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Angewandte String-Theorie, heiß und kalt: Eine holographische Sicht auf das
Quark-Gluon-Plasma und Supraflüssigkeiten

Diese Arbeit befasst sich mit Anwendungen der Eichtheorie-/Gravitations-Dualität
auf stark gekoppelte Phänomene im Quark-Gluon-Plasma und in Supraflüssigkei-
ten fernab des Gleichgewichts. Im ersten Teil suchen wir modellunabhängiges (uni-
verselles) Verhalten in verschiedenen nicht-Abelschen Eichtheorie-Plasmen mit che-
mischem Potential. Dazu betrachten wir stark gekoppelte N = 4 supersymmetri-
sche Yang-Mills-Theorie und drei Klassen von nicht-konformen Deformationen die-
ser Theorie. Wir untersuchen die freie Energie und zugehörige thermodynamische
Größen schwerer Quarks und im Falle von Quark-Antiquark-Paaren zusätzlich die
Bindungsenergie. Außerdem untersuchen wir die laufende Kopplung. Wir finden qua-
litative Übereinstimmung mit Gitter-QCD-Daten. Zusätzlich beobachten wir univer-
selles Verhalten mehrerer Observablen für alle Werte des chemischen Potentials. Im
zweiten Teil untersuchen wir die Dynamik einer bosonischen Supraflüssigkeit in zwei
Raumdimensionen nach anfänglichen „Quenches“, die das System in einen Zustand
fernab des Gleichgewichts versetzen, der viele Vortexdefekte und Quantenturbu-
lenz aufweist. Dabei lösen wir die vollen Bewegungsgleichungen des holographisch
dualen Abelschen Higgs-Modells im vierdimensionalen Anti-de-Sitter-Raum nume-
risch. Wir beobachten einen universellen Langzeitverlauf, der durch Potenzgesetz-
Verhalten einer Zweipunkts-Korrelationsfunktion und charakteristischer Längenska-
len ausgezeichnet ist und den wir als nichtthermischen Fixpunkt interpretieren.

Applied String Theory, Hot and Cold: A Holographic View on Quark–Gluon
Plasma and Superfluids

This thesis deals with applications of gauge/gravity duality to strong-coupling phe-
nomena in the quark–gluon plasma and far-from-equilibrium superfluids. In a first
part we search for model-independent (universal) behavior in various non-Abelian
gauge-theory plasmas at finite temperature and chemical potential. We employ the
holographic duals of strongly coupled N = 4 supersymmetric Yang–Mills theory and
three one-parameter families of non-conformal deformations thereof, two of which
solve the equations of motion of a five-dimensional Einstein–Maxwell–scalar action.
We study the free energy and associated thermodynamic quantities of heavy quarks
and bound quark–anti-quark (QQ̄) pairs as well as the QQ̄ binding energy and the
running coupling. We find qualitative agreement with available lattice QCD data.
Moreover, we show that several observables exhibit universal behavior for all values
of the chemical potential. In a second part we investigate the real-time dynamics of
a bosonic superfluid in two spatial dimensions after initial quenches that take the
system to far-from-equilibrium states characterized by many topological vortex de-
fects in association with quantum turbulence. To this end we numerically solve the
full equations of motion of the holographically dual Abelian Higgs model on four-
dimensional anti-de Sitter space. We observe a universal non-equilibrium late-time
regime characterized by power-law behavior in a two-point correlation function and
in characteristic length scales, which we interpret as a non-thermal fixed point.
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1 Introduction

One of the main themes in high-energy physics is the quest for unification. The
Standard Model of particle physics unifies three – the electromagnetic, weak, and
strong – of the four fundamental interactions in Nature into a single theory in the
framework of quantum field theory. The fourth – gravity – so far resists unification
with the other three fundamental interactions. Rather, it is currently understood
in terms of a classical field theory, Einstein’s General Relativity. A theory that
promises to provide a framework in which a unification of all fundamental interac-
tions becomes possible is string theory. However, while a series of groundbreaking
insights into string theory have been obtained in the last three decades, its status as a
fundamental theory of nature is debated, and its uniquely ‘stringy’ predictions elude
experimental verification as they are expected to become manifest only at energies
many orders of magnitude above the energies attainable in colliders. Nevertheless,
research in string theory is a very active field, not least because of the major break-
through sparked by the work of Maldacena [1] and others [2, 3] in 1997/98, namely
the concept of Anti-de Sitter/Conformal Field Theory duality, or AdS/CFT duality.

This idea, nowadays understood in broader terms as gauge/gravity duality, has
opened up new and unexpected relations between non-gravitational quantum field
theories, in particular gauge theories, on the one hand, and gravity on the other
hand. An exceptional feature of gauge/gravity duality is that it posits an exact
equivalence between physical theories defined in spacetimes of different dimension-
alities, which is expressed by the alternative name of holographic duality, or simply
holography. In general, a specific instance of gauge/gravity duality provides a map-
ping of the complete dynamics of some quantum field theory in a non-dynamical
spacetime to the complete dynamics of a gravitational quantum theory in a higher-
dimensional spacetime. Practically, the difference in dimensions is often one, and
the higher-dimensional spacetime is an (asymptotically) AdS spacetime which has
a negative cosmological constant and is called the ‘bulk’. The dual quantum field
theory ‘lives’ on the conformal boundary of the bulk spacetime and is hence called
the ‘boundary theory’. In a particular limit the bulk theory essentially becomes a
classical gravity theory, while the boundary theory becomes strongly coupled. This
makes holographic duality a powerful tool for studying physics of systems described
by strongly coupled quantum field theory. This will be the way we view and use
holographic duality in this thesis. By now, holographic methods are applied to a
broad range of physical systems, including heavy-ion collisions (see e. g. [4] for a
review) and ultracold quantum gases (see e. g. [5] for a review), as well as various
condensed-matter systems such as high-Tc superconductors or strange metals (see
e. g. [6, 7] for reviews). Due to being formulated in terms of unusual degrees of free-
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1 Introduction

dom in unconventional spacetimes, holographic methods can provide new insight
into and complementary intuition for the physical systems that they are applied to.
In this work, we will apply holographic methods in order to investigate aspects of
the physics of strongly correlated quantum fluids.

Such systems have been observed at vastly different temperatures, ranging from
the very cold to the very hot. Examples include ultracold Bose [8–10] and Fermi
[11–15] quantum gases in the nanokelvins range, superfluid helium-3 [16, 17] be-
low 2.5 mK and superfluid helium-4 [18, 19] below 2.17 K, as well as various semi-
conductor-based exciton–polariton condensates (see e. g. [20] for a recent review)
in the few-kelvin range. On the other end of temperature extremes is the strongly
coupled quark–gluon plasma (QGP) that is produced and studied in heavy-ion col-
lision experiments ([21–27]; see e. g. [28, 29] for recent reviews), with temperatures
exceeding 1.75 × 1012 K. It is believed that some microseconds after the Big Bang
the universe was filled with a QGP.

In this thesis, which comprises two main parts, we deal with both stationary
(probes in an equilibrated system) and time-dependent (non-equilibrium dynam-
ics) phenomena in strongly correlated quantum fluids using a holographic approach.
There are different possible strategies in the application of holography. We apply a
‘bottom-up’ approach where one does not start from string theory, as in the deriva-
tion of the original AdS/CFT duality, but rather uses general lessons learned from
exact gauge/gravity dualities to construct phenomenological models for the physics
of interest. The bottom-up approach is motivated by the search for universal fea-
tures shared by many strongly coupled theories. A famous example is the so-called
KSS bound by Kovtun et al. [30] on the ratio of the shear viscosity and entropy den-
sity of a strongly coupled plasma that has applications to the physics of the QGP,
as we will discuss. In a similar spirit, in the first part of this thesis, we will study
heavy quarks in a large class of holographic models for the quark–gluon plasma. As
another interesting aspect, holographic models are used for exploratory studies of
physics at strong coupling. In this vein, in the second part of this work, we ap-
ply holographic duality to the non-equilibrium dynamics of a cold strongly coupled
bosonic superfluid in two spatial dimensions. We will discuss further details of the
physical systems of interest and the motivation for our work at the beginning of each
part.

In the following, we give a brief overview of the structure of this thesis. To lay
the ground, we will review some background material and the original AdS/CFT
duality in Chap. 2, where we will then further discuss the more general holographic
dictionary that we use in our investigations.

Hot: Heavy Quarks in Strongly Coupled Plasmas

In the first main part, we study the physics of heavy quarks in strongly coupled
plasmas described by holography. In particular, we will focus on heavy quark–anti-
quark bound states, i. e., quarkonia, and single heavy quarks. These are important
probes of the quark–gluon plasma.
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We will start in Chap. 3 with a discussion of heavy-ion collisions and the quark–
gluon plasma as the motivation for our work. Next, in Chap. 4 we will introduce
our various holographic models for the hot strongly coupled plasma. This large
class of models includes conformal N = 4 supersymmetric Yang–Mills (SYM) the-
ory and non-conformal deformations of that theory. In particular, all models include
a chemical potential that enables us to study finite-density effects. We will further
discuss the holographic setup for the description of heavy quarks. Our investigation
of a heavy quark–anti-quark pair (QQ̄) is based on the computation of distance-
dependent energies, some of which can be interpreted as model potentials. This
is the topic of Chap. 5. We thoroughly review the holographic procedure used to
compute the free energy of a heavy quark–anti-quark pair in the strongly coupled
plasma. We will point out an essential constraint on the necessary renormalization of
the free energy and advocate a generally applicable holographic scheme that makes
sure that constraint is satisfied. This renormalization scheme differs from the one
commonly used in the literature. We will show that the latter scheme does not give
rise to the free energy but rather a binding energy. We will then explore the impli-
cations of these general arguments which to the best of our knowledge have not been
fully discussed in the literature so far. We will find qualitative agreement between
the free energy and related thermodynamic quantities computed in our holographic
models and in lattice QCD. We will further perform a similar analysis for single
heavy quarks in the medium. In lattice QCD, Taylor coefficients of an expansion
of the QQ̄ free energy for small chemical potential can be computed, though the
so-called sign problem generally impedes access to regimes of non-zero chemical po-
tential. A detailed comparison of the leading non-trivial coefficient in lattice QCD
and our holographic models in Chap. 6 will show that our holographic bottom-up
chemical potential indeed captures essential aspects of the baryon chemical potential
in QCD. Equipped with this result, in Chap. 7 we will study, in the whole plane
of chemical potential and temperature, the running coupling αQQ̄ derived from the
QQ̄ free energy. αQQ̄ clearly exhibits the effects of the non-conformal deformation
and medium-induced screening on the QQ̄ interaction, and allows to study the inter-
play of these effects. Our holographic models contain a parameter λ related to the
coupling strength in the boundary theory. Throughout Part I we will constrain the
range of values of λ by comparison of various observables to lattice QCD. We will
generally find large values for λ, consistent with general expectations. We summa-
rize our findings regarding heavy quarks in strongly coupled plasmas with non-zero
chemical potential in Chap. 8.

Cold: Non-Equilibrium Dynamics in a Holographic Superfluid

In the second part of this thesis, we make use of holographic duality to investigate
the non-equilibrium real-time dynamics of a strongly coupled bosonic superfluid in
two spatial dimensions. We will study the relaxation of the system from quench-like
far-from-equilibrium initial states that contain a large number of quantum vortices
which are topological collective excitations of a superfluid and are related to the
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1 Introduction

phenomenon of superfluid turbulence. In the introductory chapter 9 we discuss the
physical motivation for our investigation. In Chap. 10 we introduce the holographic
model for the superfluid and discuss its equilibrium properties and the phase tran-
sition to the superfluid state. We derive the full equations of motion of the system
which are coupled non-linear partial differential equations, and we discuss how they
are solved numerically. Results of our numerical simulations of non-equilibrium
dynamics are discussed starting in Chap. 11. In particular, we first focus on statis-
tical properties of the vortex distribution in the superfluid, and then on aspects of
quantum turbulence visible in the momentum-space occupation number spectrum
of microscopic excitations. We conclude that in the late-time stage of the evolution
(a notion which we quantify) the system enters a universal non-equilibrium regime
irrespective of the details of the initial conditions. We study this universal regime
in detail in terms of scaling exponents of observables with respect to momenta and
time and interpret it as a so-called non-thermal fixed point in Sec. 11.5. There we
also give the first discussion of this general concept from the holographic perspective.
While qualitative features of the non-equilibrium dynamics and the characteristics of
the universal regime are expected to be independent of the choice of the temperature
used in the simulations, in Chap. 12 we assess the robustness of our conclusions by
investigating the system at further temperatures within the superfluid phase. More-
over, we estimate the temperature dependence of certain non-universal quantities
characterizing the evolution of the vortex distribution. We summarize our findings
regarding the non-equilibrium dynamics of a holographic superfluid in Chap. 13.

Finally, Chap. 14 contains a discussion of our main results and an outlook. Var-
ious technical details are discussed in four appendices. Appendix A contains our
conventions and some identities used in gravity computations. Details concerning
the holographic models employed in the investigations in the first part of this thesis
and for the computation of an observable studied in that part are given in Appen-
dices B and C, respectively. In Appendix D we give further details regarding our
numerical methods for the computation of equilibrium properties and for the simu-
lation of the non-equilibrium dynamics of the holographic superfluid in the second
part of this thesis.
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2 Holographic Duality

In this chapter, we review the basic features of gauge/gravity or holographic duality
that we will need in this thesis.

In the first section 2.1, we introduce basic notions from string theory (Sec. 2.1.1),
and motivate (Sec. 2.1.2) the original AdS/CFT correspondence that essentially re-
lates four-dimensional N = 4 supersymmetric SU(Nc) Yang–Mills (SYM) theory,
which is a conformal field theory (CFT), to type IIB string theory in five-dimensional
anti-de Sitter (AdS) spacetime. We give some details concerning the N = 4 SYM
theory and AdS spacetime in Sec. 2.1.3. In this work, however, we will use a gener-
alized notion of gauge/gravity duality as we study deformed holographic models for
the physics of four-dimensional strongly coupled plasmas (Part I) and the so-called
‘holographic superfluid’ model for superfluids in two spatial dimensions (Part II).
Therefore, in the second section 2.2 of this chapter we review central concepts of the
‘holographic dictionary’ that are believed to hold under more general circumstances
than those of the prototypical N = 4 SYM/AdS5 case reviewed in the first section.
Let us note here that, despite a large body of evidence for its correctness has been
accumulated (see for instance [31] and references therein), the AdS/CFT duality
still remains a conjecture, i. e., it is not rigorously proven.

The AdS/CFT dualitya is a concrete realization of the ideas formulated in the
holographic principle. This principle has been put forward by ’t Hooft [32] and
Susskind [33] and holds that it should be possible to describe a theory of quantum
gravity in D+1 spacetime dimensions (the so-called bulk) by a quantum field theory
in a related D-dimensional spacetime (generally called the boundary), which acts as
a ‘screen’ onto which the bulk dynamics is projected. In general, the degrees of
freedom in the higher- and lower-dimensional theories will be different, but the two
theories are physically equivalent.

Within gravity, early hints towards holography appeared in the context of a semi-
classical treatment of black hole physics. Bekenstein [34] and Hawking [35] discov-
ered that a black hole is a thermodynamic object. In particular, an entropy can be
assigned to it [34] which is given by

S = A

4GN
, (2.1)

where A is the area of the black-hole horizon and GN is the Newton constant. A
very remarkable feature of this equation is that the entropy scales with the area of

aAn alternative name is AdS/CFT correspondence or Maldacena conjecture. More generally, one
speaks of gauge/gravity duality, also called gauge/string duality or, encompassing all of the
previous cases, holography.
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2 Holographic Duality

the black hole instead of its volume. This hints at a description of the physics of
the black hole in terms of degrees of freedom ‘living’ on its horizon which has one
dimension less than the inside of the black hole.

On the field-theory side, an early indication towards gauge/string duality was
found by ’t Hooft [36]. He realized that the diagrams of non-Abelian gauge theory
with Nc colors organize themselves according to their topology in the limit Nc →∞
and observed that this bears a close resemblance to the perturbative expansion in a
quantized theory of closed strings.

In fact, it was within string theory that the AdS/CFT duality, as the first example
of a gauge/string or gauge/gravity duality, has been derived by Maldacena [1]. We
will review the essential ideas of this derivation in the following section.

Throughout this thesis we will set the constants c = ℏ = kB = 1, and work in
the units thus specified. Occasionally, we will in addition set the so-called AdS
radius to unity, LAdS = 1. We work with metric signature (− + · · ·+), and use
the sign conventions for gravity of Misner, Thorne, and Wheeler [37]. The explicit
expressions that we use for the Christoffel symbols and various tensors of general
relativity are given in Appendix A.

2.1 AdS/CFT Duality

While we will be using a generalized notion of gauge/gravity duality for our applica-
tions in this thesis, the ‘cleanest’ case is the original AdS/CFT duality conjectured
in 1997 by Maldacena [1]. Thus, in this section we focus on that example of a
holographic duality.

2.1.1 String Theory

The AdS/CFT duality has been derived in the framework of supersymmetric string
(superstring) theory that is formulated in ten-dimensional spacetime (for an intro-
duction, see for instance the textbooks [38–40]). Therefore, to start with, in this
section we briefly review those features of string theory that are important for the
derivation of the AdS/CFT duality and for our further purposes in this thesis.

Strings come in two topologies, they are either open or closed. There are five
different consistent superstring theories that are related to each other through a
web of dualities. While string theory has been formulated originally as a theory of
quantized one-dimensional strings, it was realized starting from the seminal paper
by Polchinski [41] that it also contains higher-dimensional non-perturbative objects
called Dirichlet branes (D-branes). These are higher-dimensional ‘membranes’ in
spacetime on which open strings can end, and are dynamical objects themselves. A
D-brane with p spatial dimensions is called a Dp-brane for short.

As strings propagate through D-dimensional spacetimeb, they trace out a two-
bFor superstring theory, D = 10. We use general D here since we will eventually use the Nambu–

Goto action (2.2) for strings in (D = 5)-dimensional spacetime.
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2.1 AdS/CFT Duality

dimensional worldsheet that can be described by an embedding function XM (σa)
with M = 0, 1, . . . , D − 1 and a = 0, 1. In a direct generalization of the physics of
a point particle with a one-dimensional worldline, the classical physics of the string
follows from demanding that the area of the worldsheet be extremal on the classical
trajectory. This gives rise to the Nambu–Goto action

SNG = − 1
2πα′

∫
d2σ

√
−det gab , (2.2)

where 1/(2πα′) is the string tension and gab is the induced metric on the worldsheet,

gab = gMN
∂XM

∂σa

∂XN

∂σb
, (2.3)

with gMN the metric of the D-dimensional ambient spacetime. Upon quantizationc,
the string gives rise to ‘towers’ of excitations with masses m2 ∝ 1/α′, i. e., the
parameter α′ sets the fundamental energy scale 1/

√
α′ (or fundamental length scale

ls, writing α′ = l2s ) associated with the string. In particular, the excitation towers
include massless excitations. String interactions are described by the breaking and
merging of string worldsheets, and are controlled by the string coupling gs. In the
low-energy or ‘decoupling’ limit α′ → 0 the massive string excitations decouple from
the theory as their mass exceeds any finite energy scale. The remaining massless
excitations give rise to fields in spacetime and their dynamics can be described by
a low-energy effective action. For type IIB string theory which is the basis of the
AdS/CFT duality the low-energy effective theory is type IIB supergravity.

In contrast to α′, the string coupling gs is not an input parameter but is determined
dynamically by the dilaton ϕD which is one of the massless modes of closed strings
(see e. g. [39]; a nice discussion is also given in the lecture notes [42]). In particular,
a factor involving the dilaton enters the metric that is ‘seen’ by strings, i. e., the
metric in the Nambu–Goto action. In other words, the way we have written the
Nambu–Goto action in Eq. (2.2) assumes that the spacetime metric gMN be given
in the so-called string frame. An alternative frame is the so-called Einstein frame.
The two frames are related by a dilaton-dependent rescaling of the spacetime metric
(see e. g. [43]),

g
(s)
MN = e

4
D−2 ϕDg

(E)
MN , (2.4)

where the superscripts ‘s’ and ‘E’ indicate the string and Einstein frame, respectively.
Now, if we work in Einstein frame, using the Einstein-frame spacetime metric to
compute the induced metric on the string worldsheet according to Eq. (2.3), the
string dynamics is not governed by the action (2.2), but instead by

− 1
2πα′

∫
d2σ e

4
D−2 ϕD

√
−det g(E)

ab . (2.5)

cWe note that for the quantization of the string the Polyakov action is suited better than the
Nambu–Goto action (see e. g. [39]). It gets rid of the square root in the Nambu–Goto action
at the expense of introducing an auxiliary field. At the classical level, the two actions are
equivalent. For the computations in this thesis, we will be interested in classical strings, so we
can use either action. We will always work with the Nambu–Goto action which is simpler for
our purposes.
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2 Holographic Duality

Duality

Nc D3-branes

Free IIB SUGRA

Nc 3-branes

Free IIB SUGRA

LAdS

String-Theory
Perspective

Supergravity
Perspective

N = 4 SYM
on R1,3

(‘near horizon’)
IIB string theory
on AdS5 × S5

Figure 2.1: Sketch of the derivation of the AdS/CFT duality. There are two per-
spectives on the same physical setup. In the low-energy (‘decoupling’)
limit that is sketched, from either point of view there are two decoupled
theories, and free type IIB supergravity (SUGRA) is one of these in both
perspectives. The remaining theories on both sides (red) are identified
which yields the AdS/CFT duality. Figure adapted from [45].

Despite more complicated equations of motion due to the dilaton contribution, this
leads to the same string dynamics – the two frames are equivalent, but computations
may be simpler in one or the other. Whereas string dynamics is more naturally
studied in string frame, low-energy effective actions turn out to have a simpler form
in Einstein frame. We will further discuss this in the context of the construction of
our models in Sec. 4.1.

2.1.2 Motivation of the AdS/CFT Duality

Let us now review the basic idea of the derivation of the AdS/CFT duality. Good
reviews of the AdS/CFT duality, or gauge/gravity duality more generally, include
[4, 31, 44].

The AdS/CFT duality arises from taking the low-energy limit in two different
descriptions of D-branes and conjecturing that these are equivalent [1]. We consider
a stack of Nc coincident D3-branes in 10-dimensional Minkowski spacetime. We
have written the subscript ‘c’ in anticipation of the fact that Nc will turn out to be
the number of colors on the gauge-theory side of the duality. The physical setup is
sketched in Fig. 2.1. The presentation in the figure already assumes the low-energy
limit.

The first perspective is the string-theory perspective. It involves both open and
closed strings. Open strings have to end on the D3-branes, but the two ends of
an open string need not end on the same brane. Rather, for an open string there
are N2

c possible combinations for the two ends to connect to D3-branes which is
indicative of the N2

c ‘gluons’ of U(Nc). The open strings describe the fluctuations

8



2.1 AdS/CFT Duality

of the D-branes. There is a finite number of massless modes in the open-string
spectrum. Among these, in particular, are non-Abelian gauge fields, i. e., gluons. It
turns out [46] that the low-energy effective action of the open strings is the action
of N = 4 supersymmetric U(Nc) Yang–Mills theory on the worldvolume of the D3-
branes which is R1,3. The group U(Nc) can be written as U(Nc) = SU(Nc)×U(1),
and one can argue that the U(1), which corresponds to the center-of-mass motion of
the D3-branes [47], effectively decouples from the dynamics (see for instance [44]).
Therefore, in the following we will always consider N = 4 supersymmetric Yang–
Mills theory with gauge group SU(Nc). This theory is controlled by the coupling
constant gYM which is determined in terms of the string coupling by g2

YM = 4πgs.
The N = 4 supersymmetry gives rise to a global SU(4) so-called R-symmetry. We
will say more about this theory below in section 2.1.3. On the other hand, the
massless modes of the closed-string spectrum in this description give rise, in the
low-energy limit, to type IIB supergravity. Interactions in this low-energy effective
action are controlled by the ten-dimensional Newton constant G(10)

N which is given
by the string parameters α′ and gs (see e. g. [4]),

G
(10)
N = 8π6g2

sα
′4 . (2.6)

We see that G(10)
N vanishes in the low-energy limit, so that the supergravity theory

becomes free. (Recall that on the string-theory side this limit can be seen as α′ → 0.)
The Newton constant also controls the interactions between the open- and the closed-
string sectors. Consequently, in the low-energy limit the two sectors decouple. To
summarize, in the string-theory perspective, after taking the low-energy limit we
are left with two decoupled theories (see the left-hand side of Fig. 2.1): (i) N = 4
SYM on the (3 + 1)-dimensional worldvolume of the branes, and (ii) free type IIB
supergravity in the ‘bulk’ surrounding the branes.

The other perspective on the same physical setup is the (type IIB) supergravity
perspective. Strings will later re-appear in this perspective. First, let us concen-
trate on the spacetime geometry. The D3-branes are massive objects that distort
spacetime. In the supergravity language, the ‘D’ is usually left out, one speaks of
p-branes. The ten-dimensional metric sourced by Nc 3-branes is found [48] to be
given by

ds2 = 1√
H(r)

(
−dt2 + dx2

)
+
√
H(r)

(
r2 + r2 dΩ2

5

)
, (2.7)

H(r) = 1 + L4
AdS
r4 , (2.8)

where (t,x) = (t, x1, x2, x3) are the coordinates on the worldvolume of the branes,
r is the distance to the branes in the six-dimensional transverse space (r2 = y2

1 +
· · ·+ y2

6 with the transverse coordinates yi), and dΩ5 is the solid angle on the five-
dimensional sphere S5. The characteristic length scale LAdS is determined by the
string parameters inherited by the supergravity via

L4
AdS = 4πgsNcα

′2 . (2.9)

9



2 Holographic Duality

For r ≫ LAdS, i. e. far away from the branes, we have H(r) ≈ 1 and the metric
(2.7) reduces to the ten-dimensional Minkowski metric. On the other hand, in
the so-called ‘near-horizon’ region for r ≪ LAdS, i. e. close to the branes, we have
H(r) ≈ L4

AdS/r
4, and the metric (2.7) becomes

ds2 =
[
r2

L2
AdS

(
−dt2 + dx2

)
+ L2

AdS
r2 dr2

]
+ L2

AdS dΩ2
5 = ds2

AdS5 + ds2
S5 . (2.10)

In other words, the metric factorizes into the metric of five-dimensional anti-de Sit-
ter spacetime AdS5 and that of the five-dimensional sphere S5. Both parts have the
same ‘radius’ LAdS. This geometry is sketched in the right-hand side of Fig. 2.1.
While asymptotically flat, the spacetime develops a ‘throat’ along the radial coor-
dinate r that measures the distance from the branes. Excitations with some fixed
energy appear more and more red-shifted from the point of view of an observer
in the asymptotically flat region the deeper they are in the throat. Thus, in the
low-energy limit, there are two kinds of excitations that survive. On the one hand,
there are the supergravity modes in the asymptotically flat region. Their description
reduces to free type IIB supergravity. On the other hand, for r approaching zero,
i. e., ‘zooming into’ the near-horizon region, we can have excitations of arbitrary
proper energy. These excitations are those of type IIB string theory, the theory that
encompasses type IIB supergravity as its low-energy approximation. In the low-
energy limit, these two systems decouple from each other [49, 50]. To summarize, in
the supergravity perspective, after taking the low-energy limit we are left with two
decoupled theories (see the right-hand side of Fig. 2.1): (i) type IIB string theory in
the near-horizon region of the 3-branes whose geometry is AdS5 × S5, and (ii) free
type IIB supergravity in the asymptotically flat region far away from the branes.

If we compare the outcome of taking the low-energy limit in these two perspectives
on the stack of D3-branes, we see that from either point of view there are two de-
coupled theories. One of them is, in each case, free type IIB supergravity. Assuming
that the two descriptions of the D3-branes are equivalent, Maldacena conjectured
[1] that the remaining theories on both sides are dual, that is equivalent, to each
other. Schematically,

N = 4 SU(Nc) SYM in R1,3 ←→ type IIB string theory in AdS5 × S5 . (2.11)

This is the AdS/CFT duality conjecture. Let us mention already here that in a cer-
tain limit the right-hand side of the above duality will essentially reduce to classical
gravity on the AdS5 part of the full ten-dimensional geometry.

As we will see in the next section below, R1,3 is the boundary of the bulk spacetime
AdS5. Accordingly, N = 4 SYM is called the ‘boundary theory’ whereas the theory
in the bulk is called the ‘bulk theory’.

2.1.3 AdS Spacetime and N = 4 Supersymmetric Yang–Mills Theory
Now that we have motivated the AdS/CFT duality, let us have a closer look at each
of the two sides of the duality. In this section, we mainly follow [4].

10



2.1 AdS/CFT Duality

Let us first discuss AdS spacetime. For future reference – anticipating that we
will work in AdS4 in Part II – we consider D-dimensional AdS spacetime. We also
introduce the notation d ≡ D−1 which is the dimensionality of the boundary theory.
For concreteness and the connection to N = 4 SYM, however, for now just think of
D = 5 and d = 4. Let us consider the D-dimensional Einstein–Hilbert action with
a cosmological constant,

S = 1
16πG(D)

N

∫
dDx
√
−g (R− 2Λ) , (2.12)

where G
(D)
N is the D-dimensional Newton constant, g is the determinant of the

metric gMN and R is the associated Ricci scalar. (See Appendix A for our gravity
and index conventions.) The cosmological constant is negative,

Λ = −(D − 1)(D − 2)
2L2

AdS
. (2.13)

This, in particular, yields Λ = −6/L2
AdS for D = 5 (AdS5) and Λ = −3/L2

AdS for
D = 4 (AdS4). The equations of motion associated with the action (2.12) are the
D-dimensional vacuum Einstein equations with a cosmological constant,

RMN −
1
2R gMN + Λ gMN = 0 , (2.14)

where RMN is the Ricci tensor. AdSD spacetime is their maximally symmetric
solution with the metric

ds2 = L2
AdS
z2

(
−ηµν dxµ dxν + dz2

)
, (2.15)

where ηµν is the d-dimensional Minkowski metric, and xµ = (t,x) = (t, x1, . . . , xd−1).
The holographic coordinate z is the ‘inverse’ of the coordinate r that we used in the
AdS5 metric in Eq. (2.10),

z = L2
AdS
r

. (2.16)

In the further course of this thesis, we will only use the coordinate z. It varies
between 0 and infinity. The coordinates employed in Eq. (2.15) are called Poincaré
coordinates. The conformal boundaryd of this spacetime is at z = 0 and the metric
induced on it is, up to a Weyl rescaling, the standard Minkowski metric which is
identified with the metric of the boundary theory.

Note that the metric (2.15) is invariant under the scale transformation

(t,x)→ C(t,x) , z → Cz , (2.17)
dA mathematical definition of the conformal boundary is somewhat subtle and these details will

not be important for us. A definition and further information can for instance be found in [51].
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2 Holographic Duality

for any constant C > 0. This is reflected in scale invariance of the dual theory
(think N = 4 SYM). In fact, as is nicely discussed in [4], assuming the existence
of a D-dimensional gravity dual of a d-dimensional quantum field theory invariant
under Poincaré transformations and the first part of the scale transformation (2.17),
the form of the metric (2.15) can already be inferred.

Let us now turn to the other side of the duality (2.11), namely four-dimensional
N = 4 maximally supersymmetric SU(Nc) Yang–Mills (SYM) theory. Let us briefly
review its essential features, after which we will turn to the relation of its parameters
to those of the bulk theory. N = 4 SYM is a non-Abelian gauge theory that has
four Weyl spinors and six real scalar fields in addition to the gauge field. All fields
transform in the adjoint representation of the gauge group SU(Nc). The theory is
conformal, i. e., its β-function vanishes identically and the coupling does not run.
The conformal group in four dimensions is SO(4, 2), and this is also the isometry
group of AdS5. Moreover, the N = 4 supersymmetry gives rise to an SU(4) R-
symmetry group, and SO(6) ≃ SU(4) is the isometry group of the five-sphere S5.
Under the AdS/CFT duality, these isometries are identified with the symmetries of
the dual field theory [1]. For a detailed discussion of N = 4 SYM see for instance
the review [31]. We will discuss the question in which sense and to what degree
N = 4 SYM can be thought of as a model for QCD in Sec. 4.1.1. It is natural to
think of the field theory to ‘live’ on the boundary of the AdS spacetime which is
why it is often called boundary theory.

There are two parameters in N = 4 SYM, the Yang–Mills coupling gYM and the
number of colors Nc, but the theory is usually discussed in terms of Nc and the ’t
Hooft coupling λ ≡ g2

YMNc. The latter controls the perturbative expansion of the
Yang–Mills theory [36]. The boundary-theory parameters can be expressed in terms
of bulk parameters (see e. g. [4]),

g2
YM = 4π gs , (2.18)
√
λ = L2

AdS
α′ . (2.19)

We recall that gs is the string coupling and α′ yields the string tension 1/(2πα′).
The first of these relations arises in reducing the open-string spectrum on the D3-
branes to its low-energy effective description, see the discussion before Eq. (2.6).
The second relation follows from using the first relation and Eq. (2.9).

The strong form of the AdS/CFT duality holds that the duality (2.11) is valid
for all values of the parameters λ and Nc (for this statement and discussions of
the weaker forms reviewed next see for instance [44]). A somewhat weaker form
is that it only holds in the limit Nc → ∞. This is, in fact, a requirement for the
supergravity description used in the previous Sec. 2.1.2 to hold. A way to see that
is by noting from Eqs. (2.6) and (2.9) that the dimensionless coupling parameter
G

(10)
N /L8

AdS = π4/(2N2
c ). Viewed this way, taking the limit G(10)

N → 0 in which the
two theories in the supergravity description decouple entails the limit Nc →∞. An
even weaker form assumes that, besides Nc → ∞, also λ is taken to be large. This
is the form that we will use.
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2.2 Elements of the Holographic Dictionary

As we see from the relation (2.19), λ = L4
AdS/α

′2 = L4
AdS/l

4
s , so this parameter

measures the curvature scale of the AdS spacetime in units of the string length scale.
If the limit Nc → ∞ is taken and λ is tuned to large values λ ≫ 1, the strings in
the dual string theory behave classically and all their massive excitations decouple.
We are left with a weakly coupled classical theory of gravity coupled to various
matter fields (see for instance [4]). On the other side of the duality, for large λ, the
gauge theory is strongly coupled, so perturbation theory breaks down. We conclude
that the AdS/CFT duality is a strong/weak duality. This is what makes it such a
powerful tool for applications. For many purposes, the field dynamics in the internal
manifold S5 can be ignored (see for instance [4]). This reduces the duality (2.11) to
the duality of large-Nc, strongly coupled N = 4 SYM with a gravity theory in AdS5,
and makes manifest its status as a realization of the holographic principle discussed
above.

2.2 Elements of the Holographic Dictionary
In the previous section, we have reviewed the basic ideas leading to the AdS/CFT
duality as conjectured by Maldacena [1]. Further fundamental properties of the
duality were found in [2, 3]. Since those early works, a number of further holographic
dualities have been found, see for instance [52–54] and the (early) review [44].

In this thesis, we will work with a generalized notion of gauge/gravity duality. In
essence, we will take the generic elements of the AdS/CFT duality, and use them
to construct phenomenological models for the physical systems of interest. There
is a huge literature on ‘bottom-up’ holography that is done in this spirit, and this
will be discussed further in the context of our applications in the parts I and II. As
the crucial feature of the AdS/CFT duality, throughout this thesis we shall always
assume that the field theories of interest are strongly coupled and can be described
by a dual classical theory of gravity, generally including additional matter fields, in
an asymptotically AdS spacetime of one higher dimension.

Let us, then, collect in this section further elements of the ‘holographic dictionary’
that can be gathered from the prototype AdS/CFT duality discussed in Sec. 2.1,
and that we will apply in more general contexts in our work.

UV/IR relation. The first general concept we discuss is the UV/IR relation [1,
55, 56]. Roughly speaking, it holds that the holographic coordinate z in the AdS
metric (2.15) can be interpreted as being dual to an energy scale in the boundary
theory. UV (IR) physics in the boundary theory is mapped to processes in the bulk
at small (large) values of z. Explicitly, physics at a characteristic energy scale E in
the boundary theory should be dominated by bulk physics at a characteristic ‘depth’

z ∼ 1
E

(2.20)

in the bulk. We will several times draw on this idea for the interpretation of our
results.
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2 Holographic Duality

Field–operator correspondence. Another important concept is the field–operator
correspondence [2, 3, 57]. A field in the bulk is associated with an operator in the
boundary theory. In particular, a bulk scalar Φ is dual to a scalar operator O in the
boundary theory, and a bulk vector AM is dual to a vector operator jµ. Importantly,
if jµ is the conserved current associated to some global symmetry in the boundary
theory, the bulk vector AM will be a gauge field. Let us in the following illustrate
the field–operator correspondence at the example of a scalar field. The mass mΦ of
the bulk scalar field encodes the scaling dimension of the dual operator [2, 3]. For a
scalar field/operator, the scaling dimension ∆ is generallye the larger root of

m2
ΦL

2
AdS = ∆(∆− d) , (2.21)

where d is the dimension of the boundary theory.
For example, we might introduce a massive dynamical scalar in the bulk action

(2.12). Solving the associated coupled Einstein and Klein–Gordon equations we
can construct a gravity dual for N = 4 SYM deformed by the operator dual to
the bulk scalar (see for instance [44]). If the scaling dimension of the operator is
∆ < d, the scalar will approach zero as z → 0 and we will obtain a metric that
approaches the AdS metric as z → 0, but deviates from it deeper in the bulk. (We
will construct explicit examples in Part I.) We call such a spacetime asymptotically
AdS. According to the UV/IR relation discussed above, this signifies that in the
UV the boundary theory reduces to the undeformed conformal theory but deviates
from it for smaller energy scales. In this sense, the gauge/gravity duality can be
interpreted as a “geometrization of the renormalization group flow” [4].

An operator with ∆ < d is called a relevant operator since, as we have discussed,
it induces a deformation that becomes important in the IR. For further discussion
of deformations in the context of gauge/gravity duality see for instance [44]. The
condition ∆ < d translates via Eq. (2.21) to m2

Φ < 0 for the bulk scalar field. We
note that the mass-squared of a scalar field in AdS can be negative without rendering
the spacetime unstable, as long as it satisfies the so-called Breitenlohner–Freedman
bound [58–60],

m2
Φ ≥ −

d2

4 . (2.22)

Sources and expectation values. Generally, the value of a bulk field at the bound-
ary z = 0 determines (up to a rescaling by z) the value of the source conjugate to
the dual operator. Computing the ‘response’ of an operator in the boundary theory
to a given source then translates in the bulk to a boundary-value problem for the
equation of motion of the associated bulk field. In general, these equations are par-
tial differential equations, and they are of second order in the holographic coordinate
z. We will encounter both these features explicitly in our study of non-equilibrium

eUnder certain conditions [57], one may also choose what is called the ‘alternative quantization’,
and associate to the bulk scalar an operator with scaling dimension equal to the smaller root of
Eq. (2.21). In this thesis, however, we will stick with the standard choice.
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dynamics in Part II. Besides the boundary condition at z = 0 one typically imposes
the second boundary condition at the black-hole horizon, to be discussed below. The
response of the boundary-theory operator, i. e. its one-point quantum expectation
value in the presence of the source can now be extracted from the near-boundary
behavior of the dual field [61, 62]. The general procedure to derive these relations
and higher-order correlators is called holographic renormalization (for a review see
[63]), but we will not need these details here.

As an example, let us again consider a bulk scalar field, say Φ. The source η
conjugate to the dual operator is determined by the value of the scalar at the z = 0
boundary via (see for instance [4]),

η(xµ) = lim
z→0

z∆−dΦ(xµ, z) , (2.23)

where xµ are the coordinates of the boundary theory and ∆ is determined from
Eq. (2.21) as discussed above. Eq. (2.23) projects out of the series expansion of
Φ around z = 0 the coefficient of the leading-order term (see for instance [4]).
The expression for the expectation value involves the coefficient of the next-order
subleading term. However, it depends on further details of the bulk action, so we
cannot make a general statement here. We will discuss and use an explicit example
in Part II, where we study the holographic superfluid defined by the action (10.1).

Non-zero temperature and chemical potential. For the applications of holo-
graphic duality that we have in mind, we are not actually interested in the vacuum
of the boundary theory. Rather, we want to study physics at non-zero temperature
and chemical potential.

The bulk theory can be prepared at non-zero temperature by putting a black
hole (often actually a black brane) inside the bulk. The Hawking temperature [35]
associated with the black hole is identified with the temperature of the boundary
theory [64]. A heuristic explanation for this procedure is that the black hole emits
Hawking radiation and thus heats up the boundary where the field theory ‘lives’.
The Hawking temperature of a black hole can be computed from the formula

T = κ

2π , (2.24)

where κ is the surface gravity [35]. Alternatively, it can be computed by demanding
regularity of the analytic continuation of the metric into the Euclidean-time do-
main (see for instance [4]). We will make this more concrete in the context of our
models for strongly coupled plasmas in Sec. 4.1, where we will explicitly construct
(asymptotic) AdS spacetimes with black holes.

A chemical potential, on the other hand, can also be introduced in a straight-
forward way (see e. g. [4]), applying the field–operator correspondence as well as
the general relation of boundary values of bulk fields and boundary-theory sources
discussed above. We consider a U(1) global symmetry in the boundary theory and
want to turn on a chemical potential µ which is a source for the associated charge
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2 Holographic Duality

density. From what we discussed above, the conserved boundary-theory vector cur-
rent jµ corresponding to that symmetry is dual to a U(1) gauge field AM in the
bulk. Thus, to implement a chemical potential in the boundary theory, one adds
such a gauge field to the bulk action. Then, the value of the A0 component (the
‘electrostatic’ potential) of the bulk gauge field at the z = 0 boundary yields the
source for the charge density j0, explicitly

lim
z→0

A0(z) = µ . (2.25)

This should be thought of as a boundary condition to be imposed on the bulk
gauge field. Depending on the normalization of the gauge field in the bulk action,
a factor LAdS might appear on the right-hand side of Eq. (2.25). Since we will not
consider spatially varying chemical potentials, we have suppressed the dependence
on the boundary-theory coordinates xµ. The boundary condition (2.25) generally
leads to a non-zero electric flux in the bulk so that there have to be charged sources
somewhere in the bulk. In this thesis, we will encounter both charged black holes
(Part I) and charged bulk condensates (Part II) as sources for the gauge field.

We now have all necessary ingredients to start applying the gauge/gravity duality
to the study of strongly coupled systems. In the following part I we will study
holographic models of strongly coupled plasmas to learn about heavy quarks and
quarkonia in the quark–gluon plasma, while in Part II we study non-equilibrium
dynamics in a holographic superfluid in 2 + 1 dimensions.
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Part I

Hot: Heavy Quarks
in Strongly Coupled Plasmas
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3 Introduction and Overview
We now start with our investigation of the physics of strongly coupled systems
described by holography. In this part, we focus on strongly coupled plasmas, and in
particular study heavy quarks in these media. Our central theme will be the search
for universal behavior. We start with a discussion of heavy-ion collisions and the
quark–gluon plasma which are the motivation for our work.

3.1 Motivation
When normal matter is heated up to temperatures in excess of about 150 MeV (i. e.,
above 1.75 × 1012 K, which is five orders of magnitude hotter than the core of the
sun) a new state of matter is formed. At lower temperatures, the fundamental
degrees of freedom of quantum chromodynamics (QCD), quarks and gluons which
carry a charge called ‘color’, are not observed as single particles but are rather
confined into color-neutral bound states called hadrons. However, at a temperature
around 150–180 MeV a rapid crossover into a new deconfined phase takes place,
as is theoretically indicated by studies (e. g. [65, 66]) in lattice QCD, a numerical
approach to evaluating the partition function of QCD ([67]; see, for instance, [68] for
a general introduction and [69, 70] for reviews of finite-temperature lattice QCD).
The name ‘quark–gluon plasma’ associated with this high-temperature phase was
introduced by Shuryak [71].

The quark–gluon plasma is experimentally studied by means of ultrarelativistic
heavy-ion collisions. Such experiments are currently being undertaken at the Rel-
ativistic Heavy Ion Collider (RHIC) in Brookhaven, NY, USA, and at the Large
Hadron Collider (LHC) of the European Organization for Nuclear Research CERN
in Geneva, Switzerland. While at RHIC gold ions (as well as other ion species) are
collided at nucleon–nucleon center-of-mass energies √sNN around 200 GeV, the LHC
has worked with lead ions at much higher energies of √sNN = 2.76 TeV and will soon
operate with lead ions at roughly twice that energy.

A heavy-ion collision is sketched in Fig. 3.1. The two colliding heavy nuclei over-
lap in an almond-shaped region whose size and aspect ratio depend on the impact
parameter, the distance between the ions’ centers. A lot of energy is deposited in-
side the overlap region, where a hot and dense medium is produced. It appears
that the medium quickly thermalizes at least locally and reaches temperatures of
several hundreds MeV, far above the deconfinement crossover temperature. As the
medium rapidly expands outwards it cools and undergoes a complicated evolution;
eventually, inelastic collisions cease (chemical freezeout). The system hadronizes,
and in the detectors surrounding the collision point, many thousands of particles
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Figure 3.1: Sketch of a heavy-ion collision (figure by C. Ewerz, K. Schade, and Differ-
ent Arts, 2011). The quark–gluon plasma is produced in the overlapping
region of the nuclei, and rapidly expands after the collision, as indicated
by the small arrows.

are detected in a single collision for small impact parameters [72]. It is nowadays
generally accepted that the heavy-ion collision experiments at RHIC and LHC have
in fact succeeded at producing the QGP, and there are indications that, before those
experiments, the Super Proton Synchrotron (SPS) at CERN produced the QGP in
the 1990’s [73–75].

Beyond the thermodynamic regime of the QGP that has been investigated so far by
RHIC and LHC, namely very high temperatures but small net baryon density, future
lower-energy facilities like for instance the Facility for Antiproton and Ion Research
(FAIR) in Darmstadt, Germany, will investigate QCD matter in new regimes, where
a significant non-vanishing baryon (or quark) chemical potential can be expected.
Moreover, non-zero chemical potential is even currently being explored already in the
RHIC beam-energy-scan program at low energies √sNN = O(10 GeV) (see e. g. [76]).
This is part of an ongoing effort to explore the phase structure of QCD at non-zero
baryon chemical potential. A qualitative sketch showing some general expectations
regarding the QCD phase diagram is shown in Fig. 3.2. The figure gives a rough idea
of the regimes to be explored in future FAIR experiments and also of the regimes
explored with high-energy collisions at RHIC and LHC. An important question for
those experiments concerns the existence and properties of the critical endpoint,
at which the crossover transition from hadronic matter to the QGP is expected to
sharpen into a true phase transition.

