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V 

Zusammenfassung 

Natürliche Killer (NK) Zellen können Tumorzellen erkennen und zerstören und die Behandlung 

von Krebspatienten mit NK Zellen stellt eine mögliche Option der Krebstherapie dar. In diesem 

Zusammenhang wird die ex vivo Expansion genutzt, um große Mengen an aktivierten NK 

Zellen herzustellen, denn eine ausreichende Zahl dieser Effektorzellen ist essentiell für eine 

erfolgreiche NK Zell basierte adoptive Krebsimmuntherapie. Jedoch stellen die Entwicklung 

effizienter Protokolle für die NK Zell Expansion und der Transfer dieser Protokolle in klinisch 

anwendbare Methoden eine große Herausforderung dar. Daher war das Ziel meines Projekts die 

Entwicklung einer klinisch anwendbaren Methode, die große Mengen an hochfunktionellen NK 

Zellen hervorbringt. 

Zuerst wurde ein vollautomatisierter technischer Prozess entwickelt für die Aktivierung und 

Expansion von NK Zellen mit Interleukin(IL)-2 und bestrahlten Feederzellen mit klinischer 

Qualität (EBV-LCL). Im Vergleich zur manuellen Prozedur lieferte der automatisierte Prozess 

ähnliche NK Zellen in Bezug auf die Zellzahlen, das Profil von Oberflächenmarkern, die 

Genexpression und die in vitro Effektorfunktion. Durch die Expansion hatten die NK Zellen 

funktionelle Oberflächenmoleküle hochreguliert, wie z.B. TRAIL, FasL, NKG2D und DNAM-1, 

sie erhöhten die Produktion von Interferon (IFN)-γ und Tumornekrosefaktor (TNF)- α und 

wurden zytotoxischer gegenüber Tumorzelllinien. Weil die NK Zell Expansion bei dem 

verwendeten Protokoll auf eine Dauer von 2-4 Wochen beschränkt war, wurde als nächstes ein 

effektiveres Protokoll für die Langzeitexpansion entwickelt. Die manuelle NK Zell Expansion 

mit EBV-LCL und IL-2 induzierte im Mittel nach einer Woche eine 22-fache NK Zell 

Expansion, welche durch die Zugabe von IL-21 deutlich auf eine 55-fache NK Zell Expansion 

erhöht wurde. Außerdem ermöglichte die wiederholte Stimulation mit EBV-LCL und IL-2 und 

die Zugabe von IL-21 zu Beginn der Kultur eine anhaltende NK Zell Proliferation mit 1011-

facher NK Expansion nach sechs Wochen, was eine einmalig hohe Expansionsrate darstellt, die 

durch andere Methoden bisher nicht erreicht wird. Am wichtigsten jedoch war, dass der 

adoptive Transfer von NK Zellen, die mit dem optimierten Protokoll expandiert wurden, zur 

Inhibierung des Tumorwachstums in einem Melanom Xenotransplantat Mausmodell führte, 

wodurch die therapeutische Wirksamkeit der ex vivo generierten NK Zellen nachgewiesen 

wurde. Dieser therapeutische Effekt war deutlicher ausgeprägt als bei konventionell mit IL-2 

aktivierten NK Zellen und zeigt, dass die optimierte Methode für die NK Zellexpansion nicht 

nur die Quantität sondern auch die therapeutische Qualität der NK Zellen erhöht. 



 

 

VI Zusammenfassung 

Zusammenfassend ist das Resultat dieses Projekts ein vollautomatisierter Prozess zur ex vivo 

Produktion von NK Zellen und ein optimiertes Protokoll für die NK Zellexpansion mit 

beispielloser Effektivität. Die expandierten NK Zellen besitzen Eigenschaften für eine wirksame 

Krebsbekämpfung und sie zeigten therapeutische Wirksamkeit in einem präklinischen Melanom 

Xenotransplantat Mausmodell. Damit dient das Projekt klinischen Anforderungen und macht es 

möglich hohe Dosen an funktionellen NK Zellen zu generieren für den Einsatz in der 

Krebsimmuntherapie. 

 



 

 

VII 

Summary 

Natural killer (NK) cells can detect and kill tumor cells and infusion of NK cells to cancer 

patients may be a promising option to treat cancer. In this context, ex vivo expansion is used to 

produce large quantities of activated NK cells, because sufficient numbers of these effector cells 

are essential for successful NK cell based adoptive cancer immunotherapy. The development of 

efficient NK cell expansion protocols and the transfer of these protocols to clinically applicable 

methods represent a major challenge. To overcome this issue, the aim of my project was to 

develop a clinically applicable method that yields large numbers of highly functional NK cells. 

First, a fully automated technical process was developed to activate and expand NK cells with 

(interleukin) IL-2 and irradiated clinical-grade feeder cells (EBV-LCL). In comparison to the 

manual procedure, the automated process yielded similar NK cells in terms of cell numbers, 

surface marker profile, gene expression and in vitro effector functions. Upon expansion, NK 

cells up-regulated functional surface molecules, such as TRAIL, FasL, NKG2D and DNAM-1, 

they increased the production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α and they 

became more cytotoxic against tumor cell lines. Next, because in the used protocol NK cell 

expansion was restricted to a period of 2-4 weeks, a more efficient protocol for long-term 

expansion was developed. Manual NK cell expansion with EBV-LCL and IL-2 induced a 22–

fold mean NK cell expansion after one week that was significantly increased to 53–fold by 

addition of IL-21. Furthermore, repeated stimulation with irradiated EBV-LCL and IL-2 and 

addition of IL-21 at the initiation of the culture allowed sustained NK cell proliferation with 

1011–fold NK cell expansion after six weeks, which is an unprecedented high expansion rate not 

achieved by any other method so far. Most importantly, adoptive transfer of NK cells expanded 

with this optimized protocol led to significant inhibition of tumor growth in a melanoma 

xenograft mouse model, proofing the therapeutic efficacy of the ex vivo generated NK cells. 

This anti-tumor efficacy was superior over that from conventionally IL-2 activated NK cells, 

demonstrating that the improved NK cell expansion method enhanced not only the quantity but 

also the therapeutic quality of NK cells. 

In conclusion, the outcome of this project is a fully automated process for ex vivo production of 

NK cells and an optimized protocol for NK cell expansion with unparalleled efficacy. The 

expanded NK cells possess potent anti-tumor features and showed therapeutic efficacy in a 

preclinical melanoma xenograft model. Thereby, the project serves clinical needs and makes it 

possible to generate high cell doses of functional NK cells for the use in cancer immunotherapy. 
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1. Introduction and Background 

The herein described work deals with cells of the human immune system, so called natural killer 

(NK) cells, and their use in therapy of cancer. This introductory chapter starts with a brief 

description of cancer. Then, an overview of the immune system is given followed by 

background information about NK cells including their application in cancer therapy. 

1.1 Cancer 

1.1.1 A disease of the genome 

When abnormal body cells start to grow and divide uncontrolled, this can cause a multitude of 

different and severe diseases, which are defined by a single term: cancer. Cancer is a leading 

cause of death in the world. “There were 14.1 million new cancer cases, 8.2 million cancer 

deaths and 32.6 million people living with cancer (within 5 years of diagnosis) in 2012 

worldwide.”1 When Boveri, a German biologist who fundamentally coined the understanding of 

chromosomes and genetics, already proposed in 1914 that defects of the chromosomes lead to 

abnormal cell proliferation,2 he postulated an important underlying mechanism of cancer 

development, because today we know that “cancer is a disease of the genome”.3 Cancer can 

occur when specific mutations change the genome and give rise to cancer-causing genes, which 

can be subdivided in oncogenes and tumor-suppressor genes. Thus, mutagens that damage the 

genome such as ultraviolet light, certain viruses and chemicals like acryl amide increase the risk 

of cancer formation. However, most genome mutations are “passenger” mutations and don’t 

give rise to cancer-causing genes, while only a few “driver” mutations trigger cancerogenesis. 

Tumor suppressor genes, as the name says, keep tumor development under control, and loss of 

these genes can cause cancer. Whereas oncogenes are mutated versions of normal genes that 

favor cancerogenesis in their altered form. In general, cancer-causing genes modify cells in 

different ways during a multistep process, which starts from former normal cells and passes 

through pre-malignant stages until these cells finally become highly malignant tumor cells. 

Thereby, analogous to the Darwinian evolution, each modification results in an advantage for 

the cell to survive, such as increased cell growth for example.4 Outgrowth of a whole population 

of malignant cells then results in tumor formation and has consequences beyond the cellular 

level. Over time, more knowledge about cancer development allowed better understanding of 

cancer characteristics and this finally made it possible to develop new strategies to treat cancer, 

such as immunotherapy, which is explained later.  
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1.1.2 The hallmarks of cancer 

Cancer was introduced as the generic term for multiple diseases that arise from uncontrolled cell 

growth, but the nature of cancer is by far more complex and can be characterized by additional 

factors. Today eight major “hallmarks of cancer” plus two cancer “characteristics” are defined 

by Hanahan and Weinberg (Figure 1.1), including essential functional properties for cancer cell 

proliferation, survival and dissemination:4,5 

 

Figure 1.1 Scheme showing the hallmarks of cancer “that allow cancer cells to survive, proliferate, and 
disseminate; these functions are acquired in different tumor types via distinct mechanisms and at various 
times during the course of multistep tumorigenesis.” Modified from Hanahan and Weinberg (2011)5  
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 (1) Sustaining proliferative signaling is probably the most obvious cancer attribute. Cancer 

cells deregulate their cell cycle by producing growth factors themselves or by stimulating 

tumor-associated stroma cells for growth factor production.6 Furthermore, cancer cells up-

regulate receptors that are responsible for growth factor binding to reduce the threshold for 

growth factor signaling. Alternatively, a constitutive activation of the proliferation signaling is 

implemented by changing the structure of a growth factor receptor or by direct modification of a 

downstream pathway to maintain an activated proliferative signaling. An example for the latter 

would be the modification of the B-rapidly accelerated fibrosarcoma (B-Raf) protein that plays 

an important role for cell division and cell differentiation through the mercapturic acid pathway 

(MAP) and extracellular signal-regulated kinase (ERK) signaling pathway.7,8 

(2) Evading growth suppressors is another strategy to bypass the regular cell cycle control, 

allowing cancer cells to become unresponsive to signals that normally dampen the cell growth. 

The frequency of mutations of such tumor suppressor genes is very high among different 

cancers, as shown exemplary by the tumor protein (TP)53.9 

(3) Resisting cell death by evading the normal apoptosis machinery is an essential feature of 

cancer. The “programmed cell death” is controlled through a balance of pro- and anti-apoptotic 

regulators of the B cell lymphoma (Bcl)-2 family and the cell death is initiated in normal cells 

as a response to deoxyribonucleic acid (DNA) damage, energy stress, growth factor withdrawal 

or hypoxia.10 In many cancers, the death program is circumvented by over-expression of anti-

apoptotic Bcl-2 family members.11 

(4) Enabling replicative immortality is required for cancer cells to overcome the normally 

limited capacity for cell division. Normal cells reach a senescence state after a certain amount of 

repeated cell divisions and this is regulated on the chromosomal level. The ends of the 

chromosomes, named telomeres, consist of hexanucleotide repeats and become shorter after 

each cell division. After a certain number of cell divisions the telomeres are completely 

destructed and the chromosomal DNA forms end-to-end fusions thereby initiating cell 

senescence followed by cell death.12 However, certain cell types such as stem cells require an 

enhanced capacity for cell division that is achieved by longer telomeres and expression of 

telomerase, a specific enzyme capable of telomere synthesis and elongation.13 Increased 

telomerase expression of tumor cells is needed for cancer progression. 

(5) Inducing angiogenesis is required to ensure supply of nutrients, gas exchange and removal 

of metabolic end-products via the blood system. Angiogenesis is the spreading of new blood 

vessels and is controlled by angiogenic regulators, such as the pro-angiogenic vascular 
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endothelial growth (VEGF). In cancer, chronically activated angiogenesis is implemented for 

example by up-regulated VEGF expression directly by oncogenes or through hypoxia.14 

(6) Activating invasion and metastasis facilitates cancer cells to disseminate. Adhesion 

molecules such as E-cadherin maintain the cohesion between cells within a tissue structure. 

During cancer, inactivation of E-cadherin allows single tumor cells to leave the tissue formation, 

to migrate to another location within the body and to rebuild a distant tumor.15 Thereby, cancer 

cells make use of the epithelial-mesenchymal transition (EMT) process that is normally 

involved in the organ and tissue formation during development and tissue repair.16 

(7) Deregulating cellular energetic or reprogramming the energy metabolism is necessary for 

cancer cells to ensure the supply of “fuel”. The “Warburg effect” describes that cancer cells 

mainly produce energy through glycolysis even in the presence of oxygen, while normal cells 

mainly use oxidation of pyruvate in the mitochondria under aerobic conditions.17 Surprisingly, 

this type of “aerobic glycolysis” is even less efficient in production of adenosine triphosphate 

(ATP). Probably the changed metabolism is a consequence of hypoxia within tumors and is 

used to bypass the mitochondria regulated apoptosis machinery of the cell. Furthermore, 

glycolysis provides intermediates for those biosynthetic pathways that lead to nucleosides and 

amino acids that are urgently required to generate new cells.  

(8) Avoiding immune destruction is a protective strategy since the immune system normally 

detects and eliminates abnormal cells such as tumor cells. This topic is described in detail in 

chapter 1.2.3. 

(A) Genome instability and mutation are fundamental for cancer development and cancer cells 

often actively increase the rate of occurring mutations. This is achieved by oncogenes that either 

increase the sensitivity to mutagenic agents or directly lead to DNA damage or inactivate the 

machinery for DNA maintenance and repair.18–20 

(B) Tumor-promoting inflammation is a typical cancer associated condition characterized by 

infiltration of immune cells into the tumor tissue. These immune cells are actually supposed to 

protect the body and eradicate tumor cells, but instead, they generate a chronic inflammatory 

response that even enhances tumor cell growth and cancer progression. The mechanisms behind 

this misdirected immune attack are explained in chapter 1.2.3 after a short introduction about 

the immune system in the following section. 
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1.2 The immune system 

The immune response is defined as protection of the body against potentially harmful pathogens 

such as viruses or bacteria. This protective response is mediated by a variety of molecules and 

effector cells that together form the immune system. This chapter gives a brief introduction into 

the very complex field of immunology based on current textbook knowledge,21 and focuses on 

leukocytes, the white blood cells that build the cellular immunity. Leukocytes are derived from 

bone marrow hematopoietic stem cells that differentiate into myeloid and lymphoid progenitor 

cells and finally give rise to “innate” and “adaptive” immune cells. 

1.2.1 The innate immune system 

Cells of the innate immune system are called the first line of defense, since they play a major 

role during the first contact with pathogenic agents and they induce a fast immune response. 

The innate immune response relies on unspecific detection of general pathogen characteristics 

by means of a variety of immune cell receptors. The important class of Toll-like receptors 

(TLRs) for example recognizes a multitude of different parasites and leads to recruiting of 

immune cells, local control of pathogens and activation of adaptive immune cells. Innate 

immune cells are classified in granulocytes, monocytes, macrophages, dendritic cells (DCs) and 

NK cells. 

Granulocytes destroy pathogens by release of toxic proteins and enzymes. An important feature 

of neutrophil granulocytes, macrophages, monocytes and DCs is the incorporation and 

neutralization of pathogens within the cell, called phagocytosis. Upon phagocytosis, soluble 

factors such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α are released that 

trigger other immune responses and induce an inflammatory condition. In addition, upon 

phagocytosis macrophages and DCs process the pathogenic proteins to smaller peptides and 

bind these protein fragments to major histocompatibility complex (MHC) structures. Later, the 

cells can act as antigen presenting cells (APCs) by presentation of the MHC-peptide complex on 

the cell surface to activate cells from the adaptive immune system. NK cells can be seen as the 

prototype of lymphocytes among innate immune cells and their biology and function is 

described in chapter 1.3. 

1.2.2 The adaptive immune system 

In contrast to the innate immune system, the adaptive immune system reacts delayed but more 

specific against a certain pathogen. An educated pool of cells generates a cellular memory, 

which accelerates the response when a specific pathogen is encountered again at later time 
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points. Adaptive immune cells are lymphocytes that can be subdivided in B cells and T cells and 

they highly efficiently detect specific structural substances defined as antigens. Every B cell or 

T cell bears an unique and highly specific receptor for a specific antigen. This high diversity of 

B cell receptors (BCRs) and T cell receptors (TCRs) is achieved during the development of B 

cells and T cells by randomized re-combination of segments of the receptor DNA sequences.  

B cells get activated upon binding of the antigen to the BCR. The antigen gets internalized and 

is processed intracellular into smaller peptides that are finally presented on MHC class II on the 

B cell surface. Binding of certain T cells to the peptide-MHC II complex stimulates B cells to 

differentiate into memory B cells or into plasma cells. Plasma cells secrete antibodies, which are 

proteins that bind highly specifically to the encountered antigen. An antibody is also called 

immunoglobulin (Ig) and consists of a variable fragment for antigen-binding (Fab) and a 

constant fragment (Fc) that allows communication with other cells via Fc receptors. Fc receptor 

expressing immune cells can detect antibody coated cells, resulting in phagocytosis of the target 

cell or lysis of the target via antibody-dependent cellular cytotoxicity (ADCC). Furthermore, 

antibody-binding can directly lead to functional neutralization of the antigen, which is 

especially important in case the antigen is a toxin or a functional viral component. 

The TCR enables T cells to recognize small peptides that are bound to MHC molecules. MHC 

class I can be found on virtually every cell within the body and its function is to present peptide 

structures of intracellular proteins on the cell surface. Thereby foreign structures such as 

pathogen derived peptides can be detected by cytotoxic T cells expressing the cluster of 

differentiation (CD)8 co-receptor that bind to the specific peptide-MHC class I complex and 

directly kill the target cell. Thereby CD8 T cells induce cell contact-mediated apoptosis or 

release cytotoxic granules. In addition, cytokines secreted by CD8 T cells, such as IFN-γ, TNF-

α and lymphotoxin (LT)-α can contribute to target cell killing and stimulate other immune cells 

such as macrophages. Peptides presented on APCs are bound to MHC class II and can be 

recognized by T helper (Th) cells expressing the CD4 co-receptor or by regulatory T cells 

(Tregs). Naive Th cells differentiate into Th1 or Th2 cells after activation via antigen contact. 

Th1 cells are mainly involved in the activation of macrophages during infection and they 

interact with B cells to augment the production of antibodies. Th2 cells on the other hand 

activate naive B cells and carry an important function in the initiation of antibody production. 

Tregs are important for the regulation and attenuation of immune responses. 
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1.2.3 The role of immunology in cancer 

A rough idea existed for long time that the immune system could not only eliminate pathogens 

but also combat cancer. Then, in the sixties Burnet and Thomas could show that the adaptive 

immune system indeed protects against cancer and they coined the term cancer 

immunosurveillance.22,23 Today much more is known about the importance of the immune 

system in this context and the complex interplay between cancer and immune cells. The 

immune system prevents cancer by (1) protection against viruses and therefore virus induced 

cancers, (2) avoiding prolonged, cancer promoting inflammation by fast neutralization of 

pathogens that induce inflammation and (3) direct recognition and elimination of cancer cells.24 

However, cancer can also bypass or even utilize the immune system for cancer progression and 

the cancer immunoediting hypothesis describes the response of cancer cells to the immune 

system in three sequential phases: elimination, equilibrium, escape (Figure 1.2).24–30 

Elimination is the first phase of cancer immunoediting and was mentioned already as a 

protective mechanism of the immune system. Recognition and subsequent elimination of cancer 

cells is possible, because cancer cells either up-regulate ligands for activation of the innate 

immune system or they express “cancer rejection antigens” that stimulate the adaptive immune 

system. In addition, danger signals such as type I interferons are released by tumor cells during 

cancer development and trigger adaptive immune responses. The stress ligands MHC class I 

polypeptide-related sequence (MIC)A and MICB are exemplary cancer associated ligands that 

are detected by NK cells and certain T cell subsets. Specific cancer rejection antigens can be 

derived from non-mutated highly over-expressed cellular antigens or from proteins that T cells 

normally don’t have access to, because the expression is restricted to germ line cells or specific 

tissues. The human epidermal growth factor receptor (HER)-2, the melanoma-associated antigen 

(MAGE) and the cancer-testis antigen NY-ESO-1 represent these types of tumor antigens for 

instance. On the other hand, cancer antigens can be neoantigens, meaning antigens that are 

normally absent from the human genome. In addition to cancer associated virus antigens, 

neoantigens are mainly generated by modified proteins as a result of tumor specific DNA 

mutations. The somatic mutation prevalence and therefore frequency of neoantigens that are 

immunogenic is cancer type dependent with the highest incidence for melanoma, lung and 

colorectal cancer.31  
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Figure 1.2 The three phases of cancer immunoediting: Elimination, Equilibrium, Escape. Schematic 
illustration of the complex interplay between tumor and immune cells. Modified from Vesely et al.27 
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Equilibrium is the next phase in case some tumor cells survive the elimination phase for any 

reason. The tumor cell outgrowth is still controlled by the immune system, but complete 

elimination is not achieved. This stable condition can persist for long time without cancer 

progression. Experiments in mice showed that IL-12, IFN-γ and T cells are mainly responsible 

for holding up the equilibrium phase.32–34 

Escape occurs after tumor cells finally managed to circumvent the immune system and cancer 

progression is initiated. There are several reasons that can lead to tumor immune escape. 

