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Abstract

Nowadays, X-ray absorption spectroscopy (XAS) techniques are important tools to inves-
tigate the electronic structure of molecules. Mostly, these methods are applied in the field
of organic electronics to study unoccupied molecular levels, which provide information
about charge generation and transport properties. With the help of modern synchrotron
soft beam sources, molecules can absorb high-energy X-ray photons, thereby promoting
an electron from the core level, e.g. K-shell 1s orbitals, to the unoccupied molecular level.
As a result, meta-stable bound core-excited states are generated. Since core orbitals are
energetically well-separated from the remaining occupied and virtual orbital space, they
are strongly contracted and the corresponding core-excited states are very localized. As a
consequence, the generated core-hole interaction induces a rearrangement of the valence
electrons, because the effective shielding of the nucleus is reduced. This effect leads to
a lowering of the core-excitation energy of the final state. This rearrangement of the
electrons can be understood as an orbital relaxation effect.

To fully understand and interpret experimental spectra, an accurate knowledge about
core-excitation energies, transition moments, the character of the core-excited states as
well as their corresponding properties is necessary. Such information can be obtained
with quantum chemical (QC) methods. They help to analyze and interpret experimental
spectra, thereby providing a deep insight into the nature of core-excited states. Generally,
a plethora of methods is available to calculate excited states and simulate absorption
spectra. The larger the system, the more expensive are the computations. Hence, certain
levels of approximation have to be introduced to lower the computational cost. This leads
to a loss of reliability and accuracy of the results. The time-dependent density functional
theory (TD-DFT), for example, currently is the prevalently used excited-state method
for the calculation of large molecules up to 300 atoms. However, TD-DFT has several
disadvantages like the self-interaction error (SIE), which leads to wrong descriptions of
certain kinds of excited states, e.g. charge-transfer states or core-excited states. The
excitation energies of these types of states are strongly underestimated, but if these issues
are kept in mind, TD-DFT is a useful tool, providing proper spectral features.

The algebraic diagrammatic construction scheme (ADC) is a prominent QC method
for the calculation of excited states, which is known to provide accurate valence-excited
states of small- and medium-sized molecules in an adequate computational time. The ADC
approach is based on a Green’s function formalism in combination with partitioning the
Hamiltonian using perturbation theory. Due to its size-consistency and Hermitian ADC
secular matrix structure, the level of approximation can be improved systematically and
properties can be computed straightforwardly. It is possible to calculate one-particle state
properties in combination with the intermediate state representation (ISR) approach, e.g.
static dipole moments and state densities, which altogether provide enhanced information
about absorption spectra. A further advantage of ADC is the indirect inclusion of orbital
relaxation effects via couplings to higher-excited configurations, which are important
to describe core-excited states properly. However, the calculation of core excitations is
tedious using the unmodified ADC approach, because, in order to solve the ADC eigenvalue
problem, numerical iterative eigenvalue solvers are employed usually only providing the
energetically lowest eigenstates. Core-excited states, however, are located in the high-
energy X-ray region of the optical spectrum and in order to calculate them directly, one has
to compute all energetically underlying valence excitations as well. This is computationally
very expensive and not feasible for medium-sized systems. The direct calculation of the
core excitations is prevented by couplings between the valence and core-excited states. A
solution to this issue is the application of the core-valence separation (CVS) approximation
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to the ADC approach, which results in the CVS-ADC method. This approximation is
based on the fact that core orbitals are energetically well-separated from the remaining
orbital spaces and as a consequence, the couplings between core- and valence-excited states
are small and can be neglected. In other words, the CVS approximation decouples the
core and valence excitation spaces from each other and allows for a direct computation
of core-excited states. In former work, it was proven that a very good agreement with
experiments can be obtained at the extended second order level CVS-ADC(2)-x.

My PhD project mainly consists of two important parts. One was to enhance and
develop variants of the CVS-ADC method and implement all approaches efficiently in the
adcman program, which is part of the Q-chem program package. Secondly, I benchmarked
these implementations and simulated X-ray absorption spectra of small- and medium-sized
molecules from different fields. In this thesis, I present my implementations, as well as
the results and applications obtained with the CVS-ADC methods and give a general
introduction into quantum chemical methods. At first, I implemented the CVS-ADC
approach up to the extended second in an efficient way. The program is able to deal with
systems up to 500 basis functions in an adequate computational time, which allows for
accurate calculations of medium-sized closed-shell molecules, e.g. acenaphthenequinone
(ANQ). Afterwards, the CVS-ADC implementation was extended for the first time to deal
with open-shell systems, i.e. ions and radicals, which implies a treatment of unrestricted
wave functions and spin-orbitals. The resulting method is denoted as CVS-UADC(2)-x.
For the first time, I applied the CVS approximation to the the third order ADC scheme,
derived the working equations, and implemented the CVS-ADC(3) method in adcman.
As the last step, I applied the CVS formalism for the first time to the ISR approach to
enable calculations of core-excited state properties and densities. This provides the basis
for subsequent evaluations of transition- and density matrices, which give access to exciton
sizes, e.g. hole sizes or distances between hole and electron densities. All implementations
are presented and discussed in the scope of my thesis.

To benchmark all restricted and unrestricted CVS-ADC/CVS-ISR methods up to third
order in perturbation theory, I chose a set of small molecules, e.g. carbon monoxide (CO).
The calculated values of core-excitation energies, transition moments and static dipole
moments are compared with experimental data or other approaches, thereby estimating
complete basis set (CBS) limits. Furthermore, a comprehensive study of different basis
sets is performed. As it turns out, the CVS-ADC(2)-x method provides the best agreement
with experiments, while CVS-ADC(3) overestimates the core excitation energies. In
combination with the CBS limit of the aug-cc-series, a mean error of -0.23%40.12% for
core-excitation energies can be identified at the CVS-ADC(2)-x level for carbon, nitrogen
and oxygen K-edge excitations, whereas CVS-ADC(3) exhibits errors of 0.61%+0.32%.
This is due to fortuitous error compensation of basis set truncation, electron correlation,
orbital relaxation and neglect of relativistic effects at the CVS-ADC(2)-x level. I show
that this error compensation is broken at the third order level, because the ratio between
terms describing relaxation and polarization effects is shifted in a way that the excitation
energy increases. However, transition moments and spectral features, as well as static
dipole moments, are excellently described with both CVS-ADC(2)-x and CVS-ADC(3).
Overall, considering the detailed investigation of the basis set influence on the results, I
conclude that the use of restricted or unrestricted CVS-ADC(2)-x in combination with a
diffuse triple-( basis set in its Cartesian version can be seen as a black-box method for the
calculation of core-excited states of organic molecules. Especially the 6-311++G** basis
set provides an excellent ratio of accuracy to computational time.

Another important topic is the description of orbital relaxation effects. In the scope
of this thesis, I show, how these effects are included indirectly within the CVS-ADC
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approaches. For this purpose, two different descriptors are used, i.e. electron promotion
numbers and the amount of doubly excited amplitudes. Furthermore, with the help of
detachment/attachment (D/A) densities, which can be constructed via the CVS-ISR
approach, relaxation effects can be visualized. For this purpose, the (D/A) deunsities are
compared with hole/electron (h/e) densities based on the transition density matrix.

With this knowledge, the X-ray absorption spectra of medium-sized molecules and
radicals from the fields of organic electronics and biology are investigated and analyzed.
On the basis of these studies, the restricted and unrestricted versions of CVS-ADC(2)-x in
combination with the 6-311++G** basis set exhibit mean errors of core-excitation energies
around 0.1%, compared to experimental values. Additionally, core-excited state characters
are analyzed with the help of state densities obtained via the CVS-ISR approach or the
transition density matrix.

To demonstrate that the CVS-ADC(2)-x approach can be employed as a benchmark
black-box method, TD-DFT results are compared directly with the ones at the CVS-
ADC(2)-x level. As expected, TD-DFT underestimates core-excitation energies up to 4%
due to the SIE, which is about 10 eV in the case of carbon 1s excitations.

Since the CVS approximation leads to both a simplification of the ADC working
equations, as well as a restriction of the excitation space to correspond only to core
excitations, the computational cost is reduced compared to the general ADC approach. To
demonstrate the computational savings as a function of the size of the core space, several
systems are investigated. CVS-ADC(3) calculations take about 8 — 10 times longer than
CVS-ADC(2)-x calculations and since the results are generally more accurate with the
latter method, the use of CVS-ADC(3) is not justified. Compared to general ADC(2)-x,
the speed-up at the CVS-ADC(2)-x level is about a factor of 4.0, but this factor strongly
depends on the size of the system and the size of the core space.

Next, I present applications from the field of organic electronics. The remarkable
agreement with experimental data at the CVS-ADC(2)-x level justifies the prediction of
yet non-recorded experimental X-ray absorption spectra. Therefore, I chose the anthracene
cation, which can be seen as a model system of pentacene and its derivatives, which are
commonly used as hole conductors (p-type). X-ray absorption spectra of the pentacene
cation could provide deeper insight into its charge carrier properties, but measurements
of experimental spectra of ionized species are usually very challenging. With the help of
CVS-UADC(2)-x calculations, I show that the anthracene cation exhibits additional peaks
due to the half-filled single-occupied molecular orbital. They are located approximately
3.5 eV — 1.5 eV below the first peak of neutral anthracene, which may help to distinguish
a cation from the neutral species. Furthermore, the cationic spectrum exhibits peak
broadening, compared to the two first peaks of neutral anthracene. Other applications
concentrate on the trends of core-excited state properties along important potential energy
surfaces (PES) of ANQ, phenol and bithiophene. Therefore, static dipole moments,
energies, and exciton sizes are analyzed as a function of the C-O distances of ANQ and
phenol, as well as the torsion around the central dihedral angle of bithiophene.

Finally, another aspect of the CVS-ISR method is the accessibility of transition moments
between two states, which can be used to calculate oscillator strengths for core-excited
state absorption (CESA) spectra. To the best of my knowledge, no experimental data
of CESA processes between two core-excited states have been recorded yet. However,
such spectroscopic data could exhibit new insights and the calculation of CESA transition
moments using the CVS-ADC/CVS-ISR approach is straightforward. Hence, first results
of CESA processes were calculated and are presented in this thesis. In the case of ANQ),
particularly bright transitions can be identified from the lowest oxygen 1s excited-state to
higher ones.
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Zusammenfassung

Rontgenabsorptionsspektroskopie (XAS) ist heutzutage eine wichtige Methode, um die
elektronische Struktur von Molekiilen zu untersuchen. Diese Technik wird vor allem auf
dem Gebiet der organischen Elektronik zur Untersuchung der unbesetzten Energieniveaus
eingesetzt, wodurch Informationen iiber Ladungserzeugungs- und Ladungstransportei-
genschaften erhalten werden. Mit Hilfe moderner Synchrotron-Strahlungsquellen kénnen
Molekiile hoch-energetische Rontgenphotonen absorbieren, wodurch Elektronen aus kern-
nahen Orbitalen in Valenzorbitale angeregt werden. Dies fiithrt zu einem elektronisch
kernangeregten Zustand, der meta-stabil ist und damit als quasi-gebunden bezeichnet
wird. Da Kernorbitale energetisch von dem {iibrigen besetzten und virtuellen Orbital-
raum getrennt sind, werden sie stark kontrahiert und die entsprechenden kernangeregten
Zustinde sind rdumlich lokalisiert. Die erzeugte Wechselwirkung zwischen dem Kernloch
und der Valenzschale induziert eine Umlagerung der Valenzelektronen, da die effektive
Abschirmung des Kerns reduziert wird. Diese Umlagerung der Elektronen wird als Orbi-
talrelaxationseffekt bezeichnet und fiihrt zu einer Absenkung der Anregungsenergie des
kernangeregten Endzustandes.

Um experimentelle Spektren vollstéindig verstehen und interpretieren zu kénnen, ist
ein genaues Wissen iiber Anregungsenergien, Ubergangsmomente und den Charakter der
kernangeregten Zustéinde, sowie ihre entsprechenden Eigenschaften, erforderlich. Solche
Informationen kénnen mit quantenchemischen (QC) Methoden erhalten werden. Diese
helfen bei der Auswertung und Interpretation experimenteller Spektren, wodurch ein tiefer
Einblick in die Natur der kernangeregten Zusténde erreicht werden kann. Heutzutage
stehen im Allgemeinen eine Vielzahl von Methoden zur Berechnung angeregter Zustéinde
zur Verfiigung. Je grofier das System, desto mehr Rechenzeit wird bendtigt. Aus diesem
Grund muss man zur Verringerung des Rechenaufwandes bestimmte Naherungen einfiihren,
wodurch sich jedoch die Zuverlissigkeit und Genauigkeit der Ergebnisse verringert. Zum
Beispiel ist die zeitabhiéngige Dichtefunktionaltheorie (TD-DFT) derzeit das am hiufigsten
verwendete Verfahren zur Berechnung angeregter Zustdnde von groflen Molekiilen bis zu
300 Atomen. Jedoch hat TD-DFT einige Nachteile, wie den Selbstwechselwirkungsfehler
(SIE), wodurch bestimmte Arten von angeregten Zusténden falsch beschrieben werden.
Beispielsweise werden durch den SIE die Anregungsenergien von Ladungstransferzusténden
oder kernangeregten Zusténden stark unterschiatzt. Wenn man allerdings diese Probleme
beachtet, kann TD-DFT zur Berechnung spektraler Eigenschaften von Molekiilen eingesetzt
werden.

Das algebraisch-diagrammatische Konstruktionsschema (ADC) ist eine bekannte Me-
thode zur Berechnung angeregter Zustédnde von kleinen und mittelgrolen Molekiilen. Dabei
wird bei angemessener Rechenzeit eine hohe Genauigkeit fiir valenzangeregte Zusténde
erreicht. ADC basiert auf einem Formalismus der Greenschen Funktion in Kombination
mit einer storungstheoretischen Partitionierung des Hamilton-Operators. Neben Eigen-
schaften wie Groflen-Konsistenz hat die ADC Siakularmatrix eine hermitische Struktur,
wodurch die Methode systematisch verbessert werden kann und sich Zustandseigenschaften
verhdltnisméBig einfach berechnen lassen. In Kombination mit der intermediate state
representation (ISR) lassen sich Ein-Teilchen-Zustandseigenschaften, wie zum Beispiel
Dipolmomente und Zustandsdichten, berechnen, wodurch erweiterte Informationen iiber
Absorptionsspektren zur Verfligung stehen. Ein weiterer Vorteil von ADC ist die indirekte
Erfassung von Orbitalrelaxationseffekten iiber Kopplungen zu hoher angeregten Konfi-
gurationen, was zur korrekten Beschreibung von kernangeregten Zustdnden wichtig ist.
Allerdings ist die Berechnung der Kernanregungen mit dem unmodifizierten ADC Ansatz
schwierig, da numerisch iterative Algorithmen eingesetzt werden, um das ADC Eigenwert-
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problem zu losen. Dadurch erh&lt man in der Regel immer die energetisch niedrigsten
Eigenzustinde. Kernangeregte Zustéande liegen jedoch im hoch-energetischen Rontgenbe-
reich des optischen Spektrums und um diese direkt zu berechnen, miisste man ebenfalls
alle energetisch niedrigeren valenzangeregten Zustdnde mitberechnen. Dies ist rechnerisch
sehr aufwendig und fiir mittelgrofle Systeme nicht moglich. Die direkte Berechnung der
Kernanregungen wird durch Kopplungen zwischen valenzangeregten und kernangeregten
Zustdnden verhindert. Eine Losung fiir dieses Problem ist die core-valence sepparation
(CVS) Niherung, die mit dem ADC-Ansatz kombiniert werden kann. Die resultierende
Methode wird CVS-ADC genannt. Diese Ndherung basiert auf der Tatsache, dass die
kernnahen Orbitale energetisch von den iibrigen Orbitalrdumen getrennten sind. Als Folge
sind die Kopplungen zwischen Kern- und Valenzzusténden klein und koénnen deswegen
vernachlassigt werden. Das heif3t also, dass die CVS Néherung zu einer Entkopplung der
Kern- und Valenzanregungsrdume fiihrt und so eine direkte Berechnung der kernangeregten
Zustdnde ermoglicht. In fritheren Arbeiten konnte nachgewiesen werden, dass eine sehr
gute Ubereinstimmung mit experimentellen Daten erreicht werden kann, wenn man die
erweiterte zweite Ordnungs-Niaherung CVS-ADC(2)-x verwendet.

Mein Promotionsprojekt besteht hauptséchlich aus zwei wichtigen Teilen. Zum einen
habe ich die CVS-ADC Methode weiterentwickelt und alle Ansétze effizient im adcman
Programm implementiert, das Teil des Q-chem Programmpaketes ist. Zweitens habe ich
diese Implementierungen getestet, bewertet und angewendet. Dabei sind Rontgenab-
sorptionsspektren von kleinen und mittelgroflen Molekiilen aus verschiedenen Bereichen
simuliert worden. In dieser Arbeit stelle ich meine Implementierung sowie die Ergeb-
nisse und Anwendungen mit den CVS-ADC Verfahren vor und gebe eine allgemeine
Einfiihrung in quantenchemische Methoden. Zuerst habe ich die CVS-ADC Methode
bis zur erweiterten zweiten Ordnung auf effiziente Weise implementiert. Das Programm
ist in der Lage, Systeme mit bis zu 500 Basisfunktionen in angemessener Rechenzeit
zu behandeln, wodurch eine genaue Berechnung von mittelgrofien geschlossenschaligen
Molekiilen, wie zum Beispiel Bithiophen und Acenaphthenchinon (ANQ), méglich ist. Im
néichsten Schritt wurde die CVS-ADC Methode zum ersten Mal fiir offenschalige Systeme,
d.h. Ionen und Radikale, erweitert. Dazu musste die Behandlung von unbeschrankten
Wellenfunktionen und Spin-Orbitalen erméglicht werden. Die resultierende Methode wird
als CVS-UADC(2)-x bezeichnet. Zum ersten Mal habe ich anschlieflend die CVS Néherung
auf das ADC(3) Schema angewendet. Dabei wurden die Arbeitsgleichungen hergeleitet und
die CVS-ADC(3) Methode in adcman implementiert. Zum Abschluss habe ich den CVS
Formalismus zum ersten Mal auf den ISR Ansatz angewendet, um die Berechnungen von
kernangeregten Zustandseigenschaften und Zustandsdichten zu ermoglichen. Dies stellt
die Grundlage fiir nachfolgende Analysen von Ubergangs- und Dichtematrizen dar. Diese
geben Zugang zu Exzitongroflen, wie zum Beispiel Lochgrofien oder Abstéinde zwischen
Loch- und Elektronendichten. Im Rahmen meiner Arbeit werden alle Implementierungen
prasentiert und diskutiert.

Um alle eingeschrinkten und uneingeschrinkten CVS-ADC/CVS-ISR Methoden bis zur
dritten Ordnung Stérungstheorie zu bewerten, habe ich eine Reihe von kleinen Molekiilen,
wie zum Beispiel Kohlenmonoxid (CO), ausgewéhlt und die berechneten Werte der Kern-
anregungsenergien, Ubergangsmomente und Dipolmomenten mit experimentellen Daten
oder anderen Methoden verglichen. Zusétzlich wird dabei das vollsténdige Basissatz (CBS)
Limit abgeschétzt. Weiterhin wird eine umfassende Studie iiber den Einsatz verschiedener
Basissiitze durchgefiihrt. Es stellt sich heraus, dass die CVS-ADC(2)-x Methode die beste
Ubereinstimmung mit Experimenten bietet, wihrend CVS-ADC(3) die Kernanregungs-
energien iiberschitzt. Fiir Kohlenstoff, Stickstoff und Sauerstoff 1s Anregungen betrigt
der mittlere Fehler fiir Kernanregungsenergien -0.23%40.12% auf dem CVS-ADC(2)-x
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Niveau, wihrend CVS-ADC(3) im Gegensatz einen Fehler von 0.61%=+0.32% aufweist.
Der Grund dafiir ist eine zufiillige Fehlerkompensation auf dem CVS-ADC(2)-x Niveau
basierend auf der Nutzung eines unvollstdndigen Basissatzes, Elektronenkorrelation, Or-
bitalrelaxation und Vernachlidssigung relativistischer Effekte. Dabei zeige ich, dass diese
Fehlerkompensation bei CVS-ADC(3) gebrochen wird, weil das Verhéltnis zwischen Ter-
men, die Relaxations- und Polarisationseffekte beschreiben, in einer ungiinstigen Weise
verschoben wird. Allerdings werden Ubergangsmomente und spektralen Eigenschaften
sowie Dipolmomente sowohl mit CVS-ADC(2)-x als auch CVS-ADC(3) ausgezeichnet
beschrieben. Unter Beriicksichtigung der detaillierten Untersuchung des Basissatzeinflusses
kann man schliefen, dass die Benutzung der eingeschrankten und uneingeschrinkten
Varianten der CVS-ADC(2)-x Niherung in Kombination mit einem diffusen kartesischen
triple-¢ Basissatz als Black-Box Methode fiir die Berechnung kernangeregter Zustéande
von organischen Molekiilen angesehen werden kann. Vor allem der 6-311++G** Basissatz
bietet ein hervorragendes Verhéltnis von Genauigkeit und Rechenzeit.

Ein weiteres wichtiges Thema ist die Beschreibung der Orbitalrelaxationseffekte. Im
Rahmen dieser Arbeit zeige ich, wie diese Effekte indirekt in den CVS-ADC Ansétzen
beriicksichtigt werden. Dafiir werden zwei verschiedene Deskriptoren verwendet, diese
sind die Elektronenpromotionszahl und die Menge an doppelt angeregten Amplituden.
Dariiber hinaus werden mit Hilfe von Detachment/Attachment (D/A) Dichten, die iiber
den CVS-ISR Ansatz verfiighbar sind, Relaxationseffekte visualisiert. Zu diesem Zweck
werden die (D/A) Dichten mit Loch/Elektronen (h/e) Dichten verglichen, die aus der
Ubergangsdichtematrix berechnet werden.

Mit diesem Wissen kénnen nun Réntgenabsorptionsspektren von mittelgrofien Mo-
lekiilen und Radikalen aus den Bereichen der organischen Elektronik und Biologie un-
tersucht und analysiert werden. Auf der Grundlage dieser Studien zeigt sich, dass die
eingeschréankten und uneingeschriankten Versionen von CVS-ADC(2)-x in Kombination
mit dem 6-3114++G** Basissatz einen mittleren Fehler fiir Kernanregungsenergien von
etwa 0.1% im Vergleich zu experimentellen Werten aufweisen. Auflerdem werden mit Hilfe
von Zustandsdichten, die u.a. mit der CVS-ISR Methode berechnet werden kénnen, die
Charaktere der kernangeregten Zustinde analysiert.

Um zu demonstrieren, dass der CVS-ADC(2)-x Ansatz als Benchmark Black-Boz-
Verfahren eingesetzt werden kann, werden die Ergebnisse zudem direkt mit TD-DFT
Rechnungen verglichen. Auf Grund des SIE unterschétzt TD-DFT die Kernanregungsener-
gien um bis zu 4%, was in etwa 10 eV im Falle einer Kohlenstoff 1s Anregung ist.

Da die CVS Niherung zu einer Vereinfachung der ADC Gleichungen fithrt und zudem
der Anregungsraum auf Kernanregungen eingeschrankt wird, reduziert sich der Rechen-
aufwand im Vergleich zu der allgemeinen ADC Methode. Um diese Einsparungen in
Abhé#ngigkeit von der Grofle des Kernraumes zu demonstrieren, werden verschiedene
Systeme untersucht, wodurch die Rechenzeiten der CVS-ADC Methode quantifiziert wird.
Eine CVS-ADC(3) Rechnung dauert in etwa 8 bis 10 mal linger als eine CVS-ADC(2)-x
Rechnung und da die Ergebnisse in der Regel auf dem CVS-ADC(2)-x Niveau genauer
sind, ist die Nutzung von CVS-ADC(3) nicht gerechtfertigt. Im Vergleich zur allgemeinen
ADC(2)-x Methode, verringert sich der Rechenaufwand durch die CVS Niherung um
den Faktor 4.0, wobei dieser Wert stark von der Grofie des Systems und der Grofle des
Kernraumes abhéngt.

In einem néchsten Schritt présentiere ich Anwendungen aus dem Bereich der organi-
schen Elektronik. Aufgrund der bemerkenswerten Ubereinstimmung mit experimentellen
Daten auf dem CVS-ADC(2)-x Niveau, ist es gerechtfertigt, noch nicht experimentell
gemessene Rontgenabsorptionsspektren mit dieser Methode vorherzusagen. Deshalb habe
ich das Anthracen-Kation ausgew#hlt, welches als Modellsystem von Pentacen und seinen
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Derivaten benutzt werden kann, die gemeinhin als Lochleiter (p-Typ) verwendet werden.
Rontgenabsorptionsspektren des Pentacen Kations kénnten tiefere Einblicke in die La-
dungstriagereigenschaften liefern, aber experimentelle Messungen von ionisierten Molekiilen
sind in der Regel sehr schwierig. Mit der Hilfe von CVS-UADC(2)-x Rechnungen zeige
ich, dass das Anthracen-Kation aufgrund der halbgefiillten einfach besetzten Orbitale
zusétzliche Signale etwa 3.5 eV — 1.5 eV unter dem ersten Signal des neutralen Anthracens
aufweist. Weiterhin hat das kationische Spektrum Signalverbreiterungen im Vergleich
zu den beiden ersten Signalen der neutralen Anthracen Spezies. Andere Anwendungen
konzentrieren sich auf die Entwicklung von kernangeregten Zustandseigenschaften entlang
wichtiger Potentialfliichen (PES) von ANQ, Phenol und Bithiophen. Dabei werden Dipol-
momente, Energien und Exziton Grofien als Funktion der C—O Absténde von ANQ und
Phenol, sowie die Drehung um den mittleren Diederwinkel von Bithiophen analysiert.

AbschlieBend werden Ubergangsmomente zwischen zwei Zustéinden diskutiert, die iiber
die CVS-ISR zugénglich sind. Diese kénnen verwendet werden, um Oszillatorstéirken fiir
kernangeregte Zustandsabsorptionen (CESA) zu berechnen. Soweit mir bekannt ist, gibt es
noch keine experimentellen Daten von CESA Prozessen von einem kernangeregten Zustand
zu einem anderen. Allerdings kénnten solche spektroskopischen Daten neue Erkenntnisse
hervorbringen. Da die Berechnung der CESA Ubergangsmomente unter Verwendung des
CVS-ADC/CVS-ISR Ansatzes relativ einfach moglich ist, werden erste Ergebnisse von
berechneten CESA Prozessen in dieser Arbeit vorgestellt. Dazu wurde eine Reihe von
reprisentativen Molekiilen ausgew#hlt. Im Falle von ANQ, konnen beispielsweise besonders
helle Uberginge von dem energetisch niedrigsten Sauerstoff 1s angeregten Zustand zu
hoher Zustdnden identifiziert werden.
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Chapter 1

Introduction

Photochemistry is a special branch of chemistry, which deals with the interaction of atoms
or molecules with electromagnetic radiation. Nowadays, the investigation of photochemical
processes is of great practical importance in many different fields. For example, a detailed
knowledge about light-absorbing molecules that are applied in organic electronics helps to
improve and develop organic solar cells or organic light-emitting diodes.'™ In the field
of medical biology, photo-initiated DNA damages are investigated to understand cancer
formations and to improve radiation cancer therapies.®®

Without any external radiation, a molecule is usually in its electronic ground state (Sp).
When the system absorbs light, i.e. a photon, the molecule is promoted to an optically
allowed excited state, thereby transferring an electron from an occupied molecular orbital
(MO) to a virtual MO level. The corresponding excitation energy (w) depends on the
energy of the absorbed photon. Such excitation processes are usually ultra-fast, so-called
vertical Franck-Condon excitations that involve vibration levels according to the structure
of the potential energy surface (PES) of the corresponding excited state.? Generally,
an electronically excited state has a certain lifetime which depends on environmental
influences and the molecular system itself. There are a plethora of subsequent decay
processes after vertical excitations, e.g. fluorescence, internal conversion, intersystem
crossings, charge and energy transfers and many more. Eventually, the molecule essentially
relaxes back to the ground state level. Depending on the decay mechanism, either its
initial structure or a photoproduct, which differs chemically or structurally, is obtained.
Besides excitations into virtual MOs, which results in a bound-excited state, an electron
can also be excited into the continuum, thereby ionizing the molecule.

A special kind of electronic photo-excitation is the promotion of core electrons into
the virtual MO level, which results in a core-excited state.'? Core electrons are usually
occupying the energetically lowest molecular orbitals, i.e 1s orbitals in the case of light
elements like carbon. Regarding heavier atoms, e.g. sulfur, 2s or 2p electrons belong to
the core space too. Since core electrons are strongly bound to the atomic nucleus, due
to Coulombic attraction, a large amount of energy is necessary to excite them. Hence, a
molecule needs to absorb X-ray photons to excite core electrons, while valence-excited
states are generated via absorption of ultraviolet (UV) or visible (VIS) light. If the energy
of the X-ray photon is larger than the ionization threshold of the respective core orbital,
a core-ionized state can be generated. This results in an released electron with a large
kinetic energy. 0 Figure 1.1 illustrates the different kinds of significant photo-absorption
processes in a simplified scheme.

Optically allowed core-exited states can be studied experimentally by means of X-ray
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Figure 1.1: Schematic overview of different types of significant photo-absorption processes.
The energies are not true to scale. Valence excitations are blue and valence ionizations
are purple. Excitations from the core level are red, while core ionizations are green.

absorption spectroscopy (XAS) techniques.!! Over the last years, modern synchrotron soft
beam sources have been developed.!?!3 They provide tunable and intense X-ray beams,
which are suited to measure organic compounds. Since core orbitals are energetically
well-separated from the remaining occupied and virtual orbital space, excitations of core
electrons generate a typical sharp rise in the absorption spectrum, i.e. when the energy of
the incoming X-ray photon is equal to the binding energy of the respective core orbital.
Those edges correspond to the level (electron shell with quantum numbers K, L, ...), where
the vacancy is generated. ' Hence, K-edge spectroscopy probes 1s core excitations, while
L-edge corresponds to 2s or 2p core electron promotions. These edges are element specific,
because the strength of the Coulombic attraction depends on the charge of the nucleus.
For example, typical K-edges of carbon atoms are around 285 eV, while nitrogen 1s core
excitations are around 400 eV.!* In Figure 1.2, an arbitrary K-edge X-ray absorption
spectrum is illustrated schematically. The K-edge can generally be divided into three
different regions.!® Firstly, there is the pre-edge, which is dominated by excitations of
core electrons from 1s to 7*, d-orbitals. Sharp signals in this region exist for transition
metals where d-orbitals are partially occupied and thus correspond to the lowest half- or
unoccupied orbitals. These signals usually have a low intensity.!® Secondly, there is the
rising-edge which contains core excitations dominated by 1s to 7*, p transitions. These
signals are usually strong and lead to a characteristic spectrum. Both rising and pre-edge
regions correspond to core excitations and are experimentally probed with X-ray absorption
near edge structure (XANES) spectroscopy or near edge X-ray absorption fine structure
(NEXAFS) spectroscopy. Both techniques correspond to the measurement of absorption
cross-sections of condensed matter, thin films or liquids, while gas-phase experiments are
often just called XAS.'6:17 The third region, of the XAS spectrum corresponds to the
signals above the ionization threshold of the core orbitals, i.e. core electron promotions to
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Figure 1.2: Schematic illustration of an arbitrary K-edge X-ray absorption spectrum. The
different regions of the K-edge are marked and the corresponding spectroscopic method is
denoted.

the continuum. This region is probed with the extended X-Ray absorption fine structure
(EXAFS) spectroscopy technique. 19

Core-excited states are meta-stable or quasi-bound states which have a short lifetime.
Due to the strong Coulomb attraction, core orbitals are contracted and the corresponding
core-excited states are very localized. Typical decay mechanisms after core excitations are
resonant Auger (RA)¥72! decay, dissociation?23 of the molecule or emission?* of a photon.
The RA decay can be divided into intramolecular or intermolecular mechanisms. The most
important intramolecular mechanisms are spectator RA (sRA) decay, participator RA
(pRA) decay and the so-called ”shake up or down” RA (mRA) decay. In the sRA decay,
the core-excited electron remains as a ”spectator” in the virtual level, while the core hole is
refilled by an electron from the valence occupied level via relaxation. The released energy
of this process is then used to promote another electron from the valence level to the
continuum, which produces a highly excited valence-ionized state. In the pRA mechanism,
the initially core-excited electron participates directly in the decay via relaxing back to
the occupied level, thereby releasing energy which is used to detach a valence electron
and thus ionize the system. The mRA decay describes situations where the core-excited
electron hops to a higher or lower virtual level during the decay mechanism. An important
intermolecular decay mechanism is the interatomic Coulombic decay (ICD) process, which
was first formulated in 1997 by Cederbaum et al.?® Generally, an electronically excited
molecule, placed in a molecular environment, can transfer its excess energy to a neighboring
molecule which subsequently emits an electron.?672% Such ICD processes can originate
from core-excited states through a sRA cascade mechanism.”® Electrons, that are released
through ICD after core-excitation, are highly energy and site selective due to their local
character. This leads to possible applications in radiation biology, where the localized
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emitted electron may allow for a more targeted cancer radiotherapy.

The most important applications of XAS correspond to the analysis of the electronic
structure of molecules. 1133931 Ag mentioned above, due to the strongly bound and
contracted 1s orbital, K-edge core-excited states are element specific and strongly localized,
thus they serve as chemical fingerprints.!! NEXAFS and XANES spectroscopies are
applied in surface science, medical biological research and organic electronics. !2-13:32:33
For example, information about the band structure of electrical conducting molecules can
be obtained with NEXAFS spectroscopy. 734736 In recent studies, the orientation between
adsorbed molecules on gold surfaces has been investigated with XAS techniques, which
helped to understand biomolecular surface interactions.?”3® Another example from the
field of biology, is the analysis of tautomers of the deoxyribonucleic acid (DNA) bases
cytosine and uracil.®®* The population of tautomers was determined via analyzing the
signal structures of their NEXAFS spectra. Furthermore, there are techniques in the field
of time-resolved and in situ X-ray spectroscopy which help to explain chemical reaction
mechanisms with radicals as intermediate species or that provide information about
inorganic coordination compounds.3%:31:39 Examples from this field are the investigation of
the electronic structure of nitronyl nitroxide radical derivatives or the radical formation of
titanium oxide dimers. 494! Generally, radical or open-shell systems are difficult to measure
experimentally. Nevertheless, X-ray absorption (XA) spectra of the allyl radical could be
obtained and helped to identify key radical intermediate species in reaction mechanisms. 42

To fully understand and interpret experimental spectra, it is necessary to obtain an
accurate knowledge of excitation energies, transition moments, the character of the excited
states, as well as their corresponding properties. Such information can be obtained by
quantum chemical (QC) methods, which help to analyze and interpret experimental spectra,
thereby providing a deep insight into the nature of excited states. Furthermore, accurate
theoretical methods are able to predict excited states of molecular species and simulate
their absorption spectra. Nowadays, a plethora of QC methods is available to describe
excited states, but very accurate black-box methods are usually limited to small systems
up to fifteen atoms.*® However, a quantitative agreement with experiments can be achieved
with these methods. For the calculations of larger systems, additional approximations have
to be introduced in order to reduce the computational effort. Consequently, investigating
large systems requires a proper knowledge about the limitations of the method of choice as
well as the comparison with benchmark calculations. Additional problems arise when core-
excited states are investigated. Usually, the iterative numerical diagonalization algorithms,
which are employed to solve the QC eigenvalue problems, yield the lowest eigenvalues.
Since core-excited states are in the high energy X-ray region of the excitation spectrum,
all underlying valence-excited states must be calculated as well, which is computationally
expensive and is not possible for accurate methods or large systems. There are approaches
to tackle this problem, e.g. the core-valence separation (CVS)4445 approximation, which
is based on the fact that core orbitals are energetically well-separated from the other
occupied or virtual orbital spaces and, as a consequence, couplings between core- and
valence-excited states can be neglected. In other words, the CVS approximation decouples
the space of core excitations from the space of valence excitations which allows for a
direct computation of core-excited states. Since core electrons are strongly bound, the
generated core-hole interaction induces a rearrangement of the valence electrons, because
the effective shielding of the nucleus is reduced. 6759 This effect leads to a lowering of the
core-excitation energy of the final state compared to valence excitations where usually
no rearrangement of the valence electrons occurs. The electron rearrangement can be
understood as an orbital relaxation effect and accurate quantum chemical methods for the
calculation of core-excited states require consideration of this process.




Over the last years, several QC approaches have been developed to simulate XAS
spectra, for example, the coupled cluster (CC)5175% family, like equation-of motion coupled
cluster (EOM-CC)?®>59 the symmetry adapted cluster configuration interaction (SAC-
CI)%065 or the approximate coupled cluster scheme of second order (CC2)%6:67. All of
these CC methods are known to provide accurate results compared to experiments, but
they are limited to medium-sized systems with about 60 atoms. Large systems are usually
treated with time-dependent density functional theory (TD-DFT)% 73 in reasonable
computational time, exploiting the CVS approximation. Experimental X-ray absorption
spectra are often well-reproduced at the TD-DFT level, but the self-interaction error (SIE)
in combination with the small energetic gap between occupied and unoccupied electronic
levels leads to a large underestimation of core-excitation energies. "7 To correct this error,
there are, for example, correction schemes based on the resonant-convergent first-order
polarization propagator.”7? Without a correction scheme, an additional energy-shift is
necessary to agree with experiments.

Another prominent QC method to study the photochemistry of small and medium-sized
molecules is the algebraic diagrammatic construction scheme (ADC) of the polarization
propagator. 5™ Due to its size-consistency and Hermitian structure, the ADC scheme
is known to be an accurate and reliable approach for the calculation of excited states
and their properties. Generally, the approach is based on a Green’s function formalism
in combination with the typical Mgller-Plesset (MP)®° partitioning of the Hamiltonian.
Restricted ADC for closed-shell molecules provides an overall accuracy of the strict second
order version ADC(2)-s of 0.22 eV£0.5 eV, while at the third order level ADC(3) an
average error of 0.12 eV+0.28 eV for singlet valence-excited states for standard organic
molecules is obtained. 8! Tts unrestricted variant (UADC) for valence-excited states exhibits
an averaged mean deviation in excitation energies of 0.3 eV — 0.4 V.52 A big advantage
of ADC is the indirect inclusion of orbital relaxation effects via couplings to doubly- or
higher-excited configurations, which are included in second or higher order in perturbation
theory. Furthermore, the ADC method in combination with the intermediate state
representation (ISR) 783 approach provides an elegant way to calculate one-particle
excited-state properties, e.g. static dipole moments and excited-state densities, which
provide enhanced information about a system of interest. Since excited-state vectors
mostly consist of a mixture of different MO transitions, a proper characterization of
an electronically excited state can be difficult. Thus it is an advantage to look at state
densities rather than considering MOs.8* Furthermore, the total ADC state density contains
information about orbital relaxation effects that can be visualized by plotting electron
detachment /attachment (D/A) densities®® or which can be quantified by calculating the
electron promotion numbers. 3436788 However, the calculation of core-excited states with
ADC methods is generally challenging, because the solution of the ADC eigenvalue problem
is achieved via an iterative diagonalization procedure designed to yield the energetically
lowest states of the excitation spectrum. As mentioned above, a solution to this problem
is the CVS approximation, which results in the CVS-ADC approach. It could be shown
in former publications that the extended second order approach CVS-ADC(2)-x achieves
excellent results for core-excited states.39°! However, efficient implementations in modern
quantum chemistry programs were not available and the programs used in the quoted
literature were limited to less than 200 basis functions. %2

In the scope of my dissertation, I enhanced the CVS-ADC approach and efficiently
implemented the methods into a development version of the adcman??® program, which
is part of the Q-Chem?* program package. At first, I implemented the restricted CVS-
ADC scheme up to the extended second order for closed shell systems allowing efficient
calculations of systems with 500 basis functions in a reasonable computational time. Next,
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this implementation was expanded for open-shell molecules by introducing the unrestricted
variant CVS-UADC(2)-x for the first time. Both restricted and unrestricted versions
provide very accurate results compared to experiments, thus the question arose, whether
a higher-order CVS-ADC(3) approach improves the description of core-excited states.
Therefore, I derived the CVS-ADC(3) approach by applying the CVS approximation for
the first time to the ADC(3) working equations and I also implemented this approach
in the adcman program. Finally, to enable calculations of core-excited state properties
and densities, I applied the CVS formalism for the first time to the ISR approach and
the resulting CVS-ISR method was implemented in adcman too. In combination with
the wave function analysis package 1ibwfa848688% 4 deeper evaluation of transition- and
density matrices can be performed, which provide access to exciton sizes, e.g. hole sizes or
distances between hole and electron densities.

In this thesis, I would like to present the CVS-ADC/CVS-ISR methods and the results
that I obtained with my implementations. Quantum chemical methods and theoretical
aspects for the calculation of ground and (core-)excited states are introduced in chapter 2.
The focus is on the (CVS-)ADC method but basic concepts of quantum chemistry and
electronic structure theory are also briefly explained as well as alternative approaches.
Next, the implementation of the CVS-ADC/CVS-ISR methods in the adcman/Q-Chem
environment is presented in chapter 3. Here, the general interface, implemented features
and the modified working equations are discussed. In the following chapters 4 — 10,
calculations and results using the CVS-ADC/CVS-ISR methods are discussed in detail.
In chapter 4 T present benchmark calculations of the CVS-ADC methods up to the
third order using a set of small organic molecules. The calculated results are compared
with experimental data or in the case of the CVS-ISR approach with values obtained at
the SAC-CI level of theory. Alongside, the complete basis set limit is estimated and a
detailed study of basis set influences is performed. Next in chapter 5, the contribution of
orbital relaxation effects on core-excitation energies is discussed by means of CVS-ADC
calculations up to the third order. Here, the CVS-ISR approach is used to calculate
detachment/attachment densities, which provide a possibility to visualize relaxation effects.
After benchmarking the CVS-ADC methods, I present in chapter 6 calculated XA spectra
of chosen medium-sized molecules from the fields of organic electronics and biology to
demonstrate the capability of the CVS-ADC(2)-x approach to successfully simulate XA
spectra of chemically relevant systems. Furthermore, the first XA spectra of radicals ever
calculated with the CVS-UADC method are presented too. Afterwards in chapter 7, the
core-excitation energies at the CVS-ADC(2)-x level presented in chapter 6 are compared
with TD-DFT and CVS-ADC(2)-s results to demonstrate the self-interaction error (SIE)
problem inherent in pure TD-DFT and to clarify the accuracy at the CVS-ADC(2)-x
level. Chapter 8 contains an analysis of computational timings of my implementation
of the CVS-ADC methods up to the third order. The focus is on the correlation of the
computational time and the size of the core orbital space. In chapter 9, I present some
applications of CVS-ADC calculations in the field of organic electronics. The first study is
about pentacene and its derivatives, which are often used in organic field-effect transistors
(OFET) as hole conductors (p-type). A deeper insight into the charge carrier properties of
pentacene systems could be provided by XA spectra of their cations, which are, however,
very challenging to measure experimentally. Therefore, I predict the XA spectrum of
the anthracene cation, which was chosen as a model system for pentacene. The second
investigation presented in chapter 9 is about trends of core-excited state properties along
potential energy surfaces (PES) of chosen molecules. In the following chapter, another
aspect of the CVS-ISR method is presented, i.e. the accessibility of transition moments
between two states. These transition moments are used to calculate oscillator strengths




for core-excited state absorption (CESA) spectra. Finally, chapter 11 provides concluding
remarks and an outlook on future projects. There, the results and calculations presented
in this thesis are summarized.

At this point, I would like to mention that most of the parts of this dissertation have
already been published by me as author (five publications) or co-author (three publications)
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Chapter 2

Theoretical Methods

In this chapter, I introduce the basic concepts of quantum chemistry and discuss the
theoretical methods that are used in the chapters 4 — 10 to study X-ray absorption
processes. The focus is on the algebraic-diagrammatic construction (ADC) scheme for
the polarization propagator "® ™ (chapter 2.5), which is the quantum chemical excited
state method that I have enhanced via implementing and deriving certain core-valence
separated variants (CVS-ADC) for the calculation of core-excited states. The ADC
method is discussed in detail, thereby presenting the derivation via the intermediate
state representation (ISR)®33 and introducing the core-valence separation approximation
(CVS)44:45,100 " Gince ADC is based on elemental concepts, e.g. the Hartree-Fock (HF)
method %1, T introduce these approaches at first.

Therefore, I start with the explanation of elementary approaches of quantum chemistry
in chapter 2.1 followed by an introduction to general methods for the description of
the electronic ground state in chapter 2.2. There, I concentrate on the HF method
as well as the many-body perturbation theory (MBPT)!0l because these approaches
are important to understand the ADC method. Furthermore, alternative prominent
methods, which are applied in the scope of this thesis, i.e. the density functional theory
(DFT) 192 the configuration interaction (CI)!°* and the coupled-cluster (CC) %3 family
are introduced briefly to provide a broader picture of quantum chemical approaches. In
chapter 2.3, I give a general overview to excited state methods, followed by discussions
of approaches to calculate core excitations in 2.4. The focus is on the configuration
interaction singles (CIS)!%* method, the time-dependent variant of the density functional
theory (TD-DFT)% 70 and approaches to calculate excited states with CC methods. This
chapter is concluded, as mentioned above, with the detailed introduction of the ADC
scheme (chapter 2.5). Note that semi-empirical approaches!%® as well as multireference
(MR) %6 methods, which are based on using of more than one Slater determinant, e.g. the
complete active space self-consistent field (CASSCF) %7 approach, are not discussed in the
scope of this thesis. For comprehensive reviews of all mentioned methods and concepts,
please refer to the cited literature.

If not otherwise stated, p, q, r, and s correspond to general orbitals, while i, j, k, and 1
denote occupied orbitals. Unoccupied or virtual orbitals refer to a, b, ¢ and d, while € is
generally used to denote orbital energies. All equations are written in atomic units, thus
the elementary charge (e), the electron mass (m.) and the speed of light (c) are set to one
using the Planck constant (7).
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2.1 Basic Concepts of Quantum Chemistry

Let me start this chapter with an introduction to fundamental concepts of quantum
and computational chemistry. I would like to mention the textbooks ”Modern Quantum
Chemistry”, written by Szabo and Ostlund as well as ”Molecular Electronic-Structure
Theory” by Helgaker et al., where all topics and information, which are given in this
chapter, are discussed in more detail. 19%:108

2.1.1 Schrodinger Equation

The time-dependent Schrodinger equation is the quantum mechanical equation of motion,
thus it describes the evolution of the wave function ¥(x,t) with the time ¢ as

0 5
zha\ll(x,t) = HU(x,t), (2.1)

where x are the degrees of freedom in space and H is the Hamilton operator (Hamiltonian),
which describes the energy of the system and is given in the non-relativistic case as

A n d? (2.2)

H(z,t) = ——— + V(x,t). .
(0,) =~ 25 + V(1)

Here, m is the reduced mass and V(x,t) is the potential energy of the respective particle.

However, to describe most of the chemically relevant problems, the formalism can be

simplified, because in closed systems like an isolated molecule, the total energy is preserved,

thus the Hamiltonian is time-independent:

B2 2

H= ~ % T V(x). (2.3)

In such cases, the wave function ¥(x,t) can be separated into time-dependent and space-
dependent parts

iEt

U(x,t) =U(x)P(t) with U(t)=e 7, (2.4)

where the energy E is assumed to be constant. After inserting equation 2.4 in equation
2.1, the Schrédinger equation can be formulated as

EU(z)U(t) = HU(z)W(t) (2.5)

and since ¥(t) is constant, the prominent time-independent Schrédinger equation (TISE)
is given as
HY(z) = EV(x). (2.6)

Hence, the TISE does not describe the equation of motion of a quantum mechanical
system, but the so-called stationary state of a molecular system. Depending on the degrees
of freedom, the wave function is given as ¥(z1,xs,...,x,) and the TISE represents an
ordinary differential equation. Since the Hamiltonian H comprises all interactions that
describe the total energy E of the system, the TISE is also a multidimensional eigenvalue
problem and if the wave function is an eigenfunction of the Hamiltonian, the total energy
of the stationary state can be obtained.
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2.1.2 Born-Oppenheimer Approximation

Formally, the TISE is exact for a closed system. However, analytic solutions for systems
with more than one electron cannot be calculated, because the Hamiltonian contains many-
body interactions. To explain this problem, let me consider a molecule with n electrons
a,b,... and N atomic nuclei A, B, ... . These particles then have © = {z,, zp, ..., 2, } and
X ={X4,Xp,..., XN} positions in space, respectively, and the TISE transforms to

H(z,X)¥(z,X) = BV (z, X). (2.7)
The full Hamilton operator in atomic units is given as

Z Vi ZZ XA|+ZZ|%*%|

alAl a=1b>a

ZaZp v
*Z Z Xa—Xg| ;MI’

A=1B>A

(2.8)

LX is the differential

where Z is the charge and M is the mass of the nuclei, while V = 5
operator for the electrons and nuclei, respectively. The five contributions to the Hamiltonian

can be summarized to
ﬁ = Tel + ‘7el7nuc + ‘7elfel + Vnucfnuc + Tnuc (29)

according to the order of the terms in equation 2.8. T describes the kinetic energy, while
V denotes the potential energy of the electrons and nuclei, respectively. Now it is obvious,
why the TISE cannot be solved analytically if more than one electron or nucleus is involved,
because all of the three potential energy terms depend on many-body interactions. Hence,
it is necessary to introduce approximations for the potential energy terms, otherwise it
is impossible to calculate the total energy of a stationary state. The most important
approach in this context is the Born-Oppenheimer approximation (BO) At first, according
to equation 2.9, the Hamiltonian can be split into two parts H=H,+ Hnuc7 where H,u.
contains all parts, which only depend on the nuclei as

ﬁnuc = Tnuc + Vnuc (210)

and ﬁel contains all remaining contrijoutions of the electrons as well as the interaction
between the electrons and the nuclei V;_,,.. Since the kinetic energy of the nuclei T},
is given as

N
. 1 \%
Thve = -5 E L (2.11)

it depends on the factor MI_l7 which is about 1850~! in atomic units. This means that
the nuclei move about 2000 times slower than the electrons. Therefore, it is an appropriate
assumption to keep the position of the nuclei frozen and treat the movement of the
electrons around the fixed nuclei. As a consequence, the total wave function of the system
can also be divided into two parts

U(z, X) = Vy(z, X)Vhu(X) = ¥, (X), (2.12)

where X indicates that the electronic wave function ¥.; only depends parametrically on
the spatial positions of the fixed nuclei. Hence, the electrons are instantaneously adapted
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to any change of the nuclear geometry. Since the positions of the nuclei are fixed, Hpue is
transformed to a constant energy contribution and the Hamiltonian can be written as

Hp = Tel + Vel—nuc(x X) + f/el—el(x) + f{nuc(X)

n 1 ) R
= _EQV ZZ XA|+ZZ|ZEQ*SQ,| Hpue(X),

alAl a=1b>a

(2.13)

which defines the electronic Hamiltonian that contains the fixed positions of the nuclei as
a parameter X. Since Hg now depends on X, the corresponding eigenvalues F,,(X) and
eigenfunctions depend on the fixed nuclei, too. Furthermore, the force on the atoms is
given as

dE
F= e (2.14)
thus the atoms move in a mean potential of the electrons, which establishes the picture of
potential energy surfaces (PES). Eventually, the TISE can be formulated for the electronic
Hamiltonian as

where n indicates the n'" excited state with n = 0 being the electronic ground state. The
BO is now defined as follows: If the energy difference AE(X) = E;(X) — Eo(X) between
two potentials is large, then the interaction between two states Wy (X) and W(X) is
small and as a consequence, the motion of the nuclei can be treated separately within the
potentials £;(X) and Ey(X), respectively.

These concepts are important for quantum chemical calculations. Due to the BO,
only the Vez—ez term remains as a real many-body problem and most of the research in
the field of electronic structure theory concentrates on finding efficient approximations to
describe this electron-electron interaction potential. A few of them are introduced in the
following chapters, e.g the HF method, where it is assumed that the electrons move in
the mean field induced by all others. Since all concepts and methods that are discussed
in this thesis are based on the electronic time-independent Schrodinger equation in the
Born-Oppenheimer picture, I neglect the explicit mention of this fact from now on and
equation 2.15 is simply defined as

HU, = E,¥,. (2.16)

2.1.3 The Electronic Wave Function

With the knowledge about the electronic TISE in the BO picture, the electronic Hamiltonian
is defined. However, the representation of the electronic wave function ¥,, is not yet
clarified. Therefore, I introduce the concept of Slater determinants as a consequence of
the Pauli exclusion principle and the representation of the wave function in terms of basis
sets in the following chapter.

Slater Determinants

So far, the electronic Hamiltonian only depends on the spatial coordinates of the electrons.
However, in quantum mechanics, an electron has another important property, its spin
state. The corresponding spin functions are denoted as «(s) and 3(s), which describe the
up and down spin state, respectively. s is used to define the spin coordinate. These spin
functions are orthonormal, thus (a(s)|5(s)) = 0 and {(«(s)|a(s)) = 1, which is also valid if
«a and (8 are interchanged. Hence, the electronic wave function ¥,, depends on the spatial
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coordinates x and the spin coordinates s, which are both merged to the general parameter
r with » = {x, s}. Considering a wave function of a system with N electrons, the famous
Pauli exclusion or antisymmetry principle states that

”a many-electron wave function must be antisymmetric with respect to the interchange of
the coordinate T of any two electrons,

U (11,72, oy T3 Ty ooy TN) = =Wy (11,72, oo 75, T4y oy TN) 7 101 (2.17)

This principle is based on the fact that the Hamilton operator does not contain any
information about the electronic spin and it is not sufficient to just include the spin within
the description of the wave function. A common description of the wave function, which
fulfills the antisymmetry principle, is the so-called Slater Determinant. Therefore, the
electronic wave function is written as a Hartree product

U = i (r1)5(r2) . i (rn), (2.18)

where

_ ) x(@)a(s)
Y(r) = {X(x)ﬁ(s) (2.19)

are single-electron orbitals with separated spin (« and ) and spatial () parts. The Slater
determinant for an N-electron system is then given as

¥i(r1) (r1) o g(r)

1/’;’ ™
\Iln(7"177'2,~',7'i,7'j;-~-;7'N):|\I/HP|:\/% wz‘(zrz) ¢j(:7°2) Zﬁk(:rz) (220

Bilrn) wirn) o )

where \/% is a normalization factor. If the coordinates of two electrons are interchanged,

the corresbonding rows of the Slater determinant have to be interchanged as well, which
leads to a change of the sign. For example, the Slater determinant of a simple two-electron
system is given as

1
ﬁ

Hence, the Slater determinant is an appropriate construct to describe electronic wave
functions.

U (r1,1m2) = —=(Y1(r1)v2(ra) — ¥a(r1)i(r2)). (2.21)

Gaussian Basis Sets

As the next step, explicit descriptions of the single-electron functions ¥ (r) have to be
constructed to establish an analytic expression of the electronic wave function. In the case
of polyatomic systems, i.e. molecules, the single-electron orbitals are expanded in a set of
atomic basis functions ¢, (r) with

Un(r) = Crndu(r). (2.22)

This ansatz is called linear-combination of atomic orbitals (LCAO) and via optimization
of the coefficients C),,, a set of n so-called molecular orbitals (MO) is obtained. The
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optimization of the coefficients is explained in chapter 2.2.1. Here, I want to discuss the
nature of the atomic orbitals ¢(r), which constitute a basis set for every kind of atom.

Let me consider a simple one-electron system, i.e. the hydrogen atom. Since there are
only two particles (one electron and one nucleus), this two-body problem can be solved
analytically. The full Hamiltonian transforms to

1
Hy = V3

- T — Ae ‘76 —nuc 7X ) 2.23

which describes the motion of the electron in the field of the nucleus at the position X. After
solving the eigenvalue problem of the TISE employing Hy, the resulting eigenfunctions
correspond to so-called Slater-type orbitals (STO):

S (d, A, ©) = Ry (d, ¢)Vim(A, ©), (2.24)

where d = |x— X | is the distance between the nucleus and the electron, R,,(d, () determines
the radial part and Y, (A, ©) the angular part, which is based on spherical harmonics.
The indices n, I and m correspond to the principle quantum numbers. The radial part of
a Slater orbital is formulated as

wleo

(2€)
(2n)!

where (¢ describes the compactness of the orbital. Eventually, the STOs establish a good
basis for the hydrogen atom. However, there are numerical problems that complicate the
employment of STOs for many-body systems, because solving typical types of integrals
inherent in quantum chemical approaches is computationally expensive using STOs.

An alternative description of atomic basis functions is provided via Gaussian-type
functions (GTO), which can be used to approximate the STOs. The GTOs can be
integrated much more easily and computationally faster than Slater functions, thus they
are usually employed in modern quantum chemical calculations. Generally, a GTO exhibits
the same separation of radial and angular contributions (see equation 2.24), but the radial
part differs compared to STOs:

+/2(20)3 92n—1—2 m—l-2
GTO _ 4/ ad
Ryi(d, o) = - an—2 =30 (\/ 2ad) e . (2.26)

Besides the quantum number n it depends also on the complex spherical harmonics with
the degree 1 and instead of (, the orbital exponent « is employed. By introducing GTOs
with variable exponents and real spherical harmonics in a Cartesian space, the final GTOs
can be written as

R,(d,¢) = (2¢d)"te ¢, (2.25)

GTO(damay7z) = Nl%EOSlm(.’E,y7z)e—ad27 (227>

Ima

which does not depend on n any longer. Nl(f,:fxo is the constant normalization factor and

Sim(x,y, z) describes the real spherical harmonics in Cartesian coordinates. To resemble
Slater functions, linear combinations of the GTOs are fitted according to

k
@STOKG _ Z C;¢ST0 (ay), (2.28)

i=1

where k is the number of GTOs that are used to approximate one STO. Eventually, the
atomic Slater functions can be approximated by linear combinations of Gaussian-type
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functions, which can be further employed to establish an atomic basis set to describe the
single-electron wave functions (orbitals) via the LCAO ansatz (equation 2.22).

Nowadays, a plethora of systematically constructed basis sets are available. Since an
individual Gaussian function poorly describes the electronic wave function near the nucleus,
the GTOs are usually contracted. This leads to several levels of basis set contraction
schemes. Furthermore, basis sets are generated at a specific (-level, that correspond to
the exponent in STOs. Different (-levels can be established using multiple basis functions
corresponding to each atomic orbital that improves the description of the basis. The
higher the (-level, the more accurate the basis set. 6-311G 109110 for example, is a triple-¢
basis set, which is characterized by the following contraction scheme:

e There are 6 Gaussian functions employed to describe each core atomic orbital basis
function.

e The three numbers in 311G indicate that the valence orbitals are at the triple-C level
and thus composed of three basis functions, respectively.

e Each of the numbers in 311 indicates the number of linear combinations of Gaussian
functions used to describe the different zeta basis functions, respectively.

