and gel extraction kit (Macherey- Nagel GmbH and Co.KG, 

Dueren, Germany) following the manufacturers protocol. Minor alterations were made to the 

protocol to increase DNA yield. These included centrifuging PCR amplicons for 1 minute at 

11,000rpm and eluting DNA only after heating DNA filled columns having elution buffer 

between 5-8 minutes at 700C. Elution was done twice with 20 µl elution buffer to concentrate 

DNA. DNA concentrations were quantified by UV absorbance spectrophotometry using the 

NanoPhotometer® P 300 (Implen, München, Germany). 

2.14  Sanger sequencing of PCR amplified DNA and cDNA samples 

All purified PCR amplicons of DNA and cDNA were sequenced commercially from 

GATC Biotech (Konstanz, Germany) with the ABI 3130 genetic analyzer (Applied Biosystems, 

Foster City, CA). Briefly, purified second round PCR products containing 1461bps of HIV-1 PR 

and RT were bi-directionally sequenced using the sequencing HIV-1 pol primers annealing at 

HBX2 positions 2454 and 3019 respectively. In PCR amplicons where sequencing could not be 

achieved with the aforementioned primers, pairs of the following alternate gag-pol primers were 

used for sequencing 2136, 2216, 2610, 2650, 2734, 3003, 3462, and 3539 (table 4 and appendix 

VIII). The primer names also represent their annealing positions on the HIV-1 HBX2 template 

DNA sequencing reactions were analyzed with the BigDye Terminator Cycle Sequencing kit 

(Applied Biosystems, Foster City, CA) according to the manufacturer’s recommendations. 

Samples exhibiting partial or extensive viral diversity by direct sequencing were re-sequenced 

twice and if they still remained heterogeneous, the other sequence pair which in all cases was 

successfully sequenced was checked to make sure that they did not contain DRMs or unique 

HIV-1 subtypes before being eliminated from the sequencing analysis. 
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2.15  Determination of drug resistance mutations among HIV 

infected samples over time 

Preceding sequence editing, patient derived HIV-1 PR/RT paired sequences of DNA 

and cDNA, encoding approximately 1461bp of gag (p6) and the pol gene consisting of the entire 

PR and 2/3 of the RT region obtained, were aligned to HIV reference sequences from the HIV 

sequence database (http://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html) using Bioedit 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html). 

In order to identify mutations known to confer resistance to PR/RT inhibitors, the 

PR/RT sequence of each patient sample was analyzed with the Stanford HIV drug-resistance 

algorithm (Rhee et al., 2003). The Stanford HIV drug-resistance algorithm compares the query 

sequence to consensus subtype B reference sequences of HIV that have shown resistance to 

ARTs. The result differences determined between the query sequence and the consensus subtype 

B reference sequences are then used as an input for the assessment DRMs from the database. 

Genotypic drug resistance was defined as the presence of at least one DRM affecting the drug  of 

any class of ARD as given by the Stanford HIV Drug Resistance database (Shafer, 2006) and the 

International AIDS Society (Avila-Rios et al.)-USA database(Johnson.VA et al., 2013). 

Analyses of the possible impact of DRMs on therapeutic response among drug naive 

patients and selected patients followed over time were assessed using the drug resistance penalty 

score within the Stanford HIV drug-resistance database. This score assigns a mutation penalty to 

DRMs conferring resistance to any particular class of ARDs. The penalty scores for mutations 

within PR or RT conferring resistance to a particular PR or RT inhibitor were then summed up 

for this class of ARV and placed under one of five categories of drug resistance estimates 

defined by the Stanford HIV drug-resistance database. The estimates and their interpretations are 

as follows; 

a. A range of 0 to 9 meant the virus was susceptible to the anti-HIV drug and presents no 

evidence of mutation. 

b. A 10 to 14 range denoted potential low-level resistance to the ARV suggesting that the 

virus might have been exposed to the ARV at one point in time. 
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c. An estimate of 15 to 29 was indicative of low-level resistance depicting a reduced in-

vitro drug susceptibility of these virus isolates. Patients infected with viruses in this 

category, are said to portray suboptimal virologic response to ARVs.  

d. A 30 to 59 range showed an intermediate drug resistance level which was greater than 

low-level resistance but lower than high-level resistance 

e. A level >60 depicted the high-level resistance and patients infected with viruses in this 

group, portray virologic failure to ARVs. 

2.15.1  Analysis of HIV-1 drug resistance mutations over time 

Eight patient plasma samples with high plasma viral load values at 24 weeks into 

therapy were selected and RNA was extracted from these samples. A cDNA synthesis was then 

performed and samples were then purified and commercially sequenced by Sanger sequencing. 

Resultant sequences generated from these patient samples were then aligned with wildtype 

reference sequences and edited using sequence chromatographs. DRMs were then determined by 

feeding edited sequences into the Stanford HIV Drug Resistance Database 

(http://hivdb.stanford.edu). In a few instances other expert list like the IAS-USA DRM panel 

(Johnson.VA et al., 2013) was consulted. 

 DRMs were determined for eight patients followed over the time points 24, 48, 64 and 

72 weeks post ART. Since the plasma viral load is important in determining the probability with 

which a given HIV infected plasma sample could be amplified, the plasma viral load of each of 

the eight patient samples available at each time point was ≥1000 copies per ml of plasma (also 

the level generally considered as optimum for amplification of viral cDNA). 

2.16  HIV-1 subtyping by phylogenetic tree analysis 

Patient HIV-1 subtypes were determined from cDNA and DNA templates from the 

Stanford HIV Drug Resistance Database (Shafer, 2006) and then by phylogenetic tree analysis. 

The Molecular Evolution Genetic Analysis (MEGA) software version 6.0 was used to align 

DNA and cDNA sequences from drug naïve patients’ samples, calculate distances, and construct 

phylogenetic trees (Tamura et al., 2007). All patient DNA and cDNA sequences encoding the 
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PR/RT region of HIV-1 pol viral genome were aligned against corresponding reference 

sequences of genetically characterized HIV-1 strains obtained from the Los Alamos database 

(Leitner.T et al., 2005) using the default setting on the MEGA software version 6.0 (Tamura et 

al., 2013). The Kimura two-parameter distance estimation approach with a transition/ 

transversion ratio of 2.0 was used to calculate pairwise distance matrices. Phylogenetic trees 

were then constructed by the neighbor-joining method of the CLUSTAL X programme in the 

MEGA software version 6.0. The consistency of the phylogenetic clustering was tested using 

bootstrap analysis with 1,000 replicates (Felsenstein, 1985). Bootstrap values above 70 were 

considered as enough for subtype designation and subtype designation was re-confirmed with 

subtypes as generated from Stanford HIV Drug Resistance Database output (Shafer, 2006). 

2.17  Comparison of RNA- and DNA-associated pol sequences 

HIV-1 pol nucleotide sequences derived from plasma viral RNA and DNA and 

covering the PR/RT region were compared to determine similarities existing between the two 

templates. These sequences were analyzed in the positions known to confer resistance to  ARDs 

within the PR and RT regions of HIV-1, in order to establish whether genotypic drug resistance 

testing on the two types of sequences showed marked differences or remained the same. 

2.18  Deep sequencing of drug naïve patient plasma samples 

Polymerase chain reaction amplicons spanning the PR/RT of the HIV-1 pol region 

were generated from thirteen drug naïve paired patients RNA and DNA templates by RT-PCR 

and direct PCR respectively. Amplicon generation, gel electrophoresis, purification and 

quantification protocols used were the same as already described in sections 2.11-2.13. The 

primer sets used were also the same. The thirteen patients either had differences in DRMs within 

paired samples of their viral DNA and RNA derived sequences or ten or more differences within 

aligned nucleotide sequence pairs of RNA and DNA templates or had both differences in DRMs 

and aligned nucleotide sequence pairs of RNA and DNA templates. 

Polymerase chain reaction products of all thirteen patients were then sent to the 

Institute of Immunology and Genetics, a commercial deep sequencing facility in Kaiserslautern, 

Germany where we purified the PCR products using the Agencourt AMPure XP PCR 
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purification system (Beckman Coulter, Inc., Beverly, Massachusetts, USA), which makes use of 

paramagnetic beads. The DNA was quantified with Quant-iT Picogreen dsDNA reagent and kits 

(Invitrogen, Life Technologies) using FLUOstar OPTIMA SP002 (BMG LABTECH, Ortenberg, 

Germany). The Picogreen kit includes a plasmid standard whose concentrations were used in 

determining the concentrations of the unknown PCR amplicons. After the quantifications, PCR 

amplicons were diluted and 1 ng DNA from each sample was used in generating DNA libraries. 

The Nextera DNA library preparation kit was used for generating DNA libraries by following the 

manufacturer’s protocol (Illumina, Inc., San Diego, CA, USA). Shortly, DNA amplicons were 

fragmented into approximately 250bp at 55°C for 5 minutes in a process termed tagmentation. 

Unique index primers and adapters were then added in a short cycle PCR (12 cycles), a process 

termed barcoding. The process of fragmenting DNA and tagging them with index primers and 

adapters is termed Nextera tagmentation. After tagmentation, the PCR products were again 

purified, followed by normalization of the DNA library. The library for each DNA sample were 

all pooled and sequenced in the Illumina Miseq sequencer (Illumina, Inc., San Diego, CA, USA) 

overnight. Each new read contained both the DNA fragment sequence and the unique barcode. 

Sequencing was completed overnight and sequence data was demultiplexed using an 

in-house bioinformatics pipeline, which sorted out identical sequences, by barcodes. The number 

of reads per sample was around 200,000 and the coverage per nucleotide position was between 

10,000 - 20,000 times. Sequence data was then loaded into the HIV Grade Database (Obermeier 

et al., 2012) for alignments to reference HIV subtype B sequences, generation of consensus 

sequences for each patient sample and identification of DRMs and differences within paired 

nucleotide sequences of RNA and DNA templates. Minority variants in up to 1% of the viral 

quasispecies were determined. 

2.19  Quantification of intracellular HIV-1 DNA load in drug-naïve 

patients samples by molecular-beacon-based real-time PCR  

A molecular-beacon-based real-time PCR assay which had been improved to 

specifically quantify HIV-1 IC DNA that have completed both first and second template 

switches (STS) also called the HIV-1 STS DNA or strong stop DNA was used to quantify HIV-1 

IC DNA levels in all drug naïve patient DNA samples. This assay was adapted from a 
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combination of protocols from Demetriou et al., 2010 and Kostrikis et al., 2002. The general 

procedure for quantifying single sequences with nucleotide-specific molecular beacons and real-

time PCR was used in the assay (Tyagi and Kramer, 1996). Primers used in the real-time PCR 

assays spanned regions from the end of HIV-1 U5 in the LTR region to the region before the gag 

sequence (figure 11). The primers spanned a 165-nucleotide region starting from positions 623 to 

788 in the HXB2 HIV sequence. The target recognition sequence of the molecular-beacon and 

the PCR primers were designed by an exhaustive alignment process of all HIV-1 sequences 

available within the HIV sequence database (Demetriou et al., 2010) to bind to HIV-1 group M 

conserved regions. Table 4 show the primers and the target recognition sequence of the 

molecular-beacon. The HIV-1 real time PCR assay was optimized for in-house detection of all 

HIV-1 IC DNA forms that had undergone both first and second DNA template switches, 

including integrated and unintegrated DNA forms within drug naïve patient DNA samples. 

  

 

Figure 11: Schematic diagram of the HIV-1 IC DNA region quantified from all drug naïve DNA samples.  

(A) Indicates the entire HIV-1 genome architecture showing all gene locations and gene lengths. (B) 

Illustrates the magnified image of the LTR and p24 region of gag thereby detailing the exact region within the 

viral genome, which was targeted in the quantification of HIV-1 IC DNA forms. 

 

                 A 

 

B  
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2.19.1  PCR amplification of HIV-1 intracellular and CCR5 DNA standards 

 Patient derived HIV-1 and CCR5 DNA were PCR amplified to generate PCR 

amplicons for plasmid production. These plasmids were then used as external standards in the 

real-time qPCR amplification of HIV-1 infected drug naïve patients DNA samples. The PCR 

products were generated with HIV-1 and CCR5 DNA amplification primers as indicated in table 

4 above. The PCR amplification reaction conditions per 50 µl reaction mix and thermocycling 

conditions for both HIV-1 and CCR5 DNA were as shown in appendix IV. Electrophoresis of 

PCR amplicons were performed at 100 volts on 2% agarose gels stained with ethidium bromide. 

The expected PCR bands were 165 and 237 nucleotides for HIV-1 and CCR5 DNA (see 

appendix V) were then excised from gel and purified with the NucleoSpin Extract II PCR clean-

up and gel extraction kit (Macherey- Nagel GmbH and Co.KG, Dueren, Germany) by following 

the manufacturers protocol. Amplicons were then used for cloning. 

2.19.2  Cloning and transformation of HIV-1 and CCR5 plasmids into E.coli 

Polymerase chain reaction amplicons of HIV-1 and CCR5 DNA were cloned into a 

pCR 4-TOPO vector obtained from the TOPO TA cloning kit (Invitrogen, Karlsruhe, Germany). 

The cloning reaction was set up according to the manufacturer’s instructions as shown in 

appendix VI for HIV-1 IC DNA and CCR5 DNA. The pCR 4-TOPO plasmid vector (Invitrogen, 

Karlsruhe, Germany) was designed linearized with single 3 ́ deoxythymidine (T) overhangs. On 

the other hand, the Taq DNA polymerase within the PCR reaction mix has a non-template-

dependent terminal transferase activity that adds a single deoxyadenosine (A) to the 3 ́ ends of 

PCR products. This allows efficient ligation of PCR inserts with the linearized TOPO vector in 

the cloning reaction (http://redrecombineering.ncifcrf.gov/Protocols.html). 

 Transformation was carried out by adding 4 µl each of TOPO cloning reaction mix to 

two 50 µl vials of competent E. coli cells which had been thawed on ice and mixed gently. The 

mixtures were incubated on ice for 30 minutes and afterwards heat shocked at 42 °C in a water 

bath for 30s. The mixtures were then immediately cooled on ice for 2 minutes and cultured in 1 

ml antibiotic-free LB medium for an hour in a 37°C incubator. Afterwards different 

concentrations of the mixture (20-50 µl) were streaked on pre-warmed LB-agar plates containing 
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50 µg/ml of selection antibiotics. The plates were subsequently incubated overnight at 37°C. 

Single colonies of eight to ten suspected to have the plasmid inserts of each sample, were 

selected and sub-cultured in 6 ml of LB medium containing 50 µg/ml of selection antibiotics 

overnight at 37°C overnight. Plasmid DNA was then extracted from 6 ml of these sub-cultures 

containing single or pure bacteria colonies using the QIAprep Spin MiniPrep kit (QIAGEN, 

Hilden, Germany) and extracted DNA were confirmed for expected HIV-1 or CCR5 DNA 

plasmid insert via sequencing with the TOPO TA sequencing primers (table 4) at the GATC 

Biotech (Konstanz, Germany). This was then followed with a second overnight sub-culture of 

0.5ml pure colonies containing the required insert, at 37°C overnight in 400 ml of LB medium 

containing selection antibiotics.  DNA extraction of cultures containing the plasmid insert were 

performed using QIAprep Spin MaxiPrep kit (QIAGEN, Hilden, Germany) to generate large 

volumes of the plasmids to serve as external standards in the real-time qPCR reactions. Plasmid 

DNA was suspended in Tris-EDTA (TE) buffer (components of the buffer are indicated in table 

1) and stored at -20°C. Table 6 and 7 show the plasmid DNA inserts for HIV-1 and CCR5 

sequence lengths (165 nucleotides and 237 nucleotides respectively) and the HBX2 locations of 

both inserts.  

Table 6: Query sequence of patient HIV-1 intracellular DNA inserted into a topo vector 

 

Table 7: Sequence of patient CCR5 amplicon inserted into a topo vector 

 

Generated from http://www.hiv.lanl.gov/content/sequence/QUICK_ALIGNv2/QuickAlign.html 

 

Patient Derived HIV IC DNA 
Sequence inserted Into Topo

TCTCTCCTTCTAGCCTCCGCTAGtCAAAAATTTCTTGGCGTACTCACCGG 
TCGCCGCTCTCGCCTCTTGCTGTGTGCACCTCAGCAAGCCGAGTCCTGCG 
TCGAGAGAACTTCTCTGGAACTTTCGCTTTCGAGTCCTTATTAACTTTCA 
CTTTCGGGTCCCTGTTCGGGCGCCACTGCTAGAGATTT

Query Length: 165

HXB2 Location: genome: 623←788 reverse complement

Patient Derived HIV IC DNA 
Sequence inserted Into Topo

TCTCTCCTTCTAGCCTCCGCTAGtCAAAAATTTCTTGGCGTACTCACCGG 
TCGCCGCTCTCGCCTCTTGCTGTGTGCACCTCAGCAAGCCGAGTCCTGCG 
TCGAGAGAACTTCTCTGGAACTTTCGCTTTCGAGTCCTTATTAACTTTCA 
CTTTCGGGTCCCTGTTCGGGCGCCACTGCTAGAGATTT

Query Length: 165

HXB2 Location: genome: 623←788 reverse complement
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2.19.3  Plasmid quantifications and dilutions 

Both the TOPO vector with either the HIV-1 or CCR5 plasmid DNA each consisted of 

3956bp in size. The DNA concentrations of the plasmid HIV-1 and CCR5 DNA were 2268 ng/ul 

and 2638 ng/ul respectively. Plasmid DNA concentrations were quantified with the 

NanoPhotometer® P 300 (Implen, München, Germany).  The DNA copy number per unit 

volume for each standard was calculated using the respective DNA concentrations measured. 

Tenfold serial dilutions of the HIV-1 and CCR5 plasmid DNA with a dynamic range of 101- 106 

and 103- 107 DNA copies respectively, were freshly prepared and used for real-time qPCR. Low 

copy number DNA was maintained by using low DNA binding Eppendorf tubes for the 

dilutions, to ensure the highest recovery of DNA over time. Low CCR5 DNA copy numbers 

(101-102) could not be amplified. 

2.19.4  Generation of HIV-1 and CCR5 standard curves with real-time PCR  

Each real-time qPCR standard was carried out in triplicates in a 96 well plate. For the 

HIV-1 DNA standard, Each 50 µl real-time PCR mix consisted of 0.5 to 5.0µg of genomic DNA, 

0.5 µl of 10 µM/µl HIV-1 MB684 molecular beacon, 2.5 µl of 10 µM/µl forward and reverse 

primers each, 10 mM dATP, 10 mM dCTP, 10 mM dGTP, 20 mM dTUP, 0.5 µl of 5 U/µl of 

AmpliTaq Gold DNA polymerase (Life Technologies, Darmstadt, Germany), 7 µl of 25mM 

MgCl2, 5 µl of 10X TaqMan qPCR Buffer A (table 1 gives the constituents of the buffer).  PCR 

grade water was added to the mix to make it up to 50µl per unit volume. The thermocycling 

conditions were set as follows; one cycle of denaturation (95°C for 10 minutes), followed by 40 

cycles of amplification (denaturation at 95°C for 15 s, annealing and data collection at 62°C for 1 

min, and polymerization at 72°C for 30 s in an ABI 7500 real-time spectrofluorometric thermal 

cycler (Thermo Scientific, Darmstadt, Germany). The molecular beacon had the FAM reporter 

and the quencher dabcyl. The target recognition sequence and primers are given in table 4. 

The CCR5 DNA standard was generated for each 50 µl real-time PCR mix with the 

same reaction conditions as specified for the HIV-1 DNA qPCR with a further addition of the 

0.50 µl of 1 U/µl of AmpErase Uracil-N-glycosylase to prevent amplification of dU- 

contaminating PCR products. The primers and the CCR5 molecular beacon containing the target 
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recognition sequence are listed in table 4.  Also the thermocycling was carried out as follows; 

One incubation cycle for the Uracil-N-glycosylase (50°C for 2 minutes) and one cycle of 

denaturation at 95°C for 10 minutes, followed by 40 cycles of amplification as follows 

denaturation at 95°C for 15 s, annealing at 60°C for 1 min in an ABI 7500 real-time 

spectrofluorometric thermal cycler (Thermo Scientific, Darmstadt, Germany). Data was collected 

at all amplification stages and there was no polymerization cycle. Fluorescence emission was 

subsequently recorded at 521nm during the data-collection stage of each qPCR cycle.  

HIV-1 and CCR5 standard curves were generated by constructing a scatter plot of 

known CCR5 and HIV-1 copies against the cycle threshold of each dilution point (Microsoft 

excel software 2010). The slope and co-efficient of determination R2 of each of the two standard 

curves was calculated based on the equation of a straight line (CT=mx+b), where m and b 

represents the slope and intercept of the straight line respectively, x represents the independent 

variable and CT the dependent variable. The PCR efficiency, E, of the experimentally derived 

standards was computed from the equation, E = (10-1/slope-1).  

2.19.5  Assessment of target specific binding to the HIV DNA template 

 The specific binding of HIV-1 DNA primers and molecular-beacons to the HIV-1 

DNA template from the patient DNA samples was determined by using 10ul µl of 96 ng/µl of a 

non-template control (NTC) human HIV negative sample diluted in 90 ul of TE buffer and 

serially like the HIV-1 plasmid DNA standard. In this assay three experimental set-ups were 

made. The first consisted of qPCR mixes having the NTC and the HIV plasmid DNA template in 

the same qPCR mix per unit reaction. The dilution factor for both the HIV plasmid DNA and the 

NTC were the same. The qPCR mixes and thermocycling conditions were performed in the same 

manner as in the HIV plasmid DNA standard generation (section 2.19.4). Six dilutions points 

were setup with a dynamic range from 101 to 106 of HIV-1 DNA copies and for each dilution 

point, an NTC of the same dilution was added. The dilution points were set-up in triplicates. The 

second set-up consisted of the HIV-1 plasmid DNA only with a dynamic range from 101 to 106 

also done in triplicates. The third reaction comprised of the human HIV negative control only, 

having again a dynamic range from a 1 in 10 dilution point to a 1 in 1000000 dilution point for 

each triplicate reaction. The three qPCR set-ups were run simultaneously on a 96 well plate. 
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2.19.6  Quantification of HIV-1 intracellular DNA levels in drug naïve patients   

DNA samples  

Quantification of HIV-1 IC DNA of all drug naïve genomic DNA samples extracted 

from buffy coats was achieved with two molecular-beacon-based real-time qPCR assays. PCRs 

were carried out in triplicate in 96 well plates for the absolute quantification of CCR5 DNA 

copies and HIV-1 IC DNA copies for each patient sample, as described above.  For each 96 well 

plate run, HIV-1 and human CCR5 DNA standard curves were also run alongside in triplicate 

using six serial dilution points as described above. Each 50 µl qPCR mix and thermocycling 

conditions were done as described in generating the standards. Each experimental qPCR output 

was assessed based on its own standard curve results. The co-efficient of determination (R2) of 

each standard curve was determined by the slope and the intercept. For each patient DNA 

sample, the threshold cycles obtained from either the HIV-1 IC DNA or CCR5 qPCR were used 

to determine the HIV-1 IC DNA copies or the human CCR5 copy number. The HIV-1 IC DNA 

load was then defined as the number of HIV-1 IC DNA copies per one million cells. Cell 

numbers for each patient sample were obtained from the human CCR5 qPCR because it is 

already known that the CCR5 gene, exist as two copies in a cell. 

2.20  Optimizations of absolute real-time quantitative PCR reactions 

2.20.1  Optimizations of HIV-1 intracellular DNA quantification protocol 

In order to quantify HIV-1 IC DNA from genomic DNA samples of infected drug 

naïve patients, an absolute qPCR reaction protocol employing the use of molecular beacons was 

optimized to specifically quantify HIV-1 IC DNA that has completed both first and second 

template switches. 

2.20.1.1 Quantification of HIV-1 intracellular DNA with the platinum qPCR SuperMix 

Standards were prepared with pCHIV transformed into E.coli, cultured and plasmid 

purified from pure cultures. Known plasmid concentrations of 106-101 pCHIV DNA copies were 

amplified with the platinum qPCR SuperMix at an annealing and data collection temperature of 
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55°C. The resultant amplifications (106-105) copies were non-specific and the other standard 

points gave no amplification. 

 A patient derived HIV-1 DNA plasmid was generated from PCR amplicons using the 

HIV-1 DNA primers, which were also used in the quantification of HIV-1 IC DNA. The qPCR 

reactions were performed with the platinum qPCR SuperMix-UDG (Life Technologies, 

Darmstadt, Germany) in the ABI 7500 real-time spectrofluorometric thermal cycler (Thermo 

Scientific, Darmstadt, Germany). Each reaction mix consisted of a total volume of 25 µl, 

containing 5 µl of extracted genomic DNA, 1 µl of 20 pmol/µl each of forward and reverse 

primer, 12.5 µl of 1X Platinum quantitative qPCR Supermix-UDG (Invitrogen, Carlsbad, CA, 

USA), 1 µl of 6 pmol/µl of the HIV DNA molecular-beacon (MB684) and 4.5 µl of nuclease free 

water. The cycling conditions were as follows: one incubation cycle at 50°C for 2 minutes, 

followed by one cycle of denaturation at 95°C for 10 min and 50 cycles of amplification 

consisting of a denaturation at 95°C for 15 s, annealing and data collection at 55°C for 30 s 

(annealing temperature was increased by 1°C at a time until an annealing temperature of 62°C 

was reached and annealing time was also increased to 1 min), polymerization was set at 72°C for 

30 s. Specific amplifications were seen for 106-103 HIV-1 DNA copies at an annealing 

temperature of 60°C for 1minute and the other two standard points gave non-specific 

amplification. 

2.20.1.2 Quantification of HIV-1 intracellular DNA with AmpliTaq Gold DNA polymerase 

Patient derived HIV-1 DNA plasmid was used again as a standard for the absolute 

quantification of HIV-1 DNA copies using a molecular-beacons designed to hybridize with the 

HIV-1 templates in the M group (Demetriou et al., 2010). The dynamic range of the standard 

was 106-101 HIV-1 DNA copies. The 50 µl reaction mix per unit was prepared for the qPCR 

with AmpliTaq Gold DNA Polymerase (Life Technologies, Darmstadt, Germany). All reactions 

were carried out in triplicates in 96 well plates and sealed with qPCR plate sealers. In the initial 

set of reactions, each 50 µl mix included 10 µl of genomic DNA, 0.5 µl of 10 µM/µl HIV-1 

MB684, 2.5 µl of 10 µM/µl forward and reverse primers each, 0.5 µl of 25 mM dNTPs, 7 µl of 

25mM MgCl2, 5 µl of 10X TaqMan qPCR Buffer A (table 1 gives the constituents of the buffer).  

Nuclease free water was added to the mix to add up to 50µl volume. The thermocycling 

conditions were set as follows; one cycle of denaturation (95°C for 10 min), followed by 40 
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cycles of amplification (denaturation at 95°C for 15 s, annealing and data collection was set at 

55°C for 1 min and increased gradually by 1°C in each experimental set-up to 62°C but the 

annealing time was kept constant. Extension was set at 72°C for 30. The ABI 7500 real-time 

spectrofluorometric thermal cycler (Thermo Scientific, Darmstadt, Germany) was used for all the 

HIV-1 DNA quantification reactions. Five dilution points (106-102 HIV-1 DNA copies) were 

quantified and the co-efficient of determination achieved was 0.95 which was lower than the co-

efficient (0.99) achieved by Demetriou et al. 2010 and Kostrikis et al. 2002 and also the PCR 

efficiency achieved was above 100%.   

In order to improve the qPCR efficiency and also quantify 10 copies of HIV-1 DNA, 

efficiently, the dNTPs was changed to single dNTPs and qPCR mix was prepared as already 

described in section 2.19.4 with the same thermocycling conditions. The annealing temperature 

was adjusted as well from 60°C to 62°C and the best results were obtained at the 62°C annealing 

temperature. All HIV-1 DNA dilution points (106-101 copies) were efficiently quantified with 

these conditions. 

2.20.2  Optimizations of human CCR5 DNA quantification protocol 

To quantify the numbers of cell input in the HIV-1 DNA, a molecular-beacon-based 

qPCR, which uses primers flanking the positions 478-623 bp of the human CCR5 gene, was 

used. A patient derived plasmid CCR5 DNA was used as the standard. 

2.20.2.1 CCR5 DNA amplification with the platinum qPCR SuperMix 

 The standard was initially amplified with platinum qPCR SuperMix-UDG (Life 

Technologies, Darmstadt, Germany).  For the real-time PCR reaction, each 25 µl reaction 

mixture contained 5 µl of extracted genomic DNA, 1 µl of 20 pmol/µl each of forward and 

reverse primer respectively, 12.5 µl of 1X Platinum quantitative qPCR SuperMix-UDG 

(Invitrogen, Carlsbad, CA, USA) and nuclease free water added to make the 25 µl volumes. The 

molecular-beacon (LK155) used in the 25 µl reaction mix was 13 pmol/µl. The cycling 

conditions were the same as in the HIV-1 IC DNA reaction and performed in ABI 7500 real-time 

spectrofluorometric thermal cycler (Thermo Scientific, Darmstadt, Germany). Data was collected 
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at 55 °C for 30s and in the repeat experiment data was collected at 55 °C for 1 min. Annealing 

temperature was increased by 1°C at a time, keeping all other conditions constant until an 

annealing temperature of 62°C was reached. The FAM and JOE fluorescence emission 

wavelengths 518 nm and 548 nm respectively were used instead of the TET filter (emission 

wavelength 538 nm) which is the reporter dye for the CCR5 molecular-beacon. The reason was 

that the ABI 7500 real-time spectrofluorometric thermal cycler does not have the TET filter. 