Alterations of the tumor cells can cause the loss of cancer antigens or the tumor cells can 

acquire resistance to anti-apoptotic effector molecules. As a consequence of “natural selection”, 

tumor cells with less susceptibility to immune responses grow out to visible tumors.35 

Furthermore local or systemic immunosuppressive mechanisms as well as chronic inflammation 

can cause immune escape.36 This state can be actively induced by tumor cells through secretion 

of immunosuppressive factors such as transforming growth factor (TGF)-ß, Indoleamine-

pyrrole 2,3-dioxygenase (IDO), IL-10, VEGF and galectin. Prolonged inflammation leads to 

presence of chronically activated leukocytes and accumulation of immunosuppressive Tregs, 

M2 Macrophages and myeloid-derived suppressor cells (MDSCs). All of these three, Tregs, M2 

macrophages and MDCSs produce TGF-ß and IL-10. Tregs further inhibit T cells through the 

negative co-stimulatory checkpoint regulators cytotoxic T-lymphocyte-associated protein 4 

(CTLA-4) and programmed cell death protein 1 (PD-1), causing T cell exhaustion and 

suppression of T cell activation. Tregs cells further consume IL-2 by expression of CD25, the α-

chain of the high affinity IL-2 receptor, thereby depleting IL-2 that is required for maintenance 

of effector T cell functions. MDSCs can recruit Tregs via secretion of the cc-chemokine ligands 

(CCL)3, CCL4 and CCL5. MDSCs further act immunosuppressive by production of membrane-

bound TGF-ß, and active inhibition of T cell functions by TCR nitrosylation and depletion of 

the amino acids arginine and tryptophan.37–40 

Since the immune system is able to eliminate tumor cells and because cancer development is a 

consequence of cancer immune escape, it appears obvious to reinforce the immune system to 

treat cancer. In fact, cancer immunotherapy represents an emerging field and was acclaimed as 

“breakthrough of the year 2013” by the famous journal Science.41 Immune checkpoint blockade 

targeting CTLA-4 and PD-1 is among the most promising approaches and show very 

encouraging clinical efficacies.42,43 Another type of immunotherapy is to treat cancer patients by 

adoptive transfer of effector immune cells, such as DCs, T cells or NK cells. 
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1.3 Natural killer cell biology 

NK cells were first described in 1975 and named natural killer cells due to their ability to kill 

tumor cells.44,45 Since then, other important NK cell functions such as elimination of virus-

infected cells became manifest and many researchers investigated these remarkable immune 

cells and their biology, leading to the knowledge that is available today about NK cell 

classification (chapter 1.3.1), NK cell receptors and NK cell activation (chapter 0) and NK cell 

effector functions (chapter 1.3.3). 

1.3.1 NK cell classification – innate immune cells with adaptive features 

NK cells are classically defined as innate immune cells, due to their ability to react against a 

certain target without prior sensitization. However, findings during the last years show that NK 

cells also feature typical characteristics of adaptive immune cells, indicating that the historical 

classification between innate and adaptive immune system might start to blur.46–48  

First of all, adaptive immune cells and NK cells arise from the same lymphoid progenitor and 

share requirements for their development, such as common γ-chain-dependent cytokines.49,50 

Furthermore, similar to T cells, which undergo a selection process in the thymus to avoid 

unwanted responses against “self-antigens”, NK cells pass through an education process to 

regulate their responsiveness and function.51  

However, the most convincing adaptive attribute of NK cells is their ability for memory-like 

responses, characterized by an intensified response to a repeated stimulation. A first indication 

for NK cell memory has been observed in T and B cell deficient mice that showed an enhanced 

secondary immune response against chemical hapten antigens.52 It was demonstrated that liver-

resident NK cells are responsible for the effect dependent on the chemokine receptor 

CXCR6.53,54 Another hint for mouse NK cell memory is given by a specific Ly49H+ NK cell 

subset that is responsive against mouse cytomegalovirus (MCMV) glycoprotein m157 

expressed on infected cells. Similar to T cells, these NK cells respond in three phases upon 

MCMV infection, starting with expansion of virus specific cells, followed by apoptosis of 

effector cells within a contraction phase and finally ending up in a long-lived stable pool of 

memory cells.55 Upon MCMV re-challenge, these memory NK cells exhibit typical adaptive 

features as they undergo a secondary expansion phase and enabling a better control of the virus. 

Human CMV (HCMV) infection and reactivation is associated with specific expansion of a NK 

cell subset positive for CD57 and NK group 2 receptor (NKG2)C,56 that is dependent on IL-12, 

monocytes and human leukocyte antigen (HLA)-E in vitro.57 HCMV induced CD57+ NKG2C+ 
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NK cells have a distinct epigenetic profile comparable to cytotoxic T lymphocytes,58,59 but the 

relevance of this NK cell subset is still unknown.  

Of note, treatment of NK cells with IL-12, IL-15 and IL-18 leads to a cytokine-induced NK cell 

memory, defined as long-term capacity to produce IFN-γ, so that several weeks after the initial 

activation the NK cells still mediate an enhanced cytokine response upon re-stimulation.60–62 

Thereby, cytokine-induced memory manifests as cell intrinsic effect that is passed on to 

offspring cells. 

Besides the disputable historical classification of NK cells as innate immune cells, the former 

view of NK cells as the only lymphoid cell type among innate immune cells has changed after 

identification of a whole family of so called innate lymphoid cells (ILCs) with distinct 

characteristics and functions.63 Thereby, striking similarities exist between the different ILCs 

and T-cell subsets regarding transcription factors and cytokine profiles, so that ILCs may 

resemble the T cell counterparts in the innate immune system.64,65 NK cells are currently defined 

as killer ILCs due to the expression of IFN-γ, EOMES and TBET and their ability to directly 

kill target cells, similar to cytotoxic CD8 T cells, whereas the other ILC subsets, ILC1, ILC2, 

ILC3 and lymphoid tissue–inducer (LTi) cells are helper ILCs corresponding to the different 

types of Th cells. NK cells generally lack the expression of CD3 and human NK cells are 

classically subdivided in CD56bright and CD56dim NK cells depending on the CD56 expression 

level.66 Of note, defining NK cells as CD56+/CD3− NK cells spares CD56− NK cells, a subset 

that is rare in healthy individuals but that is predominantly found in patients infected with the 

human immunodeficiency virus (HIV) or hepatitis C patients.67,68 Alternatively, the surface 

marker NKp46 is utilized to discriminate NK cells, but NKp46 is also expressed by subsets of 

NK-like T cells and LTi.69,70 The CD56dim NK cell subset represents 90% of the NK cells in 

peripheral blood and is considered to be highly cytotoxic, whereas cytokine production is 

restricted to a short duration after activation.71 On the other hand, CD56bright NK cells are 

predominant in lymph nodes and tonsils, have a low potential for natural cytotoxicity, but 

possess a high capacity to produce cytokines after stimulation. CD56dim NK cells express high 

levels of the Fc receptor CD16 and the chemokine receptors CXCR1 and CX3CR1, whereas 

CD56bright NK cells are CD16 low or negative and positive for CCR7, a chemokine receptor 

responsible for homing to secondary lymphoid organs.72  
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1.3.2 Regulation of NK cell activation 

To mediate adequate protection, NK cells need to distinguish between normal cells on the one 

hand and tumor cells, virus infected cells or generally stressed cells on the other hand. 

Importantly, the essential NK cell ability to specifically recognize abnormal cells does not 

require prior sensitization for a specific target, because it’s based on the interaction with target 

cells via a complex system of germ line coded activating and inhibitory receptors. Important 

receptors for human NK cells are described in the following. 

Inhibitory receptors dampening NK cell activation 

Normal autologous cells dampen NK cell activation by expression of MHC class I molecules, 

mainly by binding to inhibitory killer-immunoglobulin-like receptors (KIRs). Human MHC is 

classified as HLA and KIR genes are extremely diverse and differentially expressed, forming a 

heterogenic population of different NK cells with distinct KIRs and specificities for HLA alleles 
73,74 Thereby, potentially auto-reactive NK cell clones expressing no inhibitory KIR for at least 

one self-HLA class I become anergic during NK cell development to ensure “self-

tolerance”.75,76 This NK cell education process is similar to the selection process during 

development of adaptive immune cells, but the concrete mechanisms and involved cell types are 

still under investigation.77 NKG2A is another inhibitory receptor on NK cells recognizing HLA-

E, and same as KIRs, NKG2A signals through an immunoreceptor tyrosine-based inhibitory 

motif (ITIM). 78 The T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is expressed by 

NK cells and it counteracts the NK cells activation. TIGIT binds to CD112 and CD113 and 

shares the ligand CD155 with another inhibitory receptor, CD96.79 In addition, the killer-cell 

lectin like receptor G1 (KLRG-1) and the carcinoembryonic antigen-related cell adhesion 

molecule 1 (CEACAM1) also inhibits NK cell activation.80,81 

Activating receptors induce NK cell activation 

The group of NK cell receptors containing an immunoreceptor tyrosine-based activating motif 

(ITAM) consists of activating KIRs, NKG2C, natural cytotoxicity receptors (NCRs) and CD16. 

Same as for their inhibitory counterparts, HLA class I molecules are the ligands for activating 

KIRs, and similar to NKG2A, NKG2C binds to HLA-E. The three NCRs discovered in the late 

1990s, are NKp46 (NCR1; CD335), NKp44 (NCR2; CD336) and NKp30 (NCR3; CD337). 

NCRs recognize viral and bacterial structures but also tumor associated ligands.82 NKp46 is the 

only NCR universally expressed by NK cells and it’s conserved in humans and mice. Tumor 

relevant ligands for NKp46 are found for example on melanoma cells.83 NKp44 is only 

expressed by activated NK cells and it recognizes ligands on tumor cells, such as the 

proliferating cell nuclear antigen (PCNA).84 NKp30 is expressed on all mature NK cells and 
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binds to HLA-B-associated transcript 3 (BAT3) and B7 family member B7-H6, both produced 

by tumor cells.85,86 CD16, also known as FcγRIIIa, belongs to a class of receptors that bind to 

IgG antibodies and enables NK cells to detect and eliminate antibody-coated cells, as described 

as ADCC before.87 NK cell mediated ADCC represents an important mode of action of many 

therapeutic antibodies in cancer therapy such as trastuzumab, cetuximab or rituximab.88 Of note, 

CD16 can act on its own to induce NK cell activation, whereas all other activating NK cell 

receptors require engagement of another co-receptor, making the activation process of NK cells 

even more complex.89,90 Furthermore, non-ITAM bearing activating receptors comprise NKG2D 

or the DNAX accessory molecule-1 (DNAM-1) receptor. Human NKG2D signals though the 

DNAX  activating protein (DAP)-10 and binds to its ligands MICA, MICB and UL16-binding 

proteins (ULBP)1–6.91 Cancerogenesis and stress is linked to NKG2D ligand expression and 

NKG2D ligands are found on a variety of human cancer cell lines and primary tumors, such as 

glioma, leukemia, melanoma and colorectal cancer.92–96 The activatory DNAM-1 competes with 

inhibitory TIGIT and CD96 for the ligands CD155 and CD112. DNAM-1 ligands are regulated 

by cellular stress, similar to ligands for NKG2D, and CD112 and CD155 are found over-

expressed by many cancer types such as neuroblastoma and myeloma.97,98 Interestingly DNAM-

1 and other activating receptors synergize with 2B4 (CD244), the prototype of the signaling 

lymphocyte activation molecule (SLAM) family, that is involved in NK cell activation as well. 

CD2 is closely related to the SLAM family, binds to CD48 and works as co-receptor, for 

instance in NKp46 mediated NK cell effector functions.89  

NK cell activation is regulated by the interplay of activating and inhibitory receptors  

The multitude of activating and inhibitory receptors generates numerous signals during the NK 

cell-target cell interaction and integration of these signals determines whether the NK cell gets 

activated (Figure 1.3). Healthy cells express normal levels of inhibitory HLA class I and show 

only minor or no expression of NK cell activating ligands, so that NK cells don’t get activated. 

In contrast, viral infected or tumor transformed cells tend to down-regulate their HLA class I 

expression as an immune escape mechanism to avoid the adoptive immune response by 

cytotoxic T cells.99 The lack of HLA class I expression however increases the susceptibility to 

NK cells, since NK cells expressing specific KIRs for the missing HLA molecule perceive a 

“missing-self” signal and become responsive. The “missing self” hypothesis formulated more 

than 30 years ago was the first concept describing how NK cell activation is regulated.100 Today 

it’s known that also activating signals dictate the NK cell response and strong activating signal 

alone are sometimes efficient for activation despite inhibition in parallel.101 As described before, 

abnormal cells or stressed cells up-regulate ligands for activating NK cell receptors and 

consequently the balance of incoming signals shifts towards activation. 
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Figure 1.3 The integration of activating and inhibitory signals accounts for NK cell activation. During the 
interaction with normal cells, NK cell activation is prevented by dominating inhibitory signals (A), 
whereas abnormal cells trigger NK cell activation through missing inhibition (B) and/or intensive 
activating signals (C). 

1.3.3 NK cell effector functions in cancer immunosurveillance 

NK cell mediate cytotoxicity via the granule-exocytosis pathway  

The direct elimination of target cells is a main function of NK cells and NK cells kill abnormal 

cells via different pathways.102,103 After NK cells get activated by activating ligands or by 

antibodies that are recognized via CD16, NK cells mediate natural cytotoxicity or ADCC 

through the granule-exocytosis pathway. In the cytoplasm of NK cells several proteins such as 

granzymes and perforin are stored within cytotoxic granules.104,105 NK cell activation triggers 

the release of these cytotoxic granules into the immunological synapse between target and NK 

cell and this degranulation process initiates the destruction of the encountered target.106 Perforin 

disrupts the cell membrane and forms pores, allowing other cytotoxic substances such as 

granzymes to enter the cell. Furthermore, it cannot be excluded that perforin itself gets 

internalized and contributes to the cytotoxic effect by degradation of intracellular membranes 

and vesicles.107 Granzymes are proteases that induce cell death in different ways.108 Granzyme 

A cleaves molecules of the DNA repair system, while granzyme B induces apoptosis via the 

caspase cascade. The physiological significance of other granzymes (C, H, K and M) as well as 

their mode of action is unclear.  

NK cells induce apoptosis via death receptor ligands  

In addition to the release of cytotoxic granules and perforin-dependent killing of target cells, 

NK cells can express the TNF related apoptosis inducing ligand (TRAIL) and the FAS receptor 
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ligand (FasL), which bind to death receptors. Whereas DNA damage or energetic stress induces 

intrinsic, mitochondria-mediated apoptosis, death receptors cause cell death through an extrinsic 

apoptotic pathway after binding of a suitable ligand. TRAIL is normally not readily found on 

the surface of NK cells, but functional TRAIL can be induced on NK cells upon activation and 

enables efficient killing of tumor cells expressing receptors for TRAIL.109 NK cells expressing 

FasL similarly eliminate Fas positive tumor cells.110,111  

NK cell derived cytokines contribute to NK cell anti-tumor capacity 

Besides other cytokines, such as IL-5, IL-10, IL-13 and the Granulocyte-macrophage colony-

stimulating factor (GM-CSF), NK cells produce and release IFN-γ and TNF-α upon activation, 

which are two important factors for cancer immunosurveillance. NK cell derived IFN-γ carries 

several anti-tumor functions. IFN-γ inhibits the tumor angiogenesis and has anti-metastatic 

activity.112,113 IFN-γ acts anti-proliferative and pro-apoptotic.114 IFN-γ also triggers up-

regulation of TRAIL on NK cells and thus enhances the sensitivity of TRAIL mediated target 

cell killing.109 Furthermore, MHC class I up-regulation and enhanced antigen presentation is a 

common consequence of the treatment with IFN-γ and it consequently results in improved 

tumor clearance by the adaptive immunity.115 

TNF-α is the soluble form of TNF and, same as its membrane-bound counterpart, it binds to the 

two receptors TNF-R1 and TNF-R2. However, soluble TNF-α preferentially binds to TNF-R2, 

whereas TNF has a higher affinity for TNF-R1, resulting in different signaling profiles for both 

factors.116 Importantly, only TNF-R1 contains a death domain and directly mediates 

apoptosis,117 while TNF-R2 signaling can also cause cell death by down-regulation of the anti-

apoptotic factor Bcl-xL, as shown for T cells.118 

Furthermore, IFN-γ and TNF-α complement one another in their anti-tumor capacity. Together, 

IFN-γ and TNF-α lead to growth arrest in various human cancers.119 Both cytokines are required 

for efficient disruption of the tumor vasculature and clearance of established tumors.120,121 

Nevertheless, although IFN-γ and TNF-α together and by their own play an important role in 

cancer immunosurveillance, it should kept in mind that their pro-inflammatory character can be 

associated with chronic inflammation, potentially promoting immune escape mechanisms and 

tumor progression.36,122 

Some NK cell anti-tumor functions arise from interactions with other immune cells 

Importantly, NK cells not only combat cancer directly by themselves, but they also initiate anti-

tumor activities arising from other parts of the immune system. The crosstalk of NK cells and T 

cells for instance has been shown to enable eradication of tumors that are resistant to NK cell 
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killing, because NK cell derived IFN-γ is crucial for the priming of tumor specific CD8 T cells 

that are then able to eliminate the cancer cells.123 Similarly, it was observed that in vivo 

depletion of NK cells at the time of tumor challenge abolishes DC-mediated priming of T cells 

and abrogates the efficacy of vaccination immunotherapy with DCs.124 In general, interaction 

between NK cells and DCs play a role in the activation and maturation of DC.125 Furthermore, 

activated NK cells express MHC class II and can act as APCs.126,127 Activated NK cells indeed 

trigger TCR induced function of CD4 T cells dependent on the expression of OX40 ligand and 

B7 by NK cells.128 NK cells and T cells further interact directly with each other through 2B4 

and CD48 on their surface, accelerating the proliferation of both cell subsets,129 so that NK and 

T cell responses possibly amplify each other. In contrast, NK cells are able to directly dampen T 

cell responses, as they are able to lyse activated T cells.130 Of note, CD48-CD2 interactions 

between B and NK cells carry a function in B cell antibody switch to IgG2a, representing the 

isotype that efficiently triggers NK cell-mediated ADCC.131,132 CD48-2B4 interactions between 

B and NK cells trigger NK cells IL-13 production, representing a cytokine involved in the 

induction of Th2 immune responses.133 The described examples demonstrate that cancer 

protection is based on a complex interplay between different immune cells and therefore NK 

cells should be seen as one part of the puzzle rather than separated effector cells. 

1.4 NK cells in cancer therapy  

Since they efficiently fight tumor cells, it seems obvious to utilize NK cells in cancer therapy 

and the progress of NK based therapy is frequently reviewed.134–145 NK cells were applied 

during early therapies with lymphokine-activated killer (LAK) cells (chapter 1.4.1) and NK 

cells represent an essential factor for the outcome of stem cell transplantation (chapter 1.4.2). 

Furthermore, adoptive transfer of NK cells to cancer patients is a treatment option in early 

clinical evaluation with first promising results (chapter 1.4.3). However, NK cell therapy is also 

confronted with different challenges, still limiting its potential besides encouraging results in the 

past and reasonable strategies for the future (chapter 1.4.4). 

