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Abstract 

The model of experimental autoimmune encephalomyelitis (EAE) is the most common model for 

studying pathological processes in multiple sclerosis (MS). In a variant of this model, induced by 

immunisation of Brown Norway rats with myelin oligodendrocyte glycoprotein (MOG), pathological 

mechanisms reflects many aspects of MS, observed by the activation of adaptive, innate and humoral 

immune response (Fairless et al., 2012). In addition to “the classical EAE pathology” characterised by 

inflammatory demyelination of the spinal cord, these animals also develop autoimmune optic 

neuritis (AON). The dynamics of the pathological events in AON are similar to those observed in 

acute optic neuritis in patients, a common early manifestation of MS. Taking this into consideration, 

the aim of this study was to provide a detailed characterisation of the optic nerve pathology during 

the course of AON in order to gain further insight into mechanisms of axonal injury and visual 

dysfunction associated with optic neuritis.  

Testing of visual functions by recording of visual evoked potentials (VEPs) revealed a decrease in 

visual acuity already during the induction phase of AON. During this phase, major pathological 

changes (such as inflammatory demyelination and axonal loss) in the optic nerve were still absent. 

However detailed examination of the optic nerve revealed that the observed visual impairment is 

timed with disruptions in axonal domains involved in saltatory conduction of action potentials (nodes 

of Ranvier and paranodes). Further evidence of stress was detected in both compartments of 

paranodal axon-glia junctions observed by alternation in the axonal neurofilament cytoskeleton and 

increased production of alpha B-crystallin (cryαB), a heat shock protein involved in oligodendrocyte 

stress response. Observed signs of stress were more prominent in the optic nerve head (ONH), the 

area which was also characterised by increased numbers of activated microglia and the deposition of 

autoantibodies. Following the onset of the clinical disease phase animals were characterised with 

greater impairments in visual functions and with the presence of inflammatory demyelination and 

increasing signs of axonal injury in optic nerves. In addition to increased expression of cryαB, a 

portion of oligodendrocytes associated with inflammatory lesions underwent the process of 

apoptosis.  

In order to investigate the origins of observed axonal and oligodendroglial stress and their 

contribution to disrupted axon-glia paranodal junction in the late induction phase, two different 

approaches were made. Firstly, the oligodendrocyte compartment was targeted by auto-antibodies 

through the transfer of sera from MOG-immunised into naïve animals. This led to deposition of auto-

antibodies and the presence of oligodendrocyte stress in the ONH, in a similar manner to that 

observed in the late induction phase. Secondly, a model of primary retinal injury by intravitreal 



     

injection of glutamate was performed and successfully mimicked aspects of the retinal pathology 

characteristic of the early induction phase. This led to the presence of axonal stress in optic nerves in 

the similar extent to one observed in the late induction phase of AON. In both instances, the 

observed signs of stress did not translate across the paranodal axon-glia junction to the other 

compartment. This suggests that axons and oligodendrocytes could be targeted independently 

during the induction phase of AON by mechanisms involving a primary retinal insult and the actions 

of the humoral immune response.  

Collectively, the pathological image observed in the induction phase of AON shares great similarities 

with the pathology of normal-appearing white matter in MS, in terms of both axonal and 

oligodendroglial stress, further suggesting that the model of AON is useful for studying early 

degenerative processes in MS. Observed disruptions of axonal domains in the induction phase of 

AON could serves as a structural correlate of impairment of visual functions. These findings could be 

relevant for human studies, particularly in a sub-set of MS patients which are characterised by 

impaired visual functions in the absence of clinically-defined optic neuritis. 

 

Zusammenfassung 

Experimentelle autoimmune Enzephalomyelitis (EAE) ist das am häufigsten verwendete Tiermodell 

zur Untersuchung pathologischer Prozesse in Multipler Sklerose (MS). Eine Variante dieses Modells 

ist die Immunisierung von braunen Norweger Ratten mit Myelin Oligodendrozyten Glykoprotein 

(MOG). Die pathologischen Mechanismen der MOG induzierten EAE spiegeln viele Aspekte der MS 

wieder, unter anderem die Aktivierung der adaptiven, angeborenen und humoralen Immunantwort 

(Fairless et al., 2012). Zusätzlich zur “klassischen EAE Pathologie”, die durch inflammatorische 

Demyelinisierung des Rückenmarks gekennzeichnet ist, einwickeln die Tiere außerdem autoimmune 

Optikusneuritis (AON). Die pathologischen Ereignisse der AON sind denen der akuten Optikusneuritis 

ähnlich, einer häufigen initialen klinischen Manifestation von MS. Ziel dieser Studie war daher die 

detailierte Charakterisierung der pathologischen Veränderungen des optischen Nervs im Verlauf der 

AON um weitergehende Einblicke in die Mechanismen der axonalen Verletzung und visuellen 

Dysfunktion, die mit der Optikusneuritis assoziiert sind, zu gewinnen. 

Die Untersuchung der Funktionsfähigkeit des visuellen Systems mittels Ableitung visuell evozierter 

Potentiale (VEP) zeigte, dass die Sehschärfe bereits in der Induktionsphase der AON reduziert war. In 

dieser Phase konnten weder Inflammation noch Demyeliniserung des optischen Nervs beobachtet 

werden. Detailierte Untersuchungen des optischen Nervs zeigten allerdings, dass die Abnahme der 



     

Sehschärfe zeitlich mit Veränderungen der Ranvier’schen Schnürringe und paranodalen Bereiche 

korrelierte. Diese Bereiche sind in die saltatorische Erregungsleitung von Aktionspotentialen entlang 

der Axone involviert. Weitere Anzeichen für Stress konnten in beiden Kompartimenten der 

paranodalen axo-glialen Verbindungen beobachtet werden: Veränderungen des neurofilamentösen 

Zytoskeletts in den Axonen und erhöhte Produktion von alpha B-crystallin (cryαB) , einem 

Hitzeschockprotein das in die Stressantwort von Oligodendrozyten involviert ist. Am Sehnervenkopf, 

der durch erhöhte Aktivierung von Mikroglia und Ablagerung von Autoantikörpern charakterisiert ist, 

waren die oben beschriebenen Veränderungen deutlicher ausgeprägt als im restlichen optischen 

Nerv. 

In der klinischen Phase der EAE war die Funktionsfähigkeit des visuellen Systems deutlicher stärker 

eingeschränkt und inflammatorische Demyelinisierung sowie erhöhte Anzeichen axonaler 

Verletzungen konnten im optischen Nerv beobachtet werden. Zusätzlich zur erhöhten Expression von 

cryαB konnte auch Apoptose von Oligodendrozyten im Bereich der inflammatorischen Läsionen 

nachgewiesen werden. 

Um die Ursprünge des beobachteten axonalen und oligodendroglialen Stresses und ihren Beitrag zu 

den gestörten paranodalen axo-glialen Verbindungen in der späten Induktionsphase genauer zu 

untersuchen, wurden zwei verschiedene Herangehensweisen ausgewählt. Zum einen wurden das 

Oligodendrozyten Kompartiment mittels Serumtransfer aus MOG-immunisierten in naive Tiere mit 

Autoantikörpern gezielt anvisiert. Dies führte zur Ablagerung von Autoantikörpern und Stress der 

Oligodendrozyten im Sehnervenkopf, wie er auch in der späten Induktionsphase beobachtet werden 

konnte. Zum Anderen wurde ein Modell gewählt in dem eine primäre, retinale Verletzung durch 

intravitreale Injektion von Glutamat ausgelöst wurde. Mit diesem Modell konnte eine retinale 

Pathologie ausgelöst werden, die Aspekte der Pathologie in der frühen Induktionsphase nachahmte. 

Dies führte zu axonalem Stress im optischen Nerv, der im Umfang mit dem in der späten 

Induktionsphase der AON vergleichbar war. 

In beiden Fällen konnte keine Beeinträchtigung des jeweils anderen Kompartiments beobachtet 

werden. Dies deutet darauf hin, dass Axone und Oligodendrozyten in der Induktionphase der AON 

möglicherweise unabhängig voneinander Ziel verschiedener Mechanismen sind in denen primäre 

retinale Schädigung und die humoralen Immunantwort eine Rolle spielen. 

Zusammenfassend lässt sich sagen, dass die pathologischen Vorgänge, die in der Induktionsphase der 

AON beobachtet werden konnten, viele Gemeinsamkeiten mit Veränderungen in der normal 

erscheinenden weißen Substanz in MS haben. Dies betrifft sowohl axonalen wie auch 

oligodendroglialen Stress und legt nahe, dass das vorliegende Tiermodell hilfreich sein kann frühe 



     

neurodegenerative Veränderungen in MS zu untersuchen. Die beobachtete Schädigung der axonalen 

Domänen in der Induktionsphase der AON könnte als strukturelles Korrelat für die reduzierte 

Funktionsfähigkeit des visuellen Systems dienen. Diese Erkenntnis könnte auch in Humanstudien von 

Bedeutung sein, insbesondere in einer Untergruppe von MS Patienten die durch reduzierte visuelle 

Funktion in Abwesenheit einer klinisch definierten Optikusneuritis charakterisiert ist. 
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1 Introduction 

1.1 Multiple sclerosis 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). It is 

considered to be the leading non-traumatic cause of neurologic disability in young adults in the 

western world with an average disease onset between the ages of 20 and 40 (Hauser and Oksenberg, 

2006). The disease presents with a complex pathology including inflammatory demyelination of the 

white and grey matter accompanied by axonal loss and neurodegeneration. 

Historically, MS was first described as a distinct disease of the CNS in the 19th century by a French 

neurologist Jean-Martin Charcot (Charcot M., 1868). He characterised plaque-like lesions in a post-

mortem brain of a young woman and termed them “la sclerose en plaques”. He was also the first 

physician to diagnose MS in a living patient using a diagnostic criteria consisting of nystagmus, 

intention tremor, and scanning speech (Pearce JMS., 2005).      

Although there has been significant scientific progress in the field of MS research and management, 

especially in the last three decades, there are still many unanswered questions when it comes to 

determining the cause and the mechanisms underlying the pathology of MS. Neurodegeneration is 

an important component of the pathology correlating with the decline in cognitive and neurological 

abilities in patients. It is also recognized to be an early event in the disease course starting already 

during the initial, clinically silent, phase. This highlights the importance of discovering the causality 

and mechanisms of neurodegeneration, particularly within the early stages of the disease, which 

could lead to development of neuroprotective and regenerative strategies for better management of 

MS. 

 

1.2 Epidemiology and genetics of MS   

There are approximately 2.3 million people living with MS across the planet (Atlas of MS, 2008). 

Results from epidemiological studies show an uneven world-wide geographical distribution. Areas 

with the highest prevalence and incidence of MS are found in the northern hemisphere, mainly in 

North America and northern Europe (Figure 1.1). 
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There is also an uneven distribution of the disease between the genders. The overall incidence rate 

for females is 3.6 cases per 100,000 people per year and 2 cases per 100,000 people per year in 

males (Alonso and Hernan 2008).   

The evidence for a genetic component of MS comes from prevalence studies in different ethnic 

groups and familial occurrence. It is recognized that the risk for developing the disease rises with the 

increase of genetic material shared between family members. The risk for developing MS in adopted 

relatives is at the general population level (0% genetic identity, 0.2% risk). The risk found in siblings 

of MS patients is estimated to be between 3-5% and is the same for dizygotic twins and in cases of 

one parent being affected with the disease (in all cases there is 50% genetic sharing). The risk rises to 

6-10% if both parents were affected with the disease (50% sharing of genetic material with each 

parent). The highest risk is found in studies with monozygotic twins (100% genetic sharing) where the 

recurrence risk for MS is estimated at 34% (Ebers et al., 2000; Dyment et al., 2004).  

When it comes to ethnicity, it has been observed that people of northern European ancestry have an 

increased risk for developing MS when compared to other ethnic groups residing at the same latitude 

Figure 1.1 Distribution of MS prevalence. This map of MS prevalence was created based on date collected 
from more than 100 countries in a study led by the World Health Organization (WHO) and Multiple 
Sclerosis International Federation (MSIF). Image taken from Atlas: Multiple Sclerosis Resources in the 
World 2008. 
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(Pugliatti et al., 2002; Koch-Henriksen and Sørensen, 2010). This phenomenon is also reflected in 

migration studies. It was shown that in ethnic groups with a low risk for MS, the risk level remains 

low even after migration to an area with high risk (Detels et al., 1977; Gale and Martyn, 1995; O’ 

Gorman et al., 2012).  

The majority of specific genetic variants associated with an increased risk for MS are found to be 

related to inflammatory pathways with the strongest association being identified in the human 

leukocyte antigen (HLA) class II domain (Sawcer et al., 2011). The presence of the HLA-DRB1*1501 

haplotype in the HLA class II domain, identified by Sawcer et al. as the strongest risk correlate, 

correlated with more severe inflammation and pathology of the spinal cord when compared with the 

post mortem tissue from MS patients negative for this haplotype (DeLuca et al., 2013). Other genetic 

variants with strong MS susceptibility were found in genes encoding for the interleukin-2 receptor α 

(IL2RA) and interleukin-7 receptor α (IL7RA; Hafler et al., 2007 The International Multiple Sclerosis 

Genetics Consortium). 

The environment also plays a significant role in the prevalence of MS. Interestingly, migration 

studies, previously used to strengthen the hypothesis of genetics on MS susceptibility, can also be 

applied when examining the effect of the environment. A decrease in the rate of disease was found 

in migrants coming from an area with an overall larger risk for MS to an area of lower risk (Gale and 

Martyn, 1995). This illustrates the complexity of the disease aetiology pointing to interplay between 

different genetic and environmental factors. The strongest environmental factors implicated in MS 

susceptibility are found to be vitamin D (Munger et al., 2006; Soilu-Hanninen et al., 2005), smoking 

(Hedstorm et al., 2009) and Epstein Bar virus (EBV) infection (Haahr et al., 2004; Lucas et al., 2011; 

Sundqvist et al., 2012 ). 

 

1.3 Clinical course of MS 

Patients suffering from MS present with a variety of neurological symptoms indicative of pathology in 

various regions of the CNS including cerebrum, cerebellum, the optic nerve, brainstem and the spinal 

cord (Compston and Coles, 2008). These symptoms vary in their severity, duration and frequency 

creating different sub-populations between patients. To ensure a proper diagnosis and disease 

management, a universally applicable classification of different disease subtypes is needed. In 1996 a 

committee of experts from the US National Multiple Sclerosis Society (NMSS) suggested a 

classification of the disease course into four different types based on the recurrence and progression 

of neurological symptoms (Lublin et al., 1996): 
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- Relapsing-remitting (RRMS) 

- Secondary progressive (SPMS) 

- Primary progressive (PPMS) and 

- Progressive-relapsing MS (PRMS). 

 In 2013, this committee, now joined by The European Committee of Treatment and Research in MS 

and The MS Phenotype Group, revisited the original classification, taking into consideration advances 

in research, diagnosis and management of MS. The progressive-relapsing subtype was dropped due 

to its overlap with other disease course subtypes, and two additional subtypes were introduced: 

clinically isolated syndrome (CIS) and radiologically isolated syndrome (RIS; Lublin et al., 2014).  

CIS is the first presentation of the disease. It is characterised by a single clinical episode which 

presents symptoms indicative of inflammatory demyelination. For CIS to be recognized as clinically 

defined MS (CDMS) it has to fulfil the McDonald criteria for diagnosis of MS which are dissemination 

in time and space (Polman et al., 2011). The conversion rate from CIS to CDMS is at 60-70% within 20 

years following the initial attack (Fisniku et al., 2008; Miller et al., 2012). A recent large, multi-centre 

study was performed by Kuhle and colleagues, examining the effect of clinical and biochemical 

marker status on the prediction of conversion from CIS to CDMS. They found an association between 

the oligoclonal bands status, magnetic resonance imaging (MRI) lesion load, the age of the patients, 

vitamin D levels and the conversion rate risks (Kuhle et al., 2015). 

Radiologically isolated syndrome presents as a demyelinated lesion in the white matter which has no 

manifestation of neurological symptoms (Okuda et al., 2009; Lublin et al., 2014). These, usually 

accidental, findings can be indicative of an early disease onset and such patients should be 

monitored for the possible appearance of first clinical signs of MS. 

Relapsing-remitting MS is the most common form of the disease. Approximately 85% of MS patients 

start the disease with this course with a mean age of onset at 30 years (Trapp and Nave, 2008). 

Patients are presented with episodes of neurological disability with periods of remission in-between. 

Neurological symptoms develop rapidly, within hours or days, and recede within weeks from their 

onset (Miller and Leary, 2007; Trapp and Nave, 2008). In the initial stage of the disease, remissions 

are usually complete – i.e. neurological symptoms fully resolve. Relapses are unpredictable with an 

average rate of approximately 1.5 per year (Compston and Coles, 2008). As the disease progresses, 

the remission phase shortens, relapses become more frequent, full recovery is impaired and patients 

advance into secondary progressive MS. Within 25 years, 90% of the patients with RRMS typically 
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advance to SPMS (Image 1.2). This phase is characterised as a steady increase in progression of 

irreversible neurological disability (Noseworthey et al., 2000; Trapp and Nave, 2008). 

Around 15% of patients are characterised with a progressive form of MS (PPMS) from the onset of 

the disease, with rare events of incomplete remissions (Image 2). The average onset of the disease in 

these patients is at 40 years, 10 years later than in ones diagnosed with RRMS. Neurological 

symptoms in PPMS tend to develop slower over time and are connected with impaired motor control 

rather than with sensory responses (Miller and Leary, 2007). Therefore, PPMS is characterised more 

as a spinal disease, although symptoms pointing to the involvement of other CNS compartments can 

also occur (Compston and Coles, 2008). While in RRMS patients the female to male ratio is 2-3:1, 

reflecting the general gender ratio in all MS patients, in patients with PPMS the distribution of the 

disease between genders is even (Tremlett et al., 2005; Miller and Leary, 2007). 

 

 

 

Axonal loss is found to be a major correlate of permanent disability in MS patients (Bjartmar et al., 

2000). Reduced axonal densities, as well as axonal swellings and transections indicative of axonal 

pathology, are found in both actively demyelinating inflammatory lesions and in chronic lesions 

(Ferguson et al., 1997; Trapp et al., 1998). The former type of lesion is more prominent in RRMS 

while the latter is found to be a pathological hallmark of progressive forms of MS. Despite the 

extensive axonal loss observed in active lesions (Trapp et al., 1998), neurological symptoms are still 

reversible in RRMS patients. This is owed to the great capacity for neuronal compensation in the 

human CNS suggesting that permanent disability only occurs once a certain threshold of axonal loss 

is crossed. This phenomenon can also be observed in other neurodegenerative diseases, such as 

Figure 1.2 MS disease course. Graphical representation of different disease courses in MS. Horizontal 
dashed line represents the clinical threshold of neurological disability for transition from RRMS to 
SPMS. 
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Parkinson’s disease, where clinical manifestation of the disease is observed only when patients lose 

over 70% of dopaminergic axons (Trapp et al., 1999; Dutta and Trapp, 2011). Functional activation of 

other non-affected regions of the cortex can compensate for the loss of function due to the axonal 

loss within lesions. This concept was observed with functional MRI imaging in MS patients (Buckle, 

2005; Pantano et al., 2006).     

The transient nature of neurological deficits in RRMS suggests that disability in these patients have a 

different origin compared to progressive forms of MS. MRI in these patients shows gadolinium-

enriched lesions indicative of blood-brain barrier (BBB) disruption which leads to infiltration of 

immune cells and lesion formation. The oedematous nature of these lesions is thought to be a major 

cause of neurological deficits by blocking the conduction of action potentials (APs) in axons as a 

result of demyelination and production of reactive species by inflammatory cells. In addition, ongoing 

demyelination causes the disruption of axonal domains involved in the propagation of APs (discussed 

in chapter 1.7.2). With time, the ability of the neuron to conduct impulses is partly regained through 

a re-organization of voltage-gated Na+ channels along the demyelinated axons. As the inflammation 

resolves, remyelination can sometimes occur, restoring neuronal conduction of action potentials. The 

concept that inflammation is the driving force of disability in RRMS is confirmed by the success of 

anti-inflammatory therapies to prevent relapses and to decrease MRI lesion load (Paty and Li, 1993; 

Trapp and Nave, 2008). As the disease progresses, patients usually develop SPMS. At this stage the 

burden of axonal loss presumably oversteps the mechanisms of compensation and patients are 

presented with increasing and permanent disability. New forming MRI lesions are rarely observed 

and patients do not respond anymore to anti-inflammatory therapies (Dutta and Trapp, 2011).  

Although the average clinical onset of the disease in PPMS is observed at a later age, the disability 

threshold is reached at the same time as in RRMS (Confavreux and Vukusic, 2006). This might suggest 

that similar disease processes begin at the same average age in both patients with PPMS and RRMS. 

However, in PPMS these processes are not clinically visible until they cross the clinical threshold 

beyond which compensatory mechanisms are no longer sufficient, whereas in RRMS they are also 

not clinically visible (with only the effects of transient inflammatory attacks on clinical manifestations 

being observed) until the conversion to SPMS. The use of anti-inflammatory therapy is ineffective in 

patients with PPMS (Miller and Leary, 2007) pointing to more chronic degenerative events, similar to 

ones in SPMS. When the accumulated neurodegeneration oversteps the capacity for compensation 

both groups transit into the state of permanent disability. 
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1.4 Pathology of MS 

The original concept of MS pathology was viewed as the presence of focal white matter lesions with 

a demyelinated core, partially preserved axons and signs of reactive gliosis (Lassmann, 2005; 

Lassmann and van Horssen, 2011). Since the second half of the 20th century, and due to major 

advances in both immuno/histopathology and in vivo imaging, this concept has been significantly 

altered. The discovery of lesions in the grey matter (both cortical and deep grey matter), diffuse 

lesions and altered morphology of the so called “normal appearing white matter” (NAWM) point to 

the complexity of pathological mechanisms involved in MS. Also, the lesions themselves are very 

dynamic structures where different morphologies and cellular compositions have been observed in 

respect to the stage of their development. The utilisation of in vitro studies and animal models, 

mainly Experimental Autoimmune Encephalomyelitis (EAE), has helped in the discovery of many of 

the immunological and pathological mechanisms that are involved in MS. 

 

1.4.1 Inflammation 

Inflammation is a major component of MS pathology. The degree of inflammation varies throughout 

the disease course and between different subtypes of the disease. Generally, the progressive forms 

of the disease tend to have lower numbers of gadolinium-positive MRI lesions (indicative of BBB 

breakdown) compared to the relapsing-remitting stage. Also, in the late stages of progressive forms 

of the disease, the level of inflammation declines to one observed in age-matched controls (Frischer 

et al., 2009). The main driving force of inflammation in MS is the infiltration of lymphocytes and 

monocytes through the BBB. Activated lymphocytes cross the BBB via a series of steps involving 

interaction between different molecules expressed on endothelial cells and on lymphocytes 

themselves. The most important of these are cellular adhesion molecules (CAMs) expressed on 

endothelial cells (mainly ICAM-1 and VCAM-1) and their ligands expressed on activated leukocytes – 

αLβ2 (LFA-1) and α4β1 (VLA-4; Engelhardt, 2006; Owens et al., 2008; Larochelle et al., 2011). 

Increased expression of both CAMs (Sobel et al., 1990; Washington et al., 1994) and their ligands (Bö 

et al., 1996) have been observed in MS lesions. This mechanism has lent itself to the development of 

a promising drug strategy, namely the targeting of extravasation of immune cells into the CNS. 

Natalizumab, a monoclonal antibody against VLA-4, is one such drug that has been shown to be  

effective  for the treatment of RRMS. It lowers the numbers of circulating lymphocytes, the CD4+ to 

CD8+ ratio in the CNS and the total number of CD4+ cells in the brain (Stüve et al., 2006; del Pilar 

Martin et al., 2008; Ellwardt and Zipp, 2014). 
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1.4.1.1 T cells 

The most dominant type of lymphocytes associated with MS inflammation are T cells. Of these, 

major histocompatibility complex (MHC) class I-restricted CD8+ T cells are the dominant subtype 

within lesions where they undergo clonal expansion (Babbe et al., 2000; Neumann et al., 2002). All 

nucleated cells express MHC class I on their membranes as a part of an important mechanism for the 

response against intracellular pathogens such as viruses and bacteria. Once antigens are presented 

via the MHC class I receptor to cytotoxic CD8+ T cells, these T cells produce proinflammatory 

cytokines (TNFα and INFγ) as well as perforins and granzymes that can induce a cascade which leads 

to the death of target cells. Upregulation of MHC class I can be observed in all cell types within MS 

lesions including neurons, oligodendrocytes, astrocytes and microglia (Gobin et al., 2001; Höftberger 

et al., 2004). Since oligodendrocytes and neurons are known not to express the co-stimulatory 

molecules needed for the priming of CD8+ T cells (Odeberg et al., 2005), the mechanisms of their 

activation and potential disruptive roles are speculative and still remain unknown (Friese and Fugger, 

2005). Nevertheless, there is a strong correlation between the presence of CD8+ T cells and axonal 

damage in MS lesions (Bitsch et al., 2000; Kuhlmann et al., 2002; Neumann et al., 2002; Gilmore et 

al., 2009). 

MHC class II-restricted CD4+ T cells are mainly found in the meninges and perivascular spaces of the 

MS-affected CNS (Lassmann and van Horssen, 2011). The importance of CD4+ T cells for pathogenesis 

in autoinflammatory conditions comes primarily from the EAE model. It has been shown that mice 

lacking functional CD4+ T cells (but not CD8+ T cells) were unable to develop EAE upon immunization 

with myelin oligodendrocyte glycoprotein (MOG; Leuenberger et al., 2013).  Some of the proposed 

mechanisms of CD4+ T cell-mediated pathology include antigen-independent interactions with 

neurons (Nitsch et al., 2004) and activation of tumour necrosis factor-related apoptosis-inducing 

ligand (TRAIL) pathway (Vogt et al., 2009). Also, indirect evidence for the role of CD4+ T cells in MS 

pathology comes from treatment with anti-inflammatory drugs, such as Natalizumab, that reduce the 

CD4+ T cell population in the CNS and have a positive modulatory effect on the disease course.  

Another subset of CD4+ cells which secrete interleukin-17A/E (Th17 cells) has been implicated in the 

pathology of autoimmune disorders including MS and its animal models (Steinman, 2007; Siffrin et 

al., 2010). Mechanisms of their actions include the secretion of proinflammatory cytokines, 

recruitment of neutrophils into the CNS and direct neuronal damage (Jadidi-Niaragh and Mirshafiey, 

2011). A further subset of CD4+ regulatory T cells, CD4+CD25+Foxp3+ cells (Tregs), which have 

immunosuppressive properties are also found to have a role in the inflammatory process in MS 

(Zozulya and Wiendl, 2008). A decrease in Foxp3 levels were found in T cells isolated from the blood 

of MS patients (Huan et al., 2005). Also, a decreased in vitro proliferation of Tregs isolated from 
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RRMS patients upon T cell receptor stimulation was observed. Furthermore, the impaired 

proliferative capacity of these cells correlated with disease severity (Carbone et al., 2014). 

 

1.4.1.2 B cells 

B cells are thought to play an important role in the pathogenesis of MS. Post-mortem tissue analysis 

revealed the presence of B cells throughout the MS-affected CNS – in active demyelinating white 

matter (Lucchinetti et al., 2000; Henderson et al., 2009), perivascular spaces (Henderson et al., 2009) 

and the meninges (Serafini et al., 2004; Magliozzi et al., 2007; Howell et al., 2011; Lovato et al., 

2011). Also, the presence of oligoclonal bands (indicating the presence of antibodies) in the 

cerebrospinal fluid (CSF) is the most consistent immunological finding as it is found in more than 95% 

of patients with MS (Freedman et al., 2005; Disanto et al., 2012). Although these antibodies are a 

striking feature and are also found to be associated with a risk for conversion from CIS to CDMS 

(Masjuan et al., 2006; Ignacio et al., 2010), they have been shown not to be reactive against myelin 

components (Owens et al., 2009) which raises a question regarding their involvement in the disease 

pathogenesis. In contrast, antibodies isolated directly from MS lesion tissue showed reactivity against 

myelin basic protein (MBP; Warren et al., 1993) and MOG (O’Connor et al., 2005). Deposition of IgG 

and complement is found to be one of the characteristics of an active demyelinating MS lesion 

(Lucchinetti et al., 2000), where there is a strong link between antibody deposition in CNS tissue and 

their reactivity towards myelin components.  