Amplification at 50 cycles gave non-specific bands. Quantitative PCR was again tried in the ABI 

480 real-time spectrofluorometric light cycler (Thermo Scientific, Darmstadt, Germany). The 

higher standard points from 106-104 CCR5 copies had non-specific amplification with varied 

CTs within each standard point and the lower standard points (103-101 copies) showed no 

amplification. Experiments were repeated twice and results were the same. Standards were 

afterwards prepared from 108-103 CCR5 copies and specific amplification was detected for 108-

107 CCR5 copies only. 

2.20.2.2 CCR5 DNA amplification with AmpliTaq gold DNA polymerase 

The CCR5 plasmid standards (108-103 CCR5 copies) were again amplified with the 

AmpliTaq Gold DNA Polymerase (Life Technologies, Darmstadt, Germany). The 50 µl reaction 

mix was performed as described in section 2.19.4 and thermal cycling conditions were also the 

same with no incubation cycle for the Uracil-N-glycosylase because the reaction mix did not 

contain this enzyme. The qPCR was run in the ABI 7500 real-time spectrofluorometric thermal 

cycler and also in the ABI 480 real-time spectrofluorometric light cycler (Thermo Scientific, 

Darmstadt, Germany). At the 62°C annealing temperature, three standard points were 

specifically amplified from 108-106 CCR5 copies.  Amplification products were run on 2% 

agarose gels at each run to detect the presence of specific and non-specific bands. Keeping qPCR 

reaction mix and reaction conditions the same the experiments were repeated using the ABI 7900 

HT real-time spectrofluorometric thermal cycler (Thermo Scientific, Darmstadt, Germany) 

which has the TET reporter. Data was collected at 62°C annealing temperature. Amplification 

products obtained were non-specific at all data points. A 0.50 µl of 1 U/µl of AmpErase Uracil-

N-glycosylase and the additional 50°C incubation step was added and data again collected at the 

annealing temperature and again non- specific amplifications were obtained.  
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The next round of amplifications were carried out at an annealing temperature of 60°C 

for 1 min in the ABI 7900 HT real-time spectrofluorometric thermal cycler (Thermo Scientific, 

Darmstadt, Germany) and data collection was performed at all thermal cycling points. There was 

no polymerization step added. These conditions eventually gave specific amplifications of 108-

103 CCR5 copies and this was used to quantify and the external standards were also used to 

measure the unknown CCR5 DNA copies of patients. 

2.21  Statistical analysis  

The Stanford HIV drug resistance algorithm was used to determine TDRM having an 

effect on HIV drug susceptibility for a particular class of ARVs. TDRMs to RT and PR 

inhibitors were displayed in percentages. The prevalence of transmitted resistance was 

determined with the Wilson score interval at 95% confidence interval (CI). A bar chart was used 

to display the distribution of HIV-1 IC DNA or HIV-1 STS DNA load among HIV-1 infected 

drug naïve patients. Descriptive statistics of median and interquartile ranges (IQR) were used for 

displaying HIV-1 IC DNA load/106 cells, plasma viral RNA load/ml of plasma, CD4+ T-cell 

count/ml of blood and other relevant clinical parameters among infected patients. Pearson’s 

correlation coefficient at 95% CI was used to evaluate the associations between HIV-1 IC DNA 

levels, plasma HIV-1 viral RNA levels and CD4+ T-cell counts. The Mann-Whitney test at 95% 

CI, was used to compare HIV-1 IC DNA load, plasma HIV-1 viral RNA load, CD4+ T-cell 

counts and all other clinical parameters among drug resistant and drug sensitive patients. A one-

way ANOVA was used to demonstrate the association between age of patients and HIV-1 IC 

DNA load. Consequently the HIV-1 IC DNA levels among predominant HIV-1 subtypes 

depicted by analysis done with the Kruskal-Wallis test and the Bartlett's test for equal variances 

were also displayed. All statistical analysis were done with Microsoft excel 2010 or with the 

GraphPad Prism version 6.00 (Graph Pad Inc., San Diego, California, USA) softwares. 
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3 Results 

3.1 HIV-1 infected patient demographics and clinical parameters 

 This section describes the characteristics of all drug naïve patients from Nouna 

Burkina Faso recruited for this study. The drug naïve HIV-1 infected patients consisted of  61 

(71%) females, 24 (28%) males and 1(1%) with unknown gender. The median ages of females 

34 (30–41) and males 42 (34.25–48.00) were significantly different (p=0.0076). The median 

log10 plasma viral load and the CD4+ T-cell count for all drug naïve patients were 5.757 copies 

per ml of plasma and 5.301 cells per ml of blood respectively. The total number of patients with 

records on the presence or absence of secondary bacterial infections was 60 and the remaining 26 

had no records on their infection status. Among the 60 patients with infection history, 34 

harboured secondary bacterial infections and the remaining 26 had no bacterial infections. None 

of the patients had secondary parasitic infections. Sixty-one patients had data on HBV co-

infection status and the remaining 25 had no records. Among these 61 patients, those harbouring 

HBV as a co-infection with HIV-1 were six and those without HBV co-infection were 55. Fifty- 

five males and females had records on their Hb levels while the remaining 31 patients had no 

history on Hb levels. The median Hb levels for males and females were 11.7g/dl and 10.25g/dl 

respectively. With respect to the Centers for Disease Control and Prevention (CDC) classification 

system for HIV infection, 57 patients had their respective clinical staging categories recorded 

and per the record, a majority of patients 56 were within CDC category B and 1 patient was 

within the CDC category A. The remaining 29 patients had no records on their clinical staging 

status. Table 8 describes demographics and clinical characteristics of HIV-1 infected patients in 

this study.  
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Table 8: Baseline characteristic details of drug naïve patients attending the Nouna District hospital in Nouna 

Burkina Faso 

The Mann Whitney t-test for unpaired data was used to estimate the median and IQR. Abbreviations IQR represent 
Interquartile Range; CDC represents the Centers for Disease Control and Prevention 

 Drug NaïvePatients 

Number of patients (n=86, median age in years, IQR) 35 (30–43) 
Females {n=61 (71 %), median age in years, IQR}  34 (30–41)  
Males {n= 24 (28%), median age in years, IQR}  42 (34–48)  
Unknown gender (n, %)                                                          1 (1) 
Median log10 transformed plasma RNA load in copies per ml of plasma 

(n=86, median, IQR) 

5.76 (4.99 - 6.16) 

Median log10 transformed CD4
+
 T-cell count in cells per ml  (n=86, 

median, IQR) 

 
5.30 (5.08 -5.45) 

Patients’ records on CDC Classification System for HIV Infection CDC-A/B/C (n=57) 
CDC-Category A (n) 1 
CDC-Category B2, B3 (n) 55 
CDC-Category B1 (n) 
Recorded number of patients with infection status (n)  

1 
60 

Presence of Secondary bacterial or parasitic infection (n) 34 
Absence of Secondary bacterial or parasitic infection (n) 26 
Recorded patients’ HBV co-infection status (n) 

Presence of HBV Co-infection (n) 
61 
6 

Absence of HBV Co-infection (n) 55 
Recorded patients BMI in kg/m

2
 (n=58, median, IQR) 17.72 (20.59-15.76) 

BMI Categories:   
Males Underweight, Below 18.5kg/m2 (n=10, median, IQR) 15.87 (14.74-17.41) 
Females Underweight Below 18.5kg/m2  (n=22, median, IQR) 16.18 (14.54-17.28) 
Males Normal Weight, 18.5–24.9kg/m2 (n=4, median, IQR) 22.51 (20.90-23.86) 
Females Normal Weight, 18.5–24.9kg/m2 (n=20, median, IQR)  20.57 (20.36-21.80) 
Overweight Female, 25–29.9kg/m2 (n=1, actual BMI) 26.17 
Obese Female, 30.0kg/m2 and Above (n=1, actual BMI) 35.16 
Recorded patients Hb in g/dl (n=55, median, IQR) 10.60 (9.70-11.80) 
Hb of Males in g/dl (n=15, median, IQR) 11.70 (10.60-12.60) 
Hb of females in g/dl (n=40, median, IQR) 10.25 (9.63-11.23) 
 

3.2 HIV-1 subtyping of drug naïve patient RNA and DNA 

sequences by phylogenetic tree analysis 

In order to determine the HIV-1 subtypes found among drug naïve patients, edited 

patient sequences were fed into the Stanford HIV Drug Resistance Database 
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(http://hivdb.stanford.edu) for subtype determination. Subtypes were again confirmed using 

phylogenetic trees as shown in figures 12A, 12B, 12C, 12D, 12E and 12F. Phylogenetic trees 

were generated with patient RNA and DNA sequences encoding the PR/RT of HIV-1 pol gene. 

The predominant HIV-1 subtype found among patient sequences was CRF02_AG- like viruses. 

These formed 70% (58/83) of the entire patient sequence pool analyzed, CRF06_cpx -like 

viruses were the second abundant group of viruses 14.5% (12/83), the third was CRF01_AE-like 

7.2% (6/83), the fourth virus subtype was G-like viruses 5% (4/83), the fifth subtype was 02_A1- 

like viruses 2.4% (2/83), the sixth and final was subtype D- like viruses 1.0% (1/83). There were 

no major differences between RNA and DNA virus subtypes of the same patient. 
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Figure 12A: Phylogenetic tree from DNA as starting template. See details on pages 67-68.
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Figure 12B: Enlarged 

phylogenetic tree from 1A 

showing CRF02_AG subtypes 

with DNA as starting template. 
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Figure 12C: Enlarged phylogenetic tree from 1A showing all other subtypes apart from CRF02_AG, with DNA as starting template. 
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Figure 12D: Phylogenetic tree from RNA as starting template. See details on pages 67-68. 
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Figure 12E: Enlarged phylogenetic tree from 

1D showing CRF02_AG subtypes with RNA 

as starting template. 
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Figure 12F: Enlarged 

phylogenetic tree from 

1D showing all other 

subtypes apart from 

CRF02_AG, with RNA 

as starting template. 

Figure 122: Neighbor-

joining phylogenetic tree 

comprising of the PR/RT 

region of HIV-1 

sequences from drug 

naïve patients residing in 

Nouna Burkina Faso.  

The trees were generated 

from eighty three viral 

RNA and DNA template 

pairs isolated from the 

same patient. (A) 

Phylogenetic trees from 

DNA as starting 

template. (B) Enlarged 

phylogenetic tree from 

1A showing CRF02_AG 

subtypes. (C) Enlarged 

phylogenetic tree from 

1A showing all other 

subtypes apart from 

CRF02_AG.  

 



                                                                        Results  

68 

 

 (D) Phylogenetic tree from RNA as starting template. (E) Enlarged phylogenetic tree from 1D showing CRF02_AG subtypes. (F) Enlarged phylogenetic 

tree from 1D showing all other subtypes apart from CRF02_AG. Representative reference sequences of HIV-1 subtypes (A–K) and CRF02_AG, 

CRF01_AE and CRF06_cpx indicated as dark shaded circles were included from the National Center for Biotechnology Information (NCBI) database 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) via a megablast for highly similar HIV-1 sequences to the query sequence. Inverted triangles representing 

patient HIV-1 query sequences clustered to various references, which were used to determine the respective subtypes of the query sequences. The 

divergence existing between any two sequences was determined by the sum of the horizontal branch length, using the scale at the lower left. The straight 

lines on the right end of the trees indicate the subtype/CRF clustering. CRF02 AG was the predominant virus subtype in both DNA and cDNA trees. 
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3.3 Genotyping of viral sequences from drug naïve and follow-up 

patients  

3.3.1 Transmitted drug resistance mutations among drug naïve patients and      

further comparisons of viral RNA and DNA templates from the same 

patient  

Genomic RNA and DNA were extracted from plasma and buffy coat samples of 86 

HIV-1 infected drug naïve Burkinabés and used in drug resistance genotyping for the detection 

of TDRMs in the PR/RT region of HIV-1. Among the drug naïve patients, sequence alignment, 

editing and DRM analysis for mutations conferring resistance to HIV-1 was done for 83 paired 

patient derived HIV-1 RNA/DNA sequences out of a total number of 86 sequence pairs. The 

remaining three paired patient sequences were eliminated from the analysis because the sequence 

chromatographs could not be read. 

Seventy-five patients harboured the drug susceptible strain of the virus and these had a 

Wilson’s score mean of 0.91 (91%) and a Wilson's score confidence interval (CI) range of (0.81-

0.95) at 95% CI. The remaining eight patients harboured TDRM that are known to affect drug 

susceptibility (as shown in figure 13B) with a Wilson’s score mean of 0.09 (9%) and a CI range 

of 0.05- 0.17 at 95% CI. The drug resistance categories (see table 9 and appendix VII) were 

determined from the overall drug resistance score for a particular class of ARVs as given by the 

Stanford HIV drug resistance database (Rhee et al. 2003). Patients with no TDRM affecting drug 

susceptibility for a particular class of ARVs were 75 (90.4%) and those that had TDRM affecting 

drug susceptibility for a particular class of ARVs were 8 (9.6%) (figure 13B). Other minor and 

accessory resistance mutations were also seen but these had no effect on overall drug 

susceptibility and therefore nothing was recorded for the drug resistance mutations per resistance 

score category as shown again in table 9 and appendix VII. Among patients harbouring DRM 

that affected drug susceptibility, 7 (87.5%) had mutations affecting the susceptibility to reverse 

transcriptase inhibitors (RTIs) while 1 (12.5%) had a mutation affecting the susceptibility to 

protease inhibitors (PIs) as indicated in figure 13C. Consequently, among those harbouring RTI 

mutations, 6(86%) had DRMs to NNRTIs and only 1 (14%) had mutations affecting NRTI 
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susceptibility (see figure 13D). The general DRM profile per resistance score as seen in figure 

13E, showed mainly low-level resistance to NNRTIs 4 (50%) followed by intermediate/high 

level resistance to NNRTIs 2 (25%), low-level resistance to NRTIs 1 (12.5%) and low-level 

resistance to PIs 1 (12.5%). 

The major DRMs among drug naïve patients were mainly mutations to NNRTIs and 

NRTIs. Table 9 and appendix VII show the details of the DRM found among patient derived 

HIV-1 sequences. Table 9 gives the summary of mainly the mutations that are known to affect 

drug susceptibility and appendix VII gives details of DRM found within all 83 individual drug 

naïve patients. PI associated mutations and polymorphisms were L10V/I/F/L, K20I/R/V, L89M/I, 

V11I, K43T, A71T, T74S, K33F, and I93M. The K20I polymorphism was found in 81(98%) of 

all 83 patients and the K20R mutation was found in the remaining 2 (2%). Major NNRTI 

mutations included K103N and Y181C, these were found in 4 (5%) out of 83 patients. Minor 

NNRTI mutations, V108I, V179I, V90I, E138A, V106I and K238K/R were found in 20 (24%) 

out of all the 83 patients. A major NRTI mutation L210W was found in 1 (1%) of all 83 patients. 

Minor NRTI mutations found in 4 (5%) out of the 83 patients were mainly T69N, E44D, 

V118I/V and K219N mutations. 

Furthermore, similarities between viral RNA and DNA sequences in PR/RT regions 

conferring resistance to HIV-1 were also assessed among drug naïve patients. A high similarity 

78(94%) existed between RNA and DNA templates of the same patient among drug naïve patients 

and differences between templates were few 5 (6%) as shown in figure 13A. Appendix VII gives a 

detailed profile on how the similarities and differences in figure 13A were achieved. In table 9 

and appendix VII, all yellow coloured regions in the tables indicate same mutations found in 

RNA and DNA templates of the respective patients and orange coloured regions indicate patients 

whose RNA and DNA templates differed by the presence of one or more mutations in RNA or 

DNA or vice versa. Within the orange coloured regions, the light blue segments highlight the 

differences in mutations. An example is the patient with lab ID SRIN48 in table 9. This patient 

had the K219N mutation in DNA and not in RNA. 
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Table 9: Summary of drug resistance profile of HIV-1 infected drug naïve patients from Nouna Burkina Faso 

 
 

DR represents drug resistance; LR represents level resistance Type of template: RNA; Region analyzed: PR 1-99 codons and RT (2/3) 1-335 codons. Primary 
resistance mutations are bolded, primary resistance mutations in other expert list are bolded and underlined and minor and accessory resistance mutations are 
italicized. 

 

 

 

 



                      Results   

72 

 

Table  9 continued. 

SRIN69 515487 428 RNA

DNA

SRIN81 590908 323 RNA

DNA

SRIN106 3589550 176 RNA

DNA

SRIN120 1400866 504 RNA

DNA

SRIN123 976517 301 RNA

DNA

SRIN124 225569 467 RNA
DNA

SRIN125 1126782 33 RNA
DNA

Lab ID
CD4+T -cell 

counts (cells/ul)
Type of  

Template
 Viral RNA 

load copies/ml Low-LR High/ Intermediate -LR

CRF02_AG - Like L10LV no mutation
K20I

L210LW AZT, D4T
CRF02_AG - Like L10V no mutation

 K20I

L210LW AZT, D4T
CRF02_AG - Like   K20I, T74S NFV 

K238KR 

CRF02_AG - Like  K20I, T74S NFV 
K238R 

CRF02_AG - Like K20I no mutation
V108I NVP
V90I

CRF02_AG - Like K20I no mutation NVP
V108I 

V90I

CRF02_AG  - Like K20I no mutation

V11I

L10I

K103N NVP, EFV
CRF02_AG  - Like K20I no mutation

V11I

L10I

K103KN NVP, EFV
CRF02_AG  - Like K20I no mutation

E138A RVP
CRF02_AG  - Like K20I no mutation

E138A RVP
CRF02_AG  - Like K20I no mutation
CRF02_AG  - Like K20I no mutation
CRF02_AG  - Like K20I no mutation
CRF02_AG  - Like K20I no mutation

Subtype PR-RT
Drug Resistance Interpretations Per Resistance Scores

NNRTI 
Mutations

NRTI  
Mutations

PI 
Mutations
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Figure 13: Summary of HIV-1 genotyping profile of the PR/RT region of the HIV-1 pol gene of drug naive patients from Nouna Burkina Faso 

(A) A pie chart demonstrating similarities and/or differences between RNA/DNA templates in regions conferring resistance to RTIs and PIs. (B) 

Comparison of patients with or without TDRM in PR/RT. (C) Among patients harbouring DRM that affect drug susceptibility, as indicated in B, 7 

(87.5%) had mutations affecting the susceptibility of RTIs while 1 (12.5%) had mutations affecting the susceptibility of PIs. (D) Profile of RTI 

mutations only among patients with TDRM. High prevalence of mutations to NNRTI mutations n= 6 (86%) and low prevalence of NRTI mutations n=1 

(14%). (E) DRM categories per resistance scores in patient derived PR/RT viruses. 
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3.4 Nucleotide and amino acid changes within HIV-1 RNA and 

DNA paired sequences of the same patient 

Among the drug naïve patients, paired sequences from the PR/RT of the HIV-1 pol 

region, obtained from RNA and DNA starting templates of the same patients were aligned to 

each other to determine any nucleotide differences present within these paired sequences. The 

sequences were made up of the entire HIV-1 protease (1-99 amino acids) and 2/3 of RT. The 

numbers of positions having nucleotide differences were noted and subsequent codons from both 

templates specifying an amino acid were written. 

Nucleotide differences were synonymous when they did not change the resultant 

amino acid. For instance, a base substitution occurring at position 942 in the paired nucleotide 

sequence of patient SRIN15 from C (in RNA) to A (in DNA) changed the codon ACC (in RNA) 

to ACA (in DNA). The resulting amino acid in both cases was lysine, which is denoted by K, and 

therefore the change was synonymous. In instances where the amino acid changed from for 

example lysine (ACC) in RNA, to threonine (ACG) in DNA, the change was described as non-

synonymous because the nucleotide difference resulted in changing the amino acid. A change 

was described as either synonymous or non-synonymous when a degenerate code occurred at a 

position that allowed possibilities of both a synonymous and a non-synonymous change to occur 

at the same position. Every ambiguity nucleotide (also termed the degenerate code) either in the 

viral DNA or RNA or both, were given a value of one, the total number of ambiguities was 

determined by adding up the number of ambiguities in a given sequence and the resultant value 

was divided by two and added to already obtained values under the sections synonymous and 

non-synonymous. Table 10 summarizes the results of the nucleotide changes found among all 

drug naive paired RNA/DNA templates. Templates with more than 10 nucleotide changes were 

deep sequenced as a way of confirming the results obtained. Paired templates having no 

nucleotide differences were not included. 

Forty one percent of the patients had nucleotide differences in paired viral templates, 

while 59% had no nucleotide differences and there was no significant difference (p=0.60) 

between the number of synonymous changes (n=170) and the number of non-synonymous 
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nucleotide changes (n=198) (table 11). Among patients who had nucleotide differences, 38% of 

them had at least ten nucleotide differences within paired viral templates. 

Table 10: Summary of RNA/DNA paired nucleotide sequence alignments from drug naïve patients 

 

Patient sequences with nucleotide changes of ≥10 are highlighted in grey. 

  

Patient No of postions with Chracteristics of change based  on amino acid

Lab ID  nucleotide changes Synonymous Non- synonymous

Srin 14 day 0 2 2 0
Srin 16 day 0 23 7 16
Srin 31 day 0 26 18 8
Srin 38 day 0 53 29 23
Srin 39 day 0 23 5 17
Srin 47 day 0 5 3 2
Srin 48 day 0 2 1 1
Srin 52 day 0 1 1 0
Srin 55 day 0 3 3 0
Srin 56 day 0 6 3 3
Srin 60 day 0 8 4 4
Srin 63 day 0 3 3 0
Srin 66 day 0 5 5 0
Srin 69 day 0 7 3 4
Srin 70 day 0 1 1 0
Srin 71 day 0 3 2 1
Srin 72 day 0 2 1 1
Srin 74 day 0 1 1 0
Srin 75 day 0 2 1 0
Srin 77 day 0 1 1 0
Srin 80 day 0 7 1 6
Srin 81 day 0 2 0 2
Srin 82 day 0 2 2 0
Srin 83 day 0 1 1 0
Srin 84 day 0 2 0 0
Srin 85 day 0 2 1 1
Srin 86 day 0 14 5 9
Srin 87 day 0 2 0 2

SRIN93 day 0 10 1 9
SRIN94 day 0 10 2 8
SRIN95 day 0 12 2 10
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Table 11: Summary of nucleotide substitution analysis for all drug naïve patient derived viral sequences via 

Sanger sequencing 

 

3.4.1 Patterns of HIV-1 drug resistance mutations among patients followed 

over time  

Follow-up plasma samples from all patients 24 weeks post HAART with high plasma 

viral load > 1000 copies per ml of plasma were genotyped and sequenced for HIV-1 DRM 

analysis. Patients were put on a first line regime of 2 NRTI (3TC, d4T or AZT, d4T) and 

1NNRTI (NVP or EFV). A total of eight patients were followed-up. Six out of the eight patients 

had DRMs affecting drug susceptibility for a particular class of ARVs as described earlier for 

drug naïve patients in section 3.3.1. The remaining two patients had no resistance mutations 

affecting drug susceptibility. These six patients harboured DRMs that affected the susceptibility 

to RTIs. Furthermore, the six patients had mainly major DRMs to NNRTIs and three out of these 

six patients again had additional major DRMs to NRTIs (table 12).  

As indicated in table 12 the patient SRIN31, had a major DRM K103N developing to 

NNRTI within 48 weeks of therapy, causing high-level resistance to NVP and EFV. This 

mutation was still present at 72 weeks post ART. Patient SRIN48 on the other hand, harboured 

the major TDRM to NNRTIs, the Y181C mutation and the NRTI accessory TAM, K219N, at the 

drug naïve stage. The accessory TAM disappeared after 2 weeks of therapy but the Y181C 

mutation persisted. At 12 weeks into therapy, a major NRTI mutation M184V emerged in 

addition to the Y181C mutation and at 36 weeks into therapy, multiple mutations to NNRTIs 

(V108I and H221HY) emerged in addition to the already existing ones. All these mutations 

disappeared at 64 weeks into therapy leaving the accessory resistance mutation V108I which 

causes low-level resistance to NNRTIs. Furthermore, patient SRIN72 had the V179I mutation, 

which was no longer present at 48 weeks into therapy. Consequently, patient SRIN98 had a 

Type Number Median (IQR) Maximum 
170 2(1-5) 30

198 2(0-8.5) 30

Number    of    

paired    templates
Paired templates

Number    of    patients    

with    changes    in    

RNA    and    DNA    

sequence    pairs

Number    of    patients    

with    no    changes    in    

RNA    and    DNA    

n=34

n=49

Synonymous

Non-synonymous

Nucleotide substitutions
Mann–Whitney U test

p= 0.60
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major DRM to NNRTIs, thus the K103N that causes high-level resistance to NVP and EFV. This 

mutation developed at 24 weeks into therapy. At 36 weeks into therapy an additional DRM to 

NRTI, the M184V developed with the K103N mutation. The former disappeared and the NNRTI 

mutation E138Q that is known to cause high-level resistance to NVP and EFV and low level 

resistance to RPV appeared in addition to the K103N mutation at 48 weeks into therapy. Patient 

SRIN103 developed multiple major DRMs G190A, and M230L to NNRTI and M184V to NRTIs 

within 24 weeks into therapy. These cause high-level resistance to 3TC, FTC, EFV, NVP and 

RPV and intermediate level resistance to ETR and also low-level resistance to ABC. At 36 

weeks into therapy the M230L mutation disappeared leaving the G190A and the M184V 

mutations. Subsequently, patient SRIN106 developed the major NNRTI DRM K103N in 

addition to the NNRTI polymorphism V90I at 24 weeks of therapy and this mutation persisted at 

48 weeks into therapy in addition to the reappearance of the V108I mutation. The V108I and the 

V90I polymorphism persisted from the drug naïve stage until 12 weeks into therapy when the 

V108I mutation disappeared.  Patient SRIN117 had no DRM that affected drug susceptibility. 

Finally patient SRIN120 had the major NNRTI mutation K103N at the drug naïve stage and 

within 24 weeks of therapy, this patient had the NRTI mutation M184V emerging in addition to 

the NNRTI mutation K103N. Both major DRMs K103N and M184V were still present at 48 

weeks of therapy together with minor PI mutations and polymorphisms that were present at the 

drug naïve stage. The specific scenarios above indicate that major DRMs developed during the 

course of HIV infection usually persist a while and may either disappear or lead to multi drug 

DRMs. Also in some instances high viral loads seen in patients undergoing HAART may be due 

to other reasons (for example non- compliance) either than resistance mutations as seen in 

patients SRIN72 and SRIN117.  
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Table 12: Drug resistance profile in plasma samples of HIV-1 infected patients over time 

 
 

DR represents drug resistance; LR represents level resistance Type of template: RNA; Region analyzed: PR 1-99 
codons and RT (2/3) 1-335 codons. Primary resistance mutations are bolded, primary resistance mutations in other 
expert list are bolded and underlined and minor and accessory resistance mutations are italicized. CD4

+
 T-cell 

counts were measured in cells/ul. ND means not determined. 

Low-LR Intermediate-LR  High level-LR

SRIN31 98000 271 CRF02_AG - Like 0
K20I no mutation

2000 ND CRF02_AG - Like 2  K20I no mutation

ND  564 CRF02_AG - Like 4 K20I no mutation

< 40 450 CRF02_AG - Like 12 K20I no mutation

39000 462 CRF02_AG - Like 48  K20I K103N no mutation NVP, EFV

L10V

2600 ND CRF02_AG - Like 72 K103N no mutation NVP, EFV

SRIN48 2400000 147 CRF06_cpx - Like 0 K43T

K201

Y181C K219N EFV,ETR NVP,RPV
9200 ND CRF06_cpx - Like 2 K20I

K43T

Y181C EFV,ETR,RPV NVP
1900 498 CRF06_cpx - Like 12 K20I

K43T

Y181C M184V ABC EFV,ETR,RPV NVP,3TC,FTC
22000 344 CRF06_cpx - Like 36 K20I

K43T

V108I, 

Y181C, 

H221HY

M184V ABC EFV,ETR,RPV NVP,3TC,FTC

6400 310 CRF06_cpx - Like 64 V108I NVP
SRIN72 97000 333 G - Like 0  K20I

V179I

8800 436 G - Like 48  K20I

SRIN98 10000000 63 CRF02_AG - Like 0 K20I no mutation

L10V

1900 498 CRF02_AG - Like 12 K20I no mutation
L10V

40000 217 CRF02_AG - Like 24 K103N NVP, EFV
CRF02_AG - Like 36 K20I

L10V

K103N M184V ABC 3TC,FTC,EFV,NVP
650000 85 CRF02_AG - Like 48 K103N RPV NVP, EFV

E138Q

SRIN103 183000 397  CRF01_AE- like 0 L10V no mutation
V179I

8000 ND  CRF01_AE- like 2 L10V

V179I

900 682  CRF01_AE- like 4 L10V

V179I

15000 608  CRF01_AE- like 12 L10V

K20R
150000 701  CRF01_AE- like 24 L10V G190A M184V ABC ETR 3TC,FTC,EFV,NVP,RPV

M230L

V179I

220000 681  CRF01_AE- like 36 L10V

G190A M184V
ABC, 

ETR, RPV
EFV 3TC,FTC,NVP

V179I

NRTI 

Mutations

Drug Resistance Interpretations Per Resistance Scores
Lab ID

 Viral RNA load 

copies/ml 

CD4
+
T -cell 

counts 
Subtype PR-RT

Weeks of 

follow-up

PI 

Mutations

NNRTI 

Mutation
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Table 12 continued.  

 

 

DR represents drug resistance; LR represents level resistance Type of template: RNA; Region analyzed: PR 1-99 
codons and RT (2/3) 1-335 codons. Primary resistance mutations are bolded, primary resistance mutations in other 
expert list are bolded and underlined and minor and accessory resistance mutations are italicized. CD4

+
 T-cell 

counts were measured in cells/ul. ND means not determined. 