The 6-311G basis set belongs to the family of Pople’s split-valence basis sets. 1091117114

Besides the contraction and (-levels, the split-valence basis sets can be further improved
via adding polarization (*) or diffuse functions (4). For polarization effects, usually, one
has to extend the basis of an atom with functions of the next higher unoccupied orbital
level. For example, p-functions are added to the hydrogen atom and d-orbitals are added
to the first row atoms Li — F. This allows for the adaption to a uniform electric field, since
the resulting hybrid orbitals provide a larger flexibility for the charge distribution. Diffuse
functions are very flat basis functions, which describe orbitals that are higher in energy.
Their linear combinations lead to MOs that are often spatially delocalized over and beyond
the molecular system. These additional basis functions are important when considering
larger molecules, as well as ions or higher-lying excited states like core excitations, which
are the topic of my thesis. Therefore, I would like to mention the 6-311++G** basis set,
which I have employed in most of the calculations that are presented in the application
chapters. Besides the triple-C level, this basis set contains a set of polarization and diffuse
functions for all atoms including hydrogen, which is indicated via the second * and +. In
chapter 4, the benefits of employing the 6-311+-+G** basis set are explained.

Other typical basis sets that are often used in quantum chemical calculations are
correlation-consistent polarized valence basis sets (cc-pVX)!1® where the diffuse functions
are called augmented (aug)''® and doubly augmented (d-aug)!'%!'7 with the cardinal
number X ranging from double-¢ (DZ) to sextuple-¢ (6Z). Furthermore, the Ahlrichs series
with basis sets of the type def2-TZVP are also commonly used. !18:119

Note that the expansion in a basis set approximates the single-electron wave functions,
because a complete basis must contain an infinite number of basis functions. In real
calculations, the employed basis sets are finite according to equation 2.22. However, it
is possible to estimate the complete basis set (CBS) limit via extrapolating the ground
state energies using a few calculations with increasing basis set sizes. For ground state
correlation energies, the correlated consistent basis set series converge systematically
towards a CBS limit, which can be extrapolated using

Ex = Ecps + Ae=X=1 4 Be=(X-1)% (2.29)

where Ecpg is the resulting estimated energy of the CBS limit, X is the cardinal number
of the basis set (for example 2 for DZ) and Ex is the calculated energy using the basis
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set with the cardinal number X.!20:121 This provides the possibility to avoid basis set
truncation errors.

At last, I comment on the difference between Cartesian 6D/10F and pure 5D/7F
basis functions. Generally, one can decompose Cartesian functions into pure spherical
functions, which leads to a reduction in the number of basis functions, because the
Cartesian functions form the space of a reducible representation of the rotation group.
Using pure functions therefore leads to computational savings. However, the Cartesian
version of diffuse functions can afford a better description of energetically higher-lying
states, since they further extend the basis set and provide additional diffuse functions.
This topic is discussed numerically in chapter 4.2.2.

2.1.4 Second Quantization

Before I discuss the concept of second quantization, the Dirac notation for vectors, matrices
and two-electron integrals is introduced, which is used from now on. Table 2.1 summarizes
the common short-hand notions.

Table 2.1: Summary of the Dirac notations for one- and two-electron integrals over
one-particle wave functions, orbitals as well as for state vectors and operators.

State vectors and operators

lay =, aile) = (aq,a9,..)T
A= Zij Ajjlai) (ol

(ala) =37, a7a; =3, |ai|2

One- and two-electron integrals

(plolg) = <¢p|é‘¢q> = de1¢;(Tl)O(I1)¢q(T1)

(palrs) = (Wptbaltrths) = [ drydry PeTValDV ()0 r)

|1 — 2]

(pqllrs) = (pqlrs) — (pq|sr)

Generally, observables in quantum chemistry are represented as operators, while wave
functions are used to define a state. In second quantization, states are also described in
terms of operators. Therefore, one has to introduce an abstract linear vector space, i.e.
the Fock space. Considering the Slater determinant (equation 2.20), each determinant
in the Fock space is given in a notion of many-particle states as vectors of occupation
numbers n; as

0 if ;i t ied
) = |n1,ma, oy mag) with mg — 4 0 L i i mot occupie (2.30)
1 if ¢; is occupied
Within the Fock space, the completeness relations
M
(nfm) = [ 6n,m, = 0am and > |n)(n|=1 (2.31)
p=1 n
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of a scalar product of two states n and m are given. M is the size of the one-particle basis
and in the case of the identity expression, the sum over n runs over all possible values
of the vector n. A state that contains no electrons is defined as the true vacuum state
|vac> = ‘01, 02, ceey 0M>

To change the occupation number of a many-particle state, the concept of particle
creation é; and annihilation ¢, operators is employed, with p and g being general orbitals.
The creation operator is defined by the relation

g, np, ) = (1= np)(=1)Za<r ™|ny, ymy + 1,00, (2.32)

In other words, the creation operator only creates a particle in v, if 1), is not occupied.
Otherwise, if the orbital is already occupied, applying é:, would lead to zero. Strings of
creation operator can be used, for example, to construct many-particle states starting
from |vac) as

éled.el, vac) = 11,12, ..., 1ar—1, 0nr). (2.33)

The Hermitian adjoint counterpart to the creation operator is the so-called annihilation
operator, which removes a particle in the respective orbital and thereby reduces the
occupation number by one:

Eplny ey Ty ) = mp(—1)Za<e M |ny, my — 1,00, (2.34)

If 4, is not occupied, the annihilation operation yields zero. Both creation and annihilation
operators can be combined to operator strings like the one-particle excitation operator
C’f = ¢l ¢;. Such excitation operators can be used to describe electron excitation processes,
where an electron is removed from an occupied orbital i and promoted to an unoccupied
level a. Another special string is the number-conserving operator Np = é;f)ép, which
conserves the number of particles when applied to a state. An important characteristic of
operator strings of creation and annihilation operators are the anti-commutation relations,
which show the influence of the order of the operators on the resulting state:

P’ q

(e, =0 {&h,60) =0pg  {Gpréq} =0 with{Y,Z}zYZ+ZY. (2.35)

A big advantage of the second quantization picture is the possibility to represent any
arbitrary physical operator O in terms of creation and annihilation operators. Let me
consider an arbitrary single-particle operator in an N-particle system, which is given as

0=

g

N
6(i) = > _(ploltg) D [top(r) (g (ri)]. (2.36)

N
=1 pq =1

In second quantization, the latter part of equation 2.36 is completely described via a
simple operator string C¥. Any one-particle operator can thus be expressed as

0= Z 0pqCrq = Z<¢p\a|¢q>a;aq. (2.37)

pq pq

In the same way, a two-particle operator G can be expressed as
G = Gpgrsthiltaty. (2.38)
pgars

Finally, I conclude this chapter with the definition of the molecular electronic Hamilton
operator in second quantization. According to equation 2.13, the electronic Hamiltonian
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can be separated in different parts. Since the positions of the nuclei are fixed within
the BO, the kinetic energy T.; and the electron-nuclear interaction Vi_nue are single
particle operators, while the remaining electron-electron interaction Vii—el is a two-particle
operator. The electronic Hamiltonian in second quantization is then simply given as:

N 1 N

H =" hpeeheq+ 3 > Vogrethélatr + Hue (2.39)
rq pqrs

ith
v 1, Za
hpg = (Yp| — §V - Z a|¢q>
. A (2.40)

V;qus = <wpwq‘a|wrws>7

where x4 is the electron-nuclear separation, while x5 refers to the electron-electron
distance. H in second quantization is independent of the number of electrons and thus
can be used for any system, but it depends on the chosen one-particle basis.

10



2.2. ELECTRONIC STRUCTURE OF THE GROUND STATE

2.2 Electronic Structure of the Ground State

In this chapter I give a brief introduction to quantum chemical approaches for the descrip-
tion of the electronic ground state. Asshown in chapter 2.1, the electronic time-independent
Schrodinger equation (equation 2.16) cannot be solved exactly, because the electronic
Hamiltonian contains electron-electron interactions, which prevent analytic solutions. One
of the main challenges in quantum chemistry is to find adequate approximations for this
many-body problem, which preferably should be as accurate as possible and in addition
computationally cheap. The most important standard model is the Hartree-Fock (HF)
approximation, which is a practical method on its own and further provides a convenient
starting point for other enhanced and more accurate methods, i.e. the so-called post-HF
methods. One of these advanced approaches is the Mgller-Plesset (MP) perturbation
theory, which is based on Rayleigh-Schrédinger many-body perturbation theory and impor-
tant in the context of the ADC approach (see chapter 2.5). Furthermore, I introduce the
coupled-cluster (CC) and configuration interaction (CI) theories, which are also commonly
applied post-HF approaches. Besides methods based on the HF model, a different ansatz to
approximate the electron-electron interactions is provided via the density functional theory
(DFT), which is briefly presented in this chapter, too. Again, I would like to mention the
textbooks "Modern Quantum Chemistry” and ”Molecular Electronic-Structure Theory”,

in which more detailed information about the standard models in this chapter can be
found. 101,108

2.2.1 Hartree-Fock Approximation

The HF approximation is based on the variational principle for the electronic ground
state. It states that the expectation value of the Hamiltonian is an upper bound to the
exact ground state energy, if a normalized wave function |¥) is employed that satisfies
boundary conditions to vanish at infinity. In other words, if (¥|¥) = 1, the energy of an
approximate wave function is always too high:

(U|H|Y) > E,. (2.41)

Hence, the lower the ground state energy Ey, the higher the accuracy of the wave function.
Computationally, one has to employ a parameterized trial wave function ¥r and vary
these parameters as long as the expectation value of equation 2.41 converges against a
minimum, where U — W<t Considering the construction of wave functions in terms
of basis sets (see chapter 2.1.3), this minimum represents the exact ground state energy
within the employed basis set.

At first, an expression of the expectation value of the electronic Hamiltonian with
Slater-Determinants has to be derived. As mentioned before (see equations 2.39 and 2.40),
the electronic Hamiltonian can be divided into a single-particle and a two-particle part as
well as the remaining constant nuclear contributions. The expectation values of both the
single- and the two-particle part can be evaluated using the Slater-Condon rules'®! and,
without going into detail, the final results are given as

(U] > hpglhglWn) = Y hpg(Wnleheg[ W) = his (W lef e w,)
pa pa ¢ (2.42)

> (ilhiili)

3

11
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1
<\Iln|§ Z qursc ¢ cscr|\Il ) Z Vpgrs(¥n \c ¢ cscr\\Iln>

pgars quS

vaqm (Wn ‘ Cq0p|‘1’ ) = ;Z@JHU%
ij

where i and j correspond to occupied spin orbitals. Hence, the one-electron energy of a

Slater determinant corresponds to the sum of all occupied orbitals, while the two-electron

energy can be interpreted as the Coulomb-exchange energy. The latter accounts for the

electrostatic interactions between the electrons, considering the Pauli principle. Eventually,

the energy of a Slater determinant is given as

Eo(q}n) Z< ‘hn‘ > L Z<Z]||U> I:[nuc- (2.44)

% i

(2.43)

However, one has to find an appropriate Slater determinant for the electronic ground
state, which can be optimized variationally. In the HF approach, the variational mini-
mization is performed under the orthonormal constraint (i;|1;) = d;;, which results in
the famous HF equation for single-electron orbitals

filto(ra)) = eilwo(ry)). (2.45)

€; are the Lagrange multipliers, which represent the orbital energies, and fz is the Fock-
operator
F= Foalhéq + Huue = h+ VT 4 Hye. (2.46)
Pq
fpq corresponds to the elements of the Fock-matrix and h resembles the one-particle

operator in the electronic Hamiltonian. The two-particle operator qum, which contains
the electron-electron interactions, is replaced by an effective one-electron Fock potential

P =3 Vygihey = Z(quu» — Upiig)s (2.47)
pq pqr

where vpgrs = (pq|$|rs>. The index i runs over all occupied single-electron orbitals,
while p and q correspond to the complete set of orbitals. The first contribution to the
Fock potential, i.e vpqii, can be thus interpreted as a classical Coulomb interaction, which
describes the repulsion between one electron and all others. The second term vp;;, arises
from the antisymmetry principle and corresponds to the exchange between the electrons.
Classically, in first quantization, the Fock operator is given as:

fi= —fVQ Z ZA Z (J;(i) = K; (1)), (2.48)

where the Coulomb and exchange operators acting on a single-electron function are defined

s = [ a2y

v= ([ ar AL ))wju).

After introducing a basis via the LCAO ansatz (equation 2.22), the HF eigenvalue
problem (equation 2.45) is transformed to

fiY " Critu =&Y Cridp- (2.50)
1 I

(2.49)
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2.2. ELECTRONIC STRUCTURE OF THE GROUND STATE

When multiplying ¢3; from the right and integrating, equation 2.50 is transformed into a
matrix representation
2 FunCui =€) SinCi, (2.51)
I w

which is called the Roothaan equations with F,x = (u|f|\) representing the Fock matrix
and S, = (u|A) describing the overlap matrix between the atomic orbitals ¢, and ¢y.
If the basis functions are orthonormal to each other, then S,y = 1 and the remaining
Roothaan equations are given in short form as

FC = ¢,C, (2.52)

which can be solved by diagonalization of the Fock matrix. Then, the resulting eigenvectors
correspond to the canonical orbitals and the eigenvalues refer to the orbital energies,
respectively:

diag(F,\) = Ourep- (2.53)

This set of orthonormal canonical orbitals can be used to form a Slater-determinant,
which is called the HF ground state wave function W¥ and, according to the variational
principle, it is a very good approximation of a wave function. Since the Fock matrix is
defined in terms of its own eigenvectors, the diagonalization has to be performed iteratively.
For this purpose, the self-consistent field (SCF) %" method is usually employed. The final
HF ground state energy Fpr is then given with respect to the Hamiltonian as

- , Lo 1 . B
Epp = (W{THYET) =3 Gilhili) + 5 > (0lid) + Huue, (2.54)

A ©J

where the antisymmetrized two-electron integral (ij||ij) = (ij|ij) — (ij|ji) describes the
Coulomb-exchange interactions.

Eventually, the HF equations can be interpreted to describe the motion of every electron
in the mean electric field off all others. The Coulomb integral corresponds to the mean
repulsion and the exchange integral determines the mean exchange of one electron with all
others, respectively. As a consequence, the direct interaction between the electrons as well
as dynamic effects in terms of electron motions are neglected within the HF approximation.
The difference between the exact ground state energy Ey and Egp is defined as the
so-called correlation energy

E.=Fy— Eyp, (2.55)

which is a usually small (<5%), but chemically important energy change, since e.g., barriers
between an initial state and a transition state are of the same magnitude. Hence, the
error in total energies due the lack of correlation can be important for the description
of molecular systems. To improve the description of the ground state energy, post-HF
methods were developed, which include approximations of the correlation energy.

2.2.2 Configuration Interaction

The configuration interaction (CI) approach is the first post-HF method, which T want
to introduce. CI can be employed to calculate the electronic ground state as well as
excited states and features an improved description of the total energy by correcting
the correlation error of HF. The derivation is conceptionally simple, but the practical
application is limited to small systems due to high computational cost.

Let me assume a system with N-electrons. So far within the HF theory, one Slater
determinant (SD) is constructed with respect to N-single-particle basis functions, which

13



CHAPTER 2. THEORETICAL METHODS

completely describes the N-electron Hamiltonian. This SD accounts for the electronic
ground state and all corresponding energies and properties are based on this representation.
The basic idea of the CI scheme is to describe the N-electron Hamiltonian using a basis of
N-excited Slater determinants (N-eSD) with respect to N-single-particle basis functions,
including the ground state SD as a zeroth excited SD. The CI wave function |®g) is then
generated as a linear combination of these N-eSD using N-particle excitation operators
C N, which are applied to the ground state reference wave-function |¥q):

N N
Bo) = 3 kOl o) = 3 k| 0)
w=0 w=0

|\I’0> + kr Zéﬂqf@ + ky Zéfjb“[/(» + ki Z CA%ZLC|\I/0> + ... (256)
at abij abcijk
= | W) + kr|T5) + ks |UP) 4 kg |OT) + ..
with
Cy = {n; ey telees,a<bi<gy ddleteeena<b<ei<i<k } . (257)

where a, b, ¢, ... correspond to virtual unoccupied orbitals and i, j, k, ... denote the
occupied orbitals. The ground state reference wave function refers to the HF solution after
solving Roothaan’s equation (equation 2.51). The resulting N-tuply excited determinants
are named after the type of excitation as singles (S), doubles (D), triples (T), and so
on. The coefficients k,, are optimized with respect to the variational principle and the
expectation value of the CI energy as

_ 9 (®o|H|Po)
ks, (Po|Po)

The CI wave function and its corresponding energy are then exact within a given atomic
basis set. Using this N-eSD basis, a matrix representation of the Hamiltonian can be
established with the CI matrix elements

Hyy = (|07, (2.59)

0 (2.58)

where I and J correspond to N-tuply excited configurations. The diagonalization of the
complete CI matrix results in the exact eigenvalues (energies, ES!) and corresponding
eigenstates of the Hamiltonian within a given atomic basis set. If the full set of N-eSD
is employed, the scheme is called Full-CI. However, it is obvious that the Full-CI matrix
can be very large, since it grows exponentially with the number of electrons. Hence,
this method usually can be applied for systems with a maximum of only 10 electrons,
because for larger systems the computational cost becomes too large. A solution to this
limitation is provided via truncation of the excitation space by using only a subset of
determinants. For example, the CISD approximation only contains the singly and doubly
excited determinants, which is already sufficient to improve the HF result. Note that only
the Full-CI and CI singles (CIS) approaches are size consistent due to the linear variational
parametrization (see equation 2.56). The latter has a special importance, since it only
describes singly excited states and provides no improvement of the ground state due to
Brillouin’s theorem. %! The CIS method is thus discussed in more detail in chapter 2.3.1.

2.2.3 Many-Body Perturbation Theory

Many-body perturbation theory (MBPT) is a powerful concept to systematically derive ap-
proximations for any kinds of quantum chemical problems that correspond to many-particle
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2.2. ELECTRONIC STRUCTURE OF THE GROUND STATE

operators. Here, I want to focus on approaches that provide perturbative descriptions of
the electronic Hamilton operator. Therefore, I will introduce the Rayleigh-Schrédinger
perturbation theory (RSPT), which provides a strict way to approximate the correlation
energy of uncorrelated reference states. A special case of RSPT is the Mgller-Plesset (MP)
theory, in which the reference state corresponds to the HF ground state.8°

Rayleigh-Schrodinger Perturbation Theory

The basis idea of RSPT is to partition the electronic Hamiltonian into two parts H, and
U: . . R
H=H,+U. (2.60)
The first part corresponds to a zero-order Hamiltonian, whose exact solutions are known,
and the second part determines a small unspecified perturbation to the Hy system. The
solution of the corresponding eigenvalue problem of Hy, i.e.
Holo®) = B j0”), (2.61)
results in a set of zero-order orthonormal eigenvectors |0(O)> and the energy eigenvalues E(()O),
which can be used to expand the wave-function and energy in orders of the perturbation

(i) as
W) = 10)
i=0

- (2.62)
Eo=Y_EY.
i=0
These expansions establish the solutions of the exact Hamiltonian as
H[Wo) = Eo|¥o)
(2.63)

oo oo . oo
(Ho+0)>" 100y = ST EF S 0@y,

i=0 i=0 i=0
Since it is practically impossible to expand the energy and wave function expressions
to an infinity order, one has to introduce a certain truncation n. Equation 2.63 is then
reformulated recursively to equation 2.64 to account for the underlying corrections with
orders i < n that are needed to correct the n*P-order expression. In other words, higher
corrections to the wave function are generated from those of lower orders:

(o — E0™) = ~0]0¢ D) + 3~ BP0 =9). (2.64)
i=0
Since it is assumed that the the zeroth-order wave functions are orthonormalized, the
following relations for ¢ > 0 simplify the subsequent discussion:
<0(0)‘0(i)> =0

o0
0O w5) = 300 0) = (0©0@) = 1. (2.65)
i=0
The perturbative corrections for the energy are then given by multiplying equation 2.63
from the left using the zeroth-order wave function 0(%:
0O | £ 10© —0
™) — {< Ho0©@),  n

OO0 =1), n >0 (2.66)
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To obtain the n*'-order expression of the wave function, equation 2.64 is multiplied from
the left using (Ho — E(()O))*l, resulting in

Ol - S, By oY)

|0(n)> - _
Hy - E”

(2.67)

With the introduction of the projection operator P =1 — [0(9)(0()|, this equation can be
transformed in a more convenient form

P 00(”*1) _ n:l E(l) O(nfi)
o (G101 - Sy B0 ) 2.65)
P(Ho —Eéo))

This provides an intuitive description of the n*'-order wave function, which is constructed
in terms of all lower order corrections with i < n.

Mpgller-Plesset Perturbation Theory

So far, the RSPT was introduced for a general reference state and the small perturbation is
unspecified yet. Since the HF equation can be solved exactly within a given basis set, it is
straightforward to employ the HF solution as a zeroth-order reference and to describe the
missing correlation energy perturbatively. This idea is implemented within Mgller-Plesset
(MP) perturbation theory, where the Fock-operator f (see equations 2.46 and 2.48) is
employed as the unperturbed H, operator and the perturbation operator U is defined as
the difference between the full Hamiltonian and the Fock-operator:

H=Hy+U=f+H-J). (2.69)

Considering that the Fock-operator is already diagonal, its canonical form is then given as
F="enéhiy, (2.70)
p

describing the sum over all orbital energies. Accordingly, the perturbation can be written
as

e - 1 s
U =H - f = ‘/pqrs - VHF = 5 Z<pQ|TS>CLC:r]CSCT - Z Z<p2‘|qZ>CLCQ7 (271)
Prq

pqrs 7

where the non-diagonal Fock-operator is assumed (see equations 2.46 ff). Using WE T as
the zeroth-order wave function |0(?)) and according to equation 2.66, the zeroth-order MP
(MPO) and first order MP (MP1) energy corrections can be simply written down as

E(go) _ (0(0)|H0|0(0)> _ <0(0)|f‘0(0)> — Zei (2.72)

and
By = (01010) = (0©|H — flo) = (0] H[0) ~ (0| |o"*)
1 s 2.73
= 5 Sl (27
j
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2.2. ELECTRONIC STRUCTURE OF THE GROUND STATE

Hence, the MPO energy is just the sum of the occupied HF orbital energies, while the MP1
energy correction accounts for the difference of the expectation value of the Hamiltonian
and the Fock-operator. Eventually, the total sum of the MPO and MP1 energy corrections
resembles the HF energy and provides no correction to the missing correlation energy:

By = g + BV + A, = BT (2.74)

Obviously, real descriptions of the correlation energy are provided firstly at second order.
To evaluate the second order MP (MP2) energy E(()Q) = (0]T7]0™M), an explicit expression
of the first-order wave function is required. According to equation 2.68, the first order
wave function is given as

P(U|0<0> 50 ES \o<0>)

0%} =~ b 5O
P(Ho - E; ) (2.75)
B PU0O)
P(f - E§”)

To reformulate this expression into a practical form, certain definitions have to be clarified.
At first, an unspecified N-tuply excited determinant based on the HF ground state reference
is defined as

o) = Cy (o), (2.76)

using the CI excitation operator in equation 2.57. For example, the doubly excited
configuration is

(TP = G210y = el efeie;|0©), a<bi< (2.77)
and all excited determinants and the corresponding HF ground state constitute an orthonor-
mal set of states (UN|UM) = §y5r. Furthermore, the zeroth-order excited determinants
are eigenfunctions of f :

floNy = EQ1ON) = (B + ex)|TV), (2.78)

where e denotes the orbital energy differences of occupied and virtual orbitals of the
respective excited determinant. Exemplary, in the case of doubly excited configurations,
€p = €, + €, — €; — €j. The expectation value of the perturbation operator with respect to
an excited determinant and the ground state is given as

(@10 = (TN H|0). (2.79)

At last, note that Brillouin’s theorem 0!

not couple to the HF ground state:

is valid, thus the singly-excited determinant does

(W H|0®) = (0O A|w5) =0 (2.80)

Furthermore, due to the Slater-Condon rules, only doubly excited configurations can
interact with the HF ground state, because the Hamiltonian is a two-electron operator
and thus couplings between determinants that differ by more than two levels of excitation
are zero.

Using the definition of P, equation 2.75 is multiplied with the resolution of the identity
| UMY (U] and is thus transformed to

-y [w) \IINIUIO(O)>

0) O
N>0 E( )

(2.81)
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Considering Brillouins theorem and the Slater-Condon rules, ¥V can only correspond to
doubly excited configurations. Using the definitions above, the first order wave function

can be written as R
o0y — 3~ IO

€D

(2.82)
D

The final MP1 wave function is obtained by inserting the explicit Hamilton operator

resulting in
(abllif)
00y = =37 D) = =3 TP, (2.83)

— €, + €p — € — € —
1<J @ b ¢ J 1<)
a<b a<b

which defines the MP2 t-amplitudes ¢,p;;. The second order MP2 energy correction is
then given as

~ abl|ij)|? 1 ab|ij)|?
B ooy =y @D 15~ bl

i<jea—|—eb—ei—ej 4abijea—|—eb—ei—ej
a<b (2.84)
1 ..
=1 > tabij(abllij)
abij
and finally, the total MP2 energy can be written as
EMP2 — pHF | Eé2) + Hype (2.85)

The third order energy correction can be derived via the same procedure, the final result
is given as:

~ 1 . 1
Eg? = 0O1010®) = 2 >~ (il M) tavigtarkt + g D teaigtabij {abl cd)
abijkl abedij (286)

- Z tabijtacik <kb| |.76>

abcijk

The MP theory, in particular MP2, has been established in quantum chemical applica-
tions as a powerful method to describe the electronic ground state and its properties very
accurately. Note that all MP schemes are not variational, because MP just provides a cor-
rection to the HF energy in a certain order of perturbation theory. Hence, the total energy
in a certain MP order is not an upper bound of the exact ground state energy. However,
the MP schemes are size-consistent at any order and due to efficient implementations in
modern quantum chemical programs, they are frequently employed. Besides the derivation
shown in this chapter, the general MBPT theory can also be derived diagrammatically
using Feynman and Goldstone diagrams.!'%! Via this picturesque ansatz, it is easier to
derive explicit expressions for higher order approximations as well as for more complicated
problems than the electronic Hamilton operator. Concerning the ADC method, the MBPT
and MP theories are important, since they provide the basis to construct explicit and
truncated expressions of the polarization propagator, which is shown in chapter 2.5.

2.2.4 Coupled-Cluster Approach

Next, the discussion of post-HF ground state methods is concluded with an introduction
of the coupled-cluster (CC) approach. As mentioned in chapter 2.2.2; the truncation of
the CI space leads to a loss of size-consistency compared to the Full-CI approach. Within
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2.2. ELECTRONIC STRUCTURE OF THE GROUND STATE

the CC theory, this issue is corrected by constructing the wave function as a product of
excitation processes, so called coupled-clusters as

|05C) = H(1 +tgehe) [+ élefeic; {a < bi < 5})..| %)

abij

2.87
= JJ +tuCo) W), (257

where t,, defines the CC amplitudes. Similar to the CI coefficient &, t. accounts for
the probability of the excitation process, respectively. The combined sum of the cluster
amplitudes and N-particle excitation operators C, is called cluster operator

=Y t,Co=Ts+Tp+ ..+ Ty (2.88)

and can be ordered depending on the excitation classes. M corresponds to the number of
maximum possible excitations with respect to the amount of electrons N. In Full-CC, N is
equal to M, while M defines the truncation if M < N. For example, within the CCSD
approximation, only Ts and T are employed. Hence, the CI and CC wave functions are in
principle equal, but differ in their parametrization. Applied to the ground state reference
wave function, i.e. usually the HF ground state, each operator according to equation 2.87
creates a superposition of the original ground state reference and a correction term, which
corresponds to excitations from the reference state:

The CC product ansatz (equation 2.87) is not well-suited for algebraic manipulations.
Since (C,)? = 0 and due to the anti-commutator rules (see equation 2.35), it is therefore
convenient to expand the cluster operators T;, in an exponential form

1+T, =1+1, +2'T3+3|T3 +..=elv (2.90)
which transforms the CC wave function to
1@6°) = J](1 + tuCu)|Wo) = "W). (2.91)

w

In contrast to CI and HF, the CC wave function is not optimized variationally, because
this would result in an intractable set of nonlinear equations. To solve the CC Schrédinger
equation X R

He" W) = Ecoe” [Wy), (2.92)

a set of configurations (uu| = (¥o|Cl, of the reference ground state and those determinants
that enter the CC state with connected amplitudes is defined, which are projected against
equation 2.92. As a result, the CC eigenvalue problem is transformed into the projected
CC equations ) )

(ul e o) = B (ule"|y) (2.98)

and the final CC energy is then given as
ESC = (Wole THeT|Wy). (2.94)

Due to its size-consistency, CC approaches are commonly employed in quantum
chemical calculations. However, the computational demand is still large, which restricts
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the application of strict truncated CCX (with X > S) methods to small and medium-sized
molecules. A disadvantage of the CC approach is that the CC eigenvalue problem is
non-Hermitian and as a consequence, the left-hand and right-hand eigenvectors differ
from each other and to obtain properties other than the energy, one has to solve the
CC eigenvalue twice. Besides the full-CC and the corresponding truncated approaches,
there are extended approximate schemes like the approximate coupled cluster scheme of
second order (CC2)% or the the symmetry adapted cluster (SAC)596° methods. Both
approaches are known to provide accurate results and thereby require less computational
effort than the corresponding truncated CC techniques. Another prominent representative
from the CC family is the ”gold standard” CCSD(T) method, where the triply excited
configurations are treated perturbatively. 58122

2.2.5 Density Functional Theory

I conclude this chapter with a brief discussion of an alternative ansatz of solving the
electronic TISE, i.e. the density functional theory (DFT).102:123:124 Gince the electron
correlation is considered in an empirical way within the Kohn-Sham DFT approach, the
method is able to provide a good description of the electronic ground state. It is based
on the fact that the electron density p completely and exactly determines all ground
state properties of an N-electron system. Based on the electronic Hamiltonian (2.13), the
Hohenberg-Kohn theorems provide proofs of the existence of an energy functional E|[p]
for the electronic ground state that consists of the total kinetic energy T'[p] and the total
Coulomb interaction V'[p] of the electrons:

Elp] =T[p] + Vlp]. (2.95)

This energy functional neglects the total external nuclear potential ve;, which contains all
nuclear interactions of the electronic Hamiltonian in the BO picture. Using the variational
principle, it could be further proven that

Elpr] + /UexpT > Elp] + /Ueacp = FEy, (2.96)

where pp # p is an external test potential according to the variational principle. Although
the existence of T'[p] and V[p] was proven, their explicit expressions cannot be defined.
However, Kohn and Sham found possible approximations for the kinetic energy and
Coulomb potential functionals. Expressed as a single Slater determinant with a basis of
non-interacting electrons in N orthonormal orbitals, the density can be written as

p=>_ lunl (2.97)
N
the total kinetic energy can be approximated to
1
Tl ~To= 33 [onvPun, (2.95)
N
and the Coulomb potential can be described as a simple Coulomb self-energy potential
with
1 Dp(2
Vi ~ Jlp| = = // PP o, (2.99)
2 12
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Similar to the correlation energy problem in the HF picture, the errors due to the
approximations above are defined as the difference of the exact and approximated energy
functionals with

Eqelp] = T[p] + Vip] = To[p] — Jpl- (2.100)

The introduced error E,.[p] is called exchange-correlation functional and the total Kohn-
Sham energy functional is finally given as

ES1o) = Tolo) + [ veap+ J1o) + Euclpl (2.101)

Next, EX9[p] has to be minimized using the variational principle with respect to single-
particle orbitals, which yields the Kohn-Sham equation

<—;V2 + vKS> Vi = €1, (2.102)

where 1); are called Kohn-Sham orbitals and ¢; are their corresponding energies. The
term vgig contains all many-particle interaction potentials, inclusive of the unknown
exchange-correlation (xc) potential v,

Z x
’UKS(‘Ta) = Vel + Veg + Vge = — Z 7A + /d‘rbM + vxc(xa[p])' (2103)
1 TA Lab

Note that formally, the Kohn-Sham equation is exact within the BO approximation.
However, an exact expression for v, has not been found yet, thus the exact electron density
cannot be calculated. Nowadays, a plethora of approximations for v,. are available, which
are generally obtained via empirical fittings. Within the Coulomb potential (equation
2.99), the spurious interaction of an electron with itself is not corrected as it is in HF
theory, where the exchange is exactly and explicitly canceled via K; (see equation 2.49).
Some xc functionals are able to correct this self-interaction error (SIE), but not exactly as
in HF. Practically, the prominent group of hybrid xc functionals, e.g. BSLYP, developed by
Becke, enjoy widespread applications in quantum chemistry. '2>-127 They are constructed
using a mixture of HF and density based exchange contributions leading to adequate
results, because the SIE is partially compensated. Pure xc functionals, like LDA 28 or
BLYP 2, are also commonly employed, depending on the kind of application. Note
that xc functionals are not variational with respect to the Hamiltonian due to their
empirical construction, thus the DFT ground state energy can be lower than the exact
one. Eventually, the practical use of DFT is based on the quality of the employed xc
functionals and strongly depends on the kind of the investigated systems and problems of
interest.
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2.3 Calculation of Electronically Excited States

In the following chapter, I give an overview of single reference methods for the description
of electronically excited states. For further reading, I would like to mention the reviews
published by Dreuw et al.*>'3° Nowadays, a plethora of methods for calculating electronic
excitations are available. Since most of these methods provide access to excitation energies,
oscillator strengths and other advanced properties like static excited states dipole moments,
they are employed to simulate photo-initiated processes, e.g. absorption spectra. According
to their ground state references, one can classify the excited state methods into wave
function based post-HF and electron-density based approaches. The computational time
is growing exponentially with the size of the investigated system. The correlation between
computational accuracy of common available excited state methods depending on the
system size that can be computationally handled is illustrated in Figure 2.1.

Accuracy
A g?gg: Full-Cl good 2" order predictable
ul- approximation ~ approximation errors
of states
- _——"/’ ) o 5
- e \
— , \\ \ ,
S — N /!
— \
e \ X
Rl LAY
- —— -7 \ WY
5 — G
2 Il ‘\
a _, \\ ¢ —
c . — X
w o ———— N
—_— T S \‘
o — v
i CCSDT, ADC(2),
CASSCF ccz, CIS,
' SAC-CI(SD-R)  TD-DFT

10 electrons 10-20 atoms 30-90 atoms < 300 atoms

Size of the molecular system

Figure 2.1: Schematic sketch of the computational accuracy at different levels of theory
depending on the size of molecular systems that can be computationally handled. The
horizontal solid lines represent excited state energies, while the dotted lines indicate energy
shifts due to different levels of theories.

Compared to the exact order of states, the result at the Full-CI level is correct, but
the energy might be shifted constantly due to basis set truncations. However, one can
only calculate systems with about 10 electrons in an acceptable computational time as
mentioned in chapter 2.2.2. Other wave-function based methods like multireference (MR)
or multiconfigurational (MC) approaches demonstrate a good approximation compared
to Full-CI, but the relative energy difference between the states might be shifted and
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the calculations are computationally limited to 10 — 20 atoms. Within the CC family,
there are approaches based on the equation-of-motion (EOM)?35:58:131 formalism or linear
response 132133 theory. Both approaches for excited states within the CC family depend
on the level of truncation, similar to the ground state schemes. At the EOM-CCSDT level,
a very high accuracy can be achieved for systems that can be well-described by a single
reference ground state. A significantly reduced computational time compared to higher
order EOM-CC methods can be reached with second order approximations like ADC(2)
and CC2, because these approaches include correlation effects, but due to the second order
truncations, the order of states might be incorrect compared to the Full-CI approach.
However, ADC(2) as well as CC2 can only be employed for medium-sized systems up
to 90 atoms, because the computational effort is still demanding. SAC-CI at the SD-R
level 80765 is also a second order approach, where only single and double excitations are
considered. Note that, in general, the calculated energies of wave-function based post-HF
approaches strongly depend on the basis set due to the underlying variational principle.
The energies converge to a basis set limit, thus large basis sets are required to calculate
adequate energies. Since the size of the basis set scales with the computational cost,
accurate wave-function based calculations are usually computationally expensive.

For large molecules up to 300 atoms, the computationally cheapest possibilities are
the time dependent Hartree-Fock (TDHF)!3* and CIS approaches. Both methods usually
overestimate the excitation energies, because they do not include correlation effects directly.
Alternatively, one can employ the time dependent density functional theory (TD-DFT),
which is computationally at the same level as the CIS approach. Similar to the ground
state equivalent, the results depend much on the choice of the exchange-correlation (xc)
functionals that are based on empirical fitting. Limitations of pure TD-DFT approaches
are the description of charge transfer states, Rydberg states, extended m-systems and
doubly excited states. '35 137 However, the results at the TD-DFT level can be very
accurate, if the limitations are considered and the employed xc functional is validated
against wave-function based benchmark calculations and experimental data.

In the following sections, I introduce the CIS, TD-DFT and CC approaches for excited
states methods briefly. The ADC method is introduced in detail in the subsequent chapter
2.5.

2.3.1 Configuration Interaction Singles

In chapter 2.2.2 T introduced the CI approach. The first and simplest truncation of Full-CI
is the CIS approximation, where only singly excited configurations are considered. Due to
Brillouin’s theorem (see equation 2.80), the CIS scheme does not improve the HF ground
state, because the couplings between the singly-excited determinant and the HF ground
state are zero. As a consequence, the CIS approach is size-consistent and only yields
excited-state energies and their corresponding properties. Due to equation 2.59, the full
CIS matrix can be formulated as

MCS = (5| |0 (2.104)
with the matrix elements
S, = (UeH|Wh). (2.105)
The Hamiltonian can be shifted by the HF ground state energy, which results in
fase = (WHH — BT [W8) = (eq — €)dapdij — (aj||bi) (2.106)

and the corresponding eigenvalue problem

MCBX = wX, (2.107)
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with X being the matrix of the CIS expansion coefficients, has to be solved via diagonal-
ization of the CIS matrix M®™S to obtain the excitation energies w:

(M — )X = 0. (2.108)

Since the excited states of interest are in the majority of cases the energetically lowest in
the spectrum, the diagonalization of the full CIS matrix, which can be computationally
expensive depending on the size of the system, is avoided via employing diagonalization
schemes like the Davidson algorithm '3, typically yielding the X lowest eigenvalues and
eigenvectors.

The CIS scheme is indeed a practical method, but one cannot expect a quantitative
accuracy compared to experimental data. Excitation energies of valence excited states
are usually overestimated by about 0.5 - 2 eV, because the dominating orbital energy
difference term provides an unbalanced description for N-electron systems due to the one
electron attachment and ionization picture.*® Since there are no couplings to the ground
state, correlation effects are also not included in the CIS scheme. Therefore, higher order
extensions or configurations are needed to correct the excitation energies provided at the
CIS level.

2.3.2 Time-Dependent Density Functional Theory

Nowadays, TD-DFT is the most important quantum chemical excited state approach
for large systems up to 300 atoms. Besides excitation energies, linear response (LR)
Kohn-Sham TD-DFT provides also access to properties like oscillator strengths, excited
state geometries and dipole moments. There are many review articles in the literature
that discuss the theoretical foundations of TD-DFT as well as the accuracy, advantages
and limitations of certain xc functionals. Here, I would like to mention the reviews of
Drevw/Head-Gordon*3 and Casida/Huiz-Rotllant 139 as well as the overview published
by Laurent and Jacquemin*°. In the scope of this thesis I give a brief summary of the
TD-DFT scheme and its limitations.

The formal foundation of TD-DFT are the Runge-Gross theorems, which can be seen
as the time-dependent analogues to the Hohenberg-Kohn theorem.58 70 They state and
prove that a one-to-one mapping between the time-dependent density and an external
potential up to a time-dependent constant exist. Furthermore, a so-called action potential
was defined for the time-depended density, where the exact density is described as a
stationary point. Due to these basic proofs provided by the Runge-Gross theorem, a
Kohn-Sham ansatz of non-interacting particles was introduced with the time-dependent
electron density

N
i
where x indicates the spatial coordinates and t refers to the time. Similar to the time-

independent equivalent (see equation 2.102), the time-dependent one-particle Schrodinger
equation with respect to the basis of single-electron orbitals v; is given as

Z%¢z($,t) = <—;Vf + UKs(l',t)> Uiz, t), (2.110)

with the interaction potential

Vrs (T, t) = Ve (X, 1) + Ver (2, 1) + Vg (2, ), (2.111)
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where the unknown xc functional is defined as

dAzclpl(z,t)
op(z,t)

Aze[p](z,t) describes the xc part of the action integral. Formally, the time-dependent
Kohn-Sham equation is exact and if the correct xc action integral was known, the resulting
density of the non-interacting system would be identical to the density of the interacting
system. However, the xc action functional is unknown and has to be fitted empirically,
similar to its time-independent equivalent v,..

To obtain excitation energies and oscillator strengths for the simulation of absorption
spectra, which is the major application of TD-DFT, the linear response (LR) approach is
employed as an ad hoc extension of DFT. 39141 The LR TD-DFT scheme is based on the
linear time-dependent response of the time-independent ground state electron density to
a time-dependent external electric field, treating the poles of the dynamic polarizability
analytically. The final working equations are similar to the random phase approximation
(RPA).58 T omit the detailed derivation of the LR, TD-DFT scheme, but I present the final
non-Hermitian eigenvalue TD-DFT equation, which is given as

(5 2)(3) (3 ) (%) s

X and Y represent the TD-DFT amplitudes that contain the spectral information, while
w is the excitation energy. The matrix elements of A and B are defined as

Vge(T,1) = (2.112)

mwpwmw%—w+//mwwumﬂgiﬁmwm
+//mwwm%mMW®%®
A%ﬁ=//mwwm%m PH(2)n(2)

L (2.114)
T12

+//ﬁw2ﬁ0ﬂﬂﬂhﬂﬂ%%@%

where f,. denotes to the so-called xc kernel, which contains the second functional derivative
of the xc energy (E,.) to describe the response of the xc potential:

 0%E,.
~ 0p(1)dp(2)°

The LR ansatz and the resulting RPA TD-DFT eigenvalue problem allow for simple
implementations in modern quantum chemical programs and the same xc functionals as
in ground state DFT can be employed. A further approximation to the RPA TD-DFT
scheme is provided via the Tamm-Dancoff approximation (TDA) 42, where the B matrix
is set to zero. Since correlation is already included in the ground state, TD-DFT with
TDA is usually a very good approximation to RPA TD-DFT.43

For locally valence-excited states, which often dominate the absorption spectra, TD-
DFT is well-known to provide accurate results, if an appropriate benchmarked xc functional
is employed.*® Due to its simple construction, the computational cost is low and the
method can be thus applied for large systems. However, TD-DFT is afflicted by the self-
interaction error as normal Kohn-Sham DFT. As a consequence, pure TD-DFT without
additional correction schemes fail to describe charge transfer and Rydberg states as

fze (2.115)
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well as extended 7-systems and doubly excited states. 3137 The main reason for the
wrong description of Rydberg states and extended 7-systems is that typically employed xc
functionals often show the wrong asymptotic behavior for electron-nuclei distances. Charge
transfer state energies are calculated much too low, which is known as the electron-transfer
self-interaction error. Hence, TD-DFT is not a black-box method, but considering its
limitations, it can be successfully employed for many photochemical problems.

2.3.3 Excited States via the Coupled-Cluster Approach

Next, I would like to introduce excited state approaches within the coupled cluster family.
The most important approaches are based on the equation-of-motion (EQM)?5:58,103,131
and linear-response (LR) 33133 theories.

The EOM ansatz is based on a simultaneous consideration of two time-independent
Schrédinger equations

HY§Y = E§Cug*
) (2.116)
HY, = En\Ilna

where the first one corresponds to the CC ground state reference and the other one to an
n'? excited state W,,, which are given as:

WOC = (T yliF

. (2.117)
U, =C,05°.

Here, the typical excitation operator C (see chapters 2.2.2 and 2.2.4) is employed to
construct the excited state wave function. Since the ground state reference excitation
operator T' is constructed using C' (see chapter 2.2.4), their commutator is zero:

{CT} ~0. (2.118)
Considering the projected CC equation, the transformed Hamiltonian is written as
]:ICC = 67T[:16T

:H+[HT}+%HHT}T}+—H[HT}T]T} (2.119)

where the Baker-Campbell-Hausdorff terminating expansion for any 7" is used.!%® To
construct the EOM equation, the difference of both Schrodinger equations has to be built
and using the commutator rule (equation 2.118) and the transformed CC Hamiltonian
(2.119), the final EOM equations are than given as

[ﬁ, C’n} \I'gc = wnénlll()cc
o ) (2.120)
[Hcc,cn} i = 6,0l F

Here, the excitation energy of an n'® excited state is defined as w,, = E™ — E{® and the
eigenvalue problem in matrix form can be written as

HccC = Cuw. (2.121)
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To obtain the excitation energies, it is sufficient to solve equation 2.121, which results in
the right-hand eigenvectors C. Therefore, it is reasonable to define C = R.. Properties,
e.g. oscillator strengths, require the solution of the left-hand eigenvalue problem

LHCC = Lw (2.122)

due to the non-Hermitian CC Hamiltonian. Hence, the CC eigenvalue problem has to be
solved twice to obtain all spectral information. An advantage of the EOM-CC approach is
its size-consistency, which is independent of the order of truncation. Furthermore, excited
states and their properties are generally well-described due to the accurate CC ground
state reference.® However, the applications are limited by computational power, thus
only EOM-CCSD and EOM-CCSD(T) can be employed for chemically relevant systems
and problems.

In contrast to EOM, the linear response ansatz for CC is based on the time-dependent
Schrodinger equation and provides broader application, since it can be employed to the
approximated CC2 model. In principle, the excitation energies are obtained via the same
procedure as in EOM-CC, but the derivation differs. In LR-CC, the excitation energies
are derived via taking the poles of the CC response function.'*® Here, the right-hand and
left-hand eigenvalue CC equations are written as

AR, =w,R,, and L,A=w,L,, (2.123)
where A denotes the Jacobian matrix with
0 ((ule T i wh"))
H = ot,

— <M‘€_T [}AI,CYV} eTl\I’é{F>. (2.124)

Both CC approaches for excited-states provide reliable results and are commonly applied
in quantum chemical calculations. %144

Besides the LR and EOM approaches, there is a third prominent route to access excited
states via the CC scheme, i.e. the symmetry adapted cluster configuration interaction
(SAC-CI) %965 method. This approach is theoretically equivalent to the EOM and LR
approaches, but the coding algorithm differs. In principle, a CC like ground state wave
function based on symmetry-adapted clusters (SAC) is defined as

WEAC) = X0 S0 wliF)

o . 2.125
= (1 + D tnSn 5 D tatmSnSim + ) '), (2:120)

n,m

where t,, is the cluster coefficient and S, corresponds to symmetry-adapted excitation
operators that contain linked terms of totally symmetric single (S¢) and double excitation
(5¢5%) operators, which have the form

o1
So = NG (éiwém + égaéﬂi) : (2.126)

Unlinked cluster operators, e.g. S‘nSm, can be included, which results in different kinds
of approximation levels. To obtain excited states, the SAC wave function is used as a
reference, which results in the CI like ansatz

(W) = > di Ry, |W5A°), (2.127)
k
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where dy, is a coefficient and Ry denotes symmetry-adapted excitation operators like S,,.
A commonly employed variant is the SAC-CI SD-R method, where only single and double
excitation operators are included in Ry. 4%
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2.4 Approaches for the Calculation of Core-Excited
States

Next, I discuss popular methods to calculate core-excited states. Since XAS did not received
a lot of attention in the past, quantum chemical methods for a proper description of core-
excited states were limited. Nowadays, due to modern synchrotron soft-beam sources, the
research and the applications of XAS are strongly increasing and thus quantum chemical
methods are important to help characterizing these states. The calculation of core-excited
states with standard quantum chemical approaches is tedious, because they are located in
the high-energy X-ray spectrum and typical algorithms that are employed to solve the
respective quantum chemical eigenvalue problem usually yield the energetically lowest
solutions. Furthermore, core excitations are accompanied by strong orbital relaxation
effects, which have to be described properly to achieve quantitative agreement with
experiments. The aim of this thesis is to show that for the ADC scheme, the core-valence
separation (CVS) approximation is a successful solution for this problem. In the following
sections, I give a brief overview to approaches to simulate XAS spectra with other methods
than ADC, which is introduced in detail in the following chapter 2.5. Here, the focus is on
the static exchange method, CC approaches and DFT methods. For information on other
prominent approaches for the calculation of core-excited states like the GW approximation
to the Bethe-Salpeter equation '*®, the second-order perturbative corrected CIS scheme
(CIS(D)) ™7 or multi-configuration self-consistent-field (MCSCF) %6 approaches, I refer
to the literature. ™

To distinguish between core and the remaining occupied orbitals, capital letters I, J,
K, ... denote core orbitals, while lower cases i, j, k, ... refer to the remaining occupied
orbitals, if not otherwise stated.

2.4.1 Static Exchange Method

The first method I introduce is the static exchange (STEX) method. 148149 STEX
is based on HF theory and contains single excitations, in which the particle and the
hole are independent. Due to its construction, the virtual HF orbitals often do not
provide a good description of an excited state, while besides correlation effects, the
occupied orbitals describe the ground state adequately.'®! A possibility to improve this
description is provided within the STEX theory, where the virtual HF orbitals of an
(N-1)-electron system are used to describe the core-exited state orbitals of the N-electron
system. Therefore, a restricted open-shell HF (ROHF) 150 calculation is performed using a
determinant in which an electron is removed from the core-orbital space. This solution
provides the occupied orbitals of the (N-1)-electron system. Next, an electron is placed to
the virtual level of the ROHF solution, which results in the STEX eigenvalue problem:

FSTEX 10 = €1athra. (2.128)

Here, 1, is the excited orbital with the corresponding orbital energy €, in the (N-1)
approximation. The STEX-Fock operator is given as

all occ.

FPTEX = N7 (- Kj) + Jr + Ky (2.129)
1,5

and based on the (N-1) ROHF solution with separated core and valence occupied parts.
Since the eigenvectors of the STEX-Fock operator are non-orthogonal to the occupied

29



CHAPTER 2. THEORETICAL METHODS

orbitals of the (N-1)-system, one has to project them out. After the projection procedure,
the STEX eigenvalue problem can be solved, which results in a good approximation of the
core-excited state orbitals. The final core excitation energy is then given as

wra =IPr + €1q, (2.130)

where IP; is the ionization potential of the core electron I, which is given as the difference
between the neutral N-electron and the (N-1)-electron systems.

Although the ansatz is simple, the technical application can be difficult, because
the core-hole ROHF-SCF solution for the (N-1)-electron system often does not converge
on the desired state or does not converge at all due to electrons that refill the core
hole. However, there are possible solutions of this problem, e.g. the maximum overlap
method. %! Although the STEX method includes orbital relaxation, quantitative results
compared to experiment cannot be achieved, since only singly excited configurations are
considered. Usually, one has to shift the core excitation energies about 10 eV to correspond
to experimental values.” This is comparable to CVS-ADC(1) (see chapter 4), i.e CVS-CIS,
where in contrast to the STEX approach no convergence problems are to be expected.

2.4.2 Coupled-Cluster Approaches for Core Excitations

In the field of CC, some approaches for the calculation of core-excited states are available.
In a recent publication of Coriani and Koch, the CVS approximation was applied to
LR-CC for the very first time.%* Generally, the CVS approximation is based on decoupling
of core excitations from the valence-excited states, which is justified due to the large
energetic separation and contraction of core orbitals compared to the remaining ones. 444
The CVS approximation is explained in detail in chapter 2.5.6 in the scope of the ADC
method. Other available LR-CC approaches are based on asymmetric Lanczos algorithms
that are employed to solve complex LR-CC equations using a complex polarization
propagator formalism.52:53:1527154 Fyrthermore, another recent study by Peng et al. was
published, where the EOM-CC ansatz is combined with a special non-Hermitian energy-
specific eigensolver employed to calculate core-excited states directly.?® In this chapter, I
summarize these recent and older approaches without going into detail.

The CVS-LR-CC Method

Within the CC-LR theory, the CVS approximation can be simply implemented to compute
the core excitations directly.?* Therefore, a projector Py is introduced, which removes all
vector elements that do not correspond to a set of defined core orbitals. Applying such a
projector to a trial vector B, which contains singly and and doubly excited configurations,
leads to

0= {PIB“ ifi 7 (2.131)

PrBjkay ifj#Tork#1°

If a Davidson solver is applied, the CC-LR eigenvalue problem (see equation 2.123) is
transformed to the projected eigenvalue problem

Pi(AP/R,) = w, PR, (2.132)

which has to be solved for the left-hand and right-hand eigenvectors. The first test results
obtained with the CVS-LR-CC method show only derivations of a few hundredths of
eV from the full LR-CC approach.®* However, the results have not been compared with
experimental data so far.
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Core Excitations with the SAC-CI Method

The SAC-CI method can be easily employed to calculate core excitations similar as the
CVS-LR-CC approach. For this, the symmetry-adapted excitation operators are restricted
to correspond to at least one core orbital or a set of core orbitals, which is called core-
window approach. %> Hence, only the relevant core excitations are included in the active
space and can be computed directly using typical solvers.

Complex Polarization Propagator CC

A totally different ansatz for the description of core-excited states is provided via the
complex polarization propagator (CPP) method.%?:5% In principle, the CPP approach for
calculating core-excited states can be combined with any electronic structure theory for
excited states, but it has been successfully implemented for CC methods and TD-DFT so
far.%” The CPP approach is based on the linear response function®® R for two generic
operators X and )A/, which contain damping terms that correspond to the finite lifetimes
of the respective excited state and to line broadening in the absorption spectra:

Rep() =3 <<on|%><%|¥|\1/0> . <on|%><%|){|%>> O
N\ e @) on + (@ + i)

This damped LR function depends on the frequency w of an external field and on the
transition frequency w, of the n'" excited state. The damping factor n has certain
physical origins, e.g. emission broadening, and is usually obtained empirically. Generally,
introducing this complex frequency (w + 7¢) results in complex response equations, which
are in the case of CC given as

(A= (w+ni)1)t¥ (w+ni) = —¢". (2.134)

A is the coupled-cluster Jacobian matrix as introduced in chapter 2.3.3, while t denotes
the cluster response amplitudes and ( is the first order CC building block as

G = (Wale TV e [T, (2.135)

For isotropic properties, e.g. energies, where X = 37, the solution of the complex damped
response function can be obtained using an asymmetric Lanczos chain solver.52:53 For the
computation of excited states of the full spectrum, the electric-dipole approximation is
used, where the cross-section for linear absorption processes is given as

o) = " Imla(w)) (2.136)
Here, Im[a(w)] denotes the imaginary part of the averaged isotropic electric-dipole polariz-
ability and c is the speed of light. The asymmetric Lanczos method provides an elegant way
to obtain core-excited states directly. The total spectrum for all w is constructed iteratively
using one common approximation of the Jacobian matrix in a reduced space. The number
of iterations is defined as the Lanczos chain-length. The larger the chain-length the
higher the accuracy. Hence, the relevant response functions for calculating the absorption
converges via increasing the chain-length, thus it is possible to converge the eigenvectors
in a specific wave range of the spectrum, if the chain-length has a sufficient size. Since
it is possible to identify transitions with a large dominant absorption cross-section, the
spectral core excitations can be identified among others.
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The CPP-CC approach has been proven to provide accurate core-excitation energies
and spectral features. A disadvantage of this method is that a prior knowledge of the
system is necessary. Furthermore, there are convergence problems and one has to converge
the bright intense states thereby loosing information about the dark states in the same
region. 5253

Energy-Specific EOM-CC

The energy-specific EOM-CC (ES-EOM-CC) approach is based on a non-Hermitian
eigensolver, which is able to obtain the core-excited states directly without introducing
further approximations like the CVS to the EOM-CC scheme.® Hence, the method also
includes couplings to valence-excited states, which have to be neglected within CVS
approaches. The ES-EOM-CC follows a two-step strategy, with different loops of ES
eigensolver procedures. As the first step, a set of trial vectors has to be generated,
which correspond to the high-energy core-excited states of interest. For this purpose, the
CIS method is employed and the results are refined using the low scaling partitioned
EOM-MBPT2 (P-EOM-MBPT?2) 57 approach, which is a special second order MBPT
approximation of the EOM-CCSD approach. The P-EOM-MBPT?2 vectors are obtained
using the ES eigensolver procedure, which works as follows. Starting with a set of full
orbital space left-hand Ly and right-hand Ry trial vectors, which are based on the initial
guess of core-excited states, i.e. CIS or P-EOM-MBPT?2 solutions, respectively, the EOM
Hamiltonian He o is projected onto a subspace spanned by the trial vectors as

h=LyHcoRy. (2.137)

Note that the left-hand and right-hand vectors are related to each other through the
biorthonormality condition
(Wo|LaRo|¥o) = dab, (2.138)

where U is the reference wave function. The reduced Hamiltonian h is then diagonalized,
which results in sets of new left-hand 1 and right-hand r eigenvectors as well as the
corresponding excitation energies w. The eigenpairs in the reduced subspace are then
screened and only those above the desired energy threshold are kept. At the last step, the
eigenpairs of interest are transformed back from the reduced space to the full orbital space
with

R=Ryr and L=Lgl, (2.139)

which provides new sets of eigenvectors. The procedure is repeated until the desired
convergence criteria are reached. To ensure proper convergence, the typical procedures
of Davidson algorithms!3®, e.g. adding residual norms and extending subspaces, are
employed. Via this ES eigensolver procedure, the P-EOM-MBPT2 solutions are obtained
using the CIS solution as a guess, while the P-EOM-MBPT2 solutions are then used as
trial vectors for other EOM-CC methods like EOM-CCSD.

First test results at the ES-EOM-CCSD level provide accurate results compared to
experiment. Computationally, the implementation is capable to calculate three core-excited
states of the dibenzothiophene molecule employing the 6-311-++G* basis set at this level
of theory. >’

2.4.3 (TD-)DFT Techniques for Core Excitations

Since DFT based approaches are commonly employed for calculations of large systems,
a plethora of approaches for core excitations are available. In the scope of my thesis, I
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do not introduce all of them, but I would like to concentrate on a few chosen methods.
For a broader review, I refer to the article of Besley and Asmuruf, as well as to the
chapter ”Nonlinear Spectroscopy of Core and Valence Excitations Using Short X-ray
Pulses: Simulation Challenges” by Zhang et al., which has been published in the book
"Topics in Current Chemistry 368” edited by Ferré et al.™"™

The Delta-DFT method

A similar theoretical concept as the one of the STEX method (see chapter 2.4.1) can
be transferred to the DFT approach, resulting in the A-DFT or rather AKohn-Sham
method. 751587160 Within this approach, the core excitation energy is given as the difference
between the neutral and singly core-excited species. Therefore, the orbitals have to be
variationally optimized for the different states, respectively, using the SCF procedure.
To avoid convergence problems of the core-excited SCF solution, the maximum overlap
method can be employed in the same way as in STEX. The largest advantage of this
approach is the direct inclusion of relaxation effects, since the orbitals are optimized for the
core-excited state. This provides a good agreement with experimental data.”® However,
convergence can be very difficult and the method is only usable for systems where the old
and new sets of orbitals differ significantly. Furthermore, only one state of interest is the
target in a single AKohn-Sham calculation.