Although the role of auto-antibodies is inconclusive, there is a strong evidence for antibody-

independent B cell roles in MS pathogenesis. B cells are able to process and present antigens to T 

cells and to provide the co-stimulatory signals necessary for their activation. In addition, they are 

able to produce a variety of cytokines which can modulate the T cell response (Lund and Randall, 

2010). The importance of this (antibody-independent) role of B cell in the process of inflammation is 

highlighted by the positive effects of Rituximab in RRMS. This is a monoclonal antibody against CD20, 

a transmembrane protein presented exclusively on B cells in all stages of their development apart 

from the initial stage (pro B cells) and plasma cells (antibody-secreting B cells; Stashenko et al., 

1980). Clinical trials with Rituximab in RRMS resulted in a decrease in new gadolinium-enhanced MRI 

lesions and the proportion of patients with relapses. The depletion of circulating CD20+ cells was near 

to complete without an effect on the oligoclonal band status (Cross et al., 2006; Hauser et al., 2008; 

Petereit et al., 2008; Naismith et al., 2010). 
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1.4.1.3 Microglia/macrophages 

The most abundant inflammatory cells in MS lesions are monocyte-derived macrophages and 

residential microglial cells (Brück et al., 1995; Lucchinetti et al., 2000; Haider et al., 2014). These cell 

types share great similarities in their physiological and pathophysiological functions (Prinz et al., 

2014) and were originally thought be of the same lineage. It is now recognized that the microglial 

population is derived from a yolk-sac progenitor and populate the early developing CNS (Ginhoux et 

al., 2013; Kierdorf et al., 2013), whereas CNS-specific monocyte/macrophages originate from bone 

marrow-derived hematopoietic stem cells and reside within perivascular spaces (Abbott et al., 2010), 

meninges and the choroid plexus (Chinnery et al., 2010; Dragunow 2013). The main physiological 

function of these cells (particularly residential microglia) is the maintenance of CNS homeostasis. 

They show remarkable plasticity and are able to respond rapidly to disruptions in tissue homeostasis 

(Prinz et al., 2014). In the MS-affected CNS, they are responsible for orchestrating the overall 

inflammatory process within lesions, directing degenerative insults on myelin/axons, and 

phagocytosis of cellular (myelin) debris. Additionally, they also have roles during the regenerative 

process where they stimulate the differentiation of oligodendrocyte progenitor cells (OPCs) and 

promote remyelination. These actions are put into effect through the production of a variety of 

cytokines, chemokines, free radicals, and trophic factors.  

Activated microglia and macrophages are found in all MS lesions irrespective of their type and status. 

Nodules of MHC class II-positive microglia are also found in areas of the CNS with completely 

preserved myelin but signs of oligodendrocyte stress (De Groot et al., 2001). These areas, called 

“early or preactive lesions” are proposed to be an initial step in the formation of new lesions. The 

presence of activated microglia/macrophages correlates with the extent of axonal injury in MS 

lesions (Ferguson et al., 1997; Trapp et al., 1998; Kornek et al., 2000; Bjartmar et al., 2001). Also, in 

active lesions, microglia/macrophages are loaded with phagocytised components of myelin and 

axons (Brück et al., 1995; Lucchinetti et al., 2000). These cells are found to be positive for classical 

proinflammatory markers for such as MHC II and iNOS (Boyle and McGeer, 1990; Haider et al., 2014). 

The expression of MHC class II molecules together with co-stimulatory molecules on 

microglia/macrophages (Simone et al., 1995) underlines their potential role in the activation of 

lymphocytes. 
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1.4.2 Pathology of MS lesions 

Researchers have attempted to classify the diverse array of lesions according to their location (white 

vs grey matter), state of activity (early, active or chronic), and patterns of demyelination and 

inflammation. 

 

1.4.2.1 White matter lesions 

White matter lesions are the most prominent feature of RRMS and are characterised by extensive 

demyelination, axonal loss and inflammation. Careful immuno-histological analysis of the tissue distal 

to the lesion can reveal subtle abnormalities. These fully myelinated areas, called NAWM, are lacking 

peripheral inflammatory infiltrates but are characterised by diffuse, activated microglia (Zeis et al., 

2008; Howell et al., 2010; Moll et al., 2011), and are associated with signs of axonal (Howell et al., 

2010) and oligodendroglial stress (Zeis et al., 2009; Cunnea et al., 2011). 

Preactive lesions are similar to NAWM since they are still myelinated and lacking in peripheral 

inflammatory infiltrates, but are characterised by the presence of MHC II-positive microglia clusters 

(De Groot et al., 2001). Oligodendrocytes have been reported to show signs of stress identified 

through an upregulation of the small heat-shock protein, αB-crystallin (cryαB; Bajramovic et al., 

1997). Apart from its anti-apoptotic role in oligodendrocytes, this protein, when secreted, can exert 

immunomodulatory properties on activated microglia in vitro (van Noort et al., 2013). Although the 

term “preactive lesion” would suggest that these lesions regularly progress into active demyelinating 

lesions this is usually not the case. Larger numbers of preactive compared to active lesions are 

observed in the MS CNS suggesting that much of the microglial inflammation is resolved without 

progressing further (van der Valk and Amor, 2009). 

The most prominent feature of an active MS lesion is demyelination often accompanied with the 

destruction of oligodendrocytes (Brück et al., 2005). Axonal count is decreased and the presence of 

swollen, transected axons positive for amyloid precursor protein (APP) and non-phosphorylated 

neurofilaments (identified with the antibody SMI32) is indicative of their state of stress (Trapp et al., 

1998; Kornek et al., 2000). Phagocytic macrophages and microglia are the most dominant population 

of inflammatory cells in these lesions and contain ingested components of both myelin (Brück et al., 

1995; van der Goes et al., 2005) and axons (Huizinga et al., 2012). In addition, the presence of T cells, 

B cells and deposition of IgG and complement within the lesion is detected. Upon detailed 

histopathological examination of the MS tissue, a further classification into four distinct patterns of 
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active lesions was suggested on the basis of different immuno-pathological mechanisms (Lucchinetti 

et al., 2000). 

Pattern I and II lesions share great similarities with one marked distinction. These lesions are centred 

on small veins and have a well-defined edge. Demyelination is characterised with an even loss of 

different myelin components with variable loss of oligodendrocytes in the active lesion centre. 

Inflammation consists of many phagocytic macrophages but also T cells and B cells. With the 

resolution of the inflammation (in their chronic states) these lesions are characterised by partial 

remyelination observed by thinner myelin sheets and increased numbers of oligodendrocytes in the 

inactive lesion centre. The main distinction between these two patterns is the involvement of 

humoral immunity in the pathology of pattern II lesions. Within this lesion pattern, a marked 

deposition of IgG and complement can be observed in the areas of active demyelination. 

Pattern III lesions are not centred on inflamed vessels and are characterised by a diffuse, ill-defined 

lesion border spreading into surrounding periplaque white matter. The inflammation profile of this 

lesion type consists of activated microglia/macrophages and T cells. Demyelination is characterised 

by preferential loss of a single myelin component, the myelin-associated glycoprotein (MAG), with 

the preservation of others such as MBP, proteolipid protein (PLP) and cyclic-nucleotide 

phosphodiesterase (CNP) in partly damaged myelin sheets. The preferential loss of MAG, a protein 

expressed in the innermost layer of the myelin sheet, is considered to be an early event in different 

pathological settings which are primarily targeting oligodendrocytes.  This concept has been termed 

as “dying-back oligodendropathy” and it can also be observed in progressive multifocal 

leukoencephalopathy (Itoyama et al., 1982), experimental models with toxic oligodendrocyte 

damage (Ludwin et al., 1981) and in virus-induced demyelination (also targeting oligodendrocytes; 

Rodriguez, 1995). Pattern III lesions are characterised by the marked presence of apoptotic 

oligodendrocytes and an overall reduction in their numbers. 

Pattern IV lesions were exclusively found in patients with PPMS. Most of their lesion characteristics 

resemble those found in pattern I lesions. Pattern IV lesions have well defined edges and are centred 

on inflamed vessels. Inflammatory infiltrates consist of T cells and macrophages. Demyelination is 

characterised with an even loss of different myelin components and extensive loss of 

oligodendrocytes which can be also detected in the periplaque area. Extensive loss of 

oligodendrocytes can be observed in both pattern III and IV lesion. This could be the reason for the 

absence of remyelination in the later stages of these lesions as opposed to pattern I and II where the 

presence of remyelination coincides with high numbers of oligodendrocytes in the inactive lesion 

centre.  
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With time, active lesions progress into a chronic state, where the centre is completely demyelinated 

and macrophages are re-distributed to the rim of the lesion. Finally, chronic active lesions progress 

into an inactive state characterised by a sclerotic morphology. Macrophages and lymphocytes are 

rarely present at this stage, and the centre of the lesion becomes hypocellular with a strong 

astrocytic gliosis (Kipp et al. 2012). 

 

1.4.2.2 Grey matter lesions 

Despite early reports of cortical demyelination (Brownell and Hughes, 1962; Lumsden, 1970), very 

little attention was focused on the grey matter pathology in MS, primarily due to the inability of 

routine MRI and histopathological investigations to recognize such events (Sharma et al., 2001; Trapp 

and Nave, 2008). The reason for this lies with the fact that the BBB is not largely compromised in 

such a lesion and the extent of peripheral immune infiltrates is smaller when compared to active 

lesions in the white matter (Peterson et al., 2001; Bö et al., 2003). Regardless of this, grey matter 

lesions are omnipresent (in both cortex and deep grey matter) and associated with both RR and 

progressive disease courses. They are an early event in the RRMS course (Lucchinetti et al., 2011), in 

certain cases appearing prior to detection of white matter abnormalities (Popescu et al., 2011). With 

progression of the disease, the lesion load in the grey matter accumulates, being very prominent in 

late SP- and PPMS, and correlates with the progression of disability (Vercellino et al., 2005; Calabrese 

et al., 2012; Honce, 2013). In fact, at such late disease stages, the lesion load in the grey matter is 

shown to exceed that present in the white matter (Kutzelnigg and Lassmann, 2005; Gilmore et al., 

2008). The majority of grey matter lesions are associated with the cortex and subcortical area 

(Peterson et al., 2001), but they are also frequently found in the deep grey matter, including the 

thalamus, putamen, caudate nucleus and the spinal cord (Gilmore at al., 2008; Vercellino et al., 2009; 

Haider et al., 2014).  

Although the inflammation in the grey matter is not as pronounced as that observed in white matter 

lesions, the composition of peripheral inflammatory infiltrates is found to be similar. Demyelination 

in early grey matter lesions in RRMS is associated with the presence of phagocytic macrophages 

(Gilmore et al., 2009; Haider et al., 2014) whereas they are rarely present in the chronic lesions of 

SPMS (Howell et al., 2011).  

Meningeal inflammation seems to play a major role in the disease progression since patients with 

extensive inflammation in the meninges, and therefore greater grey matter damage, are found to 

have a more progressive disease course (Magliozzi et al., 2010; Howell et al., 2011; Calabrese et al., 

2013). Both macrophages and lymphocytes are detected in the inflamed meninges. The most striking 
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inflammatory feature is the presence of CD20+ B cell follicle-like structures that were associated with 

increased cortical demyelination and atrophy. Interestingly, a gradient of neurodegeneration was 

observed with more pronounced neuronal loss in the layers close to the meninges (Magliozzi et al., 

2010). This finding points to the possible role for soluble cytotoxic factors in neurodegeneration in 

MS. 

The activation of residential microglial cells is widespread and is the most dominant phenomenon in 

grey matter pathology (Peterson et al., 2001; Vercellino et al., 2009; Haider et al., 2014; Calabrese et 

al., 2015). The numbers of activated microglia correlate with both the degree of meningeal 

inflammation (Howell et al., 2011) and the extent of axonal and dendritic pathology (Peterson et al., 

2001). Although there are evidences for the role of microglia in both demyelination (Gray et al., 

2008) and glutamate-mediated damage (Vercellino et al., 2007), it still has to be determined whether 

the activation of these cells is an initiating event in the grey matter pathology or if their role is more 

protective and activation is a consequence of lymphocyte/macrophage driven inflammation 

(Calabrese et al., 2015). 

Although the concept of grey matter lesions has emerged only in the last two decades, its 

importance in the MS disease course is great. The observed neurodegeneration, both in the cortex 

and in the deep grey matter, correlates highly with both irreversible progression of disability 

(Huitinga et al., 2004; Neema et al., 2009) and impairment in cognitive functions (Bakshi et al., 2000; 

Houtchens et al., 2007) in MS patients. 

Overall, the pathology of MS is characterised by great heterogeneity, observed both in the lesion 

topology and pathological mechanisms underlying their development. Lesions are observed both in 

white and grey matter and are characterised by different extents of inflammation and tissue 

destruction. Although inflammatory demyelination, driven by infiltration of lymphocytes and 

monocytes, is the most striking feature of MS pathology there is accumulating evidence of both 

neuronal and oligodendroglial pathology in the absence of such inflammation. This is particularly 

observed in the NAWM and the grey matter where the presence of cellular stress correlates with the 

activation of residential microglia suggesting their impotence in the pathology of MS. 

 

1.5 Optic neuritis 

The optic nerves are one of twelve pairs of cranial nerves, but unlike the others, they are considered 

part of the CNS. They are comprised of the myelinated axons of retinal ganglion cells (RGCs), whose 

cell bodies reside in the innermost layer of the retina. The initial segments of theses axons, which are 
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residing in the retina, are unmyelinated and comprise the retinal nerve fibre layer (RNFL). Upon 

exiting the eye, axons become myelinated by oligodendrocytes (Figure 1.3). Optic nerves meet at the 

optic chiasm where the majority of the axons decussate and proceed towards the lateral geniculate 

nucleus (LGN). Throughout their lengths, nerves are covered with meninges that are continuous with 

that encasing the CNS. Projections from the LGN form the optic radiations which terminate in the 

primary visual cortex of the brain (Kolappan et al., 2009).    

 

 

 

 

 

Optic neuritis is an inflammatory demyelination of the optic nerve. It is characterised by a loss of 

vision, ipsilateral eye pain and dyschromatopsia (an inability to perceive colours). It is usually 

presented unilaterally (only one eye affected) which makes it tougher for the patient to recognize 

disturbance in vision. Visual loss usually develops within several hours to days, but it usually takes 

several weeks for the inflammation to resolve and for visual functions to be restored (Toosy et al., 

2014). With time, a recurrence of symptoms it is not uncommon (Optic Neuritis Study Group, 2008; 

Kolappan et al., 2009).   

Figure 1.3 The optic nerve. Example image of the initial segment of the rat optic nerve stained with 
antibodies against neurofilaments for axons (SMI32, red) and MBP for the myelin sheath (green). Cell nuclei 
were stained with DAPI (blue). Upon exiting the eye, RGCs axons are still unmyelinated in the region of the 
optic nerve head. Scale bar 100 µm. 
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There are different forms of optic neuritis, which vary in manifestation, severity of pathology and 

aetiology. Typically, optic neuritis is associated with MS or CIS with a risk of conversion to CDMS 

(Beck et al., 2003; Toosy et al., 2014) and as such will be further discussed.   

Acute, unilateral optic neuritis is the first presenting syndrome in 15-20% of patients with MS and it 

occurs in 50% at some point during the disease course (Wikstorm et al., 1980; Foroozan et al., 2002; 

Beck et al., 2003; Arnold, 2005). An increased risk for developing CDMS was found in patients 

presenting with optic neuritis and one or more MRI lesions when compared to patients with optic 

neuritis alone (72 % vs. 25% probability for MS; Optic Neuritis Study Group, 2008).  An increased risk 

for developing optic neuritis is common in populations with an overall increased risk for MS, with a 

higher incidence in females (Optic Neuritis Study Group, 1991; MacDonald et al., 2000) and in people 

living at higher latitudes or of northern European ancestry (Jin et al., 2000).  An increased risk for 

optic neuritis was also observed within individuals carrying a certain HLA haplotype (Frederiksen et 

al., 1997). 

The pathological mechanisms of acute optic neuritis are thought to be similar to ones observed in 

MS. Considering the rarity of histopathological reports of the visual tract from patients (Green et al., 

2010), much of the evidence comes from employing different animal models. Optic neuritis can be 

modelled with certain variants of EAE (Fairless et al., 2012; Lidster et al., 2013) or by chemically 

induced demyelination of the optic nerve (You et al., 2011). In patients, the pathology can be 

monitored with the use of different non-invasive imaging methods (Martinez-Lapiscina et al., 2014). 

By employing different MRI techniques it was shown that with the onset of acute optic neuritis, 

affected nerves are swollen (indicative of inflammatory oedema). In the acute phase, a decrease of 

visual acuity comes from the conduction block caused by oedematous demyelinating lesions. 

Commonly, visual acuity is restored following an episode of acute optic neuritis, as is confirmed by 

measurement of visual evoked potentials (VEPs). However, upon follow-up MRI, the affected nerves 

can still show signs of atrophy (indicative of the axonal loss). Thus, compensatory mechanisms are 

presumably helping to restore visual acuity. The breakdown of the BBB can also be observed in acute 

optic neuritis by gadolinium enhancement visualised by MRI. This finding also correlated with the 

loss of visual acuity (Youl et al., 1991), further strengthening the argument for inflammation-induced 

conduction block in the optic nerves.  

Optical Coherence Tomography (OCT) is an ultrasound-like imaging technique that relies on low 

coherence interferometry to generate cross-sectional images of the retina with high resolution (1-15 

µm; Fujimoto et al., 2000).  Using OCT it is possible to discern different retinal layers and to study 

their morphology in vivo following an insult. Both the RNFL thickness (giving a readout of RGC axonal 

density) and the macular volume (giving an estimate of RGC survival) can be measured. In several 
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studies, following an episode of acute optic neuritis both parameters were found to be decreased 

and to correlate with impairment in the visual function (Trip et al., 2005; Costello et al., 2006) 

pointing to both axonal and neuronal loss in the retina. Interestingly there are reports of RNFL 

thinning in the eyes of MS patients that were asymptomatic for optic neuritis (Fisher et al., 2006; 

Pulicken et al., 2007; Henderson et al., 2008). In addition, a large-scale histopathological study of 

retinae obtained at autopsy from MS patients irrespective of prior optic neuritis showed loss of RGCs 

and other neurons in the inner nuclear layer accompanied by activation of microglial cells (Green et 

al., 2010). These observations of axonal and neuronal loss in the myelin-deficient retina (lacking both 

myelin and myelin producing cells) provide evidence for the potential of a myelin-independent 

neuronal pathology in MS. 

 

1.6 Experimental autoimmune encephalomyelitis 

With advances in imaging techniques, lesion dynamics in patients can be regularly monitored 

throughout the course of the disease. Although this provides valuable information regarding the 

status of the BBB integrity, degree of demyelination and overall tissue atrophy, it fails to provide 

information regarding the pathogenesis on a cellular and molecular level. Studies of pathological 

mechanisms in MS are mainly restricted to post-mortem autopsy tissue and relatively rare biopsy 

samples. Information obtained in such a manner provides only a pathological image, frozen in time, 

providing merely clues for mechanisms of its development. This hurdle can be overstepped by the 

use of appropriate animal models that can reproduce different aspects of the complex pathology of 

MS.  

Experimental autoimmune encephalomyelitis (EAE) is an animal model of CNS inflammation. It is 

characterized by the presence of inflammatory demyelinating lesions which closely resemble those 

found in MS, both in their localization and pathology (Storch et al., 1998; Kornek et al., 2000). 

Disease symptoms include sensory loss, optic neuritis, difficulties with coordination and balance 

(ataxia), muscle weakness and spasms. This model dates back to the early 20th century when it was 

discovered that rabbits injected with human spinal cord homogenate develop paralysis (Koritschoner 

and Schweinburg, 1925). Since then, this model has been further investigated and developed, 

becoming the major animal model in MS research.     

EAE can be induced in a variety of species including rodents and primates. The use of different 

species comes with different benefits. Use of primates (rhesus monkeys or macaques) brings the 

results closer to human studies, whereas rodent models are more practical and give more 
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experimental possibilities. Rodents have larger litters, shorter generations and are easier to house. 

Also, most of the available tools in molecular biology are designed to be used in rodents, particularly 

the manipulation of genetic material used to dissect molecular pathways involved in the disease 

course. 

EAE is induced by sensitization of the animal with a CNS-derived antigen. There are three different 

methods of induction: 

- Actively induced EAE is performed by immunization with an antigen emulsified in an 

adjuvant. The range of antigens used varies from CNS homogenates, purified myelin, and 

single myelin proteins/peptides (MBP, PLP, MOG, etc.) to neuronal antigens (neurofilaments, 

neurofascin 186, contactin-2, etc.). The use of different antigens in different species will 

produce distinct disease phenotypes (Krishnamoorthy and Wekerle, 2009). The most 

common adjuvant used is Freund’s adjuvant supplemented with heat-inactivated 

mycobacteria. In some strains of mice, additional injection of Bordetella pertussis-derived 

toxin is necessary for induction of EAE as it facilitates the break-down of the BBB (Linthicum 

et al., 1982) and is involved in expansion of autoreactive T cells (Hofstetter et al., 2002). 

Choosing the right antigen for EAE induction has proved to be a crucial step in EAE induction. 

For example, Brown Norway (BN) rats were thought to be an EAE-resistant strain after the 

failure to develop pathology upon immunization with guinea pig CNS homogenate and 

isolated myelin components excluding MOG. This was contributed to their specific genetic 

background since both Lewis rats and a cross-breed of Lewis and BN rats developed EAE 

upon immunization (Gasser et al., 1973). Later experiments showed that the, formerly 

labelled EAE-resistant, BN strain is highly susceptible to immunization with MOG (Stefferl et 

al., 1999), which produces an extensive antibody-mediated demyelinating pathology.  While 

MOG induces a strong humoral response in rats, the specific H-2b MHC haplotype in C57BL/6 

mice restricts this ability (Bourquin et al., 2003). These mice, boosted with a pertussis-toxin 

injection, develop a chronic EAE course with T cell mediated pathology (Mendel et al., 1995). 

 

- Adoptive transfer EAE (AT-EAE) is induced by the transfer of auto-reactive T cells. These cells 

are isolated from the lymph nodes of an EAE-primed animal, activated in vitro, and injected 

into a naïve donor. The origin of this model dates back to 1960 when Paterson managed to 

induce “allergic encephalomyelitis” with the injection of lymph node cells from previously 

sensitized rats into naïve rats (Paterson, 1960). Twenty years later, Ben-Nun and colleagues 

established a protocol for expansion of antigen specific T cells and successfully induced AT-

EAE with MBP-specific T cells (Ben-Nun et al., 1981).  This model is useful for studying the 
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role of T cells in the context of autoimmune diseases. In vitro manipulation of T cells provides 

many opportunities for studying cytokine production or tracking of pre-labelled T cells during 

the disease course in donor mice.  

 

- Spontaneous EAE in animals does not occur naturally, but has been reported in some 

transgenic mice strains (Goverman et al., 1993; Madsen et al., 1999; Krishnamoorthy et al., 

2006). For example, T cell receptor (TCR) transgenic mice (called relapsing-remitting mice) 

carry a TCR specific for MOG peptide 92–106. These mice are backcrossed to the SJL/J 

background, and most spontaneously develop RR EAE (Pöllinger et al., 2009). 

 

1.6.1 Translational potential of the EAE model 

The many similarities observed between the pathological mechanisms in MS and EAE have led to the 

development of several immunomodulatory therapies currently being used in the treatment of 

RRMS. As previously mentioned, Natalizumab, a monoclonal antibody against VLA-4, was selected as 

a potential candidate due to its ability to prevent the adhesion of lymphocytes and monocytes to 

inflamed vessels of isolated tissue slices. When applied in vivo, it blocked migration of activated 

leukocytes into the CNS, therefore preventing the development of EAE (Yednock et al., 1992). FTY720 

is the first oral immunomodulatory therapy available for the treatment of RRMS. The target of this 

drug is sphingosine-1-phosphate (S1P) receptor present on activated lymphocytes found in the 

secondary lymphoid organs. FTY720 is thought to downregulate the expression of this protein thus 

preventing the extrusion of lymphocytes from these organs into the bloodstream (Matloubian et al., 

2004). In vivo, FTY720 was effective in preventing the onset of MBP-induced EAE in Lewis rats (Fujino 

et al., 2003) and PLP-induced EAE in SJL mice (Webb et al., 2004). In 2010 it was approved by the 

Food and Drug Association (FDA) in the U.S. for the treatment of RRMS since it was shown to reduce 

the rate of relapses and delay the onset of the progressive phase (Kappos et al., 2010).  

Despite the success of these and other immunomodulatory therapies (such as glatiramer acetate and 

Laquinimod) there have been some trials that have failed the translation from EAE clinical 

application. TNF-α is a major proinflammatory cytokine implicated in the pathology of both MS 

(Hofman et al., 1989; Sharief et al., 1991) and EAE (Merrill et al., 1992). Although the modulation of 

TNF-α, both by antibody-mediated therapy (Selmaj et al., 1991) and genetic knock-down (Körner et 

al., 1997), positively affected the EAE course in mice, it failed to have such an effect in MS patients 

and in some cases it exacerbated the disease (Lenercept MS study group., 1999). It was later 

discovered that the mode of action of this cytokine depends upon the receptor it is bound to. While 
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TNFR1 exerts proinflammatory actions upon activation (Eugster et al., 1999), TNFR2 is found to have 

a role in neuroprotection and remyelination (Arnett et al., 2001). Although the trial proved to be a 

failure in its original concept, targeting of the TNF-α should not be discarded as potential strategy in 

MS treatment. It was recently shown that strategic targeting of TNFR1 can achieve neuroprotective 

effects in the mouse model of EAE (Williams et al., 2014).    

The failure of translation calls for greater caution when interpreting result from animal models. 

Although they share great similarities in terms of pathological mechanisms, and EAE has been proven 

to be a good model for developing human therapies, one has to keep in mind that EAE is not MS per 

se. While in the animal studies, EAE is induced by sensitization to a certain antigen in genetically 

identical animals kept under pathogen-free conditions, the aetiology of MS still remains unknown 

and involves a complex interplay between different genetic and environmental factors. 

 

1.6.2 Autoimmune optic neuritis in MOG-immunized BN rats 

As previously mentioned, optic neuritis is a syndrome commonly associated with MS. In experimental 

settings it can be modelled by induction of EAE with MOG. Immunization with this myelin protein, 

particularly enriched in the spinal cords and optic nerves of rodents, leads to “classical EAE 

pathology” characterized with inflammatory demyelination of the spinal cord but also to 

development of autoimmune optic neuritis (AON) in both mice (Williams et al., 2011) and rats 

(Storch et al., 1998). 

BN rats, immunized with MOG, develop AON with great incidence (Meyer et al., 2001; Fairless et al., 

2012). The onset of optic neuritis correlates with the onset of clinical disability which reflects the 

inflammatory demyelination of the spinal cord. The pathology of AON is characterized by 

inflammatory demyelination of the optic nerves (Meyer et al., 2001), accompanied by retinal atrophy 

(Hein et al., 2012) and a  loss of RGCs (Meyer et al., 2001). A decrease in visual function, assessed by 

measurement of both visual evoked potentials and electroretinography, correlates with the disease 

pathology (Meyer et al., 2001).  