Low-LR Intermediate-LR  High level-LR

SRIN106 3600000 176 CRF02_AG - Like 0 K20I no mutation
V108I NVP

V90I

35000 ND CRF02_AG - Like 2 K20I no mutation

V108I NVP

V90I

ND 353 CRF02_AG - Like 4 K20I no mutation
V108I NVP

V90I

19000 386 CRF02_AG - Like 12 K20I no mutation
V108I NVP
V90I

59000 309 CRF02_AG - Like 24 K20I no mutation
V90I

K103N NVP, EFV
163000 ND CRF02_AG - Like 48 V108I no mutation

V90I

K103N NVP, EFV
SRIN117 90000 341 CRF02_AG  - Like 0 K20I no mutation

8000 409 CRF02_AG  - Like 24 no mutation
SRIN120 1400000 504 CRF02_AG  - Like 0 K20I no mutation

V11I

L10I

K103N NVP, EFV
5000 589 CRF02_AG  - Like 4 K20I no mutation

V11I

L10I

13000 704 CRF02_AG  - Like 24 K20I K103N M184V ABC 3TC,FTC,EFV
V11I

18000 ND CRF02_AG  - Like 36 K20I K103N M184V ABC 3TC,FTC,EFV
V11I

ND ND CRF02_AG  - Like 48 K20I K103N M184V ABC 3TC,FTC,EFV,NVP
V11I

Drug Resistance Interpretations Per Resistance Scores
Lab ID

 Viral RNA load 

copies/ml 

CD4
+
T -cell 

counts 
Subtype PR-RT

Weeks of 

follow-up

PI 

Mutations

NNRTI 

Mutation

NRTI 

Mutations
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3.5 Deep sequencing of thirteen drug naïve patient templates 

Thirteen patients derived HIV-1 RNA and DNA templates from HIV-1 infected drug 

naïve patients were deep sequenced via a process called Nextera tagmentation using PCR 

amplicons. These patients were selected based on the fact that after Sanger sequence analysis, 

they either had differences in DRMs between individual RNA and DNA pairs or had ten or more 

differences in RNA and DNA nucleotide pairs that needed to be confirmed by a more robust 

method. 

3.5.1 Transmitted drug resistance mutations profile of all thirteen drug naïve 

patient paired RNA and DNA templates from deep sequencing 

compared to Sanger sequencing. 

In deep sequencing, mutational frequencies were given for TDRMs from 1 to 100% 

frequency cut-offs (Table 13). Minority variants were classified as TDRMs detected at a 

frequency of 1% to less than 20% of the viral quasispecies (Colson et al., 2014). The minority 

variants represented TDRMs, which could not be detected via Sanger sequencing but were 

detected in deep sequencing. Sanger sequencing only detected mutations occurring in deep 

sequencing, at a frequency of 20% or higher, while deep sequencing detected mutations at all 

frequencies from 1 to 100%. In deep sequencing, the coverage per nucleotide position for each 

patient sample was between 20,000-10,000 reads and the number of reads for each patient RNA 

or DNA template was approximately 200,000 reads unlike in Sanger sequencing where the 

templates were read only once as described by (Chabria et al., 2014). Of the thirteen paired 

patient templates, ten harboured TDRMs to PIs and RTIs at frequencies defined as minority 

variants whereas in the previous Sanger sequencing these mutations were not seen.  The 

additional mutations detected in only deep sequencing as minority variants and not in Sanger 

sequencing were D30N, I47V and G73S to PIs and mutations to RTIs included K103N, T69D, 

M230I, M184I, E138K, K101E, V179I, V90I and F22FL (Table 13). Above the frequency of 

20%, all DRMs detected by deep sequencing were also detected by Sanger sequencing. 
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Deep sequenced viral RNA and DNA templates were compared for concordance or 

discordance in terms of detecting DRMs within paired sequences by frequency, as shown in table 

13. We defined concordance as the identification of a mutation in both paired viral RNA and 

DNA templates at a frequency of 20% and above (also the range for Sanger sequencing) or 

below 20% for the minority viral population in deep sequencing. Discordance on the other hand 

was defined as the inability of identifying a mutation at a frequency of 20% and above or below 

20% in either viral RNA or DNA templates. The detection limit for all mutations considered was 

a frequency of 1-100%. What defined discordance was the ability of the mutation being picked 

up in one template and not in the other. Since Sanger sequencing only detects mutations at a 

frequency of 20% or higher, we decided to assess how DNA and RNA detection compared with 

each other above 20%. We observed a high level of concordance (95%) between DNA and RNA 

pairs for mutation frequencies 20% and above. Discordance observed in this group was only 5%. 

Also we assessed the same concept of discordance or concordance in paired RNA and DNA 

sequences in the minority viral population at a frequency below 20%, in contrast to mutation 

frequencies 20% and above, there was a high rate of discordance (74%) in paired RNA and DNA 

samples in the minority viral population with a percentage concordance of 26%. 
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Table 13: Detection of drug resistance mutations from thirteen drug naïve patient RNA/DNA template pairs 

via frequency cut-offs in deep sequencing  

  

Freqency cut-offs of DRMs from 1% to less than 20% of the viral quasispecies represent minority variants while  
frequency cut-offs from 20% to 100% represent majority variants, which are also detected by Sanger or bulk 

HIV-1 target region Type of DRM

SRIN16-RNA SRIN16-DNA

PR K20I 100 100
PR L89M 99 99
RT V189I 42

SRIN31-RNA SRIN31-DNA

PR K20I 100 100
PR D30N 1
PR M46I 2 3
PR L89I 3
PR L10V 37 33
PR L89M 96 99
RT V189I 5
RT M230I 6

SRIN33-RNA SRIN33-DNA

PR I47V 3
PR V11I 4
PR K20I 100 100
PR L10V 65 100
PR L89M 99 99

SRIN38-RNA SRIN38-DNA

PR L89M 78 100
PR K20I 100 100
RT M184I 1

SRIN39-RNA SRIN39-DNA

PR M46I 11
PR V82I 100 100
PR L89I 2
PR L89M 97 99
PR K20I 100 100
RT M230I 15

SRIN48-RNA SRIN48-DNA

PR K43T 99 100
PR K20I 100 99
PR L89M 99 100
RT K219N 2 27
RT K103N 1
RT Y181C 63 57

SRIN56-RNA SRIN56-DNA

PR K20R 2
PR L89I 34 17
PR L10V 73 35
PR K20I 99 97
PR L89M 65 83
RT E138K 2
RT V179I 9 9
RT K101E 4
RT M184I 4
RT M230I 8

Frequencies of DRM in patient template (%)



                 Results   

83 

 

sequencing. Empty cubicles represent DRMs in less than 1% frequency cut-off  of the virus population. Here 
frequency values are not shown.  

 

Table 13 continued. 

 

 

HIV-1 target region Type of DRM

SRIN58-RNA SRIN58-DNA

PR I47V 2
PR L89I 18 5
PR K20I 100 100
PR V11I 16 6
PR L10V 74 74
PR L89M 81 95
RT V90I 10 6
RT F227L 1

SRIN78-RNA SRIN78-DNA

PR V11I 1
PR K20I 99 100
PR L89M 27
RT D67N 1
RT M230I 1

SRIN86-RNA SRIN86-DNA

PR L10V 2 2
PR L10I 97 98
PR K20I 99 99
PR L89M 99 100

SRIN93-RNA SRIN93-DNA

PR G73S 1
PR K20I 100 100
PR L10V 35 8
PR L89M 99 99
RT M184I 2
RT M230I 2

SRIN94-RNA SRIN94-DNA

PR K20R 89 96
PR L89I 18 15
PR L10V 89 100
PR L10I 11
PR K20I 32 12
PR L89M 81 84
RT V90I 88 100

SRIN95-RNA SRIN95-DNA

PR V11I 1
PR K20I 98 99
PR L10I 98 99
PR L89M 99 99
RT T69D 1
RT V90I 26 6
RT E138K 2

Frequencies of DRM in patient template (%)
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3.5.2 Comparison of RNA and DNA templates of thirteen selected samples 

using bulk or Sanger and deep sequencing data at the 20 percent cut-off 

Bulk sequencing detected differences in mutations among RNA and DNA templates of five 

patients, which were later, confirmed by deep sequencing. These patient templates were part of 

the thirteen paired patient samples that were deep sequenced. Deep sequencing results confirmed 

the differences in resistance mutations seen in bulk sequencing as indicated in table 14. One 

mutation, the K219N mutation, seen in DNA and not in RNA templates of patient derived HIV-1 

sequences in Sanger sequencing was also confirmed in deep sequencing. In Sanger sequencing, 

two minor mutations and two polymorphisms were found in RNA that were not present in DNA. 

These were the PI mutation L89I and the RTI mutation V90I and the PI polymorphisms K20I 

and L10V respectively. The same pattern was also seen in deep sequencing thereby showing that 

at a frequency of 20%, mutation profiles of both deep and Sanger sequencing are the same. 
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Table 14: Differences and similarities in mutations between RNA and DNA templates of thirteen selected 

drug naïve patients using Sanger and deep sequencing data at a 20 percent frequency cut-off. 

 

Brown coloured sections with grey colours within represent the five patient templates that showed one or more 
different mutations in RNA or DNA templates in Sanger and deep sequencing. Green and yellows coloured sections 
represent sequences, which had the same mutations in RNA and DNA templates. 

 

 

 

 

 

Deep Sequencing 20% Variants

SRIN16 RNA K20I no mutation K20I no mutation
DNA K20I no mutation K20I no mutation

SRIN31 RNA K20I no mutation K20I

DNA K20I no mutation K20I

SRIN33 RNA L10V no mutation L10V no mutation

K20I K20I

DNA L10V no mutation L10V no mutation
K20I K20I

SRIN38 RNA K20I no mutation K20I no mutation
DNA K20I no mutation K20I no mutation

SRIN39 RNA V82I no mutation V82I no mutation
K20I K20I

DNA V82I no mutation V82I no mutation
K20I K20I

SRIN48 RNA K43T K43T

K201 K201

Y181C Y181C

DNA K43T K43T

K201 K201

Y181C Y181C

K219N K219N

Sanger Sequencing

PI Mutations
NNRTI 

Mutations

NRTI 

Mutations
PI Mutations

NNRTI 

Mutations

NRTI 

Mutations
Lab ID

Type of  

Template
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Table 14 continued 

SRIN56 RNA K20I no mutation K20I no mutation
L10V L10V

L89I L89I

DNA K20I no mutation K20I no mutation
L10V L10V

no mutation no mutation
SRIN58 RNA K20I no mutation K20I no mutation

L10V L10V

DNA K20I K20I

L10V no mutation L10V no mutation
SRIN78 RNA no mutation no mutation

DNA no mutation no mutation
SRIN86 RNA L10I no mutation L10I no mutation

K20I K20I

DNA L10I no mutation L10I no mutation
K20I K20I

SRIN93 RNA  K20I V90I  K20I V90I

L10V L10V

DNA K20I V90I K20I V90I

no mutation no mutation
SRIN94 RNA  K20I  K20I

L10V L10V

V90I V90I

DNA no mutation no mutation
L10V L10V

V90I V90I

SRIN95 RNA  K20I K20I

L10I L10I

V90I V90I

DNA  K20I  K20I

L10I L10I

no mutation no mutation

NRTI 

Mutations
Lab ID

Type of  

Template
PI Mutations

NNRTI 

Mutations

NRTI 

Mutations
PI Mutations

NNRTI 

Mutations
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3.5.3 Patterns of synonymous and non-synonymous nucleotide differences 

compared among individual subjects from the thirteen HIV-1 infected 

drug naïve patients, at various sensitivity cut-offs in deep and bulk 

sequencing 

Heterogeneity in RNA/DNA sequence pairs were assessed by aligning nucleotide 

sequence pairs of RNA/DNA in each of the 13 patient sequences for deep sequencing sensitivity 

cut-offs of 1, 2, 5, 10 and 20% and also in Sanger or bulk sequencing sensitivity cut-off which is 

usually 20%. In all deep sequencing sensitivity cut-offs, more non-synonymous nucleotide 

changes were recorded for twelve patients (SRIN16, 31, 38, 39, 48, 56, 58, 78, 86, 93, 94 and 95) 

except one (SRIN 33), who had more synonymous nucleotide changes than non-synonymous 

changes (figure 14A, 14B, 14C and 14D). In the case of bulk or Sanger sequencing, eight 

patients (SRIN16, 33, 39, 78, 86, 93, 94 and 95) had more non-synonymous nucleotide changes 

then synonymous changes, two (SRIN31, 38), had more synonymous nucleotide changes and the 

remaining three patients, (SRIN48, 56, 58), had equal number of synonymous and non-

synonymous changes (figure 14E).  
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E.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Bar charts depicting synonymous and non-synonymous nucleotide differences in RNA and DNA 

templates of individual patients from the list of thirteen drug naive patient sequences as seen in both deep and 

bulk or Sanger sequencing of amplified PCR products.  

In deep sequencing the cut-offs include 1, 2, 5, 10 and 20% and in Sanger or bulk sequencing the cut-off is 

approximately 20%. Synonymous nucleotide changes are indicated as blue bars and non-synonymous 

nucleotide changes are shown as red bars.  

3.5.4 Statistical evaluation of the pattern of synonymous and non-

synonymous nucleotide differences compared among various cut-offs in 

deep and bulk sequencing 

Nucleotide differences examined within each paired sequence of viral RNA and DNA 

of the thirteen drug naïve patient samples indicated that, at the one percent cut-off in deep 

sequencing, synonymous and non-synonymous nucleotide changes were significantly different 

(p=0.0003), with approximately two-fold increase in the number of nucleotide changes seen 
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between the synonymous and the non-synonymous groups. The same pattern of fold increase 

was observed in the five percent (p=0.0003), ten percent (p=0.0004) and twenty percent 

(p=0.0003) cut-offs. On the contrary, the difference between synonymous and the non-

synonymous nucleotide differences seen in bulk or Sanger sequencing did not reach statistical 

significance (p=0.23) although more non-synonymous nucleotide differences were present in 

bulk sequencing of paired viral RNA and DNA sequences as compared to synonymous 

nucleotide differences. The non-synonymous group had more nucleotide differences than the 

synonymous group in all cut-offs in deep sequencing and also in bulk or Sanger sequencing 

(figure 15). Statistical significance was attained between all synonymous and non-synonymous 

differences for all deep sequencing cut-offs with more non-synonymous differences seen in each 

instance.  This indicates that The heterogeneity seen within RNA/DNA template pairs, most 

likely lead to more divergence in the amino acid sequence of the protein structure. The results 

indicate that synonymous differences that generally conserve the protein structure were less 

frequently seen in deep sequencing. Also minority mutations existed that could not be 

determined with bulk sequencing. 

Table 15 also gives the summary of nucleotide differences as observed in all thirteen 

patient samples. It indicates the number of synonymous and non-synonymous differences in each 

cut–off and shows the median and the IQR for each cut-off. The number of nucleotide 

differences in bulk sequencing either synonymous (132 nucleotide differences) or non-

synonymous (173 nucleotide differences) was higher than differences observed in all the other 

cut-offs in deep sequencing although the synonymous and non-synonymous differences when 

compared within patient RNA/DNA pairs were not statistically significant. Noticeably non-

synonymous nucleotide differences at the 20% cut-off in deep (170 nucleotide differences) and 

bulk sequencing (173 nucleotide differences) were similar, with median and IQRs of 12 (9.5-

13.5) and 10 (8-20) respectively. However, with respect to synonymous changes the values were 

quite different. In the 20% cut-off in deep sequencing, 81 nucleotide differences were seen, 

while in bulk sequencing 132 nucleotide differences were present. The mean and IQRs of 

synonymous differences for the 20% cut-off in deep and bulk sequencing were 4 (1.5-7) and 6 

(2-19) respectively. There was nearly two times more synonymous differences seen in bulk 

sequencing at a cut-off of 20% as compared to the same sensitivity cut-off in deep sequencing 
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indicating that, there was more heterogeneity in bulk sequenced samples at the 20% cut-off 

compared to deep sequencing probably due to the high degree of sensitivity in deep sequencing 

although these changes are ones that maintain protein structure since they do not lead to a change 

in the amino acid sequence. One reason for the heterogeneity seen in bulk sequencing data may 

be because it is read only once while deep sequenced data is read many times. 

 

Figure 15: Column plots depicting differences in synonymous and non-synonymous nucleotide differences 

among the thirteen drug naïve HIV-1 infected patients.  

One percent cut-off in deep sequencing represents codons occurring at a frequency of 1 to 100% within each 

patient derived viral sequence. Five percent cut-off represents codons at a frequency of 5 to 100% of patient 
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derived viral sequences. Ten and 20% cut-offs denote codons from 10 to 100% and from 20 to 100% 

respectively within each patient derived viral sequence. Bulk or Sanger sequencing represents patient derived 

viral sequences occurring at a frequency of approximately 20 to 100% of patient derived viral sequences 

(Chabria et al., 2014). P values of synonymous and non-synonymous nucleotide changes between the same 

cut-offs are indicated on the graph. A one-way ANOVA showed that values of synonymous and non-

synonymous nucleotide changes were different (p< 0.001). 

Table 15: Summary of nucleotide substitution analysis for thirteen drug naïve patient derived viral sequences 

via deep and bulk sequencing  

 

3.6 Quantification of HIV-1 intracellular DNA of drug naïve patient 

samples using patient derived HIV-1 and CCR5 plasmid 

standards  

Total HIV-1 IC DNA that has completed the first and second template switches also 

called HIV-1 STS DNA were measured from DNA samples of drug naïve patients using a real-

time PCR assay. This was done to investigate any correlations existing between HIV-1 IC DNA 

levels of infected patients and primary markers of disease progression, mainly plasma RNA viral 

load, and CD4+ T –cell count as well as correlations with other surrogate markers of disease 

progression. 
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3.6.1 Real-time PCR assay characteristics of HIV-1 intracellular DNA and 

CCR5 plasmid standards  

           Patient derived target HIV-1 IC DNA also called HIV-1 STS DNA and CCR5 

PCR amplicons were successfully cloned into topo plasmids. The plasmids were further used to 

generate HIV-1 IC DNA and CCR5 DNA standards for the quantifications of all drug naïve 

patients DNA. HIV-1 IC DNA and CCR5 DNA inserts were 165 and 237 nucleotides in length. 

There was a 99% identity of the patient derived CCR5 DNA insert to human CCR5 reference 

sequences in the National Center for Biotechnology Information (NCBI) Database 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi).  The HIV-1 IC DNA insert starts from the end of 

U5 to just before the gag sequence as shown in figure 16. 

Figures 17A and 17B are the standard curves generated from the real- time PCR assays 

showing the quantifications of the HIV-1 IC DNA and CCR5 copies respectively. The specificity 

of the HIV-1 IC DNA assay was determined by accurately detecting 10 HIV-1 IC DNA copies 

with a qPCR dynamic range of 1x101 to 1x106 DNA copies. The sensitivity for CCR5 was 

determined by detecting 1000 CCR5 DNA copies accurately with a dynamic range of 1x103 to 

1x108 DNA copies.  The slopes of the standard curves were -3.3 cycles/log10 DNA templates for 

the HIV-1 IC DNA assay and that for the CCR5 assay was -3.4 cycles/log10 DNA templates. 

These slopes corresponded to PCR efficiencies of greater than 99.99% for both HIV-1 IC DNA 

and CCR5 assays. The optimum temperatures for the annealing and data collection of the HIV-1 

IC DNA and CCR5 assays were optimized to 62°C and 60°C respectively. 

The ability of the HIV-1 IC DNA assay to detect the M group HIV-1 strains was 

demonstrated by the assay’s potential to quantify the HIV-1 IC DNA of all HIV-1 drug naïve 

patients DNA samples from Nouna Burkina Faso with HIV-1 genetic subtypes G, 02A1 and 

recombinants CRF01_AE, CRF02_AG and CRF06_cpx (Demetriou et al., 2010).  
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Figure 16: Schematic representation of the patient derived HIV-1 STS DNA insert sequence, within the HIV-

1 Genome.  

The red mark shows the location of the sequence within the HIV-1 genome. The figure shows that the target 

starts from the end of U5 to just before the gag sequence with a sequence length of 165 nucleotides. The gene 

map was obtained from the HIV Los Alamos database (http://www.hiv.lanl.gov/cgi-

bin/QUICK_ALIGNv2/convent.cgi). 

 

       A                                                                          B 

 

Figure 17: Standard curves used for the HIV-1 IC DNA and CCR5 DNA quantifications.  

(A) A scatter plot representing HIV-1 STS DNA plasmid standard curve (B) A scatter plot 
representing human CCR5 DNA plasmid standard curve. Both curves had a co-efficient of 
determination r2 > 0.99 and were both generated from molecular beacon real-time PCRs. 
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3.6.2 Specificity of binding of HIV-1 IC DNA primers and molecular-beacons 

to the target template  

The assay specificity of the forward and reverse primer sets and the target specific molecular-

beacon to the HIV-1 IC DNA was tested against HIV negative human DNA using a molecular-

beacon-real-time qPCR approach. The real-time qPCR showed no detectable HIV-1 IC DNA in 

the HIV-1 negative human DNA under the regular HIV-1 IC DNA qPCR conditions of 40 

cycles. Figures 18A and 18B demonstrates the standard curves obtained from the HIV-1 DNA 

standard mixed with the HIV negative human DNA and the HIV-1 IC DNA standard only. In 

both cases the PCR efficiencies were >99%. The HIV negative human DNA only real-time 

qPCR assay gave no cycle threshold value after 40 qPCR amplification cycles.  

 

         A                                                                            B 

 

Figure 18: A scatter plot representing the specificity of binding of HIV-1 STS DNA primers and beacons to 

the plasmid standard in the presence of an HIV negative human DNA control.  

(A) HIV-1 STS DNA plasmid standard only. (B) HIV-1 STS DNA plasmid standard mixed with the HIV 

negative human DNA or non-template control (NTC).  Tenfold serial dilutions of the purified plasmid and 

NTC of known concentrations were used as templates to generate the standard curves for the qPCR assay. 

HIV negative human DNA of known concentrations corresponding to 10
6
 HIV DNA copies contained 96 ng of 

DNA and five more dilution points were obtained. The last dilution point corresponding to 10 HIV DNA 

copies contained 9.6 x 10
-4 

ng of HIV negative human DNA. 



          Results   

97 

 

3.7 Distribution of HIV-1 IC DNA load among HIV -1 drug naïve 

patients 

The HIV-1 IC DNA load and CCR5 copy numbers were determined for all 86 HIV-1 

infected drug naïve patient DNA samples from Nouna Burkina Faso. The HIV-1 IC DNA load 

for each patient was expressed as per 1 million buffy coat cells. The number of cells in the input 

DNA used for the quantification of HIV-1 IC DNA was determined from the CCR5 copy 

number, which is known to exist as two copies in a cell (Samson et al., 1996).   

According to Figure 19, all patient HIV-1 IC DNA load per 1 million cells were 

mainly between 100 to 1,000 copies/106 cells 50 (58%) followed by 1,000 to 10,000 copies/106 

cells 22 (26%). The median log10 transformed HIV-1 IC DNA copies/ 106 cells was 2.645 

copies/ 106 cells (IQR 2.259-3.055). 

 

 

Figure 19: A skewed curve showing HIV-1 STS DNA load among HIV -1 infected drug naïve patients from 

Nouna Burkina Faso.  

The HIV-1 STS DNA load of patients was mainly between 100 and 1,000 copies/10
6
 cells. The HIV-1 STS 

DNA load was calculated as HIV-1 STS DNA copies per 1million buffy coat cells. The total number of patient 

samples analyzed was 86 and the median log10 transformed HIV-1 IC DNA load was 2.645 (IQR 2.2596 – 

3.055).   
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3.8 Correlation of HIV-1 intracellular DNA load on known markers 

of disease progression  

This section describes the correlation of HIV-1 IC DNA load and plasma viral load, 

CD4+ T -cell counts and CDC clinical staging, based on CD4+ T -cell counts of drug naive 

patients. 

3.8.1 HIV-1 intracellular DNA load correlated with plasma viral load and 

CD4
+
 T-cell counts 

A potential correlation between HIV-1 IC DNA load and plasma viral load and that 

between HIV-1 IC DNA load and CD4+ T -cell counts were assessed among all drug naïve 

patients as shown in figures 20A and 20B. In figure 20A there was no correlation between HIV-1 

IC DNA load and plasma viral load (r2=0.0032; p=0.6077). Also in figure 20B there was no 

significant correlation between HIV-1 IC DNA load and CD4+ T-cell count (r2=0.0172; 

p=0.2292). The individual patient values used in the correlation are shown in table 16. 

 

 

Figure 20: Correlations of HIV-1 STS DNA load against plasma viral load and CD4
+
 T –cells among HIV-1 

infected drug naive patients from Nouna Burkina Faso.  

(A) Correlation of plasma viral load/ml of plasma against HIV-1 STS DNA load/10
6
 cells, (B) Correlation of 

CD4
+
T -cells/ml of blood against HIV-1 STS DNA load/10

6
 cells. At 95% confidence interval, there was no 

correlation between HIV-1 STS DNA and plasma viral load and HIV-1 STS DNA and CD4
+
 T-cell counts 
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Table 16: HIV-1 STS DNA, CD4
+
 T-cell counts and plasma viral load values of drug naïve patients used for 

correlations 

 

 

 

 

Lab ID HIV DNA Copies/ 10^6 Cells
SRIN14 373.96
SRIN15 59.47
SRIN16 1703.59
SRIN25 2662.58
SRIN30 112.14
SRIN31 99.10
SRIN32 759.81
SRIN33 204.31
SRIN34 322.99
SRIN37 794.99
SRIN38 1142.02
SRIN39 66.23
SRIN41 1964.83
SRIN47 567.88
SRIN48 766.43
SRIN51 129.96
SRIN52 348.33
SRIN55 48.01
SRIN56 4107.70
SRIN57 110.11
SRIN58 414.57
SRIN59 940.93
SRIN60 199.34
SRIN61 702.55
SRIN62 989.57
SRIN63 130.27
SRIN64 306.21
SRIN65 171.00
SRIN66 1103.67
SRIN67 470.74
SRIN68 2158.53
SRIN69 46.95
SRIN70 223.52
SRIN71 365.78
SRIN72 445.47
SRIN73 856.60
SRIN74 206.62
SRIN75 263.20
SRIN76 1210.15
SRIN77 154.99
SRIN78 23216.97
SRIN79 19.22
SRIN80 86.45
SRIN81 1091.12
SRIN82 963.52
SRIN83 80.76

CD4 count/ml of blood Viral load/ml of plasma
202000 939988

7000 971579
10000 707181
152000 54837
163000 89125
271000 98426
177000 430515
180000 3399058

3000 2801732
172000 707210
248000 223957
262000 115615
144000 2314931
66000 743697
147000 2416935
122000 722623
153000 194086
227000 93865
81000 1593082
198000 653455
231000 256724
230000 1229920
226000 121581
284000 749061
180000 2005003
316000 86731
193000 677363
32000 145511
140000 227199
293000 1195067
411000 2201354
418000 515487
13000 46747
256000 325435
333000 95911
157000 1818940

7000 40625
247000 13291
177000 51695
123000 45750
269000 24482
256000 11678
152000 23449
323000 590908
140000 569328
279000 43140
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Table 16 continued 

 

Lab ID HIV DNA Copies/ 10^6 Cells
SRIN84 1531.37
SRIN85 187.71
SRIN86 249.71
SRIN87 437.89
SRIN88 185.29
SRIN89 101.39
SRIN90 255.56
SRIN91 425.18
SRIN92 117.75
SRIN93 1456.33
SRIN94 61.46
SRIN95 310.80
SRIN96 129.41
SRIN97 209.51
SRIN98 1431.20
SRIN99 936.53

SRIN100 475.62
SRIN101 572.97
SRIN102 2096.61
SRIN103 3679.25
SRIN105 265.99
SRIN106 701.95
SRIN107 321.07
SRIN108 71.18
SRIN109 1134.23
SRIN110 661.71
SRIN111 529.86
SRIN112 1717.59
SRIN113 472.80
SRIN114 35.59
SRIN116 58.90
SRIN117 410.15
SRIN118 12586.42
SRIN119 1529.91
SRIN120 4701.27
SRIN121 811.20
SRIN122 1330.56
SRIN123 7585.02
SRIN124 1792.91
SRIN125 3856.28

CD4 count/ml of blood Viral load/ml of plasma
156000 15793
215000 1434896
146000 2233224
65000 4040062
45000 574163
54000 677363

236000 1379797
66000 977237

282000 561916
643000 10000000
116000 10000000

7000 10000000
90000 1892979

106000 1581674
63000 10000000

322000 10000000
292000 71380
408000 339531
88000 3790705

397000 182608
218000 98211
176000 3589550
406000 290269
232000 27833
313000 405359
44000 1420627

212000 236592
213000 1373030
11000 1803350

349000 21777
508000 262060
341000 90498
279000 2579
364000 272998
504000 1400866
281000 224037
170000 1531228
301000 976517
467000 225569
33000 1126782
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3.9 Correlation of HIV-1 intracellular DNA load with plasma viral 

load and CD4
+
 T-cell counts based on CDC clinical Stage B of 

the disease 

The relationship between HIV-1 IC DNA load, plasma viral load and CD4+ T-cell 

counts was assessed among HIV-1 infected drug naïve patients based on the Centers for Disease 

Control and Prevention (CDC) clinical Stage B of the disease as depicted in figures 21A and 

21B. Correlations were considered based on CDC clinical disease stage because it was important 

to find out if HIV-1 IC DNA had any effect on disease staging. Clinical stage B was correlated 

with HIV-1 IC DNA levels at baseline because almost all the patients with clinical stating status 

recorded were in clinical stage B (n=56) except one patient who was in clinical stage A (table 8) 

There was no correlation between HIV-1 IC DNA load and plasma viral load (r2=0.0020; 

p=0.7429) and between HIV-1 IC DNA load and CD4+ T-cell counts (r2=0.0119; p=0.4242). 

   

 

Figure 21: HIV-1 STS DNA load based on CDC Staging of disease against plasma viral load and CD4
+
 T- 

cells among drug naïve patients.  

