
Induction, Semantic Validation and
Evaluation of a Derivational Morphology

Lexicon for German

Dissertation

zur Erlangung der Doktorwürde
der Neuphilologischen Fakultät

der Ruprecht-Karls-Universität Heidelberg

vorgelegt von
Britta Dorothee Zeller

Supervisor and first reviewer: Prof. Dr. Sebastian Padó
Institut für Maschinelle Sprachverarbeitung

Universität Stuttgart

Secondary reviewer: Prof. Dr. Anette Frank
Institut für Computerlinguistik

Ruprecht-Karls-Universität Heidelberg

Date of submission: 5 May 2015

Date of defense: 11 December 2015

Abstract

This thesis is about computational morphology for German derivation. Derivation is
a word formation process that creates new words from existing ones, where the base
and the derived word share the same stem. Mostly, derivation is conducted by means
of relatively regular affixation rules, as in to bakeV – bakeryN . In German, derivation is
highly productive, thus leading to a high language variability which can be employed
to express similar facts in different ways, as derivationally related words are often also
semantically related (or transparent). However, linguistic variance is a challenge for
computational applications, particularly in semantic processing: It makes it more difficult
to automatically grasp the meaning of texts and to match similar information onto each
other. Thus, computational systems require linguistic knowledge.

We develop methods to induce and represent derivational knowledge, and to apply
it in language processing. The main outcome of our study is DErivBase, a German
derivational lexicon. It groups derivationally related words (words that are derived from
the same stem) into derivational families. To achieve high quality and high coverage, we
induce DErivBase by combining rule-based and data-driven methods: We implement
linguistic derivation rules to define derivational processes, and feed lemmas extracted
from a German corpus into the rules to derive new lemmas. All words that are connected
– directly or indirectly – by such rules are considered a derivational family.

As mentioned above, a derivational relationship often implies semantic relationship,
but this is not always the case. Semantic drifts can cause semantically unrelated (opaque)
derivational relations, such as to departV – departmentN . Capturing the difference
between transparent and opaque relations is important from a linguistic as well as a
practical point of view. Thus, we conduct a semantic refinement of DErivBase, i.e.,
we determine which lemma pairs are derivationally and semantically related, and which
are not. We establish a second, semantically validated version of our lexicon, where
families are sub-clustered according to semantic coherence, using supervised machine
learning methods: We learn a binary classifier based on features that arise from structural
information about the derivation rules, and from distributional information about the
semantic relatedness of lemmas. Accordingly, the derivational families are subdivided
into semantically coherent clusters.

To demonstrate the utility of the two lexicon versions, we evaluate them on three
extrinsic – and in the broadest sense, semantic – tasks. The underlying assumption for
applying DErivBase to semantic tasks is that derivational relatedness is a reasonable
approximation to semantic relatedness, since derivation is often semantically transparent.

Our three experiments are the following: 1., we incorporate DErivBase into distri-
butional semantic models to overcome sparsity problems and to improve the prediction
quality of the underlying model. We test this method, which we call derivational smooth-

iii

ing, for semantic similarity prediction, and for synonym choice. 2., we employ DErivBase
to model a psycholinguistic experiment that examines priming effects of transparent
and opaque derivations to draw conclusions about the mental lexical representation in
German. Derivational information is again incorporated into a distributional model, but
this time, it introduces a kind of morphological generalisation. 3., in order to solve the
task of Recognising Textual Entailment, we integrate DErivBase into a matching-based
entailment system by means of a query expansion. Assuming that derivational relation-
ships between two texts suggest them to be entailing rather than non-entailing, this
expansion increases the chance of a lexical overlap, which should improve the system’s
entailment predictions.

The incorporation of DErivBase indeed improves the performance of the underlying
systems in each task, however, it is differently suitable in different settings. In experiment
1., the semantically validated lexicon yields improvements over the purely morphological
lexicon, and the more coarse-grained similarity prediction profits more from DErivBase
than the synonym choice. In experiment 2., purely morphological information clearly
outperforms the other lexicon version, as the latter cannot model opaque derivations.
On the entailment task in experiment 3., DErivBase has only minor impact, because
textual entailment is hard to solve by addressing only one linguistic phenomenon.

In sum, our findings show that the induction of a high-quality, high-coverage derivational
lexicon is beneficial for very different applications in computational linguistics. It might be
worthwhile to further investigate the semantic aspects of derivation to better understand
its impact on language and thus, on language processing.

iv

Acknowledgements

First and foremost, I sincerely thank my supervisor Sebastian Padó for the best support
I could have imagined throughout the work on this thesis: always inspiring, objective,
constructive and encouraging – and: always. It was a great pleasure to work with you.
Furthermore, I thank Jan Šnajder so much for bringing the topic of this thesis from
Zagreb to Heidelberg, for the continuous and great cooperation and support until the very
end, and for our friendship. Also, my special thanks to Tae-Gil Noh, my colleague and
friend who taught me many best practices in daily working life as a computer engineer,
and helped me not to freak out. — Without you all, this thesis would not be the same.

In addition, I am grateful for having had the opportunity to work in the EC project
EXCITEMENT (FP7-ICT 287923) and for having received a scholarship by the German
Research Foundation in the SFB 732 – not only for the funding, but also for the
resulting collaboration with great colleagues who gave me inspiration and useful input.
In this context, I thank Jason Utt for so much support in various experiments, and our
student helpers, Jan Pawellek, Jonas Placzek and in particular Julia Kreutzer, for doing
annotations, implementations and analyses in the EC project.

Meinen Eltern, meiner Tante, Eva und Heike: Danke, dass Ihr an mich geglaubt und
mich unterstützt habt.

Lastly, I wholeheartedly thank my beloved Sascha for last minute tikz help, hours of
illuminating discussions, and all the mental support over the years. — Without you, I
would not be the same.

v

Contents

I Introduction and Background 1

1 Introduction 2
1.1 Structure of this Thesis . 6
1.2 Bibliographic Note . 6
1.3 Notation . 7

2 Linguistic Foundations 8
2.1 Morphology, Word Formation, and Derivation 8

2.1.1 Morphology . 8
2.1.2 Word Formation . 9
2.1.3 Derivation . 10

2.2 Derivation in German . 13
2.2.1 Classification of Derivation . 13
2.2.2 Characteristics of the Involved Word Classes 17

2.3 Computational Representation of Derivation 18
2.4 Summary . 22

3 Related Work 23
3.1 Computational Morphology . 23

3.1.1 Algorithms to Acquire Derivational Morphology 24
3.1.2 Approaches to Build Derivational Resources 28
3.1.3 Derivational Morphology Applied in Natural Language Processing 32
3.1.4 Discussion . 35

3.2 Distributional Semantics . 37

II Modelling Derivational Knowledge for German 42

4 DErivBase: Inducing a Derivational Morphology Lexicon for German 43
4.1 The HOFM Framework . 45

4.1.1 HOFM, a Rule-based Derivation Model 45
4.1.2 The Derivational Component of HOFM 46
4.1.3 Instantiation of the Derivation Rules 49
4.1.4 Induction of Derivational Families 51

vi

Contents

4.2 Building the Lexicon DErivBase . 52
4.2.1 Design Decisions for a German Derivational Morphology 52
4.2.2 Implementation of German Derivation Rules in HOFM 55
4.2.3 Data and Preprocessing . 59
4.2.4 Rule Development Cycle and Quantitative Rule Analysis 60
4.2.5 Statistics on DErivBase . 62

4.3 Intrinsic Evaluation . 64
4.3.1 Evaluation Methodology . 64
4.3.2 Baselines . 67
4.3.3 Gold Standard Annotation . 69

4.4 Results . 73
4.4.1 Quantitative Evaluation . 73
4.4.2 Rule-level Analysis . 75
4.4.3 Pair-level Analysis . 79

4.5 Summary . 82

5 Semantic Validation of DErivBase 87
5.1 Towards Semantic Validation of a Rule-based Derivational Lexicon 89

5.1.1 Morphological vs. Semantic Relatedness in DErivBase 89
5.1.2 Hypotheses for Semantic Validation 91

5.2 Analysis 1: Distributional Similarity for Semantic Validation 92
5.2.1 Measuring Distributional Similarity 93
5.2.2 Influence of Frequency on Similarity Predictions 93
5.2.3 Conceptual Influences on Similarity Predictions 96
5.2.4 Ranking of Distributional Information 97

5.3 Analysis 2: Derivational Rules for Semantic Validation 99
5.4 A Classification Model for Semantic Validation 101

5.4.1 Features for Semantic Validation 101
5.4.2 Classification . 105
5.4.3 Results and Discussion . 105

5.5 From Pairs to Families: Semantic Validation of DErivBase 109
5.5.1 Clustering Validated Pairs . 110
5.5.2 Building Semantic Clusters . 111

5.6 Summary . 116

III Using Derivational Knowledge for German 117

6 Smoothing Distributional Models for Lexical Semantics with DErivBase 120
6.1 Study 1: Impact on Syntax-based Models 121

6.1.1 Smoothing Techniques in Related Areas 121
6.1.2 Models for Derivational Smoothing 122
6.1.3 Experimental Setup . 125
6.1.4 Results . 127

vii

Contents

6.1.5 Discussion . 131
6.2 Study 2: Complementarity with Word-based Models 132

6.2.1 Methods for Combining Vector Spaces 132
6.2.2 Experimental Setup . 134
6.2.3 Results . 136
6.2.4 Discussion . 140

6.3 Summary . 142

7 Improving Priming Predictions for Psycholinguistics with DErivBase 144
7.1 Priming . 145
7.2 Morphological Priming: State of the Art 147
7.3 A Recent Study on Morphological Priming in German 149
7.4 Modelling Morphological Priming . 151
7.5 Experimental Setup and Results . 154
7.6 Discussion . 156

8 Recognising Textual Entailment with DErivBase 159
8.1 Recognising Textual Entailment . 159
8.2 Evaluation of DErivBase on the RTE Task 162

8.2.1 Employed Dataset and Entailment System 162
8.2.2 Integrating DErivBase into TIE 163
8.2.3 Evaluation of DErivBase on RTE with TIE 164

8.3 Creating a Derivation-specific Sub-dataset 168
8.4 Evaluation of DErivBase on the Derivational Subset 173
8.5 Summary . 176

IV Conclusions and Future Directions 179

9 Conclusions 180
9.1 Contributions . 180
9.2 Insights . 181
9.3 Future Directions . 184

Appendix 187
A Employed HOFM Transformation Functions for Derivation 187
B Implemented DErivBase Rules, v1.4.1 188
C Annotation Guidelines . 203
D Abridged TIE Configuration File for Setting BOW 205

Bibliography 206

viii

List of Figures

2.1 Single link by ablaut derivation in a group of derivationally related words 17

3.1 Information content in bag of words (left) and syntax-based spaces (right) 39

4.1 Induction of derivational families . 44
4.2 Part of a derivational family from DErivBase including derivational rules 62
4.3 Relation of size and number of derivational families 64
4.4 The sampling method for the R-sample 66
4.5 Overview of the samples used to induce and evaluate DErivBase. The

development set is disjoint from the other sets (indicated by the dashed line) 68
4.6 Precision and recall for cumulated rules ranked by quality 77

5.1 Induced sample family . 88
5.2 Toy space showing differing behaviour for absolute and rank-based measures 98
5.3 Comparison of frequencies for lemma pairs, and the respective decisions of

the all features classifier . 108
5.4 Dendrogram of a derivational family in DErivBase v1.4.1 (hierarchical

agglomerative clustering with average linkage) 111
5.5 Precision and recall curves for different linkage strategies and cluster

similarity thresholds (s) on the P-sample test set 112
5.6 Comparison of five purely derivational families, and their respective se-

mantic clusters. False positives are denoted with an asterisk (left: mor-
phologically unrelated wrt. the majority in this family; right: semantically
unrelated) . 115

6.1 Illustration of the three smoothing scheme calculations, given two deriva-
tional families. Left: maxSim; middle: avgSim; right: centSim 124

6.2 Illustration of the four tested settings for model combination and/or
derivational smoothing. The numbers correspond to those indicated in
Section 6.2.2 . 135

7.1 Influcence of derivational families on Opaque Derivation primes (left) and
Synonym primes (right). The numbers are fictional 156

8.1 Overview of the Tie architecture . 163
8.2 Overview of the three setups of used system-dataset combinations 172

ix

List of Tables

4.1 Exemplary language-independent transformation functions in HOFM, and
their application . 49

4.2 Built-in combinators for transformation functions in HOFM, and their
application . 49

4.3 Exemplary German-specific transformation functions in HOFM, and their
application . 55

4.4 Breakdown of derivation rules in DErivBase v.1.4.1 by their derivational
operation, and by part of speech of base and derived word 61

4.5 Categories for lemma pair classification 70
4.6 Inter-annotator agreement on validation sample, with five-fold (left) and

two-fold (right) annotation classes . 71
4.7 Confusion matrix for the five-fold annotation of the P-sample. The agree-

ments in the diagonal are marked in boldface 71
4.8 Breakdown of the P- and R-sample per annotation label 73
4.9 Precision and recall on test samples in different versions 74
4.10 Cross-classification of derivation rules according to accuracy and coverage

for direct derivations (measured on P-sample) 75
4.11 Precision and recall across different part of speech combinations for base

word and derivative . 79
4.12 Predictions over annotated categories . 80
4.13 Precision and recall for different SMOR and DErivBase versions 85

5.1 Evaluation of DErivBase (v1.4.1), once with a morphological and once
with a semantic perspective on the “positive” class 90

5.2 Class distribution in the P-sample . 91
5.3 Percentage of S and M lemma pairs with low cosine scores, and average

cosine . 95
5.4 Top ten individual and shared context words for the targets ÜberschätzungN

– überschätztA and EntertainerN – EntertainerinN . Individual context
words are ranked by LMI, shared context words by the product of their
LMIs for the two target words. Shared context words that occur in the
top ten contexts for both words are marked in boldface 96

5.5 Features used to characterise derivationally related lemma pairs. “Type”
indicates the level at which each feature applies: l=lemma level, p=pair
level, r=rule level . 102

x

List of Tables

5.6 Accuracy, precision, recall, and F1 for semantic validation on the test
portion of the P-sample . 106

5.7 Predictions on the test set of the all features classifier per annotation class 107
5.8 Predictions on the test set after clustering vs. with the all features classifier113

6.1 Results for the semantic similarity prediction (r/cov: Pearson correlation
on covered items, r/all: Pearson correlation on all items, cov: coverage).
Best results are marked in boldface. Unsmoothed models only shown in
DErivBase v1.4.1 column . 128

6.2 Results on the synonym choice task (acc/cov: accuracy on covered items,
acc/all: accuracy on all items, cov: coverage). Best results and best
smoothing accuracies are marked in boldface. Unsmoothed models only
shown in DErivBase v1.4.1 column . 130

6.3 Results for semantic similarity prediction on individual models (above)
and model combination (below); r/cov: Pearson correlation on covered
items, r/all: Pearson correlation on all items, cov: coverage. Best results
are marked in boldface. Unsmoothed models only shown in DErivBase
v1.4.1 column . 137

6.4 Results for synonym choice task on individual models (above) and model
combination (below); acc/cov: accuracy on covered items, acc/all: ac-
curacy on all items, cov: coverage. Best results are marked in boldface.
Unsmoothed models only shown in DErivBase v1.4.1 column 139

6.5 Comparison of different models for semantic similarity prediction: The
unsmoothed Bow space, the best model of this Chapter, and a smoothing
oracle applied to Bow. r/all and r/cov: Pearson correlation on all and
covered items . 143

7.1 The five prime types of Smolka et al. (2014) with their priming signatures
(M = morphologic relatedness; S = semantic relatedness; F = form related-
ness), and experimental average response times (measured in milliseconds).
Significance results compared to Unrelated type (∗∗ : p < 0.01) 150

7.2 Top: Average Reaction Times and cosine scores for Smolka et al.’s Exp. 1
dataset. Significance results compared to Unrelated type. Bottom: Signifi-
cance results for prime types 1 vs. 2 and 1 vs. 3, respectively. Correct con-
trasts shown in boldface. Legend: ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001 155

8.1 Performance of Tie settings, trained and tested on the whole German
Rte-3 dataset . 165

8.2 Statistics of German Rte original dataset and derivational subset (devel-
opment and test each) . 170

8.3 Coverage of the derivational sub-dataset by DErivBase 171
8.4 Performance of Tie settings, trained on the whole development set, tested

on different subsets. Best results per setting in boldface 174

xi

Part I

Introduction and Background

1 Introduction

Morphological processing, or the processing of words, is a fundamental step for many
tasks in Natural Language Processing (NLP). It precedes other linguistic analyses such
as part of speech (POS) tagging or parsing (Trost, 2005). Morphological analysers are
one of the first NLP tools developed for any language (Koskenniemi, 1983, Sproat, 1992),
and are also applied in applications where little other linguistic analysis is performed,
such as linguistic annotation of corpora or terminology acquisition (Daille et al., 2002).

There are three main types of morphological processes: 1., Inflection modifies word
forms according to the grammatical context (Bickel and Nichols, 2001); 2., composition
combines multiple words into new lexical items; 3., derivation constructs new words
from individual existing words, where the basis and the derived word share the same
stem (Lieber and Štekauer, 2014). The computational treatment of morphology is
often restricted to normalisation, such as stemming (covering inflection and derivation
heuristically; e.g., (Porter, 1980)), or – which is used more often – lemmatisation (covering
inflection only). In other words, most work on computational morphology has focused
on inflection (Trost, 2005). Derivation, in contrast, has received less attention in the
computational linguistics literature.

Nonetheless, derivation is a word formation process that exists in many natural
languages and gives rise to a large and varied vocabulary, e.g., by means of the derivation
of agent nouns from verbs, like to runV – runnerN . Often, derivation is conducted
through affixation; some of these affixation processes can affect the part of speech of the
base word (Trost, 2005), as just shown. Also, the words by which a language is enriched
through derivation, have often a meaning that is similar to that of the original base word
(ibid.). The resulting variety is valuable to express similar circumstances with different
utterances, as in Example (1.1), where “laughing” and “laughter” share a semantic core:

(1.1) (a) He could not stop laughing about it.

(b) There was no end to his laughter.

An important reason for the relative lack of attention to derivational morphology in
computational linguistics is that, still, English is the most widely researched language,
but morphologically relatively simple. Its morphological processes are less versatile
as well as less complex than in many other languages: Composition is usually not
marked morphologically (zoo gate), and a frequent derivational operation is conversion
(or zero derivation), where the input and output terms are identical surface forms
(fishN – to fishV). Also, there is a clear dominance of suffixational derivation (to treatV
– treatmentN), and a relative absence of derivational stem changes. For these reasons,

2

simple stemming algorithms provide a cheap and sufficiently accurate approximation to
English derivation.

In contrast, German is derivationally very complex: Besides suffixation and conversion,
which occur in many languages, German derivation also comprises prefixation, circum-
fixation and stem-changing processes, and uses most of them extensively. For instance,
while English employs particles, adverbs or phrases for certain linguistic expressions (e.g.,
aspects of place, time and manner (Smolka et al., 2014, p33)), German uses prefixes for
such cases, e.g., schlafenV – ausschlafenV (to sleepV – to sleepV inRP).

If the versatility of German derivation is not appropriately considered, many NLP tasks
are arguably harder to solve. The most obvious consequence of morphological richness
of a language is the increased lexicon size, or word inventory. This is notably a problem
when two texts are matched against each other, which is a paradigm that NLP tasks
(e.g., Information Retrieval or Recognising Textual Entailment) often instantiate: Many
systems build upon the hypothesis that high lexical overlap between two texts indicates
that they refer to the same issue. Thus, a high overlap between, e.g., a query and a
document is taken as evidence for the document to be relevant to the query (Berger et al.,
2000). Obviously, unrecognised overlaps due to linguistic variation – e.g., by means of
derivation –, lead to false negatives. Thus, the systems need to take into account linguistic
variance. As an example, the query print fails and a relevant document containing the
word printer can only be mapped onto each other if it is known that the words print
and printer are derivationally related. Also for distributional semantic models, languages
with a large word inventory are problematic: The more lexical entries a language has,
the more face such models the problem of sparse representations for each of these entries.
For instance, the English verb to catch has two semantically very similar realisations in
German (fangen and einfangen), which leads to a sparser distributional representation
for each of them. In sum, it is desirable to capture the versatility of derivationally rich
languages, and to use this knowledge to improve computational linguistic processes.

In this thesis, we address this goal: We develop methods for inducing, representing,
and utilising derivational information, and apply them to German. The core of our study
is DErivBase, a lexicon of derivational families for German that we compile.
Such a derivational lexicon groups words that are morphologically derived from the
same stem (i.e., derivational families). For instance, the lemmas friendN , friendlyA,
friendlessA, to befriendV and friendshipN are members of the same derivational family.
Conceptually, such a family-oriented structure of a derivational lexicon is motivated by
the fact that it complies with a line of research in (cognitive) linguistics that argues that
the mental lexicon is organised according to morphological families (Bybee, 1985, 1988,
Langacker, 1987, Nagy et al., 1989). To our knowledge, there are only two designated
derivational lexicons that are structured in this fashion, and represent the notion of
derivational relatedness by means of families: an unnamed and not publicly available
lexicon for French (Gaussier, 1999), and CatVar (Habash and Dorr, 2003) for English.1

Gaussier’s lexicon was employed for Question Answering, and CatVar has proven to be
useful in various semantic tasks, e.g., in Textual Entailment, or for the improvement

1Additionally, a derivational lexicon for Croatian has been developed based on our work (Šnajder, 2014).

3

of text fluency in language generation (cf. Section 3.1.3). A particular advantage of
a derivational lexicon is that it provides indications of relatedness across parts of
speech (cf. Example (1.1)), whereas many traditional resources such as ontologies mostly
contain relationships within the same part of speech, and recent dynamic approaches
such as distributional semantic models rather retrieve collocations or topical similarity
across parts of speech.

We build DErivBase by means of a rule-based approach, using traditional grammar
books as our source of linguistic knowledge. First, we define the set of derivations that
should be covered by the lexicon. Then, we implement these derivations in a rule-based
morphology modelling framework (Šnajder and Dalbelo Bašić, 2010) which is able to
deal with all admissible derivational processes of the German language, i.e., all affixation
operations, conversion, and stem changes. We combine the structural rule information
with evidence from a corpus, i.e., we extract nouns, verbs, and adjectives from a
large German web corpus, and use them as input for the derivation rules to derive new
words. In order prevent the rules from overgenerating, the generated words are filtered,
again on the corpus material. However, false positives can still occur whenever the
output of a derivation rule matches an existing, but derivationally unrelated word, such
as cornN – cornerN . Finally, all lemmas that are transitively connected by derivation
rules are considered a derivational family. Lemmatisation of the corpus and a separate
inflectional component in the employed framework enable us to concentrate on derivation
only, and to largely exclude inflectional processes. With this combination of rule- and
corpus-based methods, we induce a resource of high precision as well as high coverage
that provides information about the derivational relatedness of German words in the
form of derivational families. Additionally, the rule-based induction combined with the
transitive connections results in an internal structure of the families, namely in the
form of derivation rule paths that relate any two lemmas of a family to one another.

As mentioned above, derivational processes often preserve a base word’s core meaning
and propagate it to the derived word, i.e., many derivationally related words are also
semantically related. This fact is often exploited for the application of derivational
lexicons: Derivational relatedness is assumed to be a reasonable approximation of
semantic relatedness. However, this analogy is not always given. Derivational processes
can cause semantic drifts, so that the basis and the derived word do not share any
common semantics. For example, the prefixation in the word pair hörenV – aufhörenV
(to hearV – to stopV) leads to a completely different meaning, i.e., it is a semantically
opaque derivation. From a linguistic point of view, a computational resource in which
opaque lemma pairs are tantamount to semantically transparent (i.e., related) pairs,
such as hörenV – zuhörenV (to hearV – to listenV), is undesirable.

For this reason, we go a step beyond a purely derivational lexicon, and develop
strategies for the semantic validation of derivational families, i.e., methods to achieve
semantically coherent sub-families. Note that we do not want to specify the kind of
semantic relationship which occurs between derivationally related words, e.g., agentive or
diminutive. Instead, we aim at determining whether the words are semantically related
at all (i.e., the distinction between transparent and opaque derivations). To do so,

4

we employ supervised machine learning techniques. We define derivational as well as
distributional features for pairs of derivationally related lemmas, and learn a model that
separates derivationally and semantically related words (transparency) from those that
are only derivationally, but not semantically related (opacity). As a side benefit, this
classification improves the purity of DErivBase in terms of derivational relatedness,
because it sorts out words which have no derivational relationship at all to the derivational
family they have been assigned to. Finally, we use the pairwise decisions of the semantic
validation classifier to build a semantically clustered version of DErivBase. That
is, the families are sub-divided into semantically coherent groups of derivationally related
lemmas. We expect that the semantic specification of derivational relations that we
achieve through this second step makes our lexicon more suitable for applications in
lexical-semantic tasks.

Our two-step procedure to acquire a semantically validated derivational lexicon includes
three contrasting methods commonly used in computational linguistics: While the
induction of the purely morphologically motivated lexicon relies on hand-written rule-
based information and corpus evidence, the semantic validation additionally brings
into play supervised classification methods. In this way, we combine linguistic
insights with statistical modelling of language, leading to a theoretically grounded, but
quantitatively viable resource.

We consider the methodological challenge of evaluating our approach intrinsically,
creating a benchmark dataset to specifically assess the quality as well as the coverage of
DErivBase. In order to additionally test the usability of our lexicon in real applications,
we evaluate our achievements for both the purely derivational version and its semantic
refinement in three fairly different extrinsic experiments. For these experiments,
we make the general assumption that derivationally related words are more often se-
mantically related than unrelated, and a derivational lexicon thus provides reasonable
approximations to semantic relatedness, even without semantic validation. We
present the following evaluations: 1., we employ DErivBase to smooth distributional
semantic models. In doing so, we want to overcome sparsity problems, but also improve
the prediction quality of the underlying distributional model on two German standard
lexical-semantic tasks. 2., again using DErivBase and a distributional semantic space,
we computationally model the results of a priming experiment from a psycholinguistic
study (Smolka et al., 2014). It examines the priming effects of transparent and opaque
derivations in order to investigate whether the lexical representation in German is organ-
ised based on morphemes. 3., we use DErivBase to solve the task of Recognising Textual
Entailment (Rte), i.e., an actual NLP task: We expand a matching-based entailment
system with data from our lexicon, thus increasing the chance of a lexical overlap in
Text/Hypothesis pairs that contain derivationally related lemmas and – as we assume –
are likely to be entailing.

5

1.1 Structure of this Thesis

1.1 Structure of this Thesis

This thesis is structured as follows: The remainder of this Part (Part I) puts our work
into context with respect to linguistics as well as computational linguistics. Part II
describes the construction of DErivBase, and the incorporation of semantic aspects
by means of semantic validation. Part III builds upon the achievements of Part II, and
illustrates the evaluation of our derivational lexicon in three different – in the broadest
sense – semantic experiments. Finally, Part IV concludes the thesis.

As to Part I, we establish in Chapter 2 the terminology used in this thesis in the
context of morphology, discuss linguistic fundamentals, and give a first impression of
what a derivational lexicon is.

We discuss related work from computational linguistics in Chapter 3. There are
two main areas of previous studies which are important for our work: Computational
morphology (Section 3.1), which is related to the general topic of this thesis of building a
German derivational lexicon, and distributional semantics (Section 3.2) which we employ
for the semantic refinement of our derivational lexicon and which constitutes an important
element in two of our extrinsic evaluations.

In Chapters 4 and 5, which constitute Part II, we explain the two successive steps of
the construction of DErivBase. First, we describe the rule-and corpus-based induction
of the purely morphological version of DErivBase, which concentrates on gathering
derivationally related words into derivational families (Chapter 4). Second, we investigate
on how to take into account semantic aspects into the lexicon, i.e., how to decide for
derivationally related pairs of lemmas whether they are also semantically related, and
how to propagate this information to entire families. We present our realisation of this
semantic validation of DErivBase, using machine learning methods, in Chapter 5. Both
Chapters include intrinsic evaluations for the respective lexicon version.

The applicability of DErivBase to extrinsic tasks, i.e., the smoothing of distributional
semantic models, the modelling of morphological priming, and the expansion of an
entailment system in Rte, is presented in Chapters 6 to 8 in Part III. We show the
results of each experiment for both the purely morphological and the semantically refined
version of our lexicon to make the impact of the two variants maximally transparent.

This thesis concludes with Chapter 9 (Part IV), summarising the contributions we
made and giving an outlook on future directions how to build upon the presented work.

In the progress of work on this thesis, many additional settings and experiments have
been investigated that yielded not particularly insightful results and/or no improvements.
Whenever we still found it useful, we shortly report such additional experiments at the
end of the respective Section or Chapter, aiming at informing the reader about less
promising directions in our research area.

1.2 Bibliographic Note

Some of the work presented in this thesis has previously appeared in publications. The
general induction of DErivBase (Chapter 4) was published in Zeller et al. (2013).

6

1.3 Notation

My three main contributions in this work were a pre-study of German derivation, the
implementation of the derivation rules, and the analysis of the rules as well as the
resulting lexicon (incl. error analysis). The framework which we use for our approach
existed previously (Šnajder and Dalbelo Bašić, 2010); functional changes in the framework
were carried out by my co-authors. The ground work for the semantic validation of a
derivational lexicon (Chapter 5) was disseminated in Zeller et al. (2014). I analysed the
derivational and distributional differences between the two classes to be separated by
the semantic validation, developed most classifier features, and implemented substantial
parts of the experimental setup of the machine learning classification. Finally, I analysed
the results. The compilation of the distributional spaces and their application to the
datasets was largely done by my co-authors.

Concerning the evaluations and applications of DErivBase, we published an experi-
mental study about derivational smoothing (Section 6.1) in Padó et al. (2013b). I mainly
participated in the general discussion of conceptual questions and the development of our
method, and conducted results analyses, while my co-authors delivered the fundamental
ideas and carried out the implementation. The psycholinguistic experiments described
in Chapter 7 have been published in Padó et al. (2015), where I prepared as well as
analysed the data, and compared our results to the related experimental study.

The DErivBase lexicon is publicly available (under the CreativeCommons license CC
BY-SA 3.0) in various formats and versions at http://www.ims.uni-stuttgart.de/

permalink/56cc6c89-c421-11e4-a5e6-000e0c3db68b.html.

1.3 Notation

In this thesis, example lemmas and morphemes are denoted in italics, often indicated
with the respective part of speech. Pairs of lemmas (incl. the corresponding part of
speech) which share a derivational relationship are denoted as lemma1pos1 – lemma2pos2 .

7

http://www.ims.uni-stuttgart.de/permalink/56cc6c89-c421-11e4-a5e6-000e0c3db68b.html
http://www.ims.uni-stuttgart.de/permalink/56cc6c89-c421-11e4-a5e6-000e0c3db68b.html

2 Linguistic Foundations

In this Chapter, we introduce fundamental linguistic concepts about morphological
derivation, clarify the terminology we use and assumptions we make, and make preliminary
considerations about the task of computationally building a derivational lexicon. Our
terminology and definitions are based on that of Glück (2010), unless otherwise specified.

Since we build a derivational lexicon for German, we will focus on this language.
German is an interesting object of study regarding morphology because it is a synthetic
language, meaning that the syntactic role of a word is often marked morphologically
(Glück, 2010, p666). Consequently, new words are often formed on the morphological level,
i.e., by derivation (Greenberg, 1963, p17). Thus, although German is morphologically not
as rich as, e.g., Slavic languages like Croatian or Russian (Xanthos et al., 2011, p465), it
offers a far broader range of derivational variety than a morphologically relatively simple
language like English (Derwing, 1990, Štekauer and Lieber, 2005), and is thus interesting
to investigate.

Section 2.1 gives a brief introduction to the area of morphology and word formation in
general, and of derivation in particular. Section 2.2 discusses the role and realisation of
derivation in German. Section 2.3 addresses computational representation possibilities of
derivational relatedness. Finally, Section 2.4 resumes the main findings and our focus in
this work.

2.1 Morphology, Word Formation, and Derivation

In this Section, we start by introducing the field of morphology, then its subdomain word
formation and, finally, derivation, one specific morphological word formation process.

2.1.1 Morphology

Morphology is concerned with the form and the internal structure of words; it builds
upon morphemes, which are the smallest meaningful unit of a language (Krovetz (1993),
Glück (2010, p441f)). Basically, morphology subsumes two linguistic processes: Lexical
word formation, and inflection (Bußmann, 2002, p450). In German, word formation is
mainly realised via composition and derivation (cf. Sections 2.1.2, 2.1.3). Inflection is not
concerned with building new lexemes, but with grammatically motivated modifications
of existing lexemes. That is, inflection differs from lexical word formation in that it is
paradigmatic: There are structures (so-called inflectional paradigms) which group all
lexemes that frame inflectional word forms in the same manner (Glück, 2010, p202).1

1Domenig and ten Hacken (1992) define inflectional paradigms as a (maximal) group of word forms with
an element in common, and at least one element being different that is associated with grammatical

8

2.1 Morphology, Word Formation, and Derivation

In contrast, word formation operates on a case by case basis (ten Hacken, 2009), which
means that it cannot be generalised or predicted as simply as inflectional processes. We
will consider the most important German word formation processes in Section 2.2.

Verb infinitives and participles are situated in the grey area between inflection and word
formation: They “form” a word that can be further inflected using the underlying verb
stem (e.g., give → give ø for infinitives, confuse → confused for participles). Additionally,
participles can be used as adjectives (He was confused). In German, the infinitive is
marked with three specific infinitive suffixes: -en, -eln, and -ern.2 Only two irregular
verbs are marked with a different suffix, -n: sein (to be) and tun (to do). Mostly, linguists
consider infinitives and participles as inflectional (Bußmann, 2002, p304). We adopt this
point of view, however, we consider the adjective variant of participles as (derivational)
word formation.

Excursus: Root vs. Stem. In the literature, the differentiation between root and stem
as an element of word formation is often unclear.

The term root is used differently in diachronic and in synchronic contexts, as well as
in synchronic word formation and synchronic inflection contexts (Glück, 2010, p776).
Definitions in word formation agree in that the root is morphologically no more decom-
posable, and usually constitutes a core meaning which is passed on in derivation and
other word formation processes. Thus, the definitions of the root and the base morpheme
are often used interchangeably (Bußmann, 2002, p267, p758).

Glück reports that the term stem, in turn, was originally used for inflectional morpho-
logy, but has meanwhile become equally common in word formation. According to him,
the main difference to the root is that a stem can be a morphologically complex entity,
e.g., the result of a derivation like readable (Glück, 2010, p666).

This property made the use of the term “stem” more established in word formation
than that of “root”: Allowing for complex base entities, it is more practical for word
formation procedures. For example, building a word group like to readV , readableA,
unreadableA, is more straightforward if the outcome of a derivation can be used as input
for another one (to read → readable → unreadable). Moreover, deriving new words
from complex base lemmas seems linguistically more plausible: A speaker who uses the
word unreadableA will rather think of a contrast to readableA than of a relationship to
to readV .

Since we are interested in derivation, a word formation process, we adopt this definition,
and employ the term stem as well as its concept for referring to a derivation’s basis (for
a definition of “base”, cf. Section 2.1.3).

2.1.2 Word Formation

Focusing on word formation, we are concerned with the formation of new lexemes in order
to extend the vocabulary of a language. As argued above, inflection is not considered here,

roles.
2Some linguists regard -eln and -ern infinitive suffixes as derivational, e.g., Fleischer and Barz (2007).

9

2.1 Morphology, Word Formation, and Derivation

since it does not form new lexemes, but only grammatical variants of a lexeme. There is
a considerable number of different word formation processes, many of which exist only for
a couple of languages, or have rather minor impact because they are not frequently used.
Examples for such peripheral word formations in German are clipping (the short form
Kripo for Kriminalpolizei, “criminal investigation department”), and blending (e.g., the
conflation of Kur, “cure”, and Urlaub, “vacation”, into Kurlaub) (Bußmann (2002, p373,
p751f), Glück (2010, p770f)). In German, the three synchronically most important word
formation processes are composition, conversion, and derivation (Glück, 2010, p770). In
composition, two or more free morphemes or words are combined to a new lexeme (Glück,
2010, p348). Examples are schnelllebigA (fast moving), WasserflascheN (water bottle),
or kurzschneidenV (to crop close). Conversion, also called “zero derivation” is considered
in the grey area between being a proper word formation process, and a subtype of
derivation (Glück, 2010, p5). In conversion, no explicit word formation elements are
involved; however, the input and output word of the process differ in their part of speech,
e.g., laufenV – LaufenN (to runV – runN). In the following, we consider conversion a
subtype of derivation. Finally, derivation is the process of creating new words from
existing ones, where the base and the derived word share the same stem. It can be
distinguished from inflection by a couple of criteria (Glück, 2010, p5): 1., derivation is
used for word formation, not for word form formation, 2., derivation can cause a change
in meaning, 3., derivation can cause a change of the part of speech, and 4., derivation
has restricted applicability. Similarly, derivation is distinguishable from composition by
the fact that derivation combines a free morpheme and a functional affix. Such affixes
are no free morphemes (bound morphemes), and cannot constitute the basis of a word
formation process. Note, however, that this distinction is not always straightforward. We
will come back to this problem in Section 2.2.

2.1.3 Derivation

As mentioned above, derivation is a morphological word formation process: Via deriva-
tional processes, we derive a new word from an existing word with the same stem, typically
by involving bound morphemes. Derivational processes provide two levels of interest:
The string transformation level, and the meaning level. First, we consider the string
transformations, then, we turn to the semantic aspect.

Basic Concepts of Derivational Word Formation. The starting point of a derivational
process is called base lemma, while its output is called derived lemma, or derivative.
Pairs of base and derived lemma are connected by a derivational relation, or in other
words, they are derivationally related. Most (but by far not all) derivations are conducted
by affixation processes, i.e., the attachment of prefixes, suffixes, and their combination
(circumfixes) to the base lemma (Glück, 2010, p16). A crucial property of derivational
processes is that they are able to change the part of speech of the base lemma, e.g.,
kochenV – KochN (to cookV – cookN). Note that derivation is in most cases quite
regular, which is why a derivational process is also called a derivation rule. However,
it can also be irregular and “semiregular”. Semi-regularity describes cases of recurrent

10

2.1 Morphology, Word Formation, and Derivation

irregularity due to various reasons (e.g., lexeme-based, orthographical, or phonological
reasons; these phenomena have been discussed in the literature, e.g., in Jackendoff (1975),
Plank (1981), Riehemann (1994), Gor (2010)). One such semi-regularity in German
is the occasional conflation or deletion of stem-final vowels for phonological reasons,
as for the -schaft suffixation in ErbeN – ErbschaftN (inheritanceN – inheritanceN). In
contrast, a completely irregular conversion is fahrenV – FahrtN (to driveV – tripN), the
regular derivative of which would be *FahrN . As indicated in Section 2.1.1, a derivation’s
derivative can be transitively re-used as base, i.e., a base lemma can be the product of
another derivational rule, and thus be morphologically complex. An example is ableitenV
– AbleitungN (to deriveV – derivationN), where the base verb is a prefixation derivative
of leitenV (to leadV). Base lemmas are not necessarily words, but can be a so-called
combining form (German: “Konfix”): a bound morpheme with a lexical meaning, like
bio-, or geo- (Glück, 2010, p138, p350). An exemplary derivation for a combining form
as base is biotischA (bioticA).

The Semantics of Derivations. Derivation forms new words and consequently, new
expressions of meaning. This paragraph discusses to what extent derivational processes
imply a meaning change, and whether derivation can be considered meaning-preserving.

Generally, lexical semantics often assumes a dichotomy for word relatedness: Semantic
transparency and semantic opacity. The meaning of a semantically transparent utterance
can be comprehended form the meaning of its parts (Partee, 1995), while for semantically
opaque utterances, a semantic drift3 takes place, so that the meaning cannot be derived
from the parts.

Although the notion of semantic transparency and opacity arises from psycholinguistics
(e.g., Libben et al. (2003)), it is operationalised in various fields of computational
semantics.4 On the word level, for instance, compounds are classified into transparent
(carwash) and opaque cases (brainwash) (Schulte im Walde et al., 2013). Similarly,
Villada Moirón and Tiedemann (2006) distinguish on the phrase-level between semantically
transparent (literal: to kick the ball) and opaque (idiomatic: to kick the bucket) utterances.

Also on the morphological, and in particular on the derivational level, semantic
transparency (friendN – friendlyA) and opacity (signN – signalN) are widely discussed.
Some authors claim that every derivational process embodies a semantic drift. For
example, Bybee (1985) argues, amongst others, with the influence of word class changes,
and with the fact that derivations change the syntactic, semantic, and stylistic role of a
word, as in the agentive formation in Example (2.1) – taken from Booij (2000, p360):

(2.1) (a) He who reads this book

(b) The reader of this book

3By “drift”, we do not exclusively refer to diachronic drifts, but also include synchronic phenomena
such as polysemy or semantic changes at the lexical level (Vanhove, 2008).

4Obviously, such a dichotomy is oversimplifying, as the semantics of language cannot be expressed by
a binary distinction, but rather on a graded scale (Bybee, 1985, Gonnerman and Anderson, 2001).
However, similar categorisations are frequently employed to apply computational models to natural
language, e.g., for part of speech tagging, or the construction of word taxonomies.

11

2.1 Morphology, Word Formation, and Derivation

Bybee claims that the degree of semantic relatedness between base lemma and derivative
is often difficult to establish. Also, Booij (2000, p364) notes the semantic opacity of
derivation, i.e., that the meaning of a derivative is often “not purely a compositional
function of the meaning of its morphological constituents” and therefore not easy to
capture. This makes it hard to clearly semantically define derivational processes.

Nevertheless, there are attempts to do so, e.g., by Pala and Hlaváčková (2007), Pala
(2008) who examine the meaning of individual affixation processes in Czech. Partial
studies also exist for German prefixation (Springorum et al., 2012, 2013), however, it
seems hard to assign semantic functions to all German derivation processes. For example,
it is easy to declare that the -chen suffix has a diminutive meaning, as in StadtN –
StädtchenN (townN – small townN). But the semantics of the be- prefix, as in treffenV
– betreffenV (to hitV – to concernV), is more subtle as well as incoherent (and even
idiosyncratic) across applications. Thus, its meaning is not easily predictable.5

Due to these difficulties in determining precise semantics for derivational processes,
computational linguists often follow a more relaxed definition of semantic relatedness
and do not regard each derivation as meaning-changing. For instance, Jacquemin (2010)
employs derivational information to distinguish synonymous and non-synonymous words.
Representing a relatively theory-neutral view on derivation, he agrees that there is a
“sense challenge inherent to the derivation phenomenon” (Jacquemin, 2010, p4), but
judges changes that are still semantically largely transparent, as in Example (2.1) above,
meaning-preserving. According to him, many derivationally related words are semantically
related, and only striking discrepancies count as unrelated; e.g., the semantically opaque
lemma pair to treatV – to retreatV , where the base lemma expresses the act of dealing
with or thinking about something in a particular way, while the derivative describes
moving or going away from a place or situation.6 We adopt Jacquemin’s definition, and
consider only clear semantic opacity as meaning-changing (e.g., the prefixation tragenV
– auftragenV (to carryV – to applyV)). Moreover, we make the following fundamental
assumption:

Derivational Coherence Assumption (DCA): Derivational processes produce derived
words that are semantically related to their base words. Phrased in binary terms,
we assume that the majority of derivational processes yield transparent rather than
opaque word pairs – despite the well-known irregularity of derivational processes.

That is, we expect derivational relationships to be sufficiently regular on the semantic
level to legitimate their application in semantic processing. Here, we define semantic
relatedness as a generalisation of the term “semantic similarity”: In psycholinguistics,
semantic similarity is described as the relationship between two words that are assigned
a high degree of meaning relatedness by native speakers (Miller and Charles, 1991).
Semantic relatedness, in turn, covers a broader range of (thematic) meaning relatedness,
such as synonymy (couch – sofa), antonymy (cut – uncut), or strong associativity (pen –

5In the literature, the meaning of be- is considered particularly unpredictable, e.g., by Booij (2000, p365)
for the corresponding Dutch prefix. Also, Pala (2008) admits that prefixation is still challenging.

6Definitions taken from http://www.merriam-webster.com.

12

http://www.merriam-webster.com

2.2 Derivation in German

paper) (Budanitsky and Hirst, 2006). As mentioned in Section 2.1.2, one particularity of
derivational relatedness is that it crosses parts of speech boundaries. However, semantic
similarity as defined in the tradition of psycholinguistics is restricted to words of the
same word class. Although it is assumed that “morphological relations may play an
important role in judgements of the semantic similarity of words from different syntactic
categories” (Miller and Charles, 1991, p9), we are not aware of studies addressing
this question. Thus, we expand our definition of semantic relatedness accordingly:
Except for the aspect of syntactic substitutability, we assume semantic relatedness to
exist also for derivationally related words of different word classes. In fact, German
conversion is a good example for semantically related derivations across parts of speech;
Example (2.2) illustrates two sentences that are, from a semantic point of view, largely
synonymous (nonetheless, they exhibit grammatical changes as well as stylistic and
pragmatic differences; cf. Welke (2011), Storrer (2006), Mentrup (1988), Schippan (1967)).

(2.2) (a) Er
He

hat
has

schnell
quickly

gelernt
learned

zu
to

sprechen.
speak.

He quickly learned to speak.

(b) Das
The

Sprechen
speaking

hat
has

er
he

schnell
quickly

gelernt.
learned.

He quickly learned to speak.

A prominent approach to measure semantic relatedness is to use distributional semantic
models (cf. Section 3.2). In this thesis, we will investigate whether a distributional
approach is also applicable to measure the semantic relatedness of derivationally related
words (Chapters 5, 6, 7). Furthermore, we will concretise in Chapter 3.1.3 how the
abstract definition of the DCA is generally operationalised in practice.

2.2 Derivation in German

This Section focusses on the realisation of derivational processes in German. In order
to systematically examine derivation, it is necessary to establish a classification of the
processes involved. We present proposals from the literature to classify derivation, and
describe in detail the particularities of the five German derivation operations. Note that
we concentrate on definitions that are relevant for our goal of building a computational
derivational lexicon.

2.2.1 Classification of Derivation

According to Glück (2010, p5), there are at least three ways to categorise derivational
processes: 1., by the part of speech of the derivative, 2., by the part of speech of the base
word, and 3., by the semantic function of the derivative. While the third aspect is difficult
to grasp (cf. Section 2.1.3), a classification according to 1. and 2. is completely and
consistently feasible. We shortly present both classifications for German in the following.

13

2.2 Derivation in German

Additionally, we discuss a classification according to the derivational operation conducted
(e.g., suffixation). We find this an important view on the topic, especially because we
plan to implement German derivation rules for lexicon induction.

Classification by the Part of Speech of the Derivative. One way to categorise German
derivation is the outcome of each derivation. Derivation is a very productive word
formation process, and is applicable to many parts of speech. The most important
is the derivation of content words, i.e., nouns, verbs, adjectives, and adverbs. The
corresponding classifications of the derivational processes are called nominalisation,
verbalisation, adjectivisation, and adverbialisation. Thereof, nominalisation is the most
frequent one in German, as well as across languages.7 In contrast, derivations of
adverbs that are not usable as adverbial adjectives, e.g., gleichA – gleichfallsADV (equalA
– equallyADV), are rather unproductive in German (Donalies, 2005, Fleischer and Barz,
2007). By “productive”, we mean processes that produce words which (have) become
part of a language’s word inventory; we do not consider spontaneous ad-hoc derivations,
like VerhängnisN – verhängniswärtsADV (fateN – fatewardsADV) (Donalies, 2005, p126),
as productive.

Classification by the Part of Speech of the Base Word. Similar to derivatives, most
base words of German derivation are content words. They serve for so-called denominal,
deverbal, or deadjectival derivations (Glück, 2010, p5). Additionally, it is possible to
derive new words from named entities (incl. proper nouns) as base lemma, e.g., KafkaNE

– kafkaeskA (KafkaNE – KafkaesqueA), or HeidelbergNE – HeidelbergerN (HeidelbergNE –
inhabitant of HeidelbergN) (Donalies, 2005, p113).

Apart from these frequently used parts of speech as base lemmas, new words can
be derived from adverbs, prepositions, or pronouns, as shown in Examples (2.3 a–c).
However, these derivations are again unproductive (Donalies, 2005, p126).

(2.3) (a) hinabADV – hinabwärtsADV (downADV – downwardsADV)

(b) aufPREP – aufwärtsADV (upPREP – upwardsADV)

(c) meinPPOSS – meinigePPOSS (myPPOSS – minePPOSS)

Classification by the Derivational Operation. From a procedural point of view, deriva-
tional processes can be categorised by the conducted string transformation, i.e., by
the derivational operation (Lieber and Štekauer, 2014) that creates a derivational link
between two lemmas. In German, there are five such operations:

� Suffixation: placing an affix at the end of the stem
LeserN – LeserschaftN (readerN – readershipN)

� Prefixation: placing an affix at the beginning of the stem
hebenV – behebenV (to raiseV – to remedyV)

7Hall (2000, p538) argues that from a sample of 50 languages, 70% use nominalisation.

14

2.2 Derivation in German

� Circumfixation: combination of suffixation and prefixation
redenV – GeredeN (to talkV – gossipN)

� Conversion, or zero derivation: part of speech change without affixation or stem
alternation
laufenV – LaufN (to runV – runN)

� Stem change, or implicit derivation: changes to the stem’s vowel with ablaut or
umlaut
liegenV – legenV (to lieV – to layV)

Note that the application of these operations is not mutually exclusive. Instead, they
can be combined in complex derivation rules, for instance, by combining an umlaut
stem change (u → ü) and a suffixation (-lich): StundeN – stündlichA (hourN – hourlyA).
In this way, German derivation gets more variable, but also more complicated. In the
following, we briefly sketch the main characteristics of each of these five operations.

The first three types taken together are called explicit derivations, because they denote
the derivation explicitly with an affix (Donalies, 2005, p98). Their affixes can either
originate from the Germanic language, e.g., ölenV – Ölung

N
(to oilV – oilingN), or from

Latin or Greek, e.g., generierenV – GeneratorN (to generateV – generatorN). The base
lemma for foreign affixes is often a foreign word as well, but this is not necessarily the
case, e.g., HaftN – inhaftierenV (arrestN – to arrestV).

Derivational affixes may not be confused with the attachment of the three German
verb-denoting infinitive suffixes mentioned in Section 2.1.1. These verb suffixes are
not derivational, but inflectional, which is why they are also appended or removed in
conversion, as in the example above.

Suffixation, circumfixation, conversion and stem changes can cause a part of speech
change between the base and the derived lemma; they are therefore called transposi-
tions (Glück, 2010, p722).8

German suffixation operations for noun-involving derivations can be restricted to a
specific gender; for the base lemma, for the derivative, or for both. For example, the
noun-noun suffixation with -ei is only applicable to masculine base lemmas, and always
produces feminine derivatives: BäckerNm – BäckereiNf (bakerN – bakeryN).

Prefixation causes, according to Glück (2010, p525), a semantic specification of the
underlying base lemma, but the effect of this specification can be very different, because
the meaning of prefixes is very versatile. Additionally, they are often meaning-changing

8We found that the inverse of this observation is only partly correct: Prefixation is not necessarily
excluded from being a transposition, although this assumption holds for most cases, e.g., ErfolgN
– MisserfolgN (successN – failureN). As a counter example, consider the derivation AnspruchN –
beanspruchenV (claimN – to claimV), where a part of speech change takes place, although the
derivational operation is a prefixation. There is no German verb *anspruchen that could close the gap
between the two mentioned lemmas and satisfy the assumption that prefixes are no transpositions.
One could merely insert an intermediate nominalisation step, i.e., AnspruchN – BeanspruchenN –
beanspruchenV (claimN – claimingN – to claimV). However, we believe that this is not how humans
naturally perceive and produce language, because this nominalisation is far more abstract than the
action verb beanspruchen. Instead, we claim that also prefixations can cause part of speech changes.

15

2.2 Derivation in German

(cf. Section 2.1.3). This can be a general meaning change, as the hebenV – behebenV
example above illustrates, or a polarity change, like gutA – ungutA (goodA – badA). Note
also that there is a grey area concerning the distinction of prefixation derivation and
prepositional composition, which is defined differently by different linguists. For example,
the prefix bei-, as in mischenV – beimischenV (to mixV – to admixV), is considered
compositional in Donalies (2005), but derivational in the system described by Domenig
and ten Hacken (1992).9 We mostly rely on the classification of Domenig and ten Hacken
(1992).

Conversions involve a particularity concerning the base word: While in general, the
basis of a German derivational process is a word’s stem (Donalies, 2005, p47f), verb
conversions can be applied to stems as well as lemmas (i.e., infinitives) (Glück (2010,
p366f), Donalies (2005, p125)). This difference becomes clear by considering the two
nominalisation derivatives of the base verb besuchenV (to visitV): BesuchenN (visitingN)
is derived from the verb lemma, while BesuchN (visitN) is derived from the verb stem.
Both derivation types are highly productive.

Stem change derivation sometimes requires changes additional to the vowel alternation,
e.g., the duplication of the stem-final consonant in greifenV – GriffN (to graspV – graspN).
This particularity arises from derivations based on the stem in preterite or perfect tense
(in the above example: griffVpret) (Donalies, 2005, p135), and makes this already complex
derivation operation even more difficult.

Of the five types, suffixation is the most frequent one10, but also prefixation and
conversion are highly productive in German. Therefore, computational systems about
German derivational morphology inevitably must regard these derivational operations. In
contrast, neither circumfixation, nor stem changes are synchronically productive any more
(Glück (2010, p17, p281), Donalies (2005, p109, p136)).11 Such unproductive operations
constitute a danger for the automatic induction of derivational relations: Considering
them might lead to overgeneration and spurious derivational links. For instance, the i–a
stem vowel change is valid in klingenV – KlangN (to soundV – soundN), but not valid
for verdichtenV – VerdachtN (to condenseV – suspicionN). Through the combinability
of the five operations, this problem becomes even more crucial. On the other hand,
ignoring these derivations would restrict the coverage of the system, especially, because
these derivation operations often constitute a single link between two subgroups of
derivationally related lemmas. This phenomenon is exemplified in Figure 2.1: If the
ablaut-involving link between geben (to give) and Gabe (gift) is ignored, the group of
related words is split into two. Incorporating or ignoring these derivational operations is
therefore a trade-off decision between precision and recall.

9This system is briefly described Section 3.1.2.
10This holds for German (Glück, 2010, p687) as well as for many other languages (Hall, 2000, p539).
11Again, we do not accept spontaneous derivations as “productive”.

16

2.2 Derivation in German

Geber
begeben

angeben

geben

Gabe
Beigabe

Ausgabe

Figure 2.1: Single link by ablaut derivation in a group of derivationally related words

2.2.2 Characteristics of the Involved Word Classes

Finally, we briefly consider the four most prominent parts of speech involved in German
derivation (nouns, verbs, adjectives, and adverbs), and their respective particularities.
We do this as a pre-study for our induction of a derivational lexicon, where we will
apply derivational processes (i.e., rules) to lemmas extracted from a German web corpus.
Web corpora are known to be prone to, e.g., spelling errors, which makes standard
processing like lemmatisation and part of speech tagging less reliable. Subsequently,
the application of derivational rules might cause wrong derivations. In order avoid that
the rules are applied to incorrectly lemmatised or tagged words, we want to establish
heuristic strategies to correctly detect and distinguish the different parts of speech, and
their lemmas. Our goal is to develop a pragmatic, yet linguistically motivated intuition
for how to implement our derivational model.

German nouns are easy to distinguish, because they are characterised by capitalisation,
as shown in the following simple conversions: stauenV – StauN (to jamV – jamN), essenV
– EssenN (to eatV – foodN). Infinitive verbs (i.e., verb lemmas) bear the three typical
suffixes mentioned above (-en, -eln, and -ern), which makes them well recognisable.12 An
example of a derived verb lemma is festA – festigenV (tightA – to tightenV), where -ig is
the derivational suffix. Adjectives are orthographically distinguishable from nouns and
verbs by the absence of capitalisation and verb suffixes, respectively. An adjectivisation
example is TagN – täglichA (dayN – dailyA). Most productive adverb derivations, like
schwerA – schwerlichADV (hardA – hardlyADV) are so-called “adverbial adjectives”, which
makes them identical to (attributive) adjectives on the surface level. Thus, they do not
need to be handled separately.

These rough distinctions between the most important word classes for German deriva-
tion can help to select only those lemma-part of speech combinations that are of interest
for the respective derivational process.

12Note that some adjectives also end with -en and -ern, e.g., goldenA (goldenA) or hölzernA (woodenA).
That is, the presence of the verb suffixes does not guarantee that the word is a verb, but the absence
of these suffixes guarantees that the word is not a verb.

17

2.3 Computational Representation of Derivation

2.3 Computational Representation of Derivation

This Section concerns practical aspects of derivational morphology, i.e., its representation
in computational resources. Before we describe the structure of such resources, we outline
their motivation and the status quo.

Representation of Derivation: Status Quo. In linguistics, derivational morphology
has been extensively investigated. There are grammar books specifically dedicated to
derivation. For example, for German, Hoeppner (1980), Augst (1975) and Fleischer and
Barz (2007) provide lists, explanations, and analyses of derivational processes: Hoepp-
ner (1980) describes many cases of semi-regularities in noun and adjective suffixation,
e.g., the optional expansion of the suffix -los to -slos in EinfallN – einfallslosA (ideaN –
unimaginativeA). However, no resulting lexicon is available. In contrast, Augst (1975)
supplies a lexicon about German word formation processes, i.e., about admissible mor-
pheme combinations. Derivation is a clear focus of his work, though, not the only
morphological phenomenon discussed. Knowledge about the underlying morphological
processes are not given, but this lexicon serves as a comprehensive reference list for affixes.
Fleischer and Barz (2007) give explanations about all derivational processes described in
Section 2.2.1 and list many derivation rules, but leave semi-regularity largely unspecified.

Such textbooks provide structured and comprehensive material about German deriva-
tion. Thus, they could serve as references to implement models that exclusively describe
derivational processes and the derivational relatedness of words, while leaving other
morphological phenomena unconsidered. However, although such information would
be valuable for many applications (cf. Section 3.1.3), no efforts in this direction have
yet been made for German: There are – to our knowledge – neither conventional, nor
electronic lexicons which systematically and exclusively provide derivational relations
between words.

As to conventional lexicons, this lack can be explained by the fact that derivational
relations are sometimes intransparent, i.e., there is a semantic drift between base and
derived word (cf. Section 2.1.3). Such relations are not in the focus of dictionaries;
instead, only semantically coherent information is typically provided. As an example,
consider some entries in the German dictionary Duden (Klosa et al., 2001, 1099f) around
the word MordN (murder), which is a lemma of a group of derivationally related words:
The entry of MörderinN (female murderer) refers to MörderN (murderer) in its definition
“w. Form zu ↑Mörder”. Similarly, the entry of MörderN refers to the verb mordenV (to
murder), and also the entry of mordenV uses its base lemma MordN in the definition.
However, opaque derivatives like mordsmäßigA (enormous) are not linked to any of these
other lemmas.

Also in computational linguistics, there is still little focus on derivation. Of course,
derivation is handled, e.g., by morphological analysers (we will return to such analysers
for German in Section 3.1.2), but these typically cover the entire range of morphological
processes mentioned in Section 2.1 rather than concentrating on derivation. Apart from
the issue of intransparent derivations just mentioned, the neglection of derivational

18

2.3 Computational Representation of Derivation

knowledge might be due to fact that most NLP research was, and is, concerned with
English. As mentioned at the beginning of this Chapter, English is a derivationally less
challenging language than, e.g., Slavic languages or German, because many derivations
are simply conversions. Thus, the need of explicit derivational knowledge as a standalone
resource is less urgent for English than for morphologically rich languages.

Nonetheless, there are a few computational studies that provide suggestions how to
build and respresent derivational information (cf. Section 3.1.2). We call the resource
which is the outcome of such approaches a derivational lexicon.

Derivational Lexicons. A derivational lexicon provides the information which words of
a language are derivationally related. It is constructed by means of some (unspecified)
knowledge about derivation, by which a language’s lemmas can be partitioned into
derivationally related groups. The employed knowledge sources can, e.g., consist of rules
describing derivational processes, information from other (manually or automatically
created) lexical resources or tools, probability scores for string similarity scores, or a
mixture of these. Chapter 3 gives an overview of methods to compile derivational lexicons.

As indicated above, a derivational lexicon is not a traditional lexical resource, however,
recent years have seen a growing body of computational work on derivation. Derivational
lexicons emerged in computational formats through the need of more specific morpho-
logy resources, e.g., explicit derivational information, for computational applications
(cf. Section 3.1.3). Note that we define a derivational lexicon as a resource which pro-
vides exclusively derivational information; that is, all other morphological processes, like
inflection or composition, are excluded.

Basically, derivational relatedness can be represented pairwise, i.e., by listing all
derivationally related word pairs of a language’s word inventory. However, it is obviously
more practical and compact to group all derivationally related words at once. We call
such groups derivational families.

Derivational Families. A derivational family describes a group of lemmas which share
a common stem, and which are related by linguistically motivated derivation processes.
That is, the members of a derivational family are – more or less directly – derived from
the same base lemma. One (incomplete) example family in English is:

sleepV sleepyA sleeplessA sleepN sleeperN sleepinessN sleeplessnessN

Note that a derivational family contains neither compositionally related words (e.g.,
sleeping bag), nor products of other word formation processes. By definition, all lemmas
are derived from a common base lemma (sleep) by one or several more or less complex
derivational rules. For instance, the noun sleeper is directly derived from the verb to
sleep by a nominalising suffixation (-er). In contrast, the noun sleeplessness requires two
suffixation steps, -less and -ness, where the intermediate product is also a valid lemma.

The term “derivational family” has been previously used by other authors, for instance,
by Gaussier (1999) and Jacquemin (2010). Similar expressions which allude to a family
concept, like “morphological family”, are also frequent both in the psycholinguistics

19

2.3 Computational Representation of Derivation

(Booij, 2005, Nagy et al., 1989) and the computational linguistics literature (Daille et al.,
2002, Milin et al., 2009, Walther and Nicolas, 2011). Habash and Dorr (2003) use an
exceptional terminology, naming their resource a “categorial variation database”, and
the derivational families “clusters”. We find that this technical denomination does not
reflect the linguistic fundamentals which account for the relations within one such cluster.
Therefore, we adopt the terminology “derivational family”.

Formally, the set of lemmas in a derivational family can be considered an equivalence
class consisting of derivationally related words; that is, each lemma pair in a derivational
family has a – direct or indirect – derivational connection. A formal definition of
derivational families is given in Section 4.1.4.

In this thesis, we will construct a derivational lexicon consisting of derivational families.
In parallel to previous studies (cf. Section 3.1.2), our requirements for the construction
of a derivational family are relatively liberal: We accept all morphologically admissible
derivations, regardless of whether they lead – synchronically or asynchronically – to
semantically opaque or transparent relations. For example, we accept synchronically
unproductive stem changes like reitenV – RittN (to rideV – rideN), and a subsequent
agentivisation like RittN – RitterN (rideN – knightN), and consider all involved lemmas
being part of the same family, although reitenV and RitterN are semantically opaque.
Thus, our generous definition leads to a maximal coverage of derivational processes (if
required, one can subsequently refine the definition, e.g., by only retaining transparently
related words in a derivational family). Although this decision limits the semantic coher-
ence of derivational families, we regard, in accordance with our DCA (cf. Section 2.1.3),
most derivationally related words semantically related, and thus, derivational lexicons as
semantic resources. This position has also been taken in the literature (cf. Section 3.1.3).

Derivational-semantic Families. As just discussed, derivational relationship does not
always imply semantic relationship. Even if some members of a derivational family
are semantically related, this shared meaning might not be stable across all pairings of
members within this family (Jacquemin, 2010). If semantic transparency information
about the lemma pairs was available, one could define a semantics-aware representation
of derivational families that goes beyond purely derivational relatedness. Although,
to our knowledge, such a representation was not discussed before in the literature, it
can be realised straightforwardly by splitting the families into sub-clusters according
to semantic coherence. Polysemous words which participate with different meanings in
different sub-clusters, might be handled specifically. Either, they could be assigned the
sub-cluster of their predominant sense, or they could be duplicated. For example, the
(incomplete) derivational family (DF) in Example (2.4) can be split into two sub-clusters,
both containing the polysemous lemmas paukenV and PaukerN :

(2.4) DF paukenV , PaukerN , einpaukenV , PaukeN
(to cram/play the kettledrum, crammer/drummer, to cram into, kettledrum)

Cluster 1 paukenV , PaukerN , einpaukenV
(to cram, crammer, to cram into)

20

2.3 Computational Representation of Derivation

Cluster 2 paukenV , PaukerN , PaukeN
(to play the kettledrum, drummer, kettledrum)

Note that the processing of polysemy becomes highly complex if the derivational
families refer to the token level rather than to the type level: In this case, word sense
disambiguation is necessary. For each instance, its proper sense and thus, the proper
derivational-semantic family must be determined depending on the context. For example,
the lemma PaukerN might be an instance of the drummer sense if the context is about a
concert, and an instance of the crammer sense if the context is about school. Such an
approach might help to correctly determine the derivational family of a token and thus
lead to an improved application of a derivational lexicon. However, it is significantly more
complex than a lemma-based approach, in which individual instances are ignored, and only
the type level is taken in to account, i.e., in which derivational-semantic families a lemma
potentially can participate. For this reason, all approaches to construct derivational
lexicons we are aware of are lemma-based (cf. Section 3.1.2). In this thesis, we will also
pursue the lemma-based approach, and investigate how type-level derivational families
can be employed.

Excursus: Family Concepts in Cognitive Linguistics. To support the notion of deriva-
tional families, we want to mention – without going into detail – that the concept of
morphological families is also established in a line of research in cognitive linguistics:
Usage-based models assume that the acquisition of linguistic knowledge takes place
bottom-up, i.e., through active perception and usage of word instances rather than
through rule-based processes. One representative of these models is the “network model”
of Bybee (1985, 1988) (similar approaches are, e.g., Langacker (1987), Nagy et al. (1989)).
It provides a cross-linguistic explanation for the storage and processing of morphologically
complex words. As the name suggests, this model considers the mental lexicon as a
network. Words are nodes, and edges are lexical connections between words that take into
account phonological and semantic features. If words are phonologically and semantically
related, a morphological relation between them exists, which is considered the strongest
relation in the model. Words that are strongly morphologically related to their base word
can even be mapped into this base node, e.g., cats and its phonologically and semantically
highly related base cat. Remarkably, no abstractions are used to represent a word node
(e.g., roots or stems), but only actual words. Apart from semantic and phonological
aspects, the strength of relatedness between two words also depends on the frequency
and formation regularity of the derived/inflected word.

Being based on these lexical connections, the network model implements a structure
that connects morphologically related words, i.e., it constructs morphological families.
Through the notion of phonological as well as semantic aspects, both purely morphological
and morphological-semantic families, as outlined above, are reflected. Since Bybee found
evidence for her model in 50 languages, we believe that such a structure is a good
base for the representation of derivational relatedness between words in a derivational
lexicon. However, contrary to the basic idea of usage-based models, we will address the
construction of the derivational families by means of a rule-based approach: While the

21

2.4 Summary

bottom-up approach is reasonable from a cognitive point of view, a rule-based method is
more suitable for the computational construction of a derivational lexicon. Furthermore,
the information about derivational processes that arises from such rules might be helpful
for subsequent processing of the derivational lexicon.

2.4 Summary

Derivation is a morphological word formation process which builds new words from
existing ones, where the base and the derived word share the same stem. Derivational
processes can be described by linguistic rules that capture a large part of the admissible
derivations of most languages. In German, derivation is very productive, especially for
the generation of new content words, i.e., verbs, nouns (including named entities), and
adjectives. These three word classes are well distinguishable from each other in their
surface realisation. We omit adverb derivation, while adverbial adjectives are covered.
Further, we consider participles as derived adjectives.

There are five derivation operations for German, generating Germanic as well as foreign
words: suffixation, prefixation, circumfixation, conversion, and stem changes, of which
mainly prefixation can cause a substantial meaning change between the base and the
derived lemma (opacity). Nonetheless, many derivational processes produce semantically
transparent words, leading to our Derivational Coherence Assumption which considers
derivationally related words generally to be semantically related. Circumfixation and
stem change neither occur in many languages, nor are they synchronically productive
in German, and they easily overgenerate. Nevertheless, they are necessary to ensure
maximal coverage of derivational relations.

Computational resources that exclusively address derivation have become popular only
recently. They conflate derivationally related words into so-called derivational families.
A derivational family can be considered an equivalence class of lemmas with derivational
relations. A resource that provides a set of derivational families is called a derivational
lexicon, and can – according to the DCA – be understood as a semantic resource. We
will build upon this view for the application of our derivational lexicon (Part III).

22

3 Related Work

The first part of this Chapter deals with the computational point of view on derivational
morphology. We illustrate the research in this area with particular regard to the induction
and applicability of derivational morphology resources. In the second part, we examine
work related to the field of distributional semantics, which we employ both to semantically
filter DErivBase, and to evaluate its applicability in computational linguistics.

3.1 Computational Morphology

Computational morphology (Sproat, 1992) is a longstanding and substantial field in
NLP that deals with the processing of word forms and aims at a description of the
internal structure of words, and their relation to morphologically similar words. A word
is specified by identifying its morpheme boundaries (morphological segmentation) and
using morphological features to describe each morpheme, e.g., [pl] for the plural-s in
mountains. Computational morphology captures the regularity of these features as well
as exceptions from these rules in word formation. Typically, there are two components in
a computational morphology system: A lexicon that describes a set of base words and
admissible variations (i.e., the morphological features), and a set of rules that defines
admissible combinations. There are (at least) three interesting aspects in computational
morphology: how morphological information is acquired, how it is represented as a
computational resource, and how it can be applied in NLP.

Morphological analyses of any type (i.e., inflectional, derivational, compositional) are
widely used in NLP, either in terms of preprocessing, or in order to provide additional
information. Daille et al. (2002) gives an overview of how versatile inflectional and
derivational resources (such as CELEX (Baayen et al., 1996)) and algorithms (such as
stemming (Porter, 1980)) can be used for tasks like corpus annotation, lexicon building, or
terminology acquisition. Clearly, the most widely used type of morphological processing
is stemming and lemmatisation, i.e., the conflation of word form variants (Krovetz, 1993),
focusing on inflectional issues, as it is far more frequent than derivation. In this work, we
concentrate on derivational morphology.

The pioneer of computational morphology is said to be Kimmo Koskenniemi, although
various approaches in the context of computational morphology existed before, e.g., the
famous Lovins and Porter stemming algorithms (Lovins, 1968, Porter, 1980), or a system
based on morphophonemic rewrite rules combined with a dictionary (Kay and Martins,
1970). However, most of these approaches lack in linguistic motivation, generalisation for
language independence, or simply coverage of linguistic phenomena; also, they implement
only morphological analysis, but not generation (Karttunen and Beesley, 2001).

23

3.1 Computational Morphology

Koskenniemi (1983) introduced the fundamental theory of a two-level morphology and
an accompanying system for morphological analysis as well as generation. As indicated
above, a two-level morphological system comprises two components: A lexicon that lists
the lexical items of a language (typically morphemes; i.e., word stems as well as affixes),
and a set of rules that describes admissible morphological processes on the lexicon’s items.
A processing component (mostly a finite-state automaton) uses the lexicon and the rules
in order to either analyse a word form to access its base word, or generate word forms
for a given base word. In this process, the entries in the lexicon and the interaction of
the rules constrain the surface realisation of a lexical string, leading to highly accurate
analyses or generations, respectively. Two-level morphology is applicable to all word
formation types mentioned in Chapter 2 (derivation, composition, inflection). For a brief
summary of the history of two-level morphology, see Karttunen and Beesley (2001).

Clearly, Koskenniemi’s procedure requires human knowledge about the morphological
processes of each processed language. One main reason why the two-level morphology
still made the breakthrough is that it can be efficiently realised with the technique of
finite-state transducers (FSTs), where the underlying engine is usable interchangeably for
any language. There are many subsequent works in this direction, guided to a large degree
by Lauri Karttunen and colleagues. Karttunen and Beesley (2005) give an overview of
the effort on finite-state morphology and its results for various languages.

Today, there are two main directions in computational morphology: knowledge-poor,
and knowledge-based approaches, the former of which recently gained particular traction.
Knowledge-poor methods infer morphological information at the level of word forms
from large text collections, using machine learning techniques rather than linguistic
knowledge. As a consequence, linguistic aspects are often not captured, e.g., knowledge-
poor methods cannot distinguish between inflection and derivation. This contrasts with
knowledge-based methods which build on human knowledge in form of linguistic rules
(in the tradition of Koskenniemi) or other manually compiled information sources.