While studying the mechanisms of RGC degeneration, Hobom and colleagues discovered that the 

reduction of RGCs precedes the clinical phase of AON (Hobom et al., 2004). At this time point there 

was no evidence of inflammatory demyelination or axonal loss in the optic nerves. The decrease of 

RGC numbers is accompanied by an up-regulation of the signaling molecules Bax and Caspase-9, 

pointing to the process of apoptosis. This finding suggested that the processes involved in RGC 

apoptosis appear to be independent of the optic nerve pathology since it precedes BBB breakdown 
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(Boretius et al., 2008) and subsequent inflammatory demyelination. This phenomenon reflects the 

observation in MS patients where the primary retinal pathology could be observed independent from 

optic neuritis (Fisher et al., 2006; Saidha et al., 2011). 

 Subsequent work on this model was focused on the induction phase of the disease in order to 

discover the molecular mechanisms underlying the early loss of RGCs (Fairless et al., 2012). The 

disruption of the blood-retinal barrier and activation of residential retinal microglia were found to be 

early events in the induction phase, correlating with the timing of neuronal loss. In accordance with 

previous reports, no evidence of major optic nerve pathology, such as demyelination and axonal loss, 

could be detected at this time point. Interestingly, careful examination of the ultrastructure of axons 

revealed the presence of shrunken axons and vacuolization of the periaxonal space within 

completely preserved myelin sheets. Though it was noted that there was no infiltration of 

inflammatory cells in the optic nerve parenchyma at this time point, increased numbers of activated 

residential microglia were observed. These cells had a specific spatial distribution – the majority of 

ED1+ cells were present in the most proximal part, the optic nerve head (ONH), and were decreasing 

with distance along the optic nerve. It was also noticed that the BBB was permeable in the region of 

the ONH even in naïve animals, suggesting that soluble factors from the periphery could be 

responsible for the activation of microglial cells in this vicinity and for induction of the subtle axonal 

changes observed.  

In light of these discoveries further work is needed in order to discover the origins of both RGC 

degeneration and subtle axonal changes during the induction phase of AON as well as the role of 

residential microglial cells and the blood-brain/retinal barrier in this early pathology. This model of 

AON is highly relevant in the research of MS-related optic nerve and retina degeneration as it 

recapitulates many pathological aspects observed in patients. The potential of the AON model for 

developing treatments in the human disease was already shown. A phase III clinical trial for the use 

of erythropoietin in the treatment of acute optic neuritis (TONE; NCT01962571) was based on a 

study where erythropoietin was shown to improve the survival and the function of RGCs in the AON 

(Sättler et al., 2004; Diem et al., 2005).  

 

1.7 Mechanisms of axonal degeneration in MS 

Neurodegeneration is recognized as the pathological correlate of neurological disability in MS 

patients (Bjatmar et al., 2000). Extensive loss of both axons and neurons is observed in all sub-types 

of MS and is showed to correlate with the degree of inflammation. The extent of axonal loss in the 
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disease course of MS varies and is found to be as high as 70% in white matter lesions at autopsy 

(Mews et al. 1998; Ganter et al., 1999; Lovas et al., 2000).  Historically, neurodegeneration in MS was 

thought to be a secondary event associated with the progressive disease course. This concept has 

been changed as it is now recognized that widespread axonal loss and brain atrophy is present from 

the beginning of the disease. Atrophy of the cortex and the spinal cord, as well as the presence of 

neurofilaments in the CSF, are indicative of neurodegeneration and can be detected already in 

patients with CIS (Chard et al., 2002; Kuhle et al., 2011). Also, signs of acute axonal damage are 

associated with active demyelinating lesions occurring early in the disease course (Kuhlmann et al., 

2002). It should be noted that the presence of diffuse axonal injury is also evident in areas of NAWM 

distant to inflammatory lesions (Bjartmar et al., 2001; Kutzeinigg et al., 2005; Howell et al., 2010; 

Singh et al., 2013). These areas, though lacking peripheral inflammatory infiltrates, contain increased 

numbers of diffusely distributed activated microglia.  

Within active demyelination lesions, in addition to a loss of myelin, many axons appear dysmorphic 

and swollen. In addition, many axons appear transected with up to 11,000 transected axons per mm3 

being observed (Trapp et al., 1998). Accumulation of APP in areas of axonal swellings is indicative of 

disrupted axonal transport (Ferguson et al., 1997; Kornek et al., 2000). Another sign of axonal stress 

is a change in the organization of its cytoskeleton. In healthy, myelinated axons, neurofilament side 

arms are heavily phosphorylated resulting in an increase in the axonal diameter (Sanchez et al., 

1996). Within demyelinating lesions, a dramatic increase in the presence of non-phosphorylated 

neurofilaments is detected. This phenomenon is particularly observed in the ovoids at the transected 

ends of axons (Trapp et al., 1998).  

 

1.7.1 Inflammatory mediators of axonal damage 

Both activated microglia and macrophages are considered to be the main effector cells in the 

pathology of MS. As previously mentioned, their presence is detected in all lesion types and it 

correlates with tissue damage, both in the setting of inflammatory demyelination and in the absence 

of peripheral immune infiltrates (as observed with microglial activation in preactive lesions and 

NAWM). 

The proposed role of activated microglia/macrophages in axonal injury could be drawn from the 

observation from active MS lesions, where these cells could be found in contact with the ovoids of 

transected axons within the lesion (Trapp et al., 1998). Also, in addition to myelin, axonal 

components could be found within phagocytic microglia/macrophages (Huizinga et al., 2011). 

Although this can implicate the direct destruction of axons by these cells it also could reflect the 
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phagocytosis of axonal debris produced by other destructive means. Inflammatory cells, including 

activated microglia/macrophages, are able to secret a plethora of potentially disruptive substances 

that could be detrimental to axons. These include various cytokines, free radicals and proteolytic 

enzymes (Hohlfeld, 1997; Dutta and Trapp 2011).  

One enzyme with an ability to produce disruptive agents is the inducible nitric oxide synthase (iNOS) 

which is expressed by activated microglia/macrophages within MS lesions (Bö et al., 1994; Liu et al., 

2001). iNOS catalyzes the production of nitric oxide (NO) by conversion of L-arginine to citrulline. NO, 

a gas which has many biological roles, and to a larger extent, its derivate peroxynitrite, are known to 

produce a variety of disruptive effects including the oxidation and nitration of proteins, peroxidation 

of lipids, inactivation of enzymes, DNA damage and activation of matrix metalloproteases. One of the 

most deleterious effects of these radicals is their ability to interfere with mitochondrial respiration 

leading to a decreased production of adenosine triphosphate (ATP) and a resulting energy deficit 

(Pacher et al., 2007). This decrease in ATP levels can lead to an impairment in the function of Na+/K+ 

ATPase, a key molecule in keeping the ionic homeostasis of axons. It has also been described that NO 

can cause a reversible conduction block in axons from the isolated spinal cord of rats. This 

phenomenon was even more pronounced on axons with chemically induced demyelination (Redford 

et al., 1997) mimicking the axonal status within the inflammatory lesion. Although the effect of the 

blockade was transient, a subsequent study showed that the application of NO to electrically active 

healthy axons of the rat spinal cord in vivo, can cause an axonal/myelin pathology (Smith et al., 

2001).  

A more detailed study of the role of reactive oxygen and nitrogen species (ROS/RNS) in axonal injury 

was performed using in vivo two-photon imaging of the mouse spinal cord (Nikić et al., 2011). It was 

shown that the application of reactive species can induce dysmorphic changes in axons, comparable 

to ones observed in the lesions of EAE mice and in acute MS lesions. This could be rescued by the 

application of ROS/RNS scavengers. The role of ROS/RNS in the pathology of MS has been extensively 

studied in autopsy tissue of active lesions (Haider et al., 2011). Within these lesions, many 

oligodendrocytes were observed with oxidized DNA in their nuclei and traces of lipid peroxidation in 

their cytoplasm. In addition, oxidized phospholipids were found in both swollen axons with disturbed 

transport and in neurons with fragmented dendritic processes.      

Another substance with proposed damaging effects in MS pathology is glutamate. Inflammatory 

cells, and also neurons and astrocytes under pathological conditions, could be the source of the 

excessive levels of glutamate detected in acute MS lesions (Matute et al., 2001; Ye et al., 2003; 

Srinivasan et al., 2005). Excessive release of glutamate can over-activate metabotropic and 

ionotropic glutamatergic receptors leading to an increase in intracellular Ca2+ levels and subsequent 
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cell death (Dong et al., 2009). This can affect both neurons and oligodendrocytes within the lesion 

through the activation of different glutamate receptors. This concept has been investigated in the 

EAE model by application of compounds which block different glutamate receptors. Selective 

blockade of AMPA receptors led to increased survival of oligodendrocytes both in the setting of 

inflammatory demyelination (Pitt et al., 2000) and under hypoxic condition (Tekkök and Goldberg, 

2001). In both models, the observed preservation of axonal structure and function could be 

attributed to the primary oligodendroglial protection. The role of NMDA receptors in 

oligodendrocyte pathology remains unclear. The expression of NMDA receptors is observed in 

myelinating processes of oligodendrocytes and they are suggested to be activated under ischemic 

conditions in the white matter (Karadottir et al., 2005; Micu et al., 2006). On the other hand, a recent 

study showed that the targeted genetic deletion of NMDA receptors in oligodendrocytes allowed the 

normal formation of myelin sheets in mice and did not interfere with the pathology of the MOG-

induced EAE in these animals (Guo et al., 2012). Systemic blockade of NMDA receptors has shown to 

have protective effects in different EAE models. In these studies, protective effects of the blockers 

were attributed to different mechanisms. In one study, the protection is attributed to the 

preservation of the integrity of the BBB, resulting in reduced inflammation and tissue damage (Paul 

and Bolton, 2002). The other study reported the protection in a manner independent of the 

inflammation process, suggesting that NMDA blockade had a direct neuroprotective effect 

(Wallström et al., 1996). Similar observations have been reported in the model of AON (Sühs et al., 

2014). The systemic application of NMDA blockers led to an improvement of the EAE disease course 

through the reduction of inflammation and, presumably as a result of this, demyelination and axonal 

damage. Interestingly, the blockade also decreased RGC death during the pre-inflammatory, 

induction phase of the disease, further suggesting a direct neuroprotective effect of the NMDA 

blockade. These studies underline an important role for glutamate in the pathology of the CNS 

(including MS) and suggest that careful, strategic targeting of over-activation of its receptors could 

have beneficial outcomes. 

 

1.7.2 Pathological mechanisms in demyelinated axons     

Although acute lesions are characterized by marked signs of axonal injury and transections, the 

majority of axons appear to survive the initial inflammatory attack. Instead, axonal loss and brain 

atrophy becomes more pronounced in the later, chronic progressive stages of the disease. Within 

chronic lesions lacking on-going inflammation, up to 70% reduction in axonal counts could be 

observed. The mechanism of degeneration of these chronically demyelinated axons still remains 

speculative. This is in part owed to an inability to produce an animal model that reflects the chronic 
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nature of demyelinating MS lesions (Trapp and Nave, 2008).  Nevertheless there are compelling 

arguments that a loss of trophic support from the oligodendrocytes and a chronic state of hypoxia 

and energy deprivation in chronically demyelinated axons are the driving forces of 

neurodegeneration. The evidence for the former hypothesis comes from animal studies with 

genetically modified mice lacking minor myelin components such as MAG and CNP. Although the 

myelination status of axons in these mice is not compromised, they still develop a late-onset, slow-

progressing axonal pathology (Li et al., 1994; Yin et al., 1998; Lappe-Siefke et al., 2003). These 

findings suggest that the trophic support of oligodendrocytes is necessary for long-term axonal 

viability. This phenomenon might play a role in the pathology of pattern III and IV lesions which 

contain extensive oligodendrocyte apoptosis (Lucchinetti et al., 2000). 

The latter hypothesis is based on the assumption that chronically demyelinated axons that survive an 

initial inflammatory attack are left in a persistent hypoxia-like state which eventually leads to their 

degeneration (Stys, 2004; Trapp and Stys, 2009). The underlying mechanisms behind this 

phenomenon include disruptions in ionic homeostasis and their energy status, and subsequent 

activation of proteolytic enzymes (Figure 1.4).  

 

 

 

 

In healthy axons, voltage-gated sodium channels (NaV) are clustered at unmyelinated axonal 

segments (the nodes of Ranvier) and are responsible for the inward current of the AP. Following the 

Figure 1.4 Proposed molecular mechanisms leading to axonal degeneration in MS. Contribution of 
different ion channels and pumps to Ca2+ overload and subsequent initiation of events that could lead to 
degeneration of chronically demyelinated axons.   
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successful propagation of an AP, the membrane resting potential is restored through the action of 

different channels and pumps in the axon. One of the most important pumps in this process is the 

enzyme Na+/ K+ ATPase which mediates the exchange of intra-axonal Na+ for extra-axonal K+. 

Considering that this process goes against the concentration gradients for both ions, the pump 

heavily relies on the energy provided by ATP. 

Following demyelination, NaV become dispersed along the denuded axons (Craner et al., 2004; Black 

et al., 2007a). As a consequence, the attempt to restore proper saltatory conduction is characterized 

by a greater influx of Na+ into the axolema, which would, in turn, increase the energy demand for the 

proper clearance of Na+ by Na+/ K+ ATPase. It is considered that this increased demand in ATP would 

be hard to meet even in healthy axons where the function of the mitochondria is not compromised. 

In injured axons within the MS lesion, this process is further compromised by the impaired ability of 

the mitochondria to produce ATP. A gene expression study of MS tissue revealed a decreased 

expression of genes involved in oxidative phosphorylation and a reduction in the activity of the 

respiratory chain complexes I and III (Dutta et al., 2006).   

As a result of this inability to effectively pump Na+ back out across the plasma membrane, axons are 

found in a prolonged state of depolarization which, though the activation voltage-gated calcium 

channels (CaV), leads to an influx of Ca2+. CaVs are synthesized in the neuronal cell body and 

transported along the axons to their terminals where they exert their physiological role in synaptic 

transmission (Alberts et al., 1989). Upon axonal injury in MS lesions, axonal transport is compromised 

and these channels are shown to accumulate in axonal swellings and to be incorporated into the 

plasma membrane (Kornek et al., 2001). Increased Na+ levels in the axoplasm can also contribute to 

accumulation of Ca2+ through the reverse action of Na+/Ca2+ exchanger (NCX). The physiological role 

of this pump, located in the axonal membrane of the nodal region, is to maintain low levels of 

intracellular Ca2+ through utilizing the high Na+ gradient across the axonal membrane. However, if 

Na+ levels in the axoplasm reach a concentration of approximately 20 mM, the pump will operate in a 

reverse, Ca2+ import mode (Stys et al., 1997) which would further lead to the accumulation of Ca2+ 

within the axoplasm. Upon demyelination, the expression of NCX shows a diffuse pattern, similar to 

that observed for NaV (Craner et al., 2004).  

It was recently suggested that non-selective cation channels contribute to ionic disturbances in 

injured axons within MS lesions. One member of the transient receptor potential (TRP) ion channel 

family, the melastatin-like TRP 4 (TRPM4) channel, is a non-selective channel which gates exclusively 

monovalent cations and is activated by increases in intracellular Ca2+ and low levels of ATP 

(Guinamard et al., 2010). Following demyelination in MS, a redistribution of TRPM4 from the 

neuronal cell body to its axons was observed. The importance of this channel in axonal pathology 
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was confirmed by both its physiological and genetic inactivation, leading to reduced neuronal and 

axonal loss and an overall improvement of the EAE disease course (Schattling et al., 2012). Another 

non-selective cation channel implicated in axonal pathology belongs to the family of the acid-sensing 

ion channels (ASICs). ASIC1 is a Na+-permeable channel which under acidic conditions, such as ones 

found within MS lesions, becomes permeable to Ca2+ (Yermolaieva et al., 2004). The expression of 

ASIC1 is observed predominately in injured axons in MS and its pharmacological inhibition leads to a 

reduction in neuronal and axonal degeneration in EAE (Vergo et al., 2011). 

Collectively, these events can result in the abnormal accumulation of Ca2+ in the axoplasm of a 

denuded axon which will in turn activate a series of events leading to axonal degeneration. Increased 

Ca2+ levels can result in the  production of reactive species by activation of the neuronal nitric oxide 

synthase (nNOS) which can lead to further release of Ca2+ from internal stores and also mitochondrial 

damage further contributing to energy failure (Kapoor et al., 2003; Stys, 2004). In addition, the 

activation of the calcium-activated protease (Calpain) can mediate the disruption of the cytoskeleton 

by targeting microtubules, spectrin and neurofilaments (O’Brien et al., 1997; Liu et al., 2008). Calpain 

activity was observed in both lesions and NAWM of MS brains (Shields et al., 1999). In the model of 

AON in BN rats, the activity of this protease correlated with increased Ca2+ levels in the retina and the 

optic nerve (Hoffmann et al., 2013). In the retina, increased Ca2+ levels and calpain activity correlated 

in particular with the onset of RGC death, implying their importance in the process of 

neurodegeneration. This was further supported by the pharmacological inhibition of this protease, 

which led to a decrease in the extent of the pathology in both compartments. 

Given the unmet need for neuroprotective therapies for the treatment of neurodegeneration in MS, 

the above described mechanisms provide interesting opportunities for intervention. The blockade of 

NaV could, at least in part, decrease the amount of Ca2+ accumulation and have a favourable outcome 

on axonal viability. This concept was considered as an interesting strategy for axonal protection 

taking into consideration the availability of different NaV blockers in the treatment of cardiac 

arrhythmia and epilepsy. Systemic treatment with different blockers initially reduced axonal loss and 

neurological disability in EAE (Lo et al., 2003; Bechtold et al., 2004; Bechtold et al., 2006). However, 

follow-up studies with phenytoin and carbamazepine, demonstrated that upon withdrawal of 

therapy, mice developed an exacerbated disease course and increased inflammation (Black et al., 

2007b). The reason for this is probably due to the role of NaV in the activation of inflammatory cells, 

mainly microglia/macrophages (Craner et al., 2005). Lamotrigine, one of the NaV blockers that 

showed promising results in animal studies (Bechtold et al., 2006), was tested in clinical trials for the 

treatment of SPMS. Unfortunately the therapy did not manage to decrease the extent of brain 

atrophy in patients, which was the primary outcome measurement of the trail (Kapoor et al., 2010).  
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Studies targeting different components of this degenerative cycle have led to important discoveries 

of mechanisms that lead to axonal loss in the inflammatory demyelinating setting of both animal 

models and MS. The chronic nature of the human disease and the overall systemic roles that 

potential targets have imply that great caution is required when attempting to translate results from 

the animal model to the clinic. Potential therapies have to be designed to be highly specific in 

preventing the deleterious effects while preserving the normal physiological functions of these 

molecules. 

 

1.7.3 Disruption of axonal domains 

To ensure proper rapid, saltatory conduction, myelinated axons are divided into distinct domains. 

Each domain has a specialized molecular architecture to support their functional properties (Figure 

1.5). Sodium channels are clustered in the nodal domain (nodes of Ranvier) and are responsible for 

the inward current flow necessary for AP generation while potassium channels, mainly clustered in 

the juxtaparanodal domain, are responsible for the ending of the AP of axons. These two domains 

are separated by a paranodal domain which serves as an anchoring point for the myelin loops of the 

oligodendrocyte. Besides its role in the anchoring of the myelinating sheet, the paranodal domain is 

responsible for limiting the lateral diffusion of membrane components, such as sodium and 

potassium channels. The fourth, internodal domain is not believed to have specialized protein 

components. 

Nodal domains, as well as the axon initial segment (AIS), lack myelin sheets. They are sites for 

generation (AIS) and regeneration (nodes of Raniver) of APs which are propagated along the axon via 

saltatory conduction. These domains are enriched in NaV, which are heteromeric complexes 

consisting of one pore-forming α subunit and two transmembrane ß subunits (Catterall, 2000). There 

are ten types of NaV based on the different α subunits that they express (NaV 1.x; Goldin, 2001), 

which have similar functions but differ in their activation kinetics (Yu and Cattarall, 2003). The α 

subunit undergoes a developmental transition, with NaV 1.2 being present in newly forming nodes 

but later replaced by NaV 1.6 in mature nodes (Boiko et al., 2001). Another major component of the 

nodal region is the cytoskeletal protein Ankyrin G, which is essential for the assembly of the node. It 

binds directly to the α subunit of NaV (Bouzidi et al., 2002) and also with high affinity to ßIV-spectrin, 

a cytoskeletal protein found at both nodes and the initial segment of axons (Berghs et al., 2000; 

Komada and Soriano, 2002). ßIV-spectrin provides a link between the channel complex and the actin 

cytoskeleton (Bennett and Gilligan, 1993).  
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Neurofascin 186 kD (Nfasc 186) is a member of the L1 subfamily of IgCAMs along with NrCAM. They 

are both expressed on nodes and the initial segment of axons where they associate with Ankyrin G 

(Lambert et al., 1997; Figure 1.5Ciii). Interplay between these three molecules is highly important for 

correct clustering of NaV at the nodal region. The critical role that Nfasc186 plays in correct formation 

of the node has been demonstrated by Nfasc186 knock-out animals which were lacking in the proper 

nodal composition of their axons (Sherman et al., 2005).  

AIS has a similar molecular composition as the nodal region. The main difference is the presence of 

both NaV 1.2 and NaV 1.6 subtypes in mature initial segments, whereas on adult nodes NaV is the 

dominant subtype (Boiko et al., 2003).  

The main feature of the paranodal domain is a cis complex of two adhesion molecules Contactin-1 

and Caspr (Figure 1.5Fiii). Caspr is a transmembrane, glycoprotein member of the neurexin 

superfamily (Bellen et al., 1998). Its cytoplasmic domain binds to a cytoskeletal 4.1B protein. It also 

has an SH3 binding domain which implies the possible role for Caspr in neuronal signalling pathways 

(Menegoz et al., 1997; Peles et al., 1997). Mice deficient in Caspr exhibit tremor, ataxia and 

significant motor paresis, with a failure to form normal paranodes and a disrupted organization of 

paranodal loops. In these animals Contactin is undetectable in paranodal regions and potassium 

channels are displaced from juxtaparanode to paranode (Bhat et al., 2001). The Contactin-1/Caspr 

complex plays a major role in anchoring oligodendrocyte myelin loops to the axon. This is achieved 

through its interaction with Neurofascin 155kD, a phosphorylated, glial isoform of Neurofascin 

(Charles et al., 2002; Tait et al., 2000; Figure 1.5Eiii).  

The juxtaparanodal domain lies underneath compact myelin sheets located between the internodal 

and paranodal regions. The main feature of this domain is the presence of two delayed rectifier 

potassium channels (KV) KV 1.1 and KV 1.2, their associated ß subunits and a complex of the cell 

adhesion molecules Caspr2 and TAG-1 (Rhodes et al., 1997).  Caspr2 is associated with KV through 

unidentified PDZ domain proteins. These PDZ binding domains are the major structural difference 

between Caspr and Caspr2 (Poliak et al., 1999). Caspr2 also contains a domain for binding 4.1B 

protein (Poliak et al., 2001). Caspr2 also binds to TAG-1, a GPI-anchored protein that is expressed 

both on neurons and myelinated glia (Poliak et al., 2003; Traka et al., 2003). Although this protein has 

a similar sequence to contactin-1 (Furley et al., 1990), this cis Caspr2/TAG-1 interaction is not as tight 

as Caspr/Contactin-1 at the paranode (Poliak et al., 2003). 
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It has been suggested that early clinical symptoms of MS patients could be attributed to a reduction 

in the conduction velocity caused by inflammation and a disruption in the organisation of axonal 

domains (Compston and Coles, 2002). Several studies have examined the expression patterns of 

different components of axonal domains in chronic progressive MS. Within lesions, nodal domains 

were mainly observed with elongated profiles of NaV along denuded axons (Coman et al., 2006). Co-

localization was observed with their membrane clustering partner, Nfasc 186. The disruption of the 

nodal domain was found to correlate with axonal injury since elongated Nfasc 186 profiles were 

present on axons positive for SMI32, a marker for non-phosphorylated neurofilaments (Howell et al., 

2006). Paranodal domains were mainly absent within the chronic lesion as reflected by the lack of 

immunoreactivity for both axonal Caspr (Wolswijk and Balesar, 2003) and oligodendroglial Nfasc 155 

(Howell et al., 2006). In the absence of parnodal domains, KV, normally present in the 

juxtaparanodes, were found adjacent to Nfasc 186 (Howell et al., 2006). The observed absence of the 

paranodal region in the centre of chronic lesions reflects the demyelinated status of these axons. 

While the loss of Nfasc 155 is a direct effect of myelin loss, the downregulation of the axonal Caspr 

Figure 1.5 Polarized domains of myelinated axons in the CNS. (A) Ultrastructure of a healthy optic 
nerve axon from the BN rat. (B) Schematic representation of different molecules involved in the 
organization of axonal domains. Image adapted from Trapp and Kidd, 2000. (Ci-Fiii) 
Immunofluorescent staining with antibodies against different components of axonal domains in 
the healthy optic nerve of the BN rat. Scale bars 5 µm. 
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could be a secondary event due to the loss of its oligodendroglial interaction partner. In contrast, 

paranodal regions were still present in both active lesions and at the border of chronic lesions. In 

these areas, paranodes had a disrupted profile characterised by wider and elongated patterns of 

Nfasc 155 (Howell et al., 2006) and Caspr (Wolswijk and Balesar, 2003; Coman et al., 2006) staining 

associated with SMI32 positive axons. KV also had an elongated profile which often diffused into the 

paranodal domain as observed by its overlap with Nfasc 155. The observed disruption of paranodal 

and juxtaparanodal domains did not, however, appear to result in a widening of the nodal gap or the 

distribution of NaV (Howell et al., 2006). 

These studies highlight that paranodal disruption could be an early event in the disorganization of 

axonal domains under inflammatory conditions. In active lesions and at the borders of chronic lesions 

where inflammation still persists, disruption of paranodal domains can be detected on injured axons 

that still appeared myelinated. Following demyelination, paranodal regions are lost and nodal and 

juxtaparanodal components diffuse along denuded axons. This concept was further strengthened by 

a later study of NAWM MS tissue (Howell et al., 2010). Upon careful examination it was shown that 

SMI32 positive axons in these areas contained elongated Nfasc 155/Caspr positive paranodes in the 

absence of inflammatory demyelination. These areas lacked peripheral inflammatory infiltrates and 

were characterised by the diffuse presence of residential HLA-DR/iNOS positive microglia. The extent 

of paranodal disruption and axonal injury correlated with the density of activated microglia.  

The response of humoral immunity has been considered to play a significant role in the pathogenesis 

of MS as indicated by the presence of IgG/complement deposition in a subset of active lesions 

(Lucchinetti et al., 2000). The major pathological role of these autoantibodies is attributed to their 

ability to induce demyelination, reflecting their specific reactivity against myelin proteins such as 

MOG (O’Connor et al., 2005) and MBP (Warren et al., 1993). It was recently suggested that the action 

of humoral immunity could be also aimed against axonal components. Two proteomic-based studies 

identified adaptive immune responses against components of axonal domains in a subset of patients 

with progressive MS. In one study, pan-specific anti-Neurofascin antibodies were detected in the 

serum of 20% of the patients examined (Mathey et al., 2007). These antibodies showed an ability to 

bind the extracellular domains of both Nfasc 155 and 186 in vitro. Their pathological capacity was 

tested through the adoptive transfer EAE model with co-injection of the isolated antibodies. Animals 

that received pan-Neurofascin antibody had an exacerbated disease accompanied by a greater 

degree of axonal injury when compared to EAE animals that received only control IgG. Interestingly, 

although in vitro these antibodies bound to both isoforms, upon their transfer into the animal model, 

they bound exclusively to the nodal region, showing an overlapping pattern with NaV. 
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 In the second study, the juxtaparanodal Contactin-2/TAG-1 complex was identified as an 

autoantigen for both antibody and T cell responses in MS patients (Derfuss et al., 2009). They 

showed both an increased proliferation of Contactin-2 specific T cells in patients compared to 

controls and elevated Contactin-2-specific antibodies in the MS CSF. Adoptive transfer of Contactin-2 

specific T cells was sufficient to induce the EAE-like pathology in rats, although the severity of the 

disease course and the extent of the spinal cord pathology was less when compared to MOG-specific 

T cell adoptive transfer. Interestingly, the extent of cortical pathology was much greater in the 

Contactin-2-specific T cell transfer suggesting a possible role in the grey matter pathology observed 

in MS patients.  