1.4.1 Therapy with lymphokine-activated killer cells 

The first use of NK cells in the clinics goes back to the infusion of so called LAK cells together 

with IL-2 into cancer patients starting in the 1980s.146 The injection of ex vivo generated 

immune cells is originally defined as adoptive transfer.147 LAK cells are derived from peripheral 

blood mononuclear cells (PBMCs) after ex vivo cultivation in IL-2 containing medium and 

consist of CD3−/CD56+ NK cells in addition to CD3+/CD56+ NKT-like cells and CD3+/CD56− T 

cells. LAK therapy is mostly applied in an autologous setting, meaning that donor and recipient 
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of the cells is the same person. Transfer of LAK from foreign donors is critical, because 

incompatibility between donor T cells and recipient MHC molecules can result in lethal side 

effects, because alloreactive T cells from the donor attack the recipient tissue cells, which leads 

to the graft versus host disease (GvHD).148 The cytotoxicity of NK cells is mainly responsible 

for the pronounced cytotoxicity of LAK cells against tumor cells in vitro.149 Nevertheless, in 

first clinical trials the response did not exceed the efficacy of IL-2 monotherapy.150 Since then, 

LAK therapy is considered inefficient, but later findings revealed possible reasons for the 

unfavorable clinical outcome. For instance, the administered high doses of IL-2 during early 

LAK therapies exhibit a toxic profile, it can cause activation induced cell death of NK cells in 

vivo and it drives the expansion of Tregs that inhibit the function of NK cells.151,152 Another 

possible reasons for the failure of LAK therapy in the past is that the autologous NK cells 

exhibit a high level of self-tolerance due to a broad repertoire of inhibitory receptors that also 

depress the lysis of autologous leukemic cells.  

Similar to LAK therapy, more recent approaches aim at the ex vivo expansion of NK cells from 

PBMCs using conditions favoring the specific outgrowth of NK cells such as cultivation of 

PBMCs together with anti-CD3 antibody in a cell culture medium known to support NK cell 

proliferation.153 Surprisingly, although T cells are still the major cell type after three weeks of ex 

vivo cultivation under these conditions, adoptive transfer of the heterogeneous cell product to 

five cancer patients in an allogeneic setting did not cause side effects such as GvHD in a phase I 

safety study.154 Indeed, experiments indicate that the T cell reactivity is lost ex vivo, when the 

cells are cultured longer than seven days using this protocol.155 This simple approach for 

adoptive transfer of NK cells together with NKT-like cells and T cells represents a cost efficient 

concept among currently applied immunotherapies, but more clinical data are probably needed 

to definitely exclude safety risks associated with infusion of donor derived T cells in allogeneic 

settings. 

1.4.2 The importance of NK cells for hematopoietic stem cell transplantation 

Hematopoietic stem cell transplantation is an established cancer therapy 

Clear importance of NK cells for therapy was first reported by Velardi and colleagues in 2002 in 

the context of allogeneic hematopoietic stem cell transplantation (HSCT) for the treatment of 

leukemia.156 HSCT is used for long time and has become a standard therapy for the treatment of 

hematological malignancies.157 First, it was thought that the treatment effect of HSCT was only 

mediated by the preceding irradiation or chemotherapy that is applied to eradicate the leukemia. 

But, the patient immune cells are eliminated as well and therefore donor derived allogeneic stem 
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cells were given to rebuild the missing immune system and counter this major side effect. Later, 

it became clear that the re-established donor derived alloreactive immune cells provide an 

important graft versus leukemia (GvL) effect that is essential to keep the patient in remission, 

meaning free of disease.158 In addition, it was observed that allogeneic HSCT is useful for the 

treatment of solid tumors too, showing that the therapy provides a more general graft versus 

tumor (GvT) effect.159 However, although HSCT fundamentally improved the treatment of 

leukemia, many of the treated patients still die, because re-growth of treatment-refractory cancer 

cells and reoccurrence of the disease.160 

Alloreactive NK cells can play an important role for the outcome of HSCT 

Impressively, Velardi and colleagues treated patients suffering from acute myeloid leukemia 

(AML) with hematopoietic stem cell grafts from allogeneic donors and revealed that a mismatch 

between donor and recipient KIRs, which determine the reactivity of NK cells, results in a 

significantly reduced relapse rates.156 In detail, in a follow up of five years the relapse rate of 34 

patients that were treated with a graft with KIR mismatch was 0% compared to 75% in the 

control group of 58 patients receiving a graft without KIR mismatch. The data were confirmed 

later in an enlarged patient cohort and Figure 1.4 shows the observed survival benefit for the 

patients.161 

 

 

 

 

 

Figure 1.4 Alloreactive NK cells improve the 
survival of AML patients after allogeneic HSCT. 
AML patients received hematopoietic stem cell 
grafts from haploidentical donors and the survival is 
shown depending on the donor NK alloreactivity, 
estimated by KIR ligand mismatches. Adapted from 
Ruggeri et al. 2007.161 

These data implied a functional relevance for the alloreactivity of transferred donor NK cells 

providing a strong GvL effect. In addition, whereas T cell alloreactivity is generally associated 

with rejection of the graft and a higher risk for GvHD, NK cell alloreactivity conversely 

correlated with improved engraftment and even protection from GvHD.156 Velardi and 

colleagues showed in mouse models that NK cells not only kill leukemic cells, but they also 

lyse normal non-self hematopoietic cells, while other tissues are spared. The discrimination 

between hematopoietic and other non-self cells probably explains why NK cells don’t mediate 
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GvHD, but the exact mechanisms remain an open question.162 However, the NK cell 

alloreactivity during HSCT is thought to provide (i) eradication of the tumor by killing of 

leukemic cells, (ii) protection from graft rejection by killing of recipient T cells and (iii) 

protection from GvHD by killing of recipient T cells and DCs.163 Therefore, analyzing the 

alloreactivity of donor NK cells prior to the treatment can improve the therapy of leukemia by a 

better donor selection. Furthermore, apart from the KIR repertoire of a given donor, the rate of 

NK cell reconstitution is directly linked to the clinical efficacy of HSCT. NK cells are the first 

lymphocytes that reappear after HSCT and faster reconstitution of NK cells correlates with a 

clearly reduced rate of relapse and improved survival of AML patients.164–166  

Explanations for missing effects of alloreactive NK cells for HSCT in many studies  

Some other groups confirmed the promising data of the Velardi group, but many subsequent 

studies did not reproduce the results associated with KIR mismatch in HSCT for the treatment 

of AML and these conflicting results may be explained by three critical factors, as reviewed 

recently by Wing Leung and described in the following.143  

(1) Consideration of T cell alloreactivity is probably the most important factor for the outcome 

of HSCT, because HLA mismatch between donor and recipient can lead to severe GvHD 

mediated by the donor T cells. KIR ligands are HLA class I molecules and thus donor KIR 

mismatches often correspond to HLA mismatches with increased T cell alloreactivity. Therefore, 

KIR mismatch is even correlated with poor survival unless T cells are removed from the 

graft.167,168 Importantly, the original data from the Velardi group and other studies with positive 

results were performed with T cell depleted grafts.  

(2) Different models exist for the definition of ”KIR mismatch” plus another model defining a 

KIR haplotype. (a) The ligand-ligand model is defined as incompatibility between the donor 

KIR ligand and recipient KIR ligand repertoire. This model is based on the missing-self 

hypothesis arguing that it holds true for all KIR ligands that down-regulation or miss of a single 

KIR ligand results in activation of NK cells expressing the corresponding KIR. (b) The 

receptor-ligand model is based on incompatibility between the donor KIRs and recipient KIR 

ligands, taking into account that not all donors express all KIRs for every single recipient KIR 

ligand. Mismatches of KIR ligands in this model have no effect in case the corresponding donor 

KIR is absent, but a meaningful prediction requires donor KIR typing on the phenotype level. 

(c) The receptor-receptor model is defined as incompatibility between the donor KIRs and 

recipient KIRs. According to the KIR haplotype model, which is based on the receptor-receptor 

model, more activating donor KIRs correlate with a higher potential for alloreactivity. By 
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definition, the A KIR haplotype consist of only one activating KIR, whereas the B KIR 

haplotype comprises several activating KIRs.  

(3) Besides the different definitions for KIR mismatch, the general comparison of different 

clinical studies is hindered by possible misclassification. Exact KIR ligand classification is not 

trivial, requires high resolution HLA typing and new ligand specificities for many KIRs are 

continuously discovered. In addition, the complex KIR allelic polymorphism causes 

misclassification. Similar to high resolution HLA typing, high resolution KIR typing is actually 

required to best possible select a suitable donor for HSCT. 

 

In conclusion, the clinical relevance of NK cells for leukemia treatment using HSCT has been 

clearly shown. The alloreactivity of donor derived NK cells is essential for their therapeutic 

value, but factors such as T cell depletion and suitable determination of the NK cell 

alloreactivity are critical and have to be well-considered. 

1.4.3 Adoptive NK cell therapy 

The safety of adoptive NK cell therapy is shown by numerous pilot trials 

Not least due to the relevance of reconstituted alloreactive NK cells during HSCT, adoptive 

transfer of NK cells for tumor therapy is tested in several early phase investigational studies as 

shown in Table 1.1. So far, numerous clinical studies started with the aim to investigate the 

feasibility and safety of NK cell adoptive transfer for the treatment of different types of 

leukemia and solid tumors. The vast majority of these studies utilize allogeneic NK cells, since 

donor derived alloreactive NK cells are expected to mediate a strong anti-tumor effect. First 

pioneering work showed that adoptively transferred allogeneic NK cells without T cells do not 

cause side effects such as GvHD.169 Today, the safety of adoptive NK cell transfer is confirmed 

by numerous safety studies with heterogenic patient cohorts.169–178 

Clinical efficacy of NK cell adoptive therapy is not yet clear due the early phase of clinical trials 

Since the completed studies so far were designed with small patient numbers and without 

control groups, it’s not yet possible to adequately predict the therapeutic value of NK cell 

transfer. In addition, direct comparison of different studies is complicated because the applied 

treatment protocols are very different. The pre-conditioning varies among the studies and some 

of the clinical trials infused NK cells in combination with standard HSCT, whereas in other 

trials NK cell transfer was tested as independent therapy. The NK cells were purified in 
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different ways and several studies shortly pre-activated the NK cells with IL-2 before infusion 

or the NK cells were expanded ex vivo over long time with different expansion protocols.  

Table 1.1 Clinical studies with adoptively infused NK cells in 2015. Adapted from Childs and Carlsten.140 

Method Patient population Total number 
of clinical trials 
(number of 
 active trials) 

Comments 

Non-expanded NK cells 

Autologous 
 NK cells 
 + IL-2 

Melanoma, RCC, lung cancer 
and nasopharyngeal cancer 

3 (1)  

Autologous  
NK cells 
+ IL-15 

Neuroblastoma, sarcoma, 
Wilms tumor and 
rhabdomyosarcoma 

1 (1) 
Intended to more specifically 
bolster NK cell anti-tumor 
activity than IL-2 

Allogeneic 
 NK cells 
+ IL-2 

AML, multiple myeloma, 
myelodysplastic syndromes, 
lymphoma, ovarian carcinoma, 
melanoma, neuroblastoma, 
Ewing sarcoma, breast cancer 
and Fallopian tube cancer 

55 (29) 
Most data published on adoptive 
NK cell therapy are from these 
studies 

Allogeneic 
NK cells 
+ IL-15 

AML and myelodysplastic 
syndromes 

2 (1) 
Intended to more specifically 
bolster NK cell anti-tumor 
activity than IL-2 

Expanded NK cells 

Autologous 
NK cells  

CLL, RCC, lung cancer, 
multiple myeloma, sarcoma, 
colon cancer, melanoma, 
neuroblastoma, prostate cancer, 
ALL and pancreatic cancer 

7 (6) 

Various expansion methods used, 
including EBV-LCL and 
membrane-bound cytokine or 
41BBL feeder cells; some studies 
use IL-2 post NK cell infusion 

Allogeneic 
NK cells 

AML, myelodysplastic 
syndromes, T cell lymphoma 
and multiple myeloma 

11 (8) 

Various expansion methods used, 
including EBV-LCL and 
membrane-bound cytokine or 
41BBL feeder cells; some studies 
use IL-2 post NK cell infusion 

Genetically modified NK cells 

CD19 CAR 
mRNA 
(expanded 
NK cells) 

BCL 2 (2) 

Designed to redirect tumor 
targeting. Haploidentical NK cells 
expanded with K562 membrane-
bound IL-15 or 41BBL feeder 
cells; in Phase II clinical trials 

NK cell lines 

NK-92 
AML, multiple myeloma and 
lymphoma 

2 (2) 
Off-the-shelf NK cells; in dose-
escalating Phase I clinical trials 

41BBL, 41BB ligand; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BCL, B cell lymphoma; 
CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukemia; LC, lung cancer; MDS, myelodysplastic 
syndromes; RCC, renal cell carcinoma. Data from ClinicalTrials.gov. 
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Adoptive transfer of autologous NK cells is reasonable but less effective 

With the transfer of autologous NK cells one can definitely exclude the risk of donor related 

side effects arising from unintended co-transfer of alloreactive T cells, representing an 

advantage of this treatment concept. First patients were already treated with infusion of purified 

and ex vivo cultivated autologous NK cells more than 20 years ago.179 However, autologous NK 

cells are less reactive, because inhibitory receptors generally dampen their response against 

autologous cells including tumor cells. In addition, NK cells from cancer patients often exhibit 

impaired responsibility due to weak expression of activating receptors. For instance, reduced 

expression of 2B4 by NK cells in multiple myeloma (MM) patients is considered a relevant 

factor in the immune escape of MM cells that express the 2B4 ligand CD48.180 Importantly, 

autologous NK cells from MM patients up-regulate activating receptors including 2B4 after 

long-term ex vivo activation and show clear cytotoxicity against autologous MM cells.181 Thus, 

the function of NK cells from cancer patients can be “rehabilitated” ex vivo, making them useful 

autologous effector cells for adoptive tumor therapy. On the other hand, the susceptibility of 

cancer cells to NK cell mediated killing can be enhanced for instance by bortezomib that 

triggers up-regulation of death receptors on tumor cells making them sensitive for TRAIL 

induced apoptosis.182 Bortezomib treatment in combination with adoptive NK cell transfer is 

currently investigated in a Phase I clinical trial.139 However, despite reasonable arguments for 

the use of autologous NK cells, their clinical value is limited at present. An example is given by 

a study from the Rosenberg group showing that adoptive transfer of autologous NK cells does 

not mediate tumor regression in patients suffering from metastatic melanoma and renal cell 

carcinoma (RCC), although high levels of circulating NK cells are found.183 

Clinical benefit is achieved by adoptive transfer of allogeneic NK cells  

In comparison to autologous NK cells, the transfer of allogeneic NK cells is more promising, 

because the mismatch of recipient MHC I molecules and donor NK cell inhibitory receptors 

increases the responsiveness of NK cells to tumor cells. Therefore, adoptive transfer of 

allogeneic NK cells in combination with HSCT is considered a beneficial strategy for cancer 

treatment, because the additionally transferred NK cells possess potent anti-tumor activity and 

may improve the stem cell engraftment and reduce the risk of infections and GvHD.184 First 

published results for the combination of HSCT with adoptive NK cell transfer are indeed 

encouraging, but more advanced studies are required to identify the optimal dose and timing of 

the NK cell infusion.170–176 Importantly, treatment of 27 patients with HSCT and subsequent 

transfer of allogeneic NK cells at relatively high median cell doses of 2x108 cells/kg correlated 

with significant reduction in leukemia progression compared to 31 historical control patients 

treated under comparable conditions.176 Of note, this high dose of NK cells was reached by ex 
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vivo expansion of the cells prior to the infusion. Thus, first data from patients show the safety of 

applying even high numbers of NK cells and these large NK cell doses are probably required to 

maximize the therapeutic effect. Furthermore, adoptive transfer can be advantageous for 

autologous HSCT. Autologous HSCT is often used when allogeneic HSCT is not applicable and 

adoptive transfer of donor derived allogeneic NK cells can be part of the pre-conditioning 

regimen to reduce the tumor mass before autologous HSCT.185 

Unfortunately, HSCT itself is associated with transplant-related acute and late complications 

that cause disease relapse and reduce the chance for cure in case of AML.186 Therefore, 

replacing HSCT by other suitable therapies is reasonable and applying chemotherapy combined 

with adoptive transfer of allogeneic NK cells is investigated by several studies for the treatment 

of patients with different types of cancer.177,187–193 Data of clinical trials exploring this approach 

imply partial efficacy and one of the most promising results can be referred to a pilot study with 

10 pediatric AML patients.191 Remarkably, all children remained in remission and stayed free of 

disease in the follow up time of 2- 4.2 years. Based on this finding a comprehensive double-

blinded study that involves multiple clinical centers was started and the results are expected 

soon.194  

The use of NK cell lines as effector cells for adoptive immunotherapy represents a treatment 

with a special type of allogeneic NK cells that circumvent the need for a certain donor. Among 

the known NK cell lines the well characterized NK-92 is a considerable alternative for primary 

NK cells.195 Nevertheless, NK cell lines have to be inactivated by irradiation prior to infusion 

into the patient to stop their uncontrolled cell proliferation that otherwise represents a major 

safety risk. The inactivation most likely goes along with an impairment of the therapeutic effect 

of NK-92 and is a major drawback compared to primary NK cells. Nevertheless, adoptive 

transfer of NK-92 to cancer patients with doses of up to 1x1010 cells/m2 was proven to be 

safe.196 So far, clinical studies with NK-92 indicate positive anti-tumor effects without off-target 

effects and very encouraging results were obtained in three patients with advanced 

chemotherapy-resistant lung cancer, which showed significant tumor responses including 

clearance of metastases in the lymph nodes and the lung.197 

Ex vivo cultivation allows pre-activation of NK cells and administration of higher cell doses 

Apart from the use of NK cell lines, adoptive NK cell therapy requires cells from a given donor, 

restricting the total NK cell dose to < 2x108 primary NK cells that can be typically purified from 

one donor aphaeresis.198 Thus, the achievable therapeutic effect is probably limited by a 

relatively low NK cell number that can be directly administered. To overcome this hurdle, 

cultivation and expansion of NK cell cells are utilized to maximize the NK cell dose prior to 
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infusion into the patient. Furthermore, the cultivation phase is helpful to pre-active the cells 

with cytokines and augment their anti-tumor functions before they are transferred to a patient. 

Of note, long-term activation of NK cells in cell culture medium containing high concentrations 

of IL-2 results only in a low proliferation and about five fold expansion of NK cells in two 

weeks, but it already yields NK cells with enhanced cytotoxicity.171 In addition, the proliferation, 

cytotoxicity and migration of un-stimulated NK cells is strongly inhibited by the 

immunosuppressive drugs, such as mycophenolate mofetil that is often used during cellular 

therapy, but this effect is negligible for IL-2 stimulated NK cells.199 Another good example for 

pre-activation of NK cells is the use of IL-12, IL-15 and IL-18. In combination these cytokines 

result in cytokine-induced memory-like NK cells with sustained high functionality.61 

Furthermore, these NK cells strongly up-regulate CD25, the α-chain of the high affinity IL-2 

receptor, and become sensitive to very low levels of IL-2.200 Therefore, a first clinical study was 

started with AML patients to test the safety of cytokine-induced memory-like NK cells together 

with low dose IL-2 therapy.201 Thus, even without increasing the number of NK cells, short term 

cultivation using cytokines gives the opportunity to augment NK cells functionality.  