TD-DFT approaches

Let me turn to a discussion of TD-DFT approaches for the calculation of core-excited states.
The simplest way to obtain the core excitations directly is to apply the CVS approximation
by restricting the single excitation space to the relevant excitations from core orbitals. 6!
This method is called restricted excitation window (REW) TD-DFT, which provides errors
of only 0.01 eV compared to the respective full space calculation.” Generally, core-excited
states calculated with TD-DFT often reproduce experimental spectra qualitatively well.
However, the self-interaction error (SIE) inherent in the TD-DFT formalism leads to a
strong underestimation of core-excited states.”* 72162 Since 1s core orbitals have a large
energy compared to higher occupied valence orbitals, the SIE is particularly large regarding
core excitations. Similar to charge-transfer states, the integrals of the TD-DFT matrix (see
equation 2.114) are almost zero, because the overlap between contracted 1s core orbitals
and the virtual orbitals is small. ”® Hence, the excitation energy is dominated by the orbital
energy difference dy5dq4p(€, — €1). Since virtual Kohn-Sham orbitals are obtained for an
N+1-electron system, Koopman’s theorem %! is not valid and the gap between occupied
and unoccupied orbitals is very small, which results in the large underestimation of the
core excitation energy.*® This can be proven using diagnostics like the overlap between
electron donating and accepting orbitals, which results in values close to zero, indicating
a small overlap.” As a consequence, absolute core excitation energies obtained at the
TD-DF'T level usually have to be corrected by an additional energy shift of several eV to
agree with experimental data. This error increases for heavier atoms, because the energy
and compactness of the core orbitals increase due to stronger Coulomb attraction of the
nucleus. %3 Furthermore, studying XA spectra requires an xc functional evaluation for
every molecular system of interest due to the empirical characters of the xc functionals. 43

During the last 10 years, various approaches have been developed to overcome the
SIE problem. A possible correction scheme is based on nonlinear response theory using
the first-order hyperpolarizability which results in a CPP ansatz similar to the CPP-CC
approach (see chapter 2.4.2).7%:164165 This approach considers relaxation effects and
besides a single-determinant, multi-determinant reference states can be included, too. The
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CPP-TD-DFT approach provides good agreement with experiment, but the excitation
energies are still underestimated and an additional blue shift is often necessary.%7:165:166
A possible SIE correction for core orbitals is described by Tu et al.”® The idea is based on
the simple SIE correction'%” by Perdew and Zunger:

AE == (J[pil + Euclpi]) - (2.140)
i
Here, the sum runs over all occupied spin orbitals i. The derivative of this expression results
in a SIE correction potential, which is exact for single electron systems. To correct core
orbitals of many-electron molecules, the correction functional is fitted using experimental
data of core ionization potentials, which results in

AFE ore = /Vi(m)pi(x)dr, (2.141)

where V; is the empirically fitted SIE correction potential. In combination with the
CPP-TD-DFT approach, the SIE correction provides a successful way to calculate almost
correct absolute core excitation energies at the TD-DFT level. 7

However, the quality of the results obtained with both REW and CPP approaches
depend on the used xc functional. Besides correction schemes, there are plenty of specially
constructed xc functionals for the calculation of core-excited states with the TD-DFT
method. Hybrid functionals!°? with a high percentage of HF exchange are a possibility
to improve core-excitation energies.”® The TD-DFT matrix elements for core excitations
using hybrid functionals are given as

Ata, = 81sap(ea = 1)+ / | / d1d2 uv;(1)»@0,(1)i»@g(z)w,(z)
veur [ [ didz i0)0s(0)- ;@)
(1= ear) [ [ did2 v )00 Lot (200(2)

Bra = / / 4142 7 (1) o (1) —

Z12
1
—|—CHF/ /dld? T (D)p(1)—175(2)1,(2)
. T12

(2.142)

V5 (2)Yn(2)

(1 =cur) [ [ 12 6060 F05 20 ),

where the HF scaling factor is cyp. The terms marked in red are integrals, which are
almost zero in the case of core-excited states, since the overlap is small. Hence the B-matrix
is still almost zero using hybrid-functionals, but the integral that corresponds to pure HF
Coulomb exchange, which is marked in blue, is non-zero. This leads to a generation of hole
and electron interactions that correct the excitation energy of a core-excited state. This
correction depends on the HF exchange scaling factor. However, this correction is usually
not sufficient to achieve quantitative agreement with experiments, but there are a few
examples, where the HF exchange correction works. 62 Other possibilities to compensate
the SIE are long-ranged corrected functionals (LRC), which were originally designed to
correct the description of charge-transfer states. 3168 These functionals are also hybrid
functionals, but they do not have a constant percentage of HF exchange. The Coulombic
repulsion operator of LRC functionals is split into a long-range and a short-range part as

11— d(pxia) n V(pz12)
T12 Z12 T12

(2.143)

7
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where the HF exchange is included with respect to an error function ¥(pz12), which depends
on the factor p that controls the separation of the long- and short-range interactions.
The first term describes the short-range part, while the second one corresponds to long-
range interactions. Popular representative LRC-functionals, e.g. CAM-B3LYP %, were
employed to calculate XAS spectra. 67170171 However, such LRC-functionals work well
for valence-excited charge-transfer states, but for core-excited states the improvement is
small.”® The reason for this is that a large amount of HF exchange is usually used for
the long-range part, while the short-range part is dominated by pure DFT contributions,
which provides a large improvement for spatially separated charge-transfer processes. Core
orbitals, in contrast, are very contracted and localized. Hence, processes involving core
orbitals are mostly dominated by short-range contributions. A solution for this problem
is provided via LCgau-core-BOP functionals. 7173 Here, HF exchange is introduced for
the short-range part, i.e. small x5, using a Gaussian correction term G that transforms
equation 2.143 to
1 o 1-— 19(#1312) D)

9 2
L 1o0mn) g V) o gy g p 2t (2.144)
T12 Z12 T12 VT

2.2

where k£ and a are additional parameters to introduce HF exchange for the short-range
interactions. Using such LCgau-core-BOP functionals provide core-excitation energies of
light elements with errors less than 1 eV compared to experimental data.!™ This error
can be further reduced using schemes introduced by Besley et al., where the Coulomb
repulsion operator is partitioned as

1
— = X" - xPrT (2.145)
T12
with ) 9
XHF _ o2 T JEMS$12) e (,UxLxm)
12 12
(2.146)
1—-4 s 1
Y DFT _ cs (Msxlz) e (MLI12) -
T12 T12 X12

where cg and ¢y, are parameters that regulate the HF exchange in the short- and long-range
parts, respectively. ™ In this scheme, XHF is treated with HF exchange and XP¥T with
pure DFT exchange.

At last, I would like to mention the CV-B3LYP 7™ and CVR-B3LYP 76 functionals
developed by Nakai et al., which are not based on partitioning the Coulomb repulsion
operator in real space into short- and long-range parts. In principle, the occupied Kohn-
Sham orbital space is split into a core and remaining valence space, thus the interaction
potentials are partitioned into core-core, core-valence and valence-valence terms. Via
introducing hybrid parameters, every interaction term is treated with a different HF
exchange. Again, these functionals provide errors in the sub-1 eV region.
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2.5 Algebraic-Diagrammatic Construction Scheme for
the Polarization Propagator

In this chapter, I introduce the algebraic-diagrammatic construction (ADC) scheme for
the polarization propagator in detail. ADC is a quantum chemical excited state method
based on perturbation theory.”%" Due to its size-consistency and Hermitian structure,
the ADC scheme is well-known to be an accurate and reliable approach for the calculation
of excited states and their properties. Historically, the ADC scheme was introduced via the
Green’s function theory using the typical Mgller-Plesset partitioning of the Hamiltonian.
However, a more elegant way to derive the ADC approach exists via the intermediate state
representation (ISR), which provides also access to excited state properties and open-shell
variants of the ADC matrix. 732:83 Both ways of derivation are summarized in this chapter
with a focus on the ISR approach, while the original way via the Green’s function theory
is briefly outlined. Besides the calculation of valence-excited states, the ADC scheme can
be employed to describe core-excited states. Therefore, the core-valence separation (CVS)
approximation has to be applied to the ADC working equations, resulting in the CVS-ADC
approach. 4445100 This approximation is explained in detail, followed with a summary
about the final (CVS-)ADC working equations. An overview of techniques to analysis
excited state densities that help to interpret the nature of electronically excited states is
given afterwards and the chapter is concluded with a discussion about the inclusion of
relaxation effects within the CVS-ADC method.

2.5.1 Original Derivation via Green’s Function Theory

Generally, Green’s function theory was developed to solve inhomogeneous differential
equations f(r) by replacing the original inhomogeneity I(r’) by the Dirac delta distribution
§(r —1').75™ Any such inhomogeneous differential equation can be expressed as

f(r) = /dr'G(r —r')I(r"). (2.147)

Although it is straightforward to define a unique Green’s function for the time-dependent
single-particle Schrodinger equation, it is impossible to construct this for many-body
systems. However, one can build so-called Green’s function propagators, which are
designed to yield solutions for certain kinds of problems that are inherent in many-body
systems. For the calculation of excited states, a two-particle propagator can be employed.
However, the simpler polarization propagator is a better choice, because the relevant
information that describes the excitation spectrum of a molecule is fully included. This
propagator is applied to the time-dependent ground state reference wave functions of
many-body systems and thereby initiates time-dependent density fluctuations. In its
spectral representation the polarization propagator II,, ,s(w) is given as

pq,rs w— (En _ EO) +ni w+ (En — Eo) - (2.148)

n#0
T (@) + T (),

where, as usual, Uy and ¥,, denote the ground and n'® excited state wave functions
with their corresponding energies E, respectively. Note that the complex term 7i, which
originates from the Fourier transformation of the polarization propagator from its time-
depended to its spectral form, can be neglected, because the limit n — 0 is taken. Since the
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right-hand and left-hand terms (I (w) and II™ (w)) contain the same information, only one
part has to considered to obtain the vertical excitation energies w, = E™ — E°, which are
the poles of the polarization propagator. Besides the excitation energies, the polarization
propagator provides also access to the spectral amplitudes using the expectation value

<\Ilo|é;f,éq|\llm> in the nominator of equation 2.148 to define the transition moment T,, of

an m'" excited state of an arbitrary single particle operator O via

Ty = (Wo|O W) = Opg(Wo|éfég|¥pm). (2.149)

pq

In the case of many-body systems, e.g. chemical molecules, the polarization operator is
expressed in the eigenstates with respect to the molecular Hamiltonian. This representation
is called the diagonal form of the polarization propagator, because the eigenstates of a
molecular system diagonalize the Hamiltonian. For simplification, the diagonal form can
be written as

(Wolefeq| W) (Wnlefés| Vo) -
I+ w) = 1;‘1_ B —Fo) =x}, (1w — Q) ' xs, (2.150)
n#0 n

where € denotes the diagonal matrix of w, and x contain the information about the
spectral amplitudes.

So far, the description of the excited states is formally exact. However, neither the
exact ground state nor the excited state wave functions are known. Hence, approximations
have to be applied to the polarization propagator formalism. In the ADC approximation,
the existence of a non-diagonal matrix representation of equation 2.150 is postulated based
on Feynman-Goldstone diagrammatic perturbation series:

It (w) = Ff (lw — M) "' F. (2.151)

The matrix M is the non-diagonal representation of an so-called effective Hamiltonian
and further denoted as the ADC secular matrix. Accordingly, F is the effective transition
moment matrix. Both matrices are expanded via the usual Mgller-Plesset partitioning of
the Hamiltonian that results in

M=MO 4+ MDD 4+ M? 4 (2.152)
F=FO 4+ FO L 7@ 4 (2.153)

Hence, the ADC approach is just a reformulation of the polarization propagator in terms
of a perturbation series. Explicit terms of the ADC secular matrix and the transition
amplitudes can thus be derived by analyzing the perturbation scheme of II*(w) in a
specific overall order n. Depending on n, the partitioning leads to a truncation of the
configuration space of singly, doubly, ... excited configurations, which are further called
excitation classes. Furthermore, n accounts for a consistent description in perturbation
theory of every term in every block corresponding to the excitation classes resulting in an
ADC(n) approximation scheme.

Finally, the polarization propagator can now be described analytically. Since the
vertical excitation energies are the poles of II'T (w), the ADC secular matrix has to be
diagonalized to obtain them, resulting in the Hermitian eigenvalue problem

MY =Y, (2.154)
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where Y is the matrix of ADC eigenvectors y. The transition moments between the
ground state and an excited state m are then straightforwardly given as

T,, =yl F. (2.155)

Besides the polarization propagator, the ADC scheme is also available for other propagators,
e.g. the hole propagator that provides access to ionization energies. Since this thesis only
deals with electron excitation processes, the underlying principle of the ADC method in
this work corresponds generally to the polarization operator.

2.5.2 Intermediate State Representation

The intermediate state representation (ISR) is an alternative approach to derive the ADC
matrix and transition amplitudes in a more elegant way. The ISR offers an intuitive scheme
in second quantization by applying excitation operators based on creation and annihilation
operators to the ground state. This ansatz is similar to CI, but the Hamiltonian is
represented in a basis of intermediate states (IS) instead of a basis of HF determinants.
These IS can be interpreted as correlated excited determinants. Besides the derivation of
the ADC matrix elements and transition moments, the ISR provides access to excited-state
properties based on one-particle operators like the dipole operator. Furthermore, it is
possible to derive open-shell ADC schemes based on an unrestricted MP reference via the
ISR, which is not possible using the original pathway, because the open-shell polarization
operator is unknown. In this chapter, I introduce the derivation of the ADC scheme via
the ISR approach, starting with the derivation of the correlated excited-states, followed
by the explicit construction of the IS basis and concluding with the ISR for a general
one-particle operator.

The ISR for Correlated Excited States

In the ISR approach, the exact excited states |¥,,) are expanded in terms of a complete
set of intermediate states |¥ ;) according to

W) =Y Xng| W), (2.156)
J
The set of intermediate states is constructed in such a way that it establishes a matrix
representation of the Hamiltonian shifted by the exact ground state energy Ej
My = (U|H — Eo|¥,), (2.157)
leading to the corresponding Hermitian eigenvalue problem
MX = X, XX =1. (2.158)

) denotes the diagonal matrix of eigenvalues w,, and X is the matrix of eigenvectors.
Consequently, the diagonalization of the ISR secular matrix M easily yields the exact
excitation energies w, within the given basis set.

w, = E, — Ej (2.159)
Analogously, one can derive the transition moments 7;, of the general form

T, = (0, D|Wp) (2.160)
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using the one-particle operator
D =Y d,.dcle,, (2.161)
T8

where d,.s describes the one-particle matrix elements associated with D. Within the ISR
formalism, the transition moments F; and the corresponding transition amplitudes fj s
with respect to D can be constructed straightforwardly as

Fy = (Do) =Y frasdrs = Y (U y]efes|To)drs. (2.162)

In combination with the eigenvector X, ; in the intermediate state basis, the final transition
moment of an excited state n is

T, = ZXMFJ. (2.163)
J

Construction of the IS basis

Next, the configuration of the IS basis is discussed. A complete set of correlated excited
states |¥ ;) can be created by applying an excitation operator C; based on creation and
annihilation operators to the exact ground state wave function ¥y:

(CpYy = {ehey; étéleey; ) witha <byi < j; .. (2.164)
{CFy = {efca; Eleleaty; .} with a <b,i < j; ... (2.165)
|W9) = Cy|Wo) = &l e, Wo); éleleie;|we) .. (2.166)

In the case of open-shell systems, the excitation operator acquires spin indices:
(CrYu = (& eno; &80 rorr; ..} with ao < br, ko <17 ... (2.167)

Generally, the excitation operators establish different excitation classes u = 1,2, .., where
the first class is called particle-hole (p-h), the second two-particle-two-hole (2p-2h) and so
on. Equation 2.157 can only be established if the IS are constructed to be orthonormal
and orthogonal with respect to the ground state and all successive excitation classes
. The ground state is defined as a zeroth excitation class. However, the correlated
excited states are not necessarily orthogonal, thus they have to be orthogonalized using
the Gram-Schmidt orthogonalization procedure. At first, the precursor states |\I/§é) are
generated as: R A

[07) = Cy|Wo) — [To) (Wo|C.y|Tp). (2.168)

Subsequently, the final IS |¥ ;) are obtained via a symmetrical orthonormalization proce-
dure of the precursor states:

By) = Z vF) (s7Y), - (2.160)
Sr,s denotes the overlap between two precursor states I and J, which is given as:
St = (WFWH) = ((Wo|C] = (Wo|C]Wo) (Wol ) (Cul o) — [Wo)(Wo|Cy|¥0))
= (Wo|C]Cs|Wo) — 2(Wo|C[ W) (Wo|C's |Wo)

+ (Wo|CF W0 ) (T o) (Wo|Cy | To)
= (Wo|C}Cy|Wo) — (To|CF|Wo) (o] Cy|Wo).

(2.170)
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Finally, a set of orthogonal orthonormalized intermediate states are constructed, which
can be used to establish a matrix of the shifted Hamiltonian by inserting equation 2.169
in equation 2.157 that results in the ISR secular matrix

1

M= (57%)1’[{ (<\1/}%§|f1 - E0|x1/f>) (S*E)LJ. (2.171)

K,L

)

The middle term, i.e. the shifted Hamilton matrix, is analogous to equation 2.170 given
as:

(WH I = Bol ) = (0o|C] (£ - By) Cylwo)
— (WolC (1 — Bo ) [Wo) (WolC| Wo)
) ) ) (2.172)
— (Wo|CT W) (W (H - Eo) Cy[Wo)

+ (T |CF[Wo) (W (H - Eo) [Wo)(Wo|Cy|Wo).

The ISR for a General One-Particle Operator

Besides the derivation of correlated excited states and transition moments, the ISR
approach provides also an elegant way to obtain physical properties of an excited state
vector. Analogously to equations 2.160 and 2.161, one can define a general one-particle
operator D, e.g. dipole moment, and its corresponding property D,, of the n*® excited
state as

Dy, = (U,|D[W,)  with D =Y d.écle.. (2.173)
Expression (2.173) can be reformulated to

(U D) = (U] Y drslfes|Win) = Y dra(Vnleles W) = Y draprs,  (2.172)

thus it is straightforward to calculate excited state densities p, if the expectation value
of D,, is known. In cases where n = m, p,s describes the one-particle density of a state,
while the transition density between two states p™™ is provided if n # m.

In the ISR picture, the excited state property with respect to D is

D, = (X}D|X,), (2.175)

where X,, is the I}th eigenvector of the correlated excited state matrix and D is the
representation of D in the ISR basis according to

Dry = (¥11D] ). (2.176)

Similar to the expansion of the Hamiltonian shifted by the ground state energy (see
equation 2.157), the representation of D in the ISR basis can be shifted by the ground
state property Dy, which is given as

Do = (Uy| D|Wy). (2.177)
Dy can thus be formulated as

[)]J:<\i/]|[)—D0|\ifJ>:DO(SIJ—|—D1J. (2.178)
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Hence, it is possible to extract equations for the one-particle (transition) density matrices
from the above ISR expressions for the calculation of excited state densities or one-particle
properties. Furthermore, transition moments between two excited states n and m can be
obtained to investigate excited state absorption phenomena using the ISR ansatz

Ty = (U, | D|¥,,,) = (X]|D|X,). (2.179)

2.5.3 Perturbation Expansions and the Structure of the ADC
Matrix

So far, I have introduced the ISR generally, which provides an elegant way to derive
correlated excited states and their properties. However, the ISR secular matrix (equation
2.171) as well as the equations for the transition moments (equation 2.163) and state
properties (equation 2.176) cannot be solved yet, because there are two significant problems.
At first, neither the exact ground state wave function nor the exact ground state energy is
known and secondly, the whole configuration space cannot be treated in an appropriate
computational time. These problems can be solved by expanding the matrix M, the
transition amplitude matrix F and the general one-particle property matrix D using
perturbation theory and the typical Mgller-Plesset partitioning, which establishes the
ADC approach:
M=MO® + MO 4+ M® 4

F=F% 4+ FO L F® 4 (2.180)
D=DO DY LD 4
Expanding equation 2.171 leads to

MEFEm \Gtem) _ § (s;i)(k) AP (<\IJ§IFI - Eo\\lff>>(l) N (SZ,%J)(m) AT, (2.181)
K,L

where the auxiliary index A = 1 is employed to collect the expressions with the same
order of perturbation theory k, I and m. Using this perturbation ansatz, M is now called
ADC secular matrix and solving the ADC eigenvalue problem provides excitation energies
and ADC eigenvectors that can be used to calculate transition moments and one particle
properties.

For a given truncation n, the highest m-fold excitation classes (mp-mh) needed to
construct the ADC matrix elements are

1

m=gn +1, n even (2.182)
and )
m = i(n —1)+1, n odd. (2.183)

Hence, the ADC(2) and ADC(3) matrices consist of four different blocks: p-h,p-h; p-h,2p-
2h; 2p-2h,p-h; 2p-2h,2p-2h. These blocks are treated in a different order of perturbation
theory. The ADC(2) method is in principle available in two variants: in the strict version
ADC(2)-s the matrix elements of the 2p-2h,2p-2h block are expanded only in zeroth order,
while in the extended variant ADC(2)-x they are obtained in first order of perturbation
theory. When beginning from an MP2 ground state, ADC(2)-s is thus derived rigorously,
while ADC(2)-x is an ad hoc extension of the strict scheme. Since the description of the
doubly excited amplitudes is improved due to the first order treatment of the 2p-2h,2p-2h
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block, the coupling between the singles and doubles is also influenced, which commonly
results in a lowering of the excitation energy.”™ However, the computational time of an
ADC(2)-x calculation is increased compared to ADC(2)-s, because the 2p-2h,2p-2h block
is non-diagonal in ADC(2)-x, while the doubles block in ADC(2)-s only consists of orbital
energy differences. The computational effort is thus increased from the order of (M®) to
(M®) with M being the number of basis functions. In contrast to ADC(2)-x, the third
order scheme is again derived rigorously. Every block in ADC(3) is treated one order in
perturbation theory higher than in ADC(2)-s, thus the 2p-2h,2p-2h blocks of ADC(3) and
ADC(2)-x are equal and the computational effort of both ADC(2)-x and ADC(3) is O(N®).
The complete ADC(n) matrix for n = 2,3 is illustrated in Figure 2.2.

p-h 2p-2h
n=2:0-2 n=2:1
p-h
n=3:0-3 n=3:1-2
0(s)
=2:
n=2:1 "2 0-1(x)
2p-2h
n=3:1-2
n=3: 0-1

Figure 2.2: Schematic block structure of the ADC matrix M(™ in second and third order
of perturbation theory. In every block, the n*"-order ADC matrix is given in black, while
the order in perturbation theory of the contributing terms are given in red.

Due to its construction, the ADC scheme exhibits three important inherent charac-
teristics: at first, the ADC matrix as well as the transition amplitudes and excited state
properties are size-consistent independently of the overall truncation order. Hence, the
ADC scheme can be improved systematically going to higher orders. Secondly, the ADC
secular matrix is Hermitian, which allows for the computation of transition moments and
excited state-properties without solving a twofold eigenvalue problem, where the right
and left eigenvectors of a non-Hermitian secular matrix, like the CC matrix, have to be
computed separately from each other to obtain the properties. Therefore, the calculation
of excited state properties and transition moments is straightforward using the ADC
method, because the eigenvalue problem has to be solved only once and additional time
demanding calculations are not required. Thirdly, the ADC scheme provides a compact
configuration space with respect to the consistent perturbation theoretical description
of the singly excited states and the truncation order n. As indicated in equations 2.182
and 2.183, the number of the m-tuply excited configurations, which are necessary to
construct the ADC matrix for a truncation n, is smaller or equal to n (exception: zeroth
order). Since n corresponds to the n'" order of perturbation theory of the singly excited
configurations, the ADC approach is much compacter than for example the CI method,
where n is equal to m in all cases. Triply excited configurations first appear in ADC(4),
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thus ADC(3) contains only doubly excited configurations.

Besides the beneficial characteristics, the ADC scheme is well known to provide accurate
and reliable results. For singlet valence-excited states, the accuracy of the excitation
energies is 0.22+0.38 eV at the ADC(2)-s level, -0.70+0.37 eV at the ADC(2)-x level,
and ADC(3) exhibits the largest accuracy with 0.1240.28 eV.3! This indicates that
ADC(3) offers a well-balanced description of valence-excited state energies due to its strict
derivation in third order of perturbation theory.

Since the ISR approach provides the possibility of constructing a correlated open-shell
excited state via employing the unrestricted excitation operator (see equation 2.167), the
derivation of an unrestricted ADC variant (UADC) is straightforward. According to the
restricted approach, the unrestricted Mgller-Plesset (UMP) ground state is employed as
reference ground state. UADC is sensitive to spin contamination, which is typical for
single-reference excited state methods, and thus the <S’2> value of the ground state reference
has to be checked carefully. However, it could be demonstrated that <§2> values below
1.25 for doublet radicals are still appropriate for UADC(2) calculations and the accuracy
of UADC(2)-s is with 0.2540.20 eV at the same level as its restricted equivalent.52

Finally, the expansions of the spectral amplitude matrix and the excited-state property
matrix are briefly summarized. According to the ADC secular matrix, the sub-blocks of
D at the second order level are expanded as

]311 = ]352) + ]3511) + ]5521)
Dy, = DY + DY (2.184)
Dy, = DY,

The p-h block of the transition amplitude matrix F is expanded in zeroth, first and second
order, while the 2p-2h block is only expanded in first order in perturbation theory. Note
that at the ADC(3) level, no algebraic expressions for the spectral amplitudes and for the
ISR of a general one-particle operator are available yet. To overcome this problem, the
ADC(3) excitation vectors can be contracted with the second order expressions of the
spectral amplitudes or properties, respectively. In the case of the transition amplitudes, the
accuracy of this approximation for valence-excited states was validated.®! For consistency,
the method for calculating oscillator strengths and excited state properties at the third
order ADC level is denoted as ADC(3,2).

2.5.4 Wick’s Theorem and Normal-Ordered Operators

After introducing the derivation of the ADC scheme via the ISR approach, the explicit
matrix elements have to be derived. To construct the ADC matrix elements explicitly,
one has to find a formalism to solve the application of the excitation operators to the
ground state wave function. Wick’s Theorem is an elegant approach to evaluate these
matrix elements in second quantization by contracting arbitrary products of creation and
annihilation operators.!”” To introduce Wick’s Theorem, first normal-ordered operators
have to be defined.

Normal-Ordered Operators

Normal-ordered operators are a useful tool for analyzing diagrammatic, algebraic and
coupled-cluster equations in second quantization.'”® A normal-ordered product of creation
and annihilation operators is one in which all creation operators lie to the left-hand
side of all annihilation operators. With the help of the anti-commutation relations (see
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equation 2.35), any product of creation and annihilation operators may be expressed in
normal-ordered form. A normal-ordered product yields zero when applied to the true
vacuum state, if the string contains any annihilation operators.

However, the excitation operators used in the ISR are not applied to the true vacuum,
but to the reference ground state wave function. Hence, zero is only obtained when the
annihilation operators corresponding to states unoccupied in the ground state or creation
operators corresponding to states occupied in the ground state are applied to the reference.
Therefore, normal-ordering of a string of annihilation and creation operators means that
all annihilation operators corresponding to a virtual orbital ¢é,, ¢, ... and all creation
operators corresponding to an occupied orbital é;f, é;-, ... lie to the right-hand side of (i.e.

are applied before) all creation operators corresponding to a virtual orbital &/, éz, ... and
annihilation operators corresponding to an occupied orbital ¢;, é;, ... within an operator
string.

The following example demonstrates how an arbitrary string of operators is rearranged
to its normal-ordered form by exploiting the anti-commutation relations:

String of creation/annihilation operators: CjCleCj

(2.185)

Rewritten in normal ordered form: {c;rclcbcj} = —clcjczcb‘

The curly brackets {} denote the normal-ordering. As a consequence, the expectation
value of the HF ground state vanishes by applying normal ordered operators:

(GOHAB, ..} wO) =0, (2.186)

Wick’s Theorem

Wick’s theorem is named after Gian-Carlo Wick, who developed an elegant way to
transform arbitrary products of annihilation and creation operators to sums of pairwise
operator products. 177178

At first, the general contraction e of two operators is defined as

A*B* = AB — {AB}. (2.187)

Wick’s theorem states that a string of operators can be expressed as a sum of all of its
possible normal ordered contractions:

ABCDEF... = {ABCDEF ..}
+ > {A*B*CDEF..}

single
contraction

Y {ABrCmDTRE.

double
contraction

(2.188)

+

+ Z {A.BOCOOD..E...FOOO.”}.

contfrlzlllétion
Besides the fully contracted term, every other part of equation 2.187 contains uncontracted
operators. Considering equation 2.186, only the fully contracted part exhibits a non zero
contribution to the expectation value of the HF ground state. As a consequence, the
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expectation value of the HF ground state with respect to an operator string of creation
and annihilation operators is given as

(TONABCDEF..|00) = Y~ (WO|{A*BoC**D*E*** . }|u().

full
contraction

(2.189)

Hence, all operators in the string have to be eliminated via contractions to provide a
non-zero result.

The contractions of all possible pairs of annihilation and creation operators can be
obtained using the anti-commutator relations and equation 2.188:

®¢?) or creation operators (éT'éT') are

1. Contractions of two annihilation operators (& 1ec;

zero, because they anti-commute.

2. The contraction of an already normal-order string yields zero: éj'é(‘l = éj Ca— {6;f Ca} =
0.
t

%

3. If the string is not normal-ordered, the order must be reversed: ¢]°¢f = éjéq -

{ézéq} = ézéq + éqéj. Since the anti-commutator is zero unless i = g, the contraction

yields éj'é; = §;; and with the same reason é;é;g' = b
Hence, there are only two contractions éj'é; = d;; and é;é};' = J,4p that give non-zero

contributions. All possible pairwise contractions of creation and annihilation operators
are summarized in Table 2.2.

Table 2.2: Summary of all possible pairwise contractions of creation and annihila-
tion operators due to the anti-commutator relations. The e symbol is omitted in this Table.

Eptq el éq epll ehél
Giej=0 | elgg=0y5 | acl=0 |éd=0
Gita =0 &lea=0 | @&él =0 |élel =0
Cali =0 | e =0 | el =0 |éel=0
Caly =0 | e, =0 | €8l =0ap | el =0

2.5.5 Explicit Derivation of the ADC Matrix Elements

With the knowledge about Wick’s Theorem it is now possible to solve the ADC secular
matrix (equation 2.181) and explicitly derive the ADC matrix elements and working
equations. In the following discussion, I explain this procedure generally using selected
examples by analyzing the different contributions to M7y, i.e. the overlap matrix and
the shifted Hamilton matrix up to first order in perturbation theory. Since the ground
state reference wave function is expanded as a perturbation series based on MP, certain
expressions of MP2, which were derived in Chapter 2.2.3, are needed for the construction
of the ADC matrix equations. These terms are summarized in Table 2.3.

Construction of the Overlap Matrix S

At first, the equations for the overlap matrix S are derived. Using the definition in equation
2.170 and applying the perturbation expansions, the overlap between two states I and J is
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Table 2.3: Summary of the MP2 ground state terms, which are used in this chapter to
derive the ADC matrix expressions. Their origin is explained in chapter 2.2.3.

H=f+U=HO®4+HD
HO =3 ¢,cle,
P

AW = I = f = — ¥ Y (pkllgk)cheq + 1 3 (palrs)chelcscr
pq k

pqrs
0
wiy = [whF)

0 0) 7 0
By = (0| HON) = S
K2

1 0) 0 T
EY = (P AO1) = —1 3 (i4]ij)
J

defined as B) At A .
St = AWSy =Y AEw|CIC v
n k,l

R X (2.190)
= Y0 a8 ) (w | ).

k,l,m,n

Accordingly, the ground state wave function is described with a perturbation ansatz:
o) = > [w"). (2.191)
n=1

The Sy, 7 result in zeroth order is then given as

0 0) [ At A 0 0)| A 0 0)| A 0
Sy = (101 Co ) — (0|1 w ) (g |Gy )
0) | At A 0
= (v |C]Culwg”) (2.192)
=077
Here, the second term vanishes, because CA’}L is normal-ordered and the first term is only

non zero if I = J. The same result can be obtained using Wick’s theorem as shown in
equation 2.193 as an example for the p-h,p-h block:

S(O)

ati,bj

0 0 0 0 0 0

= (US|l eaches 05 — (WS [{cl e U ) (W ef ;| )
0 0
= (0 |cl cacte;| U5
=

U [{cf* each ey ") (2.193)
= <‘I’(()0)‘5ab6ij|‘l’((JO)> = 5ab5ij<‘1/g])\\1’éo)>
= 5ab5ij'

To derive the expression for the first order overlap matrix, the relation

(g {CPHwE) = (w5 {CTH ) =0 (2.194)
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is needed. This expression is zero, because the normal-ordered operator acting on \Iléo)
yields zero. With the help of equation 2.194 and equation 2.192, the first order expression
of S;,; can be formulated as
1 1) At A 0 0)| At A 1
Sty = (2510119 ”) + (w1 CF Gy wgY)
A 0 0)[ A 0 0)[ A 1 0)[ A 0
— (g |CF1w ) (W |G wg”) — (| CF 1wy (w1 O )
0)| A 0 1)) A 0 0)[ A 0 0)[ A 1
= (w0 [Cwe”) (w105 190”) — (v G ) (W 1CawY) g )
1)) At A 0 0)| At A 1
= (0| OO 0" + (U |C1Cy w5
= ([0 05”) + (5”61 1957)
=0.

Via the same procedure, the second order term of Sy ; can be derived. The final result is
given as

S\ = (wV|CiCy ). (2.196)

Note that S}Q)] is only valid for the single excitations, i.e. the p-h,p-h block contributions.
Since the first order contribution vanishes, the elements of the overlap matrix can be
written as

Sty =01+ S5 +0(3), (2.197)

where O(3) contains all third and higher order contributions.
As the next step, S has to be transformed to S—2. This can be achieved via developing
S™2 asa Taylor series. In principle S has the form

S(x)=1+x  with x=S® 4+ 0(3). (2.198)

The Taylor series is then given as

x (2.199)

1 1
ST3 =61 -3 (S}?} + 0(3)) . (2.200)

Expansion of the Hamilton Matrix

After deriving the terms for the overlap matrix S, the matrix representation of the shifted
Hamiltonian is investigated. With the knowledge about normal-ordered operators acting
on the HF ground state reference wave function (see equations 2.186 and 2.194), the
matrix of the shifted Hamiltonian (equation 2.172) is simplified to

(WA = Bolw}) = (|C] (£ - By ) Cy]%). (2.201)
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After expanding the expression using perturbation theory, the shifted Hamilton matrices
up to second order are given as

(et - mpwt) ™ = @@ O, 1) — (w1 CLE )
(wpii - mgwt)"” = @O, ) — (8 CLED )
(i - Eou)” = @i aOE )+ @l ave ey @2
+ (W | CTHOCy V) — (9§71 CTE Cy 0™
— (v |C B CylwgY).
Example: Detailed Derivation of the ADC(1) Matrix

Now, all prerequisites to derive the final ADC matrix equations are fulfilled. As an example,
the zeroth and first order terms of the p-h,p-h block, which correspond to ADC(1) matrix,
are evaluated.

1. Zeroth order p-h,p-h block:

Let me start with the evaluation of the zeroth order Hamilton matrix. Including the
explicit expressions of the excitation operators leads to

WOICAOC,0) = (0|l eu 1O e [0

0 0 2.203
= Z€p<\1'(() )|cZTcac;r,cchcj|\IJ§J )>. ( )
P
Next, the string of operators czcac;[,cpc;gcj has to be evaluated exploiting Wick’s theorem:
clcac}:cpc;gcj = Z {cgcaclcpc;gcj}
full

contraction
_ {CTOC.OCT---CouCTnCo} + {CT.C"CT“C".CT."c'}
“ Wi fatp Tp T T i Ca Cp Cp Cp Cj

—{cfee cl,'"c;,c;g"c;"}

(2.204)

= 0ij0ab0pp + 0ij0apOpb — ipGabOp;
=A+B+C.
Due to the definition of normal-ordered operators, p in part A must correspond to the

occupied orbital space to be nonzero. The terms B and C are only nonzero if p corresponds
to the occupied orbital space (C) and to the virtual orbital space (B), respectively. Since

Eéo) = > ¢;, this results in

0 0 0 0
S (Ul eactenche; | W8Y) = 3 6, (WS A+ B + C|w”)
P P

= <Z emaijéab> + €40ij0ap — €0550ap (2.205)

pi

= 5ij5ab (E(()O) +€q — 5@') .
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Analogously, the expectation value of the zeroth order energy can be formulated as
@O EL 1wy = (0l EOcf ;[ 0) = 6,6, B (2.206)

Finally, the whole matrix element for the zeroth order p-h,p-h block is given as

i, =3 (522" (i - mlvi)” (sa4,)"
ckdl

= > buctin (0§ lel e IO cfes |0} = (0" ] eu B el | 07) ) drad
ckdl

= 6U6ab ( 0 + €q — 61) — (5ij(5abE(()O)
= Sijdab (Ea — Ei) .

(2.207)

2. First order p-h,p-h block:

The evaluation of the first order terms of the p-h,p-h block is more complicated. Starting
with the first order Hamilton matrix

(OO CTADC 1wy = (Wi |efe, D cfes |0 ”)
— @ D

= —ZZ (pkl|ak) (U el cacheqche; [0 5) (2.208)

+ - Z (pq|rs)( \II(O)\C CaC) cl Tcrcscbc]|\11(0)>

pq’l‘S

it is clearer to divide this expression into two parts, i.e. mfj)

of the operator string of mfj) is given as

(1)

and myg’. The full contraction

Te ofo oo — Te cte ele
C{CaChCqClC; {eicacieqcyei}
full
contraction

— {cT' .o J(uoco" T"CO} + {CT. oo T"C."Cl]:“.c;} (2.209)

_ {CT. oo T...C.Cz..c...}

= 6ij6ab6pq + 5ij5ap5qb - 5iq5ab5pj
=A+B+C.

Again, the terms A and C exhibit only a nonzero contribution if p and q belong to the
occupied orbital space and in B, p and q must correspond to the virtual orbital space.

Furthermore, p must be equal to q in term A. Considering these conditions, m(Al) is finally
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given as

Zzpknqk Uy |cleacheqete; | U8

= —ZZ (pkl|gk)(T”|A+ B+ Clo)

(2.210)
== (ik|lik)8i;0u — D _{akl[bk)ds; + > (ikl|ik)das
ik abk ijk
= 250005 — Y _{ak|[bk)os; + > (ikl|ik)das.
abk ijk

The full contraction of the operator string of mg) results in 14 terms. Here, only the final

delta terms are listed below:

C;LCQC;C;CTCSCECJ' = Z {c! CaCp e cTCSchJ} A+B+C+D (2.211)
contractlon

A = 8i0ag0p;0r — B10ap0aOrt, + OirBapyiOst — OirBagOpsOsh (2212)

B = 0i50ab0p;0¢r — 0i50ab0pr0g; + 0irdabOpsdq; — dirOabOp;dgs (2.213)

C = 0i0ap0qsOrb — 0ij0apOqrish — 0ij0aqOpsOrb + 0ij0aqOprisp (2:214)

D = 6,;0u0pr0gs — 01;0a00psqr- (2.215)

Similar to the other examples above, every delta term and the normal-ordered operators

define a certain condition for p, g, r and s. For simplification, mg) is split into four parts:

1
m$y) = 5 > (palrs)(WEV|A + B + C + D|w )
pyrs (2.216)
_ 1) (1) (1) (1)
= Mpa) T M) T Msie) T s(D)
The mg) ) terms can be evaluated using the definition of an antisymmetrized two-electron
integral (pq||rs) = (pq|rs) — (pq|sr) and exploiting the relations

(pqllrs) = (rsllpg)* (2.217)
and

(pglrs) = (qpl|sr). (2.218)
Since the orbitals are real, the expressions of mg() x) can be summarized to

ity = 5 3 (Galbi) = {ajlbi) + (ajlit) — (alit)

abij

. (2.219)
= 5 37 Gallbi) + Gaglib)) = — 3 (aillbi)
abij abij
iy = 5 3 G (ki) — (hjlhi) + (kiliR) — (klik))
uE (2.220)

*Z (k|[) + (kjlik)) b = — > (jk||ik)6ap

ijk ijk
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mB(C) Z% (ak|bk) — (ak|kb) — (ka|bk) + (ka|kb))
1“bk (2.221)
=3 > ((ak||bk) + (kal[kb)) 65 = Y _(ak|[bk)d;;
abk abk
miyp) = Zaab(sw (kl|kl) — (kl|k))
(2.222)

= 5 Z<kl‘|kl>§ab5w = *Eél)éabéij.
kl

Summing up all m(Bl() x) terms yields

(W |cfea BV cle;|wl) = m +mfy
= 28" 0,0i; — Y _(akl[bk)di; + > (jkl[ik)dap

abk ijk
=D {agllbi) = D (iHllik)0as + D {akl[bR)di; (9 993)
abij ijk abk
— EM6,46;
= E(()l)5ab5ij - Z(aj”bi).
abij

Finally, the ultimate matrix element for the first order p-h,p-h block is

0, =3 (502" (i - mlvi)” (sa4,)"

ckdl

= > buctin (0§ lef e A cfes | 00") = (Wl e BV s 1 067) ) dnadst (9,994
ckdl

= 365" — (ag|[bi) — 8i;0u ES"
—(aj]|bi).

3. Summary:

Summarizing the final ADC(0) and ADC(1) matrix elements yields

MDD = 6,560 (€a — €) (2.225)
MDD = 6,560 (€0 — ) — (ag]|bi). (2.226)

Hence, ADC(0) just provides the orbital energy difference, while ADC(1) contains an
antisymmetrized two-electron integral, which is identical to the CIS expression. Obviously,
double excitations are first treated at the ADC(2) level. The matrix elements at the
ADC(2) and ADC(3) levels can be evaluated according to the procedures that were
explained exemplarily for the ADC(1) matrix. In the same manner, the final equations of
the transition moments and ISR properties can be derived, too. The final results of the
ADC working equations up to third order in perturbation theory as well as the respective
spectral amplitude and ISR property equations are given in chapter 2.5.7.
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2.5.6 Exploiting the Core-Valence Separation Approximation to
Calculate Core-Excited States

So far, the general ADC scheme has been derived and introduced. To obtain the vertical
excitation energies, the ADC eigenvalue problem (equation 2.158) has to be solved via
diagonalization of the ADC secular matrix (equation 2.181). Regarding ADC(2)-x and
ADC(3), where only two excitation classes are included, the size of the ADC matrix
increases with (OV)®, where O and V are the numbers of occupied and virtual orbitals,
respectively. Considering the demand of being as exact as possible and thus using preferably
large basis sets, it is computationally too expensive and inefficient to build and diagonalize
the whole ADC secular matrix for systems larger than 10 electrons. However, the focus of
interest often lies on the energetically lowest excited states of the spectrum, i.e. the valence
excited states in the UV region. Therefore, typical iterative diagonalization algorithms
like the Davidson method '3® are usually employed to solve such large eigenvalue problems.
These schemes are designed to yield the lowest eigenvalues of interest without computing
the whole matrix.

As mentioned before, core-excited electronic states are located in the high-energy
X-ray region of the electronic spectrum, thus calculations of XAS spectra with the ADC
method are challenging. A solution to this dilemma would be the direct diagonalization of
the core-excited state space, but the couplings between the core-excited and underlying
valence-excited states prevent this ansatz (see Figure 2.3). However, these couplings

energy energy
MY M5 MY M5
! 2 b
1\/;“l B 1\/1;" o
o o
> >
bo bo
: mas)
[ = c
Q [J]
. ’ . ‘
My L = My ¢
P ®

Figure 2.3: Schematic illustration of the CVS approximation acting on the p-h,p-h block
of the ADC matrix. Valence (M;* and M}, green) and core (M{ and M}, blue) excited
configurations are ordered by energy and the rhombi represent couplings between the
excited configurations. Due to the CVS approximation the couplings between the core-
excitation and valence-excitation spaces, which prevent the direct diagonalization of the
core-excited space, are neglected. Hence, the spaces are decoupled from each other and
the core-excited states can be computed directly.

are very small, because there is an important characteristic of core orbitals: they are
strongly localized in space and thus tightly contracted due to the Coulomb attraction of
the nucleus. As a consequence, the probability of the propagation of an induced hole from
a core orbital ¥y to another v is almost zero. In the case of degenerate core orbitals,
e.g. due to point group symmetry, the situation is described by linear combinations of
these core orbitals resulting in a basis of strongly localized orbitals. Furthermore, the core
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orbitals are energetically well separated from the valence orbitals, leading to a large energy
difference between the core- and valence-excited states, too. Based on these matters of fact,
the core-valence separation approximation (CVS) was developed in the early 1980s.444
Within this approximation, it is assumed that the full electronic Hamiltonian can be split
into a core H, and valence H, part as

I:Icv = IA{C + IA{U + cha (2227)

where S, is the spin-interaction term, which is not discussed in this context. To construct
the core-valence separated Hamiltonian ﬁw, one has to omit certain terms in the full
Hamiltonian that contain a different number of core creation ¢ and core annihilation
operators Cc. fIC and valence f[v are then given as

H. = e.élé. + (celec)éléléce. — Z(ck‘”ck)éiéc (2.228)
and

~ . 1 T i
H, = Z epcz,cp + 3 {pq|rs) ;‘7 :;c,.cs — Z (Z(pk”qk‘)c;cq) . (2.229)

P pqrs Pq k

Therefore, H, only contains interactions of the cores, while the valence term H, includes
all other interactions, where p, q, r and s are valence occupied or virtual orbitals without
considering core orbitals, which are denoted as c.

Considering the CVS approximation, the following types of Coulomb integrals that
describe the interaction between core and valence orbitals practically vanish and can thus
be neglected:

(Iplgr) = (pIlqr) = (pqllr) = (pq|rI) =0
(IJlpq) = (pq|IJ) =0 (2.230)
(IJ|Kp) = (IJ]pK) = (Ip|JK) = (pI|JK) =0,

where capital letters I, J, K refer to core orbitals and small letters p, q, r to valence
occupied or virtual orbitals. 199

In combination with the ADC scheme, the resulting CVS-ADC approach provides
an intuitive way to calculate core-excited states. As shown in Figure 2.3, the CVS
approximation leads to a complete decoupling of the core excitations from the valence
excitation space by discarding the couplings between them. In the p-h configurations, the
index of the occupied orbital has to be restricted to a core orbital. In the case of the
coupling and 2p-2h configurations, one of the occupied indices has to correspond to a core
orbital, while the other is restricted to the remaining valence occupied space. Hence, only
matrix elements corresponding to My, ke (p-h,p-h block), My e ke (2p-2h,p-h block),
Miq.k1ca (p-h,2p-2h block) and Myjep, kica (2p-2h,2p-2h block) need to be considered,
where I, J and K correspond to core orbitals, while j and 1 describe occupied valence
orbitals and a, b, ¢, and d represent virtual orbitals. In Figure 2.4, this strict separation of
singly core-excited states from the singly excited, doubly excited and doubly core-excited
states is illustrated. Eventually, the size of the ADC matrix as well as the matrix equations
are strongly reduced, which leads to computational savings compared to the general ADC
approach. The diagonalization of the CVS-ADC(n) matrix M®VS provides direct access
to core-excited states and due to the structure of MCVS  iterative diagonalization schemes
can be employed straightforwardly, because the energetically lowest eigenvalues of MCVS
correspond to the spectroscopic core-excited states of interest, respectively. The explicit
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c c cd cd cd
Mk MK Mkl MKl MKL

M?®  valence

7

TS e . i 1

ab doubly
Mij valence

MIab singly
T CVS-ADC(n)
Mg oo .
withn=2,3

ADC(n)

Figure 2.4: Scheme of the block structure of the whole second and third order ADC
matrix, where the occupied orbital space is separated into the core (capital letters I, J, ...)
and valence occupied (small letters i, j, ...) part. The singly core-excited states of both
excitation classes are decoupled from the rest of the ADC(n) matrix after applying the
CVS approximation. Therefore, the ADC(n) matrix is reduced, because one index of the
occupied orbital space has to correspond to a core orbital.

CVS-ADC working equations accompanied by a detailed discussion about the application
of the CVS approximation to the original ADC equations is given in chapter 2.5.7.
Finally, note that relativistic effects are neither included in the strict CVS-ADC
approach nor in the ADC scheme in general. However, XAS of light elements are not
significantly influenced by relativistic effects. The contribution to the spectrum is a
positive shift of the absolute energy, which depends almost constantly on the weight of the
investigated atom, thus it is common to neglect these influences. For the following K-shell
excitations, these energy shifts due to relativistic effects can be estimated to be about:
0.1 eV for carbon, 0.2 eV for nitrogen, 0.4 eV for oxygen and 8.0 eV for sulfur. 00,179

2.5.7 The ADC and CVS-ADC Equations

In this chapter, the complete final ADC and CVS-ADC equations are presented and 1
show explicitly how the CVS approximation acts on the ADC working equations. The
matrix elements are given up to third order in perturbation theory, while the equations
for the spectral amplitudes and the ISR properties are only available in second order.
Note that the CVS approximation was already applied to the ADC(2) secular matrix and
corresponding spectral amplitudes by Schirmer et al.1%° For the very first time, I applied
the CVS approximation to the ADC(3) scheme and the ISR for a general one-particle
operator. The CVS-ADC(3) equations are already published in Journal of Chemical
Physics, 142 (2015), 214104, while the equations of the CVS-ISR approach have been
submitted for publication in Journal of Chemical Theory and Computation, (2016).9%:%9

For clearness, the following notations that are used to describe the equations are
repeated: I, J K, ... label core orbitals and i, j, k, ... refer to valence occupied ones.
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Furthermore, virtual unoccupied orbitals are denoted as a, b, c, ..., while p, q, r and s
describe general orbitals. For simplification, the short-hand notations
(pqllrs) .
tpgrs = —————————— = —t 2.231
pqrs e + €s — Ep _ Eq TSpq ( )
and

pqrs
€+ € — €y — €

are used, where € denotes the HF orbital energies and (pg||rs) = (pq|rs) — (pq|sr) describes
the antisymmetrized two-electron integrals. The equations are grouped in blocks of the
configuration space of particles (p) and holes (h).

Applying the CVS Approximation to the Original ADC Working Equations

At first, the original ADC and ISR expressions up to third order without the CVS ap-
proximation, which are taken from the literature”® 78, are listed below. Furthermore, the
influence of the CVS approximation is discussed and visually indicated by marking the
types of integrals and matrix elements that are neglected in the CVS approximation (see
equation 2.230) in red.

1. ADC Secular Matriz:

Let me start with the explicit expressions of the ADC secular matrix up to third or-
der in perturbation theory. The CVS approximation is applied with respect to the
restriction of the index i and j to correspond to core orbitals regarding the p-h,p-h block,
while within the equations for the couplings and doubles blocks, the indices i and k refer
to core orbitals. As shown in detail in chapter 2.5.5, the zeroth and first order terms of
the p-h,p-h block are given as:

MY = (€ = &) 60 (2.233)
MY, = | bi 2.234
ia Jb <a]|| Z>' ( . )

These terms are fully preserved within the CVS approximation. The second order term of
the singles block can be written in three parts as

2 2 2) B 2) C
Ml(a)]b - M( )jb +Mz(a)jb Mz(a)]ba (2235)
with
kU (KL||b kU (kl||b

Mff)]{f‘—féij (<af3|| ) (kl[|be) n (ac]|kT) (k|| C>> (2.236)

’ T \eatec—eh—€a et~ —€

(cd||ik) (jk||cd d||ik) (7k||cd
w1, Z( cdllik)(klled)  {ed]lik) (ke >) o230

cdk 60+€d_61_€k €c+€d_6j—€k

1 [|ik) (jk||be ||k (k|| be
M2 L3 (AU I Y g
ZCk €g+e€—€ —€  €ete—€ —¢€

where only the first term Ml(a)]b is preserved after the CVS approximation is applied,

because the B and C terms contain two-electron integrals of the types defined in equation
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2.230. Going to the third order contributions of the p-h,p-h block, the complexity of the
expressions increases. There are 29 contributing terms that originate from 23 Feynman
diagrams of the polarization propagator:

29

3 3,z
Mi(a,)jb = Z Mi(a,jb)' (2.239)
=1

I will discuss them via references to the original diagrams, which were evaluated by
Schirmer and Trofimov, because some of the terms have a distinct physical meaning.””
Diagrams (1)-(6) are related to the special ADC quantities of the one particle Green’s
function according to

M(3) = _5abci(j3)_ + 6’LJC 3)+ (2240)

ia,jb

where C’fj” and C’Z.(f)_ describe the effective interaction for the (N-1)- and (N+1)-electron
case, respectively. '8 These six diagrams lead to twelve terms, which are given as

3, 1 .. )
M350 == g8a D thalimlcd){jml|k1)

cdkim (2.241)
1 1
X — + h.c.
€.+ €3—€ —€m €ct € —€ —€p

BrggURled)  tinealfgllki)
€cte€g—€ —€ €4t €F—€ —€

1
A‘[/(:JZI)) - _géab <CdHfg> (
cdf gk

(2.242)

1
[z(adjdb =- §5ab Z tacaldlllcf)(kfid)
cdrkt (2.243)

(e )
X + + h.c.
€4+ €r — € — € €4+ € — € — €

(3,4) 1 t:ldf <.7AH(d> tjls’(:d<fd’Hil>
My = ==6a Y (clll k) ( + (2.244)
ia,jb T a e e — .
2 forrl €cteg—€ —€ €g+ef—€ —¢
3,5)
z(a,jb 61] Z tklcd kl”be CL6||Cd>
cdekl X | (2.245)
X ( + ) + h.c.
€p + €c — € — € €q + €c — €k — €
1 (kl||be) trie (ac|nm)
M'(3a6) — —*61“ kl nmac C
ia,jb 8 J <nm|| > €4+ €c— €x — € + €+ €0 — €m — €n (2246)
ckilmn
Z(l,jb - 76” Z tklcd km”bd (alec)
Cd’“lml . (2.247)
X ( + ) + h.c.
€q T+ €4 — €L — €Em €p+ €5 — €L — €m
k‘leC> tklbc<ad||lm>
M(3»8) 51 kd lmad<
o ’ cdklm<m6” > €a t € — € — € " € T €4 — € —€m (2.248)
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1
3,9 . .
M) = =5 Y thicatimed (G (Jrllik) — 515 (mallkb) (2.249)
cdklm
1
3,10 . .
M35 = =5 3 thicatiuae (313 (acllbe) = dup(jcllic)) (2.250)
cdekl
1 t d||le) (dap{jellki) + di; bk
Mi(i,jlbl) _ Z riea{cd|le) (Ban(jellki) + bij(ael|bk)) +hee. (2.251)
€ — €k
cdekl
(312) 1 trrea(md||kl) (0ap(jclim) — di;{acl|bm))
Migs' =5 a%m P +h.c. (2.252)

After applying the CVS approximation, these twelve terms are reduced to eight, because
some of the terms that arise from the 5abC;f )= part contain two-electron integrals that
are neglected within the CVS approximation. A further special case are the terms with
x =9,10,11,12. These expressions fully remain after applying the CVS approximation.
In these cases, the relation C,(,i) = Zﬁ}) with Zz(>3q) describing the static self-energy is valid.

The remaining third order expressions of the singles block according to the diagrams
(7) - (23) are given as follows:

£3.13) _ 1 teglallled) (kjlbd)
M) = = h.c.
ia,jb 2 Z €q + €4 — € — €5 +h.c (2253)
cdkl
: 1 tr. (lj]lbe) trjen{ad||li)
]\[(314) I lellkd liad \"+ Jco
3a,7b 5 %( e e e e Tate - p— (2.254)
1
3,15 * -
Mi(a,jb) = _Z Z tledtklac<d]HbZ> + h.c. (2255)
cdkl
1 teallalled) (kj||bi
Z_(j;jlf) S Z ki d<€ ”fii 1b2) +hee. (2.256)
cdkl @
1 1 acIm| kc) (k7] bi
VS ol ( 6 ||_ 6>k< o) . (2.257)
cklm @
(3, 1 N .
M i(j.jlz?) =71 Z thicdtlicq(ajl|bk) + h.c. (2.258)
cdkl
FERT 15 0a (K| di) (jal|cb) )
Miaje™ =5 > p— +h.c. (2.259)
cdkl
(3,20 1 triar (cklldf) (ajlcb)
M =23 p— +h.e. (2.260)
cdfk ¢ v
(3 1 . .
M35 = = 5 3 thiaa(kilbc) (cll|di)
cdkl (2.261)
(a7 )
X + + h.c.
€p T €c — €5 — €k €q T €. — € — €k

(3,22 1 * .
MG == 5 3 thiealkillbe) (alldk)
cdkl (2.262)

1 1
><< + )+11.c.
€y + €c — €5 — €k €q + €c — € — €k
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3,23
M) = Zw k|bY af ed)
cdfk

(2.263)
1 1
X + + h.c.
€yt € — €5 — € €q T €f — € — €
1
3,24) . .
]\[z(a b :Z Z tzlac<j7n’||(:b> <kl||”n>
cktm (2.264)
1 1
X ( + ) + h.c.
Eb+€cfﬁj76m €q T+ € — € — €m
Mz(jjzl? - 5 Z tkldbtklac <dj ||C7'> (2265)
cdkl
L326) 1 o
]\'I’iu,,jb - _5 % t]ZCdtk"iczl <ak||bl> (2266)
3,27 * ny
Mg = =3 tiactimse(killim) (2.267)
cklm
3,28 *
M7 = = 3 Eicatisas (af be) (2.268)
cdfk
3,29) * .
]\[l(a b = — Z tklactllj(:d<dk||bz> + h.c. (2269)
cdkl

If the CVS approximation acts on these equations, only the five equations based on
diagrams (8), (9), (16) and (18) are fully preserved, while the ones that arise from the rest
are neglected completely. Eventually, the third order equations of the singles block are
reduced from 29 to 13 after applying the CVS approximation, where the dominant part of
the remaining equations arise from contributions that are also included in the (N+1-) and
(N-1)-electron cases.

Next, the coupling blocks are discussed. Theses equations are known to be related
to orbital relaxation and polarization effects.*®7® The explanation concerning the impact
of the vanishing terms on the orbital relaxation effects are given in detail in the following
chapter 2.5.9. Note that the ADC secular matrix is Hermitian and since the orbitals
are real, only the M;q ricq elements are shown. The ones of the 2p-2h,p-h block are just
complex conjugated, thus the equations of both coupling blocks are identical with respect
to their indices.

M, 10q = (Kllid)bac — (Kl|lic)daa — (allled)din + (ak||cd)dy (2.270)
The last part of the first order contribution to the coupling blocks is neglected due to the
type of the integral. The second order terms can be written in six parts as

6
2 2,z
Ml(a )klcd - Z Mi(aJcl)cd (2271)
r=1
with -
Mi(a,’kl)cd = - 60«‘3 Z tk‘jdb <le71> + 6ad Z fk](b<[b||jl>
v v (2.272)
+ Gac Y tujan(kbl|ji) — adztljcb kbl| i)
bj
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MZ2 Ly bellid) + <6 belli
iakled = T ac ) tave {belid) + B ad Y trive (bellic) (2.273)
be be
M= 0> (~tan{ablje) + tijen{abljd))
E (2.274)
+0i Y (trjanablje) = tijen{abllid))
bj
4
Mg = =0k Ztgmcd lal|jm) + 5zzztgmcd (kal|jm) (2.275)
[L(j k)l)(d Zt“(b (JZ)H(ZL =+ Zt“db (LZ)H(I (2276)
Mﬁﬁﬂ:—Eymﬂ%W®+§)mMMW% (2.277)
j j

After the CVS approximation is applied, the six second order terms are reduced to four.
However, the remaining expressions are not completely preserved, because repeating terms,
in which for example p and q are interchanged, lead to two-electron integrals that vanish
within the CVS approximation.