Huge progress in the experimental study of the properties of the QGP in heavy-ion
collisions has been made over the last decade. It was found both at RHIC [21–24]
and later at higher energies at the LHC [25, 77–82] that the QGP is strongly coupled
(also see e. g. [83, 84] for discussions from a theoretical perspective; [28, 29] for
recent reviews of RHIC and/or LHC results; and [85] for an up-to-date overview of
the field of nucleus–nucleus collisions at large). This conclusion rests upon many
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Figure 3.2: Sketch of the phase diagram of QCD (figure by GSI, Darmstadt). The
net baryon density is directly related to the baryon chemical potential.

experimental observations and a close interplay with theoretical modeling. Let us
just mention two key observations.

Firstly, the bulk evolution of the medium can be modeled by hydrodynamics (see
e. g. [86] for a recent review) using a very small ratio of the shear viscosity η to
entropy density s. This indicates that the medium behaves like a liquid rather than
a gas. In fact, the small observed value of η/s hints at an extremely small mean free
path of the constituents of the medium (see e. g. [87]) which implies that they are
strongly interacting, and even calls into doubt a description of the medium based
on the concept of quasi-particles. The hydrodynamic behavior manifests itself in
collective anisotropic flow [25, 27, 77, 78]. This means that the medium is very
efficient at transforming an initial spatial anisotropy, clearly present in collisions
with non-zero impact parameter as illustrated in Fig. 3.1 (almond-shaped overlap),
into an anisotropy in momentum space which is measured in terms of the Fourier
coefficients of the azimuthal distribution of the particle yield.

Secondly, the yield of heavy quarkonia (such as J/ψ or Υ) is strongly suppressed
relative to proton–proton collisions [88–91]. The original idea is that the interaction
between the valence quarks in the quarkonium is screened by the medium [92] which
leads to ‘melting’ at high temperatures. However, in the study of the physics of
actual heavy-ion collisions many complications arise beyond this simple picture (see
e. g. [93, 94]). There are many open questions regarding the physics of quarkonia and
the QGP. In this thesis, as one important aspect, we will investigate the interaction
of a heavy quark–anti-quark pair immersed in a strongly coupled plasma. In general,
we will also include a non-zero chemical potential in our investigations.

The fact that the quark–gluon plasma that is produced and studied in heavy-
ion-collision experiments is strongly coupled makes a theoretical description quite
demanding, as many conventional methods rely on a perturbative expansion in terms
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3 Introduction and Overview

of the coupling constant as a small parameter. Holography is ideally suited to
deal with strong-coupling physics. There are various further theoretical methods
besides holography to deal with strongly coupled physics relevant for the QGP.
These include lattice QCD, mentioned above, which relies on a discretization of
spacetime and extensive numerical simulations, and functional quantum-field-theory
methods like the functional renormalization group ([95], for reviews see e. g. [96–98])
or Dyson–Schwinger equations ([99, 100], for reviews see e. g. [101, 102]). Functional
methods have, for instance, recently been applied for a computation of η/s in finite-
temperature Yang–Mills theory [103].

Lattice techniques, while in principle allowing for an ab initio approach to QCD,
rely on an Euclideanization of the theory and hence only give direct access to static
phenomena. Furthermore, including a non-zero chemical potential in lattice studies
is notoriously difficult due to the so-called ‘sign problem’ of the fermion determinant
(see e. g. [104] for a review). In contrast, in holography it is straightforward to include
a chemical potential, as we have reviewed in Sec. 2.2.

Heavy quarks and heavy quarkonia are important probes of the QGP, as heavy
quarks are produced early on in the collision and experience the whole evolution
of the medium (see e. g. [28] and references therein). It is therefore crucial to un-
derstand their behavior in a strongly coupled medium, and holography has been
applied to many aspects related to heavy quarks. As we will review in Sec. 4.2, in
holography a heavy quark in the boundary theory is dual to an open, macroscopic
string in the bulk [105] with one endpoint located at the boundary. That endpoint
can be pictured as the point-like quark. A bound pair made up of a heavy quark and
its anti-quark, as a model for quarkonium, is represented by a string with both end-
points on the boundary. Using this holographic setup, it becomes possible to study
many quantities of interest for quark–gluon plasma phenomenology. An example is
the screening distance of a quark–anti-quark pair, defined as the length scale where
the quark–anti-quark free energy transitions from roughly Coulombic behavior into
exponentially screened behavior, to be further discussed below. The screening dis-
tance can be computed from the bulk equation of motion of the string connecting
the quarks, and a lot of work has been done on this subject in the gauge/gravity
literature (see e. g. [106–113], and [4] for a review), if mostly at vanishing chemical
potential. As another example, one can study the energy loss of a single heavy
quark traversing the medium at some finite velocity by studying, in the bulk, the
energy flowing down the string whose endpoint on the boundary represent the quark
[114, 115]. This setup gives rise to a so-called ‘drag force’ and has also been widely
studied (see e. g. [109, 116–124], and [4] for a review).

In this thesis, in the spirit of the so-called universality approach, we study a large
class of non-conformal models that are deformations of N = 4 SYM. We generally
include a chemical potential. We will discuss our approach and its relation to other
approaches that are pursued in the gauge/gravity literature in the following section
3.2, after which we will introduce our models and the holographic description of
heavy quarks in Chap. 4. For our models, we have extensively studied the behavior
of the QQ̄ screening distance and of the heavy-quark drag force before [45]. We
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have found intriguing patterns in a systematic investigation of the effect of non-
conformality and chemical potential on these observables. At vanishing chemical
potential, it turns out, as found by the authors of [110, 111, 113], that in a large class
of non-conformal deformations of N = 4 SYM the screening distance universally
increases upon the introduction of non-conformality, such that the screening distance
in N = 4 SYM constitutes a lower bound. Now, this continues to hold at small non-
zero chemical potential but there are violations of the lower bound in certain models
at larger chemical potential which are, however, small [45].

While the screening distance is just a single length scale, more can be learned
about the heavy quark–anti-quark interaction and how it is affected by the strongly
coupled plasma by studying length-scale-dependent heavy-quark energies, and in this
thesis we turn to these observables. This will be the topic of Chap. 5. While at zero
temperature a systematic framework exists (see for instance [125] for a review) that
allows to derive an effective potential to describe the interaction of quarks bound
in heavy quarkonia, the situation at non-zero temperature is ambiguous, and it is
not fully understood how to determine an effective potential (see e. g. the discus-
sion in [4]). Here, we will take a more pragmatic approach and study different
energies that can be associated with a heavy quark–anti-quark pair. These are the
quark–anti-quark free energy and the binding energy, as well as the internal energy.
We will thoroughly discuss the holographic computation of the QQ̄ free energy and
the binding energy in Sec. 5.1. There has been, apparently, some confusion in the
gauge/gravity literature with respect to the distinction of these two quantities. We
will point out an essential property of the free energy and show how to make that
manifest in the holographic description. In Secs. 5.2 and 5.3 we will show that the
free energy computed in holography with the correct procedure discussed before
qualitatively behaves like the one obtained in lattice QCD. Furthermore, we will
compare the behavior of the free energy and the binding energy both in conformal
and non-conformal models. Having validated the procedure for the holographic com-
putation of the free energy, we make will use of the fact that it is a thermodynamic
potential and investigate in Sec. 5.4 the associated QQ̄ internal energy and entropy.
After that we turn to single quarks. In Sec. 5.5 we study their free energy, internal
energy, and entropy in the strongly coupled plasma. That closes our basic discussion
of heavy-quark energies.

The two following chapters 6 and 7 are dedicated to a more detailed study of
the quark–anti-quark free energy. The QQ̄ free energy has been computed in lat-
tice QCD for small values of the baryon chemical potential, where it is possible
to circumvent the sign problem by a Taylor expansion whose coefficients can be
evaluated at vanishing chemical potential. While in holography there is no such
restriction on the value of the chemical potential, in Chap. 6 we nevertheless focus
on small chemical potentials in holography, too. Comparing the holographic results
to the lattice data, we will assess the important question how closely the chemical
potential introduced in our holographic models can model the baryon (or quark)
chemical potential in QCD that we are ultimately interested in. Such a compari-
son has not been done in the literature so far. Subsequently, in Chap. 7 we will
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return to considering all values of the chemical potential. In that chapter we will
study the distance-dependent running coupling derived from the QQ̄ free energy.
This quantity elucidates the fine details of the quark–anti-quark interaction in the
strongly coupled plasma. It has been studied before in N = 4 SYM [126] and in
non-conformal models at vanishing chemical potential [113], but a holographic study
at non-zero chemical potential is performed here for the first time. In non-conformal
models at vanishing chemical potential the running coupling was found to feature a
universal maximum [113]. We will study this maximum in detail and quantitatively
compare its value to lattice-QCD data at vanishing chemical potential, and then
investigate the fate of the maximum at non-zero chemical potential. Finally, we will
study the length scale associated with the maximum and compare it to the screening
distance.

There are infinitely many possibilities how to construct holographic models that
are deformations ofN = 4 SYM. Thus, in spite of our including some general features
that are known to increase the similarity with QCD (discussed in Sec. 4.1), some
arbitrariness in our choice of models necessarily remains. We try to compensate for
that by performing a systematic investigation of our observables:

1. We will generally start by studying (often reviewing) the conformal case of
N = 4 SYM, and then ask:

• What is the effect of introducing non-conformality?

• Are there universal properties common to a large class of non-conformal
models?

2. We will vary the chemical potential that is included in all our models, and ask:

• What effect does the chemical potential have on our various observables?

In N = 4 SYM, the ’t Hooft coupling λ parametrizes the coupling strength, and it
has to be large for the classical-gravity approximation in the bulk to hold, as reviewed
in Sec. 2.1.3. In each of our non-conformal holographic models we have a parameter
λ that is analogously defined in the bulk, but there is no rigorous interpretation
of it in the respective boundary theory. In the course of our investigation, we will
compare our observables to lattice data, where available, and from this estimate the
value of the parameter λ. Then, comparing the estimates obtained from different
observables can serve as a coarse consistency test of our approach.

In this thesis, we will focus entirely on static quarks, but the extension to moving
quarks is straightforward along the lines of [106, 108]. We have previously studied
in detail the dependence of the screening distance and drag force on the velocity in
non-conformal models including a chemical potential [45].

We will close Part I with a summary of our findings in Chap. 8.
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3.2 Philosophy
In this section, we set out our approach and compare it to other approaches that
are used in studying strongly coupled plasmas via gauge/gravity duality.

We aim at describing physics in a strongly coupled, deconfined gauge theory
plasma akin to QCD. The original AdS/CFT correspondence, however, relates grav-
ity on AdS5 to large-Nc, strongly coupled N = 4 supersymmetric Yang–Mills (SYM)
theory which is a supersymmetric and conformal gauge theory. QCD has neither of
these properties. Therefore, to come closer to an effective model of QCD, we have
to break both supersymmetry and conformal invariance. Supersymmetry is already
broken by putting the theory at finite temperature. After introduction of a non-zero
temperature T the energy–momentum tensor of N = 4 SYM remains traceless. In
this sense, we still call the theory conformal, despite the presence of the scale T . We
may break conformality explicitly by introducing in the bulk description a scalar
field that is dual to a relevant operator and thus deforms the IR properties of the
boundary field theory, as discussed in Sec. 2.2. With this general idea in mind, there
are different approaches one can pursue:

• The more rigorous one is called the top-down approach. In this setting, one
usually starts from string theory and tries to modify the construction that
led to the original AdS/CFT correspondence. For instance, one can add ad-
ditional ‘flavor branes’ to introduce matter transforming in the fundamental
representation of the gauge group in the boundary theory [127]. An advantage
of this strategy is that one has relatively good control over the new physical
ingredients added to the boundary theory that one eventually wants to study.
A disadvantage is that calculations are usually quite complicated in such ap-
proaches. Holographic models set up in this way to capture some features
of QCD at vanishing and non-zero temperature include [52–54, 128, 129] and
[64, 130, 131], respectively.

• Another approach is the bottom-up approach. In contrast to the top-down
approach, here one typically does not attempt to derive an exact duality from
string theoretic arguments. Rather, one directly constructs an effective five-
dimensional model such that the dual theory captures the phenomenology of
interest. The arena for this are (asymptotically) AdS spacetimes as the original
AdS/CFT duality is formulated in AdS5 (more precisely, AdS5 × S5, but the
S5 is usually not considered in bottom-up studies). While such models can
be practical in terms of explicit calculations, the downside of this approach
is obviously that one loses knowledge of the characteristics of the dual theory
to a certain extent. Insight into some properties of the emergent ‘boundary
theory’ has to be gained from explicit calculations in the bulk rather than
being fixed a priori by construction.

In this thesis, we will be dealing with bottom-up models. Central to the effective
five-dimensional model is its geometry, described by the spacetime metric. A simple
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and straightforward way to obtain non-trivial models beyond the original AdS/CFT
duality is to simply alter the metric ‘by hand’. This has been done early on to build
holographic models that exhibit various QCD-like phenomena, see e. g. [132, 133] and
[116, 134–136] for studies at vanishing and non-zero temperature, respectively. Such
models, however, have the shortcoming that their thermodynamics is in general not
consistent, see for instance the discussion in [136]. Furthermore, in certain models
of this type, when considering moving probes inconsistent string configurations can
appear [124]. The reason for these issues is ultimately that the metric in these
models does not solve the Einstein equations. Therefore a better if more laborious
procedure is to derive the metric as a solution of the Einstein equations of a five-
dimensional gravity action. In order to construct a non-trivial modification of the
original correspondence, one adds additional fields to that action. The choice of
additional fields is motivated by the holographic dictionary that we discussed in
Sec. 2.2. Studies of this kind relevant to QGP phenomenology include [121, 122, 137–
141]. In this thesis, we will consider both an ad hoc model where the metric is
deformed by hand and various consistent models that we construct from a five-
dimensional action, discussed in the next chapter.

No matter how one chooses to construct a holographic model for a non-conformal
theory, constructing an exact dual to QCD, if one exists, seems out of reach at
present. Therefore, for our investigation we will follow a universality approach. This
notion is somewhat complementary to the distinction between the bottom-up and
top-down approaches. We do not aim primarily at obtaining the closest approxi-
mation of QCD possible in a holographic setting, with the various mismatches this
necessarily entails as of now. Rather, the idea is to study a large class of holographic
models and to search for behavior qualitatively or even quantitatively similar in all
of these models. Given that these models share some features with QCD, the hope
is that insights obtained in this way can be applied to QCD, too. The approach
relies on the observation that despite stark differences in the microscopic degrees of
freedom, different strongly correlated systems can give rise to the same collective
physics. In this way we argue that holographic models of strongly coupled gauge
theory plasmas can yield insight into the properties of the strongly coupled QGP ob-
served in heavy-ion collision experiments. For further discussion of the universality
approach see for instance [109, 142, 143].

A famous example for strong-coupling universality, obtained via the gauge/gravity
duality, is the universality of the ratio of the shear viscosity η to entropy density
s. It was observed that the ratio has the value η/s = 1/(4π) in quite different
field theories with holographic duals [144–147]. Motivated by this and results on
the corrections for η/s when relaxing the infinite-coupling limit [148], Kovtun, Son,
and Starinets (KSS) conjectured [30] that for all relativistic quantum field theories
at non-zero temperature and vanishing chemical potential there is a lower bound,
η/s ≥ 1/(4π). The bound should be saturated for theories possessing gravity duals.f

fMore precisely, it appears that η/s = 1/(4π) in all theories with Einstein gravity duals. Smaller
values have been found for Gauss–Bonnet or more general R2 gravity [149, 150]. However, it
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This result was later extended to non-zero chemical potential [152–155].
The comparison of experimental data and hydrodynamic models of the evolution

of the quark–gluon plasma (QGP) indicates that the QGP is the most perfect fluid
observed in nature thus far. By now, it is possible to measure flow coefficients
up to high order [77, 78]. Based on such data, hydrodynamic models taking into
account event-by-event fluctuations in the initial conditions [156, 157] yield estimates
around η/s ∼ 0.2 ≈ 2.5/(4π), even smaller than the specific viscosities measured
in superfluid helium or ultracold atomic gases (see for instance the review [5] and
references therein). No known fluid violates the KSS bound. The low experimental
value of the QGP’s η/s also indicates that holographic results might even allow semi-
quantitative insight into the behavior of the QGP, in particular in light of practical
difficulties such as sign problems in alternative approaches to strongly coupled gauge
theory dynamics.

has been shown that for these cases a lower bound is enforced by causality [151].
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4 Holographic Models and Holographic
Description of Quarks

Having laid out our general philosophy, we now proceed to introducing the bottom-
up models we will be concerned with in this thesis. Then, we discuss the holographic
description of heavy quarks, and in particular of bound quark–anti-quark pairs.

4.1 The Models
We will discuss our holographic models in terms of the action [158]

S = 1
16πG(5)

N

∫
d5x
√
−g

(
R− 1

2∂Mϕ∂Mϕ− V (ϕ)− f(ϕ)
4 FMNF

MN
)
, (4.1)

where g is the determinant of the metric gMN and R is the associated Ricci scalar.
(See Appendix A for our gravity and index conventions.) G(5)

N is the five-dimensional
Newton constant. ϕ is the scalar that induces the deformation away from confor-
mality. Its potential V (ϕ) contains the cosmological constant term 2Λ but remains
otherwise unspecified for now. FMN is the field strength tensor associated with an
Abelian gauge connection AM . The latter is present in the bulk to implement the
desired U(1) symmetry and the corresponding chemical potential in the boundary
theory, cf. the holographic dictionary in Sec. 2.2. f(ϕ) is called the gauge kinetic
function and parametrizes the coupling between the gauge field and the scalar.

The five-dimensional Newton constant G(5)
N used in the action (4.1) can be ob-

tained from the ten-dimensional Newton constant G(10)
N given in Eq. (2.6) by dividing

by the volume of the 5-sphere with radius LAdS. We can express G(5)
N in different

ways in terms of bulk or boundary parameters,

G
(5)
N = G

(10)
N

Vol(S5[LAdS]) = (2π)3 g2
s
α′4

L5
AdS

= π

2
L3

AdS
N2

c
, (4.2)

where we have used Vol(S5[LAdS]) = π3L5
AdS for the second equality and the relations

(2.18) and (2.19) for the third. A caveat here is that the relations (2.18) and (2.19)
between bulk and boundary parameters, as well as Eq. (2.6) for the Newton constant
in terms of bulk parameters, were derived in the context of the AdS/CFT duality
for N = 4 SYM, so by using them we have to assume that they still hold in the
present case. However, this is not a real issue here as the Newton constant does not
affect the equations of motion of the action (4.1). In the following, G(5)

N will only
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appear explicitly in the expression for the entropy density in the boundary theory
which will be discussed in Sec. 4.1.4 below. However, even there the exact value will
not be important for us.

The equations of motion associated with the action (4.1) are a coupled system of
Einstein, Maxwell, and Klein–Gordon equations,

RMN −
1
2R gMN = TMN , (4.3)

∇Mf(ϕ)FMN = 0 , (4.4)

∇M∇Mϕ = V ′(ϕ) + f ′(ϕ)
4 FMNF

MN , (4.5)

where ∇M denotes the Levi-Civita covariant derivative associated with the metric
gMN , and the bulk energy–momentum tensor is given by

TMN = 1
2

[
f(ϕ)

(
FMAFN

A − 1
4 gMNFABF

AB
)

+
(
∂Mϕ∂Nϕ−

1
2 gMN∂Aϕ∂

Aϕ

)
− gMNV (ϕ)

]
. (4.6)

Furthermore, the antisymmetric field strength tensor FMN is defined as

FMN = ∇MAN −∇NAM , (4.7)

but let us note that for an antisymmetric tensor the covariant derivatives can be
replaced by coordinate derivatives (see e. g. [159]).

We do not (yet) specify the full form of the scalar potential V (ϕ) (gauge kinetic
function f(ϕ)), except for these limits for vanishing scalar,

V (0) = 2Λ = −12/L2
AdS , (4.8)

f(0) = 1 . (4.9)

The cosmological constant Λ = −6/L2
AdS introduces the length LAdS that will control

the curvature scale of the resulting spacetime. The cosmological constant thus re-
appears in the Einstein equations (4.3) as the constant term in the scalar potential
V (ϕ) in the energy–momentum tensor. In the models with a non-vanishing scalar,
rather than specifying the full scalar potential from the start, we will prescribe the
bulk profile of the scalar and reconstruct the potential that supports it a posteriori.
The approach to ‘reconstruct’ the potential after imposing certain constraints on the
solution has been widely used in the construction of bottom-up holographic models
(see for instance [137, 138, 141, 160–162]).g

gSee also [163] for a similar argument regarding the deformation of AdS5 in the context of particle-
physics model building with extra dimensions.
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The most general ansatz for the metric [137] compatible with translation sym-
metry in the boundary directions (t,x) = (t, x1, x2, x3) and SO(3) invariance in x
is

ds2 = e2A(z)
(
−h(z) dt2 + dx2

)
+ e2B(z)

h(z) dz2 , (4.10)

where z is the fifth-dimensional, holographic coordinate. The metric of all models
that we introduce in the next sections can be expressed in this general form. Thus,
we will discuss the holographic computation of physical observables in subsequent
chapters in terms of this general metric (4.10).

In solving the equations of motion (4.3)–(4.6), we will always demand that the
resulting spacetime be asymptotically AdS, cf. our discussion in Sec. 2.2. This
implies the following boundary conditions at z = 0 for the functions A, B, and h in
the ansatz (4.10),

A(z) ∼ log
(
LAdS
z

)
as z → 0 , (4.11)

B(z) ∼ log
(
LAdS
z

)
as z → 0 , (4.12)

h(z = 0) = 1 . (4.13)

(It is these boundary conditions that enforce the limiting value (4.8) for V (ϕ),
i. e. the re-appearance of the cosmological constant in the scalar potential.) Fur-
thermore, in order not to break isotropy in the dual field theory, we always set the
spatial gauge field components Ai to zero, and we can ensure Az = 0 by a gauge
choice. Thus, we have

Ai(z) = 0 , Az(z) = 0 for all z . (4.14)

Whether or not the ‘electrostatic potential’ A0 vanishes determines whether or not
we have a chemical potential.

A zero in the ‘blackening’ function h(z) signals the presence of a black hole
(more precisely, a black brane). Note that, with our black holes generally being
charged, there will generically be two zeros of h, just as it happens in the case of the
charged asymptotically flat, four-dimensional Reissner–Nordström black hole (see
for instance [37]). The relevant event horizon is located at the position of the zero
closest to the boundary, i. e., the one with smaller coordinate z. We call that posi-
tion zh. For the general metric (4.10) the Hawking temperature, see Eq. (2.24), is
given by [137, 138]

T = eA(zh)−B(zh)|h′(zh)|
4π . (4.15)

In the course of our studies of physical observables, we will evaluate the Nambu–
Goto action describing a macroscopic string propagating in the five-dimensional
spacetime. The Nambu–Goto action, see Eq. (2.2), contains the parameter α′ and
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our general metric, Eq. (4.10), always includes a factor L2
AdS due to the boundary

conditions (4.11) and (4.12) satisfied by all our models. We define

√
λ = L2

AdS
α′ (4.16)

for the combination of LAdS and α′ that will generically appear in our observables.
For vanishing deformation, i. e. in the holographic dual of N = 4 SYM, λ agrees with
the ’t Hooft coupling λ = g2

YMNc, cf. Eq. (2.19). However, when we consider non-
conformal models obtained by deformations of the bulk theory we lose the precise
mapping between bulk and boundary quantities. Thus we cannot be sure of the
exact meaning of λ in the boundary theory. This is not too big an issue since we are
not primarily interested in quantitative predictions from our holographic models. In
any case, it stands to reason that also in our non-conformal models λ still is a proxy
for the coupling strength in the boundary field theory.

We will now proceed to discussing our holographic models in order of increasing
complexity of the bulk theory.

4.1.1 N = 4 Supersymmetric Yang–Mills Theory and Its Dual

Let us start with the simplest solution of the equations of motion of the action (4.1)
relevant for the purposes of this chapter, the five-dimensional anti-de Sitter-black
hole spacetime. Due to the presence of the gauge field, the black hole will in general
be charged.

AdS-black hole spacetime arises as a solution of Eqs. (4.3)–(4.6) with vanishing
scalar field ϕ. Only the cosmological-constant term 2Λ remains of the potential
V (ϕ), and f ≡ 1, so that we can consider the simplified action

S = 1
16πG(5)

N

∫
d5x
√
−g

(
R+ 12

L2
AdS
− 1

4FMNF
MN

)
, (4.17)

with the equations of motion

RMN −
1
2R gMN + Λ gMN = 1

2

(
FMAFN

A − 1
4 gMNFABF

AB
)
, (4.18)

∇MFMN = 0 . (4.19)

At vanishing temperature and vanishing chemical potential (vanishing gauge field),
we have discussed the solution in Sec. 2.1.3. It is AdS5 spacetime, dual to large-Nc,
strongly coupled N = 4 SYM theory. We have reviewed its particle content and
some of its properties in Sec. 2.1.3.

Let us start with non-zero temperature but yet vanishing chemical potential. As
reviewed in Sec. 2.2, the bulk theory is ‘heated up’ by putting a black hole into the
bulk. This comes down to demanding that the horizon function h(z) vanishes at some
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point z = zh in the bulk. With this condition and the boundary conditions (4.11)–
(4.13) the corresponding solution of the equation of motion (4.18) (with vanishing
right-hand side) is the AdS5-Schwarzschild metric

ds2 = L2
AdS
z2

(
−h(z) dt2 + dx2 + 1

h(z) dz2
)
,

h(z) = 1− z4

z4
h
.

(4.20)

The coordinate z is bounded from above by zh. At this position in the bulk there
is a planar black-hole (black-brane) horizon. The associated Hawking temperature
[35] is obtained from the general formula (4.15),

T = 1
πzh

, (4.21)

and it is identified with the temperature of the boundary theory, i. e., gravity in
the AdS5-Schwarzschild spacetime is dual [64] to large-Nc, strongly coupled N = 4
SYM at non-zero temperature T given by Eq. (4.21). Obviously, in the limit zh →∞
where the temperature vanishes, h ≡ 1, and the AdS5-Schwarzschild metric (4.20)
reduces to the AdS5 metric (2.15).

Now we allow a non-vanishing gauge-field component A0 and impose the boundary
condition

A0(z = 0) = µLAdS (4.22)

on it as demanded by the holographic dictionary, see Sec. 2.2. Here, µ is the chemical
potential which in the present case of N = 4 SYM is conjugate to an R-charge asso-
ciated with supersymmetry.h In addition we have the boundary conditions (4.11)–
(4.13) and require a zero of h at some zh. A final condition is regularity of the gauge
field at the horizon, which means that ∥AM dxM∥2 = gttA2

0 should be finite at zh,
leading to

A0(z = zh) = 0 . (4.23)

Putting all this together, from the equations of motion (4.18) and (4.19) we obtain

hBesides the conformal symmetries, the N = 4 SYM theory has an SO(6) global R-symmetry (see
for example [31]), as mentioned in Sec. 2.1.3. The parameter µ introduced via Eq. (4.22) is a
chemical potential for the charge corresponding to a U(1) subgroup. It will lead to a spacetime
with a charged black hole, and can in the string-theoretic context be connected to the properties
of branes with angular momentum [164, 165]. These and similar constructions have been studied
e. g. in [166–169]. We will lose the precise knowledge of the boundary theory, anyway, when we
deform the bulk theory, so we will take a more pedestrian approach and generally define the
chemical potential as the boundary value of the A0 gauge-field component as in Eq. (4.22), in
accordance with the holographic dictionary discussed in Sec. 2.2. As is typical for a holographic
bottom-up approach, we will then only see from studying physical observables that the quantity
thus introduced indeed behaves like a chemical potential.
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AdS5-Reissner–Nordström (AdS-RN) spacetime with the metric

ds2 = L2
AdS
z2

(
−h(z) dt2 + dx2 + 1

h(z) dz2
)
,

h(z) = 1−
(

1 + µ2z2
h

3

)
z4

z4
h

+ µ2z2
h

3
z6

z6
h
.

(4.24)

The gauge-field component A0 is found to be

A0(z) = µLAdS

(
1− z2

z2
h

)
. (4.25)

In the limit µ → 0, the AdS5-Reissner–Nordström metric reduces to the AdS5-
Schwarzschild metric, as expected. Using the formula (4.15), the temperature asso-
ciated with the AdS5-Reissner–Nordström metric is obtained,

T = 1
πzh

∣∣∣∣∣1− 1
2
µ2z2

h
3

∣∣∣∣∣ . (4.26)

The AdS-Reissner–Nordström black hole is charged, thus supporting the elec-
trostatic potential A0 given in Eq. (4.25). We introduce the charge parameter
Q = µzh/

√
3, which allows us to express the temperature (4.26) as

T = 1
πzh

(
1− Q2

2

)
, (4.27)

with the restriction 0 ≤ Q ≤
√

2 for Q. Note that this imposes no restriction on
the values of the pair (T, µ). Explicitly, given (T, µ) in the boundary theory, the
parameters (zh, Q) of the bulk theory are

zh(T, µ) = 3π T
µ2

√1 + 2
3π2

(
µ

T

)2
− 1

 , (4.28)

Q(T, µ) =
√

3πT
µ

√1 + 2
3π2

(
µ

T

)2
− 1

 . (4.29)

Note that (by construction, see Eqs. (4.11)–(4.13)) both the AdS-Schwarzschild
metric (4.20) and the AdS-Reissner–Nordström metric (4.24) approach the plain-
AdS metric (2.15) for small z close to the boundary, i. e. the scale-free metric dual
to N = 4 SYM at T = 0, µ = 0. This is natural from the point of view of the dual
theory since, as discussed in Sec. 2.2, the limit z → 0 in the bulk corresponds to
considering the UV in the boundary theory where the scales set by the temperature
and/or chemical potential are expected to decouple.

To summarize, we have introduced the holographic duals of N = 4 SYM in-
cluding non-zero temperature and chemical potential. The general metric is the
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4.1 The Models

AdS5-Reissner–Nordström metric (4.24). This will in general be our starting point
for investigating the physics in strongly coupled plasmas, and serve as a reference
to compare with our more complicated models. We construct the latter as deforma-
tions of the AdS5-Reissner–Nordström spacetime, as discussed in the following two
sections.

However, before proceeding to these constructions, let us discuss what we have
achieved so far, whether control over large-Nc, strongly coupled N = 4 SYM really
helps us with our goal of understanding physics relevant for the real-world quark–
gluon plasma. Following [107], let us list prominent properties of N = 4 SYM that
distinguish it from QCD from which an ab initio description of the QGP should in
principle start:

• The theory is (maximally) supersymmetric. It includes scalar fields, and all
fields ‘live’ in the adjoint representation. In QCD the quarks transform in the
fundamental representation.

• It is conformal, and the coupling does not run, whereas QCD is asymptotically
free.

• There is neither confinement nor chiral symmetry breaking.

• In order to use the classical limit in the bulk, we have to send Nc → ∞ in
N = 4 SYM. In QCD we have Nc = 3.

It might appear hopeless to use the AdS/CFT correspondence as a tool to handle
strongly coupled N = 4 SYM theory and attempt to extract lessons applicable to
QGP physics from it. However, the above comparison concerns the vacua of the
theories and the situation is considerably more favorable at non-zero temperature
(and chemical potential), the setting relevant for the QGP. The differences are much
smaller in this case:

• Both supersymmetry and conformal invariance of N = 4 SYM are broken at
non-zero temperature.

• There is no confinement in QCD above Tc, and no chiral condensate.

• At temperatures somewhat larger than Tc, QCD approaches conformality in
the sense that the trace of the energy–momentum tensor becomes small (see
e. g. [170]).

• There are no well-defined, long-lived quasiparticles at strong coupling and
hence it is possible that details concerning the microscopic degrees of freedom
do not matter too much, at least for some observables.

We have discussed the last argument concerning the universality at strong coupling
in more detail in Sec. 3.2. Furthermore, as also discussed there, we will deform
the bulk theory to consider more models for the QGP than only N = 4 SYM. If
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4 Holographic Models and Holographic Description of Quarks

behavior common to all these models is found, it might indeed hint to universal
features that are potentially shared also by QCD in the temperature range that we
are interested in. Finally, let us note that lattice gauge theory studies indicate that
QCD-like thermodynamics is remarkably insensitive to value of Nc [170], so that
Nc = 3 might already be ‘large’.

With these encouraging general considerations in mind, let us now proceed to the
construction of explicitly non-conformal models.

4.1.2 The SWT,µ Model
The model that we discuss in this section does not solve the full set of equations of
motion that are associated with the action (4.1). Rather, it can be seen as a crude
first approximation in which one solves the Einstein–Maxwell part of the action, and
then the scalar part with the background metric fixed, thus ignoring the backreaction
of the scalar onto the metric.

Ignoring for the moment the gauge field which means to assume vanishing chem-
ical potential, the first step is to solve the pure-gravity problem L = (−g)1/2(R −
2Λ). Considering the system at non-zero temperature, this gives rise to the AdS-
Schwarzschild metric (4.20), as discussed in the previous section. The scalar is
interpreted as a dilaton in the present case. As discussed in Sec. 2.1.1, the metric in
string frame has an overall exponential warp factor with the dilaton in the exponent.
Effectively it will be the string-frame metric that we will need when studying physi-
cal observables in the later sections. One often demands a quadratic dilaton, ϕ ∝ z2.
This is motivated by the ‘soft-wall’ model of [132] that introduced a quadratic dila-
ton to emulate confinement in the boundary theory at vanishing temperature. Let
us stress again that the model we are discussing does not solve equations of motion,
so the above discussion of the scalar is somewhat academic. In practice, the model
is just defined by the AdS-Schwarzschild metric multiplied by a warp factor of the
form ecz2 for some deformation parameter c.i Such models have been studied for
instance in [116, 133, 136, 171, 172] and might be generally called ‘SWT ’ models,
for ‘soft wall-like models at finite temperature T ’ [113].

At non-zero chemical potential µ the starting point is the AdS5-Reissner–Nord-
ström metric (4.24), which is multiplied by a warp factor. Such a model has been
first discussed in [173]. Further studies of models of this type include [45, 174–177].
With conventions slightly different from [173] we now define the SWT,µ model by
the metric

ds2 = L2
AdSec2z2

z2

(
−h(z) dt2 + dx2 + 1

h(z) dz2
)
,

h(z) = 1−
(

1 + µ2z2
h

3

)
z4

z4
h

+ µ2z2
h

3
z6

z6
h
.

(4.30)

iWe note in passing that demanding the scalar to be ϕ(z) = cz2 in the AdS-Schwarzschild back-
ground (4.20) necessitates that the scalar potential be given by V (ϕ)L2

AdS = −2ϕ2 −π2(T 2/c)2ϕ4

(without including the cosmological-constant term 2Λ in the potential) if the scalar is to solve
□ϕ = V ′(ϕ). However, note that this neglects the backreaction of the scalar onto the metric.
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A warp factor has been included, but the horizon function is taken unchanged from
the AdS-Reissner–Nordström metric (4.24). µ is the chemical potential, and c is
the deformation parameter which has the dimension of energy. In the limit c → 0,
the metric (4.30) reduces to the AdS-Reissner–Nordström black-hole metric. We
assume that the Hawking temperature of the latter, which we reproduce here for
convenience,

T = 1
πzh

(
1− Q2

2

)
(4.31)

with Q = µzh/
√

3 and 0 ≤ Q ≤
√

2, is the temperature of the boundary theory even
at non-zero c, since backreaction of finite c onto the metric is ignored. Then, with
T and Q determined as above, the relations (4.28) and (4.29) expressing zh and Q
in terms of T and µ apply in this model, too.

We note that the thermodynamics of this model is not consistent since it does
not solve the Einstein equations; cf. also [45] and a related discussion in [136].
Furthermore, moving probes constitute another example where unphysical behavior
seems to arise [124]. This necessitates to consider consistent models that solve
equations of motion. Indeed, it turns out that the problems just mentioned do not
appear in such models [45, 124]. The construction of specific consistent models is
the topic of the next section.

In spite of the aforesaid issues, the present model will be useful to us. Its main
virtue is its simplicity. The horizon function remains relatively simple since there
is no backreaction. In consequence, the numerics is much simpler in this model
than in the more complicated models to be discussed next which solve equations of
motion. We will see that often the present model gives answers very similar to those
of the more sophisticated models. On the other hand, the comparison of results
obtained in the present and the consistent models makes it possible to identify those
parameter regimes for which it becomes important to invest the additional effort of
using consistent models.

4.1.3 The 1-Parameters Models

Now we proceed to discussing models arising as solutions to the full equations of
motion associated with the action (4.1). As mentioned in the previous section, this
procedure is generally preferable in the construction of bottom-up models as it is
more faithful to the basic ideas of holography, and we call models thus obtained
consistent models. Specifically, in our case this amounts to including the backre-
action of the scalar onto the metric that was ignored in the construction of the
SWT,µ model. Constructions of consistent models were performed for instance in
[113, 122, 137, 139–141, 160, 178, 179]. The cited models are based on actions of
the general form (4.1) excluding the gauge field, i. e., they have vanishing chemical
potential.

We are concerned with models including a non-zero chemical potential. Models
with a gauge field in an action of the type (4.1) have for example been constructed
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4 Holographic Models and Holographic Description of Quarks

in [45, 158, 180–182]. Here we use the model that we have first constructed in [45].
For the metric we take the general ansatz given in Eq. (4.10) which we reproduce

here for convenience together with the ansätze for the scalar and the gauge fieldj,

ds2 = e2A(z)
(
−h(z) dt2 + dx2

)
+ e2B(z)

h(z) dz2 , (4.32)

ϕ = ϕ(z) , AM dxM = Φ(z) dt . (4.33)

We have introduced the symbol Φ for the electrostatic potential A0. The remaining
gauge-field components vanish, cf. Eqs. (4.14). With these ansätze, the equations of
motion (4.3)–(4.6) can be brought into the form

0 = A′′ −A′B′ + 1
6 ϕ

′2 , (4.34)

0 = h′′ + (4A′ −B′)h′ − e−2Af(ϕ)Φ′2 , (4.35)

0 = Φ′′ + (2A′ −B′)Φ′ + d log f(ϕ)
dϕ ϕ′Φ′ , (4.36)

0 = ϕ′′ +
(

4A′ −B′ + h′

h

)
ϕ′ − e2B

h

(dV
dϕ −

1
2 e−2(A+B)Φ′2 df

dϕ

)
, (4.37)

0 = h
(
24A′2 − ϕ′2

)
+ 6A′h′ + 2e2BV (ϕ) + e−2Af(ϕ)Φ′2 . (4.38)

These equations are not all independent. In fact, the z-derivative of the right-hand
side of the last equation can be expressed as a linear combination of the right-hand
sides of all five equations. Thus, if the first four equations are satisfied, the last one
is satisfied for all z if it is satisfied at one value of z.

As discussed below Eq. (4.8), we do not specify the scalar potential V (ϕ) but rather
the bulk profile of the scalar, and reconstruct the potential from the equations of
motion. Explicitly, we demand that the scalar have a quadratic dependence on the
holographic coordinate z,

ϕ(z) =
√

3
2κz

2 , (4.39)

where κ is the deformation parameter that will be discussed below. This choice is
motivated by the work of [132] where it turns out that the spectrum of a model
with a quadratic scalar (more precisely, a dilaton; we will discuss the interpretation
of the scalar later on), a so-called ‘soft-wall’ model, compares favorably to QCD.
The reasons for the choice of the normalization factor will become clear soon. With
the choice (4.39), the scalar vanishes as it approaches the boundary. According to
our general discussion in Sec. 2.2, it will thus induce a relevant deformation of the
conformal UV theory. In fact, from the explicit solution of the equations of motion
discussed below, one findsk m2 = −4 which translates via Eq. (2.21) into a scaling
dimension ∆ = 2. For further discussion see [45].

jOne should take care not to confuse the gauge 1-form AM (z) dxM with the exponent A(z) in the
metric warp factor, nor to confuse the 0-component of the gauge field Φ with the scalar ϕ.

kNote that m2 = −4 with d = 4 boundary-theory dimensions obeys the Breitenlohner–Freedman
bound given in Eq. (2.22).
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In addition to the condition (4.39), we specify A(z) as follows,

A(z) = log
(
LAdS
z

)
(4.40)

for all z, which in particular satisfies the asymptotic-AdS boundary condition (4.11)
without any deviations from the asymptotic form deeper in the bulk. In this sense,
the form (4.40) is a minimal choice for A.

The chemical potential µ is introduced by the first of the two boundary conditions
for Φ,

Φ(z = 0) = µLAdS , (4.41)
Φ(z = zh) = 0 , (4.42)

in accordance with the general prescription discussed in Sec. 2.2. Just like in
Sec. 4.1.1 before, the condition (4.42) is a regularity condition. This condition
introduces the horizon coordinate zh. The integration constant that eventually ap-
pears in the solution for h(z) after imposing Eq. (4.13) can be traded for zh, thus
establishing the latter as the position of the black hole horizon.

We have not yet specified the gauge kinetic function f(ϕ). It parametrizes the
coupling between the gauge field and the scalar. Thus, in the boundary theory,
it will affect the interplay of the chemical potential and the deformation. We will
mostly work with the expression used in [158] by DeWolfe, Gubser, and Rosen,

fDWGR(ϕ) =
cosh

(
12
5

)
cosh

(
6
5(ϕ− 2)

) , (4.43)

which was chosen there to improve the matching of results to QCD lattice data.
However, in order to be able to assess the impact of the choice of the gauge kinetic
function on observables we will also solve the equations of motion for the minimal
choice

fmin(ϕ) = 1 . (4.44)

Given ϕ and A, Eqs. (4.39) and (4.40), respectively, as well as the boundary
conditions (4.12), (4.13), (4.41), and (4.42), the equations of motion (4.34)–(4.38)
can be solved in closed form one-by-one for B(z), Φ(z), h(z), and V (ϕ), and the
relation between the equations of motion discussed after Eq. (4.38) ensures that all
five equations are satisfied. The explicit expressions for the solution of the equations
of motion are lengthy for both choices (4.43) and (4.44) of the gauge kinetic function.
We give the solutions in the appendices B.1 and B.2, respectively. However, let us
mention here that the models defined by (4.43) and (4.44), respectively, differ only
at µ ̸= 0, and coincide for µ = 0. This immediately follows from the action where the
gauge kinetic function multiplies the field-strength term which vanishes for µ = 0.
We discuss the thermodynamic properties of the models below in Sec. 4.1.4. For an
extensive discussion of the equations of motion and their solution we refer to [45].
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Eq. (4.39) introduces the deformation parameter κ which has mass dimension 2.
In the limit κ→ 0 the solutions reduce to AdS-Reissner–Nordström spacetime. The
dimensionful parameter κ introduces a scale in the dual field theory and thereby
explicitly breaks the conformal invariance. We collectively refer to the models we
have constructed as the 1-parameter models. For each choice of the gauge kinetic
function f(ϕ) we have a 1-parameter family of models with the deformation param-
eter κ. Actually, as we will discuss momentarily, for each choice of f(ϕ) we have
two 1-parameter families of models. Thus, all in all in this thesis we will study four
families of models that we refer to by the term ‘1-parameter models’.

It turns out that the scalar potential V (ϕ) depends not only on the deformation
parameter but also on the thermodynamic variables, see the explicit solutions (B.14)
and (B.21) in Appendix B. (Recall that, as discussed above, we reconstruct the scalar
potential from the equations of motion such that it supports the bulk profile (4.39)
of the scalar.) This might spoil the study of the behavior of observables in the 1-
parameter models under variation of the temperature and chemical potential because
the boundary theory depends on the specific form of the potential and would thus
change upon changing the thermodynamic variables. However, a detailed analysis
[45] shows that the variation of the potential only affects orders in ϕ higher than
quadratic and, moreover, is small in the part of the bulk that is causally connected
to the boundary. Therefore, it is in fact meaningful to compare the values of physical
observables for different thermodynamic states.

In the following chapters, we will use macroscopic strings as ‘probes’ in the space-
times we have constructed since these can in the boundary theory be interpreted
as quarks (as we will explain later). Then, a further choice that one can make in
working with the models becomes important, and this will effectively give rise to
two different families of models for each choice of the gauge kinetic function, as
announced above. We can either view the scalar field ϕ in our models as a dilaton
or as ‘just’ some scalar matter field in which case we assume a trivial dilaton. We
take both of these points of view. In case the theory contains a non-trivial dilaton,
the spacetime metric depends on whether we work in the Einstein frame or string
frame, as discussed in Sec. 2.1.1, see Eq. (2.4). In order to describe string dynamics
with the Nambu–Goto action as defined in (2.2), we need to use the string-frame
metric. Now, the action (4.1) is given in Einstein frame. That means that a metric
that solves its equations of motion is an Einstein-frame metric.

In case we do not view the scalar ϕ as a dilaton and assume a trivial dilaton,
the transformation to the string-frame metric that we will use in the Nambu–Goto
action is the identity. In other words, we can directly use the metric that is derived
from the equations of motion of the action (4.1) in the Nambu–Goto action (2.2).

On the other hand, in case we view the scalar as a dilaton, before using the
Nambu–Goto action (2.2), we have to transform the metric obtained from the action
(4.1) into the string frame. The transformation is not exactly the one given in
Eq. (2.4) because of the normalization of the scalar kinetic term in our action (4.1).
In five spacetime dimensions the canonical normalization of the dilaton kinetic term
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in low-energy effective string-theory actions is (see e. g. [43])

S(E) = 1
16πG(5)

N

∫
d5x

√
−g(E)

(
R(E) − 4

3∂Mϕ5 ∂
Mϕ5 + . . .