In the remainder of this Section, we summarise work related to the computational
treatment of morphology particularly for derivation. These studies can comprise merely
a derivation acquisition algorithm, or also a resulting resource. Additionally, one can
distinguish between approaches that have the goal to tackle a particular task, and those
whose benefits have not been attested on applications. We structure the Section according
to these three concepts: Approaches that mainly propose a specific algorithm for the
acquisition of derivational knowledge (Section 3.1.1), those whose focus is to establish
an actual resource (Section 3.1.2), and those that are used particularly for an NLP
application (Section 3.1.3). Of course, boundaries are fluid, and we indicate whenever
an approach largely covers several of these aspects. We conclude with a discussion in
Section 3.1.4.

3.1.1 Algorithms to Acquire Derivational Morphology

Although a clear separation of knowledge-poor and knowledge-based approaches is
artificial (again, boundaries are fluid), we make this distinction in the following in order
to emphasise the importance of linguistic knowledge to build a derivational lexicon. In

24

3.1 Computational Morphology

fact, many knowledge-poor studies claim to be unsupervised, which would mean that text
corpora serve as their only linguistic evidence. However, they often take into account at
least little additional information, which is why we prefer the term “knowledge-poor”.

3.1.1.1 Knowledge-poor Approaches

Most knowledge-poor approaches mainly provide algorithms to acquire morphological
information, but neither build resources, nor concentrate on specific application scenarios.
An excellent overview of the state-of-the-art is given by Hammarström and Borin (2011).
In their survey, they distinguish four classes of knowledge-poor methods, the most
important two of which for derivational issues are the following:1

Boarder and Frequency. These approaches consider frequent occurrences of letter
sequences to determine probable morpheme boundaries. According to Hammarström and
Borin (2011), this class of approaches, inaugurated by Harris (1955), is the most frequently
pursued one among the knowledge-poor approaches. As an example, Goldsmith (2001)
induces sets of stems and suffixes, and their combination possibilities (so-called signatures)
from corpora. He uses the information-theoretic measure of Minimum Description Length
(Rissanen, 1989), which strives to express both the model and the described data as
compact as possible, and refines this measure’s result with a couple of heuristics.

Group and Abstract. The second most common approach first groups morphologically
related words, mostly according to a simple measure like string edit distance, and
then tries to abstract common patterns from these groups of words in order to find
indicators for morpheme boundaries. For instance, Baroni et al. (2002) first group
orthographically similar words of a corpus, and then determine their actual relatedness
via Mutual Information. Schone and Jurafsky (2000) employ semantic similarity calculated
with Latent Semantic Analysis (Deerwester et al., 1990) as grouping measure. They
learn inflectional analyses for English word pairs, being capable to correctly resolve
morphological disambiguations (e.g., caring should be assigned the stem care rather
than car). In a subsequent study (Schone and Jurafsky, 2001), the authors increase
performance by adding, e.g., orthographic measures for common affixes and syntactic
information.

Overall, derivational morphology is not the focus of knowledge-poor approaches. This
might be due to the fact that inflectional variation is much more frequent than derivation,
and can therefore be better exploited to achieve high precision results. Note, however,
that all inflection-treating procedures might also retrieve derivational relations, because
knowledge-poor models have difficulties in distinguishing morphological processes (Moon
et al., 2009, p669). That is, approaches without any linguistic information about
morphological processes are virtually incapable of concentrating on one process.

1Another interesting technique are the recent non-parametric Bayesian models, e.g., the cross-lingual
approach of Snyder and Barzilay (2008) to acquire morphological segmentation.

25

3.1 Computational Morphology

Hammarström and Borin (2011) mention two knowledge-poor “group and abstract”
approaches for derivation: Gaussier (1999) constructs derivational families and extracts
derivation rules for French and English.2 The approach, which only considers suffix
operations, is based on an inflectional lexicon, i.e., a list of base lemmas and their possible
inflections. In this way, inflectional processes are excluded from the learning, and purely
derivational suffixes are obtained. Gaussier acquires the families in two steps: First, the
similarity of two words is measured by means of their longest common initial string (a
length of 5 is deemed a good threshold). This string is the potential base word, while
the two remaining, differing strings are two potential suffixes of this word. In order to
discard segmentations and, thus, suffixes that are no actual morphemes of the language,
each suffix pair is required to occur at least twice for all word pairs built from the
inflectional lexicon. In a second step, these word pairs are conflated into families by
means of hierarchical agglomerative clustering, where the number of occurrences of suffix
pairs serves as similarity measure. The author suggests to employ this procedure to
facilitate lexicographic annotations, and for Information Retrieval.

Jacquemin (1997) provides a distributionally motivated algorithm to collect morpholog-
ical links that can, to some extent, be specified for derivation. It requires a corpus and a
list of multi-word collocations.3 As in Gaussier (1999), word pairs are truncated to their
longest common initial string, which indicates a potential morphological relationship.
False positives such as genetic and generate are excluded by requiring these trunks to
co-occur with the same trunk of another word in the corpus. In this way, collocations like
genetic expression and gene expressed are retrieved, using the collocation list as seeds.
Repeatedly occurring suffixes (e.g., -tic) are considered morphemes, and derivational
families are clustered using this notion of relatedness. Although this approach also covers
inflection and composition, one can somewhat control the retrieved patterns via the seed
collocations to achieve mainly derivations (which is, on the other hand, a drawback, as
manual invention is necessary). Unfortunately, again only suffix operations are considered.

Generally, knowledge-poor approaches provide detailed algorithms, but do not estab-
lish resources; after all, some implementations are available, such as the Linguistica
system (Goldsmith, 2001), or Morfessor (Creutz and Lagus, 2007). Also, Gaussier (1999)
provided his algorithm to other researchers (Jacquemin, 2010). Most knowledge-poor
algorithms are not designed for specific applications, but as an alternative to manually
created morphological processing systems, i.e., mostly analysers.

A main drawback of knowledge-poor algorithms is that the results do not necessarily
correspond to linguistic intuition. For example, Goldsmith (2001) reports that it is
difficult to identify allomorphs with his approach, i.e., related stems such as suppli/supply
for the lemmas supplier/to supply cannot be mapped onto each other.

2Since we aim at building a derivational lexicon, we only discuss the construction of derivational families.
3Zweigenbaum and Grabar (1999) realise a comparable, yet more trivial idea, as it is based on structured
data from a thesaurus rather than on a raw corpus.

26

3.1 Computational Morphology

3.1.1.2 Knowledge-based Approaches

Knowledge-based approaches rely on structured, manually created linguistic information,
either by means of rule implementations or in the form of input resources. Since the
rule-based approaches were briefly illustrated in the beginning of Section 3.1, we now
concentrate on a handful of representative and preferably recent methods that employ
other knowledge bases with derivational information. As with knowledge-poor approaches,
many knowledge-based methods only suggest algorithms to collect the relevant data, but
do not provide actual results. Regarding their application, some approaches presented
here are used to expand other resources, such as machine-readable dictionaries or WordNet.
However, this Section focuses on the acquisition rather than the application.

Knowledge-based systems mostly rely on morphological analysers or existing linguistic
knowledge bases. There is quite some work for languages other than English (especially
French), which face the problem of recognising derivational relationships more often.

Knowledge from Morphological Analysers. To acquire purely derivational knowledge,
morphological analysers are frequently used to process some (mostly inflectional) issues
in advance. For instance, Walther and Nicolas (2011) expand a French and a Spanish
lexicon with derivational links (pre- and suffixation) between existing entries, and with
derivatives as new entries. To conduct these expansions, they induce derivational families
from big corpora: They use an unsupervised morphological analyser (Nicolas et al.,
2010) to stem the data, and an inflectional lexicon plus a number of heuristic filters
to retain only derivational affixation. The quality of the derivational links is good,
while the newly added lemmas are often erroneous, mostly due to English words and
spelling errors in the corpora. The quality of the results highly depends on the size
of the corpora given to the morphological analyser and the heuristic filtering. In a
very similar manner, Baranes and Sagot (2014) extract derivational rules and lemma
pairs from inflectional lexicons for various languages, including German (the German
inflectional lexicon is the semi-automatically induced DeLex (Sagot, 2014)). Contrary
to Walther and Nicolas (2011), they use inflected forms rather than stems as starting point
to capture words that are derived by stem changes, e.g., the verb preterite derivation
in zwingenV – ZwangN (forceV – forceN) (cf. Section 2.2.1). A bootstrapping-alike
procedure ensures that inflectional relations are removed, and that also circumfixation (as
a combination of pre- and suffixation) is covered. In a fairly different approach, Sulaiman
et al. (2011) build a derivational lexicon for Malay using a morphological analyser that
outputs ambiguous analyses. The difficulty for Malay, a language with almost exclusively
derivational morphology, lies in the fact that derivational affixes are combined to complex
words by nesting and reduplication, where the order of the affixes is crucial. The authors
tackle this problem with Expectation Maximisation (Dempster et al., 1977).

Knowledge from Other Lexical Resources. Another group of knowledge-based ap-
proaches relies on detailed resources. For instance, Hathout and Namer (2014) build
Démonette, a derivational lexicon, enriched with semantic information about the re-
spective derivational processes, using three underlying resources: DériF (Namer, 2009),

27

3.1 Computational Morphology

a morphological analyser, Morphonette (Hathout, 2011), a database of morphological
relations between words, and a list of words extracted from an inflectional lexicon. While
DériF provides semantic interpretations for directly derivationally related lemmas, Mor-
phonette indicates direct (e.g., care – careless) as well as indirect (e.g., care – carelessness)
derivational relations between lemmas. The authors combine and expand these resources
with manually defined patterns, so that semantic information is available for all pairs
of members of the same derivational family (i.e., directly as well as indirectly related
words). The current version of the lexicon comprises 31,000 lemmas connected by a
selection of seven suffixation processes, so that it is rather a proof of concept than a
resource that can actually be deployed in NLP; accordingly, we are not aware of any
applications. In another approach, Piasecki et al. (2012) identify derivational relations
with a semi-supervised method based on the Polish WordNet (Derwojedowa et al., 2007):
Starting with seed examples of derivationally related lemma pairs in WordNet, they
build derivational transducers to determine derivation rules and to bootstrap more pairs.
The transducers implement prefixation, suffixation and infixation, using information
explicitly added by linguists. After validating the produced pairs with a morphological
analyser (Piasecki and Radziszewski, 2008), the pairs deemed correct are added as new
derivational edges into WordNet. Major problems occur for complex derivational relations,
and due to faulty behaviour of the morphological analyser, e.g., for named entities.

3.1.2 Approaches to Build Derivational Resources

As we have shown in Section 3.1.1, there is a decent number algorithms that explicitly
deal with derivational morphology, however, none of these studies provides the output
of their approach as an actual standalone derivational lexicon, i.e., a machine-readable
linguistic resource that is available to the community. Thus, there is a discrepancy
between the interest in derivation and the number of derivational resources.

Nonetheless, some derivational resources are publicly available. This Section concerns
studies that induce such resources – ideally exclusively, but also in combination with
other linguistic phenomena. All resources we are aware of are clearly knowledge-based,
i.e., they build partly on existing tools, hand-written derivation rules and/or structured
data. As argued in Sections 2.1.1 and 2.1.3, derivation is relatively regular, albeit far from
being easily predictable, so that manual intervention is necessary in order to produce
sufficiently high quality. Although the processes used to induce the resources presented
here include both manual and automatic steps, most studies describe the automatic
steps only superficially, so that details about algorithms or parameters are unfortunately
unknown. We first discuss our perspective on derivational resources, which is lexicon-
oriented, and how it is interrelated with the traditional understanding of computational
morphology as word processing. Then, we present approaches to construct derivational
resources for several languages, and finally go into detail for German, because this is our
language of interest. We focus on resources that are not constructed fully manually and
thus offer a reasonable coverage.

28

3.1 Computational Morphology

Excursus: Lexicon-oriented vs. Word Structure-oriented Perspective. The tradi-
tional central task in computational morphology is to analyse (or generate) morphologi-
cally complex words, i.e., to deal with morphemes and internal word structure of individual
word instances, typically using a two-level architecture (an FST and a morpheme-based
lexicon; cf. the beginning of Section 3.1). There is a large number of morphological
analysis and generation tools, some of which for German are the following:

There is the classification-based Morphix tool (Finkler and Neumann, 1988) which
analyses inflection as well as composition, or SMOR (Schmid et al., 2004), which is based
on a finite-state transducer and segments German words on the inflectional, derivational,
and compositional level. SMOR uses IMSLEX,4 a morphological lexicon that we will
present below, and is one of the central German morphological analysers. It has also
been used as the basis for other analysers like Morphisto (Zielinski and Simon, 2008), or
Zmorge (Sennrich and Kunz, 2014). Word Manager (Domenig and ten Hacken, 1992)
is another analyser that covers the same morphological processes as SMOR. It is hand-
crafted, but includes, e.g., an automatic out-of-dictionary component for unknown words.
It can be queried online on http://canoo.net, however, its lexicon is not available
standalone. Finally, the TAGH analyser (Geyken and Hanneforth, 2005) is conceptualised
slightly differently than SMOR in that it works with weighted FSTs and thus returns
only the most plausible analysis (rather than all) for structurally ambiguous words; for
instance, it selects the first segmentation of the following two for menschenfreundlichA
(philanthrophicA):

(A (N (N Mensch) (link en) (N Freund)) (sfx lich))
(A (N Mensch) (link en) (A (N Freund) (sfx lich)))

Lexicon-based systems like SMOR achieve high-quality results. Thus, they are used in
virtually any application that requires morphological preprocessing, e.g., parsing (Bohnet
et al., 2013), or coreference resolution (Broscheit et al., 2010): Here, the morphological
analysis of words is important to correctly resolve morpho-syntactic dependencies.

Our perspective, however, is different from this traditional word-structure perspective:
We consider one specific morphological process (derivation) from a lexicon-oriented point
of view. That is, we do not aim at analysing the internal structure of word instances,
but the connectedness of lexemes through derivation. This goal is more general than
that of morphological analysis in two respects: 1., we address words at the level of
lexemes, i.e., we generalise over individual word instances;5 2., we investigate on which
lexemes derivational morphology induces morphological families, i.e., the connections
across lexemes rather than within instances of one lexeme. Such interconnections can be
better represented in lexicons (i.e., actual lexical resources) than by computing them on
the fly with a processing tool. To some extent, the lexicons integrated in morphological
analysers provide such interconnections (e.g., the IMSLEX; Fitschen (2004)) – however,
without focus on derivation. Approaches to establish lexical resources that exclusively
address derivation have been pursued for English, as we will show shortly.

4Cf. https://code.google.com/p/cistern/wiki/SMOR; last accessed: Mar. 2015
5As mentioned in Section 2.3, this avoids matters of word sense disambiguation.

29

http://canoo.net
https://code.google.com/p/cistern/wiki/SMOR

3.1 Computational Morphology

Besides, we would like to note that our lexicon-based perspective implies that inflectional
aspects are excluded, as we concentrate on lexemes (typically operationalised by the
respective lemmas), and on derivation. Thus, the methods used to build a derivational
lexicon must be able to separate inflection from derivation. This, in turn, requires
knowledge about the internal word structure – e.g., in order to recognise that higher is
not a derived lemma, but a comparative form –, which brings us back to morphological
analysers. That is, lexicons and analysers complement each other: The automatic
induction of a high-quality derivational lexicon profits from morphological analysis. At
the same time, high-quality morphological analysers mostly rely on lexicon information.
However, in this thesis, we will not further examine this mutual influence.

In sum, all approaches to establish a derivational lexicon require morphologically
preprocessed data (typically lemmas or stems) in order to exclude inflection. This
preprocessing can be based either on morphological analysers, manual efforts, or other,
existing lexicons. The following literature review will show that all three cases apply.

Resources for Languages Other than German. One natural approach to collect deriva-
tional information is to exploit existing lexical ontology structures, and integrate mor-
phological knowledge as an additional information layer. WordNet (Miller et al., 1990),
the English ontology most frequently used in NLP, was enriched by exactly such in-
formation (Miller and Fellbaum, 2003). So-called “morpho-semantic links” between
derivationally related lemmas establish links across parts of speech, which is exceptional
in WordNet, as most relations connect lemmas of the same part of speech. Note that the
term “morpho-semantic link” refers to purely derivational information. The addition of
these links was based on an assumption similar to our DCA (cf. Section 2.1.3), i.e., that
most derived words are semantically similar to their base words. However, it turned out
that there is no clear mapping between certain derivational affixes and the corresponding
senses, e.g., due to polysemy (Fellbaum et al., 2009) (cf. the discussion of word sense
disambiguation issues for token-based derivational lexicons in Section 2.3). Nonetheless,
the morpho-semantic links are used for NLP applications, e.g., deep text understand-
ing (Clark et al., 2008), and a number of proposals exists to correspondingly extend
wordnets in other languages (Bilgin et al., 2004, Pala and Hlaváčková, 2007, Bosch et al.,
2008). Also for the German wordnet, there recently emerged initial studies about how to
establish derivational links (Hoppermann and Hinrichs, 2014).

A lexicon that exclusively supplies derivational knowledge is CatVar (Habash and
Dorr, 2003), the “Categorial Variation Database of English”: It groups derivationally
related verbs, nouns, adjectives and adverbs into families,6 and was compiled semi-
automatically on the basis of a range of high-quality lexical-semantic resources, such
as NOMLEX (Macleod et al., 1998) and WordNet, which provide information about
derivational relatedness. Derivational families are obtained by a clustering method
based on the Porter stemmer (Porter, 1980) that serves as morphological analysis step.
Unfortunately, the authors do not provide details on the algorithmic realisation of this

6While incorporating adverbs is sensible for English, German adverbs are not informative; cf. Sec-
tion 2.2.1.

30

3.1 Computational Morphology

clustering procedure. CatVar corresponds to the style of derivational lexicon as we intend,
containing, families such as:

askV askerN askingN askingA

Note that multiple words of the same part of speech can be listed in one family. The
above family lists two nouns: an event noun (asking) and an agentive noun (asker).
However, CatVar does not consider prefixation and stem changes, which is why, e.g., the
adjective unasked is missing in the above family, and ends up in a singleton cluster.7

CatVar is purely morphologically motivated, i.e., semantically unrelated word pairs like
objectN – objectiveN are stored in the same family. Since its build process requires various
language-specific, high-coverage and and elaborate resources, but such resources do not
exist for many languages, it is not straightforward to adopt this approach to construct
similar lexicons for other languages. Note that even if similar resources were available,
their coverage, content, and quality might differ from those used in CatVar. Thus, it
would be hard to compare two derivational lexicons compiled in this way. Also, CatVar
does not provide information about the structure within the families, i.e., which word
pairs are directly or indirectly derivationally related. For instance, externalA is more
closely related to externaliseV than to exteriorisationN , but all three lemmas are simply
grouped without any distance measure. Nonetheless, this lexicon has found application
in different areas of English NLP, as we will show in Section 3.1.3.

Another knowledge-intensive approach was pursued by Viegas et al. (1996), who build
Spanlex, a Spanish lexical-semantic lexicon. Instead of relying on many resources, they
manually implement linguistically very detailed derivation rules (“morpho-semantic lexical
rules”), into which knowledge from merely one ontology is incorporated. These rules
encode not only standard prefixal and suffixal derivation patterns, but also indicate, for
each derivation, semantic properties of the derivative, e.g., Event for explotar → explosión
(to explode → explosion). These properties, gained from the ontology, are used to define a
fairly fine-grained level of about 100 morpho-semantic lexical rules. Since the derivation
procedure overgenerates, the produced words are double-checked against a lexicon and
a corpus. Eventually, all 35,000 acquired entries are manually assessed. However, this
lexicon is, to our knowledge, not available.

Resources for German Derivational Morphology. To our knowledge, there is no dedi-
cated derivational lexicon available for German. Nonetheless, a couple of resources provide
derivational information among others, and derivational lexicons might be inducible from
these resources with some effort.

For instance, CELEX (Baayen et al., 1996) is a manually annotated lexical database
for German, English and Dutch with a variety of linguistic annotation layers, including
information about a word’s morphology in terms of inflectional, compositional and
derivational structure. The derivational structure covers both affixation and stem changing
processes (e.g., SängerN – singenV (singerN – to singV)), and could be exploited to build

7The absence of prefixation and stem changes is due to the build process of CatVar: The Porter stemmer
used to cluster the derivational families is merely designed for suffix stripping.

31

3.1 Computational Morphology

derivational families; for example, the morphological decomposition of Schlaflosigkeit
(insomnia) connects this lemma with the lemmas schlaflos (sleepless) and schlafen (to
sleep), which could thus be grouped into one family. However, the notion of derivational
families is not explicitly expressed in CELEX, so that additional procedures would
be needed to correctly and exhaustively collect all derivationally related lemmas. To
our knowledge, CELEX has not been used for such an approach before. Generally, this
database is not built for a specific application, but is broadly used, e.g., in psycholinguistics
for the norming of materials (as in Sonnenstuhl et al. (1999), Clahsen et al. (2003)), or
in Information Retrieval (Monz and de Rijke, 2002).

As mentioned in the above excursus, morphological analysers typically rely on mor-
pheme lexicons. These lexicons – if available as a standalone resource – could generally
serve as a source of information to induce a derivational lexicon. IMSLEX (Fitschen, 2004)
is one such lexicon, and provides (among others) morphological information for inflection,
derivation, and composition. Although its major purpose is the application to morpho-
logical analysis of German (it is used in SMOR; see above), it is available as a separate
resource. In contrast to CELEX, IMSLEX exclusively exists for German. It builds upon
various manually created morphological and syntactic tools and resources, such as the
morphological analyser DMOR (Schiller, 1996) (the predecessor of SMOR (Schmid et al.,
2004)), or the lexicon structure of DeKo (Schmid et al., 2001), from which information of
different types and granularity levels are gathered, merged, and enriched with additional
information. These underlying resources have heterogeneous structures, so that IMSLEX
contains both full-form derivatives and morphemes (stems and about 260 affixes) that
can be combined to derivatives. That is, a thorough analysis of the data basis would be
required before IMSLEX can be used for the induction of a derivational lexicon.

3.1.3 Derivational Morphology Applied in Natural Language Processing

At the beginning of Section 3.1, we mentioned possible applications of morphological
information. This Section gives concrete examples specifically for derivational information.
Most applications operationalise the notion of a derivational lexicon in parallel with
our Derivational Coherence Assumption (cf. Section 2.1.3): Derivational families are
assumed to frequently capture not only morphological, but also semantic relatedness and
are thus employed as semantic resources. Clearly, this assumption is simplifying, even for
semantically transparent derivations – both in terms of syntax (e.g., the verb in I read a
book is not simply substitutable by the noun reader) and in terms of semantics (even the
semantically highly similar words read and reader have slightly different meanings). In
practice, however, it is reasonable since 1., many derivations in fact are transparent, and
2., the subtle semantic drifts of transparent derivations are often not essential. That is,
read can be transferred to reader, if also other parts of the corresponding sentence change,
e.g., to the phrase the reader of the book (Jacquemin, 2010). Since many applications
deal with language variation, one can indeed take advantage of the semantic similarity
of many derivational relations, making them a legitimate semantic information source.
However, we note that the quality of the results might depend on the complexity and
transparency of derivation in the language of interest. Thus, semantic restrictions and

32

3.1 Computational Morphology

refinements might be required, such as Jacquemin (2010) does for French (see below).
In the following, we describe three language-independent usages of derivational infor-

mation to improve distributional modelling, and a variety of end-to-end applications.

Derivational Morphology Used for Distributional Modelling. On the basis of the DCA,
lexical semantics is a common application area for derivational information, e.g., by inte-
grating it into distributional semantic models (cf. Section 3.2). In Section 3.1.1.1, we have
introduced how morphological information can be distributionally acquired (Jacquemin,
1997, Schone and Jurafsky, 2000, Baroni et al., 2002). Now, we briefly present three ap-
proaches with the exact opposite goal: They employ derivational morphology to improve
and refine distributional similarity predictions, particularly for rare or unknown words
that are often poorly represented and pose problems in morphologically rich languages.
Note that here, derivation is not necessarily used to solve a specific task, but to improve
the representation of word semantics.

Lazaridou et al. (2013) adapted the idea of compositional distributional semantics,
where larger text passages such as phrases are represented by vector combinations
using algebraic functions (Mitchell and Lapata, 2010), to the level of morphemes: They
developed a model in which a derivationally complex word such as rebuild is represented
by two separate vectors: one for the derivational affix (re-) and one for the stem (-build),
respectively, rather than by one single vector for the whole word. The derivational
decomposition is based on the CELEX database. The intuition of the authors is that
affix morphemes change a stem’s meaning and thus should be represented individually.
The two vectors are combined using various distributional composition approaches,
and their quality is compared to that of the representation of the full word in a non-
compositional distributional space. Experiments show that the morpheme composition
leads to more sensible distributional representations and better similarity predictions
than a conventional full-word model. Notably, the model assigns reasonable relatedness
scores even across parts of speech. However, it is still restricted to primitive derivations
consisting of a stem and merely one affix.

Technically fairly different, but with the same basic idea, Luong et al. (2013) use
recursive neural networks to derive representations of morphologically complex words.
Again, each morpheme (i.e., affixes and stems) is considered an individual unit. Due to
the recursion approach, this model is capable to handle multi-step derivations such as
in-oper-able. For the derivational decomposition, the unsupervised morphological analyser
Morfessor (Creutz and Lagus, 2007) is employed, followed by some postprocessing steps
to increase precision. The authors demonstrate improvements with their approach on
a number of word similarity tasks, including datasets with very rare words. As typical
for knowledge-poor approaches, this model does not distinguish between derivation and
inflection. Also, it is specialised on relatedness within rather than across parts of speech.

Finally, Botha and Blunsom (2014) employ a probabilistic log-bilinear language model
rather than neural networks or traditional distributional vector spaces. Probabilistic
models allow for preserving all possible segmentations (and thus, interpretations) of a
multi-step derivation, and lead to more informed estimates. This approach is motivated

33

3.1 Computational Morphology

by the authors’ goal to improve a machine translation system, which typically requires
probabilistic information. Again, derivational decomposition is obtained from Morfessor,
and derivation is not exclusively considered, although it is in the focus of this work.

Derivational Morphology for End-to-end NLP Applications. We are aware of two
derivational lexicons that have been applied to various end-to-end tasks based on as-
sumptions similar to our DCA. One of these lexicons is CatVar (cf. Section 3.1.2). With
its release, a solid English resource became available that has been used, among others,
for the induction and expansion of other lexical resources. For example, CatVar is
employed by Green et al. (2004) to expand semantic roles resources: Their aim is to
automatically induce a new frame-semantic resource called SemFrame, which extends
the well-known FrameNet (Baker et al., 1998). By combining information from CatVar
and WordNet, it is possible to link words in the FrameNet structure. For instance, one
SemFrame frame is called ornamentation, while the corresponding FrameNet frame is
called adorning. By knowing that adornV and ornamentV are related by a WordNet
synset, and by knowing that adornV and adorningV and ornamentV ornamentationN
belong to the same derivational families in CatVar, respectively, it is possible to link the
ornamentation and the adorning frame. As a result, the lexical unit inventory for
both resources can be expanded.

Also, CatVar has been used as (one of several) components to resolve NLP tasks like
Textual Entailment, Language Generation, or Machine Translation. Unfortunately, none
of the applications reports the impact of the derivational lexicon separately (i.e., ignoring
other information sources), so that it remains unclear to what extent the respective tasks
benefit from incorporating derivational information.

Derivational information can be used to recognise paraphrases and Textual Entailment
(Te) relationships between two texts (Androutsopoulos and Malakasiotis, 2010, p147).
Thus, Szpektor and Dagan (2008) use CatVar to improve their recognising Textual
Entailment (Rte) system. Te is a task in which systems have to assess whether a human
reading of a Text T infers that a Hypothesis H is most likely true (Dagan et al., 2005).
CatVar is used to build new entailment rules, i.e., rules which determine whether one
expression can be inferred from another one. Example (3.1) shows that a noun modifier
which acts as a predicate, can be replaced by the derivationally related verb without
changing the meaning of the original phrase:

(3.1) the runningA X ↔ X runsV

Comparable approaches which integrate derivational information for Rte are, e.g., Shnarch
et al. (2011), Berant et al. (2012).

Another application a derivational lexicon can contribute to is language generation.
Thadani and McKeown (2011) employ CatVar’s derivational families to increase the
fluency of automatically generated text. More specifically, they deal with the task of
sentence intersection generation, where two or more sentences are conflated into one single
sentence which contains the information expressed in all input sentences, and nothing
more. Derivational information serves for replacing words by their morphological variants,

34

3.1 Computational Morphology

if these improve the sentence’s fluency. Example (3.2) shows two derivational variants of
the same circumstance, which are supposed to obtain different fluency judgements:

(3.2) (a) Ferrero is mainly a candy producerN .

(b) Ferrero mainly producesV candies.

As a last application of CatVar reported here, its creators themselves use the lexicon for
word alignments in Machine Translation (Ayan et al., 2004). They build a framework to
combine two different alignment algorithms: GIZA++ (Och and Ney, 2003), a standard
word aligner, and DUSTer (Dorr et al., 2002), a linguistically informed partial aligner.
The alignment of DUSTer works with dependency trees of the source language, extended
with semantic information (i.e., semantic verb classes), and rules of derivational variability
gained from CatVar, as in Example (3.3):

(3.3) x fearsV y → x has fearN of y

In such variability rules, the connection (or “alignment”) of semantically corresponding
words is ensured by explicit indexes, e.g., fears1 and fear1 . Finally, GIZA++ and DUSTer
are combined to find the best common alignment. This combination can, to a certain
degree, be understood as a query expansion for GIZA++. This approach leads to better
alignments for cases of categorial variation between source and target sentence, as in the
Spanish/English sentence pair in Example (3.4):

(3.4) (ES) Ella
She

tendrá
will have

miedo
fear

de
of

sus
her

enemigos
enemies

.

.

(EN) She will fear her enemies .

For French, Jacquemin (2010) uses derivational knowledge for Question Answering
(QA). Following Gaussier (1999), he uses a – publicly unavailable – derivational lexicon
for sentence rephrasing, which requires the lexicon to be semantically coherent.8 Since
the families contain incorrect information (in morphological as well as semantic respects),
they are semantically filtered for each test instance using an elaborate French dictio-
nary (Dubois and Dubois-Charlier, 1997), and word sense disambiguation. Unfortunately,
the impact of the derivational lexicon on the QA task is small, possibly due to low cover-
age for some parts of speech – despite the usage of a comprehensive dictionary. Thus,
this approach crucially depends on high-coverage, high-quality data, which prohibits the
transfer to other languages. However, the author legitimately argues that it is hard to
improve extrinsic tasks with one specific resource.

3.1.4 Discussion

We have presented various state-of-the-art algorithms, resources and applications to
incorporate and consider derivational information in computational morphology. For our
purpose of building a standalone derivational lexicon for German, we see the following
major restrictions:

8Besides Démonette, this is one of the few studies that take semantic aspects of derivation into account.

35

3.1 Computational Morphology

Knowledge-poor Methods.

� A lack in linguistic information leads to problems in differentiating derivation and
inflection, which results in low precision specifically for derivation, as it is less
frequent than inflection.

� Most approaches are either very permissive, leading to many false positives, or
very restrictive, so that some linguistic phenomena remain uncovered. A prototypi-
cal example is circumfixation, which occurs in many disparate language families
(cf. Hall (2000, p540f)), but is, of all knowledge-poor methods presented above,
only approached by Schone and Jurafsky (2001). Similarly, stem changes are
problematic without linguistic knowledge. Consider the following German verb
to noun derivations, reißenV – RissN (to ripV – ripN), and schreitenV – SchrittN
(to paceV – paceN). These derivations are conceptually similar: Both convert “ei”
to “i”, and duplicate the last letter (German “ss” is sometimes commuted to “ß”).
However, there are only few cases of such derivations (cf. Section 2.2), which might
hinder a knowledge-poor method from retrieving sufficient material to capture these
regularities, and achieve reliable corpus statistics.

We find these restrictions in terms of quality, coverage and interpretability fairly severe,
so that we decide against a largely unsupervised induction for our approach.

Knowledge-based Methods.

� Knowledge-based approaches tend to involve a considerable machinery of linguistic
resources, processing tools, or both. The – typically manual – creation of such
resources and tools is often costly and not easily transferable to other languages.

� As there is no derivational lexicon available for German, derivational information
needs to be extracted from more general resources with a different focus (e.g.,
CELEX, IMSLEX). This, in turn, might cause problems in separating derivation
from other morphological processes, and gathering all admissible relations.

� These workaround resources are either not freely available (CELEX), or have limited
coverage by today’s standards (e.g., CELEX covers about 50,000 lemmas, and
IMSLEX about 60,000 lemmas, respectively, including many compounds that are
not derivationally related to any other lemma).

� We believe that the internal structure of families that is described by derivational
rules that relate two lemmas to one another is linguistically valuable. Such a
relatedness indicator is not available in previous lexicons such as CatVar.

In this thesis, we employ a knowledge-based approach to induce a German derivational
lexicon that will address these issues (cf. Chapter 4). We expect this lexicon to be
similarly widely applicable as the English CatVar.

36

3.2 Distributional Semantics

3.2 Distributional Semantics

As indicated in Chapters 1 and 2, there are relationships between derivation and word
semantics; accordingly, our goal is to build a derivational lexicon that is not only
morphologically, but also semantically motivated, i.e., that accounts for semantic drifts
through derivation. Note that we refrain from trying to model the explicit meanings of
derivational processes; studies like Pala (2008) show that a full (symbolic) classification
of the semantic variety of derivation is almost intractable (cf. Section 2.2.1). While
there are recent approaches that aim at predicting the meaning of derivation with
distributional methods (Kisselew et al., 2015, Padó et al., 2015, Marelli and Baroni,
2015), we intend to model semantic relatedness on a simpler level, i.e., to reveal which
derivational relationships also imply (transparent) semantic relationship, and which do
not. To quantify semantic drifts by means of derivation, we also employ – as the studies
just mentioned – distributional semantics, a specific method in computational semantics.
Since we additionally base various experiments on distributional semantics to evaluate
the applicability of DErivBase, we dedicate this method a separate literature review.

This Section explains the fundamental assumptions in distributional semantics and
its key characteristics that need to be considered. We also note in which respects
distributional semantics is to be preferred over ontologies.

Rationale of Distributional Semantics. Distributional semantics is a data-driven, statis-
tical approach to capture the semantics of words, phrases or other linguistic units (Turney
and Pantel, 2010, Erk, 2012). It builds on the distributional hypothesis (Harris, 1954,
Firth, 1957), according to which words that occur in similar linguistic contexts tend to
have similar meanings. In practice, this abstract notion of similarity between two target
words is operationalised by constructing context vectors from large text corpora, and
using these as approximations of the words’ meanings. These context vectors are typically
acquired in an unsupervised manner, e.g., by counting word co-occurrence frequencies
within a word window of a predefined size, and are collected in large matrices. Based on
these representations, the semantic similarity of word pairs is measured by the similarity
of their vectors. Such vector spaces are called, e.g., vector space models (VSM), or
distributional semantic models (DSM); we will employ the abbreviation DSM. DSMs have
been applied successfully to many NLP problems, e.g., synonym detection (Landauer
and Dumais, 1997), semantic priming (Lowe and McDonald, 2000), semantic cluster-
ing (Schulte im Walde, 2006), or word sense disambiguation (Agirre and Edmonds, 2006).
For an insightful study on the interpretation of DSMs, cf. Sahlgren (2006).

Note that the vector representation in DSMs conflates all contexts and thus, all senses
of the target word, which complicates their distinction; one approach to still differentiate
the senses is the use of second-order contexts (Schütze, 1998).

Parametrisation of DSMs. A major advantage of DSMs is their automatic and straight-
forward construction: For their simplest conception, it is sufficient to have a big text
corpus at hand. On the downside, this means that DSMs are strongly underspecified,

37

3.2 Distributional Semantics

i.e., many parameters need to be determined about how construct and evaluate the
information in the model. According to Lowe (2001), the four main parameters are 1.,
the set of basis elements for the matrix dimensions, 2., the form of the co-occurrence
frequency mapping between target items and their contexts, 3., the measure to assess the
vector similarity of two targets, and 4., a function by which the DSM can be transformed
into another, e.g., lower-dimensional smoothed space. A fifth important aspect is the
linguistic preprocessing (Bullinaria and Levy, 2007, 2012). In the following, we focus on
word-context matrices, where the target items in the rows correspond to words, and the
basis elements in the columns (or dimensions) are the words’ contexts (as opposed to,
e.g., term-document matrices, where rows correspond to words and columns to documents
in which these words are looked up).

To briefly exemplify common instantiations of Lowe’s parameters on word-context
DSMs: The corpus data is often preprocessed, i.e., tokenised, stop word-filtered and
lemmatised. Established context types (1.) are plain lemmas or lemmas and their
syntactic relation to the target word; often, only the n most frequent content words
in the underlying corpus are considered. Co-occurrence (2.) can be calculated as
simple frequency counts within a specified word window, or by measures such as Mutual
Information. The most common similarity measure (3.) used to compare two vectors is
the cosine similarity, but there are also other popular measures as well as cosine variants,
e.g., rank-based cosine similarity (Jones et al., 2006, Hare et al., 2009). The DSM can
be used in form of a plain matrix or smoothed (4.), e.g., by dimension reduction using
Singular Value Decomposition (SVD).9

Data Sparsity. Apart from the parameters mentioned above, the choice of the underlying
corpus is essential for the quality of a DSM. The key rule is: The more data, and the
cleaner it is, the better, because the representation of a word’s meaning enhances as
more corpus data is available. Conversely, this means that small amounts of text lead to
bad representations. Thus, data sparsity is a real problem for DSMs. Words that rarely
occur in the underlying corpus are not well represented, leading to strong biases towards
the existing contexts. This poses difficulties particularly for languages that are highly
productive in terms of, e.g., derivation or composition, as is the case in German. Some
types of distributional spaces are more prone to sparsity than others; we will go into
detail on that shortly.

In the following, we briefly describe bag of words and syntax-based models, two
important word-context DSM types, and their respective strengths and weaknesses. Note
that in this thesis, we concentrate on traditional “count”-based models (Baroni et al.,
2014) rather than the more recent “predictive” models which learn low-dimensional
distributed representations to predict contexts (Mikolov et al., 2013); we do so, as it is
questionable whether this new trend is to be preferred over the established count-based
approach (Levy and Goldberg, 2014).

9Such a mathematical smoothing has two advantages: It can improve the conceptual representation of
the model, and it shrinks large spaces with many zero elements and hence makes them easier operable.
However, the smoothing also complicates the interpretability of the vector space.

38

3.2 Distributional Semantics

shoot

eat

hunter
grass

deer

subj-shoot

obj-eat

hunter

grass

deer

lexical vector space syntactic vector space

Figure 3.1: Information content in bag of words (left) and syntax-based spaces (right)

Bag of Words (BOW) Models. Bow models (Salton et al., 1975) represent target
words by means of context words co-occurring within a surface window around the target
word. These lexical models are simple, robust, can be built from any tokenised corpus,
and typically achieve very high coverage on many datasets (close to 100%). Previous
studies show that the optimal size of the context window depends on the respective
task (Peirsman et al., 2008). More specifically, small windows are to be preferred for
retrieving paradigmatic relations (i.e., substitutable terms), large windows for retrieving
syntagmatic relations (i.e., topic-related terms). Languages with free word order might
behave differently to this rule of thumb (Sahlgren, 2006), and lead to generally less exact
representations. Applying dimensionality reduction methods like SVD to Bow models
helps to generalise over the surface word choice (Bullinaria and Levy, 2012).

Syntax-based Models. These models (Grefenstette, 1992, Lin, 1998a, Padó and Lapata,
2007, Baroni and Lenci, 2010) are based on contexts of lexico-syntactic patterns. Typically,
such patterns are word-link-word triples in the form of dependency links, extracted
from parsed corpora. This elaborate notion of context makes DSMs better applicable
to languages with free word order, and to a wide range of tasks. For instance, the
Distributional Memory (Dm) framework captures, among others, structure-dependent
semantic phenomena such as predicate-argument plausibility (Baroni and Lenci, 2010).
At the same time, however, syntax-based spaces are much sparser than Bow models, with
a lower coverage (often 50–70%), which makes the modelling of rare targets problematic.
Also, their construction usually requires a large, well-parsed corpus, which has limited
a large-scale construction of syntax-based models to only a few languages (Baroni and
Lenci, 2010, Padó and Utt, 2012, Šnajder et al., 2013).

Comparison of Word- and Syntax-based Models. The conceptual difference of lexical
and syntax-based semantic spaces is illustrated in Figure 3.1. The contexts of the Bow
space are two lemmas (eat, shoot); since they occur roughly equally often in the context
windows of the three target words (hunter, grass, deer), these targets are fairly similar.
In contrast, the contexts of the syntax-based space include the syntactic relationship

39

3.2 Distributional Semantics

of the context word to the respective targets, leading to a linguistically more nuanced
representation of the target words (i.e., they are more dissimilar).

Thus, a syntactic model incorporates a richer, structured notion of context than a
word-based model: It represents not only words, but also word pairs and syntactic
argument relations and can thus be used to model many linguistic problems (Baroni and
Lenci, 2010). Also, it contains more accurate information about semantic relations than a
Bow model (Padó and Lapata, 2007). Although we are not aware of a dedicated study to
this question, it is commonly assumed that syntax-based DSMs are useful particularly for
languages with free word order. At the same time, however, they are much more prone to
sparsity problems, as syntactic co-occurrences are spread out over more dimensions. For
rare words, the vectors can become so sparse that there is no overlap in contexts with
any other word. As a consequence, syntax-based spaces have reliability and coverage
problems, while word-based models are more robust and provide similarity estimates for
many word pairs. Thus, the two model types offer an inherent trade-off.

In sum, the linguistically more grounded representation in syntax-based distributional
models is a promising alternative to Bow models, particularly for the German language
with its relatively free word order, provided that sufficient semantic information in the
form of corpora – or other sources – are available.

Excursus: Distributional Semantics vs. Ontologies. The classical approach to repre-
sent semantic relatedness are ontologies such as WordNet (Miller et al., 1990) or its
German counterpart (Hamp and Feldweg, 1997). Ontologies typically consist of a hi-
erarchical graph structure that reflects relations between (different senses of) words,
e.g., synonymy, meronymy or hyponomy, but also less typical relations such as morpho-
semantic links that indicate derivational relatedness (cf. Section 3.1.2).

To measure the semantic similarity of two words, wordnets are usually employed by
measuring the distance between the words in the graph, taking – among others – the
path length or depth into account (Budanitsky and Hirst, 2006). However, such ontology-
based approaches come with several drawbacks. For instance, wordnets are typically
(semi-)manually constructed, which is costly, cannot be transferred to other languages,
and leads to a static knowledge representation and coverage lacks, which is particularly
undesirable for our purpose of building a high-coverage derivational lexicon.10 More
importantly though, the structure of an ontology restricts the linguistic generalisations
that a model building upon it can realise. In other words, if word similarity arises from a
specific context which is not represented in the ontology structure, it can not be measured
adequately; this is the case, e.g., for so-called “ad hoc” categories (Barsalou, 1983).

Since ontologies cannot exhaustively capture all possible contexts, a dynamic, data-
driven method such as distributional semantics, where very diverse contexts are considered,
is a sensible alternative. This holds particularly for the semantics of derivation, since we
expect derivationally related words to exhibit rather specific similarity patterns.

10Nonetheless, there are approaches to expand ontologies dynamically, e.g., the bootstrapping approach
of Piasecki et al. (2012) presented in Section 3.1.1.2, or the usage of lexico-syntactic patterns applied
to dictionaries or big corpora (Hearst, 1998).

40

3.2 Distributional Semantics

In this thesis, we employ distributional semantics in two respects: On the one hand, we
use a DSM as an information source to introduce knowledge about the semantic relatedness
of derivationally related lemmas into DErivBase (Chapter 5). On the other hand, we
employ DSMs for the evaluation of our lexicon: We examine to what extent derivational
information can improve the performance of a state-of-the-art distributional model on
standard tasks in lexical semantics (Chapter 6) and in psycholinguistics (Chapter 7).

41

Part II

Modelling Derivational Knowledge
for German

4 DErivBase: Inducing a Derivational
Morphology Lexicon for German

In this Chapter, we describe the process of inducing DErivBase, a derivational knowledge
resource for German. We aim at building a lexicon with a structure as described in
Section 2.3: Information about derivational relatedness is provided in the form of
derivational families which consist of related lemmas. Note that, at this point, our
motivation is to build a purely morphological lexicon, meaning that we aim at grouping
derivationally related words, no matter how similar or different their semantics might
be. The classification of words according to their derivational relatedness is very reliable,
as derivation is clearly defined. In contrast, the definition of semantic relatedness is
somewhat fuzzier. Of course, semantic distinctions within one family can constitute
an additional step to improve the (semantic) quality of the lexicon (cf. Chapter 5).
Nonetheless, a purely morphological lexicon is already an interesting and useful linguistic
resource: As shown in Chapter 3, similar lexicons have been successfully employed by
taking advantage of the Derivational Coherence Assumption (cf. Section 2.1.3), i.e., that
most derivational relationships are semantically transparent.

Our goal is to build a derivational lexicon that addresses the issues mentioned in
Section 3.1.4: We want to induce derivational families with maximal coverage as well
as high quality, in order to provide a reliable – and freely available – lexicon that is
applicable to a broad range of tasks (cf. Section 3.1.3). As discussed, there is often a
lack of precision as well as linguistic interpretability when knowledge-poor methods are
employed, while many knowledge-based approaches require a considerable amount of
knowledge sources and might lack in coverage. Since we target both precision and an
approach with few resources, but also want to maintain comprehensibility, we choose
a rule-based method combined with corpus evidence, in which manual intervention is
kept relatively low: Following the work of Šnajder and Dalbelo Bašić (2010), we define
the derivational processes by means of derivational rules in an intuitive and easy-to-use
rule-based framework. The derivational rules induce a partition of the language’s lemmas
into derivational families, where the lemmas are gained from a big German web corpus.
Thus, our method only requires a comprehensive set of lemmas, and knowledge about
admissible derivational processes, which can be gathered, for instance, from linguistics
textbooks. With our model, we induce derivational families of high precision, resulting
in a reliable, but at the same time high-coverage lexical resource for German.

We begin with a short overview of our method. Figure 4.1 shows the overall procedure
to induce the derivational families in DErivBase. On the one hand, we extract German
lemmas from SdeWaC (Faaß and Eckart, 2013), a large web corpus. On the other
hand, we implement German derivation rules in a language-independent, rule-based

43

Set of German
lemmas

SdeWaC
corpus

German
derivation
rules

pfx (ver),A,V
eitel → vereiteln
sfx (ung),V,N
vereiteln → Verei-
telung

Pairwise
deriva-
tions

Derivational
families

eitelA
↓

vereitelnV

↓
VereitelungN

Lemma
extraction

Derivation
generation

Filtering on
lemma list

Transitive
closure

Figure 4.1: Induction of derivational families

framework by means of transformation functions. Then, the rules are applied to the
extracted lemmas, where these lemmas act as base words. The bubble at the lower left
shows two such rules and their exemplary application to German: The adjective eitel
(vain) is derived to vereiteln (to block) by the displayed prefixation rule. Note that
this rule also determines the part of speech of the base and the derived lemma; in this
example, the base lemma is must be an adjective, and the derivative a verb. A problem
for such rule applications is overgeneration: The second, valid German derivation rule
displayed in this bubble could be used to derive an incorrect word such as *Liebung
from the verb lieben (to love). To avoid such overgenerations, we accept as derivatives
only words which occur in the lemma list extracted from SdeWaC. After this step, we
have information about pairs of derivationally related lemmas. Implementing derivation
rules for all derivationally related lemma pairs of a language would lead to an overly big
amount of rules, which would make maintenance as well as human assessments difficult.
Thus, we decided to implement the minimal set of derivation rules, i.e., we omitted
rules which can be replaced by combinations of other rules: Multi-step derivations like
the derivation eitelA – VereitelungN (vainA – blockingN) are not implemented directly
in the rule set, but can be reproduced by successively applying the two rules shown
in the Figure. We do this composition by computing the transitive closure of the rule
applications, i.e., by clustering all lemmas which are – directly or indirectly – related by
the application of rules, as shown in the bubble on the right-hand side. These clusters
then constitute our derivational families in DErivBase.

From a linguistic point of view, the question arises whether derivational relations
are indeed transitive, i.e., whether every word pair that is connected by a sequence of
derivation rules, actually instantiates a derivational relationship. For instance, the word
pair StechenN – StachelN (twingeN – spikeN) is derived from the same base verb, stechen
(to prick). But it is somewhat unclear whether such a shared internal word structure
suffices to establish a derivational relation. To the best of our knowledge, there is no
consensus about this question in the linguistics literature. In this work, our aim is to

44

4.1 The HOFM Framework

automatically generate a high-coverage, but linguistically plausible computational lexicon
in a human-understandable way (e.g., by a minimal set of derivation rules). To reach
this goal, it is a simple, yet effective assumption that derivation is transitive, and that
derivational relations can be approximated with the transitive closure.

The structure of this Chapter is as follows. First, we describe the derivation framework
of Šnajder and Dalbelo Bašić (2010) which we employ (Section 4.1), and how we adapt
and apply it to specifically induce the German lexicon DErivBase (Section 4.2). Sections
4.3 and 4.4 present our setup for an intrinsic evaluation, and the results, respectively.
Finally, we summarise our findings and sketch further directions and challenges.

4.1 The HOFM Framework

In this Section, we describe HOFM, a rule-based model for morphology by Šnajder and
Dalbelo Bašić (2010). After a short introduction to rule-based derivation models in general
and a classification of HOFM into this field (Section 4.1.1), we focus on the components of
this framework. We explain its procedures to define derivation rules (Section 4.1.2), their
instantiation (Section 4.1.3) and, building on these rules, the induction of derivational
families (Section 4.1.4). As we employ HOFM for German derivation, we illustrate the
functionalities with German examples.

4.1.1 HOFM, a Rule-based Derivation Model

The purpose of a derivational model is to define a derivation grammar, i.e., a set of
transformations along with a specification of their application that correspond to valid
derivational word formation rules. Rule-based frameworks offer convenient representations
for derivational morphology because they reflect the generally regular structure of
derivation and have interpretable representations. For that reason, rules have frequently
been employed in the literature to describe derivational processes (cf. Jackendoff (1975)
and Aronoff (1976), but there are also theories outside the framework of generative
grammar; cf. Naumann and Vogel (2000) for a short, or Štekauer and Lieber (2005) for an
extensive overview). Also, rules can be explicitly tuned for high precision or recall: The
implementer can decide how many derivations to cover and thus influence the coverage
and precision of the rule set. For example, if precision is prioritised over recall, one can
implement only highly regular rules which are expected to be correctly applied in most
(if not all) cases of applicability.

The choice of the rule-based framework is in principle arbitrary, as long as it can
comprehensively and conveniently express the derivational phenomena of a language.
Therefore, it must fulfil two properties: First, the framework must be formally expressive
enough to represent the derivational operations. For German, we need to formalise
affixation and stem changes (cf. Section 2.2.1). In fact, both can be characterised with
regular languages. Thus, the traditional approach in computational morphology to use
finite-state transducers (FSTs), which can be regarded as more elaborate finite-state
automata, would suffice. Morphologies for languages with similar challenges are commonly

45

4.1 The HOFM Framework

implemented with two-level formalism rules (Karttunen and Beesley, 1992) or XFST
replacement rules (Beesley and Karttunen, 2003). Second, the formalism must allow for a
compact and simple, human-readable representation of the derivation rules. Compactness
and simplicity facilitate the maintenance of derivation grammars in two respects: The
rule sets are smaller and generally easier to handle, and a human-readable rule description
eases the implementation, correction, and interpretation of the rules.

In this work, we adopt the language-independent morphology modelling framework
proposed by Šnajder and Dalbelo Bašić (2010). More specifically, we employ HOFM1, a
Haskell implementation of this framework, because it fulfils both required properties: The
expressiveness of the formalism is equivalent to that of the replacement rules commonly
used in finite state frameworks, so that it can represent all admissible word formation
rules of the German language. Also, it uses human-readable rule descriptions which we
find easier to read than the traditional FST rules. In fact, human readability is a central
feature of the framework: HOFM uses an Embedded Domain-Specific Language (EDSL)
within the host language Haskell (Mernik et al., 2005), i.e., it embeds syntax specifically
designed to implement morphology grammars. In this EDSL, derivation rules resemble
the descriptions of derivational processes in traditional grammar books, which allows for
a convenient modelling and easy understanding of derivational morphology.

The framework covers both inflection and derivation, but makes a clear distinction
between these two different morphological aspects by providing them in two separate
modelling components. We concentrate on the derivational component (cf. Section 4.1.2);
since we will work on the basis of lemmas, i.e., uninflected words, inflectional processes
can be largely ignored (details follow in Section 4.2.1). For detailed studies about
inflection and derivation in HOFM, cf. Šnajder and Dalbelo Bašić (2008) and Šnajder and
Dalbelo Bašić (2010), respectively. In a third component, the so-called transformation
module, language-specific properties are defined which hold for derivation as well as for
inflection. For instance, this component can determine crucial phonological regularities
in the language of interest, such as the umlaut stem change in German (cf. Section 2.2.1),
or the palatalisation alternation in Croatian (Šnajder et al., 2008).

The modular structure of HOFM makes the framework flexible and thus, applicable to
many synthetic languages.

4.1.2 The Derivational Component of HOFM

Let us now examine HOFM’s derivational component in more detail. Its building blocks
are derivational rules, and transformation functions. A derivational rule d describes the
word formation process, i.e., the derivation of a derivative from a base word. It is defined
as a triple:

d = (t,P1,P2) (4.1)

where t is the transformation function that maps a base word’s stem (or lemma) into the
derived word’s stem (or lemma). P1 and P2 are the sets of inflectional patterns of the

1Higher-Order Functional Morphology, http://takelab.fer.hr/data/hofm/; last accessed: Nov. 2014

46

http://takelab.fer.hr/data/hofm/

4.1 The HOFM Framework

base word and the derived word, respectively, which specify the morphological properties
of the lexical material that is the rule’s input and output, e.g., parts of speech or other
inflectional characteristics.

Derivational rules in HOFM can be defined both on the basis of stems and of lemmas
for base and derived word, respectively. That is, the input and output of a derivation rule
can be stems as well as lemmas. HOFM offers all four combination possibilities to define
derivation rules: stem-to-stem, stem-to-lemma, lemma-to-stem, and lemma-to-lemma
derivation (Šnajder and Dalbelo Bašić, 2010, p110). For example, the stem-to-lemma
combination is implemented as follows: The inflectional component of HOFM first reduces
a given base lemma to its stem (based on the lemma’s inflectional pattern, P1), then,
the derivational component derives a lemma using this stem as input; thus, the resulting
derivative is a lemma. Of the four combinations, one can choose whichever best represents
the language of interest. Obviously, this decision can turn out differently for different
languages, and even within one language, using various combinations can make sense.
Note that in this context, the term “stem” is defined as we did in Section 2.1.1: We
consider lemmas with derivational affixes, e.g., AufmerksamkeitN (attention), as stems.
This view contrasts with stemming approaches, which would cut off the suffix -keit. For
the sake of simplicity, the following definitions of derivation rules concentrate on lemmas
as input and output; nonetheless, all declarations hold similarly for stems.

The actual derivational operations are incorporated in the form of the transformation
functions, t. To apply a transformation function (i.e., to perform a derivation), we pass the
input string to be transformed and its inflectional pattern to this transformation function:
Given a pair of lemma and inflectional pattern (l, p) as input, a single derivational rule
d = (t,P1,P2) generates a set of possible derivations Ld(l, p) = {(l1, p1), . . . , (ln, pn)},
where p ∈ P1 and pi ∈ P2 for all i. Given a set of derivational rules D, we define a binary
derivation relation →D between two lemma-pattern pairs that holds if the second pair
can be derived from the first one as:

(l1, p1) →D (l2, p2) (4.2)

iff ∃d ∈ D : (l2, p2) ∈ Ld(l1, p1)

Derivations can exhibit slight irregularities in the surface realisation (cf. Section 2.1.3),
e.g., due to phonological reasons, as in the following derivations: SommerN – sommerlichA
(summerN – summeryA), SpracheN – sprachlichA (languageN – linguisticallyA). In the
second derivation, the noun-final -e is removed, but the derivation rule is in principle
the same. In order to utilise merely one rule for both cases, the transformation function
t is defined as t : S → ℘(S), i.e., as a mapping of a set of strings, S, including stems
and affixes, to a set of strings, ℘(S), which represent possible transformations. As a
result, this set of transformed strings (possible derivations) can contain zero, one or
many elements. Typically, it contains one string. It is empty if the rule is not applicable
(e.g., because a string replacement cannot be conducted), and contains several strings
whenever the rule is ambiguous, as in the example above.

At the lowest level, t is defined in terms of atomic string replacement operations,
i.e., the replacement of prefixes, suffixes, and infixes (possibly with an empty string).

47

4.1 The HOFM Framework

The framework uses the notion of higher-order functions – functions that take other
transformations as arguments and return new transformations as results – to succinctly
define common derivational operations such as prefixation, suffixation, and stem change
(infix changes are the technical view on the derivational operation of stem changes).
Basically, for each of these derivational operations, one higher-order function is used.
More complex word-formation rules, such as those combining prefixation and suffixation
to circumfixation, can be obtained straightforwardly by functional composition.

Transformation functions in HOFM that are applicable to the respective input – i.e.,
that result in at least one derivative – are invertible (for implementation and formal details,
cf. Šnajder et al. (2008), Šnajder and Dalbelo Bašić (2008)). As a result, their inverse
function can be similarly applied. This property is convenient for the processing of an
arbitrary input word, which might already be the product of another derivational process.
In such cases, the inverted derivation rule provides information about the lemma’s base
word. For example, the inverse of a suffixation function can be used to remove the
respective suffix from a string, e.g., BäckereiN – BäckerN (bakeryN – bakerN). This
property holds similarly for combined transformation functions in a complex derivation
rule.

The transformation functions constitute the core of the derivation rules, as they
implement the derivation operations. Thus, we will consider them in more detail.

The Transformation Functions. Basically, all string transformations in HOFM are
conducted by three primitive transformation functions:

rpfx (s1, s2): replace prefix s1 by prefix s2

rsfx (s1, s2): replace suffix s1 by suffix s2

rifx (s1, s2): replace infix s1 by infix s2

These r∗fx functions are functionally complete, i.e., they would suffice to define all
derivational processes that can be described with the HOFM framework. However,
the purpose of an EDSL is to ease the handling of a domain-specific programming
task. For that reason, HOFM contains a set of pre-defined “convenience” functions
which make the rule syntax easily understandable, and facilitate the implementation of
derivation grammars. Additional functions for language-specific needs can be comfortably
implemented by the user.

Table 4.1 outlines the EDSL syntax for some of these higher-order functions, including
the primitive rifx function. The Table shows the built-in standard, language-independent
functions in the HOFM framework. Note that capitalisation for German nouns is a
process defined outside derivation; we will return to this point in Section 4.2.1.

Atomic functions are combined by so-called combinators (which are, technically, higher-
order functions as well). Three primitive combinators are implemented in HOFM:

t1 & t2: sequential application; concatenation of transformation functions t1 and t2

t1 .|. t2: logical “or”; t1 or t2 is applied (application of t1 and t2 is also possible)

48

4.1 The HOFM Framework

Function Description Example of application

rifx (s1, s2) replace the infix s1 by s2 rifx (i , a)(klingen) = {Klang}
to sound → sound

nul do nothing nul(grau) = {Grau}
gray → gray

sfx (s) append the suffix s sfx (heit)(frech) = {Frechheit}
insolent → insolence

pfx (s) prepend the prefix s pfx (ver)(fallen) = {verfallen}
to fall → to expire

dsfx (s) delete the suffix s (always com- (sfx (in) & dsfx (e))(Kunde) = {Kundin}
bined with other functions) client → female client

Table 4.1: Exemplary language-independent transformation functions in HOFM, and
their application

Function Description Example of application

try(t) perform transformation t, if pos- (sfx (sam) & try(dsfx (e)))(Ehre) = {ehrsam}
sible, else do nothing: t .||. nul honor → honorably

opt(t) perform transformation t optio- (sfx (haft) & opt(sfx (en)))(Traum) =
nally: t .|. nul {traumhaft, traumenhaft}

dream → dreamlike

Table 4.2: Built-in combinators for transformation functions in HOFM, and their appli-
cation

t1 .||. t2: logical “xor”; t2 is only applied if t1 fails (either t1 or t2 is applied)

Functional composition by concatenation (&) is executed from right to left. For instance,
in the rule using dsfx in Table 4.1, the dsfx operator is applied before the sfx attachment.
For the “or” operator (.|.), the order is arbitrary, while “xor” (.||.) is executed from left to
right by definition. Again, HOFM provides two “convenience” variants for combinators,
try and opt . They can be used as shortcuts for “xor” and “or”, if the alternative
transformation t2 is nul . In other words, the input string remains unchanged if t1 is not
applicable. Both try and opt are shown in Table 4.2, and we will further explain them in
Section 4.1.3. In the following, we will treat the three combinators (&, .|. and .||.) like
functions.

4.1.3 Instantiation of the Derivation Rules

The transformation functions combined with the inflectional patterns, P1 and P2, instan-
tiate a derivation rule in HOFM. In this Section, we illustrate with a couple of examples,

49

4.1 The HOFM Framework

how practical instantiations look like in terms of t, P1, and P2.
The previous Section gave a comprehensive description of how t can be concretised.

As to the inflectional patterns, we instantiate them for now in a fairly simple way: We
describe P1 and P2 by the part of speech of the respective input and output word.

For example, a straightforward prefixation rule for the derivation PreisN – AufpreisN
(chargeN – surchargeN) is:

pfx (auf),N ,N


(4.3)

where pfx is a transformation function for prefixation as defined in Table 4.1, while the
two part of speech sets for base and derived lemma are set to nouns.

Infix replacement, which is used to model stem alternation, can be realised as in the
following rule for, e.g., setzenV – sitzenV (to setV – to sitV):

rifx (e, i),V,V


(4.4)

where rifx is the function for stem alternation (note that the stem is setz, which is why
the second, verb-infinitive e is not replaced), and V is the part of speech set for verbs,
used for both base and derived word.

To account for grammar ambiguities and semi-regularities as briefly described in
Section 4.1.2, the higher-order functions try and opt are used to model conditional
transformation and optionality, respectively. They are useful when a derivation rule
processes two distinct base lemmas in a slightly different, but still regular way. For
example, one can establish one single adjectivisation rule for AktionN – aktivA (actionN –
activeA) as well as InstinktN – instinktivA (instinctN – instinctiveA), although the former
lemma pair involves the elision of the suffix string -on, while the latter does not. The
corresponding rule is defined in (4.5):

sfx (iv) & try(dsfx (ion)),N ,A


(4.5)

where sfx and dfsx are functions for suffixation and suffix deletion, respectively, as
defined in Table 4.1, and the part of speech of the base word and derivative must be
noun and adjective, respectively. The argument of try (i.e., the -ion suffix deletion) is
executed whenever possible (i.e., whenever a noun ends with -ion); otherwise, the input
string remains unchanged. The framework executes the &-concatenated transformation
functions in the following order: First, it tries to conduct the deletion, then it conducts
the suffixation.

In contrast, the optionality function opt both executes and ignores the transformation
denoted by its argument, which typically leads to multiple (i.e., ambiguous) derivations.
opt is useful when the application of a derivation rule sometimes requires an additional,
regular change. A respective example is shown in Table 4.2: The -en suffixation is once
applied and once not applied, leading to two derivatives: the correct adjective traumhaft,
and the incorrect *traumenhaft. The correctness of the two variants is swapped when
the rule is applied to, e.g., HeldN – *heldhaftA/heldenhaftA (heroN – heroicA): Now, the

50

4.1 The HOFM Framework

-en suffixation is required to derive a correct German lemma. That is, although the
opt transformation is ambiguous, not all produced derivations need to be valid lemmas.
With an appropriate word list at hand, incorrect derivations like *traumenhaft and
*heldhaft, can be filtered out easily. Sections 4.1.4 and 4.2.3 describe how we avoid such
overgenerations.

4.1.4 Induction of Derivational Families

Recall that our goal is to induce derivational families, that is, classes of derivationally
related words. In accordance with the procedure proposed by Šnajder and Dalbelo Bašić
(2010), we define a derivational family, DF , on the basis of derivational rules as follows.

We are given a set of derivational rules D which defines binary derivation relations →D
between two lemma-pattern pairs (l1, p1), (l2, p2) (cf. Section 4.1.2). Let L denote the
set of lemma-pattern pairs of a language. Then, we define the set of derivational families
defined by D on L as the equivalence classes of the transitive, symmetric, and reflexive
closure cl(→D) of →D over L:

{DF | DF = {(l2, p2) ∈ L | (l1, p1) cl(→D) (l2, p2)}; (l1, p1) ∈ L} (4.6)

That is, all lemma-pattern pairs which are connected by a sequence of derivation rules are
grouped into one derivational family.2 Inducing the derivational families by means of the
transitive closure has a convenient side effect: It is not necessary to implement derivation
rules for indirect, “multi-step” derivational relations. As an example, consider the two
rules d12, d23 which link the lemma-pattern pairs (l1, p1), (l2, p2), and (l2, p2), (l3, p3),
respectively. The transitive closure over their applications leads to the following sequence:
(l1, p1) →d12 (l2, p2) →d23 (l3, p3), and therefore to a derivational family containing
all three lemma-pattern pairs: DF = {(l1, p1), (l2, p2), (l3, p3)}. As can be seen, the
transitivity makes a third rule, d13, to link (l1, p1), (l3, p3) redundant. In other words, a
minimal set of derivation rules, which in sum describes the transitive closure, is sufficient
to connect all lemmas of a derivational family. We call such sequences of rule applications
a derivation rule path.

Note that in addition to the quality of the rules, the properties of L play a central
role in the quality of the induced families. Concerning its size, a high coverage of the
lemma-pattern pairs in the language of interest is important because the transitivity
of →D ranges only over lemmas in L, so low coverage of L may result in fragmented
derivational families. However, L should also not contain erroneous lemma-pattern pairs
but highly reliable information, which means that the way how L is compiled, is crucial:
The derivation rules only define admissible derivations, which need not be morphologically
valid. Therefore, they routinely overgenerate, which reduces the precision of the resulting
families (cf. Section 2.2.1): Overgeneration can lead to spuriously merged derivational

2Note that building equivalence classes is not the only possibility to construct a derivational family.
For instance, one could define families with an upper bound for the amount of sequentially applied
derivation rules. However, we employ the simple strategy based on transitivity as well as symmetry
and reflexivity for the reasons mentioned in the beginning of this Chapter.

51

4.2 Building the Lexicon DErivBase

families, notably effected by derivations of short (i.e., morphologically simple) base
words. For instance, an incorrect German lemma such as *MarN might conflate the
derivational families around MärchenN (fairy tale) and MarineN (navy) by means of
matching derivation rules, although these two families are not morphologically related.
This observation is in line with that of other approaches about derivational morphology,
e.g., Walther and Nicolas (2011, p5) or Jacquemin (1997), where longer common string
sequences are preferred for clustering. To counteract this effect, L can be used to explicitly
filter out derivations that are not attested in the data (cf. the illustration of such a
filtering in Figure 4.1). In that way, potential errors can be reduced considerably.

4.2 Building the Lexicon DErivBase

This Section explains how DErivBase is compiled concretely for German. We begin
with some design decisions with respect to our utilisation of HOFM, i.e., by specifying
the incorporated derivational processes, the consideration of inflectional aspects, and the
treatment of noun capitalisation (Section 4.2.1). Then, we show how we employ and
expand the HOFM transformation functions explained in Section 4.1.2 to specifically
implement German derivations. In Section 4.2.3, we describe the origin and preprocess-
ing of the lemma-pattern pairs that we use to induce the derivational families, while
Section 4.2.4 illustrates the development cycle for our rules, and shows some statistics
about the resulting rule set. Finally, in Section 4.2.5, we indicate some key figures about
the resulting lexicon DErivBase.

4.2.1 Design Decisions for a German Derivational Morphology

The derivational model proposed by Šnajder and Dalbelo Bašić (2010) is generally
language-independent. This means a high degree of flexibility and freedom, but also that
some customisation is necessary. For that reason, we need to examine in which way the
framework can be meaningfully applied to the particularities of our language of interest,
and what we want to cover in our approach. This Section analyses the spectrum of
derivational processes we take into account, and explains how we incorporate inflectional
information and the German-specific noun capitalisation.

Selection of Included Derivational Processes. As described in Chapter 2, German is
a morphologically complex language. In order to properly implement its derivational
processes in our rule-based model, we need to consider the particularities of these
processes, and decide which phenomena we want to cover. For details about the linguistic
foundations of these decisions, please refer to Chapter 2.

To achieve high coverage, we decided to include all existing derivational operations in
German (cf. Section 2.2.1), that is: suffixation, prefixation, conversion, circumfixation,
and stem changes. As to the considered word classes for derivatives, we concentrate
on the three most prominent parts of speech produced by derivation, namely nouns (to
understand → the understanding), verbs (the shelf → to shelve), and adjectives (the

52

4.2 Building the Lexicon DErivBase

size → sizable). Similarly, we restrict the base lemmas to these three word classes. We
ignore adverb derivation for the reasons mentioned in Sections 2.2.1 and 2.2.2: German
distinguishes between adverbs and adverbial adjectives (Schiller et al., 1999). The former,
e.g., baldADV (soonADV), constitute a rather unproductive class for derivation, and is
therefore of no interest, while the latter, e.g., schnellADJD (quicklyADV), are structurally
identical to attributive adjectives, which are already included in the adjective derivation.

As can be seen, our choice of covered German derivational operations involves affixation
as well as stem transformation. This is a crucial technical aspect to be taken into account
by implementing both string manipulation types. Fortunately, as shown in Section 4.1.2,
HOFM fulfils both requirements, so that we can implement all admissible German
derivation operations. In this way, we offer a uniform and comprehensive approach to
derivation. In contrast, many other studies about derivational morphology ignore some
affixation processes or the stem transformation (cf. Chapter 3).

To obtain linguistic definitions for the derivations we chose, we relied on traditional
grammar books and lexicons, i.e., Hoeppner (1980), Augst (1975) and Fleischer and
Barz (2007) (cf. Section 2.3). We use their descriptions of the derivational processes in
order to linguistically justify our decisions during the rule implementation. Additionally,
we looked up derivational information in two established online information sources:
grammis3, the grammar information system of the Institute of German Language, which
essentially contains the derivational information provided in Donalies (2005), and canoo4,
an implementation of the Word Manager system mentioned in Section 3.1.2.

Integration of Morphological and Semantic Information. As shown in Section 4.1.2,
a derivation rule needs to be given the inflectional patterns for the input and output word,
P1 and P2. These patterns trigger the actions (if any) of the inflectional component. For
that reason, we need to determine with which information we instantiate the inflectional
patterns.

For German, our study assumes that the inflectional patterns are combinations of parts
of speech for the base and the derived word, including infinitive suffix information for
verbs. Additionally, we found that purely inflectional information, as proposed by the
HOFM framework, does not fully reflect the dimension of German derivation, but that
the noun gender is also important: It provides crucial semantic information which helps
increasing the precision of many noun-involving derivation rules (Section 4.2.2 will show
such cases). For that reason, we use a total of seven inflectional patterns:

Nf , Nm , Nn , Ven , Veln , Vern , A (4.7)

where the noun subscripts define the required noun gender, and the verb subscripts
define the required verb infinitive suffix, respectively, to match a given input or output
lemma-pattern pair against the rule. This degree of granularity is sufficient to adequately
represent the German content words we are interested in for derivation. We will elaborate

3http://hypermedia.ids-mannheim.de/index.html
4http://www.canoo.net

53

http://hypermedia.ids-mannheim.de/index.html
http://www.canoo.net

4.2 Building the Lexicon DErivBase

that in the following.
As we apply HOFM to a list of German lemmas (cf. Section 4.2.3), i.e., uninflected

words, inflection is generally not an issue. However, as mentioned in Section 4.1.2, the
derivational rules can be defined on the basis of lemmas as well as stems in four different
combinations. Thus, we need to determine with which of these we implement our German
derivation rules.

In fact, most German derivational processes across all parts of speech apply to a
word’s stem (Donalies, 2005, p47f). Due to this linguistic motivation, we generally favour
stem-based derivation rules. More specifically, we mainly choose the stem-to-lemma
combination for input and output word, respectively: An input lemma is reduced to its
stem by the inflectional component. Then, the derivational component applies a rule
and derives a new lemma from this stem, which can be compared with the lemmas in
L. For nouns and adjectives, lemma and stem are essentially identical (according to our
definition in Section 2.1.1), and no actual processing through the inflectional component
is necessary: The inflectional component simply passes the untransformed lemma to
the derivational component and declares it to be a stem. In contrast, most deverbal
derivations use the verb stem as base, which is not identical to the lemma and needs to
be generated accordingly: rufenV – RufN (to shoutV – shoutN). Thus, the question how
to transform our lemmas to stems boils down to the question how the inflectional verb
infinitives are processed.