In addition to cytokines, the co-culture of NK cells with certain feeder cell lines efficiently 

triggers NK cell expansion and provides higher NK cell doses for therapy (chapter 1.5.3). In an 

early report Escudier and colleagues utilized NK cells expanded with irradiated LAZ 388 cells 

in a combination therapy with IL-2 to treat patients with metastatic RCC.179 Due to improved 

responses upon the applied treatment, they concluded that adoptive NK cell transfer might 

reduce the tumor burden of patients responsive to IL-2. Similarly, expansion of NK cells from 

PBMCs using the irradiated Wilms tumor cell line HFWT enabled up to three injections per 

patient with > 109 cells per injection in a pilot study showing the safety of this approach.185 In 

recent years, engineered K562 feeder cells expressing 41BBL and membrane-bound IL-15 or 

IL-21 have proven its value as feeder cells for efficient expansion of NK cells and are currently 

assessed for clinical use.202,203 In this context, acute GvHD surprisingly occurred in five of nine 

patients with solid tumors in a recent study evaluating the safety of adoptively transferred NK 

cells that were expanded with engineered K562 cells expressing membrane bound IL-15.204 This 

was unexpected, because only a low dose of T cells (≤ 2x104/kg) were co-transferred in the 

completely HLA-matched recipients and it raised some concerns about the general safety of 

adoptive NK cell therapy. However, the NK cells were also transferred at low doses (1-

10x105/kg) following T cell depleted HSCT. The observed acute GvHD was associated with 

higher donor CD3 chimerism and more common with unrelated donor transplants, suggesting 

that alloreactive T cells were responsible for the acute GvHD. Nevertheless, it appeared that NK 

cells can at least indirectly contribute to acute GvHD and it’s crucial to identify the underlying 
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mechansims.205 Importantly, a different group utilized NK cells expanded with a similar K562 

variant for the treatment of eight patients with MM and did not observe GvHD, although up to 

1x108 NK cells/kg were administered.188 This event demonstrated that the exact treatment 

protocol including NK cell dose, type of NK cell activation, time point of NK cell injection and 

effects of other treatments and drugs that are applied in parallel still have to be carefully 

investigated in future trials to exclude potentially risks of NK cell transfer. Besides the use of 

engineered K562 feeder cells, NK cell expansion with clinical approved Epstein-Barr virus-

transformed lymphoblastoid cell lines (EBV-LCLs) is established and yields large numbers of 

highly pure NK cells in clinical-grade quality.206 Clinical-grade EBV-LCL-expanded autologous 

NK cells are currently tested for therapy of different cancers and because infusions of up to 

2.5x108 NK cells/kg were already well tolerated by 26 patients, further dose escalating studies 

with 1x109 NK cells/kg are planned.139 

1.4.4 Obstacles and perspectives for NK cell based cancer therapy 

Tumor cells become unresponsive to NK cells as a result of immune escape 

Although therapies with NK cells are promising, different issues challenge the success of these 

approaches. First of all, cancer can acquire resistance to NK cell mediated elimination due to 

immune escape mechanisms and NK cell immunoediting.207 It was shown that cancer can lead 

to deficient expression of essential NK cell receptors, such as the NCR, NKG2D, DNAM-1 and 

2B4, thereby suppressing the NK cell activation and function.181,208–211 In addition, proteolytic 

cleavage of ligands for NK cell receptors from the tumor cell surface, known as ligand shedding, 

often circumvents recognition by NK cells as shown for the receptors NKp30 and NKG2D.212–

215 Besides proteolytic cleavage, tumor cells also inhibit NK cells by secreting ligands in 

exosomes as shown for the NKG2D ligands MICA and ULBP3.216,217. Of note, binding of 

NKG2D ligands in its soluble form to the corresponding receptors even blocks NK cell 

activation and leads to internalization of NKG2D.212 Adoptive transfer of ex vivo activated and 

expanded NK cells expressing high levels of NKG2D is an suggested option to scavenge 

soluble NKG2D ligands from the patient serum and to at least transiently overcome the 

NKG2D-based NK cell resistance of the tumor cells.218  

Antibodies can improve the NK cell anti cancer activity in different ways 

The combination of NK cell therapy with therapeutic antibodies that trigger NK cell mediated 

ADCC could be another strategy to increase NK cells functionality and to overcome immune 

escape mechanisms. As an example, cetuximab, a therapeutic antibody targeting the epidermal 

growth factor receptor (EGFR), can restore the cytotoxic activity of soluble MICA-inhibited NK 



 

 

Introduction and Background 26 NK cells in cancer therapy 

cells as shown by in vitro experiments with tumor-like spheroids from primary cells of head and 

neck squamous cell carcinomas.219 NK cells anti-tumor activity via ADCC is generally an 

attractive aspect for cancer immunotherapy.88 Thereby, modifying the Fc-parts of used 

therapeutic antibodies can enhance the affinity for CD16-mediated binding by NK cells and it 

can boost the ability of NK cells for serial killing, meaning to lyse many targets one after 

another.220–222 Further advancement is reached by antibody structures with multiple specificities. 

So called bi-specific or tri-specific killer cell engagers (BiKes or TriKes) are recombinant 

produced proteins, consisting of variable single chain fragments directed against one or two 

tumor antigens and CD16, which allow direct activation of NK cells through CD16 signaling 

upon binding and induce specific killing of cells bearing the targeted tumor antigens.223 BiKes 

and TriKes against CD19 and CD22 clearly enhance the NK cell function against primary AML 

and chronic lymphocytic leukemia (CLL) cells, while a BiKe against CD133 successfully 

augments NK cell activity against colorectal cancer cells.224,225 A BiKe against CD33, designed 

to target AML and myelodysplastic syndrome (MDS), allows potent killing and cytokine 

production by NK cells and overcomes the inhibition of NK cells by KIR.226,227 Of note, 

antibodies against inhibitory KIR are applied to bypass the NK cell inhibition by MHC I 

molecules and strengthen NK cell responses against tumor cells. The antibody IPH2101 

(lirilumab) is clinically tested alone or in combination with other treatments for several 

indications.228–233 In conclusion, NK cell therapy and therapeutic antibodies can benefit from 

each other and open new treatment opportunities. 

The use of IL-2 administration to support NK cell function after adoptive transfer is 

controversial 

It’s known for long time that injection of low dose IL-2 expands human NK cells in vivo.234–236 

Consequently, adoptive NK cell transfer is often combined with low dose IL-2 therapy with the 

aim to maintain an enhanced NK cell function in vivo and improve the therapeutic effect of the 

NK cells. Unfortunately, this IL-2 administration induces significant expansion of Tregs, which 

express CD25, the α-chain of the high affinity IL-2 receptor.190,193,237 Tregs possibly impair the 

NK cell function via TGF-ß and reduce the availability of IL-2.151,238 Specific elimination of 

Tregs could solve this issue and can be achieved by the IL-2-diphteria fusion protein that binds 

CD25 with high affinity.239 In a clinical study with 57 AML patients investigating adoptive NK 

cell transfer, the IL-2-diphteria fusion protein resulted in significantly improved rates for 

complete remission and disease-free survival compared to the control group.240 However, even 

with the depletion of Tregs only in 27% of the treated patients expansion of the donor NK cells 

was detectable 14 days after NK cell infusion. Thus, an alternative is needed to maintain the NK 
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cell function in vivo. IL-15 could be this alternative, because IL-15 does not induce Treg 

proliferation, while it expands NK cells in a similar way as IL-2 does.241 

The function of NK cells can be improved by genetic engineering 

With genetic modification of NK cells it’s possible to arm NK cells with improved therapeutic 

features.140,242 To achieve enhanced in vivo persistence, NK cells can be modified to produce IL-

2 or IL-15 themselves, avoiding the need for exogenous cytokines as shown with NK cell lines. 
243–245 With targeting the expression of IL-2 to the endoplasmic reticulum, secretion of the 

cytokine can be avoided and possible side effects on other cells are eliminated.246 First 

preclinical evaluation of primary NK cells transduced with membrane-bound IL-15 yields 

positive results and supports clinical testing of this approach.247  

Genetically engineered effector cells expressing chimeric antigen receptors (CARs) are among 

the most promising developments in immunotherapy in recent years. Although current 

approaches are typically realized with T cells, the interest in CARs with NK cells is 

emerging.248–250 CARs are constructs consisting of an antibody-binding domain fused to a 

cellular signaling domain. After binding of the antibody domain to the corresponding antigen, 

the effector cell gets activated and responds to the encountered target. Therapy with CARs 

turned out to be extremely effective. For instance, the treatment of 30 pediatric acute 

lymphoblastic leukemia (ALL) patients with T cells expressing a CAR against CD19, resulted 

in complete remission in 90% of the children.251 Therefore, the therapy was granted 

‘breakthrough therapy’ by the United States Food and Drug Administration.252 Consequently, 

many investigators develop CAR constructs for NK cells and preclinical evaluation of NK 

CARs cells is ongoing. At present, most of the reported work on NK CARs is done with the 

NK-92 cell line instead of primary NK cells (Table 1.2). 

Table 1.2 Publications on CARs for use in NK cell cancer therapy 

Used  
NK 
cells 

Targeted antigens of NK CARs with number of publications 

CD 
19 

CD 
20 

CD 
138 

CS1 EGFR ErbB2 EpCAM GD2 
NKG2D 
ligands Total 

NK-92 2253,254 4253–256 1257 1258 1259 4260–263 1264 1265  15 

Primary 
NK cells 

3266–268    1259 1269  1267 1270 7 
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There are several reasons why NK-92 is preferably used for NK CAR approaches as described 

by Klingemann:249 First, in contrast to primary NK cells, NK-92 doesn’t require a donor 

apheresis and laborious cell purification steps prior to transduction. Second, NK-92 can be 

transduced relatively easy, while transduction efficacies for primary NK cells are low. Third, 

NK-92 is continuously growing, allowing unlimited cell doses in theory, whereas the number of 

primary NK cells is limited. The last point is an issue for adoptive NK cell therapy in general, 

but it’s even more critical in the context of genetic engineering of NK cells, because due to the 

low transduction efficacy the number of obtained NK effector cells is even lower in the end. 

Therefore, methods to obtain more NK cells for adoptive NK cell therapy are urgently needed 

and efficient methods for ex vivo NK cell expansion are of great interest. 

1.5 Ex vivo NK cell expansion 

Ex vivo expansion of NK cells is an important strategy to produce NK cells for adoptive cell 

therapy and several review articles examine the progress in this discipline during the last 

years.136,138,139,271–274 This section covers important factors for NK cell expansion and gives an 

overview about NK cell expansion protocols with focus on applications that reached clinical use. 

1.5.1 The starting material and the importance of NK cell purity 

NK cells from different sources are used for ex vivo expansion 

First of all, NK cells for ex vivo expansion can be received from different sources. In 2015, most 

recruiting clinical trials utilized peripheral blood derived allogeneic (79%) or autologous (13%) 

NK cells, followed by other sources (8%) including the NK-92 cell line and umbilical cord 

blood.275 This project focused on NK cells from peripheral blood as the commonly used starting 

material. However, it should be mentioned that differentiation and expansion of NK cells from 

cord blood CD34 cells represents an upcoming option to obtain NK cells with possible 

advantages over conventionally used peripheral blood, as pointed out by Anasetti et al and 

described in the following.276 When a suitable cord blood unit for a distinct recipient is 

identified, it’s rapidly available “off-the-shelf” from a cord blood bank, whereas obtaining cells 

from a peripheral blood donor is usually more time consuming. In general, it’s less challenging 

to find an adequate cord blood donor, because the HLA matching of donor and recipient can be 

less stringent without increasing the risk for GvHD. The risk of infection transmission is 

minimal and a risk for the donor does not exist. Nevertheless, it has to be mentioned that the 

differentiation and expansion of NK cells from a rather limited starting cell number using cord 

blood takes about six weeks,277 and the length of the process could hamper the cost efficient 
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translation to broad clinical use. Another promising future concept, which is still in early 

development, is the generation of NK cells for therapy from pluripotent stem cells.278  

High NK cell purity of the NK cell graft is optimal for clinical requirements 

The NK cell frequency in the starting material represents an important factor. Many protocols 

start with a small fraction of NK cells within a mixture of cells such as PBMCs and the NK cells 

grow out over time. This strategy is simple and practical for later use of the NK cells in 

autologous settings, but the approach appears critical for allogeneic applications since remaining 

non-NK cells in the final cellular product can trigger unwanted side effects. Alloreactive T cells 

cause GvHD and represent a severe risk factor. Same as T cells, alloreactive B cells should not 

be infused, because they can lead to B cell lymphoproliferative disorder upon Epstein-Barr virus 

(EBV) reactivation,177,279 and they can result in the passenger lymphocyte syndrome.280 Both are 

critical side effects for the patient. In general, a pure NK cell product is essential to clearly trace 

back positive and negative treatment results to NK cells and not to other cell subsets to 

accurately evaluate clinical efficacy and possible risks of NK cells for immunotherapy.281 

Therefore, NK cell purification is reasonable before ex vivo expansion or at least before 

adoptive transfer of the final cell product. Depletion of CD3 T cells by magnetic cell separation 

(MACS) is applied since more than 20 years.282 During MACS, a conjugate consisting of a 

specific antibody and a magnetic particle binds specifically to a desired target, such as CD3 on 

T cells, allowing to retain and separate the target by a magnetic field.283 After CD3 depletion, 

subsequent magnetic enrichment of CD56 cells can be performed to achieve highly purified NK 

cells. Automated NK cell purification in clinical scale is realized by CD3 depletion and CD56 

enrichment using the CliniMACS system.170,198,284–286 Good manufacturing practice (GMP)-

compliant cell sorting represents an attractive option to start the clinical expansion of NK cells 

directly with a highly pure NK cell subpopulation of interest. A first proof of concept is shown 

by fluorescence-activated cell sorting (FACS) under GMP conditions to sort single KIR+ NK 

cells, that are more cytotoxic against AML blasts than bulk NK cells.287 Nevertheless, all 

antibodies for the intended sorting strategy are required in clinical-grade, hampering the general 

translation of this method to broad clinical use. 
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1.5.2 Cytokines for ex vivo NK cell expansion 

 

Figure 1.5 Structure of the receptors for IL-2, IL-15 and IL-21 

IL-2 or IL-15 is essential for ex vivo culturing of NK cells 

Activation and a basic expansion of NK cells are achieved by NK cell stimulating cytokines 

(Figure 1.5). IL-2 and IL-15 belong to the most essential components of NK cell expansion 

protocols, since it’s known for long time that IL-2 and IL-15 are crucial for proliferation and 

survival of murine and human NK cells.288–294 IL-2 and IL-15 belong to the family of cytokines 

that signal through the common γ-chain.295 IL-2 is mainly secreted by activated T cells, while 

IL-15 is primarily produced by DCs and monocytes. IL-2 and IL-15 share the same receptor γ-

and ß-chains, CD132 and CD122, which form the ßγ-heterodimer that is the primary subunit for 

the signal transduction. The common γ-chain is functional, but it binds cytokines only with 

extremely low affinity. The ßγ-heterodimer has a intermediate affinity, but it still requires 

nanomolar cytokine concentrations for activation, while the heterotrimer consisting of ßγ and 

additional α-chain strongly increases the affinity and allows signaling at picomolar cytokine 

concentrations.296,297 Importantly, the α-chains of the IL-2 and IL-15 receptors alone don’t 

mediate signal transduction. The expression of the IL-2 receptor α-chain (CD25) can be induced 

on NK cells after stimulation, e.g. with the combined cytokines IL-12, IL-15 and IL-18.62,200 

The receptor α-chain for IL-15 (CD215) is predominantly expressed on the surface of DCs and 

monocytes, it binds IL-15 with high affinity and IL-15 bound to CD215 can be trans-presented 

to NK cells, thereby enabling signaling through the αßγ-heterotrimer.298 Recombinant IL-15 is 

currently investigated in clinical trials and recombinant IL-2 is utilized extensively since 

decades, so that both components are commonly available in clinical-grade.201 The use of well 

defined and clinical-grade components is an important aspect for ex vivo NK cell cultivation to 

best possible meet regulatory requirements for clinical applications.  
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IL-21 is associated with NK cell proliferation, but its exact role is unclear 

Besides IL-2 and IL-15, the cytokine IL-21 may play an important role for NK cell expansion, 

since feeder cells genetically engineered to express membrane-bound IL-21 were found to 

provide a long lasting ex vivo proliferation of NK cells.203 However, for soluble IL-21 different 

or even contrary effects are published. As another IL-2 family cytokine, IL-21 signals though a 

heterodimer consisting of the common γ-chain and the IL-21 receptor α-chain. IL-21 is mainly 

produced by CD4 T cells and acts on various cell types including NK cells.299 IL-21 has been 

originally discovered as cytokine that plays a role in the development of NK cells from bone 

marrow progenitors.300 IL-21 can trigger apoptosis and shortens the lifespan of human and 

murine NK cells in vitro.301,302 In mice, IL-21 acts inhibitory on the expansion of NK cells but 

induces functional NK cell maturation.302,303 Although Wendt et al. published that human IL-21 

appears to increase the proliferation of human CD56bright NK cells304, others did not observe an 

impact of IL-21 on the proliferation of NK cells from healthy human donors or HIV patients.305 

Taken together, IL-21 differentially affects the expansion of NK cells dependent on the 

experimental setup and this cytokine should be further investigated for its potential to enhance 

ex vivo NK cell expansion. 

1.5.3 The role of accessory cells and feeder cells for NK cell expansion 

Cytokines alone are not sufficient for stimulation of cell growth. Culturing purified NK cells in 

IL-2 containing medium for 2-4 weeks for instance results only in a minor 5-20 fold NK cell 

expansion.171,273 Consequently, other stimuli are needed to enhance the proliferation and 

protocols for NK cell expansion often utilize effects of non-NK accessory cells or add irradiated 

autologous “feeder cells” to the culture (Table 1.3). The most efficient NK cell expansion 

however is achieved by culturing NK cells together with irradiated allogeneic feeder cells 

(Table 1.4). 

Autologous accessory cells trigger NK cell expansion 

Expansion of NK cells from the whole PBMC fraction is more effective than starting from 

purified NK cells, because non-NK cells within the cell mixture provide positive factors for the 

NK cell proliferation. CD14 cells within PBMCs are known for example to enhance the NK cell 

proliferation by soluble factors and via direct cell-to-cell contact with NK cells.306 In this 

context, immature and mature DCs appear to be the main drivers of the NK cell stimulation, 

whereas monocytes have little or no effect.307 DC derived exosomes were shown to induce NK 

cell expansion through NKG2D ligands and IL-15Rα.308 T cells induce NK cell proliferation 

after they have been activated, for instance by concanavalin A.309 Adding anti-CD3 antibody to 
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PBMCs lead to a profound NK cell proliferation,153,154,181,310–313 probably as a result of activated 

T cells, but the exact mechanism is not reported. Clinical-grade NK cells can be grown out from 

PBMCs by use of OKT-3, a clinical approved anti-CD3 antibody.153,154,181,311,312 This approach is 

suitable to expand autologous NK cells from different cancer patients as shown for B cell CLL 

and multiple myeloma (MM).181,311 However, starting the ex vivo culture with PBMCs goes 

along with co-expansion of T cells and NKT-like cells that account for the majority of cells in 

the final product. This contamination with non-NK cells is problematic and undesirable, 

especially for the use in allogeneic settings, as described in chapter 1.5.1.  

Irradiated autologous feeder cells can yield expanded NK cells with high purity  

To make use of autologous non-NK cells for NK cell expansion but to avoid the outgrowth of 

these cells during culture, the non-NK cell fraction is often separated, then inactivated by 

irradiation and afterwards added again to NK cells as stimulating autologous feeder cells. 

Irradiation of bystander cells is not only helpful to stop them from growing, but it can also 

provoke up-regulation of surface ligands that activate NK cells, such as the NKG2D ligands 

ULBP1-3 for instance.314 Nevertheless, co-culture of purified NK cells with irradiated 

autologous monocytes, B cells and T cells is a simple and GMP compliant method, but it’s not 

very efficient without activation of these bystander cells (e.g. 16-fold NK cell expansion in two 

weeks).315 In contrast, Sakamoto et al. showed recently that activated and afterwards irradiated 

autologous PBMCs as feeder cells allow for a median 4720-fold NK cell expansion after three 

weeks of cultivation with a final NK cell purity of 91% starting with PBMCs from digestive 

cancer patients.310 Apart from OKT-3, Sakamoto and colleagues activated the autologous feeder 

cell fraction with two other clinical-grade components, OK-432 and FN-CH296, additionally 

explaining the good expansion performance.310 Starting with already enriched NK cells using 

CD3-depleted PBMCs and cultivation for two weeks with OKT-3 and irradiated autologous 

PBMCs can yield a more pure cell population of 98% NK cells and ensures low numbers of 

unwanted T cells.316 To maximize the purity even further, GMP-compliant cell sorting prior to 

cultivation is a smart strategy to expand distinct NK cell subpopulations. Siegler and colleagues 

demonstrated that sorted single KIR+ NK cells without other contaminating cell populations can 

be expanded 160-390 fold in 19 days by OKT-3 and irradiated autologous PBMCs.287 
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Table 1.3 Clinical strategies for ex vivo NK cell expansion without allogeneic feeder cells 

Stimulation Year; 
Author 

Starting 
Material 

Cult. 
Syst. 

Fold NK 
Expansion 

Purity 
of final product 

Without feeder cells 

IL-2 
2004; 
Koehl171 

CD3-depl 
CD56-enr 
PBMCs 

? 
5  
(2-4 weeks) 

99% NK 
<0.1%. 