)
, (4.45)

where we have used superscripts ‘E’ to indicate that this action is written in Einstein
framel, and have left out all additional terms as these are not important for the
present discussion. We see that the scalar ϕ in our action (4.1) is related to the
canonically normalized dilaton, denoted by ϕ5 in the equation above, by

ϕ =
√

8
3 ϕ5 . (4.47)

Using this, we obtain from Eq. (2.4) the transformation rule between the Einstein-
frame metric g(E)

MN and the string-frame metric g(s)
MN ,

g
(s)
MN = e

√
2
3 ϕg

(E)
MN . (4.48)

The numerical factor in the exponent explains the apparently awkward normaliza-
tion in our ansatz (4.39) for the scalar field. The metric g(s)

MN can now be used in
the Nambu–Goto action (2.2).

Following a convention in the literature we call, in a slight abuse of language, the
model in which the scalar field is a dilaton the (1-parameter) string-frame model and
the model in which it is just an additional scalar the (1-parameter) Einstein-frame
model. As can be seen from the expressions in Appendix B, for either choice of the
gauge kinetic function both warp-factor exponents A and B in the metric of the
string-frame model contain an additional term κz2/2 that is not present in the cor-
responding Einstein-frame model. Thus, the exponents in the warp factors of both
the 1-parameter string-frame models and the SWT,µ model have a term quadratic
in the holographic coordinate z. This suggests that the string-frame models have a
greater similarity to the SWT,µ model than the Einstein-frame models which lack
this quadratic term in the warp factor. When discussing physical observables we
will see that this is indeed the case, and we have also observed this in our previ-
ous investigation of different observables [45]. Roughly speaking, the 1-parameter
string-frame models can be seen as consistent versions of the SWT,µ model.

4.1.4 Thermodynamics
In this section, we discuss some thermodynamic properties of our models. As our
main focus in the present part of this thesis is not on the thermodynamics of the

lIn string frame, using Eq. (2.4), the action can be shown to be

S(s) = 1
16πG(5)

N

∫
d5x

√
−g(s)e−2ϕ5

(
R(s) + 4∂Mϕ5 ∂

Mϕ5 + . . .
)
, (4.46)

which nicely illustrates that, as announced in Sec. 2.1.1, for the derivation of the spacetime
metric it is simpler to work in Einstein frame where the overall factor e−2ϕ5 is absent.
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models, we will be brief. Another issue to be addressed here are constraints imposed
on the deformation parameters. We will see that there are upper bounds on the range
of admissible choices of the deformation parameters. Finally, a certain thermody-
namic quantity, the trace of the energy–momentum tensor (scaled by temperature
such that it becomes dimensionless), can be used to estimate ‘optimal’ choices of
the deformation parameter for realizing a concrete model in physical units. These
estimates are based on a comparison to lattice-QCD results at vanishing chemical
potential, which has been performed for the (µ = 0)-limits of our models in [113].
We will briefly review this comparison. We start with the SWT,µ model, and then
proceed to the 1-parameter models. On the way, we also comment on the (simple)
thermodynamics of N = 4 SYM.

The SWT,µ Model

The thermodynamics in the (µ = 0)-limit of the SWT,µ model, i. e., in the SWT

model, has been studied in many works including the early references [135, 136, 171].
Before discussing the thermodynamics of the SWT,µ model, we should raise the
caveat that its thermodynamics cannot be expected to be consistent, see for instance
[136]. The reason for this is that the SWT,µ model does not solve gravity equations
of motion, so this problem will be cured in the 1-parameter models, which do solve
equations of motion. With this caveat in mind, let us nevertheless proceed and see
what lessons we can learn about the SWT,µ model from thermodynamic quantities.

The temperature in the SWT,µ model is given by Eq. (4.31). A central thermody-
namic quantity is the entropy density. By the holographic dictionary, the entropy
density of the black hole is identified with the entropy density in the boundary the-
ory. The entropy of a black hole can be computed from the Bekenstein–Hawking
formula [34, 35], which in the case at hand reads

S = A3

4G(5)
N

, (4.49)

where A3 is the three-dimensional ‘area’ of the black-hole horizon and G
(5)
N is the

five-dimensional Newton constant. While A3 is actually divergent since we have an
infinitely extended black-brane horizon, the entropy density s is well-defined. For
the SWT model, i. e., at µ = 0, the entropy density was first computed in [136].
Using the definition (4.49) and Eq. (4.2) for the five-dimensional Newton constantm,

mIn light of the caveat discussed after Eq. (4.2) – and the additional caveat that the SWT,µ

model does not even solve the full equations of motion of the action (4.1) – the prefactor in
the expression (4.50) for the entropy density should be taken with a grain of salt. However, the
value of the prefactor does not affect the position of the maximum of the quantity (ϵ− 3p)/T 4

(discussed below) which we are ultimately after here.
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one readily derivesn

s = N2
c

2π
exp

(
−3

2c
2z2

h

)
z3

h
. (4.50)

In this form this equation holds for both vanishing and non-zero chemical potential
with zh given by Eq. (4.28).

Let us now turn to the (dimensionless) trace of the boundary theory’s energy–
momentum tensor. In an isotropic homogeneous system, it is given by ϵ− 3p, where
ϵ is the energy density and p the pressure, and it is made dimensionless by dividing
by T 4. The resulting quantity (ϵ − 3p)/T 4 is often called the ‘trace anomaly’, and
can be computed in QCD at vanishing chemical potential via lattice QCD (see for
instance [186, 187]). Since in a conformal theory p = ϵ/3, and accordingly (ϵ−3p)/T 4

vanishes, a non-vanishing trace is a measure of the deviation from scale invariance.
In QCD, lattice studies indicate that the trace anomaly is strongly peaked at Tc
(e. g. [186, 187]). Ref. [113] has computed the dimensionless trace of the energy–
momentum tensor from the entropy density for the (µ = 0)-limits of both the SWT,µ

and the 1-parameter models and found good qualitative agreement with lattice-QCD
data. It turns out that the non-conformal holographic models have a strong peak in
(ϵ − 3p)/T 4 at a certain temperature. (On the other hand, the energy–momentum
tensor of N = 4 SYM has vanishing trace even at non-zero temperature.) This
temperature is identified with Tc in accordance with lattice QCD studies. In this
work, we adopt the results from [113], and use the value

Tc/c = 0.494 (4.51)

for the SWT,µ model.o The position of the maximum of the dimensionless trace of
the energy–momentum tensor just fixes the ratio Tc/c, and we still have to choose
the value of Tc to make contact with physical units. Again following [113], we
take Tc = 176 MeV, an estimate which is based on an analysis [188] of particle

nA comment is in order here. To derive Eq. (4.50) from the metric (4.30) of the SWT,µ model, one
has to flip the sign in the argument of the exponential in the metric. In fact, the authors of [136]
who first derived (4.50) in the SWT model actually start out with a metric with a negative sign
in the exponent, which is assumed to be the Einstein-frame metric that should be used to study
thermodynamics. It is then assumed that the model involves a non-trivial dilaton. Strings ‘see’
the so-called string-frame metric which contains a contribution from the dilaton, as discussed
in Sec. 2.1.1. In the course of the analysis of [136], it turns out that the relative strength of
the dilaton is such that in the string frame the exponent in the metric switches sign which
ultimately yields a string-frame metric of the form (4.30). Following the argument of [136] we
use the sign-flipped version of the metric (4.30) for the thermodynamics. However, in the rest
of this thesis, we will only be concerned with the physics of strings in the SWT,µ model, and
will assume that the metric as written in Eq. (4.30) is the appropriate, i. e. string-frame metric.
For further discussion of various sign choices (in the context of soft-wall models at vanishing
temperature), see for instance [183–185].

oFor consistency with our choice in the 1-parameter model, to be discussed below, in the SWT,µ

model we use the value for Tc/c as determined from the maximum of the dimensionless trace.
We note, however, that Ref. [136], which first studied the thermodynamics of the SWT model
in detail, fixes the critical temperature based on a different procedure resulting in the slightly
different Tc/c = 0.434.
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4 Holographic Models and Holographic Description of Quarks

ratios measured at RHIC with a statistical thermal model (see for instance [189]).
This choice translates into c = 356 MeV as the ‘optimal’ value of the deformation
parameter that makes sure that the maximum of the dimensionless trace of the
energy–momentum tensor lies at T = 176 MeV.p

In general, however, we are not so much interested in fixing a specific model, but
will rather explore the behavior of our observables in a class of models parametrized
by the deformation parameter. Typically, we will make it dimensionless by normal-
izing it to some fixed temperature and will often denote that dimensionless ratio
δ = c/T . Thus, the question arises what range of deformation parameters is sensible
to consider. The authors of Ref. [109] have calculated various observables in the
SWT model and conclude that the range of deformationsq 0 ≤ c/T ≲ 2.5 is most
relevant for a comparison with QCD. In this thesis, we will also use that range of
deformations for our SWT,µ model. This restriction of c also avoids inconsistencies
we have found previously [45, 124] that appear in the model at somewhat larger
deformations (c/T > 5.06).

The 1-Parameter Models

In the 1-parameter models, first of all we need to discuss the temperature. The
formula (4.15) can be used for both the Einstein- and the string-frame model. Using
the metric (4.32) and the expressions given in Appendix B.1, we find, for the models
defined by the choice (4.43) of the gauge kinetic function,

T = 1
πzh

κ2z4
h

4
eκ2z4

h/4

eκ2z4
h/4 − 1

S−2
(
κz2

h

) ∣∣∣∣∣S2
(
κz2

h

)
+ µ2

κ
θ

[
S
(
κz2

h

)
− ιS̃

(
κz2

h

)]∣∣∣∣∣ ,
(4.52)

where we have defined the constants

θ = 2√
π

e−54/25
(
1 + e24/5

)
≈ 15.94 , ι = e−27/25

√
2
≈ 0.24 , (4.53)

and have used the functions S and S̃ defined in the appendix in Eqs. (B.7) and
(B.9), respectively.

For the alternative 1-parameter models defined by the minimal choice (4.44) of
the gauge kinetic function f(ϕ), we find, again independently of whether we consider

pWe note that there have been varied estimates for the transition temperature Tc in QCD (actually,
crossover temperature) throughout the years. Recent lattice studies [65, 66] favor a value around
Tc ∼ 154 MeV. For LHC data measured by the ALICE experiment, an estimate of 156 MeV for
the chemical-freeze-out temperature is found [190] with a statistical thermal model. Since we
will use the specific choice of the deformation parameter of the holographic model based on the
value for Tc only for a rough estimate of our model parameter λ, as will be discussed later, a
difference of ∼ 20 MeV for the value of Tc does not matter, so we stay with Tc = 176 MeV.

qRef. [109], following [136], uses a normalization of the deformation parameter different from ours.
For the cited range, we have translated the ratio of deformation parameter and temperature to
our conventions.

44



4.1 The Models

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

zh

T

μ = 0

μ = 0.5

μ = 1

κ = 1, μ = 1
κ = 0.2
κ = 0.05
κ = 0

Figure 4.1: Temperature in the 1-parameter models with f(ϕ) chosen according to
Eq. (4.43). Different colors indicate different choices of the chemical
potential, while the linestyle encodes the choice of the deformation pa-
rameter. In making this plot, we have ignored the absolute value in
Eq. (4.52). Thus, the curves that reach T = 0 at some zh would actually
rise again for larger zh. However, as explained in the text, the rising
parts are not important and hence are left our here. Figure adapted
from [45].

the Einstein- or the string-frame model,

T = 1
πzh

κ2z4
h

4
eκ2z4

h/4

eκ2z4
h/4 − 1

erf−2
(
κz2

h
2

)

×
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)
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√
2
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√2 erf
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)
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(
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h√
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)
∣∣∣∣∣∣∣∣ . (4.54)

The definition of the error function erf used here is given in Eq. (B.10).
We plot the temperature function (4.52) for the 1-parameter models (string-frame

and Einstein-frame models) with the choice (4.43) for the gauge kinetic function in
Fig. 4.1 where we vary the chemical potential µ and the deformation parameter
κ. The behavior in the alternative models defined by Eq. (4.44) is similar. We
observe three important features of the curves T = T (zh) that are shared by the
T (zh) in the alternative models. First, for small zh (equivalent to considering large
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4 Holographic Models and Holographic Description of Quarks

temperatures in the boundary theory) the chemical potential and the deformation
parameter only induce small corrections to the relation T = 1/(πzh) that holds in
AdS5-Schwarzschild. We can see this immediately from (4.52) or (4.54), respectively.
Second, if κ is sufficiently large compared to µ (roughly

√
κ ≳ µ) the temperature

curve does not reach T = 0 but rather has some non-zero minimum Tmin. Third, and
related to the second observation, there are parts where T rises with increasing zh.
Besides the curves that have a non-zero Tmin, also those that reach T = 0 actually
have a rising part due to the absolute value in Eq. (4.52). For clarity, we have left
out these parts in Fig. 4.1.

The third observation implies that there are generally two solutions for zh that
yield a prescribed T with some fixed µ and κ. The question arises which solution
to take. Computing the entropy density in these models can provide guidance.
Applying the formula (4.49) to the present models and using again Eq. (4.2) for the
five-dimensional Newton constantr (2.18) and (4.2) we find

s = N2
c

2π
1
z3

h
, (4.55)

which looks similar to Eq. (4.50) but lacks the warp factor. However, note that the
relation between the gravity parameter zh and the boundary-theory parameters T
and µ encoded in Eq. (4.52) is quite different from the one in the SWT,µ model. We
see from Eq. (4.55) that s decreases monotonically with zh. Now, starting out at zh =
0 and T =∞ and increasing zh, once we reach a branch of the temperature curve that
increases with zh, the derivative T∂s/∂T = T (∂zh/∂T )(∂s/∂zh) becomes negative.
This means that the heat capacity T∂s/∂T is negative, indicating an instability of
the black hole. This leads us to exclude those branches of the temperature curves.
In other words, for a given T we always take the smaller solution zh, which is the
one that is on the branch where T decreases with increasing zh. See Ref. [45] for
further discussion of this matter.

Having thus established a unique relation between the temperature T and the
horizon position zh for given µ and κ, it remains to discuss the implications of the
fact that we have a set of values µ, κ with minimal temperatures Tmin > 0. We
constructed our bulk theories as models for a deconfined gauge-theory plasma, so it
should not be too big a surprise (or problem) that we cannot reach arbitrarily low
values of the temperature or chemical potential. It often seems to be the case that
in the gravity duals of theories that undergo a phase transition the spacetime dual
to the low-temperature phase is qualitatively different from the black-hole spacetime
dual to the high-temperature phases, and our ansatz for the scalar and the warp-
factor exponent might be too restrictive to find solutions corresponding to lower

rWe recall the caveat discussed after Eq. (4.2) concerning the expression of G(5)
N in terms of Nc (and

LAdS, the natural length scale in the bulk). Since these issues only concern the normalization
of the entropy density, they are not important for the present argument. Cf. also footnote (m).

sFor instance, in a typical holographic model [135] of the deconfinement/confinement phase tran-
sition, on the gravity side the transition is of the Hawking–Page type [191], and the low-
temperature phase is described by a thermal-AdS spacetime in which there is no black hole.
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Figure 4.2: Region in the (µ, T )-plane inaccessible in the 1-parameter models. µ and
T are normalized to

√
κ with κ the deformation parameter. Shown are

the inaccessible regions for both choices of the gauge kinetic function,
fDWGR as used by DeWolfe, Gubser, and Rosen [158], and the minimal
choice f = 1, see Eqs. (4.43) and (4.44), respectively. Figure adapted
from [45].

temperatures.
More explicitly, a numerical analysis [45] shows that a region including the ori-

gin in the (µ, T )-plane is not accessible by any of our 1-parameter models. This
statement can be made independent of the choice of the deformation parameter by
considering the dimensionless ratios T/

√
κ and µ/

√
κ, see Fig. 4.2. The precise

form of the curve bounding the inaccessible region is dependent on the choice of
the gauge kinetic function f(ϕ), but for both choices considered in this thesis the
minimal attainable (dimensionless) temperature at vanishing chemical potential is
Tmin/

√
κ = 0.34. Turning this around, the maximal deformation in units of the

temperature is √κmax/T = 2.94. We can infer from Fig. 4.2 that the maximal de-
formation in units of the temperature increases with increasing µ. However, when
we are going to consider physical observables at non-zero chemical potential, we
usually want to make contact with the physics at µ = 0. Therefore, in this work

On the other hand, apparently this need not always be the case. In the model constructed in
[158] from an Einstein–Maxwell–scalar bulk action similar to Eq. (4.1) also the low-temperature
phase is described by black-hole spacetimes. Differences to our models include the fact that the
scalar potential is fixed instead of reconstructed, and, probably more importantly, a different
treatment of the scalar field.
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4 Holographic Models and Holographic Description of Quarks

we restrict ourselves to deformations that always allow us to go back to µ = 0. In
short, we only consider deformations with

√
κ/T < 2.94. As for the SWT,µ model,

the dimensionless ratio of the deformation parameter and the temperature will often
be denoted by δ, i. e. δ =

√
κ/T . The distinction between the δ in different models

will always be clear from the context.
To close this section, we review the result of the analysis performed in [113]

concerning the dimensionless trace (ϵ − 3p)/T 4 of the energy–momentum tensor of
the 1-parameter model at µ = 0. As in the case of the SWT,µ model discussed above,
the position of the maximum of the dimensionless trace of the energy–momentum
tensor is identified with Tc which leads to

Tc/
√
κ = 0.394 . (4.56)

This yields κ ≈ 0.200 GeV2 as the value realizing Tc = 176 MeV.
Now we have all prerequisites in place to start with the analysis of physical observ-

ables in our holographic models. In the next section, we will discuss the holographic
representation of heavy quarks in the hot medium of the boundary theory, and then
study in the remaining chapters of the present part of this thesis the binding energy
and the free energy of heavy quark–anti-quark pairs as well as their entropy and
internal energy. We will also discuss the free energy, entropy and internal energy
of single quarks in the deconfined medium, and finally analyze the free energy of
quark–antiquark pairs in more detail by studying its derivatives.

4.2 The Quark–Anti-Quark System
In this section, we will introduce the basic setup that we will be concerned with
for the rest of this chapter, namely a heavy quark–anti-quark (QQ̄) pair immersed
in the strongly coupled plasmas described by our holographic models. We will de-
scribe the kinematic setup and holographic description of the system in this section,
and discuss the screening distance as a physical observable that has been studied
extensively in holography. A review of this subject can be found e. g. in [4], and we
will mostly follow this reference here. In the next chapter, we will discuss in de-
tail the computation and renormalization of boundary-theory Wegner–Wilson loops
from the holographic models. From expectation values of these loops and a related
quantity, we compute the QQ̄ free energy and binding energy, respectively. Most of
our further investigations in this part of this thesis are based on the free energy.

Let us begin with the holographic description of a QQ̄ pair in a strongly coupled
plasma. Here we consider static, infinitely heavy quarks. An extension to quarks
with non-zero velocity in the medium is straightforward; detailed studies of the
dependence of the screening distance and the QQ̄ binding energy on the velocity
have been performed for instance in [106, 108, 110] and [45] in non-conformal models
at vanishing and non-zero chemical potential, respectively. As we will see below, as
a natural consequence of the holographic prescription [105] for the computation of
expectation values of Wegner–Wilson loops, infinitely heavy quarks in the boundary
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Figure 4.3: Sketch of a static quark–anti-quark pair separated by a distance L along
the boundary coordinate direction x1. The quarks’ worldlines are parallel
to the time direction t. Also shown is the bulk coordinate direction z
and sketches of spacelike slices of the worldsheet of the string connecting
the quarks. For later reference, we have also indicated the integration
contour CL,T used in the integration for the Wegner–Wilson loop (5.1).
Its timelike edges are of length T and coincide with the worldlines of the
quarks. Eventually, the limit T → ∞ will be taken.

theory can be modeled by an open string in the bulk with the endpoints on the
four-dimensional boundary. The endpoints can be viewed as point-like quarks.t In
accordance with the UV/IR relation (2.20) discussed in Sec. 2.2, the quarks’ mass
is inversely related to the coordinate z of the endpoints of the string and thus
diverges if the string endpoints are situated on the boundary z = 0. The setup is
sketched in Fig. 4.3. The string connecting the quarks ‘hangs’ into the bulk. As our
quarks are static their worldlines are parallel to the time direction t, separated by a
spatial distance we call L. The worldlines coincide with the boundary of the string
worldsheet.

The dynamics of the string is described by the Nambu–Goto action (2.2) which
we reproduce here for convenience,

SNG = − 1
2πα′

∫
d2σ

√
−det gab . (4.57)

The integral extends over the worldsheet. 1/(2πα′) is the string tension and gab the
induced metric on the worldsheet,

gab = gMN
∂XM

∂σa

∂XN

∂σb
, a, b = 0, 1 , (4.58)

tThis treatment is sufficient in our bottom-up models. In a top-down construction, one would
introduce ‘flavor branes’ to which the quarks are confined [127]. One then has to study the
embedding of the branes into the ambient spacetime. For a review of this approach see for
instance [192].
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4 Holographic Models and Holographic Description of Quarks

where gMN is the spacetime metric. We use static gauge for the worldsheet coordi-
nates σ0, σ1, i. e. σ0 = t, σ1 = x, and parametrize the worldsheet as follows,

XM = (t, x, 0, 0, z(x)) , (4.59)

with boundary conditions (see Fig. 4.3)

z(±L/2) = 0 . (4.60)

Working in the general metric (4.10), we derive the following explicit form of the
Nambu–Goto action (4.57),

SNG = − T2πα′

∫ L/2

−L/2
dx e2A

√
h

(
1 + e2B−2A

h
z′2
)
, (4.61)

where A, B, and h depend on z(x) and we have performed the trivial t-integration.
As the Lagrangian in Eq. (4.61) does not depend explicitly on the coordinate x,
there is a first integral of the equation of motion associated with the conservation
of the Hamiltonian,

ξ ≡ const = H = z′ ∂L
∂z′ − L = −e4Ah

L
, (4.62)

which can be solved for z′. The string configuration will be symmetric with respect
to x → −x. It starts out at x = −L/2, z = 0, descends into the bulk, and turns
around at x = 0. In particular, z′(0) = 0. We call the coordinate z(0) the turning
point, and denote it by zt. Due to the symmetry, to obtain the string configuration
it suffices to consider that half of the string which rises up again from its turning
point in the bulk at x = 0, z = zt. For that half of the string, we derive from
Eq. (4.62) the equation of motion for the embedding z(x),

z′ = −eA(z)−B(z)

√√√√h(z)
(

e4A(z)h(z)
e4A(zt)h(zt)

− 1
)
, (4.63)

where we have used z′(0) = 0 to trade ξ for zt.
In general, Eq. (4.63) has to be solved numerically. Typical solutions are shown

in Fig. 4.4, where we plot the string configurations in AdS-Schwarzschild for three
different quark separations in the dual N = 4 SYM at vanishing chemical poten-
tial. The qualitative properties of the string solutions are the same in all our non-
conformal models and at non-zero chemical potential.

As first observed in [193, 194], it turns out that one cannot arbitrarily prescribe
the value of the interquark separation L of a bound quark–anti-quark pair. In fact,
as can be seen in Fig. 4.4, there is a special value Ls. For QQ̄ pairs with L < Ls
there are always two string configurations solving the string equations of motion
with the boundary conditions (4.60) induced from the position of the quarks. We
can uniquely parametrize the possible string configurations using the turning point
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Figure 4.4: String configurations in AdS-Schwarzschild, dual to a heavy quark–anti-
quark pair in N = 4 SYM. The quarks can be imagined to be situated at
the endpoints of the strings at z = 0. For all quark separations L smaller
than the screening distance Ls there are two string solutions. There is
only one for L = Ls, and no real solution for L > Ls, where the quark
interaction is entirely screened. Shown are quark separations L = 2Ls/3
(red dashed strings), L = 5Ls/6 (blue dotted strings), and L = Ls (black
solid string). In N = 4 SYM, Ls = 0.86912/(πT ) with the temperature
T .

zt. Using Eq. (4.63), the distance L is easily expressed as a function of the turning
point zt,

L(zt) = 2
∫ L/2

0
dx = 2

∫ zt

0

dz
−z′ = 2

∫ zt

0
dz eB−A

h( e4Ah

e4Atht
− 1

)−1/2

. (4.64)

Here, functions with a subscript ‘t’ are to be evaluated at the turning point zt.
We have suppressed in our notation all additional parameters on which the metric
functions, and thereby L, can depend, viz. temperature, chemical potential, and
deformation parameter. The turning point can be located at any depth in the bulk,
i. e., zt can take any value between the boundary (z = 0) and the black hole horizon
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(z = zt).u
As we see in Fig. 4.4, for increasing distance L the turning points of the two

string configurations sharing this L approach each other. The string configurations
become one degenerate configuration at L = Ls. For all L > Ls no real solutions
of the string equations of motion exist. In the boundary theory this means that no
bound QQ̄ states exist beyond Ls. We therefore call Ls the screening distance.v The
screening distance has been studied extensively, see e. g. [45, 107, 108, 110], and, at
vanishing chemical potential, enjoys the remarkable universal property that, starting
from N = 4 SYM, consistent non-conformal deformations always lead to an increase
of its value. In this context, by ‘consistent deformation’ we mean deformations of
AdS5-Schwarzschild that solve coupled gravity–scalar equations of motion. This
was observed numerically in [110] and analytically proven for a large class of small
deformations in [113]. At non-zero chemical potential, we have found numerically
that said universal behavior continues to hold for small chemical potential, but
deviations appear at larger values [45].

It turns out, as we will explicitly verify later, that for given L < Ls the string
configuration that has the smaller zt is thermodynamically preferred over the one
with the same L but larger zt. Thus, the turning point corresponding to the string
configuration with L = Ls, call it zt,max, is the ‘deepest’ turning point that still
yields a stable string configuration. For instance, in Fig. 4.4, the stable string
configurations are the black string configuration and all string configurations on its
‘inside’, i. e. closer to the boundary. We will in the following concentrate on the
string configurations with zt ≤ zt,max. We emphasize that this does not imply any
restriction on the admissible values of L.

Now that we have laid out the holographic description of the string connecting
the QQ̄ pair, in the next chapter we begin with our discussion of physical observ-
ables. We will extract the QQ̄ free energy and binding energy from the bulk string
configuration, and in particular discuss in detail the necessary renormalization of
the Wegner–Wilson loop on the gravity side.

uThe turning point could no longer be chosen freely on [0, zh] if we were to consider moving quarks
here. For further details in the context of our models see [45].

vThe screening distance should not be confused with the (Debye) screening length. The latter is
defined as the inverse of the Debye screening mass and parametrizes the exponential fall-off of
the free energy that is seen for instance in lattice studies (e. g. [195, 196]). A holographic deter-
mination of the screening length in N = 4 SYM can be performed by analyzing the spectrum
of supergravity modes that can be exchanged between well-separated strings in the bulk [197].
However, for our deformed, non-conformal models an unique, well-defined prescription is not
known.
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In the previous section 4.2, we have summarized the basic holographic description of
a heavy quark–anti-quark pair. We now study different energies associated with the
interaction of the heavy quark–anti-quark pair. In the first section 5.1, we discuss
the holographic computation of the free energy of this system. A second observable
related to a heavy QQ̄ pair is a quantity often called a potential in the gauge/gravity
literature. As we will discuss, this observable can be thought of as the binding
energy of the QQ̄ pair. It can be computed holographically in a similar way to the
free energy, and we will study these computations in detail. In the course of these
computations, some renormalization has to be performed to extract finite quantities.
In practice, one has to subtract two bulk quantities that diverge due to their near-
boundary behavior. There are different ways in which this subtraction is done in
the gauge/gravity literature. We will briefly review these procedures, and point out
a crucial property that any subtraction scheme used for the computation of the free
energy must obey. We will then advocate a subtraction scheme that can be used in
any holographic model whose metric is asymptotically AdS, and use it to compute
the free energy. Furthermore, to illustrate these general considerations, in Secs. 5.2
and 5.3 we will compare the free energy to lattice QCD calculations on the one hand,
and to the binding energy on the other hand. Moreover, in those sections we will
study the dependence of the free and binding energies on the chemical potential as
well as the impact of the introduction of non-conformality on these observables.

In the subsequent section 5.4 we will use the fact that the free energy is a thermo-
dynamic potential and compute the associated entropy and internal energy. Finally,
in Sec. 5.5 we will study the free energy and the associated entropy and internal en-
ergy of single heavy quarks in the strongly coupled plasmas described by our models.
In both of these sections, we will in particular investigate the changes relative to the
behavior in N = 4 SYM introduced by the deformation, searching for indications of
universal behavior.

5.1 Free Energy versus Binding Energy

Let us start with the discussion of the heavy quark–anti-quark free energy on the
field theory side. We are interested in the expectation value of a Wegner–Wilson-loop
operator in the gauge-theory medium, defined as

W (C) = trP exp

i
∮
C

dxµAµ(x)

 . (5.1)
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Here, C is a closed contour in spacetime, Aµ(x) = Aa
µ(x)T a is the non-Abelian gauge

field where T a are the generators in the representation that the trace tr is taken over.
P denotes path ordering. For our purposes, the integration contour to consider is a
rectangular contour CL,T , made up by the worldlines of length T of the heavy quarks
and two small segments along the spacelike direction in which they are separated by
the distance L, see Fig. 4.3. The Wegner–Wilson loop is a gauge-invariant object
that in particular encodes the free energy of the QQ̄ pair. To wit, in the limit of
infinite temporal extent of the contour, T → ∞, we have the relation〈

W (CL,T )
〉
∼ exp

(
−iFQQ̄(L)T

)
, T → ∞ , (5.2)

where FQQ̄(L) is the QQ̄ free energy [198–200].w The expectation value is to be
taken for a thermal state of the medium surrounding the quarks. This introduces
the dependence of FQQ̄ in Eq. (5.2) on the temperature and chemical potential that
characterize the medium. The relation (5.2) holds up to an infinite renormalization
constant that we will discuss in the context of the holographic computation below.

Obviously, the problem now is to compute the expectation value of the Wegner–
Wilson loop on the gravity side. The basic prescription was given by Maldacena
[105]; see also [204]. From the bulk perspective, the integration contour C coincides
with the boundary of the worldsheet of the string dual to the quarks, cf. our discus-
sion in Sec. 4.2. Then, the expectation value of the Wegner–Wilson loop is related
to the on-shell string action by〈

W (C)
〉
∼ exp

(
iSNG[C]

)
, (5.3)

with SNG[C] the extremal Nambu–Goto action of the string. This is the saddle-point
approximation of the more general statement where on the right-hand side we would
have a path integral over all string configurations in the bulk with the prescribed
boundary conditions [105].

From the equations (5.2) and (5.3) it follows that the QQ̄ free energy can be
computed holographically from

FQQ̄(L) ∼ −SNG[CL,T ]
T

, T → ∞ . (5.4)

This relation still needs to be renormalized. Let us now discuss the procedure on
the gravity side. For our system, an expression for SNG[CL,T ] can be obtained by
plugging z′(x) from the equation of motion (4.63) into the action functional (4.61).

wMore precisely, recent studies starting with [201] have argued that in QCD the real-time Wegner–
Wilson loop in the limit T → ∞ gives rise to an effective quark potential that is in general
complex. However, the real part of this potential appears to coincide [202] with the QQ̄ (singlet)
free energy that is defined from a Euclidean-time Wegner–Wilson loop. Indeed, this seems to
be confirmed by lattice QCD calculations which reconstruct the real-time potential from the
Euclidean-time spectral function (see e. g. [203]). Therefore, we call the quantity extracted from
the real-time Wegner–Wilson loop via the holographic procedure discussed in the following the
QQ̄ free energy, and, in accordance with the literature, interpret it as such.
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After rewriting the integration over the worldsheet coordinate x as an integration
over the bulk coordinate z we obtain

SNG[CL,T ] = − T
πα′

∫ zt

0
dz eA(z)+B(z)

√
e4A(z)h(z)

e4A(z)h(z)− e4A(zt)h(zt)
. (5.5)

Recall from Eq. (4.64) that the turning point zt is directly related to the QQ̄ distance
L. As it stands, this expression is divergent. For all our models, and in fact for all
models whose metric approaches the AdS metric asymptotically, as z → 0, the first
factor eA+B is asymptotic to L2

AdS/z
2, whereas the square root approaches unity

asymptotically. Thus, we have a divergence from the lower integral limit, which can
be regularized by restricting the integration to start a small distance ε away from
the boundary. We thus write for the regularized action

S
(reg)
NG [CL,T ] = − T

πα′

∫ zt

ε
dz eA+B

√
e4Ah

e4Ah− e4Atht
∼ −T L

2
AdS

πα′

(1
ε

+ . . .

)
, (5.6)

using a subscript ‘t’ on functions to indicate their evaluation at the turning point
zt. The divergence is a pole ∼ 1/ε. It appears because the string endpoints are
situated at the boundary z = 0, the holographic realization of the infinite-quark-
mass limit, cf. our discussion in Sec. 4.2 above. Subtracting an appropriate (infinite)
quantity ∆S, we can cast Eq. (5.4) in an operational form for the computation of
the renormalized free energy,

F
(ren)
QQ̄

(L) = lim
T →∞

(
−S

(reg)
NG [CL,T ]−∆S

T

)
. (5.7)

This expression tacitly includes the limit ε→ 0 that removes the regulator. Hence-
forth, we will drop the specification ‘ren’ and simply write FQQ̄ for the renormalized
free energy; likewise, we will drop the superscript ‘reg’. It remains to specify the
subtraction ∆S.

There are different choices for ∆S that have been used in the literature so far:

• Refs. [193] and [194] first computed expectation values of Wilson loops at finite
temperature in AdS/CFT. They subtract twice the action of a straight string
stretching from the boundary at z = 0 to the black hole horizon at z = zh.
This is the commonly used procedure in the literature, also in non-conformal
theories, see for instance the review [4] and references therein.

• In contrast to this method, in Ref. [205] the real part of the Nambu–Goto
action for infinite QQ̄ distance L is subtracted. Given that there are no real
solutions to the string equation of motion for L > Ls, the authors of [205]
continue the string configuration into the complex domain. This procedure
was recently applied e. g. in [206].
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5 Heavy-Quark Energies

These two procedures differ from each other only at non-zero temperature. Thus,
for T → 0 both reduce to the procedure used in the first papers on the computation
of the heavy-quark free energy (or heavy-quark potential, at T = 0) in AdS/CFT
[105, 204] which work at zero temperature and where subtracting ∆S indeed amounts
to subtracting the infinite quark-mass contribution.

We argue in the following that neither of these procedures is appropriate for
the calculation of the QQ̄ free energy. Before we introduce the subtraction that
we are going to use to compute the free energy, let us discuss our expectations
for this quantity on the field theory side. For small distances L, we expect the
thermodynamic variables T and µ, as well as a possible deformation scale, to have
negligible effect on the QQ̄ interaction. This argument is backed by data from lattice
QCD, e. g. [195, 196], where indeed for LT ≪ 1 the free energy becomes independent
of T , see also [207]. Now consider Eq. (5.7) for the holographic computation of the
free energy. Effectively, the first term SNG[CL,T ] becomes independent of any scale
other than L for very small L. This is straightforward to see in the bulk picture
for all spacetimes that are asymptotically AdS, which in particular includes all our
models. Note that small L means a small turning point zt. (Recall that of the two
string configurations corresponding to given a L, we choose the one with the turning
point closer to the boundary, i. e. the one with smaller zt. We will explicitly verify
below that indeed that string configuration is thermodynamically preferred over the
one with larger zt.) Thus, a string corresponding to very small L only probes the
part of the spacetime that is essentially fixed by the boundary conditions and does
not depend on the temperature or chemical potential, or a possible deformation
parameter, which all manifest themselves significantly only deeper in the bulk. We
will numerically verify this bulk argument when discussing the free energy in the
following sections.

Now, if FQQ̄ should not depend for small L on T and µ, or a potential deformation
scale, the subtraction ∆S should not depend on these scales either. (Moreover, ∆S
should not depend on L.) We therefore advocate a minimal choice ∆Smin that just
subtracts the 1/ε pole in the regularized Nambu–Goto action (5.6), explicitly,

∆Smin ≡ −
T L2

AdS
πα′

∫ ∞

ε

dz
z2 = −T L

2
AdS

πα′
1
ε
. (5.8)

This can be used in all our models, and more generally, in any model for which
the metric asymptotically reduces to AdS. The choice (5.8) makes sure that right-
hand side of Eq. (5.7) does in fact yield the free energy, and that the latter does
not depend on T and µ (and neither on a possible deformation scale) for small
QQ̄ distances L. We note that essentially equivalent subtractions have been used
before in the finite-temperature context ([134, 172, 208–210], but despite a thorough
literature review that list may not be exhaustive), and the authors of [197] comment
as a side remark that using a temperature-dependent renormalization is not correct.
However, to the best of our knowledge the full implications of the details of the
renormalization procedure and the distinctions of the quantities derived by different
procedures have not yet been discussed in the literature so far. We fill this apparent
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gap in the literature and, in particular, we will study thermodynamic quantities
related to the free energy that crucially require the use of a temperature-independent
renormalization.

Finally, using formula (5.7) with the subtraction (5.8) we find the following rela-
tion for the free energy in our general metric,

πFQQ̄(zt)√
λ

=
∫ zt

0
dz

eA+B

L2
AdS

√
e4Ah

e4Ah− e4Atht
− 1
z2

− 1
zt
. (5.9)

Here, we have used the abbreviation
√
λ = L2

AdS/α
′, see Eq. (4.16).

The quantity computed via the commonly used subtraction procedure (the first
one in the list above), the difference of the string action of the ‘U’-shaped string
connecting the quarks and twice the string action of a straight string stretching
from the boundary to the horizon,

EQQ̄(L) = lim
T →∞

(
−SNG[CL,T ]− 2SNG[straight string]

T

)
, (5.10)

can be understood as a difference of free energies. Namely, by inserting a 0 in
the form −∆Smin + ∆Smin with the minimal ∆Smin defined in Eq. (5.8) we can
reinterpret this quantity as

EQQ̄(L) = lim
T →∞

[
−
(
SNG[CL,T ]−∆Smin

)
−
(
2SNG[straight string]−∆Smin

)
T

]
= FQQ̄ − FQ ; Q̄ ,

(5.11)

where we have used Eq. (5.7) and the analogous relation for the free energy of two
non-interacting heavy quarks, which we have denoted by FQ ; Q̄. The latter quantity
can be written as FQ ; Q̄ = 2FQ where we might call FQ the free energy of a single
heavy quark. More explicitly, in our general metric we define FQ by the relation

πFQ√
λ

= 1
2

∫ zh

0
dz
(

eA+B

L2
AdS
− 1
z2

)
− 1
zh

 , (5.12)

where we have again used the abbreviation
√
λ = L2

AdS/α
′. We will discuss the

single-quark free energy further in Sec. 5.5.
Let us turn back to EQQ̄(L). We see from Eq. (5.11) that EQQ̄(L) is an energy

difference. It vanishes when the free energy of the interacting QQ̄ pair equals the free
energy of a pair of free quarks. We can thus interpret EQQ̄(L) (or more precisely, its
negative) as the binding energy of the QQ̄ pair. Explicitly, for the binding energy
we obtain the relation

πEQQ̄(zt)√
λ

=
∫ zt

0
dz eA+B

L2
AdS

√ e4Ah

e4Ah− e4Atht
− 1

− ∫ zh

zt
dz eA+B

L2
AdS

. (5.13)
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The binding energy has been extensively studied as a finite-temperature quark–
anti-quark potential by means of the gauge/gravity duality, see for instance [107, 109,
110, 112, 134, 162, 193, 194, 211]. These references include investigations in N = 4
SYM (in the strict limit of infinite ’t Hooft coupling λ as well as including first-order
corrections in an expansion in 1/λ [112]) and in deformed models, at vanishing and
non-zero temperature, and with the QQ̄ pair stationary or moving with respect to
the rest frame of the background medium (including analyses of the dependence of
the free energy on the angle of the QQ̄ dipole to its velocity [107, 110]). Furthermore,
EQQ̄ has been studied in holographic models of anisotropic strongly coupled plasma
[212–214], as well as at non-zero chemical potential in N = 4 SYM [108]. Within
our non-conformal models, we have previously undertaken a systematic study of
possible universal behavior of EQQ̄ at non-zero chemical potential [45].

We will see in the following sections that the behavior of the binding energy is
fundamentally different from that of the free energy. Moreover, we will find that the
free energy in N = 4 SYM, as in the non-conformal models, behaves qualitatively
like the QQ̄ free energy computed in lattice QCD, whereas the binding energy does
not. This corroborates our general arguments for the use of the subtraction (5.8)
for the computation of the free energy.

5.2 Free Energy and Binding Energy in N = 4
Supersymmetric Yang–Mills Theory

In the previous section, we have defined the QQ̄ free energy FQQ̄ and binding energy
EQQ̄ in general holographic models, see Eqs. (5.9) and (5.13), respectively. Before
proceeding to a discussion of these quantities in our non-conformal models, in this
section we will make the general discussion and formulae more concrete by studying
the simplest case, N = 4 SYM. Furthermore, we will compare the free energy
obtained in N = 4 SYM to lattice data and find qualitative agreement.

For vanishing chemical potential, we can evaluate the integrals in the formulae for
FQQ̄, EQQ̄, and L explicitly, so let us start with the case µ = 0. Using the formula
(5.13) for the binding energy EQQ̄(L) with the AdS-Schwarzschild metric (4.20), we
obtain

πEQQ̄(zt)√
λ

= −
√
π Γ

(
3
4

)
Γ
(

1
4

) 2F1

(
−1

2 ,−
1
4; 1

4; z
4
t
z4

h

)
1
zt

+ 1
zh
, (5.14)

where 2F1 is the (Gaußian) hypergeometric function. An equivalent formula has
been obtained in [215]. Note that, working in N = 4 SYM,

√
λ which we defined as

a shorthand for the ratio of bulk quantities L2
AdS/α

′ is in fact the ’t Hooft coupling√
λ = g2

YMNc. The temperature is determined by T = 1/(πzh), see Eq. (4.21).
The temperature-dependent term 1/zh in Eq. (5.14) is entirely due to the con-

tribution 2SNG[straight string] of the straight strings stretching from the boundary
to the horizon, see Eq. (5.10). It is due to this term that EQQ̄ depends on T for
small interquark distances. As discussed at length above, this should not be the case
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for the free energy FQQ̄, and FQQ̄ indeed lacks that term. Explicitly, we find from
Eq. (5.9) with the AdS-Schwarzschild metric (4.20),

πFQQ̄(zt)√
λ

= −
√
π Γ

(
3
4

)
Γ
(

1
4

) 2F1

(
−1

2 ,−
1
4; 1

4; z
4
t
z4

h

)
1
zt
, (5.15)

valid for non-zero temperature but vanishing chemical potential. Since the positive
term 1/zh is absent, FQQ̄ will be smaller than EQQ̄ for any T > 0. In the limit
T → 0, which is zh →∞ on the gravity side, FQQ̄ and EQQ̄ coincide.

We have expressed both the binding energy and the free energy in terms of the
turning point zt. The latter is related to the interquark distance L via the explicit
relation

L(zt) =
2
√
π Γ

(
7
4

)
3 Γ

(
5
4

) √
1− z4

t
z4

h
2F1

(
1
2 ,

3
4; 5

4; z
4
t
z4

h

)
zt , (5.16)

derived from the general expression (4.64). This explicit form has also been obtained
in [215].

Before discussing the case of non-zero chemical potential, let us consider the vac-
uum T = 0, µ = 0. As discussed above, in this limit the free energy and the binding
energy coincide. For T = 0, µ = 0 it is possible to explicitly solve Eq. (5.16) for zt
and compute VQQ̄(L) ≡ FQQ̄(L) = EQQ̄(L), the heavy quark–anti-quark potential,
as a function of L,

VQQ̄(L) = − 4π2√λ
Γ4
(

1
4

)
L
, (5.17)

which has been first obtained by Maldacena [105]. The strict proportionality VQQ̄ ∝
1/L reflects the absence of any other dimensionful scale at T = 0, µ = 0.

Let us now study the general case T ̸= 0, µ ̸= 0 and investigate how the free
energy behaves as opposed to the binding energy. We can no longer evaluate the
integrals in Eqs. (4.64), (5.9), and (5.13) explicitly, but they can easily be evaluated
numerically. We have used the NIntegrate routine of Mathematica. In Fig. 5.1,
we plot FQQ̄(L) and EQQ̄(L) in N = 4 SYM for varying temperature and chemical
potential. Both FQQ̄(L) and EQQ̄(L) actually have two values for every distance L
smaller than the screening distance Ls, i. e., both functions have two branches. This
is a consequence of the fact that there are two string configurations for every distance
L < Ls, as discussed in Sec. 4.2. The inset in the upper panel in Fig. 5.1a displays
the full FQQ̄(L) and EQQ̄(L), showing their lower and upper branches. The lower
branches correspond to the string configurations that stay closer to the boundary.
Since their free energy is smaller than that of the string configurations protruding
farther into the bulk, they are thermodynamically preferred. In addition, it turns
out that the solutions that protrude farther into the bulk possess runaway modes
when subjected to small perturbations whereas the string configurations that stay
closer to the boundary are stable against such perturbations [216]. From now on,

59



5 Heavy-Quark Energies

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-10

-8

-6

-4

-2

0

2

L

EQQ λ-1/2

FQQ λ-1/2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-10
-8
-6
-4
-2

0
2
4

LT

FQQ λ-1/2 T-1

EQQ λ-1/2 T-1

T > 0

T = 10
T = 5
T = 2
T = 1
T = 0

(a) Free energy (solid lines) and binding energy (dashed lines) for varying temperature T and
vanishing chemical potential, restricted to the stable branch (main plot) and including
both the stable and the unstable branch (inset, T > 0), see text. For T = 0, both
FQQ̄ and EQQ̄ reduce to the same Coulombic potential (solid black curve) given by
Eq. (5.17). In the main plot, we express all dimensionful quantities in AdS units specified
by LAdS = 1, and in the inset in units of temperature.
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(b) FQQ̄(L)/
√
λ (solid lines) and EQQ̄(L)/

√
λ (dashed lines) for fixed temperature and vary-

ing chemical potential µ. All dimensionful quantities are expressed in units of the tem-
perature.

Figure 5.1: Free energy FQQ̄(L) and binding energy EQQ̄(L) in N = 4 SYM under
variations of the thermodynamic variables. Except for the plot in the
inset, we have reduced both FQQ̄ and EQQ̄ to their stable branches. The
dots on the endpoints of the curves mark the screening distance.
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we will always restrict ourselves to the stable, lower branches of both FQQ̄ and EQQ̄,
and accordingly we have not plotted the upper branches in the main plots in Fig. 5.1.