Both studies provide evidence of an adaptive immune response towards axonal antigens. However, 

although the transfer of such autoreactive T cells/antibodies into the animal model can affect the 

pathology of EAE, their involvement in MS pathology is still to be determined. These findings also 

suggest that the disruption of axonal domains can be a directed process in addition to being a result 

of proinflammatory attack by both residential and peripheral immune cells. 

 

1.8 Summary 

MS is a complex disease which involves interplay between different genetic and environmental 

factors. The pathology of the disease is characterised by atrophy of the CNS as a result of an aberrant 

immune response towards the self-antigen. The inflammatory response involves the breakdown of 

the BBB and infiltration of autoreactive immune cells and antibodies from the periphery, but also the 

activation of residential immune cells. This leads to the generation of demyelinating lesions 

accompanied by destruction of neurons and glial cells. However, neurodegeneration is recognized as 

an early component of the disease pathology, where it might even precede classical inflammatory 

demyelination (as has been described for grey matter lesions and retinal degeneration which are 

unmyelinated regions). The importance of neurodegeneration has been emphasised by its strong 

correlation with the extent of neurological disability in patients.  

The success of current MS therapies in the reduction of inflammation-driven relapses is marred by 

their inability to produce beneficial outcomes in the progressive stages of the disease which are 

characterised by extensive neurodegeneration. So far there is an unmet need for neuroprotective 

strategies in the treatment of MS which would improve the currently irreversible neurological decline 

in patients. There is a great effort in the scientific community in understanding the cause and 

mechanisms of neurodegeneration in MS. This is achieved by examination of sparse biopsy and 
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autopsy material but also through utilizing different animal models which are able to reproduce 

many pathological aspects of the disease. 
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2 Aim of the study 

The visual system provides great advantages for studying neurodegenerative processes in general. 

Compartmentalization of the retinal ganglion cell bodies in the retina and their axons in the optic 

nerves allows for dissecting the contribution of the individual compartments in neurodegeneration. A 

variety of functional tests and imaging techniques can be used to monitor the effect of potential 

therapies on the outcome of the disease. The model of AON in BN rats has been shown to be an 

interesting approach for studying neurodegenerative processes in MS. The activation of the adaptive, 

innate and humoral immune system in this model is representative of the pathological heterogeneity 

observed in the MS lesions (Fairless et al., 2012). The dynamics of the pathological events in both the 

optic nerve and the retina is similar to those observed in acute optic neuritis in patients, a common 

early manifestation of MS. Previous work on this model mainly focused on the retinal compartment 

and the mechanisms of early degeneration of the RGCs observed during the course of AON (Hobom 

et al., 2004; Fairless et al., 2012). At this time point, although the optic nerve compartment appears 

macroscopically normal, subtle changes could be detected. This is observed both functionally, 

through a decrease in visual acuity (Hobom et al., 2004), and morphologically by ultrastructural 

axonal changes and activation of residential microglial cells (Fairless et al., 2012).  

The aim of this study is to closer investigate the changes in the axonal and myelin compartments of 

the optic nerve during the course of AON, focusing on the induction phase of disease. Combining 

functional testing (by measurement of VEPs) and immunohistochemical analysis would allow us to 

gain more insight into pathological correlates of visual impairments in optic neuritis which could lead 

to determining possible targets for therapeutic intervention. Structural correlates of impaired visual 

functions in this and other animal models of optic neuritis have not been addressed so far in detail, 

but they are likely to involve disruptions in axonal domains involved in AP propagation. Taking this 

into consideration, particular focus of this thesis will be placed on the axonal domains during the 

course of the disease. Disruption of axonal domains is considered to be an early event in MS lesion 

development (Coman et al., 2006; Howell et al., 2006; Howell et al., 2010) and further understanding 

of the origin of these disruptions could help to unravel the mechanisms of axonal pathology in MS.    
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3 Methods 

3.1 Animals 

Female Brown Norway rats 8–10 weeks of age and a weight of 140-160 g were used in all EAE 

experiments. Sprague Dawley (SD) rat pups at postnatal day two (P2) were used for the purpose of 

extracting and culturing primary glial cells. Both strains were obtained from Charles River (Sulzfeld, 

Germany) and kept under environmentally-controlled conditions in the absence of pathogens with 

free access to food and water. All experiments that involved animal use were performed in 

compliance with the relevant laws and institutional guidelines of Baden Württemburg. 

 

3.2 Induction of MOG-EAE and animal scoring 

BN rats were immunised with whole recombinant rat MOG (a kind gift of Prof Christine Stadelmann, 

Dept of Neuropathology, University of Göttingen; Fairless et al., 2012). The emulsion was mixed in a 

1:1 ratio containing 100 µg of MOG in phosphate-buffered saline (PBS, Sigma-Aldrich, St. Louis,  

Missouri, USA) and complete Freund’s adjuvant (Sigma-Aldrich) containing 200 µg of heat-inactivated 

Mycobacterium tuberculosis H37RA (Difco Microbiology, Kansas, USA). Rats were anesthetized with 

5% isoflurane inhalation and injected intradermally at the tail with 200 µl of emulsion. Additional 

sham-immunised rats were injected as a control with emulsion containing only PBS in complete 

Freund’s adjuvant (containing Mycobacterium tuberculosis). Rats were observed daily for clinical 

signs of EAE. The grading system used to score neurological symptoms is presented in Table 3.1. 

Animals were kept until the desired time point in the pre-clinical or clinical stage of the disease 

course. Animals that developed signs of severe ataxia or reached a score of 3.5 or greater were 

sacrificed. 
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score clinical symptoms 

0.5 distal tail paresis 

1 complete tail paralysis 

1.5 complete tail paresis and mild hind leg 
paresis 

2 unilateral severe hind leg paresis 

2.5 bilateral severe hind limb paresis 

3 complete bilateral hind limb paralysis 

3.5 complete bilateral hind limb paralysis and 
paresis of one front limb 

4 
complete paralysis (tetraplegia), moribund 

state, or death 

 

Table 3.1. Grading of neurological symptoms in BN MOG-EAE. 

 

3.3 Isolation and culturing of primary oligodendrocytes 

P2 SD pups were decapitated and optic nerves were quickly dissected under a microscope. Each 

nerve was cut into small pieces (≈1 mm in length) and kept in RMPI 1640 medium (Invitrogen, 

Carlsbad, California, USA) on ice until the process of dissection was finished. Following dissection, 

nerves were incubated in 2 ml of RPMI medium containing 5 % trypsin (25 mg/ml from bovine 

pancreas; Sigma-Aldrich) and 500 U of DNase I (Roche, Mannheim, Germany) for 10 minutes at 37° C. 

Trypsin activity was stopped by addition of 10% foetal calf serum (FCS; Gibco, Carlsbad, California, 

USA) and the suspension was centrifuged for 5 minutes at 1.1 rcf. Supernatant was discarded and the 

pellet containing cells was re-suspended in 500 µl of the proliferation medium. Cells were seeded in 

flasks pre-coated with poly-L-lysine (PLL; Sigma,USA). Half of the medium was exchanged twice a 

week.  After two weeks in culture many cells with a morphology resembling oligodendrocyte 

precursor cells (OPCs) could be observed. At that point, medium was taken out and cells were 

detached by incubation in 1% trypsin in PBS for 10 mins at 37° C. The suspension was collected and 

trypsin activity was stopped by addition of 10% FCS in RMPI 1640 medium. Cell number was 
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determined by counting cells in a haemocytometer. Following centrifugation for 5 minutes at 1.1 rcf, 

supernatant was discarded and the pellet containing cells was re-suspended in the proliferation 

medium. Cells were seeded on PLL-coated glass coverslips (ø 13 mm; VWR, Radnor, Pennsylvania, 

USA) in a 24 well plate with a density of 15-20,000 cells/coverslip. Cells were stimulated to 

differentiate into mature oligodendrocytes by switching to the differentiation medium.  

Basic medium consisted of RPMI 1640 medium supplemented with 1% Sato’s medium, 1% insulin 

(form bovine pancreas, 0.5 mg/ml; Sigma), 1% Na-pyruvate (100 mM; Sigma), 2% L-glutamine (2 mM; 

Sigma) and 1% Pen-Strep (10,000 U/mL; Gibco). 

Proliferation medium consisted of basic medium supplemented with 0.1% platelet-derived growth 

factor (PDGF, rat recombinant, 10 ng/ml; R&D systems, Minneapolis, Minnesota, USA) and 0.15% 

basic fibroblast growth factor (bFGF, human recombinant, 10 ng/ml; PeproTech Inc., New Jersey, 

USA). 

Differentiation medium consisted of basic medium supplemented with 0.1% ciliary neurotrophic 

factor (CNTF, rat recombinant, 10 ng/ml; PeproTech Inc., USA), 0.1% N-acetyl-L-cysteine (3 mg/ml; 

Sigma, USA) and 1% triiodothyronine (T3, 15nM; Sigma,USA). 

The differentiation stage of the oligodendrocytes was assessed by immuno-staining with different 

markers of their developmental stages.  All oligodendrocytes were Olig2+ irrespective of their stage 

of development. OPCs were characterised by bipolar morphology and staining with an antibody 

against neural/glial antigen 2 (NG2). Mature oligodendrocytes were characterised by their numerous 

branch-like processes which were positively stained for MBP and CNPase. Purity of the 

oligodendroglial cell culture was determined by staining cells with the Olig2 antibody. The average 

percentage of Olig2+ cells was 70.64 ± 7.78% (n = 4 separate experiments). 

 

3.4 Measurement of visual evoked potentials (VEP) 

Five days prior to immunisation, animals were anaesthetised with an intraperitoneal injection (i.p.) 

containing a mixture of 10% ketamine (0.6 ml/kg; Atarost GmbH and Co., Twistringen, Germany) and 

2% xylazine (0.3 ml/kg Albrecht, Aulendorf, Germany) and the head was secured in a stereotaxic 

frame. The skin was excised and the skull was exposed. Holes were drilled in the skull above the 

primary visual cortex (1 mm frontal and 3.5 mm lateral to lambda on each side) for the placement of 

the recording electrode. An additional hole was drilled in the area of the cortex that is not involved in 

the visual stimulation response (motor cortex, 1 mm frontal and lateral from bregma). 
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Measurements of VEPs were performed using the UTAS Visual Diagnostic System (LKC Technologies, 

Gaithersburg, USA). Animals were placed on a heated pad and temperature was kept at 37° C. Prior 

to recording, pupils were dilated with 0.5% atropine (Ursapharm, Saarbrücken, Germany) and the 

animal was dark adapted for 10 minutes. For recording of VEPs, a needle electrode was placed in the 

visual cortex, 0.5 mm deep. The reference electrode was placed 0.5 mm deep in the motor cortex 

and the ground electrode was placed subcutaneously in the tail. During the recording process 

desiccation was prevented by Liquifilm® O.K. eye drops (Allergan, Westport, Ireland). Since optic 

neuritis in MOG-EAE brown Norway rats is usually presented bilaterally, the recording procedure was 

performed on one eye only (the recording electrode was placed in the side of the visual cortex 

contra-lateral to the eye that was presented with a stimulus) to minimize the animal’s exposure time 

to anaesthesia. 

 

3.4.1 Measurement of VEP in response to flash stimulus (fVEP)  

Animals were placed in a dome equipped with an LED ganzfeld stimulator. Flash stimuli were 

presented at an approximate distance of 20 cm with 0 dB intensity and a frequency of 1 Hz. A total of 

100 sweeps were averaged per recording. The recording procedure was repeated twice during the 

induction phase of the disease (at day 5 and day 10 p.i.) and in the beginning of the clinical phase 

(when animals reached a clinical score of 1.0). The signal amplitude (µV) and latency (ms) were 

calculated from the first negative (N1) to the second positive (P2) peak of the response using 

software provided by the UTAS Visual Diagnostic System. Three consecutive fVEP recordings were 

averaged for every time point in the disease course.    

 

3.4.2 Measurement of VEP in response to different pattern stimuli (pVEP) 

Immediately following the fVEP recordings, animals were again dark adapted for 10 mins and placed 

20 cm in front of a 15” CRT monitor with the display centred with the pupil axis. A series of pattern 

stimuli consisting of vertical bars (2, 4, 8, 16 and 32 bars) alternating with a 2 Hz frequency at 66 % 

contrast (constant mean luminance 15 cd/m2) was presented to the animal in an ascending order of 

complexity. Animals were given a 5 minute relaxation period between the stimuli. To determine the 

noise level, recordings were made in the absence of pattern stimulus (monitor switched off). 

Amplitudes of pVEP were calculated from the amplitude spectrum of the fast Fourier transformation 

as the amplitude of the second harmonic (Porciatti et al., 1999; Meyer et al., 2001) using the 

software provided by the UTAS Visual Diagnostic System.  At defined time points during the course of 
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disease, visual acuity was presented as the maximal spatial frequency (cycle per degree of the visual 

angle) at which animals were able to produce the response with the amplitude greater than one 

determined as the noise level.  

Following the last recording (at the beginning of the clinical phase of EAE), animals were perfused 

and the optic nerves processed for histological staining (LFB) to confirm the presence of AON. 

 

3.5 Tissue collection and processing 

3.5.1 Preparation of frozen tissue sections 

At desired time points during the disease course, rats were sacrificed by overdose i.p. injection 

containing a mixture of 20% ketamine (1.2 ml/kg) 4% xylazine (0.6 ml/kg) and perfused via the aorta 

with 4% paraformaldehyde (PFA). Tissue was dissected and placed in 4% PFA overnight for post 

fixation. Prior to dissection of optic nerves, tissue was placed in PBS for 12 hours. Optic nerves with 

eyes attached were dissected and cryoprotected in 30% sucrose (Applichem GmbH, Darmstadt, 

Germany) in PBS overnight. On the next day, nerves were put into plastic base moulds containing 

Cryoblock embedding medium (Medite, Burgdorf, Germany) and frozen usingcold isopentane (Acros 

Organics BVBA, Geel, Belgium), cooled with liquid nitrogen. Frozen blocks were kept at -80°C prior to 

cutting. Eight µm thick longitudinal sections and 1.5 µm thick cross sections were cut using a cryostat 

(Leica, Wetzlar, Germany) at -20°C. Sections were transferred to SuperFrost® Plus microscope slides 

(Thermo Scientific, Waltham, Massachusetts, USA) and kept at -20°C prior to staining. 

 

3.5.2 Preparation of tissue lysates 

At desired time points during the disease course rats were sacrificed by inhalation of CO2. Optic 

nerves were dissected and mechanically homogenized in a glass homogenizer (Kontes, Vineland, New 

Jersey, USA) with ice cold lysis buffer containing  cOmplete Protease Inhibitor Cocktail® (Roche, 

Mannheim, Germany). Lysates were sonicated for 5 seconds to further disrupt the integrity of the 

tissue. Cell debris was pelleted at 13,000 rpm at 4°C for 15 mins. Supernatants were collected and 

kept at -80°C prior to use.  

The total protein concentration in the sample was determined using a bicinchoninic acid (BCA) assay 

(Pierce, Rockford, Illinois, USA) following the instructions provided by the manufacturer.  
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3.5.3 Serum collection 

Blood was taken from animals after they were sacrificed for either tissue sections or lysates. Blood 

was collected with a 2 ml syringe directly from the heart and stored in plastic tubes overnight at 4˚C 

to coagulate. Up to 6 ml could be collected from one animal. On the next day, samples were 

centrifuged at 4°C for 15 min at 13,000 rpm to separate the serum and cellular component. Serum 

(supernatant) was aliquoted and stored at -80˚C prior to use. 

 

3.6 Electron microscopy 

At appropriate time points during the disease course animals were perfused with a mixture 

combination of 1% PFA and 2.5% glutaraldehyde in PBS. Optic nerves were dissected and fixed in 

buffered isotonic 2% osmium tetroxide solution for 1 h, followed by dehydration in ethanol and 

subsequent embedding in epoxy resin. Fifty nm thick longitudinal sections were cut on an 

ultramicrotome and contrasting was performed with uranyl acetate/lead citrate. Sections were 

observed and images were taken with an EM910 electron microscope (Zeiss, Jena, Germany) at 

10,000x magnification. 

 

3.7 Luxol Fast Blue/Periodic acid Schiff stain (LFB/PAS) 

This histological stain is commonly used to observe myelin (Kluver and Barrera, 1953). It is based on 

an acid-base reaction with the base of the lipoprotein in myelin replacing the base of the dye and 

causing a colour change. The myelin is stained blue whilst the areas that lack myelin are 

counterstained purple with PAS. 

Frozen longitudinal optic nerve sections were stained to determine the presence of demyelination. 

Slides were first put in 96% ethanol for 5 mins and then in 0.1% LFB solution (Solvent blue 38, Sigma-

Aldrich) and incubated at 60˚C overnight. The next day, after cooling down to room temperature, 

slides were transferred to 90% ethanol for one min. Each slide was then placed in 0.5% lithium 

carbonate solution (Fluka/Sigma-Aldrich) and kept until the colour changed from blue to turquoise. 

After that slides were briefly washed in 70% ethanol and then in water. From water, they were 

transferred to 1% periodic acid (Sigma-Aldrich) for 10 mins and washed under running tap water for 

5 minutes. In next step, slides were incubated for 30 mins in Schiff’s reagent (Sigma-Aldrich) followed 

by washing under running tap water for 5 for a blue colour to develop. Following counterstaining 



M e t h o d s  | 41 
 

with haematoxylin (to visualize cell nuclei) slides were dehydrated in ascending ethanol 

concentrations and mounted with Roti® - Histokitt II (Carl Roth, Karlsruhe, Germany). 

 

3.8 Immunofluorescent staining 

3.8.1 Immunofluorescent staining – general protocol 

Slides containing tissue sections were taken from -20˚C and left at RT to thaw and dry. Sections were 

then rehydrated by washing in Tris-buffered saline (TBS). Since tissue fixation can lead to masking of 

the desired epitope, an antigen retrieval step was introduced where necessary (see Table 1.2). Heat-

induced antigen retrieval was performed with 0.2% citrate buffer at pH 6.0. Slides were immersed in 

boiling buffer and temperature was kept between 70˚ and 90˚C. After 15 mins, slides were left in the 

buffer and allowed to cool down to RT. Following additional washing in TBS, blocking of unspecific 

antibody binding was prevented by incubation with blocking buffer (containing 10% normal 

goat/rabbit serum in 0.1% TBS Triton X-100, TBS-Tr) for 1 hour at RT. Sections where then incubated 

overnight at 4˚C with the appropriate primary antibody dilution in blocking buffer. On the next day, 

slides were washed in PBS and incubated with appropriate secondary antibody conjugated with 

fluorescent dye for 1 hour at RT. After the final wash in TBS, slides were mounted with anti-fade 

Vectashield Mounting Medium (Vector laboratories, Burlingame, California, USA) covered with glass 

cover slips. If needed, visualisation of cell nuclei was accomplished by mounting sections with 

Vectashield Mounting Medium containing 4',6-diamidino-2-phenylindole (DAPI). A detailed list of the 

blocking buffers, primary and secondary antibodies used are given in Tables 1.2 and 1.3.  

Fluorescent microscopy and image acquisition was performed using either a conventional Eclipse 80i 

microscope (Nikon; Shinagawa, Tokyo, Japan) or a LSM 700 confocal microscope (Zeiss).  
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Antibody Company Sub-type Dilution Blocking buffer Antigen 
retrieval 

Neurofilament 
light (Nf-L) 

Millipore, 
Billerica, 

Massachusetts, 
USA 

Rabbit polyclonal 1:500 10% NGS/ 0.1% 
TBS-Tr none 

Non-
phosphorylated 
neurofilaments 

(SMI32) 

Covance, 
Princeton, New 

Jersey, USA 
Mouse IgG1 1:2000 10% NGS/ 0.1% 

TBS-Tr none 

Anti-
Neurofilament 

Marker 
(SMI312) 

Covance Mouse IgG1 cocktail 1:1000 10% NGS/ 0.1% 
TBS-Tr none 

Caspr Abcam, 
Cambridge, UK Rabbit polyclonal 1:1000 10% NGS/ 0.1% 

TBS-Tr none 

Contactin-1 R&D systems Goat IgG 1:100 10% NRS/ 0.1% 
TBS-Tr 

Citrate buffer 
pH 6.0 

Pan-
Neurofascin 

NeuroMab/ UC 
Davis, 

California, USA 

Mouse IgG1, clone 
L11A741 1:1000 10% NGS/ 0.1% 

TBS-Tr 
Citrate buffer 

pH 6.0 

Neurofascin 
186 Abcam Rabbit polyclonal 1:500 10% NGS/ 0.1% 

TBS-Tr 
Citrate buffer 

pH 6.0 

Pan-Nav Sigma-Aldrich Mouse IgG1 1:200 10% NGS/ 0.1% 
TBS-Tr 

Citrate buffer 
pH 6.0 

Olig2 Millipore Rabbit polyclonal 1:500 10% NGS/ 0.1% 
TBS-Tr 

Citrate buffer 
pH 6.0 

Myelin basic 
protein (MBP) Sigma-Aldrich Rabbit polyclonal 1:300 10% NGS/ 0.1% 

TBS-Tr 
Citrate buffer 

pH 6.0 
Neural/glial 

antigen 2 (NG2) Millipore Rabbit polyclonal 1:300 10% NGS/ 0.1% 
TBS-Tr 

Citrate buffer 
pH 6.0 

αB-crystallin 
(CRYαB) Abcam Mouse IgG1, clone 

1B6.1-3G4 1:1000 10% NGS/ 0.1% 
TBS-Tr 

Citrate buffer 
pH 6.0 

Glial fibrillary 
acidic protein 

(GFAP) 
Sigma-Aldrich Rabbit polyclonal, 

IgG serum fraction 1:500 10% NGS/ 0.1% 
TBS-Tr none 

CD68 (ED1) Serotec,  
Kidlington, UK Mouse IgG1 1:500 10% NGS/ 0.1% 

TBS-Tr none 

 

Table 1.2 List of primary antibodies used for immunoflorescent staining.  
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Antibody Company Sub-type Conjugate Dilution 

Goat anti-mouse Jackson labs/Dianova, West 
Grove, Pennsylvania, USA IgG Cy3 1:400 

Goat anti-mouse Invitrogen IgG Alexa 488 1:400 
Goat anti-rabbit Jackson labs/Dianova IgG Cy3 1:400 
Goat anti-rabbit Invitrogen IgG Alexa 488 1:400 
Rabbit anti-goat Invitrogen IgG Alexa 488 1:400 

Goat anti-rat Vector laboratories IgG Biotin 1:200 
 

Table 1.3 List of secondary antibodies used for immunofluorescent staining. 

 

3.8.2 Immunofluorescent staining – double immunofluorescent staining 

Two different protocols were used for double immunofluorescence staining depending on the nature 

of the primary antibodies used. If the antibodies were raised in a different species (eg. mouse and 

rabbit) a parallel approach was undertaken. In this instance, sections (and/or cultured cells) were 

incubated with a mixture of two different primary antibodies and, subsequently, the mixture of 

appropriate secondary antibodies conjugated with different fluorophores. 

A sequential approach was used if the desired antibodies were raised in the same species or in 

different species but when the serum and origin of primary antibody would interfere (eg. using goat 

serum when one of the primary antibodies was raised in goat). In this approach, sections would be 

stained using the general protocol for the first antibody (as described in section 3.8.1). After the final 

wash (following incubation with first secondary antibody) the whole protocol would be repeated 

again for the second primary antibody. 

For all immunostaining procedures, appropriate controls were performed. For a negative control, the 

primary antibody was omitted – sections/cells were incubated instead with the blocking buffer. For a 

positive control a double staining was performed with different antibodies recognizing identical or 

neighbouring structures (eg. double staining with different paranodal markers, nodal and paranodal 

markers, different axonal/myelin markers, etc. as shown in Figure 1.5Ciii, Diii, Eiii, Fiii). 

 

3.8.3 Immunocytochemistry 

The staining procedure for cultured cells was similar to that used for tissue sections but with minor 

modifications:  
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- Medium was removed from 24 well plates and coverslips were carefully washed with ice cold 

PBS. Cells were then fixed with 4% PFA for 10 mins and washed with 0.02% PBS-Tween 20 (PBS-T; 

Sigma-Aldrich). For the purpose of improving penetration of the antibodies, cells were permeabilized 

with different detergents. For staining of cytoplasmic antigens, cells were treated with 0.1% PBS-

Tween 20 for 10 mins at RT whereas for the detection of nuclear antigens (such as the transcription 

factor Olig2) 0.1% PBS-Tr was used. Following permeabilization, cells were washed and non-specific 

binding was blocked by incubation with 10% NGS in 0.1% PBS-T for 30 mins at RT. Following blocking, 

cells were incubated overnight at 4˚C with the appropriate primary antibody diluted in blocking 

buffer. The next day, cells were washed and incubated with a fluorescent conjugated secondary 

antibody for 1 hour at RT. After washing, coverslips were mounted on glass slides with mounting 

medium containing DAPI. 

 

3.8.4 Immunofluorescent staining for antibody deposition 

IgG deposition in the optic nerves was examined with the use of a biotinylated secondary antibody. 

Frozen longitudinal sections were thawed, rehydrated in PBS and blocked with 10% NGS in 0.1 % 

PBS-Tr for 30 mins. After washing in PBS, sections were incubated with a biotinylated goat anti-rat 

secondary antibody. Deposition was visualised by incubating sections with streptavidin–Alexafluor 

555 in 1% bovine serum albumin (BSA; Sigma-Aldrich)-PBS for 30 mins at 37°C. After washing, 

sections were mounted with mounting medium containing DAPI.  

To investigate the expression of different proteins with respect to IgG deposition, sections were 

processed for immunoflorescent staining with the desired antibody, followed by the protocol for 

antibody deposition staining.  

 

3.9 Terminal deoxynucleotidyl transferase dUTP nick end labelling 

(TUNEL) assay 

The TUNEL assay is a commonly used method to investigate the presence of apoptotic cells (Gavrieli 

et al., 1992). The assay is based on the addition of labelled deoxyuridine triphosphate (dUTP) to the 

ends of fragmented DNA in cells that are undergoing the process of apoptosis. This reaction is 

catalysed by an enzyme deoxynucleotidyl transferase (TdT).  
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The assay was performed on frozen longitudinal optic nerve sections. After rehydration in PBS, 

sections were treated with proteinase K (20 μg/ml; Roche) for 5 mins at RT. Endogenous peroxidases 

were inactivated with 3% H2O2 followed by rinsing in Tris buffer (10 mM Tris-HCl, pH 8.0; Carl Roth). 

Sections were equilibrated in TUNEL dilution buffer (TDB; Roche) for 10 mins at RT. The TUNEL 

reaction was performed in TDB containing TdT (0.15 U/μl; Promega, Madison, Wisconsin, USA) and 

biotin-16-dUTP (10 μM; Roche) for 60 min at 37 °C. A positive control was performed by pre-treating 

sections with DNase I (3 u/ml; Roche) and a negative control was performed by omitting biotin-16-

dUTP from the TUNEL reaction. The reaction was terminated by washing the sections in saline 

sodium citrate solution (30 mM Na3C6H5O7 containing 300 mM NaCl; both from Sigma-Aldrich) for 15 

mins. After rinsing in PBS, non-specific binding sites were blocked with 2% BSA-PBS for 20 mins at RT. 

Sections were then rinsed in PBS and incubated with the same blocking solution containing 

streptavidin–Alexafluor 488 or 555 conjugate (1:700; Molecular Probes/Thermo Fisher) for 30 mins 

at 37 °C.  After rinsing with PBS, sections were mounted using anti-fade mounting medium containing 

DAPI for visualisation of cell nuclei and quantified under the Nikon Eclipse 80i microscope with 20 x 

magnifications.  