In order to correctly capture the verb infinitives, we have defined the inflectional
patterns for verbs as just described: Each verb infinitive suffix is represented by a
separate inflectional pattern, Ven , Veln , Vern . We implemented simple procedures in the
inflectional component to appropriately detach each infinitive suffix. Then, the produced
stems are handed over to the derivational component which applies the derivation rules.
In sum, the elision of verb infinitive suffixes is the only part in our German derivational
grammar where inflection comes into play. This may be different for other, morphologically
more complex languages, such as Croatian (Šnajder, 2014), or approaches where inflected
words serve as input.

As an example, consider the stem-to-lemma rule (4.8) for derivations such as rechnenV
– RechnungN (to calculateV – calculationN):

sfx (ung),V,N


(4.8)

The inflectional suffix -en is removed by the inflectional component, and it needs not be
handled in the derivation rule. This effect is also shown in the rifx example in Table 4.1.

Whenever it is linguistically plausible, we also utilise stem-to-stem and lemma-to-lemma
derivation rules: For the derivation of verbs, we use stems for both the base and the
derived word. The transformation from/to a lemma to match our lemma-pattern pairs
in L is again conducted by the inflectional component. For instance, the rule in (4.9)
used to derive aktivA – aktivierenV (activeV – to activateV) shows that the inflectional
suffix of the derived verb is handled outside the rule:

sfx (ier),A,V


(4.9)

54

4.2 Building the Lexicon DErivBase

Only for conversions from infinitive verbs as bases (cf. Section 2.2.1), we apply lemma-
to-lemma rules, e.g., in redenV – RedenN (to talkV – talkingN):

nul ,V,N


(4.10)

Treatment of German Noun Capitalisation. Finally, we need to consider the German
idiosyncrasy of capitalising nouns. Noun capitalisation is easy to implement if the part of
speech is given (which is the case in our study). However, it is not part of a derivational
process, although capitalisation must of course be considered when implementing noun-
involving derivation rules.

For such cases, HOFM offers the transformation module (cf. Section 4.1.1): It aggregates
important language-specific particularities that are independent of derivation or inflection.
Thus, implementing a straightforward uppercasing function in this module is sufficient to
handle noun capitalisation.

4.2.2 Implementation of German Derivation Rules in HOFM

This Section describes how we actually implement and instantiate our derivation rules to
induce a German derivational lexicon. We employ the standard transformation functions
of HOFM as explained in Section 4.1.2 (cf. Table 4.1, and Table 4.2), and additionally
expand the framework with two language-specific transformation functions for German,
uml and dup, as shown in Table 4.3. In the following, we specify these language-specific
functions and their purpose. Then, we illustrate some rule implementation principles to
obtain maximally precise derivation rules while maintaining high coverage. Finally, we
outline general insights we gained during the rule implementation procedure.

Function Description Example of application

uml alternate an infix as umlaut shift: uml(krumm) = {krümmen}
uml = aifx ([(a, ä), (o, ö), (u, ü)]) curved → to curve

dup duplicate the last consonant (aifx (ei , i) & dup)(schreiten) = {Schritt}
(always occurs with infix changes) to step → step

Table 4.3: Exemplary German-specific transformation functions in HOFM, and their
application

Language-specific Transformation Functions. The by far most frequent German stem
alternation is the umlaut shift. This special infix replacement is exemplified in the fol-
lowing nominalisation rule for, e.g., vermachtA – VermächtnisN (bequethedA – bequestN):


sfx (nis) & try(uml),A,N


(4.11)

55

4.2 Building the Lexicon DErivBase

where uml and sfx are functions for umlauting an infix vowel and suffixation, respectively,
while try ensures that the umlaut alternation is performed whenever possible. A and N
are the part of speech sets for adjectives and nouns for base and derived word, respectively.
The umlaut shifting function, uml , is German-specific, and facilitates the implementation
and readability of corresponding derivation rules significantly: As Table 4.3 specifies,
an umlaut shift covers three different infix replacements (a → ä, o → ö, u → ü), of
which only one is applied at once. That is, uml subsumes three individual processes
which would otherwise need to be implemented in three different derivation rules. We
implement two versions of uml , one for infix vowels as above, and one for initial vowels
(puml), e.g., in ArmN – ÄrmelN (armN – sleeveN).

The second transformation function that we implemented particularly for German,
dup, causes the duplication of stem-final consonants. Such duplications only apply to
synchronically unproductive stem changes (cf. Section 2.2.1), like schleifenV – SchliffN

(to sharpenV – sharpeningN):
rifx (ei , i) & dup,V,N


(4.12)

Nonetheless, we include these cases to maximise the size of our derivational families and
to avoid fragmentation (cf. Section 2.2.1). Obviously, the duplication transformation is
somewhat context-sensitive, i.e., an unspecified consonant is duplicated. Although this
transformation can be realised with the standard higher-order transformation functions,
its syntax would be complicated. Thus, we added dup to the set of transformation
functions.

These two language-specific transformations, dup and uml , allow for an appropriate
treatment of virtually all German derivation processes. The full set of transformation
functions we have used to induce DErivBase is listed in Appendix A. Note that the
ablaut shift is not represented as a proper transformation function, as it is both essentially
less frequent and less systematic. Instead, ablaut stem changes are realised on demand
with rifx functions.

Implementation Principles for Maximal Coverage and Precision. We found a number
of derivational rules in German to be conceptually simple (e.g., verb-noun conversion)
so that a substantial amount of derivations can already be covered with a handful of
trivial transformation functions. However, there are many complex rules (e.g., suffixation
combined with optional stem changes) that in sum affect a considerable number of
lemmas, which required us to either implement low-coverage rules or generalise existing
rules to achieve the desired level of coverage.

In order to maintain high precision, we restricted the rule application by using try
instead of opt whenever applicable. For example, the following rule:

sfx (in) & opt(dsfx (e)),N ,N


(4.13)

to derive female person-denoting nouns such as ChefNm – ChefinNf (bossN – female bossN)
and TürkeNm – TürkinNf (TurkN – female TurkN), can lead to incorrect applications by

56

4.2 Building the Lexicon DErivBase

retaining the suffixal -e, e.g., in the derivation of a proper noun in HusseN – HusseinNE

(slipcoverN – HusseinNE), or the derivation of an unrelated lemma in GesteN – GesteinN
(gestureN – rockN). To avoid these errors, the rule in (4.13) can be made more selective
by using try instead of opt :

sfx (in) & try(dsfx (e)),N ,N


(4.14)

Additionally, we defined three language-specific limitations concerning the inflectional
patterns P:

1., we use gender information from the noun patterns to narrow down the scope of
noun-involving derivations: Some rules involving nouns only apply to specific genders
(cf. Section 2.2.1). For example, deriving female person-denoting nouns as shown in (4.14),
requires a masculine noun as base word and a female noun as derived word:

sfx (in) & try(dsfx (e)),Nm ,Nf


(4.15)

Note that such a treatment generally requires that gender information is available by
adequate preprocessing. In order to also accept lemmas for which the gender is unknown
(e.g., due to preprocessing issues), we design such constraints generously towards lemmas
without gender information. For example, the following rule:


sfx (n),Nm ,Nn


(4.16)

is used for derivations like SchwedeNm – SchwedenNn (SwedeN – SwedenN), but also
accepts nouns without gender specifications, e.g., the nominalisation VerdächtigeNm –
VerdächtigenN (suspectN – suspectN), where the neuter gender of the derivative might
be unknown due to limitations of the preprocessing.

2., we use information about the infinitive suffixes from verb patterns: Some verbal-
isation rules only produce verbs of a specific infinitive suffix type. For instance, the
noun-verb derivation realised by the suffix -ig only applies to verbs of the (most frequent)
suffix type -en (Fleischer and Barz, 2007, p310f), e.g., NachtN – nächtigenV (nightN –
to overnightV):

sfx (ig) & try(dsfx (e)) & opt(uml),N ,Ven


(4.17)

Here, it is not the transformation functions which mainly restrict the applicability of
rule (4.17), but the inflectional pattern P2, by only allowing for the inflectional infinitive
suffix -en. Since the verb suffix information is always available, there is no need to relax
this constraint for unspecified cases, as we did for the noun gender.

3., we take into account that many prefixations are, linguistically speaking, no transpo-
sitions and therefore do not change the part of speech (cf. Section 2.2.1). This property
propagates to the noun gender as well as the verb-denoting suffix; both remain unchanged
by prefixations. For such cases, we require to retain (align) the noun gender and the
infinitive suffixes, respectively, between base lemma and derivative. Consider the following

57

4.2 Building the Lexicon DErivBase

rule:

align

pfx (um),N ,N


(4.18)

The align function ensures that this rule is only applied if the gender of the input and the
output noun are identical. In other words, it essentially acts like a coindexation on the
noun gender. Without this “wrapper”, it would be necessary to define three rules instead
of the rule in (4.18), one for each gender combination as inflectional patterns, P1 → P2

(i.e., Nf →Nf , Nm→Nm, Nn→Nn). Thus, align makes the rule grammar more concise:
Rule (4.18) keeps the feminine gender in WeltNf – UmweltNf (worldN – environmentN),
as well as the masculine gender in BauNm – UmbauNm (constructionN – conversionN).
As in the first limitation (1.) above, the alignment restriction accepts lemmas without
gender specification, e.g., SiedelnNn – UmsiedelnN (settlingN – resettlingN).

The preference of try over opt , and these three constraints allow us to narrow down
the set of derivable lemmas. As a result, we end up with high-coverage rules, such as
derivations of person-denoting nouns (SchuleN – SchülerN (schoolN – pupilN)) as well as
high-accuracy rules such as non-transpositional negation prefixes (PolNm – GegenpolNm

(poleN – antipoleN)) which overgenerate as little as possible.

Insights from the Rule Implementation Procedure. Even though we did not focus on
the explanatory relevance of rules, we found that the underlying modelling formalism
and the methodology used to develop our model, offer substantial linguistic plausibility
in practice. The framework seems well-suited for German, because most derivation
rules involving Germanic affixes are largely regular and could be implemented straight-
forwardly. In contrast, derivational transformations that are motivated by Latin or
Greek morphology cause less regular elisions or replacements. For example, consider
the Latin de- prefixation for nouns: KompressionN – DekompressionN (compressionN
– decompressionN), InteresseN – DesinteresseN (interestN – disinterestN). If the base
lemma starts with a vowel, the prefix expands to des-. We realise this idiosyncrasy with
the following rule:

pfx (de) & try(apfx ([(a, sa), (e, se), (i , si), (o, so), (u, su)])),N ,N


(4.19)

where we try (try) to apply the prefix alternation function (apfx) to word-initial vowels,
before appending the actual derivational prefix (pfx). Appendix B shows that such rules
can become much more complicated. In fact, only the combination of Hoeppner (1980),
Augst (1975) and Fleischer and Barz (2007), enriched with information from grammis
and canoo (cf. Section 4.2.1), lead to a maximal inventory of such idiosyncrasies and
semi-regularities, which shows that it is challenging to cover all particularities which can
occur in derivational processes.

Most rule descriptions in the mentioned grammar books have the same compactness as
our rule implementations in HOFM, i.e., for one rule in the literature, we implemented
one rule in the framework. However, the linguistic rules are sometimes more compact
than we found it appropriate in HOFM. In other words, we occasionally implemented

58

4.2 Building the Lexicon DErivBase

several rules for one rule description in the textbooks. The reason is mainly due to the
separation of inflectional and derivational aspects in HOFM: The literature typically
summarises semi-regular derivations into one rule. Since this is sensible from a theoretic
point of view, we generally do the same, but if inflection is involved, such a conflation can
reduce precision. For instance, the ver- prefixation to derive verbs is applicable for all
inflectional verb suffixes: KlageN – verklagenV (suitN – to sueV), KabelN – verkabelnV
(wireN – to wireV), KnochenN – verknöchernV (boneN – to ossifyV). However, only
verbs with the -ern suffix can (optionally) experience an umlaut shift in the stem. If our
rules would not reflect this restriction, they would overgenerate. As a consequence, if
the given set of lemma-pattern pairs L contained spurious lemmas such as *verklägen,
we would end up with this incorrect lemma in the derivational family of KlageN . Thus,
we split the ver- prefixation into several rules which account for the differences of the
inflectional patterns.

In sum, the implementation of the derivation rules was a fairly straightforward task, and
the major hurdle was to synchronise the information of the different linguistic textbooks.

4.2.3 Data and Preprocessing

To induce derivational families containing nouns, verbs, and adjectives, we need a lemma
list with part of speech information. This information can be gathered from a German
text corpus. For an accurate application of nominal derivation rules, i.e., to distinguish
masculine, female and neuter nouns for gender-specific derivations, we additionally require
gender information. We use a part of speech-tagged and lemmatised version of SdeWaC,
a large German-language web corpus containing about 880 million words, from which
boilerplate paragraphs, ungrammatical sentences, and duplicate pages were removed (Faaß
and Eckart, 2013). For part of speech tagging and lemmatisation, we use TreeTagger
(Schmid, 1994) and determine the grammatical gender with the morphological layer of
the MATE toolkit (Bohnet, 2010).5 We decided to combine these two preprocessing tools
due to an analysis of a small tagged sample: TreeTagger returns less, but more reliable
lemmas and parts of speech than MATE, which is important for the induction. From the
corpus preprocessed in this way, we consider only nouns (named entities are also treated
like common nouns), verbs, and adjectives for the lexicon induction.

In order to additionally increase the correctness of the lemma-pattern pairs which we
pass to the derivational rules, we apply three language-specific filtering steps; these filters
are largely based on our observations of characteristics of German nouns, verbs, and
adjectives described in Section 2.2.2: First, we discard non-capitalised nominal lemmas.
Second, we delete verbal lemmas not ending in verb suffixes. Third, we remove frequently
occurring comparative forms of adjectives which remained unlemmatised (usually formed
by the suffix -er, like neuer / newer) by checking for the presence of lemmas without -er
(neu / new).

An additional complication in German concerns prefix verbs, because the prefix can

5The morphological gender information is not always available: For about 4% of the nouns, MATE
leaves the gender unspecified.

59

4.2 Building the Lexicon DErivBase

be separated in tensed instances. For example, the 3rd person male singular of aufhören
(to stop) is er hört auf (he stops). Since most prefixes double as prepositions, the correct
lemmas can only be reconstructed by parsing. We parse the corpus using the MST
parser (McDonald et al., 2006) and recover prefix verbs by searching for instances of the
dependency relation labelled Ptkvz, and re-attaching them to their verbs.

Since SdeWaC, as a web corpus, still contains errors, we only take into account
lemma-pattern pairs that occur at least three times in the corpus, a threshold rec-
ommended in Evert (2005). This threshold corresponds to 9.8 parts per billion (i.e.,
0.0098ppm) of all nouns, verbs and adjectives in the tagged SdeWaC corpus. Given this
small ratio, we consider this a conservative filtering step that preserves high recall and
provides a comprehensive lemma basis for evaluation. We believe that requiring three
instances per lemma-pattern pair is a solid balance between coverage and correctness,
which is necessary for a sensible set of lemma-pattern pairs L for inducing derivational
families (cf. Section 4.1.4).

After preprocessing and filtering, we finally run the actual induction as explained in
Section 4.1.4 to obtain the DErivBase lexicon. Note that the data and preprocessing
explained in this Section is also the basis for various data samples that we will use in the
following. An overview of all these samples is shown in Figure 4.5.

4.2.4 Rule Development Cycle and Quantitative Rule Analysis

The implementation of the derivation rules that are applied in the lexicon induction took
place in several working phases. The following paragraphs explain this development cycle
as well as provide statistics about the resulting rule set.

Rule Development Cycle. In the initial rule development phase for DErivBase, we
implemented 154 rules, which took about 22 person-hours (including familiarisation with
HOFM). We then revised the rules in two iterations, with the aim of increasing both
precision and recall. To assess the quality and coverage of our rules and to revise them
accordingly, we use the lemma list extracted from SdeWaC as explained in Section 4.2.3.

In the first iteration, we were mostly concerned with precision. Based on the set of 154
initial rules, we performed an assessment phase: We sampled a development set comprising
1,000 derivational families induced with our initial rule set, using stratified sampling (i.e.,
we explicitly picked families of different size). On this set, we inspected the derivational
families for false positives, identified the problematic rules, and discovered rules which
are not necessary for the minimal rule set which describes the transitive closure, and are
therefore redundant. In order to identify the false negatives, we additionally sampled
a list of 1,000 lemmas from these 1,000 families, and used string distance measures
(cf. Section 4.3.2) to retrieve the 10 most similar words for each lemma not already
covered by the derivational families. The refinement process took another 8 person-hours.
It revealed three redundant rules and seven missing rules, leading to a set of 158 rules.

The second iteration was more focused on recall. We implemented a large number of
additional rules, most of which are prefixation rules. While, in the first iteration, we

60

4.2 Building the Lexicon DErivBase

Operation N-N N-A N-V A-A A-V V-V Total

Conversion – 1 4 – – – 5

Prefixation 36 – 14 22 10 31 113
+ Stem change – – 5 – 3 – 8

Suffixation 20 37 24 1 16 – 98
+ Stem change 7 10 7 – 4 1 29

Circumfixation – – 2 – – – 2
+ Stem change 1 – 1 – – – 2

Stem change – 1 7 – – 2 10

Total 64 49 64 23 33 34 267

Table 4.4: Breakdown of derivation rules in DErivBase v.1.4.1 by their derivational
operation, and by part of speech of base and derived word

concentrated on derivations which maintain the base word’s meaning, we now decided to
integrate all admissible derivations, in order to reflect the entire spectrum of German
derivational processes. Furthermore, we refined a couple of rules because we found
them to systematically miss some words, and removed one erroneous rule.6 In total,
the final rule set contains 267 rules.7 It can be found in Appendix B. The second rule
implementation iteration took 15 person-hours. That is, about one working week is
enough to establish a well-chosen, revised set of derivation rules for a derivationally
productive language.

These two iterations result in two different releases of the lexicon, containing differently
shaped derivational families. In the following, we refer to the result of the second iteration,
counting 267 rules, and being released, as DErivBase v1.4.1. For details about the
version of the first iteration, DErivBase v1.2, please consult Zeller et al. (2013).

Quantitative Rule Analysis. To give a more detailed picture of the derivational processes
covered by DErivBase v1.4.1, Table 4.4 shows the distribution of rules with respect to
the derivational operations they implement and the part of speech combinations for the
base and the derived word. All affixations occur both with and without stem changes,
mostly umlaut shifts. Noun-verb derivation is most diverse in terms of derivational
operations. Prefixation and suffixation are by far the most frequently used derivation

6The removed rule was the -land suffixation. Some derivation grammars like canoo denote this word
formation a derivation, which is why we implemented the corresponding rule. However, we finally
decided that it is a clear case of compounding.

7Unfortunately, it is not easy to compare this number with the the amount of corresponding rules in
the grammar books, because each of them covers merely a part of the phenomena and necessary
information (cf. Section 2.3).

61

4.2 Building the Lexicon DErivBase

lachen Lacher lächerlich
sfx ‘er’V N

Append suffix ‘er’ to the stem
of the verb to obtain a noun

try uml &

sfx ‘lich’N A

Try to turn the noun’s vowels into umlauts,
then append suffix ‘lich’ to obtain an adjec-
tive

to laugh laugh laughable

Figure 4.2: Part of a derivational family from DErivBase including derivational rules

operations, as well as applied for most part of speech combinations. The conditional
transformation, try , is mainly used to handle semi-regular adaptations of the base lemma,
such as the elision of stem-final characters (50% of cases). The optional transformation,
opt , is used for umlaut shifts in over 50% of cases. As can be seen from Table 4.4,
derivational rules that cross part of speech boundaries are frequent: More than half of
the rules derive a lemma with a word class different from that of the base lemma. Such
links are particularly valuable, because cross-part of speech information is unavailable in
many traditional resources.

During the assessment phase of our development cycle, we gained the impression
that the rules differ in their quality: Some rules lead more often to invalid derivations
than others. This intuition correlates, on the one hand, with similar findings in the
literature (e.g., Šnajder and Dalbelo Bašić (2008, p116)), and on the other hand with our
assumption mentioned at the end of Section 2.2.1: We find that stem-changing derivation
rules produce errors more often than, e.g., prefixation rules. A separate evaluation of
more and less qualitative rules would therefore be interesting. We will return to this
point in Section 4.4.1.

Figure 4.2 illustrates a small extract from a derivational family in DErivBase with
three lemmas induced by two derivational rules, one turning a verb into the corresponding
event noun (in this case a semelfactive), and one turning the event into an adjective
associated with it. All three lemma pairs are indeed derivationally related. The derivation
rule path (cf. Section 4.1.4) from lachenV to lächerlichA requires two rules, i.e., it has a
length of 2.

4.2.5 Statistics on DErivBase

The preparation of the SdeWaC corpus as explained in Section 4.2.3 yields 280,336
lemmas, which we cover with our lexicon. For DErivBase v1.4.1 (i.e., using 267
derivation rules, cf. Section 4.2.4), we induced a total of 228,203 derivational families
from these lemmas, with 69,437 lemmas being grouped into 17,314 non-singleton families
(i.e., 210,889 lemmas are singleton families). For comparison, CatVar v2.1, the only

62

4.2 Building the Lexicon DErivBase

available derivational lexicon we are aware of, contains 82,676 English lemmas, 44,072 of
them being clustered into 13,368 families, and 38,604 of them being singletons.

To get an impression of an entire derivational family, consider the following sample
family, also taken from DErivBase, which has seven members across all three parts of
speech and includes prefixation, suffixation, and infix umlaut shifts:

taubA (numbA), TaubheitNf (numbnessN), betäubenV (to anesthetiseV),
BetäubungNf (anesthesiaN), betäubtA (anesthetisedA), BetäubenNn (act of
anesthetising), betäubendA (anestheticA)

All lemmas are morphologically related and, at least with one sense, semantically close
to one another.

We examined the families concerning their size. Interestingly, out of the 210,899
lemmas which end up as singletons in DErivBase (i.e, for which no derivationally
related lemmas were found), 93% are nouns. We contribute this fact to the strong
tendency to noun compounding in German. Indeed, in a sample of 100 randomly selected
singleton nouns, 84% are compound nouns, such as KnoblauchduftNm (smell of garlic)
or WaldeinsamkeitNf (woodland solitude). The remaining singleton nouns are named
entities (11%) – a word class which of course occurs frequently in web corpora –, normal
nouns (3%), and lemmatisation errors (2%). Conversely, this means that the non-
singleton families in DErivBase seem to largely cover all German non-compound nouns.
Examining the relation between derivational families (e.g., rain, to rain, rainy) and
compositionally related words (e.g., raincoat) would be an additional topic to investigate,
but is out of scope of this thesis.

Figure 4.3 shows the frequencies of different family sizes in DErivBase; the distribution
closely resembles a Zipfian distribution. Most families (over 99.9%) contain less than 25
lemmas. Note that the y-axis of Figure 4.3 is logarithmic, i.e., the number of derivational
families with few members is very high. In fact, 11,105 families consist of two lemmas.

On the other hand, the Figure also shows that there exist some extreme outliers,
reaching up to one family which counts 238 lemmas. Surprisingly, this huge family is
not a result of overgeneration, but contains only morphologically related (albeit, in parts
semantically opaque) words, e.g., setzenV – sitzenV – SatzN (to sit (sb.)V – to sitV –
setN). Nonetheless, many big induced families unfortunately conflate several smaller
actual families. For instance, the 12th largest family with 102 lemmas contains, among
others, the morphologically unrelated lemmas malenV – mauernV – MeisterN (to paintV
– to buildV – masterN).

Creating many over-inflated derivational families is a drawback of the approach we
use that was already mentioned by Šnajder and Dalbelo Bašić (2010): The derivation
rules generate spurious derivations, e.g., due to application to orthographically similar,
but morphologically unrelated stems. For instance, the infix replacement rule shown in
Table 4.1 is incorrectly applied to the following lemma pair: zinkenV – ZankN (to zincV
– quarrelN). The transitivity assumption used for constructing derivational families
additionally contributes to overinflation. Thus, if very pure derivational families are
required, there are two options: Either omitting delicate derivation rules and accepting

63

4.3 Intrinsic Evaluation

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250

N
um

be
r

of
 fa

m
ili

es

Family size (number of lemmas in a family)

Figure 4.3: Relation of size and number of derivational families

lower coverage, or trying to refine the families by further splitting them. A sensible
approach for such a refinement could be, e.g., to reject lemmas according to some
semantic similarity measures, or by using information from the internal structure of a
family, i.e., the derivation rule paths to connect a lemma pair.

4.3 Intrinsic Evaluation

This Section explains how we evaluate the quality of DErivBase. Section 4.3.1 describes
the challenges in evaluating derivational families and which evaluation procedure we
thus follow. Then, we introduce the baselines against which we qualitatively compare
DErivBase (Section 4.3.2), and the dataset which we created for this evaluation
(Section 4.3.3).

4.3.1 Evaluation Methodology

In this Section, we first explain how we define our evaluation task to assess the quality of
DErivBase. Then, we describe why the respective datasets cannot be straightforwardly
sampled, and how we circumvent these problems.

64

4.3 Intrinsic Evaluation

Evaluation Measures and Format. Generally, the induction of derivational families
could be evaluated globally as a clustering problem. Unfortunately, cluster evaluation is
a non-trivial task. A number of clustering evaluation metrics have been proposed in the
literature. Extrinsic metrics compare the clusters against a gold standard, however, as
noted by Amigó et al. (2009), extrinsic cluster evaluation is complicated and there is no
consensus on the best approach. Moreover, building a representative gold standard for a
cluster-based evaluation of derivational families is in itself not a straightforward task.

For these reasons, we decided to perform our evaluation at the level of pairs: We
manually judge for a set of lemma pairs whether they are derivationally related or not.
That is, we assess our lexicon in a binary classification task. Traditional measures used
for binary classification are precision, recall, and F1-score. We employ these measures,
and define derivational relatedness as our positive class, i.e., lemma pairs which are
derivationally related count as true positives. This procedure produces evaluation results
that can be considered an approximation of pairwise F-score, an evaluation measure used
for clustering, e.g., by Schulte im Walde (2006) or Hatzivassiloglou and McKeown (1993).
Also, our pairwise evaluation based on precision and recall enables us to analyse in more
detail the reasons for false positives, i.e., words in a derivational family which are not
derivationally related to the other words.

Procedure for the Dataset Sampling. We obtain the gold standard for this evaluation
by annotating pairs of lemmas sampled from the SdeWaC lemma list (cf. Section 4.2.3).
However, with random sampling, the evaluation would be very unreliable: Most words
of a language are not derivationally related. Also, such pairs do not at all exhibit
sufficiently high string similarity to be accidentally deemed derivationally related, e.g.,
EnteN – blauA (duckN – blueA). Consequently, a vast majority of pairs in a random
sample would be simply irrelevant for measuring derivational relatedness, as our rules
would not match them and correctly recognise them as derivationally unrelated (i.e., true
negatives). Moreover, in order to reliably estimate the overall precision of the obtained
derivational families, we need to evaluate pairs sampled from these families. On the other
hand, in order to assess recall, we need to sample from pairs that are not included in our
derivational families. That is, we need a method to find, for a given lemma, all lemmas
that display a sufficiently high similarity on the string level to be potential candidates
for a derivational relation.

To obtain reliable estimates of both precision and recall, we developed a novel evaluation
approach specifically designed to assess only subsets of lemmas from a language. Instead
of drawing one sample, we draw two different samples: a P-sample to estimate precision,
drawn from derivational families, and an R-sample to estimate recall, drawn from other
sources of potentially derivationally related lemmas.

Let us first consider the P-sample: We sample a set of lemma pairs from the induced
derivational families in DErivBase. As the families contain all lemmas deemed deriva-
tionally related in DErivBase (i.e., both true and false positives), sampling from them
enables us to estimate precision. A lemma pair (l1, l2) is sampled in two steps: First,
a lemma l1 is drawn from a non-singleton family, then the second lemma l2 is drawn

65

4.3 Intrinsic Evaluation

String distance class

Derivational family

+
+

+

−
+ +

−

−

−

−

−+−
−

−

−

−

−

−

−
−

−

−−

−
−

−
−

− −

−

−
−

−

−−

Figure 4.4: The sampling method for the R-sample

from the derivational family of l1. Due to the rule-based nature of DErivBase, the
derivational families contain no information about true negatives, which are unnecessary
to calculate precision. Thus, the P-sample yields a reliable, focused estimate of precision.

As to the sample to estimate recall, the R-sample, we sample a set of lemma pairs from
the set of possibly derivationally related lemma pairs. Again, a lemma l1 is drawn from a
non-singleton family; then the second lemma l2 is drawn from the set of lemmas possibly
related to l1. To determine this set, we adopt the conceptual idea introduced by Šnajder
and Dalbelo Bašić (2009): They employ two string distance measures to group word forms
with relatively similar strings into stem classes. We adopt this approach, using the same
string distance measures to achieve a sensibly preselected set of potentially derivationally
related lemmas for the R-sample. Figure 4.4 illustrates the intuition behind the idea: For
a given lemma l1 (the bold “+” sign), the set of words with low string distance contains
actually related lemmas (“+” signs, mostly contained in the derivational family of l1),
as well as unrelated lemmas (“−” signs within the string distance class). Lemmas with
very high string distance to l1 (“−” signs outside the string distance class) are discarded
from the R-sample. Clearly, string distance is not as reliable as our derivation rules, but
it gives a sensible approximation to derivation, i.e., it reveals “likely confounders” as
well as items missed by DErivBase. Such a preselection thus drastically reduces the
number of obviously unrelated pairs, which would be classified as (true) negatives from
DErivBase anyway. In this way, we ensure that the R-sample contains a reasonable
number of derivationally related pairs not covered by our lexicon (i.e., false negatives),
and returns a reliable estimate of recall. Of course, we cannot guarantee that all actually
existing relations are covered. This means that the R-sample measures a relative recall
of DErivBase, i.e., relative to the recall of the string distance measures (Pantel et al.,

66

4.3 Intrinsic Evaluation

2004). As a consequence, evaluations on the R-sample might overestimate recall, but
only slightly, so that the estimations are still reliable (provided the R-sample captures
almost all true positives).

Let us next describe how we concretely determine the set of possibly related lemmas
for the R-sample. We employ the same two string distance measures as Šnajder and
Dalbelo Bašić (2009), plus a German stemmer. These three approximations to derivation
also serve as baseline methods against which we compare DErivBase in Section 4.4;
they are explained in more detail in Section 4.3.2. To compile the R-sample, we sample
lemmas from the union of the derivational family of l1, the classes of l1 obtained with the
baseline methods, and k lemmas most similar to l1 according to the two string distance
baseline measures. The addition of these k lemmas is important in two respects: First,
sampling only from the lemmas found by the baseline methods would let these methods
overfit the data, which is undesirable, as we want to evaluate them as baselines; thus, the
addition of k lemmas makes the sampling more robust. Second, we want the R-sample
to contain as many potentially derivationally related lemmas as possible to capture all
lemmas missed by DErivBase. We use k = 7 in our experiments; this value is based
on preliminary experiments on the development set (cf. Section 4.2.4), which showed
that k = 7 retrieves about 92% of the related lemmas retrieved for k = 20 with a much
smaller number of true negatives. In sum, by sampling from this union, the R-sample
captures many potential derivational relations without containing overly many simple
true negative pairs.

Both P- and R-sample contain 2,400 lemma pairs each. They are further split into three
samples to conduct our gold standard annotation, as will be explained in Section 4.3.3.
Lemmas included in the development set (Section 4.2.4) were excluded from sampling.
Figure 4.5 summarises all samples employed in the induction and evaluation process of
DErivBase. We will refer to this Figure in the following Sections.

4.3.2 Baselines

We use two baseline types against which we compare the induced derivational families:
1., clusters obtained with the German version of the Porter stemmer (Porter, 1980)8 and
2., clusters obtained using string distance-based clustering. The purpose of these baselines
is to detect derivationally related lemmas that were missed by our rules. To capture all
kinds of derivational processes, we use various measures with different characteristics.

The first baseline simply groups all lemmas which can be reduced to the same stem.
For instance, the Porter stemmer reduces the following four lemmas to the stem umfall :
UmfallenN – UmfallN – umfallenV – umfallendA (the falling over – event of falling over
– to fall over – falling over). Therefore, they constitute a cluster.

Concerning the string distance-based baselines, we have considered a number of string
distance measures and tested them on the development set which we used to assess our
initial set of derivation rules (cf. Section 4.2.4). More specifically, we experimented with
the three measures mentioned in Šnajder and Dalbelo Bašić (2009): The Dice n-gram

8http://snowball.tartarus.org

67

http://snowball.tartarus.org

4.3 Intrinsic Evaluation

Development Set

Refine initial rule set

1,000 DErivBase families
→ inspect FP’s

10,000 lemma pairs from distance measures
→ inspect FN’s

Validation Set

Calculate IAA

200 lemma pairs each from
P-sample and R-sample;
double-annotated

Calibration Set

Consolidate annotations

200 lemma pairs each from
P-sample and R-sample;
double-annotated

Test Set

Calculate P & R

2,000 lemma pairs each from
P-sample and R-sample;
single-annotated

disjoint from

2,400 lemma pairs each drawn from DErivBase families
(P-sample) and baseline method clusters (R-sample)

Figure 4.5: Overview of the samples used to induce and evaluate DErivBase. The
development set is disjoint from the other sets (indicated by the dashed line)

coefficient (Dice, 1945) based on bigrams and trigrams, and two variants of a measure
proposed by Majumder et al. (2007); one of these variants favours long matching prefixes,
while the other penalises long strings after the first mismatch. All these measures are
distance measures, i.e., small values for a lemma pair indicate high string similarity.

The latter measure of Majumder et al. (2007) turned out to be the most effective in
capturing suffixal variation. For words X and Y , it is defined as

D4(X,Y) =
n−m + 1

n + 1

n
i=m

1

2i−m
(4.20)

where m is the position of the left-most character mismatch, and n + 1 is the length of
the longer of the two strings. If m = 0 (i.e., the words X and Y already differ in the
first letter), then D4 = ∞. As an example, consider the two lemma pairs versehenV –
verstehenV (to look wrongly – to understand), and versehenV – versehentlichA (to look
wrongly – by mistake). For the first, derivationally unrelated pair, n = 8, and m = 5.
Thus, D4 = 0.833. For the second, derivationally related pair, n = 12, and m = 9,
resulting in a lower (less distant) value D4 = 0.577. As these two lemma pairs show,
this measure reflects the fact that an appended suffix and, coupled with that, a bigger
(Levenshtein-alike) string edit distance do not necessarily imply that the two concerned

68

4.3 Intrinsic Evaluation

lemmas are not derivationally related. For suffixation, such an approach is exactly what
we aim at.

To capture prefixal variation and stem changes, we use the Dice n-gram based measure
proposed by Adamson and Boreham (1974):

Dicen(X,Y) = 1 − 2c

x + y
(4.21)

where x and y are the total number of distinct n-grams in X and Y , respectively, and c
is the number of distinct n-grams shared by both words. In our experiments, the best
performance was achieved with n = 3. For illustration, consider the two lemma pairs
gebenV – abgebenV (to give – to give in), and gebenV – GebendeN (to give – giver),
which are both derivationally related. Both pairs achieve Dice3 = 0.333 (x = 5, y = 7,
c = 4), i.e., prefixation is not penalised, which would be the case with the D4 measure
above.

To group lemmas into “baseline” derivational families, we followed previous procedures
from the literature (Šnajder and Dalbelo Bašić, 2009, Majumder et al., 2007, Adamson and
Boreham, 1974) and used hierarchical agglomerative clustering with average linkage. We
reduced the computational complexity by performing a preclustering step by recursively
partitioning the set of lemmas sharing the same prefix into partitions of manageable
size (1,000 lemmas). Initially, we set the number of clusters to be roughly equal to the
number of the induced derivational families in DErivBase. For the final evaluation, we
optimised the number of clusters based on F1-score on the calibration and validation sets
(cf. Figure 4.5 and Section 4.3.3). This optimisation leads to a balance between precision
and recall for the string distance baselines. For details on this method, cf. Šnajder and
Dalbelo Bašić (2009).

4.3.3 Gold Standard Annotation

This Section presents the information that we annotated on the P- and R-samples
described in Section 4.3.1, and how we conduct the annotation process and calculate
annotation quality. Finally, we show how we modify the gold standard annotation to
evaluate later DErivBase versions.

Annotation Labels. We defined the five categories shown in Table 4.5, into which all
lemma pairs are distinctly classified. We defined this annotation scheme, which is more
fine-grained than the binary decision between derivational relatedness and unrelatedness,
because it provides a more detailed picture of the data: The separation of semantically
transparent (S), and opaque lemma pairs (M) gives deeper insight into the semantics of
the derivational families, e.g., what kind of or how many lemmas are morphologically
related but semantically unrelated. On the other hand, separating derivationally unrelated
lemmas into the three categories N, C and L helps us detecting different reasons for
overgenerating derivation rules. Unrelated lemma pairs (N) are most crucial here, as such
errors might lead to spurious conflations of different derivational families. In contrast,

69

4.3 Intrinsic Evaluation

Label Description Example

S l1 and l2 are morphologically and
semantically related

kratzigA – verkratztA (scratchy – scuffed)

M l1 and l2 are morphologically but
not semantically related

bombenV – bombigA (to bomb – smashing)

N no morphological relation belebtA – lobenV (lively – to praise)

C no derivational relation, but the
pair is compositionally related

FilmendeNn – filmenV (end of film – to film)

L not a valid lemma (mislemmatisa-
tion, wrong gender, foreign words)

HaufeN – HäufungN (N/A – accumulation)

Table 4.5: Categories for lemma pair classification

accidentally included compound relations (C) occur rarely in DErivBase due to our rule-
based procedure, but are frequent for the baseline methods, e.g., EhemannN – EhefrauN
(husband – wife). Finally, the L category helps to locate lemma pairs where false positives
in DErivBase do not arise from erroneous or overgenerating rules, but from mistakes in
the preprocessing. That is, L errors cannot be attributed to our derivation rules.

Nonetheless, we require a binary rather than a five-fold distinction of the data to com-
pute precision and recall. To this end, the five annotation classes can be straightforwardly
binarised. For our classification task, which determines – on the purely morphological
level – whether a lemma pair is derivationally related or not (cf. Section 4.3.1), we
rearrange the five labels as follows: Lemma pairs classified as S or M hold a derivational
relation and thus count as positives, while N, C and L are negatives. Note that with
this binarisation, we accept all kinds of derivationally related lemmas as positives. The
decision what counts as positive class can look differently in other settings. For instance,
if the focus was on derivational and semantic relatedness, one would accept only S as
positive pairs (cf. Section 2.3).

We categorise ambiguous lemmas as positive (S or M) if there is at least one matching
derivation or sense for the lemma pair. For instance, the word pair HeroinN – heroischA
(heroinN /heroineN – heroicA) is labelled S, since both lemmas are related with one sense
to a courageous person. As mentioned in Section 2.3, disambiguation can be ignored in
futher detail, since DErivBase operates on the lemma level.

Annotation Procedure and Inter-annotator Agreement. To visualise the annotation
procedure of the gold standard, consider Figure 4.5 again. Two German native speakers
with strong background in NLP annotated the pairs from the P-sample and R-sample.
We first carried out a calibration phase in which the annotators double-annotated 200
pairs from each of the two samples (the box in the lower left corner in the Figure). After
some discussion about the diverging decisions, the annotation guidelines were refined.
For instance, it was crucial to define the differentiation of derivational prefixation and

70

4.3 Intrinsic Evaluation

5-fold decision Agreement Cohen’s κ

P-sample 0.86 0.70
R-sample 0.85 0.79

2-fold decision Agreement Cohen’s κ

P-sample 0.93 0.78
R-sample 0.97 0.92

Table 4.6: Inter-annotator agreement on validation sample, with five-fold (left) and two-
fold (right) annotation classes

S M N C L Total
S 132 4 3 0 3 142
M 7 7 2 0 0 16
N 1 2 19 0 2 24
C 1 0 0 0 0 1
L 2 1 1 0 13 17

Total 143 14 25 0 18 200

Table 4.7: Confusion matrix for the five-fold annotation of the P-sample. The agreements
in the diagonal are marked in boldface

composition, which is not always clear from the literature (cf. Section 2.2.1).
In a subsequent validation phase, we computed inter-annotator agreements on the

annotations of another 200 pairs each from the P- and the R-sample (the bottom centre
box in Figure 4.5). We report agreements for two granularity levels: for the five-fold
classification according to our categories (S vs. M vs. N vs. C vs. L), and for the binary
classification of derivational relatedness vs. unrelatedness (S + M vs. N + C + L).
Table 4.6 shows, for both granularity levels, the proportion of identical annotations by
both annotators as well as Cohen’s κ score (Cohen, 1960). On the five-fold annotation task,
we achieve high “raw” agreement and substantial agreement for κ (Carletta, 1996, Landis
and Koch, 1977). On the binary annotation task, both the raw agreement and κ naturally
increase significantly; on the R-sample, both scores attain almost perfect agreement. For
both granularity levels, κ is a little lower on the P-sample, because the distribution of
the categories is skewed towards S: Most lemma pairs sampled from DErivBase are
actually derivationally and semantically related, which makes an agreement by chance
more probable.

Appendix C contains the complete and final version of the annotation guidelines used
for this annotation task. Note that especially the decision between S and M cannot be
strictly defined, but requires linguistic intuition; the level of difficulty for distinguishing
between these two classes is comparable to fine-grained word sense disambiguation.9

Therefore, it is crucial that our annotators have strong linguistic expertise.

9In fact, our “raw” agreement on the five-fold annotation is higher than that of exemplary word sense
disambiguation annotations from the literature: Agreements between 67.8% and 80% are reported on
WordNet-level granularity tasks (Palmer et al., 2007, Snyder and Palmer, 2004)

71

4.3 Intrinsic Evaluation

Two pairs of categories show interesting disagreement cases: M vs. S indicates dis-
crepancies regarding what the annotators accept as semantic relatedness, e.g., for the
pair lieblichA – lieblosA (lovelyA – lovelessA). In fact, the distinction between these two
classes is most difficult in our annotation task: As the confusion matrix of the annotation
agreements on the P-sample in Table 4.7 shows, the S vs. M distinction leads to the
largest share of disagreements.10 The classes M vs. N, in turn, show which lemma pairs
the annotators accept as derivation at all. This category pair also leads to interesting
disagreement cases, e.g., KletteN – bekletternV (burdockN – to climb onV).

Despite such disagreements, we found that the IAA results were sufficiently high to
switch to single annotation for the production phase. Here, each annotator annotated
another 1,000 pairs from the P-sample and R-sample each, so that the final test set
consists of 2,000 pairs from each sample. These final test sets are depicted in the lower
right box in Figure 4.5.

Adapting the Gold Standard to the Latest DErivBase Release. The sampling and
annotation procedure described in this and the previous Section were used for the
evaluation of an earlier release of DErivBase, v1.2, which is described and published
in Zeller et al. (2013). But obviously, measuring the precision on the (test) P-sample
requires the sample to reflect the entire set of rules used for the lexicon induction. In other
words, the P-sample is dependent on the set of rules used for the respective DErivBase
version, and its coverage.

As described in Section 4.2.4, there were further rule development phases, until we
reached the latest DErivBase version 1.4.1: The size of the derivational families changed
substantially between v1.2 and v1.4.1 due to many additional rules. Since a sensible
evaluation dataset depends on the predictions of our rule induction, we could not re-
run the evaluation without changes. More specifically, in order to properly examine
the expansions of DErivBase v1.4.1, we needed a broader P-sample that covers the
additionally implemented rules (mostly prefixation). We wanted to avoid additional
annotation effort, so we made use of the lemma pairs covered by DErivBase in the (test)
R-sample: We added these pairs to our original P-sample, removed duplicate pairs, and
consequently obtained a more appropriate basis for calculating precision. The fact that
the copied pairs are used in the P- as well as in the R-sample, is conceptually uncritical:
The previously used sampling methods can – and actually did – similarly lead to identical
pairs in the two samples.

After having changed the scope of the P-sample in this way, it contains a total of 2,545
pairs. The size of the R-sample remains at 2,000 pairs. Table 4.8 shows a breakdown of
the two samples per annotation label. Henceforth, we will refer to these test sets as P-
and R-sample, if not otherwise specified.

10We omit the confusion matrix for the R-sample, as it offers no deeper insight.

72

4.4 Results

Sample S M N C L Total

P-sample 1,899 265 240 8 133 2,545
R-sample 450 122 762 586 80 2,000

Table 4.8: Breakdown of the P- and R-sample per annotation label

4.4 Results

This Section reports the results on the evaluation samples introduced in the previous
Section. First, we discuss the general quantitative results with respect to precision and
recall (Section 4.4.1). Then, we provide detailed qualitative analyses on the rule level in
Section 4.4.2, and on the pair level in Section 4.4.3.

4.4.1 Quantitative Evaluation

First, we examine the distribution of the annotation labels in the P- and the R-sample.
Consider Table 4.8 again: It reveals that in the P-sample, 2,164 are positive pairs (S, M),
and 381 are negative pairs (N, L, C), respectively. The R-sample contains 572 positive
and 1,428 negative pairs, respectively. As expected, the majority of pairs in the P-sample
is positive, while most pairs in the R-sample are negative. The high number of C cases
in the R-sample suggests that the string distance-based measures are prone to cluster
lemmas with a compound relation. In contrast, such erroneous compositionally related
pairs are negligible in the pairs sampled from DErivBase. In sum, the quality of the
pairs drawn from DErivBase (i.e., the P-sample) is fairly good. Nonetheless, there
is still a substantial amount of unrelated lemmas (N), and a number of lemmatisation
errors (L) in our lexicon.

Table 4.9 presents the overall results, i.e., precision and recall on the two samples. We
omit the F1-score because its applicability for precision and recall estimates from different
samples is unclear. We evaluate two variants of the induced derivational families: Those
obtained before conducting any rule refinement steps as they are described in Section 4.2.4
(DErivBase initial), and those after all rule refinement steps, i.e., DErivBase v1.4.1.
The best scores are marked in boldface.

As argued before, we measure the precision of our method on the P-sample and recall
on the R-sample, respectively. For the baselines, precision was also computed on the
R-sample: Computing it on the P-sample, which is obtained from the induced derivational
families, would severely underestimate the number of false positives.
DErivBase v1.4.1 reaches the highest precision (85.0%) and recall (91.4%), notably

outperforming the baseline methods on both measures by a large margin. The refinement
of the initial model by checking as well as adding rules in several cycles has produced a
significant improvement in recall (+ 31 percentage points) without losses in precision.
In fact, precision even rises by almost 1% due to the more precise definition of some

73

4.4 Results

Precision Recall

Method P-sample R-sample

DErivBase initial 84.2 60.5
DErivBase v1.4.1 85.0 91.4

Precision Recall

R-sample

Stemming 69.4 7.5
String distance D4 37.2 21.2
String distance Dice3 23.7 24.0

Table 4.9: Precision and recall on test samples in different versions

derivation rules that avoids overgeneration. In v1.4.1, precision is lower than recall,
meaning that DErivBase contains more false positives than false negatives, which
supports our claim of having induced a high-coverage resource. Since the precision
remained nearly constant between the two DErivBase versions, we assume that the
false positives mainly arise from the initial rule set (cf. Section 4.2.4). We will go into
detail about typical errors in Section 4.4.3.

In contrast, the German version of the Porter stemmer is rather conservative, which
fragments the families and leads to a very low recall. In fact, the biggest derivational
family in the stemming clusters contains no more than nine lemmas:11

LangweileNf , LangweiligeresN , LangweiligenN , LangweiligesN , LangweilenNn ,
LangweilerNm , LangweiligeNm , LangweiligkeitNf , LangweiligsteN

The corresponding family in DErivBase is more precise (e.g., the lemmatisation error
LangweiligenN is excluded), but also covers more actual derivations (e.g., langweilenV is
included):

LangweiligkeitNf , langweilendA, LangweilenNn , langweilenV , LangweileNf ,
LangweilerNm , langweiligA, gelangweiltA

That is, even for the biggest stemming cluster, there are still false negatives, because the
scope of traditional stemming is too narrow to capture all derivational processes.

The string distance-based approaches achieve more balanced precision and recall scores
(recall from Section 4.3.2 that this balance arises from optimising the number of clusters
on the F1-score), however, both are fairly low. The biggest clusters induced by Dice3 and
D4 contain 932 and 462 lemmas, respectively, resulting from massive overgeneration. As
mentioned above, both distance measures lack the linguistic information to distinguish

11Although this stemming cluster contains only lemmas of the same part of speech, this is not generally
the case.

74

4.4 Results

Accuracy

Coverage High Low Total

High 18 1 19
Low 76 19 95

Total 94 20 114

Table 4.10: Cross-classification of derivation rules according to accuracy and coverage for
direct derivations (measured on P-sample)

composition and derivation, and thus many lemma pairs are compositionally related. The
largest share of false positives for the string distance measures results from morphologically
completely different words with relatively high string similarity due to common prefix
or suffix strings, e.g., BlazerN – GrazerN (blazerN – inhabitant of Graz). That is, the
string distance methods lack the information about admissible derivational processes, as
we have implemented in our derivation rules.

4.4.2 Rule-level Analysis

We conduct three analyses on the level of derivation rules: We examine the proportion
of frequently and correctly applied rules both on a coarse- and a fine-grained level, and
analyse the quality of the derivation rules according to the word classes involved.

Analysis by Frequency and Accuracy. We believe that our derivation rules differ in
their ability to produce valid derivations. To investigate this assumption, we carried out
an analysis in which we quantify the rules according to their quality and coverage.

We cross-classified our rules according to high/low accuracy and high/low coverage
based on the pairs in the P-sample. We only considered directly derivationally related
pairs by one single rule (→D), amounting to 1,387 pairs related by 114 distinct rules.
“High accuracy” and “high coverage” are defined as all rules above the 25th percentile
in terms of accuracy and coverage, respectively. That is, we considered high-coverage
rules to be the most frequent rules that cumulatively account for 75% of the derivations.
Similarly, we considered high-accuracy rules to be the rules that are correctly applied
in at least 75% of all cases. The results of this breakdown are shown in Table 4.10: All
high-coverage rules except one are also highly accurate. Most rules are accurate but
infrequent. Only 20 rules have a low accuracy, but 19 of them apply infrequently. Thereof,
six rules are stem changes, which is 60% of all (pure) stem change rules (cf. Table 4.4).
This confirms our assumption that stem changes often produce incorrect derivations. In
total, however, this Table shows that our procedure to define and apply derivation rules
is able to support accuracy as well as coverage.

75

4.4 Results

Analysis by Ranked Rule Quality. The previous analysis has revealed that some rules
seem to exhibit higher quality than others. However, only directly related lemma pairs
were considered. In this paragraph, we want to further investigate how quality and
coverage are distributed over rules when we consider all lemma pairs, i.e., lemma pairs
connected by rule paths of any length.

To this end, we simulate a rule ablation test in order to observe how many high-quality
rules are needed to achieve a certain precision-recall ratio. From the previous analysis,
we expect some rules to produce correct derivations very often, while other rules might
match frequently and thus perform poorly, e.g., mislemmatised words or words without
derivational relation. Filtering out such unreliable rules would increase the precision
of derivational families, but also lower the recall; such a setting might be desirable for
applications in which correctness is more important than coverage. To estimate these
differences, we analysed how precision and recall behave if we employ only subsets of the
implemented rules, selected by their quality.

To attain such subsets, we ranked the rules according to two criteria: As a primary
sort key, we calculated the quality of rule r as a ratio of correct vs. all applications:

qualityr =
|correct applicationsr |
|total applicationsr |

(4.22)

In case several rules achieve the same ratio value, we sorted these rules according to a
secondary key: by their frequency of correct applications, |correct applicationsr |. That is,
if two rules always link S or M pairs, the more frequently applied rule is ranked higher.

We then measured the precision and recall of subsets of rules, starting with only one –
the qualitatively best – rule, and cumulating up to all rules implemented in DErivBase.
Note that a lemma pair can be connected by more than one rule, e.g., the word pair
ZäheNf – ZähigkeitNf (tough personN – toughnessN) is connected via zähA (toughA). For
such cases, the lemma pair is only covered by the rule subset when all participating
linking rules are included in this rule subset. That is, precision and recall for rule r at a
specific rank are calculated as follows:

Prec@r =
|correct pairs involving only r and higher -ranked rules|
|all pairs involving only r and higher -ranked rules|

(4.23)

Rec@r =
|correct pairs involving only r and higher -ranked rules|

|all correct pairs|
(4.24)

The intuition behind these calculations is somewhat comparable to that of the Average
Precision (AP) measure in Information Retrieval (Manning and Schütze, 1999, p535f).12

We determined the ranking keys based on the lemma pairs and their gold annotations

12Our measures differ from AP in that they evaluate the ranking of the rules that link the lemma pairs
in the dataset, while AP would measure the ranking of the lemma pairs directly. Additionally, due to
the combinability of the rules, we do not necessarily evaluate all instances of a rule at the same time
(i.e., at a specific rank), but only those applied up to this point (rank).

76

4.4 Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

No. of rules involved, ranked on validation set (left), and not covered by validation set (right)

ranked by quality random sorting

P=0.856

R=0.594

R=0.914

P=0.85

Precision@r (P)
Recall@r (R)

Figure 4.6: Precision and recall for cumulated rules ranked by quality

of the validation set rather than the test set (cf. Section 4.3.3) in order to avoid overfitting.
Out of the 400 lemmas in this validation set, 232 are covered by DErivBase v1.4.1.
Next, we applied the resulting ranking to all lemma pairs in the P-sample and R-sample
which are covered by DErivBase, and calculated precision and recall as shown in (4.23)
and (4.24) on P- and R-sample, respectively. Since the R-sample reflects the fact that
DErivBase achieves a high, yet imperfect recall compared to an ideal method, recall
does not add up to 100% (i.e., only 523 out of 572 derivationally related lemmas are
covered).

The validation set covers 97 derivation rules, while the test samples cover 189 rules.
Rules which are applied on the test sets, but not covered by the validation set, were
appended in random order at the end of the ranking established from the validation set.
In that way, these rules are treated like rules of low quality, which satisfies the fact that
we could not estimate their actual quality on the validation set.

Figure 4.6 illustrates the precision and recall curves for this rule ranking analysis. We
will discuss the curves from left to right.

The high-quality rules, which occupy the top 29 (leftmost) positions, seem to be applied
relatively rarely on their own, but require the presence of other, more frequent rules:
They lead to very low recall scores on the R-sample (4.7%). This observation is in line
with the breakdown shown in Table 4.10. Concerning precision, these rules exhibit high

77

4.4 Results

variance, because the frequency of rule applications is still low and therefore unstable.
Nonetheless, precision never falls below 86.5%.

The rules in the medium range of the ranking (x = 30 to x = 60) provide a great increase
in coverage (and consequently recall), while precision remains above 90%. Note, however,
that a big jump in the recall curves does not necessarily imply that the corresponding rule
in the ranking is exceptionally frequent. Instead, this rule often occurs in combination
with higher-ranked rules, which have already been considered before. Relating these
numbers to the more coarse-grained analysis of the previous paragraph, we indeed observe
that all except three high-coverage/high-accuracy rules from Table 4.10 are situated on
ranks between x = 1 and x = 53. Also, all but four low-coverage/low-accuracy rules are
ranked on x = 57 and beyond. That is, this rule ranking which considers all rule paths,
reflects the tendencies detected on directly related lemma pairs.

When all rules contained in the validation set are considered (x = 97), precision
amounts to 85.6%, while recall is at 59.4%. The low recall is not surprising, because the
validation set covers only 97 out of 267 derivation rules (36%). On the other hand, it is a
positive result that the precision curve – except some outliers for the rare high-ranked
rules – monotonically decreases with the growing number of rules involved, but only
slightly. This behaviour implies that the derivation rules indeed differ in their quality,
and can therefore be ranked according to the quality.

Finally, when we randomly add the derivation rules which were not covered by the
validation set (from x = 98), there is another enormous increase in recall, leading to
the final performance of DErivBase v1.4.1 of 91.4%.13 At the same time, the overall
precision of 85.0% is achieved, which is only slightly lower than the precision for the 97
top-ranked rules. The flat precision curve between x = 97 and x = 189 suggests that
even rules which have not been previously ranked according to their quality, hardly lead
to losses in precision, but can enormously boost recall. This behaviour strengthens our
rule-based approach: Even if no information is available to rank these rules, thoroughly
developed derivation rules mostly lead to correct derivations.

In sum, Figure 4.6 shows that the derivation rules used for inducing DErivBase exhibit
different quality. Already a small set of rule applications is enough to establish a sensible
qualitative rule ranking, even if recall is expectedly low. The resulting qualitative ranking
of the derivation rules allows for building DErivBase versions with high precision but
low recall by employing only high-quality rule subsets. Such a strategy can be desirable
if optimal precision is required.

All subsequent analyses, however, refer to DErivBase v1.4.1, i.e., using the whole set
of derivation rules, which is the model with the highest recall.

Analysis by Parts of Speech. Table 4.11 shows precision and recall values for dif-
ferent part of speech combinations for the base and derived words, measured on P-
and R-sample, respectively. The best scores are marked in boldface. High precision is
achieved for A-A as well as N-A derivations, e.g., kaufbarA – käuflichA (purchasableA –

13Note that the lemma pairs in the R-sample covered by DErivBase involve only 164 distinct rules,
which is why the corresponding curve stops earlier.

78

4.4 Results

P R P R

N-N 0.79 0.83 N-A 0.90 0.92
A-A 0.90 0.90 N-V 0.82 0.97
V-V 0.76 0.94 A-V 0.89 0.96

Table 4.11: Precision and recall across different part of speech combinations for base
word and derivative

purchasableA), PflanzeN – pflanzlichA (plantN – vegetableA), while N-V derivations have
the highest recall, e.g., DolchN – erdolchenV (daggerN – to daggerV). The precision is
lowest for V-V derivations, which indicates that some verb deriving rules still overgen-
erate, e.g., flechtenV – flüchtenV (to braidV – to escapeV). In fact, Germanic strong
verbs are particularly often affected by – partially hardly predictable – ablaut stem
changes (Glück, 2010, p5). Recall is lowest for N-N derivations, suggesting that the
derivational phenomena for nouns are not yet covered satisfactorily. For instance, the
noun pair PathogenitätN – PathologeN (pathogenicityN – pathologistN) was not retrieved,
because we did not implement derivation rules which incorporate combining forms such
as log- (cf. Section 2.1.3). Notably, we are capable to establish good recall scores for
derivational relations across parts of speech.

4.4.3 Pair-level Analysis

In this Section, we further discuss precision and recall errors on the level of annotated
pairs. Table 4.12 shows the frequencies of true positives and false positives on the P-
sample and false negatives on the R-sample for each annotated category. True negatives
are not reported, since their analysis gives no deeper insight.

True Positives. In our analysis, we treated both S and M pairs as related, but it is inter-
esting to see how many of the true positives are in fact semantically unrelated. In line with
the DCA (cf. Section 2.1.3), 88% out of the 2,164 positive pairs are semantically as well
as morphologically related (S), e.g., alkoholisierenV – antialkoholischA (to alcoholiseV
– nonalcoholicA), or BoxerN – boxendA (boxerN – fightingA). Most S pairs result from
high-accuracy rules, i.e., conversion, negation prefixation and simple suffixation. The
remaining 12% are only morphologically related (M), e.g., beschwingtA – schwingenV
(cheerfulA – to swingV), StolzierenN – stolzA (strutN – proudA). In both pairs, the two
lemmas share a common semantic concept (i.e., being in motion or being proud) but
nowadays’ meanings have grown apart from each other. Among the M true positives, 73%
are prefixation derivations, often involving prefixation at both lemmas, e.g., ErdenklicheN
– bedenklichA (imaginableN – questionableA). This high ratio of prefixation among M
pairs reflects the general assumption mentioned in Section 2.2.1 that prefixation often
leads to a meaning change. Note that negation prefixation is controversial in this context:

79

4.4 Results

TPs FPs FNs

Label P-sample P-sample R-sample

R 1,899 – 28
M 265 – 21
N – 240 –
C – 8 –
L – 133 –

Total 2,164 381 49

Table 4.12: Predictions over annotated categories

It could be regarded as the most drastic meaning change possible; then, it would have
to be categorised as M. However, following our definition in Section 2.1.3, we interpret
negation derivations as meaning-preserving and assign them the category S, because
both base and derived word refer to highly related concepts.

False Positives. About 63% of the 381 incorrect pairs are of class N (unrelated lemmas).
The most frequent errors in this category are due to four phenomena: Short lemmas,
named entities, long derivation rule paths, and stem-changing derivations.

Many errors occur in pairs involving short base words, e.g., GenN – genierenV (geneN
– to be embarrassedV), where the orthographic context is insufficient to reject spurious
derivations. In parallel, about 20% out of the unrelated lemma pairs are a result of
derivations between named entities (including proper nouns) and common nouns. For
example, the rule to derive nouns denoting a male person incorrectly links the lemma pair
MorseNE – MörserN (MorseNE – mortarN). Such incorrect named entity derivations
happen especially for short base words, as in the the example of Morse, or in KühnNE

– KühnheitN (KühnNE – audacityN). However, since named entities also participate in
valid derivations (e.g., ChaplinNE – chaplineskA (ChaplinNE – chaplinesqueA) or WienNE

– WienerN (ViennaNE – VienneseN)), we did not exclude them from our derivations. An
alternative would be to treat named entities as well as short lemmas specifically.

The third major problem which leads to false positives of category N are transitively
applied rules that produce incorrect pairs. For instance, SpeicheN – speicherbarA (spokeN
– storableA) results from the following rule path involving three derivation rules (for

details about these rules, cf. Appendix B): SpeicheN
NN05−→ SpeicherN

NV09−→ speichernV
VA01−→ speicherbarA (spokeN → storageN → to storeV → storableA). Longer paths that
additionally involve stem changes (e.g., ablaut shifts) can lead to surprising results, e.g.,
the N lemma pair ErringungN – rangiertA (achievementN – shuntedA). The fact that
about 50% of the N pairs concern ablaut and umlaut stem changes, attests again our
assertion that involving stem changes is a critical tradeoff decision between coverage and
precision (cf. Section 2.2.1): Stem changes are applicable to many base words, but are

80

4.4 Results

synchronically unproductive and do not lead to many correct derivatives. Considering
them in our approach leads to a substantial number of false positives, but avoids, on the
other hand, fragmented derivational families.

Notably, those four main factors for N-type errors already existed in the initial
DErivBase version, which explains the small difference in precision between the two
lexicon versions shown in Table 4.9. An interesting side result regarding the N errors
is that some pairs judged as unrelated by the annotators might conceivably be weakly
related. For example, in the umlaut shift derivation schlürfenV – schlurfenV (to sipV –
to shuffleV), both base and derived lemma refer to specific long drawn out sounds. Such
cases show that it is not always straightforward to draw the line between relatedness and
unrelatedness even on the morphological level.

Concerning false positives of class C, it is not surprising that such cases hardly occur in
the P-sample: We employ a rule-based approach for derivation induction, which naturally
excludes almost all cases of composition. Nonetheless, there are a few lemma pairs which
are compositionally related, e.g., filmenV – FilmendeNn (to filmV – end of filmN), or
GehenNn – vorbeigehenV (walkingN – to pass byV). Here, our derivation rules acciden-
tally match bound morphemes (the building blocks in composition). The derivative of
the first lemma pair could actually be a valid derivation (a filming person), if the noun
gender was not neuter but masculine. However, the verb suffix -en and the derivation
suffix -de unexpectedly form the German noun EndeN (end). The second lemma pair is
incorrectly covered, because the concatenation of the two derivation prefixes vor- and
bei- form an adverb, vorbei, which constitutes a compositional word formation process.

Finally, errors of category L, which make up 35% of the false positives, are due to
incorrect lemmatisation. The most frequent L errors are 1., spurious plural endings,
e.g., AbgelehntenN or MesserklingenN , and 2., incorrect noun genders, often arising from
spurious plural endings, such as EinreisenNf . L errors cannot be attributed to our

derivational model, but of course form part of the lexicon and should be avoided wherever
possible. Remarkably, many lemmatisation errors, including those mentioned here, are
derivatives produced by conversion derivation. Thus, besides using different preprocessing
procedures, one could also review how to deal with the respective rules.

False Negatives. Errors of this type can be due to three reasons: missing derivation
rules, erroneous rules that leave some derivations undiscovered, or the absence of lemmas
in the corpus required for the transitive closure to link two lemmas.

Our inspection of the false negatives revealed that the latter reason – a coverage
lack in the corpus – does not apply, which supports the strategy how we selected our
German lemma list (cf. Section 4.2.3). Also, erroneous rules are a minor reason: We
discovered merely one faulty rule in our rule set, which fails to link some admissible cases
of adjectives and their nominalisations, e.g., GeboreneN – geborenA (bornN – bornA).
Since this rule affects a considerable number of lemmas, we plan to correct it in a future
release of DErivBase.

In contrast, most false negatives arise from missing derivation rules. For both categories
S (about 57%) and M (about 43%), there are three main types of missing rules: 1.,

81

4.5 Summary

irregular derivations, such as MeuteNf – MeutererNm (mobN – mutineerN)14; 2., irregular
foreign derivations, e.g., olympischA – OlympionikinNf (OlympicA – female Olympic ath-
lete) and ReflexNm – ReflektorNm (reflexN – reflectorN); and 3., different spelling variants,
e.g., Fotograph

Nm
– Fotografie

Nf
(photographerN – photographyN). Additionally, there is

a handful of idiosyncratic derivations that involve processes which we did not cover. For
instance, we did not consider comparative-involving derivation rules, which were necessary
for lemma pairs like schwerpflegebedürftigA – schwerstpflegebedürftigA (indications for two
different levels of care dependencies). Similarly, we could not implement rules for cases in
which composition and derivation interfere. For instance, the ge- prefixation turns into
an “infix” for lemma pairs such as RechtslehreNf – Rechtsgelehrte

Nm
(jurisprudenceN –

juristN). However, neither such infix insertions exist in German derivation, nor does a
bridging verb such as *rechtsgelehren which would enable to link the lemma pair.

Apart from these rather specific cases of false negatives, our rules display a fairly good
coverage, as the low number of only 49 missed pairs and the high recall show.

4.5 Summary

In this Chapter, we have presented how we induced DErivBase, a human-readable
derivational lexicon for German which covers all admissible derivational operations (suf-
fixation, prefixation, conversion, circumfixation, and stem changes) for verbs, nouns, and
adjectives. DErivBase is compiled in a different way than, e.g., CatVar (Habash and
Dorr, 2003) (cf. Section 3.1.2): Our approach does not collect information from com-
prehensive knowledge resources. Instead, we employed HOFM, a language-independent
rule-based framework, in which derivational rules are implemented via higher-order
transformation functions. We expanded the framework with German language-specific
phenomena such as the umlaut stem change, or the consideration of noun gender. One
working week was enough to implement and thoroughly refine the underlying minimal
rule set with the aid of grammar textbooks, which shows that the framework is easy
and straightforwardly to use. More than half of our implemented rules cross the part of
speech boundary between base word and derivative. We applied the derivation rules to
lemmas gathered from a German web corpus, and clustered the resulting lemma pairs into
families by computing the transitive, symmetric and reflexive closure of rule applications.
The sequence of derivation rules which connects a lemma pair is called a rule path.

In that way, we collected derivational families for over 280,000 lemmas with high
accuracy as well as high coverage. Over 69,000 lemmas are grouped into more than 17,000
non-singleton families, while most remaining singleton lemmas are compounds. To assess
the quality of DErivBase, we have developed an elaborate evaluation method that uses
two separate samples to assess precision and recall appropriately. The latest version of
DErivBase, v1.4.1, achieves a precision and recall score of 85% and 91%, respectively.

The lexicon, our gold standard annotations, and the employed derivation rules15 as well

14The regular derivation of this example would be *Meuter.
15http://www.ims.uni-stuttgart.de/permalink/56cc6c89-c421-11e4-a5e6-000e0c3db68b.html; li-

cense cc-by-sa 3.0. Last accessed: May 2015

82

http://www.ims.uni-stuttgart.de/permalink/56cc6c89-c421-11e4-a5e6-000e0c3db68b.html

4.5 Summary

as the grammar framework16 are freely available. We provide DErivBase in two different
formats. The first format is parallel to that of CatVar, simply containing the induced
derivational families. The second format is additionally enriched with information about
the derivation rules which connect the lemma pairs within one family. In this way, we do
not only provide the result of the induction process, but also the linguistic knowledge
with which this result is achieved. As shown in Section 3.1.1, there are various approaches
to build derivational lexicons for French, but so far, none of them seems to have become
a standard resource for the general public. We hope that the simple lexicon format, and
the free access to DErivBase eases and increases its usability for other researchers.

Our approach for compiling a derivational lexicon is not restricted to German. In
addition to the typologically most similar Germanic and Romance languages, it is also
transferable to agglutinative languages like Finnish, or other fusional languages like
Russian. The only requirements of our method are a comprehensive set of lemmas for
the respective language (optionally with further morphological features such as gender
information), and linguistic literature about admissible morphological derivation processes.
In fact, Šnajder (2014) applied our procedure to Croatian. In an intrinsic evaluation
with a slightly different setting than ours, his lexicon DerivBase.hr achieves precision
and recall scores of over 81% and 76%, respectively.

Future Directions. Our analysis in Section 4.4.3 has shown that the recall of DE-
rivBase is very satisfactory, but that precision is not: The derivational families contain
about 15% false positives (N, C, L cases), mostly arising from overgeneration due to
different reasons. Unquestionably, it is desirable to rule out these incorrect lemmas.
Addressing the most crucial reasons for false positives mentioned above, it would make
sense to design further statistical or rule-based restrictions to the application of derivation
rules. For instance, one could add checks for particularly short (and therefore error-prone)
base words, or restrict the application of rules that are known to overgenerate (e.g.,
conversions on lemmatisation errors, or stem-changing rules). Also, named entities
which often cause overgenerations, could be specifically treated, e.g., by expanding the
inflectional patterns P accordingly (i.e., the noun patterns would not only reflect gender
information, but also whether the corresponding word is a common or a proper noun).
Finally, the length of the derivation rule path of a lemma pair could be considered when
one determines the probability that the lemma pair is actually related.

Moreover, there is a substantial amount of purely morphologically related words
(M cases, about 10%) in DErivBase. We would expect that, despite the DCA (cf.
Section 2.1.3), which relies on the semantic transparency of most derivational relationships,
these M lemmas might worsen the usefulness of our lexicon when it is applied to semantic
NLP tasks. Thus, from a practical point of view, even these M pairs should be removed
from the families. We would hope that such a semantically sensitive version of the lexicon
would perform better. As a side benefit of such a semantic refinement, many actual false
positives (categories N, C, L) might also be excluded from the derivational families.

16http://takelab.fer.hr/data/hofm/; license BSD 3-Clause. Last accessed: May 2015

83

http://takelab.fer.hr/data/hofm/

4.5 Summary

As we find this question of a semantic refinement very challenging as well as method-
ologically interesting, we will address it in Chapter 5. In this context, we also consider
some of the restrictions proposed above that follow from our false positive analysis.

Alternative Approach: Induction of Derivational Families Using a Morphological
Analyser. In Section 3.1.2, we have mentioned that the most traditional topic in
morphology is morphological analysis and generation, and presented various lexicon-
based analysis tools for German. Thus, the question arises whether the DErivBase
induction using HOFM that we have presented in this Chapter might be dispensable,
and a derivational lexicon could be instead induced by means of such an analyser, and
its underlying lexicon; e.g., with SMOR, one of the best German analysers. Such a tool
could similarly lead to derivationally related lemmas and thus, to derivational families.

To test this hypothesis, we implemented a wrapper to make SMOR predicting deriva-
tional relationships for pairs of lemmas: The SMOR analyser is applied off-the-shelf to
both lemmas of a pair (l1, l2), and typically returns several analyses per lemma, which
differ either in morphological features, or in the assumed base lemma(s).17 Whenever
various analyses with different base lemmas are detected, one can select SMOR’s preferred
base lemma. For instance, the ambiguous analysis of abkömmlichA (available) is:

ab<VPART>kommen<V>lich<SUFF><+ADJ><Pos><Adv>

ab<VPART>kommen<V>lich<SUFF><+ADJ><Pos><Pred>

abkömmlich<+ADJ><Pos><Adv>

abkömmlich<+ADJ><Pos><Pred>

with the preferred base lemma being abkömmlich. To determine derivational relationship,
we implemented a transitive link on the analyses of both lemmas (l1, l2). We experiment
with two link models:

maxLink: Whenever one analysis of l1 consists of the same base lemmas and parts of
speech as one analysis of l2, we consider this lemma pair as derivationally related
via SMOR; otherwise, the lemma pair is not derivationally related.

prefLink: Only if SMOR’s preferred base lemma (and part of speech) is able to link l1
and l2, we consider this lemma pair as derivationally related via SMOR.

For example, for the lemma unabkömmlichA (engaged), SMOR also provides analyses
containing both the base lemma kommen and abkömmlichA (available), the latter again
being the preferred one. Thus, both the maxLink and the prefLink model can establish a
derivational relationship to the abovementioned abkömmlich, but only the maxLink would
be able to additionally connect abkömmlich with more distant members of the kommen
family, e.g., ankommenV (to arrive). Note that in this process, we cannot provide SMOR
with the parts of speech gained in our corpus preprocessing (cf. Section 4.2.3), as this
information is not accepted by the analyser. Instead, SMOR looks up the part of speech
in its internal lexicon.