(A) An XY correlation between plasma viral load/ml of plasma and HIV-1 STS DNA load/106 
cells based on CDC clinical Stage B (B) An XY correlation between CD4+ T-cell counts/ml of 
blood against HIV-1 STS DNA load/106 cells. 
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3.10  Assessing disease progression after six months of therapy based 

on HIV-1 intracellular DNA levels 

3.10.1  Comparison of HIV-1 IC DNA levels in patients with virologic failure 

at twenty four weeks of therapy 

In assessing disease progression based on baseline HIV-1 DNA levels, follow-up 

patients were grouped into those who achieved virologic suppression under HAART and those 

who had virologic failure. Virologic failure was defined as viral RNA levels of ≥ 1,000 copies/ 

ml of plasma detected in follow-up patient samples after 24 weeks or 6 months of HAART and 

virologic suppression was defined as the attainment of viral RNA levels of  < 1,000 copies/ ml of 

plasma detected in follow-up patient samples after 24 weeks or 6 months under HAART 

(Dionisio et al., 2001). The baseline HIV-1 IC DNA load of patients who experienced virologic 

failure at twenty-four weeks of therapy (n=5) was compared to that of those who experienced 

virologic suppression (n=55). There was a significantly higher baseline HIV-1 IC DNA load 

among patients who experienced virologic failure than those who did not (p=0.045).  The 

corresponding median levels were 3.16 log10 copies/106 cells (IQR 2.75- 3.62) and 2.63 log10 

copies/106 cells (IQR, 2.12 -3.04) respectively (figure 22). 
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Figure 22: HIV-1 STS DNA levels of patients experiencing virologic failure and those with no virologic 

failure, 24 weeks post HAART. Comparisons of plasma viral levels of infected patients with and without 

virologic failure 

The plasma viral load and CD4+ T-cell counts of patients experiencing virologic failure 

and those in whom viral suppression was achieved were compared at the drug naïve stage and at 

24 weeks of therapy. At the drug naïve stage, the results showed no difference in viral load and 

CD4+ T-cell counts between patients who experienced virologic suppression post therapy and 

those who had virologic failure (figure 23C and 23D). The median viral load levels/ ml of 

plasma among those who had virologic failure and those who did not were 6.15 log10 (5.14-6.83) 

and 5.82 log10 (4.97-6.16) respectively. The median CD4+ T-cell counts were 5.53 log10 (5.08-

5.65) and 5.26 log10 (5.09-5.43) respectively between the two groups of patients. However, at 24 

weeks into therapy, there was a strong difference in plasma viral load (approximately 2.5 log10 

difference, p<0.001) observed among patients who achieved virologic suppression and those 

who did not (figure 23A). The median viral load levels were 4.11 log10 (IQR 3.41-5.02) and 1.60 

log10 (IQR 1.60-1.99) respectively. On the contrary, there was no significant difference observed 

in CD4+ T-cell counts among these patients (figure 23B). The median CD4+ T-cell count at 24 

weeks of therapy was 5.53 log10 (5.37-5.60) and 5.61 log10 (5.48-5.85) among patients who 

experienced virologic suppression and those who had virologic failure respectively. 
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Figure 23: Plasma viral load and CD4
+
 T-cell counts comparisons among patients experiencing virologic 

failure and those who achieved virologic suppression after 24 weeks on HAART.  
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3.11  Influence of other factors associated with HIV-1 disease 

progression on HIV-1 intracellular DNA load 

This section describes the influence of other factors associated with disease 

progression such as the presence or absence of hepatitis B (HBV) co-infection, number of DRMs 

that have an impact on drug susceptibility, predominant HIV-1 subtypes, age Hb levels and the 

presence or absence of secondary bacterial or parasitic infections (opportunistic infections) on 

HIV-1 IC DNA load.   

3.11.1 Hepatitis B co-infection 

 In figure 24A, there is a trend towards a higher HIV-1 IC DNA load among drug 

naïve patients with HBV co-infection as compared to those without HBV co-infection but this 

difference did not reach statistical significance (p= 0.1496). As illustrated in figure 24B and 24C, 

there was no difference in baseline CD4+ T-cell counts (p= 0.6806) and plasma viral load levels 

(p= 0.3638) in drug naïve patients with HBV co-infection and those without HBV co-infection.  
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Figure 24: Hepatitis B co-infections among drug naïve patients.  

Boxes and whiskers of (A) HIV-1 STS DNA load levels (p= 0.1496), (B) CD4
+
 T-cell counts (p= 0.6806) and 

(C) Plasma viral load (p= 0.3638) among drug naïve patients with HBV co-infection and those without HBV 

co-infection. 
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3.11.2  Age, predominant HIV-1 subtypes, number of mutations and 

hemoglobin levels 

Figure 25A shows an analysis that assessed the relationship between HIV-1 IC DNA levels and 

the age of drug naïve patients in years. There was no correlation between HIV-1 IC DNA load 

and the age of patients (r2= 0.0224; p= 0.1692). Using the Kruskal-Wallis test, differences in 

HIV-1 IC DNA levels among drug naïve patients having predominant HIV-1 subtypes namely 

CRF02_AG, CRF06_cpx and CRF01_AE were analyzed and there was no significant difference 

(p=0.8162) seen between all subtypes compared (Figure 25B). We proceeded to determine the 

variances of HIV-1 IC DNA levels between subtypes using the Bartlett's test for equal variances 

as shown in table 17 and demonstrated that, the spread of HIV-1 IC DNA levels between HIV-1 

subtypes analyzed are unequal (p<0.0001). There was no relationship (r2= 0.1056; p= 0.4323) 

between HIV-1 IC DNA and number of mutations affecting drug susceptibility as shown in 

figure 25C.  
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Figure 25: HIV-1 STS DNA load compared with age of patients, virus subtype and number of DRMs.  

(A) A correlation of HIV-1 STS DNA load against age of drug naïve patients, (B) A box and whisker plot of 

HIV-1 STS DNA load with the predominant HIV-1 subtypes and (C) A correlation of HIV-1 STS DNA load 

to number of mutations affecting drug susceptibility. 

 Table 17: The Bartlett's test for equal variances among predominant HIV-1 subtypes 
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3.12  Comparison of HIV-1 intracellular DNA load, plasma viral 

load and CD4
+
 T-cell counts of susceptible and resistant HIV-1 

strains among drug naïve patients 

These consisted of drug naïve patients harbouring drug sensitive strains (n=75) or drug resistant 

strains (n=8) of HIV-1. In figures 26A, 26B and 26C, there were no significant differences in 

terms of HIV-1 IC DNA load (p=0.2633), viral load (p=0.3585) and CD4+ T-cell counts 

(p=0.0723) among drug resistant and drug sensitive strains of HIV-1 infected drug naïve 

patients. 
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Figure 26: Vertical scatter plots of HIV-1 STS DNA load, plasma viral load and CD4
+
 T-cell counts of drug 

resistant and drug sensitive strains of HIV-1 infected drug naive patients from Nouna Burkina Faso.  

The numbers of patient samples analyzed were 83. (A) HIV-1 STS DNA load in drug resistant and drug 

sensitive strains. The median log10 transformed HIV-1 STS DNA/10
6
 cells and IQR in resistant and sensitive 

strains were 2.961 (IQR 2.298- 3.515) and 2.618 (IQR 2.233- 3.058) respectively, (B) Plasma viral load in drug 

resistant and drug sensitive strains. The median log10 transformed viral load and IQR in resistant and 

sensitive strains were 5.881 (IQR 5.445- 6.324) and 5.634 (IQR 4.982- 6.185) respectively and (C) CD4
+
 T-cell 
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counts in drug resistant and drug sensitive strains. The median log10 transformed CD4
+
 T-cell counts and IQR 

in resistant and sensitive strains were 5.489 (IQR 5.187- 6.5.593) and 5.297 (IQR 4.954- 5.446) respectively.  

3.12.1  Categorization of HIV-1 intracellular DNA load plasma with plasma 

viral load and CD4
+
T -cells among HIV-1 drug resistant and drug 

sensitive patients by CDC clinical staging  

A total number of 57(98%) drug naïve patients had their CDC clinical staging recorded 

and among these patients, 56 were within the clinical stage B and only 1(2%) patient was within 

the clinical stage A category. This section of the analysis was done with only clinical stage B 

patients as a dominant group to determine whether clinical staging of HIV-1 influences baseline 

HIV-1 IC DNA levels, CD4+ T-cell counts and plasma viral load among drug resistant and drug 

susceptible strains of HIV. These patients were divided into two groups namely the drug resistant 

group and the drug sensitive group. A column plot was then used to assess the two groups with 

respect to their HIV-1 IC DNA copies/106 cells, plasma viral load/ml of plasma and CD4+ T-cell 

counts/ml of blood as indicated in figures 27A, 27B and 27C respectively. The median HIV-1 IC 

DNA values among resistant and sensitive strains were 2.885 (IQR 1.948- 3.040 log10 copies /106 

cells) and 2.493 (IQR 2.114- 2.984 log10 copies /106 cells) respectively. The median plasma viral 

load copies for resistant and sensitive viruses were 5.712 (IQR 5.1959- 6.177 log10 copies /ml of 

plasma) and 5.815 (IQR 4.982- 6.202 log10 copies /ml of plasma) respectively. Finally the 

median CD4+ T-cell counts/ml of blood among resistant and sensitive virus groups was 5.500 

(IQR 5.157- 5.569 log10 CD4+ T-cell counts/ml of blood) and 4.501 (IQR 4.214- 4.698 log10 

CD4+ T-cell counts/ml of blood) respectively. According to figure 27C, resistant strains had 

significantly higher CD4+ T-cell counts as when compared to drug sensitive patents (p=0.0003). 

No significant changes were observed in HIV-1 IC DNA loads and plasma viral load of drug 

resistant and drug sensitive strains as shown in figures 27A and 27B. 
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Figure 27: Column plots of HIV-1 STS DNA load against plasma viral load and CD4
+
 T-cell counts of drug 

resistant and drug sensitive strains using CDC clinical stage B patients only.  

(A) HIV-1 STS DNA load of drug resistant and drug sensitive strains (B) Plasma viral load in drug resistant 

and drug sensitive strains (C) CD4
+
 T-cell counts in drug resistant and drug sensitive strains.  
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3.13  Principal component analysis for disease progression among 

drug naïve patients 

Principal component analysis (PCA) is a data reduction method used when one has 

several related variables that measure different aspects of a common component (Vyas and 

Kumaranayake, 2006) in our case disease progression. In PCA, one comes up with a measure 

that holistically describes the different variables forming the component.  It is used to transform 

a set of related data into a set of linearly unrelated components in which the first component 

gives the most variance or the largest variability existing in the data. Patients’ experimental and 

biodata were extracted for the analysis. The indicators used to explain PCA could be continuous 

or categorical (Vyas and Kumaranayake, 2006). PCA was done for nine variables among 82 drug 

naïve patients (table 18). All but one patient had data for all nine variables. This patient was 

eliminated from the analysis. Also four variables that had a number of missing patient 

information were also eliminated. Twenty-five percent of variants in all nine variables assessed 

within each patient explained influence to HIV-1 disease progression as shown by component 1 

in table 18.  Variables that stood out as dominant contributors to HIV-1 disease progression in 

PCA in descending order were the HIV drug resistance status of a patient (either susceptible or 

resistant to HIV-1) and the number of DRMs in the viral genome of an infected patient, CD4+ T-

cell counts and the HIV-1 subtype, HIV-1 IC DNA load and gender, secondary parasitic or 

bacterial infection status of an infected patient, plasma viral load and age (table 18). The values 

contributing to diseases progression according to PCA are in the range +1 to -1, where 

proportionality increases or value of contribution increases as the variable gets closer to +1 and 

decreases when it approaches -1. 

Table 18: Variable contribution to disease progression 

 

Variable Component 1 (25%) 
Drug resistance status 0.6
Age -0.1
Gender 0.2
HIV-1 IC DNA copies per 1 million cells 0.2
CD4+T –cell counts 0.3
Number of mutations 0.6
HIV-1 subtype 0.3
Secondary infection status 0.03
Plasma viral load/ml of plasma -0.1
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4 Discussion 

One important area of challenge in the fight against HIV is the development of drug 

resistant mutations and their transmission, which can undermine effective drug treatment 

(Ndembi et al., 2011; Price et al., 2011b). Also, in clinical practice, new methods in monitoring 

disease progress are needed in order to complement the already existing ones to the ends of 

predicting and improving patient outcomes. These challenges are particularly relevant in sub-

Saharan Africa since most of the world’s HIV infected people are located there. 

Using samples from HIV infected patients from Nouna, Burkina Faso in West-Africa, 

this study analyzed HIV-1 DRMs that are found in paired RNA and DNA templates of HIV-1 

infected drug naïve patients and also assessed DRMs that can be found in RNA templates of 

follow-up patients who harboured persistently high plasma viral loads after 24 weeks of 

HAART. The determination of DRMs was performed with Sanger or bulk sequencing and 

selected samples having discrepancies in resistance mutations or in paired nucleotide sequences 

of RNA and DNA were resolved with deep sequencing. Furthermore, results obtained from 

Sanger sequencing were then compared with deep sequencing results. The second part of the 

study focused on HIV-1 IC DNA levels among HIV-1 infected drug naïve individuals 

harbouring resistant or susceptible strains of HIV and discusses how HIV-1 IC DNA correlates 

with known markers of HIV disease progression. Most studies that have assessed HIV-1 IC 

DNA load in terms of its correlation with known markers of disease progression have been 

carried out in non-African populations and the few studies carried out on drug naïve African 

populations are mainly based on DRM surveillance. This study therefore looked jointly at HIV-1 

DRMs and the role of HIV-1 IC DNA levels in relation to the traditional markers of disease 

progression such as viral load and CD4 T-cell counts in predicting disease among HIV-1 infected 

African patients. 

4.1  Patient demographics and clinical characteristics 

A total of 86 HIV infected patients were recruited for this study. There were 61 

females and 24 males making 61% and 28% of the population respectively. In areas where 
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heterosexual transmission of HIV predominates, like in sub-Saharan Africa, it is known that 

there are more females living with HIV infection than males with females making up to 58% of 

all infected cases in the population (Garcia-Calleja et al., 2006; UNAIDS, 2014a).  The male to 

female HIV infection ratio in this study (1:2.5) is in concordance with the general sex ratio of 

HIV in sub-Saharan Africa. However, Burkina Faso represents one of the few sub-Saharan 

African countries with a slight male preponderance in infections (Garcia-Calleja et al., 2006; 

UNAIDS, 2014a). In that regard, the sex ratio observed in this study may represent a local area 

with some characteristics different from the general population in Burkina Faso. The factors that 

may have resulted in a reversal of sex ratio in HIV infections in Nouna is a topic that may need 

to be looked into again in a population based study of infected persons, where the sample size is 

large. HIV infects people of all age groups, however majority of cases occur in adults over 15 

years of age (UNAIDS, 2014a). In this study, the median age of infected persons was 35 years. 

The median age of infected females (34 years) was lower compared to males (42 years) and this 

is in conformity with regional trends reported by UNAIDS, where the median age of infected 

adult females are generally lower as compared to males UNAIDS (2014a) . 

The median log10 transformed plasma viral load observed was 5.757 copies/ml of 

plasma (IQR 4.993 - 6.1640) and the median CD4 T-cell count was 199,986 copies/ ml of blood  

(IQR 120,504- 282,488). These values were higher than those observed among newly infected 

patients recruited for the Europe HIV resistance network study (Demetriou et al., 2010) where  

the median log10 transformed plasma viral load was 4.43 copies/ ml of plasma (IQR 3.87–5.14) 

and the median CD4+ T-cell count was 423 copies/ ml of blood (IQR 255.3–578.5).  The age 

ranges of infected persons in our study were comparable to that of the European study but the 

European study subjects were predominantly males whilst our study was predominated by 

females. 

The CDC has categorized HIV infection into A, B and C based on CD4+ T-cell counts 

and some clinical parameters (Schneider et al., 2008). Almost all the patients in this study were 

in the category B except one patient who was in the A category. It has been demonstrated that, 

levels of CD4+ T-cell counts within which therapy is initiated correlates with the duration of 

CD4+ T-cell recovery during treatment with ART (Okulicz et al., 2014). Furthermore, 

individuals who initiate treatment when CD4+ T-cell count is <350 cells/µl do not reach levels 
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>500 cells/µl even after several years of treatment, although the viral load may reach below 

detection limit (Callegaro et al., 2014). An HIV-CAUSAL study consisting of 8,392 ART-naive 

patients who started ART when CD4+ T-cell count had fallen to <350 cells/µl, demonstrated that 

patients in this category present with a greater risk of acquiring AIDS-defining illness or death 

than those patients initiating ART when CD4+ T-cell counts are between 350 cells/µl and 500 

cells/µl (Cain et al., 2011). In contrast to the aforementioned cohort, seventy-six patients (88%) 

in this study had CD4+ T-cell counts of < 350 cells/µl of blood and ten patients (12%) had CD4+ 

T-cell counts of ≥ 350 cells/µl of blood and no significant difference was observed between 

plasma viral levels of these two CD4+ T-cell count divisions. This observation buttresses the 

point that in resource poor setting it is still a challenge to start ARTs when CD4+ T-cell counts 

are between 350 cells/µl to 500 cells/µl since ARTs are most often inadequate and individuals 

start ARTs rather late as shown by the CD4+ T-cell counts of the drug naïve patients in this 

study. This scenario is in contrast to the situation in developed countries where ARTs are readily 

available and started early to give the patient the maximum benefit from therapy (Menon, 2010). 

Secondary bacterial or parasitic infections were recorded among 57% of the patients. 

The infections were mainly vulvovaginal candidiasis, one of the most common fungal infections 

noted to frequently recur in HIV-infected women (Ray et al., 2011). In a few instances, oral 

candidiasis and salmonellosis were also recorded. Studies have shown that oral candidiasis when 

left untreated in HIV infected patients, may often lead to morbidity. When these lesions are 

treated, the quality of life of the infected patient is maintained (Pienaar et al., 2010).  

HIV co-infection with the hepatitis B virus (HBV) is endemic in sub-Saharan Africans 

(Mphahlele, 2008). There is a 17.4%- 21.3% seroprevalence rate of active HBV infection status 

observed in Burkina Faso (Nacro et al., 2001, Mulders et al., 2004). In Nouna, rural Burkina 

Faso where our study subjects came from and Ouagadougou urban Burkina Faso, the 

seroprevalence of both recent and past HBV infections are high (69.9% and 76.4% respectively) 

as seen in serological tests for HBV core antibodies while the reported seroprevalence for active 

HBV infections as indicated by HBV surface antigen tests are 14.3% and 17.3% respectively. 

The study reporting the seroprevalences of HBV also found an association between HIV and 

HBV core antibody status of infected subjects (Collenberg et al., 2006). In this study, among the 

61 patients whose HBV sero-status were recorded, 6(10%) of the patients were reported to have 
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co-infection with HBV. Our data is however comparable to the general observation that up to 

15% of HIV infected patients within sub-Saharan are estimated to be living with HBV (Hamers 

et al., 2013) but reports a lower HBV infection status than those previously observed in the 

general population in Burkina Faso (Nacro et al., 2001, Mulders et al., 2004) but again 

comparable with active HBV sero-status reported in Nouna (Collenberg et al., 2006). The report 

also agrees with the nationwide retrospective observational cohort study on HIV, HBV and HCV 

co-infection status among infected patients from the China national free ART program, where 

they observed an HBV seroprevalence of 8.7% among infected patients (Zhang et al., 2014). 

Anemia is a common feature of HIV infection and has been correlated with disease 

progression (Sullivan, 2002). Indeed a prompt treatment of anemia in HIV patients has been 

shown to improve prognosis (CDC, 1992). Anemia is defined by the WHO as an Hb of less than 

13.0 g/dl in men and 11.0 g/dl in non-pregnant women. In men, Hb in mild anemia ranges 

between 11-12.9 g/dl and moderate anemia ranges between 8-10.9 g/dl. In women, Hb in mild 

anemia ranges between 10.0-10.9 g/dl while moderate anemia lies between 7-9.9 g/dl (WHO, 

2011). A study in South Africa reports up to 25% prevalence of anemia among HIV patients 

initiating HAART (Takuva et al., 2013). Meidani et al., 2012, reported a prevalence of as high as 

67% anemia in a cohort of HIV patients (Meidani et al., 2012). In Burkina Faso, the prevalence 

of anemia among women of reproductive age is 58.6% (Meda et al., 1996). This prevalence is 

comparable to WHO’s reported prevalence of 48.40% and 57.80% among non-pregnant and 

pregnant women respectively in 2011 (Stevens et al., 2013). In this study, the median Hb level 

was low 10.6 g/dl (IQR 9.7-11.8) indicating a high prevalence of anemia. Nearly all the patients 

fell in the range of mild to moderate anemia except one male who had a normal Hb. The 

prevalence of anemia reported in our study subjects was higher than trends reported in Burkina 

Faso. Such high prevalence of anemia may generally be a reflection of poor prognosis and is 

probably an indication of late initiation of treatment with HAART. 

The mean body mass index (BMI) of women in rural Burkina Faso has been reported 

as 20.5 kg/m2 (Savy et al., 2007). HIV infection has been associated with weight loss (WHO, 

2007). The BMI is therefore an important factor in HIV infected patients. Indeed low BMI at the 

time of diagnosis has been shown to be a strong independent predictor of poor prognosis in HIV 
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infected patients prior to treatment (Maas et al., 1998; van der Sande et al., 2004). The median 

BMI of all subjects in this study was 17.72 kg/m2 reflecting a possible poor prognosis. 

4.2 Transmitted drug resistance mutations in HIV infected patients 

in Nouna, Burkina Faso 

The expanding use of ARVs in HIV treatment globally parallels the increase in DRMs 

and TDRMs. A recent pooled prevalence of HIV drug resistance mutations in Africa was 10.6% 

with wide regional differences (Ssemwanga et al., 2014). Burkina Faso like most African 

countries has seen an increase in HAART in recent times and as expected, drug resistance and 

TDRMs have been reported (Tebit et al., 2006; Tebit et al., 2008). A previous study reported 

prevalence rates of DRMs as high as 40% for PI, 76% for NNRTIs and 85% for NRTIs among 

patients failing therapy in Ouagadougou (Tebit et al.). Prevalence of primary mutations in the 

general population of Burkina Faso was however 12.5% (Tebit et al.). The HAART drugs 

prescribed in Burkina Faso are two NRTIs and one NNRT1. In this study, the entire protease and 

two-thirds of reverse transcriptase in the pol region of HIV-1 were genotyped and sequenced 

because the drugs used for HIV management target these HIV enzymes. These HIV enzymes are 

also the targets of most antiretroviral drugs (Kantor and Katzenstein, 2003).  

In assessing drug resistant mutations, plasma viral RNA or proviral DNA can be used. 

Given that the infective form of the virus (the viral RNA), is found in plasma, it is widely used 

for resistance mutation assessment (Saracino et al., 2008). However the use of proviral DNA for 

resistance mutation assessment may be relatively easier to carry out in resource limited countries, 

though the sequence profile may differ between RNA and DNA. Furthermore, profiles for 

interpreting HIV-1 drug resistance are generally formulated for HIV-1 subtype B, since this is 

the HIV subtype predominantly found in resource rich countries. However, evidence suggests 

that a similar set of resistance mutations are seen in non-B HIV-1 subtypes (Grossman et al., 

2004; Kantor et al., 2005; Soares et al., 2007). Also alterations in amino acid sequences in the PR 

and RT regions of HIV-1 that result from genetic diversity in the viral genome affect drug 

resistance levels (Sanches et al., 2007; Velazquez-Campoy et al., 2001). In HIV-1 subtype B 

viruses, some minor or accessory mutations selected for under treatment with HAART are found 

as natural polymorphisms in HIV-1 non-B subtype viruses. (Holguin et al., 2002; Johnson et al., 
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2011; Kantor and Katzenstein, 2003; Pieniazek et al., 2000). An example is the K20I resistance 

mutation that is a minor or accessory mutation selected for in HIV-1 subtype B viruses but occur 

as a natural polymorphism in HIV-1 non-B subtypes. This mutation cause reduced viral 

susceptibility and may also compensate for defects in viral fitness in subtype B HIV-1 viruses.  

In our study, the K20I polymorphism was found in almost all (98%) viral genomes sequenced. 

The K20I mutation in subtype B viruses have been identified as causing resistance to the 

protease inhibitor nelfinavir (Rhee et al., 2003). Evidence exist that natural polymorphisms to PIs 

in viruses of non-B subtype origin result in hypersusceptibility to PIs and increased viral fitness. 

(Santos et al., 2012).  

In West Africa, the predominant HIV subtype has been reported to be CRF02_AG 

(Hemelaar et al., 2011; Nii-Trebi et al., 2013; Tebit et al., 2006). In our study, we identified 70% 

of the patients as being infected with CRF02_AG, followed by CRF06_cpx -like viruses, 

CRF01_AE-like, G-like and 02_A1-like subtypes in agreement with earlier work done in 

Burkina Faso and the West African sub region (Nii-Trebi et al., 2013; Tebit et al., 2006).  

Sanger sequencing was used to assess the mutations in viral RNA and DNA among our 

patients. This platform detects mutations that occur in  ≥ 20% of the total viral population of 

virus genomes while less frequent mutations < 20% are not detected with this method (Adje et 

al., 2001; Chabria et al., 2014). All patient samples were sequenced for DRMs using Sanger 

sequencing and targeting the pol region of HIV-1. Due to high sequence heterogeneity in 3 

samples, analysis was only reported for 83 patients. The resistance mutations were classified as 

major or minor. Major DRMs on their own confer resistance to an ARV while minor DRMs do 

not (Wensing et al., 2014). A high rate of TDRM exists in drug naïve HIV-1 infected patients in 

Nouna, Burkina Faso 

Among HIV-1 infected drug naïve patients in this study, TDRMs known to affect drug 

susceptibility prior to HAART was found in 9% of the patients. Among patients harbouring 

TDRMs only, most (87.5%) of the mutations affect susceptibility to RTIs and 12.5% to PIs. 

Furthermore, TDRMs affecting the action of NNRTIs formed the bulk (86%) of mutations 

affecting susceptibility to RTIs. Mutations affecting drug susceptibility were thus highest for 

NNRTIs followed by both NRTIs and PIs. Also, many minor mutations were detected that did 

not confer resistance to any antiretroviral drug in particular but could in combination with major 
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DRMs cause resistance. Generally, the frequency of occurrence of TDRMs to specific HIV drugs 

among HIV-1 infected drug naïve sub-Saharan Africans vary significantly between geographical 

regions (Price et al., 2011a; Bartolo et al., 2014; Tshabalala et al., 2011). The WHO reports an 

increasing trend for resistance against NNRTIs (WHO, 2012). A study done in Burkina Faso in 

2006 also showed more resistance mutations affecting NNRTIs compared to PIs and NRTIs in 

drug naïve patients (Vergne et al., 2006) while a Malian study had a higher prevalence of 

mutations conferring resistance to PIs (Derache et al., 2008). In our study, there were more 

resistance mutations to NNRTIs compared to NRTs and PIs which reflects the trends observed 

by the WHO (WHO, 2012). 

The WHO reports an average prevalence of 6.6% (CI 5.1-8.3) for TDRMs. However, 

various prevalence rates have been reported around Africa. In East and Southern Africa, an 

average prevalence of 5% was reported (Price et al., 2011b). Also recent studies in drug naïve 

pregnant women in Zimbabwe reported less than 5% prevalence in resistance mutation 

(Tshabalala et al., 2011). A similar trend of TDRMs was observed in Angola (Bartolo et al., 

2014). Our observation of 9% prevalence is relatively high although a rate of 11.5% has been 

reported in Mali (Derache et al., 2008).  Given the fact that the sample size in this study was 

small, trends of TDRMs have to be studied in a larger group of drug naïve patients. It should also 

be noted drug naïve patients in this study were assumed not to have taken antiretroviral drugs but 

this is not proven and therefore one should also be open to the possibility of some DRMs found 

in this group, being mutations that might have been selected for under prior drug use. Given the 

high prevalence of DRMs in our study, it is worthwhile to recommend that a patient’s HIV 

resistance mutation profile should be known before the initiation of therapy. Resistance 

monitoring should also be incorporated into clinical practice in developing countries, for 

effective clinical management of HIV. 
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4.2.1 Patterns of the emergence of drug resistance mutations and its 

persistence or disappearance among HIV-1 infected patients on 

HAART  

 The current stage in the HIV pandemic poses the dual problem of development of 

DRMs during treatment. We further assessed sequences of follow-up patients who maintained 

their viral load levels at baseline or those who had higher viral load while under HAART. This 

group of patients were assessed under the assumption that they might have developed new or 

additional DRMs and thus escaped therapy. Therapy failure was determined using longitudinal 

plasma RNA load levels of infected patients from baseline to 24 weeks into treatment. We 

selected eight follow-up patients based on the aforementioned assessment and the availability of 

plasma samples with viral load above 1,000 copies/ml of plasma since this enabled us to 

successfully genotype and sequence patients RNA templates. All selected follow-up patients 

were assessed for DRMs development over time.  

Highly active antiretroviral therapy exerts selection pressure on HIV quasispecies in an 

individual and that selects for HIV resistant strains during treatment (Metzner et al., 2009). If 

active HIV replication ensues in the presence of ARDs at a certain threshold, viral populations 

may evolve that select for critical DRMs to antiretroviral regimes administered and may render 

antiretroviral drugs ineffective. This process is termed the genetic barrier to resistance. Genetic 

barrier to resistance could also be defined as the threshold beyond which mutations that reduce 

viral susceptibility to ARDs develop. Factors that influence the genetic barrier to resistance are 

numerous among which are the number of critical mutations needed to cause resistance (it should 

be noted that a single mutation may be enough), the number of preexisting mutations and their 

replicative fitness. Some mutations influence drug susceptibility more than others. There exist 

ARTs with either high genetic barrier to resistance (ARDs of thymidine based origin and boosted 

PI drugs) or low genetic barrier to resistance (triple HAART regimes of NNRTIs and NRTIs 

origin as used by our study subjects). For drugs with high genetic barrier to resistance, a high 

number of DRMs are needed to render ARDs ineffective but drugs with low genetic barrier to 

resistance only require a few mutations to make ARDs ineffective (Eron, 1996; Gallant et al., 

2003; Kempf et al., 2004; Kessler, 2005).   
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The major DRMs detected among the study subjects were those that conferred 

resistance to NNRTIs and NRTIs, reflecting that HAART regimes administered to patients in 

rural Burkina Faso have low genetic barrier to resistance and may only require a single or a few 

mutations to cause resistance to antiretroviral regimes being used. Major NNRTI mutations 

detected in ART naïve patients included K103N and Y181C mutations. These made up a small 

proportion (5%) of our patients. Tebit et al., 2009, reported a similar percentage (6.1%) of 

NNRTI mutations in drug naïve patients in Ouagadougou (Tebit et al., 2009). The neverapine 

related resistance mutations K103N and Y181C have been widely reported in sub-Saharan 

Africans undergoing treatment with NNRTIs because of its wide use in the treatment of mother-

child-transmissions (Tebit et al., 2008) as well as in drug naïve patients starting therapy 

(Akinsete et al., 2004; Tebit et al., 2009). The Y181C and K103N mutations have also been 

reported in drug naïve (Magiorkinis et al., 2008) and treated individuals (Tebit et al., 2009). The 

NNRTI based DRMs found in our study subjects confer broad based resistance to all known 

NNRTIs and since they have a low genetic barrier to resistance, are selected more frequently.  