A combination of immunofluorescent staining and TUNEL assay was performed in order to detect the 

presence of apoptotic oligodendrocytes. Briefly, following the immunofluorescent staining with the 

anti-Olig2 antibody, sections were washed in PBS and the TUNEL assay was performed.  

 

3.10 Western blotting 

The expression of different proteins during the course of the disease was examined by Western 

blotting. Briefly, samples containing 50 µg of total protein were diluted in 2x sample buffer (Anamed 

Elektrophorese, Groß-Bieberau, Germany) and incubated at 95°C for 10 mins. Samples were loaded 

onto a 4–20 % gradient Mini-PROTEAN® TGX Stain-Free™ Precast gels (BioRad, Hercules, California, 

USA). Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) for 1hr and 20 mins at 120 V in a running buffer containing 25 mM Tris Base (Carl Roth), 190 

mM glycine (Sigma) and 0.1% SDS (Carl Roth). Following electrophoresis, proteins were transferred 

to a polyvinylidene difluoride (PVDF) membrane (BioRad) with the semi-dry blotting technique using 

Trans-Blot® Turbo™ Transfer System (BioRad). Different blotting settings (provided by the transfer 

system) were utilized depending on the molecular weight of the protein investigated. A successful 

transfer was confirmed by staining the membrane with Ponceau (Sigma-Aldrich). 
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The membrane was blocked with the appropriate agent in 0.1% TBS-T for 1 hr at RT and incubated 

with appropriate antibody in the same buffer overnight at 4°C. On the following day, the membrane 

was washed in TBS-T and incubated with the corresponding HRP-conjugated secondary antibody for 

1 hr at RT. A list of different blocking agents and primary/secondary antibodies is given in Table 3.4. 

Following the washing step, the membrane was incubated with the ECL Prime reagent (Amersham, 

USA) for one minute and imaged using the ChemiDoc™ XRS+ Imaging System (BioRad). 

Protein expression was measured by ImageJ software using the images generated with the imaging 

system. The expression of the protein in the sample was normalised to the expression of the house-

keeping protein Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, mouse antibody, clone 6C5, 

Millipore). A minimum of 3 samples per time point were used in the final quantification for each 

protein.    

 

Protein Blocking buffer 
Primary antibody 

dilution 
Secondary antibody 

Caspr 5% milk 0.1% TBS-T 1:1000 
Donkey anti-rabbit 

HRP-conjugated, 1:5000 

Contactin-1 5% milk 0.1% TBS-T 1:100 
Donkey anti-goat 

HRP-conjugated, 1:5000 

Non-phosphorylated 

neurofilaments (SMI32) 
5% BSA 0.1% TBS-T 1:2000 

Sheep anti-mouse HRP-

conjugated, 1:5000 

αB-crystallin 5% BSA 0.1% TBS-T 1:500 
Sheep anti-mouse HRP-

conjugated, 1:5000 

GAPDH 5% milk 0.1% TBS-T 1:250 
Sheep anti-mouse HRP-

conjugated, 1:5000 

 

Table 3.4 Combination of different blocking agents and primary/secondary antibodies for Western blotting. 
All secondary antibodies were purchased from Amersham (Buckinghamshire, GB). 

 

3.11 Enzyme-linked immunosorbent assay (ELISA) for detection of 

MOG antibodies in the serum 

The titres of MOG antibody in the sera of animals were measured with the ELISA protocol adapted 

from Lindner et al. 2013. Transparent 96 well plates were coated with 5 μg/ml of whole recombinant 

MOG protein in PBS and kept overnight at 4°C. On the following day, wells were washed 3 times with 
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0.05% PBS-T and blocked with 1% BSA/PBS for 1 hr at 37°C. Following a further washing step, sera 

from different time points during the disease was applied and incubated for 1 hr at 37° C. Three 

different dilutions of the sera in the blocking buffer were used (1:1000, 1:10,000 and 1:100,000) with 

each dilution used in duplicate. After incubation with serum, wells were washed and incubated with 

an HRP-conjugated goat anti-rat secondary antibody (polyclonal IgG; Imgenex, Littleton, Colorado, 

USA) 1:5000 in the blocking buffer for 1 hr at 37° C. Following the final washing step, a colorimetric 

reaction was performed by the addition of tetramethylbenzidine (TMB) substrate (eBioscience, San 

Diego, California, USA). After 15 minutes at RT, the reaction was stopped by the addition of 0.16 M 

H2SO4 and the absorbance was measured at 450 nm. 

 

3.12 Treatment with ROS/RNS scavengers 

In order to the investigate a possible role of ROS/RNS in the optic nerve pathology during the 

induction phase of AON, a treatment study was performed with a cocktail of 3 different scavengers 

of these reactive species. Eight BN rats, immunised with MOG, were divided into 2 experimental 

groups – one receiving the cocktail (n=4) and the control group receiving the equivalent dimethyl 

sulfoxide (DMSO; 3%; Carl Roth) solvent (n=4). The volume of both control and treatment i.p. 

injections was 500 µl.  

The cocktail consisted of: 

-  20 mg/kg FeTPPS (5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato Iron (III), Chloride; 

Calbiochem/Millipore) 

- 50 mg/kg PBN (N-tert-Butyl-α-phenylnitrone; Sigma-Aldrich) 

- 15 mg/kg EUK134 (chloro((2,2‘-(1,2ethanediylbis((nitrilo-kN)methylidyne))bis(6-

methoxyphenolato-kO))) -manganese; Cayman chemical, Ann Arbor, Michigan, USA)  

dissolved in 3% DMSO.  

Daily treatment with i.p. injections commenced at day 5 p.i. On the day of the final injection (at day 

10 p.i.), animals were sacrificed with ketamine/xylazine overdose, perfused and optic nerves 

processed for longitudinal sections (Figure 3.1).  
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3.13 Intravitreal injection of glutamate 

In order to induce a primary retinal insult, eight to ten-week-old BN rats were injected intravitreally 

with glutamate. Animals were kept under anaesthesia by inhalation of 5% isoflurane. In total, 100 nM 

of glutamate (4 µl of 25 mM glutamate in saline) was injected intravitreally using a 10 µl Hamilton 

syringe over the course of 5 minutes. Seven days following the injection, animals were sacrificed with 

ketamine/xylazine overdose, perfused and optic nerves were dissected and processed for 

longitudinal sections.  

 

3.14 Serum transfer 

Blood was collected by heart puncture from MOG immunised BN rats at both day 10 p.i. and at the 

onset of EAE. Serum was extracted from the blood and concentrated by centrifugation in Amicon® 

Ultra 15 mL centrifugal filters (Millipore) for 30 mins at 3000g at 4° C. Serum from 2 day 10 p.i. 

animals was pooled and concentrated 2 times and serum from individual EAE animals was 

concentrated 4 times. A volume of 1000 µl of concentrated sera was injected intravenously via the 

tail vein of naïve BN rats under isoflurane anaesthesia. Blood samples were collected from recipient 

animals prior to and at days 1 and 3 post serum-transfer (pst). At day 5 pst, animals were overdosed 

with ketamine/xylasine. Blood was collected by heart puncture, animals were perfused and optic 

nerves processed for longitudinal sections. The process of sera isolation from blood samples is 

described in section 3.5.3. The titre of MOG antibodies in the serum at different time points 

throughout the experiment was determined by ELISA (as described in section 3.11). 

Figure 3.1. ROS/RNS scavenger treatment study plan. 
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3.15 Statistical analyses 

Measurements of axonal disruptions and microglia distribution were quantified in a blinded manner 

using images acquired by either standard fluorescence or confocal microscopy. All data are 

presented as their mean values ± standard error of the mean (SEM). Statistical significance was 

assessed by using the appropriate tests provided by the SigmaPlot 12.5 software. For comparing two 

experimental groups, statistical significance was assessed first for normalcy by Shapiro-Wilk test 

followed by either two-tailed student’s t-test (for normally distributed data) or by Mann-Whitney 

rank sum test (for not normally distributed data). One way analysis of variance (ANOVA) combined 

with Dunnett's method was used for comparing multiple experimental groups versus controls. Two 

levels of significance were defined: p value ≤ 0.05 was considered significant and p value ≤ 0.01 was 

considered highly significant.  
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4 Results 

4.1 Characterisation of the visual function and optic nerve 

pathology during the course of AON in the MOG-EAE model in BN 

rats 

4.1.1 Disease course  

Following immunisation with MOG, female BN rats develop the progressive form of EAE 

characterised by extensive demyelinating lesions in the spinal cord. The disease symptoms are 

presented with ascending paralysis of the tail and limbs, with typical onset around 2 weeks following 

immunisation. In addition to the classical, paralytic EAE disease course representing lesions in the 

spinal cord, BN rats develop AON with high incidence. The onset of AON is timed with the onset of 

EAE neurological deficits (Fairless et al., 2012).  

Following immunisation with MOG, rats were scored daily for the appearance of signs of neurological 

deficits. The average day of onset of the disease was between day 13 and 14 p.i. with the symptoms 

starting as early as day 11 post immunisation (13.64 ± 0.68 days p.i.; n = 15; Figure 4.1). In addition to 

healthy, unimmunised animals, sham immunised animals were also used as controls. These animals 

failed to develop any signs of neurological deficits or AON. 

 

 

 

Figure 4.1. MOG-EAE disease course. In its initial stage MOG-EAE is characterised by a clinically silent 
phase (induction phase). This is followed by the clinical phase, characterised with progressive 
neurological deficits. The grading system for scoring neurological deficits is explained in Table 3.1. (n = 
15 animals). 
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4.1.2 Impairment in visual functions precedes the onset of the clinical phase 

of disease 

Recordings of VEPs in response to both pattern and flash stimuli were used to investigate visual 

function of the optic system during the course of the disease. Animals were subjected to visual 

testing prior to immunisation, during the induction phase (on days 5 and 10 p.i.) and at the onset of 

the clinical phase of the disease when they reached a clinical score of 1.0 (day 1 or 2 of EAE). 

The response to flash stimuli in healthy animals was observed as a waveform with a small positive 

peak (P1) followed by a large negative peak (N1) and a second positive peak (P2; Figure 4.2A). The 

amplitude and the latency of the signal were measured between N1 and P2 peak (Figure 4.2A). The 

average signal latency measured in healthy animals was 32.18 ± 1.62 ms and the average signal 

amplitude was 129.25 ± 13.27 µV. Response to flash stimuli did not change during the induction 

phase – no decrease in amplitude (day 5 p.i. 147.36 ± 13.39 µV; day 10 p.i. 150.15 ± 16.36 µV) or 

increase in latency could be detected (day 5 p.i. 32.53 ± 2.67 ms; day 10 p.i. 37.42 ± 2.61 ms).  Upon 

developing AON, the response to flash stimulus was altered with a significant decrease in amplitude 

(EAE 64.48 ± 15.86 µV; p < 0.01; Figure 4.2C) and an increase in signal latency (EAE 63.56 ± 4.79 ms; p 

< 0.001; Figure 4.2D). Sham immunised animals, used as controls, did not have altered responses to 

flash stimuli up to two weeks post-immunisation (Figure 4.2E, F). 

Following the final recording animals were sacrifices and optic nerves were examined for the 

presence of AON-related pathology. Histological staining with LFB showed the presence of 

demyelinated areas with an increased cellular count indicative of inflammation (observed by 

counter-staining of cell nuclei with haematoxylin) in the optic nerves of MOG immunised animals 

(Figure 4.2G, Gi). This was not observed in sham immunised animals at the equivalent time points 

(day 15 following sham immunisation; Figure 4.4H, Hi).   
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Figure 4.2. Visual evoked response to flash stimuli during AON. (A) Typical waveform of flash VEP (blue and 
green lines represent the measurements of the amplitude and the latency of the signal). (B) Representative 
responses to flash stimuli at different time points during the disease course. Quantification of signal 
amplitudes and latencies to flash stimuli in MOG (C and D respectively; n = 8) and sham immunised animals (E 
and F respectively; n = 4). Statistical significant decrease in signal amplitude (* p < 0.01 compared to healthy, 
ANOVA) and increase in latency (* p < 0.01 compared to healthy, ANOVA) was observed in following the onset 
of the clinical phase of disease but not in sham-immunised animals at equivalent time points. Histological 
staining with LFB showed the presence of AON in MOG-immunised animals following the onset of the clinical 
phase of the disease (G, Gi) but not in sham-immunised animals at equivalent time point (H, Hi).  
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Pattern VEP recordings were performed in order to asses the visual acuity of animals during the 

course of the disease. VEP responses to pattern stimuli are considered to be more sensitive to 

pathological alterations within the optic system than those in response to flash stimuli. Prior to 

immunisation, all animals were able to respond to the full range of low-contrast stimuli (66% 

contrast of alternating bars) from the simplest to the most complex pattern (vusial acuity 0.89 ± 0 

c/deg). In the early in the induction phase (day 5 p.i.) animals did not show significant reduction in 

visual acuity (0.67 ± 0.11 vs. 0.89 ± 0 c/deg in healthy, p = 0.16). Only 3 out of 7 animals failed to 

respond to the most complex stimulus (32 bars). However, in the late induction phase (day 10 p.i.) 

animals did show significant reduction in visual acuity (0.44 ± 0.12 c/deg vs. 0.89 ± 0 c/deg in healthy, 

p = 0.002) with four out of 7 animals not responding to patterns with a complexity of 8 or more bars. 

With the onset of AON visual acuity was almost completely lost (0.09 ± 0.04 c/deg vs. 0.89 ± 0 c/deg 

in healthy, p < 0.001). Three out of 7 animals failed to respond even to the simplest pattern 

presented (2 bars). In animals that responded to pattern stimulation (4 out of 7) the maximal 

stimulus that evoked a response was either 2 (n = 2) or 8 bars (n = 2). Sham immunised animals 

retained full visual acuity throughout the course of the experiment (Figure 4.3C). 

 

 



R e s u l t s  | 54 
 

 

 

 

 

4.1.3 Inflammatory demyelination of the optic nerve is timed with the onset 

of the clinical phase of disease 

In order to determine structural correlates of the imapaired visual functions observed during the 

course of disease optic nerves were processesd for histological and immunhistochemical staining.  

Longitudinal sections of nerves from different time points during the disease course were stained 

with LFB to investigate myelianation status durin the disease course. In parallel, sections were 

stained with antibodies against both the axonal and the myelin components: SMI 312, a pan axonal 

marker; and an antibody against MBP (Figure 4.4). 

Apart from the initial segment of the optic nerve (ONH) and the retinal nerve fibre layer, axons in 

healthy animals are fully myelinated as assessed by both LFB staining and double immunofluorescent 

staining with markers for both axons and myelin (Figure 4.4Bi - Ciii). In the late induction phase, at 

the same time that a decrease in visual acuity was observed, there was no change in the myelination 

Figure 4.3. Visual response to pattern stimuli during AON. (A) Representative traces in response to 2 and 16 
bar stimuli throughout EAE time course. Arrows indicate the timing of pattern reversal. (B) Significant 
decrease in visual acuity was detected starting from the late induction phase of the disease (* p < 0.01, 
ANOVA; n = 7). (C) Sham immunisation did not affect visual acuity of animals at equivalent time-points (n = 4).  
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status of the optic nerve axons (Figure 4.4Di - Eiii). Following the onset of the clinical phase, a 

pathology characteristic of AON could be detected. That is, demyelinating lesions containing 

increased hypercellularity could be detected along the optic nerve as early as day 1 of EAE (Figure 

4.4Fi - Giii). 

 

 

 

 

 

Inflammatory lesion were characterised with numerous cells positive for CD68 (ED1) – a glycoprotein 

expressed on tissue macrophages and blood derived monocytes. These cells were characterised by a 

foamy morphology characteristic of reactive macrophages (Figure 4.5A - Bi). The majority of ED1+ 

macrophages were found in areas of demyelination (Figure 4.5A, Ai) and axonal stress, assessed by 

staining with SMI32 (Figure 4.5B, Bi). Within these areas macrophages are often found with the 

presence of MBP+ structures in their cytoplasm, indicative of their role in phagocytosis of myelin 

components under inflammatory conditions (figure 4.5Ai). A marked presence of axonal pathology is 

evident within these areas of inflammation. Many swollen axons could be found within areas of 

macrophage infiltration (figure 4.5Bi). Within the lesion centre many of the SMI32+ axons were 

Figure 4.4. Inflammatory demyelination starts with the onset of the clinical phase of AON. (A) Example image 
of a healthy optic nerve stained with LFB. Black squares indicate optic nerve segments displayed in the panel 
below at different time points along the course of AON. Representative longitudinal sections of the optic nerve 
throughout the AON time course stained with LFB and antibodies against MBP (green) and SMI 312 (red) – 
healthy (Bi – Ciii), day 10 p.i. (Di – Eiii) and onset of the clinical phase of AON (Fi - Giii). Large areas of 
demyelination are observed with the onset of the clinical phase of AON (Fi - Giii). Scale bars 100 μm. 
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completely demyelinated (figure 4.5Ci) whereas, towards the lesion border swollen axons still 

associated with myelin sheets could be detected (figure 4.5Ci). 

 

 

 

 

 

Figure 4.5. Optic nerve pathology following the onset of the clinical phase of AON. Optic nerve cross sections 
from the onset of AON (day 1 EAE) stained with markers for myelin (myelin basic protein – MBP; A, Ai, C, Ci - 
green), axons (neurofilament light – Nf-L; B, Bi – green; Non-phosphorylated neurofilaments – SMI32; C, Ci - 
red) and activated microglia/macrophage (ED1; A, Ai, B, Bi - red). ED1+ microglia/macrophages are observed in 
areas of demyelination (A, Ai) and axonal stress, indicated by swollen Nf-L positive axons (Bi, arrows). 
Furthermore, MBP+ particles are found in ED1+ cells within demyelinated areas implying their role in 
phagocytosis of myelin (Ai, arrows). Many swollen, SMI32+ axons with preserved myelin sheaths (Ci, arrows) are 
detected at the edges of demyelinating lesions (Ci, asterisk) following the onset of the clinical phase of AON.   
Scale bars 50 µm. 
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In addition to signs of axonal pathology (observed by demyelination and swellings) a reduction in 

axonal densities could be observed from the onset of the clinical phase of the disease (Figure 4.6C). 

As the disease progresses there are only few axons still remaining in the optic nerve (Figure 4.6D).  

 

 

 

 

 

4.2 Evidence of cellular stress in different compartments precedes 

the onset of AON   

4.2.1 Loss of axonal domains observed with the onset of AON 

A proper organization of highly specialised axonal domains is necessary for efficient signal 

conduction along myelinated axons. Considering that a decrease in visual acuity was observed during 

the induction phase in the absence of axonal loss and demyelination, a detailed examination of 

axonal structures with particular focus on nodal and paranodal domains was performed. 

Investigation of axonal domains was performed with the use of different antibodies recognizing 

different molecular components of axonal domains (Figure 1.5Ci - Fiii). Antibodies against Nav and 

Neurofascin 186 were used as markers of nodal domains while antibodies against Caspr and 

Contactin-1 were used to label paranodal domains (see Figure 1.5 in Introduction for details). 

Longitudinal optic nerve sections were stained with antibodies against Caspr and Nav for the purpose 

of quantifying the numbers of axonal domains at different time points along the course of AON 

(Figure 4.7A - E). Only complete axonal domains consisting of Nav
+ nodes flanked by Caspr+ 

paranodes on both sides were counted. There was no significant difference in the numbers of axonal 

domains between healthy (7317.33 ± 356.88 paranodes per mm2) and optic nerves from animals 

during the induction phase (6344.89 ± 268.97 at day 10 p.i.). Upon development of AON a substantial 

reduction in the numbers of the axonal domains could be observed. Already at the onset of the 

Figure 4.6. Reduction in axonal densities starts with the onset of the clinical phase of AON. Staining with 
pan-axonal marker (SMI312) revealed the presence of axonal loss in optic nerves during the clinical phase of 
disease (C, D). Scale bars 100 μm. 
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clinical phase of the disease a 50 % reduction was observed (day 1 EAE, 3667.56 ± 334.95; 50.12 % of 

the healthy value; p < 0.001). As the disease progresses this effect becomes more pronounced where 

only one third of the healthy value could be detected (day 4 EAE, 2433.78 ± 303.53; 33.26% of the 

healthy value; p < 0.001). Following the onset of AON the reduction in density of axonal domains 

could be observed within inflammatory lesions (as observed with the increased cellular count with 

nuclear labelling with dapi).   The extent of axonal domain loss following the onset of the clinical 

phase of disease correlates with the previously reported extent of demyelination (Fairless et al., 

2012). 

 

 

 

 

 

 

In order to confirm the reduction of axonal domains with onset of the clinical phase of AON observed 

by immunofluorescent staining, quantification of axonal paranodal proteins (caspr and contactin-1) 

in optic nerve was performed by Western blotting. Significant reduction of Caspr and Contactin-1 

protein levels in optic nerve lysates was detected from the onset of the clinical phase of the disease 

by Western blotting (figure 4.8). 

Figure 4.7. Loss of axonal domains starts with the clinical phase of AON. Representative images of optic 
nerves stained with antibodies against Caspr (green) and NaV (red) in healthy (A), sham (B), day 10 p.i. (C) 
and in animals during the clinical phase of disease (day 1 EAE, D and day 4 EAE, E). (F) A significant 
reduction in axonal domains was observed with the onset of the clinical phase of AON (* p < 0.01 compared 
to healthy; # p < 0.01 compared to sham, ANOVA; n = 6 animals per time point, except in sham where n = 3). 
Scale bars 50 µm. 
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4.2.2 Disruption in axonal domain architecture precedes the onset of the 

clinical phase of AON 

Upon quantification of the axonal domains throughout time course of AON subtle changes in their 

morphology were observed already during the induction phase of AON, preceding their loss. In 

healthy animals axonal domains occurred as dense clusters of NaV reactivity flanked by compact 

Caspr+ paranodes (figure 4.9A). At the late stage of the induction phase (at day 10 p.i.) a substantial 

portion of axonal domains appeared with altered architecture. Both the nodal gap (stained with pan-

NaV antibody) and the Caspr+ paranodal domains appeared with diffuse and elongated profiles 

(Figure 4.9B). Measurements of the length of both nodal and paranodal domains throughout the 

course of AON revealed statistically significant elongation in both compartments starting from the 

late induction phase (day 10 p.i.). The criteria for inclusion was identical to one used for 

quantification of axonal domains – the length of axonal domains was measured only in axons with a 

pan-NaV
+ nodal gap flanked by two Caspr+ paranodes.  

Figure 4.8. Reduction in expression of paranodal proteins starts with the onset of the clinical phase of 
AON. (A) Representative Western blots incubated with antibodies against Caspr (180 kDa), Contactin-1 (118 
kDa) and GAPDH (38 kDa). Statistically significant decreases in both Caspr and Contactin - 1 were seen with 
the onset of the clinical phase of disease (B and C respectively; * p < 0.05 to compared healthy, # p < 0.05 
and ## p < 0.01 compared to sham, ANOVA; n = 5 samples per time point). 
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In healthy animals, the average length of the pan-NaV
+ nodal domain was 1.27 ± 0.02 μm (n = 1450 

nodes measured from 6 different animals, lengths ranging from 0.64 to 2.66 μm). At day 10 p.i. a 

significant elongation in the nodal domain could be observed. The average length of NaV
+ nodes was 

1.66 ± 0.03 μm (n = 1500 nodes / 6 animals, lengths 0.75 - 5.56 μm, p < 0.001). The average length of 

Caspr+ paranodal domains in healthy animals was 3.23 ± 0.08 μm (n = 1450 paranodes / 6 animals, 

lengths 1.71 - 6.64 μm). Significant elongation was also observed in the paranodal domain at day 10 

p.i.. The average length of the Caspr+ paranodes was 3.58 ± 0.07 μm (n = 1500 paranodes / 6 animals, 

lengths 1.73 - 7.53 μm, p = 0.003). With onset of AON, this phenomenon became more pronounced 

with some axons appearing with swellings in the paranodal domains (figure 4.10C, Ci). The average 

length of a nodal domain at day 1 of EAE was 2.11 ± 0.05 μm (n = 1450 nodes / 6 animals, lengths 

0.93 - 10.53 μm, p < 0.001) and at day 4 of EAE it was 2.02 ± 0.08 μm (n = 1709 nodes / 6 animals, 

lengths 0.84 - 12.14 μm, p < 0.001). The average length of the paranodal domains at day 1 of EAE was 

3.59 ± 0.07 μm (n = 1425 paranodes / 6 animals, lengths 1.9 - 7.38 μm, p = 0.002) and at day 4 of EAE 

it was 3.82 ± 0.05 μm (n = 1615 paranodes / 6 animals, lengths 1.76 - 8.23 μm, p < 0.001). Within 

demyelinated lesions, axonal domains were completely disrupted with only traces of Caspr 

immunoreactivity detectable on SMI32+ stressed axons (figure 4.9I). Following demyelination, and in 

the absence of paranodal regions NaV reactivity was dispersed along naked axons (figure 4.9J). 

Identical staining patterns were observed with antibodies against other components of nodal 

(Neurofascin 186) and paranodal domains (pan-Neurofascin, Contactin-1) throughout the course of 

AON (data not shown).  

In order to further investigate these observations, electron microscopy was employed to analyse the 

ultrastructure of axonal domains. Similar patterns were observed upon examining the ultrastructure 

of axonal domains by electron microscopy. In healthy animals, myelinating loops of oligodendrocytes 

were tightly anchored in the paranodal regions of the axon which were separated by an 

unmyelinated nodal gap (Figure 4.10D). At day 10 p.i., although axons were still ensheathed with 

compact myelin, subtle changes could also be detected in their domains. Detachment of myelinating 

loops from the paranodal domains and a widening of the nodal gap could be observed on some 

axons (Figure 4.10E). Following the onset of AON, paranodal regions were found with clear signs of 

early pathology characterised by detachment of myelinating loops and an “unravelling” of the myelin 

sheath (Figure 4.10F). 
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Figure 4.9. Disruption of axonal domains starts during the induction phase of the disease. A double 
staining with pan-NaV (red) and Caspr (green) was used to investigate the integrity of nodal and paranodal 
domains (respectively) throughout the disease course (A-C). Ultrastructure of axonal domains by electron 
microscopy reflects the patterns observed with immunostaining (D-F; yellow lines indicate the length of the 
nodal domains, arrows indicate paranodal domains). Quantification of axonal domains from 
immunostaining show statistically significant elongation in both paranodal (G) and nodal (H) domains 
starting from the end of the induction phase (* p < 0.01 compared to healthy, # p < 0.01 compared to sham, 
ANOVA; n = 6 per time point). (I) Representative image of a stressed SMI32+ axon within demyelinating 
lesion with only traces of Caspr immunoreactivity present on disrupted paranodal domain (arrow). (J) 
Diffuse NaV distribution along demyelinated axons (arrows). Scale bars: A – C, J and I 5 µm, F 2.5 µm. 
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4.2.3 Evidence of axonal stress is detected prior to the onset of the clinical 

phase of AON 

Early signs of axonal disruption were detected in the nodal and paranodal domains prior to the onset 

of inflammatory demyelination. Paranodal domains form the contact zone between axons and glia 

where myelination loops of oligodendrocytes anchor to the axon. For the purpose of investigating 

the presence of axonal stress throughout the course of AON a double staining with SMI32 (an 

antibody recognising non-phosphorylated neurofilaments, npNF, a stress marker for myelinated 

axons; Trap et al., 1998) and MBP was performed on longitudinal optic nerve sections. Considering 

that NF are often hypophosphorylated in the unmyelinated nodal region (Howell et al., 2011 and 

author’s own observation) only SMI32+ structures longer than 20 µm were counted.  