17An SMOR analysis can consist of several lemma-part of speech pairs, e.g., for compounds.

84

4.5 Summary

Precision Recall

Method P-sample R-sample

SMOR maxLink 93.7 69.4
SMOR prefLink 92.6 38.1
DErivBase initial 84.2 60.5
DErivBase v1.4.1 85.0 91.4

Table 4.13: Precision and recall for different SMOR and DErivBase versions

We apply both link models to both our P- and R-sample, and measure precision and
recall as explained in Section 4.4.1. Table 4.13 shows the results for SMOR, and repeats
the performance of DErivBase from Table 4.9.18 We measure significance of precision
and recall differences with bootstrap resampling (Efron and Tibshirani, 1993).

Both SMOR variants achieve a remarkably high precision of over 92%, while the recall
is rather low for the maxLink model and very poor for the prefLink model. The high
precision arises from SMOR’s low rate of false positives in the P-sample. While some
of the correctly rejected true negatives are erroneous rule applications (e.g., a spurious
ver- prefixation for ArmNm – VerarmungNf (armN – impoverishmentN), the majority of
pairs rejected by SMOR involve a lemmatisation error (L). More specifically, over 70% of
the L pairs in the P-sample are correctly rejected, thus dramatically increasing precision.
As a consequence, both SMOR models outperform the precision of both DErivBase
versions significantly at p=0.001. This big performance difference is at least partly due
to a technical issue: DErivBase, being constructed with a corpus-based approach, relies
on the correctness of both the underlying corpus data, and the corpus preprocessing.
However, the noun gender predicted by MATE is often incorrect (cf. Section 4.4.3) due
difficult input data. In contrast, SMOR, being constructed with a lexicon-based approach,
employs its own, to a considerable amount manually compiled morphological information,
so that such errors are avoided a priori.

SMOR’s high precision comes at the cost of recall, though. For the prefLink model,
recall is exceptionally low and even significantly below the performance of DErivBase
initial (at p=0.001), although this is the first, incomplete version of our derivational
lexicon. The reason is that SMOR’s preferred base lemmas differ for many derivationally
related lemma pairs and thus, no transitive link can be established. This fact suggests
that, for the purpose of derivational relatedness detection, one should not rely on
SMOR’s internally preferred analysis, but use the maxLink model instead. Here, recall is
clearly better, however, still significantly below that of DErivBase v1.4.1 (at p=0.001):
Surprisingly, many derivationally related words are not derived from the same stem in

18Note that a comparison of SMOR and DErivBase initial must be treated with caution: This
DErivBase version only implements a subset of German derivational processes – in particular, very
few prefixation rules (cf. Section 4.2.4) – and thus naturally achieves lower recall.

85

4.5 Summary

SMOR, thus leading to fragmented derivational families. For instance, the M lemma
pair ZweifelNm – verzweifelnV (doubtN – to despairV) cannot be transitively connected
with SMOR, because the only base word retrieved for the former lemma is Zweifel, while
the analyses of the latter contain zweifelnV (to doubt) and verzweifelnV . This severe
quantitative drawback also concerns entire families. As an example, consider the following
derivational family:

hausenV (to resideV), hausendA (residingA), häuslichA (domesticA),
HausN (houseN), HäuschenN (small houseN), GehäuseN (shellN)

SMOR outputs three different base lemmas for this family, which are not connected by
any morphological analysis: hausenV for the first three lemmas, HausN , for the fourth
and the fifth, and GehäuseN for the last lemma. Thus, two links are missing, and the
lemmas cannot be conflated into one family, but end up in three separate families.

In sum, we do not feel that SMOR, although achieving high precision, is competitive
with the procedure proposed in this thesis: Its recall is too low to ensure sufficiently high
coverage for broad applicability. While the results might be sensible from a word-structure
perspective that focuses on the morphemes of a word rather than its connections to
morphologically related words, such a behaviour is clearly undesirable for the induction
of a derivational lexicon with maximal possible coverage. Furthermore, the construction
procedure of SMOR and its underlying lexicon is more time-consuming than that of
DErivBase, which would require more initial effort when it is transferred to another
language: Our approach only requires the implementation of derivation rules in a
language-independent, generic framework.

Nonetheless, we believe that SMOR could help to further improve the performance
of DErivBase: It could be used to reject incorrectly lemmatised corpus data from
the very beginning, i.e., as a preprocessing step. As mentioned in Section 3.1.2, such
a strategy might achieve synergy effects between the lexicon-oriented, and the word
structure-oriented perspective. In the following, we do not consider such an ensemble
strategy, but leave it for future work.

86

5 Semantic Validation of DErivBase

Chapter 4 illustrated our approach to induce a computational derivational lexicon, and
which information this lexicon contains: DErivBase is a morphological resource, as it
consists of families of derivationally related lemmas. Additionally, it provides linguistic
information about the derivation rules involved to derive the lemmas within one family.
We compiled DErivBase as a purely morphological resource, i.e., we concentrated
on the main assertion of the Derivational Coherence Assumption (cf. Section 2.1.3)
and the intuition of authors of other derivational lexicons (Habash and Dorr, 2003),
that derivationally related words are often semantically related and thus, a derivational
lexicon is a valuable resource. The appropriateness of this assumption is not completely
warranted, though. There is a strong correlation between derivational morphology and
semantics, but it is not perfect: On the semantic level, there is a broad continuum
of semantic relatedness across derivationally related word pairs. They can be quasi-
synonyms (transparent derivations) as well as have fairly different meaning (opaque
derivations).1 The (synchronic) opacity, or semantic drifts, of derivation can have a
number of reasons (Lieber, 2009), including homography (arm as body part or weapon),
accidental instantiation of derivational patterns (corn – corner), and diachronic meaning
drift (dog (animal) – dogged (determined)). In other words, a substantial number of the
lemma pairs in DErivBase are false positives regarding the level of semantic relatedness.
We believe that capturing these semantic differences is important from a linguistic
point of view. For that reason, our goal is to filter the information in DErivBase by
incorporating a semantic level that sub-groups derivational families into semantically
coherent clusters, as proposed in Section 2.3. In doing so, we address the restriction
mentioned as a last remark of our DCA: Only transparent derivational relationships are
expected to contribute valuable semantic information. Thus, for a sensible application
in lexical semantics, a derivational lexicon should concentrate on these pairs. In this
Chapter, we refine DErivBase beyond purely morphological requirements: Not all, but
only semantically transparent derivations are considered semantically related.

For an illustration of this problem on the level of families, consider Figure 5.1, an
excerpt of Figure 4.1, which explained the DErivBase induction. This sample family
contains three lemmas, connected by two rules: eitelA – vereitelnV – VereitelungN
(vainA – to blockV – blockingN). The -ung suffixation rule between the second and the
third lemma is semantically transparent, even across the part of speech boundary; its

1Although semantic relatedness is generally distributed on a graded scale and not binary, this operational
simplification, which is often used in computational linguistics (cf. Section 2.1.3, is reasonable here:
As noted in Section 4.3.3, our manual annotation labels can be binarised with respect to semantic
relatedness, and the good inter-annotator agreement (cf. Table 4.6) supports this decision. Thus, we
will adopt a binary perspective on semantic relatedness in the following.

87

eitelA ̸M−→ vereitelnV
S−→ VereitelungN

Figure 5.1: Induced sample family

corresponding category is therefore S (cf. the annotation categories in Section 4.3.3).
In contrast, the ver- prefixation applied between the first and the second lemma is
opaque and thus labelled M. That is, within a derivational family, some lemma pairs are
semantically related, while others are not. We tackle this problem by a method we call
semantic validation: For each related lemma pair in DErivBase, we decide whether it
is also semantically related (transparent); based on these decisions, we split semantically
inconsistent families. In the example, this would mean to detach the lemma eitelA from
the other two (as indicated by the deleted arrow), which then constitute a two-member
semantic family, and eitelA a singleton family.

This Chapter describes how we incorporate such semantic coherence into DErivBase.
More specifically, we develop methods to determine, for lemma pairs in the same deriva-
tional family, whether they are also semantically related. Recall that DErivBase, as it is
induced semi-automatically, also contains completely unrelated (N) and compositionally
related (C) lemma pairs as well as lemmatisation errors (L). Note that we do not aim at
detecting all five relation categories introduced in Section 4.3.3, but treat all derivationally
related, but semantically unrelated lemma pairs (M, N, C, L) equally.2 That is, our
semantic clusters within derivational families may only contain lemma pairs of the S
category; all other pair types are discarded. We regard such a filtering as the logical next
step to increase the linguistic appropriateness of DErivBase.

As described in Chapter 4, we conducted the morphological lexicon induction with a
symbolic approach, because derivation can be well generalised and described with rules.
In contrast, semantic relatedness is composed of a variety of factors, i.e., there are many
reasons for semantic drifts. We think that it would be hard to design a formal, rule-based
framework that reflects these interdependencies. Instead, we choose a data-driven method,
and conduct semantic validation with machine learning. More specifically, we employ
a binary classification model that separates semantically related and unrelated lemmas
based on features extracted from two main information sources: On the one hand, we
employ distributional semantic models, providing us with information about the semantic
relatedness of two words attested on large corpora. We expect this information to be

2In fact, compositionally related (C) pairs are somewhat semantically related. But since such pairs are
extremely rare through the rule-based construction of DErivBase, and their semantic transparency
is questionable, we do not treat them as semantically related.

88

5.1 Towards Semantic Validation of a Rule-based Derivational Lexicon

valuable for the semantic clustering we intend, similar to other semantic classification
studies (Schulte im Walde, 2006, Boleda et al., 2012). On the other hand, we use structural
linguistic information encoded in the derivation rules with which we induced DErivBase;
it helps to examine the behaviour of derivational processes regarding semantic coherence.
After analysing to what extent these two sources contribute to semantic validation, we
model their characteristics as features to train the classifier.

Distributional similarity as well as relatedness by a derivational rule path refer to pairs
of words rather than entire families. However, this is unproblematic: As mentioned in
Section 2.3, there are two perspectives on a derivational family; it can either be regarded
as a set of lemmas, or as a set of (independent) lemma pairs. For our basic idea of
semantic validation, we assume the latter perspective, and determine the distributional
similarity as well as the derivational rule information for pairs of lemmas taken from the
same family. In a subsequent step, we will then propagate this pairwise information to
(heuristic) global decisions on the family level.

We start by assessing the quality of DErivBase from a semantic point of view,
and by reflecting which strategies can be used for its semantic validation (Section 5.1).
In Sections 5.2 and 5.3, we analyse the contributions of semantic information from
distributional semantics, as well as structural information from our derivational rules.
Section 5.4 explains the feature set motivated from these two information sources and
the training of the classifier for semantic validation, and reports the performance of
our model. Section 5.5 illustrates how we propagate the pairwise information to entire
families, including qualitative considerations. Section 5.6 concludes this Chapter.

5.1 Towards Semantic Validation of a Rule-based Derivational
Lexicon

In this Section, we assess the validity of our error analysis in Section 4.4, now focusing on
semantic aspects. Based on these observations, we establish two working hypotheses with
which we define possbile information sources for a semantic validation of DErivBase.

5.1.1 Morphological vs. Semantic Relatedness in DErivBase

The evaluation in Chapter 4 is limited in one important respect: It considers all instances
of S and M as true positives. In other words, we only evaluated precision and recall for
the morphological relatedness of the lemma pairs, but not for their semantic relatedness;
opaque and transparent derivations were not distinguished. As we change our perspective
in this Chapter, we re-evaluate DErivBase with respect to only transparent derivations.

Data Basis for Semantic Validation. Recall our P- and R-samples explained in Sec-
tions 4.3.1 and 4.3.3, consisting of 2,545 and 2,000 lemma pairs, respectively. Each
lemma pair is classified into one of five categories, of which only S attests derivational
and semantic relatedness. That is, the samples can be interpreted as providing binary
semantic information: Either a lemma pair is connected by a transparent derivation (S),

89

5.1 Towards Semantic Validation of a Rule-based Derivational Lexicon

“Positive” Precision Recall
class % %

S and M 85.1 91.4
S only 74.6 93.8

Table 5.1: Evaluation of DErivBase (v1.4.1), once with a morphological and once with
a semantic perspective on the “positive” class

or not (M – opaque derivation, N, C, L – unrelated; note the difference to the binary
partitioning in Section 4.3.3, in which also M counted as positive).

Table 5.1 shows a new precision and recall evaluation of DErivBase (again measured
on the P- and the R-sample, respectively), this time focusing on the S instances. Recall
that in the sampling procedure, we relied on rule-based derivational families and string
distance measures (cf. Sections 4.3.1 and 4.3.3), so that we are unlikely to encounter
lemma pairs that are semantically, but not morphologically related (i.e., synonymous
pairs such as couch and sofa).

The first line in the Table, in which S- as well as M-labelled lemma pairs are accepted
as true positives, is a repetition of Table 4.9, i.e., it merely evaluates the morphological
quality of DErivBase. The scores change substantially when only truly semantically
related S pairs count as true positives. Recall increases by 2.4%, because the R-sample
contains more M cases among the lemma pairs not covered by DErivBase than S cases
relative to the total number of each label; as can be seen in Table 4.8, the R-sample
contains far less M than S pairs, so that missed M instances have more impact. In
contrast, precision drops by 10.5%, as all covered M pairs count as false positives: About
one quarter of all pairs in the lexicon are not semantically related. That is, DErivBase
cannot be straightforwardly applied to collect information about semantic relatedness, as
it provides many opaque derivations. We see here a clear room for improvement of the
semantic meaningfulness of the lexicon. As we address such an improvement by filtering
the derivational families, it relates to the precision of DErivBase, while recall issues
(i.e., uncovered lemmas) are out of scope. Thus, the P-sample will form the basis of all
our observations in this Chapter, while the R-sample is irrelevant.

We aim at achieving the semantic validation with supervised machine learning methods,
which means that we need to keep an unseen part of the data for testing. Thus, we
randomly divided the P-sample into a development and a test partition (70:30 ratio,
corresponding to 1,780 and 763 lemma pairs, respectively3). The distribution of the
annotation categories in the whole P-sample and in the development and test partitions,
respectively, is shown in Table 5.2 (again, the first line is repeated from Table 4.8). The
distribution of the labels is fairly similar across development and test set.

3We removed two of the 2,545 pairs due to preprocessing issues.

90

5.1 Towards Semantic Validation of a Rule-based Derivational Lexicon

S M N C L

Frequency overall 1899 265 240 8 131
Frequency on dev. set 1345 184 159 6 86
Frequency on test set 554 81 81 2 45

Percentage overall 74.6 10.4 9.4 0.3 5.2
Percentage on dev. set 75.6 10.3 9.0 0.3 4.8
Percentage on test set 72.6 10.6 10.6 0.3 5.9

Table 5.2: Class distribution in the P-sample

Table 5.2 shows that most semantic errors are M- and N-labelled pairs: Each class
accounts for around 10% of the pairs. M mostly refers to semantic drifts or different
senses of the same stem, while N is often due to rule overgeneration (cf. Section 4.4.3).
These two cases are the main focus of our semantic validation, making up over 78% of
the false positives; we consider the few C cases negligible for semantic validation, and
we also do not focus on the lemmatisation errors L (about 5%), as they depend on the
preprocessing tools and are only partly attributable to the lexicon induction.

5.1.2 Hypotheses for Semantic Validation

The analysis in the preceding Section shows that DErivBase contains a substantial
number (around one fourth) of semantically unrelated lemma pairs, an issue that we
address with semantic validation. By semantic validation, we mean computational
procedures to determine, for each derivationally related lemma pair, whether it is in fact
semantically related (transparent), and to filter out unrelated (opaque) pairs. For now,
we do not target the prediction of entire semantically related families, but only of pairs
drawn from them. We consider this a first step towards splitting the morphologically
motivated families into smaller, semantically coherent clusters; Section 5.5 illustrates
how we transfer the pairwise decisions to entire families.

For the semantic validation, we need indications how to separate semantically related
and unrelated lemmas. Recall that the only information available from DErivBase is:

1. The two lemmas which are members of a common derivational family4

2. The sequence of (one or more) derivational rules which connects this lemma pair.

While the mere lemma pair cannot provide indications for semantic validation, we
believe that universal semantic information for these pairs taken from distributional
similarity (Turney and Pantel, 2010) offers valuable information for our classification.

4In fact, we consider pairs of lemma-pattern pairs, as in Chapter 4. In order to avoid confusion of
lemma-pattern pairs and sample lemma pairs, we refer to the former as “lemmas”.

91

5.2 Analysis 1: Distributional Similarity for Semantic Validation

Also, from the rule path applied per lemma pair, we expect access to indicators for
semantic validation: As Sections 4.4.2 and 4.4.3 show, rules behave differently with
respect to semantic transparency and correctness. Thus, we base our work for the binary
classification on two general hypotheses about these information types:

Hypothesis 1: Distributional similarity indicates semantic relatedness between deriva-
tionally related words.
The instances of polysemy and semantic drift that we observe – particularly in the
M class – motivate the use of distributional similarity. As these lemma pairs are
semantically fairly different, we expect them also to be distributionally less related
than cases of true semantic relatedness.

Hypothesis 2: Derivational rules differ in their reliability.
The existence of M and N pairs indicate that some rules are more meaning-
preserving than others. We expect this to be tied to both lexical properties of the
rules (e.g., particle verbs are more likely than diminutives to radically change the
meaning) and structural properties (e.g., more specific rules are presumably more
precise than generic rules).

In the following two Sections, we analyse the lemma pairs in the P-sample with respect
to the appropriateness of these assumptions, and then operationalise our hypotheses. It
is understood that all subsequent analyses consider only the development portion of the
P-sample, while we leave the test portion untouched.

5.2 Analysis 1: Distributional Similarity for Semantic Validation

In distributional semantics, the similarity between two words is deduced from their
contextual similarity in large text corpora (Turney and Pantel, 2010). As noted in
Section 3.2, distributional information has recently been used to approximate semantic
aspects of derivational morphology. In this Section, we investigate whether measuring
the similarity of our derivationally related lemma pairs on a standard distributional
model provides evidence for their semantic validation. Specifically, we examine whether
distributional information helps detecting idiosyncrasies in the semantic drifts that happen
through opaque derivation (i.e., errors of the M category) as opposed to transparent S
derivations. Also, we expect a distributional model to identify N pairs.

We expect the distributional methods to behave somewhat differently on our lemma
pairs compared to other datasets, as most pairs of the P-sample are derivationally
related and thus form a specific subsample with respect to the general population of
word pairs: Derivationally related words are – using the words of Schütze and Pedersen
(1993) – neither syntagmatic associates (co-occurring, like mashed potatoes), nor clear
paradigmatic parallels (substitutive, such as cup of tea/coffee). Also, many distributional
approaches investigate sets of words from the same part of speech (e.g., Boleda et al.
(2012)), while our lemma pairs exhibit systematical variation in parts of speech. Both

92

5.2 Analysis 1: Distributional Similarity for Semantic Validation

aspects might influence the applicability and performance of distributional methods; to
our knowledge, this situation has not been addressed in previous studies.

We begin by explaining how we parametrised the distributional vector space in Sec-
tion 5.2.1. Then, we elaborate on the two main difficulties we encountered when employing
distributional information for semantic validation: Frequency issues (Section 5.2.2), and
conceptual issues (Section 5.2.3). Section 5.2.4 proposes an alternative to standard
distributional measures that might overcome these issues.

5.2.1 Measuring Distributional Similarity

We examine semantic similarities as predicted by simple bag of words spaces built from
the lemmatised SdeWaC (cf. Section 4.2.3). We compute vectors for all lemma-part of
speech combinations covered in DErivBase using a window of ± 5 words within sentence
boundaries, and considering the 10,000 most frequent lemma-part of speech combinations
of nouns, verbs, and adjectives in SdeWaC as contexts (note that we generalise the
inflectional verb and noun patterns from Chapter 4, so that we now use three simple
parts of speech). Distributional vectors are built from co-occurrences which are measured
with Local Mutual Information (LMI) (Evert, 2005). The semantic similarity is measured
by the cosine similarity between the vectors.

Recall from Section 4.2.3 that DErivBase contains all lemmas that occur at least
three times in SdeWaC. As a consequence of Zipf’s law, the majority of the 280k covered
lemmas are very infrequent: About 5% of the lemmas occur three, about 12% up to five,
and about 25% up to ten times in SdeWaC, respectively. Due to the versatile inflection
in German, it is important to retrieve as many occurrences of each lemma as possible.
On the other hand, we aim at acquiring an accurate representation. We thus compare
two different lemmatisation techniques:

Conservative lemmatisation: We re-employ the lemmatisation used to induce DE-
rivBase, i.e., we obtain lemmas from the lexicon-based TreeTagger (Schmid,
1994). It lemmatises unrecognised words as ⟨unknown⟩, which leads to a sparser,
but more reliable vocabulary representation, especially for the open-class words in
which we are interested.

Liberal lemmatisation: We use TreeTagger lemmas, but fall back on lemmas and parts
of speech produced by the MATE toolkit (Bohnet, 2010) when TreeTagger abstains.
MATE is based on a probabilistic model trained on TIGER (Brants et al., 2004).
Thus, it has a higher coverage (i.e., it predicts a lemma an part of speech for each
token), but is less precise.

5.2.2 Influence of Frequency on Similarity Predictions

Small frequencies are a potential problem when we build distributional representations
for all lemmas in DErivBase since it is known from the literature that similarity
predictions for infrequent lemmas are often unreliable (Bullinaria and Levy, 2007). Such

93

5.2 Analysis 1: Distributional Similarity for Semantic Validation

unreliabilities even occur in bag of words spaces, where sparsity is less problematic than,
e.g., in syntax-based spaces.

To investigate whether the distributional representation of infrequent lemmas is indeed
problematic, we manually examine the predictions of our two bag of words models
with conservative and liberal lemmatisation: We calculate the cosine similarity for the
P-sample lemma pairs on each model, and compare their predictions on the binary gold
categories (S vs. non-S). We also consider the amount of contexts shared by the lemma
pair in the respective space as an indication for relatedness. According to Hypothesis 1,
we expect semantically unrelated pairs to have lower similarity scores and less shared
contexts than semantically related pairs. In the following, we discuss the performance
differences of the two lemmatisation strategies.

Frequency Behaviour for Conservative Lemmatisation. Using the bag of words model
with conservative lemmatisation, many lemmas of our P-sample pairs share only few or
even no dimensions. That is, their cosine is very low or zero, even when they are semanti-
cally strongly related. For example, both lemmas in DrogenverkaufN – DrogenverkäuferN
(drug selling – drug seller) have only nine words as dimensions, and those are completely
disjoint.

Another problem is polysemy: If, in a lemma pair (l1, l2), l1 is polysemous, but has
a semantic relation to l2 with its non-predominant sense, the shared contexts are not
informative enough to reflect this semantic relatedness. For instance, the first lemma
of the pair gravierendA – graviertA (severe/engravingA – engravedA) has two meanings,
where only the predominant sense (severe) is very frequent in the corpus. This lemma
pair shares a reasonable number of contexts (i.e., 119). However, these dimensions contain
intuitively uninformative lemmas (e.g., to exist, broad, to link, to show), which is reflected
in low LMI scores. Thus, the cosine for the word pair is close to zero.

We observe that such underestimations of semantically related S pairs constitute a
general trend in the conservative lemmatisation model, assigning very low cosine scores
to most S pairs. Notably, this phenomenon even affects lemma pairs for which there
are sufficient attestations in the corpus. Such low similarity scores are problematic for
separating related from unrelated pairs, because their scores are too similar to define a
reasonable cutting line between them. Table 5.3 shows that, although the average cosines
of semantically transparent and opaque derivations clearly differ, many S cosine scores
are very low and thus close to M predictions in the conservative model.

Frequency Behaviour for Liberal Lemmatisation. In comparison, the bag of words
model with liberal lemmatisation returns slightly better similarity estimates. Falling back
to MATE when TreeTagger cannot provide a lemma frequently leads to more shared
contexts for the lemma pair, and the additional dimensions are often informative. For
example, the S lemma pair auferstehenV – auferstehendA (to resurrectV – resurrectingA)
has seven more common dimensions in the liberal model, including the informative words
Jesus, Lord, myth, and suffering. Correspondingly, the cosine value of this pair rises by
50%. Generally, the amount of zero cosines in the P-sample drops by 45% using the two-

94

5.2 Analysis 1: Distributional Similarity for Semantic Validation

Conservative Liberal
lemmatisation lemmatisation

S pairs

cos = 0.0 5% 3%
cos < 0.1 56% 54%
cos < 0.2 83% 81%
cos < 0.3 96% 95%

avg. cosine 0.14 0.15

M pairs

cos = 0.0 11% 4%
cos < 0.1 92% 93%
cos < 0.2 97% 97%
cos < 0.3 98% 99%

avg. cosine 0.03 0.03

Table 5.3: Percentage of S and M lemma pairs with low cosine scores, and average cosine

step lemmatisation compared to conservative one-step lemmatisation. The liberal bag of
words model even raises cosine scores for rather infrequent, but semantically transparent
lemma pairs like WucherN – wucherischA (usuryN – usuriousA) (cosine 0.28 vs. 0.07) or
welkA – verwelkendA (fadedA – fadingA) (cosine 0.62 vs. 0.23). We also observe decreasing
cosines and amounts of shared contexts for semantically unrelated pairs: The cosine score
of the N lemma pair ArmN – VerarmungN (armN – impoverishmentN) becomes slightly
lower (0.006 vs. 0.011), and its shared contexts are drastically reduced (349 vs. 1670)
in the liberal model. The fact that S pairs are assigned higher similarity scores, but M
pairs do not, is a desirable behaviour, as it facilitates separating related and unrelated
pairs. Table 5.3 shows that the liberal model assigns slightly higher similarity scores to
S pairs, while the scores for M remain stable or slightly decrease (except for cos = 0)
compared to the conservative model.

The average cosine similarities of S and M pairs in the two models, however, show
similar tendencies. Most improvements achieved by falling back to MATE lemmas are
small, and some cosines even changed contrary to our linguistic intuition. For instance,
the cosine of the unrelated N pair radelnV – radialA (to cycleV – radialA) increased from
0.15 to 0.27. Overall, the systematic underestimation of semantically related lemmas
and overestimation of unrelated lemmas is alleviated, but only slightly, as the small
differences between two models in Table 5.3 show.

In sum, the data confirms our expectations: Infrequent lemmas are indeed problematic
for validating the semantic relatedness of our lemma pairs. More specifically, semantically
related lemmas are systematically underestimated. We believe that the two-step lemmati-
sation is important for a more robust handling of infrequent words, as it provides at least

95

5.2 Analysis 1: Distributional Similarity for Semantic Validation

word pair l1, l2) context(l1) context(l2) shared contexts(l1, l2)

Überschätzung
– überschätzt
(overestimation
– overestimated),
cos = 0.09

eigen (own) völlig (totally) völlig (totally)
warnen (to alert) Problem (problem) Möglichkeit (possibility)
Möglichkeit (possibility) Gefahr (danger) Bedeutung (meaning)
führen (to lead) Autor (author) Gefahr (danger)
Kraft (force) weit (widely) Einfluß (influence)
Bedeutung (meaning) total (totally) überhöht (excessive)
Fähigkeit (ability) ernst (seriously) Macht (power)
Leistungsfähigkeit (capability) überhöht (excessive) gnadenlos (mercilessly)
neigen (to tend) gnadenlos (mercilessly) Kraft (force)
Einfluß (influence) Hollywood (Hollywood) häufig (frequent)

Entertainer –
Entertainerin
(entertainer –
female
entertainer),
cos = 0.1

Sänger (singer) Sängerin (fem. singer) Schauspieler (actor)
Schauspieler (actor) Schauspielerin (actress) Musiker (musician)
Musiker (musician) Helga (fem. given name) Talent (talent)
Harald (male given name) Mutter (mother) bekannt (well-known)
Moderator (anchorman) berühmt (famous) Sängerin (fem. singer)
Schmidt (surname) brillant (brilliant) beliebt (popular)
groß (big) Lisa (fem. given name) groß (big)
Künstler (artist) Künstlerin (fem. artist) berühmt (famous)
Talent (talent) verstorben (deceased) Sportler (sportsman)
gut (good) Talent (talent) Schauspielerin (actress)

Table 5.4: Top ten individual and shared context words for the targets ÜberschätzungN
– überschätztA and EntertainerN – EntertainerinN . Individual context words
are ranked by LMI, shared context words by the product of their LMIs for the
two target words. Shared context words that occur in the top ten contexts for
both words are marked in boldface

a slightly better basis than the conservative lemmatisation for both semantic similarity
and dissimilarity estimations. Thus, we rely in the following on the liberal lemmatisation
strategy. However, since there are only small gains, a more general question arises;
namely whether there are any conceptual difficulties which avoid a beneficial application
of distributional knowledge to derivationally related lemma pairs.

5.2.3 Conceptual Influences on Similarity Predictions

In addition to the frequency considerations discussed above, we find three conceptual
phenomena that affect distributional similarity independently of frequency aspects:
derivation across parts of speech, (semantic) markedness, and subtle semantic drifts.

The first aspect concerns the influence of the parts of speech of base and derived word,
respectively, to the usefulness of distributional bag of words model. Our derivation rules
comprise a large number of distinct patterns; some of them do not cross part of speech
boundaries (gender indicators like MeisterN – MeisterinN (masterN – mistressN) or
attenuations like rotA – rötlichA (redA – reddishA)), but many do, e.g., klugA – KlugheitN

96

5.2 Analysis 1: Distributional Similarity for Semantic Validation

(cleverA – clevernessN). Naturally, if a derivational rule changes the part of speech of
the input lemma, the parts of speech of its context words change as well. Consequently,
context overlap decreases. For example, ÜberschätzungN – überschätztA (overestimateN –
overestimatedA) is assigned a cosine of merely 0.09. The upper half of Table 5.4 shows the
top ten individual and shared context words for this pair, ranked by LMI. The context
words of the noun are mainly nominal heads of genitive complements (overestimation of
possibility/force/. . .), while the context words of the adjective comprise many adverbs
(totally/widely/. . . overestimated). We assume that pragmatic aspects come into play here:
If a text aims at evaluating an event, the author may choose an adjectival expression,
as it enables an averbial rating. In contrast, the nominal variant may be used in more
neutral contexts. Table 5.4 shows that none of the shared contexts ranks among the
top ten for both individual target lemmas.5 This is even more surprising considering
that – as opposed to English – German adjectives and adverbs have the same surface
realisation (cf. Section 2.2.2). In this way, an accidental match of a context adjective for
Überschätzung and a context adverb for überschätzt would be even more likely.

The second phenomenon that we identified as influencing semantic similarity is marked-
ness (Battistella, 1996). A considerable number of derivational rules systematically
produce marked terms. A striking example is the feminine suffix -in as in EntertainerN –
EntertainerinN : Although the lemmas are intuitively very similar, their cosine is as low
as 0.1. The reason is that the female version tends to be used in contexts where the
gender of the entertainer is relevant. This is illustrated in the lower half of Table 5.4.
The first two contexts for both Entertainer and Entertainerin (singer, actor) stem from
frequent enumerations (actor and entertainer X) and are almost identical. But again,
the female versions are marked for gender, and therefore inhibit a context match. We
also find two female given names in the top ten contexts of Entertainerin, and a male
given name in the contexts of Entertainer. As a result, the target lemmas receive a low
distributional similarity.

The third issue are cases of mild semantic drifts at polysemous lemmas that were tagged
by the annotators as S. The semantic relatedness of such lemma pairs is intuitively clearly
recognisable but may be accompanied by pretty substantial changes in the distribution of
contexts. Consider, as an example, the semantically related pair AbsteigerN – absteigendA
(descender (person)N – descending/decreasingA). It achieves only a cosine of 0.005,
because Absteiger is almost exclusively used to refer to relegated sport teams while
absteigend is used as a general verb of scalar change.

5.2.4 Ranking of Distributional Information

Given the results reported in the preceding analyses of this Section, the standard
distributional approach of measuring the absolute amount of co-occurrences does not
seem very promising for derivationally related words. We expect other similarity measures
than cosine, e.g., the Lin measure (Lin, 1998b), to perform equally poorly since they do
not change the fundamental approach. Also, using larger corpora for the semantic space

5This trend can be observed even on the top 50 shared contexts.

97

5.2 Analysis 1: Distributional Similarity for Semantic Validation

vereitelt

eitel

nordirisch

Nordirin

Figure 5.2: Toy space showing differing behaviour for absolute and rank-based measures

construction does not solve the frequency issue, as Zipf’s law suggests that exponentially
more data would be required for a visible improvement (Lowe, 2001). Thus, we would
prefer to make improvements on the modelling side of semantic validation.

To this end, we follow the ideas of Jones et al. (2006), Hare et al. (2009), and Lapesa
and Evert (2013), who predict semantic priming using distributional models, but with
a slightly different perspective: They propose to consider semantic similarity in terms
of ranks rather than absolute values. The advantage of rank-based similarity is that it
takes not only into account whether a related lemma pair (l1, l2) is situated in roughly
the same region of the semantic space, but also accounts for the distribution of other
words nearby this pair, i.e., the density of regions in the space. That is, low absolute
similarity does not necessarily indicate low semantic relatedness – provided that the two
words are located in a sparsely populated region: All similarities involving one of these
lemmas might be low, but within those, the score for (l1, l2) might be relatively high.
Conversely, high similarity can be meaningless in a densely populated region.

Figure 5.2 illustrates this phenomenon in an exemplary two-dimensional space (for
purposes of illustration, we depict similarity by means of distance). The similarity of the
semantically opaque M pair eitelA – vereiteltA (vainA – blockedA) and the semantically
transparent S pair NordirinN – nordirischA (Northern IrishwomanN – Northern IrishA),
depicted with a line, is identical:

sim(eitel, vereitelt) ≡ sim(Nordirin, nordirisch)

However, the pair eitelA – vereiteltV is located in a substantially denser region than the
pair NordirinN – nordirischA. A rank-based similarity measure takes this difference into
account. It assigns a lower rank to the former lemma pair than to the latter, since many

98

5.3 Analysis 2: Derivational Rules for Semantic Validation

words are closer to the respective target lemma, and thus obtain a higher rank:

rank(vereitelt|eitel) = 18

rank(nordirisch|Nordirin) = 3

An additional conceptual benefit of rank-based similarity is that it is directed : It is
possible to distinguish the “forward” rank (the rank of l1 in the neighborhood of l2) and
the “backward” rank (the rank of l2 in the neighborhood of l1). As to the toy example
in Figure 5.2, this means that

rank(eitel |vereitelt) = 14 ̸= rank(vereitelt |eitel) = 18

rank(Nordirin|nordirisch) = 4 ̸= rank(nordirisch|Nordirin) = 3.

The real cosine similarities of these lemma pairs in our distributional model reflect exactly
this behaviour: The raw cosine is identical, but the M pair has a far lower rank-based
similarity than the S pair for both forward and backward rank, indicating its lower
semantic relatedness:6

cos(eitel , vereitelt) = cos(Nordirin,nordirisch) = 0.01

rankcos(eitel |vereitelt) = 476; rankcos(vereitelt |eitel) = 443

rankcos(Nordirin|nordirisch) = 227; rankcos(nordirisch|Nordirin) = 367

Similarly, the previous studies mentioned above found rank-based similarity to be
more beneficial for the prediction of priming effects than absolute cosine. This suggests a
refined version of our Hypothesis 1 in Section 5.1.2:

Hypothesis 1’: High rank-based distributional similarity indicates semantic relatedness
between derivationally related words.

5.3 Analysis 2: Derivational Rules for Semantic Validation

As discussed in Section 5.1.2, a second source of information is provided by the derivational
rules that are encoded in DErivBase. More specifically, we want to utilise the linguistic
information about derivational processes that is explicitly available in the lexicon. Our
intuition is that some rules are always semantically transparent, i.e., that they reliably
connect semantically similar lemmas, while other rules tend to cause semantic drifts. To
examine this question, we focus our analysis on all lemma pairs in the P-sample that are
connected by derivation rule paths of length one, which we call “simplex paths”: They
are easy to analyse, and make up a majority of the P-sample (about 54%). Longer paths
(“complex paths”) are briefly considered below.

We find that the rules indeed behave differently. For example, the -in female marking
rule explained in Section 5.2.3 is very reliable: Every lemma pair connected by this rule

6Section 5.4.1 explains in detail how we determine the rank-based similarity.

99

5.3 Analysis 2: Derivational Rules for Semantic Validation

is semantically related.7 At the other end of the scale, there are rules that consistently
lead to semantically unrelated lemmas, e.g., the ver- noun-verb prefixation: ZweifelN
– verzweifelnV (doubtN – to despairV). Suffixes originating from Latin and Greek like
-ktiv in instruierenV – instruktivA (to instructV – instructiveA) retain semantic relat-
edness in most cases, but sometimes link actually unrelated lemmas. For example,
ObjektivN – ObjektivismusN (lensN – objectivismN) is an N pair for the suffix -ismus.
Finally, conversions and very short suffixes are less reliable: Since they easily match
(cf. Section 4.4.3), they are often applied to incorrectly lemmatised words (L), e.g., the
-n suffix, which relates nationalities with countries: SchwedeN – SchwedenN (SwedeN
– SwedenN). It matches many wrongly lemmatised nouns due to its syncretism with
the plural dative/accusative suffix -n, as in SchweineschnitzelN – SchweineschnitzelnN
(pork cutletN – pork cutletsdat/acc-plN).

This different behaviour of the rules suggests that rule-specific reliability is a promising
feature for semantic validation. Thanks to its construction, DErivBase provides the
rules applied to a lemma pair, so that these reliabilities can be “read off”.

For many rules, however, the variance between the individual lemma pairs that
instantiate the rule is large, and the question whether the rule is appropriately applied is
influenced by the particular combination of rule and lemma pair. We examined various
indications for the reliability of such rules, e.g., their overall application frequency, the
conducted derivation operation (prefixation, suffixation, etc.), and the part of speech
combinations of base and derived lemma. However, none of these properties leads to
clear-cut semantic patterns in the data, so that it was not possible to establish concrete
directives that would describe a rule’s reliability. The fact that the rule occurrences are
Zipf-distributed and many rules apply infrequently to the lemma pairs in the P-sample,
additionally complicates the analysis.

Regarding word pairs that are linked by “complex paths”, i.e., more than one rule
(e.g., the lemma pair eitelA – VereitelungN in Figure 5.1), our main observation is that
rule paths clearly show a “weakest link” property. One unreliable rule can be sufficient
to cause a semantic drift, and only a sequence of reliable rules is likely to link two
semantically related words. Naturally, the longer a derivation rule path is, the less likely
the respective lemma pair is semantically related.

In sum, although we could not detect clear-cut patterns from the derivation rules to
conduct semantic validation, the rules clearly do differ in their reliability. For these
reasons, we suggest that distributional knowledge and structural rule information should
be combined, a direction that we will pursue in Section 5.4 to approach the semantic
validation challenge.

7Although many German nouns ending in -in do not denote the female analogue of a person-denoting
noun, e.g., Pinguin (penguin), the corresponding DErivBase rule does not match such cases, because
there is no lemma *Pingu from which the allegedly female variant could be derived.

100

5.4 A Classification Model for Semantic Validation

5.4 A Classification Model for Semantic Validation

This Section shows how we implement the semantic validation as a binary classification
task. We first present the features used for the semantic validation, motivated from our
analyses in the previous Sections (Section 5.4.1), then, we outline the parametrisation of
the classifier (Section 5.4.2). Section 5.4.3 reports the results of our classification models.

5.4.1 Features for Semantic Validation

Recall that we classify lemma pairs drawn from derivational families. That is, each
instance is a complex object consisting of two lemmas (l1, l2). Additionally, we know a
derivation rule path connecting the pair. Our analyses of the previous Sections motivate
35 linguistic features that make up the feature vector for a lemma pair in our P-sample.
We divide these features into three feature groups: Distributional, derivation rule-based
(“structural”), and hybrid features. Table 5.5 lists them and gives a short explanation
for each feature. The three groups are explained in detail in the following.

Our observations emerged from three different information levels: lemmas, lemma
pairs, and rules. We thus assigned each feature a type, indicating whether it applies to
merely one lemma of a pair instance (l), to the lemma pair (p), or whether the feature
applies to information from the derivation rules (r).

Some features described in Table 5.5 occur in two variants. There are two reasons for
such “twin features”: Either there are two different values for the two lemmas that make
up the dataset instance (e.g., the frequency of l1 and l2, respectively), or the feature
concerns rule information, and we treat information from simplex and complex rule
paths (cf. Section 5.3) in two ways. Hence, the question arises how to pass these “twin
features” to the classifier. Note that the lemmas in our P-sample pairs are not ordered
in any respect (for instance, l1 is not necessarily a derivation rule’s base word, and l2 is
not necessarily its derivative). For that reason, we arrange such “twin features” on the
basis of their values: One feature defines the minimum of the two scores, and the other
defines the maximum. Although the association between a lemma and its respective
value gets lost in such a minimum/maximum order (e.g., the higher lemma frequency
might originate from l1 or from l2), we believe that it is crucial to keep the feature vector
order-invariant – which is satisfied by such a score-oriented sort.

Distributional Features. Since rule information is not available in our distributional
model, all distributional features apply to the lemma or pair level. They are calculated
from our Bow model with liberal lemmatisation (cf. Section 5.2.1). As “traditional”
features, we use the two normalised lemma frequencies, the absolute cosine similarity, as
well as the normalised number of shared contexts for the lemma pair (computed with
LMI, cf. Section 5.2.3). According to Hypothesis 1, we expect these features to reflect
the following lemma properties: Frequency reflects the strength of lexical association
(motivated from observations on the importance of frequency considerations (Bybee
(1985, 1988), cf. Section 2.3), cosine reflects the semantic transparency of the pairs, and
shared contexts the reliability of this prediction. Additionally, we implement two features

101

5.4 A Classification Model for Semantic Validation

Feature group Type Feature name Description
(# features) (# features)

Distributio- l Lemma frequency (2) Normalised SdeWaC lemma frequencies of based
nal (6) and derived word

p Cosine similarity Standard cosine lemma similarity
p Contexts shared Number of shared context words
p Cos. rank similarity (2) Rank-based forward and backward similarity

Structural (25) r Rule identity (11) Indicator features for the top ten rules in the dev.
set, plus one aggregate feature for all other rules

r Rule reliability Percentage of rule applications to S pairs among
all applications of the rule in dev. set

r Rule frequency rank (2) Rank-based rule frequency in DErivBase based
on simplex and complex paths

r Avg. string distance (2) Minimum and maximum average Levenshtein dis-
tance for all rule instances

p POS combinations (6) Indicator features for POS combinations
p Path length Length of the shortest path between the lemmas
p String distance (2) Dice bigram coefficient; Levenshtein distance

Hybrid (4) r Average rank sim. (2) Frequency-weighted average rank similarity of
rules (forward and backward)

p Rank sim. deviation (2) Difference between lemma pair rank similarity and
average rule rank similarity (forward and back-
ward)

Table 5.5: Features used to characterise derivationally related lemma pairs. “Type”
indicates the level at which each feature applies: l=lemma level, p=pair level,
r=rule level

for rank-based cosine similarity (cf. Section 5.2.4): forward rank similarity (the rank
of l1 in the neighbourhood of l2), and backward rank similarity (the rank of l2 in the
neighbourhood of l1). To speed up processing, we compute the forward rank similarity
for a lemma pair (l1, l2) not on the complete vocabulary, but by pairing l1 with a random
sample of 1,000 lemmas from DErivBase (plus l2 if it is not included). Backward rank
similarity is computed analogously. As Hypothesis 1’ states, we expect the rank similarity
to provide better similarity predictions than raw cosine.

As indicated above, the “twin” lemma frequency and cosine rank similarity features
are ordered according to their scores, i.e., as minimum/maximum lemma frequency and
cosine rank similarity, respectively.

Structural Features. The structural features encode properties of the rules and rule
paths in DErivBase for the given lemma pair. Most features apply to the level of
derivation rules; we will consider those first.

102

5.4 A Classification Model for Semantic Validation

The first feature is the identity of the rule: For the ten most frequently applied rules
in the development set, we employ (binary) features to indicate their application to a
given lemma pair. An eleventh feature denotes the application of other (less frequently
applied) rules. With these identity features, we hope to retrieve patterns of semantic
behaviour that hold for many lemma pairs, as the respective rules apply frequently.

Next, we implement the reliability of a rule, which we estimate as the ratio of its
application on S pairs among all its applications on the development set. That is, this
feature extracts supervised information about the semantic transparency of a rule.

For the other two structural features that apply on the rule level, we take into
consideration not only information from the development set, but from all derivationally
related lemma pairs in DErivBase. On the one hand, we compute a rule frequency
ranking, representing a rule’s total application frequency. That is, we determine how often
each rule relates two lemma pairs in DErivBase. We expect frequent (i.e., productive)
rules being applied more often without semantic drifts (see also the productivity and
frequency considerations in Fleischer and Barz (2007, p84f, p224f, p291f)). Application
frequency can be easily read off from the DErivBase file format that indicates rule
paths (cf. Section 4.5). The rule frequency ranking serves as a measure of specificity,
since it indicates how often a rule can generally apply to the linguistic material of the
German language. We compute it in two versions: on simplex paths, and on all instances
(both simplex and complex paths) of the rule in DErivBase, trading reliability against
potential noise.

On the other hand, we calculate the average of the Levenshtein distance between input
and output lemmas of all applications of a rule. In doing so, we estimate the complexity
of a rule by measuring the average number of string modifications it involves. We assume
low string distances to indicate semantic drifts, as simple rules match frequently (cf.
Section 5.3).

For lemma pairs linked by complex paths, the question arises how the latter three
rule-level features should be computed. Following our observations of the “weakest link”
behaviour in Section 5.3, we always select the most pessimistic feature value of the
individual rules (i.e., minimum in the case of rule reliability, and rule frequency ranking).
This is a cautious choice with which we hope to avoid overestimating complex paths that
contain some reliable rules, but still lead to a semantic drift. For average Levensthein
distance, we incorporate both minimum and maximum value of the individual rules, as
we believe that the range of string modifications might be another useful indicator. As
concerns the binary rule identity features, several of these eleven features are set to true
for pairs connected by complex paths.

Finally, three more structural features are computed directly at the lemma pair level:
their part of speech combination (e.g., “NV” for oxideN – oxidateV)8, the length of the
shortest derivation rule path connecting the lemma pair, and two string distance measures
between the two lemmas: the Levenshtein and Dice distances. The intuition behind
these features is to find additional indicators for a lemma pair’s semantic relatedness
that remained undiscovered in our analysis shown in Section 5.3, e.g., interdependencies

8We implement six such features, according to the six possible part of speech combinations.

103

5.4 A Classification Model for Semantic Validation

between part of speech combination and rule application frequency with respect to
semantic drifts.

Hybrid Features. The hybrid features attempt to combine both distributional and
rule-based information. Although such combinations might be learned by the employed
classifier, we want to make explicit two of them, one at the rule level and one at the pair
level.

The rule-level feature models the average rank-based similarity of a specific rule, and
is thus a more general counterpart of the purely distributional rank similarity feature on
the pair level. To reflect our confidence in the reliability of the output vector, we weight
it with the log frequency average over rule instances of the output lemma:

avgforward-rank (rule) =


(l1,l2)∈ rule

fwd -rank(l2|l1) log(freq(l2))
(l1,l2)∈ rule log(freq(l2))

(5.1)

avgbackward-rank (rule) =


(l1,l2)∈ rule

bwd -rank(l1|l2) log(freq(l1))
(l1,l2)∈ rule log(freq(l1))

(5.2)

As set of lemma pairs (l1, l2) connected by a specific rule, we randomly draw 200 lemma
pairs (or less, if the rule has fewer instances) from DErivBase that are connected by this
rule with a simplex path. The average rank similarity can be considered an unsupervised
counterpart to the structural rule reliability feature, as it does not require class labels.

The pair-level feature is the rank similarity deviation, i.e., the difference between the
rule’s average rank similarity and the rank similarity for one specific pair:

fwd -rank -sim-deviation(l1, l2) = rankfwd(l2|l1) − avgfwd-rank (5.3)

bwd -rank -sim-deviation(l1, l2) = rankbwd(l1|l2) − avgbwd-rank (5.4)

That is, this feature measures the rank of a specific pair relative to the rule’s “baseline”
rank similarity, and indicates how similar and dissimilar a lemma pair is compared to this
average. This deviation represents a normalisation of the distributional rank similarity
feature on the pair level, as the average rank similarity substracts out outliers caused,
e.g., by markedness effects. We thus expect it to constitute another robust similarity
measure.

In parallel to the structural features, values for complex rule paths are computed by the
most pessimistic rule rank (i.e., the minimum). Since the rank similarity is directional,
we compute both hybrid features in two variants, forward and backward. As mentioned
in the beginning of this Section, these “twin features” are sorted according to their
(minimum/maximum) values in the feature vector.

104

5.4 A Classification Model for Semantic Validation

5.4.2 Classification

Using these 35 features, we train a classifier on the development portion of the P-
sample (1,780 training instances, cf. Section 5.1.1), and learn distinguishing semantic
relatedness and non-relatedness within derivationally related pairs. For classification,
we use a nonlinear model, i.e., a Support Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel. Using the RBF kernel allows us to capture potential non-linear
dependencies between the features. We rely on LIBSVM (Chang and Lin, 2011), a
well-known SVM implementation, within the scikit-learn python library (Pedregosa
et al., 2011), v0.14. We optimise the C and γ hyperparameters of the SVM model using
3-fold cross-validation on the training data.

5.4.3 Results and Discussion

For evaluation, we applied the trained classifier to the test portion of the P-sample
(763 instances; cf. Section 5.1.1). Table 5.6 summarises precision, recall, F1-score, and
accuracy of the classifier for various combinations of features and feature groups. The best
results are marked in boldface. Recall that since our motivation is semantic validation, i.e.,
the removal of false positives, we are in particular interested in improving the precision
of our predictions. We test significance of F1 differences among models with bootstrap
resampling (Efron and Tibshirani, 1993).

Our baseline is the majority class in the sample, S.9 As we consider the semantic
validation as a filtering task and concentrate on the P-sample only, we assume a relative
recall, i.e., recall=1.0 if all S pairs are retrieved (e.g., by the baseline). Due to the sample’s
skewed class distribution (cf. Table 5.2), the frequency baseline is fairly competitive
(precision 72.6, F1-score 84.1). We first consider the three most prominent individual
features: Distributional similarity measured as cosine and as similarity rank, and rule
identity. As expected from our analyses, the cosine similarity on its own is not reliable;
in fact, it performs at baseline level. The rank-based similarity already leads to a
considerable gain in precision (+5.1%), but only a slight F1-score increase of 0.6% that
is not statistically significant at p=0.05. These results provide empirical evidence for
Hypothesis 1’ (Section 5.2.4), and emphasise that it is more appropriate than Hypothesis 1
(Section 5.1.2). On the structural side, rule identity alone improves the precision by 2.3%,
with an F1-score increase of even 3.4% (again not significant).

We now proceed to complete feature groups, all of which perform at least 3.4% F1-score
better than the baseline, proving that the features within each group indeed provide
valuable information. The hybrid group achieves a remarkably good precision, given that
it contains only four features. The gain in F1 compared to the baseline is statistically
highly significant (at p=0.001). The distributional feature group is able to improve
2.1% over the individual rank-based similarity feature in precision (77.7 vs. 79.8), but
gains even more in recall (+3.8%). This is sufficient for a significant improvement in F1

compared to the rank-based similarity alone (+2.8%, significant at p=0.001). Also, the

9Note that this baseline is slightly different from the “only S” baseline shown in Table 5.1, since we
only consider the test part of the sample here.

105

5.4 A Classification Model for Semantic Validation

Validation method Precision Recall F1 Accuracy

Majority baseline 72.6 100 84.1 72.6

Classifier, only “cosine similarity” feature 72.6 100 84.1 72.6
Classifier, only “similarity rank” feature 77.7 93.1 84.7 75.6
Classifier, only “rule identity” feature 74.9 96.9 87.5 74.2

Classifier, hybrid group 81.4 94.8 87.6 80.5
Classifier, distributional group 79.8 96.9 87.5 79.9
Classifier, structural group 82.6 94.0 87.9 81.3

Classifier, hybrid + distributional groups 80.7 96.0 87.7 80.5
Classifier, hybrid + structural groups 85.6 94.0 89.6 84.1
Classifier, distributional + structural groups 84.7 97.8 89.4 83.7

Classifier, all features 85.5 94.8 89.9 84.5

Table 5.6: Accuracy, precision, recall, and F1 for semantic validation on the test portion
of the P-sample

structural feature group performs surprisingly well, considering that these features are
very simple and most are computed only on the relatively small training set. It yields by
far the highest precision (82.6), and even its F1-score is slightly higher than that of the
hybrid group (87.9 vs. 87.6; not significant). We take this as evidence for the usefulness
of structural information, as expressed by Hypothesis 2 (cf. Section 5.1.2).

Ultimately, all three feature groups turn out to be complementary. We obtain an
improvement in F1-score and a clear increase in precision for two out of the three feature
group combinations. Notably, the combination of hybrid and structural features achieves
the best overall precision score, supporting our assumption for the design of the hybrid
features: Structural rule information can be propagated to unseen lemma pairs and still
remains consistent with the supervised rule-based features. Only the combination of
hybrid and distributional features somewhat levels out between the high precision of the
hybrid group and the high recall of the distributional group, achieving a slightly lower
F1-score than the best individual group (87.7 vs. the structural group with 87.9).

The best overall result is shown by the combination of all three feature groups. It
attains an F1-score of 89.9, an improvement of 5.8% over the baseline and 2% over the
best feature group (both differences significant at p=0.001 and p=0.01, respectively).
Crucially, this model gains 12.9% in precision while losing only 5.2% of recall compared
to the baseline. This corresponds to a reduction of false positives in the sample by more
than half (from 27.4% to 14.5%) while the true positives were reduced by less than 4%
(from 72.6% to 68.8%).

Performance per Annotation Label. We examined the distribution of improvements
through the classification for our five gold standard classes. Table 5.7 shows a breakdown of

106

5.4 A Classification Model for Semantic Validation

S M N C L total

Gold annotation 554 81 81 2 45 763

Classified as S 525 39 18 2 30 614
Classified as not S 29 42 63 0 15 149

Table 5.7: Predictions on the test set of the all features classifier per annotation class

the predictions by the best all features model for each category. Ignoring compounds (C),
of which there are too few cases for a sensible analysis, we first find that the classifier
achieves a high S recall. It is also very good in filtering out unrelated cases (N), of which
it discards around 75%. The model also recognises semantically opaque derivations (M)
fairly well and manages to remove more than half of these; obviously, the distinction
between S and N is easier than between S and M, which is why the classifier performs
worse here. It has the hardest time with lemmatisation errors (L), of which only a
third was removed. However, this is not surprising: Lemmatisation errors do not form a
coherent category that is easy to retrieve with the features that we have developed. Ideally,
lemmatisation errors should be handled in an earlier stage, i.e., during preprocessing.

Classifier Performance vs. Lemma Frequency. In another analysis, we addressed the
question whether there are systematic correlations between the performance of our
classifier, and the frequencies of the corresponding lemmas in the distributional space.
We would hope that the classifier is not sensitive to, e.g., very infrequent lemmas, but
that the entire frequency spectrum is equally well classified.

To this end, we compare the SdeWaC frequencies of all lemma pairs in the test set,
with respect to whether they are correctly classified by the model, or not. Figure 5.3
depicts these relationships for our best classifier, trained with all 35 features described
above.10 Note that the x- and the y-axis are logarithmic.

The particularly salient lemma pair in the lower left corner is the L pair HerumtapsenNm

– herumtapsenV (blundering around – to blunder around) with a frequency of 3 for both
lemmas. It is not surprising that it is not correctly classified, since it is only incorrect
due to a wrong noun gender for l1. At the other end of the scale, the particularly
high-frequent words at the top and the right margin of the Figures are the N pair
AktivierungNf – aktuellA (activationN – currentA) with frequencies l1 = 4, 334 and
l2 = 161, 088, respectively, and the S pair MöglicheNn – möglichA (possibleN – possibleA)
with frequencies l1 = 370, 277 and l2 = 3, 232 , respectively. Both pairs were correctly
classified.

10We also examined the correctness of the classifier decisions with respect to all five annotation labels
(i.e., correct S instances, incorrect S instances, correct M instances etc.), but this analysis did not
yield further insights.

107

5.4 A Classification Model for Semantic Validation

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e+01 1e+02 1e+03 1e+04 1e+05

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

'All features' classifier predictions

Logarithmised frequencies for lemma1

Lo
ga

rit
hm

is
ed

 fr
eq

ue
nc

ie
s

fo
r

le
m

m
a2

● incorrect
correct

Figure 5.3: Comparison of frequencies for lemma pairs, and the respective decisions of
the all features classifier

The apparent chaos in this Figure, especially in the middle range, shows that our
feature set indeed performs well in all frequency ranges. The only slight tendency one
could perceive is that lemma pairs with two highly frequent words are resolved correctly
more often; but in sum, our features do not systematically over- or underestimates lemma
pairs with a certain frequency. This result again attests the suitability of all our features.

Additional Experiments. We also examined a row of different settings for semantic
validation that are not discussed in detail above, but are worthwhile being mentioned:

Other distributional models: For the calculation of the distributional features, we also
experimented with a syntax-based space as well as a bag of words model using raw
co-occurrence frequencies. However, the former achieved very low coverage, and
the latter more unreliable predictions.

Other classification models: Rather than training a binary classification model, we
experimented with multi-class classifications on all five labels. However, we found
that our dataset contains too few instances of the individual non-S classes to
properly learn to distinguish these. Also, we tried binary classification with a

108

5.5 From Pairs to Families: Semantic Validation of DErivBase

linear rather than a nonlinear SVM. The difference to our nonlinear model using
all features is 1.0% F1-score, statistically significant at p=0.05.

Other features: We tested the hybrid features based on raw cosine rather than on the
rank-based similarity. As expected, they yielded worse results than the rank-based
hybrid features so that we discarded them. Additionally, we experimented with
two entire feature groups:

HOFM transformation function features: From the transformation functions im-
plemented in HOFM (cf. Appendix A), we extracted various features such
as which derivation operations are executed in a rule (e.g., umlaut change or
suffixation), or how many operations are involved. In total, we experimented
with 17 features (both binary and numeric).

Translation features: The intuition for this feature group is that semantically
unrelated words may have completely distinct translations in another lan-
guage, while words with a similar sense may have similar-looking transla-
tions. Consider Example (2.4) on page 20 again: The semantically unrelated
lemma pair einpaukenV – PaukeN (to cram into – kettledrumN) has fairly
distinct English translations, while the S lemma pair paukenV – PaukeN
(to play the kettledrum – kettledrumN) does not. Thus, we implemented three
features on the pair level, measuring string distances for the English transla-
tions of a lemma pair. The translations were taken from the German-English
dictionary dict.cc.

In individual tests of these feature groups, we found the translation features to
perform only at baseline level, while the transformation function features achieve
some improvement over the baseline (precision 79.0; recall 93.7; F1 85.7; accuracy
77.3). When combining each of these groups with the structural features, results
slightly increase or remain stable. In tests with the distributional features, the
translation features lead to contradictory decisions (i.e., results remain stable or
decrease), while the transformation function features improve the precision slightly
(recall decreases, accuracy and F1 remain stable).

However, none of these two groups lead to improvements exceeding those of the all
features classifier of Table 5.6. This suggests that they do not contribute additional
information to the previous three feature groups. Thus, we refrained from adding
the transformation function and the translation features to our feature set.

5.5 From Pairs to Families: Semantic Validation of DErivBase

Having conducted the semantic validation with a machine learning model, and having
demonstrated its impact and quality in an intrinsic evaluation, we now take the next
step: We move from the classification of word pairs to the segmentation of derivational
families in DErivBase into smaller, semantically coherent clusters. In this Section, we

109

5.5 From Pairs to Families: Semantic Validation of DErivBase

explain how we conduct this propagation with clustering methods, pursuing the goal to
establish clusters which correspond to the same (transparent) sense.

5.5.1 Clustering Validated Pairs

The goal of clustering is to divide a set of instances into groups (or clusters), so that
the instances within the same group are – with respect to some property – more similar
to each other than to the instances of different groups (Hastie et al., 2009, 501ff.).
A straightforward way to do this is hierarchical clustering, in which a hierarchy of
progressively merged clusters is built (for an introduction to this method, cf. Hastie
et al. (2009)). The final clusters are determined by a cut-off threshold for the minimum
within-cluster similarity. Hierarchical clustering does not require an initial choice of
the numbers of clusters (as it is necessary for other clustering strategies), and it is
advantageous in one important respect: Due to the resulting hierarchical structure, one
can easily test different cuts, corresponding in our task to differently strict definitions of
what counts as semantically related.

Acquiring Similarities for Hierarchical Clustering. However, what is needed for hier-
archical clustering, is a measure indicating the similarity (or closeness) of two instances,
according to which the cluster hierarchy is established. Typically, this measure is some
kind of probability score. As described in Section 5.4, we employed an SVM classifier
to perform our classification task. SVMs generally do not provide probabilities, but
only scores that indicate an instance’s distance from the hyperplane. However, there
is an algorithm to approximate such probabilities, called Platt scaling (Platt, 1999),
which transforms these distances from the hyperplane into a probability distribution
over the respective classes by combining SVM and logistic regression methods. The
result are scaled probability scores for all instances. Notably, this strategy offers only
an approximation to the actual SVM predictions, so that the scaled results might be
inconsistent with the original classification for borderline cases. Nonetheless, this method
has shown to effectively approximate actual probabilities on various binary classification
problems (Niculescu-Mizil and Caruana, 2005).

Platt scaling is implemented in the LIBSVM library we employ. Thus, we can straight-
forwardly transform the decisions of our binary classifier into probability approximations
which indicate the degree of semantic relatedness of a lemma pair.

Compiling Cluster Hierarchies. We apply our trained classification model from Sec-
tion 5.4 to all derivationally related lemma pairs in DErivBase, i.e. all lemma pairs
which are in the same derivational family. Version 1.4.1 consists of 716,628 such pairs,
for which we calculate the Platt-scaled probabilities.

We apply hierarchical agglomerative clustering (HAC) to these lemma pair probabilities,
i.e., we operate bottom-up: We start with singleton clusters and merge, step by step,
pairs of clusters until we conflated the singletons to the original derivational families. At
each merge, the pair probabilities between the newly added lemmas and the lemmas in

110

5.5 From Pairs to Families: Semantic Validation of DErivBase

Ankurbeln Ankurbelung ankurbeln aufkurbeln kurbeln Kurbeln Kurbel
boosting boost to boost to wind down to crank cranking crank

s = 0.95

s = 0.92

s = 0.88

s = 0.77

s = 0.56

s = 0.41
d

is
si

m
il

ar
it

y

Figure 5.4: Dendrogram of a derivational family in DErivBase v1.4.1 (hierarchical
agglomerative clustering with average linkage)

the cluster are used to assign the cluster an overall cluster similarity.11 These cluster
similarities are calculated differently for different linkage criteria. We experiment with
the three most common linkage types: complete, single, and average linkage.

The structure resulting from HAC is usually illustrated by a dendrogram. Figure 5.4
shows the dendrogram of one derivational family. The cluster similarities s quoted at each
merge are calculated with average linkage.12 As can be seen, cluster similarity drops as
more lemmas are added. The dendrogram captures the semantics of the family very well:
Three lemmas describing a “boost” are clustered together at a high similarity (s = 0.92);
in fact, we consider them pairs of category S. The verb aufkurbeln (to wind down) is only
moderately related (s = 0.56) to three other S lemmas describing actions with a “crank”.
This complies with our linguistic intuition, as aufkurbeln is a specific way of cranking,
e.g., at a car window, but it can still be regarded as an S candidate compared to the
“crank” lemmas. Finally, the two clusters describing a boost and actions with a crank are
merged with a relatively low similarity (s = 0.41), which is a desirable outcome, given
the fact that the two clusters are – synchronically – semantically opaque (category M).13

5.5.2 Building Semantic Clusters

Now that we have hierarchical clusters for each derivational family at hand, we need to
divide them into semantically coherent clusters, and evaluate their performance.

Defining the Cut-off Threshold. In order to produce semantic clusters, we need to
decide where to apply cuts within the cluster hierarchies. As mentioned in Section 5.5.1,

11Note that cluster similarities are not identical with the probabilities for individual lemma pairs.
12We omit cluster similarity for singletons, as it is always s = 1.
13Diachronically, ankurbeln was used to describe the act of giving an impulse to, e.g., a motor with a

mechanical crank.

111

5.5 From Pairs to Families: Semantic Validation of DErivBase

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity threshold ’s’

best F1 for s=0.515 with avg. linkage

Precision, avg. linkage
Recall, avg. linkage

Precision, single linkage
Recall, single linkage

Precision, complete linkage
Recall, complete linkage

Figure 5.5: Precision and recall curves for different linkage strategies and cluster similarity
thresholds (s) on the P-sample test set

HAC offers the possibility to comfortably test various such cuts. Typically, one determines
a cut-off threshold for the cluster similarity s, which is optimised on some test data.
We do so as well, which means that we define a global threshold that is applied to all
derivational families.

To this end, we re-use the test portion of our P-sample (cf. Section 5.1.1): We apply
HAC to all 716,628 pairs contained in DErivBase, and determine the threshold for s
by maximising the F1-score on the P-sample test data. As mentioned above, we try
complete, single, and average linkage, and select the linkage criterion which best separates
the S and non-S pairs of the dataset into different clusters.

Figure 5.5 depicts the precision and recall tradeoff for each linkage criterion across
different cluster similarity thresholds.14 This Figure again illustrates HAC’s advantage
that it is easy to choose a cut-off threshold depending on whether one focuses on precision
or recall. Single linkage has the lowest precision but highest recall, showing that using
the nearest neighbour of two clusters to define the cut-off threshold is rather generous.
Complete linkage demonstrates the exact opposite behaviour, while average linkage is
a moderate balance between the two. We found the best cut-off threshold for cluster
similarity to be s = 0.515 using average linkage (achieved F1-score: 89.9%, indicated by

14For legibility reasons, we plot s in intervals of .02 rather than in the actually calculated intervals of
.005. Precision is not defined for s = 1, as there are no singleton clusters in the P-sample.

112

5.5 From Pairs to Families: Semantic Validation of DErivBase

Prec. Rec. F1 Acc.

Clustering 88.6% 91.2% 89.9% 85.1%
Classification 85.5% 94.8% 89.9% 84.5%

Table 5.8: Predictions on the test set after clustering vs. with the all features classifier

a vertical bar in Figure 5.5). That is, lemma pairs that are assigned a slightly higher
probability than equiprobability of semantic relatedness and non-relatedness (s = 0.5)
after Platt scaling, are considered related. The fact that this threshold is close to 0.5
indicates that the SVM classifier did a good job in estimating a class boundary that
optimises both precision and recall. Considering the example in Figure 5.4 again, this
threshold indeed performs as desired: It separates the two clearly different senses in this
derivational family (the boost and the crank sense), leading to two semantic clusters.

Table 5.8 shows the performance of the clustered DErivBase version on our P-sample,
compared with the results from the binary classifier (taken from Table 5.6). Recall that
classification and clustering differ from each other in that the clustering is based on the
classifier’s decisions, but that the linkage strategy determines the cluster similarities and
thus, the cut-off threshold. As a result, lemma pairs which are close to this threshold
may be categorised differently by the clustering and the classifier.

The clustering performance on the F1-score remains stable compared to the classification.
Although it is possible to improve the F1-score through clustering, it is rather unlikely as
we build upon the classifier’s predictions. Nonetheless, it is a positive result that F1 does
not decline either. Also, it is particularly encouraging for our goal to build a semantically
coherent lexicon that precision rises by another 3.1%, however, at the cost of 3.6% in
recall.15 Overall, the performance of the clustered lexicon – which we henceforth call
DErivBase v2.0 – looks fairly promising.
DErivBase v2.0 consists of 235,287 derivational families, out of which 20,371 are

non-singletons that group 65,420 lemmas (i.e., 214,916 are singletons). To compare, v1.4.1
consists of 17,314 non-singleton families that cover 69,437 lemmas, i.e., v2.0 contains less
lemmas in more families. In the next paragraph, we examine a couple of entire families.

Qualitative Analysis on the Level of Families. The P-sample test set only evaluates
the quality of our semantic validation on the basis of lemma pairs. However, we want
DErivBase v2.0 to be semantically plausible as a whole. In order to verify whether
we achieved this goal with our clustering procedure, we made a qualitative analysis
of some medium-size morphological families in v.1.4.1, and their semantic clusters in

15We also experimented with the more recall-oriented F2-score in order to leverage this loss, but obtained
exceedingly big clusters, so that we sticked to the F1 optimisation.

113

5.5 From Pairs to Families: Semantic Validation of DErivBase

DErivBase v2.0.16

Figure 5.6 shows the five sample families we selected to give an impression of the
quality as well as the problems of the semantic sub-structure in DErivBase.

In the first family shown, two occurring N lemmas were correctly detected and
separated into two different clusters. Two lemmas within the cluster containing lemmas
about crafting, umbasteln and zurechtbasteln, are a little controversial. Their sense is
clearly connected to the act of crafting; however, they introduce an additional meaning
component of improvisation. We find the decision whether these two lemmas should
count as M candidates difficult, and would accept the semantic clusters as is.

The second family is not clustered at all, which fully corresponds to our linguistic
intuition, as all lemmas are concerned with roughly the same concept. This example
shows that the clustering is not prone to “oversplitting”, although the precision we
attested on the P-sample is fairly high.

In contrast, in the third example, the opposite is the case: The semantically coherent
cluster concerning the lemma “beard” is split in two. The clustering correctly separated
a proper name (Bartel), but leaves another false positive in one of the split beard clusters
(Barte). A glance at the cluster similarities shows that Barte is not scored as exceptionally
related (s = 0.67), however, considerably above our threshold of s = 0.515. We attribute
this relatively high score to the homography of the lemma Barte with the dative case of
Bart, which was probably incorrectly lemmatised and assigned substantial relatedness to
the “beard” lemmas by the distributional features.

The fourth example illustrates that the clustering has a hard time when it comes to
several unrelated lemmas. The morphological family induction severely overgenerated,
conflating a derivational family with two members (Ast, Hauptast) with an unrelated
N adjective (astral), and four named entities (two person names, a flower, and a car
model). The false positives are assigned surprisingly high similarities to the “branch”
family (0.6 − 0.9). The clustering did not succeed in properly resolving all of these
inconsistencies, but at least separates three unrelated words from the two-member family.

Finally, in the fifth family, the clustering worked perfectly: The two morphologically
distinct families about “boxes” and “boxers” (N) are correctly separated, and in addition
to that, the morphologically related, but semantically unrelated M lemma durchboxen
is also cut off. An analysis of the dendrogram for this family reveals that the cluster
similarity of the boxer sense plus durchboxen is only slightly below our threshold (s = 0.50).
In contrast, the cluster similarity of the entire original family is only at s = 0.39. This
shows that our cut-off threshold turns out to be reasonable also for unseen cases.

In sum, our analysis suggests that the clustering achieves sensible results not only
on the pair, but also on the family level. We feel that the propagation of the semantic
validation from pairs to entire clusters worked satisfactorily.

16We chose families consisting of seven to nine lemmas. We exclude a detailed description of overinflated
families, although their quality on the semantic as well as the morphological level clearly improved,
because their size makes them not particularly illustrative. Also, we do not analyse very small families,
as they are mostly morphologically and semantically coherent and thus do not lead to striking insights.

114

5.5 From Pairs to Families: Semantic Validation of DErivBase

Derivational families Semantic clusters

bastelnV , bastelndA, BastelnNn ,
zurechtbastelnV , umbastelnV , BastlerinNf ,

BastlerNm , *BastNm , *BasteiNf

(to do handicrafts, craftingA,
craftingN , to rigV , to modifyV ,
female amateur craftsman,

amateur craftsman, *bast fibre, *bastionN)

bastelnV , bastelndA, BastelnNn ,
zurechtbastelnV , umbastelnV ,

BastlerinNf , BastlerNm

BastNm

BasteiNf

ästhetisierenV , ästhetisiertA,
ästhetisierendA, ästhetischA,
ÄsthetikNf , unästhetischA,

ÄsthetizismusNm , ÄsthetNm , ÄsthetikerNm

(to aestheticiseV , aestheticisedA,
aestheticisingA, aestheticA, aestheticsN ,

unaestheticA, aestheticismN ,
aestheteN , aestheticianN)

ästhetisierenV , ästhetisiertA,
ästhetisierendA, ästhetischA, ÄsthetikNf ,

unästhetischA, ÄsthetizismusNm ,
ÄsthetNm , ÄsthetikerNm

bartlosA, BartNm , BärtchenNn , bärtigA,
BärtigeNm , *BarteNf , *BartelNm

(beardlessA, beardN , small beard, beardedA,
bearded man, *baleen plate, *BartelN)

bartlosA, BartNm , BärtchenNn

bärtigA, BärtigeNm , *BarteNf

BartelNm

AstNm , HauptastNm , *AsterN ,
*AstinNf , *astralA, *AstritNm , *AstraN

(branchN , main branch, *asterN ,
*AstinN , *astralA, *AstritN , *AstraN)

AstNm , HauptastNm , *AsterN , *AstinNf

astralA

AstritNm

AstraN

boxendA, boxerischA, BoxenNn ,
boxenV , BoxerNm , durchboxenV ,

*BoxNf , *InnenboxNf , *AußenboxNf

(fightingA, boxingA, boxingN ,
to boxV , boxerN , to push through,
*boxN , *inner box, *outer box)

boxendA, boxerischA,
BoxenNn , boxenV , BoxerNm ,

durchboxenV

AußenboxNf , InnenboxNf , BoxNf

Figure 5.6: Comparison of five purely derivational families, and their respective semantic
clusters. False positives are denoted with an asterisk (left: morphologically
unrelated wrt. the majority in this family; right: semantically unrelated)

115

5.6 Summary

A future direction which one could pursue is to consider soft clustering, i.e., allowing
for duplicate entries in various clusters of a family. Consider the last family in Figure 5.6
again: The lemma Boxer has (at least) two senses: That of a fighter, and that of a dog.
In order to reflect these two senses, a fourth cluster, containing only Boxer (in the dog
sense) could be added. We think that such a soft clustering would be an interesting
endeavour, however, we leave it for future work.