For any value of T and µ both FQQ̄ and EQQ̄ become Coulombic at small in-
terquark distances. This signals a restoration of conformality in the UV as the
medium-induced scales T and µ decouple. However, as we can nicely see from
Fig. 5.1, the free energy becomes independent of the thermodynamic variables T
and µ for small L, whereas the binding energy does not. As anticipated, it contains
an L-independent but T - and µ-dependent piece. We now turn to a more detailed
comparison. In Fig. 5.1a the dependence of FQQ̄ and EQQ̄ on the temperature at
vanishing chemical potential is shown. The qualitative behavior of the two energies
is different. For T = 0, both FQQ̄(L) and EQQ̄(L) reduce to the same function,
namely the zero-temperature potential given in Eq. (5.17). However, for increasing
T , the free energy at fixed distance L becomes smaller as compared to the (T = 0)-
limit, whereas EQQ̄ increases. In Fig. 5.1b the free energy and binding energy are
shown at a fixed temperature and varying chemical potential. We observe that the
effect of increasing the chemical potential is qualitatively analogous to the effect of
increasing the temperature seen in Fig. 5.1a. The free energy decreases whereas EQQ̄

increases. However, the quantitative effect of increasing µ appears to be smaller than
that of increasing T , as we will make more explicit later on. The behavior of EQQ̄

is consistent with our interpretation of it as a (negative) binding energy. Increasing
T or µ at a fixed distance L, the modulus of the binding energy decreases. In other
words, the binding of the quarks becomes weaker. This is natural since we would
expect a hotter or denser medium to lead to stronger screening of the interaction.
Accordingly, also the screening distance becomes smaller for increasing T or µ.

For any non-zero temperature or chemical potential, at some value Lc < Ls of
the interquark separation, the binding energy vanishes, EQQ̄(Lc) = 0. Thus, at
this distance the free energy of the bound QQ̄ pair equals the free energy of an
unbound QQ̄ pair, while for larger distances the free energy of an unbound pair is
smaller than that of a bound pair. However, this does not necessarily imply that
the QQ̄ pair dissociates at this length scale. In fact, the dynamic evolution of the
string configurations is beyond the approximation underlying Eq. (5.3) which is our
starting point. The QQ̄ pair might well be metastable even beyond Lc. For further
discussion of this issue see, e. g., [110, 216].

At this point, it is sensible to compare the qualitative behavior of the free energy
in N = 4 SYM to that of QCD. In lattice QCD, the heavy-quark free energy can be
extracted from a correlator of Polyakov loops. This is done for instance in [195, 196];
we show data from quenched lattice QCD [195] simulations in Fig. 5.2. The temper-
ature is varied and all chosen temperatures are above Tc. We note two characteristics
of the behavior of the free energy. First, for small interquark distances r (L in our
notation) the free energy becomes independent of the temperature. Second, the free
energy decreases with increasing T , i. e., data points for some T2 > T1 always lie
below those for T1. Both these characteristics are also present in the free energy
computed in N = 4 SYM, as discussed above. Furthermore, they are also present
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Figure 5.2: Heavy-quark free energy at various temperatures above Tc, computed in
quenched lattice QCD; the figure is taken from [195]. The solid line is
the (T = 0) heavy-quark potential. The string tension σ is chosen as√
σ = 420 MeV.

in our non-conformal models that will be discussed in the next section. In contrast
to this, the quantity EQQ̄ behaves differently. It rather increases with increasing T .
These findings further substantiate our general arguments regarding the choice (5.8)
of the subtraction ∆S. Using it in Eq. (5.7) we indeed obtain the proper QQ̄ free
energy.

5.3 Free Energy and Binding Energy in Non-Conformal
Models

In the previous section, we have compared the behavior of the free energy and
the binding energy in strongly coupled N = 4 SYM at non-zero temperature and
chemical potential which is dual to AdS gravity with a Reissner–Nordström black
brane. We have validated the procedure that we have advocated in Sec. 5.1 for the
holographic calculation of the QQ̄ free energy. In this section we study the free
energy in all our non-conformal models both at vanishing and non-zero chemical
potential. Moreover, we compare the free energy and the binding energy in one of our
non-conformal models in order to explore the consequences of our general arguments
in a more complicated bulk theory than AdS5-Reissner–Nordström discussed in the
previous section.

In Fig. 5.3 we show the free energy in our non-conformal models at a fixed tem-
perature and a large value δ = 2.5 of the dimensionless ratios of the deformation
parameters and the temperature, δ = c/T and δ =

√
κ/T for the SWT,µ model

and the 1-parameter models, respectively. We vary the chemical potential over a
substantial range. For comparison, we have also plotted FQQ̄ in N = 4 SYM (black
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Figure 5.3: Free energy FQQ̄/(
√
λT ) in N = 4 SYM and non-conformal models

at large dimensionless deformation-parameter-to-temperature ratios δ,
for a fixed temperature and varying chemical potential. The different
models are color-coded. The four curves with the rightmost endpoints
correspond to µ/T = 0, those four with the middle endpoints to µ/T = 5,
and the remaining four curves to µ/T = 10. To be able to discern details
of the free energy close to the screening distance (marked by dots), we
do not show the curves for very small distances. For small LT , all shown
curves converge to one universal curve.

curves).
First of all, we note that in all non-conformal models the qualitative behavior of

the free energy upon an increase of the chemical potential is the same as in N = 4
SYM which we discussed in the previous section. For a given quark separation LT
the free energy decreases, and the curves for different µ approach one universal curve
for small distances. Furthermore, for quark separations L somewhat smaller than
those shown in Fig. 5.3, which we have left out of the plot to not obscure the details
close to the screening distance (marked by the dots), even for different models the
free energy approaches a single, apparently universal curve. That curve is given by
the vacuum potential VQQ̄ of N = 4 SYM, see Eq. (5.17). This verifies our argument
using the bulk picture in our general discussion in Sec. 5.1.

Since the curves for all our models approach a single universal curve for small
quark separation, we can sensibly compare the free energy in different theories.x
Thus, let us compare the different non-conformal models to N = 4 SYM. First

xA priori, the free energy is only defined up to an overall constant offset. However, by demanding
that the free energy approaches the vacuum potential VQQ̄ for small distances this ambiguity is
fixed.
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we note that the 1-parameter Einstein-frame model is very robust against non-
conformal deformation. The free energy changes only little from N = 4 SYM even
at the relatively large deformation considered here. As a side remark, in Fig. 5.3 we
can also nicely see a peculiarity of the 1-parameter Einstein-frame models (it also
occurs in the one with the minimal choice of the gauge kinetic function) that we have
discovered in [45]. For large chemical potentials (roughly if µ >

√
κ) the screening

distance is smaller in the consistently deformed 1-parameter Einstein-frame model
than in N = 4 SYM at the same temperature and chemical potential. In accordance
with this observation and the generic behavior of the free energy that we have seen
so far, we further observe that the free energy in the Einstein-frame model at large
chemical potential (µ/T = 5 and 10 in the figure) is smaller than in N = 4 SYM.
However, the deviation is pretty small.

On the other hand, in both the SWT,µ and 1-parameter string-frame models
the free energy increases above its value in N = 4 SYM upon introducing non-
conformality. This is true both at vanishing and non-zero chemical potential. Com-
bining this with the robustness observed in the Einstein-frame model, FQQ̄ in N = 4
SYM seems to be an approximate lower bound for estimating the free energy of a
heavy quark–anti-quark pair, if the latter is normalized such that for small distances
it reduces to the (T = 0)-potential given in Eq. (5.17).

We now turn to a comparison of the free energy FQQ̄ and the binding energy EQQ̄

in the 1-parameter string-frame model as an example of a consistent non-conformal
deformation of N = 4 SYM. This will also allow us to check the statement we
just made about the approximate lower bound for the free energy at smaller values
of the deformation. In Fig. 5.4 we plot FQQ̄ and EQQ̄ in the 1-parameter string-
frame model at vanishing chemical potential for varying dimensionless deformation
parameter

√
κ/T . We see that in the 1-parameter string-frame model the free energy

gradually increases with increasing deformation. Thus, it indeed always stays above
its value in N = 4 SYM, even for smaller deformations. The figure also shows that,
as mentioned above, the free energy in different theories (corresponding to different
values of the deformation) converges upon a single universal curve for small quark
separations L.

In contrast to the behavior of the free energy, EQQ̄ decreases with increasing
deformation. Thus, the binding of the QQ̄ pair at a given L becomes stronger
(recall that EQQ̄ is actually the negative binding energy). We will not study the
behavior of the binding energy with respect to the deformation in our other non-
conformal models here, as that has been studied in detail in [45]. Let us just note
that, as seen in Fig. 5.3 for the free energy, the binding energy EQQ̄, too, behaves
very similarly in the SWT,µ model and in the 1-parameter string-frame model for
which we have shown EQQ̄ in Fig. 5.4. Furthermore, this quantity is very robust in
the 1-parameter Einstein-frame model, staying quantitatively close to its counterpart
in N = 4 SYM for all values of the deformation parameter. Also, the feature that
clearly distinguishes the two quantities FQQ̄ and EQQ̄ from each other turns out to
be robust among our non-conformal models: Whereas FQQ̄(L) at fixed L increases
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Figure 5.4: Free energy FQQ̄ and binding energy EQQ̄ in N = 4 SYM (black curves)
and the 1-parameter string-frame model at fixed temperature and van-
ishing chemical potential for varying deformation parameter. All dimen-
sionful quantities are measured in units of the temperature.

with increasing non-conformality, EQQ̄(L) decreases, except for the case of the 1-
parameter Einstein-frame model where both quantities almost do not change at all.

This concludes our comparative analysis of the free energy and the binding energy
of a heavy quark–anti-quark pair in a hot and dense strongly coupled medium. In
the following, we will focus on the free energy. In the next section we will study
thermodynamic quantities associated with the free energy, namely the QQ̄ entropy
and internal energy. Thereafter, in section 5.5 we will put to use Eq. (5.12) that we
derived in our general discussion of the QQ̄ free energy as a definition of the single-
quark free energy FQ, and study FQ and the associated entropy and internal energy.
Then, in the subsequent chapters 6 and 7 we will analyze µ- and L-derivatives of
the free energy both of which are interesting physical observables on their own.

5.4 Heavy-Quark Entropy and Internal Energy

In previous sections, we have discussed how one computes the heavy-quark free en-
ergy holographically and have studied its basic properties in our holographic models.
Moreover, we have verified that the quantity we have computed indeed behaves like
the free energy computed in lattice QCD. In this section, we will derive formulae
for two observables that can be derived from the free energy, viz. the heavy-quark
entropy and internal energy. Obviously, this crucially depends on the use of the cor-
rect subtraction in Eq. (5.7) to in fact obtain the free energy instead of the binding
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energy.
Both of these quantities can be computed using standard thermodynamic rela-

tions. For simplicity, we will work at vanishing chemical potential in this section. In
this case, barring the dependency on the deformation parameter which we always
assume to be held constant, the heavy-quark free energy FQQ̄(L, T ) discussed in
Sec. 5.1 depends on the interquark distance L and the temperature T of the sur-
rounding medium. Following the definition used in lattice QCD (see for instance
[217]), the entropy can be computed as the derivative

SQQ̄(L, T ) = −
∂FQQ̄(L, T )

∂T
. (5.18)

With the entropy in hand, the internal energy can be obtained from the standard
thermodynamic relation

UQQ̄(L, T ) = FQQ̄(L, T ) + TSQQ̄(L, T ) . (5.19)

The explicit computation in our holographic models, where we have the parametric
expressions (5.9) for FQQ̄ and (4.64) for the distance L in terms of the bulk length
scales zt and zh, is not entirely straightforward. We give details on the computation
and an explicit formula for the derivative ∂FQQ̄/∂T in Appendix C.

Both the free and the internal energy are phenomenologically interesting as candi-
dates for model potentials for the interaction of heavy quarks in a finite-temperature
medium. Model potentials are used for the computation of properties of heavy
quarkonia from Schrödinger-like equations in the spirit of potential non-relativistic
QCD (pNRQCD; see [125] for a review, and e. g. [218] for more recent work including
finite-temperature effects). At zero temperature, pNRQCD provides a systematic
framework for the derivation of an effective QQ̄ potential. At non-zero temperature
the choice of a potential to model the heavy-quark interaction is ambiguous. The
internal and the free energy differ from each other due to the entropy contribution,
and it is thus worth exploring the behavior of both heavy-quark energies. See also
[217, 219, 220] for discussions of heavy-quark energies and potentials in the context
of lattice QCD.

Let us now begin with the computation of the QQ̄ entropy and internal energy in
our holographic models. In N = 4 SYM, the above formulae (5.18) and (5.19) can
be evaluated explicitly based on the expressions (5.15) and (5.16) for FQQ̄(zt) and
L(zt), plugged into Eq. (C.4) in the Appendix. We find the following parametric
expressions,

SQQ̄(zt)√
λ

=
2
√
π Γ

(
3
4

)
Γ
(

1
4

) zh
zt

5
(

1− z4
t

z4
h

)
f2

a +
[
3
(

1− z4
t

z4
h

)
fb − 5fa

]
fc

5
(

z4
h

z4
t
− 3

)
fa + 6

(
1− z4

t
z4

h

)
fb

, (5.20)

66



5.4 Heavy-Quark Entropy and Internal Energy

and

UQQ̄(zt)√
λ

= −
5 Γ

(
3
4

)
√
π Γ

(
1
4

) 1
zt

(
1− z4

t
z4

h

)
fafd

5
(

1− 3 z4
t

z4
h

)
fa + 6 z4

t
z4

h

(
1− z4

t
z4

h

)
fb

, (5.21)

where fa, fb, fc, and fd depend on z4
t /z

4
h: we define them as shorthand notation for

the functions

fa

(
z4

t
z4

h

)
= 2F1

(
1
2 ,

3
4; 5

4; z
4
t
z4

h

)
, (5.22)

fb
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t
z4

h

)
= 2F1

(
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2 ,
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4
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)
, (5.23)

fc

(
z4

t
z4

h

)
= 2F1

(
−1

2 ,−
1
4; 1
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4
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, (5.24)

fd

(
z4

t
z4

h

)
= 2F1

(
−1

2 ,
3
4; 1

4; z
4
t
z4

h

)
. (5.25)

The entropy SQQ̄ vanishes identically in the limit T → 0. This can be verified
analytically in N = 4 SYM from formula (5.20). This implies that for T = 0 the
internal energy coincides with the free energy. As we have seen before, in this case
the free energy, and thus also the internal energy, is given by the zero-temperature
potential VQQ̄, see Eq. (5.17).

Let us now have a look at the entropy and internal energy in more detail. To begin
with, in Fig. 5.5 we plot the internal energy UQQ̄ and the free energy FQQ̄ in N = 4
SYM for increasing temperature (in AdS units set by LAdS = 1) starting at T = 0.
An inset shows the entropy SQQ̄ for any T > 0 as a function of the dimensionless
product LT . Note that in N = 4 SYM, due to the absence of any further scales the
dimensionless entropy SQQ̄ necessarily only depends on LT . The black solid curve
in Fig. 5.5 shows VQQ̄.

At T > 0, the internal and free energies start to differ from each other and their
common (T = 0)-limit VQQ̄ at intermediate L (compared to the screening distance,
which in the figure is marked by a dot on the respective curve’s endpoint). We
have discussed the behavior of the free energy in Secs. 5.2 and 5.3, so let us focus
now on the entropy and the internal energy. As seen in the inset in Fig. 5.5, the
entropy increases monotonically with the quark separation L. A heuristic physical
explanation of this observation might be that, as the size of the QQ̄ bound state
increases, it has a growing overlap with the regime of the (thermal) length scales
Lth ∼ 1/T of the surrounding medium. Therefore, the QQ̄ state can couple to
an increasing number of modes of the medium, thus increasing its associated phase-
space volume which leads to an increase in entropy. In contrast to the free energy, the
internal energy increases for fixed L upon increasing the temperature. It is always
larger than the free energy due to the positive entropy contribution TSQQ̄(L) > 0.
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Figure 5.5: Internal energy UQQ̄(L)/
√
λ (dashed lines) and free energy FQQ̄(L)/

√
λ

(solid lines) for varying temperature in N = 4 SYM. The inset shows
the entropy SQQ̄/

√
λ for an arbitrary fixed T > 0 as a function of LT .

The dots on the endpoints of the curves mark the screening distance.
For very small L, the entropy approaches zero and both UQQ̄ and FQQ̄

approach a universal, Coulombic curve, given by Eq. (5.17).

Interestingly, the internal energy has an inflection point and curves upward close to
the screening distance. Since the entropy approaches zero for small distances L, the
internal energy approaches the free energy and shares with it the independence of
T for small L.

Having gained an understanding of the behavior of the entropy and internal energy
in N = 4 SYM, next we investigate their behavior in our non-conformal models
where the entropy, and subsequently the internal energy, are computed numerically
from the free energy via Eq. (C.4) in the appendix. The qualitative dependence on
temperature is similar to the one we discussed in N = 4 SYM above. To study the
impact of the deformation in more detail, in Fig. 5.6 we show the internal energy as
a function of the quark separation at fixed temperature in our non-conformal models
for a large value δ = 2.5 of the dimensionless ratios of the deformation parameters
and the temperature, δ = c/T and δ =

√
κ/T in the SWT and 1-parameter models,

respectively. In the inset, we plot the entropy as a function of LT using the same
deformation parameters. For comparison, we also display the internal energy and
entropy in N = 4 SYM (black curves). We see that the entropy behaves similarly
as in N = 4 SYM discussed above, cf. the inset in Fig. 5.5. While SQQ̄ vanishes
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Figure 5.6: Internal energy UQQ̄(L)/(T
√
λ) at fixed temperature in N = 4 SYM and

non-conformal models at large deformations δ = 2.5 with δ = c/T and
δ =
√
κ/T for the SWT and 1-parameter models, respectively. The inset

shows the entropy SQQ̄/
√
λ as a function of LT . For very small L, the

entropy approaches zero in all models and UQQ̄ in all models converges
to a universal, Coulombic curve.

for L = 0, it increases monotonically for increasing L towards its maximum at the
screening distance. The internal energy UQQ̄(L) in the non-conformal models has a
shape similar to that in N = 4 SYM. In particular, its slope increases towards the
screening distance Ls, too, which can be traced back to the strong increase of SQQ̄

towards Ls.
For small distances L, the behavior of the internal energy is dominated by that of

the free energy because the entropy approaches zero in all our models. Accordingly,
like the free energy discussed in Sec. 5.3, also the internal energy in all non-conformal
models converges to one universal curve for small L, namely the one in N = 4 SYM
given by the zero-temperature potential VQQ̄ in Eq. (5.17).

Differences between the behavior of the internal energy in our non-conformal mod-
els and the behavior in N = 4 SYM generally appear at intermediate and large L.
As we have seen before in the context of other observables, the 1-parameter Einstein-
frame model is very robust against non-conformal deformation, and both SQQ̄ and
UQQ̄ stay very close to their respective values in N = 4 SYM for all distances L.
On the other hand, in both the SWT and 1-parameter string-frame models the en-
tropy at fixed distance decreases relative to its value in N = 4 SYM for the chosen
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Figure 5.7: Internal energy UQQ̄(L)/(T
√
λ) (dashed lines) and free energy

FQQ̄(L)/(T
√
λ) (solid lines) at fixed temperature in N = 4 SYM (black

curves) and the 1-parameter string-frame model for varying deformation
parameter. For very small L, both UQQ̄ and FQQ̄ approach a universal,
Coulombic curve.

degree of non-conformality. In the overall effect on the internal energy, however,
the increase in the free energy that we have seen in Sec. 5.3 obviously overwhelms
the decrease in the entropy in UQQ̄ = FQQ̄ + TSQQ̄, such that the internal energy
in the SWT and 1-parameter models is larger than in N = 4 SYM. This and the
robustness observed for the Einstein-frame model indicate that UQQ̄ in N = 4 SYM
might constitute an approximate lower bound on the internal energy at least for our
class of non-conformal deformations of this theory.

To not clutter the presentation, we have refrained in Fig. 5.6 from also showing
the free energy. To gain a better understanding of the relative behavior of the free
and the internal energy in a non-conformal model, we now focus on the 1-parameter
string-frame model as an example of a consistent deformation of AdS5-Schwarzschild.
Moreover, in this way we can check whether the internal energy in the deformed
model is larger than the corresponding internal energy in N = 4 SYM also for
smaller values of the deformation. In Fig. 5.7 we show the dependence of the internal
energy and free energy on the deformation parameter in the 1-parameter string-frame
model, starting from the undeformed theory, i. e. N = 4 SYM (black curves). Like
the free energy, the internal energy increases with increasing deformation parameter,
and indeed is larger than inN = 4 SYM for all deformations. Just as inN = 4 SYM,
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also in the non-conformal model the internal energy approaches the free energy for
small quark separation L. As the entropy approaches zero for small L in all our
non-conformal models, cf. the inset in Fig. 5.6, this is a robust observation, i. e.,
the internal energy approaches the free energy for small L in all our models. Thus,
in all of our models the internal and free energy differ only for intermediate and
large quark separations. This also seems to be the case in lattice simulations [217]
within in the range of quark separations studied in that work. The changes of
the internal energy with respect to N = 4 SYM induced by non-conformality are
very small (Einstein-frame model) or positive, i. e., UQQ̄ increases above its value
in N = 4 SYM (SWT and 1-parameter string-frame model). Finally, we find that
at small quark separations, FQQ̄ and UQQ̄ in all theories approach as a common
limit the free energy in N = 4 SYM, which in turn approaches the zero-temperature
potential VQQ̄ for small L.

In the derivation of the holographic formula for the QQ̄ free energy in Sec. 5.1,
we have obtained as a by-product a definition of the free energy of a single quark in
the hot medium described by our holographic models. In the next section, we will
study this quantity and, in analogy to the current section, the associated entropy
and internal energy.

5.5 Single-Quark Free Energy, Entropy, and Internal Energy

In this section, we will put the relation (5.12) to use that we obtained in the deriva-
tion of the free energy of the bound heavy quark–anti-quark pair. It yields the free
energy of a single heavy ‘test’ quark in the strongly coupled plasmas dual to our
holographic models. We will also study the entropy and internal energy associated
with the free energy. As in the previous section, we will continue to work at vanish-
ing chemical potential. An analysis of these single-quark quantities in our class of
non-conformal models, with a focus on the impact of non-conformal deformations of
N = 4 SYM, has not been performed in the literature so far.y

We have defined the free energy FQ in Eq. (5.12), and again define the entropy
and internal energy by standard thermodynamic relations,

SQ = −∂FQ

∂T
, (5.26)

UQ = FQ + TSQ . (5.27)

Let us start with N = 4 SYM. In this case, Eq. (5.12) can easily be explicitly
evaluated, using the AdS-Schwarzschild metric (4.20). We obtain for the single-quark

yPrevious work with different focus includes Ref. [209] which studies the single-quark free energy
in a bottom-up framework tuned to model Yang–Mills thermodynamics, and the very recent
work [221] that computes the single-quark free energy and entropy in the so-called ‘improved
holographic QCD’ model of [178, 179]. For a general discussion of single-quark thermodynamics
in holographic models see [222].
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free energy, entropy, and internal energy,

FQ = −
√
λ

2 T , SQ =
√
λ

2 , UQ = 0 . (5.28)

These values have also been obtained in [222]. Since N = 4 SYM is a conformal
theory, at T > 0 only the temperature itself is available as a dimensionful quantity for
the problem at hand. Thus, the relation FQ ∝ T already follows from dimensional
analysis. The non-analytic square-root dependence on the ’t Hooft coupling is,
however, a non-trivial outcome of the computation. Interestingly, the free energy is
entirely determined by the entropic contribution as the internal energy vanishes.

We can analytically compute the above quantities also in the SWT model and
the 1-parameter Einstein-frame model. Unfortunately, we did not find a closed-form
expression for it in the 1-parameter string-frame model. Let us start with the SWT

model. Due to the simple relation of the temperature and the horizon position,
zh = 1/(πT ), we can explicitly express FQ as a function of T and compute the
entropy and internal energy. We find

FQ = −
√
λ

2π exp
(

c2

π2T 2

)[
πT − 2cF

(
c

πT

)]
, (5.29)

SQ =
√
λ

2 exp
(

c2

π2T 2

)
, (5.30)

UQ =
√
λ

2
√
π
c erfi

(
c

πT

)
, (5.31)

where F is the Dawson integral and erfi the ‘imaginary’ error function defined by
erfi(x) = −i erf(ix).z Here, λ denotes the bulk quantity defined by

√
λ = L2

AdS/α
′,

and is a proxy for the coupling strength in the boundary theory, cf. Eq. (4.16) and
the discussion thereof. As we will see explicitly below, for high temperatures, FQ,
SQ, and UQ approach their values in N = 4 SYM from above. However, as T is
lowered they significantly increase above the conformal values.

In the 1-parameter Einstein-frame model, we can only find closed-form expres-
sions for FQ, SQ, and UQ as functions of zh, as we cannot analytically invert the

zThe Dawson integral is defined by

F(x) = e−x2
∫ x

0
dy ey2

,

see [223]. See Eq. (B.10) for the definition of the error function erf. The latter is related to the
Dawson integral by F(x) =

√
πe−x2

erfi(x)/2.
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temperature function T (zh) (not even at µ = 0) in Eq. (4.52). We find

FQ(zh) = −
√
λ

8
√

2π
√
κ

[
4 Γ

(3
4

)
+ γ

(
−1

4 ,
κ2z4

h
4

)]
, (5.32)
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UQ(zh) =
√
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)] , (5.34)

where γ is the incomplete Γ-function.aa Although we are not able to express these
quantities symbolically in terms of the temperature T , it is straightforward to ana-
lyze their behavior numerically.

For the 1-parameter string-frame model, the additional terms in the warp factors
prohibit a solution of the integrals for FQ, SQ, and UQ in closed form. Nevertheless,
we can numerically evaluate the definition (5.12) for the free energy, and easily
compute the entropy and internal energy from it.

We plot the free energy, entropy and internal energy as functions of the temper-
ature in N = 4 SYM and all our non-conformal models in Figs. 5.8, 5.9, and 5.10,
respectively. In order to be able to sensibly compare the temperatures, we scale
the temperatures in each model to the temperature Tc, defined as the position of the
maximum of the dimensionless trace of the energy–momentum tensor, as discussed
in Sec. 4.1.4. We have Tc/c ≈ 0.494 and Tc/

√
κ ≈ 0.394 in the SWT model and

1-parameter models, respectively, and choose Tc = 176 MeV to introduce physical
units. As our models are constructed to describe a deconfined gauge-theory plasma,
we focus on the temperature range T/Tc ≥ 1. Let us note that qualitative con-
clusions do not change if we vary the ratios of Tc and the deformation parameters
around the values given above. To exhibit the behavior of FQ in Fig. 5.8 more
clearly, we scale out the dominant T -dependence FQ ∼ T . Note that in all our
models FQ/T is negative, i. e., FQ decreases with increasing T . We recall that in
N = 4 SYM the trace of the energy–momentum tensor vanishes identically for all
temperatures, so there is no way to define Tc. Thus, the choice Tc = 176 MeV is
aaThe incomplete Γ-function is defined by

γ(a, x) =
∫ ∞

x

dt ta−1e−t ,

see [223]. It is related to the ordinary Γ-function by γ(a, 0) = Γ (a).
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Figure 5.8: Single-quark free energy as a function of temperature in N = 4 SYM
and our non-conformal models. We have scaled out the dominant T -
dependence of FQ. See the text for an explanation of the scale Tc used
here.
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Figure 5.9: Single-quark entropy as a function of temperature in N = 4 SYM and
our non-conformal models. See the main text for an explanation of the
scale Tc used here.
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Figure 5.10: Single-quark internal energy as a function of temperature in N = 4
SYM and our non-conformal models, in physical units set by the choice
Tc = 176 MeV (see the text). Note that the internal energy vanishes
identically in N = 4 SYM.

completely arbitrary in this case. In any case, the way we scaled FQ, SQ, and UQ

in the figures makes the dependence on T trivial for N = 4 SYM.
We have seen before that the 1-parameter Einstein-frame model is very robust

and stays quantitatively close to N = 4 SYM. The quantities FQ, SQ, and UQ

are no exception, and are very close to their respective values in N = 4 SYM for
almost all T , as seen in the three figures. All three quantities exhibit a stronger
dependence on the temperature in both the SWT model and the 1-parameter string-
frame model. The latter deviates farthest from the behavior seen in N = 4 SYM.
For large temperatures, FQ, SQ, and UQ approach their values in N = 4 SYM from
above. This implies an interesting universal behavior. In all our non-conformal
models, FQ, SQ, and UQ are larger than their respective values in N = 4 SYM for
all temperatures. Even choosing a different procedure to normalize the temperature
scale in each model would not change this observation, so it appears that it is a
robust conclusion.

Computations of the single-quark free energy in lattice QCD have been performed
for instance in [217, 224, 225] (see also [207]) for a temperature range including
Tc. In these studies, the single-quark free energy is defined from the large-distance
behavior of the expectation value of a Polyakov loop correlator. The latter yields the
free energy of a heavy QQ̄ pair at large quark separation, where the QQ̄ free energy
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Figure 5.11: Asymptotic values of the free energy (F∞, left panel) and entropy (S∞,
right panel) of a QQ̄ pair obtained in lattice QCD. Above Tc, these
can be interpreted as twice the single-quark free energy and entropy,
respectively. Note, however, that the free energy is only defined up to a
constant shift. In the left panel, different symbols correspond to differ-
ent values of the dynamic-quark masses used in the lattice simulations.
Figures taken from [224].

in fact approaches a constant value F∞. At least in the deconfined phase where
the far-separated quarks are screened from each other, one can interpret that free
energy as twice the single-quark free energy, F∞ = 2FQ. Our holographic models
should be compared to lattice data for the deconfined phase, T ≥ Tc. The free
energy is only defined up to an arbitrary, constant shift. Thus, we cannot compare
the overall scale of FQ. However, we may compare the behavior of FQ as a function
of temperature. In the following, for concreteness, we will compare to the results
reported in [224]. The qualitative behavior that we are going to compare to is the
same in the other lattice studies cited above. The left panel in Fig. 5.11 shows F∞
obtained in the lattice QCD study of Ref. [224] with dynamic quarks. The different
symbols correspond to different choices of the mass of the dynamic quarks; as we
only aim at a qualitative comparison, these details do not matter for us. Somewhat
above Tc we observe an approximately linear decrease of F∞ = 2FQ with T , while
closely above Tc the free energy F∞(T ) = 2FQ(T ) is convex. The free energy FQ

in our holographic models exhibits very similar behavior, see Fig. 5.8; note that in
that figure, we have shown FQ/T , and this ratio is negative such that FQ in fact
decreases with T . The decrease is linear in T for large T . Moreover, in the SWT

and 1-parameter string-frame models, FQ(T ) is also clearly convex.
For a more quantitative comparison let us now focus on the single-quark entropy.

Lattice data from Ref. [224] on the entropy S∞ computed as S∞ = −(∂F∞(T ))/(∂T )
is shown in the right panel in Fig. 5.11. The interpretation of the free energy F∞
as twice the single-quark free energy implies S∞ = 2SQ. The entropy S∞ computed
on the lattice is peaked at T = Tc. We focus on the deconfined phase, T ≥ Tc. The
entropy is a T -independent constant in N = 4 SYM, clearly illustrating the need to
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introduce non-conformality to model QCD physics at T ≳ Tc. Indeed, in our non-
conformal models we find an increase of SQ as T is lowered towards Tc, qualitatively
similar to the lattice results. A heuristic explanation for the decrease of the entropy
with temperature above Tc might be as follows. As the temperature increases, the
screening length in the medium decreases and the quark interacts with a smaller
volume around it. Thus, its phase space and accordingly its entropy decreases (cf.
also the discussion in [224]).

The entropy, as a derivative of the free energy, is not affected by the ambiguity
concerning the overall normalization that we discussed above. We can thus use it in
order to produce a rough estimate for the parameter λ. From the lattice data shown
in Fig. 5.11, we take a representative value SQ = S∞/2 ≈ 6 at T = Tc. We can
easily evaluate SQ in our holographic models at (a caricature of) Tc, cf. Fig. 5.9 and
the discussion regarding the choice of Tc in Sec. 4.1.4. Comparing the holographic
values to the lattice value SQ ≈ 6, we obtain estimates

√
λ ≈ 7.9, 10.7, 5.1, i. e.,

λ ≈ 63, 115, 26, for the SWT , the 1-parameter Einstein-frame, and the 1-parameter
string-frame models, respectively. However, given the size of the uncertainty in
the lattice data shown in Fig. 5.11, as well as the spread of the values S∞(Tc)
obtained in different lattice studies, large relative uncertainties should be assumed
for these estimates of λ. For instance, the data of Ref. [217] yield representative
values SQ = S∞/2 ≈ 6 for quenched simulations, and SQ ≈ 7.5 for simulations
with dynamic quarks, both at T ≈ Tc. Then, if we assume, from the spread of
lattice data, a relative uncertainty of ±25 % for our estimates of

√
λ, by standard

propagation of uncertainty we obtain a relative uncertainty of ±50 % for λ. In any
case, since we have used classical gravity in the bulk, which is strictly obtained only
in the limit λ→∞,ab it is reassuring that we need large values for the parameter λ
to reproduce data from a theory that is presumably similar to the boundary theories
dual to our holographic models.

Finally, let us briefly turn to the internal energy. It is affected by the same
normalization ambiguity as the free energy, so we do not compare numerical values
to lattice data. On the lattice [224], like for SQ, a strong peak at T = Tc is found
for U∞ = 2UQ. In Fig. 5.10 we see that, while UQ vanishes identically for all
temperatures in N = 4 SYM, in the SWT and 1-parameter string-frame models
due to the introduction of non-conformality the internal energy exhibits a strong
increase as T is lowered, in qualitative similarity to the internal energy in lattice
QCD.

In closing this section, we should caution that our holographic models are con-
structed as a model description of the deconfined phase of QCD, so the numerical
comparison performed should be taken with a grain of salt as we have made the
comparison at the very boundary of that phase. Moreover, we cannot expect to see
a peak and a subsequent decrease of SQ as T is lowered past the temperature we

abMore strictly speaking, we can only be sure about this in the case of N = 4 SYM where we known
the dual interpretation of the parameter λ = L4

AdS/α
′2 that we have introduced as a shorthand

for a bulk quantity.
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have called Tc in our holographic models. In fact, in our models we can decrease the
temperature somewhat further than the temperature we have set to be Tc, cf. our
discussion in Sec. 4.1.4, but in doing so we do not observe a qualitative change in
the temperature dependence of FQ, SQ, and UQ. Nevertheless, our non-conformal
models seem to capture important features of the physics of the strongly coupled,
deconfined QCD medium also in the single-quark sector.

78



6 Free Energy Taylor Expansions
In the previous chapter, we have studied various energies associated with a heavy
quark–anti-quark (QQ̄) pair in a hot strongly coupled plasma. In particular, we
have thoroughly reviewed the renormalization procedure involved in the holographic
computations, and we have clarified how to holographically compute the QQ̄ free
energy making sure that it does not depend on the temperature or chemical potential
at small quark separations. We have studied the behavior of the QQ̄ free energy
in detail both in N = 4 SYM (Sec. 5.2) and in non-conformal models (Sec. 5.3),
and have demonstrated that it qualitatively agrees with the free energy computed
in lattice QCD.

It is a simple matter to include a chemical potential in holographic models, and
we have done this for all our models. However, since we are working in a bottom-up
setup, once we deform AdS5-Reissner–Nordström spacetime and thus move away
from N = 4 SYM as the dual theory, we lose knowledge about the exact meaning of
the chemical potential in the boundary theory. Furthermore, in N = 4 SYM itself,
we know that the chemical potential we introduced is conjugate to a charge density
associated with supersymmetry, as discussed in Sec. 4.1.1. These points raise the
question: How closely can the chemical potential in our holographic models mimic
the baryon chemical potential in QCD that we are ultimately interested in?

In order to assess this, in this chapter we will compare the dependence of the QQ̄
free energy on the chemical potential in our holographic models and in lattice QCD.
In lattice QCD, the evaluation of the QQ̄ free energy at non-zero µ is plagued by
the sign problem (see e. g. [104] for a review). However, it is possible to compute
the Taylor coefficients of an expansion of the free energy in powers of µ/T ,

FQQ̄(L;T, µ) =
∞∑

n=0
f (n)(L;T )

(
µ

T

)n

. (6.1)

On the lattice, the coefficients f (n) can be computed at µ = 0. This has been done
up to sixth order in [226]; see also [227, 228] for more recent work that uses different
lattice actions for the quarks. In [226], the expansion coefficients f (n) for color-
singlet and color-averaged free energies are computed as functions of the interquark
distance and the temperature. It is most appropriate to compare our holographic
results to the results on the color-singlet free energy and the associated coefficients.

In the first section, we will describe our procedure to compute the expansion
coefficients f (n) in our holographic models. In the following sections, we will discuss
the behavior of these coefficients in our different holographic models, as well as the
temperature dependence. Finally, we will compare the results to those obtained in
lattice QCD.
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6 Free Energy Taylor Expansions

6.1 Holographic Computation
Let us first discuss the computation of the expansion coefficients of the free energy
in our holographic models. From the defining equation (6.1) we readily see that

f (n)(L;T ) = 1
n! T

n ∂n

∂µn
FQQ̄(L;T, µ)

∣∣∣∣
µ=0

. (6.2)

This immediately raises an issue since our expression (5.9) for the free energy is
formulated in the bulk and depends on zt and zh instead of L and T . We have
an explicit relation for zh = zh(T, µ) for N = 4 SYM and the SWT,µ model, see
Eq. (4.28). Moreover, in the 1-parameter models we can straightforwardly determine
zh numerically for given T and µ from the relation T = T (zh, µ), given in Eq. (4.54).
Therefore, we have FQQ̄(zt;T, µ) ≡ FQQ̄(zt; zh(T, µ), µ), and the only argument
of FQQ̄ left to discuss further is zt. In all our models, L = L(zt; zh(T, µ), µ) ≡
L(zt;T, µ) depends only weakly on µ for small µ. One might therefore be tempted
to conclude that we can compute the derivatives in Eq. (6.2) at constant zt instead
of constant L. However, explicit numerical calculations show that, while such a
conclusion is justified for the first derivative (which can also be shown analytically),
at higher order ∂nFQQ̄(L;T, µ)/∂µn differs from ∂nFQQ̄(zt;T, µ)/∂µn. The upshot
is that we need to numerically invert the relation L = L(zt;T, µ). By adjusting
zt = zt(L;T, µ) to keep L constant, for every L and T (and deformation parameter)
we then sample FQQ̄(L;T, µ) at different values of µ in the range 0 ≤ µ ≤ 1/10.
Now, we use Mathematica’s interpolation and differentiation routines to compute
f (n) using Eq. (6.2). To test this algorithm, we have compared the results for
f (1) and f (2) with results obtained by using a finite-difference formula for the first
and second derivatives, thereby circumventing the use of interpolation. Indeed,
the values obtained from these different methods are approximately equal. Our
numerical procedure becomes increasingly noisy as we increase the order n of the
coefficients f (n). For n ≥ 4 the data is too noisy to extract reliable results.

Up to numerical noise, the coefficients f (1) and f (3) appear to vanish in all our
models. We surmise that, more generally, all coefficients of odd order vanish. Evi-
dence for this conjecture comes from noting that µ enters all quantities involved in
the computation of the f (n) only quadratically. This can be seen from the equations
(5.9) and (4.64) for FQQ̄ and L, respectively. µ appears in the horizon function h and
implicitly in zh = zh(T, µ). Both h and T = T (zh, µ) do not contain µ but rather
µ2 in all of our models, see Sec. 4.1. It seems reasonable to assume that the series
representation of zh = zh(T, µ) in powers of T contains only coefficients involving
even powers of µ, and we indeed verify this for the first few terms. In a proof,
an analogous argument would have to be made for zt = zt(L;T, µ). Finally, one
would conclude that a series expansion of FQQ̄(L;T, µ) only contains even powers
of µ. Then, odd-order derivatives of FQQ̄ vanish at µ = 0, and thus all expansion
coefficients f (n) with n odd in Eq. (6.2) vanish.

In QCD, on the other hand, it follows from a general argument [229] that the
odd orders of the (µ/T )-expansion of the heavy-quark free energy vanish [226]. It
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Figure 6.1: Second-order coefficient f (2) of the expansion in µ/T of the QQ̄ free
energy FQQ̄ as a function of the quark separation, plotted at fixed tem-
perature T and varying dimensionless non-conformality parameter δ (see
text) in our non-conformal models. For comparison, the black solid line
shows f (2) in N = 4 SYM. The dots on the endpoints of the curves mark
the screening distance. The non-monotonic, noisy behavior of the curves
for δ = 1 in the 1-parameter Einstein- and string-frame models is an
artifact of the numerics.

is not obvious a priori that this should also be the case in our holographic models.
The fact that the odd coefficients appear to vanish in all our holographic models
thus indicates that the chemical potential which we introduced might be physically
similar to the quark or baryon chemical potential in real-world QCD. In the next
section, we will study the first non-trivial coefficient f (2) in holography in detail.
After that, we will compare it to the lattice results from [226].

6.2 Effect of Non-Conformality

First of all, let us study the first non-vanishing coefficient of the correction due
to finite chemical potential, f (2), within holography. We will compare our various
non-conformal models with one another and with N = 4 SYM and try to discern
common behavior.

We compute f (2)(L) numerically as outlined in the previous section. Figure 6.1
shows the results. f (2), normalized to T

√
λ, is plotted in N = 4 SYM and our
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6 Free Energy Taylor Expansions

non-conformal models at a fixed temperature T as a function of the dimensionless
combination LT with L the quark separation. As before, λ is a shorthand for
λ = L4

AdS/α
′2, and so is a bulk quantity. We only have a precise mapping to

λ = g2
YMNc, the ’t Hooft coupling, for the undeformed case of N = 4 SYM. Turning

back to Fig. 6.1, the respective deformation parameter in the non-conformal models
is made dimensionless by dividing by T , writing δ = c/T and δ =

√
κ/T for the

SWT,µ and 1-parameter models, respectively. For each non-conformal model, we
plot f (2) for two values of δ. Recall that all our models reduce to N = 4 SYM in
the limit δ → 0.

First of all, we notice that the second-order coefficient tends to zero for small quark
separations, irrespective of the temperature T and the model considered. This is due
to the fact that the free energy FQQ̄ becomes independent of the thermodynamic
variables, and in particular of µ, for small distances, as discussed in Sec. 5.1. This
would not have been the case had we used EQQ̄ instead of FQQ̄ in Eq. (6.2). Next, in
all models the coefficient f (2) is negative. Since f (2) is the leading non-trivial coeffi-
cient in the (µ/T )-expansion, this means that for small µ the free energy decreases
with increasing chemical potential. This is in line with the results in Chap. 5, and
is in fact true for intermediate and large µ as well.

We see that the Einstein-frame model is robust with respect to the non-conformal
deformation. In this model, the curve for δ = 1 is almost on top of that in N = 4
SYM. Even for the relatively large deformation δ = 2.5, the overall magnitude of
the coefficient f (2) stays comparable with that in N = 4 SYM, and the screening
distance increases only moderately. Interestingly, for δ = 2.5 at fixed L, the deviation
from the value of f (2) in N = 4 SYM appears to be slightly larger in the Einstein-
frame model than in the other two non-conformal models. This is in contrast to
our general findings that the Einstein-frame model is the most robust among our
non-conformal models. Nevertheless, in the overall picture the SWT,µ model and
the 1-parameter string-frame model exhibit stronger variations when increasing the
deformation parameter: The screening distance increases further and accordingly
f (2) assumes larger values in magnitude at larger L. Also, in the string-frame model,
there is no single direction in which f (2) evolves upon introducing non-conformality.
f (2) increases from its value in N = 4 SYM for small and intermediate deformation
(see the green curve for δ = 1), but decreases for large deformation (see the orange
curve for δ = 2.5).

However, the stronger variations of f (2) in the sense just discussed in the SWT,µ

and string-frame models are apparently mainly due to the increase of the screening
distance. Considering a fixed distance L, the coefficient f (2) is remarkably robust
with respect to the deformation in all our non-conformal models. This means that
the effect of the chemical potential on the free energy is only mildly moderated
by the deformation. Apparently, the quark interaction at small chemical potential
is similar in all our models, even at relatively large non-conformal deformations.
This is a remarkable result since the temperature, the deformation, and the quark
separation are all of roughly comparable magnitude here, so there is not a single
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dominant scale at work such that one could argue that all results necessarily have
to be close to N = 4 SYM.

In the next two sections, we will study the variation of f (2) with temperature, and
investigate how closely our holographic models can mimic QCD behavior as found
on the lattice.

6.3 Taylor Coefficients at Varying Temperature

In this section we investigate the temperature dependence of the second-order coef-
ficient f (2) of the (µ/T )-expansion of the QQ̄ free energy computed via holography,
in preparation for a comparison of our results with data from lattice QCD.

Figure 6.2a displays f (2)/
√
λ as a function of the quark separation L, plotted

for three different temperatures in N = 4 SYM and each of our non-conformal
models. We have reinstated physical units in the plot. To this end, we have set
the deformation parameters to their ‘optimal’ values, as discussed in Sec. 4.1.4, so
that the dimensionless trace of the energy–momentum tensor assumes its maximum
at T = 176 MeV, which we call Tc. Note that in N = 4 SYM the trace vanishes
identically also at non-zero temperature, and in the present problem there are no
dimensionful parameters other than L and T . For that theory, to set the scale we just
use T = {Tc, 1.5Tc, 2Tc} with Tc = 176 MeV for the three black curves in the plot.
Then, since for N = 4 SYM the combination f (2)/(

√
λT ) is given by a universal

function of LT , the three curves for N = 4 SYM in the plot could be trivially scaled
onto one another. This is not the case for the non-conformal models.