In healthy optic nerves, SMI32 immunoreactivity was detected mainly on the unmyelinated nodal 

regions and only the odd SMI32+ axon could be detected (Figure 4.10A, Ai; 167.53 ± 23.14 SMI32+ 

axons/mm2). Similar staining pattern was observed in the induction phase, at day 7 p.i. (figure 4.10B, 

Bi; 208.82 ± 39.67 SMI32+ axons/mm2). In the late induction phase, when a decrease in visual acuity 

and a disruption in axonal domains was observed (day 10 p.i.), a statistically significant increase in 

SMI32+ axons was detected (figure 4.10C; 394.06 ± 31.54 SMI32+ axons/mm2, p = 0.02). These axons 

were still myelinated, as demonstrated by double staining with MBP (figure 4.10Ci). Following the 

onset of AON, a marked presence of SMI32+ axons was detected (figure 4.10D; 816.74 ± 99.42 

SMI32+ axons/mm2, p < 0.001), both in the demyelinated lesion centre and on the lesion border 

where axons were still myelinated (figure 4.10Di). 

The observed increase in the npNF was confirmed by Western blotting. A statistically significant 

increase in npNF could be detected in optic nerve lysates at day 10 p.i. (figure 4.10G, p = 0.009) and 

day 1 of EAE (figure 4.10G, p < 0.001). 
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Figure 4.10. Increased presence of npNF observed from the induction phase of AON. Representative 
images of optic nerves from healthy (A, Ai), day 7 p.i. (B, Bi), day 10 p.i. (C, Ci) and day 1 EAE (D, Di) 
animals stained with SMI32 and MBP antibodies. Arrows indicate the presence of SMI32+ axons at day 10 
p.i. (C) and day 1 of EAE (D). Demyelinating lesion is indicated by asterisk (Di). (E) Statistically significant 
increase in SMI32+ was detected at day 10 p.i. and at the onset of AON. (* p < 0.05 and ** p < 0.01 
compared to healthy. ## p < 0.01 compared to sham, ANOVA; n = 6 animals per time point for MOG 
immunised and healthy, n = 3 for sham). Scale bars 50 µm. (F) SMI32 antibody recognises two bands at 
approximately 180 and 200 kDa. (G) Statistically significant increase of npNF protein levels were detected 
in the optic nerves at day 10 p.i. and at the onset of AON (* p < 0.01 compared to healthy; # p < compared 
to sham, ANOVA; n = 3 samples per time point). 
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The first signs of axonal stress were detected in the late induction phase as indicated by increased 

npNF staining/blotting. In order to investigate a possible relationship between the cytoskeletal 

alteration and disruption of axonal domains, a double staining against Caspr and npNF was 

performed on longitudinal sections of optic nerves form day 10 p.i.. The length of Caspr+ paranodes 

were measured and compared in respect to their presence on SMI32+ axons (Figure 4.11). The 

average length of paranodes on SMI32+ was 4.94 ± 0.04 µm (ranging from 2.98 to 9.86 µm), greatly 

exceeding the average length of paranodes not associated with SMI32 immunoreactivity (3.28 ± 0.02 

µm; ranging from 2.04 to 5.26 µm, p < 0.001). It should be noted that the average length of SMI32 

independent paranodes is similar to those found in healthy animals (3.23 ± 0.08 μm). This suggests a 

possible connection between the disruption of the axonal cytoskeleton and the paranodal domains.  

 

 

 

 

 

4.2.4 Apoptosis of oligodendrocytes is not detected before the onset of the 

clinical phase of AON 

In order to investigate whether a disruption in the axo-glial junction in the paranodal domain is 

triggered by oligodendrocyte apoptosis, a combination of TUNEL labelling and immuno-labelling with 

Olig2 (a marker for the oligodendrocyte lineage) was performed on optic nerve sections from 

healthy, day 10 p.i. and animals from the onset of the AON. TUNEL+Olig2+ were absent in both 

Figure 4.11. Accumulation of npNF correlates with disruption of paranodal domains in the induction phase of 
AON. (A) Elongated paranodal domains were detected on axons containing npNF (arrows). (B) Statistically 
significant increase in the length of paranodes associated with SMI32+ axons (* p < 0.01, Mann-Whitney Rank 
Sum Test; n = 716 paranodal domains per group measured from 6 different day 10 p.i. animals). Dashed blue 
line indicates the average paranodal length in healthy optic nerves. 
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healthy animals (figure 4.12A) and those from the late induction phase (figure 4.12B). Upon 

development of AON, double positive cells were detected in the optic nerves. Apoptotic 

oligodendrocytes were found in associated with inflammatory lesions, indicated by the increased 

cellular count observed with DAPI (figure 4.12C, D). 

 

 

 

 

Figure 4.12. Oligodendrocyte apoptosis starts with onset of the clinical phase of AON. Representative images 
of optic nerves from healthy (A), day 10 p.i. (B) and day 1 EAE (C, D) labelled with TUNEL assay (red) and Olig2 
(green). Apoptotic oligodendrocytes could be observed within the inflamed optic nerve (C - lesion indicated 
with dashed line, D; arrows) from the onset of AON (* p < 0.01 compared to healthy, ANOVA). Scale bar 50 µm. 
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4.2.5 CryαB as a marker of glial stress 

Since oligodendrocyte apoptosis was not seen during the induction phase when axonal stress began, 

the presence of sub-lethal oligodendrocyte stress was also addressed. This was achieved through the 

detection of alpha B – crystalline (CryαB) - a small heat shock protein expressed by glial cells of the 

CNS. It is known to be up-regulated in oligodendrocytes in response to oxidative and heat-induced 

stress (Goldbaum and Richter-Landsberg, 2001). An increase in cryαB in oligodendrocytes has been 

observed in MS, both during the early stages of lesion development (Bajramovic et al., 1997) and in 

normal-appearing white matter associated with activation of microglia (van Noort et al., 2010). 

The expression of cryαB in different cell types in the optic nerves of BN rats was assessed with 

double immunostaining using different markers of glial cells. The majority of cryαB+ staining was 

associated with Olig2+ nuclei (Figure 4.13A) but not with NG2+ (Figure 4.13B, NG2+ indicated with an 

asterisk) indicating their presence in differentiated oligodendrocytes but not oligodendrocyte 

precursor cells (OPCs). As expected some of the cryαB staining co-localised with staining for glial 

fibrillary acidic protein (GFAP), the intermediate filament protein expressed in astrocytes in the CNS 

(Figure 4.13C). However, staining for cryαB was not detected in ED1+ microglia/macrophages (Figure 

4.13D).  
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Primary cultures of oligodendrocytes were used in order to investigate the expression of cryαB 

production under stress conditions. OPCs were isolated from SD rat pups at P2 and differentiated in 

vitro into mature oligodendrocytes.  

In order to induce oxidative stress in mature, MBP+ oligodendrocytes, cells were incubated for 3 

hours at 37°C with different concentrations of hydrogen peroxide (H2O2) and linsidomine (Sin-1, a NO 

donor). Following this, cells were washed with PBS and allowed to recover in their normal 

(differentiation) medium overnight. On the next day, cells were fixed and stained with antibodies 

against MBP and cryαB. For the control group, an identical procedure was followed but with 

omission of the agents of oxidative stress. This group contained oligodendrocytes with well-defined 

MBP+ processes, but with low or absent staining for cryαB in the perinuclear cell body (Figure 4. 

14A). Upon induction of oxidative stress, a change in the morphology of the oligodendrocyte 

Figure 4.13. Expression of cryαB in different populations of glial cells in the optic nerve. The expression of 
cryαB (indicated by arrows) was detected in oligodendrocytes (A, arrows; healthy optic nerve) and 
astrocytes (B, arrows; healthy) but not in OPCs (C, arrows; day 1 EAE) and microglia/macrophages (D, 
arrows; day 1 EAE). Scale bars 50 µm.   
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processes could be observed, with a punctate pattern of MBP staining of lower intensity (Figure 

4.14B – I). Increased perinuclear cryαB+ staining was detected in these cells. In cells treated with 

higher concentrations of ROS/RNS donors, cryαB+ staining could also be detected in the 

oligodendrocyte processes (Figure 4.14E, I). These results are in agreement with previous report of 

up-regulation of cryαB in cultured cortical oligodendrocytes under conditions of oxidative and heat-

induced stress (Goldbaum and Richter-Landsberg, 2001). 

 

 

 

 

 

4.2.6 Oligodendrocyte stress precedes the onset of AON 

In order to investigate the presence of oligodendrocyte stress during the course of AON, longitudinal 

optic nerve sections were stained with antibodies against cryαB and Olig2. In both healthy animals and 

Figure 4.14.  Oxidative stress leads to expression of cryαB in primary oligodendrocyte cultures. (A) 
Mature, MBP+ (green) oligodendrocyte does not show expression of cryαB under control conditions. 
Incubation of primary optic nerve oligodendrocytes with different concentrations of reactive oxygen (B, C, 
D, E) and nitrogen species (F, G, H, I) led to an increased expression of the heat shock protein cryαB (red, B 
– I, arrows). Scale bars 50 µm. 
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those from the induction phase of AON, Olig2+ oligodendrocytes were observed throughout the 

length of the optic nerve as having cryαB expression located as a small rim surrounding the nucleus. 

Interestingly, differences between the animal groups could be seen in the area of the ONH. While in 

healthy animals the cryαB staining pattern in the ONH was similar to that observed in the distal areas 

of the optic nerve (figure 4.15A), at day 10 p.i. a different pattern was detected. Oligodendrocytes in 

the ONH at day 10 p.i. had an increased intensity of perinuclear cryαB, with additional staining of the 

proximal segments of their processes (figure 4.15B). Upon development of clinical AON, an increased 

presence of oligodendrocyte stress was associated with inflammation in the vicinity of the ONH 

(figure 4.15C). Olig2+ cells with strong cryαB immunoreactivity were also detected along the length of 

the optic nerve, both within and on the borders of inflammatory lesions (figure 4.16B). In agreement 

with the observation of increased immunostaining for cryαB, Western blot analysis of optic nerve 

lysates revealed a two-fold increase of the cryαB protein starting from day 10 p.i. (figure 4.15D, E). 

 

 

 

 

Figure 4.15. Oligodendrocyte stress starts in the induction phase of AON. Representative images of the ONH 
stained with antibodies against Olig2 (green) and cryαB (red) in healthy (A), day 10 p.i. (B) and day 1 EAE (C) 
animals. (D) Increased CryαB protein levels are seen as the disease course progresses, as detected by Western 
blot (a single band was detected with a molecular weight of approximately 21 kDa). (E) Quantification of 
protein expression (relative to GAPDH) revealed a statistically significant increase of cryαB protein from day 
10 p.i. (* p < 0.01 compared to healthy and # p < 0.01 compared to sham, ANOVA). Scale bar 10 µm.  
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As previously mentioned, the expression of cryαB could also be detected at low levels in GFAP+ 

astrocytes in healthy animals. However, during the induction phase of AON the increased expression 

of cryαB was seen to be associated with Olig2+ cells rather than with GFAP staining. Similarly, at the 

onset of AON where staining of cryαB was detected within demyelinating lesions, this was seen 

mainly on oligodendrocytes (4.16A, B, Ci, Di), however it was also observed, although to a lesser 

extent, to be associated with GFAP staining (Figure 4.16Ci). The later stages of the clinical phase of 

AON are characterised by the marked presence of reactive gliosis indicated by hypertrophy of GFAP+ 

astrocytic processes. These reactive astrocytes were characterised by increased expression of cryαB 

as indicated by the overlapping staining pattern with GFAP (Figure 4.16D, Di). 
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Figure 4.16. Expression of cryαB in glial cells following the onset of the clinical phase of AON. (A) CryαB 
staining (red, indicated by arrows) can be detected in demyelinating lesions, indicated by the lack of MBP 
staining (green). (B) CryαB+ oligodendrocytes (arrows) are often found at the edges of lesion (lesion 
border indicated with a dashed line; cryαB – red, Olig2 - green). (C, Ci) Double staining with GFAP (green) 
at the onset of the clinical phase of AON reveals that a majority of cryαB+ staining is not associated with 
astrocytes (Ci, arrows) although some co-localization of GFAP and cryαB could be detected (Ci, asterisk). 
(D, Di) With the progression of the disease (day 4 EAE) cryαB positive staining can be detected in both 
oligodendrocytes (Di, arrows) and in hypertrophic astrocytic processes (Di, indicated by co-localization of 
GFAP and cryαB staining; GFAP – green, cryαB - red). Scale bars 50 µm.  
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4.3 Disruption of axonal domain architecture correlates with 

activated microglia in the late induction phase of AON 

The induction phase of AON is characterised by the absence of parenchymal infiltration of immune 

cells but an increase in the numbers of residential activated microglia. These cells have a specific 

spatial distribution – increased numbers of ED1+ microglia are present in the area of the ONH and 

their numbers decrease with increasing distance from this region (Fairless et al., 2012). Double 

staining with Caspr and ED1 antibodies was performed on optic nerve sections from day 10 p.i. in 

order to investigate whether the areas of axonal stress correlate with the activation of residential 

microglia. Images were acquired using the confocal microscope at set positions along the length of 

the optic nerve (Figure 4.17A) and quantification of ED1+ microglia and paranodal measurements 

were performed.  

The distribution pattern of ED1+ microglia was similar to one previously reported (Fairless et al., 

2012) – the larger numbers of microglial cells were observed in the vicinity of the ONH and decreased 

with increasing distance in the late induction phase of AON (day 10 p.i.). An identical pattern was 

observed for the distribution of Caspr+ paranodal lengths – paranodal domains in the vicinity of the 

ONH (1 mm from the ONH) were more elongated compared to ones in the distal part of the optic 

nerve (Figure 4.17B). There was a positive linear correlation between the distribution of ED1+ 

microglia and the lengths of Caspr+ paranodes (Figure 4.17C; R = 0.71, p < 0.001). 
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Since the correlation of paranodal length and the density of activated microglia might just reflect 

their common relationship with the distance from the ON-H, it was next investigated whether there 

was actually a more direct relationship between these two observations by examining paranodal 

domains in the close vicinity of microglia in the late induction phase of AON (at day 10 p.i.; Figure 

4.18). The length of paranodal domains were measured within a 20 µm radius of ED1+ cells and 

compared to the length of paranodal domains not associated with activated microglia. It could not be 

excluded that there might be activated microglia within 20 µm distance in the z-axis but the use of 

confocal microscopy and generation of 8 µm thick z-stack images could, at least, in part cover this 

possibility. There was a statistically significant difference between the lengths of paranodes 

associated with (3.5 ± 0.02 µm, lengths ranging from 1.72 to 7.11 µm) and independent from ED1+ 

microglia (2.87 ± 0.02 µm, 1.6 to 5.56 µm).  

Figure 4.17. Disruption of paranodal domains correlates with activation of microglia in the late 
induction phase of AON. (A) Quantification of ED1+ microglia and disruption of paranodal domains was 
performed at set positions along the length of the optic nerve at day 10 p.i.. (B) The distribution of 
microglia and axonal domain lengths are observed with the same pattern, that is decreasing with 
increased distance from the ON-H. (C) A positive correlation between microglia activation and axonal 
domain lengths was observed (R = 0.707; n = 53 images analysed from 9 different day 10 p.i. optic 
nerves). 
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The observed correlation of activated microglia and elongated paranodes may reflect a disruptive 

effect of the activated microglia on the paranodes. For example, activated microglia, along with 

infiltrating macrophages, are known to be the main source of ROS/RNS within the inflammatory 

lesions in MS and EAE which may disturb local axonal function.   

In order to determine whether the observed axonal stress and paranodal elongation in the induction 

phase of AON is mediated by the production of ROS/RNS by activated microglial cells, a treatment 

study with ROS/RNS scavengers was performed. The treatment consisted of a cocktail of 3 different 

ROS/RNS scavengers (FeTPPS, EUK 134 and PBN) previously shown to be able to prevent axonal 

injury in the EAE model (Nikic et al., 2011). The treatment was administered by daily injection of the 

cocktail (or vehicle in the control group) starting from day 5 p.i., the time-point when increased 

numbers of activated microglia are first detected (Fairless et al., 2012). The treatment was 

terminated at day 10 p.i. and optic nerves were examined for the presence of axonal stress (number 

of npNF+ axons and the integrity of paranodal domains). In the control group, the extent of axonal 

stress was similar to that previously detected at day 10 p.i. with similar npNF levels (423.31 ± 35.69 

SMI32+ axons/mm2 in treatment group vs. 394.06 ± 31.54 SMI32+ axons/mm2 at day 10 p.i.) and 

elongation of paranodal domains (average length 3.71 ± 0.17 µm, ranging from 1.99 to 6.39 µm vs. 

3.58 ± 0.07 μm at day 10 p.i.). Application of ROS/RNS scavengers failed to prevent axonal stress – 

both the disruption of paranodal domains (3.69 ± 0.11 µm, ranging from 1.87 to 7.84 µm) and the 

presence of npNF in the axons (442.68 ± 33.32 SMI32+ axons/mm2) was observed suggesting that 

these processes are not mediated by the production of RON/RNS species by activated microglia in 

the induction phase of AON (Figure 4.19).  

Figure 4.18. Elongated paranodal domains are located in the vicinity of activated microglia in the late 
induction phase of AON. (A, Ai) The length of paranodal domains was measured within a 20 µm radii of 
ED1+ cells (Ai, indicated with white dashed line).  (B) Paranodal domains in the vicinity of microglia had 
significantly elongated profiles when compared to ones not associated with ED1+ positive cells (* p < 0.01, 
Mann-Whitney Rank Sum Test,  n = 1209 paranodes per group, from 6 different day 10 p.i. animals). Scale 
bar 50 µm. 
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4.4 Low levels of anti-MOG autoantibodies are sufficient to induce 

oligodendrocyte stress in the ONH 

In order to determine the cause of axonal and glial stress in the optic nerve during the induction 

phase of AON, it was next considered whether circulating antibodies could play a role. 

Autoantibodies play a role in the pathology of MS as their presence, together with complement 

deposition, is a hallmark of type II active demyelinating lesions (Lucchinetti et al., 2000). This 

phenomenon is also reflected in some animal models of EAE, particularly MOG-induced EAE in BN 

rats. In this model, extensive demyelination in the CNS, particularly in the spinal cords and the optic 

nerve, is accompanied with increased titre of autoantibodies in the serum and their deposition within 

demyelinating lesions in a similar manner as described in active MS lesions (Stefferl et al. 1999). The 

presence of anti-MOG antibodies in the serum is detected already in the late induction phase of the 

disease (day 10 p.i.) in MOG-immunised BN rats (Fairless et al., 2012). In a similar manner, the 

deposition of IgG in the optic nerve precedes the onset of the inflammatory demyelination. At this 

time point, deposition of IgG could be observed in the ONH (Fairless et al., 2012), the area 

characterised with the presence of early oligodendrocyte stress (Figure 4.15B). With the onset of 

AON, strong cryαB immunoreactivity could be detected in newly forming lesions characterised by 

antibody deposition and very little demyelination (Figure 4.20). This suggests that anti-MOG 

antibodies could have a role in the early oligodendrocyte stress observed in the induction phase of 

AON. 

Figure 4.19. Axonal stress in the induction phase of AON is not mediated by ROS/RNS. Scavenging of 
ROS/RNS failed to prevent disruption of paranodal domains (A) and the presence of npNF in axons (B) in the 
induction phase of AON (* p < 0.05 and B, ** p < 0.01 compared to healthy, ANOVA; n = 4 animals per 
treatment group).  
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In order to examine a possible role of autoantibodies in the early cellular stress during the induction 

phase of AON, the transfer of serum from MOG-immunised into naïve animals was performed. 

Successful transfer of autoantibodies via serum transfer was confirmed by ELISA for detection of anti-

MOG antibodies in recipient animals. Although anti-MOG antibodies persisted for up to 5 days pst 

(when animals were sacrificed), their levels were found to be considerably lower than those in the 

MOG-immunised donor animals (Figure 4.21G). Nevertheless, deposition of IgG could be observed in 

the optic nerve head of animals receiving serum from day 10 p.i. and EAE animals (Figure 4.21E and F 

respectively). Deposition of IgG could not be observed in the optic nerves of animals that received 

serum from the sham immunised animals (Figure 4.21D).  

 

Figure 4.20.  Deposition of autoantibodies is observed in areas of demyelination and glial stress following 
the onset of AON. Sections stained for the deposition of antibody and cryαB (A, Ai) show the presence of 
glial stress (Ai arrows, indicated by cryαB+ staining, green). Staining of a serial section with MBP (B, Bi; 
green) and antibody deposition (red) demonstrated this area to be a newly forming lesion (Ai and Bi, star) 
characterised by IgG deposition but little demyelination (Bi, arrow). Areas of demyelination within 
inflammatory lesions are characterised with marked antibody deposition (B arrows). Scale bars 50 µm. 
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The recipient animals (both those receiving day 10 p.i. or EAE serum) failed to show neurological 

symptoms characteristic for the clinical phase of the disease (limb weakness/paralysis). Upon 

investigating optic nerves there were no characteristic signs for the presence of AON – i.e. no 

myelin/axonal loss or infiltration of macrophages in the tissue of recipient animals (data not shown). 

Figure 4.21. Serum transfer from MOG-immunised animals leads to the presence of anti-MOG antibodies 
in the serum and IgG deposition in the area of the ONH in naïve animals. Example images of the ONH from 
healthy (A), day 10 p.i. (B) and day 1 of EAE animals stained for IgG deposition (indicated by arrows). (D) 
There was no antibody deposition in the ONH of animals that received serum from sham-immunised 
animals. Transfer of serum from day 10 p.i. and animals from the onset of the clinical phase of EAE into 
naïve animals led to IgG deposition in the ONH (E and F, respectively). (G) Anti-MOG antibodies persist in 
the serum of recipient animals up to 5 days pst from both day 10 p.i. (green bars) and EAE animals (orange 
bars). It should be noted that levels of anti-MOG antibodies in the serum of recipient animals are 
considerably lower than the ones found in MOG-immunised donors, as indicated by the 10-fold difference 
in sera dilution used to detect them by ELISA – serum dilution for MOG-immunised animals was 1:100,000 
and for the recipient animals was 1:10,000. Scale bars 50 µm.   
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The presence of axonal stress in recipient animals was investigated by examining the integrity of 

axonal domains and the presence of npNF in the ONH (Figure 4.22A - C). The average length of nodal 

(1.32 ± 0.03 µm) and paranodal (3.4 ± 0.07 µm) domains in animals that received serum from day 10 

p.i. animals did not significantly differ from that observed in healthy animals (nodal length 1.27 ± 

0.02 μm; paranodal length 3.23 ± 0.08 μm) or those receiving sham serum (nodal length 1.19 ± 0.05 

μm; paranodal length 3.07 ± 0.06 μm). The same was observed in animals that received the EAE 

serum – the average length of the nodal domain was 1.34 ± 0.04 μm and the average length of the 

paranodal domain was 3.49 ± 0.09 μm. Similarly,  when the presence of npNF was examined – there 

was no statistical differences in the number of  SMI32+ axons in animals that received day 10 p.i. 

(228.51 ± 27.84 SMI32+ axons/mm2) or EAE (202.66 ± 8.79 SMI32+ axons/mm2) serum when 

compared to healthy (176.53 ± 23.14 SMI32+ axons/mm2) or sham recipients (122.25 ± 27.73 SMI32+ 

axons/mm2). 

Considering the observed deposition of IgG in the ONH of recipient animals, the presence of 

oligodendrocyte stress was investigated with double staining against Olig2 and cryαB. The intensity 

of cryαB staining associated with Olig2+ nuclei was stronger in animals that received serum from 

MOG-immunised animals (both day 10 p.i. and EAE serum, Figure 4.22E and F, respectively) when 

compared with animals that received sham serum (Figure 4.22D). This observation suggests that the 

low anti-MOG antibody levels achieved could be sufficient to induce oligodendrocyte stress similar to 

that observed in the induction phase of AON. This is perhaps explained by the fact that the auto-

antigen being targeted by the antibodies is present on oligodendrocytes. However, this stress does 

not then appear to be transmitted to the axons, or to result in structural changes in axonal domains. 
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4.5 Primary retinal insult mimics the axonal stress characteristic of 

the induction phase of AON 

In order to determine whether a primary retinal pathology, such as the one observed early in the 

induction phase of AON (Fairless et al., 2010) contributes to early signs of stress in axonal and 

oligodendroglial compartments observed in this study, a model of retinal insult by intravitreal 

injection of glutamate was employed. Seven days following the injection, animals were sacrificed and 

optic nerves and retinas were examined for the presence of pathology.  

The intravitreal injection of glutamate led to a retinal pathology resembling that observed during the 

induction phase of AON (Fairless et al., 2012). Seven days following the insult, TUNEL positive cells 

could be observed in both RGC- and inner nuclear cell layers (Figure 4.23.B). This was accompanied 

by a significant increase in the numbers of ED1+ microglia (Figure 4.23D and G). An increase in 

activated microglia could also be observed in the optic nerve compartment. A significant increase in 

Figure 4.22. Signs of oligodendroglial, but not axonal, stress detected following the transfer of serum 
from MOG-immunised animals. Transfer of serum from MOG-immunised animals was insufficient to 
induce axonal stress characteristic for AON. There was no difference in the presence of npNF (A) or in the 
integrity of nodal (B) or paranodal (C) domains following the serum transfer in recipient animals when 
compared to healthy animals (n = 6 healthy, 2 sham serum recipients, 3 day 10 p.i. serum recipients and 4 
EAE serum recipients). Representative images of the optic nerve head stained with cryαB (red) and Olig2 
(green) antibodies in animals that received sham (D), day 10 p.i. (E) and EAE (F) serum (day 5 pst). Increased 
intensity of cryαB staining associated with oligodendrocytes could be detected in animals that received 
serum from both day 10 p.i. and animals from the clinical phase of disease (E,F indicated by arrows) when 
compared to animals that received sera from sham-immunised animals. Scale bar 50 µm.  
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ED1+ microglia is observed in the ONH (Figure 4.23F and H) and the proximal segments of the nerve 

(Figure 4.23H). Except for microglial activation, no macroscopic signs of optic nerve injury, such as 

demyelination and axonal swellings/transections, could be detected following the primary retinal 

insult (data not shown). 

 

 

 

 

 

In order to investigate whether the observed retinal pathology is responsible for the axonal stress 

observed in the late induction phase of AON, optic nerve sections were stained with antibodies 

Figure 4.23. Microglial activation and cellular apoptosis are detected following intravitreal injection of 
glutamate. Representative images of TUNEL assay (green) in healthy (A) and in the retina following the 
intravitreal injection of glutamate (B, arrows indicate presence of TUNEL+ cells in the RGC and the inner 
nuclear layer of the retina). Representative images of retinas stained with ED1 antibody (red) for detection 
of activated microglia in healthy (C) and in retina following glutamate injection (D; arrows indicate ED1+ 
cells both in C and D). ONH sections from healthy (E) and animals following injection of glutamate (F) 
stained with ED1 antibody. Intravitreal injection of glutamate led to statistically significant increase in ED1+ 
cells both in retina (G) and the proximal part of optic nerve (H; * p < 0.05 and ** < 0.01 compared to 
healthy, student’s t-test; n = 6 retinas/optic nerves per group). Scale bars 50 µm.   
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against Caspr and npNF. Measurement of Caspr+ structures following the intravitreal injections 

revealed a disruption in the paronodal domains in the same manner as observed at day 10 post MOG 

immunisation (average paranodal length 3.57 ± 0.06 µm; n = 2793 Caspr+ paranodes, p = 0.009 

compared to healthy). Similar results were obtained by quantification of npNF. There was a 

significant increase in the number of SMI32+ axons (367.75 ± 33.69 SMI32+ axons/mm2, p < 0.001 

compared to healthy), being similar to that observed at day 10 post MOG immunisation. Although 

glutamate injection was successful in mimicking the axonal stress characteristic for the induction 

phase of AON, it did not lead to the presence of stress in oligodendrocytes, as observed by 

immunostaining of optic nerves with cryαB (Figure 4.24D) 

Taken together, the intravitreal injection experiments showed that a primary retinal insult was 

sufficient to induce stress in the axonal compartment. This suggests that the RGC loss and retinal 

changes observed during the early induction phase might be sufficient to induce axonal disruptions 

observed in the late induction phase of AON. 