Autologous accessory cells 

IL-2; OKT-3 

2010;  
Sultu312 

PBMCs 

bio-
reactor;  
bags; 
flasks 

77 bioreactor 
530 bags 
770 flasks 
(20 days) 

38% bioreactor 
31% bags 
44% flasks 

2009; 
Barkholt154 

PBMCs ? 
1036 total cells  
(19 days) 

~30% NK 
~40% T cells 

2008; 
Alici 181 

Patient 
PBMC 

flasks 
1625 
(20 days) 

~65% NK 
~22% T cells 

2001; 
Carlens153 

PBMCs plates 
193 
(21 days) 

~55% NK 
~22% T cells 

IL-2; IL-21 
2014; 
Choi176 

CD3-depl 
PBMCs 

? 
3.7 
CD56+CD122+ 
(13-20 days) 

>90% CD56+CD122+ 

<3% NKT-like cells 
<0.3% T cells 

Autologous feeder cells 

IL-2; IL-15;  
irr autologous PBMC  

2015; 
Torelli315 

CD3-depl 
CD56-enr 
PBMCs 

flasks 
16 
(14 days) 

97% NK 
0.2% T 

IL-2; OK432;  
FN-CH296 + OKT-3 
activated 
irr autologous PBMC 

2015; 
Sakamoto310 

PBMCs 
flasks 
and 
bags 

4720 
(21-22 days) 

90.96% 
~4% T cells 

IL-2; OKT-3 
irr autologous PBMC 

2011; 
Parkhurst183 

CD3-depl 
patient 
PBMCs 

flasks 
and 
bags 

278-1097 
(21-26 days) 

91-98% NK 

2013; 
Lim316 

CD3-depl 
PBMC 

bags 
691 
(14 days) 

98.1% NK 
0.06% T cells 

2013;  
Ahn314 

CD3-depl 
CD56-enr 
PBMCs  

plates 
and 
flasks 

546 
(14 days) 

94.9% NK 
2.2% T cells 

IL-2 +/− IL-15; 
OKT-3;  
irr autologous PBMC  

2010; 
Siegler287 

CD3-depl  
56-enr 
PBMCs 

bags;  
plates 

117/63 bags 
(+/−IL15) 
993 plates 
(19 days) 

bags 
30%;NK 
45% NK (+IL-15) 
0.6% T cells 

+ GMP 
KIR 
sorted 

bags 
160–390 
(+IL-15) 

~100% NK 
> 0.01% T cells 

depl, depleted; cult. syst., culture system; enr, enriched; irr, irradiated;  
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Allogeneic feeder cells are the most efficient stimuli for ex vivo NK cell expansion 

Since NK cells are generally more responsive to allogeneic cells, it’s not surprising that 

allogeneic PBMCs turned out to stimulate NK cell expansion better compared to autologous 

PBMCs. In a study directly comparing the outgrowth of NK cells from the PBMCs of patients 

with advanced lymphomas or terminal solid tumors, NK cells expanded 169-fold when 

irradiated PBMCs from the patient were added as additional feeder cells, whereas 300-fold 

expansion was achieved with irradiated PBMCs from healthy donors.317 In addition, others 

already showed in the past that competent NK cell expansion is achieved when starting with 

purified NK cells and irradiated allogeneic PBMCs as feeder cells.318 

Since allogeneic PBMCs have to be available from a donor, it’s easier to use established cell 

lines as feeder cells for NK cell expansion. In fact, several cell lines are reported to induce NK 

cell expansion including HFWT, K562, RPMI 1866, Daudi, KL-1, MM-170 and EBV-LCL.319–

323 However, at least so far only a few cell lines are applied clinically for NK cell expansion. 

Presumably, this is because cell lines possess an unlimited capacity for proliferation, they are 

often tumorigenic and therefore represent a potential safety risk for the patient. Consequently, 

only cell lines with a proven safety profile are acceptable and it has to be ensured that the feeder 

cells are efficiently inactivated by irradiation when they are used to expand NK cells for 

adoptive NK cell therapy. 

The Wilms tumor cell line HFWT selectively induces NK cell expansion from PBMCs and cord 

blood mononuclear cells,324,325 while high NK cell numbers in co-culture with irradiated HFWT 

not only arise from mature CD3−CD56+ NK cells but also from CD3−CD14−CD19−CD56− NK 

cell precursors expressing CD122.326 Furthermore, after transfer of cord blood mononuclear 

cells together with HFWT cells into immunocompromised mice, the numbers of CD56dimCD16+ 

as well as CD56–CD16+ immature NK cells significantly increased in vivo. So far, NK cells 

expanded ex vivo with irradiated HFWT feeder cells were adoptively transferred to patients with 

recurrent malignant glioma, showing that the therapy is safe and partially effective.185  

In recent years, expansion of NK cells from genetically engineered K562 cells has been shown 

to be highly effective and first encouraging results were obtained with K562 modified to 

express membrane-bound IL-15 and the ligand for 41BB (K562-mb15-41BBL). While 

unmodified K562 trigger NK cell proliferation from PBMCs only to some degree, allowing 2.5-

fold NK cell expansion after seven days, K562-mb15-41BBL feeder cells yield around 20-and 

1000-fold NK cell expansion after one or three weeks of culture.266 Furthermore, stimulation of 

NK cells using K562-mb15-41BBL revealed for the first time that NK cells can undergo up to 

30 population doublings ex vivo, allowing median 5.9 x 104-fold NK cell expansion in the long 
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run, and indicating the high proliferative potential of NK cells.327 Compared to un-stimulated 

NK cells, NK cells expanded with K562-mb15-41BBL are more cytotoxic against several 

allogeneic and autologous tumor entities and efficiently mediate ADCC.328 In addition, human 

NK cells expanded with K562-mb15-41BBL proved their therapeutic efficacy for the treatment 

of sarcoma and myeloma in mouse xenograft models. 329,330  

Denman and colleagues tested the expansion of NK cells with IL-15 or IL-21 as membrane-

bound cytokines on modified K562 cells that were originally developed to expand antigen-

specific T cells and therefore also expressed CD64, CD86, 41BBL and truncated CD19.203 

Surprisingly, after three weeks of cultivation with membrane-bound IL-21 an extensive increase 

in NK cells of around 48 x 103-fold was achieved, while membrane-bound IL-15 gave around 

0.8 x 10x3-fold NK cell expansion, as seen with other IL-15 expressing K562 variants before. 

Moreover, weekly re-stimulation of NK cells with the K562 transfectants allowed a sustained 

level of NK cell expansion with K562 expressing membrane-bound IL-21, while the level of 

NK cell expansion declined over time with K562 expressing membrane-bound IL-15. Another 

group confirmed that K562 expressing membrane-bound IL-21 and 41BBL support sustained 

proliferation of NK cells and their experiments further suggested that activation of the STAT-3 

signaling pathway is involved in the effect of membrane-bound IL-21 on NK cell expansion.331 

Using patient derived PBMCs or starting with PBMCs from healthy persons for NK cell 

expansion with K562 expressing membrane-bound IL-21 yields comparable high NK cell 

numbers and, most importantly, adoptive transfer of these expanded NK cells into mice bearing 

human neuroblastoma improved the survival of the animals, proofing the therapeutic efficacy of 

these NK cells.332 

B cell lines derived by EBV transformation, which were already introduced as EBV-LCL, 

represent one of the first cell lines that were reported to stimulate NK cell expansion 30 years 

ago.309,333,334 The EBV-LCL cell line LAZ 388 was already applied to expand NK cells for 

clinical use in 1994, but back then the efficacy of NK cell expansion was still relatively limited, 

only allowing around 43-fold NK cell expansion after 13-31 days of cultivation.179 After the 

TM-LCL cell line was originally established to expand CD8 T cells,335 this line was extensively 

characterized and qualified for use in clinical trials.336 Later, the TM-LCL was applied to 

expand NK cells with clinical-grade quality. Co-culturing of purified NK cells with TM-LCL 

enables around 500-fold NK cell expansion after 2-3 weeks and results in a highly pure NK cell 

population for clinical applications.206 The clinical grade SMI-LCL cell line was generated 

similar to TM-LCL and it was applied more recently to expand clinical-grade NK cells from 

cancer patients for adoptive NK cell therapy in an autologous setting.139 Until 2013, 78 NK cell 

products for infusion were successfully generated with the SMI-LCL cell line that allows 3637-
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fold NK cell expansion after 24-27 days of culture. Thus, co-culture of NK cells with the SMI-

LCL line proved its ability to produce clinical-grade NK cells for adoptive immunotherapy in an 

efficient and reliable way and holds great promise for future NK cell applications. 

Table 1.4 Clinical strategies for ex vivo NK cell expansion using allogeneic feeder cells 

Stimulation Year; 
Author 

Starting 
Material 

Cult. 
Syst. 

Fold NK 
Expansion 

Purity of 
product 

Allogeneic feeder cells 

IL-2; IL-15;  
PHA, Iono 
irr ConA activated 
allogeneic PBMCs 

2002;  
Luhm318 

CD3-depl, CD4-depl, 
CD19-depl CD33-
depl PBMCs   

bags 
80-200 
(15 days) 

Day 12 

91% CD56 
0.3% CD3 

IL-2; OKT-3; 
irr autologous 
or allogeneic PBMCs 

2013; 
Kim317 

Patient PBMCs plates 

169/300  
for auto/allo 
feeder; 
(14 days) 

84%/94% NK 
for auto/allo 
feeder 

IL-2; 
irr HFWT cells 

2004; 
Ishikawa185 

PBMCs flasks 
113 
(2 weeks) 

86% 
CD56+/CD16+ 

IL-2; 
irr K562 expressing 
membrane-bound 
IL-15 and 41BBL 

2005; 
Imai266 

PBMCs plates 
1089 
(3 weeks) 

“virtually 
pure” 

2009; 
Fujisaki202 

PBMCs bags 
23, 152, 277 
after  
7, 14, 21 days 

Day 21 

96.8% NK 
3.1% T cells 

2012; 
Lapteva337 

PBMCs 
G-Rex 
vessels;  
bags 

442 G-Rex 
227 bags 
(10 days) 

70% NK 
5-35% T cells 

IL-15;  
irr K562 expressing 
membrane-bound 
IL-15 and 41BBL 

2011; 
Zhang338 

2014; 
Shah204 

Untouched isolated 
NK (research kit);338 
CD3-depl/CD56-enr 
PBMCs 204 

? 
~1000 
(21 days)338 

9-11 days204 

>90% NK 
≤0.2% T cells 

IL-2; 
irr K562 expressing 
membrane-bound 
IL-21 and 41BBL 

2012; 
Denman203 

PBMCs flasks 
4,8 x 104 
(21 days) 

21.7% T cells 

2013; 
Liu332 

Patient PBMCs flasks 
2363 
(14 days) 

83% NK 
9.1% T cells 

IL-2; PHA-P; 
irr allogeneic 
PBMCs; irr LAZ 388 
cells 

1994; 
Escudier179 

PBMCs  
CD3-depl 
w/o monocytes 

bags 
and 
plates 

~43 
(13-21 days) 

90% NK 
< 5% T cells 

IL-2; irr. EBV-LCL 

SMI-LCL206 
TM-LCL139 

2009,  
Berg206 

2013, 
Childs139 

CD3-depl/CD56-enr 
PBMCs from patients 
or healthy persons 

bags 

TM-LCL  
250-850 
(2-3 weeks) 

SMI-LCL 
198, 895, 3637 
after 14-16,19-
22, 24-27 days 

98% NK 
(TM-LCL) 

99.7% NK 
(SMI-LCL) 

41BBL, 41BB ligand; conA, concanavalin A; cult. syst., culture system; depl, depleted; Iono, ionomycin, irr, 
irradiated; PHA, phytohemagglutinin  
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1.5.4 Challenges for NK cell expansion due to clinical requirements 

Regulatory aspects can hamper NK cells on their way “from bench to bedside” 

Since several preclinical studies revealed the efficacy of NK cell therapy, clinicians are 

interested in the translation of these findings into clinical applications and several 

investigational trials were already initiated, as described before. Nevertheless, the transfer of 

basic research results to clinical use is often hindered, because previously applied methods are 

not compliant with clinical requirements including up-scaling issue and the need for processes 

that are compliant with GMP. GMP is the umbrella term for official guidelines that cover 

regulatory aspects for the manufacturing and quality control of products with intended 

therapeutic use. Thereby, GMP assures an adequate high level of safety, quality and efficacy of 

these products. Importantly, GMP is not only critical for industrial manufacturers with focus on 

cellular products in the late phases of clinical evaluation, but also essential for academic 

investigators planning early phase clinical trials.339 Furthermore, GMP guidelines differ between 

different regions of the world. The clinical use of expanded NK cells is complicated, because ex 

vivo processing of cells generally involves methods and components for cell isolation and 

cultivation that harbor the potential risk to be critical for GMP demands. 

Standardized expansion of NK cells is challenging 

Consistent clinical NK cell expansion depends on qualified and preferably well defined cell 

culture ingredients to be GMP-compliant. Whereas cytokines such as IL-2 and IL-15 fulfill 

these requirements, cellular components of expansion protocols such as feeder cells cannot be 

clearly defined and possibly vary in quality from batch to batch when they are maintained in 

culture over longer time. Using one large batch of previously produced and then cryopreserved 

and qualified feeder cells could circumvent this issue to some extent and the feasibility of this 

approach was demonstrated for K562 feeder cells expressing membrane-bound IL-15 and 

41BBL.340 Furthermore, for TM-LCL feeder cells it was shown using global gene expression 

profiling that the cells do not change in culture for at least three month, ensuring that TM-LCL 

cells at different culture periods yield expanded NK cells with a constant quality.341 Still, feeder 

cells embody a factor for ex vivo NK cell expansion that is difficult to control. Thus, better 

understanding of the mechanisms for NK cell expansion is important to overcome the need for 

feeder cells in the future. 

Automation of the cell processing is essential for the success of cellular therapy 

Cellular therapies are generally associated with relatively high costs, due to the complex 

procedures that are applied and the often required expensive reagents. Sipuleucel-T, a cellular 



 

 

Introduction and Background 38 Ex vivo NK cell expansion 

therapy for prostate cancer based on ex vivo stimulation of DCs, successfully reached clinical 

use, but it’s extremely expensive in relation to its relatively limited clinical efficacy, 

demonstrating the challenge for cellular therapies to compete with cheaper and more easily 

administered therapies.342 Automation of the production process is cost-saving, it best possible 

assures constant product quality without the need for highly skilled experts, and it’s therefore 

required to make cellular therapy more widely available beyond specialized academic centers.343 

For clinical purification of NK cells, NK cell enrichment from PBMCs is commonly applied by 

automated CD3 depletion and subsequent automated CD56 enrichment, using MACS with 

clinical-grade separation reagents.136,274 Thus, a suitable solution for automated and GMP-

compliant NK cell purification is established. 

While GMP-conformity is not an issue for NK cell purification anymore, the cultivation of NK 

cells remains challenging. In some clinical trials, NK cells are still cultured in small scale tissue 

culture flaks (T flasks) by hand, so that it’s required to handle for instance 51 T flasks for a 

single treated patient.183 This high number of T flasks represents a workload that is hard to 

manage and it potentiates the risk of generating an unsterile product, because it’s required to 

open the vessel from time to time to exchange culture medium. Compared to T flasks, cell 

culture bags allow to handle a larger culture volume at once over long time without opening the 

bag, but the expansion performance is reduced.287,312 First investigators automated NK cell 

culture processes using a bioreactor system.312,344,345 But, this bioreactor system still needs an 

initial manual cultivation phase, because relatively high culture volumes are needed to start the 

automated culture and this automated cultivation goes along with declined NK cell yields 

compared to manual cultivation in small scale. Consequently, better solutions have to be found 

for GMP-compliant NK cell cultivation to support the success of adoptive NK cell therapy in 

future. 

 

To summarize this chapter, ex vivo expansion is a strategy to provide high numbers of activated 

NK cells that are originally derived from peripheral blood in most cases. Cytokines are essential 

but not sufficient to induce a high level of NK cell proliferation. Thus, NK cell expansion 

protocols take advantage of non-NK cell accessory cells and feeder cells and the highest 

possible expansion is achieved with allogeneic feeder cell lines. Although protocols for NK cell 

expansion progressively improved over time, proper translation of methods for ex vivo NK cell 

expansion to therapeutic use in clinical scale is still complicated because of GMP requirements.  
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2 Aim of the Study 

 

Figure 2.1 The project deals with the translation of NK cell therapy from “benchtop to bedside” and aims 
at the development of a method for clinical NK cell expansion, a big challenge for NK cell therapy. 

Since NK cells are able to detect and kill tumor cells, adoptive NK cell transfer represents a 

therapeutic opportunity to combat cancer. However, the low number of NK cells that can be 

obtained from a donor possibly restricts the efficacy of adoptive NK cell therapy. Thus, 

protocols for ex vivo NK cell expansion and activation are needed to fulfill the requirement to 

generate high numbers of NK cell effector cells. In this context, NK cell therapy is hampered by 

the lack of suitable methods for clinical scale NK cell expansion that can be used routinely 

within a GMP regulated environment (Figure 2.1). Therefore, the aim of the project was to 

develop a highly efficient ex vivo activation and expansion of NK cells for clinical use in cancer 

immunotherapy. To reach this main goal, three basic questions were defined:  

(I) What is a suitable technical method to translate protocols for NK cell expansion from early 

development in laboratory scale to large scale for clinical use? 

(II) What is the most efficient way to induce NK cell proliferation ex vivo to serve clinical 

needs? 

(III) How does ex vivo activation and expansion of NK cells affect the phenotype and function 

of the cells and what are the consequences for their anti-tumor efficacy? 

These clinically relevant questions were addressed in this work. Thereby, the results of the 

project contribute to overcome a major challenge of NK cell adoptive immunotherapy, they gain 

a better understanding of NK cell biology and they hopefully result in an improved treatment of 

cancer. 
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3 Materials and Methods 

Parts of the text in this chapter have been directly taken or slightly modified from Granzin et al. 

(2015)346 and from a second manuscript that is currently submitted.347 The text has been 

originally written by myself. This chapter describes all materials and methods used in 

experiments that were performed to meet the aims of the project.  

3.1 Materials 

3.1.1 Primary cells and cell lines 

Primary NK cells were obtained from healthy donor buffy coats (Klinikum Dortmund) or 

leukapheresis products (Hannover Medical School, Hannover, Germany, or Institut für 

Klinische Transfusionsmedizin und Immungenetik Ulm Gemeinnützige GmbH, Ulm, Germany). 

The EBV-LCL (SMI-LCL) line was provided by Dr Richard W. Childs (National Heart, Lung 

and Blood Institute, National Institutes of Health, Bethesda, MD, USA). Human T cell leukemia 

cell line 1301 was obtained from Sigma-Aldrich, and K562, Raji and Daudi cell lines were 

purchased from German Collection of Microorganisms and Cell Cultures (DSMZ, 

Braunschweig, Germany). UKRV-MEL-02, COLO-205, SK-MEL-28 and SK-MEL-28-luc 

were obtained from German Cancer Research Center (DKFZ, Heidelberg, Germany). 

All cell lines were maintained in Roswell Park Memorial Institute (RPMI) 1640 supplemented 

with 10% fetal bovine serum and 2 mmol/L L-glutamine. 

3.1.2 Mice 

NOD-scid IL-2Rgammanull (NSG) mice were bred at the DKFZ animal facility. Mice were 

housed under specific pathogen–free conditions and in accordance with all standards of animal 

care. All animal experiments were approved by the Regierungspräsidium Karlsruhe. 