At last, the equations of the 2p-2h,2p-2h block are given in zeroth and first order as

Mi(j(')zzb,klcd = (o + € — € — €5) 0acOpddik0ji (2.278)

M50y kica = {ablled)dixd + (kl]]i)dacdha
— ({ak||ci)Opadi + (al]|ci)padir + (bk||di)dacdji + (Dl]|dj)0acdir)
+ ((al||ci)0;10pa + (ak||cj)0ii6pa + (D1]|di)0;30ac + (DK||dj)6i0ac)  (2-279)
+ ((akl|di)dbcdj1 + (all|dj)decdir + (bk||ci)daadji + (bl||cf)daadin)
— ({al||di)d 5 6pe + (ak||dj)di6pe + (b||ci)0jk0aq + (bk||c])dibaa) -
The zeroth order term just consists of the orbital energy differences that are fully preserved
within the CVS approximation with respect to the restriction of the indices, while the first

order contribution is reduced from 18 to 10 terms according to the two-electron integrals
that are practically zero.

2. ADC Spectral Amplitudes:

Next, I discuss the spectral amplitudes that provide access to oscillator strengths. D,
refers to the matrix representation of an arbitrary one-particle operator. The CVS ap-
proximation is applied with respect to the restriction of the index i to correspond to a
core orbital. The zeroth order element is simply given as

r% = p,,. (2.280)

a

Fi(f) is fully preserved after applying the CVS approximation, while the first order term

b\
JE N UL (2.281)

€q t € — €5 — ¢
bj a b J i

completely vanishes. According to the diagrammatic origin, there are 13 second order

@4 peD) g pe2)

terms of the p-h excitations. However, only three terms, i.e. F}, are
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preserved after applying the CVS approximation due to certain two-electron integrals that

are neglected:

FOA _ 1 3 (abl|jk) (jk|]cb) D.,
4 ot (€a+ € —€; —€x)(€c + €, — €5 — €k)
FOF — 1 3 (bellij) (kjl[be) Dy
) 4bjck (ep + €. — € —€5)(€p + €c — €, — €5)
poe 1y~ (ablig) (hgleh) .
2 o (o + € — € —€j)(ec+ € — €, —€5)

pen_ 1 3 : (belljk) (jal[be) Di;

ia 2 bjek € + €. — €j — 6k)(€a - Gk;)

PrSE e 1L Y

ia 2 Y €q + €p — € — Ek)(Ga — El)

23 _ 1 {bel|jk) (jk|lic)
F23) = Z(

b
€+ € — € —ep)(ep—€;) °

bjck
FA EZ (bellig)(dj||bc) Do
2 e (ep +€c— € —€5)(€q — €)
5 bellkg)(aj||bi
FOS) 3 (bellkj) (ajlbi) Dy
t (€r +€c—€p —€5)(€q + €c — € — €x)
F,-<02"6> _ Z (abl|j3){jc||kb) Dhe
@ ot (ea + € —€j —€;)(€q + €c — € — €)
: b1ji) {aj
pen (i) aille) .
ot (ec+e—€j —€)(ea+ € — € —€r)
kiY(7bl|ci
FES _ _ (ac||kj)(jbl|ci) Dus
bjck (€a +€c— € — 6]’)(5(1 +e— € —€r)
peo 1y (edll i) {ablled) .
v 2bjcd (fc+6d_€j_fi)(fa"’_eb_ei_cj) J
1 bl|kl) (kl|| 57
RS (abl|k1) (L] j7) Dy,
' (o + € — € —€1)(€q + € — € —€j)

bikl

The matrix element of the double excitations can be written as

abl|ki abl|kj
@ -3 (abl|ki) Dy -3 (ab]|kj) Dy,

ijab €o+ € — €k — € €q + € — € — €

{cblli) {calliz) ’
- = D, . — — 2 D
Jrzec—&—eb—ei—ej e Zec—i—ea—ei—ej be

c c

(2.282)

(2.283)

(2.284)

(2.285)

(2.286)

(2.287)

(2.288)

(2.289)

(2.290)

(2.291)

(2.292)

(2.293)

(2.294)

(2.295)

thus only the second term is preserved after applying the CVS approximation. Eventually,
all terms that contain the matrix representation D, of an arbitrary one-particle operator
are preserved, where ¢ corresponds to a core orbital and p refers to a virtual or valence

occupied orbital.
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3. ISR for a General One-Particle Operator:

At last, the matrix equations of the ISR of a general one-particle operator are discussed.
In the case of the p-h,p-h block, the indices i and j correspond to core orbitals if the CVS
approximation is applied, while the indices i and k refer to core orbitals in the case of the
couplings and doubles blocks. Note that all first order contributions are zero:

=0 pw

1 1
‘D( )'b =0 D( : ijab,klc

ia,j ia,klc

1
=0 P

ijab,kc T d— 0 (2296)

Let me start with the equations for the p-h,p-h block. The zeroth order term is given as

(0)
Dza NI

51]dab 6abdji7 (2297)

which is fully preserved within the CVS approximation. There are seven second order
contributions to the singles block according to

D\ ]b = Z Dm]b, (2.298)
with @1
Dia:jb - _51'] Z (pkbdak + pakdkb ab Z pjcdcz + f)ud]c) (2299)
k
1
DI = =19 2 (tcatiiaades + ticatrividac) (2.300)
cdkl
1 * *
Di; 3’)’ = % (2 Ztklbctkladdcd - Z tklbdtmladdmk> (2.301)
cdkl dklm
Dy ;111 ﬂsab Z (tricaticadin + ticaljicadin) (2.302)
cdkl
ij ;)b = —(5ab (Z f]k(f defdce + = Z t]k(’e ’zlcedlk> (2303)
cdek celk
6 1 * *
fogg = 5 (Z tjl‘fdtil(L(ldCb - Z tklbdtilu,ddﬂ>
cdl dkl (2.304)
1 *
+ 3 (Z U eatibddea — Z tiladt,ﬂbddil>
cdl dkl
D<2J71) == tinatipeadis + Y tietiaqded, (2.305)
dkl cdl

where pp,q describes the second order corrections to the one-particle ground state density
matrix. The first term contains ground state density matrices of the type pc,, which are
zero within the CVS approximation, where ¢ corresponds to core orbitals and v to virtual
orbitals. Since all terms with x > 3 contain two-electron integrals of the types described in
equation 2.230, they vanish within the CVS approximation. The coupling blocks (only

0 . . N .
Dga)klcd is shown due to the real Hermitian matrix) in zeroth order are given as

Dfs)klcd = —dac0ikdid + 0acditdrd + dadditdic — 6addildie- (2.306)
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The zeroth-order contributions of the coupling blocks are reduced from four terms to only
two by applying the CVS approximation. The terms that vanish contain d., expressions,
where ¢ describes the core space and o the valence occupied space. These terms are always
0, because contents belonging to these different spaces cannot be equal. The following
eight second-order contributions to the coupling blocks are reduced to three after applying
the CVS approximation, because they contain the types of two-electron integrals that are
neglected as well as delta terms of the type do:

Dfi)klcd = 0qclik Z tijavdp; — Oaclil Z Lijavdyj — 0adOik Z tijebdy;
bj bj bj
+ 6aadit Y thjebd; — Gac Z tribadbi + Oad Z trtbedpi (2.307)
bj
—Oik O titeadaj + it Y tikcadaj-
J J

The same applies for the zeroth-order contributions to the 2p-2h,2p-2h block. Here,
eight terms are reduced to six by applying the CVS approximation.

Dg)ib wiea = 9ik0j1 (Obadac — Opedad — Oaddpe + dacdpa)

i ‘ (2.308)
— 0acObd (051dki — Ojndyy — Oudij + Oindyyj) -

Summary of the Final CVS-ADC Equations

Finally, the CVS-ADC secular matrix working equations up to third order in perturbation
theory are listed below, followed by the CVS-ADC spectral amplitudes and CVS-ISR
equations up to second order.

1. CVS-ADC Secular Matrix:

The p-h,p-h block expanded up to third order is given as:

Ml(g?Jb = (€4 —€1) 0atdrs (2.309)

MI(}z?Jb = —(aJ|jbI) (2.310)

M, = 6u 3" (tsae (KLIIbE) + (acllkl)trane) (2.311)
klc

In the case of the third order terms after applying the CVS approximation, there are
13 contributing terms to the CVS-ADC(3) scheme that are ordered according to the
diagrammatic origin of the original ADC(3) equations:

(3,z)
Ia Jb — ZMIa Jb (2312)
with
12 1J)b *511 Z thicalkl|[be) (ae| cd)
cdekl (2.313)

1 1
X + + h.c.
€yt € — € —€ €t € —€p—€
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1 * mac\kl||bc trive(ac||nm
M3, = U (nm||kl>( (kllloc) , _tume{ac] >en) (2.314)

cklmn €q T €c — € — €] €y + €c — €m —

1
3,3 *
M5, == 5615 Y thcalkml|bd) {al]|me)
cdklm
(2.315)

(e )
X + + h.c.
€a t €4 — € —€n €T €L — € — €Epy

1 kl||be tripe(ad||lm
Mf(iji‘}’b:_a”z<mc|kd>< limaathilbe) ,_tinelad]im) ) (2.316)

2 Serne € te€c—€—€ € +€—€ —€m
1
3,5 *
MED, = =5 7 thtcatinea (G (TmTE) = b1 (mal b)) (2.317)
cdklm
(376) 1 *
My, = D) Z tricatiiae (017 (acllbe) — dap(Jcl|Ie)) (2.318)
cdekl
7 1 tricalcd||le) (bap{Jel|kI) + 61 5{ae||bk
M7 = L 5 taalele) Gt TeT) 4 usloclth) o0
cdekl e %k
, 1 tklcd md| kl 5(11, JcllIm 75[(} acllbm
3y, =L Dl GutellIm) = busoclim) o0
cdklm ¢ m
39 _ 1
Mrap =73 Ztklcdtzlac<dj||b1> +h.c. (2.321)
cdkl
1 t¥eq(lalled) (kJ||bI)
310 _ 2 klcd ..
Ta,Jb >, P +he (2.322)
cdkl
5.11) _ 1 Uac{lml[ke) (kJ[bI)
M) =23 A p— +h. (2.323)
cklm k
1
3,12 *
M) = —5 D trasthiac(d T I) (2.324)
cdkl
3,13
M = = 3 Haactmoe (k| ). (2.325)
cklm

Next, the matrix elements of the p-h,2p-2h block are presented. Note that only the
matrix elements My, gicq Of the p-h,2p-2h block are shown due to the Hermitian ADC
secular matrix.

M}QW = (K| Id)6ac — (K| Ic)0uq — (al||cd)dr . (2.326)

There are four terms that contribute to the second order coupling blocks of the CVS-ADC(3)
secular matrix

(2,z)
Ia Kled = Z Mla Kled (2327)
with
M2 iea = Sac 3 tijan(KB|GT) = daa 3 tijen(KD|51) (2:328)
bj bj
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M2 s = =01k D tijan(abllje) + 61ic Y tijen(ablljd) (2.329)
bj bj
1 .
Ml(zzgl)glcd = _§6IK Z timed(lalljm) (2.330)
jm
Mﬁ’,gzcd == Ztljcd<aK||jI>- (2.331)

J

The 2p-2h,2p-2h block is expanded up to the first order and given as
MI(?c)zb,chd = (€a + € — €1 — €5) SacOpadrx by (2.332)

MU wrea =(ablled)Srac8i + (KU j)buctha — (@K ||eD)6pads — (allles)Sradr
— (bK||dI)5ac0ji — (bll|dj)bacdix + (aK ||dT)0peb0 + (al||dj)dpcdrr (2-333)
+ <bK||CI>5ad5jl + <blHCj>5ad§]K.
2. CVS-ADC Spectral Amplitudes:

The CVS-ADC spectral amplitudes up to second order in perturbation theory are given as

F = Dy, (2.334)

@a 1 (abl|jk) (G| cb)
. _ 1 D 2.335
Ia 4%(%—#61)—%‘—Ek)(ﬁc‘i‘eb—ej_ek) a ( )

2y 1 {belljk) (jallbc)
P _ 1 D 2.336
Ta 2 Z (v +ec— €5 —ex) (ea—ex) " ( )

bjck
R Ly QoGS (2.337)
a 2 o (o + € —€j —€r) (€a —€)
bl[kj)

o (a D, 2.338
Ijab Z (€a + € — € — €5) " ( )

3. CVS-ISR for a General One-Particle Operator:

Starting with the p-h,p-h block, the CVS-ISR equations up to second order in per-
turbation theory are defined as

Dg?l),Jb = 015dab — dabds1 (2.339)
3
2 2,z
D§a),Jb = ZDga,J)b‘ (2.340)
=1

There are three second-order terms contributing to the p-h,p-h block:

Di’f}b = —01s Z (Prbdak + pakdib) (2.341)
%
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1 *
Dng])b = =01 > (tktcatipaaden + tircatkibadac) (2.342)
cdkl
: 1
DY, = o1 (2 > travethiaadea = ) tklbdtfnzaddmk> ; (2.343)
cdkl dklm

with pp,q describing the second order corrections to the one-particle ground state density
matrix. The coupling elements are given as

Dﬁ?,mcd = aadrrdic = dacOridia (2.344)
Dy ktea = BacS1ic Y ijabdds; — Saad1ic D tijendy = 81 D titeadas. (2.345)
bj bj j

Note that, due to the real Hermitian matrix, only the equations of Dy, kicq are shown,
because Dyjqp k¢ is just the complex conjugate counterpart. Finally, the equation for the
2p-2h,2p-2h block is listed below as

D), kiea = 015015 (Ovadac — Spedag — Saadpe + dacdya)

(2.346)
— bacOpa (015dri + Orrcdyj) -

2.5.8 Analysis of Excited State Densities

Next, the descriptors and densities used for a qualitative and quantitative description
of excitation processes are briefly reviewed. A detailed derivation can be found in the
literature. 348688 To understand core-excitation processes in detail, it is not sufficient to
only analyze excitation energies and the transition moments of core-excited states. Excited-
state densities are also important physical properties, which help to proper determine
excited-state characters, in particular, when the excited-state vectors consist of a mixture
of different MO transitions and no dominant amplitude can be identified. In the scope of
my thesis, I extended the formalism to the CVS-ADC/CVS-ISR approaches. Let me start
with the calculation of state densities that helps to characterize and interpret the nature
of electronically excited states.
Generally, a density matrix of the state I of the type

~ T (z,2") = n/\I/I(x,xQ,...,xn)\lll(as',xg,...,:rn) dzs...dz, (2.347)

with the spatial coordinates x can be constructed using the ISR formalism of a general
one-particle operator as shown in Section 2.5.2. Using the CVS-ISR approach, the total
density of a core-excited state is calculated as the diagonal part of the density matrix

pH(z) =y (2, 2). (2.348)

However, plotting the total density does not help to characterize an excited state. Therefore,

the concept of attachment /detachment densities based on the one-particle difference density

matrix (IDDM) A% (z,2") = 4! (z,2') — 4% (z,2') between the ground state 0 and an

excited state I was introduced. 3> Within this concept, the 1DDM is diagonalized according
to

WTAY (2, 2" YW = diag(k1, K2, ..., in) (2.349)

and the diagonal elements x; are sorted and separated due to their sign

d; = min(k;,0
’ (1, 0) (2.350)

a; = max(k;, 0).
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Hence, the negative eigenvalues establish the detachment matrix, while the positive
eigenvalues correspond to the attachment matrix. The back-transformations

Dp = Wdiag(dy, ds, ... \W7

_ . (2.351)

D4 = Wdiag(aq, ag, ... W
lead to the detachment D p and attachment D 4 (D/A) densities, respectively. To determine
the number of detached/attached electrons (promotion number ppa ), the integrals over
all space of Dp and D4 have to be calculated leading to

Dp = Zdi and  pa = Zaz (2.352)

For excitation processes, where no electrons are gained or lost, the relation —pp = pa =
ppa is valid. There are two distinct reasons for a rise of ppa using a correlated wave
function model: double excitation character and orbital relaxation effects.®” Hence, using
uncorrelated methods like CIS, ppa is always one. Within the ADC method, orbital
relaxation effects are treated indirectly via the double excitations. Since core-excited
states exhibit a large amount of doubly excited amplitudes and are strongly effected by
orbital relaxation effects, the promotion number can be used as a quantitative descriptor
of orbital relaxation effects, while plotting the (D/A) densities visualize these effects. In
chapter 2.5.9, a detailed discussion about relaxation effects is given.

Since the (D/A) densities contain relaxation effects, it is more convenient to use
hole/electron (h/e) densities for characterizing excited states. The (h/e) densities are
based on the one-particle transition density matrix (1TDM), which is defined as an exciton
wave function represented in an atomic orbital basis set {1} according to equation 2.174:

VO (rnsre) = 0 (rn) s (re)- (2.353)

T8

rp, and r. describe the coordinates of the hole and excited electron, respectively. The (h/e)
densities are then given straightforwardly as

pn(rs) = /’YOI(ThaTe)2d7'e

(2.354)
pe(re) :/VOI(rhare)erh'

Plotting the (h/e) densities visualizes the pure excitation process without relaxation
effects.

Furthermore, the 1'TDM can be used to calculate exciton sizes by combining the exciton
wave function of the 1TDM with statistical analysis in terms of multipole moments. 34:3%
In this picture, the size o of the holes and the excited electrons can be evaluated as root-
mean-square deviation of the position operator I of the hole and electron, respectively:

on = \/(T}) — (Tn)?

ge =V (T2) — (Tc)%.

(2.355)

Straightforwardly, the distance between the centroids of the hole and electron densities
can be formulated as

dpse = |dhose| = [(Te) — (Th)]. (2.356)
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Figure 2.5: Scheme of the hole (red) and electron (blue) densities together with the
definition of the hole (r;) and electron (r.) position coordinates. Additionally, the
corresponding hole (o) and electron (o.) sizes are given with the distance between their
centroids (dp—.). Due to the generally small core-hole, this scheme indicates the proportion
of the core-hole and electron sizes. Furthermore, this illustration can also be transferred
to the (D/A) picture with the equivalent descriptors op, o4 and dp_ 4.

Figure 2.5 shows a graphical representation of the introduced exciton sizes. As a last step,
the dynamic charge separation distance as

dexe = <|fe - fh|2> (2357)

is introduced. Here, additional information about correlated electron-hole motions are
considered, while dj_.. only quantifies the charge separation of an excited state.8488
The exciton sizes are connected via the covariance (COV) between the hole and electron
position vectors:

Cov(feafh) = <fe . fh> - <fe> : <fh> (2358)

2. =d}_,.+op+02—2C0V(&,,Tp). (2.359)

Since the COV does not have an intuitive meaning, this value is normalized against the
standard deviation that leads to the Pearson correlation coefficient R, 34:
R, = COV(xevxh). (2.360)
OcOh
The Pearson correlation coefficient ranges from -1 to 1 and can be interpreted as follows: if
Rep, > 0, a positive correlation between the hole and electron exists that can be understood
as a concerted motion of the electron and hole quasi-particles. Re; < 0 indicates a negative
correlation, i.e. the electron and the hole avoid each other dynamically. Pearson correlation
values close to 0 denote an independent behavior of the hole and electron.
Since it is not possible to construct a correlated two-body function from the 1IDDM,
the whole formalism, which was applied to the 1TDM to construct the different exciton
sizes and the COV, cannot be translated to the 1DDM. However, with the evaluation of
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the multipole moments, one can formulate expressions for the detachment size (op), the
attachment size (04) and the distance between the centroids of the charges (dp_,4).5487

2.5.9 The Role of Relaxation Effects

Finally, T would like to conclude the theoretical method chapter with a discussion about
orbital relaxation effects. The information given in this chapter have already been published
by me and my co-authors in Journal of Chemical Physics, 142 (2015), 214104.°® Here,
the topic is explained in more detail.

As mentioned before in chapter 2.4, orbital relaxation effects play a crucial role in the
description of core-excited states, because a large amount of energy is needed to excite
electrons that occupy 1s orbitals to a virtual level. The reason is that core electrons are
strongly bound due to the strong Coulomb interaction with the nucleus. This excitation
process is accompanied by a rearrangement of the valence electrons due to the reduced
shielding of the nucleus.*6°° Hence, the induced hole leads to a spatial contraction
of the electronic wave function that is formally mentioned as orbital relaxation. As a
result, a significant lowering in the final state energy is observed compared to cases where
the valence electron arrangement of the initial state is maintained.4® Another typical
observation is the scaling of the gross charge rearrangement with the number of valence
electrons. The more valence electrons are available, the stronger is the rearrangement of
the valence electrons, thus the influence of relaxation effects to the core-excitation energy
increases when going to heavier elements.46:47

Relaxation Effects in Correlated Core-Excited States

According to the discussion of Schirmer et al.*7, the contribution of orbital relaxation
effects in wave function based post-HF methods can be simply identified. Starting with a
CI ansatz, the application of a general excitation operator (C') to the correlated ground
state wave function |Wo) generates a correlated excited state |[¥%). To truncate the
excitation space, the second order of general Rayleigh-Schrédinger perturbation theory
can be exploited. In combination with the CVS approximation, the excitation energy
wey of a core-excited state based on the unperturbed singly core-excited configuration
|We,) = &fé.|Wp) is then given in second order as

Wep = €y — €c — {ev]|cv) + Uep(p — h) + Uew (2p — 2h) + Reys (2.361)

where v describes virtual orbitals and c refers to the core space. (cv||cv) is the first
order Coulomb-exchange contribution and €, and €. refer to the energies of valence and
core orbitals, respectively. R, contains a partial compensation of 3p-3h contributions
in the excited state energy and the ground state correlation energy in second order. For
the analysis of relaxation effects, the U, (np — nh) terms with n = 1,2 are the relevant
parts. They describe the interactions of the |¥,,) excited configuration with the np — nh
excitations, respectively. In quantum chemical methods, relaxation effects can be included
indirectly via couplings of n'" excited determinants to higher excited configurations.
Since the U, (p — h) term contains only second order contributions of singly-excited
configurations, the remaining U, (2p — 2h) term includes the orbital relaxation information
in second order of perturbation theory.4? Accordingly, a perturbation expansion in higher
orders n would result in more U,,(np — nh) terms that contain these contributions via
couplings to lower excitation classes. However, I will stay in the second order picture in
this discussion.
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Uey(2p — 2h) can be formulated as
(1 _ 251w) 2
Ue(2p — 2h) = =2 ((¢'s|er) — boer (vs|vr))? + MBE, (2.362)
€ — €g

c'rs

where r and s refer to valence occupied or virtual orbitals, while M BFE correspond to the
remaining genuine many-body effects that will not be discussed here. After expanding
equation 2.362 and neglecting the M BE part, one can decompose the term into three
parts that exhibit a distinct physical meaning:

U.,(2p — 2h) = 45 — 2R — 2P. (2.363)

For simplicity, the prefactor is defined as

Ayo = (1 B #> . (2.364)

€r — €5

R can be regarded as the relaxation energy for the core-excited state. It contains integrals
of the type (c'r|cq) and is given as

R=Y" Ays(csler)®. (2.365)

c'rs

P can be associated with polarization effects induced by the excited electron in the virtual
level. Since the integral (vr|vg) is contained in P, it is therefore of the same type as R,
where v and ¢ are interchanged:

P= ZAU,.S<US|UT>2. (2.366)

rSs

At last, there is the screening term S, which contains the product of both integral types
(c'r|eq) and {vr|vg). S describes the relaxation-induced screening energy of the virtual and
core orbitals on each other, which arises from the core-hole interaction with the excited

electron:

S=" Aus(vslvr)(csler). (2.367)

c’'rs

According to equation 2.363, R and P have negative signs, while the sign of S is positive.
Therefore, R and P reduce the excitation energy, while S acts in the opposite way. Since
the Coulomb integrals in R, P and S are not independent from each other, the relation
between the three parts must be described via the Schwarz inequality ansatz for a suitably
defined scalar product, leading to the result

2
RIP> 2 (2.368)

Hence, R and P must be described in a balanced way, otherwise the core excitation energy
is not lowered due to the screening S.

Relaxation Effects within the CVS-ADC Scheme

At last, the ansatz for the description of relaxation effects in correlated core-excited states is
adapted to the CVS-ADC method. With respect to equation 2.361, the excitation energies
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at the ADC level are by construction exact up to second order.”® Hence, orbital relaxation,
polarization and screening effects are already included within the CVS-ADC(2) approach.
According to Schirmer, the R, P and S contributions are identified to be included in
the terms belonging to the coupling blocks p-h,2p-2h and 2p-2h,p-h of the ADC secular
matrix.”® This is straightforward, because these effects are associated with couplings
between different excitation classes. In other words, orbital relaxation and polarization
effects are included indirectly within the CVS-ADC method via couplings between the
excited configurations. Since both CVS-ADC(2) and CVS-ADC(3) comprise only two
excitation classes, only the singly excited configurations are relaxed via couplings to the
doubly excited configurations and the doubly excited excitations remain unrelaxed. Triply
excited configurations that would relax the doubles are first included in CVS-ADC(4).

Comparing the strict and extended second order CVS-ADC approximations, only the
first order terms of the 2p-2h-diagonal-block is added in the extended variant and the
coupling blocks that provide the R, P and S contributions are unchanged (see Figure 2.2).
As a consequence, the description of the doubles is improved in CVS-ADC(2)-x, which
results in an increased amount of doubly excited amplitudes (R2). This usually leads to a
lowering of the excitation energies 718! in CVS-ADC(2)-x compared to CVS-ADC(2)-s,
which improves the core-excitation energy towards experimental values.

Going to the third order CVS-ADC level, the 2p-2h-diagonal-block remains the same
compared to CVS-ADC(2)-x. Hence, the doubly excited amplitudes are not improved
any further within CVS-ADC(3). However, the matrix equations that describe the
other remaining blocks are expanded one order higher in perturbation theory compared
to CVS-ADC(2)-x. The single excitations are thus improved in CVS-ADC(3), since
the p-h-diagonal-block is expanded in third order instead of second order going from
CVS-ADC(2)-x to CVS-ADC(3). As a consequence, the interaction of the ground state
correlation with higher excitation classes is improved considering the simple Rayleigh-
Schrodinger ansatz (equation 2.361). The crucial expansion of CVS-ADC(3) compared
to CVS-ADC(2)-x are the coupling elements between singles and doubles, which are now
treated in second order of perturbation theory. Evaluating the types of integrals of the
added second order contributions of the coupling block (see equations 2.328 — 2.331), there
are only two integrals, which can be assigned to the types included in P ({vr|vg)) and
three integrals to the types in R ((c'r|cq)), i.e.

2,1 .
M;a,lglcd - 2<Kb||.7]>
M{22) 0 = {ablljc), {abljd) (2.369)

Mﬁﬁgzcd = (aK||jI).
The matrix element M I(z:?[’glcd contains no integrals of the types included in P or R. In
contrast, all of the three contributing first order terms of the coupling blocks in the case
of CVS-ADC(2)-x (equation 2.326) can be assigned to P or R. As a consequence, the
second order expansion of the coupling blocks in CVS-ADC(3) results in a decreased
effective coupling. Since the energy level of the double excitations is not changed compared
to CVS-ADC(2)-x, the core excitation energies thus should become higher compared
to CVS-ADC(2)-x. Eventually, it can be assumed that the inequality according to
(2.368) is unbalanced in the CVS-ADC(2)-s and CVS-ADC(3) schemes, while at the
CVS-ADC(2)-x level the description of P and R seems optimal. To give this information
beforehand, this assumption will be proven true as shown in chapters 4 and 5.
To quantitatively determine the contribution of relaxation effects, there are two
possibilities available. One the one hand, the amount of doubly excited amplitudes (R2)
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can be used as a rough indirect indicator to quantify the influence of orbital relaxation
effects. However, using the R2 value is theoretically not proper, because it just counts
the number of doubly excited amplitudes, while the relaxation effects are included in the
couplings between singles and doubles. In addition, the quantitative interpretation of
the R2 value is only valid for the CVS-ADC method itself, thus there is no possibility
for a comparison with other methods. An alternative to R2 are quantification tools
based on the core-excited state density, which gives also access to visualizing these effects,
i.e. detachment/attachment densities (D/A), the corresponding promotion numbers
ppa and exciton sizes (see chapter 2.5.8). Since the (D/A) densities can be generally
obtained independently of the employed quantum chemical method, a direct comparison
between different methods is quantitatively possible. Chapter 5 provides an analysis and
visualization of relaxation effects by means of chosen molecules.
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Chapter 3

Implementation of the
CVS-ADC/CVS-ISR
Approaches

In this chapter I describe the implementation of the CVS-ADC methods up to third order
and the CVS-ISR approach up to second order into a development version of the adcman *3
program, which is part of the Q-Chem®* program package. Therefore, I give an overview of
the general structure of the interface and introduce important external libraries that are
used by the routines in adcman. As the next step, I explain the necessary modifications
and transformations of the CVS-ADC and CVS-ISR working equations into an efficient
C++ code. The discussion about the implementation is concluded with an overview of
the implemented CVS-ADC/CVS-ISR features.
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External libraries for

Top-level routines
and methods
post-processing and
further analysis
Electronic structure
utility libraries
libwfa

Low-level routines " . 5 M

Figure 3.1: Overview of the implementation of ADC methods in the Q-Chem pack-
age. 8493182 The lower two levels contain general supporting and numerical libraries,
which are not related directly to electronic structure theory. Only the upper levels contain
ADC and electronic structure specific code.

3.1 General Structure and Interface

Being part of the Q-Chem program package, adcman takes advantage of available interfaces
that perform numerical processes and provide principle support for low-level subroutines,
e.g. memory management. Here, I introduce these modules briefly. For detailed in-
formation, I refer to the literature.?3?%182 In Figure 3.1, the general structure of the
code is summarized. All modules are written in the object-oriented C++ programming
language. On the top, there is the adcman module, which contains all top-level routines
and methods necessary for an ADC calculation. Here, the implemented code coordinates
the calculation process, sets up the solver and writes the results into an output file. Besides
the fundamental routines of the CVS-ADC/CVS-ISR variants at specific order, changes
corresponding to the integral symmetry due to the additional core space as well as a
modified output handler were implemented in adcman.

The next sub-level contains electronic structure related libraries and utilities. In the
libadc module, all ADC and ISR equations are implemented explicitly. Here, I added
all CVS-ADC/CVS-ISR equations, which are summarized in chapter 3.2. liblegacy is
the gateway between the ADC code and the Q-Chem interface. These routines help to
import data from other Q-Chem modules, for example all SCF results and MOs, which are
needed for the CVS-ADC calculation. Furthermore, with the liblegacy functions it is
possible to export data from adcman, e.g. density matrices, which can be post-processed
in external modules like the 1ibwfa®86-88 library. The 1ibwfa module is a wave function
analysis package, which amongst others is responsible for the calculation of exciton sizes,
detachment/attachment densities and all other descriptors described in chapter 2.5.8.
The 1libmo module contains routines to set up the MO spaces, integrals and symmetry
using the information imported from Q-Chem via the liblegacy interface. Hence, both
libmo and liblegacy are important for CVS-ADC calculations, because all integrals and
Fock-matrix elements are indexed and created corresponding to the additional restriction
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a
. B, .

|
EEEE | " EN - ]

Figure 3.2: Schematic illustration of the symmetry elements available in the libtensor
library. 182 In these examples, tensors of the rank 2 are shown, whose storage is simplified
due to symmetry elements, i.e. permutational symmetry (blue), spin symmetry (orange)
and point group symmetry (green). The colored blocks represent the canonical blocks,
which are stored, while the white blocks are zero due to respective symmetry elements.
The grey blocks are non-zero, but they do not have to be stored, because they can be
constructed from the canonical blocks due to symmetry.

of the core space.

Furthermore, 1ibmo transforms the imported data in a format being compatible to the
libtensor 82 interface, which can be called "the heart” of the code, since it contains all
numerical routines to perform tensor algebra. Basically, 1ibtensor is an open-source C++
object-oriented library for block-tensors, which has been developed for post-HF electronic
structure methods. The tensor operations that are required to solve the CVS-ADC
eigenvalue problem are fully parallelized and efficiently implemented. Tensors of arbitrary
order and size are stored in a blockwise manner, exploiting different kinds of symmetry
to limit the amount of required memory. These symmetry properties are permutation
symmetry, Abelian point group symmetry and spin symmetry. Figure 3.2 illustrates the
different symmetry elements and how they influence the block-tensor structure. Only
non-zero elements, which cannot be created due to symmetry operations, are stored in
memory or on disk. An example for permutation symmetry are two-electron integrals,
which exhibit the following permutational symmetry:

(ijllab) = —(jil|ab) = —(ij||ba) = (ji[ba). (3.1)

The spin-symmetry is adapted by partitioning the tensor blocks into aa, 88, a8 and Sa
sub-blocks and mapping identical entries between them. In the case of closed-shell restricted
calculations, the spin-orbitals are stored only once for the alpha-electrons. Furthermore,
the mapping between the blocks allows for unrestricted calculations of closed-shell systems,
which has been straightforwardly exploited for the CVS-ADC implementation. Besides
creation and storage simplifications, the libtensor suite contains a plethora of functions
for numerical operations between and on block-tensors. Most important for CVS-ADC
equations are contractions of block-tensors X and Y to a resulting tensor Z. If X and Y
consist of smaller tensors, e.g. indicated by outer indices i and j, the contraction can be
written as the sum of pairwise block contractions:

Zij = ZXikij? (3.2)
%

where k corresponds to all inner tensor indices. Since the 1ibtensor interface is based on
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object-oriented templates, the implementation of post-HF equations is thus very simple.
The following C++ code snippet shows parts of the CVS-ADC implementation of the
second order p-h,p-h block in the 1ibadc module. Algebraically, this equation is given in
matrix-vector product form (see chapter 3.2 for further explanations) as

Tgi) = Zvlb (fab + Ié?) - Zf],]UJa — Z<Ja||]b>va (33)
b J

Jb

class cvs_adc2_ull : public adc_timings<cvs_adc2_ull> {
//Definition of the class
public:

static const char k_clazz[]; // Class name

private: //Definition of the integrals and elements
any_tensor<2, double> &f_cc; //!'< Fock matrix (CC)
any_tensor<2, double> &f_vv; //!< Fock matrix (VV)
any_tensor<4, double> &i_cvcv; //!< Integral \f$<Ial|Jb>\f$
any_tensor<2, double> &il; //!< Intermediate \f$ I"{(2)}_{ab} \f$
any_tensor<2, double> &ul; //!< Input vector (CV)

public: //Constructor to initialize private elements with real data
//' constructor
cvs_adc2_uli(
any_tensor<2, double> &f_cc_,
any_tensor<2, double> &f_vv_,
any_tensor<4, double> &i_cvcv_,
any_tensor<2, double> &il_,
any_tensor<2, double> &ul_ )
f_cc(f_cc_ ), f_vv(f_vv_), i_cvev(i_cvecv_),
i1(i1), utCui) {}

/** \brief Performs the computation
\param[out] rl Result vector

*%/

void compute(expr_lhs<2, double> &ril) {

cvs_adc2_ull::start_timer();
letter I, J, a, b;

ri(Ila) =
contract(b, ul(Ilb), f_vv(alb) + 0.25 * il(alb))
- contract(J, f_cc(IlJ), ul(Jla))
- contract(J|b, i_cvev(JlalIlb), ul(JIb));

cvs_adc2_ull::stop_timer();

};

Hence, the implementation of CVS-ADC equations is straightforward using the libtensor
interface. For further detailed information about the libtensor library, I recommend the
publication by Epifanovsky and co-workers.'3?
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The second important numerical library is 1ibsolve, which contains all routines of
generic solvers, e.g the Davidson algorithm, which are called from the top-level adcman
routines. libsolve is also based on the 1libtensor interface. At last, there are low-level
routines, which are responsible for support and operations in the background. The 1ibvmm
routines manage the virtual memory, while 1ibctx is a context manager based on key-value
mapping of data objects. All imported or generated objects, e.g. integrals, keywords,
tensors, vectors, etc., are stored in the context and can be easily accessed by other routines.
The 1ibutil library contains further low-level machine-dependent routines.

Eventually, the general procedure of a CVS-ADC calculation can be summarized as
follows:

1. A HF ground state SCF calculation is performed in Q-Chem and all results, i.e.
integrals, orbitals and property matrices are imported via the 1iblegacy interface.
Furthermore, general information about basis sets, point group symmetry and other
settings are imported as well.

2. The general block-tensor spaces are set up.

3. The Q-Chem integral code is used to calculate all antisymmetrized two-electron
integrals and the results are imported into the interface. Therefore, transformations
from an atomic orbital (AO) basis into an MO basis and vice versa are performed
using the libmo module.

4. A MP ground state calculation in adcman is performed, the results are saved in the
context and printed out.

5. Setting up all necessary prerequisites in the adcman program depending on the
chosen CVS-ADC order.

6. Generating guess vectors for the Davidson solver and initialize the settings, e.g.
number of iterations and convergence criteria.

7. Starting the solver and printing out a summary for each iteration step to the output.
8. After convergence, the CVS-ADC eigenvectors and eigenvalues are stored.

9. Properties, i.e. transition-density matrices, density matrices and state-to-state
transition matrices are calculated using the converged CVS-ADC eigenvectors and
in the case of the last two the CVS-ISR implementation. All results are stored in
the context.

10. If desired, the densities are exported to the libwfa module to perform an advanced
wave function analysis.

11. All results are summarized and printed, which is controlled by the adcman module.

3.2 CVS-ADC and CVS-ISR Equations Implemented
as Matrix-Vector Products

As mentioned before, the implementation of the ADC working equations in adcman/libadc
using the libtensor interface is straightforward. In chapter 2.5.7, the CVS-ADC and
CVS-ISR working equations as matrix elements are summarized. Using these equations,
the CVS-ADC secular matrix, transition moment matrix and CVS-ISR property matrix
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can be constructed directly. However, diagonalizing the whole CVS-ADC matrix is compu-
tationally demanding and often impossible for medium-sized chemically relevant systems.
As mentioned before, the core-excited states of interest are usually the energetically lowest,
thus an iterative diagonalization scheme, i.e. the Davidson algorithm, is employed to
solve the CVS-ADC eigenvalue problem. Within the Davidson procedure, the subspace
diagonalization of large sparse matrices is obtained via appending modified preconditioned
residue vectors to the subspace iteratively. Therefore, the CVS-ADC/CVS-ISR matrix
equations have to be transformed into matrix-vector products:

Tla = E Miq, 0070 + E Mo Kicd VKicd

Jb c<d (3 4)
TTjab = E Mrjab,KcVK e + E Mrjab Kicd VKicd
Kc c<d

where 7, is the resulting vector for single core excitations and 774 refers to the resulting
vector for double excitations, where one occupied orbital is restricted to correspond to
the core space. Arbitrary single- and double-excitation vectors, which are multiplied with
the CVS-ADC matrix elements, are denoted, for example, as vy, and vg;.q, respectively.
The initial guess for the Davidson solver can be constructed from the diagonal elements
of the CVS-ADC matrix. Concerning the computational cost, this procedure has a large
advantage, because the formal scaling of the CVS-ADC matrices are reduced due to matrix-
vector multiplications instead of full matrix-matrix operations. Regarding CVS-ADC(3),
which scales formally with the order (M®) where M is the number of basis functions, the
scaling is reduced to (M9) using the Davidson solver. This effect is due to the multiple
Kronecker deltas, which vanish when a matrix element is multiplied with an arbitrary
excitation vector, e.g.

LED SLUAITED DIUEEIORTESD RS SETR

Jb Jb

Furthermore, it is not necessary to store the whole CVS-ADC matrix on disk.

Next, strategies to reduce the prefactor of the computational scaling are employed. At
first, it is advantageous to transform the ADC equations into a non-canonical basis of
orthonormal occupied and virtual orbitals via unitary transformations on the respective
orbital spaces. As a consequence, the working equations have to be modified:

1. The restrictions (¢ < d) of the spin-orbitals in real space have to be lifted. Therefore,
the following terms are scaled as
(1) 1as
MIa Kled - fMIa Kled
(1) (1)
MI]ab Kc Mljab Kc

(1) 13,(1)
® Mo rcica = 3Mijab Kica-

After the restrictions are lifted, the double excitation guess and eigenvectors as well
as the t- amplitudes, anti-symmetrized two-electron integrals and diagonal elements
possess the following symmetry

® Vljab = —Vjlab = VjIba = —UIjba

Furthermore, the lifting of the restriction leads to the condition
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. MI(;()lbmcd{_O ifa=borc=d

’ # 0 all other cases
Note that for general ADC, restrictions that correspond to the occupied space, e.g.
1 < j, have to be lifted as well. However, in the case of CVS-ADC, one index
corresponds to the core space, thus I can never be equal to j and the corresponding
restriction is not necessary.

2. Terms that contain orbital energy differences in the denominator, e.g. t-amplitudes,
have to be transformed as well, since the Fock-matrix is non-orthogonal in a non-
canonical basis and it thus has to be inverted. In the canonical form, a t-amplitude

is given as
o lijab = % with K1jap kicd = (€a + € — €1 — €5) 0ac0pad1K 071 as diago-
nal matrix

One can avoid the inversion of K ap kicd Via constructing a new four-index entity
t := K—'I, where I is the antisymmetrized two-electron integral, and then solve
Kt = I, which can be easily transformed into a new basis.

As a next step, the scaling prefactor can be further reduced using certain expressions,
which can be stored on disk or in memory and can be used in the remaining calculations
without reevaluating the respective terms. This saves computational effort. Table 3.1
summarizes these implemented expressions. Here, p’, corresponds to the MP2 density

Table 3.1: Summary of expressions used to describe the CVS-ADC and transition density
matrix equations. P, is a general permutation operator that interchanges the orbitals r
and s.

2
T’ijab = E :tikactjkbc
ke

€qte€p—€;i—€j

TL., =11 — Pyl [[1 — Pas)

> tikac(kblljc)—3 3 tijealabllcd)—5 Z(ijllkl>tklab] ‘|
ke cd kl

Y = —[1+ Pyl {41; > tikabtjkab:|
kab

o =~ 3=y (%: tijoe(jallbe) + Z<jk|ib>tjkab>
jbe

kb

Pgb = [1 + Pab]

i > tijactijbc“

ijc

matrix corrections of the one-particle HF ground state density matrix, which is in the
case of CVS-ADC(3) not always an adequate treatment.8! A better expression can be
obtained using the Dyson expansion method. 83 Here, the explicit density that appears in
certain third order expressions in the CVS-ADC(3) matrix can be obtained iteratively
with respect to the so-called self-energy

Spq(00) =Y (pallgs)pl), (3.6)

rs
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where the difference between the exact one-particle density matrix and the HF ground-state

density matrix is defined as the correlation density p(fr) An implementation of the Dyson

expansion is not available yet, but can be added in the future.
Further simplifications that result in computational savings are obtained using in-

termediates of the M I(a) g and M I(z) g matrix elements. They can be constructed using
terms that are multlphed with the same vector and contracted over the same indices, thus
the result has to be calculated once and can be stored. In the following sections, the
CVS-ADC and CVS-ISR working equations as optimized matrix-vector products, which I
implemented in the 1ibadc module are summarized.

3.2.1 CVS-ADC up to Third Order
p-h,p-h block:

The implementation of the zeroth and first order terms is straightforward. The orbital
energies are represented in the non-canonical Fock-matrix elements f;.s, which are imported
from the Q-Chem/1liblegacy interface.

ri = Z Orb fab — Z f1iv7a (3.7)

i) == (Jal|Ibyv s (3.8)
Jb

The second order contributions of the p-h,p-h block can be merged into the intermediate
I.p, which has to be calculated once and then can be stored in memory or on disk.

rie) = Zvlb 1 (3.9)

with
1S =" tijaclijllbe) + > tijpelijlac) (3.10)

ijc ijc

The third order terms are summarized in three intermediates as
Z'Ulb ab +Zl 1J UJa+ZIIan VJb, (3.11)

where the intermediates are given as

15 [1+7>ab4z tijac + Tjac) (i]]bc)

ijc

1 +7>ab [ Ztljac<zt1kcd ka]d 4 Ztmdc Cb||d6>>‘|

ijc

- [1 + ’Pab} [Z<Z(l|b6>pgﬁ|

ic

+ ) (iallib)pl; + > (aclbd)pl,
iJ cd

(3.12)

I8) = [1+ P [Z<M||Ja>p2a] =S kIR = > (Tal [ J0)pY, (3.13)

ka kl ab
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1
18, = [1+ Pro.n) (2 S (all1e)pf, - Z<kf||Ja>p2b>

k (3.14)

c
1
+ 5 %:(ICHJCD ; tklactklbd — Z<ZI||k‘]>Tlglab

kl

In the first intermediate ISZ), the terms related to the d;; expressions are merged, i.e.
the full equations 2.313 — 2.316 and parts of 2.317 — 2.320. The remaining parts of the
equations 2.317 — 2.320 are related to d,, and are summarized in intermediate I}?. The

third intermediate contains the remaining third order expressions (equations 2.321 — 2.325),

which do not contain any Kronecker delta term and are thus merged to I}i)ﬂ).

p-h,2p-2h block:

Regarding the p-h,2p-2h coupling elements, further simplifications due to the hermicity
and symmetry properties of the CVS-ADC matrix can be applied. Since the matrix
elements are multiplied with an arbitrary vector, the arbitrary virtual orbital indices c
and d can be defined to be equal, thus the first two integrals of equation 2.326 can be
merged and the resulting first order term of the p-h,2p-2h coupling block is given as

1 . .
ri) = = [ 23 GENbvkas — Y vimeljalibe) | - (3.15)
V2 jKb

Jbe

Similar simplifications can be applied to the second order expressions, where the terms
included within the equations 2.328 and 2.329 are merged, respectively.

1 . .
Tﬁ) = — QZtljdb<]C||ab>'Ullcd -2 Zthcb<]I||Kb>wKac
\/5 cdl cKl

& & (3.16)

1 . .
+3 D timealimlllayvirea = Y tljcd<]l||Ka>Uchd] -
cdl cdK1
Jm J

2p-2h,p-h block:

In the case of the 2p-2h,p-h block, the simplifications applied to the p-h,2p-2h block
equations cannot be adapted and thus the first and second order expressions are given as

i = ;5 (Z [GIIKbyvka — GI|Ka)vks) - chucnaw) (3.17)

K

1
rj(i)ab =5 [[1 —Pas] D tjtac UK | T)vicy + Y vre l[l — P Y tykva(kallcd)+

Klc c kd

Z<kl||j0>tklab] - Z<ZK||IC>tjlavac‘| :
kl

Kle

(3.18)

N
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2p-2h,2p-2h block:

The zeroth-order matrix-vector products of the 2p-2h,2p-2h block can be constructed
straightforwardly as

7”]('(1)211; = Z (vjrbefac = Vjracfoe) — Z fiviray — Z fIKvjKab- (3.19)
!

c K

In the case of the first order contributions, a few simplifications can be introduced similar
to the first order p-h,2p-2h block equations. Here, permutation symmetry as described
above can be exploited to merge certain integrals when defining the arbitrary indices ¢
and d to be equal. The resulting first order vector is then given as

1 1 .
P = 5 O vitealablled) + 5 G viscan
cd Kl

— > [vjractEble) — vje(Kallle)] (3.20)
Kc

+ > [Gellayvire — Gelltb)virac)
le

Diagonal Elements:

The initial guess for the Davidson algorithm is constructed using the diagonal elements of
the respective CVS-ADC matrix. These are

D) = fou — fir (3.21)
D\Y = —(Ia|Ia) (3.22)
DE = 23 tijcijllac (3.23)
ije
DY) =1+ 1) + 112, (3.24)
Dﬁlb = faa + foo — fr1 — fj; (3.25)
D'}, = (abllab) + (I||17) — (Ia|[Ia) — (jallja) — (IBI|IB) — (jb]ljb). (3.26)

The final guess vectors used at a specific CVS-ADC level are given in Table 3.2.

3.2.2 Second Order CVS-ADC Transition Moments

The equations for the spectral amplitudes are implemented in the transition density
matrix (TDM) form using the non-canonical orbital basis as well. Therefore, the spectral
amplitudes, which are summarized in chapter 2.5.7, are multiplied with the p-h and 2p-2h
components of the respective excited state eigenvectors. This results in a scalar product,
i.e the transition moment T, as

T= Z Frovig + Z FrjabVrjab- (3.27)
Ta Ijab

To obtain the TDM elements, this expression needs to be solved for the matrix represen-
tation of an arbitrary one-particle operator D.,. Using the definition of the one-particle
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Table 3.2: Summary of the CVS-ADC guess vectors used for the Davidson algorithm.
The contributions correspond to a specific CVS-ADC order in perturbation theory.

CVS'ADC(l) U;ingles = D§(()1) + Dgl)
CVS-ADC(2)-s: %0 = D\ + DIV + DY)

2s _ (0)
Vdoubles = D jlab

CVS—ADC(Q)-X U?.iarclgles = USQiilgles
x 0 1
U?ioubles = D§I)cab + D;ILI)
0 1 2 3
CVS-ADC(E): 030 = Di) + Diy) + D) + DY)

3 — 2T
Vdoubles — Ydoubles

MP2 ground state density matrix elements (see Table 3.1), the resulting CVS-ADC TDM
elements in second order are then simply given as

Pal = Via — Z PayvIs (3.28)
b

and

1
pir = — Zp?avza + NG kalabtjkab~ (3.29)

kab

The spectral amplitudes of equations 2.334 and 2.335 are merged in p,7, while p;; contains
the contributions of equations 2.336 - 2.338.

3.2.3 Second Order CVS-ISR Property Elements

The implementation of the CVS-ISR properties up to second order is similar to the one
of the TDM. Here, the property equations (see chapter 2.5.7) are transformed into the
one-particle density matrix (DM) form (see equation 2.174). Due to the ISR formalism, the
operator representation needs to be multiplied from the left and from the right with excited
state eigenvectors X and Y, in this case the one obtained after solving the CVS-ADC
eigenvalue problem, to obtain the corresponding excited state property Pxy as

Pxy = Z XioDra,soYse + Z X7aDr1a,k1cdYKI1cd

ITa,Jb Ta,Klcd
(3.30)
* *
+ Z leabDIjab,KcYKc + E X]jabDIjab,chdYchd~
Ijab,Kc Ijab,Kled

The final equations for the DM are obtained via sorting all terms by the respective
one-particle matrix representation elements d,,. Table 3.3 contains further definitions
of intermediates, which simplify the final CVS-ISR working equations. They have to be
calculated once and can then be stored.
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Table 3.3: Summary of expressions used to describe the CVS-ISR property equations. X
and Y correspond to elements of CVS-ADC eigenvectors.

dpr; = =3 X5,Y1a dp?; = = > XjapYrab
a abk
dpil == XijapYiJab dpzlzb => X1.Yn
abJ I
dpgb =2 XiraeYere  dpoe =20 XirapYia
clk Ia

dpes =D X}, Yerap
la

Zeroth order:

The zeroth-order expressions, which only consist of the CVS-ADC eigenvectors, are given
below.

o1y = dpt; + dp}, (3.31)
YO — ap?, (3.32)
ey = V2dpr (3.33)
XY(O) \[dpbk (334)
pbe(O) = dpab + dpab (335)

Second order:

The second order terms are simplified using the definitions summarized in Tables 3.1 and
3.3. The first DM element contains the second term of equation 2.343 and is given as

Xy .
o & = Z [dpébztlmbdtkmcd] . (3.36)

cb dm
The matrix element pﬁy(z) is given as
xv@e 1
Pab - _5 ZC: [dpacpcb + pacdpcb 5 ; tklbe [Z tkladdPCd] ’ (337>

where all terms of equation 2.342 and the first term of equation 2.343 are included. The

XY (2) g o XY«

last two elements, i.e. p,, pbk 2 , both contain the remaining second order terms

of equations 2.341 and 2.345:

PXY(2) Z dpaypi — \[Z tikavdpar + V2

Z Yoy tkladX”ad] (3.38)

adl

Z X1y Y thiadYirad

Pz)f;cy(Q) =- Z dpayPia — \@Z tikabdpra + V2
a dl adl

Regarding state densities, where X = Y, both matrix elements are identical due to
the hermicity of the CVS-ADC matrix. For transition-density matrices between two
core-excited states, the results are different, thus both elements have to be implemented.

(3.39)
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3.3 Overview of the Implemented CVS-ADC and CVS-
ISR Features

At last, T summarize the features of my implementation of the CVS-ADC/CVS-ISR
approaches in the Q-Chem program package within the adcman interface. Besides the
general ADC related keywords, two additional keywords in the input file are necessary to
control CVS-ADC calculations in Q-Chem:

e ADC_CVS = true switches on the CVS-ADC calculation

e CC_REST_OCC = n controls the number of core orbitals included in the excitation
space. The integer n corresponds to the n energetically lowest core orbitals.

Let me give a short example: cytosine with the molecular formula C4H5N35O includes
one oxygen atom. To calculate O 1s core-excited states, CC_REST_OCC has to be set to
1, because the 1s orbital of oxygen is the energetically lowest. To obtain the N 1s core
excitation, the integer has to be set to 4, because the 1s orbital of the oxygen atom is
included as well, since it is energetically below the three 1s orbitals of the nitrogen atoms.
Accordingly, to simulate the C 1s XAS spectrum of cytosine, CC_REST_-OCC must be set
to 8. Since the core orbitals of the different kinds of atoms are energetically well-separated,
this procedure is justified according to the CVS approximation. For all other related
keywords, e.g. properties, I refer to the Q-Chem manual (see www.g-chem.com for the
recent version).

For the simulation and advanced analysis of XA spectra, the following features were
implemented in the scope of this thesis.

e (Calculations of core-excited states with the CVS-ADC method up to third
order in perturbation theory:

Restricted and unrestricted calculations of closed- and open-shell systems,
respectively.

Core-excitation energies of singlet and triplet core-excited states.

Oscillator strengths and transition moments to describe the spectral absorption.

Exploiting Abelian point group symmetries to speed up computational timings.
— Analysis of the excited state configurations in the MO basis that contribute to
a core-excited state.

e (Calculations of core-excited state one-particle properties via the CVS-ISR
approach:
— Static dipole moments of core-excited states.

— Advanced wave function analysis, e.g. exciton sizes, in combination with the
libwfa library.

— Visualization of state densities, e.g. detachment/attachment densities.

e Calculations of core-excited state absorption processes between two core-excited
states via the CVS-ISR approach:

— State-to-state absorption energies and oscillator strengths.
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Chapter 4

Benchmarking CVS-ADC up
to Third Order

In this chapter, I present benchmark calculations of the CVS-ADC methods up to third
order. The calculated results are compared with experimental data or in the case of the
CVS-ISR approach with values obtained at the SAC-CI level of theory. For this purpose,
a set of the small molecules carbon monoxide (CO), ammonia (NHj), the methyl radical
(CHs), water (H20) and fluoroethene (CHyCHF') was chosen. The correlated consistent
basis set series converges systematically towards a complete basis set (CBS) limit, which
for ground state correlation energies can be estimated using

Ex = Ecps + Ae= XD | Be~(X-1? (4.1)
where X is the cardinal number of the basis set (for example 2 for DZ), Ecpgs is the
resulting estimated energy of the CBS limit, and E'x is the calculated energy using the basis
set with the cardinal number X. 20121 This equation gives the possibility to extrapolate
the results systematically, thereby avoiding basis set truncation errors. To the best of
my knowledge, such a convergent behavior has not been shown for excited states, yet.
In this chapter, I am going to demonstrate that this estimation can also be applied to
core-excited states. In the literature there are a few other regression models, where some
tend to underestimate or overestimate the CBS limit. 120:121,184.185 Regarding core-excited
states at the CVS-ADC levels investigated in this chapter, the employed regression model
provides very accurate results, where the coefficient of determination (R?) is almost 1.00
in all calculations of the CBS limit, indicating that the regression model excellently fits
the data.

Furthermore, the general influence of basis sets is evaluated and the influence of pure
and Cartesian versions of the basis functions is investigated. Here, I concentrate on the
use of standard common basis sets as introduced in chapter 2.1.3. Special variants like
the addition of bond-centered or molecule-centered diffuse functions are also known to
provide accurate spectral features!°?, but they are not considered in this work, because
the potential of CVS-ADC(2)-x as a black-box method in combination with standard basis
sets is emphasized in this study. Employing such special basis functions requires proper
analysis of the type of basis function to be added depending on the atom types, which
would destroy the black-box specification.

All structures of the small molecules in the electronic ground state were optimized at
the CCSD®! level using the def2-QZVPPD ¥ basis set. These geometry optimizations
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were performed with the Q-Chem 4.2 program.“* Core-excited states were calculated with
my implementation of CVS-ADC up to third order of perturbation theory as well as with
my CVS-ISR implementation as described in chapter 3. The core-excited states at the
SAC-CI SD-R level were computed using the implementation available in the Gaussian09
program. 145155 Note that both ground and core-excited state calculations of the CHj
radical were always performed using the unrestricted variants of the respective methods.
For clarity, I do not mention this fact explicitly in the discussion, thus calculations of the
CHj radical are also denoted as CVS-ADC calculations instead of CVS-UADC calculations.
Furthermore, note that for consistency, the method for calculating oscillator strengths and
excited state properties at the third order CVS-ADC level is denoted as CVS-ADC(3,2)
as explained in chapter 2.5.3. All computed values shown in this chapter are absolute
without any level shift or consideration of relativistic effects.

The following basis sets were employed in this chapter: the series of correlation-
consistent polarized valence basis sets (cc-pVX)!1® as well as the augmented (aug)!!®
and doubly augmented (d-aug) %117 versions with the cardinal number X ranging from
double-¢ (DZ) to quintuple-¢ (5Z). Due to computational cost, the d-aug-cc-pVX series
ranges only from DZ to quadruple-¢ (QZ). Furthermore, calculations using the series
of correlation-consistent polarized core-valence basis sets (cc-pCVX) 6 with X ranging
from DZ to 5Z and without (X ranging from DZ to QZ) augmentation were performed.
The Ahlrichs series is represented with def2-SVP, def2-TZVP and def2-QZVP with and
without diffuse functions denoted with the suffix D.!!8119 Since Pople-type basis sets
provided accurate results compared to experimental data as shown in former work33:8%:187
representatives with and without diffuse and polarization functions were chosen from this
series, i.e. 6-31G, 6-31G**, 6-31+4+G**, 6-31G(3df,3pd), 6-311G, 6-311G**, 6-3114++G**
and 6-311++G(3df,3pd). 199111114 If ot otherwise stated, all calculations were performed
using the Cartesian 6D/10F version of the respective basis sets. Finally, note that the
content of this chapter has already been published by me and my co-authors in Journal of
Chemical Physics, 142 (2015), 21410/ or has been submitted for publication in Journal
of Chemical Theory and Computation, (2016).98:9°
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HoF 5 H ]
,C:C\ C=0 H ~'H .N . C.
H H H H H - H
fluoroethene carbon water ammonia methyl
monoxide radical

Figure 4.1: Structures of fluoroethene (CHyCHF'), carbon monoxide (CO), water (H30),
ammonia (NHjz) and the methyl radical (CHj).