Of the eight follow-up patients for whom DRMs were analyzed, the K103N was the 

most common major mutation detected after 24 weeks of HAART in 3 (38%) of patients, 48 

weeks in 4 (50%) patients including a patient who developed the mutation at 24 weeks under 

HAART and another who had the mutation already at the drug naive period. In each case, the 

mutation then remained till 48 or 72 weeks depending on the time of the last analysis. The 

predominance of K103N mutation in the patients followed over time is in consonance with work 

done by Tebit et al., 2008, they showed that 44% of major resistance mutations found in HAART 

treated patients in Ouagadougou, Burkina Faso are K103N mutations (Tebit et al., 2008). 

Moreover, the dominance of the K103N mutation seen among drug naïve and follow-up patients 

might be explained by not only the low genetic barrier of resistance in the viral population due to 

the use of NNRTIs but also the added advantage that the mutation does not confer a reduced 

fitness cost and for that matter behaves like the wildtype virus. This advantage helps in 

facilitating the replication and emergence of new viral genomes harbouring the K103N mutation 

both in the presence and in the absence of ARDs. These mutated viral genomes may then be 

present in the viral quasispecies in equal proportions as wildtype viruses.  Another possibility for 

the dominance of the K103N mutation among our patients might be the selection of minority 



              Discussion   

123 

 

viral populations within the viral quasispecies that harbour this mutation. These mutant viruses 

may  gain the advantage of replicating to levels proportional to wildtype viruses within the 

growing  viral population in the patient (Mackie, 2006). The other major DRMs to NNRTIs 

observed in the follow up patients were the E138Q, G109A, Y181C and M230L mutations. Most 

of these mutations, in contrast to K103N, were infrequent. These infrequent mutations have 

reduced fitness thereby being unable to compete with the K103N mutation in the viral 

population. (Mackie, 2006).  Given that the K103N mutation is by far the most observed, efforts 

to determine its presence before and during treatment is recommended. 

4.2.2 Multiple drug resistance mutations may lead to virologic failure in 

follow-up patients on HAART  

Virologic failure rates under HAART among Africans and Asians have been described 

as varied, ranging from a prevalence of 2.9% to 20.6% (Aghokeng et al., 2014). Other studies in 

certain African countries have seen rates as high as 35% to 50% (Barennes et al., 2014). In urban 

Burkina Faso, the prevalence of DRMs in patients with virologic failure have been studied with 

high prevalences reported per ARV use as follows; NRTIs 85%, NNRTIs 76%, and PIs 40% 

(Tebit et al., 2008). In our study 6 (75%) of the eight follow-up patients on HAART from rural 

Burkina Faso had multiple DRMs to NRTIs and NNRTIs, which could explain virologic failure. 

Several studies have also identified multiple DRMs as a common cause to therapy failure among 

patients on ART (Daar and Richman, 2005; Jiamsakul et al., 2014). The trend observed in our 

study, was similar to trends reported in previous studies conducted among 209 patients with 

virologic failure under HAART in urban Burkina Faso (Tebit et al., 2008). However, the sample 

size was small and therefore the observations need to be interpreted with caution. The two 

remaining follow-up patients 2(25%) with high viral loads (greater than 1,000 copies/ml of 

plasma) suggestive of therapy failure did not have DRMs known to significantly reduce drug 

susceptibility. In one of the two follow-up patients, the reason for virologic failure was the 

interruption of treatment for 14 days. The reason for therapy failure in the other patient was not 

known. It should therefore be noted that virologic failure under treatment could initially be due 

to reasons other than resistance mutations but may lead to future development of DRMs that 

render ARTs ineffective at a later time. Although the patients were indicated to have been on 
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HAART, it is possible that additional factors such as inadequate therapy or non-compliance to 

HAART regimes, drug rationing, frequent treatment interruptions and not only DRMs led to 

persistently high plasma viral RNA levels.  The development of DRMs therefore makes it 

necessary that adequate monitoring of patients is done both for adherence to therapy and 

determination of emergence of resistance mutations. 

Disease progression in HIV patients is dependent on many factors including the 

development of DRMs during treatment. Major TDRMs among drug naïve patients may have led 

to the emergence of multiple drug resistance mutations at latter time points. Major TDRMs are 

pre-existing DRMs that are found in HIV infected drug naïve patients. These mutations reduce 

the susceptibility of ARDs substantially on their own while minor mutations reduce drug 

susceptibility minimally or substantially in combination with major DRMs (Wensing et al., 

2014). In our eight follow-up patients who showed signs of therapy failure indicated by high 

viral loads, two patients had major TDRMs to NNRTIs at baseline while the remaining six 

patients either had minor resistance mutations to RTIs or no mutations at baseline. Of the two 

patients with major DRMs to NNRTIs at baseline, one had the K103N mutation and failed 

HAART within 24 weeks while the other had the Y181C mutation and failed treatment within 12 

weeks. These mutations are known to be selected for among patients under HAART in sub-

Saharan Africa due to the NNRTI based HAART regimes given (Tebit et al., 2008). These two 

patients also developed multi- DRMs at 12 weeks and 24 weeks under HAART.  It has been 

shown that the number of TDRMs at baseline may increase the risk of virologic failure (Daar and 

Richman, 2005; Jiamsakul et al., 2014). The two patients with major TDRMs at baseline failed 

therapy, giving an indication that such patients indeed run the risk of virologic failure although 

our sample size was small. The other six follow-up patients who experienced virologic failure 

but only had minor or no baseline mutations also failed therapy within the same duration of 12 to 

24 weeks as in the case of those patients who had TDRMs. Two of these patients developed 

multi drug resistance mutations within 24 weeks into therapy. This observation indicates that 

patients could experience virologic failure with or without pre-existing baseline mutations and 

that other factors not limited to TDRMs may increase the risk of virologic failure as well, 

therefore proper patient monitoring and education are paramount to disease management.  
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Evidence of major multi- DRMs can be highlighted in four (50%) of the eight follow-

up patients. They had the major NRTI resistance mutation M184V emerging together with other 

major NNRTI DRMs like the K103N, Y181C, E138Q, G109A, and M230L. In two of the four 

patients the M184V mutation appeared at 24 weeks into therapy and persisted with multiple 

NNRTI mutations. In the remaining two patients, one had the mutation at 12 weeks and then it 

disappeared at 64 weeks with all the other multiple mutations while the other had the mutation at 

36 weeks and lost it at 48 weeks while a new mutation to NNRTIs emerged with pre-existing 

NNRTI mutations still present. The M184V mutation confers high-level resistance to 3TC and 

FTC and low level resistance to ABC and ddI (Turner et al., 2003) and has also been associated 

with reduced viral fitness (Turner et al., 2003). It is not clear why the mutation would disappear 

in the patient, however rapid disappearance of M184V mutations has been associated cessation 

of therapy (Mackie 2006; http://www.ncbi.nlm.nih.gov/books/NBK2249/). Stopping therapy will 

remove the pressure selecting for the M184V mutation, which has a fitness disadvantage in the 

absence of the drugs (Mackie 2006; http://www.ncbi.nlm.nih.gov/books/NBK2249/). Data on the 

patient does not indicate a termination of treatment, however it cannot be ruled out. The two 

other patients had minor mutations and within 24 and 48 weeks developed major resistance 

mutations to the action of NVP and EVF, till 72 weeks under HAART. Again although the 

sample size was small, the evidence leads to the fact that DRMs to NNRTI and NRTI based 

HAART are on the rise and HIV treatment plans for sub-Saharan Africa need alternatives drugs 

in combination with RTIs to reduce resistance. 

4.2.3 A high concordance exists between HIV-1 RNA and proviral DNA in 

drug naïve patients in Nouna Burkina Faso 

HIV provirus integrated into the genome serves as viral reservoirs and ensures viral 

persistence even with undetectable viral RNA load during therapy. While a lot of focus has been 

put on assessing viral RNA mutations for clinical decision-making, it is still unclear what the 

benefits of assessing proviral DNA mutations could be (Chew et al., 2005). Potential benefits of 

assessing mutations in viral DNA however exist. First, if the determination of viral DNA 

mutations can predict effectiveness of HAART to a similar extent in a given population as viral 

RNA mutations, the use of DNA can be implemented in less resourced regions due to ease of 
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amplification and the stability of the template (Banks et al., 2012). Also, where RNA viral loads 

are very low, proviral DNA may give some information on potential resistance in the future 

(Banks et al., 2012; Chew et al., 2005).  

Assessing viral DNA as a template for resistance testing is an evolving concept and 

existing data on the topic is quite limited, especially data comparing viral RNA and DNA 

templates of HIV infected African patients in terms of DRMs. However one study has been done 

on in Zimbabwe which indicates the potential usefulness of viral DNA (Banks et al., 2012). 

Studies involving 253 newly-diagnosed HIV infected patients from the Europe HIV resistance 

network compared paired viral RNA and DNA derived PR/RT sequences from each of their 

patients for HIV-1 DRMs that confers resistance to inhibitors of PR and RT and found a high 

concordance between the two templates in regions assessed for DRMs (Demetriou et al., 2010). 

We therefore assessed the level of concordance or discordance between paired RNA and DNA of 

drug naïve patient derived HIV-1 PR/RT sequences for DRMs at regions that conferred 

resistance to PR/RT based ART in each of our patients. On comparing mutations in viral RNA to 

DNA we observed a high level of concordance (94%) and a low level of discordance (6%) 

among drug naïve patients. There were more resistance mutations seen in RNA compared to 

DNA in the discordant group. Regarding the disparities seen in paired viral RNA and DNA 

sequences, studies have shown diverse results. Some studies report a higher number of mutations 

for RNA compared to DNA while others report the opposite (Bon et al., 2007; Saracino et al., 

2008). Again, existing studies on paired HIV-1 RNA and DNA sequence comparisons reveal a 

wide range of results (Bon et al., 2007; Saracino et al., 2008). While some studies show no 

significant differences between the two sequences and suggest DNA as an alternative to RNA 

(Derache et al., 2015; Vicenti et al., 2007), others have demonstrated wide disparities that might 

discourage the use of DNA as an alternative template (Chew et al., 2005; Smith et al., 1993). 

One study reported as high as 87 % discordance in RNA and DNA templates of the same patient, 

in ARV treated individuals (Saracino et al., 2008). Bon et al., 2007, reported a discordant rate of 

26% in drug naïve patients (Bon et al., 2007). There are also further disagreements on whether 

detected DNA mutations can be used in clinical assessments instead of RNA or whether DNA 

should complement RNA in clinical decision-making (Banks et al., 2012; Chew et al., 2005). 
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However, discordant sequence pairs of RNA and DNA in terms of DRMs found in our study was 

low. 

There are several reasons why discordance can occur between viral DNA and RNA. 

While the viral DNA is stably incorporated into the genome and is rarely altered, DNA 

dependent RNA polymerase II that transcribes the viral RNA can induce errors during 

transcription (Abram et al., 2010) and as a result, many mutations can be incorporated in viral 

RNA that would not be present in the viral DNA. This could explain why more mutations may 

be seen in the viral RNA than DNA. On the other hand, while resistant mutations can appear in 

RNA and disappear over time due to the changing environment of the infected patient, the 

mutations could be archived in the form of proviral DNA which can be detected at a later time 

when the RNA population has changed (Banks et al., 2012). Archiving of various resistant 

mutations in DNA over time may result in the viral DNA having more mutations than RNA. 

Finally, the high error-prone reverse transcriptase enzyme can cause mutations in the reverse 

transcribed viral RNA that would be archived in proviral DNA. These mutations may not be 

present in the RNA population depending on the transcription status of the DNA. Therefore, 

depending on the unique circumstance of the patient, some degree of discordance may be seen in 

mutations when comparing RNA and DNA. Some degree of discordance between RNA and 

DNA mutations is therefore expected in HIV infected patients.  

DRMs in viral DNA are a reflection of previous and current resistant mutation states of 

viral RNA. It has been shown that detection of DRMs in viral RNA precedes DNA and as a 

consequence, mutations are detected in DNA latter in relation to RNA, however established 

mutations will eventually be reflected in DNA (Banks et al., 2012). Detection of DRMs in DNA 

should therefore be interpreted with the view that not all the DRMs detected at a given time point 

will be clinically relevant for immediate management decisions as some DRMs in DNA may 

indicate previous resistance states. However DNA DRMs may help in better understanding of 

evolution of the viral quasispecies and could also be used to predict potential resistance in the 

future. Also, DNA DRMs could provide useful clinical information in the absence of facilities 

for viral RNA studies but should be interpreted with caution (Derache et al., 2015). 

In our patients, the high concordance rate between paired RNA and DNA samples in 

terms of HIV-1 DRMs suggests that DNA could be substituted for RNA in making clinical 
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decisions on drug resistance. A larger study would be necessary to determine the general 

likelihood of concordance between DNA and RNA and protocols could be developed to optimize 

interpretation of DNA data to closely reflect the prevailing RNA resistance mutations in a 

patient.  

4.2.4 In-depth analysis of RNA DNA discordance using deep sequencing 

Determination of DRMs using bulk sequencing is limited by the fact that only 

mutations that occur ≥ 20% of the viral quasi species are detected (Chabria et al.). Bulk 

sequencing therefore excludes a significant proportion of the viral population, which can impact 

disease progression. In order to obtain a more in depth assessment of viral populations in patients 

who had discordances in mutations between RNA and DNA or had ≥ 10 nucleotide differences 

in paired RNA and DNA sequences in Sanger sequencing, we resorted to use deep sequencing 

since it detects both mutations that occur in ≥ 20% of the viral population (comparable to Sanger 

sequencing) and mutations in less than 20% of the viral population referred to as minority viral 

populations which Sanger Sequencing does not detect. Deep sequencing therefore allowed 

analysis of viral RNA and DNA sequences at greater depth and therefore could be used to detect 

whether discordance possibly represented minority mutations. 

Our deep sequencing method detected mutations occurring in as low as 1% of the viral 

population. We assessed for discordance in mutations between RNA and DNA in the range 

above 20% frequency. We also compared mutations in RNA and DNA in the range below 20% 

(minority mutations), which is below the range of bulk sequencing detection. These comparisons 

were done in order to determine whether discordances in RNA and DNA mutations vary or not 

and also determine whether mutations found in deep sequencing above the 20% mutation 

frequency reflects that seen in bulk or Sanger sequencing.  

There was a high concordance (95%) for resistance mutations between RNA and DNA 

with deep sequencing in populations ≥ 20%, similar to what was observed in bulk sequencing. 

However there was a high level of discordance (74%) between RNA and DNA in the minority 

population. It is known that mutations are detected earlier in HIV viral RNA while mutations in 

proviral DNA are detected at a later time (Banks et al., 2012; Palmisano et al., 2009). Our data 
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suggests that mutations seen in RNA are also seen in DNA within the majority or dominant viral 

population and this strengthens the argument that DNA mutations picked up by Sanger 

sequencing mostly reflect the RNA mutant population hence either DNA or RNA templates 

could be used in genotyping and sequencing for the determination of DRMs routinely.  

4.2.5 Non Synonymous mutations predominate in the viral populations of 

HIV infected patients in Nouna Burkina Faso 

The nature of mutations in HIV impacts the behavior of the virus. Nucleotide changes 

that do not result in changes in amino acid are referred to as synonymous mutations while those 

that result in a change in the amino acid are non-synonymous mutations (Hunt et al., 2014). Non-

synonymous mutations lead to changes in the primary structure of proteins and therefore could 

impact its function.  In HIV, non-synonymous mutations provide mechanisms for escape of the 

virus by altering epitopes leading to evasion of immune cells and neutralizing antibodies (Zanini 

and Neher, 2013). Traditionally, synonymous mutations however have been considered inert, but 

this view has changed in recent times (Hunt et al., 2014). Synonymous mutations can alter 

transcriptional and translational processes and affect the stability of RNA. In HIV, it has been 

shown that synonymous mutations in the 3 prime region of the pol gene can significantly alter 

viral protein translation and viral replication rates (Nomaguchi et al., 2014). 

In our study, paired sequences of RNA and DNA templates from HIV-1 infected drug 

naive patients were assessed for the presence of synonymous and non-synonymous nucleotide 

differences first by bulk or Sanger sequencing and then changes ≥ 10 were resolved with deep 

sequencing. We observed high levels of synonymous mutation rates as compared to non-

synonymous mutations among patient sequences using the bulk sequencing method. The high 

synonymous mutation rates observed can be explained by the fact that synonymous mutations 

usually have a high fitness cost and will generally be selected for in the viral population (Zanini 

and Neher, 2013). Samples that were confirmed with deep sequencing showed a high non-

synonymous mutation rate as compared to synonymous mutations both in bulk and all deep 

sequencing frequency cut-offs of 1, 2, 5, 10 and 20%. The high non-synonymous mutation rate 

implies that the viruses may be adapting to changing environments in patients in the face of drug 
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therapy and host immune effects. As stated earlier, synonymous mutations are generally selected 

for relative to non-synonymous mutations because synonymous mutations usually have a high 

fitness cost as compared to non- synonymous (Zanini and Neher, 2013). The high non-

synonymous mutation rate among the study population is an indication of viral effort to 

overcome bottlenecks like drug treatment and host immune response and therefore strengthens 

the justification for the introduction of resistance monitoring. 

4.3 The relationship between HIV-1 intracellular DNA and other 

markers of disease progression among HIV-1 infected 

Burkinabés 

In the current clinical management of HIV, plasma viral load and CD4+ T-cell counts 

are used for disease monitoring and they form the basis for decision-making on drug therapy and 

alteration of treatment regimes (Langford et al., 2007). Although viral load and CD4+ T-cell 

counts have been useful clinically, there is still room for development of other disease 

monitoring tools in the face of increasing complexity of drug treatment and resistance mutations. 

Also, the development of new, easily available and cheaper disease monitoring tools can 

complement management of HIV in resource-limited settings. In recent times HIV-1 IC DNA, in 

contrast to plasma RNA of HIV, is becoming of interest to clinicians and researchers as a disease 

monitoring tool in clinical management of HIV. The HIV-1 IC viral DNA also serves as 

reservoir for the virus (Demetriou et al., 2010).  Recent studies have shown intracellular DNA as 

an independent determinant of disease progression (Demetriou et al., 2010) and further 

assessment of this finding is necessary among sub Saharan Africans who may benefit from the 

use of  HIV-1 IC DNA in disease monitoring.  

In this study, we assessed HIV-1 IC DNA levels in HIV patients from Nouna, Burkina 

Faso and determined how they correlated with plasma viral load and CD4+ T-cell counts as well 

as other surrogate markers of disease progression. We also assessed HIV-1 IC DNA loads in 

terms of comparing levels in patients with drug resistant strains and non-resistant strains and 

determined how they compared with established standards of disease monitoring like CD4+ T-

cell counts and plasma viral load. We also analyzed HIV-1 IC DNA loads in terms of patients 
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who experienced virologic failure after 24 weeks of HAART and those who experienced 

virologic suppression within the same time frame. 

4.3.1 HIV-1 intracellular DNA levels ranged between 10 and 10,000 copies 

per one million cells among drug naïve patients. 

HIV-1 IC DNA was measured by a molecular-beacon-based qPCR technique using 

CCR5 gene copies as a reference to calculate the number of cells in buffy coat. The majority of 

the patients (58%) had HIV-1 IC DNA loads between 100 and 1,000 copies/106 cells, 26% had 

HIV-1 IC DNA between 1,000 and 10,000 copies/106 cells, 14% were between 10 and 100 

copies/106 cells while 2% were between 10,000 and 100,000 copies/106 cells and none fell in the 

range of 100,000 to 1,000,000 copies/106 cells.   

HIV-1 IC DNA viral load has been shown to be relatively stable as compared to the 

plasma viral load especially during treatment (Saitoh et al., 2002). There is a paucity of studies 

that have analyzed the level of HIV-1 IC DNA among Africans. In studies done in developed 

countries, Kostrikis et al., 2002, demonstrated in an European cohort a median HIV-1 IC DNA 

level of 2.646 copies/106 PBMCs at baseline (Kostrikis et al., 2002a). Our median HIV-1 IC 

DNA level was in a range 2.645 (IQR 2.260 – 3.055), almost identical to that observed by 

Kostrikis et al., 2002. 

4.3.2 HIV-1 intracellular DNA does not correlate with primary markers of 

disease progression in drug naïve HIV-1 infected Burkinabés. 

In order to assess the utility of HIV-1 IC DNA as a potential substitute to established 

markers of disease progression like CD4+ T-cell counts and plasma viral load, we assessed 

correlations between HIV-1 IC DNA on one hand with plasma viral load and CD4+ T-cell counts 

on the other hand. Our results showed no correlation between cellular viral DNA and CD4+ T-

cell counts or plasma viral load using all patient samples (n=83). The correlation between HIV-1 

IC DNA levels and CD4+ T-cell counts of CDC clinical stage B stratified populations of drug 

naïve patients was also assessed but again no association was observed.  
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Reports on the association between HIV-1 IC DNA loads, plasma viral load and CD4+ 

T-cell counts vary widely. While some studies have reported no significant correlations in drug 

naïve patients, others have reported significant associations especially in treated patients (Buzon 

et al., 2014). Poizot-Martin et al., 2013, reported no correlation between HIV-1 IC DNA and 

plasma viral load as well as HIV-1 IC DNA and CD4+ T-cell counts, in a cohort of HIV-1 

infected patients (Poizot-Martin et al., 2013). This was in agreement with our results. 

Furthermore, in a study conducted by Kostrikis et al., 2002, it was shown that HIV-1 IC DNA 

levels moderately correlated with plasma viral load and weakly correlated with CD4+ T-cell 

counts (Kostrikis et al., 2002a). Watanabe et al., 2011, however reported a negative correlation 

between absolute HIV-1 IC DNA levels and CD4+ T-cell counts but the correlation was not 

observed when relative HIV IC DNA quantifications were used (Watanabe et al., 2011). In this 

study, they defined the assessment of HIV-1 IC DNA load relative to the number of PBMCs as 

the ‘relative amounts’ in contrast to ‘absolute amounts’ when HIV-1 IC DNA was expressed as 

per milliliter of blood (Watanabe et al., 2011). 

Our cross sectional data may also reflect treatment outcomes in our patients since 

quantifications of HIV-1 IC DNA levels in treated patients have been shown not to change 

significantly over time (Cone et al., 1998; Kostrikis et al., 2002b) but may rather be concordant 

with the time of treatment initiation and not the duration of treatment (Watanabe et al., 2011).  

4.3.3 HIV-1 DNA levels are significantly higher in patients who experience 

virologic failure than those who do not. 

Our studies demonstrated a significantly higher (p=0.045) median HIV-1 IC DNA 

level at baseline (median 3.16 log10 copies/106 cells, IQR 2.75-3.62) in patients who experienced 

virologic failure after 24 weeks of HAART as compared to their counterparts in whom virologic 

suppression was attained (the median baseline HIV-1 IC DNA was 2.63 log10copies/106 cells, 

corresponding to the range IQR, 2.12-3.04 log10copies/106 cells). This observation is in 

agreement with studies conducted by Saitoh et al., 2007, who demonstrated that HIV-1 IC DNA 

is lower in HAART treated children with undetectable RNA viral loads compared to those with 

high viral loads (Saitoh et al., 2002) also signifying that HIV-1C DNA load could be used to 
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predict disease progression at baseline before therapy commencement. A study undertaken by 

Parisi et al., 2012, demonstrated that low baseline levels of HIV-1 IC DNA load leads to 

undetectable levels of the cellular DNA load and plasma viral load levels during therapy (Parisi 

et al., 2012). Williams et al., 2014, stated from their studies that, cellular HIV-1 DNA is a better 

predictor of disease outcome than plasma viral load and could even help to identify individuals 

who can safely interrupt therapy (Williams et al., 2014). Our findings need to be reconfirmed by 

a larger sample size.   

Plasma viral levels at 24 weeks post HAART was higher in patients who experienced 

virologic failure than those who did not. There was approximately 2.5log10 difference (p<0.001) 

in plasma viral load levels between patients who experienced virologic failure and those who 

experienced virologic suppression at 24 weeks of treatment but there was no difference in their 

CD4+ T-cell count levels (p=0.15). Also both their plasma viral load and CD4+ T-cell counts at 

baseline were not significantly different. Our findings suggest that plasma viral load remains a 

strong predictor for disease prognosis and not CD4+ T-cell counts (Mellors et al., 1996).  

4.3.4 HIV-1 DNA levels are unaffected by drug resistance mutations in drug 

naïve HIV-1 infected patients  

Not much has been studied on the factors that determine the level of HIV-1 IC DNA 

especially among African populations. Transmitted drug resistance mutations alter the kinetics of 

viral infection and may affect levels in HIV-1 IC DNA in HIV infected patients. In a large 

European cohort however, it was determined that TDRMs do not affect HIV-1 IC DNA 

(Demetriou et al., 2010). Little or no information currently exists on the effect of TDRMs on 

HIV-1IC DNA load in Africa. We compared the levels of HIV-1 IC DNA load in patients who 

had TDRMs and those who had no DRMs affecting drug susceptibility. Our data showed no 

significant difference between the median HIV-1 IC DNA in the drug sensitive and resistant 

groups of drug naïve patients assessed. Our results was similar to the observations made in the 

large European cohort studies (Demetriou et al., 2010).  
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4.3.5 Transmitted drug resistance mutations does not alter the levels of 

plasma viral load and CD4
+ 

T-cell counts among drug resistant and 

susceptible HIV infected Burkinabés 

Our data indicated that cellular HIV-1 DNA levels were not affected by TDRMs. 

However we wanted to determine whether a similar pattern existed for the clinically used HIV-1 

infection monitoring markers like CD4+ T-cell counts and HIV plasma viral load. Again there 

was no difference in the levels of CD4+ T-cell counts and plasma viral load in patients with and 

without TDRMs. Nevertheless we observed a trend towards higher CD4+ T-cell counts among 

patients with TDRMs compared to those without (p=0.007). When we further segregated the 

cohort by CDC clinical stages and focused only on group B patients, we observed significantly 

higher CD4+ T-cell counts among clinical stage B patients with TDRMs as compared to those 

without TDRMs. Studies have generally shown that mutant viruses tend to have reduced fitness 

and may be less virulent than wild type viruses and this may affect the degree of CD4+ T-cell 

count reduction in patients (Hirsch et al., 2008). It has also been reported that individuals 

infected with drug resistant viruses have higher initial CD4+ T-cell counts than those infected 

with wild type viruses although the high CD4+ T-cell counts in TDRM groups are usually 

followed by a faster CD4+ T-cell count decline compared to wild type (Hirsch et al., 2008; Pillay 

et al., 2006). Our data indicated a higher level of CD4+ T-cell count in the TDRM group, 

however, analysis of later time point CD4+ T-cell count values would give a clear assessment of 

CD4+ T-cell count decline over time among the two groups of patients.    

4.4 The effect of other indicators of disease progression on HIV-1 

intracellular DNA, Plasma viral load and CD4
+ 

T-cell count in 

HIV-I infected patients 

There are several factors that have been shown to influence HIV infection and disease 

progression among Africans. In this study we assessed the role of hepatitis (HBV) confection, 

predominant HIV subtypes, number of mutations and age on established markers of disease 

monitoring like CD4+ T-cell counts, plasma viral load and HIV-1 IC DNA. Co-infection with 
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Hepatitis B did not alter the levels of HIV-1 intracellular DNA, plasma viral load or CD4+ T-cell 

count among drug naïve patients. Our observation agrees with a meta-analysis done by 

Nikolopoulus et al., 2009, where they assessed the impact of HBV co-infection with HIV-1 on 

HIV disease progression and did not find any significant impact (Jain, 2009; Nikolopoulos et al., 

2009). Also no correlation existed between HIV-1 intracellular DNA and age, HIV subtypes and 

number of mutations among infected patients, and this is in concordance with studies conducted 

by Kostrikis et al., 2002, who also reported the lack of association between HIV-1 IC DNA and 

age, HIV-1 subtypes and number of DRMs in their European cohort (Kostrikis et al., 2002b). 

Finally, principal component analysis of all the variables used to assess markers of disease 

progression in this study also showed that 25% of variations in all the variables examined 

explain HIV-1 disease progression in the study participants. 
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5 Conclusion 

The current phase of the HIV pandemic brings with it hope for infected persons due to 

the effectiveness of HAART. However, challenges still lie ahead that require concerted efforts to 

overcome. The most important challenge involves the development of drug resistance mutations 

and their transmission that may threaten the effectiveness of HAART in the future. Also the need 

for improved clinical tools for monitoring disease states and progression and determination of 

drug resistance mutations is increasing, especially in low-income areas.  