Considering a fixed quark separation L, the magnitude of f (2) increases with in-
creasing temperature. However, this does not necessarily mean that the effect of the
chemical potential on the free energy becomes larger with increasing temperature.
Recall that f (2) is the first non-trivial coefficient in an expansion in the ratio µ/T .
Therefore, going for example from T = Tc to T = 2Tc while keeping µ constant,
besides the change in f (2) the first correction term to the free energy contains an
additional factor 1/4 from the change in µ/T . Next, except for the case of the string-
frame model, the larger the temperature the larger is the absolute value of f (2) at
the screening distance. This, combined with the decrease of the screening distance
with increasing temperature leads to a much stronger variation of f (2) with L for
larger temperatures. Finally, as the temperature gets larger, f (2) in our different
models becomes less varied and approaches the value in N = 4 SYM. This is natural
since we adjusted the deformations in such a way that the strongest effect, at least
for the dimensionless trace of the energy–momentum tensor, manifests itself around
Tc. Going to larger temperatures, the deformation scale begins to decouple and the
temperature dominates.

In the next and final section on the coefficients of the (µ/T )-expansion of the free
energy we will compare our holographic results to data from lattice QCD.
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(b) f (2) in 2-flavor lattice QCD [226]. We have chosen from the data of [226] the three
temperatures closest to the ones used in the holographic models (upper panel), and
converted the data to physical units by using

√
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Figure 6.2: Comparison of the second-order coefficients f (2) of the expansion in µ/T
of the QQ̄ free energy as functions of the quark separation for varying
temperature, computed in holography (upper panel) and lattice QCD
(lower panel).
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6.4 Comparison with Lattice Results

In Ref. [226] the first coefficients of the (µ/T )-expansion of the color-singlet free
energy are computed in 2-flavor QCD. In this section, we want to qualitatively
compare these lattice data with our results obtained in holography in order to assess
what properties of the quark chemical potential in QCD are captured by the chemical
potential in our holographic models.

Both on the lattice and in our holographic models, the first non-vanishing co-
efficient of the small-(µ/T ) corrections to the QQ̄ free energy is f (2). In Fig. 6.2
we show the coefficient f (2) as a function of the quark separation L for three dif-
ferent temperatures in the range Tc to 2Tc, computed in holography (upper panel,
Fig. 6.2a) and in lattice QCD [226] (lower panel, Fig. 6.2b).ac In both subfigures we
have reinstated physical units. For Fig. 6.2a, we have explained the procedure in
the previous Sec. 6.3. The data of [226] is given in units of the string tension σ. For
Fig. 6.2b, we have converted these data to physical units by choosing

√
σ = 420 MeV.

First of all, we note that on the lattice, like in holography, f (2) < 0 is found.
Thus, the overall effect of the chemical potential is the same, it leads to a reduction
of the free energy. Therefore, the chemical potential that we use in our holographic
models passes an important check. Furthermore, in the limit L → 0 the coefficient
f (2)(L) computed on the lattice vanishes. Thus, at small quark separation L the
QQ̄ free energy becomes independent of the thermodynamic variables T and µ. We
have found the same result in the holographic computation.

Despite the qualitative similarities, there are significant differences between our
holographic results for f (2) and the lattice data. First, let us discuss the different
ranges in the quark separation L in Figs. 6.2a and 6.2b. In the leading-order holo-
graphic computation, we can only describe the QQ̄ free energy up to the screening
distance. Beyond that separation, additional string configurations become impor-
tant on the right-hand side of Eq. (5.3), and additional supergravity modes that
mediate interactions between strings have to be taken into account. This has so far
been done only for N = 4 SYM [197]. It is not in general clear how to achieve this
in deformed bottom-up models (see, however, [209] for a recent investigation of that
issue). In particular, in our treatment we do not reach a potential exponential ap-
proach of FQQ̄ to a constant value, i. e., Debye screening. Working holographically
in strongly coupled N = 4 SYM, corrections of the type just discussed have to be
taken into account to compute the free energy on length scales where Debye screen-
ing becomes dominant [197]. Therefore, we do not expect to describe the free energy
in the Debye-screening regime in our models. It is, however, reached in the lattice
data shown in Fig. 6.2b, where the Debye screening length for T = Tc (at vanishing
chemical potential) is roughly given by 0.4 fm, and decreases only moderately when
approaching 2Tc [226]. For all three temperatures shown in Fig. 6.2b, the coefficient
f (2)(L) appears to have an inflection point, and approaches a constant value for
larger L.

acWe thank O. Kaczmarek for providing the data of Ref. [226].
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In contrast, we do not see an inflection point nor an approach to a constant
value of f (2)(L) in any of our holographic models. f (2) might possibly show such
behavior at larger distance L, but exploring this would require at least the inclusion
of the corrections discussed above. For the time being, let us therefore restrict the
comparison of the coefficient f (2)(L) to the range of quark separations covered by
our holographic models using the leading-order string configurations in the sense
discussed above. To this end, in the inset in Fig. 6.2b we zoom into the lattice data
for the range 0–0.42 fm. Unfortunately, on that range of distances there are only
very few lattice data points to compare to our holographic results. However, we
can discern, at least for T/Tc = 1.5 and 1.98, that at these distances the absolute
value of f (2) increases with temperature. This qualitatively agrees with the behavior
computed from holography.

Let us finally use the lattice data to estimate the value of the parameter λ which
is left undetermined in the holographic computation. In light of the scarcity of
lattice data points on the relevant length scales, this can only yield a very rough
estimate. Working on the range of distances L = 0–0.42 fm, we take a typical value
5–10 MeV for the lattice data, and 2–4

√
λMeV for the holographic data, without

further specifying the model. (Let us recall that only for the undeformed AdS-
black hole spacetime do we know the exact meaning of λ in the dual boundary
theory, N = 4 SYM, where λ is the ’t Hooft coupling.) Comparing the two, this
yields

√
λ ∼ 2.5, or λ ∼ 6. This is somewhat smaller than the value obtained by

comparing our holographic computation for the single-quark entropy to lattice data
in Sec. 5.5. We will discuss our various estimates for λ further in the summary in
Chap. 8. In any case, let us caution again that the present comparison gives only
an order-of-magnitude estimate.

In the next chapter, we will study another quantity that can be derived from the
QQ̄ free energy, the running coupling. For this quantity, too, lattice data are avail-
able, if only at vanishing chemical potential µ = 0. We will again, and more reliably
than in the case of the coefficient f (2) estimate the parameter λ from a comparison
to the lattice data. Then, however, we will go beyond the thermodynamic regime
accessible in lattice QCD, and study the running coupling for non-zero and large µ
as well.
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7 Running Coupling

So far we have discussed a procedure for the holographic computation of the free
energy of a heavy quark–anti-quark pair in a strongly coupled plasma. We have ver-
ified that in our models this quantity qualitatively behaves as expected from lattice
QCD, and have studied various quantities related to the free energy. Furthermore,
we have studied in detail the behavior of the free energy at small chemical potential
and compared it to lattice QCD, finding that the chemical potential used in our
holographic models captures essential properties of the baryon chemical potential
in QCD. Holography is a powerful tool for the investigation of physics in strongly
coupled plasmas, and in light of the encouraging results that we have found, in this
final chapter of Part I we want to analyze the free energy in even more detail. In
particular, we focus on the characteristics of its dependence on the quark separa-
tion L. A quantity that is very well-suited for this study is the running coupling
that is obtained from the L-derivative of the free energy. It clearly exhibits the
distance-dependence of the free energy and is an interesting physical observable in
itself.

We define the distance-dependent running coupling αQQ̄(L) from the QQ̄ free
energy FQQ̄ by

αQQ̄(L) ≡ 3
4L

2 dFQQ̄(L)
dL . (7.1)

This definition follows Refs. [195, 196] where this quantity is studied in lattice QCD.
Note that the running coupling αQQ̄ defined in Eq. (7.1) is not the coupling that one
is used to from perturbative QCD, αs = g2/(4π), which ‘runs’ with the momentum
scale (see for instance the textbook [230]). However, it is shown in [195] that αQQ̄

reduces to its perturbative counterpart for small interquark separations. We will see
that the situation in our holographic models is analogous. To distinguish αQQ̄ from
the perturbative running coupling, Ref. [231] calls it the effective running coupling.
For simplicity, we will refer to the quantity αQQ̄ defined in Eq. (7.1) as the ‘running
coupling’.

Let us give a physical interpretation of the definition (7.1). In the vacuum of a
conformal theory the only length scale present in the study of a heavy quark–anti-
quark pair is the quark separation L, so on dimensional grounds it should be possible
to write the QQ̄ free energy FQQ̄ in the purely Coulombic form FQQ̄(L) = −α/L
with some constant α. Differentiating by L and multiplying by L2 projects out this
α. If conformality is broken, there will be other scales present and α will generically
vary with L. For instance, this will already be the case at non-zero temperature.
Thus, αQQ̄ as defined in (7.1) is a measure for the deviation from conformality.
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The additional factor 3/4 in Eq. (7.1) is the inverse of the Casimir factor that
appears in the static potential in QCD. In our holographic models we do not know
the exact field content of the boundary theories, so we cannot state the analogous
factors. However, as we will mainly be interested in the qualitative behavior of αQQ̄

this is not too big an issue. For concreteness, then, we include the factor 3/4 in
Eq. (7.1), thus matching the definition used in the lattice studies [195, 196]. Besides
this factor, in the holographic computation we have in addition the parameter

√
λ

that appears as a bulk quantity in the formula (5.9) and which we will discuss further
below.

In the following, we will first review what has been found regarding the running
coupling in lattice QCD. To get some intuition for the physics of αQQ̄ in holography,
we will then study it in N = 4 SYM, both at vanishing chemical potential, and,
for the first time, at non-zero chemical potential. We will then proceed to studying
non-conformal models. The running coupling gives rise to two further interesting
physical observables, namely its maximum value and the associated length scale. We
will generally analyze the physical observables in the whole (µ, T )-plane. Besides
this exploratory investigation, at vanishing chemical potential we will quantitatively
compare the maximum value of the running coupling to lattice QCD data, and thus
estimate the value of the parameter

√
λ, similarly to estimates for it that we based

on different observables in the previous chapters.

7.1 Running Coupling in Lattice QCD

Before we turn to the analysis of the running coupling in our holographic models we
want to have a look into what has been found in lattice QCD studies. Lattice QCD
can currently only determine this quantity at vanishing chemical potential due to
the notorious sign problem (see e. g. [104] for a review). Thus, we will be able to
compare our holographic results to lattice results only at µ = 0.

In Fig. 7.1 we show results on the running coupling from [195]. In this work, the
heavy quark–anti-quark free energy is investigated in quenched lattice QCD, i. e. in
a purely gluonic plasma. A later study [196] has computed the running coupling
in 2-flavor lattice QCD with qualitatively similar results. The figure shows the
running coupling for six different temperatures above the deconfinement temperature
Tc. For all of these temperature, αQQ̄ increases monotonically with the distance r
between the quarks (L in our notation) up to a certain point. It then reaches a
maximum and subsequently falls off. [196] has a nice argument for the appearance
of the maximum at intermediate distances. In the small-distance limit, medium
effects become unimportant, so αQQ̄ reflects the logarithmic decrease of the vacuum
coupling with decreasing length scale (the thin solid curve in Fig. 7.1 shows the T = 0
vacuum value). On the other hand, for large distances color screening exponentially
suppresses the coupling. Therefore, a maximum has to appear for intermediate
distances.

The situation will necessarily be somewhat different in our holographic models.
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Figure 7.1: Running coupling αQQ̄ (denoted by αqq in the figure) as a function of the
interquark distance r at various temperatures, computed in quenched
lattice QCD; the figure is taken from [195]. Open and filled symbols
represent data computed with different grid spacings. The thin and
thick solid black lines, as well as the dashed black line, represent various
limits or approximations of the running coupling and are not important
for our purposes, see [195] for a discussion.

For one thing, there is no asymptotic freedom, so this argument for a decrease of
αQQ̄ for small distances does not apply. Also, using classical gravity in the bulk
in the holographic models, we do not expect to describe a potential exponential
flattening of the free energy, as discussed in Sec. 6.4. Given these differences of the
asymptotic behavior of the running coupling in QCD and holographic models, it is
not a priori clear whether, at least for intermediate distances, the running coupling
can be sensibly compared in holographic models and in QCD.

7.2 Running Coupling in N = 4 SYM
To start with our holographic investigation, we first analyze the behavior of the
running coupling in N = 4 SYM. The running coupling for N = 4 SYM was first
discussed in the context of gauge/gravity duality in [126]. In this section, in contrast
to [126], we include non-zero chemical potential.

For a start, let us review the situation in N = 4 SYM in vacuum, i. e., at T = 0
and µ = 0. As discussed in Sec. 5.2, Maldacena [105] has first obtained the heavy
quark–anti-quark potential which we repeat here for convenience,

VQQ̄(L) = − 4π2√λ
Γ4
(

1
4

)
L
, (7.2)

where λ is the ’t Hooft coupling. VQQ̄ coincides with the free energy FQQ̄ at T = 0.
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Figure 7.2: Running coupling αQQ̄(L)/
√
λ in N = 4 SYM at fixed temperature and

varying chemical potential. All dimensionful quantities are expressed in
units of the temperature. The thin solid line indicates the UV value
(7.3) of the coupling. Note that the scale on the LT -axis is logarithmic.
The dots on the endpoints of the curves mark the screening distance.

Applying the definition (7.1) yields the constant

αT =0
QQ̄

= 3π2√λ
Γ4
(

1
4

) ≈ 0.171
√
λ . (7.3)

At non-zero temperature and chemical potential, we have to compute the running
coupling numerically. To this end, we sample the parametric functions L(zt) and
FQQ̄(zt), see Eqs. (4.64) and (5.9), respectively, for regularly spaced values of zt using
Mathematica’s routine NIntegrate. We reduce the free energy FQQ̄ to its stable
branch (cf. the discussion in Sec. 5.2) and interpolate the resulting data points to
obtain FQQ̄(L). Finally, we directly apply the definition (7.1) on this interpolating
function. Note that for the calculation of the running coupling one can also use the
binding energy, Eq. (5.13), instead of the free energy, Eq. (5.9), in the formula (7.1)
since the difference between these two energies does not depend on L and thus drops
out when taking the L-derivative at fixed temperature (and chemical potential).

In Fig. 7.2 we plot αQQ̄(L) in finite-temperature N = 4 SYM at varying chemical
potential. We note the following generic points about the behavior of the running
coupling. These findings concerning the behavior of αQQ̄ hold in all our holographic
models.
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• Conformality – in the sense of the QQ̄ free energy being FQQ̄(L) ∝ 1/L which
implies αQQ̄(L) = const – is broken by interaction with the medium. The
presence of the thermal medium introduces length scales associated with T
and µ. As L becomes comparable to them, the medium starts to screen the
QQ̄ interaction and consequently αQQ̄ drops as L increases.

• In the UV, i. e., as L → 0, the running coupling becomes constant. This
signals a restoration of conformality in the above sense in the UV where the
thermal scales become negligible compared to the energy scales considered.
The constant UV value is the vacuum value αQQ̄/

√
λ ≈ 0.171, see Eq. (7.3).

• The effect of the chemical potential is a decrease of the running coupling. This
is likely due to the increased charge density in the surrounding medium leading
to stronger screening. This finding is in line with the observations we made
for the binding energy, cf. Fig. 5.1b and the discussion thereof in Sec. 5.2.

For every curve in Fig. 7.2, we have marked the screening distance Ls with dots. It
decreases with increasing chemical potential. The thermal scale Lth associated with
the presence of the medium sets the fall-off scale of αQQ̄(L), cf. the first point in the
list above. It is in turn determined by Lth ∼ 1/T at vanishing chemical potential
[113]. In the figure we see that in N = 4 SYM at µ = 0 the coefficient of 1/T in
Lth is on the order of 0.1. At non-zero chemical potential, Lth is determined by two
scales. However, we see from Fig. 7.2 that, at least in N = 4 SYM, Lth depends
only weakly on µ as compared to the dependence on T .

Comparing with the lattice data shown in Fig. 7.1, we observe two key differ-
ences: Firstly, the UV behavior differs, as was to be expected from the discussion
in Sec. 7.1. As the quark separation becomes small, the running coupling in N = 4
SYM becomes constant, in contrast to the asymptotically free behavior in QCD seen
in the data displayed in Fig. 7.1 (and also in studies including dynamical quarks like
[196]). Secondly, while the screening effect of the thermal medium is clearly seen
in the drop-off of αQQ̄ in Fig. 7.2, there is no maximum of the coupling before the
fall-off, unlike in the case of QCD. The first difference is intrinsic to our approach
and we cannot overcome it by just considering deformations of the holographic dual
of N = 4 SYM theory within asymptotically AdS spacetimes. The reason is that
in the UV all such deformations reduce to conformal N = 4 SYM. However, the
second difference can be addressed by considering explicitly non-conformal models
that deviate from N = 4 SYM at larger distance scales. In fact it has been found
in [113] that a certain non-conformal model can fit the lattice data from [195] quite
well. In the next section, we will extend these analyses and investigate the behavior
of the running coupling in the strongly coupled plasma at non-zero chemical poten-
tial. For the case of non-vanishing chemical potential, no lattice data is available.
Holography is one of the few methods by which we can gain computational access
in this regime.
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7.3 Running Coupling in Non-Conformal Holographic
Models

In this section, we discuss the behavior of αQQ̄ in non-conformal holographic models,
asking in particular how it is affected by the chemical potential. The first and, to the
best of our knowledge, so far only study of the running coupling in non-conformal
holographic models has been performed in [113], which works at vanishing chemical
potential.

In Figs. 7.3 and 7.4 we show results for the running coupling in the SWT,µ and 1-
parameter string-frame models at a fixed temperature T . We render all dimensionful
quantities dimensionless by multiplying or dividing by T . We will briefly comment
on the 1-parameter Einstein-frame model at the end of this section. The panels in the
figures show data for chemical potentials µ/T = 0, 1 and µ/T = 5, 10, respectively.ad

Within every panel, we further vary the deformation parameter over a large range,
starting with N = 4 SYM for vanishing deformation (black curves). In the figures,
the variable δ stands for the dimensionless ratio of the deformation parameter and
the temperature, i. e., δ = c/T for the SWT,µ model and δ =

√
κ/T for the 1-

parameter string-frame model.
First of all, we note that in both models the introduction of non-conformality leads

to the appearance of a maximum in αQQ̄. Non-conformality apparently strengthens
the interaction between the quarks. The qualitative behavior is similar to the one
found in lattice QCD, cf. Fig. 7.1. Furthermore, αQQ̄ reduces to conformality for
small L in both non-conformal models shown, i. e., the coupling becomes constant.
The constant value is independent of the deformation, and it equals the value found
in (the vacuum of) N = 4 SYM, see Eq. (7.3). The increase of αQQ̄ above the
constant UV value is clearly seen in both non-conformal models. Such a universal
increase of αQQ̄ was observed for vanishing chemical potential in [113]. We can
now conclude that this property holds in the entire (µ, T )-plane for the two models
considered in Figs. 7.3 and 7.4 – we will comment on the 1-parameter Einstein-frame
model at the end of the section. Even for large chemical potentials, there still is a
small increase above the UV value.

Holographic models can only be expected to approximate QCD behavior at inter-
mediate distances that are neither too small nor too large. There is, in fact, no a
priori reason for the appearance of a maximum in αQQ̄ in our holographic models.
The fact that we see a maximum indicates that, on length scales on the order of the
maximum, our holographic models indeed capture essential physics of QCD and we
may meaningfully compare results from our models with lattice studies, which we

adWe emphasize that care must be taken in translating a given value µ/T from holographic models
to QCD. We do presently not know what factors might be involved in modeling the baryon (or
quark) chemical potential in QCD by the chemical potential in our various holographic models.
In light of this uncertainty, it is possible that the range of values for µ/T considered here reaches
beyond the range of interest for QGP phenomenology. In any case, it is certainly interesting
to also explore the regime of large chemical potentials within our holographic models besides
µ/T ∼ 1.
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Figure 7.3: Running coupling in the SWT,µ model (dashed) and in the 1-parameter
string-frame model (dotted) at fixed temperature and chemical potential
µ/T = 0 (upper panel) and µ/T = 1 (lower panel), for varying deforma-
tion parameter δ. The dimensionless deformation parameter is δ = c/T
for the SWT,µ model and δ =

√
κ/T for the 1-parameter string-frame

model. The thin solid line indicates the UV value, Eq. (7.3), of the
coupling in N = 4 SYM. Note the logarithmic LT -axis.
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Figure 7.4: Running coupling αQQ̄ in the SWT,µ model (dashed) and in the 1-
parameter string-frame model (dotted) at fixed temperature and chem-
ical potential µ/T = 5 (upper panel) and µ/T = 10 (lower panel), for
varying deformation parameter δ. The dimensionless deformation pa-
rameter is δ = c/T for the SWT,µ model and δ =

√
κ/T for the 1-

parameter string-frame model. The thin solid line indicates the UV
value, Eq. (7.3), of the coupling in N = 4 SYM. Note the logarithmic
LT -axis and the different ranges of the LT axis in the two plots.
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will do in the following Sec. 7.4.

Let us now focus on the effect of the chemical potential on αQQ̄. First of all,
we notice that the UV value of the coupling is not affected by non-zero µ. This is
natural since µ is a scale characterizing the thermal medium surrounding the quarks
which becomes unimportant in the UV. Secondly, we observe from the sequence of
plots in Figs. 7.3 and 7.4 that an increased chemical potential leads to a decrease in
the coupling for intermediate and large distances. In particular, the maximal value
of αQQ̄ decreases, as does the screening distance. Apparently, a larger net density of
the charge conjugate to µ effectively screens the quarks from each other and weakens
their interaction. For large chemical potentials, see the lower panel in Fig. 7.4, the
thermal effects set in before the increase in the coupling due to the non-conformality
can manifest itself. The maximum almost completely ‘melts’ away.

Next we turn to a comparison of the impact of the deformation on the behavior
of αQQ̄ in the SWT,µ and 1-parameter string-frame models. We have already noted
above that the qualitative behavior of αQQ̄ is similar in the two models. Even
the quantitative behavior of αQQ̄ is similar in the two models, i. e., the models
yield approximately equal values for the running coupling for equal values of δ. This
similarity is somewhat lifted by the inclusion of the chemical potential, as we observe
from comparing Figs. 7.3 and 7.4. Overall, the 1-parameter string-frame model is
more sensitive to changes in the chemical potential. While for small to intermediate
chemical potentials (Fig. 7.3) the running coupling at fixed interquark distance L is
slightly larger in the 1-parameter string-frame model than in the SWT,µ model for
all choices of the deformation parameter, this relation is inverted for intermediate
to large chemical potentials (Fig. 7.4).

Finally, we note that αQQ̄ computed in the 1-parameter Einstein-frame model
is extremely robust under the non-conformal deformation, in accordance with our
earlier findings for the physics of this model. Fig. 7.5 shows the running coupling in
this model. We have chosen µ/T = 1 as a representative value; the picture is similar
for all choices of the chemical potential. We have included the running coupling
in N = 4 SYM (black curve), and show the running coupling in the 1-parameter
Einstein-frame model for two values of the deformation parameter,

√
κ/T = 2.5, 2.9.

Note that the latter deformation is very close to the maximally possible deformation
for the chosen value of µ, as discussed in Sec. 4.1.4. We see that, despite the fact
that for large deformation parameter the running coupling at distances close to the
screening distance (slightly) increases from its value in N = 4 SYM, no maximum
at intermediate distances is visible. Unfortunately, we cannot decide whether a
maximum is present at smaller distances because of increasing numerical imprecision.
In any case, even for maximal deformation αQQ̄ in the 1-parameter Einstein-frame
model stays very close to the running coupling in N = 4 SYM. The robustness we
observe here for αQQ̄ in this model is in line with results on the QQ̄ binding energy
in this model obtained in [45].
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Figure 7.5: Running coupling αQQ̄ in N = 4 SYM and the 1-parameter Einstein-
frame model at fixed temperature and chemical potential with µ/T = 1,
for
√
κ/T = 2.5 and

√
κ/T = 2.9, which is close to the maximally possi-

ble deformation at the present value of µ. The thin solid line indicates
the UV value (7.3) of the coupling in N = 4 SYM.

7.3.1 Robustness With Respect to Choice of Gauge Kinetic Function

Before closing this section, we assess to what degree our results for αQQ̄ depend on
the choice of the gauge kinetic function f(ϕ) that appears in the action (4.1) from
which we have derived the 1-parameter models in Sec. 4.1.3. There, we made two
different choices for f(ϕ). The explicit solutions for the 1-parameter models can
be found in Appendix B. So far, we have studied the models defined by the choice
(4.43). Now we compare results to the model defined by the alternative choice (4.44).

Given that f(ϕ) couples the scalar field to the gauge field, it can only have an effect
in the deformed models at non-zero chemical potential. We have seen above that
αQQ̄ shows the strongest dependency on the chemical potential in the 1-parameter
string-frame model. In Fig. 7.6 we therefore plot the running coupling αQQ̄(L) in
the 1-parameter string-frame model at fixed temperature and for a large value of
the deformation parameter, varying the chemical potential from µ/T = 0 up to
µ/T = 10. For each set of parameters, we plot αQQ̄ for both choices of f(ϕ). At
vanishing chemical potential (black curve), αQQ̄ is insensitive to the choice of the
gauge kinetic function, as expected. For all values of the chemical potential chosen in
the figure, we observe only small differences between the values for αQQ̄ computed
with the different choices of f(ϕ). Thus, we conclude that the results obtained
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Figure 7.6: Running coupling αQQ̄ in the 1-parameter string-frame model for fixed
temperature and deformation with

√
κ/T = 2.3, and varying chemical

potential. For all parameter choices, we plot αQQ̄ for two choices of the
gauge kinetic function, the one used by DeWolfe et al., see Eq. (4.43),
and the minimal choice f(ϕ) = 1. The thin solid line indicates the UV
value (7.3) of the coupling in N = 4 SYM.

in this chapter are robust with respect to the choice of the gauge kinetic function.
Moreover, as αQQ̄ characterizes the L-dependence of the QQ̄ free energy, this implies
that all our results concerning the QQ̄ interaction as described by the free energy
should be robust with respect to the choice of f(ϕ).

7.4 Maximal Coupling Strength

After our investigation of the running coupling at non-zero chemical potential, we
now want to focus on a particular observable at µ = 0 that has not been studied
in holography so far. As we have seen, in non-conformal holographic models the
running coupling exhibits a maximum. A maximum is also observed on the lattice
and it is studied in some detail in [195, 196], so it is worthwhile to compare holo-
graphic results on this observable to lattice data. Thus, we are going to investigate
the quantity

αmax(T )√
λ

= max
L

[
αQQ̄(L, T )
√
λ

]
. (7.4)
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This quantity depends on temperature and can be understood as a measure of the
effective coupling strength at the scale where the thermal medium starts to screen the
QQ̄ interaction [231]. We study αmax as a function of the dimensionless temperature
ratio T/Tc ≥ 1. We fix Tc in the holographic models in the same fashion as before,
cf. Sec. 4.1.4. As we want to compare to lattice data, we work at µ = 0. In our
holographic calculation, we focus on the SWT and 1-parameter string-frame models
because, as we have seen above, αQQ̄ in the 1-parameter Einstein-frame model is
very robust so we cannot extract a maximal value. In Eq. (7.4), the constant

√
λ is

again defined by
√
λ = L2

AdS/α
′ and thus has no a priori meaning in the boundary

theory in the non-conformal models. We will estimate the value of
√
λ from the

comparison with lattice data.
In Fig. 7.7 we compare αmax computed in our holographic models with data from

lattice QCD. Fig. 7.7a shows αmax in the holographic models, whereas in Fig. 7.7b
lattice data from quenched and unquenched simulations are collected ([231], and
references therein). In both cases, a temperature range from T = Tc to T = 3Tc is
plotted. We observe that the increase of αmax as T approaches Tc from above that
is seen in the lattice data is reproduced by the holographic models. This increase
it stronger in the consistent 1-parameter string-frame model than in the ad hoc
SWT model. At larger T , there is a qualitative difference between holography and
lattice QCD: Whereas αmax on the lattice decreases continuously with increasing
temperature, it approaches some constant value in the holographic models. This
can be understood from our discussion in Sec. 7.3. We have seen that the thermal
medium tends to decrease the coupling strength of the quarks. At higher T , the
screening by the medium sets in at smaller distance, so that the maximum in αQQ̄

due to the non-conformality gradually ‘melts’ away and αmax decreases. Since for
small distances in all of our models αQQ̄ reduces to its value in the vacuum of N = 4
SYM this vacuum value is a lower bound for αmax, which is approached from above
as the temperature increases. To illustrate this, we have marked the value of αQQ̄

in the vacuum of N = 4 SYM, see Eq. (7.3), by a thin black line in Fig. 7.7a.
By quantitatively comparing our holographic results to the lattice data, we can

produce a rough estimate for the value of the constant λ that we have left unde-
termined in our holographic models. From the lattice data shown in Fig. 7.7b, we
read off a typical value αmax ∼ 0.7 for temperatures slightly above Tc. On the holo-
graphic side, for temperatures slightly above Tc we obtain αmax/

√
λ ∼ 0.2 in the

SWT model, and αmax/
√
λ ∼ 0.25 in the 1-parameter string-frame model. Compar-

ing, we arrive at
√
λ ∼ 3.5 and

√
λ ∼ 2.8, or equivalently λ ∼ 12 and λ ∼ 7.8, for the

SWT model and 1-parameter string-frame model, respectively. The lattice data for
αmax from the different lattice simulations shown in Fig. 7.7b are scattered around
our reference value 0.7, with deviations of approximately 25 % in either direction.
As in our estimate of λ based on the single-quark entropy SQ in Sec. 5.5, we take this
spread of the lattice data as the relative uncertainty for our estimates of

√
λ. This

results in a relative uncertainty of ±50 % for λ. In [126], a value λ = 5.5 was deter-
mined as a representative value from a range of values that, according to that work,
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(a) Maximum of the running coupling in the SWT and 1-parameter string-frame models.
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Figure 7.7: Comparison of the maximum αmax of the running coupling as a function
of temperature in our holographic models (upper panel) and lattice QCD
studies (lower panel).
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should be used in N = 4 SYM calculations for the closest-possible approximation of
QGP physics. That estimate is roughly consistent with our estimates, obtained in
non-conformal models. Interestingly, there seems to be a tendency towards larger
values of λ in non-conformal models.

As before, we take the fact that λ is estimated considerably larger than 1 as an
indication for self-consistency of the computational framework employed, in par-
ticular the use of the classical approximation in the bulk. The present estimates
are in between our previous estimates on the basis of the single-quark entropy in
Sec. 5.5 on the one hand, and on the basis of the coefficient f (2) in the (µ/T )-Taylor
expansion of the QQ̄ free energy in Sec. 6.4 on the other.

7.5 Distance of Maximal Coupling

In the previous section, we have studied the maximal value of the running cou-
pling and its dependence on temperature at vanishing chemical potential, where
we could compare to lattice-QCD data. In this section, we investigate the behav-
ior of the associated length scale Lmax at which the running coupling assumes its
maximum value, and we return to studying the full µ-dependency. We have seen
above that, at least in the SWT,µ and 1-parameter string-frame models, introducing
non-conformality tends to increase the coupling and leads to a maximum in αQQ̄,
whereas thermal effects associated with the scales T and µ decrease the coupling.
We surmise that Lmax can broadly be understood as the scale at which the effects
of the thermal medium become more important than the non-conformality. Note
that this does not imply that at this scale the thermal effects already dominate the
behavior of αQQ̄.

To set the stage, let us first discuss the behavior of Lmax at vanishing chemical
potential. The author of Ref. [113] finds in the SWT model that Lmax ∼ T−2. On
dimensional grounds it follows that this leading-order scaling behavior can be refined
as Lmax ∼ c/T 2 with c the deformation parameter. This makes manifest the fact
that the appearance of the maximum is an effect of the non-conformality. In fact,
it appears that at least in the SWT model the relative magnitude of the subleading
terms in c/T are small. Similarly, we find that the leading-order scaling in the
1-parameter string-frame model is Lmax ∼

√
κ/T 2. In lattice QCD, the scaling of

Lmax is different from the behavior in our holographic models. To wit, [195] finds
Lmax ∼ 1/T for temperatures up to 12Tc. This might be taken as a hint that there is
a different mechanism at work that leads to the appearance of the maximum in the
holographic models as compared to QCD. Indeed, in QCD the rise of the coupling
with increasing distance is, at least for small distances, a perturbative phenomenon,
whereas in our strongly coupled non-conformal holographic theories it is likely of
non-perturbative origin.

In any case, Lmax is an interesting scale for the physics of our models, so let us
study its behavior at non-zero chemical potential. We note from Figs. 7.3 and 7.4
that, like at µ = 0, also at non-zero µ the distance Lmax increases with increasing
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Figure 7.8: Distance of maximum QQ̄ coupling Lmax (lower surface) and screening
distance Ls (upper surface) as functions of the temperature and chemical
potential in the SWT,µ model at fixed deformation c, in units of which
we have expressed all dimensionful quantities. Note the different range
of the T/c- and µ/c-axis.

non-conformality. For a quantitative investigation in the (µ, T )-plane we focus on the
SWT,µ model because, while the numerical cost for computing Lmax(T, µ) is still large
in this model, it is considerably smaller than in the consistent models. Moreover,
from the discussion of our data in Figs. 7.3 and 7.4 we expect that the results
obtained in the SWT,µ model will be robust and qualitative conclusions will also
hold in the 1-parameter string-frame model. Figure 7.8 shows the distance Lmax and,
for comparison, the screening distance Ls in the (µ, T )-plane for fixed deformation
c. Both Ls and Lmax decrease with the thermodynamic variables T and µ. We
observe that for all µ and T the screening distance Ls is larger than the distance of
maximal coupling Lmax, as the latter decreases more quickly with T and µ. Phrased
differently, our holographic models resolve, in the whole (µ, T )-plane, the increase
and subsequent decrease of the running coupling before the screening distance is
reached, at which point further string configurations in the basic equation (5.3)
would be required as discussed in Sec. 6.4. Since thermal effects clearly dominate
at the screening distance, this is evidence supporting our interpretation of Lmax as

101



7 Running Coupling
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Figure 7.9: The length scale Lmax in the SWT,µ model as a function of the chemical
potential at fixed temperature and deformation, scaled by various powers
of the chemical potential, as given by the exponent k. Note that we
have rescaled the curves for µ1.65Lmax (orange dashed) and µ2Lmax (red
dotted) by 1/3 and 1/8, respectively.

the scale at which thermal effects become more important than the effect of the
non-conformality.

Not only T , as discussed above, but also µ appears to have a parametrically
stronger impact on Lmax than on Ls. We have found in [45] that for very large
chemical potential, µ≫ T , the screening distance behaves universally like Ls ∼ µ−1

at fixed T . Fig. 7.8 indicates that the leading-order dependence of Lmax on µ is
stronger than ∼ µ−1. Let us investigate the dependence of Lmax on µ in more
detail. To this end, we plot in Fig. 7.9 the scale Lmax scaled by various powers
of the chemical potential at fixed temperature and deformation c as a function
of µ/c. The black solid curve shows the decrease of the unscaled Lmax with the
chemical potential. The green dashed curve represents µLmax. From it we see that
the possibility of a large-µ scaling of the form Lmax ∝ µ−1 is ruled out, so that
the decrease of Lmax with µ is in fact stronger than that of the screening distance.
This explains the behavior seen in Fig. 7.8. The red dotted curve shows µ2Lmax.
We have explored a large range of values for µ in Fig. 7.9, ranging from µ/T = 0
to µ/T ≈ 26.ae Over this range µ2Lmax does not approach a constant value but
rather continues to increase. This is opposed to the case of the scaling for large
aeRegarding the interpretation of such large values for µ/T , cf. our remarks in footnote (ad).
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7.5 Distance of Maximal Coupling

temperature, where we find that LmaxT
2 is near-constant for T/c ≳ 1. The non-

integer scaling Lmax ∼ µ−1.65, found by manually varying the exponent, appears to
parametrize the large-µ behavior of Lmax best, but in fact that might change at still
larger µ. While it would certainly be interesting to explore this in more detail, we
were unfortunately not able to extend the numerics to larger values of the chemical
potential in order to test these findings under more extreme conditions. In any case,
a robust conclusion appears to be that, while the temperature strongly affects Lmax
and an asymptotic range where it dominates the behavior of Lmax is reached quickly,
the effect of µ is weaker in the sense that an asymptotic scaling regime appears to
be reached only at large µ/c, or equivalently, large µ/T .

This concludes our discussion of the running coupling αQQ̄ derived from the heavy
quark–anti-quark free energy. The running coupling in non-conformal models is
found to be either very robust, deviating little from the case of N = 4 SYM (1-
parameter Einstein-frame model), or it increases above the value in N = 4 SYM,
giving rise to a maximum at intermediate quark separations (SWT,µ and 1-parameter
string-frame models). The latter two models are in this respect qualitatively similar
to QCD. For these models, for vanishing chemical potential we have compared the
maximum value of the running coupling to lattice QCD data and found a reasonable
estimate for the parameter λ in the holographic models. At non-zero chemical
potential, we have found that the increase above the UV value of the coupling
persists such that αQQ̄ always assumes a maximum. Furthermore, we have studied
the scaling of the length scale Lmax associated with the maximum of the running
coupling in the (µ, T )-plane. The overall picture is that the impact of the chemical
potential on αQQ̄ is considerably weaker than that of the temperature.
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8 Summary

In the first part of this thesis, we have studied heavy quarks as probes of a strongly
coupled, deconfined gauge-theory plasma, with the quark–gluon plasma as the corre-
sponding real-world system in mind. We have studied both single quarks and bound
quark–anti-quark pairs which are models of heavy quarkonia like J/ψ or Υ, using
N = 4 SYM theory and a large class of non-conformal holographic models that we
have constructed in Chap. 4 as deformations of N = 4 SYM. Generally, we have
included a chemical potential and have studied its effect on our physical observables.

We started in Chap. 5 with a thorough review of the holographic computation of
energies associated with the interaction of a heavy quark–anti-quark pair (Sec. 5.1).
Regarding this computation there has apparently been some confusion in the liter-
ature. The calculation involves the renormalization of the UV-divergent, i. e. near-
boundary-divergent, extremal Nambu–Goto action of a bulk string representing the
bound QQ̄ pair. We have studied a general renormalization scheme which we have
argued can be used to compute the QQ̄ free energy in any asymptotically AdS space-
time. Using this scheme, the free energy becomes independent of the thermodynamic
variables for small distances L as expected on physical grounds. Indeed, we have
verified that when increasing the temperature the free energy that we have computed
for all our holographic models from the advocated renormalization scheme (Secs. 5.2
and 5.3) qualitatively behaves like the QQ̄ free energy that has been obtained in
lattice QCD studies. Moreover, going beyond the thermodynamic regime accessible
in lattice QCD, we have found in our models that the chemical potential has an
effect on the free energy that is analogous to that of the temperature, i. e., the free
energy decreases upon increasing the chemical potential.

We have shown that the procedure commonly used in the literature for the afore-
mentioned renormalization of the extremal Nambu–Goto action does not give rise
to the QQ̄ free energy. Rather, it leads to a quantity that can be interpreted as a
binding energy as we have demonstrated by studying its dependence on the ther-
modynamic variables T and µ. Increasing either of these scales leads to a reduced
binding energy for a fixed quark separation. This nicely leads to a picture of melting
induced by increasing chemical potential in analogy to the picture of ‘melting’ at
high temperature [92]. In fact, this finding of the impact of the chemical potential
is robust and holds in all our models. Interestingly, we have furthermore found that
the qualitative behaviors of the free energy FQQ̄ and the binding energy EQQ̄ under
non-conformal deformation are opposites of one another. Whereas FQQ̄(L) at fixed
L increases with increasing non-conformality, EQQ̄(L) decreases. This is a clear dis-
tinction of the two quantities. Another important difference is that, unlike the free
energy, the binding energy manifestly depends on temperature and chemical poten-
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tial at small quark separations which precludes its interpretation as an effective QQ̄
potential.

For small quark separation L, the free energy becomes independent of the model
that we consider and approaches a universal, Coulombic curve, namely the vacuum
potential VQQ̄(L) given in Eq. (5.17) which was first obtained in [105]. Given this
common small-L behavior, we can compare the free energy in different models.
Under non-conformal deformations, we have found that the free energy changes
only very little in the 1-parameter Einstein-frame models. In the SWT,µ and 1-
parameter string-frame models, on the other hand, the free energy increases above
its value in N = 4 when switching on the non-conformality. Thus we conclude that
the free energy in N = 4 SYM constitutes an approximate lower bound in a large
class of non-conformal models. The internal energy that we have derived from the
free energy exhibits an analogous behavior (Sec. 5.4). Here, too, the value in N = 4
SYM seems to mark an approximate lower bound among all our models.

Analogously, we have computed the free energy, entropy, and internal energy as-
sociated with single heavy quarks in the strongly coupled plasmas described by
our models, and have systematically studied the impact of the non-conformality
(Sec. 5.5), an analysis which has not been done so far in the literature. In N = 4
SYM, those three quantities are either temperature-independent (entropy and inter-
nal energy) or depend trivially on temperature (free energy FQ ∝ T ), in accordance
with conformal invariance. In non-conformal models, however, a non-trivial temper-
ature dependence arises which is qualitatively similar to lattice QCD results for the
deconfined phase, T ≥ Tc. Moreover, for all temperatures we have found a universal
increase of all three quantities above the respective value in N = 4 SYM in all our
non-conformal models.

Furthermore, in Chap. 6 we have studied a Taylor expansion of the free energy
in powers of (µ/T ) and have compared the leading non-trivial coefficient f (2) to
lattice QCD data. Such a comparison has not been done before in the literature.
We have found that in our holographic models f (2) is remarkably robust under non-
conformal deformation. This implies that, as the effect of the chemical potential
on the free energy is only mildly moderated by the deformation, the effect of the
chemical potential on the quark interaction is similar in all our models, at least for
small µ. We might thus hope that this is a universal feature that applies to QCD as
well. Now, in comparing f (2) from our holographic models to lattice data on f (2), we
have found that the overall features of f (2) compare qualitatively well. We conclude
that the simple ‘holographic’ chemical potential indeed models important aspects of
the baryon (or quark) chemical potential in QCD.

In the last chapter 7, we have investigated the running coupling αQQ̄(L) as a
means to clearly expose the distance dependence of the heavy quark–anti-quark
interaction. Non-conformal models at vanishing chemical potential exhibit a maxi-
mum in αQQ̄(L) [113], as does the analogous quantity in lattice QCD. While for the
SWT,µ and 1-parameter string-frame models we have clearly found that this maxi-
mum continues to exist at non-zero chemical potential, αQQ̄(L) in the 1-parameter
Einstein-frame turns out to be so robust against non-conformal deformation that the
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Table 8.1: Rough estimates for the parameter λ in non-conformal models from com-
parisons of three different observables with lattice-QCD data. The values
are associated with considerable relative uncertainties (see text). There
is no estimate for λ from αmax in the 1-parameter Einstein-frame model
because we cannot identify a clear maximum in αQQ̄(L) in that model
due to its robustness.

observable
model SQ(Tc) f (2)(L ∼ Ls) αmax(T ∼ Tc)

SWT 63 ∼ 6 12
1-parameter string 26 ∼ 6 7.8
1-parameter Einstein 115 ∼ 6 —

question of whether αQQ̄ assumes a maximum could not be settled. Generally, as
the chemical potential increases, the maximum seen in the SWT,µ and string-frame
models ‘melts’ away which clearly indicates a screening effect due to the charge
density associated with the chemical potential. We furthermore have studied the
maximal value of the running coupling and the associated length scale. We have
investigated the scaling of the latter with temperature and chemical potential, which
corroborates the overall picture that has emerged from our study of αQQ̄(L), namely
that in all of our models the impact of the chemical potential on the heavy quark–
anti-quark interaction is considerably weaker than that of the temperature. As we
have found this in a large class of non-conformal models for strongly coupled plasma,
it seems to be a robust conclusion with potential applications to QCD.

Finally, in the non-conformal models we have a parameter λ, defined in the bulk,
that has no a priori meaning in the boundary theory, but can tentatively be thought
of as controlling the coupling strength of the boundary theory, as in the undeformed
case, i. e. N = 4 SYM. Throughout Part I we have compared three different observ-
ables computed in our non-conformal models to data from lattice QCD and thus
produced a number of estimates for the value of λ. These observables are the single-
quark entropy SQ at Tc (Sec. 5.5), the Taylor coefficient f (2) close to the screening
distance (Sec. 6.4), and the maximal value of the running coupling αmax close to
Tc (Sec. 7.4), all of them evaluated for vanishing chemical potential, where lattice
data are available. The estimates we have found are summarized in Table 8.1. No
estimate for λ could be obtained from αmax in the 1-parameter Einstein-frame model
because that model does not exhibit a clear maximum, αQQ̄(L) remaining very close
to N = 4 SYM even for large non-conformal deformation. As discussed in the de-
termination of the estimates, they are associated with large relative uncertainties.
From the spread of the lattice data on SQ and αmax, we have estimated a relative un-
certainty of λ of ±50 % in both cases. On qualitative grounds, we expect the relative
uncertainty in the determination of λ from f (2) to be at least of the same size, given
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the few lattice data points to which we have compared our holographic data, cf.
the discussion in Sec. 6.4. Focusing then on the SWT and 1-parameter string-frame
models and the two observables other than f (2), we see that within either model the
two estimates for λ are within a factor ≲ 6 of each other. For an exact holographic
dual of QCD, within the uncertainty we would expect the same estimated value for
λ for all observables. In this sense, our 1-parameter string-frame model appears to
be most QCD-like, while the very robust 1-parameter Einstein-frame model stays
close to N = 4 SYM and thus appears to be least QCD-like. The SWT,µ model,
despite arising from an ad hoc deformation of the metric, is in-between the other
two models in the above sense. For all models, interpreting λ as a measure of the
coupling strength, the values found are sufficiently large as to pass an important
self-consistency check of our approach: Working in the classical-gravity limit in the
bulk implies a strongly coupled boundary theory, and with interpreting λ as a proxy
for coupling strength (this identification is exact for N = 4 SYM) the boundary
theories indeed are strongly coupled.
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Part II

Cold: Non-Equilibrium Dynamics
in a Holographic Superfluid
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9 Motivation and Overview

Now we switch gears and apply gauge/gravity duality to another class of extreme
matter, namely cold superfluids. We will focus on systems in two spatial dimen-
sions. Systems that one should have in mind include oblate, quasi-2D ultracold
atomic gases (see e. g. [232]) or semiconductor-based exciton–polariton condensates
(see e. g. [20] for a review), in the nanokelvin or few-kelvin temperature range, re-
spectively. We consider a holographic model for a strongly correlated superfluid and
study the non-equilibrium dynamics ensuing after an initial quench that takes the
system to a far-from-equilibrium state.