5.6 Summary

Generally, derivational lexicons do not distinguish between only morphologically related
and both morphologically and semantically related words. However, such a distinction of
opaque and transparent derivations is highly desirable from a methodological point of
view. In this Chapter, we have addressed the task of recovering this separation in our
German derivation lexicon DErivBase, and called it semantic validation. In doing so,
we refined our lexicon beyond the Derivational Coherence Assumption (cf. Section 2.1.3)
in that not all, but only semantically transparent derivations are considered.

We have made three contributions: 1., we provided a detailed analysis of the information
types that are available for this task: distributional similarity and structural information
about derivation rules. We also identified problems associated with both sources. 2., we
trained a machine learning classifier on a set of linguistically motivated features. The
classifier, although not perfect, can substantially improve the precision of the word pairs
in DErivBase and thus help to filter the derivational families in the lexicon according
to their semantic relatedness. 3., we established a new version of DErivBase, which
subdivides morphologically related families into semantically coherent clusters. With this
clustering, we successfully separate different senses within one derivational family (M
cases) as well as accidentally conflated derivational families (N cases).

The approach that we have described should transfer straightforwardly to other
derivational lexicons and other languages on the conceptual level, e.g., to the Croatian
DErivBase version (Šnajder, 2014). The practical requirements are an appropriate
corpus (for the distributional features) and derivational rule information (for the structural
features). Alternatively, if no derivational rule information is available, the structural and
hybrid features that we have proposed can be omitted, and a classifier can be trained with
distributional features only. In this way, semantic validation would be also applicable to,
e.g., the English CatVar lexicon.

We conducted the semantic validation of DErivBase not only because we find a
semantically coherent lexicon more plausible, but also because we hope the validation
to improve the usability of derivational knowledge in NLP tasks. In Part III, we will
investigate the impact of semantic validation on various applications.

116

Part III

Using Derivational Knowledge for
German

The value of a resource like DErivBase is not an end in itself, but is ideally demon-
strated by extrinsic evaluations, that is, by showing that it provides benefits to various
computational applications. In this Part, we evaluate our lexicon extrinsically by assessing
the impact of information added from DErivBase in various NLP tasks. Before we
present our evaluations in Chapters 6, 7 and 8, we give a brief introduction to how we
generally employ our lexicon.

Applying Derivational Knowledge – Rationale

We see potential for applying DErivBase in NLP areas related to semantic aspects, since
the derivational families incorporate lexical-semantic knowledge. This is not only true for
the semantically validated version, but also (to a lesser degree) for purely morphological
relatedness, which, according to the DCA, implies semantic transparency in most cases
(cf. Section 2.1.3). Thus, we select three – in the broadest sense – semantics-related
evaluation topics that cover a range of computational linguistics issues: 1., detection
of semantic relatedness; 2., prediction of priming effects; and 3., recognition of textual
entailment. In each evaluation, we incorporate DErivBase as an additional knowledge
resource into an existing basic system that is in principle applicable to the respective
task, and demonstrate the system’s performance changes. In doing so, we explicitly show
the impact of our lexicon, which contrasts with most studies presented in Section 3.1.3.
In the following, we briefly outline how we address this incorporation for each task. We
conduct all three evaluations on both DErivBase v1.4.1 and v2.0 in order to analyse
the impact of the semantic validation.

There are many possibilities to apply derivational knowledge. For our evaluations, we
experiment with the following three approaches:

1. For semantic relatedness detection, we employ distributional semantic models, and
incorporate DErivBase by means of smoothing : Similarity between two words
(l1, l2) is not calculated by merely the two vectors representing them, but by the
vectors of all words that are in the same derivational families as l1 or l2. We propose
several parameters to specify the similarity calculation from these sets of of vectors.

2. For a psycholinguistic priming experiment, we again employ a distributional model.
Derivational information comes into play as a morphological generalisation of the
information contained in this model. To this end, we adopt the smoothing idea
accordingly: We model priming effects, i.e., the speed-up of a certain representation
activation, by incorporating the vector representations of all words in the deriva-
tional family of the prime into the similarity calculation. Technically, this method
is very similar to derivational smoothing. Conceptually, however, morphological
generalisation differs from smoothing in that it is not concerned with the handling
of sparse data, but with the activation of morphological representations.

3. Finally, for the recognition of textual entailment, a generic evaluation framework for
semantic inference, we integrate knowledge from DErivBase into a matching-based

118

entailment system by means of a query expansion: Assuming that derivational
relationships between two texts suggest the text pair to be entailing rather than
non-entailing, such an expansion increases the chance of a lexical overlap, and could
improve entailment predictions.

Our techniques to conduct these three evaluations are similarly applicable to assess other
derivational lexicons, such as CatVar. However, we restrict our study on DErivBase.

A very different application of a derivational lexicon would be its usage for morphological
analysis. Morphological analysers such as SMOR (Schmid et al. (2004); cf. Section 3.1.2)
could be used as potential competitors to DErivBase (cf. Section 4.5). For instance,
one could examine whether the families in DErivBase contain all related words that
these analysers output; e.g., SMOR’s analysis of the lemma UmverteilungN (redistribu-
tion) comprises umverteilenV (to redistribute), VerteilerN (distributor), verteilenV (to
distribute), and teilenV (to share), and we would expect DErivBase to contain at least
these lemmas in one family. However, we refrain from such a comparison, because we
believe that – as argued in Section 3.1.2 and shown in Section 4.5 – the basic goals of a
morphological analyser and a derivational lexicon are too different: Analysers are built to
examine the internal structure of words, while derivational lexicons model morphological
aspects across words. Thus, it is questionable whether a comparison of their performance
on either task is meaningful.

119

6 Smoothing Distributional Models for
Lexical Semantics with DErivBase

In Section 3.2, we have explained the trade-off between bag of words and syntax-based
distributional semantic models (Turney and Pantel, 2010): While the former is more
robust and yields high coverage but only mediocre prediction quality, the latter provides
predictions of very good quality, but faces sparsity problems. In this Chapter, we propose
a novel strategy for combating sparsity in vector spaces by employing information from
derivational lexicons, which we expect to be particularly useful in sparse syntactic
spaces. We call our approach derivational smoothing. Smoothing is a family of statistical
techniques that is used, among others, to provide flexible and robust data statistics
by making density estimations more uniform (Simonoff, 1996). In NLP, smoothing
is particularly prevalent in language modelling (Chen and Goodman, 1999), where it
is employed to improve predictions of statistical models when they run into sparsity
problems, i.e., very low or zero counts (Manning and Schütze, 1999, p199).

Our idea of derivational smoothing follows the intuition of the DCA (Section 2.1.3)
that derivationally related words are often semantically similar. Consequently, knowledge
about derivational relatedness can be used as a fallback for sparse vectors, i.e., for
lemmas that occur infrequently in the underlying corpus. For example, the word pair
funnyish – comical should receive a high semantic similarity, but in practice, the vector
of funnyish is sparse (in UkWaC (Baroni et al., 2009), a 1.9 billion word corpus, it
occurs merely 2 times), which makes its predictions uncertain. Knowing that funnyish is
derivationally related to funny allows us to use the much less sparse vector for funny
(about 61,800 occurrences) as a proxy for funnyish, and thus obtain better similarity
estimates from the space. In this way, derivational smoothing brings in information about
other members of the concerned derivational family, similar to class-based smoothing
in language modelling (Brown et al., 1992). We believe that the high coverage of
DErivBase makes it particularly suitable for this use, where it is crucial that the lexicon
contains low-frequency lemmas.

We present a set of general methods for smoothing vector similarity computations
given our derivational lexicon, and test to what extent they are able to overcome sparsity
problems in syntax-based spaces. In a follow-up study, we also investigate whether an
even stronger effect can be achieved by complementing (smoothed) syntax-based spaces
with (smoothed) word-based spaces. For both studies, we evaluate our models on two
German lexical tasks: Similarity prediction and synonym choice. Derivational information
is incorporated using DErivBase both as a purely morphological (v1.4.1), and as a
semantically validated lexicon (v2.0).

The remainder of this Chapter is structured as follows. Section 6.1 describes our first

120

6.1 Study 1: Impact on Syntax-based Models

study, i.e., how DErivBase can be employed to smooth syntactic distributional models.
Section 6.2 describes our investigations of the complementarity of information from
derivational smoothing and bag of words models. The lexical tasks on which we evaluate
both approaches are described in the former, but are equally valid for the latter Section.
Section 6.3 summarises our experiments and gives a brief outlook on the possibilities and
expectations of derivational smoothing on high-coverage but noisy bag of words models.

Additional Experiments. The rest of this Chapter will concentrate on the smoothing
strategy as sketched above. However, we also tried a fairly different approach to improve
distributional models with DErivBase: Using derivational information for dimensionality
reduction. Our intuition was that derivationally related lemmas are similar enough that
we could create a new, lower-dimensional vector space by using the set of derivational
families as context dimensions, and, for each family, adding the vectors for all members
to obtain the family vector. We executed such a reduction on syntax-based as well as
word-based matrices, which substantially reduced the matrices’ sparsity (i.e., the number
of zero values). However, it did not yield clear improvements on the two abovementioned
lexical tasks for neither distributional space and neither DErivBase version. In this
thesis, we do not elaborate on these dimension reduction experiments; they are described
in detail (for DErivBase v1.4.1) in Kreutzer (2014).

6.1 Study 1: Impact on Syntax-based Models

In this study, we consider to what extent derivational information can alleviate sparsity
problems and possibly increase quality in syntax-based distributional vector spaces. We
first motivate our choice of the term “smoothing” by relating our study to smoothing
approaches in the literature (Section 6.1.1). Next, we explain how we incorporate
derivational information into distributional models to conduct derivational smoothing
(Section 6.1.2). Section 6.1.3 presents the setup of our experiments on two lexical-semantic
tasks, and Sections 6.1.4 and 6.1.5, respectively, report and discuss the results.

6.1.1 Smoothing Techniques in Related Areas

In language modelling, smoothing techniques are well-established to make predictions for
unseen data (mostly, unseen n-grams; Chen and Goodman (1999), Dagan et al. (1999)).
Although under a different name, the concept of smoothing also exists in other NLP areas,
often conducted through the incorporation of additional resources. For instance, studies
in Information Retrieval (IR) often describe smoothing as “query expansion”, addressing
lexical gaps between query and document by integrating data from lexical resources such
as WordNet (Voorhees, 1994, Gonzalo et al., 1998, Navigli and Velardi, 2003). In lexical
semantics, smoothing is considered a “generalisation” that is achieved by backing off
from words to their semantic classes, again adopted from lexical resources (Resnik, 1996)
or induced from dependency-parsed data (Pantel and Lin, 2002, Wang et al., 2005, Erk
et al., 2010). Both IR and distributional semantics also use SVD (Deerwester et al., 1990,

121

6.1 Study 1: Impact on Syntax-based Models

Landauer and Dumais, 1997), a mathematical method to find low-rank approximations
of word vector matrices, i.e., to smooth and to compact them.

Although distributional information is often employed for smoothing, to our knowledge
there is little work on smoothing distributional models themselves (apart from the
general concept of SVD). We see two main precursor studies for our work: Bergsma
et al. (2008) build models of selectional preferences that include morphological features
such as the consideration of capitalisation or the presence of digits, in order to narrow
down the number of potential arguments of specific verbs. However, their approach is
task-specific and requires a (semi-)supervised setting. Allan and Kumaran (2003) make
use of morphology by building language models for stemming-based equivalence classes.
Our approach also uses morphological information, albeit more precise and productive
than stemming, as Table 4.9 on page 74 has shown.

6.1.2 Models for Derivational Smoothing

Our derivational smoothing builds on the DCA, i.e., most derivationally related words are
assumed to be semantically related. In the following, we describe how we incorporate the
semantic knowledge of DErivBase into the distributional representation of derivationally
related words. The definition of a derivational smoothing algorithm consists of three parts:
a derivation rule path, a smoothing trigger, and a smoothing scheme. In all following
evaluations, we refer to these parameters using the terminology defined here.

Model Notations. Given a word w, we use w⃗ to denote its distributional vector and
DF(w) to denote the set of vectors for the derivational family of w. We assume that
w⃗ ∈ DF(w). For words that have no derivations in DErivBase, DF(w) is a singleton
set, DF(w) = {w⃗}.

Smoothing Parameters. We first introduce the concepts underlying the three parame-
ters: The binary derivation rule path determines whether the rule paths between family
members are used to weight the respective word pair in the smoothing procedure. The
smoothing trigger is a binary function that defines whether a word pair should undergo
derivational smoothing, or not. The smoothing scheme, in turn, defines the smoothed sim-
ilarity function, i.e., in which way derivational information from DErivBase is included.
Formally, smoothing trigger and scheme define the smoothed similarity function of two
words, sim∗(w⃗1, w⃗2), by means of the unsmoothed similarity function, sim(w⃗1, w⃗2), on a
vector space W , as follows:

sim∗(w⃗1, w⃗2) =


sim(w⃗1, w⃗2) if smoTr sim(w1, w2) = false

smoSc(w⃗1, w⃗2) otherwise
(6.1)

where smoTr sim : W ×W → B is the smoothing trigger for a given similarity measure,
and smoSc : W ×W → R is the smoothing scheme.

122

6.1 Study 1: Impact on Syntax-based Models

Derivation Rule Path. As regards DErivBase v2.0, we assume that the derivational
families are semantically coherent. However, v1.4.1 is not semantically validated, and
we believe that the plain information about membership in the same derivational family
can be further refined. We define a score that quantifies our expectations about the
probability of semantic relatedness between two words by means of our derivation rules:
As described in Section 4.1.4, each related lemma pair is connected by a derivation rule
path. We have observed a weakest link behaviour for lemmas connected by a sequence of
rules (cf. Section 5.3). Thus, our confidence in a word pair decreases the longer its rule
path is. We reflect this fact by assigning each pair a confidence score: α(w,w′) = 1/n,
where n is the length of the shortest rule path between w and w′. For example, the
lemma pair bekleidenV – VerkleidungN (to enrobeV – disguiseN) is connected by three

rules:1 bekleidenV
VV02*−→ kleidenV

VV05−→ verkleidenV
VN07−→ VerkleidungN (to enrobeV →

to dressV → to disguiseV → disguiseN). It is thus assigned the confidence α = 1/3,
while α(bekleiden, kleiden) = 1.

We define two different path information levels that can be extracted from DErivBase:
Plain only considers the membership of two lemmas in the same derivational family (or
semantic cluster); path additionally considers the confidence score α of two lemmas of
the same derivational family (or semantic cluster).

Smoothing Trigger. As there is no guarantee for perfect semantic similarity within
a derivational family, smoothing may also drown out valuable information from the
distributional model, which is undesirable. To investigate when derivational smoothing
is beneficial, we experiment with two triggers: alwaysSmoTr performs smoothing for all
lemma pairs; zeroSmoTr smoothes only when the unsmoothed similarity of a lemma pair,
sim(w⃗1, w⃗2), is zero or undefined (due to w1 or w2 not being in the model), and is thus
more conservative:

alwaysSmoTrsim(w1, w2) = true
zeroSmoTrsim(w1, w2) = true iff sim(w1, w2) = 0

Smoothing Scheme. The last parameter is how we incorporate information from
derivational families. We present three schemes, all of which apply to the level of
complete families. Incorporating whole families is again motivated by the network
model of Bybee (1985, 1988); cf. Section 2.3. Figure 6.1 illustrates how the schemes are
calculated.

The first two schemes are exemplar-based : They define the smoothed similarity for
a word pair as a function of the pairwise similarities between all words of the two
derivational families. The first one, maxSim, checks for the most similar words in the
families of the two lemmas to be compared. This scheme is useful, e.g., when the original
lemmas are semantically very similar, but differ in their part of speech and do not achieve

1The rules are listed in Appendix B. An asterisk indicates that the respective rule is inversely applied.

123

6.1 Study 1: Impact on Syntax-based Models

Figure 6.1: Illustration of the three smoothing scheme calculations, given two derivational
families. Left: maxSim; middle: avgSim; right: centSim

high similarity due to contextual changes (cf. Section 5.2.3):

maxSim(w1, w2) = max
w⃗1

′∈DF(w1)
w⃗2

′∈DF(w2)

α(w1, w
′
1) α(w2, w

′
2) sim(w⃗1

′, w⃗2
′) (6.2)

where α is the rule path weighting (α(w,w ′) = 1 for plain information).
The second smoothing scheme, avgSim, computes the average pairwise similarity.

Relying not only on one family member, it is less prone to (semantically) incorrect
outliers in a family than maxSim:

avgSim(w1, w2) =
1

N


w⃗1

′∈DF(w1)
w⃗2

′∈DF(w2)

α(w1, w
′
1) α(w2, w

′
2) sim(w⃗1

′, w⃗2
′) (6.3)

where N is the number of pairs that can be formed from the two families and have a
similarity ̸= 0. Again, α(w,w′) = 1 for plain information.

The third scheme, centSim, is prototype-based. It computes a centroid vector for each
derivational family, which can be thought of as a representation for the concept(s) that
this family expresses:

centSim(w1, w2) = sim

c(DF(w1)), c(DF(w2))


(6.4)

where c(DF(w)) = 1
|DF(w)|


w⃗ ′∈DF(w) α(w,w′)w⃗ ′ is the centroid vector.2 centSim is

similar to avgSim, but more efficient to calculate.

2Note that the centroid is dependent on the word in question w by means of α (except for the plain

124

6.1 Study 1: Impact on Syntax-based Models

In the case of exemplar-based smoothing, the distributional representations of words are
unaltered and smoothing is effectively performed on-line. In contrast, for prototype-based
smoothing, we first compute a prototype representation for each word by computing
the centroid vector of its derivational family, and then compute the similarity between
the two prototypes. From a computational perspective, this makes prototype-based
smoothing appealing, as it can be processed in advance.

6.1.3 Experimental Setup

This Section describes the two semantic tasks we use as benchmark tests to evaluate our
derivational smoothing procedure, and the setup and data basis of our experiments.

Experiments. We evaluate the impact of smoothing on two classical representatives of
lexical semantic tasks, where substantial datasets are available for German: semantic
similarity prediction, and synonym choice. Both datasets can be downloaded from
http://goo.gl/bFokI. On these datasets, we measure the performance of a standalone
syntax-based model, and to what extent derivational smoothing retains or even improves
its predictions while increasing coverage. Synonym choice differs from semantic similarity
in two respects: It considers a more narrow scope of similarity (i.e., synonymy), and it
requires to rank various possibilities and to choose the best one. We expect differences
between the two tasks with regard to the impact of derivational smoothing, since the
words within derivational families are generally related but often not synonymous in
the strict sense. Thus, semantic similarity judgments should profit more easily from
derivational smoothing than synonym choice.

Semantic similarity prediction: The first task is the prediction of semantic similarity
between words pairs. We utilise the German Gur350 dataset (Zesch et al., 2007),
a set of 350 word pairs with human similarity judgments, created analogously to
the well-known Rubenstein and Goodenough (1965) dataset for English. Strictly
speaking, the pairs cover semantic relatedness, a more general concept than simi-
larity: While similarity defines actual resemblance, relatedness covers a broader
scope – including similarity, but also relationships such as meronymy, antonymy, or
associations (Budanitsky and Hirst, 2006, Patwardhan et al., 2003). However, the
creators note that the Gur350 dataset is biased towards strong classical relations
(e.g., hyponymy, synonymy (Morris and Hirst, 2004)), because the word pairs
were manually selected and humans tend to select highly related pairs. For this
reason, the dataset can be considered a test bed for semantic similarity prediction.
Eight annotators assessed the relatedness of each word pair, assigning it a score
on a five-point Likert scale (Likert, 1932) between fully unrelated (0), and fully
related (4). The inter-annotator agreement in this task was 0.69. The following
three lemma pairs, including their average relatedness score, are extracted from
the dataset:

setting), thereby somewhat abusing the concept of centroids.

125

http://goo.gl/bFokI

6.1 Study 1: Impact on Syntax-based Models

AbsageN ablehnenV 3.5 (rejection / to refuse)
AgenturN IrrtumN 0.0 (agency / mistake)
erklärenV begründenV 2.5 (to explain / to justify)
Note that the Gur350 data contain lemma pairs across parts of speech, a specificity
that might be harder to model for syntax-based distributional models.

We manually lemmatised and part of speech-tagged the dataset (since the dataset
provides no context, automatic tagging was not possible), and predict semantic
similarity as cosine similarity. We make a prediction for a word pair if both words
are represented in the semantic space and their vectors have non-zero similarity.

Synonym choice: The second task focusses on synonyms. We conduct this evaluation
on the German version of the Reader’s Digest WordPower dataset (Wallace and
Wallace, 2005), a challenging dataset that is comparable to the synonym choice
portion of the English TOEFL test (Landauer and Dumais, 1997), and contains
many foreign and rare words, e.g., Zabaione. It consists of 984 target words with
four synonym candidates each, one of which is correct. Candidate synonyms also
include short phrases. One such 5-tuple item, including an index indicating the
correct answer, is illustrated in the following:
bootenV : ausschaltenV / neuA startenV / TextN eingebenV / speichernV : 2
(to boot : to switch off / to restart / to enter text / to save : 2)
Again, we manually lemmatised and part of speech-tagged the dataset, and compute
semantic similarity as the cosine between target and a candidate vector. From
the four pairs per item, we pick the highest-similarity candidate as synonym. For
phrase candidates, we compute the similarity between the target and all constituent
words, and take the maximum. We make a prediction for an item if at least one
target–candidate pair is represented in the semantic space and the respective vector
has a non-zero similarity.

Syntax-based Distributional Model. The German syntax-based distributional model
that we smooth represents target words by pairs of dependency relations and context
words. More specifically, we use the W × LW matricisation of Dm.De, the German
version (Padó and Utt, 2012) of the English Distributional Memory (Baroni and Lenci,
2010) (cf. Section 3.2). Dm.De was induced from the same corpus we have employed to
induce DErivBase (SdeWaC (Faaß and Eckart, 2013); cf. Section 4.2.3), lemmatised,
tagged, and dependency-parsed with the MATE toolkit (Bohnet, 2010).

Baseline. Our baseline is a standard bag of words vector space (Bow), which represents
target words by the words occurring in their context. We want the Bow space to behave
similar to a syntax-based space in that it should contain rather strict representations
of semantic similarity. Thus, we use a relatively small context word window of ±2, and
extract a space using the 10,000 most frequent noun, verb and adjective lemmas as
contexts, reduced to 500 dimensions using SVD. The model was created from the same
corpus as Dm.De, and preprocessed with the same toolkit.

126

6.1 Study 1: Impact on Syntax-based Models

Evaluation. We evaluate the coverage of our models and the quality of their predictions.
In both tasks, coverage is the percentage of items for which we make a prediction,
and quality is measured both on covered and on all items, where the uncovered items
are treated as false. For the semantic similarity prediction, we measure quality as the
Pearson correlation between the model predictions and the human judgments for covered
items, r/cov , and for the whole dataset, r/all . For synonym choice, we measure accuracy
(acc/cov and acc/all , respectively), and assign partial credit for ties, following the method
described by Mohammad et al. (2007). For both tasks, significance testing is performed
with bootstrap resampling (Efron and Tibshirani, 1993) on all items.

Derivational Smoothing. We experiment with all combinations of rule path information,
smoothing trigger and smoothing scheme, and employ both DErivBase v1.4.1 and v2.0
for both evaluation tasks.3 We expect the rule paths, although representing derivational
processes in a very simple way, to generally improve prediction quality. As to the
smoothing trigger, zeroSmoTr might have little impact if the underlying space has high
coverage, but should take into account the semantic information of the proper space
more strongly than alwaysSmoTr . The effect of the smoothing schemes is hard to predict,
but at least, the three fairly different ideas we have implemented should show different
trends. Finally, we expect the semantically validated lexicon to perform better in terms
of quality (correlation and accuracy), but to have a lower coverage than v1.4.1.

6.1.4 Results

Results for Semantic Similarity Prediction. Table 6.1 shows the results for the first task
on the baseline and the unsmoothed and smoothed Dm.De models (identical baseline
results are not repeated for different DErivBase versions). While the baseline has
expectedly high coverage and low quality, the unsmoothed Dm.De attains r/all = 0.38,
r/cov = 0.43, and a coverage of 60.0%. Smoothing increases the coverage substantially
to over 90% with DErivBase v1.4.1. As expected, the coverage of v2.0 is lower (about
88%).

As regards the quality, DErivBase v2.0 is always numerically superior to v1.4.1,
showing that the semantic validation indeed yields improvements in this application.
Smoothing all Dm.De lemma pairs (alwaysSmoTr) with path information from v2.0 and
using the maxSim smoothing scheme achieves the top correlations of r/all = 0.45 and
r/cov = 0.48, respectively (the difference to the unsmoothed Dm.De model is statistically
significant at p = 0.05, but the difference to the second best model, i.e., the centSim
scheme for v2.0 using the zeroSmoTr trigger, is not significant). The correlations in
this top model outperform the same setting using the plain information (r/all = 0.43,
r/cov = 0.45; significance at p = 0.05), which means that the rule path-related confidence
score α provides additional valuable information. The same trend is visible for v1.4.1:
Except for the avgSim smoothing scheme, quality always improves through the addition

3We always instantiate the smoothing triggers with cosine similarity (alwaysSmoTrcos , zeroSmoTrcos),
so that we abbreviate the notation in the following to alwaysSmoTr and zeroSmoTr .

127

6.1 Study 1: Impact on Syntax-based Models

DErivBase v1.4.1 DErivBase v2.0

Rule
path

Smoothing
trigger

Smoothing
scheme

r
/all

r
/cov

cov
%

r
/all

r
/cov

cov
%

p
la

in

Dm.De,
alwaysSmoTr

maxSim .31 .32 90.6 .43 .45 87.7
avgSim .33 .34 90.6 .36 .38 87.7
centSim .36 .38 90.6 .43 .45 87.7

Dm.De,
zeroSmoTr

maxSim .29 .30 90.6 .42 .44 87.7
avgSim .43 .45 90.6 .44 .46 87.7
centSim .43 .45 90.6 .44 .47 87.7

p
at

h

Dm.De,
alwaysSmoTr

maxSim .44 .46 90.6 .45 .48 87.7
avgSim .30 .31 90.6 .35 .36 87.7
centSim .39 .41 90.6 .44 .46 87.7

Dm.De,
zeroSmoTr

maxSim .43 .45 90.6 .44 .46 87.7
avgSim .42 .44 90.6 .43 .45 87.7
centSim .44 .46 90.6 .44 .47 87.7

Dm.De, unsmoothed .38 .43 60.0 – – –

Bow baseline .34 .34 96.9 – – –

Table 6.1: Results for the semantic similarity prediction (r/cov: Pearson correlation on
covered items, r/all: Pearson correlation on all items, cov: coverage). Best
results are marked in boldface. Unsmoothed models only shown in DErivBase
v1.4.1 column

of the path. We assume that the loss for avgSim using path confidence arises from big
families that contain outliers with long rule paths, and thus impair the similarity of the
compared families.

Considering the smoothing schemes, avgSim often performs worse than the other two
– except for the zeroSmoTr trigger on plain information –, and is (as just mentioned)
the only scheme that does not benefit from path information. The maxSim and the
prototype-based smoothing scheme (centSim), in turn, largely perform on par and yield
relatively stable results, particularly if the path is available.

Surprisingly, the alwaysSmoTr trigger performs partly better than zeroSmoTr if the
path is available, meaning that the weighting with α assigns sensible weights particularly
for word pairs that are covered by the unsmoothed model. Although this trigger achieves
the best results, it is clearly more risky than smoothing only pairs with zero or undefined
similarity: Only the radical maxSim scheme yields better results when all items are
smoothed. On all other combinations of rule path information, smoothing scheme and
DErivBase version, however, the more conservative trigger yields better results. The
results for the alwaysSmoTr trigger on v1.4.1 plain show what happens in rather noisy
settings: All smoothing schemes achieve fairly low correlations, two of them even below

128

6.1 Study 1: Impact on Syntax-based Models

both the unsmoothed Dm.De model and the bag of words baseline. Consequently, we
suggest that smoothing should only be applied to all lemma pairs when sound smoothing
information is available (i.e., semantically validated information, and rule path confidence);
the more cautious zeroSmoTr strategy is generally to be preferred if the quality of the
smoothing data is unknown: After all, the unsmoothed Dm.De model itself contains
valuable semantic information, and overriding it with derivational smoothing can be
counterproductive. The constantly good results of settings using the zeroSmoTr trigger
show that the model-owned predictions, whenever available, should indeed be used.

Overall, the two DErivBase versions display the same trends, with one exception:
While the maxSim smoothing scheme performs exceptionally poorly (again, below the
Bow baseline) for the plain v1.4.1 settings, it achieves fairly good results in plain v2.0,
and works generally well on the semantically validated data. This difference is reasonable:
The clusters in v2.0 typically do not contain outliers but are semantically coherent and
rather small. In contrast, the nearest neighbours of two (generally bigger) families in
v1.4.1 might be outliers, so that they lead to spurious high similarities.

In sum, for semantic similarity prediction, derivational smoothing clearly profits from
high-quality data, i.e., semantic validation and path confidence weights. The optimal
choice of smoothing trigger and scheme depends on this quality; generally, the more
cautious zeroSmoTr trigger and a balanced scheme (avgSim, centSim) are recommendable.

To get an impression of the effect of derivational smoothing, consider the lemma pair
beschuldigenV – MitschuldN (to accuseV – share of blame) with a mid-range human
relatedness rating of 2.5. It has a zero cosine in the unsmoothed Dm.De model, but
cos = 0.5 in our best smoothed model. Notably, the respective model on v1.4.1 assigns a
too high similarity, (e.g., cos = 1.0 for maxSim), since the lemmas are members of the
same family, while v2.0 separated them into two subclusters.

The best previous result on this dataset is, to our knowledge, a cross- and multilingual
model by Utt and Padó (2014). It reports slightly lower correlations (r/cov = .47,
r/all = .42) and lower coverage (69%) than in our results.

Results for Synonym Choice. The results for the second task are shown in Table 6.2,
reporting the same configurations as for the first task. The unsmoothed model achieves
accuracies of 48.2 and 59.7 for all and covered items, respectively, and a coverage of 80.8%.
Smoothing increases the coverage by +6 and +5 with v1.4.1 and v2.0, respectively. To
give an example, a question item with the target lemma inferior is additionally covered
by backing off to the derivationally related lemma Inferiorität (inferiority).

In terms of quality, all smoothed models show a loss in accuracy on all and covered
items. We did expect that the more narrow scope of synonymy is not easy to capture
with the broader notion of semantic relatedness in the derivational families, however, the
decline is more severe than we have thought. Although the difference in accuracy between
the best smoothed and the unsmoothed Dm.De model (measured on all items) is not
significant at p = 0.05, derivational information obviously misleads the unsmoothed model
on this task. For this reason, the settings using conservative smoothing (zeroSmoTr)
lead to less losses than alwaysSmoTr . The best smoothed model in terms of accuracy

129

6.1 Study 1: Impact on Syntax-based Models

DErivBase v1.4.1 DErivBase v2.0

Rule
path

Smoothing
trigger

Smoothing
scheme

acc
/all

acc
/cov

cov
%

acc
/all

acc
/cov

cov
%

p
la

in

Dm.De,
alwaysSmoTr

maxSim 44.4 51.2 86.8 47.3 55.1 85.8
avgSim 41.0 47.2 86.8 44.8 52.3 85.8
centSim 43.1 49.6 86.8 47.0 54.8 85.8

Dm.De,
zeroSmoTr

maxSim 46.8 54.0 86.8 47.5 55.4 85.8
avgSim 47.1 54.3 86.8 47.6 55.5 85.8
centSim 47.2 54.4 86.8 47.7 55.6 85.8

p
a
th

Dm.De,
alwaysSmoTr

maxSim 47.0 54.1 86.8 47.7 55.6 85.8
avgSim 39.4 45.4 86.8 44.0 51.3 85.8
centSim 44.0 50.7 86.8 47.2 55.0 85.8

Dm.De,
zeroSmoTr

maxSim 46.8 54.0 86.8 47.3 55.1 85.8
avgSim 47.3 54.5 86.8 47.5 55.4 85.8
centSim 47.3 54.5 86.8 47.7 55.6 85.8

Dm.De, unsmoothed (Padó & Utt 2012) 48.2 59.7 80.8 – – –

Bow baseline 51.9 54.5 95.2 – – –

Table 6.2: Results on the synonym choice task (acc/cov: accuracy on covered items,
acc/all: accuracy on all items, cov: coverage). Best results and best smooth-
ing accuracies are marked in boldface. Unsmoothed models only shown in
DErivBase v1.4.1 column

uses zeroSmoTr triggering and is calculated with DErivBase v2.0, reporting a loss in
accuracy of acc/all = −0.5 and acc/cov = −4.1. This time, however, the best smoothing
scheme is centSim, and the path seems to be irrelevant, as its addition does not change
the result.

As to the different smoothing settings, most trends are identical to those examined
on the semantic similarity prediction. We again observe particularly poor results for
alwaysSmoTr on rather low-quality smoothing data (v1.4.1 plain), and a general im-
provement by adding path confidences, except for the avgSim scheme. This time, the
zeroSmoTr trigger does not only outperform alwaysSmoTr in most settings (like in the
first task), but also achieves the “best” smoothing results. The semantic validation of
DErivBase v2.0 again improves accuracy over v1.4.1. In fact, all accuracy scores of
v2.0 are higher, i.e., provide more robust predictions.

The results for the three smoothing schemes are less clear-cut on this task: While the
prototype-based centSim scheme achieves mid-range to good results, there are no clear
patterns for the relative performance of the two exemplar-based schemes. We attribute
this volatility to the fact that the applicability of derivational smoothing for synonym
choice is difficult per se, and that the quality of the smoothing data is more important

130

6.1 Study 1: Impact on Syntax-based Models

than the smoothing scheme.
Derivational smoothing is able to trade accuracy against coverage, but does not yield

improvements over the unsmoothed Dm.De on this task. What is more, the bag of words
“baseline” significantly outperforms all syntactic models – smoothed and unsmoothed –
with an almost perfect coverage and substantially higher accuracy on all items. Notably,
the Bow model covers a high number of rare and foreign words (which are frequent in
the synonym choice data; cf. Section 6.1.3), e.g., Zabaione, or inferior, and our model
construction using SVD and a small context window leads to good predictions for these
words. While it is known that word-based spaces can perform fairly well, our results are
contrary to those of, e.g., Peirsman (2008) in that our Bow model performs better than
Dm.De on strict semantic similarity such as synonymy.

6.1.5 Discussion

The results demonstrate that derivational smoothing is able to improve the performance
of a syntax-based distributional model, increasing coverage substantially and also leading
to a significantly higher correlation for semantic similarity prediction – although the
underlying syntactic model was created from a substantial corpus (880M tokens). We
obtained the best results for an approach that smoothes all lemma pairs using high-quality
smoothing information from the semantically validated DErivBase v2.0, and rule path-
related confidence scoring. However, we recommend to employ the more conservative
zeroSmoTr smoothing approach if the quality of the derivational information is low or
unknown. A comparison of prototype- and exemplar-based schemes did not yield a clear
winner. In principle, centSim seems to be a robust choice, while maxSim is advantageous
on high-quality smoothing data.

On the synonym choice task, derivational information degrades performance, and a
simple, high-coverage Bow model outperforms all syntax-based models. The differences
between the two tasks show that the task of estimating generic semantic similarity profits
more from derivational smoothing than the task of estimating specific lexical relations
such as synonymy. This result is plausible, given the properties of derivational families:
They do not only contain words that are highly similar on a very fine-grained level (such
as synonyms), but more generally related words, so that DErivBase is more useful for
semantic similarity prediction.

In sum, our experiments show that syntax-based spaces can be successfully improved
with derivational smoothing, but that less sophisticated bag of words spaces perform
surprisingly well. Thus, the question arises to what extent distributional models of
any kind (syntax- and word-based) and derivational lexicons provide complementary
information, and whether they can be combined to better ensemble models. We will
examine this question in Section 6.2.

Additional Experiments. We tested various modifications of the three smoothing pa-
rameters presented in Section 6.1.2:

Derivation rule path: Apart from the two derivation rule path levels presented above

131

6.2 Study 2: Complementarity with Word-based Models

(plain family membership, and additional confidence scores using the rule path), a
third possibility is to employ the probabilities obtained from the semantic validation
classifier (cf. Section 5.5.1) as confidence scores. That is, each lemma pair is weighted
with this probability rather than the path length-based score. Results using such a
setting were largely comparable to the path results.

Smoothing triggers: The smoothing triggers that we have presented are of course not
the only possibilities to determine when smoothing should be conducted. One could,
e.g., employ thresholds defined for the similarity scores. We also experimented with
such thresholds, but found it hard to determine a sensible margin.

Smoothing schemes: We experimented with other smoothing possibilities, e.g., part of
speech-restricted smoothing, but did not yield any improvements over the three
simpler models we presented above.

Additionally, we experimented with a different prediction strategy on the synonym
choice dataset: Instead of making a prediction for an item as soon as one target-
candidate pair is covered (as described above), we predicted only items which are fully
covered, i.e., where the target word and all four candidates are represented in the model.
While accuracies were comparable to the setting reported above, coverage was obviously
significantly worse (about 40%).

6.2 Study 2: Complementarity with Word-based Models

The findings of Section 6.1 suggest that the sparsity of syntax-based spaces is a general
problem which can be addressed to some extent by derivational smoothing. Another
approach would be to alleviate sparsity by combining syntax-based spaces with other
spaces with complementary profiles, e.g., less reliable, but high-coverage spaces such as bag
of words models. If this strategy indeed reduced sparsity, it would be interesting whether
derivational information contains complementary information which can be additionally
included to further improve quality and coverage. In this Section, we investigate this
question and conduct a follow-up study to our previous smoothing experiments. We
combine different distributional models and derivational smoothing.

First, we describe our model combination method, and how we add derivational
smoothing to such a combination (Section 6.2.1). Section 6.2.2 explains how we concretely
apply this two-level approach to the same benchmark tasks as in Section 6.1, and
Sections 6.2.3 and 6.2.4, respectively, report and discuss the results.

6.2.1 Methods for Combining Vector Spaces

Given the complementarities of bag of words (Bow) and syntactic models (cf. Section 3.2),
it seems natural to combine them in a beneficial manner. There are at least two general
combination possibilities. On the one hand, there is a research tradition that has developed
strategies to unify different input vector spaces into a joint output representation,

132

6.2 Study 2: Complementarity with Word-based Models

assuming that the information provided by the spaces is of comparable quality, but
contains different types of information, and can therefore be combined on equal footing
– e.g., by dimensionality reduction, feature collation, or even just addition (Andrews
et al., 2009, Bruni et al., 2011, Fyshe et al., 2013). On the other hand, one can assume
that different spaces exhibit different levels of quality, i.e., that some spaces make more
reliable predictions than others, depending on their parametrisation and underlying data.
Such different profiles often imply an accuracy-coverage tradeoff among the spaces.

Our work assumes the latter perspective, given the well-known variance in the reliability
of differently constructed spaces. We combine the models not at the level of co-occurrence
information, but at the level of (normalised) predictions, similar to Utt and Padó
(2014) who combine cross-lingual with monolingual syntax-based models. They induce a
syntactic model cross-lingually by “translating” existing English models with a bilingual
lexicon. The filter effect caused by the translation amplifies the properties of syntax-based
models, with a still higher prediction quality at even lower coverage. Thus, they combine
the cross-lingual with a monolingual syntactic model, which greatly improves coverage at
a minimally reduced quality. We follow Utt and Padó’s idea and similarly combine two
semantic spaces, however, we employ one syntactic, and one word-based space.

Model combination is a fairly different method to improve the performance of distribu-
tional spaces than the derivational smoothing presented in Section 6.1: The inclusion of
DErivBase conducts smoothing by means of relating information within one space, i.e.,
it recombines predictions of the same model. In contrast, the model combination deals
with combining the predictions of two independent spaces, i.e., it introduces completely
new information, potentially leading to very different predictions.

As proposed in Utt and Padó (2014), we conduct this model combination by score
maximisation. This strategy is based on the assumption that distributional models are
more likely to underestimate than to overestimate semantic similarity, as it is rather
improbable that vectors of dissimilar words become similar by chance, while many factors
(e.g., preprocessing) can make vectors of similar words dissimilar. In consequence, if a
model predicts high similarity for two words, this is likely a signal that should be picked
up. We define the Max similarity predicted by a set of models as the maximal score
predicted by any of the individual models. By definition, Max is order-invariant.

Derivational Smoothing of Combined Models. Since the basic ideas of model combina-
tion and derivational smoothing are very different, we expect their impact on distributional
models to be complementary. Thus, we incorporate derivational relatedness information –
in a similar fashion as in Section 6.1 – as an additional level to the model combination:
Both combined distributional models m are employed once in plain format (m), and once
using derivational smoothing (mdsmo). Thus, we combine up to four models, and examine
whether derivational smoothing provides an improvement beyond model combination, or
is redundant with that (arguably simpler) method.

Again, we employ both DErivBase v1.4.1 and v2.0. As to the three smoothing
parameters, we select the following settings (we experimented with all settings, but report
only a part of them due to the high number of possible combinations):

133

6.2 Study 2: Complementarity with Word-based Models

Derivation rule path: We use the plain information level, since it constitutes a more
universal smoothing parameter than path information, and the quality differences
were unstable in our experimental results in our first study.

Smoothing trigger: We experiment with both the alwaysSmoTr and zeroSmoTr triggers.
Although alwaysSmoTr could interfere with high-quality information from the
syntax-based models, we expect the Max model combination to avoid performance
declines, since information from DErivBase is only added when it leads to the
highest similarity prediction.

Smoothing scheme: We employ maxSim and centSim, the best schemes from Section 6.1.

6.2.2 Experimental Setup

Distributional Models. As word-based and syntax-based spaces, we reuse the Bow and
Dm.De models presented in Section 6.1.3, and run derivational smoothing on both models
(Dm.Dedsmo , Bowdsmo). The predictions of the four resulting models are normalised by
z-score transformation in order to make them comparable. We use the maximal score
(Max) combination strategy to select a prediction for combined models (cf. Section 6.2.1),
and test the following four combinations (illustrated in Figure 6.2):

1. The unsmoothed and smoothed syntax-based model (Dm.De+Dm.Dedsmo): This
combination directly compares our previous smoothing strategy and Max

2. The two unsmoothed models (Dm.De+Bow): This combination compares the
performance of derivational smoothing and model combination

3. The two unsmoothed, and the smoothed syntax-based model (Dm.De+Dm.Dedsmo+
Bow): This combination reveals potential complementarities of model combination
and derivational smoothing

4. All four models (Dm.De+Dm.Dedsmo+Bow+Bowdsmo): Smoothing the Bow
model might lead to additional (presumably small) gains; this setting is added for
the sake of completeness

Baselines. We consider two uninformed baselines, based on the assumption that high-
frequency lemmas provide more reliable estimates: random choice (for synonym choice)
and frequency. For the semantic similarity prediction, the frequency baseline predicts
the smaller of the two words’ frequencies, min(f(w1), f(w2)), thus constituting a lower
bound baseline. For synonym choice, the frequency baseline predicts the candidate with
the highest corpus frequency.

Prediction and Evaluation. Again, we compute cosine to measure quality and coverage
of semantic similarity judgements on the Gur350 and the synonym choice datasets,
re-using the setup of Section 6.1.3. For each individual model, we make a prediction if

134

6.2 Study 2: Complementarity with Word-based Models

DM.de
model

DErivBase
smoothing

Model
Combination

1.
DM.de
model

Bow
model

Model
Combination

2.

DM.de
model

Bow
model

DErivBase
smoothing

Model
Combination

3.
DM.de
model

Bow
model

DErivBase
smoothing

DErivBase
smoothing

Model
Combination

4.

Figure 6.2: Illustration of the four tested settings for model combination and/or deriva-
tional smoothing. The numbers correspond to those indicated in Section 6.2.2

135

6.2 Study 2: Complementarity with Word-based Models

both words are represented in the model and their vectors have a non-zero cosine. Again,
we test significance with bootstrap resampling (Efron and Tibshirani, 1993) on all items.

6.2.3 Results

Tables 6.3 and 6.4 show, for both tasks, the results of the baselines, the two individual
models and their combination, as well as the impact of derivational smoothing on each
of these models. Each model combination – also that of an individual model and its
derivational smoothing – is conducted with Max, i.e., the added model is only considered
if it increases the predicted similarity; thus, the results of the smoothed individual Dm.De
model are not identical to those in Tables 6.1 and 6.2. The Tables indicate the numbers of
our four model combinations introduced in Section 6.2.2. As above, identical unsmoothed
results are not repeated for different DErivBase versions.

Results for Semantic Similarity Prediction. Both individual models outperform the
baseline by a large margin. As sketched above, the models differ substantially: The
coverage of Bow is higher by almost 37 percentage points. At the same time, the quality
of the Dm.De predictions clearly outperforms Bow (e.g., r/cov 0.43 vs. 0.34). The
performance of the individual models bears out our assumption about their different
profiles (cf. Section 6.2.1).

Comparing the two unsmoothed models and their derivationally smoothed variants,
coverage only increases on the sparse syntax-based space (+30%), as Bow already has
almost 100% coverage. In consequence, the results on covered items and on all items
are almost identical for all models that include the Bow space (i.e., also the combined
models), and the zeroSmoTr trigger has virtually no effect on the Bow model. As in
Section 6.1, DErivBase v2.0 boosts coverage slightly less than v1.4.1.

As to the quality, derivational smoothing mostly enhances the unsmoothed models,
with two exceptions. The first are losses for smoothing Dm.De using the maxSim
scheme on DErivBase v1.4.1 (e.g., r/all 0.38 vs. 0.36; not statistically significant).
This behaviour suggests that semantically not validated derivational information should
not be trusted (which happens particularly through maxSim and Max combination).
The second exception are minor losses for the zeroSmoTr smoothing on Bow with
the centSim scheme for both DErivBase versions. Nonetheless, the centSim scheme
that actually smoothes over the family members rather than picking the most similar
ones, is more suitable for DErivBase v1.4.1 – but is also a robust scheme on v2.0.
As before, maxSim, which is more prone to false positives than centSim, profits from
semantically validated information, and DErivBase v2.0 generally performs better
than v1.4.1. Overall, derivational smoothing is more beneficial for the sparser Dm.De
than for Bow, both in terms of quality and coverage.

Comparing the derivational smoothing results on Dm.De with those in Table 6.1, we
note that the Max strategy leads to consistently better results than the smoothing we
employed in Section 6.1 (i.e., incorporating derivational information whenever the trigger
says so). Strikingly, the Max strategy yields a massive improvement of the alwaysSmoTr

136

6.2 Study 2: Complementarity with Word-based Models

DErivBase v1.4.1 DErivBase v2.0

Model Smoothing
trigger

Smoothing
scheme

r
/all

r
/cov

cov
%

r
/all

r
/cov

cov
%

Frequency
baseline

– – .13 .13 100 – – –

Individual models

Bow
(+Bowdsmo)

unsmoothed – .34 .34 96.9 – – –

alwaysSmoTr
maxSim .39 .39 96.9 .39 .39 96.9
centSim .38 .38 96.9 .38 .38 96.9

zeroSmoTr
maxSim .34 .34 96.9 .34 .34 96.9
centSim .33 .33 96.9 .33 .33 96.9

Dm.De
(+Dm.Dedsmo ; 1.)

unsmoothed – .38 .43 60.0 - – –

alwaysSmoTr
maxSim .39 .41 90.6 .46 .48 87.7
centSim .44 .46 90.6 .46 .48 87.7

zeroSmoTr
maxSim .36 .37 90.6 .44 .46 87.7
centSim .45 .47 90.6 .45 .47 87.7

Model combination

2. Dm.De+Bow unsmoothed – .41 .42 97.1 – – –

3. Dm.De
+Dm.Dedsmo

+Bow

alwaysSmoTr
maxSim .40 .41 97.1 .42 .43 97.1
centSim .41 .43 97.1 .41 .42 97.1

zeroSmoTr
maxSim .36 .37 97.1 .40 .41 97.1
centSim .42 .43 97.1 .41 .42 97.1

4. Dm.De
+Dm.Dedsmo

+Bow+Bowdsmo

alwaysSmoTr
maxSim .39 .41 97.1 .42 .44 97.1
centSim .39 .41 97.1 .41 .42 97.1

zeroSmoTr
maxSim .36 .37 97.1 .40 .41 97.1
centSim .39 .41 97.1 .39 .40 97.1

Table 6.3: Results for semantic similarity prediction on individual models (above) and
model combination (below); r/cov: Pearson correlation on covered items, r/all:
Pearson correlation on all items, cov: coverage. Best results are marked in
boldface. Unsmoothed models only shown in DErivBase v1.4.1 column

trigger compared to the previous results: It outperforms zeroSmoTr on r/all and r/cov
in all settings, particularly for the maxSim scheme. That is, derivational smoothing
and our new maximal score strategy (model combination 1. introduced in Section 6.2.2)
fit well together conceptionally, leading to the best overall correlation on all items of
r/all = 0.46 for the smoothed Dm.De using v2.0 (+.08 over the unsmoothed model;
difference stat. significant at p = 0.05).

137

6.2 Study 2: Complementarity with Word-based Models

The combination of the two unsmoothed spaces (combination 2.) achieves another
slight gain in coverage over Bow (+.02%), and an improvement of +.03 on r/all over
the best individual model (Dm.De; stat. significant at p = 0.05). This shows that the
spaces indeed provide information of different reliability which can be well combined by
picking the highest similarity prediction of any model.

Additionally conducting smoothing of Dm.De (3.) leads to small gains of +.01 on
covered items in three out of eight settings. That is, smoothing and model combination are
indeed to some extent complementary. However, the gains are not statistically significant.
High, but incorrect scores of the smoothed Dm.De space using the maxSim scheme,
the zeroSmoTr trigger and v1.4.1 impede the Bow space to improve the results of the
syntax-based space. In contrast, centSim, which usually does not assign overly high scores,
achieves slight improvements using v1.4.1. Although the maximal performance gains of
v1.4.1 and v2.0 are similar, the settings including semantically validated data are more
stable, suggesting that clean smoothing data is to be preferred to achieve high-quality
complementary information from derivational smoothing and model combination.

Finally, let us discuss the model combination using both unsmoothed spaces and their
smoothed variants (4.). Once more, correlation slightly rises over the previous setting (3.)
by +.01 (r/cov = .44) when one chooses the smoothing parameter combination that
has proven to be useful before: the alwaysSmoTr trigger and the maxSim smoothing
scheme on DErivBase v2.0. However, the difference to the combination in 2. and the
best model combination in 3. is again not statistically significant.

As can be seen, the model combinations involving both spaces (Dm.De and Bow) yield
improvements over the unsmoothed individual spaces, but they do not outperform the
top results achieved by derivational smoothing (setting 1.: smoothing on Dm.De, using
DErivBase v2.0 and the alwaysSmoTr trigger). Nonetheless, the difference between the
best combined and the best overall model is not statistically significant.

In sum, the data confirms our assumption from Section 6.2.1 that the Max combination
interacts well with derivational smoothing using the alwaysSmoTr trigger, and our general
expectation that the two strategies – model combination and derivational smoothing –
are to some extent complementary.

Results for Synonym Choice. The results for this task are shown in Table 6.4. Again,
all models outperform the baselines, and the two individual models exhibit different
profiles: Bow outperforms Dm.De in terms of coverage and – as in Section 6.1 – achieves
better quality on all items than the syntax-based space, but Dm.De clearly outperforms
Bow on covered items, attaining the highest overall score of acc/cov = 59.7.

Derivational smoothing leads to small coverage gains on both individual models, i.e.,
even DErivBase v2.0 adds some items to the Bow space. To give an example, smoothing
additionally covers the correct synonym for SukN (souk), which is MarktN (market).
Using the maxSim scheme, this pair is assigned the highest cosine out of the four candidate
pairs, yielding the correct synonym choice as opposed to the unsmoothed Bow model.

Again, using the Max strategy for derivational smoothing (1.) improves all results
on Dm.De compared to those in Table 6.2. In contrast to Table 6.2, accuracy does not

138

6.2 Study 2: Complementarity with Word-based Models

DErivBase v1.4.1 DErivBase v2.0

Model Smoothing
trigger

Smoothing
scheme

acc
/all

acc
/cov

cov
%

acc
/all

acc
/cov

cov
%

Random baseline – – 25.0 25.0 100 – – –

Frequency
baseline

– – 31.0 31.0 100 – – –

Individual models

Bow
(+Bowdsmo)

unsmoothed – 51.9 54.5 95.2 – – –

alwaysSmoTr
maxSim 51.3 53.6 96.9 52.1 54.7 96.8
centSim 50.9 52.5 96.9 51.2 52.9 96.8

zeroSmoTr
maxSim 51.9 54.2 96.9 52.0 54.6 96.8
centSim 50.1 51.7 96.9 50.8 51.8 96.8

Dm.De
(+Dm.Dedsmo ; 1.)

unsmoothed – 48.2 59.7 80.8 – – –

alwaysSmoTr
maxSim 46.8 53.9 86.8 48.4 56.4 85.7
centSim 47.3 54.5 86.8 48.6 56.7 85.7

zeroSmoTr
maxSim 47.2 54.4 86.8 47.9 55.9 85.7
centSim 47.4 54.6 86.8 47.9 55.9 85.7

Model combination

2. Dm.De+Bow unsmoothed – 53.7 55.4 97.1 – – –

3. Dm.De
+Dm.Dedsmo

+Bow

alwaysSmoTr
maxSim 52.1 53.6 97.2 53.1 54.7 97.1
centSim 52.7 54.3 97.2 54.1 55.8 97.1

zeroSmoTr
maxSim 53.1 54.6 97.2 53.5 55.1 97.1
centSim 53.4 54.9 97.2 53.5 55.1 97.1

4. Dm.De
+Dm.Dedsmo

+Bow+Bowdsmo

alwaysSmoTr
maxSim 52.5 54.0 97.2 53.7 55.3 97.1
centSim 51.5 52.8 97.2 53.3 54.7 97.1

zeroSmoTr
maxSim 52.8 54.3 97.2 53.4 55.0 97.1
centSim 51.9 53.2 97.2 52.1 53.4 97.1

Table 6.4: Results for synonym choice task on individual models (above) and model
combination (below); acc/cov: accuracy on covered items, acc/all: accuracy
on all items, cov: coverage. Best results are marked in boldface. Unsmoothed
models only shown in DErivBase v1.4.1 column

always decrease for smoothing Dm.De. More specifically, derivational smoothing leads to
gains on all items of up to +.4 (acc/all 48.2 vs. 48.6; stat. not significant). Smoothing
on Bow increases acc/cov , using DErivBase v2.0 and the maxSim scheme, while the
effect on all items is again small.

139

6.2 Study 2: Complementarity with Word-based Models

As the results show, the behaviour of smoothing schemes and triggers is less clear-cut
than for the semantic similarity prediction. Generally, the zeroSmoTr trigger seems
to be more suitable on DErivBase v1.4.1, as it mostly achieves better results than
alwaysSmoTr , while the exact opposite holds for v2.0. On Bow, the maxSim scheme
performs better than centSim, while the opposite holds for Dm.De. At least, DE-
rivBase v2.0 again performs consistently better than v1.4.1, which is plausible given
the fact that synonym choice requires semantically more narrow information.

As to the combination of Dm.De and Bow (2.), coverage as well as accuracy on
all items increase (cov +1.9% and acc/all +1.8 over Bow; difference not statistically
significant), again suggesting that the spaces are to some extent complementary.

Including derivational smoothing on Dm.De (3.) leads to the best overall accuracy on
all items of acc/all = 54.1 for this task (using DErivBase v2.0 with the alwaysSmoTr
trigger and the centSim scheme). The quantitative gain by means of derivational
smoothing in this setting is identical to that of derivational smoothing only on Dm.De
(1.), i.e., +.4 on acc/all . While this increase over the pure space combination (2.) is
not statistically significant, the difference to the individual Bow model is significant
at p = 0.05. Unfortunately, this is the only setting in which derivational smoothing
on Dm.De actually improves the model combination (3.). Overall, the results using
semantically validated smoothing data are more stable, as was the case for the semantic
similarity prediction.

Combining all four models (two unsmoothed spaces, and their smoothed variants; 4.)
yields mixed results. Only the combination of maxSim scheme and alwaysSmoTr trigger
attains slightly higher (statistically not significant) results than the same parametrisation
in the previous setting (3.). This improvement is surprising for v1.4.1, since maxSim did
not perform well in most other settings using this lexicon version; it might be explicable
by the fact that this scheme generally performs better on Bow for synonym choice than
centSim (see above), so that the four-fold model combination can benefit from maxSim.

In sum, derivational smoothing has only a negligible or negative effect on accuracy for
synonym choice, even if two distributional spaces are combined. The model combination
yields bigger performance gains than our smoothing method. These findings confirm the
conclusion of Section 6.1.5: The first task, which requires predicting semantic similarity
on a global scale between highly similar and highly dissimilar items, can profit from
derivational smoothing. In contrast, the synonym choice involves fine-grained judgments
among candidates of a higher similarity degree and does not profit from derivational
smoothing. A positive result, however, is that the Max model combination and deriva-
tional smoothing, particularly using the alwaysSmoTr trigger on DErivBase v2.0, seem
to well interact with each other, yielding the (numerically) best accuracy on all items.

6.2.4 Discussion

Our results show that the sparsity of highly accurate syntax-based semantic models can
be alleviated by combining them, on the one hand, with models exhibiting complementary
profiles such as word-based spaces, and on the other hand with derivational information

140

6.2 Study 2: Complementarity with Word-based Models

by taking into account distributional representations of all lemmas of a derivational family.
Both strategies yield coverage improvements and (in large parts) gains in quality. Model
combination achieves an improvement over the best individual model of +.03 on r/all
for the semantic similarity prediction, and of +1.8 on acc/all for the synonym choice.
Similarly, derivational smoothing improves the best unsmoothed model on r/all for the
first task by up to +.06, and on acc/all for the second task by up to +.2, respectively.
Employing both model combination and derivational smoothing achieves the best accuracy
on all items for the second task (+2.2 over the best individual unsmoothed model), and
a solid Pearson correlation for the first task (+.04 over the best individual unsmoothed
model). This suggests that model combination and derivational smoothing provide to
some extent complementary information. In parallel to our results in Section 6.1, the
synonym choice task does not profit from derivational information alone (nor, as a matter
of fact, from model combination alone): Only the interaction of spaces with different
profiles and derivational smoothing significantly improve the best individual model.

A surprisingly effective strategy for both tasks is to adopt the maximal prediction
made by any model: It clearly improves the derivational smoothing results presented
in Section 6.1 in all cases and on both tasks, and it yields the best overall models. We
interpret this as evidence for an underlying asymmetry in semantic spaces, where “false
positives” (overestimates) are much rarer than “false negatives” (underestimates).

Additional Experiments. We reported only a subset of our experiments with model
combination and derivational smoothing. Our major additional experiment was to
combine three distributional spaces instead of two: We included the cross-lingual syntactic
space of Utt and Padó (2014), tDm, as a very high-quality, very low-coverage model in
our combination. Note that this model contains implicit derivational knowledge through
the translation step. For instance, the English word teacher can be translated into
three different German words – Lehrer (teacher), Lehrerin (female teacher), Lehrender
(teaching person) – so that the translation step already introduces some derivational
smoothing. Still, our smoothing procedure substantially improves the quality of the
individual tDm model on both covered and all items on the first task (r/cov up to +.15).
The quality of the model combinations including tDm rises significantly, suggesting that
this space assigns high similarity predictions to actually similar lemma pairs. However,
this Chapter focused on the combination of monolingual models in order to clearly
differentiate the impact of model combination and derivational smoothing.

As to the interaction of the six models in the three-fold model combination (three
unsmoothed and three smoothed models), we also examined the following settings:

Model combination by backoff instead of MAX: We employed the backoff strategy
of Utt and Padó (2014), combining the three spaces in the following way: If
a word pair is covered by the highest-quality space (tDm), this prediction is used;
otherwise, we backoff to the next best space (Dm.De; intermediate quality and
coverage) or, as a last resort, use the most noisy space (Bow; highest coverage).
However, the Max combination strategy always outperforms backoff.

141

6.3 Summary

Derivational smoothing before or after model combination: When using backoff in-
stead of the Max strategy, the sequence of the model combination is crucial. We
tested both derivational smoothing after the distributional spaces have been com-
bined (tDm>Dm.De>Bow>tDmdsmo>Dm.Dedsmo>Bowdsmo), and before model
combination (tDm>tDmdsmo>Dm.De>Dm.Dedsmo>Bow>Bowdsmo). The for-
mer approach was superior to the latter on both tasks, suggesting that noisy
distributional spaces provide more reliable semantic information than highly accu-
rate spaces expanded by derivational lexicons.

6.3 Summary

The two studies presented in this Chapter investigate how DErivBase can be applied to
improve distributional semantic spaces: We have proposed a method called derivational
smoothing which takes into account the distributional representations of all members of
a derivational family rather than considering only those of the target words. Our basic
idea is that derivational smoothing alleviates the sparsity problem arising particularly for
syntax-based spaces. In fact, our smoothing models successfully overcome sparsity in a
syntax-based space, and even show quality improvements. Also, derivational information
is, to some extent, complementary to the combination of distributional spaces with
different profiles, i.e., high-quality syntax-based and high-coverage words-based spaces.

Various parameters determine how the derivational smoothing is conducted. We found
a conservative strategy (smoothing only if the two target words to be compared have
a zero similarity or are not covered by the model) to work well if this information is
mandatorily considered (Section 6.1). However, an even better option is to smooth all
target pairs, and to select the maximum of all similarity predictions of the models, i.e.,
using the Max combination strategy. The question in which way the incorporation of
the derivational family members should be calculated (i.e., which smoothing scheme
works best), can not be answered clearly, as this fact also depends on the quality of the
derivational information involved, and the task to be solved. Overall, the best and fairly
robust results were achieved with the alwaysSmoTr trigger, using the DErivBase v2.0,
and the Max combination strategy. In sum, DErivBase v2.0 achieves better results
than v1.4.1, which demonstrates that the semantic validation presented in Chapter 5 is
useful for the application of DErivBase on semantic tasks.

We have observed that derivational smoothing is not effective for all types of semantic
relatedness: Fine-grained relations such as synonymy are too narrow to profit from
information from other members of a derivational family, since these families contain
generally related words rather than synonyms. Coarser-grained, general relatedness,
however, is well reflected in our lexicon, and can be successfully addressed.

Outlook: Smoothing Word-based Models. Since our experiments in Section 6.2 demon-
strate that derivational smoothing provides somewhat complementary information to
word-based models, another question arises: Can even individual Bow models be effec-
tively smoothed with derivational information to improve their quality? The results for

142

6.3 Summary

Bow unsmoothed Best model shown Best oracle on Bow
r/all r/cov r/all r/cov r/all r/cov

.34 .34 .46 .48 .76 .80

Table 6.5: Comparison of different models for semantic similarity prediction: The un-
smoothed Bow space, the best model of this Chapter, and a smoothing oracle
applied to Bow. r/all and r/cov: Pearson correlation on all and covered items

the Bow model variants shown in Tables 6.3 and 6.4 give tentative evidence for such
a hypothesis (up to +.05 on r/all for the first, and +.2 on acc/all for the second task,
respectively, by means of derivational smoothing), which would be positive particularly
for languages for which no adequate parsers are available to construct syntax-based spaces.
Generally, we believe that the key issue is how exactly derivational smoothing should be
ideally conducted. Although we have tested a variety of parameter combinations, there
are still open questions. For instance, the fact that no smoothing scheme consistently
yielded the best results suggests that they have complementary strengths and weaknesses.

We made an exploratory study, investigating whether derivational information is
capable to smooth word-based spaces when we know which smoothing scheme and trigger
to choose. To this end, we implemented a smoothing oracle, applied it on the Bow
model, and tested it on the Gur350 semantic similarity data. The oracle initiates, for
each word pair, the smoothing scheme that most improves the correlation with respect
to the dataset’s gold annotations, or no smoothing if the unsmoothed Bow prediction
best reflects the gold answer. Table 6.5 summarises the performance of the unsmoothed
Bow model, the best smoothed model we have presented in this Chapter (derivational
smoothing on Dm.De with the alwaysSmoTr trigger, DErivBase v2.0 and the Max
combination), and the best result achieved by the smoothing oracle (using DErivBase
v1.4.1 plain). As the numbers show, the oracle boosts correlation dramatically, achieving
about +.30 on both r/all and r/cov over our best model.4 In our test study, we found
similar behaviour for predictive distributional models (Mikolov et al., 2013).

That is, derivational information is, in theory, extremely beneficial, but one needs to
learn when to smooth, and in which way. This fact suggests to employ machine learning
methods such as regression or classification models to learn appropriate smoothing
operations. We have explored various supervised approaches, but did, thus far, not
reveal a clear and promising strategy. Still, we believe that there are ways to learn the
appropriateness of smoothing schemes, but this endeavour is out of the scope of this
thesis, and we leave it for future work.

4Applying the oracle to the Dm.De model achieves merely a maximum of r/all = 0.59 and r/cov = 0.56,
meaning that word-based spaces and derivational information are, in theory, more complementary.

143

7 Improving Priming Predictions for
Psycholinguistics with DErivBase

For our second evaluation, we switch to a very different linguistic field: While Chap-
ter 6 was concerned with lexical semantics, i.e., the meaning of words, we now enter
psycholinguistic aspects of derivation, i.e., the perception and representation of deriva-
tional processes in the human mind. More specifically, we investigate whether and to
what extent a derivational lexicon is helpful for the study of mental representations of
morphology.

While there might be many directions in psycholinguistics a derivational lexicon can
contribute to, one obvious topic is priming. Priming describes the speed-up effect in the
processing of a target word when it is preceded by a related word (the prime); that is,
it deals with cognitive and behavioural processes of humans (Meyer and Schvaneveldt,
1971). There are many different priming types, the most important of which is semantic
priming, i.e., processing facilitation by means of semantic relatedness of prime and target.

But also, morphologically related words have found to cause priming effects; for instance,
the derivative happiness “primes” the word happy. There is an ongoing debate among
psycholinguists about whether only semantically transparent morphological relations
(e.g., manage/management; S pairs in our terminology, cf. Section 4.3.3), or also opaque
relations (e.g., depart/department; M pairs) cause priming effects, and what are possible
reasons for the respective behaviour. Studies across multiple languages show that overt
morphological priming (cf. Section 7.1) leads to a speed-up only for transparent derivations,
but not for opaque derivations (e.g., Marslen-Wilson et al. (1994)).

Recently, a controversial study about morphological priming in German was published:
Smolka et al. (2014) investigated the overt priming effect of derived prefix verbs (primes)
on simplex verbs (targets), e.g., einfangenV – fangenV (to captureV – to catchV), con-
sidering semantically transparent as well as opaque derivations. They found that both
relation types yield significant and, more importantly, comparably strong priming effects,
irrespective of other parameters in their experimental setup. In contrast, semantic
relatedness did not reliably cause priming effects. These results suggest that German
behaves unlike other Indo-European languages in that its lexical representation is 1.,
based on morphemes rather than lemmas, irrespective of meaning compositionality, and
2., accessed via the base words. Thus, the authors conclude that the organisation of the
mental lexicon varies across languages.

Priming experiments have also attracted interest in the computational modelling of
psycholinguistic aspects. Many researchers have investigated the modelling of semantic
priming (Burgess (1998), Landauer and Dumais (1997), McDonald and Lowe (1998), Lowe
and McDonald (2000), McDonald and Brew (2004), Jones et al. (2006), to name some

144

7.1 Priming

examples from the distributional semantics area). In contrast, morphological priming has
hardly been addressed so far, which might be partly due to the fact of missing resources
for such studies. We think that DErivBase can make a valuable contribution in this
respect for German: Its representation of derivational relatedness corresponds to the
idea of some theories about how the mental lexicon is organised (Bybee (1985, 1988);
cf. Section 2.3). Moreover, the two versions of our lexicon reflect the two controversial
opinions about the status of opaque relatedness in morphological priming. Thus, we hope
that our lexicon can contribute to the computational modelling of priming effects.

In this Chapter, we investigate this aspiration, specifically concentrating on the claim
made by Smolka et al. (2014) that German is organised on a morpheme-based level: We
present a distributional model particularly designed for priming effects. A distributional
space is extended with knowledge about derivational families from DErivBase, similar
to the models used in Chapter 6. It can be understood as a morphological generalisation
of the underlying space. We apply this model to Smolka et al.’s dataset, and test whether
it can account for the authors’ findings, although it does not incorporate any notion
of morphemes, which Smolka et al. declared to be essential. In this way, we examine,
whether Smolka et al.’s call for novel morpheme-level mechanisms for German, and their
claim that cross-lingual differences between morphological systems exist, are justified.

The remainder of this Chapter is as follows. Section 7.1 introduces priming in general,
while Section 7.2 specifically focusses on morphological priming. Section 7.3 summarises
the experimental study of Smolka et al. (2014) we build upon, and identifies their main
results and claims. Section 7.4 describes how we rephrase the idea of derivational smooth-
ing from Chapter 6 as morphological generalisation in order to model the morphological
priming effects found by Smolka et al.. Sections 7.5 and 7.6 present our experimental
setup and the results, and a discussion, respectively.

7.1 Priming

Priming is a behavioural effect in human language processing: It occurs – in case of positive
priming – when the presentation of a stimulus (the prime) helps people responding to a
second stimulus (the target) (Traxler, 2012). This facilitation of subsequent text processing
is usually indicated by shorter response times (RTs), and is assumed to result from an
activation of a particular mental representation or association. For this reason, priming
became a popular method in psycholinguistics to investigate properties of the lexical
representations in the human mind, also referred to as the mental lexicon (Jackendoff,
2002). A frequently employed task in priming experiments is the lexical decision task,
where probands are exposed to a single word as prime, and then have to decide, as quickly
as possible, whether the following (single) target is a correct word of the language, or
not (Traxler, 2012). For instance, the word goose might prime the target word duck, as
it facilitates access to the respective lexical representation. We will concentrate on the
lexical decision task in the following.

There are several parameters in priming experiments that are important influencing
factors on the results. Two of them, going hand in hand, are 1., whether the probands

145

7.1 Priming

perceive the prime unconsciously or consciously, and 2., the modality how prime and
target are presented. As to 1., unconscious perception of the prime is referred to as masked
priming ; it is typically achieved by very short visual exposure of the prime (e.g., on a
computer screen, exposure time is measured as “stimulus onset asynchrony”, or SOA),
and has shown to tap into the very early word processing stage of lexical access (Forster
et al., 2003), also called prelexical stage (Smolka et al., 2014). In contrast, in overt priming
experiments, the prime is displayed long enough for the proband to consciously perceive
it, thus initiating a different word processing level, the lexical stage, where semantic
aspects have greater impact (Smolka et al., 2014). Overt priming therefore produces
different results than masked priming. The modality, 2., defines the representation format
of prime and target. Visual and auditory modalities are frequently used in priming
experiments, i.e., the stimuli are either shown (again, often on a screen), or presented via
loudspeakers or headphones. Naturally, auditory modality always involves overt priming.
Cross-modal priming experiments mix visual and auditory stimuli in order to exclude
effects that arise only due to the specific representation (Smolka et al., 2014), e.g., the
prime is presented acoustically, while the target is shown on a screen.

Various linguistic aspects are assumed to contribute to priming effects, including
semantic, morphological, phonological, orthographical, frequency, or syntactic effects (we
will shortly go into detail on some of these aspects). Accordingly, researchers develop
priming experiments of very different characteristics to test their hypotheses, and establish
theories about the organisation and access of the mental lexicon on the respective findings.
Many models – all of them assume semantic associations to play a more or less central
role – were proposed according to such theories, e.g., the frequency-ordered bin search
model (Forster, 1976), the logogen model (Morton, 1969), the cohort model (Marslen-
Wilson, 1987), or the interactive activation and competition network (McClelland and
Rumelhart, 1981, Rumelhart and McClelland, 1982). We refrain from an exhaustive
discussion of these models, as we are not mainly concerned with the lexical representation,
but with the role of morphology in this context.1 For informative overviews, cf. Traxler
(2012), Harley (2008).