In this study we have shown that drug resistance mutations are quite common in drug 

naïve HIV-1 infected patients in Nouna Burkina Faso, indicating increasing transmission of 

resistant mutations in the African population. There is also a high rate of mutation development 

with treatment on HAART. The high similarity between DNA and RNA mutation rates found in 

this study indicates that the use of DNA can be adopted in drug resistance monitoring since it is 

very stable and would not easily be degraded with changes in temperature as compared to RNA 

which is easily degradable and needs specific temperature conditions to keep it viable for DRM 

testing. Deep sequencing also shows minority DRM variants that may become dominant over 

time or provoke the emergence of DRMs that reduce drug susceptibility. Drug resistance 

mutations in the minority quasispecies could also lower susceptibility to ARTs leading to 

virologic failure. Deep sequencing has on the other hand, proved to be a good tool that could be 

used to resolve disparities in DRMs and suspicious nucleotide differences. Finally, HIV-1 IC 

DNA in our study did not strongly correlate with key markers of disease progression but could 

be used to detect virologic failure at 24 weeks of HAART, signifying that HIV-1 IC DNA or 

HIV-1 STS DNA levels may predict disease progression independently and can be used either 

alone or together with plasma viral load and CD4+ T-cell count to predict disease progression. 

Since our sample size was small, it is recommended that more studies be carried out to assess the 

utility of HIV-1 IC DNA in clinical practice. 
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6 Outlook 

This study analyzed an alternative template (DNA) that is more stable and easy to handle, for 

HIV-1 drug resistance genotyping. It also shed light on the importance of detecting TDRMs 

before the initiation of ART, since this may play an important role in clinical decision-making 

and serve as a key to preventing the emergence of multiple drug resistance mutations at later 

time points in the progression of HIV-1 disease. A large-scale study involving deep sequencing 

of treatment naïve and follow-up patients harbouring DRMs should be evaluated to assess 

whether DRMs that occur over time were already present in the minority viral quasispecies. Such 

a study could be expanded to involve mutational linkages and the relevance of minority variants 

in clinical decision-making. 
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APPENDIX 

Appendix I: Ethical clearance from Nouna Burkina Faso 
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Appendix II: Ethical clearance from Heidelberg Germany 
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Appendix III: Reverse transcriptase and nested PCR reagents and 

conditions 

PCR reagents for cDNA and first round DNA synthesis 

 

PCR conditions for cDNA and first round DNA synthesis  

 

 

 

 

 

Component Volume

2X Reaction Mix 25 µl
Template RNA (33- 108ng/ul) 5, 10 or 15µl
10 µM/µl RT1 forward primer 1 µl
10 µM/µl RT-Rev-Stu1  reverse primer 1 µl

SuperScript™ III RT/ Platinum® Taq High 
Fidelity Enzyme Mix* (5U/ul)

1 µl

Nuclease free water to 50 µl

Perform 1 cycle of: Perform 40 cycles of:

55°C or 60°C for 30 minutes
Denaturation, 94°C for 15 
seconds

94°C for 2 minutes

Annealling, 50°C and 
increments of 1°C upto 60°C 
for 30 seconds at each trial

Extension, 68°C for 1 
minute/kb

A: cDNA synthesis and pre-

denaturation 

1 cycle of 68ºC for 5 
minutes

B: PCR amplification C: Final extension 
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PCR reagents for second round DNA synthesis 

 

Second round PCR amplification conditions 

 

Primer groupings for PCR optimizations 

 

F1: Pol1 forward primer; R1: RT-rev-stu1 reverse primer; F2: Prot-for-EcoR forward primer and R2: RT4 reverse 
primer    

Component Volume

5x G-C rich PCR Buffer 5µl
25 mM dNTPs 0.5µl
10 µM/µl RT3 forward primer 1.0µl
10 µM/µl RT4 reverse primer 1.0µl
Verbatim High Fidelity DNA 0.5
Template DNA 5.0µl
Nuclease free water to 50 µl

PCR Step Temperature Duration Number  of Cycles

Initial Denaturation 98°C 30 secs 1 cycle

Denaturation 98°C 10 secs

Extension 72°C 30 secs

Final Extension 72°C 10 mins 1 cycle

Holding 4°C Infinity

Annealing 30 secs 35 cycles
50°C upto with  increments of 

1°C upto 60°C 

Group 

A F1 +R1

B F1 +R2 F2 +R2 

C F2+R1 F2 +R2

D F2 +R2 F2 +R2

Primer combinations 

for cDNA and first 

Primer combinations 

for second round 

F2 +R2
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Appendix IV: HIV-1 IC DNA and CCR5 reagents and PCR 

amplification conditions  

HIV-1 IC DNA PCR amplification reagents  

 

CCR5 DNA PCR amplification reagents 

 

 

 

 

 

 

 

 

Template DNA

to 50 µlNuclease free water 

10 µM LK47 reverse primer 1 µl

Component Volume
10X standard Taq reaction buffer 5 µl
25 mM dNTPs 0.5 µl

5µl
Taq DNA polymerase 0.25 µl

10 µM LK46 forward primer 1 µl

Volume
5 µl
0.5 µl
1 µl
1 µl
0.25 µl
37.25 µl
5µl
to 50 µl

Component
10X standard Taq reaction buffer
25 mM dNTPs

Nuclease free water 

Taq DNA polymerase
Nuclease free water 

10 µM 788 reverse primer
10 µM/µl 623 forward primer
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PCR cycling conditions for HIV-1 and CCR5 DNA 

 

Appendix V: CCR5 gel amplification photograph 

 

   

Appendix VI: TOPO TA cloning reaction set-up 

 

Initial Denaturation

95 °C           10 mins

Denaturation 95 °C             30 secs

Annealing 55 °C     30    secs

Extension 72 °C     30 secs

Final extention 72 °C             10 mins

Hold 4 °C             Infinity

PCR cycling conditions

50 cycles

1 cycle

Component Volume
Fresh PCR product 0.5-4 µl
Salt solution

Nuclease free water add to a total volume of 5µl

1 µl
pCR 4-TOPO plasmid vector 1 µl

 

     L               NC            

1000 

500 

200 

Negative control

Patient derived CCR5 

DNA

237 bpTarget band size

Label on gel

L

NC

SRIN48

Interpretation

100 bp DNA ladder
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Appendix VII: Drug resistance profile of HIV-1 infected drug naïve 

patients from Nouna Burkina Faso 

 
 

DR represents drug resistance; LR represents level resistance Type of template: RNA; Region analyzed: PR 1-99 
codons and RT (2/3) 1-335 codons. Primary resistance mutations are bolded, primary resistance mutations in other 
expert list are bolded and underlined and minor and accessory resistance mutations are italicized.  

Lab Viral load CD4 Tcell Type of Subtype PI NNRTI NRTI

ID Copies/ml counts (cells/ul) Template  PR-RT Mutations Mutations Mutations Low-LR High/ Intermediate -LR

SRIN14 939988 202 RNA CRF06_cpx - Like K20I no mutation
DNA CRF06_cpx - Like K20I

SRIN15 971579 7 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I

SRIN16 707181 10 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN25 54837 152 RNA CRF06_cpx - Like K20I

V106I

DNA CRF06_cpx - Like K20I

V106I

SRIN30 1017643 163 RNA CRF02_AG - Like L10V no mutation
K20I

DNA CRF02_AG - Like L10V no mutation
K20I

SRIN31 172739 271 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN32 430515 177 RNA CRF02_AG - Like  K20I

V118IV

DNA CRF02_AG - Like K20I

V118I

SRIN33 3399058 180 RNA CRF02_AG - Like L10V no mutation
 K20I

DNA CRF02_AG - Like L10V no mutation
 K20I

SRIN34 2801732 3 RNA CRF02_AG - Like K20I no mutation
L10V

DNA CRF02_AG - Like K20I no mutation
L10V

SRIN38 223957 248 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN39 115615 262 RNA G - Like V82I no mutation
K20I

DNA G - Like V82I no mutation

K20I

SRIN41 2314931 144 RNA CRF02_AG - Like V11I no mutation

 K20I

DNA CRF02_AG - Like V11I no mutation
K20I

SRIN47 743697 66 RNA CRF02_AG - Like  K20I no mutation
DNA CRF02_AG - Like  K20I no mutation

SRIN48 2416935 147 RNA CRF06_cpx - Like K43T

K201

Y181C EFV,ETR,NVP,RPV

DNA CRF06_cpx - Like K43T

K201

Y181C EFV,ETR,NVP,RPV

K219N

SRIN51 749061 284 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN52 194086 153 RNA CRF02_AG - Like L10I no mutation
K20I

DNA CRF02_AG - Like L10I no mutation
K20I

Drug Resistance Interpretations Per Resistance Scores
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Appendix VII continued 

 

 
 

 

 

 

 

 

 

Lab Viral load CD4 Tcell Type of Subtype PI NNRTI NRTI

ID Copies/ml counts (cells/ul) Template  PR-RT Mutations Mutations Mutations Low-LR High/ Intermediate -LR

SRIN55 93865 227 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN56 1593082 81 RNA CRF02_AG - Like K20I no mutation
L10V

DNA CRF02_AG - Like K20I no mutation
no mutation

SRIN57 653455 198 RNA CRF02_AG - Like  K20I no mutation
DNA CRF02_AG - Like  K20I

SRIN58 256724 231 RNA CRF02_AG - Like K20I no mutation
L10V

DNA CRF02_AG - Like K20I no mutation

L10V

SRIN60 121581 226 RNA CRF02_AG - Like K20IV no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN61 749061 284 RNA CRF06_cpx - Like K20I no mutation
DNA CRF06_cpx - Like K20I no mutation

SRIN62 2005003 180 RNA CRF02_AG - Like  K20I no mutation
DNA CRF02_AG - Like  K20I no mutation

SRIN63 86731 316 RNA 02A1-Like K20I

V108IV NVP
V90I 

DNA 02A1-Like K20I

V108IV NVP
V90I 

SRIN65 145511 32 RNA  CRF01_AE- like L10I

V179I

DNA  CRF01_AE- like L10I

V179I

SRIN66 227199 140 RNA  CRF01_AE- like L10V

E138A RPV
V179I

DNA  CRF01_AE- like L10V

E138A RPV
V179I

SRIN67 1195067 293 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN68 2201354 411 RNA G - Like K20I no mutation
DNA G - Like K20I no mutation

SRIN69 515487 428 RNA CRF02_AG - Like L10LV no mutation
K20I

L210LW AZT, D4T
DNA CRF02_AG - Like L10V no mutation

 K20I

L210LW AZT, D4T
SRIN70 46747 13 RNA G - Like A71AT

K20I

V90I
DNA G - Like A71T

 K20I

V90I
SRIN71 325435 256 RNA CRF02_AG - Like K20I no mutation

DNA CRF02_AG - Like K20I no mutation
SRIN72 95911 333 RNA G - Like  K20I

V179I

DNA G - Like   K20I

V179I

Drug Resistance Interpretations Per Resistance Scores
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Appendix VII continued 

 

 

 
 

 

 

Lab Viral load CD4 Tcell Type of Subtype PI NNRTI NRTI

ID Copies/ml counts (cells/ul) Template  PR-RT Mutations Mutations Mutations Low-LR High/ Intermediate -LR

SRIN73 1818940 157 RNA CRF02_AG - Like L10V no mutation
  K20I

DNA CRF02_AG - Like L10V no mutation
  K20I

SRIN74 40625 7 RNA CRF02_AG - Like   K20I V90I

DNA CRF02_AG - Like   K20I V90I

SRIN75 13291 400 RNA CRF02_AG - Like L10LV

 K20I no mutation
DNA CRF02_AG - Like L10V

 K20I

SRIN76 51695 177 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN77 45750 123 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN78 24482 269 RNA D- Like no mutation
DNA D- Like no mutation

SRIN79 11678 256 RNA CRF02_AG - Like   K20I

V179I

DNA CRF02_AG - Like K20I

V179I

SRIN80 23449 152 RNA  CRF01_AE- like no mutation V179I

DNA  CRF01_AE- like no mutation V179I

SRIN81 590908 323 RNA CRF02_AG - Like   K20I, T74S NFV 
K238KR 

DNA CRF02_AG - Like  K20I, T74S NFV 
K238R 

SRIN82 569328 140 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN83 43140 279 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN84 15793 156 RNA CRF02_AG - Like L10I no mutation
DNA CRF02_AG - Like L10I no mutation

SRIN85 1434896 215 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN86 2233224 146 CRF02_AG - Like L10I no mutation
 K20I

CRF02_AG - Like L10I no mutation
 K20I

SRIN87 4040062 65 RNA CRF02_AG - Like L33F

 K20R

I93M

DNA CRF02_AG - Like L33F no mutation
 K20R

I93M

SRIN88 574163 45 RNA CRF02_AG - Like L10V

K20I

V108I no mutation

DNA CRF02_AG - Like L10V

K20I

V108I no mutation

SRIN89 677363 54 RNA 02A1-Like K20I

V179I no mutation
DNA 02A1-Like K20I

V179I no mutation
SRIN90 1379797 236 RNA CRF06_cpx - Like K20I no mutation

DNA CRF06_cpx - Like K20I no mutation
SRIN91 977237 66 RNA CRF06_cpx - Like L10V no mutation

K20I

DNA CRF06_cpx - Like L10V no mutation
K20I

Drug Resistance Interpretations Per Resistance Scores
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Appendix VII continued. 

 

 

 

 

 

 

Lab Viral load CD4 Tcell Type of Subtype PI NNRTI NRTI

ID Copies/ml counts (cells/ul) Template  PR-RT Mutations Mutations Mutations Low-LR High/ Intermediate -LR

SRIN92 561916 282 RNA CRF06_cpx - Like L10I no mutation
K20I

DNA CRF06_cpx - Like L10V no mutation
K20I

SRIN93 10000000 643 RNA CRF02_AG - Like  K20I no mutation
L10V

DNA CRF02_AG - Like K20I no mutation
no mutation

SRIN94 10000000 116 RNA CRF02_AG - Like  K20I

V90I

DNA CRF02_AG - Like no mutation
no mutation

SRIN95 10000000 7 RNA CRF02_AG - Like K20R

L10I

V90I

DNA  K20I

L10I

no mutation
SRIN96 1892979 90 RNA CRF02_AG - Like K20I no mutation

L89I

DNA K20I no mutation
L89I

SRIN97 1581674 106 RNA CRF06_cpx - Like K20I no mutation

T69N

DNA CRF06_cpx - Like K20I no mutation

T69N

SRIN98 10000000 63 RNA CRF02_AG - Like K20I no mutation

L10V

DNA CRF02_AG - Like K20I no mutation

L10V

SRIN99 10000000 322 RNA CRF02_AG - Like K20I no mutation

L10V

DNA CRF02_AG - Like K20I no mutation

L10V

SRIN100 71380 292 RNA CRF02_AG - Like K20I no mutation

DNA CRF02_AG - Like K20I no mutation

SRIN101 339531 408 RNA CRF06_cpx - Like K20I no mutation

E44D

DNA CRF06_cpx - Like K20I no mutation

E44D

SRIN102 3790705 88 RNA CRF02_AG - Like K20I no mutation

DNA CRF02_AG - Like K20I no mutation

SRIN103 182608 397 RNA  CRF01_AE- like L10V no mutation
V179I

DNA  CRF01_AE- like L10V no mutation
V179I

SRIN105 98211 218 RNA CRF02_AG - Like K20I no mutation
DNA CRF02_AG - Like K20I no mutation

SRIN106 3589550 176 RNA CRF02_AG - Like K20I no mutation
V108I NVP
V90I

DNA CRF02_AG - Like K20I no mutation NVP
V108I 

V90I

SRIN107 290269 406 RNA CRF02_AG - Like K20I no mutation
L89I

DNA CRF02_AG - Like K20I no mutation
L89I

Drug Resistance Interpretations Per Resistance Scores
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Appendix VII continued. 

 

 

 

 

 

 

 

 

Lab Viral load CD4 Tcell Type of Subtype PI NNRTI NRTI

ID Copies/ml counts (cells/ul) Template  PR-RT Mutations Mutations Mutations Low-LR High/ Intermediate -LR

SRIN108 27833 232 RNA CRF02_AG - Like K20I no mutation
V179I

DNA CRF02_AG - Like K20I no mutation
V179I

SRIN109 405359 313 RNA CRF02_AG - Like K20I no mutation
V179I

DNA CRF02_AG - Like K20I no mutation
V179I

SRIN110 1420627 44 RNA CRF06_cpx - Like K20I no mutation
DNA CRF06_cpx - Like K20I no mutation

SRIN111 236592 212 RNA CRF06_cpx - Like K20I no mutation
DNA CRF06_cpx - Like K20I no mutation

SRIN112 1373030 213 RNA CRF02_AG  Like K20I no mutation
DNA CRF02_AG  Like K20I no mutation

SRIN113 1803350 11 RNA CRF02_AG  - Like K20I no mutation
DNA CRF02_AG  - Like K20I no mutation

SRIN114 21777 349 RNA CRF02_AG  - Like K20I no mutation
DNA CRF02_AG  - Like K20I no mutation

SRIN116 262060 508 RNA CRF02_AG  - Like K20I no mutation
DNA CRF02_AG  - Like K20I no mutation

SRIN117 90498 341 RNA CRF02_AG  - Like K20I no mutation
DNA CRF02_AG  - Like K20I no mutation

SRIN118 2579 279 RNA  CRF01_AE- like L10V no mutation
V179I

DNA  CRF01_AE- like L10V no mutation
V179I

SRIN119 272998 364 RNA CRF06_cpx - Like K20I no mutation
V11I

DNA CRF06_cpx - Like K20I no mutation
V11I

SRIN120 1400866 504 RNA CRF02_AG  - Like K20I no mutation

V11I

L10I

K103N NVP, EFV
DNA CRF02_AG  - Like K20I no mutation

V11I

L10I

K103KN NVP, EFV
SRIN121 224037 281 RNA CRF02_AG  - Like K20I no mutation

DNA CRF02_AG  - Like K20I no mutation
SRIN122 1531228 170 RNA CRF02_AG  - Like K20I no mutation

DNA CRF02_AG  - Like K20I no mutation
SRIN123 976517 301 RNA CRF02_AG  - Like K20I no mutation

E138A RVP
DNA CRF02_AG  - Like K20I no mutation

E138A RVP
SRIN124 225569 467 RNA CRF02_AG  - Like K20I no mutation

DNA CRF02_AG  - Like K20I no mutation
SRIN125 1126782 33 RNA CRF02_AG  - Like K20I no mutation

DNA CRF02_AG  - Like K20I no mutation

Drug Resistance Interpretations Per Resistance Scores
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Appendix VIII: Schematic diagram for the sequencing procedure of 

the PR/RT region of HIV-1 pol 

 

 

a. Reproduced from (Kousiappa et al., 2009) 

b. Diagram A represents the final amplicon containing gag ( p6) and pol ( prot and p51 RT) regions. 

c. The black triangular arrows represents the 5’-end binding positions of the sequencing primers. 

d. The gray cylindrical bars in diagram B represenst the sequence segments obtained from each sequencing primer 

e. The dark asterisks represents alternative DNA segments. This signifies that primer numbered 2734and 2650 can 
be used instead of 2610 and 3539 instead of 3462. 

f. Finally the gray cylindrical bar in diagram C represents the expected final sequenced derieved product after 
aligning the short sequenced fragments as shown above. 



          List of abstracts  

150 

 

List of peer reviewed abstracts for poster and oral 

presentations 

Affram Y and Kraeusslich HG. Intracellular Viral Levels of Drug Resistant and Drug Sensitive 

HIV-1 Infection and its Correlation to Disease Progression in a Population of Africans. Summer 

School of Infection Research. Dresden, Germany. 22nd -27th June 2014. Poster Presentation. 

Affram Y and Kraeusslich HG. Correlating Intracellular Viral Levels of Drug Resistant and 

Drug Sensitive HIV-1 Infection to Disease Progression Among Drug Naïve Africans. Young 

Researchers in Life Sciences Conference. Pasteur Institute Paris, France, 26th -28th March 2014. 

Oral presentation. 

Affram Y and Kraeusslich HG. Correlating Intracellular Viral Levels of Drug Resistant and 

Sensitive HIV-1 Infection to Disease Progression Among Drug Naïve Africans 2nd European 

Seminar in Virology (EuSeV) on Vaccines and Antivirals. University of Bologna Residential 

Center in Bertinoro   Italy, 13th -15th June 2014. Oral and Poster Presentation. 

Affram Y, Pollakis G, Sagoe KWC, Barnor J, Mingle JAA, Ampofo W, Paxton W. Correlates of 

Non-transmission of Human Immunodeficiency Virus Type 1, In Serologically Discordant 

Couples In Accra, Ghana. 25th Annual Meeting of the German Society of Tropical Medicine and 

Parasitology, Universitaetsplatz, University of Heidelberg, Germany. 14th to 17th March 2012. 

Abstract Number 058. Oral Presentation. 



         Manuscripts in preparation  

151 

 

Manuscripts in preparation 

1. Affram Y, Schnitzler P, Kräusslich HG. HIV-1 drug resistance mutations among drug 
naive and follow-up patients experiencing virological failure in rural Burkina Faso using 
population based Sanger sequencing. 

2.  Affram Y, Schnitzler P, Kräusslich HG. Relating HIV-1 Intracellular DNA levels to 
primary markers of disease progression among HIV infected drug naive Burkinabés. 

3. Affram Y, Schnitzler P, Kräusslich HG. Resolving discrepancies in bulk sequencing of 
paired patient samples of RNA and DNA using ultra deep sequencing to reveal drug 
resistance mutations and amino acid changes.  



          References  

152 

 

References 

Abecasis, A.B., Wensing, A.M., Paraskevis, D., Vercauteren, J., Theys, K., Van de Vijver, D.A., 

Albert, J., Asjo, B., Balotta, C., Beshkov, D., Camacho, R.J., Clotet, B., De Gascun, C., 

Griskevicius, A., Grossman, Z., Hamouda, O., Horban, A., Kolupajeva, T., Korn, K., Kostrikis, 

L.G., Kucherer, C., Liitsola, K., Linka, M., Nielsen, C., Otelea, D., Paredes, R., Poljak, M., 

Puchhammer-Stockl, E., Schmit, J.C., Sonnerborg, A., Stanekova, D., Stanojevic, M., Struck, D., 

Boucher, C.A., Vandamme, A.M., 2013. HIV-1 subtype distribution and its demographic 

determinants in newly diagnosed patients in Europe suggest highly compartmentalized 

epidemics. Retrovirology 10, 7. 

Abram, M.E., Ferris, A.L., Shao, W., Alvord, W.G., Hughes, S.H., 2010. Nature, position, and 

frequency of mutations made in a single cycle of HIV-1 replication. Journal of virology 84, 

9864-9878. 

Adje, C., Cheingsong, R., Roels, T.H., Maurice, C., Djomand, G., Verbiest, W., Hertogs, K., 

Larder, B., Monga, B., Peeters, M., Eholie, S., Bissagene, E., Coulibaly, M., Respess, R., Wiktor, 

S.Z., Chorba, T., Nkengasong, J.N., 2001. High prevalence of genotypic and phenotypic HIV-1 

drug-resistant strains among patients receiving antiretroviral therapy in Abidjan, Cote d'Ivoire. 

Journal of acquired immune deficiency syndromes (1999) 26, 501-506. 

Aghokeng, A.F., Monleau, M., Eymard-Duvernay, S., Dagnra, A., Kania, D., Ngo-Giang-Huong, 

N., Toni, T.D., Toure-Kane, C., Truong, L.X., Delaporte, E., Chaix, M.L., Peeters, M., Ayouba, 

A., 2014. Extraordinary heterogeneity of virological outcomes in patients receiving highly 

antiretroviral therapy and monitored with the World Health Organization public health approach 

in sub-saharan Africa and southeast Asia. Clinical infectious diseases : an official publication of 

the Infectious Diseases Society of America 58, 99-109. 

Akinsete, O., Hirigoyen, D., Cartwright, C., Schut, R., Kantor, R., Henry, K., 2004. K103N 

mutation in antiretroviral therapy-naive African patients infected with HIV type 1. Clinical 



          References  

153 

 

infectious diseases : an official publication of the Infectious Diseases Society of America 39, 

575-578. 

Albanese, A., Arosio, D., Terreni, M., Cereseto, A., 2008. HIV-1 pre-integration complexes 

selectively target decondensed chromatin in the nuclear periphery. PloS one 3, e2413. 

Ananworanich, J., Dube, K., Chomont, N., 2015. How does the timing of antiretroviral therapy 

initiation in acute infection affect HIV reservoirs? Current opinion in HIV and AIDS 10, 18-28. 

Arion, D., Parniak, M.A., 1999. HIV resistance to zidovudine: the role of pyrophosphorolysis. 

Drug resistance updates : reviews and commentaries in antimicrobial and anticancer 

chemotherapy 2, 91-95. 

Arnott, A., Jardine, D., Wilson, K., Gorry, P.R., Merlin, K., Grey, P., Law, M.G., Dax, E.M., 

Kelleher, A.D., Smith, D.E., McPhee, D.A., 2010. High viral fitness during acute HIV-1 

infection. PloS one 5. 

Arts, E.J., Hazuda, D.J., 2012. HIV-1 antiretroviral drug therapy. Cold Spring Harbor 

perspectives in medicine 2, a007161. 

Avila-Rios, S., Garcia-Morales, C., Garrido-Rodriguez, D., Tapia-Trejo, D., Giron-Callejas, 

A.C., Mendizabal-Burastero, R., Escobar-Urias, I.Y., Garcia-Gonzalez, B.L., Navas-Castillo, S., 

Pinzon-Meza, R., Mejia-Villatoro, C.R., Reyes-Teran, G., 2014. HIV-1 Drug Resistance 

Surveillance in Antiretroviral Treatment-Naive Individuals from a Reference Hospital in 

Guatemala, 2010-2013. AIDS Res Hum Retroviruses. 

Baca, M., Kent, S.B., 1993. Catalytic contribution of flap-substrate hydrogen bonds in "HIV-1 

protease" explored by chemical synthesis. Proceedings of the National Academy of Sciences of 

the United States of America 90, 11638-11642. 



          References  

154 

 

Banks, L., Gholamin, S., White, E., Zijenah, L., Katzenstein, D.A., 2012. Comparing Peripheral 

Blood Mononuclear Cell DNA and Circulating Plasma viral RNA pol Genotypes of Subtype C 

HIV-1. Journal of AIDS & clinical research 3, 141-147. 

Barennes, H., Guillet, S., Limsreng, S., Him, S., Nouhin, J., Hak, C., Srun, C., Viretto, G., Ouk, 

V., Delfraissy, J.F., Segeral, O., 2014. Virological failure and HIV-1 drug resistance mutations 

among naive and antiretroviral pre-treated patients entering the ESTHER program of Calmette 

Hospital in Cambodia. PloS one 9, e105736. 

Barre-Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., Dauguet, 

C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W., Montagnier, L., 1983. 

Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency 

syndrome (AIDS). Science (New York, N.Y.) 220, 868-871. 

Bartolo, I., Zakovic, S., Martin, F., Palladino, C., Carvalho, P., Camacho, R., Thamm, S., 

Clemente, S., Taveira, N., 2014. HIV-1 Diversity, Transmission Dynamics and Primary Drug 

Resistance in Angola. PloS one 9, e113626. 

Beaudrot, M.E., DeFranco, E.A., Elchert, J.A., 2015. Influence of Gestational Weight Gain and 

Body Mass Index on Cesarean Delivery Risk in Adolescent Pregnancies [6]. Obstetrics and 

gynecology 125 Suppl 1, 2S. 

Blick, G., Kagan, R.M., Coakley, E., Petropoulos, C., Maroldo, L., Greiger-Zanlungo, P., Gretz, 

S., Garton, T., 2007. The probable source of both the primary multidrug-resistant (MDR) HIV-1 

strain found in a patient with rapid progression to AIDS and a second recombinant MDR strain 

found in a chronically HIV-1-infected patient. The Journal of infectious diseases 195, 1250-

1259. 



          References  

155 

 

Bon, I., Alessandrini, F., Borderi, M., Gorini, R., Re, M.C., 2007. Analysis of HIV-1 drug-

resistant variants in plasma and peripheral blood mononuclear cells from untreated individuals: 

implications for clinical management. New Microbiol 30, 313-317. 

Broder, S., Gallo, R.C., 1984. A pathogenic retrovirus (HTLV-III) linked to AIDS. The New 

England journal of medicine 311, 1292-1297. 

Buckheit, R.W., Jr., 2004. Understanding HIV resistance, fitness, replication capacity and 

compensation: targeting viral fitness as a therapeutic strategy. Expert opinion on investigational 

drugs 13, 933-958. 

Buonaguro, L., Tornesello, M.L., Buonaguro, F.M., 2007. Human immunodeficiency virus type 

1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications. 

Journal of virology 81, 10209-10219. 

Butler, S.L., Hansen, M.S., Bushman, F.D., 2001. A quantitative assay for HIV DNA integration 

in vivo. Nature medicine 7, 631-634. 

Buzon, M.J., Martin-Gayo, E., Pereyra, F., Ouyang, Z., Sun, H., Li, J.Z., Piovoso, M., Shaw, A., 

Dalmau, J., Zangger, N., Martinez-Picado, J., Zurakowski, R., Yu, X.G., Telenti, A., Walker, 

B.D., Rosenberg, E.S., Lichterfeld, M., 2014. Long-term antiretroviral treatment initiated at 

primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of 

HIV-1-infected CD4 T cells. Journal of virology 88, 10056-10065. 

Cain, L.E., Logan, R., Robins, J.M., Sterne, J.A., Sabin, C., Bansi, L., Justice, A., Goulet, J., van 

Sighem, A., de Wolf, F., Bucher, H.C., von Wyl, V., Esteve, A., Casabona, J., del Amo, J., 

Moreno, S., Seng, R., Meyer, L., Perez-Hoyos, S., Muga, R., Lodi, S., Lanoy, E., Costagliola, D., 

Hernan, M.A., 2011. When to initiate combined antiretroviral therapy to reduce mortality and 



          References  

156 

 

AIDS-defining illness in HIV-infected persons in developed countries: an observational study. 

Ann Intern Med 154, 509-515. 

Callegaro, A., Di Filippo, E., Astuti, N., Ortega, P.A., Rizzi, M., Farina, C., Valenti, D., 

Maggiolo, F., 2014. Early clinical response and presence of viral resistant minority variants: a 

proof of concept study. Journal of the International AIDS Society 17, 19759. 