4.1 Convergence of Core-Excitation Energies Towards
the Complete Basis Set Limit

Let me start with the estimation of the complete basis set (CBS) limit. Since the series of
correlation consistent basis sets provide a systematic convergence against the CBS limit,
I focus on the cc-pVX series (with X ranging from DZ to 5Z) and its augmented and
doubly-augmented versions. Here, only the strict and extended second order as well as
the third order approaches are benchmarked. CVS-ADC(1), which is actually CVS-CIS,
has no correlation and orbital relaxation included, thus provides a strong overestimation
of core-excitation energies in every case compared to experiments. In the case of NHjg
and CO, the first three core-excited states are discussed and compared to the experiment,
while for the methyl radical only one bright core-excited state can be directly matched
with experiments. Note that CO and NHg exhibit doubly degenerated states due to
the p-orbital symmetry. These states are only given once. It should be noted that the
computational cost hampers the use of the d-aug-cc-pV5Z basis set, thus the calculation
of the CBS limit based on the aug-series should be more exact. The structures of all
molecules used in chapter 4 are summarized in Figure 4.1.

4.1.1 CVS-ADC(2)-s

At first, the core-excitation energies obtained at the CVS-ADC(2)-s level are given in
Table 4.1. Starting with the carbon 1s excitations of CO, the calculated CBS limits based
on the different series are almost identical. The only exception is the CBS limit of state 2
estimated at the cc-pVX level. Here the difference is 0.84 eV compared to the aug-cc-pVX
series. Furthermore, the CBS limits of the state 3 cannot be determined using the standard
cc-series, because this core-excited state cannot be matched with experiments using the
small cc-pVDZ basis. When employing at least the cc-pV5Z basis, state 3 can be obtained.
However, state 1 also exists when using cc-pVDZ and the CBS limit is comparable to the
ones at the aug and d-aug levels. To explain these result, one has to consider the character
of these states. Looking at MO contributions and according to the literature, state 1 is a
bright s,m* core excitation, which exhibits a large oscillator strength, while state 2 and
state 3 are dark and were determined to possess a strong core-Rydberg character.'%0 As a
consequence, one needs a large diffuse basis to describe the Rydberg-type states correctly.
Obviously, the aug-cc-pVDZ basis set is already sufficient to obtain these states, thus
the addition of diffuse basis functions is necessary to describe the C 1s spectrum of CO
correctly.

Going to the O 1s excitations of CO and the N 1s excitations of ammonia, the
same statements can be made. In both examples, the Rydberg-type state 3 cannot be
characterized using a cc-pVX (even not at the 5Z level) basis set and the CBS limit of state
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Table 4.1: Core-excitation energies (wex) of the first three singlet core-excited states
of CO (C 1s and O 1s) and NH3 (N 1s) and the first C 1s excited state of CHz. The
energies were calculated using CVS-ADC(2)-s and CVS-UADC(2)-s with different basis
sets, respectively. The calculated values and the CBS limits for every series of basis sets
are compared with experimental data taken from the literature. 16188189 This table has

already been published by me and my co-authors. ?®
CO C 1s CO O 1s NH3 N 1s CH; C 1s
States wex [eV] States wex (V] States wex [eV] States wex [€V]

Basis set/Expt. 1 2 3 1 2 3 1 2 3 1
cc-pVDZ 291.68 301.98 — 537.38  545.45 — 405.09  407.10 — 285.25
cc-pVTZ 290.26  298.56 — 535.70  541.63 — 403.21  405.25 — 283.78
cc-pVQZ 290.05 297.39 — 535.42  540.27 — 402.82  404.78 — 283.54
cc-pV5Z 289.98 296.67 297.72 | 535.33 539.47 — 402.55 404.35 — 283.47
CBS (cc) 289.95 296.47 — 535.28  539.23 — 402.50  404.30 — 283.43
aug-cc-pVDZ 291.24  296.70 297.63 | 536.97 539.83 — 403.29  404.70 — 284.94
aug-cc-pVTZ 290.19  295.84 296.73 | 535.53 538.48 — 402.33  403.70 404.77 283.69
aug-cc-pVQZ 290.03 295.70 296.58 | 535.37 538.30 — 402.26  403.62 404.47 283.52
aug-cc-pVbZ 289.97 295.65 296.48 | 535.31 538.23 539.03 | 402.24 403.59 404.23

CBS (aug) 289.95 295.63 296.50 | 535.29 538.21 402.24  403.58 283.45
d-aug-cc-pVDZ | 291.16 296.30 297.09 | 536.93 539.35 540.08 | 403.25 404.56 404.92 284.91
d-aug-cc-pVTZ | 290.18 295.66 296.45 | 535.52 538.22 538.96 | 402.32 403.63 403.99 283.68
d-aug-cc-pVQZ | 290.02 295.61 296.40 | 535.37 538.16 538.89 | 402.26 403.58 403.94 283.51
CBS (d-aug) | 289.94 295.59 296.38 | 535.32 538.16 538.88 | 402.25 403.58 403.94 283.45
Experiment 287.4 2925 2934 | 5341 538.8  539.8 | 400.66 402.33 402.86 281.35
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2 differs about 1 eV from the result obtained with the augmented series. Actually, in the
case of the O 1s excitations of CO, state 3 cannot be obtained at the augmented level (only
5Z) and the doubly augmented series is necessary. In the case of NHs, only aug-cc-pVDZ
fails to describe this state. The results for the CBS limits of state 1 with s,7* character
calculated with different series of basis sets are again almost identical for CO (O 1s) and
NHj (N 1s). The CBS limits for state 1 of the methyl radical are almost constant with
values of 283.43 eV, 283.45 eV and 283.45 eV, respectively. Due to technical limitations,
the calculation using the aug-cc-pV5Z basis set was not possible. Eventually, for all
investigated molecules the core-excitation energies are almost converged using a triple-(
basis set with diffuse basis functions. The standard cc-series provides reasonable results
for non-Rydberg states at triple-( level, but fails completely in the description of Rydberg
states. Furthermore, the improvement towards the CBS limit regarding the s,m*-states by
using augmented diffuse basis functions is only important in the case of double-( functions.
However, the Rydberg states are strongly improved by diffuse functions.

Compared to the experimental values, the CVS-ADC(2)-s method shows a trend to
overestimate carbon and nitrogen 1s excitation energies, while the O 1s excitation energies
are both over- and underestimated depending on the state character. The reason is due
to the neglect of relativistic effects and the description of relaxation effects (see chapter
2.5.9). The heavier the element, the stronger the underestimation. Going to the C 1s
excitations of CO, the bright s,7* state 1 based on the CBS limit of the aug-cc-pVX
series is overestimated by 2.55 eV and the higher-lying Rydberg states are overestimated
by 3.13 eV and 3.10 eV, respectively. The bright state 1 of the CH3 radical, which is
also an electron promotion into a w*-orbital, is overestimated by 2.1 eV. The nitrogen 1s
excitations of NH3 based on the CBS limit of the d-aug-cc-pVX series are overestimated
by 1.59 eV, 1.25 eV and 1.08 eV, respectively. Regarding the O 1s excitations of CO,
the bright s,m* state 1 is overestimated by 1.22 eV, which is at the same level as the
nitrogen results. However, the Rydberg-type states are underestimated by 0.64 eV and
0.92 eV, respectively. Since the absolute core-excitation energies rise strongly with heavier
elements, it is reasonable to express the errors compared to experiment in relative values.
The three core-excited states of the C 1s excitation of CO exhibit errors of 0.88%, 1.06%
and 1.06%, while the three O 1s excitations differ about 0.23%, -0.12% and -0.17% from
experiment, respectively. In the case of the N 1s excitation of NHs, the relative errors
of the three states are 0.4%, 0.31% and 0.27%, respectively. Hence, in the case of the
C 1s and N 1s excitations, an absolute shift would thus lead to an excellent quantitative
result, because the relative errors are almost constant. Qualitatively, the results obtained
at the CVS-ADC(2)-s level are acceptable. However, the relative errors for the lighter
C 1s excitations are larger than for the heavier O 1s ones.

4.1.2 CVS-ADC(2)-x

Next, the CVS-ADC(2)-x method is investigated. The results are summarized in Table
4.2. Besides the values of the results, similar conclusions about the CBS limits as the ones
of the CVS-ADC(2)-s method can be stated at the CVS-ADC(2)-x level. The calculated
CBS limits based on the different series are almost identical for the bright s,7* state 1 for
all investigated systems. The only exceptions are the CBS limits of state 1 of the O 1s
excitation of CO and the N 1s excitation of NH3 estimated at the cc-pVX level. Here
the differences are 0.05 eV and 0.12 eV compared to the aug-cc-pVX series, respectively.
Furthermore, the CBS limits of the Rydberg-type state 2 and 3 of CO (C 1s and O 1s) as
well as state 3 of NH3 cannot be determined using the standard cc-series, because these
core-excited states cannot be matched with experiments using the smaller cc-pVX basis
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Table 4.2: Core-excitation energies (wex) of the first three singlet core-excited states
of CO (C 1s and O 1s) and NH3 (N 1s) and the first C 1s excited state of CHz. The
energies were calculated using CVS-ADC(2)-x and CVS-UADC(2)-x with different basis
sets, respectively. The calculated values and the CBS limits for every series of basis sets
are compared with experimental data taken from the literature. 16188189 This table has

already been published by me and my co-authors. ?®
CO C 1s CO O 1s NH3 N 1s CH; C 1s
States wex [eV] States wex (V] States wex [eV] States wex [€V]

Basis set/Expt. 1 2 3 1 2 3 1 2 3 1
cc-pVDZ 289.10 — — 535.25 — — 402.62  404.68 — 283.13
cc-pVTZ 287.19  294.99 — 532.87 — — 400.32  402.39 — 281.18
cc-pVQZ 286.91 293.83 — 532.50 538.40 — 399.96  401.97 — 280.90
cc-pV5Z 286.85 293.18 294.50 | 532.42 537.73 539.15 | 399.78 401.69 — 280.84
CBS (cc) 286.80 — — 532.35 — — 399.73  401.64 — 280.79
aug-cc-pVDZ 288.53  293.95 295.11 | 534.87 539.28 540.49 | 401.38 403.09 404.46 282.73
aug-cc-pVTZ 287.09 29257 293.68 | 532.70 537.11 538.24 | 399.77 401.45 402.45 281.08
aug-cc-pVQZ 286.89 292.41 293.49 | 532.48 536.91 538.00 | 399.64 401.31 402.14 280.88
aug-cc-pVbZ 286.84 292.37 293.41 | 532.42 536.85 537.89

CBS (aug) 286.81 292.35 293.39 | 532.40 536.83 537.87 | 399.61 401.28 402.01 280.81
d-aug-cc-pVDZ | 288.42 293.63 294.63 | 534.81 538.99 539.99 | 401.33 403.01 403.54 282.68
d-aug-cc-pVTZ | 287.07 292.46 293.46 | 532.68 536.98 537.97 | 399.76 401.42 401.95 281.06
d-aug-cc-pVQZ | 286.88 292.36 293.37 | 532.47 536.85 537.84 | 399.64 401.30 401.84 280.88
CBS (d-aug) | 286.80 292.34 293.34 | 532.40 ©536.83 537.82 | 399.62 401.28 401.82 280.81
Experiment 287.4 2925 2934 | 5341 538.8  539.8 | 400.66 402.33 402.86 281.35
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sets due to lack of diffuse basis functions. While state 3 of the N 1s excitations of NHjg
cannot be obtained using the cc-pVX basis sets, only cc-pVDZ fails to describe state 2 of
both CO core excitations and cc-pV5Z is able to describe state 3 of both CO excitations.
Note that, due to technical limitations, the calculation of NH3 and the CHj3 radical were
not possible using the aug-cc-pV5Z basis set. Eventually, as already mentioned in the
scope of CVS-ADC(2)-s discussion, the core-excitation energies are almost converged using
a triple-¢ basis set with diffuse basis functions. The standard cc-series provides reasonable
results for non-Rydberg states at triple-C level, but fails in the description of Rydberg
states. Furthermore, the improvement towards the CBS limit regarding the s,7*-states by
using augmented diffuse basis functions is only significant in the case of double-( functions.
However, the Rydberg states are strongly improved by diffuse functions.

More important is the comparison of the CBS limits at the aug-cc-pVX level with
experimental values. Here, CVS-ADC(2)-x tends to underestimate the core-excitation
energies slightly, thereby providing excellent results for both s,7* and Rydberg-type states.
The absolute and relative errors for the carbon 1s excitations regarding the three core-
excited states of CO are -0.59 eV (-0.21%), -0.15 eV (-0.05%) and -0.01 eV (-0.003%),
respectively, while the bright core-excited state of the CHj radical is overestimated by
0.54 eV (0.19%). Hence, the Rydberg-type states are almost perfectly described at the
CVS-ADC(2)-x level. Going to the oxygen 1s excitations of CO, the errors are -1.7 eV
(-0.32%), -1.97 eV (-0.37%) and -1.93 eV (-0.36%), respectively. This indicates that
an absolute shift would lead to an excellent quantitative result, because the errors are
almost constant. The same applies for the N 1s excitations of NH3, where the errors
for the three core-excited states are -1.05 eV (-0.26%), -1.05 eV (-0.26%) and -0.85 eV
(-0.21%), respectively. These results show the trend of an increased underestimation when
going to heavier atoms due to the neglect of relativistic effects and the description of
relaxation effects (see chapter 2.5.9). Since relativistic contributions are essentially just a
positive shift of the absolute energy and can be estimated to be about 0.1 eV for C 1s,
0.2 eV for N 1s, and 0.4 eV for O 1s excitations'%°, the trend of the underestimations of
the CVS-ADC(2)-x results is correct. Furthermore, the relative errors are very similar,
independent of the core type. The heavier the element, the larger is the absolute error, but
relatively this influence is small. Overall, very accurate results compared to experiment
are provided at the CVS-ADC(2)-x level using at least an augmented triple-¢ basis set.
Note that the CHj radical is investigated at the CVS-ADC(2)-x level in more detail in
chapter 6.3.1.

4.1.3 CVS-ADC(3)

Let me turn to the CVS-ADC(3) results, which are summarized in Table 4.3. Since there
are no new insights concerning the CBS limits, this discussion will be omitted. In principle,
the same trends of the CBS limits and differences between s,7* and core-Rydberg-type
states as already discussed in the scope of CVS-ADC(2)-s and CVS-ADC(2)-x are given
for CVS-ADC(3).

However, the comparison with experimental values provides significant differences
compared to both second order approaches, because the CVS-ADC(3) method shows
a clear trend to overestimate the core-excitation energies. The only exception is the
bright s,7* state 1 of the C 1s excitation of CO, which almost excellently matches the
experimental value with an error of 0.3 eV (0.10%). The higher-lying Rydberg states, in
contrast, are overestimated by about 1.2 eV (0.40%) and 1.3 eV (0.44%), respectively.
The bright state of the CHj3 radical, which is also an electron promotion into a 7*-orbital,
is overestimated by about 0.5 ¢V, i.e. 0.17%. Going to core-excitations of heavier atoms,

93



CHAPTER 4. BENCHMARKING CVS-ADC uP TO THIRD ORDER

Table 4.3: Core-excitation energies (wex) of the first three singlet core-excited states
of CO (C 1s and O 1s) and NH3 (N 1s) and the first C 1s excited state of CHz. The
energies were calculated using CVS-ADC(3) and CVS-UADC(3) with different basis sets.
The calculated values and the CBS limits for every series of basis sets are compared
with experimental data taken from the literature. 6188189 This table has already been
published by me and my co-authors. *®

COC1s

COO1s

NH; N 1s

CH3 C 1s

States wex [eV]

States wex (V]

States wex [eV]

States wex [€V]

Basis set/Expt. 1 2 3 1 2 3 1 2 3 1
cc-pVDZ 289.96 — — 541.38 — — 406.27  407.90 — 284.40
cc-pVTZ 288.11  296.30 — 538.82  547.04 — 404.09  405.73 — 282.33
cc-pVQZ 287.82  295.12 — 538.37  545.62 — 403.73  405.36 — 281.98
cc-pV5Z 287.74 294.49 295.74 | 538.28 544.91 546.99 | 403.60 405.21 407.64 281.90
CBS (cc) 287.69 — — 538.19 — — 403.54  405.15 — 281.83
aug-cc-pVDZ 289.45 295.33 296.45 | 541.32 547.33 549.15 | 405.95 407.55 408.89 284.09
aug-cc-pVTZ 288.02 293.95 295.04 | 538.74 544.66 546.29 | 403.92 405.48 406.59 282.24
aug-cc-pVQZ 287.80 293.75 294.83 | 538.38 544.32 545.86 | 403.61 405.17 406.17 281.96
aug-cc-pV5Z 287.74 293.70 294.74 | 538.28 544.22 545.68

CBS (aug) 287.70  293.67 294.71 | 538.23 544.17 545.62 | 403.47 405.03 405.97 281.84
d-aug-cc-pVDZ | 289.35 295.01 296.04 | 541.26 547.13 548.57 | 405.91 407.49 408.35 284.04
d-aug-cc-pVTZ | 288.01 293.84 294.86 | 538.72 544.57 545.97 | 403.90 405.46 406.31 282.22
d-aug-cc-pVQZ | 287.79 293.70 294.72 | 538.38 544.28 545.68 | 403.61 405.16 406.02 281.96
CBS (d-aug) | 287.69 293.65 294.67 | 538.24 544.17 545.57 | 403.48 405.03 405.90 281.85
Experiment 287.4 2925 2934 | 5341 538.8  539.8 | 400.66 402.33 402.86 281.35
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4.1. CONVERGENCE OF CORE-EXCITATION ENERGIES TOWARDS THE COMPLETE
Basis SET LiMiT

Table 4.4: Summary of the statistical error analysis of the calculated core-excitation
energies of the first three singlet C 1s, N 1s and O 1s core-excited states of CO and
NH; as well as the first core-excited state of the CHj radical at the CVS-ADC(2)-s,
CVS-ADC(2)-x and CVS-ADC(3) levels of theory, respectively. The relative errors in
[%] are given using the experimental values as reference data. Besides the Mean value,
the standard deviation ¢ and the minimal and maximal errors are given. This table has
already been published by me and my co-authors.?®

Relative error [%]
CVS-ADC(2)-s CVS-ADC(2)-x CVS-ADC(3)
aug-cc-pVX (CBS)
Min / Max | -0.11 / 1.06 0.00 /-0.37  0.11/1.07
Mean 0.57 -0.22 0.61
o 0.43 0.12 0.32
d-aug-cc-pVX (CBS)
Min / Max | -0.17 /1.05  -0.02/-0.37  0.10 / 1.06
Mean 0.46 -0.23 0.60
o 0.44 0.12 0.32

the overestimation increases. The absolute errors obtained for the three states of the O 1s
excitations of CO are 4.1 eV (0.77%), 5.4 eV (1.0%) and 5.8 eV (1.0%), respectively. In
the case of the N 1s excitation of NHs, the errors of the three core-excited states are
2.81 eV (0.70%), 2.7 eV (0.67%) and 3.11 eV (0.77%), respectively. The overestimation is
indeed large, but the errors are almost constant, thus an absolute shift would lead to an
excellent quantitative result. Overall, the results obtained at the CVS-ADC(3) level are
acceptable, showing a trend to overestimate the Rydberg states more strongly than the
s,m*-states.

4.1.4 Comparison

After discussing the results obtained at the different CVS-ADC levels, I present a direct
comparison between them. Table 4.4 summarizes a statistical error analysis and comparison
between the three CVS-ADC levels based on the results of the C 1s excitations of CO
and CHgs, the O 1s excitations of CO and the N 1s excitations of NHs. Only the relative
errors with respect to experimental values are given for better comparison between the
different kinds of cores. Analyzing the statistical data based on the CBS limits compared
to experiment reveals a clear trend. CVS-ADC(2)-x slightly underestimates the core-
excitation energies of the C, N and O 1s excited states by about 0.2%, while CVS-ADC(3)
and CVS-ADC(2)-s provide an overestimation with a mean value of about 0.6% in both
cases. Furthermore, the standard deviation of the CVS-ADC(2)-x results is the smallest
with only 0.12%, while the strict second and third order approaches exhibit a large o of
0.43% and 0.32%, respectively. Looking at the Min/Max values confirms these findings.
While CVS-ADC(2)-x yields errors between 0.00% and -0.37%, the magnitude of the other
two methods is around 1.1%. Note that larger errors are related to the core excitations of
heavier elements in all cases due to stronger relativistic and relaxation effects. However,
CVS-ADC(2)-x provides accurate quantitative and qualitative results for all elements
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investigated here, thus the results at the extended second order level are less affected
by this phenomenon. Since relativistic effects would shift the core-excitation energies to
larger numbers, the underestimation provided by CVS-ADC(2)-x shows a ”correct” trend
that may be explained by the neglect of these effects.

To visualize the difference between CVS-ADC(2)-x and CVS-ADC(3), Figure 4.2
illustrates the trend of the core-excitation energies at the CVS-ADC(2)-x and CVS-
ADC(3) levels against the basis set (-size, thereby showing the convergence against the
CBS limit. Starting with the O 1s excitation of CO, all core-excited states are slightly
underestimated constantly by CVS-ADC(2)-x, while CVS-ADC(3) provides a significant
overestimation. Going to the ”lighter” N 1s excitations of NHgs, the underestimation by
CVS-ADC(2)-x is smaller than for the O 1s excitations, while CVS-ADC(3) still provides
a large overestimation of all states. Relatively, this overestimation is also smaller than
for the heavier O 1s excitations of CO. Regarding the carbon 1s excitations of CO, state
1 with s,7* character is slightly underestimated using CVS-ADC(2)-x, while the two
Rydberg states are in excellent agreement with the experiment. In contrast, CVS-ADC(3)
overestimates the Rydberg states, but provides an excellent match of the s,7*-state 1.
However, the shifts in energy between the states are almost perfectly described with both
CVS-ADC(2)-x and CVS-ADC(3).

Eventually, the results calculated with both methods almost show a convergence at
the triple-C level independent of the type of core excitation, but CVS-ADC(2)-x provides
the best agreement with experiments and is in addition computationally much cheaper
than the third order approach. The reason for the trends provided at the different CVS-
ADC levels is explained in chapter 2.5.9. It seems that at the CVS-ADC(2)-x level, a
fortuitous error compensation of basis set truncation, neglect of relativistic effects, electron
correlation and orbital relaxation and polarization effects is given. This error compensation
is broken at the third order level, because the ratio between terms describing relaxation and
polarization effects is shifted in a way that the excitation energy increases. Furthermore,
the doubles are not further improved at the third order level. CVS-ADC(2)-s overestimates
the core-excitation energies, because the doubly excited amplitudes are less improved than
in the extended second order approach. In chapter 5, the influence of orbital relaxation
effects is investigated in detail.

4.2 Influence of Basis Sets on the Accuracy of the
CVS-ADC Approaches

After analyzing results obtained with the correlation consistent basis set series, the influence
of other commonly available basis sets on the accuracy of the CVS-ADC approaches is
investigated. Furthermore, the use of Cartesian basis functions is analyzed, which were
employed in previous publications. 16:90,100

4.2.1 Comparison of Particular Basis Sets

Besides the basis set dependence of the cc-pVX series and its augmented and doubly
augmented versions, other common basis sets are available and their influence on core-
excitation energies at the CVS-ADC levels is investigated in this chapter. For this purpose,
I present results obtained using selected Ahlrichs- and Pople-type basis sets. Furthermore,
the basis sets from the cc- and aug-cc-series are augmented by core-valence functions that
are well known to provide an enhanced description of core-valence correlation effects. 186
For the core-valence versions, the CBS limit were estimated, too. Table 4.5 contains the
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Figure 4.2: Plots of the core-excitation energy against the basis set for the first three
core-excited states of CO (C 1s and O 1s) and NHj (N 1s). Left: results obtained at
the CVS-ADC(2)-x level, Right: results calculated at the CVS-ADC(3) level. The series
of the aug-cc-pVXZ was used for the calculation, where X describes the { level. The
calculated CBS limits are shown in red and the dashed lines represent the fitting function
(see equation 4.1). Furthermore, the calculated values are compared with experimental
data (green).16:188
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detailed results of the C 1s excitations of CO obtained with the various basis sets at
different CVS-ADC levels.

Let me start this discussion with the core-valence basis set series cc-pCVX and aug-cc-
pCVX. The estimated CBS limits are at the same level as the ones obtained using the
cc-pVX series and its augmented and doubly augmented versions (see chapter 4.1). Using
the cc-pCVDZ basis set significantly improves the core-excitation energy compared to
cc-pVDZ towards the CBS limit, for example 0.48 eV in the case of state 1 calculated with
the CVS-ADC(2)-x method. However, the addition of the core-valence functions is not
sufficient to properly describe the Rydberg-type states 2 and 3. Particularly, state 3 can
only be obtained using at least the 57 basis set. Hence, employing augmented functions
is still necessary, which can be confirmed looking at the aug-cc-pCVX results. Overall,
employing the core-valence functions improves the results towards the CBS limit, but not
more than the aug- or d-aug-functions, which in addition provide access to core-Rydberg
states.

Next, the Ahlrichs def2-series is analyzed. The results show in principle the same
trends as the cc-series. Diffuse functions (D) are necessary to obtain the Rydberg-type
states properly. However, using the triple-¢ def2-TZVP does not provide almost converged
results. The differences between def2-TZVP and def2-QZVP are still around 0.3 eV and
even at the def2-QZVP level, the values are still above the CBS limit obtained with the
comparable cc-series. State 1, for example, calculated with CVS-ADC(2)-x/def2-QZVP
is 0.13 eV above the respective CBS limit obtained with the cc-pVX series. The core-
excitation energies of the s,m*-state 1 are not improved significantly using diffuse functions.
The difference between def2-SVP and def2-SVPD is 0.21 eV using CVS-ADC(2)-x, while
the core-excitation energies obtained using def2-QZVP and def2-QZVPD are almost the
same. However, in the case of the Rydberg-type states 2 and 3, the influence of the diffuse
functions becomes obvious. Here, the differences between def2-QZVP and def2-QZVPD
are about 1 eV.

The Pople-basis sets show similar trends. Here, besides the diffuse functions (+), the
influence of polarization functions (*) is investigated, too. Looking at the results reveals
that these polarization functions indeed improve the core-excitation energies towards
the CBS limits of the cc-series and experimental data. However, diffuse functions are
mandatory to describe the Rydberg states. As an alternative, the addition of 3df and 3pd
functions also significantly improve the core-excitation energies toward the CBS limits in
conjunction with a proper description of the Rydberg states. Within the Pople series, the
effect of + functions on the bright s,7* state 1 is also very small, but the Rydberg-type
states are strongly improved. However, the description of state 1 depends strongly on the
use of polarization functions.

To evaluate the quality of the results, a comparison with experimental data is necessary.
Figure 4.3 summarizes the results obtained with triple-¢ basis functions using the CVS-
ADC(2)-x and CVS-ADC(3) methods. In general, the same conclusions can be drawn
as discussed in chapter 4.1. At the CVS-ADC(3) level, the core-excitation energies are
overestimated, while CVS-ADC(2)-x provides an excellent agreement with the experiment.
As expected, large basis sets with diffuse functions provide the best results and in the case
of the Pople-series it is advantageous to employ polarized and diffuse functions. Otherwise,
the error in core excitation-energies can be large even at the triple-¢ level. Hence, the
6-311G basis does not provide reasonable results compared to the 6-311++G** basis set.
At the CVS-ADC(2)-x level, state 1 is slightly underestimated using the Ahlrichs- and
cc-series, while the Pople-type basis sets slightly overestimate this s,7*-state. Since the
Rydberg states are slightly overestimated using the 6-311++G** basis, they are best
described employing diffuse basis sets from the cc-series. Note that in this CO C 1s
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Table 4.5: Comparison of core-excitation energies (wex) of the first three C 1s singlet
excited states of carbon monoxide. The energies were calculated using CVS-ADC at strict
second (2s), extended second (2x) and third order (3) in combination with different basis
sets. The calculated values and the CBS limits for the cc-pC and aug-cc-pC series are
compared with experimental data.!®® This table has already been published by me and
my co-authors. 3

State 1 wex [€V] State 2 wex [€V] State 3 wex [€V]

Basis Set/Expt. 2s 2x 3 2s 2x 3 2s 2x 3
cc-pCVDZ 291.37 288.62 289.50 | 301.52 298.35 — — — —
cc-pCVTZ 290.19 287.07 287.99 | 298.48 294.86 296.16 — — —
cc-pCVQZ 290.03 286.88 287.78 | 297.24 293.69 294.97 — — —
cc-pCV5Z 289.98 286.84 287.73 | 296.67 293.17 294.48 | 297.70 294.48 295.72
CBS (cc-pC) 289.95 286.81 287.70 | 296.42 292.94 — — — —
aug-cc-pCVDZ 291.09 288.28 289.21 | 296.56 293.67 295.05 | 297.49 294.84 296.18
aug-cc-pCVTZ 290.15 287.03 287.97 | 295.82 292.52 293.90 | 296.71 293.63 294.99
aug-cc-pCVQZ 290.01 286.87 287.78 | 295.69 292.40 293.73 | 296.57 293.48 294.81
CBS (aug-cc-pC) | 289.94 286.80 287.69 | 295.63 292.35 293.66 | 296.50 293.42 294.73
def2-SVP 291.54 288.83 289.62 | 301.35 298.37 — — — —
def2-TZVP 290.28 287.28 288.19 | 297.69 294.27 295.56 — — —
def2-QZVP 290.05 286.93 287.83 | 297.05 293.52 294.87 | 298.00 294.80 296.01
def2-SVPD 291.37 288.62 289.44 | 297.30 294.51 295.66 | 298.76 295.98 297.27
def2-TZVPD 290.27 287.27 288.18 | 295.96 292.81 294.13 | 297.15 294.07 295.48
def2-QZVPD 290.04 286.93 287.83 | 295.74 29247 293.78 | 296.83 293.66 295.04
6-31G 292.61 290.20 290.75 | 303.65 — — — — —
6-31G** 291.43 288.78 289.48 | 302.17 — — — — —
6-314+G** 291.37 288.72 289.45 | 296.90 294.23 295.34 | 297.96 295.50 296.57
6-31G(3df,3pd) 290.48 287.57 288.46 | 299.21 295.98 296.98 — — —
6-311G 291.42 288.48 289.11 | 301.49 — — — — —
6-311G** 290.56 287.50 288.40 | 300.41 296.76 — — — —
6-311++G** 290.54 287.49 288.40 | 296.18 292.89 294.17 | 297.22 294.16 295.40
6-311++G(3df,3pd) | 290.15 287.03 287.94 | 295.90 292.58 293.91 | 296.98 293.88 295.16
Experiment 287.4 292.5 293.4
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Figure 4.3: Plots of the core-excitation energy against chosen triple-( basis sets for the
first three C 1s singlet excited states of CO. Left: results obtained at the CVS-ADC(2)-x
level, Right: results obtained at the CVS-ADC(3) level. The dashed lines represent the
experimental values. 188

example, the 6-311++G(3df,3pd) basis set performs better than the smaller 6-311+4G**
basis set, because polarization effects are better described with the additional 3df and 3pd
functions.

Besides the quality of the results, the choice of the “right” basis set also depends on
the computational time. Both CVS-ADC(2)-x and CVS-ADC(3) methods scale with the
order (M9), where M is the number of basis functions. Since computational time is often
limited, the computational effort usually prevents the use of large basis sets, especially for
the calculation of chemically relevant molecules with more than 15 atoms. Let me give
an example: in the case of the small CO molecule, the aug-cc-pVTZ basis comprises 110
Cartesian basis functions, while the 6-311++G** basis set, which is also at the triple-{
level and includes diffuse functions, only consists of 46 basis functions. In other words,
a calculation of CO at the CVS-ADC(2)-x or CVS-ADC(3) level takes 187 times longer
when employing aug-cc-pVTZ instead of 6-311++G**. Considering the excellent quality
of the results when using the 6-31114++G** basis set, employing basis sets from the larger
aug-cc-series is not necessary, although the results would be more accurate. The same
applies for the 6-311++G(3df,3pd) basis set, which comprises 90 Cartesian basis functions
in the case of CO. Eventually, employing the 6-311++G** basis set provides an excellent
computational cost/performance ratio.

4.2.2 Influence of Cartesian and Pure Basis Functions

Next, the influence of Cartesian 6D/10F basis functions is investigated. Since the Carte-
sian functions form the space of a reducible representation of the rotation group, the
decomposition of Cartesian into pure spherical functions leads to a reduction in the number
of basis functions from six d- and 10 f-functions into five d- and seven f-functions. Hence,
employing pure basis functions affords computational savings. As shown in chapters 4.1
and 4.2.1, the influence of diffuse and extended basis functions on the core-excitation
energies is significant, especially in the case of core Rydberg states. Since Cartesian basis
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Table 4.6: Core-excitation energies (wex) of the first three C 1s singlet excited states of
carbon monoxide. The energies were calculated using CVS-ADC(2)-x in combination with
different basis sets in their pure (P) and Cartesian (C) version. The calculated values
are compared with experimental data'®® and the difference between C and P §(P-C) is

averaged for every basis set (0). This table has already been published by me and my
co-authors. %8

State 1 wex [eV] State 2 wex [€V] State 3 wex [eV] § [eV]
Basis set/Expt. P C o(P-C) P C o(P-C) P C o(P-C)
6-3114++G** 287.76  287.49 0.27 293.21  292.89 0.32 294.48 294.16 0.32 0.30
aug-cc-pVTZ 287.22  287.09 0.14 292.73  292.57 0.16 293.82  293.68 0.14 0.15
d-aug-cc-pVTZ | 287.22 287.07 0.14 292.59  292.46 0.14 293.60 293.46 0.13 0.14
aug-cc-pCVTZ | 287.06 287.03 0.03 292.57  292.52 0.05 293.67 293.63 0.04 0.04
def2-TZVPD 287.49 287.27 0.22 293.12  292.81 0.31 294.31 294.07 0.23 0.26
Experiment 287.4 292.5 293.4 —

functions are larger due to the additional diffuse d- and f-orbitals, using them should be
advantageous. To show this influence, Table 4.6 contains a comparison of the first three
C 1s excited states of CO calculated with pure and Cartesian versions of different triple-¢
basis sets.

Overall, employing Cartesian d- and f-functions lowers the core-excitation energies,
because the basis is larger and due to the variational principle, the calculated energies are
upper bounds of the exact ones. The averaged difference of core-excitation energies between
Cartesian and pure functions (J) depends strongly on the chosen basis set. Regarding
aug-cc-pCVTZ, the difference is only 0.04 eV, thus the use of Cartesian basis functions
has hardly any influence. In contrast, the core-excitation energies differ by about 0.3 eV
using 6-311++G** and def2-TZVPD, while § is around 0.15 eV in the case of aug- and
d-aug-cc-pVTZ. Looking at the different states, the difference between Cartesian and
pure functions is almost constant within the respective basis sets. The only exception is
state 2 using the def2-TZVPD basis set, where the difference between Cartesian and pure
variants is 0.31 eV, while it is around 0.22 eV in the case of states 1 and 3. The use of
Cartesian basis functions seems advantageous, especially, in the case of the 6-311++G**
and def2-TZVPD basis sets, because the influence is large and compared to experimental
values, the results are shifted towards the right direction. Eventually, Cartesian 6D /10F
should be used whenever it is computationally possible.

4.3 The Accuracy of Oscillator Strengths

To further describe the spectral features of XA spectra, the strength of the absorption,
which is represented by the oscillator strength, needs to be calculated properly, too. General
ADC(2) methods are well known to provide accurate transition moments for valence-excited
states, but the quantitative accuracy in combination with the CVS approximation has not
been determined yet. %% Since in the case of CVS-ADC(3,2) no algebraic expressions for
the transition moments at third order are available yet, the second order terms are used
instead and the quality of the oscillator strength compared to experiment is therefore an
interesting question. In Table 4.7, the calculated oscillator strengths of the first three C
1s excitations of the CO molecule calculated at the CVS-ADC(2)-s, CVS-ADC(2)-x and
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Table 4.7: Oscillator strengths (fosc) of the first three C 1s singlet excited states of
carbon monoxide. The fo. were calculated using CVS-ADC at strict second (2s),
extended second (2x) and third order with different basis sets. The mean values and
the standard deviations o are given and the calculated values are compared with
experimental data.'® The doubly degenerated states are given once and their fuq.

values are given as sum. This table has already been published by me and my co-authors. %8
State 1 fsc State 2 fosc State 3 fsc

Basis Set/Expt. 2s 2x 3 2s 2x 3 2s 2x 3
aug-cc-pVDZ 0.162 0.134 0.150 | 0.004 0.004 0.006 | 0.014 0.017 0.017
aug-cc-pVTZ 0.177 0.141 0.157 | 0.004 0.003 0.005 | 0.012 0.015 0.015
aug-cc-pVQZ 0.179 0.143 0.159 | 0.004 0.003 0.005 | 0.010 0.013 0.013
aug-cc-pVbZ 0.179 0.143 0.159 | 0.004 0.003 0.004 | 0.009 0.012 0.012
6-31G 0.171 0.141 0.157 | 0.009 — — — — —
6-31G** 0.165 0.138 0.152 | 0.007 — — — — —
6-31+4G** 0.164 0.137 0.151 | 0.004 0.003 0.005 | 0.015 0.018 0.017
6-31G(3df,3pd) 0.176 0.143 0.158 | 0.011 0.008 0.010 — — —
6-311G 0.183 0.143 0.160 | 0.007 — — — — —
6-311G** 0.178 0.141 0.156 | 0.006 0.005  — — — —
6-3114+G** 0.178 0.141 0.157 | 0.005 0.003 0.005 | 0.016 0.020 0.019
6-3114++G(3df,3pd) | 0.179 0.142 0.158 | 0.004 0.003 0.005 | 0.016 0.020 0.019
Mean 0.174 0.141 0.156 | 0.006 0.004 0.006 | 0.013 0.016 0.016
o 0.007 0.003 0.003 | 0.002 0.002 0.002 | 0.003 0.003 0.003
Experiment 0.167 0.003 0.008

CVS-ADC(3,2) levels are summarized. Here, the aug-cc-pVX series and the Pople-basis set
series were chosen for a comparison. Regarding the CO example, the calculated oscillator
strengths are almost independent of the employed basis set. This can be confirmed with
the standard deviations for all CVS-ADC orders and investigated states, which are very
small with values between 0.002 and 0.007. Looking at the results of the aug-cc-pVX
series, only the double-( values differ from the other (-levels about 0.01 in the case of
state 1. Comparable double-( basis sets from the Pople-series show a similar deviation.

Comparing the values obtained at different CVS-ADC levels, the higher-lying core-
Rydberg states are almost identical at every investigated CVS-ADC level, while the bright
s,m*-state 1 shows large discrepancies. The smallest oscillator strength for state 1 is
provided at the extended second order level, followed by CVS-ADC(3,2). At the CVS-
ADC(2)-s level, the oscillator strength of state 1 has the largest value. These numbers differ
by 0.3 and more, depending on the chosen basis set. The difference between the CVS-ADC
orders can be explained by means of the core-excitation energies provided at the particular
CVS-ADC levels. Generally, oscillator strengths depend on the excitation energy and
the norm of the transition dipole moment (|u|). As shown in chapter 4.1, the calculated
core-excitation energies differ strongly between the CVS-ADC levels. The |u;| value in
atomic units (a.u.) of state 1 computed at the different CVS-ADC levels using, for example,
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the aug-cc-pV5Z basis set, is 0.225, 0.202 and 0.212 at the CVS-ADC(2)-s, CVS-ADC(2)-x
and CVS-ADC(3,2) level, respectively. Hence, the transition dipole moments vary much
less than the corresponding oscillator strengths. Since the core-excitation energies differ
between the CVS-ADC orders, the absolute values of the oscillator strengths follow the
same trend as the core-excitation energies. This phenomenon is not dominant in the case
of the Rydberg states, because the oscillator strength is very small compared to the bright
state 1.

Looking again at the bright state 1, CVS-ADC(3,2) provides the most accurate result
compared to experiment, while CVS-ADC(2)-x underestimates the experimental absorption
by about 0.25. It seems that this is a large number, but it does not reduce the quality of
the CVS-ADC(2)-x result at all, because compared to the higher-lying Rydberg states,
this absorption is still dominant. These findings are in accordance with those presented in
previous work, where a specially created basis set for the CO molecule was employed. 190
The oscillator strengths of state 2 and state 3 are in contrast excellently matched by all
CVS-ADC methods with errors between 0.001 and 0.008, respectively.

4.4 Evaluation of Core-Excited State Dipole Moments

Finally, calculations of static dipole moments (pex) of core-excited states calculated with
the CVS-ISR method are discussed. Since experimental data are not available, proper
benchmarking is challenging. Using the Full-CI approach would be an alternative, but
computationally this is not possible, thus a representative from the CC family was chosen,
i.e the SAC-CI SD-R method. Since both CVS-ADC(2)-x and SAC-CI methods are
at similar level of theory with similar expected accuracy, the results discussed in this
chapter cannot be seen as a real benchmark. However, the SAC-CI results help to
demonstrate the correct behavior of the CVS-ADC/CVS-ISR approach. Furthermore, the
numerical accuracy of the standard ISR method has already been verified a few times for
valence-excited states. 93190 With the knowledge about the accuracy of the CVS-ADC
eigenvectors as demonstrated in chapters 4.1 — 4.3 by means of core-excitation energies
and oscillator strengths, in principle, one can expect the same accuracy for the CVS-ISR
approach. Due to technical and computational limitations of the SAC-CI method, a set of
small molecules, which consists of fluoroethene (C 1s), NHs (N 1s) and HoO (O 1s), was
chosen for this study. Table 4.8 summarizes the results for the core-excited state dipole
moments (pex) and core-excitation energies (wex) calculated at different CVS-ADC levels
compared to data at SAC-CI level of theory. Here, CVS-ADC(1) results are discussed,
too.

Since here other systems are investigated compared to the studies of the core-excitation
energies and oscillator strengths, I first comment on the trend of the energies. The
quality of the core-excitation energies obtained at different CVS-ADC levels, in principle,
show the same trends as discussed in the other chapters. The most accurate results are
calculated at the CVS-ADC(2)-x level using at least an augmented triple-¢ basis set,
while the other CVS-ADC methods overestimate the core-excitation energies compared to
experiment. CVS-ADC(1), as expected, provides a strong overestimation due to the lack
of ground state correlation and of the description of orbital relaxation effects. Compared
to experiments, results at the SAC-CI level are also very accurate. While SAC-CI tends
to slightly overestimate the core-excitation energies, CVS-ADC(2)-x underestimates them
a little. In the case of the first two oxygen 1s excitations of water, for example, the
core-excitation energies at the CVS-ADC(2)-x level are about 1 eV too low, while they
are about 1 eV too high at the SAC-CI level. However, the numerical accuracy provided
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Table 4.8: Comparison of core-excitation energies (wex) and core-excited state dipole
moments (pex) of the first three singlet states of CH;CHF (C 1s) and the first five singlet
states of NHs (N 1s) and HyO (O 1s). The values are calculated using CVS-ADC at first
(1), strict second (2s), extended second (2x) and third (3) order as well as SAC-CIL. For all
calculations, the 6-3114++G** basis set was employed. Furthermore, experimental data
(Expt.) of the core-excitation energies are given for comparison. 6191 The degenerate
double 7-states of NH3 are given only once (State 2 and 4), respectively. Sometimes, the
energetic order of states differs between the methods. For a direct comparison, the order
of states at the CVS-ADC(2)-x level is fixed, while the ones obtained with the other
methods are sorted corresponding to the CVS-ADC(2)-x result. This table has already
been submitted for publication by me and my co-author.%

State Wex [€V] fex [D]
SAC-CI 1 2s 2x 3 Expt. 16191 | SAC-CT 1 25 2x 3
CH,CHF C 1s

Sy 286.04  295.39 288.73 285.05 287.17 285.00 3.04 402 343 273 286

Sa 288.52  300.15 290.21 287.09 289.88 — 328 296 477 431 417

Ss 288.18  296.72 291.01 287.33 289.07 287.10 .76 235 224 1.55 1.62
NH; N 1s

Sy 401.54  416.09 402.50 399.93 404.10 400.66 097 1.88 120 1.04 1.19

So 403.24  416.47 403.98 401.67 405.71 402.33 315  1.98 339 325 287

Ss 404.84 41940 405.84 403.30 407.27 402.86 4.04  6.09 248 3.39 4.67

Sy 405.64  421.29 406.73 404.03 408.30 403.50 369 1.84 3.72 3.74 3.23

Ss 406.25  421.88 407.13 404.62 408.96 — 1.40 297 0.63 1.33 1.87
H>0 O 1s

Sy 534.95 551.19 534.83 532.90 538.44 534.00 1.25 161 1.70 1.38 1.35

So 536.74  551.83 536.42 534.76 540.05 535.90 090 022 131 118 0.70

Ss 539.48  556.58 539.25 537.42 543.06 383 626 071 235 535

S4 539.65  556.21 539.76 537.70 543.01 537.00 288 219 269 276 2.60

Ss 539.79  558.01 539.62 537.71 543.69 223 0.62 1.77 226 1.75
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by both methods is influenced by the type of the element, respectively. The heavier the
atom, the larger the absolute error.

Let me turn to the static dipole moments of the core-excited states and start with the
C 1s excitation of fluoroethene. The pey values of the states S; and S3 provided at the
CVS-ADC(2)-x, CVS-ADC(3,2) and SAC-CI levels are in good agreement with each other,
while CVS-ADC(2)-s and CVS-ADC(1) overestimate the static dipole moments of the
core-S; and Sg states by about 0.5 D and 1.0 D, respectively. The difference of the core-S;
lex value between CVS-ADC(3,2) and SAC-CI is only 0.18 D, while CVS-ADC(2)-x
and SAC-CI differ by 0.31 D. On the other hand, the pex value of the core-Ss state,
which exhibits almost no oscillator strength, is described differently at the SAC-CI level
compared to the CVS-ADC methods. The SAC-CI value is around 1.0 D above the one of
CVS-ADC(2)-x value, whereas CVS-ADC(3,2) and CVS-ADC(2)-x are again at the same
level. For the core-Sg state of fluoroethene, the dipole moment obtained by CVS-ADC(1)
is only 0.32 D above the SAC-CI result and the CVS-ADC(2)-s value is slightly above the
one provided by CVS-ADC(2)-x.

The next example are the N 1s excitations of ammonia. Here, again a good agreement
between SAC-CI and CVS-ADC(2)-x/CVS-ADC(3,2) results is given. However, there is
one exception, i.e. the core-S3 state. The difference between SAC-CI and CVS-ADC(2)-x
values are only 0.07 D, 0.10 D, 0.05 D and 0.07 D for the core-Sy, Sa, S4 and Sy states,
respectively, whereas the difference of dipole moments for the S3 state is 0.65 D. The values
provided by the other CVS-ADC methods are shifted without any identifiable regularity,
sometimes overestimating and sometimes underestimating the SAC-CI results slightly or
strongly. The CVS-ADC(1) results, in particular, show the largest deviations compared to
the other approaches.

As the last example, the O 1s excitations of water are discussed. Here, the results
are comparable to the ones of NH3. There is again one spike, i.e. the core-Ss, for which
the deviation between the CVS-ADC(2)-x method is significantly larger compared to the
SAC-CI result. The differences of the piex values between SAC-CI and CVS-ADC(2)-x
are 0.13 D, 0.28 D, 1.48 D, 0.12 D and 0.03 D for the first five core-excited singlet states,
respectively. The other CVS-ADC approaches show again shifts without any identifiable
regularity.

Eventually, this investigation demonstrates the accuracy of the CVS-ADC/CVS-ISR
approaches in spite of the lack of experimental data. Between the CVS-ADC(2)-x and
SAC-CI levels of theory, a qualitative and quantitative agreement of static core-excited
state dipole moments is given in most of the cases. CVS-ADC(3,2) and CVS-ADC(2)-s
results often show deviations without any identifiable regularity, while CVS-ADC(1) values
strongly differ compared to the others. Hence again, CVS-ADC(2)-x could be identified
as the most accurate CVS-ADC approach, but the results at the CVS-ADC(3,2) level
are adequate, too. The larger discrepancies between SAC-CI and CVS-ADC(2)-x results,
i.e the core-S3 states of the ammonia and water examples, cannot be explained at the
moment. This might be due to slight differences within the core-excited state vectors
provided by the SAC-CI and CVS-ADC methods.
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Chapter 5

The Contribution of Orbital
Relaxation Effects

As explained in chapter 2.5.9, orbital relaxation effects play an important role in the
description of core-excited states. In this chapter, the contribution of this effect on
core-excitation energies is discussed by means of CVS-ADC calculations up to third order.
For this purpose, two quantitative descriptors are available. One is the amount of doubly
excited amplitudes (R2) and the other is the electron promotion number (ppa ), which
is calculated by means of detachment/attachment (D/A) densities (see chapter 2.5.8).
Other descriptors like exciton sizes, which also help to identify orbital relaxation effects,
are discussed as well. Furthermore, plotting (D/A) densities visualizes these effects and
comparisons with plotted hole/electron (h/e) densities provides a qualitative picture of
the influence of orbital relaxation effects on the core-excitation process. To demonstrate
the contribution of orbital relaxation effects within the CVS-ADC methods, the first
core-excited singlet states and their properties of the small molecules CO, CH,CHF, NH3,
H,0 and the CHj radical were calculated using CVS-ADC(1) to CVS-ADC(3,2) (in the
case of CHg the unrestricted variant was used). Their structures are illustrated in Figure
4.1.

All structures of the small molecules in the electronic ground state were optimized at the
CCSD?! level using the def2-QZVPPD ' basis set and the Q-Chem 4.3 program. Core-
excited states and the corresponding properties were calculated with my implementation
of CVS-ADC up to third order of perturbation theory as well as with my CVS-ISR
implementation as described in chapter 3. Exciton sizes and state densities were calculated
using the libwfa library. 348688 Note that both ground and core-excited state calculations
of the CHj radical were always performed using the unrestricted variants of the respective
methods. The calculations of core-excited states were performed employing the Cartesian
6D/10F version of the 6-3114+++G**109110.113 and aug-cc-pVTZ %116 basis sets. All
computed values shown in this chapter are absolute without any level shift or consideration
of relativistic effects. Finally, note that the content of this chapter has already been
published by me and my co-authors in Journal of Chemical Physics, 142 (2015), 214104
or has been submitted for publication in Journal of Chemical Theory and Computation,
(2016).98:99
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5.1 Treatment of Orbital Relaxation Effects

The results presented in chapter 4 lead to the question why CVS-ADC(3) and also CVS-
ADC(2)-s perform worse than CVS-ADC(2)-x, although the order of perturbation theory
is higher in the case of CVS-ADC(3). Generally, the final result obtained at the CVS-ADC
level is based on cancellation of errors of neglecting relativistic effects, description of
orbital relaxation effects, basis set truncation, and considering electron correlation. This
error cancellation seems optimal in the case of CVS-ADC(2)-x. As explained in chapter
2.5.9, the fortuitous error compensation provided at the CVS-ADC(2)-x level is broken at
the CVS-ADC(3) level. This leads to an overestimation of core-excitation energies. The
overestimation at the CVS-ADC(2)-s level can be explained due to the lack of improvement
of the description of the doubles, which usually leads to a lowering of the excitation energies
in CVS-ADC(2)-x compared to CVS-ADC(2)-s. 79181

Besides the numerical accuracy of the results, the increased overestimation towards
heavier elements in the case of CVS-ADC(3) has also not yet been clarified. Due to the
strong Coulomb attraction with the nucleus, the contraction of the core hole becomes
larger going to heavier elements, e.g. >100 eV from carbon to nitrogen. Hence, relaxation
and polarization effects gain more importance and since these effects are described in
an unbalanced way at the CVS-ADC(3) level, this seems to be the reason why the
overestimation increases with heavier elements. Actually, the couplings between singles
and doubles are evenly disturbed in a way that the CVS-ADC(2)-s method provides better
core-excitation energies compared to experiment than CVS-ADC(3) regarding elements
heavier than carbon. Since orbital relaxation effects are included indirectly via couplings
between the excited configurations, the amount of doubly excited amplitudes contributing
to a state (R2) can be seen as an indirect indicator for the relaxation effects in the case
of both CVS-ADC(2) variants and CVS-ADC(3). To show this, Table 5.1 contains the
correlation between R2 and the core-excitation energy of the first core-excited singlet
states of CO, NH3 and CHjs at the different CVS-ADC levels.

The wex values straightly decrease towards the experimental values going from CVS-
ADC(1) to CVS-ADC(2)-x and increase again going further to CVS-ADC(3). In the case
of both C 1s excitations (CO and CHj), the core-excitation energies stay below the one
obtained with CVS-ADC(2)-s. However, this is not the case for heavier elements, where
the core-excitation energies are larger than those obtained at the CVS-ADC(2)-s level.
This observation is independent of the employed 6-311++G** and aug-cc-pVT7Z basis
sets.

Let me now take a look at the R2 values. CVS-ADC(1) does not include doubly
excited amplitudes, thus the R2 value is exactly zero inherently. From the strict second
order to the extended second order, the R2 value increases, while it decreases again at the
CVS-ADC(3) level. Hence, the trend of the R2 values is opposite to the trend of wex. In
the case of the C 1s excitation, the R2 value obtained with CVS-ADC(3) is between the
values of the strict and extended second order approaches, which is also comparable to
the trend of the core-excitation energies. Due to the stronger relaxation effects of core
excitations of heavier elements, the amount of doubly excited amplitudes for the N 1s and
O 1s excitations provided at the CVS-ADC(2)-s level is larger than at the third order
level, because the disturbed relationship between the couplings in CVS-ADC(3) leads to a
underestimation of R2 for heavier elements.

Eventually, a distinct relative correlation between R2 and wey can be confirmed. Hence,
the R2 values can be seen as an indirect indicator for the treatment of relaxation and
other energy lowering effects at the different CVS-ADC levels.
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Table 5.1: Core-excitation energies (wex) and amount of double amplitudes (R2) of the
first singlet core-excited state of CO (C 1s and O 1s) and NH3 (N 1s) and the first C 1s
excited state of CHj calculated using CVS-ADC at first, strict second (2s), extended
second (2x), and third order and employing the 6-311++G** and aug-cc-pVTZ basis
sets. The calculated values are compared with experimental data. 16188189 This table has

already been published by me and my co-authors. %2
CO C 1s CO O 1s NH3 N 1s CHj3 C 1s
ADC order | wex [€V] R2 [%)] | wex [€V] R2 [%] | wex [eV] R2 [%] | wex [eV] R2 [%]

6-311++G**

1 294.47 — 550.17 — 416.47 — 288.47 —

2s 290.54 7 535.80 17 403.98 19 284.00 6

2x 287.49 19 532.98 22 401.67 22 281.44 14

3 288.40 13 539.18 16 405.71 16 282.65 11
aug-cc-pVTZ

1 294.41 — 550.09 — 416.46 — 288.45 —

2s 290.19 7 535.53 19 403.70 17 283.69 6

2x 287.09 19 532.70 22 401.45 22 281.08 14

3 288.02 13 538.74 16 405.48 16 282.24 11
Experiment

| 2874 | 5341 | 40233 | 2135

5.2 Quantification and Visualization of Orbital Relax-

ation Effects via State Densities

Next, the study in the last chapter is extended by visualization and quantification of
relaxation effects based on the CVS-ISR approach. For this purpose, the set of the
representative small molecules CHoCHF, HoO, NH3 and the CHjs radical are investigated.
The first core-excited singlet state of these molecules were calculated using CVS-ADC(1)
to CVS-ADC(3,2), respectively. The results are summarized in Table 5.2.

The core-excitation energies and R2 values follow the same trend as explained in
chapters 4 and 5.1. The CVS-ADC(2)-x results are almost in perfect agreement with
experimental values, while CVS-ADC(2)-s and CVS-ADC(3) overestimate the weyx values
slightly. CVS-ADC(1), in contrast, provides a significant overestimation. In all investigated
examples, the R2 value at the CVS-ADC(2)-x level is the largest. Furthermore, CVS-
ADC(3,2) provides larger values than CVS-ADC(2)-s regarding the C 1s excitations
(CHyCHFand CHs), while the opposite is the case for the core excitations of heavier
elements.

Let me take a look at the promotion numbers ppa, which are based on the (D/A)
densities. The same relation as the one between weyx and R2 can be identified analyzing the
promotion numbers. At the CVS-ADC(1) level, the ppa value is always 1.0, because no
higher excited configurations are available. As a consequence, the 1TDM and the 1DDM
are identical at the CVS-ADC(1) level, thus the respective descriptors and properties based
on these densities are equal, too. CVS-ADC(2)-x results exhibit the highest promotion
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Table 5.2: Comparison of core-excitation energies (weyx), amount of doubly excited
amplitudes (R2), and various descriptors (see chapter 2.5.8 for definitions) of the respective
first core-excited singlet state of CHoCHF (C 1s), NH3 (N 1s), H,O (O 1s), and the
CHj radical (C 1s) calculated using CVS-ADC at different order with the 6-31144G**
basis set. This table has already been submitted for publication by me and my co-author. %

Method | wew [eV] R2[%] poa oo (Al on [A] oa [A] oo [A] dpoa [A] duose [A]
CH,CHF C 1s
CVS-ADC(1) 295.39 — 1.00 0.17 0.17 1.24 1.24 0.61 0.61
CVS-ADC(2)-s 288.73 11.64  1.69 0.97 0.17 1.29 1.46 0.31 0.64
CVS-ADC(2)-x 285.05 23.89 1.87 1.00 0.17 1.20 1.45 0.19 0.59
CVS-ADC(3,2) 287.17 19.55 1.75 0.92 0.17 1.15 1.37 0.22 0.61
NHg3 N 1s
CVS-ADC(1) 416.09 — 1.00 0.14 0.14 1.81 1.81 0.77 0.77
CVS-ADC(2)-s 402.50 18.47 1.84 0.95 0.14 2.11 2.72 0.34 0.72
CVS-ADC(2)-x 399.93 22.19  1.90 0.89 0.14 1.89 2.50 0.31 0.70
CVS-ADC(3,2) 404.10 17.15  1.79 0.83 0.14 1.75 2.24 0.34 0.72
H50 O 1s
CVS-ADC(1) 551.19 1.00 0.12 0.12 1.48 1.48 0.80 0.80
CVS-ADC(2)-s 534.83 19.06 1.84 0.84 0.12 1.90 2.40 0.44 0.91
CVS-ADC(2)-x 532.90 20.68 1.85 0.79 0.12 1.67 2.13 0.40 0.86
CVS-ADC(3,2) 538.44 15.53 1.73 0.72 0.12 1.48 1.82 0.42 0.84
CHj C 1s
CVS-UADC(1) 288.47 — 1.00 0.17 0.17 0.82 0.82 0.00 0.00
CVS-UADC(2)-s 284.00 6.20 1.47 0.78 0.17 0.89 0.98 0.00 0.00
CVS-UADC(2)-x 281.44 13.85 1.71 0.89 0.17 0.89 1.04 0.00 0.00
CVS-UADC(3,2 282.65 10.58  1.61 0.82 0.17 0.84 0.97 0.00 0.00

numbers (larger than 1.7) as well as the largest R2 values, which indicates strong orbital
relaxation effects. To put this in relation, typical ppa values for ”ordinary” low-lying
valence-excited states at the ADC(2) level are below 1.7.8¢ However, the trend of the
promotion numbers going from the lighter carbon to the heavier oxygen element does
not show an expected increase due to the stronger Coulomb attraction of heavier atoms,
which results in stronger relaxation effects. The same applies for the R2 values. From
carbon to nitrogen (CHoCHF to NHj), for example, the ppa values increase slightly from
1.87 to 1.9 at the CVS-ADC(2)-x level, but decrease in the water example to 1.85. The
R2 values straightly decrease from carbon to oxygen. Since orbital relaxation effects are
only included indirectly within the CVS-ADC methods via couplings to higher excited
amplitudes, promotion numbers and the amount of doubly excited amplitudes are not
appropriate descriptors to capture this effect. Promotion numbers just count the number
of attached and detached electrons due to a core-excitation process based on an initial and
final state picture, while R2 only counts the amount of the doubles. In other words, both
tools describe the final results after the relaxation process, which must neither necessarily
depend on the dynamics of the process itself, nor on the excited element. Nevertheless,
promotion numbers and R2 values are adequate tools for the description of the strength
of the final relaxation process. An alternative way to analyze the stronger influence of
heavier cores on the created holes is provided via the exciton size of the hole (o) based on
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Detachment/Attachment Hole/Electron
CVS-ADC(1) | CVS-ADC(2)-s | CVS-ADC(2)-x| CVS-ADC(3) All CVS-ADC
poa = 1.00 Poa = 1.69 Poa = 1.87 Poa = 1.75 methods
op Ho.17 op = 0.97 op = 1.00 op =0.92 on Mo.17
o4 =1.24 o4 =1.29 o4 =1.20 o4 =1.15 o, = 1.45*

Figure 5.1: Comparison of detachment(blue)/attachment(lime) densities based on the
1DDM with hole(blue)/electron(lime) densities based on the ITTDM. The first C 1s core-
excited singlet state of CHoCHF is shown as example. The densities are calculated at
different CVS-ADC levels employing the 6-3114++G** basis set. The isosurfaces of the
densities were rendered with the isovalues 0.0256 (opaque), 0.0064 (colored transparent),
and 0.0016 (transparent). The promotion numbers ppa and the respective exciton sizes
o, (A) are shown, too.