Priming Types. As mentioned above, there is a range of linguistic aspects in priming
that have been investigated. In this paragraph, we sketch two of them, and then go into
detail on morphological priming, the focus of our work.

Most work on priming is concerned with semantic aspects. In their seminal study about
semantic priming, Meyer and Schvaneveldt (1971) showed two strings simultaneously
to the proband, which could be either two words, two non-words, or a word and a
nonword. They found that the identification of a word is facilitated if it is preceded
by a semantically related word (e.g., nurse – doctor), while unrelated primes do not
achieve this effect (e.g., nurse – butter). Many subsequent studies noticed this effect
also in other tasks, modalities, and languages (McNamara, 2005). In this context, it
is worthwhile mentioning that there are subtle differences between associativity and
semantic relatedness. For instance, the words cat – mouse are semantically related as

1However, some of these models explicitly take into account morphological aspects.

146

7.2 Morphological Priming: State of the Art

well as associated to one another, as the one calls into mind the other, whereas the words
fox – camel are semantically related (both refer to animals), but not associated (Keppel
and Postman, 1970). Associated words often cause stronger priming effects than only
semantically related words, and most semantic priming experiments work with data
that is semantically related as well as associated (cf. Traxler (2012), Harley (2008) for
summaries of the discussion of associativity vs. semantic relatedness).

Motivated by the findings of early semantic priming studies, subsequent research
identified priming effects also on other linguistic levels. For instance, Bock (1986) observed
syntactic priming, i.e., that produced sentence structures are guided by the structure
of previously perceived sentences. As an example, the probands of this experiment
heard and repeated a specific sentence, e.g., The referee was punched by one of the fans.
Then they were shown a picture that illustrates an event (unrelated to the prime) that
they should describe. The produced descriptions followed the syntactic structure of the
preceding sentence more frequently than was to be expected – for the above example
sentence, a passive construction was framed.

7.2 Morphological Priming: State of the Art

Psycholinguists did not only consider lexical representations of morphologically simple
words such as nurse or cat, but also of complex of words, i.e., inflected words (spoke),
derivations (speaker) and compounds (loudspeaker) (Harley, 2008). Addressing the level
of morphemes with priming experiments, i.e., investigating speed-up effects by means of
morphological relatedness, is referred to as morphological priming. In the following, we
focus on investigations on derivational priming, a subtype of morphological priming. It
was found to lead to as strong effects as inflection (Marslen-Wilson et al., 1994, Gordon
and Alegre, 1999, Raveh and Rueckl, 2000, Clahsen et al., 2003), e.g., both believed and
believer prime believe equally strongly.

Again, there are many theories about how morphologically complex words are mentally
organised, the most extreme of which are the “full-listing hypothesis” (Butterworth, 1983),
assuming that each word form is stored separately, and the “obligatory decomposition
hypothesis” (Smith and Sterling, 1982), assuming a rule-based decomposition (combined
with exception lists) of every complex word into stem and affixes. As mentioned above,
priming experiments are used to test such theories, which is why morphological priming
has become an active research field.

Experimental Setups in Morphological Priming. Typically, morphological priming
experiments compare the speed-up effects of prime/target pairs that are morphologically
related (cite – citation) with pairs that have other relationships, e.g., semantic relatedness
(couch – sofa), orthographic similarity (classify – clarify), or – as a test condition – no
relation at all (bee – piano). In this context, it is important to keep in mind that
morphological relatedness can be either transparent (as in the above example; S, cf.
Section 4.3.3) or opaque (depart – department ; M). It is then tested whether morphological
relatedness facilitates the recognition of words in the lexical decision task. If this was

147

7.2 Morphological Priming: State of the Art

true, one could assume that complex words are decomposed into their constituents in the
lexical representation (Taft and Forster, 1975, Marslen-Wilson et al., 1994).

Elaborate confounders have been used in such experiments, e.g., the combination
of actual affixes with real and pseudo-stems (e.g., the prefix re- in rejuvenate and
repertoire (Taft and Forster, 1975)), or pseudo-derivations, i.e., word pairs that seem
derivationally related, but are not, like corn – corner (Longtin et al., 2003).

The choice of masked or overt priming mentioned in Section 7.1 is crucial also for
morphological priming, as they address different stages of morphological processing:
While masked priming is assumed to activate unconscious (prelexical) processing steps,
overt priming is said to activate more conscious (lexical) grammatical and semantic
analyses (Smolka et al., 2014).

Basic Findings about Morphological Priming. Although morphological priming is
investigated for more than three decades, there are still controversies arising from the
experimental results.

For instance, some researchers regard morphology only as an epiphenomenon of form
and meaning overlap, which also explains why facilitation effects increase with the degree
of semantic transparency of morphologically related words (e.g., Gonnerman and Anderson
(2001)). In contrast, other theories claim that morphologically related units are explicitly
perceived as such, independently of similar form and meaning (e.g., Marslen-Wilson et al.
(1994), Feldman (2000)). In German, earlier studies observed differences between regular
and irregular inflections, i.e., that irregular participles such as geschlafen – schlafen (slept
– sleep) do not lead to a speed-up effect, while regular ones, e.g., geöffnet – öffnen (opened
– open), do (Sonnenstuhl et al., 1999). The authors conclude that the mental lexicon is
based on a dual system, treating regular and irregular morphological forms differently.
However, more recent studies found that irregular and regular participles yield the same
priming effect (Smolka et al., 2007), leading to the assumption of a single system, i.e.,
that morphological structure is always explicitly stored as such.

Also, the question whether morphology is processed in the prelexical (meaning not
available) or in the lexical stage (meaning available) is still discussed. Experiments
concerning this question yielded, roughly outlined, the following results: It was found for
various Indo-European languages (e.g., English, Dutch and French) that morphological
decomposition seems to take place in the prelexical stage, because morphological related-
ness leads to priming effects in masked experiments (e.g., Longtin et al. (2003), Rastle
et al. (2004); also supported by overt priming experiments (Kempley and Morton, 1982)).
Notably, it is irrelevant in this early stage whether prime and target are semantically
opaquely, or transparently related; for instance, both gaufre – gaufrette (wafer – waffle)
and vigne – vignette (vineyard – vignette) yielded access facilitation in a French lexical
decision task. However, also pseudo-derivations (corn – corner) lead to speed-up effects.
Thus, most studies about masked priming assume that the morphological decomposition
happens mostly on an orthographic basis, independently of semantic and actual mor-
phological relatedness. In contrast, findings about the impact of semantic transparency
in overt priming experiments in Indo-European languages look fairly different: Only

148

7.3 A Recent Study on Morphological Priming in German

if prime and target are semantically related, morphological priming effects have been
observed (e.g., Marslen-Wilson et al. (1994), Longtin et al. (2003)). This means that, at
the lexical stage when semantic aspects of a word can be accessed, semantic relatedness
becomes more important. In sum, researchers conclude that morphological aspects come
into play in both stages: in the prelexical stage by means of decomposition, and in the
lexical stage by means of verifying the semantic (and syntactic) compatibility of the
morphemes (Taft and Kougious, 2004, Meunier and Longtin, 2007).

Cross-lingual Differences. Many aspects about word formation are assumed to affect
morphological priming: For instance, Frost et al. (1997), Smolka et al. (2014) mention as
influencing factors a word’s frequency and morphemic transparency (the transparency of
morpheme boundaries), or a language’s morphological productivity (in terms of number
of derivations produced for a base word) and richness (in terms of grammaticality
expressed by morphology rather than syntax). As these factors differ across languages,
morphological priming effects are not identical in different language families:2 Notably,
the abovementioned finding that only transparent morphological relations lead to priming
effects under overt conditions was fairly consistent across Indo-European languages. In
contrast, Semitic languages such as Hebrew or Arabic, which are morphologically highly
complex (Frost et al., 1997), show priming effects also for opaque relations under cross-
modal conditions (Frost et al., 2000, Boudelaa and Marslen-Wilson, 2004), suggesting
that the mental lexicon in these languages is fully organised by means of morphemes.

7.3 A Recent Study on Morphological Priming in German

As a follow-up to earlier work (Smolka et al., 2009), Smolka et al. (2014) prominently
published a controversial study about the status of morphological priming in German. In
an overt setup, they analysed morphological priming effects on German prefix verbs, thus
concentrating on derivation. Their aim was to reveal whether only semantically trans-
parent derivations (schließenV – abschließenV (to closeV – to lockV)), or also opaque
derivations (führenV – verführenV (to leadV – to seduceV)) yield priming effects.

Three Experiments and Their Results. Three overt experimental setups, all of them
being lexical decision tasks, were conducted in order to exclude various influencing factors.

The main Experiment 1, using overt visual priming (long prime exposure time of 300ms
SOA), involved 40 six-tuples that paired up a target base verb with five prefix verbs as
five prime types. An exemplary six-tuple is shown in Table 7.1: Along with Transparent
and Opaque Derivations, also purely semantic relations (Synonym), purely orthographic
relations (Form), and – as a control relation – verbs without any relation (Unrelated)
are considered. Each prime-target pair was assigned a priming signature, indicating
the status of morphological, semantic, and form relatedness.3 The employed verbs were

2Similarly, other priming types do not necessarily operate in the same way in all languages.
3Note that S and M correspond to our S and M labels from the previous Chapters.

149

7.3 A Recent Study on Morphological Priming in German

Prime type Priming signature Example for the RT (ms)
target binden (bind)

1 Transparent Derivation M+S+F+ zubinden (tie) 563**
2 Opaque Derivation M+S−F+ entbinden (give birth) 566**
3 Synonym M−S+F− zuschnüren (tie) 580
4 Form M−S−F+ abbilden (depict) 600
5 Unrelated M−S−F− abholzen (fell) 591

Table 7.1: The five prime types of Smolka et al. (2014) with their priming signatures
(M = morphologic relatedness; S = semantic relatedness; F = form related-
ness), and experimental average response times (measured in milliseconds).
Significance results compared to Unrelated type (∗∗ : p < 0.01)

normed carefully, e.g., regarding their frequency (based on CELEX) and associativity,
in order to exclude confounding factors. For each of the five pair types, the authors
measured the average response time (RT) it took the probands to decide whether the
target pair is an actual word. Shorter RTs indicated stronger priming effects, where the
RT of the Unrelated prime is considered a “no activation” baseline.

As Table 7.1 shows, average RTs for both Derivation primes were clearly shorter
than for the Unrelated prime, irrespective of semantic relatedness. Synonym relatedness
yielded a weak speed-up, while Form relatedness lead to a delay. The authors measured
statistical significance with a one-way ANOVA on the response times, considering six
contrasts between the different prime types: Unrelatedness vs. the four other types
(Transparent and Opaque Derivation, Synonym, and Form relatedness), Transparent
vs. Opaque Derivation, and Transparent Derivation vs. Synonym. Only the RTs of the
two Derivation primes were significantly shorter than that of the Unrelated prime, while
Synonym relatedness did not yield a statistically significant speed-up. Also surprisingly,
the difference between Transparent and Opaque Derivation is not statistically significant,
while that between Transparent Derivation and Synonym relatedness is.

Experiment 2 differed from Experiment 1 in that was cross-modal, providing the
prime auditorily rather than visually, while the target is presented visually. This change
should exclude effects arising from the modality. Almost the same lexical material as in
Exp. 1 was used; merely some Form-related primes needed to be adapted for phonological
similarity rather than visual similarity. The findings of Exp. 2 were identical to those in
Exp. 1, showing that the modality did not affect the results.

Finally, Experiment 3 was conducted to exclude some further influencing factors from
the setup: On the one hand, a more refined analysis was conducted to ensure that the
data was sensitive to semantic as well as form relatedness, as both did not lead to priming
effects in Exp. 1 and 2. On the other hand, nouns were added to the lexical material in
order to exclude word class-specific phenomena. Instead of evaluating six-tuples (i.e., five
pairings), this experiment considered triples: A target, a related prime and an unrelated

150

7.4 Modelling Morphological Priming

prime, where the related prime varied across the prime types shown in Table 7.1. For
instance, a triple for the Semantic relation is Flut – Ebbe – Dose (flood – ebb – tin). With
this design, each of the prime types was separately tested using a two-way ANOVA with
the factors prime type and relatedness (related/unrelated). Also in this experiment, both
morphological priming types showed robust priming effects independently of transparency.
However, this time also the Synonym prime achieved statistically significant speed-up
effects, which demonstrates that also semantic priming effects occur in German.

Smolka et al.’s Conclusions. In sum, Smolka et al. (2014) report three main findings:
1., as expected, no priming was observed for Form and Unrelated primes; 2., unexpectedly,
also the traditional semantic prime (Synonym) did not yield a facilitation; 3., in contrast,
both Transparent and Opaque Derivation lead to significant priming of the same strength.

The morphological effect observed cannot be attributed to an overlap of semantic
and form relatedness, since form relatedness did not yield any priming effects. Even
more importantly, the findings suggest that morphological priming on German prefix
verbs uses a mechanism that is different from semantic priming, which assumes that
the strength of the semantic relatedness is the main determinant of priming: Semantic
priming would predict finding 1., but neither 2. nor 3. These findings contrast with the
overt priming patterns found in similar experimental setups for other Indo-European
languages as presented in Section 7.2: In these studies, only transparent morphological
patterns were found to be consistent with semantic priming.

Smolka et al. interpret this divergence as evidence for cross-lingual differences and
particularly, for a German Sonderweg within the Indo-European languages: Its typological
properties, such as separable prefixes, productivity, morphological richness, and many
opaque derivations, are taken to suggest that German speakers need to handle their mother
tongue differently to, e.g., English speakers, namely by a morpheme-based organisation
of the mental lexicon. More specifically, they assume that the lexicon is related via
morphological base forms rather than purely semantic associations. Thus, morphological
structures determine German word recognition: Complex words are accessed via their
stems, which implies a morphological generalisation process. In this way, the German
mental lexicon would be more similar to that of Semitic languages, which have been
suggested to be fully based on morphemes, than to that of Indo-European languages.

While the authors claim that semantic priming was hard to demonstrate and might be
completely irrelevant in a morpheme-based lexicon, they could not reveal clear factors
that actually cause the observed priming effects (Smolka et al., 2009, 2014). Thus, they
propose to pursue this question in cross-lingual studies.

7.4 Modelling Morphological Priming

We investigate Smolka et al.’s call for a morpheme-based lexical representation in German
by computationally modelling their priming experiment. In this way, we want to make
a contribution to the modelling of morphological priming in psycholinguistics: We
present a simple model that employs a distributional semantic space combined with

151

7.4 Modelling Morphological Priming

derivational information from DErivBase, and examine whether the priming results
of Smolka et al. (2014) can be achieved even without morpheme information. Instead,
we think that the notion of derivational families in DErivBase implements the assumed
connections between morphologically related words in the mental lexicon. Adding these
connections to a semantic space can be understood as a morphological generalisation
of the underlying semantic information, and should yield the morphological priming
effects observed by Smolka et al. (2014). If this was true, our computational model would
challenge the claim of a morpheme-based lexical representation in German.

We compare three computational models with the results of the original experiments:
On the one hand, we consider a standard distributional semantic model, which should
model classical semantic priming rather than morphological priming. On the other hand,
we generalise a distributional model with information from DErivBase, using both its
purely morphological and its semantically validated version. We expect v1.4.1 to predict
the observed morphological priming effects, i.e., high relatedness for transparent as well
as opaque derivations, while v2.0 should perform somewhat in-between a purely semantic
model and its generalisation with v1.4.1.

We concentrate on Smolka et al.’s Experiment 1 outlined in Section 7.3, since a standard
distributional model cannot make reasonable predictions about Form relatedness/un-
relatedness, which the dataset of Exp. 3 would require. In the following, we sketch
how we model priming with a distributional model, and how we additionally integrate
DErivBase.

Distributional Semantics and Priming. Distributional semantic models (cf. Section 3.2)
are a classical test bed for semantic priming. Priming has been modelled successfully
in a number of studies (cf. the literature mentioned at the beginning of this Chapter),
motivated by findings in psycholinguistics that contextual information can yield semantic
priming effects (e.g., Schuberth and Eimas (1977)).4 The results show that this “context
effect” (McDonald and Brew, 2004) can be well represented by the vectors in a distribu-
tional model. The assumption of this model family, which we call DistSim, is that the
similarity (typically measured with cosine) of a prime vector p⃗ and a target vector t⃗ is a
direct predictor of lexical priming:

primingDistSim(p, t) ∝ sim

p⃗, t⃗


(7.1)

Regarding morphological priming, this model predicts the result patterns for Indo-
European languages such as French or English, but should – according to Smolka et al.
(2014) – not be able to explain the German results.

Derivational Morphology in a Distributional Model. As in Chapter 6, we extend
distributional models with derivational knowledge – either transparent or opaque –
from DErivBase. While our motivation in the previous experiments was primarily

4Of course, there are also other computational approaches to simulate lexical priming, e.g., traditional
neural network models (Cree et al., 1999).

152

7.4 Modelling Morphological Priming

computational (we aimed at improving similarity estimates for infrequent words by taking
advantage of the shared meaning within derivational families), the derivational families
can be reinterpreted in the psycholinguistic context as driving morphological generalisation
in priming. That is, words that are derivationally related to the prime are “activated” by
means of their membership in the same derivational family. Each of the family members
then contributes to the priming effect just like in standard semantic priming. Similar
effects are assumed in the human brain by means of spreading activation (Collins and
Loftus, 1975), starting from the prime and affecting its related words.

To model this morphological generalisation, we reuse our previously introduced method
of derivational smoothing (Section 6.1), and call the resulting distributional model family
MorGen. We set the three smoothing parameters as follows:

Derivation rule path: We experiment with both plain and path information level in
order to investigate whether the proximity of derivationally related words in a
derivation rule path has an impact on the priming prediction, e.g., by reflecting
possible “nearest-neighbour” effects.

Smoothing trigger: We only use the alwaysSmoTr trigger, as it – in contrast to the
zeroSmoTr trigger – reflects the concept of morphological generalisation, i.e., an
activation of morphologically related words for any perceived word.

Smoothing scheme: We believe that morphological priming neither invokes only the
semantically most similar morphologically related word, nor are we, to the best
of our knowledge, aware of assumptions in the psycholinguistics literature that
morphological priming refers to a prototypical representation of a derivational
family. Thus, we employ the avgSim scheme, which takes into account all members
of a derivational family. We redefine avgSim as an asymmetric procedure, since
only the derivational family of the prime is to be generalised, but not that of the
target:

primingMorGen(p, t) ∝ 1

N


p′∈DF(p)

α(p, p′) sim

p⃗ ′, t⃗


(7.2)

where N is the number of pairs that can be formed from the prime family DF(p)
and the target t and have a similarity ̸= 0, and α(p, p′) are the rule path confidences
in the derivational family of p. Note that this equation differs from the standard
definition of avgSim in Equation (6.3) in that only for one lemma of the word pair
(i.e., for the prime p), the derivational family is taken into account.

Having set the parameters in this way, our derivational generalisation model opera-
tionalises the intuition that every prime activates its complete derivational family, no
matter if transparently or opaquely related.

We work with both DErivBase v1.4.1 and v2.0. The MorGen model using v1.4.1
should have a better chance of modelling Smolka et al.’s results than the DistSim model,
although it remains completely at the string level, with derivational families as its only

153

7.5 Experimental Setup and Results

source of morphological knowledge. As to v2.0, we expect it to perform rather at the
level of the DistSim model, since the semantic validation should prevent the activation
of opaque derivatives, and instead give credits to semantic relatedness.

7.5 Experimental Setup and Results

Distributional Model. For DistSim, we reuse the bag of words model presented in
Section 5.2.1 (for the semantic validation of DErivBase). We use the conservative
lemmatisation with TreeTagger rather than MATE, since we expect priming to profit from
clean information, but assume that a syntactic model as evaluated in Chapter 6 would be
too sparse. Similarity is measured with cosine similarity.5 Note that the interpretation
of cosine predictions is inverse to that of Smolka et al.’s response times: Higher cosine
scores correspond to stronger priming effects and thus, to shorter RTs.

For the morphological generalisation, we incorporate information from DErivBase as
shown in Equation (7.2), which is parallel to the smoothing in Section 6.1: Whenever
our families are activated, we select their generalised prediction, irrespective of whether
the generalisation increases or decreases the prediction.

Prediction and Evaluation. Following Smolka et al. (2014), we analyse the predictions
with a series of one-way ANOVAs, using the prime types of Table 7.1 as factor, and using
“Unrelated” as reference level. As appropriate for multiple comparisons, we adopt a more
conservative significance level of p = 0.01 (Bonferroni, 1936).

Results. Table 7.2 repeats the original experimental results (measured as RT) and
reports our model predictions for all settings (measured as cosine similarity) as well as
significance of differences. As explained in Section 7.3, Smolka et al. (2014) examine
six prime type contrasts: Unrelated vs. the four other types, Transparent vs. Opaque
Derivation, and Transparent Derivation vs. Synonym. We also examine these contrasts,
showing the former four in the upper part of the Table, and the latter two in the lower
part. Model contrasts that match experimental contrasts are marked in boldface.

All models concur with the original experiment in three findings, each of them being
statistically significant: 1., Transparent Derivation yields strong priming effects (5 vs. 1);
2., Form relatedness is not sufficient to yield a priming effect (5 vs. 4); 3., the priming
effect of Transparent Derivation is stronger than that of the Synonym prime (1 vs. 3).

Apart from that, the DistSim model predicts – as expected – the patterns of classical
semantic priming: We observe significant priming effects for Transparent Derivation and
Synonymy, and no priming for Opaque Derivation. This is contrary to Smolka et al.’s
experimental results.

In contrast, our instances of the MorGen model do a better job. Table 7.2 shows
that using DErivBase v1.4.1 and path information best reflects the priming effects

5We also ran experiments with predictive distributional models (Mikolov et al., 2013). The results were
slightly better for DErivBase v1.4.1, but we skip them here for the sake of comparability with the
other evaluation chapter.

154

7.5 Experimental Setup and Results

Prime type
Smolka et al. DistSim

MorGen models (cos.)
(RT in ms) model (cos.)

DErivBase v1.4.1 DErivBase v2.0

plain path plain path

1 Transparent Deriv. 563∗∗ 0.22∗∗∗ 0.11∗∗∗ 0.07∗∗∗ 0.17∗∗∗ 0.15∗∗∗

2 Opaque Deriv. 566∗∗ 0.09 0.11∗∗∗ 0.06∗∗∗ 0.06∗∗ 0.05∗∗

3 Synonym 580 0.13∗∗∗ 0.05∗∗ 0.03∗ 0.08∗∗∗ 0.07∗∗∗

4 Form 600 0.03 0.02 0.01 0.03 0.02
5 Unrelated 591 0.03 0.03 0.02 0.03 0.02

Stat. sigf. 1 vs. 2 – ∗∗ – – ∗∗∗ ∗∗∗

Stat. sigf. 1 vs. 3 ∗ ∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Table 7.2: Top: Average Reaction Times and cosine scores for Smolka et al.’s Exp. 1
dataset. Significance results compared to Unrelated type. Bottom: Significance
results for prime types 1 vs. 2 and 1 vs. 3, respectively. Correct contrasts
shown in boldface. Legend: ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001

found in the original study: The difference between its predictions of both Derivation
types and the Unrelated type is highly significant (p < 0.001), while the difference of the
predictions for Synonym and Unrelated is only significant at p = 0.05. If the rule path
is not taken into account, DErivBase v1.4.1 predicts significant priming for Synonym
primes (at p = 0.01), which is contrary to Smolka et al.’s findings. This suggests that
the rule path information supports the morphological priming effect of the MorGen
model. Nonetheless, both MorGen models using v1.4.1 reflect the fact that Transparent
and Opaque Derivation primes have equally strong effects.

As to DErivBase v2.0, we still register the three abovementioned findings of all
models that comply with the original study, but for the rest, this model rather tends to
predict semantic priming: Significance for priming with Opaque Derivations compared
to Unrelatedness is weaker than when DErivBase v1.4.1 is used (p < 0.01). Coupled
with this change, the difference between Transparent and Opaque Derivation primes (1
vs. 2) is now highly significant. This contrasts not only with the findings of Smolka et al.,
but also shows more drastic differences between Transparent and Opaque Derivation
primes than in the DistSim model (significance levels p = 0.01 vs. p = 0.001). In line
with DistSim, but contrary to the original study, MorGen using v2.0 achieves highly
significant priming effects for comparing Synonym and Unrelated primes. While such
a result is undesirable for the present application, it indirectly supports the semantic
validation that we have conducted in order to make DErivBase semantically more
coherent. Nonetheless, the difference between Transparent Derivation and Synonym
primes (1 vs. 3) remains highly significant for these MorGen models, which shows that
this model still incorporates morphological generalisation, though limited to transparent

155

7.6 Discussion

t: binden

zubinden

p: entbinden

0.8

0.2

0.2 t: binden

schnurlos

p: zuschnüren
0.8

0.2

0.2

Figure 7.1: Influcence of derivational families on Opaque Derivation primes (left) and
Synonym primes (right). The numbers are fictional

derivation. The results of v2.0 are substantially identical for the plain and path variants.

7.6 Discussion

In sum, our MorGen models can account for the experimental results of Smolka et al.
(2014). They conduct a morphological generalisation of the underlying distributional
semantic model (DistSim), which leads to effects similar to those observed in the original
study: MorGen does not model semantic priming (as DistSim does), but morphological
priming. Recall that the main difference between DistSim and MorGen is that the
latter includes all members of the prime’s derivational family into the prediction of the
priming strength. This leads to the following changes compared to DistSim:

1. For Opaque Derivation, MorGen typically predicts stronger priming than DistSim,
since prime and target are typically members of the same derivational family
(assuming that there are no coverage gaps in DErivBase), and the average
similarity between the target and the words in the family is higher than the
similarity to the prime itself. Taking the data of Table 7.1 as an example, the
Opaque Derivation pair entbinden (to give birth) – binden (to bind) is relatively
dissimilar, and the similarity increases when other pairs like binden (to bind) –
zubinden (to tie) are taken into consideration. This fact is illustrated on the
left-hand side of Figure 7.1.

2. For Synonymy, MorGen using v1.4.1 typically predicts weaker priming than
DistSim, since the average similarity between target and all members of the prime’s
family tends to be lower than the similarity between target and original prime. For
instance, the Synonym pair zuschnüren (to tie) – binden (to bind) is relatively
similar, while other terms of the derivational family of the prime zuschnüren (to
tie) like schnurlos (cordless) introduce low-similarity pairs like schnurlos (cordless)
– binden (to bind). The right-hand side of Figure 7.1 illustrates this behaviour.

Concerning the parametrisations of the MorGen model, there are two main findings:

156

7.6 Discussion

1. The results clearly show that the derivational information from DErivBase v1.4.1
is perfectly suitable to model morphological priming, whereas v2.0 cannot account
for the experimental evidence. Considering the construction procedures for the two
different versions, this is plausible, and even desirable: The purely morphological
version of our lexicon takes into account both opaque and transparent derivations
and could thus model the Opaque Derivation primes, while the semantic validation
of v2.0 should discard opaque derivations and produce semantically coherent clusters.
As the significance tests for v2.0 in the previous Section show, the semantic validation
seems to have worked fairly well. In fact, it emphasises semantic relatedness within
derivationally related words even more than DistSim.

2. The derivation rule path, i.e., a confidence score that assigns higher weights to
lemma pairs that are connected by less derivational rules, yields more appropriate
morphological generalisation, in particular for v1.4.1. This is the case because
both Transparent and Opaque Derivation primes are prefix verbs. To attain the
respective target verb, which is the base lemma for the prefixation processes, merely
one (inverse) derivation step is typically required. Thus, these lemma pairs are
assigned a rule path confidence of α = 1. In contrast, many other derivatives of the
prime family, beyond which there might be false positives (e.g., the morphologically
unrelated verb verbünden (to ally) as potential prime for binden (to bind)), are
assigned lower α values. On v2.0, the rule path has less impact, because the
semantically validated clusters are generally smaller than the morphological families
and thus, paths are rather short anyways.

As regards other studies that take a distributional stance towards derivational morpho-
logy for psycholinguistics, we are only aware of Marelli and Baroni (2015). They propose
a compositional model that computes separate distributional representations for the
meanings of stems and affixes, and is able to compute representations for novel, unseen
derived terms. Our model is considerably simpler, as it only incorporates knowledge about
derivational families, and does not require vector combination. Since Marelli and Baroni’s
model works on the morpheme level, it corresponds more directly to Smolka et al.’s claim.
However, their goal is fundamentally different from the task to be solved on Smolka
et al.’s dataset: They aim at finding systematic structures in the meaning construction of
derivation rather than developing methods for morphological generalisation on priming.

The fact that our MorGen models do not contain information about morphemes
suggests that, at the very least, morpheme-level processing is not an indispensable
property of any model that explains Smolka et al.’s experimental results. Thus, the
evidence for a special organisation of the German mental lexicon, in contrast to other
Indo-European languages, must be examined more carefully.6

In fact, our model provides a possible alternative source of explanations for the cross-
lingual differences: Since the predictions of MorGen are directly influenced by the

6However, it is unclear whether the rule-based induction method of DErivBase might implicitly
introduce morpheme-based information into our model; it is a question for future research to assess
this potential criticism.

157

7.6 Discussion

size and members of the derivational families, German opaque morphological priming
may simply result from the high frequency of opaque derivations. This high frequency
of M derivations indeed arises – at least partially – from the German typological
particularities mentioned by Smolka et al., e.g., its tendency to employ derivations to
express grammatical constructions that are reflected differently in other languages (Smolka
et al., 2014, p33). In fact, Schreuder and Baayen (1997) report that, in Dutch, the size of
the morphological families negatively correlates with the response latency in priming for
simplex words, giving evidence for the family size to have an impact on morphological
priming. Additionally, we believe that the distance between two words in terms of
their derivational relatedness has an impact on the priming effect: Taking into account
the derivation rule path yielded the best MorGen model, suggesting that, the less
derivational rules need to be applied to connect two lemmas, the stronger is the priming
effect. Observations with a similar basic idea, i.e., that morphological relatedness is a
graded scale, have been made, e.g., by Gonnerman and Anderson (2001), Hay and Baayen
(2005). Nonetheless, the high productivity of German derivation in general (DErivBase
v1.4.1 has rule paths up to a length of 20) might amplify the discrepancy of the effects
observed by Smolka et al. compared to other languages. In sum, cross-lingual differences
might indeed lead to different morphological priming effects. It would be interesting
to check this explanation computationally by applying our MorGen model to other
Indo-European languages. However, we leave this study for future work.

158

8 Recognising Textual Entailment with
DErivBase

In this Chapter, we investigate to what extent derivational knowledge from DErivBase
helps solving the task of of Recognising Textual Entailment (Rte), a common semantic
NLP task. As briefly mentioned in Section 3.1.3, Textual Entailment (Te) systems assess
whether an utterance (Hypothesis H) can be inferred from another one (Text T). One
common approach, the “matching-based” approach, is to map as much lexical material
of T and H as possible, and then to quantify the overlap as a measure of similarity. The
underlying hypothesis is that there is a correlation between lexical overlap and relevance:
The more lexical material of H is covered by T, the more likely H can be entailed from
T. However, there are often lexical gaps, meaning that different lexemes were chosen
to formulate the utterances. Naturally, lexical gaps complicate the matching-based
approach, and linguistic resources are used to increase the coverage, assuming that they
give evidence about meaning-preserving lexical variation, and lead to a better recognition
of inference.

We think that Rte is a suitable application for attesting the precision and coverage of
DErivBase, since it is a fairly generic semantic task in which any kind of knowledge
and approach can be employed. We test to what extent derivational information can
be used in order to (partially) close the lexical gap and improve the performance of Te
systems. To this end, we integrate DErivBase into an existing system by means of a
query expansion that adds derivationally related words to the original text. Specifically
for German, which is derivationally very productive, we expect some impact.

Section 8.1 introduces Textual Entailment and the Rte task in general, and the role of
derivational knowledge in Rte in particular. In Section 8.2, we present the German dataset
on which we evaluate the impact of DErivBase (v1.4.1 and v2.0), and Tie, a Textual
Entailment system that we employ. Also, we explain how we integrate DErivBase
into Tie, and the performance of this integration on the German dataset. The results
motivate the creation of a phenomenon-specific dataset (Section 8.3). Finally, we present
the results of our approach on this dataset (Section 8.4), and conclude (Section 8.5).

8.1 Recognising Textual Entailment

Textual Entailment is a binary relation between two utterances, called a Text T and
a Hypothesis H, that holds if “a human reading T would infer that H is most likely
true” (Dagan et al., 2005). By means of this notion of common sense judgements, Te is
intended to be a general processing paradigm that can provide a large part of the semantic

159

8.1 Recognising Textual Entailment

processing needs of various NLP tasks (Dagan et al., 2009, Padó and Dagan, 2016), such
as Question Answering (Harabagiu and Hickl, 2006), or Text Summarisation (Harabagiu
et al., 2007). One of the main challenges for most NLP tasks is that similar facts can
be expressed in many different ways: The potential of lexical variation can make the
comparison and matching of semantic aspects between two texts fairly hard. This issue is
addressed in Te. Example (8.1) shows a T/H pair with a positive entailment relationship
(i.e., T entails H):

(8.1) T: Yoko Ono unveiled a bronze statue of her late husband, John Lennon.

H: Yoko Ono is John Lennon’s widow.

Nearly all humans would agree that H can be inferred from T. A simple computational
system without world knowledge, however, might not be able to recognise the quasi-
synonymy of having a late husband and being a widow. It thus might judge equally
probable that T entails the Hypothesis shown above, or the sentence Yoko Ono is John
Lennon’s brother.

T/H pairs as in (8.1) reflect the ubiquitous variability of natural language. That
is, they can be similar in their meaning, but differ in their surface realisation (using
meaning-preserving linguistic variations), or be similar in their surface realisation, but
differ in their meaning. Typical examples for meaning-preserving expressions are sub-
sentences1, paraphrases (we bought a car – we purchased a car), or syntactic variations
like nominalisations of verbal expressions (the interest rates decrease – the decrease of
the interest rates). The most prototypical example for a meaning change is negation (he
will attend – he will not attend). It is the task of the entailment systems to detect which
(combinations of) linguistic variations are meaning-preserving, and to correctly predict
the entailment relationship.

Various approaches for entailment systems have been proposed. Most entailment
decision algorithms can be classified into three groups: 1., matching-based algorithms,
2., transformation-based algorithms, and 3., logics-based algorithms. Logics-based
approaches transform T and H into formal expressions and then apply entailment
algorithms to these formulas, whereas both matching-based and transformation-based
approaches work on raw text. The former maps T and H directly onto each other –
possibly using additional knowledge resources –, while the latter translates T into H
through a sequence of transformation steps, e.g., syntactic changes from active to passive
voice constructions. A comprehensive review of these approaches would go beyond the
scope of this Chapter (for an overview, cf. Padó and Dagan (2016)); we focus on the
matching-based approach, which is based on the following hypothesis:

Lexical Overlap Hypothesis (LOH): The higher the number of lexical matches between
a Text and a Hypothesis, the more likely the T/H pair is entailing rather than
non-entailing.

1Note, however, that T and H, as we use them, are never identical.

160

8.1 Recognising Textual Entailment

The RTE Datasets. Since 2005, Textual Entailment has its proper evaluation forum,
called the PASCAL Recognising Textual Entailment Challenges (Dagan et al., 2005). It
is a series of workshops which regularly takes place since then. For every challenge, a
dataset is published, consisting of a development and a test set with human annotations
for each T/H pair, i.e., the binary decision “entailment” versus “non-entailment”. The
datasets typically look as shown in Example (8.1) above: T consists of one or more
complete sentences, while H is exactly one complete sentence that is usually shorter than
the corresponding Text. These datasets were designed in a way that they represent the
language variability described above. In the following, we will concentrate on the dataset
of the third Rte challenge, Rte-3 (Giampiccolo et al., 2007). It consists of 800 T/H
pairs each in the development, and the test set.

The Role of Morphological Derivation in RTE. As just mentioned, the Rte datasets
reflect the variability of natural language, which makes the entailment task hard. T and
H can be realised as simple sub-sentences or with very different structures like the switch
to a passive construction in Example (8.2), where textual similarities are more subtle
(this T/H pair is taken from the Rte-3 development set and is assigned an “entailment”
relationship):

(8.2) T: The fatal shooting of Steven Charles Jenkins, a terminally ill AIDS patient,
by his friend Philip Lee Saylor at Cedars-Sinai Medical Center has again
focused attention on the problems of death and dying in our society.

H: Steven Jenkins was shot by a friend.

For matching-based approaches, such linguistic variation is only tractable with adequate
linguistic knowledge. Derivation is one such variation phenomenon: In Example (8.2),
the two semantically related words shootingN and to shootV , which are split across T
and H, can be connected via their derivational family. By aligning this word pair and
assigning it a “relatedness” label, the overlap of T and H increases, and the lexical gap
between T and H becomes smaller. Derivational lexicons deliver this knowledge and
thus might improve the detection of positive entailment relationships. Based on this
observation, the following hypothesis, which expands the Lexical Overlap Hypothesis
mentioned above, can be formulated:

Derivational Overlap Hypothesis (DOH): If two words w, w′ spread across T and H
are derivationally related, they should count as a lexical match in the sense of the
Lexical Overlap Hypothesis.

Similar assumptions have been made, e.g., by Szpektor and Dagan (2008), who learn
paraphrases from CatVar in order to gather new entailment rules for English Rte (for a
detailed description, cf. Section 3.1.3). Unfortunately, they did not separately evaluate
the impact of the paraphrases induced with CatVar, so that it remains unclear how much
derivational information actually helped.

For German Rte, we expect derivational information to be more important than
for English due to its higher morphological complexity. Thus, we investigate whether

161

8.2 Evaluation of DErivBase on the RTE Task

knowledge from DErivBase improves the recognition of entailment and non-entailment
relationships on a German Rte dataset. In contrast to Szpektor and Dagan, we integrate
the data from DErivBase more directly, i.e., via query expansions rather than via
induction of entailment rules. Moreover, we explicitly analyse the impact of this query
expansion using derivationally related lemmas, thus providing a clearer picture of the
appropriateness of the Derivational Overlap Hypothesis. As to our two lexicon versions
v1.4.1 and v2.0, this hypothesis naturally suggests the semantically validated variant to
perform with higher accuracy.

8.2 Evaluation of DErivBase on the RTE Task

In order to assess the appropriateness of the Derivational Overlap Hypothesis from
Section 8.1, we integrate derivational information into Tie, a language-independent,
matching-based Te system, and test its impact on a German Rte dataset. This Section
describes the German dataset, the Tie system, how we integrate DErivBase into Tie,
and the system’s performance on the dataset. We also discuss problems of using this
dataset to evaluate a derivation-specific resource on the Rte task. All significance tests
reported in the remainder of this Chapter are χ2 two-tailed tests measured on accuracy.

8.2.1 Employed Dataset and Entailment System

An RTE Dataset for German. The PASCAL challenges only consider English. Nonethe-
less, the Textual Entailment community created translations of the English Rte-3 dataset
for other languages, one of them being German.2 Apart from this translation, two
domain-specific datasets are available (Zeller and Padó, 2013, Eichler et al., 2014), based
on user posts in an online forum, and on customer email requests, respectively.

For our study, we use the German Rte-3 translation, because it most directly reflects
the written German standard language. The two other datasets are prone to spelling
errors, colloquial language, etc., which might complicate linguistic preprocessing like
word segmentation, lemmatisation, part of speech tagging, and syntactic parsing.

TIE, a Textual Entailment System. Tie (Textual Inference Engine) is a matching-
based Te system, developed at the Language Technology lab of DFKI GmbH, Germany.
It is not publicly available as a standalone system, but it is integrated in the open-source
platform of the Excitement project3. Figure 8.1 illustrates Tie’s architecture. For
linguistic preprocessing of T and H, we employ TreeTagger (Schmid, 1994) as lemmatiser
and part of speech tagger, and MaltParser (Nivre et al., 2006) for parsing. Tie works
with supervised machine learning techniques: It uses features extracted for each T/H
pair that capture common properties as well as mismatches between T and H on the

2The datasets are provided in the context of the Excitement project (Padó et al., 2013a). Down-
loads: http://aclweb.org/aclwiki/index.php?title=Textual_Entailment_Resource_Pool; last
accessed: May 2015

3http://hltfbk.github.io/Excitement-Open-Platform/; last accessed: May 2015

162

http://aclweb.org/aclwiki/index.php?title=Textual_Entailment_Resource_Pool
http://hltfbk.github.io/Excitement-Open-Platform/

8.2 Evaluation of DErivBase on the RTE Task

Knowledge
resources

WordNet

DErivBase

. . .

Preprocessed
T/H pair

Expanded
T/H pair

Query
expansion

Tie features

Dependency
parse triples

Tree Skeletons

Bag of words

Bag of lemmas

Feature
extraction

Entailment decision /
Trained model

MaxEnt
classifier

Figure 8.1: Overview of the Tie architecture

text level to train (and apply) a binary Maximum Entropy classifier for the entailment
decision. The features hold information of different linguistic levels from various sources.
Currently, the following levels of information are implemented:4

1. Simple word overlap counts on token and lemma level

2. Syntactic information represented as dependency parse triples, and as abstract
dependency sub-trees (called Tree Skeletons) (Wang and Zhang, 2009, Wang and
Neumann, 2007)

3. Knowledge extracted from lexico-semantic resources by means of query expansions
for T (details follow shortly)

The token and lemma overlap features are considered Tie’s baseline functionality.5

Finally, T/H pairs that are considered sufficiently similar by the classifier, are predicted
as positive entailment pairs.

For the following reasons, we employ Tie to evaluate the impact of DErivBase on
the Rte task: First, Tie’s implementation in the Excitement platform is language-
independent and can be applied to German. Second, it is one of the few available
entailment systems that deliver state-of-the-art performance for German. Third, its
architecture makes the integration of knowledge resources like DErivBase very simple.

8.2.2 Integrating DErivBase into TIE

We evaluate DErivBase (v1.4.1 and v2.0) using the Tie implementation in the Ex-
citement platform with all available features in different combinations. We incorporate
derivational information in the way such a knowledge integration is specified in Tie: as a
query expansion for T. The idea behind this query expansion is based on the LOH (cf.

4This list refers to Tie’s implementation in the Excitement platform.
5In fact, Wang and Neumann (2007) show that this baseline is fairly competitive and hard to beat.

163

8.2 Evaluation of DErivBase on the RTE Task

Section 8.1), i.e., increasing the coverage of H by T by adding words which are known to
be similar to T’s words. In the same fashion, Tie integrates other lexical resources, e.g.,
taxonomical information from wordnets.6 Thus, for each lemma-part of speech pair in
T, we check whether it is contained in a derivational family in DErivBase. If yes, we
expand T’s bag of lemmas with all other members of the respective family:

T ∪

t∈T

DF(t)

where T is the set of words t in the Text, and DF(t) is the derivational family in
DErivBase which contains t . This strategy increases the probability of a match (lemma
overlap) between T and H, according to the DOH that derivational relationships account
for entailing rather than non-entailing T/H pairs (cf. Section 8.1). For our experiments,
we employ Tie in four configurations (for details about preprocessing, cf. Section 8.2.1):

BOW: Tie’s baseline setting. Word (lemma) overlap features measure the ratio of tokens
(lemmas) shared by the bags of words (lemmas) of T and H with respect to the
number of words in H.

BOW+DErivBase: Baseline setting plus query expansion with DErivBase information
as described above.

BOW+DErivBase+SYNT: Baseline setting plus DErivBase expansion plus syntactic
information. The syntactic features measure the overlap of extracted dependency
triples and Tree Skeletons between T and H; these structures match Text and
Hypothesis more easily than full syntactic parses.

BOW+SYNT: Baseline setting plus syntactic information.

These settings are defined in configuration files in the Excitement platform. For
illustration, the relevant parts of the Bow configuration are shown in Appendix D.

Additionally to these configurations, we report the performance of a “predict always
positive entailment” majority class baseline.7 We omit the setting of using only DE-
rivBase features (without the Bow features), because it holds too little information,
and thus performs at the majority baseline level.

8.2.3 Evaluation of DErivBase on RTE with TIE

We evaluate the performance of Tie with the standard measures used in Rte: precision,
recall and F1-score on the positive class (i.e., on the “entailment” decisions), and

6We do not make use of these other knowledge resources, but only employ DErivBase expansions.
7Due to imbalancedness of the original English, as well as the translated German Rte-3 data, there is a
slight majority of positive entailment pairs in the dataset; see Giampiccolo et al. (2007, p3), and the
README file of the German translation in http://www.dfki.de/~neumann/resources/RTE3_DE_V1.

2_2013-12-02.zip.

164

http://www.dfki.de/~neumann/resources/RTE3_DE_V1.2_2013-12-02.zip
http://www.dfki.de/~neumann/resources/RTE3_DE_V1.2_2013-12-02.zip

8.2 Evaluation of DErivBase on the RTE Task

accuracy. Our focus for enhancements is on precision rather than on recall, because an
unsophisticated approach like the majority baseline naturally achieves a recall of 100%.

Table 8.1 shows the performance of our four Tie settings, using both DErivBase
v1.4.1 and v2.0. Tie is both trained and tested on the German Rte-3 dataset (i.e., 800
T/H pairs each). In the following, the best results are always marked in boldface.

Setting (RTE-dev 800, RTE-test 800) Acc Ppos Rpos F1 pos

majority baseline 51.1 51.1 100 67.6
Bow 61.1 61.4 64.5 62.9
Bow+DErivBase v1.4.1 60.8 60.8 65.3 63.0
Bow+DErivBase v2.0 61.5 61.6 65.8 63.6
Bow+DErivBase v1.4.1+Synt 63.5 64.2 64.8 64.5
Bow+DErivBase v2.0+Synt 63.3 63.9 64.5 64.2
Bow+Synt 63.4 64.2 64.1 64.1

Table 8.1: Performance of Tie settings, trained and tested on the whole German Rte-3
dataset

The baseline is slightly above 50% of accuracy, but significantly outperformed by all
Tie models (p < 0.0001), which, in turn, do not significantly differ among each other.
The impact of DErivBase is somewhat visible, but not convincing: Bow+DErivBase
v1.4.1 even shows a small decrease in precision and accuracy compared to Bow, while
v2.0 slightly improves results over Bow. The reason is that also incorrect information is
added in v1.4.1, mostly due to query expansions with many words added from overinflated
derivational families (cf. Section 4.2.5); big families are often triggered because 1., they
contain many words, and 2., they contain words that are frequent in the Rte-3 dataset
such as setzen (to put), legen (to put), or sprechen (to speak). Up to 1,583 lemmas are
added from DErivBase for only one T/H pair, including the biggest, and the fourth
biggest family (238 and 140 words, respectively).

On the other hand, when DErivBase is added to the Bow+Synt model, performance
slightly decreases for v2.0, but increases for v1.4.1 by a small recall gain, achieving the
second-best F1-score (after the baseline). This setting leads to the best overall results in
terms of precision improvement (+2.4 percentage points in accuracy, +2.8 percentage
points in precision over Bow), which suggests that derivational and syntactic information
are, to some extent, complementary and can be well combined.

Nonetheless, including DErivBase only resolves one additional T/H pair correctly.
Tie cannot optimally profit from the derivation expansion, because it is only relevant for
a small subset of T/H pairs. In sum, the information from DErivBase is not salient
enough on the whole Rte-3 dataset to noticeably improve the classification. This fact
might suggest using an Rte sub-dataset which isolates pairs that are relevant to evaluate
a derivational lexicon. The next paragraph presents a preliminary analysis with regard
to this question.

165

8.2 Evaluation of DErivBase on the RTE Task

Measuring the Impact of a Derivational Lexicon on RTE. We analysed the suitability
of the German Rte-3 dataset to measure the impact of DErivBase, and found that our
lexicon is not activated for the vast majority (over 85%) of the T/H pairs: Many pairs do
not contain members of the same derivational family spread across T and H, and are thus
not relevant. There are a couple of reasons for that, arising from the generation process
of the Rte dataset, which of course was not designed for evaluating the performance of
one specific resource.

First of all, many H’s contain generalised information of T. That is, H repeats one
specific aspect of T with simple patterns like “X is Y”, or “X is situated in Y”, as in the
positive entailment pair in Example (8.3):

(8.3) T: U.S. Secretary of State Condoleeza Rice has expressed her anger after a
meeting with Sudanese President . . .

H: Condoleezza Rice is the U.S. Secretary of State.

Another reason why DErivBase tends to be irrelevant for many T/H pairs is that they
use completely different lexical material, like the paraphrase pair “is wife of” – “is married
to” in the positive entailment in Example (8.4). Although derivational information serves
as a source of meaning-preserving paraphrases, it cannot cover such kinds of variation:

(8.4) T: Hughes loved his wife, Gracia, and was absolutely obsessed with his little
daughter Elicia.

H: Hughes was married to Gracia.

An important particularity of German which influences the applicability of a derivational
lexicon is the tendency to use compounds: English compounds are typically a sequence of
individual words, whereas German concatenates them into one single word. Derivational
lexicons like DErivBase do not cover compositional relations (cf. Section 2.3), which
poses problems to detecting derivational relationships. The problem is illustrated in the
negative entailment Example (8.5):

(8.5) T: Chirac brauchte von den Wählern ein neues Mandat für seine Regierung . . .
Chirac needed a new mandate for his government from the electorate . . .

H: Parlamentswahlen führen zur Gründung einer neuen Regierung in
Frankreich.
Parliamentary elections create new government in France.

An additional decomposition and compound interpretation step would be necessary to
map ParlamentswahlN to WählerN , while such a relationship is straightforward for the
English words electionN and electorateN .

Additionally, we employ the German translation of the original English Rte-3 dataset.
This leads, for some sentences, to rather unnatural or infrequent German expressions; that
is, the language is not typically represented, known in the literature as “translationese”
(for the discussion of this phenomenon and proposals for its automatic recognition, cf.,

166

8.2 Evaluation of DErivBase on the RTE Task

e.g., Tirkkonen-Condit (2002), Baroni and Bernardini (2006), Koppel and Ordan (2011)).
For example, some expressions remained untranslated, although a corresponding German
counterpart would exist, as shown in the English and German version of the positive
T/H pair in Example (8.6):

(8.6) T: Sean Brown (geboren am 5. November 1976 in Oshawa, Ontario, Kanada) ist
ein Utility-Player und Enforcer der National Hockey League.
Sean Brown (born November 5, 1976 in Oshawa, Ontario, Canada) is a
National Hockey League utility player and enforcer.

H: Sean Brown spielt in der National Hockey League.
Sean Brown plays in the National Hockey League.

If the compound noun utility player had been translated with a corresponding German
expression like vielseitig einsetzbarer Spieler, a derivational relationship between Text and
Hypothesis would have been established by means of the words SpielerN and spielenV ,
as it is the case in English. Such passages which stay too close with the source language,
are typical examples for translationese in our dataset.

Another potential artifact of translation in the German Rte-3 data is an – according
to our intuition – atypically high number of nouns. We assume that it arises from many
nominalisations produced through the translation process. Specifically, the translation of
English verbal expressions by using nominalisations in German seems sometimes more
intuitive, because nominalisations might allow for a simpler syntax. Example (8.7) shows
a positive T/H pair of the German Rte-3 dataset along with its English original:

(8.7) T: Zwei Brüder, die ein Vergoldungsunternehmen in Nord-Hollywood betrieben,
. . . müssen wegen leichtfertiger Handhabung und Lagerung gefährlicher
Stoffe eine Haftstrafe antreten.
Two brothers who operated a North Hollywood plating company . . .must serve
jail time for recklessly handling and storing hazardous materials.

H: Ein kalifornisches Unternehmen wurde wegen rücksichtsloser Lagerung von
Chemikalien angeklagt. A California company was charged with reckless
storage of chemicals.

The verb to store is translated with the nominalisation Lagerung rather than the verb
lagern, which avoids a more complex adverbial clause construction like müssen eine
Haftstrafe antreten, weil sie gefährliche Stoffe leichtfertig gehandhabt und gelagert haben.

We found that this is a quantitatively measurable trend: We compared the distribution
of nouns in the German Rte-3 dataset to the English Rte-3 dataset, as well as to a
German and an English newspaper corpus (the TIGER corpus (Brants et al., 2004) and
the Wall Street Journal portion of the Penn Treebank (Marcus et al., 1993); each consists
of about 40,000 annotated sentences). The newspaper genre is quite similar to that of
the Rte-3 data. We measured the ratio of nouns in each of the text collections.8 The

8Note that the parts of speech annotation was manual on the news corpora, but automatic on Rte-3.

167

8.3 Creating a Derivation-specific Sub-dataset

German Rte-3 dataset contains almost 3% more nouns compared to the German news
corpus (23.5% vs. 20.7%), and more than 4.5% more nouns than the English Rte-3
dataset (23.5% vs. 18.9%). In contrast, the English news corpus contains about 1.8%
more nouns than the English Rte-3 dataset (20.3% vs. 18.9%).9 The far higher number
of nouns in the German Rte-3 data compared to the other text collections suggests that
it is idiosyncratic, independently of genre or language specificities. Thus, we assume it is
a result of the translation process.

In sum, there are various reasons why DErivBase could not show big performance
gains on the complete German Rte-3 dataset. Nonetheless, we believe that derivational
knowledge can help resolving the Rte task. In the next Section, we thus investigate the
situation when a derivation-specific Rte sub-dataset is used.

8.3 Creating a Derivation-specific Sub-dataset

The reasons mentioned in Section 8.2 motivate a German Rte dataset which specifically
reflects derivational relationships between Text and Hypothesis, in order to properly
quantify the impact of DErivBase on the quality of an Rte system. Therefore, we
manually selected a subset of the German Rte-3 data. Similar sub-datasets have been
developed before in the Rte literature for English. For instance, Dinu and Wang (2009)
aimed at verifying the influence of a collection of inference rules (i.e., pairs of phrases
which are assumed to hold a directional entailment relationship) drawn from DIRT (Lin
and Pantel, 2001) in combination with WordNet. They also employ the Tie system,
including the Tree Skeleton component to serve the DIRT patterns. Their resource-
specific test dataset (no development set was created) consists of 64 T/H pairs, which all
match an inference rule drawn from their rule collection.

We selected the T/H pairs for our sub-dataset in a two-step procedure: First with a
manual selection, then using DErivBase to retrieve pairs missed in the manual step. Due
to a final manual consolidation of these two sets of T/H pairs, the resulting sub-dataset
can be considered a gold standard in terms of derivational relations between T/H pairs.
We provide both development and test set, where the former consists of the selected pairs
of the Rte-3 development set, and the latter of the selected pairs of the Rte-3 test set.

Manual Selection. We used the following guidelines: For each T/H pair, we manually
checked whether it contains two distinct derivationally related words spread across Text
and Hypothesis, and selected such pairs. Using the terminology of Chapter 4, we accepted
S as well as M pairs as valid links between T and H. Note that the M portion is small,
since in virtually all T/H pairs the two tests are semantically related in some way
(irrespective of entailment). One M case is shown in the English positive T/H pair in
Example (8.8).

(8.8) T: Many of the Vikings who travelled to Scotland, and other parts of Europe
were traders or peaceful settlers looking for land to farm.

9All differences are statistically highly significant at p = 0.0001.

168

8.3 Creating a Derivation-specific Sub-dataset

H: Vikings landed in Scotland.

During this procedure, we discarded pairs where one of the derivationally related
lemmas occurs identically in both Text and Hypothesis, as depicted in the English
positive entailment Example (8.9). That is, the derivational link must actually arise from
two different lemmas of the same derivational family; no simple lemma identity must
lead to a connection. In contrast, T/H pairs like in the negative entailment Example
(8.10) are added to our sub-dataset.

(8.9) T: The sale was made to pay Yukos’ US$ 27.5 billion tax bill, Yuganskneftegaz
was originally sold for US$ 9.4 billion to a little known company
Baikalfinansgroup which was later bought by the Russian state-owned oil
company Rosneft.

H: Baikalfinansgroup was sold to Rosneft.

(8.10) T: Loraine besides participating in Broadway’s Dreamgirls, also participated in
the Off-Broadway production of “Does A Tiger Have A Necktie”. In 1999,
Loraine went to London, United Kingdom. There she participated in the
production of “RENT” where she was cast as “Mimi” the understudy.

H: “Does A Tiger Have A Necktie” was produced in London.

Reliability Assessment. To assess the correctness and the coverage of this sub-dataset
and, especially, to ensure that the selection was consistent over all 1,600 T/H pairs, we
conducted a double annotation of the first 100 T/H pairs in the development set, carried
out by the same annotator, and calculated an “intra-annotator agreement”. The second
annotation took place after having finished the first annotation of the full set of 1,600
pairs, and with a time interval of roughly three months between the annotations, so
that the annotator was ensured not to recall their concrete decisions during the first
annotation.

For four out of the 100 double-annotated pairs, the decision whether the T/H pair is
derivationally related, was different. The differences were two erroneously added T/H
pairs containing derivationally related lemmas, but one of them occurring in both T
and H (as in Example (8.9)), and two T/H pairs that have simply been overlooked in
the other annotation. This agreement rate corresponds to a Cohen’s κ value of 0.834
(Cohen, 1960), which is considered as perfect agreement by Landis and Koch (1977). The
expected chance agreement in the κ calculation is at P (e) = 0.759, meaning that the
annotation is essentially more reliable than expected for this dataset.

Automatic Pair Retrieval. Although the intra-annotator agreement suggests that our
gold standard sub-dataset is fairly reliable both in terms of precision (i.e., almost all
selected T/H pairs indeed have a derivational relationship), and recall (i.e., almost all
derivationally related T/H pairs of the Rte-3 dataset have been selected), we added a
second, semi-automatic step: We let DErivBase v1.4.1 retrieve T/H pairs that contain

169

8.3 Creating a Derivation-specific Sub-dataset

lemmas of the same derivational family spread across T and H, manually checked these
pairs for consistency with our annotation guidelines, and consolidated them with the
manually extracted pairs. We revealed about 60 missed pairs, about 73% of which contain
two S-connected lemmas, while about 27% were M pairs.10 This consolidated dataset is
the basis for all subsequent investigations. Henceforth, we call it the derivational subset.

Note that the derivational subset is an actual gold standard: The consolidation discards
cases of overgeneration in the application of DErivBase. Thus, having used our lexicon
for the creation of the derivational subset does not mean that the precision that can be
achieved on it is biased towards the lexicon’s performance. However, we admit that the
recall that our lexicon can yield on this gold standard might be slightly overestimated.

orig. Rte dev orig. Rte test deriv. Rte dev deriv. Rte test

Total pairs 800 800 109 118
Entailment 407 409 66 67
Non-entailment 393 391 43 51

Ratio ent./all 51% 51% 61% 57%
Ratio non-ent./all 49% 49% 39% 43%

Table 8.2: Statistics of German Rte original dataset and derivational subset (development
and test each)

Dataset Statistics. Table 8.2 gives a quantitative impression of the compiled deriva-
tional subset, compared to the complete German Rte-3 dataset. As can be seen, 109 and
118 T/H pairs have been selected for the development and the test subset, respectively;
thus, the test set is roughly 8% bigger than the development set. Compared to the (test)
dataset of Dinu and Wang (2009) with 64 T/H pairs, our test set is almost twice as big.

As expected, pairs involving derivation are more often entailing than non-entailing
(61% and 57% entailment pairs on development and test set, respectively), however,
the difference is rather small, given our Derivational Overlap Hypothesis (Section 8.1)
that pairs with a derivational relation across T and H are more likely to be entailing
(Section 8.1). We think that this is due to the fact that there are many other linguistic
factors (language variability, cf. Section 8.1) which cause a lot of non-entailing pairs.

Coverage of Derivational T/H Pairs by DErivBase. The main goal of our query
expansion with DErivBase is to increase the margin between entailment and non-
entailment pairs by trying to increase the similarity of entailing T/H pairs, operationalised
by higher overlap. Thus, an important performance indicator of our lexicon is its coverage
of the derivationally related lemmas split across T and H. In other words: Is DErivBase
capable to improve the performance of an entailment system like Tie on the Rte task,
or does it lack too many derivational relations? We evaluated DErivBase’s coverage

10In fact, almost all M have been overlooked by the annotator. A plausible reason is that these pairs are
semantically very opaque, e.g., GesetzN – UmsetzungN (lawN – implementationN).

170

8.3 Creating a Derivation-specific Sub-dataset

of the derivational subset by measuring how many of the derivationally related lemmas
split across T and H are retrieved using v1.4.1 or v2.0.

Dev. set Test set
Dev. & test set,
micro averaged

Covered T/H pairs, v1.4.1 88.99% 83.05% 85.90%
Covered T/H pairs, v2.0 59.63% 62.71% 61.23%

Table 8.3: Coverage of the derivational sub-dataset by DErivBase

Table 8.3 shows the coverage for the development and the test set, and for the whole
derivational subset calculated by micro-average. As expected, DErivBase v2.0 yields
only low coverage of about 61%, as it does not cover purely morphologically related
lemma pairs, and even semantically related lemma pairs might have been split into two
semantic clusters. Using v1.4.1, we achieve a fairly large coverage of around 86% which
we find a satisfying quantity. However, putting this number the other way round, the
coverage of DErivBase lacks 14.1% of derivationally related words of the manually
annotated dataset. We analysed the T/H pairs where DErivBase v1.4.1 missed the
match. In the following, we discuss the main reasons for these misses.

First, we encounter errors which are based, on the one hand, on incorrect translations
in the Rte-3 dataset into German, and, on the other hand, on the linguistic data
preprocessing. Concerning the translation errors, we found typing errors like *Robbenjagt
instead of RobbenjagdN (seal huntingN), or the English spelling America instead of the
German AmerikaN . We did not modify the dataset to correct such errors. As to the
preprocessing, we discovered problems with phrasal verbs when the sentence structure
requires to separate the particle from the main verb. They are not concatenated to the
infinitive verb by the lemmatiser and thus do not match the entries in DErivBase. For
example, both abreisenV (to leaveV) and reisenV (to travelV) are in the same derivational
family, but the former cannot be retrieved, because the particle ab- is not correctly
concatenated with -reisen, thus being deemed identical to reisen.

Second, and conceptually more important, we observed a couple of uncovered zero
derivation nominalisations of adjectives, like AußerirdischeN – außerirdischA (alienN
– alienA), or FranzösischeN – französischA (FrenchN – FrenchA). We found that this
coverage lack is caused by the error in a derivation rule mentioned in Section 4.4.3.

Third, a part of the coverage lack is due to irregularly formed derivations. This happens,
e.g., for the derivation of a handful of adjective forms of nationalities like KanadierN –
kanadischA (CanadianN – CanadianA), or for derivation patterns that are historically
attested but were not included in DErivBase, because they are very unproductive; e.g.,
geborenA – GeburtN (bornA – birthN).

Finally, with RoboterN – robotisiertA (robotN – robotisedA), we encountered one missing
derivation pair whose second lemma is too rare to be incorporated in DErivBase: It
did not occur three or more times in SdeWaC and thus was not taken into account in
the DErivBase building process (cf. Section 4.2.3).

171

8.3 Creating a Derivation-specific Sub-dataset

(A) RTE-dev 800, deriv-test 118

Development set

Model

derivational

non-
derivational

Test set

(B) RTE-dev 800, non-deriv-test 682

Development set

Model

derivational

non-
derivational

Test set

(C) RTE-dev 800, ensemble test (v1.4.1: 698+102; v2.0: 727+73)

Development set

Model1

Model2

derivational

non-
derivational

Test set

deriv
. ex-

pansion

no deriv.expansion

Figure 8.2: Overview of the three setups of used system-dataset combinations

172

8.4 Evaluation of DErivBase on the Derivational Subset

8.4 Evaluation of DErivBase on the Derivational Subset

To evaluate the impact of DErivBase on the derivational subset, we assume that training
on the whole Rte-3 dataset is sensible, even if we want to measure the quality only on
derivationally related T/H pairs, since Tie’s base features improve as the training set
grows. On the test set, in turn, we differentiate between T/H pairs with and without
derivational relations across T and H.

Settings. We examine three different setups; the respective model and dataset combi-
nations are depicted in Figure 8.2. In all three settings, we train the Tie models on the
whole Rte-3 development set (denoted with “Rte-dev 800”).

(A) We test the four Tie configurations presented in Section 8.2.2 only on the derivational
subset consisting of 118 pairs (“deriv-test 118”).

(B) We test the four Tie configurations presented in Section 8.2.2 only on T/H pairs
which are not derivationally related, i.e., on the complement of the test set used in
(A), consisting of 682 pairs (“non-deriv-test 682”).

(C) We build ensemble models, combining the Tie configurations which appear most
suitable for the two complementary data subsets (“ensemble test”): We apply models
with derivation expansion to derivationally related T/H pairs (as in (A)), and models
without derivation expansion to this subset’s complement (as in (B)). In this way,
we want to optimally address derivational as well as non-derivational T/H pairs.
Similar strategies have been employed in the literature, e.g., by Shen and Lapata
(2007), who use semantic role labelling to improve on the QA task: For questions
covered by their model, this model is applied; for all remaining questions, a baseline
model is used.

For settings involving DErivBase, we conduct a query expansion as explained in
Section 8.2, using both DErivBase v1.4.1 and v2.0.

We conduct settings (A) and (B) for diagnostic purposes: They should indicate the
difficulty of the two test sub-datasets (derivational and non-derivational), i.e., how easily
the entailment decision can be made. Additionally, (A) should demonstrate the impact of
our DErivBase integration into Tie when the underlying data can be entirely addressed
by derivational knowledge.

In the ensemble setting (C), we aim at modelling a realistic application scenario: We
do not deliver the manually annotated derivational and non-derivational subsets to Tie,
but let the system separate the data automatically. All pairs for which DErivBase
detects a derivational relation across T and H, and which are not additionally covered
by lemma identity (cf. Section 8.3), are considered part of the derivational subset. All
remaining pairs are deemed non-derivational. According to this segmentation, two
different models are combined: one including DErivBase for the derivation cases, and
one without DErivBase for non-derivational cases. Note that the T/H pairs retrieved by
DErivBase do not necessarily correspond to those of the gold standard subset, and that

173

8.4 Evaluation of DErivBase on the Derivational Subset

the two lexicon versions retrieve different sets of T/H pairs (i.e., 102 vs. 73 derivationally
related T/H pairs retrieved by v1.4.1 and v2.0, respectively; cf. Figure 8.2).

Setting Acc Ppos Rpos F1 pos

RTE-dev 800, RTE-test 800 (from Table 8.1)

Best (Bow+DErivBase v1.4.1+Synt) 63.5 64.2 64.8 64.5

(A) RTE-dev 800, deriv-test 118

majority baseline 56.8 56.8 100 72.4
Bow 55.9 64.2 50.7 56.7
Bow+DErivBase v1.4.1 55.1 60.0 62.7 61.3
Bow+DErivBase v2.0 56.8 63.3 56.7 59.8
Bow+DErivBase v1.4.1+Synt 57.6 63.1 61.2 62.1
Bow+DErivBase v2.0+Synt 55.9 62.7 55.2 58.7
Bow+Synt 54.2 61.8 50.7 55.7

(B) RTE-dev 800, non-deriv-test 682

majority baseline 50.1 50.1 100 66.8
Bow 62.0 61.0 67.3 64.0
Bow+DErivBase v1.4.1 61.7 61.0 65.8 63.3
Bow+DErivBase v2.0 62.3 61.3 67.5 64.3
Bow+DErivBase v1.4.1+Synt 64.5 64.4 65.5 64.9
Bow+DErivBase v2.0+Synt 64.5 64.1 66.4 65.2
Bow+Synt 65.0 64.6 66.7 65.6

(C) RTE-dev 800, ensemble test 698+102 / 727+73

Bow698 ◦ Bow+DErivBase v1.4.1102 61.3 61.0 67.0 63.9
Bow727 ◦ Bow+DErivBase v2.073 61.4 61.4 65.8 63.5
Bow+Synt698 ◦ Bow+DErivBase v1.4.1+Synt102 64.0 64.4 66.0 65.2
Bow+Synt727 ◦ Bow+DErivBase v2.0+Synt73 63.6 64.3 64.8 64.6

Table 8.4: Performance of Tie settings, trained on the whole development set, tested on
different subsets. Best results per setting in boldface

Results. Table 8.4 repeats the best result achieved for training and testing on the whole
Rte-3 datasets (cf. Table 8.1), and shows the results of the three new setups.

The part of Table 8.4 marked with (A) shows the performance of Tie when it is trained
on the whole Rte-3 development set, but tested only on the derivational subset. The
majority baseline is higher on this subset than on the whole Rte-3 dataset (cf. Table 8.2).
Note that that all Tie models obtain a worse accuracy (even below the baseline) and recall
than on the whole Rte-3 test set (Table 8.1). This decrease implies that the derivational
subset is more difficult in terms of entailment decision than the standard Rte-3 test
dataset: T/H pairs which contain two different members of the same derivational family,
tend to differ in their remaining words as well as their syntax, which causes the classifier
to reject them more likely. For instance, the T/H pair in Example (8.11) cannot be

174

8.4 Evaluation of DErivBase on the Derivational Subset

resolved correctly as entailing by the Bow model, although the word overlap between T
and H is reasonable:

(8.11) T: Washington hat wiederholt versucht, Russland zu versichern, dass es von
dem System nichts zu befürchten hat.
Washington has repeatedly sought to reassure Russia it has nothing to fear
from the system.

H: Russland fürchtet sich vor dem System.
Russia fears the system.

When the Hypothesis is modified to a semantically comparable, but lexically much more
similar sentence to T like Russland befürchtet etwas von dem System., the Bow model
correctly recognises entailment.

Concerning settings including DErivBase in part (A) of Table 8.4, the lexicon’s
impact is more noticeable than in Table 8.1. On this dataset combination, DErivBase
v1.4.1 again performs worse in combination with Bow, but adding Synt improves
accuracy and precision for both lexicon versions with up to 3.4 and 1.3 percentage points,
respectively, over the Bow+Synt model. In fact, Bow+DErivBase v1.4.1+Synt is
the best model on this dataset, being the only to beat the baseline in accuracy, though,
not statistically significantly, and achieving the second-best F1-score (after the baseline).
Adding v2.0 to Bow and Bow+Synt, respectively, always leads to accuracy and recall
gains (up to 1.7 and 6.0 percentage points, respectively). However, precision is unstable,
meaning that the inclusion of derivationally related pairs makes the entailment decision
less clear (e.g, by expanding as many entailment as non-entailment pairs). In general,
the semantically validated version provides lower recall than v1.4.1, as expectable due to
the smaller families (cf. Table 8.3). In sum, the main insight of our analysis is that the
derivational subset is much harder to solve than the whole Rte-3 dataset, even when
derivational information is used. We can enhance accuracy (not significantly) over the
Tie standard settings, but precision remains best for the Bow model.

Part (B) in Table 8.4 shows the results of our second setup, when the test set consists
only of T/H pairs which are not derivationally related according to our gold annotation
(682 pairs; positive majority baseline: 50.1%). The performance of Bow is a little more
recall-oriented now than on the 800/800 dataset combination of Table 8.1, while the
accuracy of Bow+Synt improves by 1.6 percentage points on the 800/682 combination,
and achieves the best accuracy and precision. As expected, DErivBase v1.4.1 introduces
too much noise in this test set, and has a negative impact on the performance of Bow
and Bow+Synt, while v2.0 leads to less losses and even a small accuracy and precision
gain when expanding Bow. Overall, the generally higher performance scores demonstrate
that this dataset is clearly easier than the derivational subset.

Finally, the (C)-marked part in Table 8.4 shows the performance of our ensemble
models when there is no gold standard for derivational relatedness, i.e., no manual data
separation, at hand. We apply either Bow or Bow+Synt to the T/H pairs which are
not derivationally related, and Bow+DErivBase or Bow+DErivBase+Synt to the
derivational subset. Then, we combine either the Bow-, or the Bow+Synt-involving

175

8.5 Summary

models. The results of the two models on the two dataset portions are micro-averaged.
As can be seen from the Table, DErivBase v1.4.1 and v2.0 recognise derivational
relationships for 102 and 73 T/H pairs in the test set, respectively. That is, DErivBase
retrieves less pairs than the manually annotated subset contains, which corresponds to
the fact that roughly 14% and 39%, respectively, of this subset are missed (cf. Table 8.3).
Nonetheless, DErivBase still overgenerates: v1.4.1 includes 11 spurious pairs (reduced
to merely 4 pairs in v2.0), which arise from errors in DErivBase (N cases; 55%), and
preprocessing errors from TreeTagger (45%).