CDC, 1992. 1993 revised classification system for HIV infection and expanded surveillance case 

definition for AIDS among adolescents and adults. MMWR. Recommendations and reports : 

Morbidity and mortality weekly report. Recommendations and reports / Centers for Disease 

Control 41, 1-19. 

Chabria, S.B., Gupta, S., Kozal, M.J., 2014. Deep sequencing of HIV: clinical and research 

applications. Annual review of genomics and human genetics 15, 295-325. 

Chew, C.B., Potter, S.J., Wang, B., Wang, Y.M., Shaw, C.O., Dwyer, D.E., Saksena, N.K., 2005. 

Assessment of drug resistance mutations in plasma and peripheral blood mononuclear cells at 

different plasma viral loads in patients receiving HAART. Journal of clinical virology : the 

official publication of the Pan American Society for Clinical Virology 33, 206-216. 

Clavel, F., Hance, A.J., 2004. HIV drug resistance. The New England journal of medicine 350, 

1023-1035. 

Coffin, J., Haase, A., Levy, J.A., Montagnier, L., Oroszlan, S., Teich, N., Temin, H., Toyoshima, 

K., Varmus, H., Vogt, P., et al., 1986. What to call the AIDS virus? Nature 321, 10. 

Cohen, E.A., Lu, Y., Gottlinger, H., Dehni, G., Jalinoos, Y., Sodroski, J.G., Haseltine, W.A., 

1990. The T open reading frame of human immunodeficiency virus type 1. Journal of acquired 

immune deficiency syndromes 3, 601-608. 



          References  

157 

 

Coleman, C.M., Wu, L., 2009. HIV interactions with monocytes and dendritic cells: viral latency 

and reservoirs. Retrovirology 6, 51. 

Collenberg, E., Ouedraogo, T., Ganame, J., Fickenscher, H., Kynast-Wolf, G., Becher, H., 

Kouyate, B., Krausslich, H.G., Sangare, L., Tebit, D.M., 2006. Seroprevalence of six different 

viruses among pregnant women and blood donors in rural and urban Burkina Faso: A 

comparative analysis. J Med Virol 78, 683-692. 

Colson, P., Ravaux, I., Tamalet, C., Glazunova, O., Baptiste, E., Chabriere, E., Wiedemann, A., 

Lacabaratz, C., Chefrour, M., Picard, C., Stein, A., Levy, Y., Raoult, D., 2014. HIV infection en 

route to endogenization: two cases. Clinical microbiology and infection : the official publication 

of the European Society of Clinical Microbiology and Infectious Diseases. 

Cone, R.W., Gowland, P., Opravil, M., Grob, P., Ledergerber, B., 1998. Levels of HIV-infected 

peripheral blood cells remain stable throughout the natural history of HIV-1 infection. Swiss 

HIV Cohort Study. Aids 12, 2253-2260. 

Craigie, R., Bushman, F.D., 2012. HIV DNA integration. Cold Spring Harbor perspectives in 

medicine 2, a006890. 

Daar, E.S., Richman, D.D., 2005. Confronting the emergence of drug-resistant HIV type 1: 

impact of antiretroviral therapy on individual and population resistance. AIDS research and 

human retroviruses 21, 343-357. 

Das, K., Arnold, E., 2013. HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. 

Current opinion in virology 3, 111-118. 

Dawson, L., Yu, X.F., 1998. The role of nucleocapsid of HIV-1 in virus assembly. Virology 251, 

141-157. 



          References  

158 

 

de Mendoza, C., Barreiro, P., Benitez, L., Soriano, V., 2014. Gene therapy for HIV infection. 

Expert opinion on biological therapy, 1-9. 

Delaugerre, C., Braun, J., Charreau, I., Delarue, S., Nere, M.L., de Castro, N., May, T., Marchou, 

B., Simon, F., Molina, J.M., Aboulker, J.P., group, A.E.s., 2012. Comparison of resistance 

mutation patterns in historical plasma HIV RNA genotypes with those in current proviral HIV 

DNA genotypes among extensively treated patients with suppressed replication. HIV medicine 

13, 517-525. 

Delviks-Frankenberry, K., Galli, A., Nikolaitchik, O., Mens, H., Pathak, V.K., Hu, W.S., 2011. 

Mechanisms and factors that influence high frequency retroviral recombination. Viruses 3, 1650-

1680. 

Demetriou, V.L., van de Vijver, D.A., Kousiappa, I., Balotta, C., Clotet, B., Grossman, Z., 

Jorgensen, L.B., Lepej, S.Z., Levy, I., Nielsen, C., Paraskevis, D., Poljak, M., Roman, F., Ruiz, 

L., Schmidt, J.C., Vandamme, A.M., Van Laethem, K., Vercauteren, J., Kostrikis, L.G., 2010. 

Cellular HIV-1 DNA levels in drug sensitive strains are equivalent to those in drug resistant 

strains in newly-diagnosed patients in Europe. PLoS One 5, e10976. 

Derache, A., Maiga, A.I., Traore, O., Akonde, A., Cisse, M., Jarrousse, B., Koita, V., Diarra, B., 

Carcelain, G., Barin, F., Pizzocolo, C., Pizarro, L., Katlama, C., Calvez, V., Marcelin, A.G., 

2008. Evolution of genetic diversity and drug resistance mutations in HIV-1 among untreated 

patients from Mali between 2005 and 2006. The Journal of antimicrobial chemotherapy 62, 456-

463. 

Derache, A., Shin, H.S., Balamane, M., White, E., Israelski, D., Klausner, J.D., Freeman, A.H., 

Katzenstein, D., 2015. HIV drug resistance mutations in proviral DNA from a community 

treatment program. PloS one 10, e0117430. 



          References  

159 

 

Dionisio, D., Vivarelli, A., Zazzi, M., Esperti, F., Uberti, M., Polidori, M., 2001. Extent of 

human immunodeficiency virus type 1 drug resistance as a predictor of virological failure after 

genotype-guided treatment switch. Clinical infectious diseases : an official publication of the 

Infectious Diseases Society of America 33, 706-709. 

Domingo, E., Sheldon, J., Perales, C., 2012. Viral quasispecies evolution. Microbiology and 

molecular biology reviews : MMBR 76, 159-216. 

Dudek, R.W., 2007. High-yield cell & molecular biology, 2nd ed. Wolters Kluwer 

Health/Lippincott Williams & Wilkins, Philadelphia. 

Dybul, M., Fauci, A.S., Bartlett, J.G., Kaplan, J.E., Pau, A.K., 2002. Guidelines for using 

antiretroviral agents among HIV-infected adults and adolescents. Annals of internal medicine 

137, 381-433. 

Engelman, A., 2009. Isolation and analysis of HIV-1 preintegration complexes. Methods Mol 

Biol 485, 135-149. 

Eron, J.J., Jr., 1996. The treatment of antiretroviral-naive subjects with the 3TC/zidovudine 

combination: a review of North American (NUCA 3001) and European (NUCB 3001) trials. 

Aids 10 Suppl 5, S11-19. 

Essex, M., McLane, M.F., Kanki, P., Allan, J., Kitchen, L., Lee, T.H., 1985. Retroviruses 

associated with leukemia and ablative syndromes in animals and in human beings. Cancer 

research 45, 4534s-4538s. 

Felsenstein, J., 1985. Confidence Limits on Phylogenies: An Approach Using the Bootstrap 

Evolution 39, 783-791. 



          References  

160 

 

Ferrer, P., Montecinos, L., Tello, M., Tordecilla, R., Rodriguez, C., Ferres, M., Perez, C.M., 

Beltran, C., Guzman, M.A., Afani, A., 2013. HIV-1 tropism: a comparison between RNA and 

proviral DNA in routine clinical samples from Chilean patients. Virol J 10, 318. 

Fidler, S., Olson, A., Fox, J., Phillips, A., Morrison, C., Thornhill, J., Bucher, H., Muga, R., 

Porter, K., 2014. The importance of viral blips and duration of therapy initiated in primary 

infection in maintaining viral control after stopping cART. Journal of the International AIDS 

Society 17, 19820. 

Fox, E.J., Reid-Bayliss, K.S., Emond, M.J., Loeb, L.A., 2014. Accuracy of Next Generation 

Sequencing Platforms. Next generation, sequencing & applications 1. 

Frankel, A.D., Young, J.A., 1998. HIV-1: fifteen proteins and an RNA. Annual review of 

biochemistry 67, 1-25. 

Fu, J., Sha, B.E., Thomas, L.L., 2011. HIV-1-infected peripheral blood mononuclear cells 

enhance neutrophil survival and HLA-DR expression via increased production of GM-CSF: 

implications for HIV-1 infection. Journal of acquired immune deficiency syndromes 56, 16-25. 

Fun, A., Wensing, A.M., Verheyen, J., Nijhuis, M., 2012. Human Immunodeficiency Virus Gag 

and protease: partners in resistance. Retrovirology 9, 63. 

Gallant, J.E., Gerondelis, P.Z., Wainberg, M.A., Shulman, N.S., Haubrich, R.H., St Clair, M., 

Lanier, E.R., Hellmann, N.S., Richman, D.D., 2003. Nucleoside and nucleotide analogue reverse 

transcriptase inhibitors: a clinical review of antiretroviral resistance. Antiviral therapy 8, 489-

506. 



          References  

161 

 

Garcia-Calleja, J.M., Gouws, E., Ghys, P.D., 2006. National population based HIV prevalence 

surveys in sub-Saharan Africa: results and implications for HIV and AIDS estimates. Sexually 

transmitted infections 82 Suppl 3, iii64-70. 

Garg, H., Blumenthal, R., 2008. Role of HIV Gp41 mediated fusion/hemifusion in bystander 

apoptosis. Cellular and molecular life sciences : CMLS 65, 3134-3144. 

Geretti, A.M., Conibear, T., Hill, A., Johnson, J.A., Tambuyzer, L., Thys, K., Vingerhoets, J., 

Van Delft, Y., 2014. Sensitive testing of plasma HIV-1 RNA and Sanger sequencing of cellular 

HIV-1 DNA for the detection of drug resistance prior to starting first-line antiretroviral therapy 

with etravirine or efavirenz. The Journal of antimicrobial chemotherapy 69, 1090-1097. 

Gibson, R.M., Weber, J., Winner, D., Miller, M.D., Quinones-Mateu, M.E., 2014. Contribution 

of human immunodeficiency virus type 1 minority variants to reduced drug susceptibility in 

patients on an integrase strand transfer inhibitor-based therapy. PloS one 9, e104512. 

Gonzalez-Serna, A., Min, J.E., Woods, C., Chan, D., Lima, V.D., Montaner, J.S., Harrigan, P.R., 

Swenson, L.C., 2014. Performance of HIV-1 drug resistance testing at low-level viremia and its 

ability to predict future virologic outcomes and viral evolution in treatment-naive individuals. 

Clinical infectious diseases : an official publication of the Infectious Diseases Society of 

America 58, 1165-1173. 

Grant, R.M., Kuritzkes, D.R., Johnson, V.A., Mellors, J.W., Sullivan, J.L., Swanstrom, R., 

D'Aquila, R.T., Van Gorder, M., Holodniy, M., Lloyd Jr, R.M., Jr., Reid, C., Morgan, G.F., 

Winslow, D.L., 2003. Accuracy of the TRUGENE HIV-1 genotyping kit. Journal of clinical 

microbiology 41, 1586-1593. 

Grossman, Z., Paxinos, E.E., Averbuch, D., Maayan, S., Parkin, N.T., Engelhard, D., Lorber, M., 

Istomin, V., Shaked, Y., Mendelson, E., Ram, D., Petropoulos, C.J., Schapiro, J.M., 2004. 



          References  

162 

 

Mutation D30N is not preferentially selected by human immunodeficiency virus type 1 subtype 

C in the development of resistance to nelfinavir. Antimicrobial agents and chemotherapy 48, 

2159-2165. 

Hamers, R.L., Zaaijer, H.L., Wallis, C.L., Siwale, M., Ive, P., Botes, M.E., Sigaloff, K.C., 

Hoepelman, A.I., Stevens, W.S., Rinke de Wit, T.F., PharmAccess African Studies to Evaluate, 

R., 2013. HIV-HBV coinfection in Southern Africa and the effect of lamivudine- versus 

tenofovir-containing cART on HBV outcomes. Journal of acquired immune deficiency 

syndromes 64, 174-182. 

Hemelaar, J., 2012. The origin and diversity of the HIV-1 pandemic. Trends in molecular 

medicine 18, 182-192. 

Hemelaar, J., Gouws, E., Ghys, P.D., Osmanov, S., 2011. Global trends in molecular 

epidemiology of HIV-1 during 2000-2007. AIDS 25, 679-689. 

Hill, C.P., Worthylake, D., Bancroft, D.P., Christensen, A.M., Sundquist, W.I., 1996. Crystal 

structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for 

membrane association and assembly. Proceedings of the National Academy of Sciences of the 

United States of America 93, 3099-3104. 

Hirnschall, G., Harries, A.D., Easterbrook, P.J., Doherty, M.C., Ball, A., 2013. The next 

generation of the World Health Organization's global antiretroviral guidance. Journal of the 

International AIDS Society 16, 18757. 

Hirsch, M.S., Gunthard, H.F., Schapiro, J.M., Brun-Vezinet, F., Clotet, B., Hammer, S.M., 

Johnson, V.A., Kuritzkes, D.R., Mellors, J.W., Pillay, D., Yeni, P.G., Jacobsen, D.M., Richman, 

D.D., 2008. Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 



          References  

163 

 

recommendations of an International AIDS Society-USA panel. Clinical infectious diseases : an 

official publication of the Infectious Diseases Society of America 47, 266-285. 

Hogan, C.M., Hammer, S.M., 2001. Host determinants in HIV infection and disease. Part 1: 

cellular and humoral immune responses. Annals of internal medicine 134, 761-776. 

Holguin, A., Alvarez, A., Soriano, V., 2002. High prevalence of HIV-1 subtype G and natural 

polymorphisms at the protease gene among HIV-infected immigrants in Madrid. Aids 16, 1163-

1170. 

Hu, W.S., Hughes, S.H., 2012. HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2. 

Hu, Z., Giguel, F., Hatano, H., Reid, P., Lu, J., Kuritzkes, D.R., 2006. Fitness comparison of 

thymidine analog resistance pathways in human immunodeficiency virus type 1. Journal of 

virology 80, 7020-7027. 

Hunt, R.C., Simhadri, V.L., Iandoli, M., Sauna, Z.E., Kimchi-Sarfaty, C., 2014. Exposing 

synonymous mutations. Trends in genetics : TIG 30, 308-321. 

Ibrahim, K.Y., Recordon-Pinson, P., Malvy, D., Fleury, H., Segurado, A.C., 2012. Intermittent 

HIV-1 viremia (blips) and virological failure in a cohort of people living with HIV from Sao 

Paulo, Brazil. AIDS patient care and STDs 26, 512-515. 

Ioannidis, J.P., Rosenberg, P.S., Goedert, J.J., Ashton, L.J., Benfield, T.L., Buchbinder, S.P., 

Coutinho, R.A., Eugen-Olsen, J., Gallart, T., Katzenstein, T.L., Kostrikis, L.G., Kuipers, H., 

Louie, L.G., Mallal, S.A., Margolick, J.B., Martinez, O.P., Meyer, L., Michael, N.L., 

Operskalski, E., Pantaleo, G., Rizzardi, G.P., Schuitemaker, H., Sheppard, H.W., Stewart, G.J., 

Theodorou, I.D., Ullum, H., Vicenzi, E., Vlahov, D., Wilkinson, D., Workman, C., Zagury, J.F., 

O'Brien, T.R., 2001a. Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles on HIV-1 



          References  

164 

 

disease progression: An international meta-analysis of individual-patient data. Ann Intern Med 

135, 782-795. 

Ioannidis, J.P., Rosenberg, P.S., Goedert, J.J., Ashton, L.J., Benfield, T.L., Buchbinder, S.P., 

Coutinho, R.A., Eugen-Olsen, J., Gallart, T., Katzenstein, T.L., Kostrikis, L.G., Kuipers, H., 

Louie, L.G., Mallal, S.A., Margolick, J.B., Martinez, O.P., Meyer, L., Michael, N.L., 

Operskalski, E., Pantaleo, G., Rizzardi, G.P., Schuitemaker, H., Sheppard, H.W., Stewart, G.J., 

Theodorou, I.D., Ullum, H., Vicenzi, E., Vlahov, D., Wilkinson, D., Workman, C., Zagury, J.F., 

O'Brien, T.R., International Meta-Analysis of, H.I.V.H.G., 2001b. Effects of CCR5-Delta32, 

CCR2-64I, and SDF-1 3'A alleles on HIV-1 disease progression: An international meta-analysis 

of individual-patient data. Annals of internal medicine 135, 782-795. 

Jabara, C.B., Jones, C.D., Roach, J., Anderson, J.A., Swanstrom, R., 2011. Accurate sampling 

and deep sequencing of the HIV-1 protease gene using a Primer ID. Proceedings of the National 

Academy of Sciences of the United States of America 108, 20166-20171. 

Jain, M.K., 2009. Mortality in patients coinfected with hepatitis B virus and HIV: could 

antiretroviral therapy make a difference? Clinical infectious diseases : an official publication of 

the Infectious Diseases Society of America 48, 1772-1774. 

Jiamsakul, A., Sungkanuparph, S., Law, M., Kantor, R., Praparattanapan, J., Li, P.C., 

Phanuphak, P., Merati, T., Ratanasuwan, W., Lee, C.K., Ditangco, R., Mustafa, M., Singtoroj, 

T., Kiertiburanakul, S., Study, T.A.S.t.E.R.-M., 2014. HIV multi-drug resistance at first-line 

antiretroviral failure and subsequent virological response in Asia. Journal of the International 

AIDS Society 17, 19053. 

Johnson, V.A., Brun-Vezinet, F., Clotet, B., Gunthard, H.F., Kuritzkes, D.R., Pillay, D., 

Schapiro, J.M., Richman, D.D., 2010. Update of the drug resistance mutations in HIV-1: 

December 2010. Topics in HIV medicine : a publication of the International AIDS Society, USA 

18, 156-163. 



          References  

165 

 

Johnson, V.A., Calvez, V., Gunthard, H.F., Paredes, R., Pillay, D., Shafer, R., Wensing, A.M., 

Richman, D.D., 2011. 2011 update of the drug resistance mutations in HIV-1. Topics in antiviral 

medicine 19, 156-164. 

Johnson.VA, Calvez. V, Günthard.HF, Paredes.R, Pillay, D., Shafer, R.W., Wensing, A., 

Richman, D., 2013. Update of the Drug Resistance Mutations in HIV-1: March 2013. IAS–USA         

Topics in Antiviral Medicine 21. 

Jones, L.E., Perelson, A.S., 2007. Transient viremia, plasma viral load, and reservoir 

replenishment in HIV-infected patients on antiretroviral therapy. Journal of acquired immune 

deficiency syndromes 45, 483-493. 

Kantor, R., Katzenstein, D., 2003. Polymorphism in HIV-1 non-subtype B protease and reverse 

transcriptase and its potential impact on drug susceptibility and drug resistance evolution. AIDS 

reviews 5, 25-35. 

Kantor, R., Katzenstein, D.A., Efron, B., Carvalho, A.P., Wynhoven, B., Cane, P., Clarke, J., 

Sirivichayakul, S., Soares, M.A., Snoeck, J., Pillay, C., Rudich, H., Rodrigues, R., Holguin, A., 

Ariyoshi, K., Bouzas, M.B., Cahn, P., Sugiura, W., Soriano, V., Brigido, L.F., Grossman, Z., 

Morris, L., Vandamme, A.M., Tanuri, A., Phanuphak, P., Weber, J.N., Pillay, D., Harrigan, P.R., 

Camacho, R., Schapiro, J.M., Shafer, R.W., 2005. Impact of HIV-1 subtype and antiretroviral 

therapy on protease and reverse transcriptase genotype: results of a global collaboration. PLoS 

medicine 2, e112. 

Kassa, E., Rinke de Wit, T.F., Hailu, E., Girma, M., Messele, T., Mariam, H.G., Yohannes, S., 

Jurriaans, S., Yeneneh, H., Coutinho, R.A., Fontanet, A.L., 1999. Evaluation of the World Health 

Organization staging system for HIV infection and disease in Ethiopia: association between 

clinical stages and laboratory markers. AIDS 13, 381-389. 



          References  

166 

 

Kempf, D.J., King, M.S., Bernstein, B., Cernohous, P., Bauer, E., Moseley, J., Gu, K., Hsu, A., 

Brun, S., Sun, E., 2004. Incidence of resistance in a double-blind study comparing 

lopinavir/ritonavir plus stavudine and lamivudine to nelfinavir plus stavudine and lamivudine. 

The Journal of infectious diseases 189, 51-60. 

Kessler, H.A., 2005. Triple-nucleoside analog antiretroviral therapy: is there still a role in 

clinical practice? A review. MedGenMed : Medscape general medicine 7, 70. 

Kostrikis, L.G., Touloumi, G., Karanicolas, R., Pantazis, N., Anastassopoulou, C., Karafoulidou, 

A., Goedert, J.J., Hatzakis, A., 2002a. Quantitation of human immunodeficiency virus type 1 

DNA forms with the second template switch in peripheral blood cells predicts disease 

progression independently of plasma RNA load. Journal of virology 76, 10099-10108. 

Kostrikis, L.G., Touloumi, G., Karanicolas, R., Pantazis, N., Anastassopoulou, C., Karafoulidou, 

A., Goedert, J.J., Hatzakis, A., Multicenter Hemophilia Cohort Study, G., 2002b. Quantitation of 

human immunodeficiency virus type 1 DNA forms with the second template switch in peripheral 

blood cells predicts disease progression independently of plasma RNA load. Journal of virology 

76, 10099-10108. 

Kousiappa, I., van de Vijver, D.A., Demetriades, I., Kostrikis, L.G., 2009. Genetic analysis of 

HIV type 1 strains from newly infected untreated patients in cyprus: high genetic diversity and 

low prevalence of drug resistance. AIDS research and human retroviruses 25, 23-35. 

Kozal, M.J., Chiarella, J., St John, E.P., Moreno, E.A., Simen, B.B., Arnold, T.E., Lataillade, M., 

2011. Prevalence of low-level HIV-1 variants with reverse transcriptase mutation K65R and the 

effect of antiretroviral drug exposure on variant levels. Antiviral therapy 16, 925-929. 



          References  

167 

 

Kwong, P.D., Wyatt, R., Majeed, S., Robinson, J., Sweet, R.W., Sodroski, J., Hendrickson, 

W.A., 2000. Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and 

primary isolates. Structure 8, 1329-1339. 

Lagarde, E., Congo, Z., Meda, N., Baya, B., Yaro, S., Sangli, G., Traore, Y., Van Renthergem, 

H., Carael, M., 2004. Epidemiology of HIV infection in urban Burkina Faso. International 

journal of STD & AIDS 15, 395-402. 

Lamers, S.L., Salemi, M., McGrath, M.S., Fogel, G.B., 2008. Prediction of R5, X4, and R5X4 

HIV-1 coreceptor usage with evolved neural networks. IEEE/ACM transactions on 

computational biology and bioinformatics / IEEE, ACM 5, 291-300. 

Langford, S.E., Ananworanich, J., Cooper, D.A., 2007. Predictors of disease progression in HIV 

infection: a review. AIDS research and therapy 4, 11. 

Larder, B.A., Kemp, S.D., 1989. Multiple mutations in HIV-1 reverse transcriptase confer high-

level resistance to zidovudine (AZT). Science (New York, N.Y.) 246, 1155-1158. 

Lau, K.A., Wong, J.J., 2013. Current Trends of HIV Recombination Worldwide. Infectious 

disease reports 5, e4. 

Laurent, C., Kouanfack, C., Laborde-Balen, G., Aghokeng, A.F., Mbougua, J.B., Boyer, S., 

Carrieri, M.P., Mben, J.M., Dontsop, M., Kaze, S., Molinari, N., Bourgeois, A., Mpoudi-Ngole, 

E., Spire, B., Koulla-Shiro, S., Delaporte, E., 2011. Monitoring of HIV viral loads, CD4 cell 

counts, and clinical assessments versus clinical monitoring alone for antiretroviral therapy in 

rural district hospitals in Cameroon (Stratall ANRS 12110/ESTHER): a randomised non-

inferiority trial. The Lancet. Infectious diseases 11, 825-833. 



          References  

168 

 

Ledergerber, B., Lundgren, J.D., Walker, A.S., Sabin, C., Justice, A., Reiss, P., Mussini, C., Wit, 

F., d'Arminio Monforte, A., Weber, R., Fusco, G., Staszewski, S., Law, M., Hogg, R., Lampe, F., 

Gill, M.J., Castelli, F., Phillips, A.N., Collaboration, P., 2004. Predictors of trend in CD4-

positive T-cell count and mortality among HIV-1-infected individuals with virological failure to 

all three antiretroviral-drug classes. Lancet 364, 51-62. 

Leitner.T, Korber. B, Daniels. M, Calef.C, B, F., 2005. HIV-1 subtype and circulating 

recombinant form (CRF) reference sequences (2005)  

Li, Y., Hui, H., Burgess, C.J., Price, R.W., Sharp, P.M., Hahn, B.H., Shaw, G.M., 1992. 

Complete nucleotide sequence, genome organization, and biological properties of human 

immunodeficiency virus type 1 in vivo: evidence for limited defectiveness and complementation. 

Journal of virology 66, 6587-6600. 

Lihana, R.W., Ssemwanga, D., Abimiku, A., Ndembi, N., 2012. Update on HIV-1 diversity in 

Africa: a decade in review. AIDS reviews 14, 83-100. 

Lucas, G.M., 2005. Antiretroviral adherence, drug resistance, viral fitness and HIV disease 

progression: a tangled web is woven. The Journal of antimicrobial chemotherapy 55, 413-416. 

Lucas, G.M., Gallant, J.E., Moore, R.D., 2004. Relationship between drug resistance and HIV-1 

disease progression or death in patients undergoing resistance testing. AIDS 18, 1539-1548. 

Lutzelberger, M., Reinert, L.S., Das, A.T., Berkhout, B., Kjems, J., 2006. A novel splice donor 

site in the gag-pol gene is required for HIV-1 RNA stability. The Journal of biological chemistry 

281, 18644-18651. 

Maartens, G., Celum, C., Lewin, S.R., 2014. HIV infection: epidemiology, pathogenesis, 

treatment, and prevention. Lancet 384, 258-271. 



          References  

169 

 

Maas, J.J., Dukers, N., Krol, A., van Ameijden, E.J., van Leeuwen, R., Roos, M.T., de Wolf, F., 

Coutinho, R.A., Keet, I.P., 1998. Body mass index course in asymptomatic HIV-infected 

homosexual men and the predictive value of a decrease of body mass index for progression to 

AIDS. Journal of acquired immune deficiency syndromes and human retrovirology : official 

publication of the International Retrovirology Association 19, 254-259. 

Mackie, N., 2006. Resistance to non-nucleoside reverse transcriptase inhibitors, in: Geretti, A.M. 

(Ed.), Antiretroviral Resistance in Clinical Practice, London. 

Magiorkinis, E., Paraskevis, D., Sambatakou, H., Gargalianos, P., Haida, C., Vassilakis, A., 

Hatzakis, A., 2008. Emergence of an NNRTI resistance mutation Y181C in an HIV-infected 

NNRTI-naive patient. AIDS research and human retroviruses 24, 413-415. 

Mayers, D., Bethel, J., Wainberg, M.A., Weislow, O., Schnittman, S., 1998. Human 

immunodeficiency virus proviral DNA from peripheral blood and lymph nodes demonstrates 

concordant resistance mutations to zidovudine (codon 215) and didanosine (codon 74). Division 

of AIDS Treatment Research Initiative 003 Study Group. The Journal of infectious diseases 177, 

1730-1733. 

Meda, N., Cousens, S., Kanki, B., 1996. Anaemia among women of reproductive age in Burkina 

Faso. World health forum 17, 369-372. 

Meidani, M., Rezaei, F., Maracy, M.R., Avijgan, M., Tayeri, K., 2012. Prevalence, severity, and 

related factors of anemia in HIV/AIDS patients. Journal of research in medical sciences : the 

official journal of Isfahan University of Medical Sciences 17, 138-142. 

Mellors, J.W., Kingsley, L.A., Rinaldo, C.R., Jr., Todd, J.A., Hoo, B.S., Kokka, R.P., Gupta, P., 

1995. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Annals of 

internal medicine 122, 573-579. 



          References  

170 

 

Mellors, J.W., Munoz, A., Giorgi, J.V., Margolick, J.B., Tassoni, C.J., Gupta, P., Kingsley, L.A., 

Todd, J.A., Saah, A.J., Detels, R., Phair, J.P., Rinaldo, C.R., Jr., 1997a. Plasma viral load and 

CD4+ lymphocytes as prognostic markers of HIV-1 infection. Annals of internal medicine 126, 

946-954. 

Mellors, J.W., Munoz, A., Giorgi, J.V., Margolick, J.B., Tassoni, C.J., Gupta, P., Kingsley, L.A., 

Todd, J.A., Saah, A.J., Detels, R., Phair, J.P., Rinaldo, C.R., Jr., 1997b. Plasma viral load and 

CD4+ lymphocytes as prognostic markers of HIV-1 infection. Annals of internal medicine 126, 

946-954. 

Mellors, J.W., Rinaldo, C.R., Jr., Gupta, P., White, R.M., Todd, J.A., Kingsley, L.A., 1996. 

Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167-

1170. 

Menon, S., 2010. Early initiation of antiretroviral therapy and universal HIV testing in sub-

Saharan Africa: has WHO offered a milestone for HIV prevention? Journal of public health 

policy 31, 385-400. 

Metzner, K., 2006. The significance of minority drug-resistant quasispecies, in: Geretti, A.M. 

(Ed.), Antiretroviral Resistance in Clinical Practice, London. 

Metzner, K.J., Giulieri, S.G., Knoepfel, S.A., Rauch, P., Burgisser, P., Yerly, S., Gunthard, H.F., 

Cavassini, M., 2009. Minority quasispecies of drug-resistant HIV-1 that lead to early therapy 

failure in treatment-naive and -adherent patients. Clinical infectious diseases : an official 

publication of the Infectious Diseases Society of America 48, 239-247. 