3.1.3 Cell culture media 

Table 3.1 List of used cell culture media 

Medium Supplier 
RPMI 1640 Biowest 

RPMI 1640 Miltenyi 

TexMACS research Miltenyi 

TexMACS GMP Miltenyi 
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3.1.4 Laboratory accessories and cell culture products 

Table 3.2 List of used laboratory accessories 

Material Supplier 

Columns for MACS 
(LS, LD) 

Miltenyi 

Cell culture plates  
(6, 12, 24, 48, 96, wells; 
round and flat bottom) 

BD Biosciences; 
Corning 

Cell culture flasks 
(75, 150, 175 cm2) 

TPP; Greiner;  

Cell strainer  
(40 µM, 70 µM) 

BD Biosciences 

Centrifugal filters 10K Amicon 

CliniMACS tubing set 
TS100 

Miltenyi 

CliniMACS tubing set 
TS 310 

Miltenyi 

CliniMACS tubing set 
TS 730 

Miltenyi 

Cryo-Vials Thermo 
Scientific 

Eppendorf cups Eppendorf 

FACS tubes BD Biosciences; 
Corning 

Falcon tubes 
(15, 50, 250 mL) 

BD Biosciences 

Material Supplier 

Filter Tips 
(10, 20, 100, 200, 1000 µL) 

Biozym 
Lumaplate Perkin Elmer 
Mr Frosti Freezing 
Containers 

Thermo 
Scientific 

Needles Microlane 3 (30 G) BD 

Pipette combitips Eppendorf 

Pipette tips Eppendorf 

Pump MPC 101 ILMAC 

Scalpels Feather 

Serological pipettes Sarstedt; Costar 

Surgery equipment Dimeda 

Syringes   

- with Lure-Lock BD 

- 5, 10, 50 mL Discardit; 
Corning 

- TBC 1 mL mediware 

Transfer bags Terumo 
Transfusion 

Transwell plates (0.4 µM) Corning 
Tubing interconnectors Miltenyi 

Quadro MACS separator Miltenyi 

3.1.5 Solutions 

3.3 Lists of used solutions 

PBS/EDTA/BSA (PEB) buffer 
for use during flow cytometry staining 

Sodium chloride 137 mM 
Disodium chloride 8.1 mM 

Potassium chloride 2.6 mM 

Potassium dihydrogen phosphate 1.4 mM 

EDTA 2 mM 

BSA 0.5% 

 

 

Buffer for  
 CliniMACS processes 
for automated GMP compliant cell processing 

CliniMACS buffer  

Human serum albumin (HSA) 0.5% 
 

Red blood cell lysis buffer 
for preparation of cells from mouse blood 

Ammonium chloride 8.3 g/L 
Potassium bicarbonate 1 g/L 

EDTA 37 mg/L 
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3.1.6 Antibodies 

Antibodies for flow cytometry were conjugated with allophycocyanin (APC), phycoerythrin 

(PE), fluorescein isothiocyanate (FITC), VioBright FITC, APC-Vio770, PE-Vio770, VioBlue or 

Viogreen, Antibodies used for blocking during cell culture experiments were of functional grade 

or were concentrated with centrifugal filters and dissolved in CliniMACS buffer to ensure 

absence of sodium azide and endotoxins.  

Table 3.4 List of used antibodies 

Antigen 

/ Target 

Antibody 

Clone 
Supplier 

CX3CR1 2A9-1 Miltenyi 

CD2 LT2 Miltenyi 

CD3 BW264/56 Miltenyi 

CD14 TÜK14 Miltenyi 

CD15 VIMC6 Miltenyi 

CD16 VEP13 Miltenyi 

CD20 LT20 Miltenyi 

CD20 rituximab Roche 

CD25 4E3 Miltenyi 

CD25 REA570 Miltenyi 

CD25 B-B10 eBioscience 

CD40 HB14 Miltenyi 

CD45 5B1 Miltenyi 

CD48 REA426 Miltenyi 

CD56 REA196 Miltenyi 

CD57 TB03 Miltenyi 

CD58 TS2/9 Miltenyi 

CD62L 145/15 Miltenyi 

CD94 REA113 Miltenyi 

CD107a H4A3 Miltenyi 

CD137L REA254 Miltenyi 

CD158a REA284 Miltenyi 

CD155 PV404.19 Miltenyi 

CD158b DX27 Miltenyi 

CD158e DX9 Miltenyi 

Antigen 

/ Target 

Antibody 

Clone 
Supplier 

CD159a REA110 Miltenyi 

CD159c REA205 Miltenyi 

CD178 NOK-1 Miltenyi 

CD210 REA239 Miltenyi 

CD226 DX11 Miltenyi 

CD244 REA112 Miltenyi 

CD253 RIK-2.1 Miltenyi 

CD314 BAT221 Miltenyi 

CD314 1D11 eBioscience 

CD334 9E2 Miltenyi 

CD336 2.29 Miltenyi 

MICA/B 6D4 Miltenyi 

mIgG1 P3.6.2.8.1 eBioscience 

mIgG1 IS5-21F5 Miltenyi 

mIgG2a S43.10 Miltenyi 

mIgG2b IS6-11E5.11 Miltenyi 

mIgM IS5-20C 4 Miltenyi 

IFNγ LT27:295 Miltenyi 

IL-10 JES3-9D7 Miltenyi 

NKp80 4A4.D10 Miltenyi 

TNF-α cA2 Miltenyi 

ULBP1 #170818 R&D Systems 

ULBP3 #166510 R&D Systems 

ULBP2/5/6 #165903 R&D Systems 

  



 

 

Materials and Methods 43 Materials 

3.1.7 Kits and reagents 

Table 3.5 List of used kits and reagents 

Material Supplier 

AB serum Invitrogen, 
lifetechnologies 

Agilent Gene Expression 
Hybridization Kit 

Agilent 
Technologies 

Agilent Low Input Quick 
Amp Labeling Kit 

Agilent 
Technologies 

Agilent RNA 6000  
Nano Kit 

Agilent 
Technologies 

Agilent SurePrint G3 
Human Gene Expression 
Microarrays 8 x 60K v2 

Agilent 
Technologies 

Ammonium chloride Sigma Aldrich 

Bovine Serum Albumin 
(BSA) 

Bovogen 
Biologicals 

CD3 MicroBeads Miltenyi 

CD56 MicroBeads Miltenyi 

Celltrace Violet 
Proliferation Dye 

Life 
Technologies 

Celltrace CFSE 
Proliferation Kit 

Life 
Technologies 

CliniMACS buffer Miltenyi 

CliniMACS anti-Biotin 
reagent 

Miltenyi 

CliniMACS CD19 reagent Miltenyi 

CliniMACS CD56 reagent Miltenyi 

CliniMACS TCRαβ-Biotin Miltenyi 

Dimethylsulfoxide (DMSO) Sigma Aldrich 
DNAse I Sigma Aldrich 
Fetal bovine serum Biochrom 

Ethylene-diamine-
tetraacetic acid (EDTA) 

Fluka; 
Biochrom 

Fixable Aqua Dead Stain Life 
Technologies 

L-Glutamine PAA 

Material Supplier 

GolgiStop BD Biosciences 

Heparin-solution Braun 

Hyaluronidase Typ V Sigma Aldrich 

Human Serum Albumin Grifols 

IFNγ Miltenyi 

Ionomycin (Iono) Sigma Aldrich 

IL-2 (Proleukin) Novartis 

IL-12 Miltenyi 

IL-15 Miltenyi 

IL-21 Miltenyi 

Isoflurane Braun 

D-Luciferin, Staybrite Biovision 

Lympholyte-M Cedarlane 

MACSplex Cytokine 12 kit, 
human 

Miltenyi 

Monensin eBioscience 

NK cell isolation kit human Miltenyi 

NucleoSpin RNA kit Machery-Nagel 

PANCOLL PAN Biotech 

D-PBS Sigma Aldrich 

Propidium iodide Miltenyi 

Phorbol myristate acetate 
(PMA) 

Sigma Aldrich 
Potassium bicarbonate Sigma Aldrich 
Potassium chloride Merck 

Potassium dihydrogen 
phosphate 

Merck 

RA1 buffer Machery-Nagel 

Sodium chloride Merck 

Telomere PNA Kit/FITC Dako 

TNF-α Miltenyi 

Triton x-100 Sigma Aldrich 

Trypan blue Sigma Aldrich 
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3.1.8 Devices and equipment 

Table 3.6 List of used devices and equipment

Material Type Supplier 

Cell processing device CliniMACS Prodigy Miltenyi 

Centrifugues 

Biofuge pico 

Heraeus 
Multifuge 4KR 

Multifuge X3R 
Multifuge3SR 

Varifuge 3 ORS 
Counting chamber Neubauer chamber Blau Brand 
Flow cytometer MACSQuant Analyzer 10 Miltenyi 

Microarray Equipment 

Agilent 2100 Bio-analyzer 
Agilent Technologies Agilent’s Microarray Scanner System G2505C 

Hybridization chamber and oven 
ND-1000  
Spectrophotometer 

NanoDrop Technologies 

Incubators Heracell 240 Heraeus 
BBD6220 Heraeus 

Irradiators 
Animal irradiator OB 58/902-1 Buchler 
Gammacell 1000 Theratronics 
RS 2000 Biological Research Irradiator Radsource 

Imaging systems for in 
vivo luciferase activity 

IVIS imaging system-100 Perkin Elmer 
IVIS lumina series III 

Laminar flow clean 
benches 

Typ HS12 Heraeus 

Typ KS12 Heraeus 

Cell Gard, Lab Gard Nuaire 

Lumaplate reader TopCount NXT Perkin Elmer 

Microscopes DMIL Leica 

Wilovert 30 Hund Wetzlar 

Multichannel pipette Transferpipette Gilson 

Multistepper Multipipette plus Eppendorf 

Liquid nitrogen tanks Cryostem 6000 MVE 

1500 series 190 MVE 

Piepette boy Cell Mate II Matrix 

Red light lamp Heat Glo 75 W ExoTerra 

Sterile tubing welders 
? Terumo transfusion 

 products 
Sterile tubing welder Hematron III Baxter 

Thermomixer Compact Eppendorf 

Water bath Heraeus Julabo TW20 Kendro 

Vortexer VortexGenie 2 VWR 
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3.2 Methods 

3.2.1 Flow cytometry and cell counting 

Cells were stained according to the product manual of the used staining antibody and analyzed 

by means of the MACSQuant Analyzer 10 and MACSQuantify 2.5 software. Dead cells were 

routinely excluded from the analysis by means of propidium iodide staining. Mouse IgG1, 

IgG2a, IgG2b, IgM or control REAfinity antibodies (REAs) conjugated with the respective dyes 

were used as isotype controls. Of note, the samples from the comparison between automated 

and manually expanded NK cells (chapter 4.1) were stored in liquid nitrogen first, so that they 

could be analyzed all together at a later time point. If not stated differently, determination of cell 

concentrations was always done by use of the MACSQuant Analyzer. 

3.2.2 Cell counting with Neubauer chamber 

For maintenance of cell lines, cells were counted using a Neubauer chamber in case no 

MACSQuant instrument was available. The cell suspension was diluted with an appropriate 

volume of trypan blue solution (0.05% w/v) for discrimination of dead cells. Viable cells were 

counted with the Neubauer counting chamber and the cell concentration was calculated using 

the following formula: 

Cell concentration per mL = counted cells/counted squares x dilution factor x 104 

3.2.3 Freezing and thawing of cells 

To freeze cells, the cells were suspended in RPMI medium with 20% fetal bovine serum and 

10% dimethylsulfoxide (DMSO) at 1-10 x 107 cells/mL and transferred in cryo-vials. After 

initial storage in Mr Frosti Freezing Containers at -80°C for 24-72 hours, the frozen cells were 

transferred to liquid nitrogen. For thawing, cells were incubated at 37°C by use of a water bath 

until the sample is not frozen anymore and afterwards the cells were washed once before use 

(300 x g for 1 min). 

3.2.4 The CliniMACS Prodigy system as tool for automated NK cell processing 

The CliniMACS Prodigy system allows for automation of cell manufacturing processes for 

routine use in the clinic and it combines many different features as shown in Figure 3.1. Due to 

its suitable properties, the CliniMACS Prodigy was selected as a tool to develop a fully 

automated and GMP-compliant process for expansion of NK cells that is readily applicable for 

clinical use. For this purpose, the flexible programming suite (FPS) of the instrument was used 
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to design four different programs and the processing was performed with the CliniMACS 

Prodigy software version V.1.1.1 (build 2180). The programs were generated for use with 

Tubing Set 730 and they are described very briefly in the following. The program 

“NK_cell_setup_cultivation” allows the transfer of the NK cell suspension from a clinical 

reservoir bag to the CentriCult Unit (CCU) and mixing it with a selectable volume of cell 

culture medium from another reservoir bag. The program “NK_cell_culture” is used to ensure 

that the temperature and gas composition within the CCU is maintained at selectable parameters 

and spinning of the CCU at selectable intervals can be chosen to ensure mixing of cells. The 

program “NK_cell_media_feed” allows removing and adding selectable volumes of cell culture 

media from and to the CCU. The last program “NK_cell_take_sample” allows for shortly 

spinning of the cell suspension within the CCU and then 3 mL of the cell suspension are 

pumped in a sample pouch that can be welded off from the tubing for analysis. The detailed 

process steps during the automated NK cell cultivation using a clinical-grade NK cell expansion 

protocol are explained in chapter 3.2.6. Furthermore, the instrument was used for automated 

enrichment of NK cells from leukapheresis products as described in chapter 3.2.5. 

 

Figure 3.1 The CliniMACS Prodigy system incorporates several features for complex processing of cells 
for clinical use within a closed system. (1) Clinical bags are connected to a closed tubing set and allow 
sterile conditions during the process. (2) Several valves are used for controlled transfer of liquids and gas 
to the different components of the instrument. (3) Sensors for air bubbles allow discrimination between 
liquid and air in defined sections of the tubing, ensuring proper process control for handling of liquids and 
gases. (4) A pump transports liquids and gases in a defined speed. (5) Magnetic cell separation in clinical 
scale can be performed by a large MACS column and a special clinical scale magnet for MACS. (6) The 
CentriCult Unit allows centrifugation and cultivation of the cells. (7) Cultured cells can be observed by an 
installed microscope. (8) A camera for layer detection can be used during centrifugation and allows 
density gradient centrifugation including isolation of cells from a detected layer. (9) Defined gas supply is 
provided during cell culture applications. (10) Operation of the system and in-process control is done by a 
touch screen. 
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3.2.5 Cell separation 

PBMC preparation from buffy coats 

Standard density gradient centrifugation was used to obtain PBMCs from buffy coats.348 

CliniMACS buffer with 0,5% human AB serum was added to 20-30 mL of buffy coat to a total 

volume of 35 mL and layered over 15 mL of Pancoll. Centrifugation was performed at 445 x g 

for 35 min with break 0 and the PBMC layer was isolated. After a first washing step at 300 x g 

for 15 min a second washing step was performed at 200 x g for 10 min to efficiently remove 

remaining platelets. 

Magnetic cell separation (MACS) 

Purification of NK cells was performed by MACS.  

Manual untouched separation of NK cells 

For untouched NK cell isolation from buffy coats, PBMC preparation was performed first. Then, 

the NK cell isolation kit human was applied for untouched enrichment of NK cells from PBMCs 

according to the user manual. This protocol resulted typically in >95% CD56+/CD3− NK cells 

and was used routinely to obtain purified NK cells if not stated differently. 

Manual separation of NK cells preceding automated NK cell expansion 

To obtain NK cells for automated NK cell expansion (and manually performed NK cell 

expansion in comparison), NK cell separation was done by CD3 depletion and CD56 

enrichment, representing the current standard for clinical NK cell enrichment. Briefly, NK cells 

were enriched from buffy coat derived PBMCs by means of CD3 depletion with the use of 

human CD3 MicroBeads and LD columns followed by CD56 enrichment with the use of human 

CD56 MicroBeads and LS columns, according to the user manuals. 

Automated NK cell separation using the CliniMACS Prodigy system 

For separation of NK cells from leukapheresis products, the CliniMACS Prodigy instrument and 

tubing set TS310 were used for automated TCR-α/β-CD19 depletion according to the available 

application sheet. Further automated CD56 enrichment with the use of the instrument was 

achieved by means of Program Enrichment 1, CliniMACS CD56 Reagent and tubing set TS100. 
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3.2.6 Expansion of NK cells 

If not stated differently, purified NK cells were routinely cultivated in medium supplemented 

with 5% human serum type AB and 500 U/mL of IL-2, either together with 100 Gy irradiated 

EBV-LCL at a ratio of 1:20 and a starting concentration of 5.25 x 105 total cells/mL, or without 

feeder cells at a seeding density of 5 x 105 cells/mL. The AB serum was heat-inactivated for 20 

min at 56°C. TexMACS GMP medium was used for automated NK cell culture and for manual 

NK cell expansion that was performed as a comparison to the automated cultivation. TexMACS 

Research medium was used for all other experiments. Irradiation of feeder cells was performed 

by x rays using the RS 2000 instrument or by gamma rays using the Gammacell 1000 

device. .Under some conditions, human IL-21 was added to the medium, as indicated, with a 

concentration of 100 ng/mL if not stated differently. The NK cell density was checked during 

cultivation by staining and counting viable CD3-/CD56+ cells by flow cytometry. 

Manual NK cell expansion 

NK cell culture was started as described before using T flasks or cell culture plates. Seven days 

after start of cultivation fresh medium was added to double the culture volume and every second 

to fifth day thereafter fresh medium was added to dilute the cell density to 5-8 x 105 NK 

cells/mL. Expanded NK cells were re-stimulated at later time points in some experiments, as 

indicated, by co-culturing the expanded NK cells again with irradiated EBV-LCL at a ratio of 

1:20 at a cell concentration of 5.25 x 105 total cells/mL. For practical reasons, only a fraction of 

the cells was kept in culture over longer time and the NK cell expansion fold was determined by 

dividing the theoretical NK cell number at the time point of interest by the NK cell number at 

start of cultivation. 

Automated NK cell expansion using the CliniMACS Prodigy 

Automated NK cell expansion was performed by means of the CliniMACS Prodigy instrument 

with the use of tubing set TS730 and programs that were generated with a process development 

platform provided with the instrument (see chapter 3.2.4). In short, a clinical bag containing the 

starting cell material was connected to the tubing set through sterile welding, and the cells were 

transferred automatically to the CCU of the instrument. A cultivation program for temperature 

control and repeated input of CO2 maintained the cultivation conditions comparable to manual 

cultivation by means of an incubator at 37°C and 5% CO2. The cultivation was initiated with 70 

mL culture volume, and the volume was increased to 140 mL at day 7 and to 280 mL at day 9 

by pumping in fresh medium from a reservoir bag. Medium (210 mL) was exchanged at day 12 

while the cultivated cells were retained in the CCU by centrifugation. Until day 7, the cells were 

cultivated in a static culture, and, after day 7, short centrifugation intervals of 1 to 2 seconds 
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were used every 30 to 60 seconds to gently mix the cells, allowing high cell density cell culture. 

Transfer of small volumes of the cell suspension to sterile sample pouches was used at days 7, 9, 

12 and 14 for sampling during the process. 

3.2.7 Gene expression 

RNA isolation, amplification and labeling 

For total isolation of ribonucleic acid (RNA), 1 x 106 unexpanded and expanded NK cells per 

sample were lysed in RA1 buffer and stored at −20°C. To ensure high purity of the starting 

material, only CD3-depleted and CD56-enriched NK cells were considered for micro-array 

analysis. Human total RNA was isolated with the use of the NucleoSpin RNA kit. RNA quality 

and integrity were determined with the use of the Agilent RNA 6000 Nano Kit on the Agilent 

2100 Bio-analyzer, and RNA integrity numbers were confirmed to be between 8.1 and 10. 

According to published data, RNA integrity number >6 is of sufficient quality for gene 

expression profiling experiments.349 RNA was quantified by measurement of A260 nm on the 

ND-1000 spectrophotometer. Total RNA from unexpanded and expanded NK cell samples (100 

ng each) was used for the amplification and labeling step with the use of the Agilent Low Input 

Quick Amp Labeling Kit. Yields of complementary RNA measured with the ND-1000 

Spectrophotometer were in all cases >5 mg, and dye incorporation rates were in all cases 

>15fmol/ng. 

Hybridization of agilent whole human genome oligomicro-arrays 

Hybridization was performed according to the Agilent 60-mer oligo-micro-array processing 

protocol with the use of the Agilent Gene Expression Hybridization Kit. Briefly, 600 ng of Cy3-

labeled fragmented complementary RNA in hybridization buffer was hybridized overnight (17 h, 

65°C) to Agilent SurePrint G3 Human Gene Expression Microarrays 8 x 60K v2 with the use of 

Agilent’s recommended hybridization chamber and oven. Fluorescence signals of the 

hybridized Agilent Microarrays were detected with the use of Agilent’s Microarray Scanner 

System. The Agilent Feature Extraction Software (FES 10.7.3.1) was used to read out and 

process the micro-array image files. 

Pre-processing of micro-array data 

Raw intensity data were extracted from Feature Extraction output files for Agilent Whole 

Human Genome Oligo Microarrays 8 x 60K v2 with the use of Rosetta Resolver software 

(Rosetta, Inpharmatics, LLC). All subsequent calculations were performed with the use of 

R/Bioconductor and software packages therein.350,351 Background-corrected intensity values 
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were normalized between arrays by means of quantile normalization.352 Reliable signal 

intensities were considered at P ≤ 0.01, according to the Rosetta error model.353 Log2-

transformed normalized intensity values were used for subsequent statistical analysis.  