The results of this unsupervised data separation show that the ensemble approach in (C)
is indeed beneficial. Notably, the Synt-involving model combination using DErivBase
v1.4.1 attains the best overall accuracy and precision scores on the whole Rte-3 test
set. With 512 correctly resolved T/H pairs, it recognises four additional pairs correctly
compared to the best model in Table 8.1, where only one model was applied to the
whole test set. This corresponds to an increase in accuracy of 0.5 percentage points (not
statistically significant), and in precision of 0.2 percentage points. F1-score is, again,
only outperformed by the majority baseline, which is an unpreferable option due to
many false positives and the uninformedness of the approach. Setting (C) shows that
derivational knowledge can improve an Rte system, even if it is unknown which T/H
pairs are derivationally related. Unfortunately, v2.0 again performs worse than v1.4.1.
Our overall impression is that the query expansion approach to incorporate DErivBase
into Tie requires high coverage as much as high quality. Thus, the cleaner, but smaller
families in v2.0 are sometimes counterproductive. For instance, the positive entailment
pair in Example (8.12) was not retrieved because the derivationally related lemmas were
split into two semantic clusters:

(8.12) T: Die Vereinbarung kam nach etwa 10 Stunden Verhandlungen zwischen
Herrn Fradkow und seinem weißrussischen Amtskollegen Sergei Sidorski
zustande.
The agreement came after about 10 hours of negotiations between Mr Fradkov
and his Belarussian counterpart, Sergei Sidorsky.

H: Herr Fradkow und Sergei Sidorski haben nach 10 Stunden Verhandlungen
eine Einigung gefunden.
Mr Fradkov and Sergei Sidorsky found an agreement after 10 hours of
negotiations.

8.5 Summary

In this Chapter, we have tested whether derivational knowledge helps resolving the task
of Recognising Textual Entailment by integrating DErivBase into Tie, a standard Te
system, with a query expansion approach. Our Derivational Overlap Hypothesis (cf.
Section 8.1) was that derivational relationships between T and H suggest the T/H pair to
be entailing rather than non-entailing, and that an expansion with derivationally related
lemmas increases the chance of a lexical overlap between T and H. We manually compiled

176

8.5 Summary

a phenomenon-specific derivational sub-dataset, based on a German translation of the
English Rte-3 data, in order to determine the impact of derivational knowledge on Te.

From our experiments, we conclude that the DOH is too simplified to reflect the
linguistic variability of the Rte datasets: Entailment relationships involve far more
than merely derivational relationship, so that our experiments achieved rather unstable
performance results. Nonetheless, DErivBase has often a positive, albeit small and
statistically not significant impact on the entailment decisions of derivationally related
T/H pairs, and does not harm the results. However, derivational information tends to
confuse Tie’s classifier on T/H pairs without a derivational relationship between Text
and Hypothesis. Thus, we suggest to filter T/H pairs for this linguistic phenomenon
before the classification, and employ an ensemble of two models for derivational and
non-derivational T/H pairs, respectively, as proposed in setting (C) presented in Table 8.4.
The ensemble results also underline our finding from Table 8.1 that derivational and
syntactic information can be well combined for resolving the Rte task on the whole
dataset. Applying the ensemble model with both derivational and syntactic information,
we achieve a numerical performance gain of 0.6 and 0.2 percentage points in accuracy and
precision, respectively, over using only syntactic features on the standard Rte dataset.

To compare, Dinu and Wang (2009) achieved on the whole English Rte-3 dataset an
improvement of 0.63 percentage points in precision over Tie’s Bow baseline.11 However,
they use a different knowledge integration strategy than we do: While we combine the Tie-
internal features (word overlap and syntax features) with features containing DErivBase
information for all T/H pairs, they assume that the generated DIRT/WordNet rules
lead to entailment whenever they match a T/H pair, and thus assign the decision
entailment = true to all matching T/H pairs, without considering the Bow baseline’s
vote. The baseline is, similar to the approach of Shen and Lapata (2007), only used as
a fallback for all pairs on which no rule matches. Such an assumption is sensible for
a resource like Dinu and Wang (2009) examine, because it is specifically tailored for
application in textual entailment. Giving similarly much credit to a derivational lexicon,
however, would result in a deterioration of the overall performance.12 In sum, the quality
of our result is roughly comparable to that reported by Dinu and Wang (2009).

Surprisingly, the semantically validated DErivBase v2.0 performs not always better
than the purely morphological v1.4.1, although its cleaner clusters should work better
on the inherently semantic Rte task; v1.4.1 leads to the overall best ensemble setting,
and also performs better when no differentiation is made between derivational and
non-derivational T/H pairs (Table 8.1). We thus believe that high coverage is at least
as important as high quality for the query expansion method that we use to integrate
DErivBase into Tie. In order to fully take advantage of v2.0, we assume that a different
feature extraction strategy would be necessary.

Since Tie is a representative matching-based entailment system, our conclusions should
similarly hold for other matching-based Te systems. We also believe that our results can

11Accuracy and recall are not reported.
12We carried out similar experiments as an alternative to (C), and observed a decline in accuracy from

61.3% on the Bow system to 60.0% on a “rely always on DErivBase, else use Bow” setting.

177

8.5 Summary

be cautiously interpreted as generally valid for other kinds of entailment algorithms. For
example, transformation-based approaches can similarly take advantage of derivational
information to transfer one parse tree into another. Such approaches have already been
tackled, e.g., by Szpektor and Dagan (2008), Berant et al. (2012), but again, the impact
of derivational knowledge was not reported individually.

Additional Experiments. We investigated two further settings for the Rte task that
are not reported in detail in this Chapter:

Gold ensemble model: Instead of automatically splitting the dataset into derivational
and non-derivational T/H pairs, we employed the gold standard annotation to build
the ensemble models. The results are only slightly worse than those of setting (C)
(about −0.2 and −0.1 percentage points in accuracy and precision, respectively).

Training on derivational subset: We investigated how results change for setting (A)
when the four Tie configurations (Section 8.2.2) are trained only on the 109
derivationally related T/H pairs in the development subset. Again, the trends are
similar: Bow and Bow+Synt are still competitive, but adding DErivBase v1.4.1
improves the Bow+Synt model.

178

Part IV

Conclusions and Future Directions

9 Conclusions

This Chapter summarises our findings. We resume our contributions, discuss our main
insights, and outline promising directions for future research.

9.1 Contributions

In this thesis, we have introduced a two-step methodology for the induction of a deriva-
tional lexicon, and its refinement in terms of semantic relatedness. With our approach,
we induced DErivBase, a derivational lexicon for German that is publicly available.
Due to the two-step procedure, DErivBase provides two levels of information: 1., purely
morphological relatedness (v1.4.1), providing derivational families that include both
semantically transparent and opaque relations, and 2., semantically validated relatedness
(v2.0), retaining within a cluster only derivationally related lemmas that are semantically
transparent. The former information level is acquired by means of a rule-based and
data-driven approach, while the latter is attained with a machine learning classifier based
on derivation-specific and standard distributional features. The combination of various
techniques, including manual and automatic components, leads to a high-quality, but
at the same time high-coverage lexical resource, as our evaluations confirm. Our main
contributions are the following:

A German Derivational Lexicon. While inflection has received much attention in
computational morphology for decades, particular interest in derivation arose only recently.
Thus, the number of available derivational lexicons is still small. For German, there
existed no such resource before. With DErivBase, we created the – to our knowledge –
first German derivational lexicon. It satisfies today’s standards in terms of coverage, but
is also very precise due to the rule-based induction. By providing information about the
relatedness of words across parts of speech boundaries, it constitutes a counterpart to
most other lexical resources, which typically incorporate only relations within the same
word class.

In this context, we have proposed an elaborate evaluation methodology that measures
precision and recall on two separate samples, and is thus specifically designed for assessing
the performance of a phenomenon-specific resource for which only a subset of a language’s
word inventory is relevant.

A novelty of DErivBase compared to other derivational lexicons is the internal
structure of the derivational families that is available in the form of derivation rule paths
that relate the lemmas. As our experiments have shown, these paths provide valuable
information when it comes to the application in semantic and psycholinguistic tasks.

180

9.2 Insights

Our procedure for the lexicon induction and intrinsic evaluation can be transferred
to other synthetic languages, provided that knowledge about admissible derivational
processes, and a sufficiently big lemmatised corpus are available.

Semantic Validation of a Derivational Lexicon. The need of semantic coherence in
derivational lexicons was already observed by other researchers (Jacquemin, 2010, Hathout
and Namer, 2014). However, no actual resource with such information has been published
so far. The semantic validation of DErivBase, conducted with a machine learning
classifier, constitutes a new method to introduce a semantic notion into derivational
families by separating out opaque lemmas. It achieves considerable improvements in
terms of semantic coherence within derivational families.

Our validation method builds upon features extracted from distributional models and
the derivation rules that we used to induce DErivBase. Nonetheless, it can be similarly
applied when no derivational, but only distributional information is available, and still
improves the semantic coherence of the derivational families.

Extrinsic experiments have shown that indeed, this refinement yields improvements
on different semantic tasks: Although DErivBase v2.0 naturally performs worse in
reproducing morphological priming effects, and the Rte task seems to depend more on
high-coverage resources than on (semantically) high-quality resources, the tasks to detect
semantic similarity and synonyms both profit from the semantic validation.

Derivational Information in Distributional Semantics. In Part III, we have presented
a novel possibility to employ derivational information in lexical semantics. We have
developed a strategy to overcome sparsity in distributional semantic models that we call
derivational smoothing. It takes the derivational relatedness between words as evidence
for semantic relatedness, and calculates the similarity of two words by considering all
members of the respective derivational families.

As our second extrinsic evaluation shows, this notion of applying derivational informa-
tion is extremely versatile: The derivational smoothing of distributional models can be
straightforwardly rephrased for fairly different settings, e.g., the modelling of morphologi-
cal priming in psycholinguistic experiments by means of morphological generalisation.

Thus, we regard our incorporation of derivation into distributional models as a simple,
yet effective enrichment of standard distributional approaches, where the spaces typically
have no notion of derivational relatedness.

9.2 Insights

There are some fundamental insights we have gained in our study of German derivation
and its application to different tasks. We have evaluated DErivBase for its usability in:
1., the application for smoothing distributional semantic models, 2., the replication of
morphological priming experiments, and 3., the expansion of an Rte entailment system.
The results show that our lexicon can actually yield improvements, but that the impact

181

9.2 Insights

essentially depends on the respective task. In the following, we shortly discuss our main
findings for each task.

Derivation and Distributional Semantics. On the lexical-semantic tasks in our first
evaluation, smoothing a distributional space with DErivBase improves the results of an
unsmoothed space, particularly when the highest similarity predictions of both spaces
per item (Max) are selected. That is, the semantic similarity of two target items can be
well approximated by means of the distributional similarity of their derivational families.
We observed that the rule path information that is available from the internal structure
of our families improves the semantic similarity predictions, which again shows that our
rule-based induction method is beneficial. Notably, the semantically validated lexicon
outperforms the purely morphological variant. This behaviour is plausible, since, for v2.0,
the target word vectors are only smoothed with vectors of semantically fairly similar (i.e.,
transparent) words. Both semantic similarity prediction and synonym choice profit from
this more focused smoothing.

Also, we compared the quality improvements achieved by derivational smoothing or
by combining distributional models with different profiles (i.e., sparse syntax-based and
noisy bag of words models): Model combination, although performing better than the
individual models, was outperformed by derivational smoothing on the semantic similarity
prediction task. Nonetheless, both strategies are, to some extent, complementary, and
their combination achieves the best results on the synonym choice task. As for deriva-
tional smoothing, model combination (and its combination with derivational smoothing)
particularly improves by using the Max combination strategy.

Overall, our studies have shown that the usability of derivational smoothing crucially
depends on the task to be solved: Fine-grained tasks such as the synonym choice profit
less from derivational smoothing than coarser-grained similarity tasks, but they can at
least take advantage of the complementarity of the two presented improvement strategies.

Finally, we would like to mention that the idea that underlies the Max combination
strategy is worthwhile more thorough investigation: We motivated the usage of Max
with the hypothesis that semantic similarity is more likely to be underestimated than
overestimated in distributional models. The results of Utt and Padó (2014) and our
study have shown that selecting the maximum prediction of various models indeed
yields very good performance, although the profiles of the models used in these two
studies were different. Also, our analysis in Chapter 5 revealed underestimations for
semantically similar lemma pairs. Thus, this hypothesis might be a fundamental principle
in distributional semantics. Yet, this remains to be assessed; a formal examination of
this issue could contribute to a theoretical understanding of distributional semantics.

Derivation in Psycholinguistics. Our second extrinsic evaluation makes a contribution
to psycholinguistic research in morphological priming: With our strategy of combining a
standard distributional semantic model and information extracted from DErivBase, we
constructed a computational model that could account for morphological priming effects
in behavioural experiments. Obviously, the semantically validated DErivBase v2.0 is

182

9.2 Insights

less appropriate to capture these effects than v1.4.1, as it considers only transparent
derivations. Nonetheless, both versions perform more similar to the results of the original
study than a model without any information from our lexicon, showing that also v2.0
incorporates morphological aspects. Notably, taking into account the derivation rule
path yields the best model. This suggests that the distance between two words in terms
of their derivational relatedness has an impact on the morphological processing.

As reported in Chapter 7, Smolka et al. (2014) consider the results of their experimental
study as evidence for a morpheme-based organisation of the German mental lexicon,
which contrasts with other Indo-European languages. However, our model is able to
account for the priming effects found by Smolka et al., although it remains completely at
the word level and no morpheme-level knowledge is accessible. Since our model is clearly
simpler than what Smolka et al. proposed, we believe that it is a good starting point
for investigating other reasons for the specificities in German morphological priming.
Particularly, we think that the cross-lingual differences observed by Smolka et al. arise,
among others, from the size and the degree of internal semantic relatedness of the
derivational families in a language. That is, our results might correspond to that of the
original study because our model considers rather large derivational families (in v1.4.1),
including many, and notably opaquely related lemmas into the prediction process. In
contrast, derivational lexicons for other languages might contain less opaque derivations
and thus rather produce semantic priming patterns. We consider this issue an interesting
direction for psycholinguists to investigate.

Derivation in Textual Inference. The results for the NLP task of Recognising Textual
Entailment are rather mixed and do not provide a clear picture. DErivBase is in fact
able to improve the underlying matching-based entailment system when it is only applied
to T/H pairs with derivational relationships, however, the gains are small. Unexpectedly,
the purely morphological lexicon version performs better than v2.0, although Rte is an
inherently semantic task.

We draw two conclusions from these results: 1., it seems that not only semantic
coherence, but also high coverage does matter. Rte – at least when it is addressed using
a matching-based entailment algorithm – profits more from resources that yield extensive
query expansions (i.e., DErivBase v1.4.1) than from semantically clean resources (v2.0).
2., Rte, being an extremely versatile semantic task, can be solved at most partially by
addressing only one specific phenomenon – in our case, derivational relationships.

We think that both issues are worthwhile further investigation. Concretely, we propose
to either change global parameters in the entailment system (e.g., implementing additional
features that capture other linguistic aspects of the T/H pairs, or taking into account
the features in a different way than Tie does), or opening the derivational lexicon to
additional linguistic phenomena. We will return to the second point in Section 9.3.

In sum, our three evaluations show that DErivBase is applicable to lexical-semantic
tasks, and that it can can support the computational modelling of theoretical studies
about German morphology. Both variants of our lexicon have proven to be useful for

183

9.3 Future Directions

different purposes. However, its impact is uncertain when it comes to more generic,
multi-faceted semantic NLP tasks, where the meaning of entire sentences rather than
individual words matter. At this point, we concur with Jacquemin (2010) in that it
is challenging to improve an extrinsic task with a resource that is specialised in one
linguistic phenomenon.

The main conclusions that we draw from our evaluations is that the usability of a
derivational lexicon crucially depends on the kind of task it is applied to. We believe
that this variability at least partially arises from the fundamental Derivational Coherence
Assumption we have made (cf. Section 2.1.3), i.e., that most derivationally related words
are semantically related. Our application of DErivBase always relies on this assumption
and thus, its success depends on the DCA’s appropriateness for the respective task. As
is known, semantic relatedness can be understood as a very strict or a fairly general
relation, ranging from synonymy to associativity (Budanitsky and Hirst, 2006). Our
extrinsic evaluations reflect this broad spectrum fairly well: While the DCA holds for
semantic similarity prediction, it is less appropriate for specific semantic relations such
as synonymy. Also, since DErivBase only refers to the word level, it cannot account
for the range of phenomena involved in Rte, where the relatedness between individual
words – may it be semantic or derivational – is not sufficient to assess the entailment
relationship of two entire utterances.

9.3 Future Directions

We see potential for further improvements of DErivBase and starting points for future
research particularly in three respects:

Expansion of DErivBase with Compounds: As shown, the impact of our lexicon on
versatile tasks such as Rte is unclear – presumably because covering only one
phenomenon is not sufficient. While our focus was to assess merely derivational
information, DErivBase is in principle not restricted to this type of lexical
information. Since we have observed that derivational processes interact with other
linguistic phenomena, we expect the impact of DErivBase to rise when it is
opened to these phenomena. Specifically, incorporating compound information
might be a reasonable expansion, since it describes another fairly productive
morphological process in German that frequently interacts with derivation (cf.
Section 8.2.3). Concretely, this expansion could look as follows: Compounds
that constitute singleton families could be included into the derivational family
with which they share their head word. For instance, the family containing the
words wählenV – WahlN – gewähltA (to electV – electionN – electedA), could be
expanded by the lemma ParlamentswahlN (parliamentary election). To do so, a
compound decomposition component would be needed, and one would preferably
tag compound relationships as such to indicate different morphological relations.
Semantic validation could be similarly conducted on this expanded lexicon, however,
derivational rule information would of course not be available for all lemma pairs.

184

9.3 Future Directions

With this expansion, DErivBase would be triggered more often, particularly for
datasets with many compounds. For instance, the number of T/H pairs in our
phenomenon-specific Rte dataset (cf. Section 8.3) would rise by about 16 percentage
points, e.g., including Example (8.5) on page 166.

Semantic Validation via Soft Clustering: Due to various reasons, the most important
of which is polysemy, the assumption that a lemma can be assigned exactly one
semantic cluster in a derivational family, is oversimplified. As mentioned in Sec-
tion 2.3, a word can have several meanings and thus be part of several semantic
clusters, which is ignored by the hard clustering that we have conducted. The
solution is to construct soft clusters instead, i.e., to let items participate in several
clusters to a certain degree (Xu and Wunsch, 2005, Nock and Nielsen, 2006).

In a tentative study, we analysed the quantitative relevance of soft clustering. We
extracted 50 families from v1.4.1, (ranging from two to 156 members) and annotated
them according to their semantic coherence: We kept only semantically transpar-
ently related lemmas in a cluster, and duplicated lemmas that can participate in
several clusters. Indeed, a substantial number of lemmas was duplicated.

Conceptually, soft clustering would lead to a linguistically more plausible repre-
sentation of semantics in DErivBase. From a practical point of view, it would
increase the coverage of v2.0, since the soft clusters would become larger than the
hard clusters. In this way, the semantically validated version of our lexicon might
have more positive impact than v1.4.1 on tasks such as Rte.

Distributional Examination of the Meaning of Derivation: In the recent years, deriva-
tional morphology has gained growing interest in computational linguistics, as
various proposals to access derivational data (Baranes and Sagot, 2014, Hathout
and Namer, 2014, Šnajder, 2014), but also studies that approach the meaning of
derivational processes by means of distributional semantics (Lazaridou et al., 2013,
Kisselew et al., 2015, Padó et al., 2015, Marelli and Baroni, 2015) suggest. These
latter studies investigate to what extent the semantics of derivational affixation
can be expressed by vector composition, and what are the influence factors on the
performance of such models – e.g., regularities in semantic drifts, or changes of
information content through derivation. We concur with these studies in believing
that the influence of derivation on word semantics has been linguistically described
in detail (cf. Chapter 2), but not yet appropriately operationalised computationally.
Using distributional semantic models is a promising direction to investigate these
aspects of derivation, and their role in computational semantics.

For such endeavours, DErivBase is a valuable resource, providing at the same time
information about derivational processes, as well as the “outcome” of such processes
in the form of – purely morphological, or semantically validated – derivational
families. These information can serve for exploratory single-case studies, but also
for the large-coverage examination of the semantics of derivation, and thus help to
better understand the impact of derivation on language and language processing.

185

Appendix

A Employed HOFM Transformation Functions for Derivation

A Employed HOFM Transformation Functions for Derivation

This appendix lists all transformation functions we used to define German derivational
processes. We list both language-independent and German-specific rules.

apfx: Alternate by list of prefix alternations. Corresponds to:
apfx[(s1, s2), (s3, s4)] = rpfx(s1, s2) .|. rpfx(s3, s4)

asfx: Alternate by list of infix alternations. Corresponds to:
aifx[(s1, s2), (s3, s4)] = rifx(s1, s2) .|. rifx(s3, s4)

dsfx: Delete a suffix. Corresponds to:
rsfx(s, “ ”)

dup: Duplicate a final consonant (German-specific). Roughly corresponds to:
rsfx(c, cc)

nul: Do nothing (used for conversion)

opt: Optionally perform transformation t. Corresponds to:
t .|. nul

pfx: Prepend a prefix. Corresponds to:
rpfx(“ ”, s)

puml: Alternate initial vowel to umlaut (German-specific). Corresponds to:
apfx([(a, ä), (o, ö), (u, ü)])

rifx: Replace an infix. Primitive function.

rpfx: Replace a prefix. Primitive function.

rsfx: Replace a suffix. Primitive function.

sfx: Append a suffix. Corresponds to:
rsfx(“ ”, s)

try: Perform transformation t, if possible. Corresponds to:
t .||. nul

uml: Alternate infix vowel to umlaut (German-specific). Corresponds to:
aifx([(a, ä), (o, ö), (u, ü)])

187

B Implemented DErivBase Rules, v1.4.1

B Implemented DErivBase Rules, v1.4.1

This appendix contains the derivation rules covered in version 1.4.1 in DErivBase. They
are displayed exactly as they are implemented in the corresponding Haskell module.

Each derivation rule has a unique name indicating the part of speech of the base and
the derived word, followed by a serial number. For instance, dNN01 indicates the first
noun-noun derivation rule. Every derivation rule is accompanied by German examples in
the format base word -> derivative, given in comments (lines starting with --).

-- 1. NOUN DERIVATION

-- 1.1 NOUN TO NOUN

-- Bäcker -> Bäckerei, Rüpel -> Rüpelei, Träumer -> Träumerei, Türke -> Türkei
NN01 = dPattern "NN01"

(sfx "ei" & try (dsfx "e")) mNouns fNouns

-- Bäcker -> Bäckerin, Idiot -> Idiotin, Türke -> Türkin, Vanille -> Vanillin
NN02 = dPattern "NN02"

(sfx "in" & try (dsfx "e")) nouns nouns

-- Dieb -> Dieberei, Sklave -> Sklaverei, Abgott -> Abgötterei, Schwein -> Schweinerei
NN03 = dPattern "NN03"

(sfx "erei" & opt uml & try (dsfx "e")) nouns fNouns

-- Anwalt -> Anwaltschaft, Freund -> Freundschaft, Friede -> Friedschaft
NN04 = dPattern "NN04"

(sfx "schaft" & try (dsfx "e")) nouns fNouns

-- Schule -> Schüler, Attentat -> Attentäter, Kritik -> Kritiker,
-- Italien -> Italiener, England -> Engländer, Australien -> Australier,
-- Argentinien -> Argentinier, Kanada -> Kanadier Abenteuer -> Abenteurer,
-- Gambia -> Gambier, Ghana -> Ghanaer, Forschen -> Forscher, Garten -> Gärtner
NN05 = dPattern "NN05"

(sfx "er" & opt uml & try (rsfx "er" "r" .||. dsfx "e"
.||. opt (dsfx "en" .|. rsfx "en" "n") .||. try (dsfx "ien" .|. rsfx "ien" "i"))
& try (rsfx "ia" "i") & opt (rsfx "a" "i")) nouns mNouns

-- Bank -> Bankier, Hotel -> Hotelier, Karabiner -> Karabinier, Kneipe -> Kneipier
NN06 = dPattern "NN06"

(sfx "ier" & try (dsfx "er" .||. dsfx "e")) nouns mNouns

-- Alkohol -> Alkoholiker, Hygiene -> Hygieniker
NN07 = dPattern "NN07"

(sfx "iker" & try (dsfx "e" .||. dsfx "er")) nouns mNouns

-- Piano -> Pianist, Kapital -> Kapitalist, Bratsche -> Bratschist,
-- Bhudda -> Bhuddist, Bigamie -> Bigamist
NN08 = dPattern "NN08"

(sfx "ist" & try (asfx [("a",""), ("e",""), ("i",""), ("o",""), ("u",""), ("ie",""),
("ei",""), ("eu",""), ("au",""), ("äu",""), ("ai",""), ("ui","")])) nouns mNouns

-- Alkohol -> Alkoholismus, Anarchie -> Anarchismus, Bhudda -> Bhuddismus
NN09 = dPattern "NN09"

(sfx "ismus" & try (asfx [("a",""), ("e",""), ("i",""), ("o",""), ("u",""),
("ie",""), ("ei",""), ("eu",""), ("au",""), ("äu",""), ("ai",""), ("ui","")]))
nouns mNouns

-- Direktor -> Direktorium, Privileg -> Privilegium
NN10 = dPattern "NN10"

(sfx "ium") nouns nNouns

-- Luther -> Lutheraner, Peru -> Peruaner, Angola -> Angolaner
-- Salvador -> Salvadorianer, Nigeria -> Nigerianer, Sizilien -> Sizilianer,
-- Monarchie -> Monarchianer, Mauritius -> Mauritianer, Marokko -> Marrokkaner,
NN11 = dPattern "NN11"

(sfx "aner" & try (rsfx "or" "ori" .||. rsfx "ia" "i" .||. rsfx "ien" "i" .||.
rsfx "ie" "i" .||. rsfx "ius" "i" .||. dsfx "o" .||. dsfx "a")) nouns mNouns

-- Asien -> Asiat, Aluminium -> Aluminat, Stipendium -> Stipendiat
NN12 = dPattern "NN12"

(sfx "at" & try (asfx [("a",""), ("en",""), ("ium",""), ("um","")]))
nouns (mNouns++nNouns)

188

B Implemented DErivBase Rules, v1.4.1

-- Schwede -> Schweden, Pole -> Polen, Bayer -> Bayern
NN13 = dPattern "NN13"

(sfx "n") mNouns nNouns

-- Ozean -> Ozeanien, Serbe -> Serbien, Rumäne -> Rumänien
NN14 = dPattern "NN14"

(sfx "ien" & try (dsfx "e")) mNouns nNouns

-- Este -> Estland, Feuer -> Feuerland, Deutsche -> Deutschland
--NN15 = dPattern "NN15"
-- (sfx "land" & try (dsfx "e")) nouns nNouns

-- Jemen -> Jemenit, Israel -> Israelit, Sunna -> Sunnit, Jesus -> Jesuit,
-- Hus -> Hussit, Chlor -> Chlorit
NN16 = dPattern "NN16"

(sfx "it" & try (asfx [("a",""), ("us","u"), ("us","uss")])) nouns nouns

-- China -> Chinese, Vietnam -> Vietnamese, Togo -> Togolese, Lugano -> Luganese,
-- Bali -> Balinese, Libanon -> Libanese
NN17 = dPattern "NN17"

(sfx "ese" & try (dsfx "a" .||. rsfx "i" "in" .||. dsfx "on"
.||. try (rsfx "o" "ol" .|. dsfx "o"))) nNouns mNouns

-- Erfolg -> Misserfolg
NN18 = align $ dPattern "NN18"

(pfx "miss") nouns nouns

-- Beweis -> Gegenbeweis, Pol -> Gegenpol
NN19 = align $ dPattern "NN19"

(pfx "gegen") nouns nouns

-- Faschismus -> Antifaschismus
NN20 = align $ dPattern "NN20"

(pfx "anti") nouns nouns

-- Ruhe -> Unruhe, Kraut -> Unkraut
NN21 = align $ dPattern "NN21"

(pfx "un") nouns nouns

-- Harmonie -> Disharmonie, Agio -> Disagio
NN22 = align $ dPattern "NN22"

(pfx "dis") nouns nouns

-- Betrag -> Fehlbetrag
NN23 = align $ dPattern "NN23"

(pfx "fehl") nouns nouns

-- Wille -> Widerwille
NN24 = align $ dPattern "NN24"

(pfx "wider") nouns nouns

-- Funktion -> Dysfunktion
NN25 = align $ dPattern "NN25"

(pfx "dys") nouns nouns

-- Schlag -> Konterschlag
NN26 = align $ dPattern "NN26"

(pfx "konter") nouns nouns

-- Kompression -> Dekompression, Orientierung -> Desorientierung, Interesse -> Desinteresse
NN27 = align $ dPattern "NN27"

(pfx "de" & try (apfx [("a","sa"), ("e","se"), ("i","si"), ("o","so"), ("u","su")]))
nouns nouns

-- Kunst -> Künstler, Sport -> Sportler, Wissenschaft -> Wissenschaftler,
-- Sommerfrische -> Sommerfrischler
NN28 = dPattern "NN28"

(sfx "ler" & opt uml & try (dsfx "e")) nouns mNouns

-- Teil -> Anteil, Zeichen -> Anzeichen
NN29 = align $ dPattern "NN29"

(pfx "an") nouns nouns

-- Preis -> Aufpreis, Marsch -> Aufmarsch
NN30 = align $ dPattern "NN30"

(pfx "auf") nouns nouns

-- Maß -> Ausmaß, Land -> Ausland, Zeit -> Auszeit
NN31 = align $ dPattern "NN31"

(pfx "aus") nouns nouns

-- Zimmer -> Nebenzimmer

189

B Implemented DErivBase Rules, v1.4.1

NN32 = align $ dPattern "NN32"
(pfx "neben") nouns nouns

-- Geschmack -> Nachgeschmack
NN33 = align $ dPattern "NN33"

(pfx "nach") nouns nouns

-- Besitz -> Mitbesitz
NN34 = align $ dPattern "NN34"

(pfx "mit") nouns nouns

-- Abend -> Vorabend
NN35 = align $ dPattern "NN35"

(pfx "vor") nouns nouns

-- Erwerb -> Zuerwerb, Name -> Zuname
NN36 = align $ dPattern "NN36"

(pfx "zu") nouns nouns

-- Haus -> Gehäuse, Lumpen -> Gelumpe, Wasser -> Gewässer, Darm -> Gedärme
NN37 = dPattern "NN37"

(opt (sfx "e") & pfx "ge" & opt (uml) & try (dsfx "n")) nouns nNouns

-- Tasse -> Untertasse, Offizier -> Unteroffizier
NN38 = align $ dPattern "NN38"

(pfx "unter") nouns nouns

-- Kreis -> Umkreis, Lauf -> Umlauf
NN39 = align $ dPattern "NN39"

(pfx "um") nouns nouns

-- Bau -> Abbau, Luft -> Abluft, Zeichen -> Abzeichen
NN40 = align $ dPattern "NN40"

(pfx "ab") nouns nouns

-- Dienst -> Außendienst, Ansicht -> Außenansicht
NN41 = align $ dPattern "NN41"

(pfx "außen") nouns nouns

-- Blatt -> Beiblatt, Geschmack -> Beigeschmack
NN42 = align $ dPattern "NN42"

(pfx "bei") nouns nouns

-- Markt -> Binnenmarkt, Zoll -> Binnenzoll
NN43 = align $ dPattern "NN43"

(pfx "binnen") nouns nouns

-- Bischof -> Erzbischof, Engel -> Erzengel
NN44 = align $ dPattern "NN44"

(pfx "erz") nouns nouns

-- Sorge -> Fürsorge, Wort -> Fürwort
NN45 = align $ dPattern "NN45"

(pfx "für") nouns nouns

-- Nahrung -> Grundnahrung, Bestandteil -> Grundbestandteil
NN46 = align $ dPattern "NN46"

(pfx "grund") nouns nouns

-- Bestandteil -> Hauptbestandteil, Bahnhof -> Hauptbahnhof
NN47 = align $ dPattern "NN47"

(pfx "haupt") nouns nouns

-- Deck -> Oberdeck, Befehl -> Oberbefehl
NN48 = align $ dPattern "NN48"

(pfx "ober") nouns nouns

-- Antwort -> Rückantwort, Reise -> Rückreise
NN49 = align $ dPattern "NN49"

(pfx "rück") nouns nouns

-- Zug -> Sonderzug, Angebot -> Sonderangebot
NN50 = align $ dPattern "NN50"

(pfx "sonder") nouns nouns

-- Gewicht -> Übergewicht, Mensch -> Übermensch
NN51 = align $ dPattern "NN51"

(pfx "über") nouns nouns

-- Hemd -> Unterhemd, Führung -> Unterführung

190

B Implemented DErivBase Rules, v1.4.1

NN52 = align $ dPattern "NN52"
(pfx "unter") nouns nouns

-- Zeit -> Zwischenzeit, Wand -> Zwischenwand
NN53 = align $ dPattern "NN53"

(pfx "zwischen") nouns nouns

-- Dienst -> Innendienst, Welt -> Innenwelt
NN54 = align $ dPattern "NN54"

(pfx "innen") nouns nouns

-- Mensch -> Urmensch, Enkel -> Urenkel, Aufführung -> Uraufführung
NN55 = align $ dPattern "NN55"

(pfx "ur") nouns nouns

-- Bauch -> Bäuchlein, Ente -> Entlein, Licht -> Lichtlein, Brunnen -> Brünnlein,
-- Vogel -> Vögelein
NN56 = dPattern "NN56"

(sfx "lein" & try (dsfx "en" .||. dsfx "e" .||. dsfx "l") & try (uml)) nouns nNouns

-- Schiff -> Schiffchen, Figur -> Figürchen, Rose -> Röschen, Krug -> Krügelchen,
-- Tuch -> Tüchelchen, Sache -> Sächelchen, Haar -> Härchen, Boot -> Bötchen
NN57 = dPattern "NN57"

(sfx "chen" & try (rsfx "g" "gel" .||. rsfx "sch" "sch" .||. rsfx "ch" "chel")
& try (dsfx "en" .||. dsfx "e") & try (uml) & try (rifx "aa" "ä" .||. rifx "oo" "ö"
.||. rifx "uu" "ü")) nouns nNouns

-- Arm -> Ärmel, Kies -> Kiesel, Busch -> Büschel
NN58 = dPattern "NN58"

(sfx "el" & opt (puml .|. uml)) nouns nouns

-- Kind -> Kindheit, Gott -> Gottheit, Tor -> Torheit, Wesen -> Wesenheit
NN59 = dPattern "NN59"

(sfx "heit") nouns fNouns

-- Gans -> Gänserich, Weg -> Wegerich, Maus -> Mäuserich
NN60 = dPattern "NN60"

(sfx "rich" & opt (dsfx "e" .||. sfx "e") & try uml) nouns mNouns

-- Sultan -> Sultanine, Nektar -> Nektarine, Mandola -> Mandoline,
-- Sonate -> Sonatine
NN61 = dPattern "NN61"

(sfx "ine" & try (dsfx "e" .||. dsfx "a")) nouns fNouns

-- Antiquar -> Antiquariat, Kommissar -> Kommissariat
NN62 = dPattern "NN62"

(sfx "iat") nouns nNouns

-- Chanson -> Chansonette, Statue -> Statuette
NN63 = dPattern "NN63"

(sfx "ette" & try (dsfx "e")) nouns fNouns

-- Delphin -> Delphinarium
NN64 = dPattern "NN64"

(sfx "arium" & try (dsfx "e")) nouns nNouns

-- Division -> Divisionär, Legion -> Legionär
NN65 = dPattern "NN65"

(sfx "är" & try (dsfx "e")) nouns mNouns

-- 1.2 ADJECTIVE TO NOUN

-- tief -> Tiefe, weit -> Weite (n/f), deutsch -> Deutsche, scharf -> Schärfe,
-- lang -> Länge, eben -> Ebene, erinnernd -> Erinnernde, erinnert -> Erinnerte
AN01 = dPattern "AN01"

(sfx "e" & try uml) adjectives nouns

-- dunkel -> Dunkelheit, fein -> Feinheit, berühmt -> Berühmtheit
AN02 = dPattern "AN02"

(sfx "heit") adjectives fNouns

-- wichtig -> Wichtigkeit, traurig -> Traurigkeit
AN03 = dPattern "AN03"

(sfx "keit") adjectives fNouns

-- dreist -> Dreistigkeit, ernsthaft -> Ernsthaftigkeit
AN04 = dPattern "AN04"

(sfx "igkeit") adjectives fNouns

-- faul -> Fäulnis, vermacht -> Vermächtnis, geheim -> Geheimnis,
-- finster -> Finsternis
AN05 = dPattern "AN05"

(sfx "nis" & try uml) adjectives (fNouns++nNouns)

191

B Implemented DErivBase Rules, v1.4.1

-- schwanger -> Schwangerschaft, bereit -> Bereitschaft, gefangen -> Gefangenschaft
AN06 = dPattern "AN06"

(sfx "schaft") adjectives fNouns

-- einverstanden -> Einverständnis, gefangen -> Gefängnis
AN07 = dPattern "AN07"

(rsfx "en" "nis" & try uml) adjectives (fNouns++nNouns)

-- schwach -> Schwächling, roh -> Rohling, schön -> Schönling
AN08 = dPattern "AN08"

(sfx "ling" & opt uml) adjectives mNouns

-- absolut -> Absolutismus, exotisch -> Exotismus, klassisch -> Klassizismus,
-- totalitär -> Totalitarismus, industriell -> Industrialismus
AN09 = dPattern "AN09"

(sfx "ismus" & try (rsfx "ell" "al" .||.rsfx "är" "ar"
.||. (try (dsfx "isch" .|. rsfx "isch" "iz")))) adjectives mNouns

-- kulant -> Kulanz, rasant -> Rasanz, präsent -> Präsenz, konsequent -> Konsequenz
AN10 = dPattern "AN10"

(rsfx "t" "z") adjectives fNouns

-- analog -> Analogie, infam -> Infamie, idiotisch -> Idiotie
AN11 = dPattern "AN11"

(sfx "ie" & try (dsfx "isch")) adjectives fNouns

-- linguistisch -> Linguistik, theatralisch -> Theatralik, problematisch -> Problematik,
-- anglistisch -> Anglistik
AN12 = dPattern "AN12"

(rsfx "isch" "ik") adjectives fNouns

-- allergisch -> Allergiker, zynisch -> Zyniker
AN13 = dPattern "AN13"

(rsfx "isch" "iker") adjectives mNouns

-- antibiotisch -> Antibiotikum, charakteristisch -> Charakteristikum
AN14 = dPattern "AN14"

(rsfx "isch" "ikum") adjectives nNouns

-- aktiv -> Aktivist, amerikanisch -> Amerikanist, linguistisch -> Linguist
AN15 = dPattern "AN15"

(sfx "ist" & try (dsfx "istisch" .||. dsfx "isch")) adjectives mNouns

-- banal -> Banalität, elektrisch -> Elektrizität, aktuell -> Aktualität,
-- kompatibel -> Kompatibilität
AN16 = dPattern "AN16"

(sfx "ität" & try (rsfx "isch" "iz" .||. rsfx "ell" "al" .||. rsfx "bel" "bil"))
adjectives fNouns

-- grau -> Grau, seidenmatt -> Seidenmatt, tannengrün -> Tannengrün
AN17 = dPattern "AN17"

nul adjectives nNouns

-- dick -> Dickerchen, dumm -> Dummerchen
AN18 = dPattern "AN18"

(sfx "erchen") adjectives nNouns

-- 1.3 VERB TO NOUN

-- singen -> Gesang
VN01 = dPattern "VN01"

(pfx "ge" & rifx "i" "a") verbs mNouns

-- reden -> Gerede, zanken -> Gezanke, tosen -> Getöse, lasen -> Gebläse/Geblase
VN02 = dPattern "VN02"

(pfx "ge" & sfx "e" & opt uml) verbs nNouns

-- tanzen -> Tänzer, rauchen -> Raucher, lehren -> Lehrer, wildern -> Wilderer,
-- sammeln -> Sammler
VN03 = dPattern "VN03"

(sfx "er" & opt uml & try (rsfx "el" "l")) verbs mNouns

-- pfeifen -> Pfeife, ernten -> Ernte
VN04 = dPattern "VN04"
(sfx "e") verbs fNouns

-- for -en verbs: schlagen -> Schlägel, decken -> Deckel
-- for -eln verbs: hebeln -> Hebel, würfeln -> Würfel, segeln -> Segel, handeln -> Handel
VN05 = dPattern "VN05"
(sfx "el" & opt uml & try (dsfx "el")) [verbEn,verbEln] nouns

-- erleben -> Erlebnis, empfangen -> Empfängnis, ärgern -> Ärgernis

192

B Implemented DErivBase Rules, v1.4.1

VN06 = dPattern "VN06"
(sfx "nis" & try uml) verbs (fNouns++nNouns)

-- rechnen -> Rechnung, entleeren -> Entleerung
VN07 = dPattern "VN07"

(sfx "ung") verbs fNouns

-- abgeben -> Abgabe
VN08 = dPattern "VN08"

(rifx "e" "a" & sfx "e") verbs fNouns

-- for -eln and -ern verbs: handeln -> Handeln, segeln -> Segeln,
-- baggern -> Baggern, lagern -> Lagern, säubern -> Säubern
-- for -en verbs: bersten -> Bersten, säugen -> Säugen
VN09 = dPatternLL "VN09"

nul verbs nNouns

-- kochen -> Koch, fischen -> Fisch, verstecken -> Versteck, schauen -> Schau,
-- einkaufen -> Einkauf, Baggern -> Bagger, Handeln -> Handel
VN10 = dPattern "VN10"

nul verbs nouns

-- for -en and -ern verbs: wandern -> Wanderschaft, pflegen -> Pflegschaft
VN11 = dPattern "VN11"

(sfx "schaft") verbs fNouns

-- sieden -> Sud, schließen -> Schluss, fließen -> Fluss, gießen -> Guss
VN12 = dPattern "VN12"

(rifx "ie" "u" & try (rsfx "ß" "ss")) verbs nouns

-- klingen -> Klang, dringen -> Drang, binden -> Band, zwingen -> Zwang, trinken -> Trank
VN13 = dPattern "VN13"

(rifx "i" "a") verbs nouns

-- brechen -> Bruch, heben -> Hub, scheren -> Schur, sprechen -> Spruch
VN14 = dPattern "VN14"

(rifx "e" "u") verbs nouns

-- gebieten -> Gebot, sprießen -> Spross
VN15 = dPattern "VN15"

(rifx "ie" "o" & try (rsfx "ß" "ss")) verbs nouns

-- treiben -> Trieb, scheiden -> Schied
VN16 = dPattern "VN16"

(rifx "ei" "ie") verbs nouns

-- reißen -> Riss, streichen -> Strich, schreiten -> Schritt, greifen -> Griff,
-- pfeifen -> Pfiff, kneifen -> Kniff
VN17 = dPattern "VN17"

(rifx "ei" "i" & (opt dup .|. try (rsfx "ß" "ss"))) verbs nouns

-- springen -> Sprung, finden -> Fund
VN18 = dPattern "VN18"

(rifx "i" "u") verbs nouns

-- spedieren -> Spediteur, komponieren -> Kompositeur
VN19 = dPattern "VN19"

(rsfx "ier" "iteur" & try (rsfx "ponier" "posier")) [verbEn] mNouns

-- generieren -> Generator, applizieren -> Applikator, diktieren -> Diktator
VN20 = dPattern "VN20"

(rsfx "ier" "ator" & try (rsfx "izier" "ikier")) [verbEn] mNouns

-- doktorieren -> Doktorand, operieren -> Operand
VN21 = dPattern "VN21"

(rsfx "ier" "and") [verbEn] mNouns

-- Variant of -and: promovieren -> Promovend, addieren -> Addend
VN22 = dPattern "VN22"

(rsfx "ier" "end") [verbEn] mNouns

-- demonstrieren -> Demonstrant, operieren -> Operant
VN23 = dPattern "VN23"

(rsfx "ier" "ant") [verbEn] mNouns

-- fundieren -> Fundament, temperieren -> Temperament
VN24 = dPattern "VN24"

(rsfx "ier" "ament") [verbEn] nNouns

-- blamieren -> Blamage, massieren -> Massage
VN25 = dPattern "VN25"

(rsfx "ier" "age") [verbEn] fNouns

-- tolerieren -> Toleranz, repräsentieren -> Repräsentanz
VN26 = dPattern "VN26"

(rsfx "ier" "anz") [verbEn] fNouns

193

B Implemented DErivBase Rules, v1.4.1

-- signieren -> Signatur, reparieren -> Reparatur
VN27 = dPattern "VN27"

(rsfx "ier" "atur") [verbEn] fNouns

-- abonnieren -> Abonnement, arrangieren -> Arrangement
VN28 = dPattern "VN28"

(rsfx "ier" "ement") [verbEn] nNouns

-- absolvieren -> Absolvent, dirigieren -> Dirigent
VN29 = dPattern "VN29"

(rsfx "ier" "ent") [verbEn] mNouns

-- existieren -> Existenz, präferieren -> Präferenz
VN30 = dPattern "VN30"

(rsfx "ier" "enz") [verbEn] fNouns

-- exorzieren -> Exorzist, kopieren -> Kopist, komponieren -> Komponist
VN31 = dPattern "VN31"

(rsfx "ier" "ist") [verbEn] mNouns

-- studieren -> Studium, refugieren -> Refugium
VN32 = dPattern "VN32"

(rsfx "ier" "ium") [verbEn] nNouns

-- garnieren -> Garnitur, polieren -> Politur
VN33 = dPattern "VN33"

(rsfx "ier" "itur") [verbEn] fNouns

-- addieren -> Addition, opponieren -> Opposition, komponieren -> Komposition
VN34 = dPattern "VN34"

(rsfx "ier" "ition" & try (rsfx "ponier" "posier")) [verbEn] fNouns

-- flimmern -> Geflimmer, brabbeln -> Gebrabbel, bellen -> Gebell,
-- spotten -> Gespött, backen -> Gebäck, jodeln -> Gejodel, hören -> Gehör
VN35 = dPattern "VN35"

(pfx "ge" & opt (uml)) verbs nNouns

-- schreiben -> Geschreibsel, mengen -> Gemengsel
VN36 = dPattern "VN36"

(pfx "ge" & sfx "sel") [verbEn] nNouns

-- sortieren -> Sortiment, regieren -> Regiment
VN37 = dPattern "VN37"

(rsfx "ier" "iment") [verbEn] nNouns

-- hypnotisieren -> Hypnotiseur, vulkanisieren -> Vulkaniseur
VN38 = dPattern "VN38"

(rsfx "ier" "eur") [verbEn] mNouns

-- animieren -> Animation, dekorieren -> Dekoration
VN39 = dPattern "VN39"

(rsfx "ier" "ation") [verbEn] fNouns

-- animieren -> Animateur, dekorieren -> Dekorateur
VN40 = dPattern "VN40"

(rsfx "ier" "ateur") [verbEn] mNouns

-- 2. ADJECTIVE DERIVATION

-- 2.1 NOUN TO ADJECTIVE

-- Kunst -> künstlich, Herr -> herrlich, Glück -> glücklich
NA01 = dPattern "NA01"

(sfx "lich" & try uml) nouns adjectives

-- Künstler -> künstlerisch, Alkohol -> alkoholisch, Stadt -> städtisch,
-- Himmel -> himmlisch, Schule -> schulisch, Brite -> britisch, Ägypten -> ägyptisch
NA02 = dPattern "NA02"

(sfx "isch" & try (rsfx "el" "l") & try (dsfx "e" .||. dsfx "en") & opt uml)
nouns adjectives

-- Gesetz -> gesetzmäßig, Instinkt -> instinktmäßig, Arbeit -> arbeitsmäßig,
-- Gewohnheit -> gewohnheitsmäßig
NA03 = dPattern "NA03"

(sfx "mäßig" & opt (sfx "s")) nouns adjectives

-- Schleier -> schleierhaft, Schatten -> schattenhaft, Sünde -> sündhaft
NA04 = dPattern "NA04"

(sfx "haft" & try (dsfx "e")) nouns adjectives

194

B Implemented DErivBase Rules, v1.4.1

-- Busch -> buschig, Vorrang -> vorrangig, Übermut -> übermütig, Erde -> erdig,
-- Knoten -> knotig
NA05 = dPattern "NA05"

(sfx "ig" & try (dsfx "e") & try (dsfx "en") & opt uml) nouns adjectives

-- Funktion -> funktional, Zentrum -> zentral, Orchester -> orchestral, Epoche -> epochal,
-- Margo -> marginal, Nomen -> nominal, Vagina -> vaginal, Episkopus -> episkopal, Axis -> axial
NA06 = dPattern "NA06"

(sfx "al" & try (asfx [("er","r"), ("um",""), ("o","in"), ("en","in"), ("a",""),
("us",""), ("e",""), ("is","i")])) nouns adjectives

-- Bestie -> bestialisch, Musik -> musikalisch, Theater -> theatralisch
NA07 = dPattern "NA07"

(sfx "alisch" & try (rsfx "er" "r" .||. dsfx "um" .||. rsfx "en" "in" .||. dsfx "a"
.||. dsfx "us" .||. dsfx "e" .||. dsfx "is")) nouns adjectives

-- Afrika -> afrikanisch, Tibet -> tibetanisch, Ecuador -> ecuadorianisch,
-- Brasilien -> brasilianisch
NA08 = dPattern "NA08"

(sfx "anisch" & try (dsfx "a" .||. rsfx "or" "ori" .||. rsfx "ia" "i"
.||. rsfx "ien" "i" .||. rsfx "ius" "i" .||. dsfx "o")) nouns adjectives

-- Atom -> atomar, Pol -> polar, Molekül -> molekular, Binokel -> binokular,
-- Lamelle -> lamellar, Linie -> linear, Korona -> koronar
NA09 = dPattern "NA09"

(sfx "ar" & try (rsfx "ül" "ul" .||. rsfx "el" "ul" .||. rsfx "ie" "e"
.||. dsfx "e" .||. dsfx "a")) nouns adjectives

-- Defizit -> defizitär, Familie -> familiär, Revolution -> revolutionär,
-- Universität -> universitär, Muskel -> muskulär, Opposition -> oppositär,
-- Station -> stationär, Tempus -> temporär, Primus -> primär
NA10 = dPattern "NA10"

(sfx "är" & try (dsfx "e" .||. dsfx "ät" .||. rsfx "el" "ul" .||. opt (dsfx "ion")
.||. rsfx "us" "or") & opt (dsfx "us")) nouns adjectives

-- Disziplin -> disziplinarisch, Legende -> legendarisch, Kalender -> kalendarisch
NA11 = dPattern "NA11"

(sfx "arisch" & try (dsfx "e" .||. dsfx "ät" .||. rsfx "er" "ar" .||. dsfx "a"))
nouns adjectives

-- Problem -> problematisch, Klima -> klimatisch, Asien -> asiatisch
NA12 = dPattern "NA12"

(sfx "atisch" & try (dsfx "a" .||. dsfx "e" .||. dsfx "en")) nouns adjectives

-- Bakterie -> bakteriell, Kultur -> kulturell, Individuum -> individuell,
-- Habitus -> habituell, Tempus -> temporell
NA13 = dPattern "NA13"

(sfx "ell" & try (dsfx "e" .||. dsfx "um"
.||. try (rsfx "us" "or" .|. rsfx "us" "u")) & opt (dsfx "us")) nouns adjectives

-- Chaplin -> chaplinesk, Karneval -> karnevalesk, Kafka -> kafkaesk
NA14 = dPattern "NA14"

(sfx "esk") nouns adjectives

-- Diät -> diätetisch, Energie -> energetisch, Pathos -> pathetisch
NA15 = dPattern "NA15"

(sfx "etisch" & try (dsfx "ie" .||. dsfx "os")) nouns adjectives

-- Äquator -> äquatorial, Kollege -> kollegial, Tangens -> tangential,
-- Essenz -> essential, Existenz -> existenzial
NA16 = dPattern "NA16"

(sfx "ial" & try (dsfx "e" .||. rsfx "ens" "ent" .||. opt (rsfx "enz" "ent")))
nouns adjectives

-- Vektor -> vektoriell, Prinzip -> prinzipiell, Essenz -> essenziell
NA17 = dPattern "NA17"

(sfx "iell" & opt (rsfx "nz" "nt")) nouns adjectives

-- Byzanz -> byzantinisch, Montenegro -> montenegrinisch, Dalmatien -> dalmatinisch,
-- Menorca -> menorquinisch, Sarde -> sardinisch
NA18 = dPattern "NA18"

(sfx "inisch" & try (rsfx "nz" "nt" .||. dsfx "o" .||. dsfx "ien"
.||. rsfx "ca" "qu" .||. dsfx "e")) nouns adjectives

-- Charakter -> charakteristisch, Harmonie -> harmonistisch,
-- Flora -> floristisch, Cello -> cellistisch, Renaissance -> renaissancistisch
NA19 = dPattern "NA19"

(sfx "istisch" & try (dsfx "ie" .||. dsfx "i" .||. dsfx "a" .||. dsfx "o"
.||. dsfx "e")) nouns adjectives

-- Affekt -> affektiv, Instinkt -> instinktiv, Intuition -> intuitiv
NA20 = dPattern "NA20"

(sfx "iv" & try (dsfx "ion")) nouns adjectives

195

B Implemented DErivBase Rules, v1.4.1

-- Muskel -> muskulös, Lepra -> leprös, Strapaze -> strapaziös,
-- Tendenz -> tendenziös, Melodie -> melodiös, Religion -> religiös,
-- Mysterium -> mysteriös, Tuberkulose -> tuberkulös, Volumen -> voluminös,
-- Spektakel -> spektakulös, Luxus -> luxuriös, Minute -> minuziös,
-- Monstrum -> monströs
NA21 = dPattern "NA21"

(sfx "ös" & try (asfx [("a",""), ("ze","zi"), ("z","zi"), ("ie","i"),
("ion","i"), ("ose",""), ("en","in"), ("el","ul"), ("us","uri"), ("te","zi"),
("um","")])) nouns adjectives

-- Emanzipation -> emanzipatorisch, Illusion -> illusorisch,
-- Provokation -> provokatorisch
NA22 = dPattern "NA22"

(rsfx "ion" "orisch") nouns adjectives

-- Prozess -> prozessual, Ritus -> ritual
NA23 = dPattern "NA23"

(sfx "ual" & try (dsfx "us")) nouns adjectives

-- Kontext -> kontextuell, Prozent -> prozentuell
NA24 = dPattern "NA24"

(sfx "uell" & try (dsfx "us" .||. dsfx "ion")) nouns adjectives

-- Orientierung -> orientiert, Verständigung -> verständigt
NA25 = dPattern "NA25"

(rsfx "ung" "t") fNouns adjectives

-- Verherrlichung -> verherrlichend, Verständigung -> verständigend,
-- Senkung -> senkend
NA26 = dPattern "NA26"

(rsfx "ung" "end") fNouns adjectives

-- Urkunde -> urkundlich, Sprache -> sprachlich
NA27 = dPattern "NA27"

(sfx "lich" & try (dsfx "e")) nouns adjectives

-- Ehre -> ehrsam, Furcht -> furchtsam
NA28 = dPattern "NA28"

(sfx "sam" & try (dsfx "e")) nouns adjectives

-- Wurzel -> wurzellos, Mühe -> mühelos, Schaden -> schadlos, Freude -> freudlos,
-- Wolke -> wolkenlos, Boden -> bodenlos, Staat -> staatenlos, Kind -> kinderlos,
-- Ausweg -> auswegslos, Mann -> männerlos
NA29 = dPattern "NA29"

(sfx "los" & opt (dsfx "en" .|. dsfx "e" .|. ((sfx "er" .|. sfx "en")
& try (dsfx "e")) .|. sfx "er" .|. sfx "s") & opt (uml)) nouns adjectives

-- Blatt -> blätt(e)rig, Loch -> löch(e)rig, Glied -> glied(e)rig, Knochen -> knöchrig
NA30 = dPattern "NA30"

(sfx "rig" & opt (sfx "e") & try (dsfx "en") & opt (uml)) nouns adjectives

-- Hass -> gehässig, Lehre -> gelehrig, Zahn -> gezahnt, Witz -> gewitzt,
-- Blume -> geblümt, Treue -> getreu, Lappen -> gelappt, Streifen -> gestreift
NA31 = dPattern "NA31"

(pfx "ge" & opt (sfx "t" .|. sfx "ig") & try (dsfx "e") & opt (uml))
nouns adjectives

-- 2.2 ADJECTIVE TO ADJECTIVE

-- rund -> rundlich, wahr -> wahrlich
AA01 = dPattern "AA01"

(sfx "lich") adjectives adjectives

-- sagbar -> unsagbar, ehrenhaft -> unehrenhaft
AA02 = dPattern "AA02"

(pfx "un") adjectives adjectives

-- autoritär -> antiautoritär
AA03 = dPattern "AA03"

(pfx "anti") adjectives adjectives

-- harmonisch -> disharmonisch
AA04 = dPattern "AA04"

(pfx "dis") adjectives adjectives

-- natürlich -> widernatürlich
AA05 = dPattern "AA05"

(pfx "wider") adjectives adjectives

-- zentral -> dezentral, armiert -> desarmiert
AA06 = dPattern "AA06"

(pfx "de" & try (apfx [("a","sa"), ("e","se"), ("i","si"), ("o","so"),
("u","su")])) adjectives adjectives

196

B Implemented DErivBase Rules, v1.4.1

-- normal -> abnormal, hold -> abhold
AA07 = dPattern "AA07"

(pfx "ab") adjectives adjectives

-- verständlich -> missverständlich, gelaunt -> missgelaunt
AA08 = dPattern "AA08"

(pfx "miss") adjectives adjectives

-- katholisch -> erzkatholisch
AA09 = dPattern "AA09"

(pfx "erz") adjectives adjectives

-- anständig -> grundanständig
AA10 = dPattern "AA10"

(pfx "grund") adjectives adjectives

-- betrieblich -> zwischenbetrieblich
AA11 = dPattern "AA11"

(pfx "zwischen") adjectives adjectives

-- betrieblich -> innerbetrieblich
AA12 = dPattern "AA12"

(pfx "inner") adjectives adjectives

-- geboren -> nachgeboren, industriell -> nachindustriell
AA13 = dPattern "AA13"

(pfx "nach") adjectives adjectives

-- faul -> oberfaul
AA14 = dPattern "AA14"

(pfx "ober") adjectives adjectives

-- natürlich -> übernatürlich
AA15 = dPattern "AA15"

(pfx "über") adjectives adjectives

-- bewusst -> unterbewusst
AA16 = dPattern "AA16"

(pfx "unter") adjectives adjectives

-- bestraft -> vorbestraft, gesehen -> vorgesehen
AA17 = dPattern "AA17"

(pfx "vor") adjectives adjectives

-- betrieblich -> außerbetrieblich, irdisch -> außerirdisch
AA18 = dPattern "AA18"

(pfx "außer") adjectives adjectives

-- komisch -> urkomisch, eigen -> ureigen
AA19 = dPattern "AA19"

(pfx "ur") adjectives adjectives

-- deutsch -> binnendeutsch
AA20 = dPattern "AA20"

(pfx "binnen") adjectives adjectives

-- sozial -> asozial
AA21 = dPattern "AA21"

(pfx "a") adjectives adjectives

-- polar -> biploar
AA22 = dPattern "AA22"

(pfx "bi") adjectives adjectives

-- feudal -> feudalistisch, zentral -> zentralistisch, klassisch -> klassizistisch,
-- dogmatisch -> dogmatistisch
AA23 = dPattern "AA23"

(sfx "istisch" & try (dsfx "isch" .|. rsfx "isch" "iz")) adjectives adjectives

-- 2.3 VERB TO ADJECTIVE

-- sagen -> sagbar, schließen -> schließbar, wandeln -> wandelbar, filtern -> filterbar
VA01 = dPattern "VA01"

(sfx "bar") verbs adjectives

-- sinken -> sinkend
VA02 = dPattern "VA02"

(sfx "end") verbs adjectives

-- auffallen -> auffällig, knacken -> knackig
VA03 = dPattern "VA03"

(sfx "ig" & opt uml) verbs adjectives

-- akzeptieren -> akzeptabel, praktizieren -> praktikabel

197

B Implemented DErivBase Rules, v1.4.1

VA04 = dPattern "VA04"
(rsfx "ier" "abel" & try (rsfx "izier" "ikier")) [verbEn] adjectives

-- amüsieren -> amüsant, imponieren -> imposant
VA05 = dPattern "VA05"

(rsfx "ier" "ant" & try (rsfx "ponier" "posier")) [verbEn] adjectives

-- demonstrieren -> demonstrativ, informieren -> informativ, evozieren -> evokativ
VA06 = dPattern "VA06"

(rsfx "ier" "ativ" & try (rsfx "zier" "kier")) [verbEn] adjectives

-- existieren -> existent, kongruieren -> kongruent
VA07 = dPattern "VA07"

(rsfx "ier" "ent") [verbEn] adjectives

-- explodieren -> explosibel, konvertieren -> konvertibel, dividieren -> divisibel,
-- komprimieren -> kompressibel, flektieren -> flexibel
VA08 = dPattern "VA08"

(rsfx "ier" "ibel" & try (rsfx "dier" "sier" .||. rsfx "primier" "pressier"
.||. rsfx "vidier" "visier" .||. rsfx "ktier" "xier")) [verbEn] adjectives

-- prohibieren -> prohibitiv
VA09 = dPattern "VA09"

(rsfx "ier" "itiv" & try (rsfx "ponier" "posier")) [verbEn] adjectives

-- adaptieren -> adaptiv, deprimieren -> depressiv, explodieren -> explosiv,
-- produzieren -> produktiv, extrahieren -> extraktiv, deskribieren -> deskriptiv,
-- rezipieren -> rezeptiv, defendieren -> defensiv, destruieren -> destruktiv,
-- agieren -> aktiv, dirigieren -> direktiv, adhärieren -> adhäsiv,
-- subsumieren -> subsumptiv, suggerieren -> suggestiv
VA10 = dPattern "VA10"

(rsfx "ier" "iv" & try (asfx [("primier","pressier"), ("plodier","plosier"),
("duzier","duktier"), ("trahier","traktier"), ("ibier","iptier"),
("ipier","eptier"), ("dier","sier"), ("uier","uktier"), ("gier","ktier"),
("igier","ektier"), ("rier","sier"), ("umier","umptier"), ("erier","estier")]))
[verbEn] adjectives

-- beachten -> beachtlich, verantworten -> verantwortlich
VA11 = dPattern "VA11"

(sfx "lich") verbs adjectives

-- verherrlichen -> verherrlichend, belagern -> belagernd
VA12 = dPattern "VA12"

(sfx "nd" & opt (sfx "e")) verbs adjectives

-- erfrischen -> erfrischt, belagern -> belagert,
-- verkleiden -> verkleidet, verästen -> verästet
VA13 = dPattern "VA13"

(sfx "t" & try (rsfx "d" "de" .||. rsfx "t" "te")) verbs adjectives

-- unterhalten -> unterhaltsam, lehren -> lehrsam, folgen -> folgsam
VA14 = dPattern "VA14"

(sfx "sam") verbs adjectives

-- glauben -> glaubhaft, lachen -> lachhaft, schmeicheln -> schmeichelhaft
VA15 = dPattern "VA15"

(sfx "haft") verbs adjectives

-- kleben -> klebrig, glitschen -> glitsch(e)rig, schlafen -> schläfrig
VA16 = dPattern "VA16"

(sfx "rig" & opt (sfx "e") & opt (uml)) verbs adjectives

-- 3. VERB DERIVATION

-- 3.1 NOUN TO VERB

-- Anspruch -> beanspruchen, Auftrag -> beauftragen, Nebel -> benebeln
NV01 = dPatternSS "NV01"

(pfx "be") nouns verbs

-- Dolch -> erdolchen, Hitze -> erhitzen, Schauder -> erschaudern, Mangel -> ermangeln
NV02 = dPatternSS "NV02"

(pfx "er" & try (dsfx "e")) nouns verbs

-- Gleis -> entgleisen, Kraft -> entkräften, Erbe -> enterben
NV03 = dPatternSS "NV03"

(pfx "ent" & opt uml & try (dsfx "e")) nouns verbs

-- Arm -> umarmen, Ring -> umringen, Mantel -> ummanteln
NV04 = dPatternSS "NV04"

198

B Implemented DErivBase Rules, v1.4.1

(pfx "um") nouns verbs

-- -en verbs: Abschied -> verabschieden, Klage -> verklagen
NV05 = dPatternSS "NV05"

(pfx "ver" & try (dsfx "e")) nouns [verbEn]

-- -ern verbs: Knochen -> verknöchern, Stein -> versteinern, Donner -> verdonnern,
-- Körper -> verkörpern
NV06 = dPatternSS "NV06"

(pfx "ver" & sfx "er" & opt uml & try (dsfx "er" .||. dsfx "en")) nouns [verbErn]

-- -eln verbs: Ekel -> verekeln, Doppel -> verdoppeln, Spiegel -> verspiegeln
NV07 = dPatternSS "NV07"

(pfx "ver") nouns [verbEln]

-- Friede -> befriedigen, Ende -> beendigen, Kost -> beköstigen,
-- Jubel -> bejubeln, Feuer -> befeuern
NV08 = dPatternSS "NV08"

(pfx "be" & try (rsfx "e" "ig" .||. opt (sfx "ig")) & opt uml) nouns verbs

-- Strand->stranden, Hammer->Hämmern, Haufen->häufen, Computer->computern,
-- Schnorchel->schnorcheln
NV09 = dPatternSS "NV09"

(try (dsfx "en") & opt uml) nouns verbs

-- -en verbs: Befehl -> befehligen, Angst -> ängstigen, Sünde -> sündigen, Huld -> huldigen
NV10 = dPatternSS "NV10"

(sfx "ig" & try (dsfx "e") & opt uml) nouns [verbEn]

-- -en verbs: Struktur -> strukturieren, Funktion -> funktionieren,
-- Harmonie -> harmonieren, Flanke -> flankieren, Interesse -> interessieren,
-- Analyse -> analysieren, Fokus -> fokussieren
NV11 = dPatternSS "NV11"

(sfx "ier" & try (rsfx "sss" "ss") & opt (rsfx "s" "ss") & try (dsfx "ie"
.||. dsfx "e")) nouns [verbEn]

-- -en verbs: Alkohol -> alkoholisieren, Motor -> motorisieren,
-- Euphorie -> euphorisieren, Hygiene -> hygienisieren
NV12 = dPatternSS "NV12"

(sfx "isier" & try (dsfx "ie" .||. dsfx "e")) nouns [verbEn]

-- -ern verbs: Wild -> wildern, Geist -> geistern, Rauch -> räuchern
NV13 = dPatternSS "NV13"

(sfx "er" & try uml) nouns [verbErn]

-- -eln verbs: Kunst -> künsteln, Gift -> gifteln, Stück -> stückeln, Rad -> radeln
NV14 = dPatternSS "NV14"

(sfx "el" & opt uml) nouns [verbEln]

-- Freund -> anfreunden, Pranger -> anprangern, Bändel -> anbändeln
NV15 = dPatternSS "NV15"

(pfx "an" & try (dsfx "e")) nouns verbs

-- Sockel -> aufsockeln, Möbel -> aufmöbeln
NV16 = dPatternSS "NV16"

(pfx "auf") nouns verbs

-- Boot -> ausbooten, Preis -> auspreisen, Tonne -> austonnen, Ufer -> ausufern,
-- Bogen -> ausbogen
NV17 = dPatternSS "NV17"

(pfx "aus" & try (dsfx "e") & try (rsfx "en" "e")) nouns verbs

-- Kluft -> zerklüften, Matsch -> zermatschen,
NV18 = dPatternSS "NV18"

(pfx "zer" & opt (dsfx "en") & opt (uml)) nouns verbs

-- Pflicht -> beifplichten, Steuer -> beisteuern, Menge -> beimengen, Wohnen -> beiwohnen
NV19 = dPatternSS "NV19"

(pfx "bei" & try (dsfx "e" .||. dsfx "en")) nouns verbs

-- Igel -> einigeln, Dose -> eindosen, Delle -> eindellen, Bürger -> einbürgern
NV20 = dPatternSS "NV20"

(pfx "ein" & try (dsfx "e")) nouns verbs

-- Tunnel -> untertunneln, Keller -> unterkellern
NV21 = dPatternSS "NV21"

(pfx "unter") nouns verbs

-- Nabel -> abnabeln, Kupfer -> abkupfern, Zweig -> abzweigen
NV22 = dPatternSS "NV22"

(pfx "ab" & try (dsfx "e")) nouns verbs

-- Brücke -> überbrücken, Winter -> überwintern, Kruste -> überkrusten
NV23 = dPatternSS "NV23"

(pfx "über" & try (dsfx "e")) nouns verbs

199

B Implemented DErivBase Rules, v1.4.1

-- Eile -> durcheilen, Seuche -> durchseuchen, Winter -> durchwintern
NV24 = dPatternSS "NV24"

(pfx "durch" & try (dsfx "e")) nouns verbs

-- 3.2 ADJECTIVE TO VERB

-- -en verbs: anonym -> anonymisieren, banal -> banalisieren, elektrisch -> elektrisieren
AV01 = dPatternSS "AV01"

(sfx "isier" & try (rsfx "isch" "")) adjectives [verbEn]

-- -en verbs: aktiv -> aktivieren, kokett -> kokettieren
AV02 = dPatternSS "AV02"

(sfx "ier") adjectives [verbEn]

-- -eln verbs: fremd -> fremdeln, krank -> kränkeln
AV03 = dPatternSS "AV03"

(sfx "el" & opt uml) adjectives [verbEln]

-- dicht -> dichten, sicher -> sichern, krumm -> krümmen, dunkel -> dunkeln
AV04 = dPatternSS "AV04"

(opt uml) adjectives verbs

-- -en verbs: frei -> befreien, schuldig -> beschuldigen, taub -> betäuben,
-- -ern verbs: teuer -> beteuern
AV05 = dPatternSS "AV05"

(pfx "be" & opt uml) adjectives [verbEn,verbErn]

-- deutlich -> verdeutlichen, einsam -> vereinsamen, breit -> verbreitern, edel -> veredeln
AV06 = dPatternSS "AV06"

(pfx "ver" & opt (sfx "er")) adjectives verbs

-- möglich -> ermöglichen, heiter -> erheitern
AV07 = dPatternSS "AV07"

(pfx "er") adjectives [verbEn,verbErn]

-- bieder -> anbiedern, rauh -> anrauhen, reich -> anreichern
AV08 = dPatternSS "AV08"

(pfx "an" & opt (sfx "er")) adjectives [verbEn,verbErn]

-- heiter -> aufheitern, klar -> aufklaren
AV09 = dPatternSS "AV09"

(pfx "auf") adjectives [verbEn,verbErn]

-- dünn -> ausdünnen, nüchtern -> ausnüchtern
AV10 = dPatternSS "AV10"

(pfx "aus" & try (rsfx "ern" "er")) adjectives [verbEn,verbErn]

-- mürbe -> zermürben, klein -> zerkleinern
AV11 = dPatternSS "AV11"

(pfx "zer" & opt (sfx "er") & try (dsfx "e")) adjectives verbs

-- eng -> einengen, schüchtern -> einschüchtern, schwarz -> einschwärzen
AV12 = dPatternSS "AV12"

(pfx "ein" & try (rsfx "ern" "er") & try (uml)) adjectives verbs

-- flach -> abflachen, dunkel -> abdunkeln, mager -> abmagern
AV13 = dPatternSS "AV13"

(pfx "ab" & try (rsfx "ern" "er")) adjectives verbs

-- müde -> übermüden, teuer -> überteuern
AV14 = dPatternSS "AV14"

(pfx "über" & try (rsfx "ern" "er" .||. dsfx "e")) adjectives verbs

-- düster -> umdüstern
AV15 = dPatternSS "AV15"

(pfx "um") adjectives verbs

-- quer -> durchqueren
AV16 = dPatternSS "AV16"

(pfx "durch") adjectives verbs

-- dunkel -> nachdunkeln, braun -> nachbräunen
AV17 = dPatternSS "AV17"

(pfx "nach" & opt (uml)) adjectives verbs

-- 3.3 VERB TO VERB

-- husten -> hüsteln, drängen -> drängeln, zucken -> zuckeln
VV01 = dPatternSS "VV01"

(sfx "el" & opt uml) [verbEn] [verbEln]

-- dienen -> bedienen, heizen -> beheizen, finden -> befinden, schämen -> beschämen,
-- suchen -> besuchen, krabbeln -> bekrabbeln, hindern -> behindern

200

B Implemented DErivBase Rules, v1.4.1

VV02 = align $ dPatternSS "VV02"
(pfx "be") verbs verbs

-- forschen -> erforschen, morden -> ermorden, eilen -> ereilen,
-- fordern -> erfordern, betteln -> erbetteln
VV03 = align $ dPatternSS "VV03"

(pfx "er") verbs verbs

-- -en verbs: denken -> gedenken, leiten -> geleiten, hören -> gehören
VV04 = align $ dPatternSS "VV04"

(pfx "ge") verbs [verbEn]

-- ändern -> verändern, kalkulieren -> verkalkulieren, reisen -> verreisen,
-- brühen -> verbrühen
VV05 = align $ dPatternSS "VV05"

(pfx "ver") verbs verbs

-- leiten -> fehlleiten, schlagen -> fehlschlagen, handeln -> fehlhandeln
VV06 = align $ dPatternSS "VV06"

(pfx "fehl") verbs verbs

-- legen -> widerlegen, fahren -> widerfahren
VV07 = align $ dPatternSS "VV07"

(pfx "wider") [verbEn] [verbEn]

-- achten -> missachten, handeln -> misshandeln, verstehen -> missverstehen
VV08 = align $ dPatternSS "VV08"

(pfx "miss") verbs verbs

-- qualifizieren -> disqualifizieren, fundieren -> diffundieren
VV09 = align $ dPatternSS "VV09"

(try (rpfx "disf" "diff") & pfx "dis") [verbEn] [verbEn]

-- hydrieren -> dehydrieren, organisieren -> desorganisieren, aktivieren -> deaktivieren
VV10 = align $ dPatternSS "VV10"

(pfx "de" & try (apfx [("e","se"), ("i","si"), ("o","so"), ("u","su")])) [verbEn] [verbEn]

-- tränken -> trinken
VV11 = align $ dPatternSS "VV11"

(rifx "ä" "i") verbs [verbEn]

-- legen -> liegen, senken -> sinken, setzen -> sitzen
VV12 = align $ dPatternSS "VV12"

(opt (rifx "ie" "i") & rifx "e" "ie") verbs [verbEn]

-- backen -> anbacken, häkeln -> anhäkeln, dauern -> andauern
VV13 = align $ dPatternSS "VV13"

(pfx "an") verbs verbs

-- blasen -> aufblasen, bohren -> aufbohren, schütteln -> aufschütteln
VV14 = align $ dPatternSS "VV14"

(pfx "auf") verbs verbs

-- beißen -> zerbeißen, bröckeln -> zerbröckeln, schmettern -> zerschmettern
VV15 = align $ dPatternSS "VV15"

(pfx "zer") verbs verbs

-- fragen -> hinterfragen, gehen -> hintergehen, mauern -> hintermauern
VV16 = align $ dPatternSS "VV16"

(pfx "hinter") verbs verbs

-- lagern -> zwischenlagern, landen -> zwischenlanden
VV17 = align $ dPatternSS "VV17"

(pfx "zwischen") verbs verbs

-- biegen -> zurechtbiegen, basteln -> zurechtbasteln
VV18 = align $ dPatternSS "VV18"

(pfx "zurecht") verbs verbs

-- binden -> zubinden, laufen -> zulaufen, ballern -> zuballern
VV19 = align $ dPatternSS "VV19"

(pfx "zu") verbs verbs

-- erstatten -> rückerstatten, koppeln -> rückkoppeln, erobern -> rückerobern
VV20 = align $ dPatternSS "VV20"

(pfx "rück") verbs verbs

-- bringen -> beibringen, füttern -> beifüttern
VV21 = align $ dPatternSS "VV21"

(pfx "bei") verbs verbs

201

B Implemented DErivBase Rules, v1.4.1

-- fallen -> einfallen, schlafen -> einschlafen, buddeln -> einbuddeln
VV22 = align $ dPatternSS "VV22"

(pfx "ein") verbs verbs

-- bringen -> darbringen, reichen -> darreichen
VV23 = align $ dPatternSS "VV23"

(pfx "dar") verbs [verbEn]

-- koppeln -> loskoppeln, lösen -> loslösen, fahren -> losfahren
VV24 = align $ dPatternSS "VV24"

(pfx "los") verbs verbs

-- buttern -> unterbuttern, bringen -> unterbringen, laufen -> unterlaufen
VV25 = align $ dPatternSS "VV25"

(pfx "unter") verbs verbs

-- fahren -> abfahren, bestellen -> abbestellen
VV26 = align $ dPatternSS "VV26"

(pfx "ab") verbs verbs

-- behandeln -> vorbehandeln, werfen -> vorwerfen
VV27 = align $ dPatternSS "VV27"

(pfx "vor") verbs verbs

-- halten -> innehalten, haben -> innehaben
VV28 = align $ dPatternSS "VV28"

(pfx "inne") verbs [verbEn]

-- altern -> überaltern, streifen -> überstreifen, setzen -> übersetzen,
-- blicken -> überblicken
VV29 = align $ dPatternSS "VV29"

(pfx "über") verbs verbs

-- fahren -> umfahren, krempeln -> umkrempeln
VV30 = align $ dPatternSS "VV30"

(pfx "um") verbs verbs

-- atmen -> durchatmen, ackern -> durchackern, bohren -> durchbohren
VV31 = align $ dPatternSS "VV31"

(pfx "durch") verbs verbs

-- bitten -> fürbitten, sprechen -> fürsprechen
VV32 = align $ dPatternSS "VV32"

(pfx "für") verbs verbs

-- ahmen -> nachahmen, bereiten -> nachbereiten
VV33 = align $ dPatternSS "VV33"

(pfx "nach") verbs verbs

-- gewinnen -> wiedergewinnen, erlangen -> wiedererlangen
VV34 = align $ dPatternSS "VV34"

(pfx "wieder") verbs verbs

202

C Annotation Guidelines

C Annotation Guidelines

This appendix presents the guidelines used for annotating the five-fold classification of
lemma pairs, S, M, N, C, L (cf. Section 4.3.3). The text is slightly modified for reasons
of layout, diction, and consistency with the thesis.