Miller, L.G., Golin, C.E., Liu, H., Hays, R.D., Hua, J., Wenger, N.S., Kaplan, A.H., 2004. No 

evidence of an association between transient HIV viremia ("Blips") and lower adherence to the 

antiretroviral medication regimen. The Journal of infectious diseases 189, 1487-1496. 



          References  

171 

 

Mphahlele, M., 2008. Impact of HIV co-infection on hepatitis B prevention and control: a view 

from sub-Saharan Africa 

. South Afr J Infect Dis 23. 

Mueller, N., van Bel, N., Berkhout, B., Das, A.T., 2014. HIV-1 splicing at the major splice donor 

site is restricted by RNA structure. Virology 468-470C, 609-620. 

Muula, A.S., 2008. HIV infection and AIDS among young women in South Africa. Croatian 

medical journal 49, 423-435. 

Ndembi, N., Hamers, R.L., Sigaloff, K.C., Lyagoba, F., Magambo, B., Nanteza, B., Watera, C., 

Kaleebu, P., Rinke de Wit, T.F., 2011. Transmitted antiretroviral drug resistance among newly 

HIV-1 diagnosed young individuals in Kampala. AIDS 25, 905-910. 

Neogi, U., Bontell, I., Shet, A., De Costa, A., Gupta, S., Diwan, V., Laishram, R.S., Wanchu, A., 

Ranga, U., Banerjea, A.C., Sonnerborg, A., 2012. Molecular epidemiology of HIV-1 subtypes in 

India: origin and evolutionary history of the predominant subtype C. PloS one 7, e39819. 

Nettles, R.E., Kieffer, T.L., Kwon, P., Monie, D., Han, Y., Parsons, T., Cofrancesco, J., Jr., 

Gallant, J.E., Quinn, T.C., Jackson, B., Flexner, C., Carson, K., Ray, S., Persaud, D., Siliciano, 

R.F., 2005. Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART. 

Jama 293, 817-829. 

Nii-Trebi, N.I., Ibe, S., Barnor, J.S., Ishikawa, K., Brandful, J.A., Ofori, S.B., Yamaoka, S., 

Ampofo, W.K., Sugiura, W., 2013. HIV-1 drug-resistance surveillance among treatment-

experienced and -naive patients after the implementation of antiretroviral therapy in Ghana. PloS 

one 8, e71972. 



          References  

172 

 

Nikolenko, G.N., Kotelkin, A.T., Oreshkova, S.F., Il'ichev, A.A., 2011. [Mechanisms of HIV-1 

drug resistance to nucleoside and non-nucleoside reverse transcriptase inhibitors]. 

Molekuliarnaia biologiia 45, 108-126. 

Nikolopoulos, G.K., Paraskevis, D., Hatzitheodorou, E., Moschidis, Z., Sypsa, V., Zavitsanos, 

X., Kalapothaki, V., Hatzakis, A., 2009. Impact of hepatitis B virus infection on the progression 

of AIDS and mortality in HIV-infected individuals: a cohort study and meta-analysis. Clinical 

infectious diseases : an official publication of the Infectious Diseases Society of America 48, 

1763-1771. 

Nomaguchi, M., Miyake, A., Doi, N., Fujiwara, S., Miyazaki, Y., Tsunetsugu-Yokota, Y., 

Yokoyama, M., Sato, H., Masuda, T., Adachi, A., 2014. Natural single-nucleotide 

polymorphisms in the 3' region of the HIV-1 pol gene modulate viral replication ability. Journal 

of virology 88, 4145-4160. 

Obermeier, M., Pironti, A., Berg, T., Braun, P., Daumer, M., Eberle, J., Ehret, R., Kaiser, R., 

Kleinkauf, N., Korn, K., Kucherer, C., Muller, H., Noah, C., Sturmer, M., Thielen, A., Wolf, E., 

Walter, H., 2012. HIV-GRADE: a publicly available, rules-based drug resistance interpretation 

algorithm integrating bioinformatic knowledge. Intervirology 55, 102-107. 

Ojesina, A.I., Sankale, J.L., Odaibo, G., Langevin, S., Meloni, S.T., Sarr, A.D., Olaleye, D., 

Kanki, P.J., 2006. Subtype-specific patterns in HIV Type 1 reverse transcriptase and protease in 

Oyo State, Nigeria: implications for drug resistance and host response. AIDS research and 

human retroviruses 22, 770-779. 

Okulicz, J.F., Le, T.D., Agan, B.K., Camargo, J.F., Landrum, M.L., Wright, E., Dolan, M.J., 

Ganesan, A., Ferguson, T.M., Smith, D.M., Richman, D.D., Little, S.J., Clark, R.A., He, W., 

Ahuja, S.K., 2014. Influence of the Timing of Antiretroviral Therapy on the Potential for 

Normalization of Immune Status in Human Immunodeficiency Virus 1-Infected Individuals. 

JAMA internal medicine. 



          References  

173 

 

Palmisano, L., Giuliano, M., Galluzzo, C.M., Amici, R., Andreotti, M., Weimer, L.E., Pirillo, 

M.F., Fragola, V., Bucciardini, R., Vella, S., 2009. The mutational archive in proviral DNA does 

not change during 24 months of continuous or intermittent highly active antiretroviral therapy. 

HIV medicine 10, 477-481. 

Parisi, S.G., Andreis, S., Mengoli, C., Scaggiante, R., Ferretto, R., Manfrin, V., Cruciani, M., 

Giobbia, M., Boldrin, C., Basso, M., Andreoni, M., Palu, G., Sarmati, L., 2012. Baseline cellular 

HIV DNA load predicts HIV DNA decline and residual HIV plasma levels during effective 

antiretroviral therapy. Journal of clinical microbiology 50, 258-263. 

Petropoulos, C., 1997. Retroviral Taxonomy, Protein Structures, Sequences, and Genetic Maps. 

Phillips, A.N., Staszewski, S., Weber, R., Kirk, O., Francioli, P., Miller, V., Vernazza, P., 

Lundgren, J.D., Ledergerber, B., 2001. HIV viral load response to antiretroviral therapy 

according to the baseline CD4 cell count and viral load. Jama 286, 2560-2567. 

Pienaar, E.D., Young, T., Holmes, H., 2010. Interventions for the prevention and management of 

oropharyngeal candidiasis associated with HIV infection in adults and children. The Cochrane 

database of systematic reviews, Cd003940. 

Pieniazek, D., Rayfield, M., Hu, D.J., Nkengasong, J., Wiktor, S.Z., Downing, R., Biryahwaho, 

B., Mastro, T., Tanuri, A., Soriano, V., Lal, R., Dondero, T., 2000. Protease sequences from 

HIV-1 group M subtypes A-H reveal distinct amino acid mutation patterns associated with 

protease resistance in protease inhibitor-naive individuals worldwide. HIV Variant Working 

Group. Aids 14, 1489-1495. 

Pillay, D., Bhaskaran, K., Jurriaans, S., Prins, M., Masquelier, B., Dabis, F., Gifford, R., Nielsen, 

C., Pedersen, C., Balotta, C., Rezza, G., Ortiz, M., de Mendoza, C., Kucherer, C., Poggensee, G., 



          References  

174 

 

Gill, J., Porter, K., Collaboration, C.V., 2006. The impact of transmitted drug resistance on the 

natural history of HIV infection and response to first-line therapy. AIDS 20, 21-28. 

Piller, S.C., Caly, L., Jans, D.A., 2003. Nuclear import of the pre-integration complex (PIC): the 

Achilles heel of HIV? Current drug targets 4, 409-429. 

Piot, P., Quinn, T.C., 2013. Response to the AIDS pandemic--a global health model. The New 

England journal of medicine 368, 2210-2218. 

Poizot-Martin, I., Faucher, O., Obry-Roguet, V., Nicolino-Brunet, C., Ronot-Bregigeon, S., 

Dignat-George, F., Tamalet, C., 2013. Lack of correlation between the size of HIV proviral DNA 

reservoir and the level of immune activation in HIV-infected patients with a sustained 

undetectable HIV viral load for 10 years. Journal of clinical virology : the official publication of 

the Pan American Society for Clinical Virology 57, 351-355. 

Pornillos, O., Ganser-Pornillos, B.K., Kelly, B.N., Hua, Y., Whitby, F.G., Stout, C.D., 

Sundquist, W.I., Hill, C.P., Yeager, M., 2009. X-ray structures of the hexameric building block 

of the HIV capsid. Cell 137, 1282-1292. 

Price, M.A., Wallis, C.L., Lakhi, S., Karita, E., Kamali, A., Anzala, O., Sanders, E.J., Bekker, 

L.G., Twesigye, R., Hunter, E., Kaleebu, P., Kayitenkore, K., Allen, S., Ruzagira, E., 

Mwangome, M., Mutua, G., Amornkul, P.N., Stevens, G., Pond, S.L., Schaefer, M., 

Papathanasopoulos, M.A., Stevens, W., Gilmour, J., 2011a. Transmitted HIV type 1 drug 

resistance among individuals with recent HIV infection in East and Southern Africa. AIDS Res 

Hum Retroviruses 27, 5-12. 

Price, M.A., Wallis, C.L., Lakhi, S., Karita, E., Kamali, A., Anzala, O., Sanders, E.J., Bekker, 

L.G., Twesigye, R., Hunter, E., Kaleebu, P., Kayitenkore, K., Allen, S., Ruzagira, E., 

Mwangome, M., Mutua, G., Amornkul, P.N., Stevens, G., Pond, S.L., Schaefer, M., 



          References  

175 

 

Papathanasopoulos, M.A., Stevens, W., Gilmour, J., Group, I.E.I.C.S., 2011b. Transmitted HIV 

type 1 drug resistance among individuals with recent HIV infection in East and Southern Africa. 

AIDS research and human retroviruses 27, 5-12. 

Quinones-Mateu, M.E., Avila, S., Reyes-Teran, G., Martinez, M.A., 2014. Deep sequencing: 

becoming a critical tool in clinical virology. Journal of clinical virology : the official publication 

of the Pan American Society for Clinical Virology 61, 9-19. 

Ratner, L., Haseltine, W., Patarca, R., Livak, K.J., Starcich, B., Josephs, S.F., Doran, E.R., 

Rafalski, J.A., Whitehorn, E.A., Baumeister, K., et al., 1985. Complete nucleotide sequence of 

the AIDS virus, HTLV-III. Nature 313, 277-284. 

Ray, A., Ray, S., George, A.T., Swaminathan, N., 2011. Interventions for prevention and 

treatment of vulvovaginal candidiasis in women with HIV infection. The Cochrane database of 

systematic reviews, Cd008739. 

Ray, A.S., Murakami, E., Basavapathruni, A., Vaccaro, J.A., Ulrich, D., Chu, C.K., Schinazi, 

R.F., Anderson, K.S., 2003. Probing the molecular mechanisms of AZT drug resistance mediated 

by HIV-1 reverse transcriptase using a transient kinetic analysis. Biochemistry 42, 8831-8841. 

Recsky, M.A., Brumme, Z.L., Chan, K.J., Wynhoven, B., Yip, B., Dong, W.W., Heath, K.V., 

Montaner, J.S., Levy, A.R., Hogg, R.S., Harrigan, P.R., 2004. Antiretroviral resistance among 

HIV-infected persons who have died in British Columbia, in the era of modern antiretroviral 

therapy. The Journal of infectious diseases 190, 285-292. 

Rhee, S.Y., Gonzales, M.J., Kantor, R., Betts, B.J., Ravela, J., Shafer, R.W., 2003. Human 

immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids 

Res 31, 298-303. 



          References  

176 

 

Richman, D.D., Morton, S.C., Wrin, T., Hellmann, N., Berry, S., Shapiro, M.F., Bozzette, S.A., 

2004. The prevalence of antiretroviral drug resistance in the United States. AIDS 18, 1393-1401. 

Russell, R.R., Bowmer, M.I., Nguyen, C., Grant, M.D., 2001. HIV-1 DNA burden in peripheral 

blood CD4+ cells influences disease progression, antiretroviral efficacy, and CD4+ T-cell 

restoration. Viral immunology 14, 379-389. 

Saez-Cirion, A., Bacchus, C., Hocqueloux, L., Avettand-Fenoel, V., Girault, I., Lecuroux, C., 

Potard, V., Versmisse, P., Melard, A., Prazuck, T., Descours, B., Guergnon, J., Viard, J.P., 

Boufassa, F., Lambotte, O., Goujard, C., Meyer, L., Costagliola, D., Venet, A., Pancino, G., 

Autran, B., Rouzioux, C., 2013. Post-treatment HIV-1 controllers with a long-term virological 

remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. 

PLoS pathogens 9, e1003211. 

Sage, E.K., Noursadeghi, M., Evans, H.E., Parker, S.J., Copas, A.J., Edwards, S.G., Miller, R.F., 

2010. Prognostic value of C-reactive protein in HIV-infected patients with Pneumocystis 

jirovecii pneumonia. International journal of STD & AIDS 21, 288-292. 

Saitoh, A., Hsia, K., Fenton, T., Powell, C.A., Christopherson, C., Fletcher, C.V., Starr, S.E., 

Spector, S.A., 2002. Persistence of human immunodeficiency virus (HIV) type 1 DNA in 

peripheral blood despite prolonged suppression of plasma HIV-1 RNA in children. The Journal 

of infectious diseases 185, 1409-1416. 

Samson, M., Labbe, O., Mollereau, C., Vassart, G., Parmentier, M., 1996. Molecular cloning and 

functional expression of a new human CC-chemokine receptor gene. Biochemistry 35, 3362-

3367. 



          References  

177 

 

Sanches, M., Krauchenco, S., Martins, N.H., Gustchina, A., Wlodawer, A., Polikarpov, I., 2007. 

Structural characterization of B and non-B subtypes of HIV-protease: insights into the natural 

susceptibility to drug resistance development. J Mol Biol 369, 1029-1040. 

Santoro, M.M., Fabeni, L., Armenia, D., Alteri, C., Di Pinto, D., Forbici, F., Bertoli, A., Di 

Carlo, D., Gori, C., Carta, S., Fedele, V., D'Arrigo, R., Berno, G., Ammassari, A., Pinnetti, C., 

Nicastri, E., Latini, A., Tommasi, C., Boumis, E., Petrosillo, N., D'Offizi, G., Andreoni, M., 

Ceccherini-Silberstein, F., Antinori, A., Perno, C.F., 2014. Reliability and clinical relevance of 

the HIV-1 drug resistance test in patients with low viremia levels. Clinical infectious diseases : 

an official publication of the Infectious Diseases Society of America 58, 1156-1164. 

Santos, A.F., Tebit, D.M., Lalonde, M.S., Abecasis, A.B., Ratcliff, A., Camacho, R.J., Diaz, 

R.S., Herchenroder, O., Soares, M.A., Arts, E.J., 2012. Effect of natural polymorphisms in the 

HIV-1 CRF02_AG protease on protease inhibitor hypersusceptibility. Antimicrobial agents and 

chemotherapy 56, 2719-2725. 

Saracino, A., Gianotti, N., Marangi, M., Cibelli, D.C., Galli, A., Punzi, G., Monno, L., Lazzarin, 

A., Angarano, G., Mutations, S.S.G., 2008. Antiretroviral genotypic resistance in plasma RNA 

and whole blood DNA in HIV-1 infected patients failing HAART. Journal of medical virology 

80, 1695-1706. 

Savy, M., Martin-Prevel, Y., Traissac, P., Delpeuch, F., 2007. Measuring dietary diversity in 

rural Burkina Faso: comparison of a 1-day and a 3-day dietary recall. Public health nutrition 10, 

71-78. 

Schneider, E., Whitmore, S., Glynn, K.M., Dominguez, K., Mitsch, A., McKenna, M.T., 2008. 

Revised surveillance case definitions for HIV infection among adults, adolescents, and children 

aged <18 months and for HIV infection and AIDS among children aged 18 months to <13 years-

-United States, 2008. MMWR. Recommendations and reports : Morbidity and mortality weekly 

report. Recommendations and reports / Centers for Disease Control 57, 1-12. 



          References  

178 

 

Schwartz, S., Felber, B.K., Benko, D.M., Fenyo, E.M., Pavlakis, G.N., 1990. Cloning and 

functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. 

Journal of virology 64, 2519-2529. 

Shafer, R.W., 2006. Rationale and uses of a public HIV drug-resistance database. The Journal of 

infectious diseases 194 Suppl 1, S51-58. 

Sims, D., Sudbery, I., Ilott, N.E., Heger, A., Ponting, C.P., 2014. Sequencing depth and 

coverage: key considerations in genomic analyses. Nature reviews. Genetics 15, 121-132. 

Singh, K.K., Spector, S.A., 2009. Host genetic determinants of human immunodeficiency virus 

infection and disease progression in children. Pediatr Res 65, 55R-63R. 

Sluis-Cremer, N., Arion, D., Parniak, M.A., 2000. Molecular mechanisms of HIV-1 resistance to 

nucleoside reverse transcriptase inhibitors (NRTIs). Cellular and molecular life sciences : CMLS 

57, 1408-1422. 

Smith, M.S., Koerber, K.L., Pagano, J.S., 1993. Zidovudine-resistant human immunodeficiency 

virus type 1 genomes detected in plasma distinct from viral genomes in peripheral blood 

mononuclear cells. The Journal of infectious diseases 167, 445-448. 

Soares, E.A., Santos, A.F., Sousa, T.M., Sprinz, E., Martinez, A.M., Silveira, J., Tanuri, A., 

Soares, M.A., 2007. Differential drug resistance acquisition in HIV-1 of subtypes B and C. PloS 

one 2, e730. 

Solbak, S.M., Reksten, T.R., Hahn, F., Wray, V., Henklein, P., Henklein, P., Halskau, O., 

Schubert, U., Fossen, T., 2013. HIV-1 p6 - a structured to flexible multifunctional membrane-

interacting protein. Biochimica et biophysica acta 1828, 816-823. 



          References  

179 

 

Somda, A., Sangare, L., Soro, M., Yameogo, S., Bazie, B., Bigirimana, F., Bertagnolio, S., 

Peeters, M., Mouacha, F., Rivera, A.M., Jordan, M.R., Sanou, M.J., 2012. Surveillance of 

transmitted drug-resistant HIV among young pregnant women in Ouagadougou, Burkina Faso. 

Clinical infectious diseases : an official publication of the Infectious Diseases Society of 

America 54 Suppl 4, S317-319. 

Ssemwanga, D., Lihana, R.W., Ugoji, C., Abimiku, A., Nkengasong, J., Dakum, P., Ndembi, N., 

2014. Update on HIV-1 Acquired and Transmitted Drug Resistance in Africa. AIDS reviews 17. 

Stevens, G.A., Finucane, M.M., De-Regil, L.M., Paciorek, C.J., Flaxman, S.R., Branca, F., Pena-

Rosas, J.P., Bhutta, Z.A., Ezzati, M., Nutrition Impact Model Study, G., 2013. Global, regional, 

and national trends in haemoglobin concentration and prevalence of total and severe anaemia in 

children and pregnant and non-pregnant women for 1995-2011: a systematic analysis of 

population-representative data. Lancet Glob Health 1, e16-25. 

Sullivan, P., 2002. Associations of anemia, treatments for anemia, and survival in patients with 

human immunodeficiency virus infection. The Journal of infectious diseases 185 Suppl 2, S138-

142. 

Takuva, S., Maskew, M., Brennan, A.T., Sanne, I., Macphail, A.P., Fox, M.P., 2013. Anemia 

among HIV-Infected Patients Initiating Antiretroviral Therapy in South Africa: Improvement in 

Hemoglobin regardless of Degree of Immunosuppression and the Initiating ART Regimen. 

Journal of tropical medicine 2013, 162950. 

Tambuyzer, L., Azijn, H., Rimsky, L.T., Vingerhoets, J., Lecocq, P., Kraus, G., Picchio, G., de 

Bethune, M.P., 2009. Compilation and prevalence of mutations associated with resistance to 

non-nucleoside reverse transcriptase inhibitors. Antiviral therapy 14, 103-109. 



          References  

180 

 

Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics 

Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-1599. 

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular 

Evolutionary Genetics Analysis version 6.0. Molecular biology and evolution 30, 2725-2729. 

Tebit, D.M., Ganame, J., Sathiandee, K., Nagabila, Y., Coulibaly, B., Krausslich, H.G., 2006. 

Diversity of HIV in rural Burkina Faso. J Acquir Immune Defic Syndr 43, 144-152. 

Tebit, D.M., Sangare, L., Makamtse, A., Yameogo, S., Somlare, H., Bado, G., Kouldiaty, B.G., 

Sathiandee, K., Tiba, F., Sanou, I., Ouedraogo-Traore, R., Zoungrana, L., Diallo, I., Drabo, J.Y., 

Krausslich, H.G., 2008. HIV drug resistance pattern among HAART-exposed patients with 

suboptimal virological response in Ouagadougou, Burkina Faso. Journal of acquired immune 

deficiency syndromes (1999) 49, 17-25. 

Tebit, D.M., Sangare, L., Tiba, F., Saydou, Y., Makamtse, A., Somlare, H., Bado, G., Kouldiaty, 

B.G., Zabsonre, I., Yameogo, S.L., Sathiandee, K., Drabo, J.Y., Krausslich, H.G., 2009. Analysis 

of the diversity of the HIV-1 pol gene and drug resistance associated changes among drug-naive 

patients in Burkina Faso. Journal of medical virology 81, 1691-1701. 

Tshabalala, M., Manasa, J., Zijenah, L.S., Rusakaniko, S., Kadzirange, G., Mucheche, M., 

Kassaye, S., Johnston, E., Katzenstein, D., 2011. Surveillance of transmitted antiretroviral drug 

resistance among HIV-1 infected women attending antenatal clinics in Chitungwiza, Zimbabwe. 

PloS one 6, e21241. 

Tuboi, S.H., Brinkhof, M.W., Egger, M., Stone, R.A., Braitstein, P., Nash, D., Sprinz, E., Dabis, 

F., Harrison, L.H., Schechter, M., 2007. Discordant responses to potent antiretroviral treatment 

in previously naive HIV-1-infected adults initiating treatment in resource-constrained countries: 



          References  

181 

 

the antiretroviral therapy in low-income countries (ART-LINC) collaboration. Journal of 

acquired immune deficiency syndromes 45, 52-59. 

Turner, D., Brenner, B., Wainberg, M.A., 2003. Multiple effects of the M184V resistance 

mutation in the reverse transcriptase of human immunodeficiency virus type 1. Clinical and 

diagnostic laboratory immunology 10, 979-981. 

Tyagi, S., Kramer, F.R., 1996. Molecular beacons: probes that fluoresce upon hybridization. Nat 

Biotechnol 14, 303-308. 

UNAIDS, 2013a. ACCESS TO ANTIRETROVIRAL THERAPY IN AFRICA. 2-3. 

 

UNAIDS, 2013b. Report on the global AIDS epidemic 2013. 4-6. 

UNAIDS, 2014a. THE GAP REPORT. 26-37. 

UNAIDS, 2014b. UNAIDS fact sheet. 

http://www.unaids.org/en/resources/campaigns/2014/2014gapreport/factsheet. 

van der Sande, M.A., Schim van der Loeff, M.F., Aveika, A.A., Sabally, S., Togun, T., Sarge-

Njie, R., Alabi, A.S., Jaye, A., Corrah, T., Whittle, H.C., 2004. Body mass index at time of HIV 

diagnosis: a strong and independent predictor of survival. Journal of acquired immune deficiency 

syndromes 37, 1288-1294. 

Vandegraaff, N., Kumar, R., Burrell, C.J., Li, P., 2001. Kinetics of human immunodeficiency 

virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay 

for detection of integrated HIV DNA. Journal of virology 75, 11253-11260. 



          References  

182 

 

Velazquez-Campoy, A., Todd, M.J., Vega, S., Freire, E., 2001. Catalytic efficiency and vitality 

of HIV-1 proteases from African viral subtypes. Proc Natl Acad Sci U S A 98, 6062-6067. 

Venkataraman, K., 2013. A study of biological markers in HIV disease progression and 

management in the highly active antiretroviral therapy (HAART) era. American Journal of 

Bioscience and Bioengineering 1, 24-37. 

Vergne, L., Diagbouga, S., Kouanfack, C., Aghokeng, A., Butel, C., Laurent, C., Noumssi, N., 

Tardy, M., Sawadogo, A., Drabo, J., Hien, H., Zekeng, L., Delaporte, E., Peeters, M., 2006. 

HIV-1 drug-resistance mutations among newly diagnosed patients before scaling-up programmes 

in Burkina Faso and Cameroon. Antiviral therapy 11, 575-579. 

Verhofstede, C., Reniers, S., Van Wanzeele, F., Plum, J., 1994. Evaluation of proviral copy 

number and plasma RNA level as early indicators of progression in HIV-1 infection: correlation 

with virological and immunological markers of disease. AIDS 8, 1421-1427. 

Vicenti, I., Razzolini, F., Saladini, F., Romano, L., Zazzi, M., 2007. Use of peripheral blood 

DNA for genotype antiretroviral resistance testing in drug-naive HIV-infected subjects. Clinical 

infectious diseases : an official publication of the Infectious Diseases Society of America 44, 

1657-1661. 

von Kleist, M., Metzner, P., Marquet, R., Schutte, C., 2012. HIV-1 polymerase inhibition by 

nucleoside analogs: cellular- and kinetic parameters of efficacy, susceptibility and resistance 

selection. PLoS computational biology 8, e1002359. 

Vyas, S., Kumaranayake, L., 2006. Constructing socio-economic status indices: how to use 

principal components analysis. Health policy and planning 21, 459-468. 



          References  

183 

 

Wainberg, M.A., Zaharatos, G.J., Brenner, B.G., 2011. Development of antiretroviral drug 

resistance. The New England journal of medicine 365, 637-646. 

Watanabe, D., Ibe, S., Uehira, T., Minami, R., Sasakawa, A., Yajima, K., Yonemoto, H., Bando, 

H., Ogawa, Y., Taniguchi, T., Kasai, D., Nishida, Y., Yamamoto, M., Kaneda, T., Shirasaka, T., 

2011. Cellular HIV-1 DNA levels in patients receiving antiretroviral therapy strongly correlate 

with therapy initiation timing but not with therapy duration. BMC infectious diseases 11, 146. 

Watts, J.M., Dang, K.K., Gorelick, R.J., Leonard, C.W., Bess, J.W., Jr., Swanstrom, R., Burch, 

C.L., Weeks, K.M., 2009. Architecture and secondary structure of an entire HIV-1 RNA 

genome. Nature 460, 711-716. 

Weiss, R.A., 2013. Thirty years on: HIV receptor gymnastics and the prevention of infection. 

BMC biology 11, 57. 

Wensing, A.M., Calvez, V., Gunthard, H.F., Johnson, V.A., Paredes, R., Pillay, D., Shafer, R.W., 

Richman, D.D., 2014. 2014 Update of the drug resistance mutations in HIV-1. Topics in antiviral 

medicine 22, 642-650. 

WHO, 1993. Proposed 'World Health Organization staging system for HIV infection and 

disease': preliminary testing by an international collaborative cross-sectional study. The WHO 

International Collaborating Group for the Study of the WHO Staging System. AIDS 7, 711-718. 

WHO, 2005. BURKINA FASO. Estimated number of people needing antiretroviral therapy (0-

49 years), 2005:Antiretroviral therapy target declared by count. 

 

WHO, 2006. Surveillance of HIV Drug Resistance. Report of a Workshop, Pune, India, 10. 



          References  

184 

 

WHO, 2007. WHO Case Definitions of HIV for Surveillance and Revised Clinical Staging and 

Immunological Classification of HIV-related Disease in Adults and Children. 10-18. 

WHO, 2011. Haemoglobin concentrations for the diagnosis of anaemia and assessment of 

severity.Vitamin and Mineral Nutrition Information System. Geneva, World Health 

Organization, 2011. 

WHO, 2012. WHO Drug Resistance Report. 2012. 5-8. 

WHO, 2013a. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and 

Preventing HIV Infection: Recommendations for a Public Health Approach, Geneva. 

WHO, 2013b. HIV/AIDS Surveillance Report in Europe. 2012. 

Williams, J.P., Hurst, J., Stohr, W., Robinson, N., Brown, H., Fisher, M., Kinloch, S., Cooper, 

D., Schechter, M., Tambussi, G., Fidler, S., Carrington, M., Babiker, A., Weber, J., Koelsch, 

K.K., Kelleher, A.D., Phillips, R.E., Frater, J., Investigators, S.P., 2014. HIV-1 DNA predicts 

disease progression and post-treatment virological control. eLife 3, e03821. 

Wittkop, L., Gunthard, H.F., de Wolf, F., Dunn, D., Cozzi-Lepri, A., de Luca, A., Kucherer, C., 

Obel, N., von Wyl, V., Masquelier, B., Stephan, C., Torti, C., Antinori, A., Garcia, F., Judd, A., 

Porter, K., Thiebaut, R., Castro, H., van Sighem, A.I., Colin, C., Kjaer, J., Lundgren, J.D., 

Paredes, R., Pozniak, A., Clotet, B., Phillips, A., Pillay, D., Chene, G., 2011. Effect of 

transmitted drug resistance on virological and immunological response to initial combination 

antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): a European multicohort study. 

The Lancet. Infectious diseases 11, 363-371. 

Zanini, F., Neher, R.A., 2013. Quantifying selection against synonymous mutations in HIV-1 

env evolution. Journal of virology 87, 11843-11850. 



          References  

185 

 

Zhang, F., Zhu, H., Wu, Y., Dou, Z., Zhang, Y., Kleinman, N., Bulterys, M., Wu, Z., Ma, Y., 

Zhao, D., Liu, X., Fang, H., Liu, J., Cai, W.P., Shang, H., 2014. HIV, hepatitis B virus, and 

hepatitis C virus co-infection in patients in the China National Free Antiretroviral Treatment 

Program, 2010-12: a retrospective observational cohort study. The Lancet. Infectious diseases 

14, 1065-1072. 

 