*(In the case of the electron density, only the CVS-ADC(2)-x isosurface and corresponding
0. value are shown. The shapes of the electron isosurfaces at the other CVS-ADC levels
are very similar.)

the 1TDM. Since all investigated core-excited states in Table 5.2 are characterized by an
excitation from one contracted 1s orbital located on one specific atom, the hole sizes grow
from 0.12 A to 0.17 A going from oxygen to carbon due to reduced Coulomb attraction.

Besides promotion numbers, another practical benefit of the CVS-ISR method is the
possibility to visualize relaxation effects via state densities, i.e (D/A) densities. Figure 5.1
illustrates the differences obtained at the investigated CVS-ADC levels by means of the
first C 1s excited singlet state of CHoCHF, which is characterized by the promotion of
one electron from the doubly hydrogen substituted carbon atom (Caop) to a delocalized 7*
level. Note that the (h/e) densities based on the 1TDM look practically identical at all
CVS-ADC levels, thus only one example is shown. The hole size of 0.17 A is very small,
which indicates the excitation from one contracted carbon 1s orbital. As mentioned above,
CVS-ADC(1) provides no difference between (D/A) or (h/e) density properties, which
can be seen when comparing both types of densities illustrated in Figure 5.1. Note that
the electron densities slightly differ between the CVS-ADC levels, but the shape is almost
identical. o is in the case of the CVS-ADC(1) calculation 1.24 A, which is identical to
the o4 value. Orbital relaxation effects are apparently visible when investigating the
(D/A) densities at the higher CVS-ADC levels, particularly, in a direct comparison with
the (h/e) densities. Generally, all higher-order CVS-ADC methods show the same effect:
while the attachment densities exhibit only slight effects compared to the (h/e) densities,
the detachment densities contain strong relaxation effects. These can be described as an
expansion from the Cop atom to the neighboring atoms, which results in a strong diffuse
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delocalization over the whole molecule. Thereby, the detachment density is mostly relaxed
to the other carbon atom, but the two connected hydrogen atoms are influenced, too. In
contrast to the detachment density, the attachment density is mainly located on the Coy
atom.

Visually, the relaxation effects of the (D/A) densities are largest at the CVS-ADC(2)-x
level. To quantify this observation, exciton sizes can be helpful tools (see Table 5.2). In
the case of CVS-ADC(2)-x, op is with 1.00 A almost 6 times larger than ¢, with 0.17 A.
o4, in contrast, is about 0.25 A smaller than the corresponding o, value. Comparing these
values provided by the other CVS-ADC methods, respectively, one can generalize this
observation: o is for all investigated systems slightly larger than o4, while op is much
larger than oj. Hence, the relaxation effects of core excitations lead to a slight contraction
of the attachment density and a strong expansion of the detachment density. These effects
are largest using CVS-ADC(2)-x, which confirms the analysis of promotion numbers and
R2 values. Note that the exciton sizes just describe the extent of the exciton in a center of
charge picture defined via root-mean-square deviation of the respective position operators
(see chapter 2.5.8). Hence, one has to compare the exciton sizes based on the 1DDM
with the ones based on the 1 TDM to recognize the influence of relaxation effects to the
(D/A) densities. As a consequence of this description, op at the CVS-ADC(2)-s level, for
example, is larger than at the CVS-ADC(3,2) level, although the effects are visually larger
at the third order level, because the centers of charges are shifted differently. Another
example is that the o4 values are smaller than the o, values, although the attachment
density has a significant contribution located at the Coy atom. Hence, promotion numbers
are better suited for a general quantification of relaxation effects.

Next, let me take a look at the center of charge exciton sizes dp_,ao and dy_. (see
Table 5.2). A direct comparison reveals that dj,_e is significantly larger than dp_, o for all
investigated systems using higher order CVS-ADC methods. This can also be explained
by inspecting the (D/A) and (h/e) densities visually. Since the investigated states contain
only excitations from one contracted 1s orbital, the hole density is localized on one atom.
Due to the strong relaxation of the detachment density resulting in the spatial extent of
the density over the whole molecule, the center of charge is shifted in the direction of
the center of the molecule. Thereby, the attachment density is only slightly affected and
also delocalized over the molecule, thus the distance of the center of charges of the (D/A)
density is reduced. Finally, note that R2 and ppa values of the organic radical CHg are
smaller compared to the closed-shell systems. I show in the following chapter that this
is often the case for core-excited states with s,7* character of small open-shell systems
(see chapter 6.3). An explanation of this observation is the local character of these core
excitations. Looking at both exciton sizes d (center of charges) of the CHs radical with
values of 0.00 A independent of the applied CVS-ADC order confirms the local character
of this state. The dey. value, which includes the dynamic charge separation contribution,
is with 1.04 A at the CVS-ADC(2)-x level larger than the values based on the center of
charge picture, indicating strong dynamic effects within the open-shell CH3 system.
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Chapter 6

Calculations of X-ray
Absorption Spectra of Small
and Medium-Sized Molecules

After benchmarking the CVS-ADC methods, I present in this chapter calculated X-
ray absorption (XA) spectra of chosen medium-sized molecules and small organic rad-
icals. From the field of organic electronics, acenaphthenequinone (ANQ), 3,4,9,10-
perylentetracarboxylic dianhydride (PTCDA) and 2,2’-bithiophene (BT) are investigated,
while the biologically relevant molecules porphin, thymine and cytosine are studied to
demonstrate the capabilities of my CVS-ADC(2)-x implementation. Furthermore, first
calculations of XA spectra of radicals ever calculated with the CVS-UADC method are
presented. Therefore, a set consisting of the methyl (CHs) radical, hydroxyl (OH) and
allyl radicals as well as the triplet dioxygen diradical (O3) was chosen. All calculated
X-ray absorption spectra are discussed at the level of CVS-(U)ADC(2)-x and compared
with experimental data. In the case of the ANQ and cytosine systems, the CVS-ISR
method is employed to obtain core-excited state densities, which are used for a further
wave function analysis. These results are discussed as well in this chapter. Since most of
the other studies presented in this chapter were performed before I have implemented the
CVS-ISR approach and combined the CVS-ADC implementation with the 1ibwfa package,
discussions of state characters are based on the MO configurations using the MO expansion
coefficients. There is often no dominant configuration that characterizes a core-excited
state adequately, because an electronic core-excited state in terms of CVS-ADC(2)-x is
represented by combinations of singly and doubly excited configurations. Hence, only
the most dominant configurations with a contribution larger than 6.25% are shown and
only pictures of relevant MOs are presented to keep a clear view. Furthermore, only
spectroscopically relevant bright core-excited states are given in some cases to avoid
discussions of dark core excitations, which are usually not relevant. In the case of the
unrestricted calculations, virtual orbitals are labeled according to their spin (« or ). 51
for example, denotes the lowest unoccupied orbital with S-spin and n*-character.

Besides PTCDA and cytosine, ground state geometry optimizations of the molecules
were performed with MP2 employing the def2-TZVPP 18 basis set in combination with the
resolution-of-the-identity (RI) 192193 approximation and the respective auxiliary TZVPP 194
basis set. Due to technical limitations, the ground state structure of the PTCDA molecule
was optimized at the level of DFT, employing the B3LYP xc functional 27127 and the
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def2-TZVPP basis set. The ground state geometry of cytosine was also optimized at
the MP2 level of theory, but the SV(P)!% basis set was employed to be in accordance
with another work.®* For all geometry optimization calculations, the TURBOMOLE 6.3.7
program %6 was used. Core-excited states and the corresponding properties were calculated
with my implementation of CVS-ADC(2)-x as well as the CVS-ISR implementation as
described in chapter 3. Exciton sizes and state densities were calculated using the libwfa
library. 84-86-8% Note that both ground and core-excited state calculations of the small
organic radicals are always performed using the unrestricted variants of the respective
methods. To save computational time, molecular point group symmetry was exploited in
the calculations of BT (C3), ANQ (Cy,), porphin (D) and PTCDA (Dsyy,). A special case
is the ANQ molecule, where the calculations of C 1s XA spectra were performed using Cs,
point group symmetry, while the O 1s spectra were computed with and without exploiting
point group symmetry. For the calculations of core-excited states, the following basis sets
were employed: 6-3114++G**109:110.113 (thymine, BT, ANQ, CHs, OH, O, allyl radical),
6-31++G** 1113 (phorphin) and 6-31G** L2 (PTCDA). The optically allowed By,
core-excited states of porphin were also calculated with the larger 6-3114++G** basis set
to show that the deviations in the results are mostly due to basis set incompleteness. If not
otherwise stated, all calculations were performed using the Cartesian 6D/10F version of
the respective basis sets. All computed values shown in this chapter are absolute without
any level shift or consideration of relativistic effects. Finally, note that the whole content
of this chapter has already been published by me and my co-authors. Calculations of
the closed-shell systems are published in Journal of Computational Chemistry, 35 (2014),
pages 1900-1915, while the XA spectra of the open-shell systems are published in Journal
of Chemical Theory and Computation, 10 (2014), pages 4583-4598.°%97 Furthermore, the
state properties and wave function analyzes of ANQ and cytosine have been submitted for
publication in Journal of Chemical Theory and Computation, (2016).%°
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Figure 6.1: Structures of acenaphthenequinone (ANQ), 2,2’-bithiophene (BT) and 3,4,9,10-
perylentetracarboxylic dianhydride (PTCDA). In the case of ANQ and PTCDA the atoms
are numbered in groups. Each group consists of equivalent atoms due to point group
symmetry, whose 1s orbitals form the respective linear combinations of electron donor
orbitals.

6.1 Molecules in the Field of Organic Electronics

Electronic devices based on organic materials like organic light emitting devices (OLED)
or photovoltaic materials are of high interest to the current applied research. 197199 To
investigate and understand charge transport mechanisms depending on intermolecular
interactions, XAS techniques are often employed.!! This is due to the intermolecular
interactions, which define the charge transport properties of the semiconducting materials
that are correlated with the electronic structure and the levels of the lowest unoccu-
pied molecular orbitals (LUMO) of the molecules. In principle, there are two types of
molecules needed for organic solar cells: electron acceptors and electron donors. Thio-
phenes have been recognized as good donor molecules, while perylene derivatives like
3,4,9,10-perylentetracarboxylic dianhydride (PTCDA) and acenaphthenequinone (ANQ)
are widely used as electron acceptors. 2290204 Therefore, I chose ANQ, 2,2’-bithiophene
(BT) and PTCDA as example systems to demonstrate the potential of CVS-ADC(2)-x
calculations in the field of organic electronics. Figure 6.1 illustrates the structures of these
molecules, thereby indicating the numbering of the atoms, respectively.

6.1.1 Acenaphthenequinone

ANQ is a medium-sized quinone with 20 atoms and it represents a model system for
electron acceptor molecules in photovoltaic devices. Both carbon and oxygen K-edge
spectra are discussed in this section. A significant difference between ANQ and the small
systems discussed in the last two chapters is the number of atoms of the same type from
which core electrons are excited, which is due to the Cy, symmetry. ANQ contains twelve
carbon atoms and some of them are equivalent (see Figure 6.1) as well as two equivalent
oxygen atoms. As a consequence, the 1s orbitals form linear combinations that describe
the core-excited states, respectively. Illustrations of the relevant virtual MOs are given in
Figure 6.2.

Let me start with the CVS-ADC(2)-x results of the O 1s excitations, which are
shown in Table 6.1. Triplet core-excited states are also included to demonstrate that my
implementation is capable of calculating such states in general. Experimentally, there
is only one broad peak in the low O 1s excitation energy domain between 529.2 eV and
531.4 eV.2% Since Cy, symmetry was not exploited in this example, the first eight core-
excited states are almost pairwise degenerate. FEach pair of the singlet states consists of one
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Figure 6.2: Illustration of the relevant virtual molecular orbitals of ANQ at the level of HF
in combination with the 6-3114++G** basis set. The isosurfaces of the MOs are rendered
with an isovalue of 0.02.

Table 6.1: Core-excitation energies (wey), oscillator strengths (fos.), character and amount
of double amplitudes (R2) of the first eight O 1s singlet and triplet excited states of ANQ
calculated using CVS-ADC(2)-x and the 6-311++G** basis set. The calculated values
are compared with experimental data.?%® Only the main transitions are shown and the
numbering of the atoms complies with Figure 6.1. This table has already been published
by me and my co-authors. %6

State wex [€V]  fose  Main transition (1s =) R2 [%] wex [eV] (Expt.)

T 528.99 — 01,02 — 73 21
To 528.99 — 01,02 — 73 21
S1 529.45  0.0002 01,02 — =3 23 5999 - 531 4
Sa 529.45  0.0689 01,02 — 73 23
Sa 533.08  0.0000 01,02 — =« 27
Sa 533.08  0.0003 01,02 — =« 27
Ts 533.09 — 01,02 — =7} 27
Ty 533.09 — 01,02 — n} 27
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state which is optically allowed, while the other exhibits no significant oscillator strength.
The CVS-ADC(2)-x result with 529.45 eV is very close to the experiment, exhibiting an
error of 0.85 eV, i.e. a relative error of 0.1%. The optically allowed core-Sy state is mainly
characterized by 51.7% of an electron promotion from a linear combination of the two
O 1s orbitals to the 75 (LUMO+2) orbital, which exhibits a strong 7* fraction located
on the oxygen atoms. Hence, a significant overlap with the O 1s orbitals exists, resulting
in a localized state with a strong oscillator strength of 0.0689. The amount of double
excitations contributing to this state is considerable with 23%, indicating strong relaxation
effects. Reinvestigations with additionally calculating (h/e) state densities provide an
improved picture of the state character of the core-Ss state (see Figure 6.3). Here, it is
obvious that the electron is promoted from the oxygen 1s orbitals to a 7*-level, which is
localized on the C=0 bonds, whereas the LUMO+2 orbital has also a delocalized fraction
on the carbon ring. Since the transition into the LUMO+2 orbital only contributes with
51.7%, it is not sufficient to define the state character by only considering the main MO
transitions. This demonstrates the advantage of inspecting state densities rather than MO
transitions to determine the character of a core-excited state.

Next, the calculated C 1s spectrum of ANQ is discussed. The calculated results
of the first 18 singlet states and the experimental comparison are given in Table 6.2.
Henceforward, triplet states are neglected, because they are optically forbidden and do not
contribute to the absorption spectra. Within the first 18 core-excited states, all optically
allowed states are of By symmetry and exhibit s,7* character based on the MO transition
contributions. Some states are doubly degenerate due to the Cy, symmetry and all states
exhibit large R2 values ranging from 24% to 28%. The first experimental'? peak is at
284.1 eV, which corresponds to the 1 !By state. The difference of the calculated state to
the experiment is only 0.3 eV (0.1%) and based on the MO transitions, this core excitation
is dominated by an electron promotion from the C7 atoms to the 7 and 73 virtual MOs.
The next two higher !By states that exhibit oscillator strength are energetically separated
by only 0.03 eV, thus both correspond to the second experimentally observed peak at
284.45 eV. Here, the difference between calculation and experiment is 0.36 eV. Both 2 1B,
and 3 !B, states can be characterized by transitions to the 7} and the 73 orbitals, but
in contrast to the 1 !B, state, the C4 and C5 carbons are the electron donor atoms.
Since the first optically allowed state has an error of 0.3 eV compared to the experiment,
the calculated energy difference between the first and second/third bright core-excited
states is in perfect agreement with the experiment. The third bright state (4 1Bg) with a
calculated core-excitation energy of 284.96 eV exhibits an error of 0.16 eV compared to
the experiment. Hence, this error is slightly lower than for the previous two states and
therefore the spacing between the second and third optically allowed states is slightly worse
described than the first one. The 4 !By state is characterized by a core excitation from
the C6 carbons to the 7] and 7§ orbitals. The fourth optically allowed core-excited state
is 5 !By, which exhibits an oscillator strength of 0.024. Compared to the experimental
value of 285.0 eV, the error is 0.27 eV, which is again of similar magnitude as the one
of the first two bright states. This state is characterized by a core excitation from the
C5 carbons to the 75 and 7§ orbitals. The fifth bright experimental peak at 285.6 eV is
broad and can be described as a mixture of different core-excited states. The calculated
excitation energies range from 285.6 eV to 285.92 eV, where the degenerate states 8 !By
and 9 !B, exhibit the highest oscillator strength among these states. Hence, the error to
the experiment is 0.32 eV, which is again of the same magnitude as the first one.

Eventually, all excitation energies of the core-excited states of ANQ calculated with
CVS-ADC(2)-x/6-311++G** exhibit almost constant absolute and very small relative
errors. Therefore, they are in almost perfect agreement with the experimental spectrum,
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Figure 6.3: Comparison of (h/e) and (D/A) densities of the 2!By C 1s and O 1s core-
So excited states of ANQ computed with CVS-ADC(2)-x using the 6-3114++G** basis
set. The isosurfaces were rendered with the isovalues 0.0128 (opaque), 0.0064 (colored
transparent), and 0.0008 (transparent).
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Table 6.2: Core-excitation energies (wex), oscillator strengths (fs), character and amount
of double amplitudes (R2) of the first 18 C 1s singlet excited states of ANQ calculated
using CVS-ADC(2)-x and the 6-3114++4G** basis set exploiting Co, point group symmetry.
The calculated values are compared with experimental data.'® Only the main transitions
are shown and the numbering of the atoms complies with Figure 6.1. This table has
already been published by me and my co-authors.?%

State wex [eV]  fose  Main transition (Is —) R2 [%] wex [eV] (Expt.)

1A, 28440  0.000 C7 — i}, 7 26 0841
1B, 284.40 0.038 C7 — i}, m 26

21A, 28478  0.000 C4 — i}, 7 25

21B, 28478 0.041 C4 — i}, 7 25

31A, 28481  0.000 C5 — i}, 7 25 284.45
31B, 284.81 0.086 C5 — i}, 7 25

41A, 28496  0.000 C6 — i}, 26

41B, 28496 0.036 C6 — i}, 26 284.8
51B, 28527 0.024 C5 — m}, 7 24 285.0
51A, 28542  0.000 C5 — i} 28

61A, 28547  0.000 C5 — 28

71A, 285.60 0.000 C7 — i}, 7t 27

6B, 285.60 0.014 C7 — i}, 7t 27

71B, 285.74  0.028 C5 — m}, 7 25

81A, 28590  0.000 C3 — m}, 7t 23 ys5.6
91A, 28592  0.000 C6 — w5, 26 '
81B, 285.92 0.034 C6 — 5, 7 26

91B, 28592 0.089 C3 — 73,7 24
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Table 6.3: Comparison of excitation energies (wex ), oscillator strengths (fos), amount of
doubly excited amplitudes (R2), the character () and various descriptors (see chapter
2.5.8 for definitions) of the first five and three core-excited singlet states with By symmetry
of ANQ (C 1s and O 1s). The results were computed using CVS-ADC(2)-x and the
6-311++G** basis set. Exciton sizes and distances are given in A. This table has already
been submitted for publication by me and my co-author. %°

State ‘ Wex [€V]  fose R2[%] ppa 0D oL oA 0e dpsa  dhse dex  Ren v
ANQ C 1s
1'B, 284.40  0.038  25.53 1.99 1.75 1.19 2.06 2.51 0.05 0.22 222 047 1ls=n*
2'B, 284.78  0.041  25.29 1.96 2.56 241 2.57 2.58 0.06 0.11 238 0.55 1s-7*
3'B, 284.81 0.086  25.21 1.94 1.87 131 218 245 0.40 1.06 244 045 1s-7*
41B, 284.96  0.036  26.45 1.97 2.58 243 2.57 2.53 0.19 042 2.60 047 1s-n*
5'By 285.27 0.024 24.41 218 1.55 0.19 191 2.25 0.43 1.00 247 0.00 1s-7*
ANQ O 1s
1'By 529.45 0.069 22.70 1.85 1.75 148 196 1.95 0.37 090 2.05 046 Ils7*
2'B, 533.08 0.000 26.94 2.05 2.04 1.48 2.60 2.67 1.01 2.67 4.22 -0.16 1s-7*
3'B, 534.78  0.001 27.00 223 218 148 279 2.68 1.29 3.64 4.65 0.13 ls-7*

in particular when considering the errors due to the neglected relativistic effects. Before I
go on to the next molecule, I would like to present further results of the reinvestigation of
ANQ using the CVS-ISR approach and wave function analysis tools to provide deeper
insight into the XA spectra. Table 6.3 contains exciton sizes, promotion numbers and
correlation coefficients (Rep) for the C 1s and O 1s excitations of ANQ. As mentioned
above, the largest difference between the C 1s/0 1s core excitations of ANQ and the small
systems discussed in the last chapters is the number of atoms of the same type from which
core electrons are excited due to the Co, symmetry. This has also influences on the state
densities and corresponding exciton sizes. Let me start with an example, i.e. the (h/e)
and (D/A) densities of the 2!By C 1s core-excited state, which are illustrated in Figure
6.3. This state is characterized by an electron promotion from the linear combination
of two symmetrical identical C4 carbon atoms to a 7 level, which is also confirmed by
the dominant MO transitions (see Table 6.2). Both hole and detachment densities are
mostly located on both C4 atoms, but the detachment density shows typical relaxation
effects with the expansion of the density to the neighboring atoms, while the hole density
is almost strictly localized on the C4 atoms. Since core orbitals are strongly contracted
and localized, electrons are promoted from one specific 1s orbital located on one atom in
experiments, because real systems are not perfectly symmetric. However, the results above
prove that the theoretical description of core-excitation energies and oscillator strengths
exploiting point group symmetry is not problematic, leading to perfect agreement with
experimental spectra. One should interpret these states as core excitations located on all
symmetrically identical atoms, respectively.

Exciton sizes that contain information about the generated electron hole, however,
might provide a wrong picture of the real situation. The oy, values of the first five !By
states of ANQ (C 1s) differ significantly, which depends on the distance or spacing between
the symmetric identical carbon atoms. Looking at the example of the 2'B, state, a large
oy, value of 2.41 A is calculated. This value is twice the intramolecular distance of the
two C4 atoms of 4.81 A, because the exciton hole size is defined as the root-mean-square
deviation of the position operator of the hole (center of charges). Hence, the oy, values fit
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perfectly to the distance of the respective identical carbon atoms. In contrast, the o) value
of the 5B, state is 0.19 A indicating a core excitation from a single 1s orbital located on
one carbon atom, i.e. the one in the center of the molecule (C5). Here, another advantage
of the (h/e) analysis is revealed. In the MO picture, the C5 group consists of four carbon
1s orbitals, thus the characters of the corresponding core excitations are defined with
respect to the whole group. The densities of the 5'B, state show that this state, for
example, is only dominated by one of the C5 atoms. However, the other states are indeed
characterized by linear combinations of equivalent carbon atoms, which is also observable
in the exciton distances dp_,o. These are very small with values < 0.5 A for all C 1s
excited states, because the center of charge of the holes is located between the equivalent
carbon atoms, which is close to the center of charge of the delocalized attachment densities.
As a consequence, one has to be careful with the interpretation of exciton sizes in the case
of molecules that contain equivalent atoms due to point group symmetry.

Turning to the promotion numbers, both C 1s and O 1s excitations of ANQ exhibit
large values around 2.0 and higher, which fits to the large amount of doubly excited
amplitudes contributing to the core-excited states of ANQ. Hence, promotion numbers
and a direct comparison between 1DDM and 1TDM properties are still valid tools for
analyzing the influence of relaxation effects. Regarding the correlation coefficient Rep,
which describes dynamical correlation effects, an influence of the symmetric equivalent
atoms can be identified, too. Rep, is exactly zero if the electron is promoted from only one
localized 1s orbital, for example in the case of the 5'By state of the C 1s excitation, while
the Ry values are #£ 0 if the state is characterized by linear combinations of equivalent 1s
orbitals. These observations can be explained by the compactness of a localized 1s orbital,
while in cases of equivalent atoms the core excitation is theoretically delocalized.

6.1.2 Bithiophene

Thiophene derivatives feature strong absorption bands in the UV region and corresponding
fluorescence properties, thus they are often used as electron donors in the field of organic
photovoltaic devices. 92294206 Ty combination with appropriate electron acceptors, high
energy transfer as well as high charge transfer rates can be yielded. Figure 6.4 illustrates
the relevant virtual orbitals of BT. The MOs that mainly participate in the bright core-
excited states show a clear m*-character and should be described reasonably well in any
basis set. However, note that, due to the strong diffuse and polarized 6-311++G** basis
set, the orbitals dj, d3, d}, and djg do not have a clear m*-character. They are dominated
by the diffuse functions showing the characteristics of an additional weakly bound electron
rather than an excited electron. As shown in previous work?°7 219 the BT molecule is
not planar in the ground state. At the level of RI-MP2 using the def2-TZVPP basis set
and exploiting C point group symmetry, the central dihedral angle is -150.1°. In chapter
9.2.3, the torsion around this dihedral angle is investigated in more detail.

Let me first take a look at the S 1s excitations, the results are summarized in Table
6.4. Here, only the first bright experimental peak?3®, which is located at 2474 eV, is
discussed. The CVS-ADC(2)-x results show that this band is described as a mixture
of the first four S 1s core-excited states. Due to the C symmetry, they are pairwise
degenerate with core-excitation energies of 2468.83 eV and 2468.97 eV, respectively. Hence,
the bright excitation is underestimated by 0.2% (5.1 eV), compared to the experiment,
which corresponds to the estimated magnitude of the missing relativistic effects of about
8.0 eV for S 1s excitations.!™ Note that crystal powder of oligothiophenes was used for
the experiments.?® The R2 values of these states are 15%, which is less than the ones
for the C 1s and O 1s core excitations of ANQ (see Tables 6.1 and 6.2). Hence, it seems
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Figure 6.4: Illustration of the relevant virtual molecular orbitals of BT at the level of HF
in combination with the 6-3114++G** basis set. The isosurfaces of the MOs are rendered
with an isovalue of 0.02.

Table 6.4: Core-excitation energies (wey), oscillator strengths (fos.), character and amount
of double amplitudes (R2) of the first six S 1s singlet excited states of BT calculated
using CVS-ADC(2)-x and the 6-311++G** basis set exploiting Cy point group symmetry.
The calculated values are compared with experimental data of oligothiophenes (crystal
powder).36 Only the main transitions are shown and the numbering of the atoms complies
with Figure 6.1. This table has already been published by me and my co-authors. %

State  wex [€V]  fose  Main transition (1s =) R2 [%]  wex [eV] (Expt.)
1B 2468.83 0.0057 51,92 — 7k, mg 15

11A  2468.83 0.0023 51,52 — 7, mg 15 2UTA

213 2468.97 0.0057 S1,82 — 77, di 15

2 1A 2468.97 0.0031 S1,82 — 72, dig 15

31A  2470.69 0.0001 51,52 — d7,dj, 15

31B  2470.69 0.0006 51,52 — d7,dj, 15

122



6.1. MOLECULES IN THE FIELD OF ORGANIC ELECTRONICS

Table 6.5: Core-excitation energies (wey), oscillator strengths (fos.), character and amount
of double amplitudes (R2) of the first 14 C 1s singlet excited states of BT calculated
using CVS-ADC(2)-x and the 6-311++G** basis set exploiting Cy point group symmetry.
The calculated values are compared with experimental data of BT monolayer adsorbed
on a Ag(111) surface.?* Only the main transitions are shown and the numbering of the
atoms complies with Figure 6.1. This table has already been published by me and my
co-authors. %%

State  wex [6V]  fose  Main transition (1s =) R2 [%]  wex [eV] (Expt.)

1B 285.19  0.004 C7-C10 — 73, 7 26
1'A 28519  0.041 C7-C10 — 72, 7 26
21B 28542  0.008 C5,C6 — %, 7 26
21A 28542 0.115 C5-C6 — 72, m 26
31A 28544  0.000  C5-CL0 — 7w 26 285.7
31B 285.44  0.000 C5-C10 — 7%, 75 26
41B  285.67  0.003 C3,C4 — %, 25
41A 28570 0.056 C3,C4 — ik, i 25
5B 287.08 0.001 C7-C10 — 7%, 7 25
51A  287.08  0.038 C7-C10 — 7%, 7} 25
6'B  287.14  0.008 C7-C10 — d, d} 26
6'A 287.14 0.003 C7-C10 — df, 3 26 286.7
71A  287.19  0.000 C7-C10 — df, d} 26
71B  287.19  0.010 C7-C10 — df, d} 26

that relaxation effects influence the final S 1s excited states less than other examples
investigated so far in this thesis. Going to the state characters, the first two transitions
are dominated by an electron promotion to the 7 and 7§ orbitals, while the two next
higher states are mostly characterized by transitions to the 7§ and djg orbitals. Besides
dig, all of these virtual orbitals have a distinct 7*-character and are delocalized over the
whole BT molecule. The donor orbitals are + linear combinations of the two sulfur 1s
orbitals due to the Co symmetry.

Turning to the C 1s spectrum of the BT, the results are given in Table 6.5. Here,
the experiments are performed with BT molecules adsorbed on a Ag(111) surface, while
the calculations do not consider environmental influences.3* I would like to discuss the
first two experimental peaks of the C 1s spectrum at 285.7 eV and 286.7 eV. The first
peak can be described as a superposition of the first eight core-excited states. Due to the
C5 point group symmetry, some of the core-excited states are doubly degenerate. The
core-excitation energies of these states range from 285.19 eV to 285.70 eV, where the 2 A
state located at 285.42 eV exhibits the largest oscillator strength of 0.115. Hence, the first
core-excited experimental peak is slightly underestimated by about 0.1% (0.3 eV). The
first eight calculated C 1s core-excited states are characterized by transitions to the 7Z and
m¢ orbitals including linear combinations of all eight carbon 1s orbitals as donor orbitals.
The next six higher core-excited states with core-excitation energies from 287.08 eV to
287.19 eV can be assigned to the second experimental peak. Here, the 5 'A state at
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Figure 6.5: Hlustration of the relevant virtual molecular orbitals of PTCDA at the level of
HF in combination with the 6-31G** basis set. The isosurfaces of the MOs are rendered
with an isovalue of 0.02.

287.08 eV exhibits the largest oscillator strength of 0.038, thus the error compared to
experiment is 0.13% (0.38 eV). In contrast to the first bright excitation, the energy of this
state is slightly overestimated. Hence, the energy spacing between these first two peaks is
1.66 eV at the CVS-ADC(2)-x level, which is larger compared to the experimental energy
difference of 1 eV. However, taking into account the lack of the Ag surface interactions,
this spacing may still be acceptable. All of the six states contributing to the second peak
can be characterized as transitions from the linear combinations of the C7, C8, C9 and
C10 1s orbitals to the 7% /7 and di /d% orbitals. In contrast to the S 1s excitations, the
amount of double amplitudes contributing to all C 1s excited states is between 25% and
26%, indicating significant orbital relaxation effects.

6.1.3 PTCDA

Due to its electronic structure, PTCDA is a dark red pigment. Its derivatives or nitrogen
variants like MePTCDI are often used in organic photovoltaic devices and organic semi-
conductors as electron acceptors. ?%:204:206 Since the molecular size of PTCDA is with 38
atoms quite large, the smaller 6-31G** basis set had to be used for the CVS-ADC(2)-x
calculations. In Figure 6.5 the relevant MOs for the core-excited states are shown at the
HF/6-31G** level, while the results of the first eight By, C 1s singlet excited states are
given in Table 6.6. Due to the spectroscopic selection rules of the Dy, point group,
only states belonging to the irreducible representations By,, B2, and Bs, are one photon
allowed and can possess oscillator strength.

In general, By, states exhibit significantly larger oscillator strengths than Bs, and
B3, thus only the first eight By, states will be discussed, which contribute to the first two
experimental peaks at 284.4 eV and 285.6 eV. Based on the CVS-ADC(2)-x calculation, the
first experimental peak is described by a mixture of the first four core-excited B, states

124



6.2. MOLECULES WITH BIOLOGICAL RELEVANCE

Table 6.6: Core-excitation energies (wey), oscillator strengths (fos.), character and amount
of double amplitudes (R2) of the first eight B, C 1s singlet excited states of PTCDA
calculated using CVS-ADC(2)-x and the 6-31G** basis set exploiting Daj point group
symmetry. The calculated values are compared with experimental data.'3 Only the main
transitions are shown and the numbering of the atoms complies with Figure 6.1. This
table has already been published by me and my co-authors. °°

State  wex [6V]  fose  Main transition (1s —) R2 [%] wex [€V] (Expt.)

1By, 285.36  0.072 Cl — nt, 26
21B;, 28544 0.058 C2 — 27 5344
31B;, 28572 0.073 C3 — 26
41By, 28575  0.090 C4 — i}, 26
51By, 287.11 0.061 C5 — %,k 23
61B, 287.19 0.090 C2 — i}, mt, 25 085 6
71By, 28723 0.095 C6 — o}, mk, 22
8By, 287.30 0.076 C4 — i}, mt, mh 26

with energies ranging from 285.36 eV to 285.75 eV, while the second peak corresponds
to the next four higher core-excited By, states with energies ranging from 287.11 eV to
287.30 eV. For a better overview, the carbon atoms are collected in groups according to the
Dy, symmetry (see Figure 6.1). The states contributing to the first peak are characterized
as transitions from C1, C2, C3 and C4 to the 7j and 73 orbitals, while in the case of the
states that describe the second peak, the transitions are dominated by electron promotions
from C2, C4, C5 and C6 to the first five virtual 7*-orbitals. The amount of doubly excited
amplitudes is large with values between 22% and 27% for all investigated !B, states,
thus strong orbital relaxation effects contribute to the C 1s core excitations of PTCDA.
Looking at the errors compared to experiment, the influence of the small 6-31G** basis
set becomes obvious. The 4 !By, state, which exhibits the largest oscillator strength with
0.090 in the case of the first bright excitation, has a computed core-excitation energy of
285.75 eV, thus the error compared to the experiment is 0.5% (1.35 e€V). In the case of the
second experimental peak, the 7 ! By, state possesses the largest oscillator strength with
0.095. Hence, the error with respect to the experiment is 0.6% (1.63 eV). Eventually, the
use of the smaller, non-diffuse 6-31G** basis set results in larger relative errors than in the
case of the diffuse 6-311++G** basis set used for ANQ and BT, but the peak structure of
the experimental spectrum is still very well reproduced, because the errors of both peaks
are of the same magnitude.

6.2 Molecules with Biological Relevance

Porphin can be seen as a representative molecule of interest in both biology and or-
ganic electronics. Just to mention a few examples, Porphin and porphyrine derivatives
are building blocks in the oxygen transport center of hemoglobin and are relevant in
light-harvesting pigments in photosynthetic proteins. Furthermore, they are studied to
understand energy transfer processes in photosynthetic systems and they are employed
in chemical sensors.2'12!2 Additionally, I present investigations of the XA spectra of the

125



CHAPTER 6. CALCULATIONS OF X-RAY ABSORPTION SPECTRA OF SMALL AND
MEDIUM-SIZED MOLECULES

@]

1
@)
HN | NJZJ\NH

|
OA\” H,N )3\)4

ui

porphin thymine cytosine

Figure 6.6: Structures of porphin and the DNA bases thymine and cytosine.

deoxyribonucleic acid (DNA) nucleobases thymine and cytosine, because recent research in
cancer therapy concentrates on an enhancement of radio-therapies via ICD after a resonant
core excitation that results in a low energy electron generation with the nucleobases as
potential targets.”® Both DNA bases were investigated in previous work by Trofimov et
al., but small basis sets had to be employed. 338 To demonstrate the basis set influence,
the C 1s, N 1s and O 1s excited spectra of thymine were recomputed with the larger and
more diffuse 6-311++G** basis set. In the case of cytosine, the CVS-ISR implementation
was used to calculate state densities and accompanied with an enhanced wave function
analysis, a deeper insight into the nature of the C 1s and O 1s excited states of cytosine is
presented. The structures of porphin, thymine and cytosine are shown in Figure 6.6.

6.2.1 Porphin

Starting with the N 1s core excitations of porphin, the relevant MOs are illustrated in
Figure 6.7. Extremely diffuse virtual MOs occur in the low-energy regime, e.g. djs and
dig, which correspond to weakly bound additional electrons due to the polarized and
diffuse functions of the 6-311++G** basis set.

Similar to the PTCDA molecule, which also exhibits Dy, point group symmetry,
only excited states with the irreducible representations Bi,, Bs, and Bs, are optically
allowed and can possess oscillator strength. Here, the By, states have much larger oscillator
strengths than the others. Hence, only the By, states are discussed and the CVS-ADC(2)-x
results are given in Table 6.7. For comparison, results obtained with the 6-31++G** and
6-311++G** basis sets are shown to demonstrate the influence of the larger 6-311+-+G**
basis set on the core-excitation energies of the By, states.

Let me start with the first two experimental?'2 peaks at 398.2 eV and 400.3 eV. The
experimental XA spectrum is obtained from a solid film of porphin, thus one can expect
differences to the calculations. However, the first two experimental peaks are perfectly
reproduced by CVS-ADC(2)-x using the larger 6-3114++G** basis set. The absolute errors
of the 1 ' By, and 2 ' By, states are only 0.03 eV and 0.05 eV compared to the experiment,
while using the smaller 6-31++G** basis set leads to significantly larger errors of 1.69 eV
and 1.82 eV, respectively. The energy spacing between these two states, however, is
excellently described using both basis sets. Looking at the MO transitions reveals that the
1 !By, state is characterized by an electron promotion from a linear combination of the
N 1s orbitals located on the deprotonated nitrogens to the LUMO, while the 2 ! By, state is
dominated by transitions from the 1s orbitals of the protonated nitrogens to the LUMO—1.
The third and fourth peaks at 402.3 eV and 403.9 eV are experimentally not well resolved,
because they are included in a broad absorption band. According to the CVS-ADC(2)-x
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Figure 6.7: Illustration of the relevant virtual molecular orbitals of porphin at the level
of HF in combination with the 6-311++G** basis set. The isosurfaces of the MOs are
rendered with an isovalue of 0.02.

calculations, the third peak can be described as a mixture of the 3 1By, and 4 !By,
states, while the fourth peak corresponds to the 8 !B, state. Using the 6-3114++G**
basis set leads to an underestimation of 1.12 eV and 0.53 eV compared to the experiment,
respectively. Since the third peak exhibits a large error, the energy spacing between the
second and third states is underestimated by 0.83 eV at the CVS-ADC(2)-x/6-3114++G**
level, while the experimental value is 2 eV. The fourth peak, however, is in principle well
described. Inspecting the characters of these states reveals that the third and fourth peak
correspond to Rydberg-type states. The transitions of the 3 !By, and 4 !By, states are
characterized as 1s excitations of the deprotonated nitrogens into the 73g, djg and dj,
MOs, which exhibit diffuse fractions. The main transition of the 8 !By, state can be
characterized as an electron promotion from the protonated nitrogen 1s orbitals to the 73
and dis MOs. The strongly diffuse character of theses states can explain the larger errors
at the CVS-ADC(2)-x level compared to experiment. Furthermore, one should consider
that the experimental spectrum of the solid species features a broad absorption, where
peaks three and four are embedded. Hence, the error analysis of the calculated values
should be taken with a grain of salt. The R2 values of all ! By, states are large with values
between 25% and 27%, indicating again strong orbital relaxation effects.
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Table 6.7: Core-excitation energies (wey), oscillator strengths (fos.), character and amount
of double amplitudes (R2) of the first eight By, C 1s singlet excited states of porphin
calculated using CVS-ADC(2)-x exploiting Dsp, point group symmetry. The calculated
values are compared with experimental data of a solid porphin film.2'2 The calculations
were performed using the 6-314++G** and 6-311++G** basis sets. Only the main
transitions are shown and the numbering of the atoms complies with Figure 6.6. This
table has already been published by me and my co-authors. %6

6-314+G** 6-3114++G** Expt.
State | wex [€V] fosc Wex [€V] fosc R2 [%] Main transition (1s =) | wex [€V]
1By, 399.89  0.0338 | 398.07 0.0351 26 N1,N2 — 7} 398.2
2 1B, 402.12  0.0268 | 400.35 0.0280 25 N3,N4 — 73 400.3
3 1B, 403.03  0.0263 | 401.18 0.0257 26 N1,N2 — 73, 102.3

41By, | 403.59 0.0079 | 401.73  0.0095 26 N1,N2 = di, dig, T
51By, | 40429 0.0012 | 40247 0.0011 27  NI,N2 — dig, 75, T35

6 1By, | 404.82 0.0019 | 402.97 0.0027 27 N1,N2 — 734, d}g

71By, | 404.90 0.0008 | 403.08 0.0003 27  NI1,N2 — 73, dig, T3

81By, | 405.18 0.0187 | 403.37 0.0178 25 N3,N4 — 3o, di 403.9
9By, | 405.37 0.0001 | 403.51 0.0001 27 N1,N2 — 3, T

10 !By, | 405.74 0.0085 | 403.91 0.0005 27  NIN2 — mhs, o, o

6.2.2 Thymine

The K-shell absorption spectra of thymine were investigated at the CVS-ADC(2)-x level
in detail in previous work.®¥ Since my efficient implementation of the CVS-ADC methods
allows for the treatment of about 500 basis functions in an adequate computational time,
I concentrate here on the improvement of the results by using the larger 6-3114++G**
basis set, whereas before only the small 6-314+G basis set had been employed. The former
work also provides a comparison of the computed oscillator strengths with experimentally
measured intensities. It turned out that the calculated oscillator strengths are in a good
agreement to experimental intensities, independent of the size of the basis set.

The first 15 C 1s states calculated at the CVS-ADC(2)-x level are summarized in Table
6.8, including the previous results using the 6-31+G basis set. Generally, the results can
be summarized by the following statements:

e When the larger basis set is employed, the relative error in the C 1s core-excitation
energies is reduced from about 1% to only 0.2%, i.e. approximately 2.5 eV to at
most 0.65 eV.

e Thereby, the order of the states changes slightly.

e Oscillator strengths do not differ much when employing the different basis sets,
which confirms the investigation in chapter 4.3.

e No constant shifting of the computed core-excitation energies is necessary to achieve
agreement with the experiment, when the larger 6-311++G** basis set is employed.
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Table 6.8: Core-excitation energies (wex), oscillator strengths (fosc) and relative errors of
the first 15 C 1s singlet excited states of thymine calculated using CVS-ADC(2)-x. The cal-
culated values are compared with experimental data and previous work.®® My calculations
were performed using the 6-311+-+G** basis set, while in the previous work the 6-314+G
basis set had been used. This table has already been published by me and my co-authors. %

Previous work Our work Expt.
State | wex [6V]  fose  Error [%] | wex [€V]  fose  Error [%)] | wex [€V]
1 287.02  0.024 0.74 284.84  0.024 -0.02 284.9
2 288.54  0.045 0.92 286.36  0.045 0.16 285.9
3 288.97  0.000 286.90  0.000
4 289.05  0.004 287.11  0.003
5 289.38  0.000 287.29  0.000
6 289.98  0.007 287.95 0.015 0.23 287.3
7 290.06  0.015 0.96 288.03  0.007
8 290.23  0.001 288.07  0.002
9 290.37  0.007 288.24  0.053 0.15 287.8
10 290.40 0.013 288.34  0.000
11 290.42  0.056 0.91 288.39  0.004
12 290.46  0.000 288.45 0.013 0.02 288.4
13 290.62  0.000 288.63  0.000
14 290.95 0.010 0.88 288.88  0.008
15 291.00  0.001 289.11  0.002

129



CHAPTER 6. CALCULATIONS OF X-RAY ABSORPTION SPECTRA OF SMALL AND
MEDIUM-SIZED MOLECULES

Table 6.9: Core-excitation energies (wex), oscillator strengths (fos.) and relative errors
of the seven energetically lowest N 1s singlet excited states of thymine calculated using
CVS-ADC(2)-x. The calculated values are compared with experimental data and previous
work. 89 My calculations were performed using the 6-311++G** basis set, while in the
previous work the 6-314+G basis set had been used. This table has already been published
by me and my co-authors. %%

Previous work Our work Expt.
State | wex [V]  fose  Error [%)] | wex [€V]  fose  Error [%] | wex [€V]

1 404.06  0.0119 0.59 401.50  0.0111 -0.05
2 404.43  0.0085 401.82  0.0070 401.7
3 404.61  0.0079 402.21  0.0078
4 405.03  0.0069 402.54  0.0035
5 405.11  0.0035 402.60  0.0066
6 405.49  0.0098 0.69 403.03  0.0106 0.08 402.7
7 405.91  0.0055 403.42  0.0050

Eventually, this comparison confirms the excellent accuracy of the CVS-ADC(2)-x/6-
3114++G** approach due to fortuitous error compensation.

Let me turn to the N 1s spectrum of thymine, the results are given in Table 6.9. Based
on the analysis of the first two bright experimental peaks, the observations are similar to
the C 1s results. The CVS-ADC(2)-x calculations with the larger 6-3114++G** basis set
exhibit again a remarkable agreement with the experiment, while a constant shift of about
2.6 €V had to be applied to the core-excitation energies computed with the smaller basis
set. Employing the larger 6-3114++G** basis set reduces the error to less than 0.2 eV,
e.g. 0.1%, while when using the smaller basis set relative errors of 0.59% and 0.69% are
obtained (2.36 €V, 2.79 eV).

Going to the analysis of the O 1s spectrum of thymine confirms the results of the
other K-edge spectra. The results are given in Table 6.10. The previous work with the
smaller basis set shows relative errors between 0.31% and 0.42% for the first three bright
O 1s excited states of thymine. This is an absolute error of about 2.2 eV. My calculations
with the 6-3114++G** basis set provides an underestimation between 0.14% and 0.29%
(0.76 eV — 1.56 V), thus a better quantitative agreement with the experiment is given.
The energy spacing between the first two experimental peaks is 0.9 eV and therefore
almost perfectly described at the CVS-ADC(2)-x level with both basis sets (1 eV).

Eventually, the study of the thymine molecule confirms the benchmark results in chapter
4. CVS-ADC(2)-x in combination with a diffuse triple-¢ basis set benefits significantly
from the fortuitous error compensation and the remaining error has about the size of the
neglected relativistic effects.

6.2.3 Cytosine

The XA spectra of cytosine were investigated in previous work at the CVS-ADC(2)-x
level.33 Here I would like to expand this investigation with information provided using
the CVS-ISR formalism and the wave function analysis tools. Let me start with the C 1s
excitations, the results are summarized in Table 6.11. Here, only density information
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Table 6.10: Core-excitation energies (wey ), oscillator strengths (f,sc) and relative errors of
the first 15 O 1s singlet excited states of thymine calculated using CVS-ADC(2)-x. The cal-
culated values are compared with experimental data and previous work.® My calculations
were performed using the 6-311+-+G** basis set, while in the previous work the 6-314+G
basis set had been used. This table has already been published by me and my co-authors. %

Previous work Our work Expt.
State | wex [€V]  fose  Error [%] | wex[€V]  fose  Error [%] | wex [eV]
1 533.55  0.0310 0.40 530.52  0.0282 -0.17 531.4
2 534.53  0.0293 0.42 531.54  0.0268 -0.14 532.3
3 536.52  0.0001 533.30  0.0001
4 536.67  0.0004 533.43  0.0003
5 536.97  0.0002 533.73  0.0003
6 537.32  0.0016 534.10  0.0012
7 537.35  0.0026 0.31 534.14  0.0027 -0.29
8 537.47  0.0000 534.20  0.0002
9 537.73  0.0020 534.37  0.0013
10 537.75  0.0006 534.56  0.0006 535.7
11 537.80  0.0019 534.71  0.0019
12 538.09  0.0011 534.77  0.0007
13 538.17  0.0011 534.90  0.0009
14 538.33  0.0020 534.94  0.0018
15 538.60  0.0001 535.26  0.0001
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Table 6.11: Core-excitation energies (wey), oscillator strengths (fos.), character, amount of
double amplitudes (R2) and various descriptors (see chapter 2.5.8 for definitions) of the
first five C 1s excited singlet states of cytosine calculated using CVS-ADC(2)-x and the
6-311++G** basis set. The calculated values are compared with experimental data.33
This table has already been published by me and my co-authors. %4

State  wex [€V]  fose  R2[%] on (A) 0o (A) dep (A) character | Exp. wey [eV]
Sy 284.98  0.017 24.9 0.166 1.72 1.93 1s-7* 285.04
S 286.57  0.050 22.8 0.166 1.60 1.70 1s-7* 285.98
Ss 286.86  0.005 24.9 0.166 2.95 3.31 1s-Ryd.
S4 287.33  0.014 25.3 0.167 2.14 2.48 1s-m*
Ss 287.70  0.053 21.0 0.167 1.70 1.77 1s-7* 287.30

provided by the 1TDM is considered. At the CVS-ADC(2)-x/6-3114++G** level an
excellent agreement with experimental data3? is provided. The first three experimental
peaks at 285.04 eV, 285.98 eV and 287.30 eV are almost perfectly reproduced with
computed core-excitation energies of 284.98 eV, 286.57 eV and 287.70 eV, respectively.
These bright excitations correspond to the C 1s excited S, Se and S5 states. To determine
the characters of these states, the computed (h/e) densities are illustrated in Figure 6.8.
All of the three optically allowed C 1s core-excited states are characterized by transitions
into 7*-levels, which are delocalized over the cytosine ring. Since there is no point group
symmetry and the carbon atoms are not chemically identical, the carbon 1s orbitals are
energetically separated, which leads to very localized core excitations. Regarding the Sy,
the electron is promoted from the 1s orbital of the C5 atom, while it is the C4 atom in the
case of the Sy and the C3 atom that characterizes the S5. Hence, all carbon 1s orbitals are
each localized on only one carbon atom and therefore all core-exited states are dominated
by transitions including one carbon 1s orbital. The hole sizes (o) confirm this observation
with very small values of about 0.17 A for all investigated C 1s core excitations. Looking
at the electron sizes (o.) and the dynamic charge separation values (dex), they follow
the same trend. States exhibiting s,m*-character show significantly smaller o, and dex
values than the Rydberg state Sz, which has a spatially diffuse character. The correlation
coefficient (R,j) values are always 0.000, because the core excitation proceeds from very
compact 1s orbitals, leading to a total lack of correlation. However, the R2 values are
between 21.0% and 25.3%, which indicates strong orbital relaxation effects. These are
further analyzed by means of the oxygen 1s excitations of cytosine.

Cytosine exhibits only one oxygen atom, thus there is only one localized O 1s orbital
from which the electron can be promoted into various virtual levels. The CVS-ADC(2)-x
results of the O-1s excitations are summarized in Table 6.12. Experimentally, there is
only one significant peak at 532.00 eV in the low energy region®?, which corresponds to
the core-S; state with a computed excitation energy of 531.04 eV. The next four higher
core-excited states are optically forbidden, because they possess no oscillator strength.
Inspecting the promotion numbers (ppa) shows that values are around 2.0 or even larger,
thus strong relaxation effects are included within all O 1s core-excited states. This is
confirmed with R2 values larger than 22%. The hole size is with 0.12 A constant for
all core-excited states, because there is only a single oxygen atom. Note that this value
is slightly smaller when compared to the C 1s states, which follows from the increased
nuclear charge. Similar to the results shown in chapter 5.2, the op values are at least 10
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Figure 6.8: Illustration of hole(blue)/electron(lime) densities based on the 1TDM of
the first, second and fifth C 1s core-excited singlet states of cytosine computed with
CVS-ADC(2)-x using the 6-311++G** basis set. The isosurfaces were rendered with the
isovalues 0.0064 (opaque), 0.0016 (colored transparent) and 0.0004 (transparent).

Table 6.12: Comparison of excitation energies (wex), oscillator strengths (fosc), amount of
doubly excited amplitudes (R2), the character (y) and various descriptors (see chapter
2.5.8 for definitions) of the first five O 1s excited singlet states of cytosine. The results
were computed using CVS-ADC(2)-x and the 6-3114++G** basis set. Exciton sizes and
distances are given in A. This table has already been submitted for publication by me and
my co-author. %

State  wex [€V]  fose R2[%] ppa 0D on oA 0e dpsa  dhnse dex  Ren 5
Sy 531.04  0.027 22.16 1.95 1.15 0.12 1.64 1.74 0.58 1.36  2.22 0.00 1s-7*
So 532.31  0.001 2583 2.21 1.52 0.12 211 1.99 1.09 3.07  3.66 0.00 1s-7*
S3 532.63  0.000 23.70 2.18 1.51 0.12 257 3.10 0.98 2.46 3.96 0.00 1s-Dip.
S4 533.59  0.000 24.10 2.22 1.62 0.12 3.32 427 1.20 3.32 541 0.00 1s-Ryd.
S5 533.64  0.000 23.86 2.23 1.65 0.12 343 4.17 1.51 3.98 576 0.00 1s-Ryd.
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times larger due to the strong expansion of the detachment density. In Figure 6.9 the (h/e)
and (D/A) densities of the first, third and fourth core-excited singlet states of cytosine are
illustrated. Again, the (h/e) densities help to characterize the core-excited states, thereby
demonstrating the advantage of plotting (h/e) and (D/A) densities over looking at MO
transition amplitudes. The S; state is a core excitation from the 1s orbital to a delocalized
7* level. The MO transition amplitude with the highest contribution to this state (MO1 to
MO48) has only a percentage of 21.3%. The remaining contribution consists of a mixture
of different MO transition amplitudes, thus it is very hard to characterize states being
represented by such strong mixtures of amplitudes. Since all contributions are collected
in one picture, inspecting the (D/A) or (h/e) densities is therefore significantly more
advantageous. The O 1s core-S3 state is a dipole bound state, because its electron density
is localized around the excited oxygen, possessing diffuse character in space. In contrast,
the core-S; state has a diffuse Rydberg character, because the core-excited electron is
delocalized over and beyond the whole molecule in space. The detachment densities of
all three examples show, as expected, a strong expansion of the hole due to relaxation
effects. The dominant fraction of the density is relaxed to the neighboring nitrogen and
carbon atoms with an additional contribution, which is delocalized over the molecule.
The corresponding o, and o4 values give hints for the character of the states, too. S;
and So, which have a distinct s,m*-character, exhibit o, values smaller than 2.0 A. Due
to its diffuse character, the dipole bound Sz state has a o, value of 3.10 A, while the
Rydberg-type states (S4 and Ss) provide electron sizes larger than 4.0 A, because their
electron densities are even more diffuse than the one of the dipole bound S3 state. Similar
to the C 1s excited states of cytosine, the d., values show a similar trend as the electron
sizes. Furthermore, since the excitation proceeds from one localized 1s orbital, the R.j
values for all investigated O 1s excited states are exactly zero.

6.3 Small Organic Radicals

After discussing medium-sized closed-shell systems, the capabilities of the unrestricted
CVS-UADC(2)-x are presented in this chapter by means of its application to a set of
small organic radicals. For this purpose, the methyl and hydroxyl radicals are investigated
followed by the triplet dioxygen diradical and the allyl radical. Their structures are
illustrated in Figure 6.10. The methyl and allyl radicals occur as intermediates and
precursors in the petroleum cracking industry and additionally, the allyl radical also serves
as model system to study chemical dynamics of radicals. 422137215 The OH radical generally
participates in combustion reactions and is a rife molecule in the Earth’s atmosphere,
where it is involved in oxidation reactions.?2!6:217

6.3.1 Methyl and Hydroxyl Radicals

Both experiments of the methyl and OH radicals compared to were performed in gas phase,
in which the OH radical is produced directly via the reaction H + NO; — OH + NO,
while the CHj3 radical was generated in a supersonic molecular beam by flash pyrolysis
of azomethane seeded in helium. %28 The relevant spin-orbitals of these systems are
summarized and illustrated in Figure 6.11, while the CVS-UADC(2)-x results are given
in Table 6.13. In the case of the CHj radical, the geometry optimization at the level
of RI-UMP2/def2-TZVPP exhibits a planar equilibrium structure. The optimized C-H
distances are 1.072 A, while the H-C-H bond angles have values of 120.0°. The geometry
optimization of the OH radical results in an equilibrium O-H distance of 0.966 A, which
is in excellent agreement with experimental data of 0.970 A.2'8 For both CH3 and OH
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Figure 6.9: Comparison of detachment /attachment densities (bottom) based on the IDDM
with electron/hole densities (top) based on the 1TDM of the first, third and fourth
O 1s core-excited singlet states of cytosine computed with CVS-ADC(2)-x using the
6-3114++4G** basis set. The isosurfaces were rendered with the isovalues 0.0064 (opaque),
0.0016 (colored transparent) and 0.0004 (transparent).

H

C
H " °H

Methyl
radical

. 1 E 2
H-O H3C”~ 3 "CHs3
Hydroxyl .
radical Allyl radical

0-0

Dioxygen
diradcial

Figure 6.10: Structures of the methyl, hydroxyl and allyl radicals as well as the triplet

dioxygen diradical.

135



CHAPTER 6. CALCULATIONS OF X-RAY ABSORPTION SPECTRA OF SMALL AND
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Qe
B2 T8 B2 d7

Figure 6.11: Illustration of the relevant virtual molecular spin-orbitals of a) the CHj
radical and of b) the OH radical at the level of UHF in combination with the 6-3114+-+G**
basis set. The isosurfaces of the spin orbitals are rendered with an isovalue of 0.06.

Table 6.13: Core-excitation energies (weyx), oscillator strengths (f,sc), character and
amount of double amplitudes (R2) of the first five C 1s excited states of the CHg radical
and the O 1s excited states of the OH radical calculated using CVS-UADC(2)-x and the
6-3114++G** basis set. The calculated values are compared with experimental data. 189218
Only the main transitions are shown. This table has already been published by me and
my co-authors.?”

State  wex [€V]  fose  Main transition (C 1s —) R2 [%] wex [€V] (Expt.)
CHj radical (C 1s)

1 281.42 0.036 Thos Ths 14 281.35
2 286.83  0.000 50 e 22
3 28772 0.000 T T 23
4 28823  0.005 Thas Wi 22
5 28823 0.005 Thas a0 22
OH radical (O 1s)
1 925.17  0.0449 T, A7 11 525.85
2 53486 0.0041 51, Thes T 19
3 53619 00115 T T, T 20
4 538.81  0.0077 53, M5 19
5 539.77  0.0070 Ty 19
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radicals, the (SQ) value of the UHF ground state is 0.76 and therefore close to the optimum
value of 0.75, indicating hardly any spin-contamination of the ground state reference
determinants.