The data set has been uploaded to the NCBI GEO public database: record No. GSE62654. 

3.2.8 Cytotoxicity assays 

Flow cytometry based assay for NK cell cytotoxicity and ADCC 

Different target cells were labeled with CellTrace Violet according to the user manual (2 µM; 5 

min). Labeled target cells (1 x 104) per well were seeded in 96-well round-bottom plates and 

cultivated alone, as a control, or with NK cells at different NK-to-target ratios, as indicated. To 

analyze antibody-dependent cytotoxicity, 1 mg/mL of rituximab was added directly to the co-

culture of NK cells and target cells. After 4 h of incubation, plates were stored at 4°C for 0.5 to 

2 h before the viable CellTrace Violet-positive target cells were quantified by use of the 

MACSQuant Analyzer 10. The difference between the number of viable target cells in samples 

with NK cells and in samples without NK cells was defined as killed target cells. 

Killing assay based on chromium release  

A standard 51Cr- release assay was performed as follows. Target cells were suspended in 500 µL 

RPMI medium and incubated with 100 µCi 51Cr for 60-90 min. Afterwards, the labeled target 

cells were seeded at 3x104 cells/mL in 96-well round-bottom plates and co-incubated for 4 

hours with RPMI medium or with NK effector cells at different NK-to-target ratios or with 

RPMI medium containing 10% Triton x-100. The supernatants (100 µL) were transferred to a 

lumaplate and after drying over night the signal intensity was measured using a lumaplate reader. 

The percentage of specific lysis was calculated from counts for 51Cr release as follows:  

Specific lysis =  (counts for NK cell sample – counts for medium) 

/ (counts for Triton x-100 – counts for medium) x 100 

3.2.9 Degranulation and production of IFN-γ and TNF-α 

Cytokine production and degranulation were analyzed by means of flow cytometry. NK cells (2 

x 104) per well were in seeded in RPMI medium using 96-well round-bottom plates. The NK 

cells were left untreated, as a control, or were stimulated with 1 x 104 K562 cells or with 50 

ng/mL phorbol myristate acetate (PMA) and 0.5 µM ionomycin (Iono). During the stimulation, 

the cells were cultivated with CD107a-APC in addition to Monensin or GolgiStop according to 

the user manuals. For experiments using stimulation with K562, the cultivation was stopped 
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after 4 h, whereas stimulation with PMA/Iono was performed for 2 h. Then, labeling with 

Fixable Aqua Dead Stain was used in some cases to exclude dead cells during the analysis. 

Afterwards, the cells were fixed, permeabilized and stained for IFN-γ, TNF-α and CD56 (Inside 

Stain Kit, Miltenyi). The latter marker was used to discriminate NK cells from co-cultivated 

K562 target cells. 

3.2.10 Cytokine detection assay using a multiplex bead-array assay 

A multiplex bead-array assay was used to quantify cytokines in culture supernatants. The 

method is based on the binding of cytokines to different capture beads. The capture beads 

exhibit defined fluorescence properties and they can be analyzed by standard fluorescence 

cytometry. The MACSplex cytokine 12-kit, human was used according to the product manual to 

detect GM-CSF, IFN-α, IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-17A, and TNF-

α. The measurement was performed by means of the MACSQuant 10 and the data were 

automatically analyzed using the respective tool from the MACSQuantifiy software. To 

measure cytokines from EBV-LCL feeder cells and NK cells during expansion, NK cells and 

irradiated EBV-LCL were cultivated either alone or together as described in chapter 3.2.6. 

Cultures were terminated at different time points, as indicated, and the supernatants were taken 

and frozen at −20°C until the MACSplex measurement. To analyze the cytokine production of 

expanded NK cells upon stimulation, NK cells were expanded for 14 days using IL-2, EBV-

LCL co-culture and adding IL-21 at start of cultivation. Then, these expanded NK cells 

(1x106/mL) were washed with RPMI medium and cultivated together with or without SK-MEL-

28 cells (4x105/mL) for 24 h in RPMI medium. Afterwards, supernatants were taken and frozen 

at −20°C until MACSplex measurement. 

3.2.11 Telomere length analysis 

Telomere length was measured by means of flow cytometry with the use of a commercial 

Telomere PNA Kit/FITC (Dako) according to the user manual. Detection of the samples labeled 

with FITC-conjugated peptide nucleic acid was done with the use of the MACSQuant Analyzer 

X. As recommended, the cell line 1301 was used as internal control and relative telomere length 

(RTL) was calculated as follows: 

RTL=  

  (MFI sample cells with probe − MFI sample cells without probe) x 2 x 100  

/  (MFI control cells with probe − MFI control cells without probe 

MFI = mean fluorescence intensity 
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3.2.12 Proliferation assay using Celltrace Violet 

Celltrace Violet Proliferation Dye was used according to the product manual to perform a 

proliferation assay comparable to the commonly used carboxyfluorescein succinimidyl ester 

(CFSE) assay. A high concentration of the Celltrace Violet dye and a prolonged incubation time 

(10 µM and 30 min) was used to ensure a very bright and consistent staining. 

3.2.13 Conjugate formation assay 

To analyze the conjugate formation during the co-culture of NK cells and EBV-LCL, NK cells 

were labeled with Violet Dye (10 µM; 30 min) and EBV-LCL were labeled with CFSE (5 µM; 

10min). Then, the cells were cultivated together as described in chapter 3.2.6. After 16h, the 

cells were analyzed by flow cytometry and the conjugate formation was determined by the 

frequency of Violet dye and CFSE double-positive events. 

3.2.14 Transwell Assay 

A transwell plate containing a membrane with 0.4 µM pores was used to culture NK cells and 

EBV-LCL together but without direct contact between the cells. NK cell cultures were set up as 

described in chapter 3.2.6 with NK cells (2.5 x 104/mL) cultivated either alone or together with 

5 x 105 EBV-LCL/mL. As recommended, in the upper compartment (insert) 0.45 mL cell 

suspension was added, while the lower compartment contained 1.5 mL of the cell suspension. 

The upper chamber thereby contained medium or EBV-LCL or EBV-LCL together with NK 

cells. The lower chamber always contained NK cells, either alone or with EBV-LCL, and the 

number of these NK cells was quantified after 7 days. 

3.2.15 Mouse xenograft models 

Tumor cell injection and adoptive NK cell transfer 

To evaluate for NK cell anti-tumor activity in vivo, tumors with human origin were engrafted 

into NSG mice to establish a xenograft mouse model. NSG mice (8 weeks old) were irradiated 

(3.5 Gy) to support optimal engraftment of xenogenic cells. Three to five hours after irradiation, 

the mice received 5x105 luciferase transfected SK-MEL-28 melanoma cells (SK-MEL-28-luc) 

intravenous (i.v.) through tail vein injection. For these injections, cells were always suspended 

in 200 µL PBS. NK cells (3-30 x 106 cells, as indicated, or PBS as a control) were injected via 

tail vein injection directly together with the tumor cells (co-injection model) or three days later, 

after successful engraftment of the human tumor cells (therapeutic model). In addition, during 
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the therapeutic model 10,000 units IL-2 per mice were injected intraperitoneal (i.p.) when NK 

cells or PBS were injected and 1, 2, 3, 5, 7 and 11 days thereafter.  

Analysis of tumor burden 

The tumor burden was estimated at different days during the treatment, as indicated. To measure 

the tumor burden, 4.5 mg StayBrite D-Luciferin dissolved in 150 µL sterile PBS was injected 

i.p. in the mice 10-15 min before the measurement. Then, the mice were anesthetized with 5% 

isoflurane followed by a second i.p. injection with 150 µL Luciferin solution. After arranging up 

to 5 mice together in the imaging chamber of an IVIS system, the in vivo luminescence was 

measured. Luminescence images were taken every 1-2 min with 60s exposure time, binning M, 

field of view 25, f1 until the maximum signal intensity was reached. Analysis of the pictures 

was performed using the software Living Image 2.5. 

Re-isolation of injected human NK cells from mouse blood and tissues 

To prepare the organs from treated mice, the mice were sacrificed by asphyxiation using CO2 

within a euthanasia chamber.  

Preparation of NK cells from blood 

The eyeball was removed and blood was collected from the retro-orbital vein. Heparin (25 µL) 

was added directly to 200-400 µL blood. Then, blood cells were removed by adding 5 mL red 

blood cell lysis buffer per 200 µL of heparinized blood and incubation for 10 min at room 

temperature. After two washing steps (300 x g for 10min), the cells that were prepared from the 

blood of one mouse were suspended in 250 µL PBS containing 0.5% AB serum and then they 

were stored at 4°C.  

Preparation of NK cells from lungs (tumor) and spleen 

Directly after the removal of blood, the mouse was dissected and the lung and spleen were 

removed and stored each at 4°C. The organs each were mechanically disrupted with a scalpel 

and transferred to a 50 mL falcon. Digestion buffer was added containing 5 mg hyaluronidase 

and 5 mg DNAse I dissolved in 10 mL PBS. After incubation for 30 min at 37°C, the digested 

tissue was plunged through a 70 µM cell strainer, washed (300 x g for 10 min at 4°C) and 

resuspended in 6 mL PBS. Lympholyte (5 mL) was added carefully and density gradient 

centrifugation was performed at 1500 x g for 26 min at room temperature. The leukocyte 

fraction was isolated and suspended in 250 µL PBS containing 0.5% AB serum and then it was 

stored at 4°C.  
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From the single cell suspensions from blood and tissues of each mouse, an aliquot of 50 µL was 

used directly to measure the cell count using the MACSQuant analyzer. The remaining volume 

was pooled with corresponding samples from other mice that were treated under the same 

experimental conditions and used for staining of surface markers and functional assays. 

3.2.16 Statistics and data analysis 

Apart from micro-array data analysis for gene expression, statistical comparisons were 

performed with the use of unpaired or paired Student’s t-test, as indicated. In the micro-array 

data sets, significant expression differences were determined per reporter between the following 

sample groups: freshly isolated NK cells (day 0) and NK cells expanded for 14 days by the 

automated system CliniMACS Prodigy (P); manually with EBV-LCL feeder cells in T75 flasks 

(T) and manually without feeder cells only with the use of IL-2econtaining media (I). The 

analysis of variance test with repeated measurements design was applied by fitting a linear 

mixed-effects model (random effect: individual donors) on the normalized log2 intensity data. 

Correction for multiple testing occurred by use of the method of Benjamini & Hochberg (B-H). 

Further pairwise group comparisons were performed by means of Tukey’s honestly significant 

differences post hoc test. The following selection criteria were applied: adjusted analysis of 

variance P values ≤0.05, Tukey P values ≤0.05 and median fold changes ≥2 or ≤−2. Reporters 

with a detection P value (flag) >0.01 for >3 of 6 samples per sample group were excluded 

because of insufficient signal reliability. The expression profiles of all reporters with differential 

gene expression in at least one of the pairwise comparisons was hierarchically clustered 

(Euclidean distance, complete linkage) and displayed in heat map images centered to the median 

value per reporter (TM4 suite, MeV_4_8_1).354 Calculations were performed with the use of 

Excel (Microsoft Office Inc) or R/Bioconductor [R version 3.1.1 (2014e07e10)]. Because some 

of the reporters covered on the micro-array platform represent long non-coding RNAs or map to 

alternative transcripts of the same gene, functional grouping analysis was performed on the gene 

level with the use of QIAGEN’s Ingenuity Pathway Analysis annotation tools (IPA, QIAGEN 

Redwood City, www.qiagen.com/ ingenuity). Significantly enriched functional groups were 

identified by use of default settings and a B-H multiple testing P-value cutoff of 0.025. 
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4 Results 

Parts of the text in this chapter have been directly taken or slightly modified from Granzin et al. 

(2015)346 and from a second manuscript that is currently submitted.347 The text has been 

originally written by myself. 

The chapter describes the results of experiments that were performed to meet the aims of the 

project as outlined in chapter 2. First, an automated method for clinical-grade NK cell expansion 

was developed and the ex vivo expanded NK cells were characterized in detail (chapter 4.1). 

Next, the protocol for clinical-grade NK cell expansion was further optimized to achieve higher 

numbers of functional NK cells and the mechanisms underlying NK cell expansion were 

investigated (chapter 4.2). Finally, ex vivo expanded human NK cells were evaluated for their 

therapeutic potential against melanoma in a xenograft mouse model (chapter 4.3). 

4.1 Fully automated expansion and activation of clinical-grade NK 

cells for adoptive immunotherapy 

The production of therapeutic effector cells in a standardized, GMP compliant and efficient way 

is challenging for several clinical applications, especially for the activation and expansion of 

NK cells. Therefore, a fully automated cell cultivation process was developed for clinical use by 

means of the CliniMACS Prodigy system as described in chapter 3.2.4. The automated process 

was applied to a clinical-grade NK cell expansion protocol that makes use of IL-2 and irradiated 

EBV-LCL (SMI-LCL) feeder cells to induce NK cell activation and proliferation (see chapter 

1.5.3). The automation covered all steps that were needed within the cultivation time of 14 days 

including medium change, gentle cell mixing at high cell densities and sampling for analysis 

during the expansion process. To evaluate the automated expansion process in comparison to 

conventionally used manual expansion, NK cells were cultivated under three different 

conditions (Figure 4.1). The NK cell expansion was performed either automated using the 

CliniMACS Prodigy system or manual using T75 flasks. In addition, to further investigate the 

effect and necessity to use the irradiated EBV-LCL feeder cell line, NK cells were also 

cultivated manually in T75 flasks without irradiated EBV-LCL, representing a long-term NK 

cell activation with IL-2 containing medium alone, which can be seen as a commonly used 

standard and serves as additional control.  



 

 

Fully automated expansion and activation of clinical-grade NK cells Results 56 

 

Figure 4.1 Experimental setup for evaluation of differentially expanded NK cells. NK cells were 
cultivated with IL-2, either in the presence of EBV-LCL feeder cells by means of the automated system 
(automated) or T-flasks (manual), or in the absence of EBV-LCL feeder cells by means of T flasks 
(manual w/o EBV-LCL). 

4.1.1 Automated or manual NK cell cultivation results in comparable NK cell fold 

expansion 

Purified NK cells from buffy coats of 10 donors were cultivated together with EBV-LCL feeder 

cells, either manually or by use of the automated system, resulting in comparable increase in 

NK cell numbers over time (Figure 4.2 A). In detail, automated or manual EBV-LCL feeder cell 

line-based expansion for two weeks led to 850 ± 509 or 1344 ± 1135 fold NK cell expansion 

respectively with high variability between different donors (as shown by standard deviations). 

Of note, without EBV-LCL only 14 ± 13 fold expansion was achieved, demonstrating the 

limitation of this approach and proving the strong proliferation-inducing effect of the EBV-LCL 

cell line on NK cells. On average, starting with only 1.5 x 106 NK cells, a number typically 

obtained from 20 ml of whole blood, a substantial number (mean 1.3 x 109) of NK cells could 

be generated within 14 days by a single run of the automated process. Both, the automated and 

manual expansion resulted in a highly pure NK cell product (>99% CD3-/CD56+) and no T or B 

cells could be detected. 
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Figure 4.2 EBV-LCL co-culture induces a strong increase in NK cell numbers and automated and manual 
expansion of NK cells result in comparable expansion kinetics. Effector functions of expanded NK cells 
are enhanced. Modified from Granzin et al. (2015).346 Automated EBV-LCL-based expansion of NK cells 
(circles) in comparison to manual NK cell expansion in T flasks with (squares) or without (triangles) 
irradiated EBV-LCL. NK cell numbers displayed for manual expansion are theoretical and were 
calculated by the NK cell fold expansion obtained in T flasks multiplied by the same starting NK cell 
number as in the automated approach. (B) Differentially expanded NK cells were tested for their 
reactivity by staining for CD107a, IFN-γ and TNF-α before (white bars) and after (gray bars) stimulation 
with K562 target cells. NK cells from ten (A) or six (B) donors were analyzed, and displayed are mean 
values and p values for paired Student t test with p < .05 considered as significant.  
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4.1.2 Automatically and manually produced NK cells have similar functionality 

 

Figure 4.3 Differentially expanded NK cells show dose dependent cytotoxicity against tumor cell lines in 
vitro. Modified from Granzin et al. (2015).346 NK cells were expanded for 14 days by the automated 
process (black bars) in comparison to manual NK cell expansion with (white bars) or without (gray bars) 
irradiated EBV-LCL and analyzed for cytotoxicity against K562, Raji and Daudi cell lines at different 
effector-to-target (E:T) rations. Statistical significance was determined by paired Student’s t-test. 

After testing the expansion performance, the effector functions of the expanded NK cells were 

analyzed. Stimulation of the differentially expanded NK cells with K562 target cells revealed no 

differences in the production of the pro-inflammatory cytokines IFN-γ and TNF-α and similar 

levels of degranulation as an indicator of NK cells cytotoxic function (Figure 4.2 B). NK cells 

were further evaluated for cytotoxicity against the human leukemic cell lines K562, Raji and 

Daudi (Figure 4.3). NK cells obtained by means of the automated or the manual approach 

showed comparable cytotoxicity against all three target cell lines in a dose-dependent manner, 

although significant differences in the cytotoxic intensity were observed between different 

donors. The level of killing tended to be higher compared with NK cells that had been expanded 

with IL-2 only and without EBV-LCL, but this trend only achieved statistical significance at a 

10:1 effector-to-target ratio against K562 cells. 
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Figure 4.5 rituximab does not augment antibody dependent cellular cytotoxicity of NK cells against 
CD20-negative K562 cells. Modified from Granzin et al. (2015).346 For two donors, NK cells were 
expanded for 14 days by co-culture with irradiated EBV-LCL using the automated process (left figures) 
or the manual approach (right figures) and analyzed for cytotoxicity against CD20-negative K562 at 
different effector-to-target (E:T) rations. The cells were untreated (circles) or treated (squares) with 1 
µg/ml rituximab for 4h during the assay. 

4.1.3 Expanded NK cells do not show a reduction in telomere length 

 

Figure 4.6 The telomere length of NK cells is not altered after two weeks of ex vivo expansion, 
independent of the expansion protocol. Modified from Granzin et al. (2015).346 For four donors, naive NK 
cells and NK cells after automated or manual expansion with or without irradiated EBV-LCL were 
analyzed for telomere length using a commercial available assay based on flow cytometry. The tetraploid 
cell line 1301 with extremely long telomeres was used as an internal control and for each sample the 
telomere length was calculated in relation to this recommended control. Displayed are values for 
individual donors (A) or mean and SD for all donors (B). 

Extensive expansion might result in telomere shortening, which would reduce the proliferative 

potential of NK cells for later in vivo applications. Therefore, the telomere length was 

investigated before and after expansion, because the potential of NK cells to proliferative in vivo 

after transfer to the patient is crucial for their therapeutic effect.177 After 14 days of expansion, 

no noticeable difference in the telomere length was detected, independent of the expansion 
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method and expansion intensity, indicating that the proliferative potential of the NK cells was 

not reduced, even after extensive ex vivo expansion (Figure 4.6). 

4.1.4 Flow cytometry profiles of automatically and manually expanded NK cells are 

similar, whereas they differ clearly from naive NK cells 

Next, the phenotype of naive and expanded NK cells was compared by means of flow cytometry 

and stained for 18 selected markers (Figure 4.7). As previously described,341 the pattern of many 

relevant NK cell markers changed on ex vivo expansion. Up-regulation of TRAIL and FasL as 

well as the activating NK cell receptors NKp30, NKp44, NKG2D and DNAM-1 indicated an 

activated state and correlated with the enhanced NK cell function after expansion, which was in 

line with the results of the preceding functional assays. Besides the strong phenotypic difference 

between naive and expanded NK cells in general, manually and automatically processed NK 

cells had a comparable marker profile. However, frequencies of NK cells expressing NKG2C, 

CX3CR1 and KIR2DL2/DL3 were slightly but still statistically significantly higher after 

automated expansion compared with manually expanded NK cells that showed slightly higher 

expression of NKG2A and NKp44.  