The non-equilibrium time evolution of a (2 + 1)-dimensional holographic super-
fluid without imposing symmetries which effectively reduce the dimensionality of
the system has been studied so far in [233–236]. The present Part II of this thesis
is mainly based on our publication [235] which is the first study of the holographic
superfluid in view of possible long-time non-equilibrium universality. Some of the
material has been rearranged and extended.

Let us now discuss the motivation for our work in more detail. Studies of far-
from-equilibrium time evolution of quantum many-body systems have intensified
considerably during recent years, driven mainly by new technological possibilities.
For example, strongly non-linear dynamics has been observed in ultracold atomic
gases [237–242], or semiconductor exciton–polariton superfluids [243–246]. More-
over, high-energy heavy-ion collision experiments have brought up many questions
concerning the thermalization of the quark–gluon plasma, cf. [247] and references
cited therein. Interactions between the constituents of these systems can lead to
strong correlations, which render the description of the long-time dynamics intri-
cate and give rise to non-trivial many-body states far from equilibrium. In the case
of strong interactions, a quantitative description of dynamical evolution is typically
plagued by the absence of suitable approximation techniques, or by technical diffi-
culties such as sign problems when evaluating the dynamics by means of numerical
methods. Similarly complicated situations can arise even when a weakly interact-
ing system becomes strongly correlated. In such cases, non-linear excitations can
dominate the system’s dynamics such as solitary waves or topological defects. In
quantum many-body systems the massive appearance of such excitations and their
interactions can give rise to quantum turbulence phenomena, i. e., to states the sta-
tistical properties of which bear resemblance to correlations observed in classical
turbulent systems.

Holographic methods have in recent years opened new vistas on strongly corre-
lated quantum systems, as they allow one to study the dynamical real-time evolution
of a strongly correlated many-body quantum system in a genuinely non-perturbative
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9 Motivation and Overview

framework. Remarkably, the intricate dynamics of the system – including its far-
from-equilibrium behavior – is entirely captured by a classical gravitational system.
Evidently, the holographic description therefore offers the potential to address phe-
nomena in the quantum system which are notoriously difficult to access by other
methods. It even carries the promise to discover new phenomena that are unique to
strong-coupling situations. Accordingly, holographic methods have in recent years
been applied to various condensed-matter quantum systems, for reviews see for in-
stance [5–7]. A particularly interesting discovery is that there are gravitational
systems which have a dual interpretation in terms of superconductors or superfluids
in 2 + 1 dimensions [248–250]. Here, the dual gravitational description is in terms of
an Abelian Higgs model on and coupled to a (3 + 1)-dimensional spacetime of nega-
tive cosmological constant, an anti-de Sitter spacetime. The breaking of the Abelian
U(1) symmetry at low temperature is associated with the condensation of an order-
parameter field and can be interpreted as the emergence of superconductivity or
superfluidity.

In this thesis, we will consider a holographic superfluid of this kind at finite tem-
perature and with a chemical potential for the U(1) charge. In this system, vortex
excitations exist in the superfluid phase without the presence of an external mag-
netic field.af The system we consider is a (2 + 1)-dimensional relativistic superfluid.
Studies of various aspects of that particular holographic superfluid include [251–253].
A study of its time-evolution as it relaxes from a far-from-equilibrium initial state,
corresponding to an ensemble of vortex defects, was performed in [233]. There, the
authors numerically solve the gravitational Einstein–Maxwell–scalar system dual to
this superfluid. They have identified a certain regime in the evolution in which the
superfluid exhibits Kolmogorov scaling. In this thesis, we perform a similar numer-
ical analysis of the same system. As in [233] we treat the holographic superfluid
in the so-called probe limit in which the AdS spacetime in the dual gravitational
description is kept fixed. Our numerical methods are sufficiently fast to allow us to
investigate three new aspects of the far-from-equilibrium evolution of the superfluid.
Firstly, we follow the system’s evolution for a very long time. Secondly, we study
various initial conditions, in particular, we choose random distributions as well as
lattices of vortex defects of different densities. This makes it possible to clearly
identify the time scales at which the system enters a universal regime. Thirdly, we
vary the thermodynamic parameters of the system in order to explore the dynamics
for different temperatures within the superfluid phase.

In particular the investigation of the late-time behavior of the system leads us
to a very interesting observation. Following the propagation and annihilation of
the quantum vortices in time, we are able to observe a stage of universal critical
dynamics arising in the late-time evolution of the superfluid when the quantum
turbulent ensemble relaxes towards equilibrium. More specifically, we observe how

afThis is opposed to the case of a holographic superconductor. For a more detailed discussion of
the differences between holographic superfluids and holographic superconductors in view of the
corresponding vortex solutions see for example [251].
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the system approaches a non-thermal fixed point, i. e., a far-from-equilibrium field
configuration exhibiting universal scaling behavior [254, 255]. We will demonstrate
how the approach to this fixed point can be related to the dynamics of vortex defects
in the order-parameter field. Non-thermal fixed points were identified, in quantum
field theory, as stationary solutions of non-perturbative equations of motion for
Green functions [254, 256, 257]. In the context of non-relativistic Bose gases as well
as of relativistic scalar and gauge theories it was shown that superfluid turbulence,
related to characteristic distributions of vortex defects [258, 259] or more general
non-linear excitations [260–262], can be interpreted in terms of non-thermal fixed
points. General universality classes of such non-thermal fixed points are expected to
emerge from a renormalization-group analysis which includes scaling in space and
time [263, 264].

While non-thermal fixed points have been discussed in various contexts their prop-
erties in strongly coupled systems have not yet been explored before. The present
work is the first analysis of the holographic, strongly coupled, superfluid in view of
the approach to a non-thermal fixed point, comparing universal and non-universal
stages of the superfluid’s evolution. It opens a new and exciting perspective on time
evolution as described in a holographic setting, in particular on the mutual impli-
cations of such universal dynamics on both the gravity and the boundary-theory
sides.

This part of this thesis is organized as follows. In Chap. 10 we discuss the definition
and the properties of the Einstein–Maxwell–scalar gravity model dual to the super-
fluid, as well as the implementation of the resulting equations within our numerical
approach. Chap. 11 contains the details about the different initial conditions con-
sidered and summarizes basic properties of vortices in superfluids. Further in that
chapter, we present our numerical results on the evolution of the vortex character-
istics and of the statistical properties of the ensembles, in particular on occupation
number spectra of the boundary theory. Then we discuss the holographic perspective
on the non-thermal fixed point in the superfluid’s evolution. The non-equilibrium
dynamics takes place on top of a heat bath with a well-defined temperature and
chemical potential, as we shall explain. To study general properties of the system’s
dynamics, in Chap. 11 we fix the temperature and chemical potential to one par-
ticular set of values. In Chap. 12 we assess the robustness of our results and the
temperature dependence of certain observables by studying three further choices
of the thermodynamic parameters of the heat bath. We summarize our results in
Chap. 13.
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10 Holographic Superfluid

In this chapter, we set out the holographic framework for describing the dynamics
of a superfluid in 2 + 1 dimensions by means of a gravitational dual in a (3 + 1)-
dimensional (generally asymptotically) AdS spacetime. We first review the standard
holographic-superfluid model (Sec. 10.1). Then, we discuss in detail the construction
of thermal solutions associated with the model as well as the full system of equations
of motion that encode the non-equilibrium physics (Secs. 10.2–10.4).

10.1 Gravity Model Dual to the Superfluid
The holographic framework for superfluidity was laid down in [248–250]. A scalar
field is dynamically coupled to an Abelian gauge theory and gravity on a (3 + 1)-
dimensional spacetime with a negative cosmological constant. We use the action

S = 1
16πG(4)

N

∫
d4x
√
−g

(
R− 2Λ + 1

q2Lmatter

)
,

Lmatter = −1
4FMNF

MN − |DM Φ|2 −m2|Φ|2 .
(10.1)

Here, G(4)
N is the Newton constant in four dimensions, and the cosmological constant

is Λ = −3/L2
AdS, cf. Eq. (2.13) and our general discussion of D-dimensional AdS

spacetime in Sec. 2.1.3. LAdS sets the curvature scale of the spacetime which arises as
a solution of the corresponding Einstein equations. R is the Ricci scalar constructed
from the metric gMN , and g is the determinant of that metric. (See Appendix A for
our gravity and index conventions.) The Lagrangian density Lmatter accounts for the
gauge field AM , with the associated field-strength tensor FMN = ∇MAN −∇NAM ,
and for the scalar field Φ. Here, ∇M denotes the covariant derivative associated with
the Levi-Civita connection. The local U(1) gauge symmetry of the Lagrangian is
implemented by upgrading ∇M to the gauge-covariant derivative DM = ∇M − iAM .

By the holographic dictionary reviewed in Sec. 2.2, the gauge potential AM in the
bulk induces a global U(1) symmetry of the dual field theory. The operator dual to
AM is the conserved U(1) current jµ which arises from that symmetry. Finally, the
complex scalar field Φ has mass m and charge q which, by suitable rescaling of the
fields, has been pulled out of Lmatter. If the gravity is taken to be dynamic, q thus
quantifies the coupling between the gravity and gauge–matter parts of the model.

Solving the gravity model (10.1) allows us to obtain information about the dy-
namical evolution of a superfluid described by the boundary theory. A superfluid
is commonly described by a complex scalar field ψ which, in the symmetry-broken
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10 Holographic Superfluid

phase, assumes a non-vanishing expectation value ⟨ψ⟩ ≠ 0 reflecting the presence
of a Bose–Einstein condensate. In our holographic model, the field operator ψ is
dual to the scalar field Φ, as we explain in detail in Sec. 10.2 below. The solutions
of the equations of motion of the model (10.1) are subject to boundary conditions
in the holographic direction. These conditions determine the temperature and the
chemical potential for the U(1) charge density j0 in the (2 + 1)-dimensional bound-
ary theory, as discussed in Sec. 2.2. In particular, the temperature and chemical
potential can be chosen such that the boundary theory is in the symmetry-broken
phase with a condensate, ⟨ψ⟩ ̸= 0 [248], as we will discuss in detail in Sec. 10.3.
Holography allows us to compute the time evolution of the quantum expectation
value ⟨ψ⟩ starting from various far-from-equilibrium states by solving the classical
dynamics of (10.1). In fact, we also have access to the phase angle of the complex
field ⟨ψ⟩ the spatial variation of which encodes information about the superfluid
flow. We will use this to construct far-from-equilibrium initial states.

In this work, we consider the so-called probe limit of the action (10.1) in which
the backreaction of the fields Φ and AM on the metric is neglected. This is a
good approximation for large scalar charge q, as is clear from the rescaled form
of the action (10.1), with 1/q2 entering as a small pre-factor of the gauge–matter
Lagrangian, see for example [249, 265]. We can thus treat the gravity and matter
parts separately.

Ignoring for the moment the gauge–matter part of the model, the vacuum Einstein
equations,

RMN −
1
2R gMN + Λ gMN = 0 , (10.2)

are solved by an AdS4 spacetime with a planar Schwarzschild black hole, in complete
analogy to the AdS5-Schwarzschild black-hole spacetime discussed in Sec. 4.1.1. The
respective metric reads, in Poincaré coordinates indicated by a subscript ‘P’ on the
time,

ds2 = L2
AdS
z2

(
−h(z) dt2P + dx2 + 1

h(z) dz2
)
, (10.3)

with the horizon function

h(z) = 1−
(
z

zh

)3
. (10.4)

Here, (tP,x) = (tP, x, y) are the coordinates of the spacetime on which the boundary
field theory is defined, and z ≥ 0 is the coordinate of the holographic direction. It is
often useful to think of the dual field theory dynamics to take place at the boundary
z = 0. However, we stress that the physics of the boundary theory is more than
just a restriction of the bulk fields to the (z = 0)-slice. It really is a ‘projection’
where the entire bulk information encodes the physics of the dual theory, cf. our
general discussion in Sec. 2.2. The black-hole horizon is situated at z = zh, and the
associated temperature is

T = 3
4πzh

. (10.5)
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10.1 Gravity Model Dual to the Superfluid

Instead of the Poincaré coordinates employed in Eq. (10.3), for non-equilibrium holo-
graphy a different set of coordinates is usually preferable [266], namely Eddington–
Finkelstein (EF) coordinates. Expressing the metric in those coordinates enables
one to use a so-called ‘characteristic formulation’ of the gravity equations (see
e. g. [266, 267], and references cited therein). Despite the fact that we do not con-
sider a dynamical metric here, the use of EF coordinates is still advantageous as
it simplifies the equations of motion of the gauge–matter part of the action. Thus,
following [233], we will use the following metric,

ds2 = L2
AdS
z2

(
−h(z) dt2 + dx2 − 2 dt dz

)
, (10.6)

that is equivalent to the metric given in Eq. (10.3), and is related to it by a trans-
formation of the time coordinate,

dt = dtP −
dz
h(z) . (10.7)

In Eqs. (10.6) and (10.7), h(z) is the horizon function given by Eq. (10.4). At the
boundary at z = 0 the EF time t coincides with the Poincaré time tP up to a constant
that we can set to zero. Thus t is, like tP, identified with the time in the boundary
theory.

Working, then, with the fixed background metric (10.6), one is left with the equa-
tions of motion for the matter part, i. e., the generally covariant Maxwell and Klein–
Gordon equations which are coupled to each other through the bulk electromagnetic
current. As the background metric, together with the gauge coupling, allows for
spontaneous symmetry breaking in the scalar sector, the problem has thus been re-
duced to solving a classical Abelian Higgs model on the curved background (10.6).
The equations of motion for AM and Φ, obtained by varying the action (10.1), take
the form

∇MFMN = JN , (10.8)(
−D2 +m2

)
Φ = 0 , (10.9)

with the current
JN = i

(
Φ∗DN Φ− Φ

(
DN Φ

)∗)
. (10.10)

Recall that ∇M denotes the metric covariant derivative and DM = ∇M − iAM

the combined metric- and gauge-covariant derivative. We fix the gauge freedom by
choosing the axial gauge, Az = 0. The dual field theory can be tuned to be in
the symmetry-broken phase by adjusting the horizon temperature and the chemical
potential, to be discussed further below, if the mass m is suitably chosen. Our
choice m2 = −2/L2

AdS is within the range of permissible values.ag For convenience
we henceforth set LAdS ≡ 1.
agFurther note that the choice m2 = −2/L2

AdS with d = 3 boundary-theory dimensions obeys the
Breitenlohner–Freedman bound given in Eq. (2.22).
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10 Holographic Superfluid

The holographic model captures important aspects of Tisza’s two-fluid model of
superfluidity [268], for a review see for instance [269]. More specifically, it has
been shown that in the hydrodynamic expansion, to an order which includes only
non-dissipative terms, the boundary theory reduces to a relativistic version of the
two-fluid model [270]. We point out that our treatment of the holographic model
captures more than the effective hydrodynamic limit of the boundary theory. In fact,
the holographic description is valid at all scales. Nevertheless, it can still be useful
to think of the dynamics of the superfluid in terms of two distinct components. In
the probe limit, the presence of the static black hole at z = zh translates, by the
AdS/CFT dictionary, to a static heat bath of temperature T = 3/(4πzh) in the
boundary theory, see Eq. (10.5). Loosely speaking, this can be viewed as the normal
component of the fluid. Similarly, the fields Φ and AM holographically represent
the superfluid component. The superfluid component is coupled to the normal com-
ponent and can dissipate energy and momentum to it. Thus, the model naturally
incorporates dissipation to a thermal bath. Further details of the interpretation of
the probe limit can be found in [233]. We remark that our formalism is manifestly
relativistic. The superfluidity described by the boundary field theory appears in the
non-relativistic low-energy limit [233].

In the following section, we discuss the holographic dictionary for the holographic
superfluid and the boundary conditions that we impose on the equations of motion.
In particular, we discuss how the bulk scalar field Φ encodes the quantum expectation
value ⟨ψ⟩ of the dual operator. In the sections thereafter, we make the compactly
written equations of motion (10.8)–(10.10) more explicit. We will first specialize to
equations for static fields homogeneous in the boundary-theory spatial directions.
Their solution gives rise to equilibrium states and we will discuss their physical
properties. Then we proceed to discussing the full equations of motion that need to
be solved to study non-equilibrium dynamics.

10.2 Holographic Dictionary and Boundary Conditions
In this section, we briefly discuss the holographic dictionary for the holographic su-
perfluid. We have reviewed generalities of the gauge/gravity dictionary in Sec. 2.2.
Intimately connected to the bulk–boundary relations given by the holographic dic-
tionary, we also discuss the boundary values that we impose on our fields in the
solution of the equations of motion. Our general setup follows [233].

As reviewed in Sec. 2.2, the limiting value of the electrostatic component At of
the gauge field at the conformal boundary z = 0 sets the chemical potential in the
dual theory,

At(t,x, z) = µ+O(z) . (10.11)

In this thesis, we always work with a chemical potential constant in space and time,
which is why we have not written µ(t,x). Our units are fixed by setting zh = 1 in
the metric (10.6), which also fixes the black-hole temperature, Eq. (10.5). Then, in
these units the temperature in the boundary theory is T = 3/(4π). We still have
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the freedom to choose the value of µ. With T fixed, the choice of µ determines the
ratio T/Tc that expresses the temperature of the system (thinking of an equilibrium
state) in units of the superfluid phase-transition temperature Tc. We will discuss
the precise relation further below in Sec. 10.3. At the black-hole horizon z = zh, we
need At(zh) = 0 for regularity of AM . We do not want to switch on sources for the
spatial parts of the U(1) current dualah to AM because these would break isotropy,
so we impose the vanishing of Ax, Ay at the boundary. For the static problem, in
addition we impose Ax(zh) = 0 = Ay(zh) at the horizon.

Let us now turn to the scalar field Φ dual to the operator ψ in the boundary
theory. Close to the boundary, Φ behaves as

Φ(t,x, z) = η(t,x)z +O(z2) , (10.12)

which can be derived by plugging a series ansatz into the equations of motion. Here,
η is the source field conjugate to the boundary-theory operator ψ. A priori, η(t,x)
can be chosen freely. Since we want the scalar operator ψ to form a condensate due
to spontaneous symmetry breaking we choose η(t,x) = 0. Then, the expectation
value ⟨ψ(t,x)⟩ of the operator dual to Φ can be identified with the coefficient of the
quadratic term in the expansion,

Φ(t,x, z) = ⟨ψ(t,x)⟩z2 +O(z3) . (10.13)

To summarize, the boundary conditions for the gauge fields Aµ are

At(t,x, z = 0) = µ, At(t,x, z = zh) = 0 ,
Ax(t,x, z = 0) = 0, Ax(z = zh) = 0 ,
Ay(t,x, z = 0) = 0, Ay(z = zh) = 0 ,

(10.14)

where µ is the chemical potential. The conditions on Ai at the black-hole horizon
need only be imposed in the static problem. There is one explicit boundary condition
for the scalar field Φ, namely η = 0, which can be expressed as

∂zΦ(t,x, z)|z=0 = 0 . (10.15)

The second boundary condition for Φ is a behavioral one: Φ be regular at the
horizon. Physically, due to our choice of coordinates, this represents the infalling
boundary condition [271]. We will use these boundary conditions for the construction
of equilibrium solutions and for the full equations of motion.

10.3 Homogeneous Solutions and Phase Transition
We start with a discussion of static solutions, spatially homogeneous in x and y, of
the equations of motion (10.8)–(10.10). These bulk solutions are dual to thermal
ahThe expectation value ⟨jµ⟩ of the current dual to AM is defined via ⟨jµ⟩ = − limz→0

√
−gF zµ,

cf. [233].

119



10 Holographic Superfluid

states in the dual theory. For certain choices of the thermodynamic parameters the
system is in the superfluid phase. In this section, we will discuss the relation between
the temperature and chemical potential on the one hand and the superfluid order
parameter on the other hand. Later on, to study non-equilibrium dynamics of the
system, we will construct our initial far-from-equilibrium states by superimposing
perturbations on thermal superfluid background states described by the solutions
discussed in this section.

With a fixed background metric, i. e. in the probe limit, static homogeneous solu-
tions of Eqs. (10.8)–(10.10) have first been obtained in the seminal paper [249]. The
same authors have studied static homogeneous solutions of the equations of motion
associated with the action (10.1) without taking the probe limit in [272].ai

In deriving the explicit equations of motion in terms of partial derivatives, we
use identities well-known from general relativity that are given in Appendix A.
Taking the fields AM and Φ independent of the coordinates x, y, and t, we obtain
from Eqs. (10.8)–(10.10) with the metric (10.6) a set of equations second order in
derivatives with respect to the holographic coordinate z. For the gauge field, they
read

0 = z2A′′
t + 2 Im(Φ′Φ∗) , (10.16)

0 = z2(hA′′
i + h′A′

i)− 2|Φ|2Ai , (10.17)
0 = 2At|Φ|2 − ih

(
Φ∗Φ′ − Φ∗′Φ

)
, (10.18)

where i = x, y and the prime denotes the derivative with respect to z. The last equa-
tion originates from the dynamic equation for Az and remains as a gauge constraint
to ensure the chosen axial gauge Az = 0. For the scalar field we find

0 = z2hΦ′′ − z
(
−2izAt + 2h− zh′)Φ′ −

(
2izAt − iz2A′

t + z2A2 +m2
)

Φ (10.19)

with A = (Ax, Ay).
We have thus obtained a system of coupled non-linear ordinary differential equa-

tions on the compact domain 0 ≤ z ≤ zh, and have to solve a boundary-value
problem, with the boundary values discussed in the previous Sec. 10.2. We solve
this boundary value problemaj by using a pseudospectral method (see e. g. [273]).
aiIn Refs. [249] and [272], the solutions are used as backgrounds to study fluctuations of the

bulk gauge field, and the results are interpreted in terms of superconductivity rather than
superfluidity.

ajTo solve the background problem, we eventually found it easier in practice to use the metric (10.3)
given in Poincaré coordinates. For the interested reader, we give the equations that determine
static solutions homogeneous in x and y in the spacetime charted with Poincaré coordinates in
Appendix D.4, along with the relations for the transformation of solutions obtained in Poincaré
coordinates to Eddington–Finkelstein (EF) coordinates. We have implemented numerical solvers
for both Eqs. (10.16)–(10.19) (EF coordinates) and Eqs. (D.2), (D.3), and (D.7) in the appendix
(Poincaré coordinates) which yield identical results after transforming the solutions according
to the rules given in the appendix. We have used Eqs. (10.16)–(10.19) (EF coordinates) in the
construction of initial conditions for the dynamical simulations discussed in the following.
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We use a basis of 32 Chebyshev polynomials and 32 grid points in z. Further details
on the numerical methods can be found in Appendix D.1.

Varying the thermodynamic parameters T and µ, one finds [248, 249] that starting
at some critical values the scalar operator ψ forms a condensate ⟨ψ⟩ ≠ 0. More
precisely, the phase transition is just controlled by the dimensionless parameter
µ/T , and we have ⟨ψ⟩ ̸= 0 above some critical value for µ/T . Using Eq. (10.5), we
can express this ratio in terms of µzh, which is the parameter we actually vary. For
clarity, in the present discussion we briefly reinstate the horizon position zh which
we have chosen as zh = 1. Varying µzh, we numerically find the critical value for
the phase transition,

(µzh)c ≈ 4.06371 , (10.20)

which is consistent with the literature (see e. g. [250]). For µzh < (µzh)c the scalar
field Φ vanishes identically in the bulk, and hence ⟨ψ⟩ = 0 via Eq. (10.13). On the
other hand, for µzh > (µzh)c, we find Φ(z) ̸= 0 and ⟨ψ⟩ ≠ 0. Using Eq. (10.5) to
express zh in terms of T , we obtain from Eq. (10.20) the relation

T

Tc
= 4.06371

µzh
≡ µc

µ
. (10.21)

From now on, we again drop zh. The temperature is fixed at T = 3/(4π). The
parameter that effectively controls the thermodynamic state of our system is µ,
and the phase transition occurs at the critical value µc = 4.06371. One can show
that the phase transition is of second order and has mean-field critical exponents
[250, 274]. It appears reasonable that the critical exponents assume mean-field
values due to a suppression of fluctuations in the boundary theory by some large-Nc
limit that is implicit in using a classical bulk theory (see e. g. [274], or [158] in a
different context). Moreover, this argument explains why the U(1) symmetry of the
holographic superfluid, which lives in two spatial dimensions, can be spontaneously
broken, in spite of the Mermin–Wagner theorem [275]; see [276] for further discussion
of this point. However, as the holographic-superfluid model defined by the action
(10.1) is a ‘bottom-up’ model, the exact boundary theory is not known and so there
is no clear understanding of what the large-Nc limit actually is. Furthermore, there
are in fact more complicated holographic superfluid models whose critical exponents
deviate from mean-field theory (see e. g. [277–279]).

In Fig. 10.1 we show the numerically determined dependence of |⟨ψ⟩| (the or-
der parameter is complex) on µ, along with the ratio T/Tc corresponding to µ via
Eq. (10.21). In this thesis, we will use the values µ = 4.5, 6, 7.5, 9 in our simulations
of non-equilibrium dynamics. In the figure we have marked these values of the chem-
ical potential. Most of our work is done for µ = 6 which corresponds to µ/T = 8π,
and puts the system into the superfluid phase at a temperature T/Tc ≈ 0.68.ak

Let us briefly discuss the bulk picture of the phase transition. Above Tc, the bulk
scalar Φ vanishes, and Eq. (10.16) with the boundary conditions given in Eq. (10.14)
akThe values of T/Tc for all four choices of µ considered in this work can be found in Table 12.1 in

Chap. 12 below, and will be further discussed in that chapter.
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Figure 10.1: Relation between the modulus of the order parameter |⟨ψ⟩| and the
thermodynamic parameters. There is a one-to-one relation between
T/Tc and µ, see the text. Above Tc, the order parameter |⟨ψ⟩| vanishes.
We have marked the values of µ that we use in our simulations (dashed
lines).

immediately yields, with zh reinstated for clarity,

At = µ

(
1− z

zh

)
. (10.22)

Actually, the black hole must be charged to support the non-zero electric flux asso-
ciated with At, but we just have an uncharged AdS4-Schwarzschild black hole with
metric given by Eq. (10.6). This shortcoming is due to the probe limit that we
use where we ignore the backreaction of the gauge–matter sector onto the metric.
The ‘proper’ solution above Tc (see e. g. [272]) is an AdS4-Reissner–Nordström black
hole with At given above and the metric analogous to the AdS5-Reissner–Nordström
black hole given in Eq. (4.24).

Let us now turn to the superfluid phase below Tc which is the phase that we are
interested in in this thesis. In the equilibrium phase below Tc, the scalar Φ(z) has
a non-trivial bulk profile which via Eq. (10.13) gives rise to the boundary-theory
condensate. Φ is charged. Thus, as can be seen by computing the bulk charge
density √−gJ0 from Eq. (10.10), the bulk condensate manifests itself as a charged
‘cloud’ in the bulk which sources the electrostatic potential At, cf. the discussion in,
e. g., Ref. [233]. Note that below Tc, the field At deviates from the form given in
Eq. (10.22) and there is no closed-form solution. The spatial components Ai of the
gauge field vanish in the static equilibrium states. We illustrate the configuration
of the bulk fields in the superfluid phase in Fig. 10.2. In the profile of the charge
density √−gJ0 we can clearly discern the charged cloud in the bulk.
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Figure 10.2: Illustration of the bulk field configuration for an equilibrium state in
the superfluid phase. Here we have chosen µ = 6. Shown are the
modulus-squared of the bulk scalar field |Φ|2 (blue solid line), the quan-
tity |Φ|2 /z4 (green dashed), the bulk charge density √−g

∣∣J0∣∣ (red dot-
dashed), and the gauge-field component At (turquoise dotted). At the
boundary, |Φ|2 /z4 reduces to the superfluid density n = |⟨ψ⟩|2. Here,
n ≈ 41.7.

The density of the superfluid order parameter is given by the absolute-value-
squared of the condensate ⟨ψ⟩. We denote it by n = |⟨ψ⟩|2. For the case µ = 6
which we will mostly use throughout this work the equilibrium value for the density
is n0 ≈ 41.7, cf. Fig. 10.2.

10.4 Full Equations of Motion and Their Implementation

In this thesis, we want to consider the time evolution of the superfluid starting
from a far-from-equilibrium situation. Thus, we now turn to the explicit form of the
equations of motion (10.8)–(10.10) for the gauge and matter fields in the fixed curved
background specified by the metric (10.6), without further assuming any symmetry
in the field configurations.

In light of the near-boundary expansion (10.12) it is convenient for numerics to
rescale the scalar field Φ by 1/z and work with Φ̃ ≡ Φ/z. Using the ‘lightcone
derivative’

∇+X = ∂tX −
h(z)

2 ∂zX for X = Ax, Ay, Φ̃ (10.23)

and with ∇ = (∂x, ∂y) we eventually obtain from Eqs. (10.8)–(10.10) the following
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system of equations to solve:

∂2
zAt = ∂z∇ ·A− 2 Im(Φ̃∗∂zΦ̃) , (10.24)

∂z∇+Ax = 1
2
(
∂2

yAx + ∂x(∂zAt − ∂yAy)
)
− |Φ̃|2Ax + Im(Φ̃∗∂xΦ̃) , (10.25)

∂z∇+Ay = 1
2
(
∂2

xAy + ∂y(∂zAt − ∂xAx)
)
− |Φ̃|2Ay + Im(Φ̃∗∂yΦ̃) , (10.26)

∂z∇+Φ̃ = 1
2∇2Φ̃− iA ·∇Φ̃ + iAt∂zΦ̃− i

2 (∇ ·A− ∂zAt) Φ̃− 1
2
(
z + A2

)
Φ̃ .

(10.27)

In deriving these equations, we evaluate the left-hand sides of Eqs. (10.8) and
(10.9) by using relations following from standard general-relativity identities, see
Appendix A.

Our aim is to describe the dynamical evolution of inhomogeneous solutions of the
above equations, describing, e. g., vortex excitations of the dual superfluid. The
equations of motion (10.24)–(10.27) form a system of coupled non-linear partial dif-
ferential equations, which makes their solution challenging. However, the structure
of the equations is remarkably simple: On a fixed timeslice, at every point (x, y) the
equations (10.25)–(10.27) can be integrated with boundary values imposed at z = 0,
yielding ∇+Ax, ∇+Ay, and ∇+Φ̃. Subsequently, we can obtain the time-derivatives
∂tAx, ∂tAy, and ∂tΦ̃ by undoing the shifts (10.23), and finally integrate Eq. (10.24)
to obtain At.

We recall that we have chosen the axial gauge Az = 0. With this gauge choice,
the z-component of the Maxwell equations (10.8) which we have not written above
reads

0 = ∂t∂zAt−∇2At+∂t∇·A−h∂z∇·A+2|Φ̃|2At−2 Im
(
Φ̃∗∂tΦ̃− hΦ̃∗∂zΦ̃

)
. (10.28)

This equation is not independent of the equations (10.24)–(10.27). There is a linear
differential equation relating the right-hand side of Eq. (10.28) and the right-hand
sides of equations of the form 0 = (. . . ) equivalent to Eqs. (10.24)–(10.27). From
this relation it can be shown that if the latter equations are satisfied, Eq. (10.28)
will be satisfied in the whole bulk if it is satisfied on one slice of constant z. Thus,
Eq. (10.28) can be interpreted as a constraint equation. Alternatively, one could
interpret Eq. (10.24) as a constraint, and Eq. (10.28) as a dynamic equation. In
practice, as discussed above, we use Eq. (10.24) as a dynamic equation and compute
At from it in every timestep. We have checked explicitly that Eq. (10.28) remains
satisfied during the non-equilibrium evolution.

As we aim at studying universal aspects of the superfluid, we consider different
types of initial conditions for the equations of motion, containing topological defects,
the details of which are discussed in Sec. 11.1 below. Moreover, we study the sys-
tem for different choices of the chemical potential µ which corresponds to states at
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different values of T/Tc. To study general properties of the system’s time evolution,
we choose T/Tc = 0.68 (µ = 6).

We put the system in a finite volume and take the (x, y) directions to be periodic.
We use a pseudo-spectral basis for the fields. In order to be able to properly do
statistics and suppress finite-volume effects we need to choose our numerical grid
sufficiently large. Specifically, we study grid sizes of 352× 352 as well as 504× 504
points in the (x, y) plane. The data from these different grid sizes are qualitatively
consistent. Thus, by using 504×504 points in the (x, y) plane we do indeed efficiently
suppress finite-volume effects. Since observables computed on the larger grids are
considerably less noisy, all data presented in the following were produced on 504×
504 grids. We use a basis of 32 Chebyshev polynomials and 32 grid points in the
holographic direction. We use an explicit time-stepping scheme for the propagation.
We point out that the timestep τ used in our numerics is much smaller than one
unit of time, τ ≪ 1. A more detailed discussion of our choice of numerical methods
and parameters is given in Appendix D.

For technical reasons, each of our initial conditions depends on some random
data. To get more robust results that do not depend on the precise values of these
random data in a specific realization, we average statistical observables discussed
in the following chapter 11 over ten runs for each type of initial condition (random
distributions and lattices of vortices, see Sec. 11.1). For the additional simulations
reported on in Chap. 12, which are performed for choices of T/Tc different from
T/Tc = 0.68, we average statistical observables over five runs for each choice of
T/Tc, as will be further discussed in that chapter.
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11 Holographic Non-Equilibrium
Dynamics and Non-Thermal
Fixed Point

We now begin our investigation of the non-equilibrium dynamics of the superfluid
described by our holographic model. In the following section 11.1, we discuss the
different types of initial conditions that we employ to induce non-equilibrium be-
havior of the superfluid. Specifically, our initial conditions are characterized by
ensembles of topological vortex defects. In the subsequent sections 11.2–11.4, we
analyze the evolution of the system in terms of the distribution statistics of the
defects. Furthermore, we consider the occupation spectra of the momentum modes
of the superfluid order parameter. Finally, in Sec. 11.5 we discuss our findings in
the context of non-thermal fixed points.

The basis of the construction of the initial conditions are static homogeneous
solutions which we have discussed in Sec. 10.3. (These states are of course no
longer homogeneous, nor static, once perturbed by the introduction of vortices.)
In this chapter we investigate the system’s non-equilibrium behavior for the choice
T/Tc = 0.68, putting the system in the superfluid phase. This choice corresponds to
a choice of the chemical potential µ = 6 in units specified by the condition zh = 1,
cf. Eq. (10.21), and was also employed in Ref. [233]. In that work, only one type
of initial conditions was studied, on short to intermediate evolution time scales in
a sense that will become clear below. For T/Tc = 0.68 and with our choice of the
grid constant, see Appendix D.1, the dimensionless product LT of the extent of the
(x, y)-domain and the temperature is LT = 34.4. To be able to properly assess the
genuine late-time behavior of the system we let it evolve to time tf = 4000 in the
aforementioned units, or tfT = 955 in units of temperature.

Later on, in Chap. 12, in order to assess to what extent our findings are robust with
respect to the choice of thermodynamic parameters, we will study non-equilibrium
dynamics in the superfluid phase for three further choices of T/Tc, using initial
conditions analogous to the ones employed in the present chapter.

11.1 Initial conditions
For the quantum systems we have in mind, quenches, especially across a or in the
vicinity of a phase transition, are being studied intensively, both experimentally
and theoretically. A quench in the usual sense involves the rapid change of either
a thermodynamic parameter, such as temperature, or a Hamiltonian parameter,
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11 Holographic Non-Equilibrium Dynamics and Non-Thermal Fixed Point

for example interaction strength. Temperature quenches across a superfluid phase
transition were recently studied in the holographic approach, in the context of the
Kibble–Zurek scenario [234, 280]. Novel techniques developed for ultracold quantum
gases and exciton–polariton superfluids allow to rapidly change parameters of the
Hamiltonian. Using these, ensembles of vortex defects can be created in the super-
fluid [237–246]. The generic consequence of both types of quenches for superfluids
in two spatial dimensions is the nucleation of quantized vortices. This behavior
was also observed in simulations of both relativistic [261, 262] and non-relativistic
[258–260, 281, 282] Bose systems. Here, we directly prepare ensembles of vortices
as quench-like initial conditions for the superfluid’s time evolution. For simplicity,
we refer to our initial conditions as quenches in the following.

The structure of the core of a vortex, as well as collective properties of the ensem-
ble, are specific characteristics of the superfluid system. The local phase structure
of the superfluid order parameter around a vortex defect, however, is determined by
topology. The presence of a local vortex with quantization w ∈ Z\{0} requires that
the phase angle φ = arg(⟨ψ⟩) of the superfluid order parameter has winding num-
ber w around the vortex, i. e.,

∮
dφ = 2πw, where the integration contour encircles

the particular defect. This property can be used to prepare the initial-time order-
parameter field to bear a set of vortices (w > 0) and anti-vortices (w < 0). We do
this by ‘multiplying’ a localized vortex into the phase of the thermalized superfluid,
⟨ψ⟩ → ⟨ψ⟩ · eiwϕv with an appropriate polar angle ϕv. During the initial propagation
of the equations of motion, the appropriate density profile |⟨ψ⟩|2 around the defect
builds up in a short time, providing us with an ensemble of vortices on top of a
previously equilibrated system. Technical details can be found in Appendix D.1.
Previous studies of vortex solutions in holographic superfluids include [251, 252].

In Fig. 11.1 we show example realizations of different types of initial conditions we
prepare, with a random distribution of vortices and anti-vortices (left column) and
a regular lattice distribution (right column). The graphs in the first row show the
phase angle field φ(x). After imprinting the phase winding of the vortices the system
reacts by building up vortex cores and, on a longer time scale, by redistributing the
defects, as a consequence of interactions in the superfluid. Thus, the short-time
outcome of the respective quench is defined by choosing number, quantization, and
spatial distribution of the vortices. The second row in Fig. 11.1 shows that indeed
vortex cores are built up shortly after the winding phases have been imprinted. This
procedure resembles the well-established technique of imprinting vortices by ‘stirring’
a Bose–Einstein condensed dilute atomic gas with the help of a laser [283, 284].
Experimental methods have been refined for creating vortices in cold atomic gases
[232, 241, 242, 285] and exciton–polariton superfluids [244, 245].

In this work, we study two classes of initial vortex distributions: class A consists
of random distributions of elementary vortices of winding numbers ±1, while class B
comprises regular 12× 12 lattices of non-elementary vortices with absolute winding
numbers |w| > 1, alternating in sign from site to site. For examples from each class
see Fig. 11.1. We observe that a non-elementary vortex of absolute winding num-
ber w quickly decays into w elementary vortices of the same sign. Therefore, there
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Figure 11.1: Illustration of two classes of initial conditions we have chosen in this
work. Left column: random distribution with an equal number of el-
ementary vortices of either sign. Right column: vortex lattice with
winding numbers ±2 alternating from site to site. Shown are single-run
snapshots of the phase-angle distributions φ(x) = arg(⟨ψ(x)⟩) (first
row) and densities n(x) = |⟨ψ(x)⟩|2 (second row) of the superfluid
order-parameter field ⟨ψ(x)⟩ at time t = 0 when the vortex cores are
fully developed. The noise that is at this time added onto the phase
distribution for the vortex lattices is clearly visible in the upper right
panel.

are strong correlations built into the initial vortex positions for initial conditions
in class B, insofar as after the decay of the non-elementary vortices the like-sign
singly quantized vortices are clustered. On the other hand, within the limitations
of the finite grid, the initial vortex positions in class A are completely uncorrelated.
For each class of initial conditions, we vary the number of vortices by randomly
distributing 144, 432, or 720 vortices of either sign in class A, and choosing winding
numbers ±2,±6, or ±10 in class B. This choice implies that after the decay of the
non-elementary vortices the total number of elementary vortices is the same in the
corresponding cases of both classes. In this way, we vary the initial vortex correla-
tions and the mean separation of vortices, considering both as quench parameters.
The resulting six different initial conditions are summarized in Table 11.1. Note
that in all cases the net vorticity is zero.

The vortex phases are imprinted at a time t = ti < 0. After starting the simu-
lation, stable vortex cores develop quickly, typically after ∆t = 5 and ∆t = 10 for
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Table 11.1: Vortex numbers and winding numbers for the six different types of
initial distributions used in the simulations. Class A consists of ran-
dom distributions of three different numbers of elementary vortices and
anti-vortices, while class B comprises regular 12 × 12 square lattices
of alternating-sign non-elementary vortices with three different winding
numbers. See Fig. 11.1 for example realizations of types A I and B I.

I II III

A random distribution 2× 144 2× 432 2× 720
B vortex lattice (12× 12) ±2 ±6 ±10
# elementary vortices 288 864 1440

quenches of class A and B, respectively. We ti such that at t = 0 the vortex cores
are fully developed. For class B (vortex lattices), we furthermore perturb the phase
of the bulk scalar field at time t = 0 with random noise to induce variations in the
decay pattern. This is illustrated in the upper right panel in Fig. 11.1. For class A
(random distribution) it is not necessary to add phase noise due to the randomness
of the vortex positions.

11.2 General Considerations on Vortex Dynamics in a
Superfluid

It will be useful to discuss the real-time dynamics of our holographic superfluid in
the framework of an effective description that is well known from other superfluid
systems. In this effective picture of quantum turbulence the vortices appear as
collective excitations of the order-parameter field. In addition to the vortices the
system contains sound waves. These also mediate the effective interaction of the
vortex defects. The sound waves can usually be treated in a good approximation as
linear perturbations of the order-parameter field.

In this section we summarize a few basic properties of the effective descrip-
tion known to characterize vortices and their dynamics in two-dimensional non-
relativistic superfluids. For reviews in the context of superfluid helium and cold
atomic gases see, e. g., [286–288]. The time evolution of an undamped dilute non-
relativistic superfluid carrying vortex defects is understood to be well described
by the non-linear Schrödinger or Gross–Pitaevskii equation (GPE) [289, 290], the
classical field equation for the order parameter ⟨ψ⟩ with Schrödinger-type free and
quartic-interaction parts. The potential field v ∼∇φ derives from the order param-
eter’s phase angle φ = arg(⟨ψ⟩) and describes the local velocity of the superfluid.
The velocity field is thus curl free. Vorticity is carried rather by the vortex defects
at which the order-parameter field vanishes, permitting a finite circulation of the
phase around it.
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11.2 General Considerations on Vortex Dynamics in a Superfluid

In studies of two-dimensional turbulence, important observables are the kinetic
energy spectrum ∝ ⟨[v(k)]2⟩ and the distribution of vorticity ω = ∂xvy−∂yvx which
derives from the local velocity field v = (vx, vy). As was first discussed in the
context of classical fluid dynamics [291–293], it is convenient to think of vortices as
Coulomb-interacting ‘charges’ in an effective ‘electrostatic’ picture where vortices of
opposite-sign (like-sign) winding number attract (repel) each other. The dynamics
of the GPE vortices is to a good approximation of Hamiltonian character, where the
position along one spatial dimension forms the canonical momentum of the position
along the other. This forces, in effect, oppositely charged vortices to move in parallel
at a fixed distance (Helmholtz law) while equal-sign vortices circulate around each
other. The statistics of the vortex distribution contains important information about
the temporal and spatial characteristics of the system.

Bogoliubov sound waves form the weak linear excitations of the order parameter
field, through which vortices can interact with each other. The interaction with a
fluctuating, e. g. thermal, background of excitations of the superfluid causes the vor-
tices to show deviations from the Hamiltonian behavior. For instance, a sufficiently
strong dissipative force can suppress the Helmholtz pair propagation and make op-
positely charged vortices move towards each other. This is well known for defect
solutions of Ginzburg–Landau equations which represent the generalization of the
GPE with complex parameters [294].

On a mean-field level, aspects of vortex annihilation in a superfluid can also be
described in terms of phase-ordering kinetics [295]. In this context, it is assumed
that in the ‘coarsening regime’ the system can be characterized by a single length
scale exhibiting a scaling law with respect to time. However, cases have been iden-
tified [296, 297] in which systems can deviate from the simple scaling predictions of
[295]. In this work, we study non-thermal fixed points [254] of which phase-ordering
kinetics represents one possible realization. Note, however, that the concept of non-
thermal fixed points reaches beyond phase-ordering kinetics. For example, they can
be associated with turbulent processes which can have effects opposite to ordering
kinetics. In the language of turbulence, ordering kinetics corresponds to an inverse
cascade directed from small to large length scales, building up large-scale correla-
tions in the system. In contrast, a direct cascade transports energy in the opposite
direction, creating small-scale fluctuations. In Sec. 11.5, we discuss non-thermal
fixed points in the context of our findings. In fact, it is possible that the dynamics
we discuss in this work contains both, ordering processes, i. e. inverse cascades, and
direct turbulent cascades directed from large to small length scales.

We emphasize that not all of the typical properties mentioned above will necessar-
ily be seen in the holographic superfluid that we study here. But we find it helpful
to compare our findings to those properties in the following.
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11 Holographic Non-Equilibrium Dynamics and Non-Thermal Fixed Point

11.3 Dynamical Evolution of the Vortex Ensembles in the
Holographic Superfluid

We now turn back to our holographic superfluid. In the following we discuss the dy-
namics of the holographic superfluid for t > 0, after imprinting the initial conditions
discussed in Sec. 11.1. The vortices start to move around, subject to an effective
interaction. When vortices of opposite sign approach each other sufficiently closely
they mutually annihilate. There appears to be a strong suppression of Helmholtz
pair propagation: The vortex’ and the anti-vortex’ trajectories only bend slightly in
a common direction before annihilating. This is an indication of strong dissipative
effects in the holographic superfluid. Annihilations reduce the total vortex number
and change length scales of the vortex distribution. This has important implications
for the turbulence properties of the system, which we discuss in Sec. 11.4. At the
time tf = 4000 where we end our simulation, only very few vortices are left, typically
about 4 to 8 for all types of quenches considered. In our simulations, the non-zero
temperature of the black hole is related to dissipation such that sound fluctuations
are quickly damped out. The spontaneous generation of vortex–anti-vortex pairs
could not be observed. We expect that, after all vortices have annihilated, the ex-
cess energy which we initially injected into the superfluid component is completely
dissipated into the heat bath. As a consequence, the condensate ⟨ψ(x, t)⟩ would
relax to a homogeneous, fully ordered state. Within the finite evolution times, our
simulations give indications for this behavior.