Annotation guidelines

� We annotate pairs of lemmas regarding their semantic and morphological related-
ness. The goal is to assess if pairs of lemmas which are put into the same cluster
indeed belong there. Examples:
1. Tanz - tanzen
2. Tanz - Distanz
3. tanzen - tanzel

� There are 5 annotation categories, each with a single-letter abbreviation:

– S: The lemmas are Semantically and morphologically related (ex. 1. above)

– M: The lemmas are Morphologically related, but there is no close semantic
relation (e.g., suchen/besuchen)

– N: The lemmas are Neither morphologically nor semantically related (ex. 2.
above)

– L: At least one word is not a valid German Lemma (ex. 3. above):

* Inflected words: günstigste (comparatives, superlatives, etc.)

* Incorrectly stemmed words: Anführungsstrichelch, Wehrlosen N

* POS-tagging errors, including:

· Foreign words tagged as NNs: Kung, Tent

· Incorrect noun gender: Box Nm

* Note: Unspecified noun gender (Box N) would be accepted

– C: The two lemmas share at least one morpheme, but the “paths” between
the lemmas involve Composition. Examples:

* Kratzer – Wolkenkratzer (via Kratzer)

* Wolkenkratzer – Schuhkratzer (via Kratzer)

* Wolkenkratzer – Wolkenkuckucksheim (via Wolke)

* Wolkenkratzer – abkratzen (via kratzen)

NB. We do not use C for proper names or for cases which do not share one
morpheme (Gegenrichtung – Titelträger → N)
In case of doubt, distinguish with the following guidelines:

203

C Annotation Guidelines

* The morphemes are complete words with proper semantics: C

* The morphemes have no concrete semantics (be-, -lich): not C

* The morpheme is also used for clear derivation cases: not C. Example:
Fall → Beifall

* The morpheme is a rather a prepositional composition: C. Example:
gehen → vorbeigehen

� There are two additional annotation symbols:

? Uncertainty about the decision, e.g.,
M? Vormundschaft Nf bevormunden V

+ At least one of the lemmas is polysemous, e.g.,
S + Bank Nf Banker Nm

� Decisions in cases of doubt:

– References:
If morphological relatedness is unclear: Lookup in canoo.net’s Wortbil-
dung (http://canoo.net/ → introduce word → click “Wortbildung”)
If word existence is unclear (i.e. for NEs): Lookup in Wortschatz Leipzig
(http://wortschatz.uni-leipzig.de/)
However: Linguistic intuition always trumps the use of these resources (e.g.,
in the case of misspellings listed in Wortschatz Leipzig)!

– For ambiguous lemmas: Accept, if there is a relation in at least one sense

– Treatment of named entities (incl. proper nouns): Accept if actually related
(Ungarn – ungarisch); reject if unrelated (Ungarn – garen); pairs of two (mostly
unrelated) named entities are rejected

– Accept present/past participles and conversions (erfrischend A, erfrischt A,
Analysieren Nn)

– For compounds: check for relatedness between the stems of the parts (e.g.,
Autoteil – Autoteiler → morphological relatedness)

204

http://canoo.net/
http://wortschatz.uni-leipzig.de/

D Abridged TIE Configuration File for Setting BOW

D Abridged TIE Configuration File for Setting BOW

<?xml version="1.0" encoding="utf-8"?>
<!--
Description: Given a certain configuration, the EDA - MaxEntClassificationEDA -
can be trained over a specific data set in order to optimize its performance
based on Maximum Entropy Modelling. MaxEntClassificationEDA learns a binary
classifier for deciding the entailment problem. The supervised learner receives
a number of features which are provided through the interplay of different
processing components and knowledge sources. This configuration file specifies
these components and knowledge sources together with settings of the learner.

-->
<configuration>

<!-- Platform configuration section -->
<section name="PlatformConfiguration">
<!-- The EDA to be used: MaxEntClassificationEDA -->
<property name="activatedEDA">
eu.excitementproject.eop.core.MaxEntClassificationEDA</property>

<!-- The language: DE for German -->
<property name="language">DE</property>
<!-- The linguistic annotation pipeline to preprocess the data to be

annotated: here, the MaltParser dependency parser for DE is selected. -->
<property name="activatedLAP">
eu.excitementproject.eop.lap.dkpro.MaltParserDE</property>

</section>

<!-- Base processing component for computing a bag of words representation -->
<section name="BagOfWordsScoring">
</section>

<!-- Base processing component for computing a bag of lemmas representation -->
<section name="BagOfLemmasScoring">
</section>

<!-- MaxEntClassificationEDA uses maximum entropy modelling for a learning
entailment classifier. -->

<section name="eu.excitementproject.eop.core.MaxEntClassificationEDA">
<!-- The name of the model -->
<property name="modelFile">

./src/main/resources/model/MaxEntClassificationEDAModel_Base_DE</property>
<!-- Location for storing temporary files for training -->
<property name="trainDir">./target/DE_deriv/dev/</property>
<!-- Location for storing temporary files for testing -->
<property name="testDir">./target/DE_deriv/test/</property>
<!-- Two parameters of the MaxEnt classifier, "max iterations" and "cut off".

left number ::= iterations - The number of GIS iterations to perform.
right number ::= cutoff - The number of times a feature must be
seen in order to be relevant for training. -->

<property name="classifier">10000,1</property>

<!-- List of processing components specified above. The order is relevant. -->
<property name="Components">BagOfWordsScoring,BagOfLemmasScoring</property>

</section>
</configuration>

205

Bibliography

George W. Adamson and Jillian Boreham. The Use of an Association Measure Based on
Character Structure to Identify Semantically Related Pairs of Words and Document
Titles. Information Processing and Management, 10(7/8):253–260, 1974.

Eneko Agirre and Philip Edmonds, editors. Word Sense Disambiguation: Algorithms
and Applications, volume 33 of Text, Speech and Language Technology. Springer, 2006.

James Allan and Giridhar Kumaran. Stemming in the language modeling framework. In
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 455–456, Toronto, Canada, 2003. ACM.

Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. A Comparison of
Extrinsic Clustering Evaluation Metrics Based on Formal Constraints. Information
Retrieval, 12(4):461–486, 2009.

Mark Andrews, Gabriella Vigliocco, and David Vinson. Integrating Experiential and
Distributional Data to Learn Semantic Representations. Psychological Review, 116(3):
463–498, 2009.

Ion Androutsopoulos and Prodromos Malakasiotis. A Survey of Paraphrasing and Textual
Entailment Methods. Journal of Artificial Intelligence Research, 38(1):135–187, 2010.

Mark Aronoff. Word Formation in Generative Grammar. Number 1 in Linguistic Inquiry
Monographs. MIT Press, Cambridge, MA, USA, 1976.

Gerhard Augst. Lexikon zur Wortbildung. Forschungsberichte des Instituts für Deutsche
Sprache. Narr, Tübingen, Germany, 1975.

Necip Fazil Ayan, Bonnie Dorr, and Nizar Habash. Multi-align: Combining linguistic
and statistical techniques to improve alignments for adaptable MT. In Proceedings of
the 6th Conference of the Association for Machine Translation in the Americas, pages
17–26, Washington, DC, USA, 2004. Springer.

R. Harald Baayen, Richard Piepenbrock, and Leon Gulikers. The CELEX Lexical
Database. Release 2. LDC96L14. Linguistic Data Consortium, University of Pennsyl-
vania, Philadelphia, Pennsylvania, 1996.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet project.
In Proceedings of the Joint Annual Meeting of the Association for Computational
Linguistics and International Conference on Computational Linguistics, pages 86–90,
Montreal, Canada, 1998. Association for Computational Linguistics.

206

Bibliography

Marion Baranes and Benôıt Sagot. A language-independent approach to extracting deriva-
tional relations from an inflectional lexicon. In Nicoletta Calzolari, Khalid Choukri,
Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno,
Jan Odijk, and Stelios Piperidis, editors, Proceedings of the 9th International Con-
ference on Language Resources and Evaluation, pages 2793–2799, Reykjavik, Iceland,
2014. European Language Resources Association (ELRA).

Marco Baroni and Silvia Bernardini. A New Approach to the Study of Translationese:
Machine-learning the Difference between Original and Translated Text. Literary and
Linguistic Computing, 21(3):259–274, 2006.

Marco Baroni and Alessandro Lenci. Distributional Memory: A General Framework for
Corpus-based Semantics. Computational Linguistics, 36(4):673–721, 2010.

Marco Baroni, Johannes Matiasek, and Harald Trost. Unsupervised discovery of morpho-
logically related words based on orthographic and semantic similarity. In Proceedings
of the ACL Workshop on Morphological and Phonological Learning, pages 48–57.
Association for Computational Linguistics, 2002.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. The WaCky
Wide Web: A Collection of Very Large Linguistically Processed Web-crawled Corpora.
Language Resources and Evaluation, 43(3):209–226, 2009.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! A
systematic comparison of context-counting vs. context-predicting semantic vectors.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, pages 238–247, Baltimore, MD, USA, 2014. Association for Computational
Linguistics.

Lawrence W. Barsalou. Ad hoc Categories. Memory and Cognition, 11(3):211–227, 1983.

Edwin L. Battistella. The Logic of Markedness. Oxford University Press, New York, NY,
USA, 1996.

Kenneth R. Beesley and Lauri Karttunen. Finite State Morphology, volume 18. CSLI
Publications, Stanford, CA, USA, 2003.

Jonathan Berant, Ido Dagan, and Jacob Goldberger. Learning Entailment Relations by
Global Graph Structure Optimization. Computational Linguistics, 38(1):73–111, 2012.

Adam Berger, Rich Caruana, David Cohn, Dayne Freitag, and Vibhu Mittal. Bridging
the lexical chasm: statistical approaches to answer-finding. In Proceedings of the
23rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 192–199, Athens, Greece, 2000. ACM.

Shane Bergsma, Dekang Lin, and Randy Goebel. Discriminative learning of selectional
preference from unlabeled text. In Proceedings of the 13th Conference on Empiri-
cal Methods in Natural Language Processing, pages 59–68, Honolulu, Hawaii, 2008.
Association for Computational Linguistics.

207

Bibliography

Balthazar Bickel and Johanna Nichols. Inflectional Morphology. In Timothy Shopen,
editor, Language Typology and Syntactic Description, Volume III: Grammatical Cate-
gories and the Lexicon, pages 169–240. Cambridge University Press, Cambridge, UK,
2001.

Orhan Bilgin, Ozlem Çetinoğlu, and Kemal Oflazer. Morphosemantic relations in and
across Wordnets. In Proceedings of the 2nd Global WordNet Conference, pages 60–66,
Brno, Czech Republic, 2004. Masaryk University, Brno.

J. Kathryn Bock. Syntactic Persistence in Language Production. Cognitive Psychology,
18(3):355–387, 1986.

Bernd Bohnet. Top accuracy and fast dependency parsing is not a contradiction. In
Proceedings of the 23rd International Conference on Computational Linguistics, pages
89–97, Beijing, China, 2010. Coling 2010 Organizing Committee.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Richárd Farkas, Filip Ginter, and Jan
Hajič. Joint Morphological and Syntactic Analysis for Richly Inflected Languages.
Transactions of the Association for Computational Linguistics, 1:415–428, 2013.

Gemma Boleda, Sabine Schulte im Walde, and Toni Badia. Modeling Regular Polysemy: A
Study on the Semantic Classification of Catalan Adjectives. Computational Linguistics,
38(3):575–616, 2012.

Carlo E. Bonferroni. Teoria Statistica delle Classi e Calcolo delle Probabilità. Pubblicazioni
del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3–62, 1936.

Geert E. Booij. Inflection and Derivation. In Geert E. Booij, Christian Lehmann, and
Joachim Mugdan, editors, Morphologie: Ein Internationales Handbuch zur Flexion und
Wortbildung, volume 1 of Handbücher zur Sprach- und Kommunikationswissenschaft,
pages 360–369. Mouton de Gruyer, 2000.

Geert E. Booij. The Grammar of Words: An Introduction to Linguistic Morphology.
Oxford Textbooks in Linguistics. Oxford University Press, New York, NY, USA, 2005.

Sonja Bosch, Christiane Fellbaum, and Karel Pala. Enhancing WordNets with morpho-
logical relations: A case study from Czech, English and Zulu. In Proceedings of the 4th
Global WordNet Conference, pages 74–90, Szeged, Hungary, 2008. University of Szeged.

Jan A. Botha and Phil Blunsom. Compositional morphology for word representations and
language modelling. In Proceedings of the 31st International Conference on Machine
Learning, Beijing, China, 2014. ACM.

Sami Boudelaa and William D. Marslen-Wilson. Abstract Morphemes and Lexical
Representation: The CV-Skeleton in Arabic. Cognition, 92(3):271–303, 2004.

208

Bibliography

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen, Esther König, Wolfgang
Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit. TIGER: Linguistic
Interpretation of a German Corpus. Research on Language and Computation, 2(4):
597–620, 2004.

Samuel Broscheit, Massimo Poesio, Simone P. Ponzetto, Kepa J. Rodriguez, Lorenza
Romano, Olga Uryupina, Yannick Versley, and Roberto Zanoli. BART: A multilingual
anaphora resolution system. In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 104–107, Uppsala, Sweden, 2010. Association for Compu-
tational Linguistics.

Peter F. Brown, Vincent J. Della Pietra, Peter V. de Souza, and Robert L. Mercer.
Class-Based n-gram Models of Natural Language. Computational Linguistics, 18(4):
467–479, 1992.

Elia Bruni, Giang Binh Tran, and Marco Baroni. Distributional semantics from text
and images. In Proceedings of the GEMS 2011 Workshop on GEometrical Models of
Natural Language Semantics, pages 22–32, Edinburgh, UK, 2011.

Alexander Budanitsky and Graeme Hirst. Evaluating WordNet-based Measures of Lexical
Semantic Relatedness. Computational Linguistics, 32(1):13–47, 2006.

John A. Bullinaria and Joseph P. Levy. Extracting Semantic Representations from Word
Co-occurrence Statistics: A Computational Study. Behavior Research Methods, 39(3):
510–526, 2007.

John A. Bullinaria and Joseph P. Levy. Extracting Semantic Representations from Word
Co-occurrence Statistics: Stop-lists, Stemming, and SVD. Behavior Research Methods,
44(4):890–907, 2012.

Curt Burgess. From Simple Associations to the Building Blocks of Language: Modeling
Meaning in Memory with the HAL Model. Behavior Research Methods, Instruments,
& Computers, 30(2):188–198, 1998.

Hadumod Bußmann, editor. Lexikon der Sprachwissenschaft. Kröner, Stuttgart, Germany,
3rd edition, 2002.

Brian Butterworth. Lexical Representation. In Language Production, pages 257–294.
Academic Press, London, UK, 1983.

Joan L. Bybee. Morphology: A Study of the Relation Between Meaning and Form. John
Benjamins Publishing Company, Amsterdam, Netherlands, 1985.

Joan L. Bybee. Morphology as Lexical Organization. In Michael Hammond and Michael
Noonan, editors, Theoretical Morphology, pages 119–141. Academic Press, San Diego,
1988.

209

Bibliography

Jean C. Carletta. Assessing Agreement on Classification Tasks: the Kappa Statistic.
Computational Linguistics, 22(2):249–254, 1996.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines.
ACM Transactions on Intelligent Systems Technology, 2(3):27:1–27:27, 2011.

Stanley F. Chen and Joshua Goodman. An Empirical Study of Smoothing Techniques
for Language Modeling. Computer Speech and Language, 13(4):359–394, 1999.

Harald Clahsen, Ingrid Sonnenstuhl, and James P. Blevins. Derivational Morphology
in the German Mental Lexicon: A Dual Mechanism Account. In R. Harald Baayen
and Robert Schreuder, editors, Morphological Structure in Language Processing, pages
125–155. Mouton de Gruyter, Berlin, Germany, 2003.

Peter Clark, Christiane Fellbaum, Jerry R. Hobbs, Phil Harrison, William R. Murray, and
John Thompson. Augmenting WordNet for deep understanding of text. In Semantics
in Text Processing. STEP 2008 Conference Proceedings, Research in Computational
Semantics, pages 45–57, Venice, Italy, 2008. College Publications.

Jacob Cohen. A Coefficient of Agreement for Nominal Scales. Educational and Psycho-
logical Measurement, 20(1):37–46, 1960.

Allan M. Collins and Elizabeth F. Loftus. A Spreading-activation Theory of Semantic
Processing. Psychological Review, 82(6):407–428, 1975.

George S. Cree, Ken McRae, and Chris McNorgan. An Attractor Model of Lexical
Conceptual Processing: Simulating Semantic Priming. Cognitive Science, 23(3):371–
414, 1999.

Mathias Creutz and Krista Lagus. Unsupervised Models for Morpheme Segmentation
and Morphology Learning. Transactions on Speech and Language Processing, 4(1):
3:1–3:34, 2007.

Ido Dagan, Lillian Lee, and Fernando C. N. Pereira. Similarity-Based Models of Word
Cooccurrence Probabilities. Machine Learning, 34(1–3):43–69, 1999.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL Recognising Textual
Entailment challenge. In Proceedings of the 1st PASCAL Challenges Workshop on
Recognising Textual Entailment, pages 177–190, Southampton, UK, 2005.

Ido Dagan, Bill Dolan, Bernardo Magnini, and Dan Roth. Recognizing Textual Entailment:
Rational, Evaluation and Approaches. Journal of Natural Language Engineering, 15
(4):i–xvii, 2009.

Béatrice Daille, Cécile Fabre, and Pascale Sébillot. Applications of Computational
Morphology. In Paul Boucher, editor, Many Morphologies, pages 210–234. Cascadilla
Press, Somerville, MA, USA, 2002.

210

Bibliography

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. Indexing by Latent Semantic Analysis. Journal of the American
Society for Information Science, 41(6):391–407, 1990.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society: Series
B, 39(1):1–38, 1977.

Bruce L. Derwing. Morphology and the Mental Lexicon: Psycholinguistic Evidence. In
Wolfgang U. Dressler, Hans C. Luschützky, Oskar E. Pfeiffer, and John R. Rennison,
editors, Contemporary Morphology, number 49 in Trends in Linguistics. Studies and
Monographs, pages 249–265. Mouton de Gruyter, Berlin, Germany; New York, NY,
USA, 1990.

Magdalena Derwojedowa, Maciej Piasecki, Stanislaw Szpakowicz, and Magdalena Za-
wislawska. Polish WordNet on a shoestring. In Proceedings of the Biannual Conference
of the Society for Computational Linguistics and Language Technology, pages 169–178,
Tübingen, Germany, 2007. Universität Tübingen.

Lee Raymond Dice. Measures of the Amount of Ecologic Association Between Species.
Ecology, 26(3):297–302, 1945.

Georgiana Dinu and Rui Wang. Inference rules and their application to recognizing
textual entailment. In Proceedings of the 12th Meeting of the European Chapter of
the Association for Computational Linguistics, pages 211–219, Athens, Greece, 2009.
Association for Computational Linguistics.

Marc Domenig and Pius ten Hacken. Word Manager: A System for Morphological
Dictionaries. Olms, Hildesheim, Germany, 1992.

Elke Donalies. Die Wortbildung des Deutschen: ein Überblick. Studien zur deutschen
Sprache. Narr, Tübingen, Germany, 2005.

Bonnie Dorr, Lisa Pearl, Rebecca Hwa, and Nizar Habash. DUSTer: A method for unrav-
eling cross-language divergences for statistical word-level alignment. In Proceedings of
the 5th Conference of the Association for Machine Translation in the Americas, pages
31–43, Tiburon, CA, USA, 2002. Springer.

Jean Dubois and Françoise Dubois-Charlier, editors. Dictionnaire des Verbes Français.
Larousse, Paris, France, 1997. Electronic version.

Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman
and Hall, New York, NY, USA, 1993.

Kathrin Eichler, Aleksandra Gabryszak, and Günter Neumann. An analysis of textual
inference in German customer emails. In Proceedings of the 3rd Joint Conference on
Lexical and Computational Semantics, pages 69–74, Dublin, Ireland, 2014. Association
for Computational Linguistics and Dublin City University.

211

Bibliography

Katrin Erk. Vector Space Models of Word Meaning and Phrase Meaning: A Survey.
Language and Linguistics Compass, 6(10):635–653, 2012.

Katrin Erk, Sebastian Padó, and Ulrike Padó. A Flexible, Corpus-driven Model of
Regular and Inverse Selectional Preferences. Computational Linguistics, 36(4):723–763,
2010.

Stefan Evert. The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
thesis, University of Stuttgart, 2005.

Gertrud Faaß and Kerstin Eckart. SdeWaC – a corpus of parsable sentences from the web.
In Iryna Gurevych, Chris Biemann, and Torsten Zesch, editors, Language Processing
and Knowledge in the Web, volume 8105 of Lecture Notes in Computer Science, pages
61–68, Darmstadt, Germany, 2013. Springer.

Laurie Beth Feldman. Are Morphological Effects Distinguishable from the Effects of
Shared Meaning and Shared Form? Journal of Experimental Psychology: Learning,
Memory and Cognition, 26(6):1431–1444, 2000.

Christiane Fellbaum, Anne Osherson, and Peter E. Clark. Putting semantics into
WordNet’s “morphosemantic” links. In Proceedings of the 3rd Language and Technology
Conference, pages 350–358, Poznań, Poland, 2009. Springer.

Wolfgang Finkler and Günter Neumann. MORPHIX - a fast realization of a classification-
based approach to morphology. In Harald Trost, editor, Proceedings of the 4th Österrei-
chische Artificial-Intelligence-Tagung, Informatik-Fachberichte, pages 11–19. Springer,
1988.

John R. Firth. A Synopsis of Linguistic Theory 1930-1955. Studies in Linguistic Analysis,
pages 1–32, 1957.

Arne Fitschen. Ein computerlinguistisches Lexikon als komplexes System. PhD thesis,
Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, 2004.

Wolfgang Fleischer and Irmhild Barz. Wortbildung der deutschen Gegenwartssprache.
Max Niemeyer, Tübingen, Germany, 3rd edition, 2007.

Kenneth I. Forster. Accessing the Mental Lexicon. In Roger J. Wales and Edward Walker,
editors, New Approaches to Language Mechanisms, pages 257–287. North-Holland
Publishing Company, New York, NY, USA, 1976.

Kenneth I. Forster, Kathleen Mohan, and Jo Hector. The Mechanics of Masked Priming.
In Sachiko Kinoshita and Stephen J. Lupker, editors, Masked Priming: The State of
the Art, pages 2–21. Psychology Press, Ltd., 2003.

Ram Frost, Kenneth I. Forster, and Avital Deutsch. What Can We Learn from the Mor-
phology of Hebrew? A Masked-priming Investigation of Morphological Representation.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(4):829–856,
1997.

212

Bibliography

Ram Frost, Avital Deutsch, Orna Gilboa, Michal Tannenbaum, and William D. Marslen-
Wilson. Morphological Priming: Dissociation of Phonological, Semantic, and Morpho-
logical Factors. Memory & Cognition, 28(8):1277–1288, 2000.

Alona Fyshe, Brian Murphy, Partha Talukdar, and Tom Mitchell. Documents and
dependencies: an exploration of vector space models for semantic composition. In
Proceedings of the 17th Conference on Natural Language Learning, pages 84–93, Sofia,
Bulgaria, 2013.

Éric Gaussier. Unsupervised learning of derivational morphology from inflectional
lexicons. In Proceedings of the ACL Workshop on Unsupervised Learning in Natural
Language Processing, pages 24–30, College Park, Maryland, USA, 1999. Association
for Computational Linguistics.

Alexander Geyken and Thomas Hanneforth. TAGH: A complete morphology for German
based on weighted finite state automata. In Proceedings of the Conference on Finite
State Methods and Natural Language Processing, 5th International Workshop, volume
4002, pages 55–66, Helsinki, Finland, 2005. Springer.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL
Recognising Textual Entailment challenge. In Proceedings of the ACL-PASCAL Work-
shop on Textual Entailment and Paraphrasing, pages 1–9, Prague, Czech Republic,
2007.

Helmut Glück, editor. Metzler Lexikon Sprache. J. B. Metzler, Stuttgart; Weimar,
Germany, 4th edition, 2010.

John Goldsmith. Unsupervised Learning of the Morphology of a Natural Language.
Computational Linguistics, 27(2):153–198, 2001.

Laura M. Gonnerman and Elaine S. Anderson. Graded Semantic and Phonological
Similarity Effects in Morphologically Complex Words. In Sabrina Bendjaballah, Wolf-
gang U. Dressler, Oskar E. Pfeiffer, and Maria D. Voeikova, editors, Morphology 2000:
Selected Papers from the 9th Morphology Meeting, Amsterdam Studies in the Theory
and History of Linguistic Science, pages 137–148. John Benjamins Publishing Company,
2001.

Julio Gonzalo, Felisa Verdejo, Irina Chugur, and Juan M. Cigarrán. Indexing with
WordNet synsets can improve text retrieval. In Proceedings of the COLING-ACL
Workshop on Usage of WordNet in Natural Language Processing Systems, pages 38–44,
Montréal, Canada, 1998. Association for Computational Linguistics.

Kira Gor. Beyond the Obvious: Do Second Language Learners Process Inflectional
Morphology? Language Learning, 60(1):1–20, 2010.

Peter Gordon and Maria Alegre. Rule-based versus Associative Processes in Derivational
Morphology. Brain and Language, 68(1–2):347–354, 1999.

213

Bibliography

Rebecca Green, Bonnie J. Dorr, and Philip Resnik. Inducing frame semantic verb
classes from WordNet and LDOCE. In Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics, pages 375–382, Barcelona, Spain, 2004.

Joseph Greenberg. Some Universals of Grammar with Particular Reference to the Order
of Meaningful Elements. Universals of Language, 2:73–113, 1963.

Gregory Grefenstette. SEXTANT: Exploring unexplored contexts for semantic extraction
from syntactic analysis. In Henry S. Thompson, editor, Proceedings of the 30th Annual
Meeting of the Association for Computational Linguistics, pages 324–326, Newark, DE,
USA, 1992. Association for Computational Linguistics.

Nizar Habash and Bonnie Dorr. A categorial variation database for English. In Proceedings
of the Joint Human Language Technology Conference and Annual Meeting of the North
American Chapter of the Association for Computational Linguistics, pages 96–102,
Edmonton, Canada, 2003.

Christopher J. Hall. Prefixation, Suffixation and Circumfixation. In Morphology, volume
Part 1 of Handbooks of Linguistics and Communication Science, pages 535–545. De
Gruyter, 2000.

Harald Hammarström and Lars Borin. Unsupervised Learning of Morphology. Computa-
tional Linguistics, 37(2):309–350, 2011.

Birgit Hamp and Helmut Feldweg. GermaNet - a lexical-semantic net for German. In
Proceedings of the ACL Workshop on Automatic Information Extraction and Building
of Lexical Semantic Resources for NLP Applications, pages 9–15. Association for
Computational Linguistics, 1997.

Sanda Harabagiu and Andrew Hickl. Methods for using textual entailment in open-domain
question answering. In Proceedings of the Joint Annual Meeting of the Association for
Computational Linguistics and International Conference on Computational Linguistics,
pages 905–912, Sydney, Australia, 2006. Association for Computational Linguistics.

Sanda Harabagiu, Andrew Hickl, and Finley Lacatusu. Satisfying Information Needs with
Multi-document Summaries. Information Processing & Management, 43(6):1619–1642,
2007.

Mary Hare, Michael Jones, Caroline Thomson, Sarah Kelly, and Ken McRae. Activating
Event Knowledge. Cognition, 111(2):151–167, 2009.

Trevor A. Harley. The Psychology of Language: From Data to Theory. Psychology Press,
Ltd., New York, NY, USA, 2008.

Zellig S. Harris. Distributional Structure. Word, 10(23):146–162, 1954.

Zellig S. Harris. From Phoneme to Morpheme. Language, 31(2):190–222, 1955.

214

Bibliography

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer, New York, NY, USA, 2nd edition,
2009.

Nabil Hathout. Morphonette: A Paradigm-based Morphological Network. Lingue e
linguaggio, 10(2):245–264, 2011.

Nabil Hathout and Fiammetta Namer. Démonette, a French Derivational Morpho-
semantic Network. Linguistic Issues in Language Technology, 11(5):125–168, 2014.

Vasileios Hatzivassiloglou and Kathleen R. McKeown. Towards the automatic identifica-
tion of adjectival scales: Clustering adjectives according to meaning. In Proceedings
of the 31st Annual Meeting of the Association for Computational Linguistics, pages
172–182, Columbus, OH, USA, 1993. Association for Computational Linguistics.

Jennifer B. Hay and R. Harald Baayen. Shifting Paradigms: Gradient Structure in
Morphology. Trends in Cognitive Sciences, 9(7):342–348, 2005.

Marti A. Hearst. Automated discovery of WordNet relations. In Christiane Fellbaum,
editor, WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA, USA;
London, UK, 1998.

Wolfgang Hoeppner. Derivative Wortbildung der deutschen Gegenwartssprache und ihre
algorithmische Analyse. Narr, Tübingen, Germany, 1980.

Christina Hoppermann and Erhard Hinrichs. Modeling prefix and particle verbs in
GermaNet. In Proceedings of the 7th Global WordNet Conference, pages 49–54, Tartu,
Estonia, 2014.

Ray Jackendoff. Morphological and Semantic Regularities in the Lexicon. Language, 51
(3):639–671, 1975.

Ray Jackendoff. Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford
University Press, 2002.

Bernard Jacquemin. A derivational rephrasing experiment for question answering. In
Proceedings of the 7th International Conference on Language Resources and Evaluation,
pages 2380–2387, Valletta, Malta, 2010. European Language Resources Association
(ELRA).

Christian Jacquemin. Guessing morphology from terms and corpora. In Proceedings of
the 20th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 156–165, Philadelphia, PA, USA, 1997. ACM.

Michael N. Jones, Walter Kintsch, and Douglas J. K. Mewhort. High-dimensional Semantic
Space Accounts of Priming. Journal of Memory and Language, 55(4):534–552, 2006.

Lauri Karttunen and Kenneth R. Beesley. Two-level Rule Compiler. Xerox Corporation.
Palo Alto Research Center, 1992.

215

Bibliography

Lauri Karttunen and Kenneth R. Beesley. A short history of two-level morphology.
Presented at the ESSLLI Special Event “Twenty Years of Finite-State Morphology”,
2001.

Lauri Karttunen and Kenneth R. Beesley. Twenty-five Years of Finite-state Morphology.
In Inquiries into Words, Constraints and Contexts. Festschrift for Kimmo Koskenniemi
on his 60th Birthday, pages 71–83. CSLI Publications, Stanford, CA, USA, 2005.

Martin Kay and Gary R. Martins. The MIND System: The Morphological-analysis
Program. Memorandum RM 6265/2-PR. The RAND Corporation, Santa Monica, CA,
USA, 1970.

Steve T. Kempley and John Morton. The Effects of Priming with Regularly and Irregularly
Related Words in Auditory Word Recognition. British Journal of Psychology, 73(4):
441–445, 1982.

Geoffrey Keppel and Leo J. Postman, editors. Norms of Word Association. Academic
Press, New York, NY, USA, 1970.

Max Kisselew, Sebastian Padó, Alexis Palmer, and Jan Šnajder. Obtaining a better
understanding of distributional models of German derivational morphology. In Proceed-
ings of the 11th International Conference on Computational Semantics, pages 58–63,
London, UK, 2015. Association for Computational Linguistics.

Anette Klosa, Kathrin Kunkel-Razum, Werner Scholze-Stubenrecht, and Matthias
Wermke, editors. Duden – Deutsches Universalwörterbuch. Bibliographisches Institut
und F.A. Brockhaus AG, Mannheim, Germany, 4th edition, 2001.

Moshe Koppel and Noam Ordan. Translationese and its dialects. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics, pages
1318–1326, Portland, OR, USA, 2011. Association for Computational Linguistics.

Kimmo Koskenniemi. Two-level Morphology: A General Computational Model for Word-
Form Recognition and Production. PhD thesis, University of Helsinki, 1983.

Julia Kreutzer. Dimensionality Reduction in Semantic Vector Spaces Using a Derivational
Resource. Bachelor’s thesis, Heidelberg University, 2014.

Robert Krovetz. Viewing morphology as an inference process. In Proceedings of the
16th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 191–202, Pittsburgh, PA, USA, 1993. ACM.

Thomas K. Landauer and Susan T. Dumais. A Solution to Plato’s Problem: The Latent
Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge.
Psychological Review, 104(2):211–240, 1997.

J. Richard Landis and Gary G. Koch. The Measurement of Observer Agreement for
Categorical Data. Biometrics, 33(1):159–174, 1977.

216

Bibliography

Ronald W. Langacker. Foundations of Cognitive Grammar: Theoretical Prerequisites.
Number 1 in Foundations of Cognitive Grammar. Stanford University Press, Stanford,
CA, USA, 1987.

Gabriella Lapesa and Stefan Evert. Evaluating neighbor rank and distance measures
as predictors of semantic priming. In Proceedings of the 4th Annual Workshop on
Cognitive Modeling and Computational Linguistics, pages 66–74, Sofia, Bulgaria, 2013.
Association for Computational Linguistics.

Angeliki Lazaridou, Marco Marelli, Roberto Zamparelli, and Marco Baroni.
Compositional-ly derived representations of morphologically complex words in distri-
butional semantics. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, pages 1517–1526, Sofia, Bulgaria, 2013. Association for
Computational Linguistics.

Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word
representations. In Proceedings of the 18th Conference on Natural Language Learning,
pages 171–180, Baltimore, MD, USA, 2014.

Gary Libben, Martha Gibson, Yeo Bom Yoon, and Dominiek Sandra. Compound
Fracture: The Role of Semantic Transparency and Morphological Headedness. Brain
and Language, 84(1):50–64, 2003.

Rochelle Lieber. Morphology and Lexical Semantics. Cambridge University Press,
Cambridge, UK, 2009.

Rochelle Lieber and Pavol Štekauer, editors. The Oxford Handbook of Derivational
Morphology. Oxford Handbooks in Linguistics. Oxford University Press, New York,
NY, USA, 2014.

Rensis Likert. A Technique for the Measurement of Attitudes. Archives of Psychology,
22(140):1–55, 1932.

Dekang Lin. Automatic retrieval and clustering of similar words. In Proceedings of the
Joint Annual Meeting of the Association for Computational Linguistics and Interna-
tional Conference on Computational Linguistics, pages 768–774, Montréal, Canada,
1998a. Association for Computational Linguistics.

Dekang Lin. An information-theoretic definition of similarity. In Proceedings of the 15th
International Conference on Machine Learning, pages 296–304, San Francisco, CA,
USA, 1998b. Morgan Kaufmann Publishers Inc.

Dekang Lin and Patrick Pantel. DIRT - discovery of inference rules from text. In
Proceedings of the 7th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 323–328, San Francisco, CA, USA, 2001. ACM.

217

Bibliography

Catherine-Marie Longtin, Juan Segui, and Pierre A. Hallé. Morphological Priming
without Morphological Relationship. Language and Cognitive Processes, 18(3):313–334,
2003.

Julie B. Lovins. Development of a Stemming Algorithm. Mechanical Translation and
Computational Linguistics, 11(1-2):22–31, 1968.

Will Lowe. Towards a theory of semantic space. In Johanna T. Moore and Keith Stenning,
editors, Proceedings of the 23rd Annual Conference of the Cognitive Science Society,
pages 576–581, Edinburgh, UK, 2001.

Will Lowe and Scott McDonald. The direct route: Mediated priming in semantic space. In
Lila Gleitman and Aravind Joshi, editors, Proceedings of the 22nd Annual Conference
of the Cognitive Science Society, pages 675–680, Philadelphia, PA, USA, 2000.

Minh-Thang Luong, Richard Socher, and Christopher D. Manning. Better word repre-
sentations with recursive neural networks for morphology. In Proceedings of the 17th
Conference on Natural Language Learning, pages 104–113, Sofia, Bulgaria, 2013.

Catherine Macleod, Ralph Grishman, Adam Meyers, Leslie Barrett, and Ruth Reeves.
NOMLEX: A lexicon of nominalizations. In Proceedings of Euralex98, pages 187–193,
Liège, Belgium, 1998.

Prasenjit Majumder, Mandar Mitra, Swapan K. Parui, Gobinda Kole, Pabitra Mitra,
and Kalyankumar Datta. YASS: Yet Another Suffix Stripper. ACM Transactions on
Information Systems, 25(4):18:1–18:20, 2007.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA, USA, 1999.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a Large
Annotated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):
313–330, 1993.

Marco Marelli and Marco Baroni. Affixation in Semantic Space: Modeling Morpheme
Meanings with Compositional Distributional Semantics. Psychological Review, 122(3):
485–515, 2015.

William D. Marslen-Wilson. Functional Parallelism in Spoken Word-Recognition. Cogni-
tion, 25(1-2):71–102, 1987.

William D. Marslen-Wilson, Lorraine Komisarjevsky Tyler, Rachelle Waksler, and Lianne
Older. Morphology and Meaning in the English Mental Lexicon. Psychological Review,
101(1):3–33, 1994.

James L. McClelland and David E. Rumelhart. An Interactive Activation Model of Con-
text Effects in Letter Perception: Part 1. An Account of Basic Findings. Psychological
Review, 88(5):375–407, 1981.

218

Bibliography

Ryan McDonald, Kevin Lerman, and Fernando Pereira. Multilingual dependency analysis
with a two-stage discriminative parser. In Proceedings of the 10th Conference on
Natural Language Learning, pages 216–220, New York, NY, USA, 2006.

Scott McDonald and Chris Brew. A distributional model of semantic context effects
in lexical processing. In Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics, pages 17–24, Barcelona, Spain, 2004. Association for
Computational Linguistics.

Scott McDonald and Will Lowe. Modelling functional priming and the associative boost.
In Johanna T. Moore and Keith Stenning, editors, Proceedings of the 20th Annual
Conference of the Cognitive Science Society, pages 675–680, Madison, WI, USA, 1998.

Timothy P. McNamara. Semantic Priming: Perspectives from Memory and Word
Recognition. Psychology Press, Ltd., New York, NY, USA, 2005.

Wolfang Mentrup. Zur Pragmatik einer Lexikographie: Von Prinzipien der Sprach-
forschung zu Prinzipien einsprachiger Lexikographie. Number 1 in Forschungsberichte.
Narr, Tübingen, Germany, 1988.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-specific Languages. ACM Computing Surveys, 37(4):316–344, 2005.

Fanny Meunier and Catherine-Marie Longtin. Morphological Decomposition and Semantic
Integration in Word Processing. Journal of Memory and Language, 56(4):457–471,
2007.

David E. Meyer and Roger W. Schvaneveldt. Facilitation in Recognizing Pairs of Words:
Evidence of a Dependence between Retrieval Operations. Journal of Experimental
Psychology: General, 90(2):227–234, 1971.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of the
27th Annual Conference on Neural Information Processing Systems, pages 3111–3119,
Lake Tahoe, NV, USA, 2013.

Petar Milin, Victor Kuperman, Aleksandar Kostić, and R. Harald Baayen. Paradigms
Bit by Bit: An Information Theoretic Approach to the Processing of Paradigmatic
Structure in Inflection and Derivation. In James P. Blevins and Juliette Blevins, editors,
Analogy in Grammar: Form and Acquisition, pages 214–252. Oxford University Press,
Oxford, 2009.

George A. Miller and Walter G. Charles. Contextual Correlates of Semantic Similarity.
Language and Cognitive Processes, 6(1):1–28, 1991.

George A. Miller and Christiane Fellbaum. Morphosemantic Links in WordNet. Traitement
automatique de langue, 44(2):69–80, 2003.

219

Bibliography

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine
Miller. Introduction to WordNet: An On-line Lexical Database. International Journal
of Lexicography, 3(4):235–244, 1990.

Jeff Mitchell and Mirella Lapata. Composition in Distributional Models of Semantics.
Cognitive Science, 34(8):1388–1439, 2010.

Saif Mohammad, Iryna Gurevych, Graeme Hirst, and Torsten Zesch. Cross-lingual
distributional profiles of concepts for measuring semantic distance. In Proceedings
of the Joint Conference on Conference on Empirical Methods in Natural Language
Processing and Conference on Natural Language Learning, pages 571–580, Prague,
Czech Republic, 2007.

Cristof Monz and Maarten de Rijke. Shallow morphological analysis in monolingual
information retrieval for Dutch, German and Italian. In Carol Peters, Martin Braschler,
Julio Gonzalo, and Michael Kluck, editors, Evaluation of Cross-Language Information
Retrieval Systems, volume 2406 of Lecture Notes in Computer Science, pages 262–277,
Darmstadt, Germany, 2002. Springer.

Taesun Moon, Katrin Erk, and Jason Baldridge. Unsupervised morphological segmenta-
tion and clustering with document boundaries. In Proceedings of the 14th Conference
on Empirical Methods in Natural Language Processing, pages 668–677, Singapore, 2009.
Association for Computational Linguistics.

Jane Morris and Graeme Hirst. Non-classical lexical semantic relations. In Proceedings of
the HLT-NAACL Workshop on Computational Lexical Semantics, pages 46–51, Boston,
MA, USA, 2004. Association for Computational Linguistics.

John Morton. The Interaction of Information in Word Recognition. Psychological Review,
76(2):165–178, 1969.

William Nagy, Richard C. Anderson, Marlene Schommer, Judith Ann Scott, and Anne C.
Stallman. Morphological Families in the Internal Lexicon. Reading Research Quarterly,
24(3):262–282, 1989.

Fiammetta Namer. Morphologie, Lexique et Traitement Automatique des Langues:
L’Analyseur DériF. Hermès Science-Lavoisier, Paris, France, 2009.

Bernd Naumann and Petra M. Vogel. Derivation. In Geert E. Booij, Christian Lehmann,
and Joachim Mugdan, editors, Morphologie: Ein Internationales Handbuch zur Flexion
und Wortbildung, volume 2 of Handbücher zur Sprach- und Kommunikationswis-
senschaft, pages 929–943. Mouton de Gruyer, 2000.

Roberto Navigli and Paola Velardi. An analysis of ontology-based query expansion
strategies. In Workshop on Adaptive Text Extraction and Mining, Dubrovnik, Croatia,
2003.

220

Bibliography

Lionel Nicolas, Jacque Farré, and Miguel A. Molinero. Unsupervised learning of concate-
native morphology based on frequency-related form occurrence. In Proceedings of the
Morpho Challenge 2010 Workshop, pages 39–43, Espoo, Finland, 2010.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with su-
pervised learning. In Proceedings of the 22nd International Conference on Machine
Learning, pages 625–632, Bonn, Germany, 2005. ACM.

Joakim Nivre, Johan Hall, and Jens Nilsson. MaltParser: A data-driven parser-generator
for dependency parsing. In Proceedings of the 5th International Conference on Language
Resources and Evaluation, pages 2216–2219, Genoa, Italy, 2006. European Language
Resources Association (ELRA).

Richard Nock and Frank Nielsen. On Weighting Clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(8):1223–1235, 2006.

Franz Josef Och and Hermann Ney. A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics, 29(1):19–51, 2003.

Sebastian Padó and Ido Dagan. Textual Entailment. In Ruslan Mitkov, editor, Oxford
Handbook of Computational Linguistics. Oxford University Press, Oxford, UK, 2nd
edition, 2016.

Sebastian Padó and Mirella Lapata. Dependency-based Construction of Semantic Space
Models. Computational Linguistics, 33(2):161–199, 2007.

Sebastian Padó and Jason Utt. A distributional memory for German. In Jeremy Jancsary,
editor, Proceedings of the KONVENS 2012 Workshop on Lexical-semantic Resources
and Applications, pages 462–470, Vienna, Austria, 2012. ÖGAI.

Sebastian Padó, Tae-Gil Noh, Asher Stern, Rui Wang, and Robert Zanoli. Design and
Realization of a Modular Architecture for Textual Entailment. Journal of Natural
Language Engineering, 21(2):1–34, 2013a.

Sebastian Padó, Jan Šnajder, and Britta Zeller. Derivational smoothing for syntactic
distributional semantics. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, pages 731–735, Sofia, Bulgaria, 2013b. Association for
Computational Linguistics.

Sebastian Padó, Alexis Palmer, Max Kisselew, and Jan Šnajder. Measuring semantic
content to assess asymmetry in derivation. In Proceedings of the IWCS Workshop on Ad-
vances in Distributional Semantics, London, UK, 2015. Association for Computational
Linguistics.

Sebastian Padó, Britta Zeller, and Jan Šnajder. Morphological priming in German: The
word is not enough (or is it?). In Proceedings of 1st Conference on Word Knowledge
and Word Usage: Representations and Processes in the Mental Lexicon, pages 42–45,
Pisa, Italy, 2015.

221

Bibliography

Karel Pala. Derivational relations in Slavonic languages. In Proceedings of the 6th
International Conference on Formal Approaches to South Slavic and Balkan Languages,
pages 21–28, Dubrovnik, Croatia, 2008. Croatian Language Technologies Society.

Karel Pala and Dana Hlaváčková. Derivational relations in Czech WordNet. In Proceed-
ings of the Workshop on Balto-Slavonic Natural Language Processing: Information
Extraction and Enabling Technologies, pages 75–81, Prague, Czech Republic, 2007.
Association for Computational Linguistics.

Martha Palmer, Hoa Trang Dang, and Christiane Fellbaum. Making Fine-grained
and Coarse-grained Sense Distinctions, both Manually and Automatically. Natural
Language Engineering, 13(2):137–163, 2007.

Patrick Pantel and Dekang Lin. Discovering word senses from text. In Proceedings of
the 8th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
613–619, Edmonton, Alberta, Canada, 2002. ACM.

Patrick Pantel, Deepak Ravichandran, and Eduard H. Hovy. Towards terascale knowledge
acquisition. In Proceedings of the 20th International Conference on Computational
Linguistics, pages 771–777, Geneva, Switzerland, 2004. Coling 2004 Organizing Com-
mittee.

Barbara H. Partee. Lexical Semantics and Compositionality. In Daniel N. Osherson,
editor, An Invitation to Cognitive Science, volume 1, pages 311–360. MIT Press, 2nd
edition, 1995.

Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen. Using measures of
semantic relatedness for word sense disambiguation. In Alexander Gelbukh, editor,
Proceedings of the 4th International Conference on Computational Linguistics and
Intelligent Text Processing, volume 2588 of Lecture Notes in Computer Science, pages
241–257, Mexico City, Mexico, 2003. Springer.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Yves Peirsman. Word space models of semantic similarity and relatedness. In Proceedings
of the 13th ESSLLI Student Session, pages 143–152, Hamburg, Germany, 2008.

Yves Peirsman, Kris Heylen, and Dirk Geeraerts. Size matters: Tight and loose context
definitions in English word space models. In Proceedings of the ESSLLI International
Workshop on Distributional Lexical Semantics – Bridging the Gap Between Semantic
Theory and Computational Simulations, pages 34–41, Hamburg, Germany, 2008.

Maciej Piasecki and Adam Radziszewski. Morphological Prediction for Polish by a
Statistical a Tergo Index. Systems Science, 34(4):7–17, 2008.

222

Bibliography

Maciej Piasecki, Radoslaw Ramocki, and Marek Maziarz. Recognition of Polish deriva-
tional relations based on supervised learning scheme. In Proceedings of the 8th Inter-
national Conference on Language Resources and Evaluation, pages 916–922, Istanbul,
Turkey, 2012. European Language Resources Association (ELRA).

Frans Plank. Morphologische (Ir-)Regularitäten: Aspekte der Wortstrukturtheorie. Studien
zur deutschen Grammatik. Narr, Tübingen, Germany, 1981.

John C. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods. In Bernhard Schölkopf Alexander J. Smola,
Peter Bartlett and Dale Schuurmans, editors, Advances in Large Margin Classifiers,
pages 61–74. MIT Press, Cambridge, MA, USA, 1999.

Martin Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137, 1980.

Kathleen Rastle, Matthew H. Davis, and Boris New. The Broth in my Brother’s Brothel:
Morpho-Orthographic Segmentation in Visual Word Recognition. Psychonomic Bulletin
& Review, 11(6):1090–1098, 2004.

Michal Raveh and Jay G. Rueckl. Equivalent Effects of Inflected and Derived Primes:
Long-Term Morphological Priming in Fragment Completion and Lexical Decision.
Journal of Memory and Language, 42(1):103–119, 2000.

Philip Resnik. Selectional Constraints: An Information-theoretic Model and its Compu-
tational Realization. Cognition, 61(1-2):127–159, 1996.

Susanne Riehemann. Morphology and the hierarchical lexicon. CSLI Publications, 1994.
Manuscript.

Jorma Rissanen. Stochastic Complexity in Statistical Inquiry Theory. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1989.

Herbert Rubenstein and John B. Goodenough. Contextual Correlates of Synonymy.
Communications of ACM, 8(10):627–633, 1965.

David E. Rumelhart and James L. McClelland. An Interactive Activation Model of
Context Effects in Letter Perception: Part 2. The Context Enhancement Effect and
Some Tests and Extensions of the Model. Psychological Review, 89(1):60–94, 1982.

Benôıt Sagot. DeLex, a freely-available, large-scale and linguistically grounded morpho-
logical lexicon for German. In Nicoletta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno,
Jan Odijk, and Stelios Piperidis, editors, Proceedings of the 9th International Con-
ference on Language Resources and Evaluation, pages 2778–2784, Reykjavik, Iceland,
2014. European Language Resources Association (ELRA).

Magnus Sahlgren. The Word-Space Model: Using Distributional Analysis to Represent
Syntagmatic and Paradigmatic Relations Between Words in High-dimensional Vector
Spaces. PhD thesis, Department of Linguistics, Stockholm University, 2006.

223

Bibliography

Gerard Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing.
Communications of ACM, 18(11):613–620, 1975.

Anne Schiller. Deutsche Flexions- und Kompositionsmorphologie mit PC-KIMMO.
In Roland Hausser, editor, Linguistische Verifikation. Dokumentation zur Ersten
Morpholympics 1994, pages 25–35, Tübingen, Germany, 1996. Max Niemeyer.

Anne Schiller, Simone Teufel, Christine Stöckert, and Christine Thielen. Guidelines
für das Tagging deutscher Textcorpora mit STTS. Technical report, Institut für
maschinelle Sprachverarbeitung, Stuttgart, 1999.

Thea Schippan. Die Verbalsubstantive der deutschen Sprache der Gegenwart. Habilitation
thesis, Karl-Marx-Universität Leipzig, 1967.

Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings
of the International Conference on New Methods in Natural Language Processing, pages
44–49, Manchester, UK, 1994.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. SMOR: A German computational
morphology covering derivation, composition and inflection. In Proceedings of the 4th
International Conference on Language Resources and Evaluation, pages 1263–1266,
Lisbon, Portugal, 2004. European Language Resources Association (ELRA).

Tanja Schmid, Anke Lüdeling, Bettina Säuberlich, Ulrich Heid, and Bernd Möbius.
DeKo - Ein System zur Analyse komplexer Wörter. In Henning Lobin, editor, GLDV-
Jahrestagung, pages 49–57. Gesellschaft für linguistische Datenverarbeitung, 2001.

Patrick Schone and Daniel Jurafsky. Knowledge-free induction of morphology using latent
semantic analysis. In Proceedings of the 4th Conference on Natural Language Learning,
pages 67–72. Lisbon, Portugal, 2000.

Patrick Schone and Daniel Jurafsky. Knowledge-free induction of inflectional morphologies.
In Proceedings of the 2nd Annual Meeting of the North American Chapter of the
Association for Computational Linguistics, pages 1–9, Pittsburgh, PA, USA, 2001.
Association for Computational Linguistics.

Robert Schreuder and R. Harald Baayen. How Complex Simplex Words Can Be. Journal
of Memory and Language, 37(1):118–139, 1997.

Richard E. Schuberth and Peter D. Eimas. Morphological Priming: Dissociation of Phono-
logical, Semantic, and Morphological Factors. Journal of Experimental Psychology:
Human Perception and Performance, 3(1):27–36, 1977.

Sabine Schulte im Walde. Experiments on the Automatic Induction of German Semantic
Verb Classes. Computational Linguistics, 32(2):159–194, 2006.

224

Bibliography

Sabine Schulte im Walde, Stefan Müller, and Stephen Roller. Exploring vector space
models to predict the compositionality of German noun-noun compounds. In Pro-
ceedings of the 2nd Joint Conference on Lexical and Computational Semantics, pages
255–265, Atlanta, GA, USA, 2013. Association for Computational Linguistics.

Hinrich Schütze. Automatic Word Sense Discrimination. Computational Linguistics, 24
(1):97–123, 1998.

Hinrich Schütze and Jan Pedersen. A vector model for syntagmatic and paradigmatic
relatedness. In Proceedings of the 9th Annual Conference of the University of Waterloo
Centre for the New OED and Text Research, pages 104–113, Oxford, UK, 1993.

Rico Sennrich and Beat Kunz. Zmorge: A German morphological lexicon extracted
from Wiktionary. In Proceedings of the 9th International Conference on Language
Resources and Evaluation, pages 1063–1067, Reykjavik, Iceland, 2014. European
Language Resources Association (ELRA).

Dan Shen and Mirella Lapata. Using semantic roles to improve question answering.
In Proceedings of the Joint Conference on Empirical Methods in Natural Language
Processing and Conference on Natural Language Learning, pages 12–21, Prague, Czech
Republic, 2007.

Eyal Shnarch, Jacob Goldberger, and Ido Dagan. A probabilistic modeling framework
for lexical entailment. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics, pages 558–563, Portland, OR, USA, 2011. Association
for Computational Linguistics.

Jeffrey S. Simonoff. Smoothing Methods in Statistics. Springer Series in Statistics.
Springer, New York, NY, USA, 1996.

Philip T. Smith and Christopher M. Sterling. Factors Affecting the Perceived Morphemic
Structure of Written Words. Journal of Verbal Learning and Verbal Behavior, 21(6):
704–721, 1982.

Eva Smolka, Pienie Zwitserlood, and Frank Rösler. Stem Access in Regular and Irregular
Inflection: Evidence from German Participles. Journal of Memory and Language, 57
(3):325–347, 2007.

Eva Smolka, Sarolta Komlosi, and Frank Rösler. When Semantics Means Less than
Morphology: The Processing of German Prefixed Verbs. Language and Cognitive
Processes, 24(3):337–375, 2009.

Eva Smolka, Katrin H. Preller, and Carsten Eulitz. ‘Verstehen’ (‘understand’) Primes
‘stehen’ (‘stand’): Morphological Structure Overrides Semantic Compositionality in the
Lexical Representation of German Complex Verbs. Journal of Memory and Language,
72:16–36, 2014.

225

Bibliography

Benjamin Snyder and Regina Barzilay. Cross-lingual propagation for morphological
analysis. In Proceedings of the 23rd National Conference on Artificial Intelligence,
pages 848–854, Chicago, IL, USA, 2008. AAAI Press.

Benjamin Snyder and Martha Palmer. The English all-words task. In Rada Mihalcea
and Phil Edmonds, editors, Senseval-3: 3rd International Workshop on the Evaluation
of Systems for the Semantic Analysis of Text, pages 41–43, Barcelona, Spain, 2004.
Association for Computational Linguistics.

Ingrid Sonnenstuhl, Sonja Eisenbeiss, and Harald Clahsen. Morphological Priming in the
German Mental Lexicon. Cognition, 72(3):203–236, 1999.

Sylvia Springorum, Sabine Schulte im Walde, and Antje Roßdeutscher. Automatic
classification of German “an” particle verbs. In Proceedings of the 8th International
Conference on Language Resources and Evaluation, pages 73–80, Istanbul, Turkey,
2012. European Language Resources Association (ELRA).

Sylvia Springorum, Jason Utt, and Sabine Schulte im Walde. Regular meaning shifts
in German particle verbs: A case study. In Proceedings of the 10th International
Conference on Computational Semantics, pages 228–239, Potsdam, Germany, 2013.
Association for Computational Linguistics.

Richard William Sproat. Morphology and Computation. Natural Language Processing.
MIT Press, Cambridge, MA; London, UK, 1992.

Angelika Storrer. Funktionen von Nominalisierungsverbgefügen im Text. Eine korpus-
basierte Fallstudie. In Kristel Prost and Edeltraud Winkler, editors, Von der Inten-
tionalität zur Bedeutung konventionalisierter Zeichen. Festschrift für Gisela Harras
zum 65. Geburtstag, pages 147–178. Narr, Tübingen, 2006.

Suriani Sulaiman, Michael Gasser, and Sandra Kübler. Towards a Malay derivational
lexicon: Learning affixes using expectation maximization. In Proceedings of the 2nd
Workshop on South Southeast Asian Natural Language Processing, pages 30–34, Chiang
Mai, Thailand, 2011. Asian Federation of Natural Language Processing.

Idan Szpektor and Ido Dagan. Learning entailment rules for unary templates. In
Proceedings of the 22nd International Conference on Computational Linguistics, pages
849–856, Manchester, UK, 2008. Coling 2008 Organizing Committee.

Jan Šnajder. DerivBase.hr: A high-coverage derivational morphology resource for
Croatian. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck,
Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and
Stelios Piperidis, editors, Proceedings of the 9th International Conference on Language
Resources and Evaluation, pages 3371–3377, Reykjavik, Iceland, 2014. European
Language Resources Association (ELRA).

226

Bibliography

Jan Šnajder and Bojana Dalbelo Bašić. Higher-order functional representation of Croatian
inflectional morphology. In Proceedings of the 6th International Conference on Formal
Approaches to South Slavic and Balkan Languages, pages 121–130, Dubrovnik, Croatia,
2008. Croatian Language Technologies Society.

Jan Šnajder and Bojana Dalbelo Bašić. String distance-based stemming of the highly
inflected Croatian language. In Proceedings of the International Conference Recent
Advances in Natural Language Processing, pages 411–415, Borovets, Bulgaria, 2009.
Association for Computational Linguistics.

Jan Šnajder and Bojana Dalbelo Bašić. A computational model of Croatian derivational
morphology. In Proceedings of the 7th International Conference on Formal Approaches
to South Slavic and Balkan Languages, pages 109–118, Dubrovnik, Croatia, 2010.

Jan Šnajder, Bojana Dalbelo Bašić, and Marko Tadić. Automatic Acquisition of Inflec-
tional Lexica for Morphological Normalisation. Information Processing and Manage-
ment, 44(5):1720–1731, 2008.

Jan Šnajder, Sebastian Padó, and Željko Agić. Building and evaluating a Distributional
Memory for Croatian. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, pages 784–789, Sofia, Bulgaria, 2013. Association for
Computational Linguistics.

Pavol Štekauer and Rochelle Lieber, editors. Handbook of Word-Formation, volume 64 of
Studies in Natural Language and Linguistic Theory. Springer, Dordrecht, Netherlands,
2005.

Marcus Taft and Kenneth I. Forster. Lexical Storage and Retrieval of Prefixed Words.
Journal of Verbal Learning and Verbal Behavior, 14:638–647, 1975.

Marcus Taft and Paul Kougious. The Processing of Morpheme-like Units in Monomor-
phemic Words. Brain and Language, 90(1):9–16, 2004.

Pius ten Hacken. Word Manager. In Cerstin Mahlow and Michael Piotrowski, editors,
Workshop on Systems and Frameworks for Computational Morphology, volume 41
of Communications in Computer and Information Science, pages 88–107, Zurich,
Switzerland, 2009. Springer.

Kapil Thadani and Kathleen McKeown. Towards strict sentence intersection: Decoding
and evaluation strategies. In Proceedings of the ACL Workshop on Monolingual
Text-To-Text Generation, pages 43–53, Portland, Oregon, USA, 2011. Association for
Computational Linguistics.

Sonja Tirkkonen-Condit. Translationese – a Myth or an Empirical Fact? Target.
International Journal of Translation Studies, 14(2):207–220, 2002.

Matthew J. Traxler. Introduction to Psycholinguistics: Understanding Language Science.
Wiley-Blackwell, 2012.

227

Bibliography

Harald Trost. Morphology. In Ruslan Mitkov, editor, Oxford Handbook of Computational
Linguistics, pages 25–47. Oxford University Press, Oxford, UK, 2005.

Peter D. Turney and Patrick Pantel. From Frequency to Meaning: Vector Space Models
of Semantics. Journal of Artificial Intelligence Research, 37(1):141–188, 2010.

Jason Utt and Sebastian Padó. Crosslingual and Multilingual Construction of Syntax-
Based Vector Space Models. Transactions of the Association for Computational
Linguistics, 2:245–258, 2014.

Martine Vanhove, editor. From Polysemy to Semantic Change: Towards a Typology of
Lexical Semantic Associations. Number 106 in Studies in Language Companion Series.
John Benjamins Publishing Company, Amsterdam, Netherlands, 2008.

Evelyne Viegas, Margarita Gonzalez, and Jeff Longwell. Morpho-semantics and construc-
tive derivational morphology: a transcategorial approach to lexical rules. Technical
report, Computing Research Laboratory, New Mexico State University, 1996.

Begoña Villada Moirón and Jörg Tiedemann. Identifying idiomatic expressions using
automatic word-alignment. In Proceedings of the EACL Workshop on Multiword
Expressions in a Multilingual Context, pages 33–40, Trento, Italy, 2006. Association
for Computational Linguistics.

Ellen M. Voorhees. Query expansion using lexical-semantic relations. In Proceedings of
the 17th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 61–69, Dublin, Ireland, 1994. ACM.

DeWitt Wallace and Lila Acheson Wallace. Reader’s Digest, das Beste für Deutschland.
Verlag Das Beste, Stuttgart, Germany, 2005.

Géraldine Walther and Lionel Nicolas. Enriching morphological lexica through unsu-
pervised derivational rule acquisition. In Proceedings of the ESSLLI International
Workshop on Lexical Resources, pages 94–101, Ljubljana, Slovenia, 2011.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin. Strictly lexical dependency parsing. In
Proceedings of the 9th International Workshop on Parsing Technology, pages 152–159,
Vancouver, Canada, 2005. Association for Computational Linguistics.

Rui Wang and Günter Neumann. Recognizing Textual Entailment Using a Subsequence
Kernel Method. In Proceedings of the 22nd National Conference on Artificial Intelli-
gence, pages 937–943, Vancouver, Canada, 2007. AAAI Press.

Rui Wang and Yi Zhang. Recognizing textual relatedness with predicate-argument
structures. In Proceedings of the 14th Conference on Empirical Methods in Natural
Language Processing, pages 784–792, Singapore, 2009. Association for Computational
Linguistics.

228

Bibliography

Klaus Welke. Valenzgrammatik des Deutschen: eine Einführung. De Gruyter Studium.
De Gruyter, Berlin, Germany; New York, NY, USA, 2011.

Aris Xanthos, Sabine Laaha, Steven Gillis, Ursula Stephany, Ayhan Aksu-Koç, Anastasia
Christofidou, Natalia Gagarina, Gordana Hrzica, F. Nihan Ketrez, Marianne Kilani-
Schoch, Katharina Korecky-Kröll, Melita Kovačević, Klaus Laalo, Marijan Palmović,
Barbara Pfeiler, Maria D. Voeikova, and Wolfgang U. Dressler. On the Role of
Morphological Richness in the Early Development of Noun and Verb Inflection. First
Language, 31(4):461–479, 2011.

Rui Xu and Donald Wunsch. Survey of Clustering Algorithms. IEEE Transactions on
Neural Networks, 16(3):645–678, 2005.

Britta Zeller and Sebastian Padó. A search task dataset for German textual entailment.
In Proceedings of the 10th International Conference on Computational Semantics, pages
288–299, Potsdam, Germany, 2013. Association for Computational Linguistics.

Britta Zeller, Jan Šnajder, and Sebastian Padó. DErivBase: Inducing and evaluating
a derivational morphology resource for German. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, pages 1201–1211, Sofia,
Bulgaria, 2013. Association for Computational Linguistics.

Britta Zeller, Jan Šnajder, and Sebastian Padó. Towards semantic validation of a
derivational lexicon. In Proceedings the 25th International Conference on Computational
Linguistics, pages 1728–1739, Dublin, Ireland, 2014. Dublin City University and
Association for Computational Linguistics.

Torsten Zesch, Iryna Gurevych, and Max Mühlhäuser. Comparing Wikipedia and German
Wordnet by evaluating semantic relatedness on multiple datasets. In Proceedings of
the Joint Human Language Technology Conference and Annual Meeting of the North
American Chapter of the Association for Computational Linguistics, pages 205–208,
Rochester, NY, USA, 2007. Association for Computational Linguistics.

Andrea Zielinski and Christian Simon. Morphisto - an open source morphological analyzer
for German. In Proceedings of the Conference on Finite State Methods and Natural
Language Processing, 7th International Workshop, pages 224–231, Ispra, Italy, 2008.

Pierre Zweigenbaum and Natalia Grabar. Automatic acquisition of morphological knowl-
edge for medical language processing. In Proceedings of the Joint European Conference
on Artificial Intelligence in Medicine and Medical Decision Making, volume 1620 of
Lecture Notes in Computer Science, pages 416–422, Aalborg, Denmark, 1999. Springer.

229

	Introduction and Background
	Introduction
	Structure of this Thesis
	Bibliographic Note
	Notation

	Linguistic Foundations
	Morphology, Word Formation, and Derivation
	Morphology
	Word Formation
	Derivation

	Derivation in German
	Classification of Derivation
	Characteristics of the Involved Word Classes

	Computational Representation of Derivation
	Summary

	Related Work
	Computational Morphology
	Algorithms to Acquire Derivational Morphology
	Approaches to Build Derivational Resources
	Derivational Morphology Applied in Natural Language Processing
	Discussion

	Distributional Semantics

	Modelling Derivational Knowledge for German
	DErivBase: Inducing a Derivational Morphology Lexicon for German
	The HOFM Framework
	HOFM, a Rule-based Derivation Model
	The Derivational Component of HOFM
	Instantiation of the Derivation Rules
	Induction of Derivational Families

	Building the Lexicon DErivBase
	Design Decisions for a German Derivational Morphology
	Implementation of German Derivation Rules in HOFM
	Data and Preprocessing
	Rule Development Cycle and Quantitative Rule Analysis
	Statistics on DErivBase

	Intrinsic Evaluation
	Evaluation Methodology
	Baselines
	Gold Standard Annotation

	Results
	Quantitative Evaluation
	Rule-level Analysis
	Pair-level Analysis

	Summary

	Semantic Validation of DErivBase
	Towards Semantic Validation of a Rule-based Derivational Lexicon
	Morphological vs. Semantic Relatedness in DErivBase
	Hypotheses for Semantic Validation

	Analysis 1: Distributional Similarity for Semantic Validation
	Measuring Distributional Similarity
	Influence of Frequency on Similarity Predictions
	Conceptual Influences on Similarity Predictions
	Ranking of Distributional Information

	Analysis 2: Derivational Rules for Semantic Validation
	A Classification Model for Semantic Validation
	Features for Semantic Validation
	Classification
	Results and Discussion

	From Pairs to Families: Semantic Validation of DErivBase
	Clustering Validated Pairs
	Building Semantic Clusters

	Summary

	Using Derivational Knowledge for German
	Smoothing Distributional Models for Lexical Semantics with DErivBase
	Study 1: Impact on Syntax-based Models
	Smoothing Techniques in Related Areas
	Models for Derivational Smoothing
	Experimental Setup
	Results
	Discussion

	Study 2: Complementarity with Word-based Models
	Methods for Combining Vector Spaces
	Experimental Setup
	Results
	Discussion

	Summary

	Improving Priming Predictions for Psycholinguistics with DErivBase
	Priming
	Morphological Priming: State of the Art
	A Recent Study on Morphological Priming in German
	Modelling Morphological Priming
	Experimental Setup and Results
	Discussion

	Recognising Textual Entailment with DErivBase
	Recognising Textual Entailment
	Evaluation of DErivBase on the RTE Task
	Employed Dataset and Entailment System
	Integrating DErivBase into TIE
	Evaluation of DErivBase on RTE with TIE

	Creating a Derivation-specific Sub-dataset
	Evaluation of DErivBase on the Derivational Subset
	Summary

	Conclusions and Future Directions
	Conclusions
	Contributions
	Insights
	Future Directions

	Appendix
	Employed HOFM Transformation Functions for Derivation
	Implemented DErivBase Rules, v1.4.1
	Annotation Guidelines
	Abridged TIE Configuration File for Setting BOW

	Bibliography