 

 

 

 

 

Figure 4.24. Primary retinal insult leads to axonal stress in the optic nerve. Intravitreal injection of 
glutamate leads to an increase of npNF (A) and disruption in paranodal domains (B) in the axons of the 
proximal part of the optic nerve in the same manner as observed 10 days post MOG immunisation (* p < 
0.01, ANOVA; n = 6 animals per group). However, intravitreal glutamate injection did not cause the 
presence of oligodendrocyte stress as observed by comparing ONH sections from healthy (C) and glutamate 
injected (D) animals stained with antibodies against cryαB (red) and Olig2 (green). Scale bars 50 µm. 
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4.6 Summary 

Collectively, data presented in this thesis provide evidence of both a functional and pathological 

disruption of the optic nerve compartment during the course of AON in MOG-immunised BN rats. 

During the induction phase of the disease, gross pathological changes (such as demyelination and 

axonal loss) in the optic nerve were not detected. However impairment in visual function, observed 

by the decrease in visual acuity by measurement of pVEPs, is detected. This impairment is timed with 

disruptions in axonal domains (nodes of Ranvier and paranodal domains) involved in saltatory 

conduction of AP along the axon. Further evidence of stress was observed in both compartments of 

paranodal axon-glia junctions. In the axonal compartment, an increase of npNF (a stress marker for 

myelinated axons) was detected and found to correlate with disrupted paranodal domains. 

Disruption of the parnodal domain is further found to correlate with the presence of activated 

microglia, particularly in the area of the ONH. In order to determine if microglia mediate these 

disruptions by the secretion of ROS/RNS, a treatment study with a cocktail of scavengers of these 

species was performed. However, the treatment failed to prevent signs of axonal stress suggesting a 

different role for microglia during the induction phase of the disease. In the oligodendroglial 

compartment, evidence of stress was observed by increased production of cryαB, a small heat shock 

protein involved in the glial stress response. Oligodendrocyte stress was particularly evident in the 

ONH, the same area which was characterised by greater disruption of axonal domains, increased 

numbers of activated microglia and deposition of auto-antibodies during the induction phase of the 

disease. 

Following the onset of the clinical disease phase animals were characterised with greater 

impairments in visual functions observed by both aberrant fVEP responses and an almost complete 

loss of visual acuity (as assessed by pVEP). This was accompanied by the presence of inflammatory 

demyelination and increasing signs of axonal injury in optic nerves. Greater disruption of axonal 

domains and further increase in npNF are observed at this time point. In addition to increased 

expression of cryαB, a portion of oligodendrocytes associated with inflammatory lesions underwent 

the process of apoptosis. 

In order to investigate the origins of observed axonal and oligodendroglial stress in the late induction 

phase two different approaches were made. Firstly, the oligodendrocyte compartment was targeted 

by auto-antibodies through the transfer of sera from MOG-immunised into naïve animals. This led to 

deposition of auto-antibodies and the presence of oligodendrocyte stress in the ONH, in a similar 

manner to that observed in the late induction phase. Secondly, a model of primary retinal injury by 

intravitreal injection of glutamate was performed and successfully mimicked aspects of the retinal 
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pathology characteristic of the early induction phase (previously reported in Fairless et al., 2012). 

This led to the presence of axonal stress in optic nerves in the similar extent to one observed in the 

late induction phase in MOG-immunised animals. Therefore, it appears that the stress induced from 

either the oligodendrocyte or the neuronal (axonal) compartments is not transmitted to the other 

compartment, suggesting that both events might be occurring simultaneously in the disease model 

of AON. 
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5 Discussion 

The aim of this study was to characterise axonal disruptions during the course of AON in order to 

gain insight into mechanisms of neurodegeneration and functional deficits of the visual system 

previously reported in this model (Meyer et al., 2001; Hobom et al., 2004; Fairless et al., 2012; 

Hoffmann et al., 2013). This study expands on these previous reports by focusing on the optic nerve 

compartment during the induction phase of the disease and by providing a more detailed 

histopathological examination, particularly focusing on the axonal domains involved in signal 

propagation. By combining functional testing (VEPs) and histopathology it was possible to gain 

further insight into structural correlates of visual impairments associated with optic neuritis. This 

could be of an importance in human studies where monitoring of optic nerve pathology is limited to 

in vivo imaging (such as MRI) which cannot provide any precise information about the structure of  

axonal and myelin compartments. In the present study, the observed disruption of nodal and 

paranodal domains was seen to correlate with timing of the onset of visual impairments in the late 

induction phase of the disease. This provides a rare report (to the author’s knowledge) on how the 

integrity of axonal domains reflects on visual functions during optic neuritis. In addition to early 

changes in axons, the presence of stress was also observed in oligodendrocytes, implying that both 

compartments of the paranodal axon-glia junction are compromised prior to the onset of 

inflammatory demyelination. Further experiments showed that these compartments could be 

targeted independently during the induction phase of AON, by mechanisms involving a primary 

retinal insult and the actions of the humoral immune response. Altogether, the pathological image 

observed in the induction phase of AON shares great similarities with the pathology of NAWM in MS, 

in terms of both axonal (Howell et al., 2010) and oligodendroglial stress (Sinclair et al., 2005; Zeis et 

al., 2008; van Noort et al., 2010), further suggesting that the model of AON is useful for studying 

degenerative processes in MS.  

 

5.1 AON is associated with impairments in visual function 

Measurement of VEPs is a non-invasive technique used in the diagnosis and monitoring of different 

disorders of the visual pathway. VEPs are electrical potentials generated in the visual cortex in 

response to visual stimuli (Arroyo et al., 1997; Ridder and Nusinowitz, 2006). They provide 

information about the signal conduction from the retina to the cortex which gives an estimation of 

the integrity of the visual (retino-cortical) pathway. Abnormalities in the VEP signal imply the 

presence of a pathology in the visual pathway. As such, measurements of VEPs have been used in the 
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MS field for investigating the presence of the optic neuritis for the past 40 years (Halliday et al., 

1972; Halliday et al., 1973). The increase in VEP signal latency is considered to result from 

demyelination which leads to disruption of fast saltatory conduction in axons (You et al., 2011). A 

decrease in the VEP amplitude is considered to be the functional correlate of axonal injury (You et al., 

2011; You et al., 2012). Following an episode of optic neuritis, aberrant VEP responses and decreased 

visual acuity usually persist for up to one year, with a gradual recovery occurring. During the recovery 

phase, a shortening of VEP latency is suggestive of regenerative processes (remyelination) in the 

optic nerve (Brusa et al., 1999; Brusa et al., 2001; Klistorner et al., 2007). Interestingly, altered VEP 

responses and decreases in visual acuity were also found in some MS patients independent of 

diagnosis with optic neuritis (Sanders et al., 1985; Van Diemen et al., 1992; Sisto et al., 2005). This 

could support the hypothesis that diffuse degenerative processes are present in MS within the visual 

pathway independent of the classical inflammation (such as the defining characteristics of optic 

neuritis). 

The results of fVEP measurements presented in this thesis were found to be in agreement with 

previous studies (Meyer et al., 2001; Hobom et al., 2004). From the onset of the clinical phase of the 

disease there was an approximately 2-fold increase in the latency and a similar sized decrease in the 

signal amplitude (Figure 4.2C, D). The immuno/histopathological examination of the optic nerve 

showed the presence of extensive demyelinating lesions (Figure 4.4Fi - Giii) and the reduction in 

axonal densities (Figure 4.6C) along the length of the optic nerve at the onset of the disease. These 

are considered to be general histopathological correlates of the observed aberrant fVEPs. From the 

onset of the clinical phase, when a decrease in fVEP amplitude is detected, there is a marked 

presence of axonal injury, revealed by the presence of many SMI32+ axonal ovoids indicative of 

axonal transections (Figure 4.5C, Ci), and a reduction in axonal density (Figure 4.6C). The 

inflammatory nature of lesions can also contribute to disruption in visual functions. As it was 

previously mentioned, inflammatory mediators, such as NO, are shown to be able to cause 

conduction block and to interfere with normal signal propagation in axons (Redford et al., 1997; 

Smith et al., 2001). Following the onset of the clinical phase of AON, extensive macrophage 

infiltration is detected within the lesions in the optic nerve and their presence correlates with both 

demyelination and axonal injury (Figure 4.5Ai, Bi). A subset of these cells was also positive for iNOS, 

an enzyme responsible for the production of NO (author’s own observation, data not shown). 

Despite the early onset of RGC death during the induction phase, there is no macroscopic evidence of 

optic nerve pathology at this time point (Fairless et al., 2012). Optic nerve axons are still fully 

myelinated and a reduction in their density is not observed (Figure 4.4Di – Eiii; Figure 4.6B). It could 

be possible that following the loss of cell bodies, degenerative processes in the axons are initiated 
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but might take some time to translate into their complete loss. This notion could be supported by 

ultrastructural signs of axonal injury that are observed already during the induction phase of disease, 

prior to axonal loss (Fairless et al., 2012). Also, studies of Wallerian degeneration (degeneration of 

the distal axonal segments following their separation from the cell body) show that the process of 

anterograde axonal degeneration can take several days to develop. In one such study it was shown 

that following an intra-retinal axotomy with laser induced injury, marked reduction in axonal density 

was observed only starting from seven days following the injury (Kanamori et al., 2012). It should be 

also noted that quantification of axonal loss by histological staining (such as Bielschowsky’s sliver 

staining used in Fairless et al. 2012) might not be sensitive enough to detect a subtle reduction in 

axonal numbers that could be present already during the induction phase. The absence of major 

axonal pathology during the induction phase was reflected in the preservation of visual functions 

assessed by fVEP. The amplitude (Figure 4.2C) and the latency (Figure 4.2D) of the signal were not 

altered either in in the early (day 5 p.i.) or in the later stage (day 10 p.i.) of the induction phase. This 

supports the notion that demyelination and axonal loss are the structural correlates of the altered 

fVEP response observed by increased latency and decreased signal amplitude (You et al., 2011).          

Even though the visual evoked response to flash stimuli remained unchanged until the onset of the 

clinical phase of AON, the decrease of visual acuity, observed by measurement of pVEPs, can already 

be detected in the late induction phase (at day 10 p.i.; Figure 4.3B). pVEPs are sensitive to contrast 

modulation, refraction and changes in the spatial frequency allowing more detailed information of 

the visual acuity to be obtained (Onofrj et al., 1982; Ridder and Nusinowitz, 2006). Measurement of 

pVEPs is considered to be a more sensitive technique for assessing changes in visual function 

associated with MS when compared to fVEPs (Halliday and Mushin, 1980). This can also observed in 

the present study by comparing results from pVEP and fVEP measurements at the onset of the 

clinical phase of AON. Although at this time point the shape of the response was altered, all animals 

were able to produce a measurable response when presented with flash stimuli. This was not the 

case with the pVEP recordings which revealed almost a complete loss of visual acuity (Figure 4.3B). 

This implies that pVEPs are more sensitive to pathological changes and that they require a more 

preserved integrity of the visual system in order to produce measurable response. This is opposed to 

fVEPs which could still be detected (although with an altered signal amplitude and latency) in the 

presence of demyelination and axonal injury/loss. Therefore the decreased visual acuity observed in 

the late induction phase of AON, can reflect the presence of more subtle pathological changes in the 

visual pathway. Such changes have been observed at this time point by ultrastructural changes in 

optic nerve axons (Fairless et al., 2012) and by disruption of axonal domains observed in this study 

(further discussed in the chapter 5.2). Although the loss of RGCs during the induction phase of AON 

did not affect the response to flash stimulus it cannot be excluded as the pathological correlate of 
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the observed decrease in visual acuity assessed by pVEP recordings. A similar finding was reported in 

the mouse model of optic neuritis (Matsunaga et al., 2012). In this study, the decrease in visual acuity 

(assessed by optokinetic head tracking) was observed prior to inflammatory demyelination of the 

optic nerve and an increase in the fVEP signal latency. The authors suggested that partial disruption 

of the axonal integrity (observed by irregular patterns of neurofilament staining) and activation of 

microglial cells in the optic nerve could be the pathological correlates for the early decrease in visual 

acuity, although it should be noted that they did not investigate a possible involvement of retinal 

pathology. 

 

5.2 Disruption of axonal domains as a structural correlate of 

impaired visual functions in AON 

Previous studies have shown a correlation between impaired visual function and optic nerve 

pathology (characterised by demyelination and axonal loss) in different models of optic neuritis 

(Hobom et al., 2004; Lidster et al., 2013; You et al., 2011; Matsunaga et al., 2012; Aranda et al., 

2015). The aim of this study was to closer investigate the integrity of axonal domains involved in 

signal conduction and how it corresponds to the impairment in visual functions throughout the 

course of AON. Proper organization of axonal domains is necessary for efficient saltatory conduction 

(Salzer 2003). This was confirmed by numerous studies with genetically modified animals deficient in 

nodal and paranodal protein constituents. These animals were characterised as having slower nerve 

conduction, ataxia, paresis and severe neurological deficits (Bhat et al., 2001; Boyle et al., 2001; 

Sherman et al., 2005; Zonta et al., 2011).  

In the present study, a decrease in visual function, assessed by recording of fVEPs, was observed 

from the onset of the clinical phase of AON. At this time point, a marked decrease in the number of 

paranodal domains was detected by immuno-staining with an antibody against Caspr (50% reduction 

of numbers observed in healthy animals; Figure 4.7F). Furthermore, a significant decrease in the 

protein levels of both Caspr and Contactin-1 was observed at the same time point by Western 

blotting (Figure 4.8). This phenomenon cannot be solely explained by the reported loss of axons at 

the beginning of the clinical disease phase. At this time point, the extent of axonal loss does not 

reflect the extent of paranodal loss since only a 15% reduction in axonal density was detected at day 

1 of EAE (Fairless et al., 2012). In fact, the extent of paranodal loss was found to correspond to the 

extent of demyelination of the optic nerve (50% demyelination was reported on day 1 of EAE, Fairless 

et al., 2012). This suggests that the loss of myelin, and therefore the disruption of the axo-glial 
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contact at the paranodal domain, could play a role in downregulation of the axonal Caspr/Contactin-

1 complex. This hypothesis was previously tested by experiments with genetically modified animals 

where inducible ablation of Nfasc 155 (the oligodendroglial counterpart of the axo-glial junction) in 

adult mice led to a gradual decrease in Caspr immunoreactivity in the paranodal region (Pillai et al., 

2009).              

Paranodal domains are considered to act as a physical barrier separating and inhibiting the lateral 

diffusion of neighbouring nodal and juxtaparanodal components (Rios et al., 2003). This suggests that 

the absence of paranodal domains would lead to a diffuse distribution of nodal components, such as 

NaVs, along the axons, as has been previously reported in both MS and EAE lesions. NaV, but also 

NCX, are found to be diffusely distributed along demyelinated axons of optic nerves and spinal cords 

in autopsy tissue from SPMS (Craner et al., 2004a). A similar observation was made upon 

investigation of optic nerves (Craner et al., 2003) and spinal cord tissue (Craner et al., 2004b) 

following the onset of demyelination in the mouse model of EAE. In the present study, following the 

onset of the clinical phase of AON and demyelination in the optic nerve, paranodal domains were lost 

and NaV were dispersed along demyelinated axons (Figure 4.9I and J), reflecting previous 

observations from MS tissue and mouse EAE model reported by Craner and colleagues.  

Disruption of axonal domains is considered to be an initiating step in the process of demyelination in 

MS (discussed in chapter 1.7.3). Disrupted axonal domains, characterized by elongated staining 

patterns of nodal and paranodal components, were detected on the edge of lesions in axons with still 

preserved myelin sheaths (Wolswijk and Balesar, 2003; Coman et al., 2006; Howell et al., 2006), and 

also in the NAWM in the absence of inflammatory demyelination (Howell et al., 2010). Upon 

investigation of axonal domains throughout the course of AON it was discovered that disruption of 

these domains is an early event, preceding inflammatory demyelination (Figure 4.9B). Both nodal and 

paranodal domains were found with elongated profiles already at the late induction phase (Figure 

4.9G and H). Ultrastructural examination of these axonal domains revealed alterations in the 

paranodal domains as observed by the detachment of oligodendroglial paranodal loops from axons 

(Figure 4.9E). Similar pathological features were observed at the onset of the clinical phase of AON. 

On the lesion edges, axonal domains had elongated profiles similar to those observed in the late 

induction phase of AON (Figure 4.9C). Detachment of paranodal myelinating loops of 

oligodendrocytes and unravelling of the myelin sheath was observed through examination of the 

ultrastructure of such axons with electron microscopy (Figure 4.9F). In contrast, in the lesion centre, 

complete disruption of axonal domains was characterised by the absence of paranodes and diffuse 

NaV expression (Figure 4.10I and J). It should be noted that in axons with disrupted axonal domains 

(both in the late induction phase and with the onset of the clinical phase of AON) there was no 
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overlapping staining pattern observed for Caspr and Nav. This implies that the elongation of the 

nodal domain (diffusion of NaV) is secondary to disruption of the paranodal domain. These findings 

reflect the early pathological events described in MS lesions and imply that similar pathological 

mechanisms are employed in the model of AON. The nature of these findings further strengthens the 

hypothesis that the disruption of axonal domains is an early pathological event preceding 

demyelination.     

Proper organization of axonal domains gives rise to the specific electrical properties of the axonal 

membrane necessary for fast and energetically efficient saltatory conduction (Salzer, 2003). Dense 

clustering of NaV in the nodal region allows for energetically efficient propagation of APs since it 

allows the necessary number of Na+ ions for membrane depolarisation to be achieved in a smaller 

area of axonal membrane, without having to depolarise larger areas (requiring more Na+). 

Lengthening of the nodal domain increases the number of Na+ ions required for depolarisation and 

imposes a greater energy demand for their clearance (discussed in chapter 1.7.2). By employing 

mathematical modelling of the axonal membrane it was shown that an increase in the nodal surface 

would lead to an increase in nodal electrical capacitance which would in turn affect the signal 

conduction by decreasing the amplitude of the AP and conduction velocity of such axons (Babbs and 

Shi, 2013). A detrimental effect of nodal elongation on signal conduction has been observed in 

experimental allergic neuritis (EAN), an animal model used for studying Guillain–Barre syndrome, a 

spectrum of acute peripheral inflammatory neuropathies (Lonigro and Deavux, 2009). Disruption of 

paranodal domains in EAN also leads to a rearrangement in the juxtaparanodal region as observed by 

displacement of KV in the paranodal region. Although this issue was not addressed in the present 

study, it was reported under similar pathological conditions both in MS and EAE (Howell et al., 2006; 

Howell et al., 2010). Also, detachment of myelinating loops in the paranodal region could lead to 

more current flow underneath the myelin sheath which could lead to an aberrant activation of KV 

resulting in impaired AP propagation (Arancibia-Carcamo and Attwell, 2014). Considering that 

morphological changes in axonal domains accompanying these mechanisms are detected during the 

course of AON, it is plausible that they could be involved in the observed disruption of the visual 

function. Given that measurement of fVEPs provides information about signal conductance along the 

visual pathway which consists of great numbers of optic nerve axons, it is not surprising that subtle 

disruptions, observed only in a portion of axons at the late induction phase of AON, may not be 

sufficient to alter fVEP responses at the given time point. Following the onset of the clinical phase of 

AON, the frequency of disrupted axonal domains drastically increases which would, together with 

diffuse NaV on demyelinated axons, axonal loss and inflammation-induced conduction block, 

contribute to aberrant conduction observed by measurement of fVEPs. Although these subtle, “pre-

demyelinating” changes in the axonal domains do not lead to alterations in the fVEP response, they 
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could contribute to decreased visual acuity during the induction phase of AON, as assessed by a more 

sensitive technique (pVEP). 

 

5.3 Disruption of cytoskeleton as a marker of axonal stress in AON 

As previously discussed, the induction phase of AON lacks the signs of the major optic nerve 

pathology which appear later (discussed in chapter 5.1; Fairless et al., 2012). Upon more detailed 

examination of the optic nerve axons by employing electron microscopy, subtle alterations in their 

morphology were detected such as shrunken axons and vacuoles in the peri-axonal space despite 

normal appearing myelin sheaths (Fairless et al., 2012). Both this finding and the axon-glial paranodal 

disruption observed in the present study imply that there is a disrupted contact between axons and 

oligodendrocytes prior to the onset of demyelination. During development, under normal 

physiological conditions, myelination of axons by oligodendrocytes is required for the proper 

organization of the axonal cytoskeletal structure and undisrupted axonal transport. This is observed 

in different studies with dys-myelinating mutant animals which are characterised by disrupted 

organization of the axonal cytoskeleton and impairment in axonal transport (Griffiths et al., 1998; 

Brady et al., 1999; Lappe-Siefke et al., 2003).  

Neurofilaments (NF) belong to the family of intermediate filaments and together with the 

microtubule system and microfilaments (actin network) they comprise the cytoskeleton of neurons. 

NFs are heteropolymers comprised of three different subunits (neurofilament triplets), categorised 

by their molecular weights – heavy chain NF (NFH, 180 – 200 kDa), medium chain NF (NFM, 130 – 

170 kDa) and light chain NF (NFL, 60 – 70 kDa; Fliegner and Liem, 1991). Upon myelination, the 

axonal calibre increases as a result of heavy phosphorylation of neurofilament chains (particularly 

NFH) on many KSP (Ser-Lys-Pro) repeats present on their tail domains (Sanchez et al., 1996). Increase 

of axon calibre leads to an increase in conduction velocity (Arbuthnott et al., 1980) which is 

particularly important in long axons, such as those found in the optic nerve. Thus, the presence of 

non-phosphorylated NF (npNF) in myelinated axons is considered to be a sign of stress and has been 

observed in many neurodegenerative diseases including MS. Axons containing npNF were found in 

both NAWM in association with activated microglia (Howell et al., 2010) and in MS lesions at various 

stages of their development (Trapp et al., 1998; Petzold et al., 2008; Schirmer et al., 2011). In the 

present study, increased levels of npNF were observed already in the late induction phase of the 

disease (Figure 4.10). At this time point, SMI32+ axons were still myelinated (Figure 4.10Ci), further 

reflecting the previous observation of ultrastructural changes in the absence of demyelination. After 

the onset of the clinical phase of AON, this phenomenon was more pronounced and the presence of 
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npNF was detected both in demyelinated and still myelinated axons associated with inflammatory 

lesions (Figure 4.10Di). Changes in axonal cytoskeletal organization can have deleterious effects on 

their physiology as they lead to a disruption of axonal transport and subsequent swellings and 

transections (Trapp et al., 1998). This phenomenon could be observed with the onset of the clinical 

phase of AON where swollen, SMI32+ axons are detected within demyelinating lesions (Figure 4.5C, 

Ci). 

In the present study, both the significant rise in npNF and disruption of axonal domains are observed 

at the same time point in the late induction phase of AON (day 10 p.i.). At this time point, double 

labelling for the paranodal marker Caspr and SMI32 revealed the possible relationship between 

disruption of axonal domains and changes in the axonal NF cytoskeleton. While paranodal domains 

not associated with SMI32+ axons appeared normal, ones associated with axons containing npNF 

were observed with disrupted (elongated) profiles (Figure 4.11). Similar observations have been 

made upon investigation of disrupted paranodal domains in NAWM MS tissue where disrupted 

patterns of glial Nfasc155+ staining were observed predominantly on SMI32+ axons (Howell et al., 

2010). The relationship between observed disruptions of the axonal cytoskeleton and axonal 

domains can be drawn from the particular architecture of the axonal cytoskeleton in these domains. 

In the paranodal domain, transmembrane Caspr protein contains a cytoplasmic domain which binds 

to the 4.1B protein, a cytoskeletal adaptor protein which stabilises axo-glial junctions by binding to 

the axonal cytoskeleton (Horresh et al., 2010; Buttermore et al., 2011). 4.1B protein binds to Ankyrin 

B, αII- and βII- spectrin isoforms that are particularly enriched in the paranodal regions (Ogawa et al., 

2006). In nodal regions (and AIS), the localisation of NaV in the membrane is achieved through its 

interaction with Nfasc 186 and the cytoskeletal adaptor protein Ankyrin G that is bound to the axonal 

cytoskeleton through its interaction with βIV-spectrin (Bennett and Gilligan, 1993). β-spectrins serve 

as a link with the underlying axonal cytoskeleton as they contain binding sites for both actin and NFs 

(Frappier et al., 1991). Both spectrins and adaptor proteins are necessary for the proper organization 

of axonal domains. Genetic deletion of 4.1B leads to disrupted paranodal domains (Buttermore et al., 

2011) while deletion of βIV-spectrin leads to a disruption in the nodes of Ranvier (observed by 

elongated NaV
+ profiles) and alterations in the NF cytoskeleton organization (Yang et al., 2004).  

Considering that disruptions in both axonal domains and NFs appear simultaneously at the late 

induction phase of AON, it is hard to draw a conclusion on causality between these events. 

Alternatively, it is very plausible that both events share a common driving force, such as an increase 

in the axonal Ca2+ levels. In a recently performed study using Mn2+-enriched MRI, it was shown that 

the optic nerve compartment contains elevated levels of Ca2+ already at the late induction phase of 

AON (day 10 p.i.; Hoffmann et al., 2013), the same time point when disruptions were observed in the 
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present study. Increases in Ca2+ levels correlated with the activity of the calcium-activated protease 

calpain, as assessed by the presence of the 147 kDa fragment of spectrin, a cleavage product 

specifically produced by calpain activity. The particular timing of the observed cleavage of spectrin 

suggests that this could be the underlying cause in the disruption of the axonal domains in the 

present study. This hypothesis is strengthened by observations that increased axonal Ca2+ levels and 

calpain activity leads to disruption of axonal domains under different pathological conditions and 

that pharmacological inhibition of this protease leads to preservation of domain structures (Fu et al., 

2009; Schafer et al., 2009; McGonigal et al., 2010; Reeves et al., 2010; Huff et al., 2011; Sun et al., 

2012). Dephosphorylation of axonal NF side-arms is mediated by calcineurin, a Ca2+-calmodulin–

dependent serine/threonine protein phosphatase (Tanaka et al., 1993). This enzyme is activated by 

increased Ca2+ levels and it has been shown to play a role in axonal injury in models of traumatic 

brain injury (Okonkwo et al., 1999; Colley et al., 2010) and in vitro axonal injury (Staal et al., 2010). 

Dephosphorylation of NF is considered to be an early step in the axonal injury cascade and it 

enhances their susceptibility to further degradation in the presence of increased Ca2+ levels by 

calpain-mediated proteolysis (Pant, 1988; Greenwood et al., 1993). This presumably plays a role in 

the clinical phase of AON when more extensive axonal injury and loss is detected.  

The observed disruptions of axonal domains and NF cytoskeleton highlight the important role of Ca2+ 

in the early axonal injury in the model of AON. Hoffmann et al. reported that the increase in Ca2+ 

levels leads to spectrin cleavage by calpain and in the present study a further downstream effect of 

this cleavage (disruption of axonal domains) can be observed together with dephosphorylation of NF 

which is also shown to be a Ca2+ -mediated process. Further evidence for the role of Ca2+ in the early 

axonal changes characteristic for the late induction phase of AON can be found in studies with the 

ex-vivo rat optic nerve anoxia model (Waxman et al., 1992; Waxman et al., 1994). Here, the authors 

reported Ca2+-dependent changes on the ultrastructural levels in axons in the similar manner 

observed in the induction phase of AON (shrunken axons and the vacuoles in the periaxonal space 

within preserved myelin sheaths, disruption in axonal domains and changes in the axonal 

cytoskeleton) as well as an impairment of AP propagation. 