Snapshots of the full time evolution of the system for the two classes of initial
conditions are shown in Fig. 11.2, where the upper (lower) panels correspond to a
random, i. e., class-A (class-B, lattice) initial distribution. We plot the superfluid
density n(x) = |⟨ψ(x)⟩|2 at various times. These snapshots are representative for
the different stages encountered in the evolution.al In both cases, the main features
of the dynamic evolution can be understood as due to the motion and annihilation
of vortices. Due to the relatively high initial density of vortices the first stage of the
evolution is characterized by a small mean vortex–anti-vortex distance and a high
annihilation rate. Each annihilation event releases energy in form of sound waves
which is then dissipated into the thermal background [233]. For initial configurations
of class B, there is an additional stage in which non-elementary vortices decay.
The emerging elementary vortices drift apart for a certain amount of time, thereby
expanding like-sign clusters. Naturally, these early stages are highly parameter-
dependent and therefore non-universal. The following stage is an evolving dilute
vortex gas. Although it is still the annihilation of vortex–anti-vortex pairs which
brings the system closer to equilibrium, essential aspects of the time evolution of the
system at this stage can be understood from the statistics of the vortex distribution
as we will discuss below.

Typical bulk views of aspects of the field configuration in the vortex liquid are

alhttp://www.thphys.uni-heidelberg.de/holographic-superfluid links to videos of example
evolutions.

132

http://www.thphys.uni-heidelberg.de/holographic-superfluid


11.3 Dynamical Evolution of the Vortex Ensembles in the Holographic Superfluid

0

250

500

G
ri

d
p

o
si

ti
o
n
y

(a) (b)

0 250 500
0

250

500
(c)

0 250 500

Grid position x

(d)

0

10

20

30

40

n

0

250

500

G
ri

d
p

os
it

io
n
y

(a) (b)

0 250 500
0

250

500
(c)

0 250 500

Grid position x

(d)

0

10

20

30

40

n

Figure 11.2: Single-run snapshots of the superfluid density n(x) = |⟨ψ(x)⟩|2 showing
the characteristic stages of the evolution of the system, after a quench
of type A II (random distribution with 432 elementary vortices of either
sign, upper panel) and after a quench of type B II (vortex lattice with
winding numbers ±6, lower panel). The vortices can be discerned as
dips in the density, and one can observe sound waves from vortex anni-
hilation events. The snapshots are taken at times (a) t = 0, (b) t = 100,
(c) t = 600, and (d) t = 4000. The quenches have been performed at
times t = −5 (quench A II) and t = −10 (quench B II).
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11 Holographic Non-Equilibrium Dynamics and Non-Thermal Fixed Point

shown in Fig. 11.3. The upper panel corresponds to an early to intermediate time
t = 200, and the lower panel to a late time t = 4000. We plot isosurfaces of
|Φ|2 /z4 (blue surfaces) and of the bulk charge density √−g

∣∣J0∣∣ (orange surfaces),
see Eq. (10.10) for the definition of J0. The former quantity reduces to the superfluid
density n = |⟨ψ⟩|2 at the boundary, i. e., as z → 0. The slice at z = 0 shows n with
the same color map as in Fig. 11.2. The vortices in the boundary theory, discernible
as dips in the superfluid density, are represented by ‘tubes’ in the bulk, with the
bulk scalar Φ vanishing in their centers. The tubes punch holes through the charge
cloud that hovers in the bulk, cf. Fig. 10.2 and the discussion in Sec. 10.3, and thus
provide an avenue for energy to dissipate into the black hole [233]. A larger defining
value of the isosurface of the charge density would lead to an increased width of
the holes and a decreased distance between the two sheets of the isosurface. We
observe that sound waves in the boundary theory, such as those produced in vortex
annihilation events, are reflected in the bulk as perturbations of the charge density.
In particular, the isosurfaces of the bulk charge density at t = 4000 (lower panel),
when the system has evolved to a dilute vortex gas, are much smoother than those
at t = 200 (upper panel), when the superfluid still exhibits many vortices and a high
rate of annihilation events.

Let us now turn to the details of the vortex distribution. At each unit timestep,
we determine the position of all vortices and anti-vortices, see Appendix D.1 for
details. In Fig. 11.4 we show the total vortex density as a function of time (averages
are taken over ten runs for each type of quench). For both classes of initial conditions,
annihilation proceeds in a non-universal manner, up to a simulation time of t ≃ 400,
depending on the particular initial configuration. For initial conditions in class B
(lattice), the vortex density is approximately constant at early times. This stage
was referred to as the ‘drift stage’ above. It arises because the like-sign vortex
clusters need to expand and dissolve before vortices of opposite sign can encounter
each other. Naturally, this takes longer if the initial number of vortices is lower.am

At time t ≃ 400, starting from any of the initial conditions, a scaling regime is
entered, where the vortex density ρ decays algebraically in time, ρ ∼ t−1. This
scaling persists until the end of our simulations at tf = 4000. We observe that the
power-law is the same for all tested initial conditions. Hence, starting at t ≃ 400,
the vortex density has a universal form. We point out that this decay of vortex
density does not exhibit any characteristic time scale. Remarkably, the algebraic
decay of the vortex density is characterized by a universal pre-factor. This, together
with the value of the exponent, can be explained by a diffusive motion of vortices
within a thermal background of sound waves.

To investigate this in more detail we define the following quantities. By l= we
denote the mean distance of nearest-neighbor defects of equal sign, while l̸= is the

amFrom our data on the vortex density shown in Fig. 11.4 and the average vortex separations shown
in Fig. 11.5 below we can estimate the drift velocity v of the elementary vortices in the initial
stage in which the vortex lattice dissolves. We find v = 0.07, 0.13, and 0.24, for the quench types
B I, B II, and B III, respectively.
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z = zh
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Figure 11.3: Single-run bulk snapshots of isosurfaces of |Φ|2 /z4 (blue surfaces, defin-
ing value 2.2) and the charge density √−g

∣∣J0∣∣ (orange surfaces, defin-
ing value 12.3) after a quench of type A III (random distribution with
720 elementary vortices of either sign), at the times t = 200 (upper
panel) and t = 4000 (lower panel). At the boundary, |Φ|2 /z4 reduces
to the superfluid density n = |⟨ψ⟩|2, and we plot n in the top slice
using the same color coding as in Fig. 11.2. The plots represent our
full simulation domain. Consequently, the vortex tubes in the upper
panel that appear to be ‘cut’ actually close on the opposite side due to
periodicity. For an unobstructed view on the isosurfaces of the charge
density see Fig. 11.10.
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Figure 11.4: Time dependence of the total vortex density, on a double-logarithmic
scale. Shown is the averaged vortex density ρ for runs starting from
the six different initial conditions summarized in Table 11.1. Class-A
(class-B) runs are drawn in blue (red), while the different choices of
total vortex numbers are indicated by different symbols. Note that the
apparent initial oscillation of ρ for initial condition B III is not physical,
but rather due to uncertainty in the vortex finding algorithm at the high
initial densities associated with B III.

mean nearest-neighbor distance between vortices and anti-vortices,an

l= = 1
2

∑
α=(+,−)

1
N

N∑
iα=1

∣∣∣xiα − xnnα(iα)

∣∣∣ , (11.1)

l ̸= = 1
2

∑
α=(+,−)

1
N

N∑
iα=1

∣∣∣xiα − xnn−α(iα)

∣∣∣ . (11.2)

Here, α = (+,−) denotes the sign of the winding number of the vortex indexed by
iα = 1, . . . , N , and xiα is its position. The function nnα(iβ) yields the index of the
vortex of sign α nearest to the vortex iβ.

In Fig. 11.5 we show l= (upper panel) and l̸= (lower panel) as functions of time
(averages are taken over ten runs for each type of quench). As the inverse of the
square root of the vortex density gives the mean vortex distance, the time evolu-
tion of the above length scales is directly related to the density evolution shown in
anWe note that in both l= and l̸=, the two sums corresponding to α = (+,−) need not coincide.

However, in the thermodynamic limit, we expect that these two sums coincide because of the
symmetry under exchange of vortices and anti-vortices. We have numerically checked that, on
average, the two sums are indeed equal.
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Figure 11.5: Time evolution of the mean nearest-neighbor vortex–vortex distance
l= (upper panel) and vortex–anti-vortex distance l̸= (lower panel), in
double-logarithmic scale. The class of initial condition, A or B, is color-
coded, while the different choices of total vortex number are indicated
by different symbols, cf. Table 11.1.
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Fig. 11.4. The panels in Fig. 11.5 show that the nearest-neighbor distances evolve as
l=(t) =

√
4D= t and l̸=(t) =

√
4D ̸= t during the universal late-time period, i. e., dif-

fusively. From our data shown in Fig. 11.5, we estimate D= ≈ 0.16 and D̸= ≈ 0.05.
The diffusive behavior is a consequence of the effective interaction of vortices with
the thermal background in the dual theory. We attribute the fact that D= and D ̸=
differ to the influence of the effective vortex–vortex and vortex–anti-vortex interac-
tions. The values of the constants D= and D ̸= can be used to further constrain the
parameters controlling the dissipation and the vortex interactions of the boundary
theory for a quantitative comparison with conventional models of superfluidity. Fi-
nally, note that the universal regime associated with this scaling behavior of both
l= and l̸= is entered at the same time t ≃ 400 for all initial conditions.

11.4 Holographic Turbulence

So far we have identified at late times t ≳ 400 a universal stage of the system’s
evolution with respect to the effective dynamics of vortices. During this stage,
the characteristic length scales of the vortex distribution evolve algebraically, as
we have shown in Sec. 11.3. Therefore, their rate of change, l̇/l, decreases and
approaches zero asymptotically. Thus, at late times the system can be considered
quasi-stationary. As we will discuss in the following, during this stage the system
bears signatures of turbulence. We will, in particular, analyze momentum-space
distributions as statistical observables and find them to exhibit algebraic behavior
as it is characteristic for the development of turbulent transport.

While vortices are the building blocks of superfluid turbulence, one needs to study
correlation functions of the superfluid order-parameter field in order to obtain a full
understanding of the microscopic dynamics of the superfluid. Here, we concentrate
on the equal-time two-point correlation function, ⟨ψ∗(x, t)ψ(y, t)⟩. Since our system
is spatially homogeneous in a statistical sense this quantity can be analyzed in
relative momentum space, i. e. with respect to the momentum conjugate to the
relative coordinate r = x−y, defined via Fourier transform. The (radial) occupation
number spectrum is defined asao

n(k, t) =
∫ dΩk

2π ⟨ψ
∗(k, t)ψ(k, t)⟩ . (11.3)

Due to the isotropy of the underlying model we can perform the angular integra-
tion

∫
dΩk/(2π) without losing information, such that we are left with the radial

aoA comment is in order here. In practice, we extract the full quantum expectation value ⟨ψ(k, t)⟩
from the simulations, and compute

∫
⟨ψ∗(k, t)⟩⟨ψ(k, t)⟩ dΩk/(2π) from it as an approximation

for n(k, t). In addition, we average this quantity over a number of runs [234]. The infrared
phenomena we are interested in here are expected to be classical in the statistical sense, and
averaging over many realizations washes out, e. g., effects due to the definite positions of the
vortices. It would be nonetheless interesting, if numerically demanding, to use the holographic
dictionary to extract the full quantum two-point function.

138
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momentum k = |k|. We define the radial kinetic energy spectrum as

E(k) =
∫ dΩk k

2π |k|
2⟨ψ∗(k, t)ψ(k, t)⟩ . (11.4)

It is related to the radial occupation number spectrum via k3n(k) = E(k). In general
n(k) has a well-defined field-theoretic interpretation.

In his seminal work on turbulence ([298–300], see also [301]), Kolmogorov assumed
the existence of an inertial range in momentum space, bounded by two character-
istic scales, kin and kdiss. At the scale kin, energy is injected into the system. It
cascades from momentum shell to momentum shell before it is eventually dissipated
into heat at the higher scale kdiss. Based on the assumption of such a local trans-
port in momentum space, Kolmogorov found that the kinetic energy spectrum of
stationary turbulent flow in an incompressible fluid scales as E(k) ∼ k−5/3 within
the inertial range. This result holds also in two spatial dimensions where it is asso-
ciated with an inverse energy cascade [302]. The essential feature of this so-called
Kolmogorov–Richardson cascade is that the system is self-similar, i. e. scale-free,
within the inertial range.

Here, we take a more general view on turbulence and analyze the occupation num-
ber spectra of the holographic superfluid in terms of scaling laws, n(k) ∼ k−ζ , pre-
viously discussed in [233]. We extract the scaling exponents ζ by fitting power laws
to the spectra after averaging them over ten runs for each initial condition. We esti-
mate the uncertainty of the fitted exponents to be 0.1, for details see Appendix D.3.
In the following, we relate the scaling seen in the spectra to the statistical proper-
ties of the vortex distribution that we discussed in Sec. 11.3. In particular, we want
to study whether the universality that emerges in the late-time vortex dynamics is
reflected in the occupation number spectra.

In Fig. 11.6, we show the occupation number spectra n(k) for the initial condi-
tions A II and B II (averages are taken over ten runs for each type of quench). To
illustrate their time evolution the spectra are shown at t = 0, 200, 600, and 4000.
In both classes, A (random distributions) and B (vortex lattices), the spectra for
the parameter sets I and III are very similar to the spectra for the sets II of the
respective class. For intermediate and late times we observe inertial ranges in k, the
corresponding power laws fitted to the spectra at these times are also shown in the
figure. Within the uncertainty in our determination of scaling exponents of occupa-
tion spectra (cf. Appendix D.3), the scaling exponents at intermediate to late times,
t ≳ 400, agree even quantitatively for all quench types within each class. Thus, we
can discuss the generic features of the spectra at the examples shown in Fig. 11.6.

First, we note that the initial occupation spectra (corresponding to time t =
0 in Fig. 11.6) are indeed similar to the far-from-equilibrium initial momentum
distributions considered in various classical statistical simulations of dilute Bose
gases [258–260, 281, 282]. Similar initial momentum distributions have also been
studied in the relativistic case [257, 303].

During the early to intermediate stage of the system’s evolution, for example at
t = 200, the scaling exponents differ between the various initial conditions, indicating
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Figure 11.6: Occupation number spectra as functions of the radial momentum k
during the different stages of the evolution, on a double-logarithmic
scale. Here we show the evolution after quench type A II (random
distribution, upper panel), and the evolution after quench type B II
(vortex lattice, lower panel). Results for the respective parameter sets
I and III are similar to the results depicted here, cf. the main text.
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that this stage is still non-universal. This could be expected from our analysis of
the vortex dynamics in Sec. 11.3 where we saw that a dependence on the initial
parameters persists until t ≃ 400. Specifically, we find, at time t = 200, a scaling
law at intermediate momenta with exponents ζ ≈ 4.7 and ζ ≈ 4.3 in class A and
B, respectively, for quench types II and III. The exponents for quench type I in
each of the classes A and B are slightly larger, ζ ≈ 4.9 and ζ ≈ 4.5, respectively.
The power-law scaling n(k) ∼ k−4.7 of the occupation number n(k) = k−3E(k) at
intermediate times after quenches A II and A III (random distributions) is consistent
with an E(k) ∼ k−5/3 Kolmogorov scaling of the radial kinetic energy spectrum. The
scaling exponent found in the case of initial condition A I is slightly larger than the
Kolmogorov value.

At this point, let us briefly pause to compare our findings for the intermediate
times (at about 200 ≲ t ≲ 400) to the results reported in [233]. There, the evolution
of the holographic superfluid was studied starting from an initial condition very
similar to our type B II vortex-lattice configuration. Even though the simulation
domain used in [233] was smaller than the one employed here, the initial vortex
densities differ by only 10 %. The kinetic energy spectrum was defined in [233], based
on hydrodynamic arguments [304], as ϵkin(k, t) = 1

2
∫
|w(k, t)|2 k dΩk. Here, w(k, t)

is the Fourier transform of the generalized velocity field w(x, t) = ⟨ψ(x)⟩∇φ(x)
with φ = arg(⟨ψ⟩) the phase of the superfluid order parameter. This definition of
the kinetic energy spectrum differs from that of our E(k) in Eq. (11.4). In the cited
work, the system was propagated up to time t = 600, and Kolmogorov scaling of the
kinetic energy spectrum, ϵkin(k, t) ∼ k−5/3, was reported for intermediate evolution
times in the range 160 < t < 500. We have analyzed our data for quench type B II
also in terms of the quantity ϵkin(k, t). We find, within the uncertainty inherent in
the fitting procedure, a scaling law ϵkin(k, t) ∼ k−1.3 during the intermediate stage
of the evolution, for example at t = 200, differing from Kolmogorov scaling. We will
discuss that point in light of our further findings in the summary in Chap. 13.

We now continue with the discussion of our results in Fig. 11.6. During the
evolution, the momentum range where n(k, t) obeys a scaling law gradually grows
on its lower end, for all initial conditions. Also, the scaling exponents’ absolute
values decrease. This can be attributed to the increasing diluteness of the vortex
gas. The flow field of a single vortex exhibits a scaling n(k) ∼ k−4 for momenta not
resolving the vortex core. The same scaling is expected for randomly distributed
vortices and anti-vortices at momenta larger than the mean inverse of the vortex–
anti-vortex distance [259]. Hence, the inverse average vortex separation sets a lower
cutoff to the scaling regime. As the vortex gas becomes more dilute, the average
vortex separation increases, see Fig. 11.5, so that the lower cutoff of the scaling
regime decreases. Furthermore, Fig. 11.6 shows that the scaling exponents gradually
approach the value for single-vortex scaling.

Let us next turn to the late-time evolution. At time t = 600, the scaling exponents
of the occupation number spectra are still slightly different for quench classes A and
B. They are fitted by ζ ≈ 4.3 and ζ ≈ 4.1 for quench typesA II and B II, respectively.
At time t = 4000 the scaling exponent is fitted by ζ ≈ 4.1 for both quench types A II
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Figure 11.7: Occupation number spectrum as a function of the radial momentum k
at time t = 1000 during the universal late stage of the evolution, on
a double-logarithmic scale. The class of quenches, A or B, is color-
coded, while the different choices of total vortex number are indicated
by different symbols, cf. Table 11.1. The spectra exhibit scaling n(k) ∼
k−ζ with ζ ≈ 4.1 over a large momentum range that gradually expands
to the infrared.

and B II. We recall that the uncertainty in the estimation of these scaling exponents
is about 0.1, see Appendix D.3. As discussed above, within each of the classes A and
B of quenches, at late times both the qualitative and quantitative scaling behavior
is unchanged for the alternative choices I and III of the total vortex number. In
particular, the scaling exponents in the late stages of the evolution are consistent
with 4.1 ≲ ζ ≲ 4.3 for all initial conditions. To demonstrate this, we plot in Fig. 11.7
the occupation number spectra for all our quenches (averages are taken over ten runs
for each type of quench) at t = 1000 during the late-time stage. At this time, for all
initial conditions, the estimates for the scaling exponents are in fact in the narrower
range 4.1 ≲ ζ ≲ 4.2. This indicates the emergence of a universal scaling law for
n(k, t). Thus, in the long run, the system loses all memory of its initial conditions,
confirming our findings in Sec. 11.3. Furthermore, the universal scaling law in the
occupation number spectra emerges at late times t ≳ 600. This is to be compared
with our findings in Sec. 11.3. There, we identified t ≳ 400 to roughly mark the
onset of the late-time universal scaling behavior with respect to time.

We note that the late-time scaling exponent still appears to deviate slightly from
the single-vortex scaling ζ = 4, indicating that effects of vortex interactions are still
relevant in this universal regime. Typically, for all initial conditions, we still have 4
to 8 remaining vortex defects at the final time tf = 4000.
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11.5 Non-Thermal Fixed Point: The Holographic
Perspective

In the following, we concentrate on the universal late-time behavior of the holo-
graphic superfluid that we have found in the previous sections for a temperature
ratio T/Tc = 0.68 of the heat bath. The system exhibits two types of univer-
sal scaling laws, one in space and one in time, at late times t ≳ 600. The first
type characterizes spatial correlations of excitations and is reflected by the scaling
n(k) ∼ k−ζ of the single-particle occupation number spectrum with the exponent
in the range 4.1 ≲ ζ ≲ 4.3. This scaling is observed within an infrared momentum
regime which can be viewed as an inertial range. The power-law behavior termi-
nates in the infrared at a momentum scale that is related to the characteristic length
scales of the vortex distribution. The characteristic lengths of the vortex distribu-
tion, including the mean vortex separation, follow a scaling law in time, l ∼ t1/2, see
Sec. 11.3. This leads to the observation that the system’s time evolution is slowing
down algebraically during the universal stage, l̇/l ∼ t−1. Such a behavior is inter-
preted as ‘critical slowing down’ within the context of dynamic critical phenomena
well-known from the theory of dynamics near an equilibrium phase transition [305].

Similar scaling features have been observed in numerical calculations of dilute
Bose gases far from equilibrium on the basis of a statistical evaluation of Gross–
Pitaevskii models [259, 281, 306]. Within that framework, the scaling features have
been interpreted in terms of the more general concept of non-thermal fixed points
[254–256]. This concept associates stationary points in the time evolution of non-
thermally scaling correlation functions with fixed points in a renormalization-group
sense [255, 263, 264]. In the vicinity of those fixed points, correlation functions as-
sume spatial and temporal scaling behavior. Non-thermal fixed points thus consti-
tute a generalization of the concept of critical phenomena near thermal equilibrium.
A priori, this situation allows for new universality classes as compared to those in
the classification of Hohenberg and Halperin [305]. But also phase-ordering kinet-
ics as discussed in [295] within the Hohenberg–Halperin classification scheme could
probably be interpreted as a realization of a non-thermal fixed point.

In the following, we argue that the holographic superfluid indeed exhibits the pres-
ence of a non-thermal fixed point. We use observables which have been introduced
in [281] for the purpose of numerically identifying non-thermal fixed points in two-
dimensional Bose gases. The state of the system can be characterized by two length
scales, the mean nearest-neighbor vortex–anti-vortex distance l̸=, see Eq. (11.2), and
the coherence length lC of the superfluid. The latter is defined as

lC(t) =
∫
g(1)(r, t) dr (11.5)
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with the autocorrelation function g(1),ap

g(1)(r, t) =
∫ d2x

A

∫ dΩr

2π
⟨ψ∗(x, t)ψ(x + r, t)⟩√
n(x, t)n(x + r, t)

. (11.6)

Here,
∫

d2x/A denotes the average over the simulation domain A, and
∫

dΩr/(2π) the
angular average for the difference vector r. The distance l̸= is a measure for the state
of the system from the point of view of the effective vortex picture. The coherence
length lC measures the degree of spatial correlations of microscopic excitations. The
time evolution of both lengths is depicted in Fig. 11.8 (averages are taken over ten
runs for each quench type). Both l̸= and lC show universal scaling behavior in the
late stage of the evolution. The scaling exponent of l̸= is found to be 0.5, as discussed
in Sec. 11.3. The scaling exponent of lC can be narrowed down to a value between
0.5 and 0.6. Thus, it is conceivable that the latter scaling exponent agrees with the
scaling exponent of the characteristic length scales of the vortex distribution. This
would imply a constancy of ratios of different characteristic length scales typical for
the approach to a non-thermal fixed point or a critical point, see for example [307].

The scaling exponents that we have extracted happen to coincide with those pre-
dicted by the theory of phase-ordering kinetics [295]. Note that, as the holographic
superfluid is a strongly correlated quantum fluid, it is a non-trivial question to what
extent the arguments of [295] apply. In addition, going beyond the probe limit could
alter these findings.

It is useful to study the time evolution of the system in a reduced configuration
space consisting of the two scales l̸= and lC. Fig. 11.9 shows the trajectories of
the system for different initial conditions (averages are taken over ten runs for each
quench type) in this configuration space. Here we choose to plot the inverse lengths,
1/l ̸= and 1/lC, on the axes because in the thermodynamic limit one generically
expects characteristic length scales to diverge at critical points. While the inverse
coherence length decreases monotonically for all initial conditions, the behavior of
1/l ̸= is different for the two classes of initial conditions. Starting from random
distributions of vortices (class A), 1/l ̸= decreases monotonically due to vortex–anti-
vortex annihilation. For vortex lattices (class B) 1/l ̸= increases during the initial
drift phase as the vortices of opposite sign move closer to each other. Subsequently,
1/l ̸= decreases monotonically for all of our initial conditions during the universal
stage. Eventually, for all of our initial conditions the system is attracted by the
point of maximal coherence and maximal vortex–anti-vortex separation, as marked
in the figure. Close to the fixed point, all trajectories meet in a universal curve,
indicating that the memory of the initial condition is completely lost and, with that,
signaling the universal stage of time evolution. Due to the algebraic slowing-down
the system spends a major part of its time evolution near the fixed point. For time
t → ∞, all curves would bend over towards (1/l̸=, 1/lC) → (∞, 0) because the last
vortex–anti-vortex pair annihilates and the coherence length diverges.aq This would
apConcerning the expectation value involved in the computation of g(1) cf. our remarks in footnote

(ao).
aqObviously, in our simulation this happens only to the extent possible on a finite domain.
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Figure 11.8: Nearest-neighbor vortex–anti-vortex distance l̸= (upper panel) and co-
herence length lC (lower panel) as functions of time for all initial con-
ditions. The type of initial condition, A or B, is color-coded, while
the different choices of total vortex number are indicated by different
symbols, cf. Table 11.1.
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Figure 11.9: Approach to the non-thermal fixed point: Trajectories of the system in
the plane spanned by the inverse coherence length 1/lC and the inverse
mean nearest-neighbor vortex–anti-vortex distance 1/l ̸=. The type of
initial condition, A (random distribution) or B (vortex lattice), is color-
coded, while the different choices of total vortex number are indicated
by different symbols, cf. Table 11.1. The points are approximately
equidistant on a logarithmic time scale: Given the time tn, the time
of the next point is given by tn+1 = 1.1 tn. The first point of each
curve represents t1 = 1. The dashed lines correspond to the largest
coherence length and vortex–anti-vortex distance possible on the finite
simulation domain. For time t→∞, all curves would bend over towards
(1/l ̸=, 1/lC)→ (∞, 0), as indicated by an arrow.

mark the approach to thermal equilibrium. Our findings indicate that the abstract
concept of a non-thermal fixed point in the quantum dynamics can be interpreted in
a simple way on the gravity side. Specifically, a fixed point corresponds to a time-
independent solution of the classical bulk equations of motion (10.8)–(10.10). There
is one unique static solution which is completely stable and corresponds to thermal
equilibrium, i. e. the thermal fixed point. But, as for many systems of non-linear
partial differential equations, there will be a series of stationary points with different
stability characteristics. The intriguing properties of non-thermal fixed points are
reproduced by partially stable stationary points, i. e. points which have at least
one attractive direction in phase space. This guarantees that the time evolution
first approaches such a fixed point – regardless of details of the initial condition –
before turning towards thermal equilibrium. Here, we have identified such a partially
stable stationary point for the dynamics of the holographic model in the reduced
configuration space of Fig. 11.9.
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Let us now discuss the picture developed of the non-thermal fixed point in the
context of vortices in a superfluid [258, 259, 281]. Precisely at a non-thermal fixed
point, scaling of, e. g., the momentum distribution applies by definition at all mo-
menta smaller than some ultraviolet scale, such as the healing length measuring the
distance over which a density perturbation ‘heals out’ in the superfluid. A fixed-
point momentum distribution n(k) ∼ k−4 can be traced to the geometry of the
fluid-velocity field around a vortex core, and extending this to k = 0 would im-
ply a single vortex at a random position in an infinitely extended system. Hence,
vanishing total angular momentum as in the examples discussed above, would re-
quire, approaching the fixed point, the ‘vortex-behind-the-moon’ scenario where the
opposite-winding-number vortex is at a large distance from the first one.

Considering this idealized picture, the fixed point can never be exactly reached
in a finite system such as on our computer grid. However, the diluting vortex gas
approaches a configuration with a few far-separated vortices with vanishing total
angular momentum, in fact close to the scenario described above. Notwithstanding
these limitations also in a finite geometry metastable vortex configurations exist such
as regular lattices of vortices with alternating winding number within a noise-free
condensate field.

Finally, we would like to look in more detail at the properties of the non-thermal
fixed point in terms of bulk properties in the holographic description. As discussed
above, the fixed point itself cannot be reached in our simulations. But it is natural to
expect that the quasi-stationary configurations in the late-time stage of the system’s
evolution should in many respects be close to the fixed point.

We observe that in the early stage of the evolution the bulk fields exhibit strong
variation in the x- and y-directions. In particular, these variations are also present
away from the vortex cores. In the quasi-stationary late-time regime, in contrast,
significant variations are observed only in the direct vicinity of the vortex cores.
This characteristic difference is nicely seen in the behavior of the isosurfaces of
the quantity √−g

∣∣J0∣∣ that we show in Fig. 11.3. To exhibit this more clearly,
we plot in Fig. 11.10 the same charge-density isosurfaces as in Fig. 11.3, with all
other features of the plots removed. In the early stage of the evolution (upper
panel), the isosurface of the bulk charge density shows many small ripples and
several spikes resulting from vortex annihilation events. On the other hand, in the
late-time regime (lower panel) the isosurface appears almost featureless except for
the holes due to the vortices. We associate this smoothness of the bulk fields away
from the vortex cores with the absence of short-wavelength sound waves. In fact,
the almost complete absence of such short-wavelength sound waves appears to be
characteristic for all quasi-stationary configurations that we have observed in our
simulations. (It also holds for the quasi-stationary lattice configurations that can
be constructed as mentioned above.) In the evolution of our systems sound waves
of this kind are typically created in annihilation processes of vortices and are then
rather rapidly dissipated.ar Sound waves of short wavelength have a relatively high

arThis can be easily seen in our movies of example evolutions, see footnote (al).
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z = 0

z = zh

z = 0

z = zh

Figure 11.10: Single-run bulk snapshots of isosurfaces of the charge density√−g
∣∣J0∣∣

at times t = 200 (upper panel) and t = 4000 (lower panel). The
same parameters as in Fig. 11.3 are used. The holes in the charge
density indicate the presence of vortices. Note the strong variations
of the charge density field at t = 200. The isosurface exhibits ripples
resulting from vortex annihilation events. In contrast to this, the
isosurface at t = 4000 is very smooth.
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energy density. According to the interpretation of the holographic coordinate z as an
inverse energy variable, see Eq. (2.20) in the discussion in Sec. 2.2, one would expect
these sound modes to correspond to bulk excitations (more or less) localized close
to the boundary. Unfortunately, we did not succeed in extracting this expected
behavior from our simulation data. As long as the system still contains vortices,
there are bulk excitations spanning a wide range of wavelengths. The said short-
wavelength sound waves are only a small contribution relative to this background,
and it is therefore difficult to isolate their contribution numerically. Despite this
numerical difficulty the bulk perspective offers an attractive way of studying and
interpreting the dynamics close to the non-thermal fixed point.

Up to now, our discussion of the non-equilibrium dynamics of the holographic
superfluid was based on our simulation data for the choice T/Tc = 0.68 of the ratio
of the heat bath’s temperature and the critical temperature. In the following chapter,
we will assess the robustness of our conclusions and the temperature dependence of
vortex-related observables such as the constants D= and D ̸= by studying the system
at three further values of the ratio T/Tc.
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12 Dependence on Temperature and
Chemical Potential

In the previous chapter we have investigated the non-equilibrium dynamics of the
holographic superfluid starting from quench-like initial conditions. These initial
conditions are prepared by perturbing a homogeneous thermal background state
with a definite temperature in the superfluid phase, T/Tc < 1, by the introduction
of vortex defects. We have explored in detail the dynamics starting from a state
with T/Tc = 0.68. In particular, we have studied large classes of initial conditions,
and have found that the system enters a universal stage at late times which is
characterized by scaling laws of observables with respect to space (momentum) and
time. In this chapter, we study three further choices of T/Tc for the thermal state.
As before, these states are perturbed by the introduction of vortex defects. Due
to the large numerical cost of the simulations, cf. Appendix D.2, in contrast to
the previous chapter here we only study one type of initial conditions. Due to our
previous findings we expect that this is sufficient to analyze the characteristics of
the long-time evolution. The question we want to ask is to what extent our findings
regarding the late-time stage in the previous chapter are robust with respect to
changes of the temperature of the background state. Moreover, we investigate the
temperature dependence of constants related to the evolution of the vortex ensemble.

The simulation parameters and choice of initial conditions are summarized in Ta-
ble 12.1. In this chapter, we study the three new cases T/Tc = 0.45, 0.54, 0.90, and
compare the data to that of the case T/Tc = 0.68. In practice, T/Tc is tuned by
adjusting the chemical potential µ = 9, 7.5, 4.5 in units specified by the condition
zh = 1, see Sec. 10.3. The density n0 of the superfluid order parameter in the corre-
sponding thermal background state is given in the table. For comparison, we have
included the details of the case T/Tc = 0.68 in the third row. As mentioned above,
for the new choices of T/Tc we study one type of initial conditions, namely type
A III, i. e. a random distribution of 720 elementary vortices (winding number +1)
and 720 elementary anti-vortices (winding number −1), cf. Table 11.1. As before,
we use 504 × 504 points for the boundary-theory directions (x, y), and 32 for the
holographic direction z. Averages are taken for statistical observables over five runs
for each set of parameters. For consistency, then, for the data presented in this chap-
ter corresponding to T/Tc = 0.68 (µ = 6) with initial condition A III, we have also
averaged over only five of our ten runs. tf denotes the final time of the simulations
(in units set by zh = 1). It is adjusted such that tfTc is similar for all parameters,
as shown in the table. Finally, a is the grid constant in the aforementioned units.
The values of a are chosen, for consistency across different simulations, such that
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Table 12.1: Parameters and initial conditions used for the simulations of non-
equilibrium dynamics. The quantities in the table are explained in the
text. For details on the initial conditions see Table 11.1. In this chap-
ter we investigate the temperature dependence of the non-equilibrium
dynamics by studying the system at the given values of T/Tc.

T/Tc µ n0 initial conditions tf a tfTc LTc

0.45 9 265.2 A III 3000 1/6 1586 44.4
0.54 7.5 120.2 A III 3500 1/5 1542 44.4
0.68 6 41.7 A I–III, B I–III 4000 1/3.5 1410 50.8
0.90 4.5 5.5 A III 5500 1/1.5 1454 88.8

an isolated elementary vortex is about 13 grid points in diameter, where we define
the ‘boundary’ of the vortex as that point at which the density assumes 95 % of the
background density n0. (Recall that the density vanishes in the center of a vortex.
For an isolated vortex, then, the density increases monotonically with the distance
from the center.) The choice of a and the grid size of N × N = 504 × 504 points
in the (x, y) direction then leads to a quadratic domain (in the boundary theory)
of side length L = Na. In the table, we have given the dimensionless product of L
and the critical temperature Tc. Note that due our procedure of choosing the grid
constant the dimensionless size (LTc)2 of the simulation domain is larger for the
larger temperatures.

In the following sections, we first discuss the time evolution of the vortex ensembles
for the different choices of T/Tc. As we will see, a universal stage in which vortex-
distribution-related observables obey scaling laws with respect to time arises for
all choices of T/Tc. In particular, in that stage the scaling exponents for different
T/Tc coincide. Then, we will study the occupation number spectra during the late-
time stage and examine their scaling properties. Also here will we find that for
different temperatures the scaling exponents coincide in the late-time stage (within
the uncertainty in determining them), but they only coincide after a time later than
that after which the scaling exponents for the observables related to the vortex
distribution coincide.

To be able to properly compare dimensionful quantities evaluated at different
values of T/Tc, in the following we generally scale dimensionful quantities by ap-
propriate powers of Tc to make them dimensionless.as We thus interpret Tc as fixed
and accordingly compare quantities ‘measured’ at different temperatures.

asConsidering a quantity Q with mass dimension n and using Eq. (10.5), the dimensionless quantity
QT−n

c is given in terms of the dimensionless Qzn
h (recall our choice of units zh = 1) by

QT−n
c = (Qzn

h )
(4π

3
T

Tc

)n

.
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Figure 12.1: Time dependence of the averaged vortex density for runs with different
choices of T/Tc, on a double-logarithmic scale. Shown is the scaled
vortex density ρ/T 2

c as a function of the scaled time tTc.

12.1 Dynamical Evolution of the Vortex Ensembles at
Different Temperatures

We start with a discussion of the time evolution of the vortex ensembles. At the
different temperatures considered here, the qualitative picture of the non-equilibrium
dynamics of the superfluid after the initial quench is the same as in the case T/Tc =
0.68 studied in detail above. The number of vortices in our system is only reduced
by vortex–anti-vortex-pair annihilation, and we have never observed spontaneous
creation of vortex–anti-vortex pairs or merging of vortices. For T/Tc = 0.45, at the
final time of the simulations 2 or 4 vortices were left, except for one run out of five in
which the last vortex pair annihilated at t = 2292 before the end of the simulation
at tf = 3000 (in units specified by zh = 1). Next, for T/Tc = 0.54 at the final time
of the simulations 4 or 6 vortices were left. Finally, for T/Tc = 0.90 at the final time
of the simulations 8, 10, or 12 vortices were left.

The full time dependence of the vortex density for all four choices of T/Tc is
shown in Fig. 12.1 (averages are taken over five runs for each choice of T/Tc). Both
the vortex density and the time are scaled with appropriate powers of the critical
temperature Tc such that they become dimensionless. Despite the fact that there
are initially 1440 elementary vortices in all of the simulations, the initial vortex
densities are not all equal since LTc differs for the various choices of T/Tc, see Ta-
ble 12.1. However, this is not too big an issue as we are interested in the late-time
behavior where we expect the details of the initial conditions to become unimpor-
tant. Roughly for tTc ≳ 100 the dimensionless vortex densities ρ/T 2

c exhibit scaling
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behavior for all temperatures investigated.at The scaling laws are consistent with
ρ ∼ t−1 for all T/Tc. For the ‘coldest’ setup, T/Tc = 0.45 (blue circles), on our finite
simulation grids at late times tTc ≳ 700 the vortex density deviates from the scaling
law. As we have mentioned above, in one of the five realizations for T/Tc = 0.45
the system was already free of vortices at t = 2292 in units specified by zh = 1, cor-
responding to tTc = 1216. As deviations from scaling appear already for tTc ≳ 700,
obviously the deviation from scaling cannot be entirely due to one of the five ensem-
ble members already being in a near-thermal vortex-free state. Indeed, even if we
average only over the four runs where vortices are present in the system until the
end of the simulation a deviation from scaling appears for only slightly later times
than when averaging over all five runs, namely for tTc ≳ 850. All in all, the effect
is most likely due to poor vortex statistics at late times which is most pronounced
for T/Tc = 0.45 where only very few vortices are left at late times, cf. the numbers
reported above. The vortex annihilation rate, and thus the vortex density, then be-
comes sensitively dependent on the definite positions of the remaining vortices. In
short, the deviation from scaling is likely an artifact of our finite simulation domain
and is expected to vanish in the thermodynamic limit.

Let us express, motivated by the observation of a late-time t−1 scaling, the behav-
ior of the vortex density during the late-time stage of the evolution as ρ(t;T/Tc) ≃
Γ(T/Tc)−1t−1 with a vortex decay parameter Γ(T/Tc) depending on the choice of
T/Tc. This parameter can be phenomenologically interpreted as follows. The only
process that changes the number of vortices in our system is vortex–anti-vortex pair
annihilation. Thus, one may argue that the decay rate dρ/ dt of the vortex density
is proportional to the square of the vortex density as a measure for the probability
that vortices meet (see e. g. [232, 236]). This leads to the phenomenological equation

dρ
dt = −Γρ2 , (12.1)

solved by
ρ(t) = 1

ρ−1
0 + Γt

≃ 1
Γt , (12.2)

where ρ0 is the initial vortex density and we have approximated ρ(t) for large t.
From our data shown in Fig. 12.1 we extract estimates for Γ by multiplying ρ/T 2

c
by tTc and computing the mean of the data points in the range at late tTc where
(ρ/T 2

c ) × (tTc) is approximately constant, which yields (ΓTc)−1. As a measure for
the statistical uncertainty we compute the standard deviation of these data points.

The resulting estimates for Γ are recorded in Table 12.2. We give the results both
in units specified by zh = 1 and in units of Tc. We find relative standard deviations
between 3 % and 6 % due to the noise inherent in the data. However, a larger source
atThe dimensionless product tTc ≃ 100 becomes t/zh ≃ 285 for T/Tc = 0.68. In Sec. 11.3 we have

found a common scaling law of the vortex densities for different initial conditions for t/zh ≳ 400.
The earlier time found here is not in conflict with our previous observation since here we consider
only a random distribution of vortices as initial condition, which enters the scaling regime more
quickly, cf. Fig. 11.4.
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Table 12.2: Estimates for the decay parameter Γ during the late-time stage of the
time evolution. The values are given both in units specified by setting
zh = 1 and in units of the critical temperature Tc. The relative uncer-
tainty is conservatively estimated as 10 % (see text).

T/Tc Γ ΓTc

0.45 0.03 0.26
0.54 0.04 0.30
0.68 0.05 0.31
0.90 0.09 0.42

of uncertainty is the determination of the range in tTc on which to compute the
average. We address that by varying the endpoints of the range on which the data
is averaged, thus producing a range of estimates. As a result of that, a conservative
estimate for the relative uncertainty is 10 % for all four temperatures. A further
source of uncertainty would be the fact that here we have used only one type of
initial conditions. However, that should introduce only a negligible bias since our
previous results for the case T/Tc = 0.68 and using qualitatively different initial
conditions indicate that in the late-time regime the dynamics does not depend on
the details of the initial condition. From the data given in Table 12.2 we conclude
that there is an overall increase of the dimensionless decay parameter ΓTc with T/Tc.

The vortex decay parameter Γ has also been studied in a holographic superfluid
in [236]. However, a quantitative comparison to those results is hindered by the fact
that the authors of Ref. [236] only study temperatures T/Tc ≥ 0.58, so that we only
have two data points overlapping with their results. Moreover, in the cited work
only early times are studied whereas we focus on the late-time regime which anyway
renders a direct comparison of the results questionable. The qualitative results of
the cited work agree with ours, as also there an increase of the decay parameter with
temperature is found.

Let us now investigate the statistical properties of the vortex ensembles in more
detail by studying the time evolution of the characteristic length scales defined in
Eqs. (11.1) and (11.2), i. e. the mean nearest-neighbor vortex–vortex distance l= and
vortex–anti-vortex distance l̸=. These length scales l= and l̸=, scaled with Tc, are
plotted against the scaled time tTc in Fig. 12.2 (averages are taken over five runs for
each choice of T/Tc). For completely uncorrelated vortices, the inverse of the square
root of the vortex density ρ gives the mean vortex separation. Therefore, the time
evolution of the length scales l= and l̸= is closely related to the time evolution of
the vortex density shown in Fig. 12.1. Like in the case of that observable, the non-
monotonic behavior seen in l= at very late times for T/Tc = 0.45 and T/Tc = 0.68 is
most likely an artifact of the finite grid size necessarily employed in the simulation,
see our discussion above.

We observe from Fig. 12.2 that a scaling regime compatible with l=, l̸= ∼ t0.5 is
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Figure 12.2: Time dependence of the mean nearest-neighbor vortex–vortex distance
l= (upper panel) and vortex–anti-vortex distance l̸= (lower panel) for
runs with different choices of T/Tc, on a double-logarithmic scale.
Length and time scales are made dimensionless by scaling with Tc.
The non-monotonic behavior of l= at very late times for some T/Tc is
likely an artifact of the finite spatial extent of the simulation domain
(see text).
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Table 12.3: Estimates for the constants D= and D ̸= associated with the diffusive
behavior of the vortices during the late-time regime of the time evolu-
tion. The values are given both in the units specified by setting zh = 1
and in units of the critical temperature Tc. The relative uncertainty is
conservatively estimated as 20 % (see text).

D= D ̸=

T/Tc D= D=Tc D ̸= D ̸=Tc

0.45 0.10 0.05 0.03 0.016
0.54 0.14 0.06 0.04 0.019
0.68 0.19 0.07 0.06 0.020
0.90 0.31 0.08 0.10 0.028

soon entered for all temperatures investigated. We note the tendency that the lower
the temperature the earlier in tTc the scaling law applies. Across all choices of T/Tc,
both l= and l̸= follow a scaling law for scaled times tTc ≳ 100. We thus observe that
the diffusive behavior l= =

√
4D= t and l̸= =

√
4D ̸= t in the late-time stage that we

have found for T/Tc = 0.68 in Sec. 11.3 in fact manifests itself for all temperatures.
From the data shown in Fig. 12.2 we estimate the values of the constants D=Tc and
D ̸=Tc by averaging (lTc)2/(4tTc) with l = l= and l = l̸=, respectively, over the range
at late tTc where that quotient is approximately constant. We compute the standard
deviation as a measure of the statistical uncertainty. The resulting estimates for D=
and D ̸= are recorded in Table 12.3. We find relative standard deviations between 4 %
and 10 %. Varying the endpoints of the range in tTc on which we average the data,
as discussed above for the determination of Γ, a relative uncertainty of 20 % is a
conservative estimate for both D= and D ̸=, and for all temperatures. The estimates
for D= and D ̸= in the case T/Tc = 0.68 in Table 12.3 are close to the estimates we
have obtained in Sec. 11.3 (namely, D= ≈ 0.16 and D ̸= ≈ 0.05), and compatible
within the uncertainty. Like in the case T/Tc = 0.68 discussed in Sec. 11.3, also for
the other temperatures T/Tc the constants D= and D ̸= differ due to the effective
vortex–vortex and vortex–anti-vortex interactions. It is interesting to note from
Table 12.3 that D= ≈ 3D ̸= for all temperatures investigated. Furthermore, we
find that both D=Tc and D ̸=Tc increase with T/Tc. It indeed seems reasonable
that an increased temperature leads to an increased ‘diffusivity’ of the vortices, in
accordance with our finding of larger decay parameter ΓTc for larger temperature.