Let me start with the discussion of the C 1s excited states of the CH3 radical. The
experimental XA spectrum provides a vibrational structure, which consists of four peaks
between 281 and 283 eV. These peaks belong to a single bright electronic transition with
a core-excitation energy of 281.35 eV, which at the CVS-UADC(2)-x level corresponds to
the first core-excited state with a computed excitation energy of 281.42 eV. Hence, this
absorption is excellently described with the CVS-UADC(2)-x method, exhibiting an error
of only 0.02% (0.07 eV). This first core-excited state is mostly characterized by transitions
from the carbon 1s orbital to the carbon 2p-spin-orbitals, which are denoted as T and
Tsg- Both transitions have a contribution of about 40%, respectively. Since the overlap
between the carbon 1s and 2p orbitals is large, the resulting oscillator strength of the first
core-excited state is with 0.036 significantly larger compared to the next higher states,
which are optically forbidden. The amount of doubly excited amplitudes is 14% in the
case of the bright core-excited state 1, while the higher-lying dark states have R2 values
around 22%. The R2 value of 14% is approximately 10% smaller than the ones of closed
shell systems investigated in chapters 6.1 and 6.2, indicating smaller relaxation effects.

Turning to the O 1s excitations of the OH radical, a similar picture as for the CHs
radical is provided. The vibrationally resolved peak structure of the experimental XA
spectrum is between 525 eV and 527.5 eV and belongs to a single bright electronic transition
with the experimental value of 525.85 eV. With an oscillator strength of 0.0449, this state
is matched with the first core-excited state that exhibits a computed core-excitation energy
of 525.17 eV. Hence, the CVS-UADC(2)-x calculation provides an absolute error of only
0.68 eV compared to the experiment, which is only 0.1%. The character of the first
core-excited state is dominated by a transition from the oxygen 1s orbital to the oxygen
2p-orbitals 73, and dj; with contributions of 63.1% and 21.2%, respectively. Note that the
orbital dj; does not have a distinct 7*-character, because it is dominated by the diffuse
functions due to the 6-3114++G** basis set, which correspond to weakly bound, additional
electrons at the UHF level. Regarding the R2 values, the same trend is observed as for
the CHjs radical. The amount of double excitations included in the first bright state is
with 11% again much lower than for non-radical molecules. The R2 values of the next
higher core-excited states are again significantly larger with values around 20%. However,
they also exhibit oscillator strength, but since no experimental data is available for a
comparison, I neglect the discussion of these states.

6.3.2 Allyl Radical

The experiments of the allyl free radical compared to were performed in gas phase by
flash pyrolysis of allyl iodide and 1,5-hexadiene.*? The relevant spin-orbitals are shown in
Figure 6.12 and the results of the CVS-UADC(2)-x/6-3114+4+G** calculation are given
in Table 6.14. Experimental data of the structure of the ally radical is available, which
shows C~C bond lengths of 1.428 A and a C-C-C angle of 124.6°.21% At the RI-MP2/def2-
TZVPP level, the equilibrium C-C bond length is with 1.371 A underestimated, while the
calculated C—C—C angle of 124.3° is in good agreement with the experiment. Furthermore,
a small spin contamination of the ground state reference can be identified. The (S?) value
of the UHF reference determinant is 0.94, but since previous work reported acceptable
UADC(2) results for valence excited-states of doublet radicals with ($2) values below 1.25,
the CVS-UADC(2)-x method can be used for the allyl radical. 2

Turning to the XA spectrum, the states 1 and 2 as well as the states 5 and 6 are almost
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Figure 6.12: Illustration of the relevant virtual molecular spin-orbitals of the allyl radical
at the level of UHF in combination with the 6-311+-+G** basis set. The isosurfaces of the
spin orbitals are rendered with an isovalue of 0.06.

Table 6.14: Core-excitation energies (wey), oscillator strengths (fos.), character and
amount of double amplitudes (R2) of the first eight C 1s excited states of the allyl radical
calculated using CVS-UADC(2)-x and the 6-311++G** basis set. The calculated values
are compared with experimental data.*? Only the main transitions are shown and the
numbering of the atoms complies with Figure 6.10. This table has already been published

by me and my co-authors.“”
State wex [eV]  fose  Main transition (C 1s —) R2 [%] wex [eV] (Expt.)
1 282.37  0.001 C3 — w5y, Th13 16 931,99
2 282.37  0.056 CL,C2 — 7y, Th3 16
3 284.40  0.000 CL,C2 — mpy, T3 29
4 284.78  0.022 C3 = mhis, Thg 16 285.27
5 286.70  0.000 C3 = mhy, Mo 24
6 286.70  0.001 C1,C2 — 7jy, Thy 24
7 286.90  0.026 C1,C2 — w9, Th7 27 287.50
8 286.93  0.002 C3 = mly, ks 23
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degenerate due to symmetry. Note that point group symmetry was not exploited explicitly
in these calculations, thus the states are only almost degenerate. The first state that is
dipole allowed is state 2, which exhibits oscillator strength of 0.056. The experimental
core-excitation energy of 281.99 eV is slightly overestimated by 0.1% (0.38 eV) at the
CVS-UADC(2)-x level. The character of this state is dominated by transitions from linear
combinations of the terminal carbon 1s orbitals to the 73, and 73,5 spin-orbitals, which
are linear combinations of the empty 2p-orbitals of the terminal C1/C2 atoms. The second
state possessing oscillator strength is state 4 with a core-excitation energy of 284.78 eV.
Compared to the experimental value of 285.27 eV, this state is underestimated by 0.2%,
leading to a poor energy gap of 2.41 eV between the two first bright states (experimentally
3.28 eV). This state is characterized by a transition from the middle carbon atom (C3)
1s orbital to the delocalized 7,5 and 7,4 spin-orbitals. The third experimental peak
at 287.50 eV corresponds to state 7, which is again underestimated by 0.6 eV at the
CVS-ADC(2)-x level, leading to a relative error to the experiment of -0.2%. However, since
the second bright state is underestimated as well, the energy spacing between the second
and third bright states is calculated to be 2.12 eV and therefore matches the experimental
one of 2.23 eV. The character of state 7 is dominated by transitions from the 1s orbitals
located at the terminal carbon atoms C1/C2 to the delocalized 7,4 and 7, spin-orbitals,
which correspond to the 7 -spin-orbitals of state 4. The R2 values of all states are between
16% and 27%, where the lower values belong to the lowest two bright states. The amount
of double configurations is thus about 10% lower compared to the closed-shell systems.

Eventually, the XA spectrum of the allyl radical is not described with the same excellent
quality at the CVS-ADC(2)-x/6-311++G** level as the examples discussed before. This
might be due to the ground state structure optimized with RI-MP2, which exhibits larger
deviations from experimental data.

6.3.3 Triplet Dioxygen Diradical

As the last example of this chapter, the triplet Os radical is investigated. The O-O bond
length was determined experimentally to be 1.21 A 229, which is in excellent agreement with
the computed RI-UMP2 equilibrium value of 1.222 A. Furthermore, the UHF reference
wave function exhibits hardly any spin contamination with a (S'2> value of 2.05. Figure
6.13 illustrates the relevant virtual and singly occupied molecular spin orbitals (SOMO).
Due to the diffuse basis functions of the 6-311++G** basis set, dy,;, dj3, dj,, dg and
d;; do not have a distinct 7* character, showing strongly diffuse fractions.

Let me turn to the results of the CVS-UADC(2)-x calculation, which are summarized
in Table 6.15. Below the ionization limit, the experimental spectrum exhibits three
significant peaks.?2!:222 The first one is located at 530.7 eV, which is described with the
first two core-excited states at the CVS-ADC(2)-x level. Due to the half-filled 73, and Tho
orbitals, which are identical with respect to rotation and characterize these transitions,
state 1 and 2 are degenerate, exhibiting core-excitation energies of 529.82 eV. Hence,
the computed core-excitation energy is close to the experimental value with an error of
only 0.17% (0.88 €V). The sum of their oscillator strengths yields a significant value of
0.1062. The next higher experimental peak at 538.8 eV can be assigned to the eighth
core-excited state, which exhibits an excitation energy of 538.69 eV and a significant
oscillator strength of 0.0706. The error is only 0.02% (0.11 eV) compared to experiment,
thus the energy spacing between the degenerate states 1/2 and state 8 is 8.87 eV at the
CVS-UADC(2)-x level, which is an overestimation by 0.77 eV compared to the experiment.
State 8 is mainly dominated by electron promotions to the diffuse dj;, dj;, dig and dg,
orbitals, indicating the characteristics of a Rydberg-type state. The third experimental
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Table 6.15: Core-excitation energies (weyx), oscillator strengths (f,sc), character and
amount of double amplitudes (R2) of the first 25 O 1s excited states of the triplet
dioxygen diradical calculated using CVS-UADC(2)-x and the 6-311++G** basis set. The
calculated values are compared with experimental data.??! Only the main transitions are
shown and the o and 3 spin-orbitals s; refer to the positive linear combination of the
two oxygen 1s orbitals, while s denotes the negative linear combination. This table has

already been published by me and my co-authors.

97

State  wex [€V]  fosc Main transition (1s —) R2 (%] wex [eV] (Expt.)
1 52082  0.0531 sg2 = Thy 21 w307
2 52982 0.0531 T 21
3 52085  0.0000 sg1 = hy 21
4 529.85  0.0000 Sg1 — 7TZ§1 21
5 536.85  0.0000 sap = dig i see — dipudhy 26
6 53687  0.0017 sa1 — i, dins s — d5padhy 26
7 53868 0.0000 sp — Tipdhiy; Sar = digydly 26
8 538.69  0.0706 sp1 — digdys a1 = digydiy 26 538.8
9 539.17  0.0003 Sg2 = Mpy 24
10 539.21  0.0000 . 24
11 540.27  0.0002 Sa2 —> Tho 27
12 54029  0.0000 Sa1 —> Tt 27
13 540.71  0.0000 Sg2 — Mgy 24
14 54071 0.0000 sg2 = The 24
15 540.75  0.0050 S81 = Ty 24
16 540.75  0.0050 Sg1 — 7T;§6 24
17 54152 0.0000 sgr = Ay, 26
18 54155  0.0185 so1 = Dy 26
19 541.78  0.0000 Sa2 —> Thy 27
20 54178  0.0000 Sz —> Tt 27
21 541.80  0.0056 Sa1 = T 27
22 541.80  0.0056 Sa1 —> T 27 417
23 54251 0.0000 Saz = dy.die 27
24 5251 00200  sar — diydig; sge — d 27
25 542.60  0.0090 Sg2 — d[*”; Sa1l = diy 25
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Figure 6.13: Illustration of the relevant virtual molecular spin-orbitals of the triplet
dioxygen diradical at the level of UHF in combination with the 6-3114++4G** basis set.
The isosurfaces of the spin orbitals are rendered with an isovalue of 0.06.

peak located at 541.7 eV can be matched with state 18, exhibiting a core-excitation
energy of 541.55 eV. Hence, the CVS-UADC(2)-x calculation yields an error of only 0.03%
compared to the experiment. Furthermore, the energy difference of 2.9 eV between the
second and third peaks is also excellently computed with a value of 2.86 eV. State 18 is
mainly characterized by transitions to the diffuse dj; and dj;; orbitals. However, the
experimentally resolved third bright excitation is generally very broad, which indicates a
series of Rydberg states. State 24, for example, with a core-excitation energy of 542.51 eV
exhibits an oscillator strength of 0.0209, but cannot be assigned properly to the experiment.
It is dominated by transitions to the d7,;, dg9 and dj; spin-orbitals, thus it has a strong
Rydberg-character, too. In contrast to the other open-shell examples, the ratio of double
excitations contributing to all O 1s excited states is considerable with values between 21%
and 27%, indicating strong orbital relaxation effects.

Eventually, the XA spectrum of the triplet Oy diradical is excellently reproduced with
the CVS-UADC(2)-x method using the 6-311++G** basis set.

6.4 Interim Summary

The results presented in this chapter demonstrate the capability of CVS-ADC(2)-x in
combination with the 6-3114++4G** basis set to successfully simulate XA spectra of medium-
sized molecules as well as small organic radicals. Furthermore, in combination with the
CVS-ISR approach and wave function analysis packages, a deeper insight into the nature
of core-excited states can be provided. Generally, the ADC formalism provides a balanced
description of electron correlation in both ground and excited state. In the case of core
excitations, neglecting relativistic contributions to the K-shell excitations reduce the
error produced at the level of CVS-ADC(2)-x/6-311++G**. The combination of the
CVS-ADC(2)-x method and the 6-3114++G** basis set potentially provides a fortuitous
error compensation of orbital relaxation, electron correlation, basis set truncation and
relativistic effects, resulting in core-excitation energies close to experiments.
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Chapter 7

Comparison of CVS-ADC and
TD-DFT

In this chapter, core-excitation energies at the CVS-ADC(2)-x level presented in chapter 6
are compared with TD-DFT and CVS-ADC(2)-s results to demonstrate the self-interaction
error (SIE) problem inherent in pure TD-DFT, thereby clarifying the accuracy at the
CVS-ADC(2)-x level. In the case of the ANQ, thymine and allyl radical systems, a
comparison with CVS-ADC(3,2) results is discussed, too. The structures of all molecules
are illustrated in Figures 6.1, 6.6 and 6.10.

The computational details (geometry optimizations, basis sets, methods and programs)
of this study are identical to the ones of chapter 6. Additionally, TD-DFT calculations of
the core-excited states were performed employing the B3LYP xc functional and using the
REW implementation in the ORCA 2.8 program.?2? Hence, to selectively obtain 1s XA
spectra, only excitations from the respective 1s orbitals were included in the REW-TD-DFT
calculations (see chapter 2.4.3).161:224 T chose the BSLYP xc functional, because TD-DFT
has proven now several times to yield quite accurate results for core excitation spectra in
combination with the B3LYP functional. 53775175 CVS-ADC(3,2) results were obtained
with my implementation described in chapter 3. Note that, due to technical reasons, the
REW-TD-DFT calculations were performed employing the pure 5D/7F versions, while the
CVS-ADC results were computed using the Cartesian 6D/10F version of the respective
basis sets. However, the influence of the additional Cartesian d and f orbitals on the
core-excitation energies at the REW-TD-DF'T level are relatively small compared to the
inherent SIE, thus a direct comparison with CVS-ADC values is justified. All computed
values shown in this chapter are absolute without any level shift or consideration of
relativistic effects. Finally, note that the whole content of this chapter has already been
published by me and my co-authors. Calculations of the closed-shell systems are published
in Journal of Computational Chemistry, 35 (2014), pages 1900-1915, while the XA spectra
of the open-shell systems are published in Journal of Chemical Theory and Computation,
10 (2014), pages 4583-4598.9697 The discussion about CVS-ADC(3,2) results is published
in Journal of Chemical Physics, 142 (2015), 214104.%%
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Figure 7.1: Tlustration of the calculated relative arithmetic mean errors of the core-
excitation energies calculated with different methods compared to experimental values.
The dashed line in blue indicates a discrepancy of 0% to the experiment. The means are
calculated for each type of core excitation (element specific) and every molecule using all
core-excited states of the respective element that can be assigned to experimental data.
The vertical bars represent the standard deviation. Note that the values marked with a *
are not directly comparable to the others, because smaller basis sets were used for these
calculations.

7.1 Closed-Shell Systems

Let me start with the discussion of the closed-shell molecules presented in chapters 6.1 and
6.2. Figure 7.1 summarizes and illustrates the arithmetic mean errors of the computed
core-excitation energies with respect to experimental values for the CVS-ADC(2)-x, CVS-
ADC(2)-s and REW-TD-DFT/B3LYP approaches, which were evaluated for each molecule
and every core excitation (element specific) separately.

At first, the results of the O 1s core-excited states of ANQ are discussed and the results
are summarized in Table 7.1. Comparison with the experiments reveals that B3LYP
underestimates the fourth-lowest bright core-excited state by 2.8% (~14.3 eV), while
CVS-ADC(2)-s overestimates the core-excitation energy by 0.4% (~2.2 eV). CVS-ADC(2)-
x exhibits the most accurate result of the O 1s excited state of ANQ with an error of only
0.1% (0.85 eV). Furthermore, the trend of R2 values confirms the analysis in chapter 5.
The bright singlet state, for example, has only 18% of double excitation character at the
CVS-ADC(2)-s level, while CVS-ADC(2)-x yields 23%. Comparing the three methods, the
respective states are almost degenerate for all methods (Aw < 0.02 eV ~ 7-107% a.u.).
The first four states are in identical order, while the subsequent states exhibit a slightly
different order due to the small energy differences between them. The differences in the
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Table 7.1: Comparison of core-excitation energies (weyx) and oscillator strengths (fosc)
of the first eight O 1s singlet and triplet as well as the first spectroscopically bright
C 1s singlet excited states of ANQ, calculated with CVS-ADC(2)-s/x and REW-TD-
DFT/B3LYP with experimental values.3205 The calculations were performed employing
the 6-311++G** basis set and in the case of the carbon 1s excitations, Cs, point group
symmetry was exploited. This table has already been published by me and my co-authors. %

B3LYP CVS-ADC(2)-s CVS-ADC(2)-x Expt.
State Wex [€V] fose Wex [€V] fose Wex [€V] fose Wex [€V]
O 1s

1 |51497(T) — |531.58(T) — |52899(T) —

2 | 51497 (T) — |531.58(T) — |52899(T) —

3| 515.69(S) 00284 | 53217 (S) 00002 | 52045 (S) 00002 | o .,

4 | 515.70 (S) 0.0338 | 532.17 (S) 0.0640 | 529.45 (S) 0.0689

5 |517.33(T) — |[534.21(T) — | 533.08(S) —

6 | 517.34(S) 0.0005 | 534.21 (T)  — | 533.08 (S) 0.0003

7 | 517.34(T) — | 534.21(S) 0.0001 | 533.09 (T)  —

8 | 517.35(S) 0.0005 | 534.21 (S) 0.0006 | 533.09 (T)  —

C1s

1 273.28 0.015 287.76 0.051 284.40 0.038 284.1

2 273.53 0.040 288.10 0.155 284.78 0.041 0845

3 273.63 0.058 284.81 0.086

4 273.75 0.007 288.33 0.029 284.96 0.036 0848

5 273.77 0.026 288.36 0.060

6 274.02 0.023 288.63 0.011 285.27 0.024 0g5

7 288.71 0.030

8 285.60 0.014

9 274.59 0.060 289.10 0.029 285.74 0.028

10 274.96 0.016 289.30 0.015 285.92 0.034

11 274.97 0.045 289.45 0.112 285.92 0.089 285.6

12 275.06 0.023 286.13 0.014

13 286.34 0.007
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order may be due to numerical accuracy, especially since no point group symmetry was
used for the calculations. This is corroborated by the fact that for B3LYP the states 3 and
4, which should be degenerate, show an energy difference of the same order of magnitude.

Next, the ANQ C 1s excitation spectra calculated at the three levels of theory are
discussed and the results are shown as well in Table 7.1. In principle, the results are similar
to the O 1s spectra. However, compared to the O 1s result, the relative errors of the first
bright state calculated with both REW-TD-DFT/B3LYP and CVS-ADC(2)-s are with
4.0% and 1.3% significantly larger, respectively. Since there are five bright experimental
peaks, the absolute errors between the calculated states and the experimental values
can be compared as well to judge the quality of the spectral features. At the REW-TD-
DFT/B3LYP level, the spacings between the states are essentially constant with values
ranging from 10.6 €V to 11.0 eV. The overestimation of the CVS-ADC(2)-s method is also
practically constant with absolute errors between 3.7 eV an 3.9 eV. Hence, by addition
of an absolute, constant energy shift to the REW-TD-DFT and CVS-ADC(2)-s results,
good agreement of the calculated spectra with the experiment is achieved. Note that the
number of states matching an experimental peak varies between the three methods, e.g.
the fourth experimental peak is described by one bright state using the CVS-ADC(2)-x
and REW-TD-DFT/B3LYP methods, while CVS-ADC(2)-s yields two states contributing
to this peak. Nevertheless, both CVS-ADC(2) methods are in the case of ANQ more
precise than REW-TD-DFT/B3LYP with respect to absolute errors in core-excitation
energies, as well as energy differences between the states.

Going to the S 1s excitations of the BT molecule (see Table 7.2), there is a smaller
difference between CVS-ADC(2)-x and -s compared to the ANQ molecule. Due to strong
relaxation and relativistic effects, both second order CVS-ADC approaches underestimate
the core-excitation energies. Furthermore, the relative error for both methods is almost
the same with -0.2% and CVS-ADC(2)-s is actually closer to the experiment. Considering
relativistic effects of about 8.0 V1™, which would shift the results above the experimental
value, the CVS-ADC(2)-x result would be slightly better compared to experiment. REW-
TD-DFT/B3LYP provides a relative error of 2.4%, which is in the same order of magnitude
as the ANQ (O 1s) results.

The result of the C 1s excitations of BT are also given in Table 7.2. Here, REW-TD-
DFT/B3LYP again shows a strong underestimation of both experimental peaks by large
values of 4.0% (11.08 eV) and 4.1% (11.24 €V), respectively. Since these errors are almost
constant, the energy difference between the two bright states are better described with
REW-TD-DFT/B3LYP than with CVS-ADC(2)-x. At the CVS-ADC(2)-s level, a larger
overestimation of 1.1% (3.13 eV) and 1.2% (3.51 €V) can be identified, respectively. In
the case of the C 1s excitations of BT, the energy difference between the first two bright
core-excited states is better reproduced with CVS-ADC(2)-s than with CVS-ADC(2)-x,
but the extended variant provides better absolute values compared to the experiment.

Turning to the C 1s excitations of the PTCDA molecule, the results are given in Table
7.3. Since a smaller 6-31G** basis set was employed due to computational cost, the energy
difference between the first two spectroscopically bright states is discussed. Experimentally,
this value is 1.2 eV. The calculations using the CVS-ADC(2)-x method are closest to this
value with 1.48 eV, while REW-TD-DFT/B3LYP provides an energy spacing of 1.57 eV
and the value at the CVS-ADC(2)-s level is 1.51 eV. In spite of employing a smaller basis
set, the absolute value of the core-excitation energies are practically at the same level as
shown for the other examples. REW-TD-DFT provides an underestimation of about 4.1%
and the overestimation of CVS-ADC(2) is about 1.4%. CVS-ADC(2)-x shows the best
absolute and relative results for the C 1s excitations of PTCDA.

Let me continue with the thymine molecule. The results of the C 1s, N 1s and O 1s
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Table 7.2: Comparison of core-excitation energies (wex) and oscillator strengths (fosc)
of the first six S 1s and first spectroscopically bright C 1s singlet excited states of BT,
calculated using CVS-ADC(2)-s/x and REW-TD-DFT/B3LYP with experimental values
of oligothiophenes (crystal powder) or BT monolayer on Ag(111) surface.?*36 The
calculations were performed employing the 6-311++G** basis set and exploiting C point
group symmetry. This table has already been published by me and my co-authors. %6

B3LYP CVS-ADC(2)-s | CVS-ADC(2)-x | Expt.
State | wex [€V] fosc Wex [€V] fosc Wex [€V] fosc Wex [€V]
S 1s

1 [ 241576  0.0031 | 2469.80 0.0039 | 2468.83 0.0057

2 | 241576 0.0006 | 2469.80 0.0017 | 246883 0.0023 |

3| 2416.85 0.0059 | 2470.08 0.0085 | 2468.97 0.0057

4 | 2416.85 0.0004 | 2470.08 0.0010 | 2468.97 0.0031

5 | 2417.46  0.0002 | 2471.28 0.0000 | 2470.69 0.0001

6 | 2417.46 0.0007 | 2471.28 0.0003 | 2470.69  0.0006

C1s

1 | 27412 0003 | 28858 0.005 | 285.19  0.004

2 | 27412 0032 | 28858 0.053 | 285.19  0.041

3 | 27438 0.009 | 288.83 0.007 | 285.42  0.008

4 | 27438 0010 | 28883  0.095 | 28542  0.115

5 | 27462  0.004 | 28893 0003 | 285.67 0003 | 2857

6 | 274.62 0.055 | 288.93 0.043 | 285.70  0.056

7 | 27489  0.002 | 289.02  0.004

8 | 274.90  0.043 | 289.05  0.067

9 | 27546  0.003 | 20021 0004 | 287.08  0.001

10 | 27546 0057 | 290.21  0.046 | 287.08  0.038

11 20028  0.006 | 287.14  0.008 | 286.7

12 20028  0.001 | 287.14  0.003

13 287.19  0.010
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Table 7.3: Comparison of core-excitation energies (wex) and oscillator strengths (fosc)
of the first spectroscopically bright C 1s singlet excited states of PTCDA, calculated
using CVS-ADC(2)-s/x and REW-TD-DFT/B3LYP with experimental values.!3 The
calculations were performed employing the 6-31G** basis set and exploiting Dyj, point
group symmetry. This table has already been published by me and my co-authors. %6

B3LYP CVS-ADC(2)-s | CVS-ADC(2)x | Expt.
Bright state | wex [€V]  fose | Wex [€V]  fose | wex [V]  fose | wex [€V]
1 273.23 0.031 | 287.87 0.069 | 285.36 0.072

273.31  0.063 | 288.01 0.060 | 285.44 0.058
273.32 0.024 | 288.32 0.072 | 285.72 0.073
273.64 0.041 | 288.41 0.091 | 285.75 0.090
274.88 0.105 | 289.71 0.069 | 287.11 0.061

275.07  0.032 | 289.87 0.094 | 287.19 0.090
275.11  0.043 | 289.92 0.203 | 287.23 0.095 | 285.6
275.20 0.073 | 289.95 0.019 | 287.30 0.076
290.01  0.020

284.4
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excitations are summarized in Table 7.4. As usual, a large error of the core-excitation
energies at the REW-TD-DFT/B3LYP level can be identified. In the case of the C 1s
excitations, the underestimation is about 4%, while it is 3.5% and 2.9% for the N 1s and
O 1s excitations, respectively. CVS-ADC(2)-x provides again the best results compared
to experiment, with errors of about 0.12%, 0.05% and 0.2% for the carbon, nitrogen
and oxygen 1s excitations, respectively. In the case of the strict second order CVS-ADC
approach, these errors are about 1.3%, 0.6% and 0.3%. Since some experimental signals are
available, I can analyze the spacings between the states that provide information about the
quality of the calculated spectra. Going to the C 1s excitations, the experimental value for
the energy difference between the first two bright states is 1 eV. This value is best matched
at the REW-TD-DFT/B3LYP level with a value of 1.14 eV, while CVS-ADC(2)-x yields
1.52 eV and the strict variant provides 1.38 eV. However, the experimental difference of
1.4 eV between the second and third spectroscopically bright states is best described at
the CVS-ADC(2)-s level with a value of 1.38 eV, while REW-TD-DFT/B3LYP strongly
underestimates this shift with 0.76 eV. CVS-ADC(2)-x provides also an acceptable value of
1.59 eV. The next energy difference is between the states 3 and 4, which is experimentally
found to be 0.5 V. This value is again best matched with REW-TD-DFT/B3LYP (0.48 V).
With a value of 0.1 eV, CVS-ADC(2)-s underestimates this spacing, while CVS-ADC(2)-x
provides only a slight underestimation (0.29 eV). The energy difference between state 4
and 5 is experimentally found to be 0.6 eV, which is also too small at the CVS-ADC(2)-s
level with a value of 0.11 eV. Here, CVS-ADC(2)-x and REW-TD-DFT/B3LYP give better
results with values of 0.21 eV and 0.26 eV, respectively, but this shift is also strongly
underestimated compared to the experiment. Turning to the energy difference between
the first two bright N 1s core-excited states of thymine, CVS-ADC(2)-s provides the best
result with 1.15 eV compared to the experimental value of 1 ¢V, while CVS-ADC(2)-x
and REW-TD-DFT-B3LYP yield 1.53 eV and 1.6 eV, respectively. Regarding the energy
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Table 7.4: Comparison of core-excitation energies (wex) and oscillator strengths (fosc) of
the first spectroscopically bright C 1s, N 1s and O 1s singlet excited states of thymine,
calculated using CVS-ADC(2)-s/x and REW-TD-DFT/B3LYP with experimental
values.® The calculations were performed employing the 6-311++G** basis set. This
table has already been published by me and my co-authors.?®

B3LYP CVS-ADC(2)s | CVS-ADC(2)x | Expt.
Bright state | wex [€V] fosc Wex [€V] fosc Wex [€V] fosc Wex [€V]
C1s
1 274.24 0.019 288.45 0.032 284.84 0.024 284.9
2 275.38 0.042 289.83 0.058 286.36 0.045 285.9
3 276.14 0.014 291.21 0.012 287.95 0.015 287.3
4 276.62  0.038 | 291.31 0.013 | 288.24  0.053 287.8
5 276.88  0.008 | 29142  0.072 | 288.45  0.013 288.4
N 1s
1 388.17  0.0111 | 404.20 0.0098 | 401.50 0.0111
2 388.57  0.0090 | 404.49 0.0069 | 401.82  0.0070 401.7
3 389.40  0.0028 | 404.59 0.0056 | 402.21  0.0078
4 389.77  0.0067 | 404.91 0.0026 | 402.54  0.0035
b) 389.79  0.0008 | 405.35 0.0041 | 402.60 0.0066 402.7
6 389.86  0.0084 | 405.46 0.0027 | 403.03 0.0106
7 403.42  0.0050
O 1s
1 516.63  0.0243 | 532.95 0.0240 | 530.52 0.0282 | 531.4
2 517.53  0.0142 | 534.01 0.0218 | 531.54 0.0268 | 532.3
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Table 7.5: Comparison of core-excitation energies (wex) and oscillator strengths (fosc)
of the first spectroscopically bright N 1s singlet excited states of porphin, calculated
using CVS-ADC(2)-s/x and REW-TD-DFT/B3LYP with experimental values of a solid
porphin film.?'? The calculations were performed employing the 6-314++G** basis set
and exploiting Dsp, point group symmetry. This table has already been published by me
and my co-authors. %6

B3LYP CVS-ADC(2)-s | CVS-ADC(2)-x | Expt.
Bright state | wex [eV] fose Wex [€V] fosc Wex [€V] fose Wex [€V]
1 385.83  0.0169 | 401.50 0.0212 | 399.89  0.0338 398.2

2 387.64 0.0115 | 403.63 0.0169 | 402.12 0.0268 | 400.3

3 389.01  0.0115 | 404.56  0.0050 | 403.03  0.0263
4 389.01  0.0249 | 404.90 0.0317 | 403.59 0.0079

) 390.68  0.0273 | 405.81 0.0056 | 405.18 0.0187 | 403.9

402.3

spacing between the first two spectroscopically bright O 1s core excitations, the REW-
TD-DFT/B3LYP value is with 0.9 €V in perfect agreement with the experiment (0.9 eV),
while both CVS-ADC(2) variants slightly overestimate this shift with an value of 1.0 eV.

The last closed-shell example is the porphin molecule. The results of the N 1s
excitations are given in Table 7.5. Here, only the energy differences between the states
are investigated, because the smaller 6-314++G** basis set was employed due to technical
reasons. The energy difference between the first two experimental peaks is 2.1 eV, which
is best reproduced using the CVS-ADC(2)-s method with a value of 2.13 eV. At the
REW-TD-DFT/B3LYP level, this value is 1.81 eV, while the extended second order
CVS-ADC variant provides a value of 2.23 eV. Hence, all methods describe this shift
very well. As already mentioned in chapter 6.2.1, the bright core-excited state 3 is
poorly reproduced at the CVS-ADC(2)-x level. This is also the case for the REW-TD-
DFT/B3LYP and CVS-ADC(2)-s approaches, which can be identified when looking at
the energy differences between the second and third state. These are 1.37 eV in the case
of REW-TD-DFT/B3LYP and 0.93 ¢V regarding CVS-ADC(2)-s. The latter result is
therefore at the same level as the result obtained with the extended variant. These results
are thus a further hint that calculations that correspond to a vacuum environment might
not be adequate for the description of the third peak, because the experimental spectrum
is obtained in the solid state.

Finally, I evaluate the results obtained for the closed-shell systems statically. Table
7.6 contains the arithmetic mean errors of the core-excitation energies with respect to
experimental data for each element averaged over all molecules investigated in this chapter
with the 6-3114+4G** basis set. Note that the statistics are collected on the basis of only
a few selected examples, thus they cannot be taken as general. Going from oxygen to the
lighter carbon, the mean error at the CVS-ADC(2)-x level changes from -0.73 eV to 0.25 eV.
Core-excitation energies from the carbon 1s levels are on average slightly overestimated,
while the calculated values for nitrogen and oxygen are slightly underestimated. The range
of the relative errors is between -0.14% and 0.09%, thus they are close to zero. A similar
trend is observed at the REW-TD-DFT level. Here, the absolute value of the mean error
decreases from -14.62 eV to -10.97 eV, while the relative error increases by approximately
1.1%. Hence, the absolute errors are about 50 times larger compared to CVS-ADC(2)-x
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Table 7.6: Comparison of the calculated mean errors and the standard deviations o of
the core-excitation energies obtained with the 6-3114++G** basis set with respect to
experimental data for the different types of core excitations and different methods. The
means are taken over all closed-shell molecules, which are discussed in this chapter, and
all core excitations of the respective type. The mean errors are given in eV. Additionally,
relative errors in % are shown in parentheses. This table has already been published by
me and my co-authors. %

B3LYP CVS-ADC(2)-s CVS-ADC(2)-x
Core Mean o Mean o Mean o
O 1s | -14.62 (-2.83) 0.27 (0.05) | 1.81 (0.34) 0.32 (0.06) | -0.73 (-0.14) 0.17 (0.03)
N 1s | -13.19 (-3.39) 0.49 (0.14) | 2.58 (0.64) 0.11 (0.02) | -0.27 (-0.07) 0.51 (0.13)
C 1s | -10.97 (-3.99) 0.29 (0.10) | 3.58 (1.24) 0.28 (0.10) | 0.25 (0.09)  0.25 (0.09)

as well as the range of relative errors from -2.83% to -3.99%. CVS-ADC(2)-s provides an
opposite trend with the smallest mean error of 1.81 eV for O 1s core-excitation energies
and 3.58 eV for the C 1s ones. Therefore, the relative error increases from 0.34% to 1.24%
going from oxygen to carbon. Compared to the CVS-ADC(2)-x results, the absolute values
are larger at the strict second order level. As explained in previous chapters, the reason
for the differences between the elements is due to the larger relativistic effects for heavier
atoms, which are neither included in the REW-TD-DFT calculations nor in the CVS-ADC
ones.

Eventually, this study confirms the conclusions obtained in the investigation of the
small systems in chapter 4, thereby demonstrating the accuracy of the CVS-ADC(2)-x
method in combination with Pople-type basis sets, in particular, the 6-311++G** basis.
CVS-ADC(2)-x in combination with the 6-3114++G** basis set reproduces the experimental
results most accurately with relative errors between -0.14% and 0.09%. The reason for
this is the fortuitous compensation of errors due to basis set truncation, orbital relaxation,
electron correlation, and neglect of relativistic effects. While core excitations from the
carbon 1s levels are on average slightly overestimated, the results for oxygen and nitrogen
are slightly underestimated. REW-TD-DFT/B3LYP, in contrast, strongly underestimates
the core-excitation energies compared to the experimental values up to 14.62 eV in the case
of oxygen 1s excitations. This underestimation is most likely due to an unbalanced SIE,
which results in a much too small energy gap between core and valence orbitals. Since the
absolute errors at the REW-TD-DFT/B3LYP level are comparatively constant, absolute
shifts of the core-excitation energies are mandatory to provide accurate results. The
strict second order CVS-ADC variant slightly overestimates the core-excitation energies
compared to the experimental values. However, the mean errors are significantly smaller
than the ones at the REW-TD-DFT/B3LYP level. Since the standard deviations are very
similar for all three methods, the XA spectra are in general adequately described with all
investigated methods.

7.2 Open-Shell Systems

Next, I would like to show that the unrestricted REW-TD-DFT and CVS-ADC variants
exhibit the same trends as the restricted approaches. For this purpose, the results of
XA spectra of the small organic radicals (see chapter 6.3) are recalculated with the CVS-
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Table 7.7: Comparison of core-excitation energies (wex) and oscillator strengths (fos) of
the first spectroscopically bright C 1s excited state of the CHg and the O 1s excited state
of the OH radicals as well as of the first three spectroscopically bright C 1s excited states
of the allyl radical and the first five spectroscopically bright O 1s excited states of the
triplet Oq diradical, calculated using CVS-UADC(2)-s/x and REW-TD-DFT/B3LYP
with experimental values.42189:218:221 The calculations were performed employing the
6-311++G** basis set and the values of the core-excitation energies are given relative
to the first core-excited state of the respective molecule. This table has already been
published by me and my co-authors.“”

B3LYP CVS-UADC(2)-s | CVS-UADC(2)-x | Expt.

Bright state | wex [eV] fose Wex [€V] fosc Wex [€V] fose Wex [€V]
CH;

1 | 270.91  0.034 | 283.97 0.043 | 28142  0.036 | 281.35
OH

1 | 51142 0.0444 | 527.67 0.0497 | 52517 0.0449 | 525.85
Allyl

271.55 0.039 285.09 0.068 282.37 0.056 281.99
+2.91 0.011 +2.39 0.028 +2.41 0.022 +3.28
+4.08 0.038 +5.35 0.032 +4.52 0.026 +5.51
Oq
516.51  0.0575 | 533.52 0.0602 | 529.82  0.0531
516.51  0.0575 | 533.52 0.0602 | 529.82  0.0531
+8.72 0.0392 +8.90 0.0383 +8.87 0.0706 +8.1

+11.55 0.0109 | +11.02 0.0319 | +11.74 0.0185
+11.80 0.0783 | +12.28 0.0661 | +12.69 0.0209

530.7

+11.0
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UADC(2)-s and the unrestricted REW-TD-DFT/B3LYP methods. Table 7.7 summarizes
all results with respect to experimental values.

Let me start with the results of the C 1s and O 1s excited spectroscopically bright
peaks of the CH; and OH radicals. REW-TD-DFT/B3LYP underestimates both dipole
allowed core-excited states by 3.9% (10.44 eV) and 2.8% (14.43 eV), respectively, while
CVS-UADC(2)-s overestimates these core-excitation energies by 0.9% (2.62 eV) and 0.3%
(1.82 V). For both systems, the CVS-UADC(2)-x results are in almost perfect agreement
with the experiment as shown in chapter 6.3.1. In the case of CVS-UADC(2)-s, the
bright states of the OH and CHjs radicals exhibit an R2 value of 6%, respectively. This is
compared to the CVS-UADC(2)-x results only about half of the contribution, indicating a
too weak consideration of orbital relaxation effects.

Going to the results of the allyl radical (C 1s excitations), the core-excitation energies at
the CVS-UADC(2)-s level are overestimated as usual. The energy differences between the
three core-excited states obtained with CVS-UADC(2)-s with values of 2.39 eV and 2.96 eV,
respectively, are inaccurate compared to the experiment, too. REW-TD-DFT/B3LYP
underestimates the core-excitation energies of the bright peaks by about 4% (10.44 -
11.87 V). Furthermore, the energy spacing between the bright core-excited states is also
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inaccurately described. The energy difference between the first and second bright state
is experimentally found to be 3.28 eV. Here, REW-TD-DFT/B3LYP provides a value of
2.9 eV, which is more accurate than at the CVS-UADC(2)-x level (2.41 eV). The second
energy spacing of 2.23 eV between state 2 and 3, in contrast, is better described at the
CVS-UADC(2)-x level with a value of 2.12 eV, while REW-TD-DFT exhibits 1.18 eV.
Hence, in summary, CVS-UADC(2)-x provides the best results for the tested methods.

The last example corresponds to the O 1s excitations of the triplet Os diradical. The
typical underestimation at the REW-TD-DFT/B3LYP level is considerable with values
for the first three spectroscopically bright O 1s core-excited states of 14.19 eV, 13.58 eV
and 13.65 eV, respectively, compared to experiment, which is approximately 2.6%-2.7%.
These deviations are almost constant, thus by addition of an absolute, constant energy
shift the calculated spectrum would be in good agreement with the experiment. Similarly,
CVS-UADC(2)-s overestimates these states almost constantly with errors between 0.5%
and 0.7%, thus by subtraction of a constant shift, the agreement with experimental data
would be achieved. However, taking account of the results discussed in chapter 6.3.3,
CVS-UADC(2)-x provides the best agreement with experiment, because the energy spacing
as well as the absolute core-excitation energies are almost perfectly reproduced. Note
that the fourth state with large oscillator strength (bright state 5, Table 7.7) cannot be
properly assigned to experiment by all three methods.

Eventually, this study reveals that the results for the small organic radicals exhibit
similar quality as the ones for closed-shell molecules investigated in chapter 7.1. In
combination with the 6-3114++G** basis set, CVS-UADC(2)-x provides a very good
agreement with experiments, exhibiting relative errors between -0.2% and 0.1% and
accurate absolute values in the case of the examples investigated in this chapter. In
contrast, CVS-UADC(2)-s slightly overestimates the core-excitation energies up to 1.1%
compared to experiments and REW-TD-DFT/B3LYP strongly underestimates them by up
to 4%. Since the energy spacing between the core-excited states are accurately described,
the relative spectra are well reproduced by CVS-UADC(2)-s and REW-TD-DFT/B3LYP.
However, a constant shift to the core-excitation energies is mandatory using these methods
to simulate core excitation spectra correctly.

7.3 Comparison Between the Extended Second Order
and Third Order CVS-ADC Approaches

Finally, the O 1s excitations of ANQ, the N 1s and O 1s excitations of thymine and the
C 1s excitations of the allyl radical were recalculated using the CVS-(U)ADC(3,2) method,
thereby checking the capability of the third-order approach to describe spectral features
correctly, although core-excitation energies are strongly overestimated. The results are
compared directly with CVS-ADC(2)-x and experimental values (see Table 7.8). Here, I
do not present the complete results obtained at the CVS-ADC(3,2) level, because they
provide no further insights. Tables containing the whole data have been published by me
and my co-authors in the supplementary information in Journal of Chemical Physics, 142
(2015), 214104.98

Let me start with the bright O 1s excitation of ANQ, which is denoted as S;. The
absolute difference of 5.62 eV between the two CVS-ADC levels is significantly large.
Compared to the experiment CVS-ADC(2)-x underestimates the core-excitation energy
by only 0.85 eV, while CVS-ADC(3,2) provides an overestimation of 4.77 eV. This is a
further hint that core-excitation energies are strongly overestimated at the CVS-ADC(3,2)
level.
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Table 7.8: Comparison of core-excitation energies (wex) of the spectroscopically bright
excited states of ANQ (O 1s), thymine (N 1s and O 1s), and the allyl radical (C 1s),
calculated using CVS-(U)ADC(2)-x and CVS-(U)ADC(3,2) in combination with the
6-311++G** basis set with experimental data.4?8%205 §(3-2x) denotes the differences of
core-excitation energies between CVS-ADC(2)-x and CVS-ADC(3,2), §(3-Expt.) describes
the differences of core-excitation energies between CVS-ADC(3,2) and experimental values,
and 0(2x-Expt.) is the differences of core-excitation energies between CVS-ADC(2)-x

and experimental values. This table has already been published by me and my co-authors. %3
State Wex [€V]
CVS-(U)ADC(2)-x CVS-(U)ADC(3,2) Expt. ‘ 0(3-2x)  §(3-Expt.) d(2x-Expt.)
ANQ O 1s
Sy 529.45 535.07 529.2 - 5314 ‘ 5.62 4.77 -0.85
Thymine N 1s
A 401.50 405.81
B 401.82 406.39 401.7 4.31 4.11 -0.20
C 402.21 406.57
D 402.54 406.80 (E)
E 402.60 407.32 (D)
F 403.03 407.73 402.7 4.29 4.62 0.33
G 403.42 408.29
Thymine O 1s

530.52 536.48 531.4 5.96 5.08 -0.88

B 531.54 537.52 532.3 5.98 5.22 -0.76
Allyl radical C 1s

B 282.37 283.94 281.99 1.56 1.95 0.38
D 284.78 286.51 285.27 1.73 1.24 -0.49
G 286.90 288.87 287.50 1.98 1.37 -0.60
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Turning to the thymine molecule, I start with the O 1s excitations. The two bright
states A and B are excellently described at the CVS-ADC(2)-x level with an almost
constant error of -0.8/-0.9 eV, respectively. CVS-ADC(3,2) overestimates these states
by 5.08 eV and 5.22 eV compared to the experiment, but these errors are almost equal,
thus the spacing between the states is correctly described. Since the difference between
CVS-ADC(2)-x and CVS-ADC(3,2) is almost identical with 6 eV for both states, the
spectral spacing is described almost equally with both methods. The same observations
can be made regarding the N 1s excitations of thymine. Note that the order of states D and
E are interchanged, when comparing both methods. CVS-ADC(3,2) again overestimates
these states by more than 4 eV, while CVS-ADC(2)-x level provides errors of -0.20 eV
and 0.33 eV for the two bright states compared to the experiment, respectively. However,
the spacing between the states is almost identical using both CVS-ADC approaches.

At last, the C 1s excitations of the allyl radical are investigated. CVS-UADC(3,2)
again overestimates the first three bright core-excited states with values of 1.95 eV, 1.24 eV
and 1.37 eV, respectively, while these errors are 0.38 eV, -0.49 eV and -0.60 eV in the
case of CVS-UADC(2)-x. In this example, the 0(3-2x) values are not constant, thus the
spacing between the states is not described equally by both methods. The energy difference
between state B and D is 2.41 eV at the CVS-UADC(2)-x level, while CVS-UADC(3,2)
provides a spacing of 2.57 eV. Going to the spacing between the states D and G, values of
2.36 eV and 2.12 eV are obtained, respectively. Comparing with the experiment reveals
that CVS-UADC(3,2) indeed provides an improvement compared to CVS-ADC(2)-x, since
the experimental spacings of 3.28 eV and 2.23 eV are closer to the third order results.

Eventually, this study confirms that core-excitation energies at the CVS-ADC(3,2)
level are strongly overestimated compared to experimental data. However, the results are
qualitatively better or at the same level as the ones obtained with the CVS-ADC(2)-x
method.
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Chapter 8

Computational Timings

This chapter contains an analysis of computational timings of my implementation of
the CVS-ADC methods up to third order. General timings of the 1ibtensor library
and the adcman program were investigated before and the results can be found in the
literature. %3182 Here, I concentrate on the influence of the CVS approximation and the size
of the core space on computational timings of my implementation. Therefore, the cysteine,
(E)-1,2-difluoroethene (FE), and the butatriene molecules were chosen as example systems.
Without considering hydrogen atoms, cysteine exhibits seven core orbitals, while FE and
butatriene have four, respectively. All molecules were calculated at different CVS-ADC
levels by restricting all possible numbers of their core orbitals. Using a core space of four
in the case of cysteine, for example, means that the four lowest core orbitals in energy are
used as active orbitals in the core space (c¢). The three remaining core orbitals are treated
as general non core occupied orbitals and therefore they are part of the occupied space (0).
The computational times as a function of the core space are represented as walltime per
iteration (W/I) of the Davidson algorithm, which is used to solve the CVS-ADC eigenvalue
problem. To provide a direct comparison between the different CVS-ADC levels, the W/I
values are given in % of the largest W/I at each CVS-ADC level individually. In the case
of CVS-ADC(2)-s and -x calculations, the largest W/I value is for a core space of seven
(cysteine), where for CVS-ADC(3) it is the one for one core orbital.

Geometry optimizations of all systems were performed at the level of RI-MP2192:193
employing the def2-QZVPP '® basis set and the respective auxiliary QZVPP 194 basis set
using the TURBOMOLE 6.3.7'96 program. The core-excited states were calculated with
my implementation of CVS-ADC up to third order on a machine with an AMD Opteron
(TM) Processor 6620 with 3GHz, 16 cores and 256 GB RAM, employing the 6-31G* basis
set 111:112:225 45y the pure 5D /7F version. The calculations of cysteine were performed using
16 CPU cores, while the calculations of FE and butatriene were performed using a single
CPU core. In every case, 10 core-excited states were calculated to obtain the W/I values.
For a direct comparison, 10 excited states of every system were calculated as well with
the general ADC method up to third order using the adcman program.®"“3 Finally, note
that the content of this chapter has already been published by me and my co-authors in
Journal of Chemical Physics, 142 (2015), 214104.%8
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Figure 8.1: Structures of cysteine, butatriene and (E)-1,2-difluoroethene (FE).

8.1 Timings of the CVS-ADC Implementations

The structures of the molecules used in this chapter are summarized in Figure 8.1. The
results of the scan of the the computational times as a function of the core space represented
as walltime per iteration (W/I) of the Davidson algorithm are given in Table 8.1, while
Figure 8.2 illustrates these functions. Furthermore, the functions are linear fitted and
the corresponding fit parameters are given in Table 8.1, too. For all investigated cases,
the coefficients of determination are between 0.985 and 0.999, which indicates an almost
perfect linear correlation between the computational time and the size of the core space.
The gradients of both CVS-ADC(2)-s and CVS-ADC(2)-x have a positive sign. Hence,
the computational time rises with increasing core space. In contrast, the gradients at the
CVS-ADC(3) levels have a negative sign, thus the computational time is larger with a
smaller core space.

Relatively, the gradient is larger at the CVS-ADC(2)-x than at the CVS-ADC(2)-s
level. In the case of cysteine, for example, the gradients at the extended second order
variant is 11.66%, while at the strict second order level it is 6.94%. Since in all examples
the absolute values of the gradients at the CVS-ADC(3) level are smaller than the ones of
CVS-ADC(2)-s, the influence of the core space on the CVS-ADC(3) timings is relatively
the smallest, e.g. -4.34% in the case of cysteine. These trends are valid for all investigated
systems. However, the relative change in computational speed depending on the size of
the core space is not independent of the chosen system. Let me give an example: in the
case of CVS-ADC(2)-x, the gradient is 11.66% for cysteine, 19.52% for FE and 19.54% for
butatriene. Since the non-core occupied space influences the computational time as well,
the difference of the absolute values of the gradient might be due to the ratio between core
and occupied valence orbitals (c/o). These ratios are 0.40 (butatriene), 0.33 (EF) and
0.28 (cysteine), respectively. If one compares the c/o ratios with the trend of the gradient
values, a linear correlation cannot be identified. However, a trend can be suggested, i.e.
the larger the c¢/o ratio the larger the absolute value of the gradient. In other words,
the acceleration of the computational time depends on the ¢/o ratio, too. Note that one
exception is CVS-ADC(2)-x, where the gradient values of FE and butatriene are almost
the same.

The negative trend at the CVS-ADC(3) level can be explained by means of the explicit
working equations (see chapter 3.2.1). Compared to CVS-ADC(2)-x, the 2p-2h,2p-2h
block is identical, thus the difference can be found in the p-h,p-h and the coupling blocks.
The matrix-vector products of both p-h,p-h and coupling blocks at the CVS-ADC(3) level
contain many contractions over the o space, which are expensive and time demanding
compared to the ones at the CVS-ADC(2)-x level. Regarding the p-h,p-h block, these are

the additional 13 third order terms, which are summarized in the intermediates I(gz), I}i)

and I}i)Jb (see equations 3.11 — 3.14), while the additional second order equations 3.18
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Table 8.1: Timings of the CVS-ADC method. Walltime per iteration (W/I) of the
Davidson algorithm used to solve the CVS-ADC eigenvalue problem as a function of the
space of active core electrons (CS) of cysteine, (E)-1,2-difluoroethene, and butatriene using
the CVS-ADC(2)-s, CVS-ADC(2)-x, and CVS-ADC(3,2) methods in combination with
the 6-31G* basis set are shown. The functions are linearly fitted with W/ I =m - CS +b
and the respective coefficients of determination (R?) are given, too. The largest W/I
values are set to 100% in every case, respectively. This table has already been published
by me and my co-authors. *®

Core space & CVS-ADC(2)-s CVS-ADC(2)-x

fit parameters | W/I [s] W/I[%] | W/I[s] W/I [%]
Cysteine

1 0.33 57.81 1.74 29.19 62.76 100.00
2 0.37 65.72 2.59 43.46 59.69 95.10
3 0.42 73.84 3.41 57.24 56.85 90.59
4 0.45 80.02 4.07 68.34 54.06 86.14
) 0.49 86.96 4.76 79.88 51.39 81.88
6

7

m

b

CVS-ADC(3,2)
W/Is] W/I[%]

0.53 93.00 5.32 89.20 48.79 7774
0.57 100.00 5.96 100.00 46.42 73.96
0.04 6.94 0.70 11.66 -2.72 -4.34
0.29 51.87 1.20 20.11 65.18 103.85
R? 0.998 0.998 0.995 0.995 0.999 0.999
(E)-1,2-difluoroethene

1 0.05 59.82 0.57 42.07 15.16 100.00
2 0.07 74.42 0.84 62.70 13.63 89.86
3 0.08 86.60 1.13 84.09 12.16 80.19
4 0.09 100.00 1.35 100.00 10.81 71.31
m 0.01 13.27 0.26 19.52 -1.45 -9.57
b 0.04 47.03 0.32 23.42 16.57 109.28
R2 0.999 0.999 0.996 0.996 0.999 0.999
Butatriene

1 0.07 51.93 0.71 41.10 19.27 100.00
2 0.09 69.31 1.15 66.59 16.89 87.63
3 0.12 87.60 1.48 85.33 14.78 76.68
4 0.13 100.00 1.73 100.00 12.83 66.55
m 0.02 16.25 0.34 19.54 -2.15 -11.13
b 0.05 36.58 0.42 24.40 21.30 110.54
R? 0.994 0.994 0.985 0.985 0.998 0.998
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Figure 8.2: Tllustration of the relative walltime per iteration (W/I) of the Davidson
algorithm used to solve the ADC eigenvalue problem as a function of the space of active
core electrons (CS) of cysteine (top), FE (middle) and butatriene (bottom) using the
CVS-ADC(2)-s, CVS-ADC(2)-x, and CVS-ADC(3) methods in combination with the
6-31G* basis set. The functions are linearly fitted with W/I =m - CS +b.
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and 3.16 are the respective ones of the coupling blocks. As a consequence, the reduction
of the o space, which is accompanied by an increase of the c¢ space, leads to computational
speed-up.

Finally, let me discuss absolute values and give a comparison to general ADC cal-
culations. Since the ADC method is implemented in a similar way as the CVS-ADC
approach in adcman, a direct comparison is possible. The absolute W/I values in seconds
are discussed instead of the relative ones, because a general ADC calculations does not
differ between ¢ and o spaces. In the case of cysteine with a full core space of seven, one
iteration at the CVS-ADC(3) level takes 46.42 s, while CVS-ADC(2)-x calculations are
eight times faster with 5.96 s and the strict variant needs only 0.57 s for one iteration,
which is ten times faster than at the CVS-ADC(2)-x level. For the FE molecule (core
space of four), these values are more drastic. Here, CVS-ADC(2)-s provides a value of
0.09 s, while the extended variant needs 15 times longer (1.35 s) for one iteration. With
10.81 s, CVS-ADC(3) takes 8 times longer than the CVS-ADC(2)-x calculation. Compared
to the full ADC approach without the CVS approximation, the speed-up is also large.
Besides the restriction of the excitation space to correspond to core orbitals, many two-
electron integrals are neglected within the CVS approximation, which leads to a significant
reduction of the terms in the CVS-ADC working equations as shown in chapter 2.5.7.
This reduction leads to computational savings of the Davidson diagonalization scheme.
In the case of cysteine, the calculation of 10 valence-excited states using the ADC(2)-x
method takes 22.97 s, which is about 3.85 times longer than at the CVS-ADC(2)-x level
(seven core orbitals). The CVS-ADC(2)-s calculation with a core space of seven is 3.12
times faster than the respective ADC(2)-s calculation, while it is a factor of 2.37 for the
CVS-ADC(3) calculation. In the case of the FE example, the W/I values for ADC(2)-s,
ADC(2)-x and ADC(3) are 0.10 s, 5.55 s and 26.10 s, respectively, thus the corresponding
CVS calculations with four core orbitals are faster by factors of 1.11, 4.11 and 2.41.
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Chapter 9

Application of CVS-ADC
Calculations in the Field of
Organic Electronics

In this chapter, I present some applications of CVS-ADC calculations in the field of
organic electronics. Organic solar cells'®719 or organic field-effect transistors (OFETs),
for example, use organic semiconductors as the active layer, which exhibit a conjugated
m-electron system that provides a delocalization of the electronic wave functions in the
HOMO/LUMO region. 226:227

The first study is about pentacene and its derivatives, which are often used in OFETSs
as hole conductors (p-type). These materials exhibit large charge carrier mobility due
to a favorable crystal structure that provides excellent overlap of the frontier molecular
orbitals. 228231 A deeper insight into the charge carrier properties of pentacene systems
could be provided by XA spectra of their cations. However, it is very challenging to measure
experimental spectra of ionized species. Hence, QC calculations can be performed to
predict such spectra and provide the required information. The results of the benchmarks
in chapter 4 as well as the successful simulations in chapter 6.3 justify the prediction of XA
spectra of not yet measured species with the CVS-UADC(2)-x approach in combination
with the 6-3114++G** basis set. Since pentacene is a large system and due to technical
limitations, anthracene was chosen as a small relative of pentacene. With restricted
CVS-ADC(2)-x calculations, the XA spectrum of neutral closed-shell anthracene was
calculated and is discussed compared to experimental data. Next, the XA spectrum of
the anthracene cation radical (AT), for which no experimental data is available yet, is
predicted based on CVS-UADC(2)-x calculations and compared to the calculated spectrum
of the neutral closed-shell species. This analysis is performed for two limiting cases: one
using the neutral ground state geometry denoted as Ax and the other one using the
equilibrium ground state structure of the anthracene cation (AJCC) The latter case is chosen
to allow for geometry relaxation. The A} system is suitable for experiments with very
short-lived cationic intermediates, while the AJCC form requires stable cations.

The second investigation presented in this chapter is about trends of core-excited
state properties along potential energy surfaces (PES). For this purpose, ANQ as a model
system for an electron acceptor, 2,2’-bithiophene (BT) for an electron donor and phenol
as a typical precursor in polymer synthesis were chosen. In the case of BT, the torsion
around the central dihedral angle, which connects the two thiophene rings, is analyzed,

163



CHAPTER 9. APPLICATION OF CVS-ADC CALCULATIONS IN THE FIELD OF ORGANIC
ELECTRONICS

while the PES along the distances of the C—O bonds are evaluated in the case of ANQ
and phenol. In these calculations, the chosen reaction coordinate was constrained, while
all other coordinates were allowed to relax freely.