 

5.4 Oxidative stress does not play a role in axonal disruptions during 

the induction phase of AON  

Microglia play an important role in the pathogenesis of MS. The activation of residential microglial 

cells has been observed in all lesion types, starting from the early stages of their development 
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(discussed in chapters 1.4 and 1.7.1). In the EAE model, it has been shown that microglial cells are 

mobilized to the sites of early BBB disruptions prior to the onset of peripheral immune cell infiltration 

and the onset of inflammatory demyelination (Davalos et al., 2012). Their activation results from the 

leakage of blood-borne proteins which leads to axonal injury mediated by the production of ROS 

(Adams et al., 2007; Davalos et al., 2012). In the model of AON, activation of residential microglial 

cells was observed during the induction phase, prior to infiltration of inflammatory cells from the 

periphery. In the retina, an increase in the numbers of activated microglia coincides with the 

disruption of the blood-retinal barrier and the loss of RGCs which suggests their potential role in the 

process of neurodegeneration. Similar observations were made in the optic nerve compartment 

where an increase in activated microglia was also detected during the induction phase, particularly in 

the region of the ONH which is characterised by a permeable BBB (Fairless et al., 2012). 

In the present study, the integrity of axonal domains was investigated with respect to the early 

activation of microglial cells. In the late induction phase of AON, disruption of paranodal domains 

showed a strong correlation with the distribution of ED1+ microglia (Figure 4.17) suggesting their 

involvement in the early disruption of axonal domains. This result is in agreement with a previous 

report that showed a correlation between disrupted axonal domains and activated microglia in the 

MS-NAWM (Howell et al., 2010). This same study showed the disruption of axonal domains and 

axonal injury (assessed by the presence of npNF in axons) in the spinal cord of mice induced with 

MOG-EAE during the pre-clinical phase. Since activated residential microglial cells were observed in 

this tissue, they were subsequently inhibited by minocycline treatment, leading to a reduction in 

axonal injury, further strengthening the case for their role in early axonal disruptions.  

One of the mechanisms by which activated microglia can induce CNS damage is through the 

production of ROS/RNS (Block et al., 2007). The deleterious effects of these species could be 

observed through the presence of oxidized lipids and DNA in oligodendrocytes and neurons/axons 

within MS lesions (Vladimirova et al., 1998; Haider et al., 2011). Elevated levels of ROS/RNS are also 

detected in inflammatory lesions of EAE animals (Ruuls et al., 1995; Nikic et al., 2011; Davalos et al., 

2012). The direct effect of ROS/RNS on axonal integrity was shown by employing in vivo imaging of 

the spinal cord axons in the mouse model of MOG-EAE (Nikic et al., 2011). The authors showed 

elevated levels of ROS/RNS in inflammatory lesions with extensive axonal damage. In addition, 

scavenging of reactive species was sufficient to reverse this observed axonal pathology. Furthermore, 

they showed that application of ROS/RNS donors to the spinal cord of a naïve animal was sufficient 

to cause axonal damage comparable to that observed in EAE animals in the absence of 

demyelination, confirming a direct role of these species in axonal pathology. Oxidative stress is also 

known to contribute to neurodegeneration following stroke (Allen and Bayraktutan, 2009) and 
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traumatic brain injury (Cornelius et al., 2013) which are also characterised by the activation of 

residential microglial cells following the initial injury. In this present study, a greater disruption of 

paranodal domains in the late induction phase of AON was observed in the close vicinity of activated 

microglia (Figure 4.18) suggesting a possible role for secreted disruptive mediators from activated 

microglia. However, a treatment study with a cocktail of ROS/RNS scavengers failed to prevent both 

the disruption of paranodal domains and the presence of npNF in axons implying that these species 

do not play a role in the early axonal injury observed in the induction phase of AON (Figure 4.19).  

Another possible mechanism of how microglia could induce paranodal disruptions and axonal injury 

is by glutamate-mediated damage. Elevated glutamate levels are found associated with both NAWM 

and MS lesions (Srinivasan et al., 2005). Microglia and macrophages with increased glutaminase 

expression (an enzyme involved in the synthesis of glutamate) are found in MS lesions associated 

with dystrophic, SMI32+ axons (Werner et al., 2001). In the model of AON, increased levels of 

glutamate are found in the retina starting from the induction phase of the disease and coinciding 

with RGC death (Maier et al., 2007). In this study, inhibition of microglial activity with minocycline led 

to a decrease in glutamate levels and preservation of RGCs. An in vivo/ex vivo imaging study with the 

application of glutamate on exposed spinal cords resulted in axonal disruptions (Fu et al., 2009), 

similar to those observed in this and previous studies of AON. The authors showed that exogenous 

application of glutamate led to a retraction of paranodal myelin in a Ca2+/calpain-mediated manner. 

Furthermore, disruption of paranodal domains led to a subsequent Ca2+ influx in the axons implying 

their secondary degeneration. Following paranodal disruption, axonal Ca2+ signals were first detected 

in the paranodal region, subsequently spreading along the axon. This highlights the importance of an 

undisrupted paranodal domain for axonal viability. Although this study shows great similarities with 

observations presented in this thesis and previous work in the AON model (Hoffmann et al., 2013), 

further work is needed to investigate a possible role of glutamate in the early axonal disruptions and 

elevated Ca2+ levels observed during the induction phase of AON.  

Under neuroinflammatory conditions, microglia show great plasticity in their response which is 

orchestrated by signals from surrounding tissue, coming from both residential CNS cells and 

infiltrating lymphocytes (concept reviewed in Bogie et al., 2014; Cherry et., 2014). In addition to the 

deleterious role of microglia (characterised by the expression of receptors involved in antigen 

presentation, production of ROS/RNS, and secretion of pro-inflammatory cytokines and chemokines) 

they can also acquire a beneficial phenotype characterised by their role in immune-suppression and 

tissue remodelling. This heterogeneity of microglial responses is reflected in MS-NAWM where both 

pro-inflammatory (Zeis et al., 2008; Howell et al., 2010) and immune-suppressive (Melief et al., 2013) 

microglia have been observed in different studies. Taking this into consideration, the activation of 
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microglia in the induction phase of AON could also be a consequence rather than a cause of axonal 

disruptions. This can also be supported by the observation that the expression of iNOS was only 

detected following the onset of the clinical phase of AON on ED1+ cells with macrophage-like 

morphology (author’s observation, data not shown). Also the area of ONH, where axonal disruption 

and microglia activation was most prominent, is also characterised with an increased presence of 

cryαB, an oligodendroglial stress protein which was shown to modulate the response of microglia in 

preactive MS lesion towards immune-suppression and tissue repair (van Noort et al., 2010; Bsibsi et 

al., 2013; discussed further in chapter 5.6). Taking this into consideration, further characterisation of 

the microglial phenotype is needed to reveal their role during the induction phase of AON.  

   

5.5 Disruption of axonal domains is not a consequence of 

oligodendrocyte apoptosis 

In addition to extensive demyelination, MS lesions are frequently characterised by the presence of 

oligodendrocyte death (Ozawa et al., 1994; Lucchinetti et al., 2000). In some cases the apoptosis of 

oligodendrocytes is considered to be an early event in lesion formation as it can be observed prior to 

myelin degradation and its phagocytosis by macrophages (Barnett and Prineas, 2004). 

Oligodendrocytes are particularly sensitive to inflammatory mediators commonly present in MS 

lesions as they express receptors for glutamate (McDonald et al., 1998), TNF-α (Selmaj et al., 1988), 

INF-γ (Vartanian et al., 1995) and Fas receptor (Dowling et al., 1996). Activation of these receptors in 

an inflammatory setting can lead to caspase-dependent apoptosis of oligodendrocytes (Cudrici et al., 

2006). This phenomenon, as well as the particular sensitivity of potentially regenerative OPCs to 

inflammation (Baerwald et al., 1998; Bernardo et al., 2003), can lead to impairment in tissue 

regeneration, represented as the lack of remyelinating processes in such lesions (Lucchinetti et al., 

2000).  

As previously discussed, myelination of axons by oligodendrocytes provides the basis for the fast and 

energetically efficient signal propagation which is crucial for the proper functioning of the CNS. The 

oligodendrocyte-axon interaction also provides metabolic coupling between the two compartments 

which is necessary for the long term viability of axons (concept reviewed in Simons and Nave, 2015). 

This suggests that an insult to oligodendrocytes alone could lead to deleterious effects in axons. In 

fact, this has been shown using different experimental models resulting in primary oligodendrocyte 

death, where targeted ablation of oligodendrocytes leads to pathological axonal changes. For 

example, in a toxin-induced model of demyelination, primary death of oligodendrocytes leads to 
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demyelination in different regions of the brain of animals on a cuprizone diet (Praet et al., 2014). In 

this model, axonal pathology is detected already in early stages of demyelination (Sun et al., 2006; 

Crawford et al., 2009). In a transgenic model with mice that have human diphtheria toxin (DT) 

receptor expressed under the MBP promotor, ablation of mature oligodendrocytes can be induced 

with a single DT injection. This leads to a disruption of axonal domains and the presence of axonal 

injury (as assessed by APP accumulation) in the absence of demyelination (Oluich et al., 2012). In this 

present study, axonal injury in the late induction phase of AON could not be attributed to 

oligodendrocyte death as their apoptosis could not be detected prior to the onset of the clinical 

phase of the disease. Instead, TUNEL+ oligodendrocytes were only observed associated with 

inflammatory lesions following the onset of the clinical phase of AON (Figure 4.12) confirming their 

susceptibility to inflammatory-mediated apoptosis. 

 

5.6 CryαB as a marker of oligodendrocyte stress in the course of 

AON 

Although apoptosis of oligodendrocytes could not be detected prior to the onset of inflammatory 

demyelination, signs of early oligodendrocyte stress, as assessed by the increased production of 

cryαB, were detected already in the late induction phase of AON (Figure 4.17). CryαB is a small heat 

shock protein expressed in various cell types in different tissues where it exerts anti-apoptotic 

activity under different stress conditions (Klemenz et al., 1991; Goldbaum and Richter-Landsberg, 

2004; Mao et al., 2004; Kamradt et al., 2005; Liu et al., 2007). In the CNS, increased expression of 

cryαB is detected both in glial cells (oligodendrocytes and astrocytes) and neurons under different 

neurodegenerative conditions (Iwaki et al., 1992; Zabel et al., 2006). This protein has a particularly 

interesting role in MS as it was found to be the most prominent protein found in lesions (Chabas et 

al., 2001; Han et al., 2008). Furthermore, cryαB has also been identified as a T cell autoantigen in MS 

(van Noort et al., 1995; Bajramovic et al., 2000). Increased cryαB expression has been detected in 

glial cells at different stages of lesion development (Bajramovic et al., 1997; Sinclair et al., 2005). In 

preactive MS lesions, accumulation of cryαB was detected in oligodendrocytes coinciding with 

appearance of activated HLA-DR+ microglia nodules in the absence of demyelination and leukocyte 

infiltration (van Noort et al., 2010). In this, and subsequent studies, the authors showed that in such 

lesions cryαB, produced and secreted by stressed oligodendrocytes, modulates the activity of the 

surrounding microglia/macrophages by binding to its receptors (CD14 and Toll-like receptors 1 and 

2), shifting their phenotype towards one of immune-suppression and tissue repair (van Noort et al., 

2010; Bsibsi et al., 2013). These studies showed the importance of oligodendrocyte stress for 
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orchestrating the innate immune response during lesion formation. Further studies showed that this 

pathway can be re-programed under the stetting of lymphocyte inflammation in active lesions. For 

example, INF-γ secreted by invading T cells can re-programme cryαB-sensitised microglia to release 

pro-inflammatory cytokines (TNF-α, IL-6, IL-12, IL-1β), ROS/RNS and chemokines (Bsibsi et al., 2014). 

This mechanism presents a self-feeding, vicious cycle of demyelination and tissue destruction in MS 

lesions where an initially beneficial oligodendroglial stress response that suppresses innate immune 

activity becomes detrimental following lymphocyte invasion. 

Increased expression of cryαB in the present study was detected already in the late induction phase 

of AON in the optic nerve compartment (Figure 4.15E). Double staining with different glial cell 

markers revealed that, at this time point, increased expression of cryαB was associated with 

oligodendrocytes, particularly in the ONH area (Figure 4.15B). As previously discussed, this area is 

characterized as having a permeable BBB and shows signs of axonal paranodal disruptions and 

microglial activation (discussed in chapter 5.4). This reflects the previously discussed observation 

from preactive MS lesions where up-regulation of cryαB in oligodendrocytes was observed in areas 

with activated microglia (van Noort et al., 2010). Following the onset of the clinical phase of AON, 

increased cryαB expression in oligodendrocytes was more widespread and was associated with 

inflammatory demyelinating lesions (Figure 4.16A and B).  

Collectively, it is possible that blood-borne stress molecules which can penetrate through the 

permeable BBB in the late induction phase of AON could inflict sub-lethal stress on oligodendrocytes 

(as observed by the increased expression of cryαB and the lack of apoptotic oligodendrocytes at this 

time point). When the BBB is finally broken down and infiltration of inflammatory cells into the optic 

nerve occurs, the capacity of oligodendrocytes to defend against pro-apoptotic, inflammatory 

mediators fails, as observed by the later appearance of TUNEL+ oligodendrocytes associated with 

inflammatory lesions. Increased cryαB expression in surviving oligodendrocytes within such lesions 

might contribute to further demyelination and tissue degradation by mechanisms as previously 

described in MS lesions (Bsibsi et al., 2014). In later stages of the clinical phase of AON, reactive 

astrocytes may also contribute to the increased cryαB expression, as confirmed by its presence in 

hypertrophic GFAP+ processes (Figure 4.16D, Di). 

 

5.7 Autoantibodies in AON – a role in early oligodendrocyte stress? 

The ONH area seems to play an important role in the pathology of the optic nerve compartment in 

the model of AON. Previous studies have reported that the BBB is incomplete in this area (Tso et al., 
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1975; Hu et al., 1998; Fairless et al., 2012) and that activation of residential microglia precedes BBB 

breakdown and infiltration of immune cells from the periphery (Fairless et al., 2012). In this study, 

the presence of both axonal and oligodendroglial stress was found to be more pronounced in this 

area during the late induction phase of AON, further implying its particular vulnerability and potential 

role in pathogenesis. Furthermore, at the onset of the clinical phase of AON, the first inflammatory 

lesions are also observed extending from the ONH (author’s observation, data not shown) implying 

that this area is the first entry point for invading inflammatory cells from the periphery.    

Immunisation of BN rats with MOG elicits a strong humoral immune response as observed by the 

production of anti-MOG antibodies (Stefferl et al., 1999; Fairless et al., 2012). Elevated levels of anti-

MOG antibodies have been detected in the serum of animals from day 10 p.i. (Fairless et al., 2012), 

the same time point as when signs of both axonal and oligodendroglial stress have been reported in 

this study. Furthermore, at this time point, deposition of IgG was detected in the area of the ONH 

suggesting the possible role of autoantibodies in inducing early cellular stress (Figure 4.21.B; Fairless 

et al., 2012). Following the onset of AON, extensive IgG deposition has been observed in areas with 

reduced MBP staining intensity (Figure 4.20B). This reflects the pathological image of a type II white 

matter MS lesion, characterised by antibody-mediated demyelination (Lucchinetti et al., 2000). 

Interestingly, strong antibody deposition was also observed in newly forming lesions characterized by 

very little demyelination (Figure 4.20Bi) and an increased expression of cryαB (Figure 422Ai). These 

results suggested that the deposition of auto-reactive (MOG) antibodies might induce a stress 

response in oligodendrocytes at an early stage of lesion development. Considering that in the late 

induction phase of AON areas of IgG deposition and oligodendrocyte stress coincide within the area 

of the ONH, this could also be the underlying mechanism for early oligodendrocyte stress prior to the 

onset of inflammatory demyelination.  

 

5.8 Different compartments of the axon-glia junction might be 

targeted independently during the induction phase of AON 

Paranodal domains are the anchoring regions for myelinating oligodendrocytes to axons. Considering 

that signs of stress were observed in both axonal and glial compartments simultaneously, as well as 

in the paranodal domains themselves, it is hard to draw a conclusion on the origins of these 

disruptions, particularly due to the possibility that stress might be translated from one compartment 

to the other. In order to investigate the contribution of the individual compartments to the disrupted 

axonal-glial junction at the paranodal domain during the induction phase of AON, two different 
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experimental approaches were performed. The aim was to determine whether oligodendrocyte 

stress (perhaps mediated by sublytic autoantibody binding) or neuronal stress (perhaps mediated by 

retinal disturbances present early in the induction phase of AON) were responsible for the 

observations made.  

The potential disruptive role of anti-MOG antibodies in AON was addressed by transferring sera from 

MOG-immunised animals into naïve animals. The pathological role of anti-MOG antibodies was 

previously investigated in different studies through the use of both in vivo and in in vitro models. 

Transfer of anti-MOG antibodies into different EAE models where a humoral response is absent or 

minimal, leads to an exacerbated disease course (Zhou et al., 2006; Lee et al., 2012). Also the 

injection of anti-MOG antibodies, isolated from patients suffering from neuromyelitis optica 

(syndrome characterized by inflammatory demyelination of the optic nerve and spinal cord), into the 

mouse brain, led to transient episodes of demyelination and the loss of axonal domains in the 

absence of inflammation (Saadoun et al., 2014). In the cultured rat telencephalon, application of 

anti-MOG antibodies together with complement led to demyelination and a strong increase of cryαB 

expression in oligodendrocytes and astrocytes (Duvanel et al., 2004). Collectively, these studies 

provide evidence of the demyelinating potential of anti-MOG antibodies and their involvement in 

pathological processes in neuroinflammation. In addition, studies that examined a broader effect of 

these antibodies on oligodendrocyte integrity have been performed in order to investigate the 

possibility of additional disruptive mechanisms. In such cell-based assays, application of anti-MOG 

antibodies was sufficient to induce sub-lethal alterations in oligodendrocyte morphology. This was 

observed by internalisation of oligodendroglial membrane compartments and retraction of their 

processes (Marta et al., 2005a, b), and also a disruption in their cytoskeletal organization (Dale et al., 

2014). 

The loss of RGCs, accompanied by a disruption of the blood-retinal barrier and activation of microglia 

in the retina, are the early pathological signs characteristic of the induction phase of AON (Fairless et 

al., 2012). Considering that these retinal events precede the observed changes in optic nerve axonal 

domains and the cytoskeleton (being observed from as early as day 5 p.i.) they could be the 

underlying cause of axonal stress in the late induction phase. In order to investigate this hypothesis, a 

model of primary retinal insult was employed. Intravitreal injection of glutamate is a model often 

used for studying pathological mechanisms in the retina as it leads to the death of RGCs and other 

neurons within the inner retinal layers (Sisk et al., 1985; Schori et al., 2001; Zhou et al., 2007). As 

previously mentioned, elevated glutamate levels are found in the retina during the induction phase 

of AON, coinciding with RGC death (Maier et al., 2007). Also the blockade of NMDA glutamate 

receptors in AON led to RGC protection, even during the induction phase (Sühs et al., 2014). These 
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studies provide evidence for glutamate-mediated RGC death in the early stages of AON. 

Furthermore, they provide justification for employing intravitreal glutamate injections as a model for 

studying the effects of RGC loss on optic nerve axons. Although models of both glutamate- and 

NMDA-induced degeneration have been widely used for studying retinal pathology, there are only a 

few studies that have investigated the integrity of the axonal compartment following primary RGC 

death. In one study, intravitreal injection of NMDA led to post-chiasmal neuronal degeneration and 

astrocytic activation in the contralateral LGN (Ito et al., 2008). Another study focused on the integrity 

of axonal transport and axonal viability itself in the optic nerve following intravitreal NMDA injection 

(Kuribayashi et al., 2010). The authors reported a decrease in axonal counts and a reduction in 

kinesin (a protein involved in axonal transport) in the absence of demyelination 72h following the 

intravitreal injection. Such studies could be highly relevant in the field of MS research in light of 

recent reports of a primary retinal pathology in MS patients in the absence of optic neuritis (Fisher et 

al., 2006; Pulicken et al., 2007; Henderson et al., 2008; Saidha et al., 2011).   

 

5.8.1 Transfer of serum from MOG-immunised animals supports the role of 

autoantibodies in early oligodendrocyte stress in AON  

In this present study, transfer of serum from MOG-immunised animals into naïve animals was 

performed in order to determine the role anti-MOG antibodies may have in inducing the early signs 

of stress that were seen. Levels of anti-MOG antibodies in recipient animals were considerably lower 

than in MOG-immunised donors (Figure 4.21G) but nevertheless, their deposition could be observed 

in the ONH of recipient animals (Figure 4.23E, F). Although the transfer of serum from MOG-

immunised animals did not induce demyelination and axonal injury (Figure 4.22A - C), it was 

sufficient to induce oligodendrocyte stress in the ONH, as observed by an increased expression of 

cryαB (Figure 4.22E and F). Lack of demyelination and axonal disruptions in the optic nerve is 

probably owed to low levels of anti-MOG antibodies in the serum of recipient animals considering 

that previous studies were able to observe such phenotype upon direct injection of anti-MOG 

antibodies into the brain (Saadoun et al., 2014). These results suggest that even the low levels of 

anti-MOG antibodies, such as those observed in the late induction phase of AON, are sufficient to 

induce oligodendrocyte stress independently of demyelination.  
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5.8.2 Primary retinal insult is sufficient to induce axonal disruptions in the 

induction phase of AON 

A single intravitreal injection of glutamate into a naïve animal was sufficient to mimic aspects of the 

retinal pathology reported during the induction phase of AON as observed by the presence of TUNEL+ 

cells in the RGC and inner nuclear layer (Figure 4.23B) and the increased presence of activated 

microglial cells in the retina (Figure 4.23D and G). Although there was no evidence of macroscopic 

changes in the optic nerve compartment (such as the axonal loss reported by Kuribayashi and 

colleagues) subtle changes in axons could be detected. The utilization of the glutamate-mediated 

model of a primary retinal insult alone was sufficient to induce an axonal injury in the optic nerve, 

similar to that observed during the induction phase of AON, characterised by disruption of axonal 

domains (Figure 4.24B) and changes in the NF phosphorylation status (Figure 4.24A). Interestingly, 

increased microglial activation was also observed in the optic nerve (Figure 4.23H), in a similar 

manner to that observed during the induction phase of AON. This strengthens the possibility that 

activation of microglia during the induction phase of AON could be a consequence, rather than a 

cause, of the observed axonal stress. The lack of oligodendrocyte stress, demyelination and large-

scale inflammation in the optic nerve imply that the observed axonal disruptions are caused by the 

primary insult in the retinal compartment. Although the precise mechanisms of these disruptions 

were not addressed, they are likely to involve impaired metabolic/energetic support from the 

compromised RGC body. The notion that axonal injury could be a consequence of a compromised 

neuronal cell body in the absence of the inflammatory demyelination is also suggested in MS. One 

study employing MRI showed that diffuse axonal injury in NAWM is found to correlate with the 

presence of cortical lesions rather than with inflammatory lesions in the white matter (Mistry et al., 

2014). 

In conclusion, by employing these two models it was possible to gain further insight into the origins 

of axonal and oligodendroglial stress observed in the induction phase of AON. In both instances signs 

of stress were not translated from one compartment to the other, although it should be noted that in 

the case of serum transfer, the low concentrations of anti-MOG antibodies achieved in recipient 

animals could explain the lack of demyelination and disruption in axonal domains. This hurdle could 

be overstepped by transferring purified anti-MOG antibodies (either commercial or isolated from 

sera of immunised animals) in order to achieve higher concentrations in recipient animals. An 

alternative possibility is that the observed stresses seen in both in axonal and oligodendroglial 

compartments during the late induction phase of AON might result from two separate stimuli 

occurring simultaneously such as a still unclear retinal pathology and circulating (anti-MOG) 

autoantibodies. Further work is needed to determine the relevance of these findings to the human 
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condition, but observations of retinal degeneration and impaired visual functions in the absence of 

clinically-defined optic neuritis suggest that there may be common mechanisms at work. 
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Abbreviations 

AIS   Axon initial segment 

AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA   Analysis of variance 

AON   Autoimmune optic neuritis 

AP   Action potential 

APP   Amyloid precursor protein 

ASIC   Acid-sensing ion channels 

ATP   Adenosine triphosphate 

BBB   Blood-brain barrier 

BCA   Bicinchoninic acid 

bFGF   Basic fibroblast growth factor 

BN   Brown Norway 

BRB   Blood-retinal barrier 

BSA   Bovine serum albumin 

CAM   Cellular adhesion molecules 

CaV   Voltage-gated calcium channels 

CD   Cluster of differentiation 

CDMS   Clinically definite multiple sclerosis 

CFA   Complete Freund's adjuvant 

CIS   Clinically isolated syndrome 

CNPase   2',3'-cyclic-nucleotide 3'-phosphodiesterase 

CNS   Central nervous system 

CNTF   Ciliary neurotrophic factor 

CRT   Cathode ray tube 

CryαB   Alpha-B crystallin 

CSF   Cerebrospinal fluid 

DAPI   4',6-diamidino-2-phenylindole 

DMSO   Dimethyl sulfoxide 

DNA   Deoxyribonucleic acid 

DT   Diphtheria toxin 

dUTP   Deoxyuridine triphosphate 

EAE   Experimental autoimmune encephalomyelitis 

EAN   Experimental allergic neuritis 
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EBV   Epstein-Barr virus 

ELISA   Enzyme-linked immunosorbent assay 

FCS   Fetal calf serum 

FeTPPS   5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato Iron (III), Chloride 

GAPDH   Glyceraldehyde-3-Phosphate Dehydrogenase 

GFAP   Glial fibrillary acidic protein 

HLA   Human leukocyte antigen 

HRP   Horseradish peroxidase 

i.p.   Intraperitoneal     

IgG   Immunoglobulin G 

INFγ   Interferon gamma 

iNOS   Inducible nitric oxide synthase 

KV   Voltage-gated potassium channels 

LED   Light-emitting diode 

LFB   Luxol fast blue 

LGN   Lateral geniculate nucleus 

MAG   Myelin-associated glycoprotein 

MBP   Myelin basic protein 

MG2   Neural/glial antigen 2 

MHC   Major Histocompatibility complex 

MOG   Myelin oligodendrocyte glycoprotein    

MRI   Magnetic resonance imaging 

MS   Multiple sclerosis 

NaV   Voltage-gated sodium channels 

NAWM   Normal-appearing white matter 

NCX   Sodium-calcium exchanger 

NF   Neurofilament 

NGS   Normal goat serum 

NMDA   N-Methyl-D-aspartate 

nNOS   Neuronal nitric oxide synthase 

NO   Nitric oxide 

npNF   Non-phosphorylated neurofilaments 

NRS   Normal rabbit serum 

OCT   Optical coherence tomography 

ONH   Optic nerve head 
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OPC   Oligodendrocyte progenitor cell 

PBN   N-tert-butyl-α-phenylnitrone 

PBS   Phosphate-buffered saline 

PBS-T   Phosphate-buffered saline - Tween 20 

PBS-Tr   Phosphate-buffered saline – Triton X-100 

PDGF   Platelet-derived growth factor 

PFA   Paraformaldehyde 

PLL   Poly-L-lysine 

PLP   Proteolipid protein 

PPMS   Primary-progressive multiple sclerosis 

PRMS   Primary-relapsing multiple sclerosis 

pst   Post serum transfer  

PVDF   Polyvinylidene fluoride 

RGC   Retinal ganglion cells 

RNFL   Retinal nerve fiber layer 

RNS   Reactive nitrogen species 

ROS   Reactive oxygen species 

RPMI   Roswell Park Memorial Institute 

RRMS   Relapsing-remitting multiple sclerosis 

RT   Room temperature 

SD   Sprague Dawley 

SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SPMS   Secondary-progressive multiple sclerosis 

T3   Triiodothyronine 

TBS   Tris-buffered saline 

TBS-T   Tris-buffered saline – Tween 20 

TBS-Tr   Tris-buffered saline – Triton x-100 

TCR   T cell receptor 

TdT   Terminal deoxynucleotidyl transferase 

TMB   3,3’,5,5’-Tetramethylbenzidine 

TNFα   Tumor necrosis factor alpha 

TRP   Transient receptor potential 

TUNEL   Terminal deoxynucleotidyl transferase dUTP nick end labeling 

VEP   Visual evoked potential 

 