Taking our observations for the vortex density and the vortex length scales l= and
l̸= together, we conclude that the universality that we have found in Chap. 11 in the
late-time regime of the system’s evolution for the choice T/Tc = 0.68 extends to the
different temperatures explored here. In particular, the scaling exponents of vortex-
ensemble-related observables coincide for different values of T/Tc. To complete the
picture, in the following section we study the occupation number spectrum during
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12 Dependence on Temperature and Chemical Potential

the late-time stage of the system’s evolution. This allows us to determine the scaling
exponents with respect to momentum and compare them for different choices of
temperature T/Tc.

12.2 Occupation Number Spectra in the Late-Time Regime
at Different Temperatures

We have so far ascertained the presence of a universal regime in the system’s non-
equilibrium time evolution where for tTc ≳ 100 characteristic observables for the
vortex distribution exhibit scaling laws in time with a scaling exponent independent
of the temperature ratio T/Tc. We now study the occupation number spectrum
n(k, t) defined in Eq. (11.3) from the equal-time two-point correlation function of
the order-parameter field. As in Sec. 11.4 before, we analyze n(k, t) in terms of
scaling laws in an inertial range, n(k) ∼ k−ζ , see Appendix D.3 for technical details.

In Fig. 12.3 we show the occupation number spectrum (averages are taken over five
runs for each choice of T/Tc) during the late-time stage of the system’s evolution.
In Fig. 12.3a we plot n(k, t) for the different choices of T/Tc in units specified by
zh = 1 in order to clearly exhibit the scaling properties. n(k, t) is shown at times
tTc = 300 (left plot) and tTc = 400 (right plot). The reason for the choice of these
times will become clear momentarily. In Fig. 12.3b the spectra at tTc = 400 are
shown again, now with the occupation number spectra and the momentum made
dimensionless by multiplying by appropriate powers of Tc.

We find that the spectra for different choices of the temperature T/Tc exhibit
scaling behavior in an inertial range with scaling exponents within some central
value ±0.1 only after a scaled time tTc ≃ 300, which is why we have chosen that
time for the left panel in Fig. 12.3a. This time is significantly later than the time
tTc ≃ 100 after which the vortex-ensemble-related observables obey universal scaling
laws for all temperature investigated. We have already observed this hierarchy of
the onset times of the scaling regimes with respect to time and space (momentum)
in the case T/Tc = 0.68 in Secs. 11.3 and 11.4. The scaling exponent in the late-time
regime starting at tTc ≃ 300 are in the range 4.1 ≲ ζ ≲ 4.3, see Fig. 12.3a. As time
progresses, the lower momentum cutoff of the scaling regime decreases toward the
infrared, as the vortex gas becomes more dilute.

The time tTc = 400 for the right panel in Fig. 12.3a has been chosen to illustrate
the following point. As suggested by the data shown in the two panels in Fig. 12.3a
(and backed up by further analysis of the numerical data), the system is slowest in
tTc to enter a universal scaling regime for the occupation number spectrum in the
case T/Tc = 0.90, i. e. the largest temperature we have investigated. Whereas for
all other temperatures the scaling exponents relax to smaller values in the course of
the evolution from tTc = 300 to tTc = 400, the scaling exponent for T/Tc = 0.90
stays at 4.3. This extends our observation in the previous section 12.1 that the
characteristic length scales l = l=, l̸= of the vortex distribution start to obey a
universal scaling law l ∼ t−0.5 at earlier times tTc for lower temperatures T/Tc. In
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Figure 12.3: Occupation number spectra as functions of the radial momentum during
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choice of T/Tc is color-coded. The spectra for all choices of T/Tc exhibit
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upper panel.
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12 Dependence on Temperature and Chemical Potential

the further evolution, the scaling exponents for all temperatures eventually relax to
the range 4.1 ≲ ζ ≲ 4.2 and remain in that range up to the final times we study in our
simulations, see Table 12.1. Thus, apparently effects of the vortex interactions are
relevant up to the final times for all temperatures, preventing a complete relaxation
to the single-vortex scaling n(k) ∼ k−4, cf. our discussion in Sec. 11.4.

Turning to Fig. 12.3b, it is very interesting to note that the spectra for T/Tc =
0.45, 0.54, 0.68 at equal scaled times tTc are roughly given by a common function after
scaling both the spectra and the momenta with appropriate powers of the critical
temperature Tc to render them dimensionless. As these spectra characterize non-
equilibrium systems coupled to thermal baths of different temperatures, this might
be related to non-equilibrium scaling behavior involving rescalings of momenta, time,
and temperature (see e. g. [295, 308–310]). However, the spectrum for T/Tc = 0.90,
closest to the equilibrium critical point for all temperatures investigated, clearly
deviates from the common curve of the scaled spectra for T/Tc = 0.45, 0.54, 0.68.
One reason for this might be that the initial vortex density ρ/T 2

c for T/Tc = 0.90
deviates rather strongly from the initial densities ρ/T 2

c for T/Tc = 0.45, 0.54, 0.68.
Also the fact that the distance of the temperature to the critical temperature is
smaller than for the other values of T/Tc could play a role. With our limited number
of values of T/Tc, we cannot clarify these issues further here, so they remain a
challenge for further study.

In summary, in this chapter we have found that a universal regime characterized by
common scaling behavior of observables with respect to space (momentum) and time
is entered at tTc ≃ 300 across a large range of temperatures T/Tc.au While the onset
time of the universal regime might still depend somewhat on details of the initial
conditions (here we have studied the dense distribution A III of randomly positioned
vortices and anti-vortices), for the long-time regime we can robustly conclude that
the system is attracted to the same non-thermal fixed point with the same scaling
exponents in space (momentum) and time across different values of the temperature
ratio T/Tc of the heat bath.

auThe dimensionless time tTc ≃ 300 becomes t/zh ≃ 855 for T/Tc = 0.68 (recall that our units are
specified by zh = 1). This is to be compared with the time t/zh ≃ 600 that we have found in
Secs. 11.3 and 11.4 for the onset of the universal regime in both the vortex-distribution-related
observables and the spectra. The difference is due to the fact that for T/Tc = 0.90 the system
takes longer in tTc to reach the universal regime.
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13 Summary

In the second part of this thesis, we have studied the far-from-equilibrium dynamics
of a holographic superfluid at finite temperature and chemical potential. In the holo-
graphic framework, the classical solution of an Einstein–Maxwell–scalar system in
3+1 dimensions is dual to the quantum dynamics of a (2+1)-dimensional superfluid.
We have performed a numerical study of the time evolution of the holographic su-
perfluid in its superfluid phase starting from a variety of far-from-equilibrium initial
conditions corresponding to quenches of the system. In particular, we have imprinted
various kinds of large ensembles of topological defects, i. e. quantized vortices and
anti-vortices, in the superfluid. We have employed an approximation (‘probe ap-
proximation’) which entails an effective picture in which a superfluid ‘component’
dynamically evolves on top of and is coupled to a static heat bath. The time evolu-
tion of the superfluid can be interpreted in terms of an effective description in which
vortices and anti-vortices interact via sound waves. When vortex–anti-vortex pairs
annihilate energy is quickly dissipated into the heat bath. We have developed a very
fast numerical implementation of the equations of motion that allows to evolve the
non-equilibrium states for longer times than studied before in the literature, giving
access to a new regime of the system’s evolution. We have studied the general prop-
erties of the non-equilibrium dynamics for the choice T/Tc = 0.68 for the ratio of the
heat bath’s temperature and the phase transition temperature, using qualitatively
different classes of initial conditions (Chap. 11). To assess the robustness of our
general conclusions and to estimate the temperature dependence of non-universal
coefficients related to the vortex dynamics, we have discussed further simulations
(Chap. 12) that were performed for three additional choices of T/Tc.

Let us first summarize our general findings obtained in the case T/Tc = 0.68. At
early times, the evolution of the system strongly depends on the initial conditions,
i. e. on the distribution and density of vortices and anti-vortices. We find that the
system exhibits a new non-equilibrium universality regime in the late-time stages of
the evolution. Starting from any of our initial conditions, that regime is entered at
times t ≳ 600 in units specified by zh = 1. This universal regime is characterized
by a dilute ‘gas’ of vortex defects. The system remains in the universal regime until
the final times tf = 4000 we study in our simulations for T/Tc = 0.68. In order to
obtain more insight into the dynamics of the universal regime, we have analyzed the
time evolution of characteristic length scales of the ensemble of topological defects,
and have studied spatial correlations of microscopic excitations via the occupation
number spectrum. We have observed scaling laws in these observables in the univer-
sal regime of the system’s evolution and have determined the corresponding scaling
exponents. The power-law behavior of the occupation number spectrum can be re-
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lated to turbulence. During the universal stage, the occupation number spectrum
scales as n(k, t) ∼ k−ζ in an infrared-to-intermediate-momenta inertial range with
scaling exponent 4.1 ≲ ζ ≲ 4.3. This value is close to the scaling n(k, t) ∼ k−4

observed in classical statistical simulations of two-dimensional Bose gases [258, 259]
where it was shown to be related to a dilute random distribution of vortices and
anti-vortices and, in turn, to so-called strong wave turbulence [256].

We have made the interesting observation that the evolution of the system exhibits
critical slowing-down during the universal regime. This is a natural feature of non-
equilibrium dynamics in the vicinity of non-thermal fixed points. Moreover, we have
demonstrated that the system exhibits the same long-time dynamics in terms of
scaling laws with respect to momentum and time independently of details of the
initial conditions (and of the temperature of the heat bath). We have hence found
the first evidence for the presence of a non-thermal fixed point in the dynamics of
a holographic system. This is particularly interesting as the occurrence of a non-
thermal fixed point indicates that the dynamics of the corresponding non-equilibrium
state is universal and independent of the microscopic details of the system. The
same universal dynamics is then expected to occur in a variety of other quantum
systems, thus connecting very different fields of physics, see for example [311–313].
The observation of a non-thermal fixed point not only gives a new perspective on
the dynamics of the holographic superfluid. The gauge/gravity duality also adds
a new dimension to the understanding of non-thermal fixed points, as it translates
quantum dynamics in the boundary theory to classical dynamics in the bulk. Thus,
the duality might provide a new avenue for an analytic treatment of non-thermal
fixed points, as these are dual to stationary solutions of non-linear partial differential
but classical equations of motion.

At an intermediate stage (at about 200 ≲ t ≲ 400) during the evolution of our
system we observe a power-law energy spectrum which is consistent with Kolmogorov
5/3-scaling. Such behavior has been reported before in [233] for the same system.
However, we find Kolmogorov scaling only for part of the various initial conditions
we have chosen. Specifically, Kolmogorov scaling emerges when the evolution starts
from random distributions of vortex defects, while this is not the case when we choose
vortex lattices as initial configurations, the type of initial conditions used in [233].
At the intermediate times concerned here, the system is still affected by the initial
distribution of vortex defects, while soon afterwards it enters the universal regime
discussed above which exhibits a different scaling behavior. Kolmogorov scaling
thus seems to occur only in a transient way. But it appears that details of the initial
conditions can influence the system for a sufficiently long time to completely prohibit
the emergence of a transient Kolmogorov scaling. This may also depend on the way
in which statistical noise is implemented in the numerical simulation for particular
sets of quenches. Further study is needed to understand better the conditions for
the occurrence of Kolmogorov scaling.

Finally, we have studied the system with supplementary choices of the temper-
ature ratio T/Tc, both larger and smaller than T/Tc = 0.68. The data obtained
in these additional simulations corroborate our results regarding the presence and
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the details (particularly, scaling exponents) of the universal late-time regime. Both
the characteristic vortex-distribution-related length scales and the occupation num-
ber spectrum exhibit scaling with universal exponents in the late-time stage for
tTc ≳ 300 for all choices of T/Tc investigated here. We have estimated from our
data for different T/Tc the values of coefficients appearing in the vortex density and
characteristic vortex distance scales during the universal stage. These coefficients
can be related to the vortex decay rate and the diffusive motion of vortices, and
generally increase with temperature, which indicates a larger ‘mobility’ of vortices
at higher temperatures in the superfluid phase. The occupation number spectra for
the lower three of our choices of T/Tc appear to be remarkably weakly dependent
on T/Tc when the time, the momentum, and the spectra themselves are made di-
mensionless by scaling with appropriate powers of Tc. However, the spectrum for
our largest choice T/Tc = 0.90 deviates strongly from the aforementioned spectra.
This may be partly due to differences in the details of the initial conditions, but may
also indicate a potential change of behavior close to Tc. Further study is needed to
clarify these issues.

Besides the demand for further simulations at different values of T/Tc and with
a still larger variety of initial conditions to corroborate or further refine our results,
this last point also clearly highlights an important direction for future study of the
non-equilibrium dynamics of the holographic superfluid, namely the exploration of
the physics of the system beyond the probe limit that we have used in this work
and that has so far been used in all studies of the holographic superfluid’s non-
equilibrium dynamics. Lifting the probe approximation requires to solve the full
dynamics encoded in the action (10.1), in particular including a dynamical metric.
While this is numerically demanding, it will potentially also be very rewarding as
holographic methods provide an ab initio description of certain strongly coupled
quantum many-body systems. Moreover (see also the discussion in Ref. [233]), the
particular holographic-superfluid model is minimal in the sense that it makes no
assumptions about the interaction of the normal and superfluid components of the
system, and, in fact, goes beyond an effective description relying on a two-component
decomposition. In particular, solving the full dynamics of the model, one would ex-
pect modifications in the behavior for smaller temperatures T/Tc, i. e. ‘deeper’ in the
superfluid phase, where the backreaction of the matter fields onto the metric becomes
increasingly important. Our efficient numerical implementation of the probe-limit
holographic-superfluid dynamics certainly constitutes a good starting point for this
challenging task.
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14 Conclusion and Outlook

In this thesis, we have applied a bottom-up holographic approach to two strongly
coupled physical systems. Since holographic methods yield a new perspective on
the physical systems they are applied to, qualitatively new insights can potentially
be gained. Moreover, even with the fact that in bottom-up holography one loses
knowledge about the boundary theory to some extent, by systematically studying
various holographic models for a given system, universal features might be discovered
that apply to the physics of interest. The prime example is the KSS bound [30] on
the ratio η/s of the shear viscosity and the entropy density that seems to be obeyed
by all fluids in Nature.

In two main parts, we have considered a hot and a cold strongly coupled quan-
tum fluid. More precisely, with the strongly coupled quark–gluon plasma explored
in current and future heavy-ion collision experiments in mind, in Part I we have
investigated heavy quarks immersed in strongly coupled plasmas with a chemical
potential. By studying a large class of non-conformal holographic models our aim
has been to find strong-coupling universal behavior. In Part II, we have investigated
the real-time non-equilibrium dynamics of a strongly coupled superfluid in two spa-
tial dimensions. Using fast numerical simulations starting from various quench-like
initial conditions and exploring different temperatures in the superfluid phase, we
have in particular studied non-equilibrium universality in the late-time regime of
the system’s evolution and its relation to the dynamics of topological vortex defects.
We have summarized our detailed findings at the end of the two parts, see Chaps. 8
and 13, respectively. Let us in the following discuss our main results and interesting
directions for further study.

Hot: Heavy Quarks in Strongly Coupled Plasmas

We have investigated in detail (Chap. 5) thermodynamic quantities associated with
heavy QQ̄ pairs and single quarks, i. e., the free energy, entropy, and internal energy.
For QQ̄ pairs, we have in addition studied a quantity that can be interpreted as a
binding energy. We have clarified the important distinctions of the free energy
and the binding energy, and advocated a general renormalization procedure for the
extremal Nambu–Goto action of a bulk string representing a heavy QQ̄ pair that
can be used in any asymptotically AdS spacetime to compute the QQ̄ free energy.
An analogous procedure can be used to obtain the single-quark free energy. The full
implications had not been discussed in the literature before. The renormalization
procedure ensures that the QQ̄ free energy, as well as the associated internal energy,
become independent of the temperature, chemical potential, and a possible non-
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conformal deformation scale for small QQ̄ separation L, as expected on physical
grounds. In fact, both the free energy and the internal energy in all our non-
conformal deformations of N = 4 SYM approach the vacuum QQ̄ potential of the
latter theory, which is analytically known [105], for small L. In contrast, the binding
energy manifestly depends on temperature, chemical potential, and a possible non-
conformal deformation scale for small L which precludes its interpretation as an
effective interaction potential. Comparing the free energy and the internal energy in
our non-conformal models with their counterparts in N = 4 SYM, we have made the
interesting observation that both the free energy and the internal energy generally
increase above their values in N = 4 SYM upon introduction of non-conformality,
except for one of our non-conformal models where even for the largest possible
deformations both the free and the internal energy show almost no deviation from
N = 4 SYM. Thus, the QQ̄ free energy and internal energy are in a large class of
non-conformal models for strongly coupled plasma approximately bound from below
by their N = 4 SYM counterparts. As these two energies are in principle candidates
for model potentials for the interaction of heavy quarks this result should have
important implications for QGP phenomenology.

We have shown that the behavior of the free energy qualitatively agrees with lattice
QCD data [195, 226] in N = 4 SYM and all our non-conformal models, both with
respect to variations of the temperature and of the chemical potential, at least for
small values of the latter. In contrast to other strong-coupling methods like lattice
QCD, in bottom-up holography the introduction of a chemical potential µ does
not introduce additional technical difficulties. While there are more complicated
ways of introducing a chemical potential in top-down holographic approaches (see
e. g. [192, 314]), we have shown in Chap. 6 that the chemical potential we have
implemented in our bottom-up models is in fact sufficient to capture essential aspects
of the baryon chemical potential in QCD. This result has been achieved by comparing
the leading non-trivial coefficient in the small-µ expansion of the heavy quark–anti-
quark (QQ̄) free energy in lattice QCD and our holographic models. This coefficient
was found to be very robust with respect to the deformation in all our non-conformal
models, lending further support to the relevance of ‘bottom-up’ holographic chemical
potentials to QGP physics.

Finally, we have studied (Chap. 7) the running coupling αQQ̄(L) derived from
the QQ̄ free energy. This quantity elucidates the interplay of the non-conformal
deformation, which tends to increase αQQ̄, and the screening effects due to the
thermal medium, which decrease αQQ̄. In general, these effects combine and lead
to a maximum in the running coupling in non-conformal models as is also found
in lattice simulations (see e. g. [196]). Moving beyond the regime of applicability
of lattice QCD, we have studied αQQ̄(L) in the whole (µ, T )-plane. All previous
holographic studies [113, 126] have worked at vanishing chemical potential. While
one of our models, in accordance with our findings for other observables, is very
robust and deviates only little from N = 4 SYM which as a conformal theory does
not exhibit a maximum in αQQ̄, in our other non-conformal models a clear maximum
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is found for all deformations and also at non-zero chemical potential. Increasing µ
to quite large values µ/T ≳ 10 the maximum ‘melts’ away showing a clear screening
effect due to the increased net density associated with µ. We have found that
on a range that extends to µ/T ≳ 20 and presumably encompasses the range of
phenomenological interest, the µ-dependence of the length scale Lmax associated
with the maximum of αQQ̄ is parametrically weaker than the dependence on T . The
overall picture that emerges from this observation and the behavior of the other
observables studied in this thesis in various non-conformal holographic models for
strongly coupled plasmas is that the impact of the chemical potential on the QQ̄
interaction is generally weaker than that of the temperature.

Our findings show that the bottom-up holographic modeling of strongly coupled
deconfined gauge theory plasma akin to the QGP is a very promising approach. In
particular, the inclusion of a chemical potential, which is crucial in light of ongo-
ing and future heavy-ion experiments, is technically simple and yields encouraging
results. At vanishing chemical potential, where one does not have to deal with the
bulk gauge field, more complicated non-conformal bottom-up deformations of N = 4
SYM than those discussed here have been constructed to approximate QCD behav-
ior. Examples include the 2-parameter model of [160] (see e. g. [113] for applications
with encouraging results) and so-called ‘improved holographic QCD’ [178, 179]. A
very interesting extension of our work would be to construct refined models at non-
zero chemical potential along the lines of the cited works. Moreover, holographic
methods have been devised [315, 316] to study anisotropic strongly coupled plasma
such as the real-world QGP produced in heavy-ion collisions. Based on these meth-
ods, a non-conformal model for an anisotropic strongly coupled plasma has already
been constructed [214]. It would be very interesting to include a chemical potential
into that model. Last but not least, it would also be very interesting to use ad-
vanced holographic numerical methods such as those that we employed in Part II
to investigate plasmas closer to the real experimental situation where the quark–
gluon plasma is not static but rather expanding rapidly and anisotropically. This
research direction has already attracted much attention recently (see e. g. [317] and
references cited therein). However, so far these studies employ N = 4 SYM (and
work at vanishing chemical potential). It certainly is important to eventually include
non-conformal deformations such as those that we have studied here.

Cold: Non-Equilibrium Dynamics in a Holographic Superfluid

We have studied the real-time dynamics of the standard holographic superfluid
model [249, 250, 272] in two spatial dimensions with a special emphasis on uni-
versal behavior in the non-equilibrium long-time evolution of the system. To this
end, on the basis of our fast numerical implementation of the equations of motion
in the probe limit we have studied the system on larger grids and for longer times
than previously reported in the literature. We started from various initial conditions
characterized by a fixed temperature T/Tc < 1 of the background heat bath and
ensembles of vortex defects. To investigate the general properties of the dynamics
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we have fixed a particular temperature and studied qualitatively different classes
of initial conditions, averaging statistical observables over ten runs for each type of
initial conditions (Chap. 11). Having found in these simulations the presence of a
universal late-time regime in the system’s evolution, our results regarding its prop-
erties have been corroborated by additional simulations at three further choices of
T/Tc < 1 (Chap. 12).

For all temperatures investigated, for dimensionless times tTc ≳ 300 the system
is in a universal regime irrespective of the details of the initial conditions. This
universal regime is characterized by a dilute gas of vortices. Moreover, in this regime
we observe power-law behavior in time of characteristic observables describing the
vortex distribution, as well as power-law behavior in an inertial range of momenta of
the occupation number spectrum of microscopic excitations of the superfluid order
parameter. We have determined the universal scaling exponents. Specifically, the
occupation number spectrum is found to obey scaling n(k, t) ∼ k−ζ in an infrared-
to-intermediate-momenta inertial range with scaling exponent 4.1 ≲ ζ ≲ 4.3, while
characteristic length scales l of the vortex distributions scale as l ∼ t0.5. This
indicates a ‘critical slowing down’ of the dynamics, l̇/l ∼ t−1. Such behavior in
association with scaling in momentum space and time is typical for the approach to
a non-thermal fixed point. We have shown that the system is in fact attracted, in a
reduced phase space, by the point of maximal phase coherence and maximal vortex–
anti-vortex separation, as previously observed in the context of ultracold Bose gases
in [258, 259, 281].

Our findings constitute the first evidence for the presence of a non-thermal fixed
point in the dynamics of a holographic system. Moreover, due to the new perspective
offered by the holographic approach, new insights into non-thermal fixed points
in certain strongly correlated quantum many-body systems may be gained. Non-
thermal fixed points in such systems should be related to stationary points of the
classical dynamical equations in the dual bulk theory, which might provide a new
avenue for an analytic treatment of non-thermal fixed points.

There are many open questions to be addressed in order to obtain a full under-
standing of the holographic superfluid. An interesting point for further investigation
concerns the coupling strength of the holographic superfluid. In general, the holo-
graphic duality maps a weakly coupled classical gravity system to a strongly coupled
quantum system. It would be useful to investigate what exactly that means in re-
lation to other descriptions of superfluids which have the coupling as an explicit
parameter. A detailed comparison of the behavior of, for instance, typical length
or time scales in the holographic superfluid and in semi-classical (Gross–Pitaevskii)
descriptions of superfluidity can give insight into this problem. Furthermore, to
complete the picture of the non-equilibrium dynamics of the holographic superfluid
it will eventually be necessary to lift the probe approximation and study the full
dynamics of the bulk system, which means including a dynamical metric. In partic-
ular, then, there would no longer be a static ‘heat bath’, and one would be able to
study a fully non-equilibrium superfluid, with no artificial distinction of normal and
superfluid components. As holography allows for an ab initio description of certain
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strongly coupled quantum many-body systems, this would indeed be very interest-
ing. Our fast numerical implementation of the system’s dynamics in the probe ap-
proximation provides a solid foundation for this endeavor. Finally, a very important
question is the relevance of a holographic description to experiments. Potentially
related real-world systems in two spatial dimensions that exhibit superfluidity and
vortex excitations include semiconductor-based exciton–polariton condensates (see
e. g. [243–246]) as well as oblate, quasi-2D Bose–Einstein condensates (see e. g. [232]),
and it will be very interesting to see what insights into the physics of these systems
holographic methods can yield.
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A Conventions and Identities Used in
Gravity

In this appendix, we give the definitions that we use in our calculations involving
general relativity, and collect some useful identities.

In any dimension considered we use metric signature (− + · · ·+). We employ
the (+ + +) sign conventions (g sign, Riemann sign, Einstein sign) for gravity as
classified and used by Misner, Thorne, and Wheeler [37]. We generically, unless
otherwise noted, denote by D the dimension of the AdS-like bulk spacetime, and
by d = D − 1 the dimension of the boundary theory. We use capital Latin indices
for the D bulk coordinates xM = (t,x, z), Greek indices for the d boundary theory
coordinates xµ = (t,x), and lower-case Latin indices for the d− 1 spatial boundary
coordinates xi = (x).

Denoting the D-dimensional bulk metric by gMN , the Christoffel symbols ΓL
MN ,

the Riemann tensor RK
LMN , the Ricci tensor RMN , and the Ricci scalar R are

given by

ΓL
MN = 1

2g
LA (∂MgAN + ∂NgMA − ∂AgMN ) , (A.1)

RK
LMN = ∂M ΓK

LN − ∂N ΓK
LM + ΓA

LN ΓK
AM − ΓA

LM ΓK
AN , (A.2)

RMN = RA
MAN , (A.3)

R = gMNRMN . (A.4)

In Part II we deal with the equations of motion of an Abelian Higgs model on
a curved background, see Eqs. (10.8)–(10.10). The left-hand sides of Eqs. (10.8)
and (10.9) can be simplified as follows by using standard identities from general
relativity (see e. g. [159]). For the field-strength tensor FMN we use the fact that it
is antisymmetric, which implies

∇MFMN = 1√
−g

∂M (
√
−gFMN ) ,

where g is the determinant of the metric gMN . For the scalar field Φ we first note
that DM Φ, for the metric- and gauge-covariant derivative DM = gMN (∇N − iAN ),
is a vector. The covariant divergence of a vector V M can be expressed as

DMV M = 1√
−g

∂M

(√
−gV M

)
, (A.5)

and since Φ is a scalar we have

(∇M − iAM ) Φ = (∂M − iAM ) Φ . (A.6)
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Using these two equations we obtain

0 =
(
−D2 +m2

)
Φ = −(∇M − iAM )DM Φ +m2Φ

= − 1√
−g

(∂M − iAM )
√
−gDM Φ +m2Φ

= − 1√
−g

(∂M − iAM )
√
−ggMN (∂N − iAN )Φ +m2Φ

= − 1√
−g

∂M

(√
−ggMN∂N Φ

)
+ i√
−g

∂M

(√
−ggMNAN Φ

)
+ igMNAM (∂N Φ− iAN Φ) +m2Φ .

174



B Explicit Form of the 1-Parameter
Models

In this appendix, we give the explicit expressions for the 1-parameter models dis-
cussed in Sec. 4.1.3. These expressions have been first computed at vanishing chem-
ical potential in [113] and at non-zero chemical potential in [45]. In our presentation
in this appendix we closely follow the latter reference. The thermodynamics of the
1-parameter models is discussed in Sec. 4.1.4.

B.1 The 1-Parameter Model with Non-Minimal Gauge
Kinetic Function

We first deal with the model that has the gauge kinetic function of DeWolfe et
al.[158] in the action (4.1), i. e.

fDWGR(ϕ) =
cosh

(
12
5

)
cosh

(
6
5(ϕ− 2)

) . (B.1)

Recall from Eqs. (4.40) and (4.39) that the ansätze for the warp factor A and the
scalar ϕ are

A(z) = log
(
LAdS
z

)
, (B.2)

ϕ(z) =
√

3
2κz

2 . (B.3)

Using Mathematica we solve the equation of motion (4.34) with the bound-
ary condition (4.12) for B, and the equation of motion (4.36) with the boundary
conditions (4.41) and (4.42) for Φ. We find the following closed-form expressions,

B(z) = log
(
LAdS
z

)
− 1

4κ
2z4 , (B.4)

Φ(z) = LAdSµ
e24/5E+

(
κz2)− E−

(
κz2)− (e24/5E+

(
κz2

h
)
− E−

(
κz2

h
))

S
(
κz2

h
) , (B.5)
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where we have defined the functions

E±(x) = erf
(

3
√

6
5 ± x

2

)
, (B.6)

S
(
κz2

h

)
=
(
e24/5 − 1

)
erf
(

3
√

6
5

)
−
(

e24/5E+
(
κz2

h

)
− E−

(
κz2

h

))
. (B.7)

For later use, let us also define

Ẽ±(x) = erf
(

3
√

3
5 ± x√

2

)
, (B.8)

S̃
(
κz2

h

)
=
(
e24/5 − 1

)
erf
(

3
√

3
5

)
−
(
e24/5Ẽ+

(
κz2

h

)
− Ẽ−

(
κz2

h

))
. (B.9)

The error function erf used here is defined by

erf(x) = 2√
π

∫ x

0
dt e−t2

. (B.10)

Next, from (4.35) we find the horizon function,

h(z) = e−κ2z4/4

eκ2z4
h/4 − 1

S−2
(
κz2

h

)S2
(
κz2

h

) (
eκ2z4

h/4 − eκ2z4/4
)

+ µ2

κ

α (eκ2z4
h/4 − eκ2z4/4

)

+ β

[
eκ2z4/4

(
e24/5Ẽ+

(
κz2

)
− Ẽ−

(
κz2

))

−
√

2e27/25
(

e24/5E+
(
κz2

)
− E−

(
κz2

))](
eκ2z4

h/4 − 1
)

+ β

[
√

2e27/25
(

e24/5E+
(
κz2

h

)
− E−

(
κz2

h

))

− eκ2z4
h/4
(

e24/5Ẽ+
(
κz2

h

)
− Ẽ−

(
κz2

h

))](
eκ2z4/4 − 1

)
 ,

(B.11)

with the functions S, E±, and Ẽ± as defined in Eqs. (B.7), (B.6), and (B.8), respec-
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tively. We have introduced the constants

α =
√

2
π

e−81/25
(
e48/5 − 1

)√2e27/25 erf
(

3
√

6
5

)
− erf

(
3
√

3
5

)
≈ 1452.9 , (B.12)

β =
√

2
π

e−81/25
(
1 + e24/5

)
≈ 3.83 . (B.13)

Finally, the potential V (ϕ) can be computed from Eq. (4.38),

V (ϕ) = − 6
L2

AdS
eϕ2/3

h(ϕ)
(

2− ϕ2

3

)
− ϕdh(ϕ)

dϕ

+ µ2

κ
νf(ϕ)ϕ3

e−ϕ2/3e−12ϕ/5
(
e24/5 + e12ϕ/5

)2

S2(ϕh)

 .
(B.14)

Here, we have re-expressed all z-dependence in the functions h and S, see Eqs. (B.11)
and (B.7), respectively, in terms of the scalar ϕ using the one-to-one relation (B.3).
To clarify, we have h(ϕ) = h(z) only for ϕ =

√
3/2κz2, and analogously for S.

Further, we denote by ϕh the value of ϕ at the horizon and we have defined the
constant

ν = 2
9π

√
2
3 e−108/25 ≈ 7.68× 10−4 . (B.15)

The expression just reported for A, B, h, ϕ, Φ, and V define the Einstein-frame
model, i. e., we have not treated the scalar as the dilaton; see the discussion in
Sec. 4.1.3. The string-frame model is obtained by transforming the metric according
to Eq. (4.48). Effectively this just results in the changes

A(z)→ log
(
LAdS
z

)
+ 1

2κz
2 , B(z)→ log

(
LAdS
z

)
+ 1

2κz
2 − 1

4κ
2z4 . (B.16)

B.2 The 1-Parameter Model with Minimal Gauge Kinetic
Function

In this section, we deal with the model that has a trivial gauge kinetic function in
the action (4.1), i. e.

f(ϕ) = 1 . (B.17)

The warp factor A and the scalar ϕ are chosen as before, see Eqs. (B.2) and (B.3),
respectively.
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While the result for B is unchanged from the model discussed above, due to the
trivial gauge kinetic function the solutions for Φ and h get considerably simpler,

B(z) = log
(
LAdS
z

)
− 1

4κ
2z4 , (B.18)

Φ(z) = µLAdS

1−
erf
(

κz2

2

)
erf
(

κz2
h

2

)
 , (B.19)

h(z) = e−κ2z4/4

eκ2z4
h/4 − 1

erf−2
(
κz2

h
2

)
erf2

(
κz2

h
2

)(
eκ2z4

h/4 − eκ2z4/4
)

+ µ2

κ

√
2
π


eκ2z4/4 erf

(
κz2
√

2

)
−
√

2 erf
(
κz2

2

)(eκ2z4
h/4 − 1

)

+

√2 erf
(
κz2

h√
2

)
− eκ2z4

h/4 erf
(
κz2

h√
2

)(eκ2z4/4 − 1
)

. (B.20)

The error function erf used here has been defined in Eq. (B.10). The scalar potential
V (ϕ) is

V (ϕ) = − 6
L2

AdS
eϕ2/3

h(ϕ)
(

2− ϕ2

3

)
− ϕdh(ϕ)

dϕ + µ2

κ
υϕ3 e−ϕ2/3

erf2
(

ϕh√
6

)
 (B.21)

with the constant
υ = 2

9π

√
2
3 ≈ 0.058 . (B.22)

In the potential, we have re-expressed h in terms of ϕ, as discussed after Eq. (B.14).
Just as in the previous section, these solutions define the Einstein-frame model.

The transformation to the string-frame model is unaffected by the different choice
of the gauge kinetic function, so Eq. (B.16) still applies to the model discussed here.
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C Details on the Computation of the QQ̄
Entropy

In this appendix, we give details on the computation of the QQ̄ entropy SQQ̄ dis-
cussed in Sec. 5.4.

The basic thermodynamic formula is SQQ̄ = −∂FQQ̄/∂T where it is understood
that the interquark distance L is to be kept constant. An implementation of this
formula is not entirely straightforward. The issue that arises is that the free energy
FQQ̄, as well as the distance L, are only known as integrals in terms of the bulk
length scales zt and zh, see Eqs. (5.9) and (4.64), respectively. Therefore, while these
integrals can be readily computed numerically (or even analytically forN = 4 SYM),
the differentiation with respect to the temperature T while keeping the distance L
constant is more involved.

In the following we will make use of a notation well-known from thermodynamics,
where a vertical bar with a subscripted variable indicates that this variable is kept
constant. We will suppress any dependence on a possible deformation parameter.
If present in the model under consideration, the deformation parameter is always
assumed to be kept constant. For simplicity, we will furthermore work at vanishing
chemical potential.

Under the above assumptions, zh is in a one-to-one relation with T , so we can
straightforwardly obtain zh = zh(T ). On the other hand, L = L(zt, zh), which upon
inversion yields zt = zt(L, T ). Thus,

∂FQQ̄(zt, zh)
∂T

∣∣∣∣∣
L

=
∂FQQ̄

∂zh

∣∣∣∣∣
zt

∂zh
∂T

+
∂FQQ̄

∂zt

∣∣∣∣∣
zh

∂zt
∂T

∣∣∣∣
L
, (C.1)

where on ∂zh/∂T we may omit the specification of the variable that is to be kept
constant because zh is actually a function of T only. Next, we have to evaluate
∂zt/∂T with L kept constant. Using

0 != dL = ∂L

∂zt

∣∣∣∣
zh

dzt + ∂L

∂zh

∣∣∣∣
zt

dzh = ∂L

∂zt

∣∣∣∣
zh

dzt + ∂L

∂zh

∣∣∣∣
zt

∂zh
∂T

dT , (C.2)

we derive

∂zt
∂T

∣∣∣∣
L

= −
∂L
∂zh

∣∣∣
zt

∂L
∂zt

∣∣∣
zh

∂zh
∂T

. (C.3)
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Finally, we obtain

SQQ̄ = −
∂FQQ̄(zt, zh)

∂T

∣∣∣∣∣
L

= −

 ∂FQQ̄

∂zh

∣∣∣∣∣
zt

−
∂FQQ̄

∂zt

∣∣∣∣∣
zh

∂L
∂zh

∣∣∣
zt

∂L
∂zt

∣∣∣
zh

 ∂zh
∂T

, (C.4)

which can be directly implemented on the basis of the numerical routines (or analytic
expressions) for FQQ̄ = FQQ̄(zt, zh) and L = L(zt, zh).
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D Details on the Numerical
Implementation of the Holographic
Superfluid

In this appendix, we discuss technical details concerning the numerical algorithms
and techniques involved in the solution of the equations of motion of the holographic
superfluid studied in Part II, as well as in the analysis of observables in that model.
We closely follow the presentation in our publication [235].

D.1 Numerical Methods
The general equations of motion for the (2 + 1)-dimensional holographic superfluid
in the probe limit are given in Eqs. (10.8)–(10.10). They are defined on a (3 + 1)-
dimensional bulk spacetime with metric (10.6), described by the boundary-theory
coordinates t, x, y, and the compact holographic coordinate 0 ≤ z ≤ zh. Units are
specified by setting the horizon radius zh = 1.

For the z-parts of the equations of motion, we use a collocation method with
a basis of Chebyshev polynomials on a Gauß–Lobatto grid with 32 points in the
holographic direction (see e. g. [273]). After setting zh = 1, we switch to a new
coordinate z̃ ∈ [−1, 1] defined by

z = 1
2(z̃ + 1) . (D.1)

With respect to z̃, we work entirely in real space, implementing ∂z̃-differentiation
via matrix multiplication.

We treat the directions x and y as periodic. This enables us to use discrete
Fourier transforms to efficiently compute derivatives ∂x and ∂y. Our choice of the
grid constant a for the (x, y) grid depends on the choice of the temperature ratio
T/Tc, or equivalently, on the choice of the chemical potential µ. We choose, in the
aforementioned units, a = 6−1, 5−1, 3.5−1, and 1.5−1 for T/Tc = 0.45, 0.54, 0.68,
and 0.90 (µ = 9, 7.5, 6, and 4.5), respectively, cf. Table 12.1 and the discussion in
Chap. 12. All data shown in this thesis were produced on a 504 × 504 × 32 grid
(x, y, z-directions).

To compute the equilibrium configuration of the system we have to solve the
boundary-value problem defined by the dynamic equations (10.16)–(10.19) and the
boundary values given in Eqs. (10.14) and (10.15). We treat the non-linearity of
the equations by using the Newton–Kantorovich iteration procedure. Technically,
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we solve the resulting system of linear equations via an LU decomposition with full
pivoting, see e. g. [318].

To construct the initial conditions for the full equations of motion, we perturb the
homogeneous equilibrium solution by putting vortices on top of it at an initial time
t = ti < 0. For a vortex of winding number w, this is done by imprinting its winding
structure onto the bulk scalar field Φ, locally Φ(ti,x, z)→ Φ(ti,x, z) · eiwϕv for every
z-slice, where ϕv is a polar angle in the xy-plane, centered on the respective vortex.
The bulk configuration representing a single vortex carries the phase winding at
every z-slice [252]. This follows naturally from the fact that all z-slices contribute
to the dual field configuration, and is consistent with continuity of the phase of the
bulk scalar field. At the vortex positions xv the scalar field has to vanish to remain
well-defined after the phase winding is imprinted, so we set Φ(ti,xv, z) = 0 along
all z. At all other grid points we leave the absolute value of Φ at the equilibrium
value. Starting the simulation, the system very quickly builds up stationary density
profiles around the vortex cores. The duration of this build-up process depends on
the choice of T/Tc (or, equivalently, µ); the exact numbers are not important for
our purposes as we are particularly interested in the long-time behavior. To give an
example, for T/Tc = 0.68 (µ = 6) stationary density profiles around the vortex cores
are built up approximately within 5 or 10 units of time for quench classes A and B
(see Table 11.1), respectively. To induce variations in the decay pattern of the vortex
lattices (class B), we additionally perturb the phase with noise ei Re(ζ(x)) at time t = 0
(and only there) when the vortex cores are fully formed. ζ(x) is obtained as the
inverse discrete Fourier transform of ζ(k). This is in turn constructed by populating
the Fourier modes in a disk of radius N/100 about the origin in momentum space
with O(1) complex Gaußian noise, where N is the number of grid points along each
of the directions x, y. All Fourier modes outside this disk are set to zero. We thus
excite the system to a non-equilibrium state, as discussed in Sec. 11.1. Solving the
full set of equations of motion, we follow the subsequent evolution of the superfluid
order parameter ⟨ψ⟩. At every time step, we extract it from the bulk field Φ using
(10.13).

For the dynamic evolution described by the full equations of motion we solve the
boundary value problems in Eqs. (10.25), (10.26), and (10.27) for ∇+Ax, ∇+Ay,
and ∇+Φ, undo the shifts (10.23) to get the time derivatives, and use a fourth-
order/fifth-order Runge–Kutta–Fehlberg algorithm with adaptive timestep size to
propagate the fields one timestep forward. We allow the timestep size τ to vary in
the range 0.001 ≤ τ ≤ 0.1 in our aforementioned units. We use (10.24) to update
At in every timestep.

During the simulations, in order to investigate the spatial characteristics of the
vortex ensembles, we determine the positions of all vortices and anti-vortices in the
superfluid order parameter ⟨ψ(x, t)⟩ at every unit timestep. To this end, we iterate
over the whole (x, y) grid, measuring the integrated phase of the superfluid order
parameter around each elementary plaquette.

182



D.2 Performance

D.2 Performance

We implement the algorithm in C++, using the fftw3 library [319] for Fourier trans-
formations and the Eigen library [320] for high-performance linear algebra. We
parallelize the numerical code for multicore architectures with OpenMP [321].

Propagating a 352 × 352 grid with 32 points in the holographic direction up to
time 600 utilizing 4 threads on a regular desktop computer with an Intel i7 processor
takes approximately 8 hours.

Running on the Intel Xeon server architecture using 16 threads, a run up to time
4000 on a 504 × 504 grid with 32 points in the holographic direction takes around
120 hours.

D.3 Fitting of Scaling Exponents of Occupation Spectra

Scaling laws of occupation number spectra take the simple form n(k) ∼ k−ζ with
scaling exponent ζ. In the case of the occupation number spectra discussed in
Sec. 11.4, we fit the power law exponents. We employ the Levenburg–Marquardt
least-squares fitting algorithm to determine these scaling exponents after choosing
a momentum range for the fit by eye.

There are two sources of uncertainty in this: the determination of the momentum
range and the uncertainty inherent in estimating the best fit parameters. The fitting
algorithm reports an uncertainty of typically 0.03 for the scaling exponents. Fixing
the momentum range introduces a larger source of uncertainty. To address this, we
vary the endpoints of the momentum range and thus determine a range of estimators
for the scaling exponent. As a result of that, we estimate the uncertainty in our
determination of scaling exponents of the occupation number spectra to be 0.1.
Therefore, we state results for fitted scaling exponents with one decimal digit.

The data on the time dependence of our observables is noisier than the data on
occupation number spectra such that using a fitting algorithm is not appropriate in
this case. The uncertainty in our determination of scaling exponents with respect
to time is difficult to assess.

D.4 Equilibrium Solutions in Poincaré Coordinates

For reference for the interested reader, here we give the explicit equations deter-
mining static solutions, homogeneous in x and y, of the equations of motion (10.8)–
(10.10) of the holographic superfluid, using the metric given in Eq. (10.3), i. e.,
employing Poincaré coordinates. These equations can also be found for instance in
[322]. In the dynamical simulations, Eddington–Finkelstein (EF) coordinates are
used; we give the transformation rule below.

For conciseness, here we immediately set the spatial components of the gauge field
to zero Ai = 0. With the boundary conditions we impose, see Sec. 10.2, the Ai are
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in fact found to vanish in solving the full system defined by Eqs. (10.16)–(10.19).
Moreover, we work in axial gauge Az = 0.

Introducing Φ̃ = Φ/z for the scalar, the equations for the remaining fields, the
gauge-field component At and Φ̃, are found to be

hA′′
t = 2Φ̃2At , (D.2)

h2Φ̃′′ − 3z2hΦ̃′ − zhΦ̃ = −A2
t Φ̃ , (D.3)

where the derivative with respect to z is denoted by a prime, h(z) is the horizon
function given in Eq. (10.4), and we have already set zh = 1 and m2 = −2. The
scalar field Φ̃ can be taken real. The boundary conditions relevant for equilibrium
solutions of the holographic superfluid are At(z = 0) = µ and At(z = zh = 1) = 0 for
the gauge field, and Φ̃(z = 0) = 0 plus the requirement of regularity at the horizon
for the scalar, cf. our discussion in Sec. 10.2. The boundary-value problem can
relatively easily be solved by an expansion of At and Φ̃ in Chebyshev polynomials
and a Newton–Kantorovich iteration to treat the non-linearity (see e. g. [273]), see
Appendix D.1 above.

To discuss the transformation of the solutions of Eqs. (D.2) and (D.3) to EF
coordinates we now explicitly use a subscript ‘P’ for the solutions of Eqs. (D.2) and
(D.3), i. e. (AP)M (recall that (AP)i = 0) and Φ̃P, and for the Poincaré coordinates
themselves, xM

P . We denote the EF coordinates and fields by xM , AM , and Φ̃, where
Φ̃ = Φ/z, as used in the full dynamical equations of motion discussed in Sec. 10.4.
The only coordinate that differs between Poincaré and EF coordinates is the time,
see the relation (10.7). We deduce the Jacobian

∂xM
P

∂xN
=


1 0 0 1

h(z)
0 1 0 0
0 0 1 0
0 0 0 1

 , (D.4)

and the transformation rules

AM = ∂xN
P

∂xM
(AP)N , (D.5)

Φ̃ = Φ̃P . (D.6)

After this transformation, the axial gauge (AP)z = 0 is lost, Az ̸= 0. It can be
re-imposed in EF coordinates by a gauge transformation generated by a function
χ(z), requiring one to integrate the differential equation

0 != Az + χ′ = (AP)t

h(z) + (AP)z + χ′ = (AP)t

h(z) + χ′ . (D.7)

The associated gauge transformation of the scalar, Φ̃ → Φ̃eiχ, finally leads to a
complex scalar in EF coordinates.
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