The ground state geometry optimization of the anthracene cation was performed at
the UMP2 level employing the def2-TZVPP '8 basis set combined with the resolution-
of-the-identity (RI)%2:193 approximation and the respective auxiliary TZVPP %4 basis
set. The geometry of neutral anthracene was optimized using RI-MP2 in combination
with the def2-TZVPP basis set and the respective auxiliary TZVPP basis set. Ground
state structures of ANQ, phenol and BT were optimized at the MP2 level employing
the 6-3114--+G**109,110,113 hagis set. Geometry optimizations at the RI-MP2 and RI-
UMP2 levels were performed using the TURBOMOLE 6.3.7 %% program, while the MP2
optimizations for the PES scans were performed with the Q-Chem 4.2% program. Core-
excited states and the corresponding properties were calculated with my implementation
of restricted and unrestricted CVS-ADC(2)-x as well as the CVS-ISR implementation
as described in chapter 3. Exciton sizes and state densities were calculated using the
libwfa library.8486-88 To save computational time, molecular point group symmetry
was exploited in the calculations of anthracene (Dap), ANQ (Cs,) and BT (C3). The
anthracene cation was also optimized exploiting Ds; point group symmetry, which is
justified in the literature.?32234 All core-excited states in this chapter were computed
employing the 6-311++G** basis set in its Cartesian 6D/10F version. As usual, all
computed values shown in this chapter are absolute without consideration of relativistic
effects. Note that the larger the number of constituting atoms of a molecule the higher is the
density of core-excited states within a small energy region. Hence, only spectroscopically
bright, relevant core-excited states are given in the case of the anthracene study to keep a
clear view. These are states belonging to the irreducible representations Bi,, Bs, and
Bs,,, which are the only ones being optically allowed and thus possess oscillator strength.
State characterizations of the anthracene systems are determined via MO configurations,
because these investigations were performed before the CVS-ISR approach was available.
As explained in chapter 6, only the most dominant MO configurations with a contribution
larger than 6.25% are shown and only pictures of relevant MOs are presented to keep a
clear view. Furthermore, note that the PES of ANQ, BT and phenol were optimized in
the MP2 ground state and no core-excited state geometry optimizations were performed,
because CVS-ADC gradients are not available yet. Finally, note that the content of this
chapter has already been published by me and my co-authors. The investigation of the
anthracene cation is published in Journal of Chemical Theory and Computation, 10 (2014),
pages 4583-4598, while the PES scans of ANQ, BT and phenol have been submitted for
publication in Journal of Chemical Theory and Computation, (2016).°7-%°
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9.1. PREDICTION OF THE X-RAY ABSORPTION SPECTRUM OF THE ANTHRACENE
CATION

Table 9.1: Core-excitation energies (wey), oscillator strengths (fos.), character and amount
of double amplitudes (R2) of the first ten C 1s excited singlet states of anthracene with
Biu, Bay and Bs,, symmetry, calculated using CVS-ADC(2)-x and the 6-311+4G** basis
set. The calculated values are compared with experimental data.??¢ Only the main
transitions are shown and the numbering of the carbon atoms complies with Figure 9.2a
and refers to linear combinations of the respective carbon 1s orbitals. This table has
already been published by me and my co-authors.®”

State  wex [6V]  fose  Main transition R2 [%] wex [€V] (Expt.)

11By, 284.63 0.058 C2 — m} 26
2By, 284.76 0.139 C3 — 7,77, 25 284.5 (A)
3By, 28493 0.092 C3 — 7,7y 26
4By, 28534 0.029 Cl — n} 27
5By, 286.21 0.125 Cl — 75, 24 285.9 (B)
6 !B, 286.57 0.048 C3 — 73, 27
71By, 286.79  0.003 C3 — 77, 29
11By, 28691 0.000 C3— 7}, 26
1'B3, 28693 0011 C3 — 7}, m 26

2By, 286.97 0.024 C3 — w75, mh 26

9.1 Prediction of the X-ray Absorption Spectrum of
the Anthracene Cation

The first topic of this chapter is the prediction of the XA spectrum of the anthracene cation.
Overall, I discuss three different kinds of spectra and structures: neutral anthracene, the
anthracene cation using the geometry of the neutral structure and the anthracene cation
in the optimized cationic structure. Since this study was performed before the CVS-ISR
method and the wave function analysis tool were available, state characterizations are
based on MO transitions. The relevant virtual orbitals are illustrated in Figure 9.1.
Furthermore, the optimized geometrical parameters of both neutral and cationic structures
are given in Figure 9.2b. Note that only the energetically lowest states are discussed in
this thesis and the Rydberg states beyond 290 eV are neglected.

9.1.1 Simulation of the Carbon K-edge Spectrum of Neutral An-
thracene

Let me begin with a brief analysis of the carbon K-edge XA spectrum of the neutral
closed-shell anthracene molecule in gas phase. To judge the quality of the optimized ground
state structure at the RI-MP2 level, the calculated geometry parameters are compared
to experimental crystal structure data.?3% The optimized structure at the RI-MP2 level
of theory reproduces the crystal structure data very well with deviations not exceeding
0.005 A.

Using this calculated neutral structure of anthracene, the ten lowest core-excited states
with By, Ba, and Bs, symmetry were calculated using CVS-ADC(2)-x and the results
are summarized in Table 9.1. The experimental spectrum of anthracene in the gas phase
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Figure 9.1: Plots of the relevant virtual MOs of neutral anthracene and the anthracene
cation in both optimized neutral and cationic structure at the level of (U)HF in combination
with the 6-3114++G** basis set. The isosurfaces of the MOs are rendered with an isovalue
of 0.02. Since character and shape of specific orbitals of the cation variants are identical,
they are merged under ”Cation (both structures)”. Relevant orbitals that differ between
the respective structures are given separately.
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Figure 9.2: a) Structures of anthracene. For a better overview, the numbering of the atoms
in the case of anthracene are grouped, because the electron donor orbitals that characterize
the transitions are linear combinations of 1s orbitals. Each group consists of similar atoms
whose 1s orbitals are linearly combined into the electron donor orbitals ordered by their
energy. Due to structural differences, the numbering of the atoms of the neutral and cation
species differs as well. b) Comparison of the calculated structures of anthracene (values
in black) and its cation radical (values in blue) at the level of RI-(U)MP2 employing the
def2-TZVPP basis set and exploiting Dsyj, point group symmetry. Bond distances are in
[A] and bond angles are in [°].

exhibits two significantly strong peaks located at 284.5 eV (A) and 285.9 eV (B). Both
signals are excellently reproduced by CVS-ADC(2)-x in combination with the 6-3114+-+G**
basis set with errors of only 0.09% (0.26 €V) and 0.1% (0.31 eV), respectively. Hence, the
energy spacing between the two peaks, which is experimentally 1.40 eV, is almost perfectly
described with a calculated value of 1.45 eV. Peak A can be characterized as a mixture
of the first three calculated excited states with B;, symmetry, where the second ' By,
state exhibits the largest oscillator strength, thus the maximum of the peak exhibits a
core-excitation energy of 284.76 eV. The 2 ' By, state is dominated by transitions from the
C3 1s orbital group to the 7} and 7}, virtual molecular orbitals. Peak B is represented by
a mixture of the 5 ' By, and 6 ' By, states, of which 5 ' Bj,, exhibits the largest oscillator
strength of 0.125. In the MO transition picture, this state is dominated by electron
promotions from the C1 group to the 7§, orbital. All core-excited states exhibit a large R2
value with more than 25%, which indicates strong orbital relaxation effects. To visualize
the calculated spectrum and to provide a direct comparison to the experiment, Figure 9.3
illustrates plots of the calculated and experimental spectra, thereby clarifying the excellent
accuracy at the CVS-ADC(2)-x level.

9.1.2 Prediction of the Carbon K-edge Spectrum of the Anthracene
Cation

With the knowledge of the excellent accuracy of the CVS-ADC(2)-x/6-311++G** approach
in the description of the C 1s XA spectrum of neutral anthracene, the prediction of the
C 1s XA spectrum of the anthracene cation radical (A1) is justified. As mentioned
above, I investigated two limiting cases, one using the neutral ground state geometry
denoted as A} and the other one using the equilibrium ground state structure of the
anthracene cation (AJCC) In Figure 9.2b the structural parameters of the optimized cation
structure at the level of RI-UMP2 are given and compared with the ones of the neutral
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Figure 9.3: Plots of XA spectra of neutral and cationic anthracene as obtained at the CVS-
(U)ADC(2)-x/6-3114++G** level of theory. For comparison, the experimental spectrum
of neutral anthracene is shown, too.236237 The theoretical spectra are simulated using a
Lorentzian broadening of 0.6 eV full width at half maximum. All calculated core-excitation
energies are absolute without a level shift. From top to bottom: experimental spectrum of
neutral anthracene in gas phase (black), neutral anthracene using the optimized neutral
structure (dark green), anthracene cation using the optimized neutral structure (blue),
anthracene cation using the optimized cationic structure (red). To highlight relationships,
peaks corresponding to A are marked in purple, while peaks related to B are colored in
orange.
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species. The following numbering of the carbon atoms also complies with Figure 9.2b,
while for the subsequent discussion about state characters the numbering of Figure 9.2a
is used. Compared to the experimental?* determination of the structural parameters of
the anthracene cation, the RI-UMP2 approach provides accurate geometry parameters
compared to experiment with mean deviations of only 0.009 A. The dominant differences
to the neutral structure are bond-length alternations (BLA) due to the half occupied
m-orbital of AT. The bond length between the C1 and C2 atoms as well as the distance
between the C4 and C6 atoms are slightly shortened, while the other bonds are elongated
a little. The C-H bond lengths are almost identical (-0.003 A) in both structures. However,
one exception is the distance between C2 and H16, which is in the case of the cation
structure elongated by 0.009 A.

Before I discuss the calculated XA spectra, let me give some further information on
the different structures. At first, note that the ground state of both structural conformers
belong to different irreducible representations of Day: 2Bs, for Af and 2Bs, for A,
respectively. Furthermore, both ground state reference wave functions of the Aﬁ and A(JS
systems exhibit little spin contamination with (5'2) values of 0.90 and 1.13, respectively.
According to Starcke et al., spin contamination below 1.25 provides still reasonable results
at the level of UADC(2)-x for doublet valence excited-states, thus both anthracene cation
conformers can be treated at the CVS-UADC(2)-x level.®2 Since an unrestricted ground
state determinant is employed in the case of the cation structure, the linear combinations
of the C 1s orbitals due to point group symmetry differ between the neutral anthracene
system and its cationic form, independent of which structure is chosen (see Figure 9.2a).
The neutral anthracene molecule has only three groups of linear combinations between the
C 1s orbitals, while both A, and A} exhibit four groups, respectively. The numbering of
the groups of orbitals is ordered according to the respective orbital energies. Turning to
the relevant molecular (spin) orbitals (see Figure 9.1), their shapes of both Af, and A}
systems are almost identical. However, there are energetic shifts for higher lying orbitals,
which are also necessary to characterize the relevant bright core-excited states. These
orbitals are listed separately in Figure 9.1. Furthermore, the structural differences due to
the BLA are responsible for different orbital energies between the ones of A}, and Ag.
The orbital energy of the singly occupied molecular orbital (SOMO, W;l), for example,
is -0.217 a.u. regarding the AJCC system, while in AE it has a higher energy of -0.191 a.u.
However, the shape of the SOMO is identical in both structural conformers. Note that
extremely diffuse virtual spin orbitals occur in the low-energy regime, e.g. d,, which
correspond to weakly bound, additional electrons at the UHF level due to the polarized
and diffuse basis functions of the 6-311++4G** basis set.

Let me turn to the calculation of the XA spectra of the anthracene cation. Tables
9.2 and 9.3 summarize the results of A, and A obtained at the CVS-UADC(2)-x level,
respectively. Furthermore, Figure 9.3 illustrates the plots of the calculated spectra. In
general, the R2 values of the core-excited states of both A and A}, are at the same
level as for neutral anthracene with values between 20% and 31%. This is opposite to the
results of the small organic radicals in chapter 6.3, where small R2 values are observed.
The peaks of both calculated cation spectra are denoted with a prime symbol (’). Since
the peaks of the neutral and cationic systems are related to each other based on state
characterization, I discuss the spectra peak by peak.

Let me start with the analysis of the first bright peak, which is assigned as A’. In the
case of the Aﬁ conformer, A’ is a mixture of the first four core-excited states with By,
symmetry and can be characterized by transitions from the C1, C2, C3 and C4 groups
to the SOMO. In other words, all carbon 1s orbitals contribute to this peak. Therefore,
this peak is broad, ranging from about 282 eV to 283.5 eV and exhibiting a sub-peak
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Table 9.2: Core-excitation energies (wex), oscillator strengths (fos.), character and
amount of double amplitudes (R2) of the first 30 C 1s excited states of the anthracene
cation (optimized cation structure) with Bj,, B, and Bs, symmetry calculated using
CVS-UADC(2)-x and the 6-3114++4G** basis set. Only the main transitions are shown
and the numbering of the carbon atoms complies with Figure 9.2a and refers to linear
combinations of the respective carbon 1s orbitals. The assignment complies with Figure
9.3. This table has already been published by me and my co-authors.“”

State  Symmetry wex [eV]  fosc Main transition R2 [%] Assignment
1 Bs, B 281.76  0.047 C2 — 71’2;1, 71’2‘32 23
2By, B, 28185 0008  C4— kOl 7, 28 A
3 By, Bi, 28190 0046  Cl— m5; Cd = 15, 23
4 B, Bi. 284.11  0.019 03 = d7, 20 N
5 Bay Bi. 284.25  0.038 CA = dvy, d2y 20
6 Bsy, By 284.96  0.046 C3 — 71'22 27
7By  Bua 285.08  0.058 C4 > 5y, dyy 26 C
8 By Bi. 28510  0.060 C2 — dydie; C3 = 7%y 26
9By, B 285.55 0067 02 = iy, diyy, dip, 75y 28 D’
10 Bye  Bua 285.96 0024 €2 - 7ty; Cl > d%, 24
11 Bs, Bia 986.01  0.001 C4 — ¥, 28
12 Bg, By 286.38  0.029 Cl — 7r2;2, d}o 29
13 Bsw  Bua 286.60 0.009 O3 — 1t C2 — d¥, 29
14 By, B 28670 0.008 Cl — dipmiy: C2 > 7wy 29
15 By B 287.15  0.001 Cd = dy, dig, 28
16 Bsw  Biu 9287.24  0.044 C — why, dig, diy 28
17 Bsu  Bua 287.26  0.050 €2 = s CL— d5y, 26 E
18 B3,  Bu, 28739 0.034 (3 = dymhe; C2 = 75y 27
19 By Bua 28745  0.004 3 — dig, diy, 7y 28
20 Bsw  Bua 287.60  0.000  Cd — dfyy, Tho, Theo 30
91 Bs, B 287.68 0003 C3 — dig, Thy T 30
1 B By, 287.83  0.000 C4 = d%y, s, d2y 25
1 A, Bau 287.83  0.002 C4 — diy, s, diy 25
2 A, Bau 287.85  0.001 C3 = dy, d7, 25
22 By, Bi, 28801 0.000 C2 s diy, di, mhmhe 31
23 B3, Bu 288.05  0.010 Cl = d%g.dig; C2 7%, 29
24 Bs, By 288.17 0.007 C2 — df%lf)’; Cl — dgll,d};g 28 F’
34, Bou 28818 0017  Cd— diy, di, diy, diy 26
2 Bu. B 28818 0.000  Cd — d, d5s, dy, dis 2%
LA, Ba 28821 0008 (3 dy, dis, diy 2
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CATION

Table 9.3: Core-excitation energies (wex), oscillator strengths (f,se), character and
amount of double amplitudes (R2) of the first 35 C 1s excited states of the anthracene
cation (optimized neutral structure) with Bi,, Ba, and Bs, symmetry calculated using
CVS-UADC(2)-x and the 6-3114++4G** basis set. Only the main transitions are shown
and the numbering of the carbon atoms complies with Figure 9.2a and refers to linear
combinations of the respective carbon 1s orbitals. The assignment complies with Figure
9.3. This table has already been published by me and my co-authors. 7

State  Symmetry wex [eV]  fosc Main transition R2 [%] Assignment
1 By, Biu 982.40  0.034 CL = 7%y, 75 20
2 By, By 282.89  0.031 C3 — 71';1 24 K
3 Bay, By 282.94  0.001 C2 — ﬂ;‘n 27
4 Bg, By 283.05  0.025 C4 — 71'217 7T2§6 26
5 Boy, Biu 984.44  0.054 C4 — 77, Ty 24 N
6 Bay Bra 284.55  0.020 03 — 7y, Ty 25
7 Boy, By 284.81  0.023 C2 — 7}y 25
8 Ba Biu 98514 0.023 C1 - 1y 2%
9 By, B 285.23  0.081 C3 = Ty, This 26 C
10 By, B 285.34  0.036 Cd — Ty, Th1s 26
11 Bou B 28573 0.000  C2 = Ty, Ths, The Mo 24
12Bs, B, 286.02  0.044 Cl = Ty, 75 28 N
13 Bay, Biu 986.06  0.020 C2 = 5y, Ths 927
14 Byy B 28631 0.038 C4 = T, Ty, Tho 28
15 By, By 286.64  0.102 C2 — 7T;§6, 7r;§127 The 25 E’
16 B, By 286.84  0.026 C3 = mlg, Thy, Tat, Tas 29
17 Baw, Biu 987.01  0.024 C4 — e, T 29
18 Boy  Bu 287.14  0.003 C3 — 7ty 29
19 By, B, 987.17  0.001 02 = g, The, Tho 28
20 Boy, By 287.29  0.003 C3 — 71';6 29
91 By,  Bia 287.54  0.001 Cd — mhg, T, T 30
922 By, Biu 287.73  0.015 C2 = whpmhemhe; O3 = w5y 28
923 By Bia 28776 0.002 C2 = hyp 55 C3 = w5y 20
1 B, Bou 988.07  0.001 C3 - d, 25
1 A, Bs. 288.07  0.000 C3 = b, diy 25
2 By, Ba, 288.10  0.000 Cd — diy, i 25
2 A, Bsa 9288.12  0.000 Cd = diy, i, ds 25
24 By, Biu 988.26  0.001 C4 = Ty, Tho, T 31
3 B, Ba, 28834 0.000  Cd — diy, diy, dis, 26
3 A, Bsu 288.37  0.011 Ch = diy, &, ds, diy 2%
4 B, Bou 988.41  0.029 C3 = diy, Ay, dis 2% P
44, Bs. 288.41  0.005 C3 = diy, dig, dis 26
9 By,  Bia 288.63  0.002 Cl — mhy, Ty 32
5 B, Bau 288.65  0.000 C2 = d*y, s 26
5 Ay Bia 288.68  0.000 C2 = ds, 71 2
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structure, leading to a shoulder with a core-excitation energy of 283.05 eV. In contrast,
peak A’ of the AJCC conformer is a mixture of the first three core-excited states with Bi,,
symmetry. The transitions are also characterized by electron promotions into the SOMO,
but not from the C3 group. Furthermore, A’ of Ag is less broad than the one of AE,
exhibiting a sharp maximum around 281.85 eV. Compared to the neutral species, the
core-excitation energy of A’ is with 281.8 eV about 3 €V below peak A. Due to the higher
energy of the SOMO and the BLA, A’ of A} is shifted by about 1.1 eV to 282.9 eV
compared to AJCC. Both cation conformers have in common that, due to the energetically
low-lying SOMO, peak A’ is well separated from the next higher core-excited states. Since
the SOMO is filled in the neutral anthracene species, A’ is a characteristic attribute of the
cation spectrum and therefore denoted as a SOMO-peak. Considering future experiments,
a very broad absorption between 281 eV and 283 eV can be expected, because A} and
Ag are limiting cases.

Going to the next higher peaks B’ and C’, the results obtained with both conformers
are similar. Generally, B’ can be regarded as a shoulder of the stronger peak C’ consisting
of a mixture of the two next higher core-excited states, while C’ is a mixture of three core-
excited states. The core-excitation energies of B’ with values of 284.25 eV and 284.44 eV
for Ag and A} are also very similar. The same applies for peak C’ with core-excitation
energies of about 285.1 eV and 285.23 eV, respectively. However, the characters of the
transition differ between both conformers. Peak B’ of Ag can be mainly described by an
electron promotion from the C3 and C4 groups to the diffuse d}y and d},, orbitals, while
B’ of A}, is characterized by transitions from C3 and C4 to the 7%, and 75 orbitals. The
characters of the states contributing to C’ of AE are the same as the ones of B’, but with
the corresponding [-spin-orbitals characterizing the transitions. Regarding the strong
peak C’ of the Ag structure, the dominant contributions are characterized by electron
promotions from the C2 — C4 orbital groups to the Tgp-orbital, which is comparable
to the one of Aj;. However, transitions to diffuse orbitals like di11, dao and dfg have
also a significant contribution. In the case of AE, the virtual orbitals that characterize
peaks B’ and C’ are not diffuse and have the same shape as 7} and 7}, of the neutral
species (see Figure 9.1). Hence, B’ and C’ of A; correspond exactly to peak A of the
neutral species, while this is only the case for peak C’ of the AJCC conformer. Furthermore,
peak C’ of Ag exhibits a larger intensity than C’ of A‘}\',, because states 7 B3, and 8 Bs,
contributing to the C’ peak are almost degenerate. Compared to peak A of the neutral
species, the core-excitation energy of C’ is blue shifted by about 0.5 eV. Regarding both
cation conformers, the absorption of B’ and C’ together is much broader than the related
one of neutral anthracene (only A).

Let me turn to the next higher peaks D’ and E’. Here, the differences between A}
and Ag, are more significant. Analyzing the results of the the A} system shows that the
core-excited states that contribute to these peaks are characterized by transitions from
the C1/C2 groups to the 7%,, 75, and 7,5 spin-orbitals in the case of D’, while the core
excitations corresponding to E’ are dominated by transitions to 734, 75,5 and mg5. Hence,
both peaks correspond to peak B of the neutral species, because these orbitals have the
same shape as the ones that characterize the core-excited states contributing to peak B.
This is similar to peaks B’ and C’, which are related to A. With core-excitation energies
of 286.0 eV (D’) and 286.6 eV (E’), respectively, D’ can be seen as the shoulder of peak
E’, which exhibits the larger absorption. The maximum of peak E’ is blue shifted by
0.4 eV compared to B of the neutral species and due to the D’ shoulder, E’ is broadened
compared to B. Looking at the results of the Ag conformer, D’ is red shifted by 0.47 eV
compared to the A]J(, conformer and it seems that D’ is rather a shoulder of C’ than of
peak E’. Furthermore, the state characters differ as well. The states contributing to D’
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Figure 9.4: Structures of phenol, acenaphthenequinone (ANQ) and 2,2’-bithiophene (BT).
Nuclear coordinates of phenol, ANQ and BT, which are investigated in this chapter, are
marked in red, respectively.

of the A} conformer are dominated by transitions from the C2 group to the The, db11,
75, and df,, spin-orbitals, while E’ contains a mix of transitions into the 7, and diffuse
orbitals. Compared to B of the neutral species, E’ of Ag exhibits a large blue shift of
1.05 eV.

Finally, I would like to briefly comment on peaks F’ of both AE and Ag conformers,
which correspond to higher-lying core-excited states. These are mostly dominated by
transitions from C 1s orbitals into a mixture of strongly diffuse orbitals, thus they can be
characterized as Rydberg states. F’ of Ag exhibits a core-excitation energy of 288.18 eV,
while F’ of AE is slightly blue shifted by 0.23 eV.

Eventually, one can expect the following features for the experimental C 1s XA spectra
of anthracene cations. Compared to the neutral species, an additional broad peak with core-
excitation energies ranging from 281 eV to 283 eV due to the SOMO exists. Furthermore,
one can expect a large peak broadening due to geometry relaxation of the cation (AJCC)
The latter depends on the life-time of the cation. The longer the cation exists, the closer
the experiment should be to the calculated results of the Ag conformer. Potentially, these
calculations may help in the future to identify anthracene cations or related systems as
reactive intermediates in organic materials.

9.2 Trends of Core-Excited State Properties Along Po-
tential Energy Surfaces of ANQ, Bithiophene and
Phenol

Let me turn to the second topic of this chapter, which is the investigation of properties of
core-excited states along relaxed scans of ground-state potential energy surfaces (PES)
of the representative medium-sized model systems phenol, ANQ and BT using the CVS-
ADC(2)-x/CVS-ISR approach. ANQ is a simple model for electron-accepting molecules
like PTCDA, while derivatives of BT are often employed as electron donors in organic
semi-conducting materials. '32% Since gradients of the CVS-ADC approaches are not
available yet, the PES were optimized in the ground state at the MP2 level and no
core-excited state geometry optimizations were performed. In these calculations, the
chosen reaction coordinate was constrained, while all other coordinates were allowed to
relax freely. Figure 9.4 shows the structures of phenol, ANQ and BT as well as the chosen
reaction coordinates.
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9.2.1 PES Scan of the C—O Bond Distance in Phenol

Let me start with the scan of the C-O bond length (rco) of phenol, which was calculated
in 0.05 A steps from 1.10 A to 1.65 A. Figure 9.5 illustrates the plots of the scan. As
expected for a diatomic internuclear separation, the potential in the Sy has the typical
shape of a Morse potential. The minimum in the Sy is at 1.37 A. The relative S energy is
2.47 eV above the minimum at an internuclear distance of 1.10 A, while at 1.65 A, the
energy is 0.85 eV higher than the one of the minimum, thereby indicating the convergence
against the dissociation energy. At the minimum Sy geometry, the relative core-excitation
energy of the bright O 1s excited 1'A’ state is 533.84 eV. The relative energy of the O 1s
core-1' A’ state rises strongly at small C-O distances, whereas at the larger distances from
1.37 A to 1.55 A, the energy decreases slightly. The shape of the corresponding potential
is strongly dissociating. It seems that the potential converges against a stationary point.
This indicates an unstable situation, thus one should expect an OH radical dissociation
after the core-excitation depending on the lifetime of the O 1s excited 1'A’ state.

In Figure 9.5 the trends of the core-excited state dipole moment peyx as well as the
ground state dipole moment along the distance between C and O are plotted. In principle,
the dipole moment in the ground state at the relaxed MP2 level describes a polynomial
behavior. The minimum is around the Sy geometry with a value of almost 1.40 D. This value
is in agreement with experiments, where a dipole moment of 1.22 D was determined. 238
Going from smaller to larger internuclear C-O distances, the dipole moment in the Sy
slightly increases to 2.41 D and 2.22 D at 1.10 A and 1.65 A, respectively. Compared to
the dipole moment in the Sy, the trend of the core-excited state dipole moment differs
significantly. Looking at the So minimum at 1.37 A, the absolute value of ey is 4.23 D
larger than the ground state dipole moment, which can be explained by an enhanced
polarity due to the core hole. From 1.10 A to 1.45 A, iy increases from 4.5 D to 6.2 D.
This observation is in agreement with the expectation of two partial charges that are
moved away from each other. However, at 1.50 A the core-excited state dipole moment
breaks down steeply to almost zero at an internuclear distance of 1.65 A. This phenomenon
can be explained when looking at the (D/A) densities of the O 1s excited 1'A’ state
of phenol at rco values of 1.37 A and 1.6 A, respectively, which are shown in Figure
9.6. Comparing the shapes of the detachment densities at both C-O distances with each
other, one can hardly find any significant differences. The detachment density is strongly
broadened around the oxygen atom by extending the hole to the neighboring atoms due
to relaxation effects. However, the attachment densities at both C—O distances differ from
each other. At the smaller roo of 1.37 A, the attachment density is mostly localized at the
OH group with small contributions located at the connected carbon. At the larger rco of
1.60 A, in contrast, it seems that the C-O bond starts to break, thus the density located
at the disconnected carbon atom is enhanced. Thereby, the density contribution on the
hydrogen atom of the OH group is reduced. Since the core-excited electron is delocalized
over the carbon atom and the OH group at larger C—O distances, the partial charges
compensate each other, which leads to a decrease of the core-excited state dipole moment.

The influence of the breaking of the C—O bond can be confirmed by looking at the
trends of exciton sizes related to the 1IDDM analysis as a function of reo (see Figure 9.5).
From 1.10 A to 1.50 A, the exciton sizes increase, while at an internuclear distance of
1.55 A, they start to decrease. Since at smaller C-O distances the core excitation is mostly
localized on the OH group and only a minor part of the density is located at the aromatic
ring, the extent of the attachment and detachment parts increases when going to larger
rco values. At larger distances, when the bond breaking starts to occur, the density at
the carbon atom expands. As a consequence, the extent of the exciton decreases, because
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Figure 9.5: Relaxed PES scan along the distance of the C-O bond rgo of phenol in the
electronic ground state (Sg). The Sy calculations were performed at the MP2/6-3114+G**
level of theory, while the O 1s excited 1'A’ state is calculated using the respective ground
state geometries and the CVS-ADC(2)-x/6-3114++G** approach. Top: relative energies
Erel. The So minimum at 1.37 A is set to zero. Middle: static dipole moments i of the So
and O 1s excited 1'A’ states. Bottom: different exciton sizes of the 1'A’ state based on
the 1DDM, i.e. op, 04, and dp_a.
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Figure 9.6: Detachment(blue)/attachment(lime) densities of the 1* A’ O 1s core-excited
state of phenol, the 11 B, O 1s core-excited state of ANQ, and the 2' B S 1s core-excited state
of BT. The calculations were performed at the CVS-ADC(2)-x/6-311++G** level. The
isosurfaces were rendered with the isovalues 0.0256 (opaque), 0.0064 (colored transparent),
and 0.0016 (transparent) in the case of phenol, while the respective isovalues for ANQ
and BT are 0.0128, 0.0032 and 0.0008. For comparison two structures of phenol are
shown, which exhibit C—O bond lengths of 1.37 A (energetic Sp minimum) and 1.60 A.
The structures of BT and ANQ are in their energetic So minimum, respectively.
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the center of charge is shifted towards the aromatic ring.

9.2.2 Symmetric PES Scan of the Two C=0 Bond Distances in
ANQ

Next, the static dipole moments of the bright O 1s core-excited state of ANQ along the
symmetric stretch motion of the two C=0 bond distances of ANQ are investigated. In
contrast to phenol, this system exhibits two symmetrically equivalent C=0 double bonds
due to the Cy, point group symmetry. Since the O 1s XA spectrum of ANQ is dominated
by one broad peak, which was identified as the O 1s excited 1By state (see chapter 6.1.1),
this coordinate is of special interest. The C=0 distance is investigated from 1.10 A to
1.55 A and the results are shown in Figure 9.7. The (D/A) densities exhibit the same shape
and character at all C=0 distances, thus only the (D/A) densities at the Sy minimum at
rco = 1.21 A are shown in Figure 9.6.

Both ground and O 1s excited 1'B, state potentials have a typical Morse-type shape,
but the potential of the core excitation is less steep than the Sy one. Going to the static
dipole moments, the trends in both Sy and O 1s excited 1'B, states are similar. This is in
contrast to the phenol example, where the dipole moments show a completely different
behavior. In the case of ANQ, both investigated dipole moments increase from small rco
values of 1.10 A to a maximum at 1.55 A. The absolute jicy values are in this example
smaller than the ground state ones, e.g. at the C=0 distance of 1.21 A the Sy dipole
moment is 6.09 D, while the core-excited state dipole moment is only 2.79 D. Again,
these results can be explained by inspecting the (D/A) densities (see Figure 9.6). Due
to the double bond character of the C=0 bonds, the core excitation is localized on the
whole bonds and not on the oxygen atoms themselves. Furthermore, the symmetric
treatment of the equivalent C=0 bonds leads to a delocalization over both C=0 bonds.
This means a strong delocalization of the core-excited electron, which is accompanied by
significant relaxation effects of the core hole. As a consequence, the polarity of the C=0
bonds decreases in the O 1s excited 1'B, state, which results in a smaller dipole moment
compared to the ground state.

9.2.3 PES Scan of the Torsion Around the Central Dihedral An-
gle of Bithiophene

The last example is the PES Scan of the torsion around the central dihedral angle 3
(S-C-C-S) of BT (see Figure 9.4).
Since C5 point group symmetry was exploited in all calculations, the two sulfur atoms
are equivalent and the S 1s excited states are characterized by transitions from linear
combinations of the two 1s orbitals of the sulfur atoms. This dihedral angle plays an
important role for the absorption and emission properties in the ultraviolet region of
bithiophenes. For example, I showed in a previous work that this torsion angle dominates
the most important reaction coordinate in an oligothiophene-based organic solar-cell
material. %> The energy- and charge-transfer processes are strongly influenced by this
torsion. In the ground state, BT is usually non-planar207:209:239 while the first strongly
bright valence-excited state, which is dominated by the LUMO, has a planar structure,
because the LUMO has a binding character between the two thiophene rings.?® Hence, the
question arises whether the bright S 1s core-excited 2'By state shows a similar behavior.
The results along the scan in a range from 0° to 180° are summarized in Figure 9.8.
The potential in the ground state exhibits the typical shape for BT systems at the
MP2 level. 207:209:239 There are three local maxima and two local minima with an absolute
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Figure 9.7: Relaxed PES scan along the parallel stretching of the two C=0 bonds rco
of the ANQ ground state. The Sy calculations were performed at the MP2/6-311++G**
level of theory, while the vertical O 1s excited 1!B, states were calculated using the
respective ground state geometries and the CVS-ADC(2)-x method in combination with
the 6-311++G** basis set. Top: relative energies E,e. The energy of the Sqg minimum at
1.21 A is set to zero. Bottom: static dipole moments p of the Sy and core-excited 1'B,
states.
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Figure 9.8: Relaxed PES scan along the dihedral angle 5 of BT in the electronic ground
state Sp. The Sy calculations were performed at the MP2/6-3114++G** level of theory,
while the vertical S 1s core-excited 2! B, state is calculated using the respective ground
state geometries and the CVS-ADC(2)-x method in combination with the 6-3114+4G**
basis set. Top: relative energies E.;. The energy of the Sp minimum at 139.79° is set to
zero. Middle: static dipole moments u of Sy and the S 1s core-excited 2B state. Bottom:
different exciton sizes of the core-2'B, state based on the 1DDM, i.e. op, 04 and dp_,.
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minimum located at 139.8°. The torsion of /3 is around a single bond, thus the corresponding
energy barrier is very low. The largest maximum is located at 0° with a relative energy of
only 0.11 eV compared to the absolute minimum. Going to the S 1s core-excited 2'Bs
state, there are also three local maxima and two local minima, but with slightly shifted g
values compared to the ground state. The barrier of the core-excitation energy is with
0.06 eV at the same level as the ground state potential. Hence, the potential of the S 1s
excited 2'B, state along the torsional mode is mostly dominated by the valence electrons
and the influence of the torsion around 3 to the core-2!B, state and vice versa is negligible.
Looking at the (D/A) densities (see Figure 9.6) reveals the reason for the small barrier
in this core-excited state. Since the attachment density is delocalized over the thiophene
rings due to the Cs point group symmetry, there is no binding character along the central
C—C bond, resulting in a low barrier of the torsion around (. Hence, the bright S 1s
core-excited 2'By state does not exhibit the same character as the bright valence-excited
state of BT.

Let me turn to the trend of static dipole moments along the torsional mode. The
absolute values of the ground state dipole moments are small, ranging from 0.22 D to
0.52 D. From 0° to 75°, they remain practically constant, while they drop constantly to
0.22 D between 75° and 120°, exhibiting a small maximum around 160°. Note that the
trend of the dipole moment in the Sy calculated at the MP2/6-311++G** level differs from
former calculations in the literature.?4? There, a smaller cc-pVDZ basis set was employed.
Generally, the dipole moment in the Sy should constantly decrease towards zero going from
B values of 0° to 180°, because the distance between the two sulfur atoms (rgg) increases
and the charges totally compensate each other at 180°. It seems that the polarization and
diffuse functions included in the 6-311++G** basis set enhance the description of the
dipole moment in the ground state. Compared to the ground state, the trend of static
dipole moments of the S 1s excited 2'B, state differs strongly. pex has values between
0.02 D and 2.84 D and increases almost constantly from 0° to 60° and then falls to almost
0 D at 180°. This trend can be explained again by means of the exciton sizes and the Cs
point group symmetry of the BT molecule (see Figure 9.8, bottom). Looking at the trends
of op and o4, the increase of the internuclear distance of the two sulfur atoms during the
torsion around 3 becomes obvious. rgg ranges between 3.31 A at 0° and 4.38 A at 180°,
while due to relaxation effects that expand the hole density to the neighboring atoms, op
only increases from 2.00 A to 2.36 A. The trend of the distance of the center of charges
(dp—a) provides the same shape as fiex. The maximum is located at 8 = 60° and then
dp_.a drops down to almost zero at 180°, where the two sulfur atoms are opposite to each
other and thus the partial charges compensate each other. Since the the (D/A) densities
are delocalized due to relaxation effects, pex and dp_, 5 increase going from 0° to 60°.

Eventually, a significant influence of the torsion around S on the dipole moment and
polarization of BT in the S 1s excited core-2'By state is observed, which differs strongly
from the electronic ground state. However, the potential in the S 1s excited core-2'Bs
state is very similar to the one in the ground state.
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Chapter 10

Core-Excited State Absorption
Processes

Besides core-excited state properties, an interesting aspect of the CVS-ISR method
is the accessibility of transition moments between two states. These can be used for
calculating oscillator strengths for excited state absorption (ESA) spectra. Experimentally,
time-resolved X-ray absorption techniques are available to probe excitations from a
valence-excited state to a core-excited one using ultrafast sequences of vacuum ultraviolet
(VUV)/X-ray pulses.?1:24! To the best of my knowledge, no experimental data of an
inverse absorption, i.e. core-excited state absorption (CESA) processes from a core-excited
state to another using a sequence of X-ray/VUV pulses, are available yet. In principle, all
excited states of a molecule can absorb a photon, leading to an ESA process, but only ESA
spectra of the lowest excited states, e.g. S1 or Ty, can usually be measured. 242 Higher-lying
states, especially core-excited ones, are meta-stable and undergo fast relaxation or decay
processes, making the measurement of ESA difficult. However, such spectroscopic data
could exhibit new insights and the theoretical CESA transition moments for comparison
are already available using my CVS-ADC/CVS-ISR approach and are presented in this
thesis.

Therefore, the set of CO, ANQ, the methyl radical CH; and triplet Oz were chosen (for
structures see Figures 4.1, 6.1 and 6.10). The structures of the small molecules CO and
the CH3 radical in the electronic ground state were optimized at the CCSD?! level using
the def2-QZVPPD !'? basis set. For comparison with the results presented in chapters
6.1.1 and 6.3.3, the structures of the molecules ANQ and the triplet Oy diradical were
optimized at the MP2 level in combination with the resolution-of-the-identity (RI)!92:193
approximation and employing the def2-TZVPP '8 basis set combined with the respective
auxiliary TZVPP basis set 14, The CCSD calculations were performed using the Q-Chem
4.3 program®, while for the geometry optimizations at the RI-MP2 level the TURBOMOLE
6.3.7 program %6 was used. For the open shell systems, the unrestricted variants of CCSD
and MP2 were used, respectively. Core excitations and the corresponding state-to-state
transition moments were calculated with my implementation of the CVS-ADC/CVS-
ISR approach. The calculations of the triplet Os diradical and the methyl radical were
performed using the unrestricted variant of CVS-ADC (CVS-UADC). The calculations
of core-excited states were performed employing the Cartesian 6D/10F version of the
6-311++G** basis. 199110113 Ty save computational time, Cy, point group symmetry was
exploited in all calculations of ANQ.
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CHAPTER 10. CORE-EXCITED STATE ABSORPTION PROCESSES

10.1 CESA Processes Between Core-Excited States

The first calculated results of core-excited state absorption (CESA) events are presented in
this chapter and are briefly discussed. Since the calculation of CESA oscillator strengths
is straightforward using the CVS-ADC/ISR approach, a theoretical demonstration of such
transitions can easily be performed. The results calculated at the CVS-ADC(2)-x level
are summarized in Table 10.1. Starting with the C 1s excitations of the CO molecule,
the first 10 transitions from the bright dipole allowed core-excited singlet state 1 were
calculated. Due to degenerate m*-orbitals, some core-excited states are also degenerate.
The first transitions that exhibit a meaningful oscillator strength are the transitions from
state 1 to 3 and 4, which are 5.40 eV and 6.68 eV higher in energy, respectively. The
oscillator strength of the transition from state 1 to state 4 can be explained by plotting
the (h/e) densities. Figure 10.1 illustrates the plots of some chosen transitions. In the CO
example, the transition from 1 to 4 exhibits oscillator strength, because the characters of
both states are similar with 7* shapes located on the carbon atom (see electron densities).
Hence, an overlap is given. Overall, four bright excitations can be identified within the 10
lowest transitions.

Going to the O 1s excitations of ANQ, transitions from the bright dipole allowed 1 !By
core-excited singlet state to the first six 'By and Ay core-excited singlet states were
calculated. All transitions exhibit oscillator strength due to the delocalized 7* system of
the ANQ molecule. As an example, the transition from the 1 !By to the 2 1A, state is
shown in Fig. 10.1.

Finally, there are two open-shell examples that were calculated using the unrestricted
CVS-ADC(2)-x variant. Within the first 16 transitions from the C 1s core-excited state
1 of the CHjg radical, only three exhibit oscillator strength, i.e. to state 2, 3 and 17.
Especially, the transition to state 17 exhibits a large oscillator strength of 0.172. In the
case of the Oy diradical, transitions from the core-excited state 8 were chosen, because
this state was identified in chapter 6.3.3 to have a large oscillator strength. Here, only
four transitions exhibit a meaningful oscillator strength, where the transition to state 23
has the highest value of 0.039. Figure 10.1 illustrates the transition to state 12, which can
be characterized as a diffuse Rydberg state. This transition is also dipole allowed with an
oscillator strength of 0.016.

Eventually, this investigation demonstrates that CESA processes are theoretically
possible, leading to dipole allowed transitions that could be measured hypothetically.
CVS-ADC(2)-x in combination with the CVS-ISR approach provides a quantum chemical
tool to calculate such events and maybe can be applied in the future to help interpreting
experiments.
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10.1. CESA PROCESSES BETWEEN CORE-EXCITED STATES

Table 10.1: List of the calculated CESA transitions from the first core-excited singlet
state to the first 11 core-excited singlet states of CO (C 1s), from the 1 !By core-excited
singlet state to the first six !By and 'Ay core-excited singlet states of ANQ (O 1s), from
the first core-excited state to the first 17 core-excited states of CHs (C 1s), and from
the eighth core-excited state to the first 24 core-excited states of the triplet Oy diradical
(O 1s). The CESA excitation energies (wex) and oscillator strengths (fosc) were calculated
using CVS-ADC(2)-x (CO and ANQ) and CVS-UADC(2)-x (CH3 and Os), employing
the 6-311++G** basis set.

State X wey [€V] fose ‘ State X wey [€V] fose

CO C 1s (State 1 — State X) | ANQ O 1s (State 1'By — State X)
2 0.00 0.000 2 1A, 3.63 0.054
3 5.40 0.008 2 1B, 3.63 0.031
4 6.68 0.016 3 1B, 5.33 0.006
5 6.68 0.000 31A, 5.33 0.008
6 6.87 0.017 4 1B, 6.25 0.018
7 9.44 0.016 4 TA, 6.25 0.002
8 10.09 0.000 51A, 6.30 0.021
9 10.09 0.000 5 1B, 6.30 0.170
10 10.44 0.001 6 1B, 7.31 0.025
11 10.44 0.000 6 LAs 7.31 0.071

CH; C 1s (State 1 — State X) 02 O 1s (State 8 — State X)
2 5.39 0.018 9 0.48 0.000
3 6.29 0.010 10 0.53 0.010
4 6.80 0.000 11 1.59 0.000
5 6.80 0.000 12 1.60 0.016
6 7.70 0.000 13 2.02 0.001
7 7.70 0.000 14 2.02 0.001
8 7.79 0.000 15 2.07 0.000
9 8.27 0.000 16 2.07 0.000
10 8.27 0.000 17 2.83 0.000
11 8.39 0.000 18 2.86 0.000
12 9.22 0.000 19 3.10 0.003
13 9.22 0.000 20 3.10 0.003
14 9.25 0.000 21 3.12 0.000
15 9.60 0.172 22 3.12 0.000
16 10.09 0.000 23 3.82 0.039
17 10.09 0.000 24 3.82 0.000
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Figure 10.1: Plots of hole (left, blue) and electron (right, lime) densities based on the
1TDM of some CESA related core-excited states of CO (C 1s), ANQ (O 1s), CH; (C
1s), and triplet Oy (O 1s) calculated at the CVS-ADC(2)-x/6-311++G** level.
isosurfaces of ANQ, CH3 and O were rendered with the isovalues 0.0128 (opaque), 0.0032
(colored transparent), and 0.0008 (transparent), while the ones of CO are rendered with
the isovalues 0.0512 (opaque), 0.0128 (colored transparent), and 0.0032 (transparent).
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Chapter 11

Conclusion and Outlook

In this thesis, I presented efficient implementations of different variants of the algebraic
diagrammatic construction scheme (ADC) in combination with the core-valence separation
(CVS) approximation, which allows for the calculation of core-excited states. Due to the
CVS approximation, the size of the ADC matrix is reduced and the valence-excited states
are strictly decoupled from the core space. This is justified since the interaction between
core and valence-excited states is weak as the energy difference between valence and core
orbitals is large. As a consequence, the corresponding Coulomb integrals are very small,
thus they can be neglected and the core-excited states can be computed directly. The
implementation features excitation energies of singlet and triplet core-excited states as
well as oscillator strengths and state properties to describe the spectral characteristics,
thereby simulating X-ray absorption (XA) spectra. Furthermore, the program allows to
exploit point group symmetry.

Besides the efficient implementation of the restricted strict and extended second order
CVS-ADC(2) approaches, which can treat about 500 basis functions in an adequate com-
putational time, I developed the unrestricted CVS-UADC approach for the computation
of XA spectra of open-shell systems (ions and radicals) for the first time. Subsequently, I
derived and implemented the third order CVS-ADC(3) approach by applying the CVS
approximation to the ADC(3) working equations. Furthermore, the intermediate state
representation (ISR) for a general one-particle operator was combined for the first time
with the CVS approximation for the calculation of core-excited state properties, i.e. static
dipole moments, core-excited state densities and transition moments between core-excited
states. In combination with wave function analysis packages, a deeper evaluation of
transition- and density matrices can be performed, providing access to exciton sizes, e.g.
hole sizes or distances between hole and electron densities of core-excited states. Since the
third order algebraic expressions for the transition moments and ISR properties are not
available yet, the second order terms are used to describe the properties and transition
moments at the CVS-ADC(3) level, which is denoted as the CVS-ADC(3,2) method.

To demonstrate the accuracy of the CVS-ADC methods and their capabilities to
simulate XA spectra, benchmark calculations and different applications were presented in
chapters 4 — 10. There, it has been shown by means of miscellaneous sets of small and
medium-sized molecules that the restricted and the unrestricted CVS-ADC(2)-x approaches
provide an excellent agreement with experimental data. The benchmark calculations on
the basis of the C, N and O 1s excitations, where the complete basis set (CBS) limit
of the aug-cc-series was estimated, show an error of -0.23%40.12% for core excitation
energies at the CVS-ADC(2)-x level compared to experiments. The CVS-ADC(3,2) and
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CVS-ADC(2)-s methods, in contrast, overestimate the core excitation energies with a
mean errors of 0.61%+0.32% and 0.57%=+0.43%, respectively. This overestimation, in
particular in the case of CVS-ADC(3,2), depends significantly on the core-type. The
heavier the element, the larger the overestimation at the CVS-ADC(3,2) level. The reason
for the larger deviations of heavier elements are stronger relativistic and relaxation effects
due to stronger Coulomb interactions between the core and valence electrons. In the case
of CVS-ADC(2)-x and -s, core excitations from heavier elements usually lead to a larger
underestimation of the corresponding excitation energies. Since relativistic effects, which
are not included within the CVS-ADC approaches, would shift the core-excitation energies
to larger numbers, the underestimation provided by CVS-ADC(2)-x/-s shows a ”correct”
trend that may be explained by the neglect of these effects. Energy spacings between
core-excited states, oscillator strengths and static dipole moments are well described at
both CVS-ADC(2)-x and CVS-ADC(3,2) levels, which justifies the use of the second order
transition moments and ISR property equations for CVS-ADC(3).

A detailed investigation of the influence of the chosen basis set on the results revealed
that core-excitation energies are almost converged at the triple-¢ level independent of
the chosen type of basis set. To successfully describe Rydberg or dipole-bound states,
the inclusion of diffuse basis functions is mandatory, while bright s,7* states can be
well described by employing smaller basis sets without augmentation, e.g. the cc-pVDZ
basis set. Pople-type basis sets, additionally, show a strong influence of the polarization
functions. For a quantitatively adequate result, one should at least apply the 6-311G**
basis set. Actually, the correlation consistent series provides better results in combination
with the CVS-ADC methods, but the calculations are much faster employing Pople-type
basis sets, because they contain less basis functions. Employing the 6-311++G** basis
set, for example, is in the case of CO 186 times faster than the respective aug-cc-pVTZ
basis. Furthermore, the use of Cartesian 6D/10F basis functions is of advantage compared
to pure 5D /7F functions.

Overall, T reach the conclusion that CVS-ADC(2)-x, in combination with a diffuse
triple-¢ basis in its Cartesian version, provides a fortuitous compensation of basis set
truncation errors, correlation effects, neglect of relativistic effects and orbital relaxation
effects resulting in an excellent agreement with experimental data. This error cancellation
is broken at the CVS-ADC(3,2) and CVS-ADC(2)-s levels, which I showed in chapters
2.5.9 and 5. Generally, orbital relaxation and polarization effects are included indirectly
within the CVS-ADC method via couplings between excited configurations. Since both
CVS-ADC(2) and CVS-ADC(3,2) comprise two excitation classes, only the singly excited
configurations are relaxed via couplings to the doubly excited configurations, while the
double excitations remain unrelaxed. The overestimation at the CVS-ADC(2)-s level
can be explained by the fact that the description of the doubles is not improved as in
CVS-ADC(2)-x, which usually leads to a lowering of the excitation energies in CVS-
ADC(2)-x compared to CVS-ADC(2)-s. At the CVS-ADC(3,2) level, the effective coupling
is decreased without further improving doubly-excited amplitudes, which results in an
overestimation of core-excitation energies. The influence of relaxation effects on the
core-excited states was performed by means of counting the amount of doubly-excited
amplitudes (R2) contributing to a state and electron promotion numbers (ppa). In this
case, a clear trend between the R2/ppa values and core-excitation energies was identified,
which demonstrates the strong influences of relaxation effects on core-excitation energies.
Since a ppa value of 1.0 indicates no inclusion of relaxation effects, which is typical
for uncorrelated quantum chemical methods like CIS, values larger than 1.0 indicate
these many-body effects. In the case of CVS-ADC(2)-x, the promotion numbers are
larger than 1.7 (on average around 2.0), which indicates a huge contribution for singly
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core-excited states. Furthermore, the CVS-ISR approach gives access to core-excited state
densities, thus the subsequent decomposition of the difference density matrix (1IDDM) into
detachment/attachment (D/A) densities is a useful procedure that provides the possibility
to visualize orbital relaxation effects. Typically, the attachment density is less influenced by
relaxation effects, while the detachment density shows strong relaxation effects expanding
the core hole to neighboring atoms. Besides the analysis of the 1IDDM, the evaluation of
the transition density matrix (1TDM) provides further information too. Hole and electron
(h/e) densities based on the 1TDM do not contain orbital relaxation effects, thus they can
be seen as a description of the vertical excitation process itself. Exciton sizes based on
either 1TDM or 1DDM can be employed to learn further information about relaxation
effects and the extent of the core excitation, in particular, when comparing corresponding
exciton sizes obtained with the different densities with each other. I have shown, for
example, that the detachment density is strongly expanded in space by relaxation effects,
while the attachment density slightly contracts.

With the knowledge about the excellent performance of the restricted and unrestricted
CVS-ADC(2)-x approaches, I chose molecules of current interest in the fields of organic
electronics (ANQ), bithiophene, PTCDA) and biology (porphin, thymine, cytosine) as
well as small organic radicals (CHsz, OH, allyl, triplet O2) to simulate their XA spectra.
Regarding these examples, CVS-ADC(2)-x, in combination with the 6-311++G** basis set,
provides a mean error of about 0.1% compared to experimental core-excitation energies.
Besides the excellent agreement of the calculated and experimental core-excitation energies,
the energy spacing between the states is also well described using the CVS-ADC(2)-x
method. By means of ANQ and cytosine, an analysis of state and transition densities
was performed to determine state characters and to show, which information can be
gained by means of exciton sizes. In the case of cytosine, plotting the (D/A) or (h/e)
densities provides a unique and clear picture of the core-excitation process that helps
to distinguish between s,7*-, dipole-bound and Rydberg-states. Furthermore, exciton
sizes help to characterize core-excited states. The electron sizes, for example, grow by
about 2.0 A going from s,m* states to dipole-bound states or Rydberg states in the case
of cytosine O 1s excitations. Investigations of correlation effects and dynamic charge
separation reveal that core excitations from a single atom exhibit no correlation effects
due to the localized contracted 1s orbital, whereas core excitations described via linear
combinations of symmetrically equivalent 1s orbitals show slight contributions.

Next, the core-excitation energies at the CVS-ADC(2)-x level presented in chapter
6 were compared with REW-TD-DFT and CVS-ADC(2)-s results to demonstrate the
self-interaction error (SIE) problem inherent in pure TD-DFT. I have shown that for
both close- and open-shell systems an almost constant underestimation of core-excitation
energies ranging from 2% to 4% is provided, employing the B3LYP xc-functional. However,
energy spacings between the states are also well described in most cases at the level of
REW-TD-DFT/B3LYP. Nevertheless, an experimental comparison is always mandatory
for a quantitative interpretation of REW-TD-DFT spectra, because the underestimation of
core-excitation energies clearly limits its predictive power. By adding a large constant shift
to the absolute core-excitation energies, adequate core-absorption spectra can be obtained
with REW-TD-DFT/B3LYP. The restricted and unrestricted strict CVS-ADC(2) variants
generally overestimate the excitation energies in combination with the 6-311++G** basis
sets up to 1.5%.

The investigation of computational timings with focus on the influence of the CVS ap-
proximation and the size of the core space showed a linear dependence of the computational
time on the size of the core space. The larger the core space the longer take the calculation
in the case of the second order CVS-ADC approaches. At the CVS-ADC(3,2) level, the
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opposite dependence was identified. The reason for this are the additional third order
terms that are dominated by contractions over the non-core occupied space. Generally, a
CVS-ADC(3,2) calculation can take 8 to 10 times longer than a respective CVS-ADC(2)-x
calculation. Compared to general ADC(2)-x calculations, the CVS approximation leads to
a significant speed-up. In the case of cysteine, the calculation of 10 valence-excited states
using the ADC(2)-x method takes about 3.85 times longer than at the CVS-ADC(2)-x
level.

Next, two relevant applications of CVS-ADC(2)-x calculations in the field of organic
electronics were presented. Since CVS-UADC(2)-x provides accurate absolute core-
excitation energies and properties of core-excited states, I used this approach to predict
the XA spectrum of the anthracene cation, which has not been measured experimentally
yet. First of all, I investigated the neutral anthracene species at the level of restricted
CVS-ADC(2)-x, which provides an excellent agreement with the experiment. The following
analysis of the anthracene cation species revealed that, due to the half-filled SOMO, a new
absorption band appears in the spectrum located approximately 3.5 eV — 1.5 eV below the
first peak of neutral anthracene. Furthermore, I expect peak broadening in the cationic
spectrum compared to the two first peaks of neutral anthracene. The second application in
the field of organic electronics corresponds to core-excited state properties along relevant
nuclear coordinates of phenol, ANQ and BT. Regarding these systems, plotting (D/A)
densities and evaluating exciton sizes help to understand the behavior of core-excited state
dipole moments along the coordinates of interest. Particularly, the torsion around the
central dihedral angle of bithiophene has a strong influence on the dipole moment of the
bright S 1s excited state.

Finally, the calculation of core-excited state absorption (CESA) spectra was introduced.
The CVS-ISR method provides an elegant way to calculate transition moments between
core-excited states, although experimental data of CESA events are not available yet.
Using test systems, it was shown that CESA is theoretically possible, showing large
oscillator strengths in some cases. For example, transitions from the first O 1s singlet
excited state of ANQ to the 10 higher-lying states exhibit oscillator strength in every case,
due to the delocalized 7*-LUMO level.

Since the CVS-ADC methods, in particular the extended second order approach, can
be employed to successfully simulate XA spectra, it is reasonable to extend and further
develop these approaches. There are many possible projects that should be considered
in the future. Since CVS-ADC(3,2) does not further improve the results compared to
CVS-ADC(2)-x, one should consider possible correction schemes to include a better
description of orbital relaxation and polarization effects, for example within the doubly-
excited configurations. It may be possible to expand the 2p-2h-block via perturbation
theory or to only include specific terms of CVS-ADC(4) to describe these missing relaxation
and polarization effects. Employing CVS-ADC(4) might entirely fix this problem, but the
computational cost would be increased drastically too. Since TD-DFT provides reasonable
XA spectra, but fails in the calculation of absolute core-excitation energies due to the
SIE, a proper investigation of relaxation effects within the TD-DFT approach would be
an interesting topic as well. For this, the wave function analysis tools can be employed
and the results can be compared with CVS-ADC data. The resolution-of-the-identity
(RI)192:193 approximation is a potential approach to reduce the computational cost of
the CVS-ADC calculations. In combination with the MP2 and CC2 methods, the RI
approximation is known to provide small errors compared to the full results, which makes
it a promising approach for CVS-ADC. For this purpose, the CVS-ADC equations have to
be modified to correspond to the RI scaling. So far, CVS-ADC calculations do not consider
any environmental effects. Since NEXAF'S spectra are usually regarded for solid state
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materials, considering environmental effects would be advantageous for the description of
core-excited states. Furthermore, recent investigations of XA spectra of liquid water 16
could be supported with CVS-ADC calculations that include solvent effects. Therefore,
the combination of the CVS-ADC approaches with solvation models like the polarizable
continuum model (PCM) could provide deeper insights.243244 Another possibility to
describe environmental effects is the frozen density embedding (FDE)?45:246 approach,
which can theoretically be combined with ADC methods. Furthermore, the development
of analytic gradients of the energy at the CVS-ADC levels would be favorable, since
they provide access to core-excited state geometry optimizations, emission spectra and
response properties. Recently, analytic gradients for general ADC have been developed,
thus it should be straightforward to derive them for the CVS methods.?*” As mentioned in
chapter 10, state-to-state transitions between core-excited states have not been measured
yet. However, transitions between valence- and core-excited states have been studied
recently. 31241 Hence, a theoretical description at the CVS-ADC/CVS-ISR level for such
excited state absorption processes would be helpful to interpret the experiments. For this
purpose, the CVS-ISR approach needs to be combined with the ISR for general valence-
excited states. Generally, it is also possible to implement the calculation of two-photon
absorption processes using the CVS-ISR approach, which can be done in future work.
Since core-excited states are meta-stable leading to fast decay processes like Auger or
ICD, the description of such resonances would also be an interesting challenge. Generally,
complex-absorption potentials (CAP) can be used to describe resonances beyond the
ionization threshold of excited molecules.?*24 The implementation of CAP-ADC can be
realized using the Q-Chem framework, provided by Krylov et al.?4*25° To calculate ICD
decay rates, the implementation of the Fano-Stieltjes-ADC method is necessary. 251252
This approach was successfully used to describe ICD decay rates after core excitations in
ArKr clusters.” Finally, the CVS approximation can also be applied to calculate ionization
potentials of core-excited states (CVS-IP-ADC).83 An efficient implementation of this
approach would be useful to describe photoelectron spectra of medium-sized molecules.

Closing this thesis, I like to mention again that CVS-ADC(2)-x in combination with a
diffuse triple- basis set in its Cartesian version can be seen as a black-box method for
the calculation of core-excited states of organic molecules. The 6-3114++G** basis set, in
particular, provides an excellent ratio of accuracy and computational cost. Furthermore,
in combination with the CVS-ISR approach and wave function analysis packages, a deeper
insight into the nature of core-excited state can be provided.
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