 

Figure 4.7 Differentially expanded NK cells show similar changes in surface marker expression after 14 
days of ex vivo activation and expansion. Modified from Granzin et al. (2015).346 NK cells were analyzed 
by flow cytometry for selected surface markers before (naive NK, dotted) or after automated EBV-LCL-
based expansion (black) in comparison to manual NK cell expansion in T flasks with (white) or without 
(gray) EBV-LCL. Five donors were analyzed; mean values and standard deviations are shown. Statistical 
significance was determined by paired Student’s t-test. 
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4.1.5 Gene expression analysis reveals only minor differences between NK cells after 

automated or manual NK cell expansion 

The NK cells were further investigated at the gene expression level and a whole human genome 

micro-array with samples from six donors was performed. In total, 13,263 reporters 

corresponding to differentially expressed transcripts were identified in the comparisons among 

all sample groups (Figure 4.8 A). Of note, the most prominent expression differences were 

between freshly isolated and all other expanded NK cell samples. In contrast, and consistent 

with the flow cytometry analysis, gene expression after automated or manual expansion with 

EBV-LCL feeder cells was similar. Less than 2% of all differentially expressed reporters (247 

reporters) varied significantly between both sample groups. However, to obtain further insight 

in associated functions for the small set of differentially expressed genes, functional grouping 

analysis was performed. The analysis revealed an association of the genes with hematological 

system development, cellular movement and immune cell trafficking. In particular, genes with 

known importance in movement of leukocytes were identified (Table 4.1), including a group of 

genes associated with NK cell migration (CMKLR1, CX3CR1, S1PR5, GNLY and CXCR1). 

The latter set of genes was expressed at slightly higher levels after automated compared with 

manual expansion. 

Nevertheless, the expression profiles of NK cells after automated and manual expansion were 

strikingly similar and in strong contrast to the many differentially expressed genes between 

naive and expanded NK cells. Changes between NK cells after expansion with the automated 

system and naive NK cells before expansion were investigated in more detail and a list of the 

100 most up-regulated and down-regulated genes is published in Granzin et al. (2015).346 As 

expected for an expansion protocol, functional grouping analysis revealed the most significant 

functional association of the regulated genes (B-H P values <1.5 x 10−8) with cell cycle 

regulation, cell death and survival, DNA replication, DNA recombination and DNA repair, 

cellular growth and proliferation as well as cellular assembly and organization. Consistent with 

the results of the flow cytometry analyses, many NK cell relevant markers had a change in their 

expression levels after expansion (Figure 4.8 B). The most prominent effects were up-regulation 

of TRAIL, FasL, the inhibitory receptor TIGIT and the chemokine receptors CCR2, CCR5 and 

CXCR6. In addition, granzyme M was slightly down-regulated, but other effector molecules 

that play an important role in tumor killing, such as TNF-α, perforin and granzymes A, B and K, 

were up-regulated. 
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Many genes, including NK cell relevant markers, are regulated upon ex vivo
same way for differentially expanded NK cells. Modified from Granzin et al. (2015).346

donors were used for gene expression analysis of naive NK cells and NK cells after automated 
expansion as well as NK cells after manual expansion in T flasks with or without 

LCL. (A) Differentially regulated reporters between the four sample groups were identified by 
filtering for statistical relevance and reliable signal intensities; median centered values for these reporters 
re shown in a heat map after hierarchical clustering analysis. Color saturation limits range from log2 

4 (green) to +4 (red). No changes relative to the reporter-wise median log2 intensity of all 
samples is displayed in black color. (B) Filtering for NK cell relevant genes among regulated reporters is 
displayed for NK cells obtained by the automated process (black bars), manual expansion with EBV
feeders (white bars) or manual expansion without EBV-LCL feeders (gray bars) in relation to 

LCL-based manual expansion was compared by means of Tukey’s honestly 
ferences post hoc test; genes with Tukey P value ≤0.05 and median fold change 

are indicated as significant (indicated by stars). 
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Table 4.1 Genes associated with movement of leukocytes for automatically expanded NK cells in relation 
to manually expanded NK cells. Both expansion methods utilized irradiated EBV-LCL feeder cells. 
Ingenuity functional grouping analysis with prediction for increased or decreased movement based on the 
number of published findings and the fold change of the gene of interest from Granzin et al. (2015).346 

 

4.1.6 Automated NK cell expansion can be complemented by a preceding, automated 

NK cell separation, enabling a fully automated NK cell production process 

Finally, it was shown that the complete cell processing needed for NK cell expansion, from the 

starting material to the final cell product inclusive of the NK cell enrichment process, can be 

achieved with the used system. Therefore, initial NK cell purification steps were also performed 

automated by means of the CliniMACS Prodigy system before the automated cultivation and 

expansion phase. In the experiments described so far, the NK cells were enriched manually from 

buffy coats as described in chapter 3.2.6.. For automated separation of NK cells from 

leukapheresis products in clinical scale, TCR-α/β-CD19 depletion was performed, to ensure 

efficient removal of potentially harmful contaminating TCR-α/β T and B cells, followed by 

CD56-positive selection in a second step to further enrich for purified NK cells. By use of this 

strategy, automated NK cell separations from leukapheresis products of three donors were 

performed and 4,1−4,4 and 2,7−3,1 log depletion of TCR-α/β and B cells was achieved. After 

subsequent CD56 enrichment, no TCR-α/β and B cells were detected, and NK cells with a 

purity of 71% to 92% could be obtained while remaining non-NK cells were mainly CD14+ 

monocytes (12.4% ± 8.8%) and TCR-γδ CD3+CD56+ NK-like T cells (5.3% ± 4.7%). 

Automated expansion of automatically separated NK cells for 14 days resulted in 390-fold to 

1185-fold expansion (Figure 4.9 A), within the same range of what was achieved by manually 
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separated NK cells before. The functionality of the fully automatically obtained NK cells was 

proven by the effective killing of K562, Raji and Daudi cells (Figure 4.9 B). 

 

Figure 4.9 Fully automated NK cell separation and expansion is possible in clinical scale starting from 
leukapheresis. Modified from Granzin et al. (2015).346 NK cells were separated from leukapheresis 
products by an automated system using TCRα/β-CD19 depletion followed by CD56 enrichment. Then 
NK cells were further used in the automated expansion process. (A) Increase in NK cell numbers over 
time during the expansion phase is displayed for three individual donors. (B) After 14 days of expansion, 
NK cell cytotoxicity against K562, Raji and Daudi cells was measured and mean values and SD of all 
donors is displayed. 

 

In summary, substantial numbers of activated NK cells could be obtained with a completely 

automated system for ex vivo expansion. In comparison to manual NK cell expansion, the 

automated process yielded comparable high numbers of NK cells with similar phenotypic, 

transcriptional and functional profiles.  
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4.2 Development of an optimized protocol for NK cell expansion 

and activation 

Production of NK cells in a way that is technically applicable in the clinics is a major issue for 

adoptive NK cell immunotherapy. This was addressed in the first part of the project by 

successful automation of a clinical-grade NK cell expansion, based on a protocol that utilizes 

irradiated EBV-LCL feeder cells with proven clinical applicability. However, efficient 

expansion of NK cells by simulation with EBV-LCL feeder cells is limited, because the 

proliferation of NK cells declines over time and efficient expansion is possible for two or 

maximum four weeks. Thus, the yield of achievable NK cells is still limited and this chapter 

deals with the development of an improved protocol for clinical-grade NK cell expansion to 

optimize the supply of effector cells for adoptive NK cell therapy. In addition, it’s still unknown 

why EBV-LCL so efficiently stimulate NK cell proliferation and experiments in this section 

were performed to address responsible mechanisms.  

4.2.1 EBV-LCL-based NK cell expansion is significantly increased by IL-21 

 

Figure 4.10 IL-21 enhances the EBV-LCL-mediated expansion of NK cells in the presence of IL-2 or IL-
15. NK cells were expanded with different combinations of IL-2, IL-15 and IL-21 in the presence or 
absence of irradiated EBV-LCL feeder cells. The cultivation was performed for 7 days (top) or for 14 
days (bottom), the NK cells were enumerated by flow cytometry and the NK cell fold expansion was 
calculated. NK cells from six donors were analyzed and mean, SD, min and max are shown. Statistical 
significance was determined by paired Student’s t-test. 
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The standard protocol for clinical-grade EBV-LCL-mediated NK cell expansion utilize IL-2 and 

it was tried to enhance the yield of NK cells by IL-15 and IL-21, two cytokines that are known 

to affect NK cell proliferation (Figure 4.10). The use of IL-2, IL-15 or the combination of IL-2 

and IL-15 resulted in comparable yields of NK cells, for both, the efficient EBV-LCL-mediated 

high NK cell expansion and the rather low expansion without irradiated EBV-LCL feeder cells. 

It was noticed that the presence of IL-2 or IL-15 was essential for efficient NK cell expansion in 

vitro. Use of IL-21 alone was insufficient to induce elevated NK cell expansion compared to IL-

2 or IL-15 (data not shown). Strikingly, with IL-2 and/or IL-15 together, IL-21 strongly 

increased the EBV-LCL-mediated NK cell expansion, whereas IL-21 did not change the NK 

cell expansion when irradiated EBV-LCL were absent. IL-2 and IL-15 appeared interchangeable 

in this context and because IL-2 is routinely used in clinics for longer time and represents a 

better characterized clinical-grade reagent, IL-2 was considered for further experiments instead 

of IL-15.  

The combination of IL-2, IL-21 and irradiated EBV-LCL co-culture was selected for in depth 

evaluation as an optimized protocol for NK cell expansion. First, the previous results were 

confirmed for NK cells from additional donors. Low NK cell expansion was observed in the 

absence of feeder cells despite the addition of IL-21 (Figure 4.11 A). Irradiated EBV-LCL co-

culture and IL-2 induced a 22–fold mean NK cell expansion after one week that was further 

increased to 53–fold by adding IL-21 to the medium. To test whether addition of IL-21 directly 

affected the proliferation of NK cells, a proliferation assay was performed by monitoring 

CellTrace Violet dye labeled NK cells. Of note, NK cells did not start to proliferate until day 3 

after initiation of culture (Figure 4.11 B). Thereafter, IL-21 enhanced the proliferation of NK 

cells in the presence of irradiated EBV-LCL, while IL-21 had no effect on the proliferation of 

NK cells by itself when feeder cells were absent. Furthermore, there was a pronounced positive 

correlation between the concentration of supplemented IL-21 and the increasing expansion of 

NK cells in co-culture with irradiated EBV-LCL feeder cells (Figure 4.11 C). Intriguingly, it 

was sufficient to add IL-21 only at the beginning of the culture to enhance the EBV-LCL-

mediated NK cell expansion. Culturing in medium supplemented continuously with IL-21 did 

not enhance NK cell expansion compared to when IL-21 was added only at the beginning of the 

culture. Further, permanently adding IL-21 to the culture actually resulted in lower NK cell 

numbers after prolonged culture compared to an initial single exposure to IL-21 (Figure 4.11 D). 

Nevertheless, the rate of proliferation of NK cells declined after two weeks, limiting the ex vivo 

time period during which NK cell expansion occurred to 2-4 weeks, precluding further NK cell 

expansion past this time point (Figure 4.11 D). This limitation could be overcome by use of IL-

21 at the start of culture combined with repeated addition of irradiated EBV-LCL feeder cells 
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every two weeks. This allowed for the sustained expansion of NK cells at very high levels for a 

longer time period, with a 2.7 x 10

after 46 days (Figure 4.11 E). 

without repeated EBV-LCL stimulations, indicating that NK cells had not acquired an 

uncontrolled ability to proliferate, which would raise safety concerns for their clinical 

application.
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Taken together, a highly efficient method for expansion of NK cells was developed using IL-21 

supplementation only at the start of culture and repeated exposure of the NK cells to irradiated 

EBV-LCL feeder cells in the presence of IL-2. This protocol, which results in superior NK cell 

expansion using EBV-LCL and IL-2 alone, is further referred in the remainder of the 

manuscript as the “optimized expansion method”. 

4.2.2 IL-21 induces IL-10 production of EBV-LCL, but feeder cell derived IL-10 does 

not affect the expansion of NK cells 

 

Figure 4.12 EBV-LCL produce elevated levels of IL-10 in presence of IL-21, but IL-10 is not responsible 
for enhanced NK cell expansion. (A) NK cells and EBV-LCL feeder cells were cultivated together or 
separated with IL-2 (gray bars) or with IL-2 and IL-21 (red bars). After 16 hours or 3 days the cultivation 
was terminated and the concentration of IL-10 in the supernatant was analyzed by a multiplex bead-array 
assay. Displayed are mean and SD for triplicate cultures with three different NK cell donors. (B) NK cells 
or irradiated EBV-LCL feeder cells were cultivated with IL-2 (gray bars) or with IL-2 and IL-21 (red 
bars). Representative histograms are displayed showing staining of the cells for human IL-10 receptor 
(dark gray) and isotype control (light gray) prior to cultivation and at day three of culture. (C) NK cells 
and irradiated EBV-LCL feeder cells were co-cultivated with IL-2 and IL-21, either together with an IL-
10 neutralizing antibody (red-white checkered) or with an isotype control (red). The expansion of NK 
cells was measured after 7 days and for six donors the mean and SD of the NK cell expansion is shown 
relative to the isotype control. Statistical significance was determined by Student’s t-test. 

So far, little is known about the underlying mechanisms of NK cell proliferation and the exact 

role of EBV-LCL feeder cells as a trigger for NK cell expansion. Therefore, the EBV-LCL-

based NK cell expansion and the observed effect of IL-21 in this context were investigated in 

more detail. First, it was checked whether cytokine release by irradiated EBV-LCL could 

explain the stimulating effect on NK cells. Supernatants of cultures containing irradiated EBV-

LCL were tested for GM-CSF, IFN-α, TNF-α, IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 

and IL-17A. Independent of the presence of IL-21, none of these cytokines was found in a 
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noticeable amount within the first days of culture, with the exception of IL-10.

produced significant levels of IL-10 in the presence of IL-21, whereas minor 

LCL derived IL-10 was measured without IL-21 (

, the concentrations of IL-10 after three days of cultivation were significantly lower 

LCL together with NK cells compared to EBV-LCL alone

uptake and consumption of IL-10 by NK cells. EBV-LCL and NK cells both 

receptor as confirmed by flow cytometry (Figure 4.12 B). Nevertheless, 

had no consequence on the EBV-LCL-mediated expansion of NK cells in 

Figure 4.12 C). In conclusion, none of the tested cytoki

NK cell expansion. 

dependent NK cell expansion relies on direct cell-cell contact

dependent NK cell expansion requires cell-cell contact 
conjugate formation of NK cells and EBV-LCL nor does it affect the number

(A) NK cells and irradiated EBV-LCL feeder cells were cultivated with IL
e upper or lower chamber of transwells, as indicated. The 

lower chamber were quantified after 7 days and the displayed number is normalized
without other cells added in the upper chamber. For two donors the mean of duplicat

Celltrace Violet dye labeled NK cells were cultivated together with irradiated
LCL feeder cells at a ratio of 1:20 with IL-2 (gray) or with IL-2 and IL

frequency of NK cells that are conjugated to EBV-LCL were analyzed after 16 hours by flow cytometry 
as displayed in a representative dot plot. Mean and SD are shown for three different NK cell donors. (C) 
Cells were cultivated as described in B and the number of EBV-LCL after 16 hours and 3 day
displayed in relation to the starting number. Mean and SD are shown for three different NK cell donors. 
Statistical significance was determined by Student’s t-test. 
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Next, to investigate whether the EBV-LCL-dependent NK cell expansion requires cell-cell 

contact rather than soluble factors, NK cells and irradiated EBV-LCL were cultured in different 

compartments of a transwell plate, containing a filter membrane that allows exchange of soluble 

factor but no direct interactions of the cells (Figure 4.13 A). Because it’s possible that soluble 

factors are not released until the feeder cells and NK cells are in contact, it was also tested to 

culture NK cells separated from irradiated EBV-LCL that were themselves in contact with 

another set of NK cells. However, the typical EBV-LCL-mediated high NK cell expansion was 

only achieved when NK cells and feeder cells were cultivated within the same compartment, 

allowing direct interactions between the two cell types. So, it was shown that direct cell-cell 

contact was essential for the EBV-LCL-dependent NK cell expansion, whereas EBV-LCL 

derived soluble factors appeared irrelevant. After clarifying the importance of cell-cell contact, 

it was tested whether IL-21 affects the conjugate formation between NK cells and irradiated 

EBV-LCL. But the frequency of formed conjugates between NK cells and EBV-LCL was 

comparable in the presence and absence of IL-21 (Figure 4.13 B). Next, it was tested whether 

IL-21 could enhance the viability of irradiated EBV-LCL, possibly ensuring that more EBV-

LCL are available for interaction with NK cells. However, quantification of EBV-LCL during 

cultivation did not reveal any difference related to IL-21 (Figure 4.13 C). Probably because of 

the harsh irradiation, three days after start of cultivation the vast majority of EBV-LCL feeder 

cells have died already and disappeared independent of IL-21. Of note, the same number of 

EBV-LCL cells was found when EBV-LCL were cultured alone or together with NK cells, 

indicating that lysis of EBV-LCL by NK cells did not take place or was negligible. 

Then, EBV-LCL feeder cells were investigated for surface ligands with potential importance for 

the NK-EBV-LCL interaction (Figure 4.14). It was also tested whether irradiation and culture of 

the EBV-LCL changed the marker expression. EBV-LCL did not express MICA, MICB or 

ULPBs, the ligands for the NK cell activating receptor NKG2D. CD155 was found on the 

surface of EBV-LCL and could possibly activate DNAM-1 expressing NK cells. Furthermore, 

the feeder cells were positive for CD137L, a ligand considered to trigger NK cell expansion and 

one of the factors expressed by engineered K562 feeder cells that commonly used for NK cell 

expansion. EBV-LCL expressed high levels of CD48, the ligand for 2B4 expressed by NK cells, 

which is known to play a role for the proliferation of murine NK cells in homotypic NK-to-NK 

cell interactions.357 
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Figure 4.14 EBV-LCL express CD155, CD137L and CD48, but lack expression of NKG2D ligands. 
EBV-LCL were analyzed before and after irradiation for different surface markers, as indicated. After 
irradiation the cells were cultured for 16 h in medium containing IL-2 or IL-2 and IL-21, corresponding to 
the same conditions used for co-culture with NK cells. 

4.2.1 NK cells exhibit significant expression of CD25 upon contact with EBV-LCL 

Same as the expression of surface ligands by EBV-LCL, the marker repertoire of NK cells is of 

importance for the interplay between NK cells and EBV-LCL. NK cells change their marker 

expression during ex vivo expansion as described before (chapters 4.1.4, 4.1.5). Consequently, 

culture conditions, such as IL-21 supplementation, could specifically modify the marker profile 

of NK cells, possibly affecting relevant receptor-ligand interactions. Therefore, the surface 

marker expression of NK cells was analyzed by flow cytometry during the first days of culture 

when the proliferation is initiated. Staining of proliferating NK cells for several surface markers 

did not reveal significant differences specifically occurring upon EBV-LCL co-culture or upon 

IL-21 supplementation, with the exception of CD25 (Figure 4.15). Proliferating NK cells 

generally showed an enhanced expression of the activating receptors DNAM-1, NKG2D and 

TRAIL for example, independent of the presence of absence of irradiated EBV-LCL and IL-21. 

In contrast, proliferating NK cells in co-culture with irradiated EBV-LCL rapidly expressed 

high levels of CD25, whereas proliferating NK cells in the absence of irradiated EBV-LCL 

stayed mainly CD25 negative such as naive NK cells. Therefore, expression of CD25 possibly 

represents a relevant surface molecule for the pronounced EBV-LCL-mediated NK cell 

expansion 
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Figure 4.15 Proliferating NK cells in co-culture with EBV-LCL strongly up-regulate CD25, whereas 
regulation of other NK cell markers is independent of EBV-LCL. NK cells were labeled with Violet 
Proliferation dye and cultured with IL-2 (gray bars) and with or without IL-21 (red bars) in the presence 
or absence of EBV-LCL feeder cells. (A) The cells were stained for different surface markers before and 
5 days after starting the cultivation and representative dot plots are shown. (B) NK cells were cultured as 
described and CD25 expression of NK cells was analyzed by flow cytometry after 16 hours, 3 days and 5 
days. Displayed are mean and SD from three donors for the frequencies of CD25 expression (left) and the 
mean fluorescence intensities (MFI)(right). Differences between NK cell expansions obtained without 
EBV-LCL and NK cell expansions obtained with EBV-LCL were tested for statistical significance using 
the paired Student’s t-test. 

To further investigate factors with a potential relevance for the interaction between NK cells and 

irradiated EBV-LCL, the cells were cultured together with blocking antibodies against selected 

cell surface molecules (Figure 4.16 A). For most of the targeted surface markers no significant 

effect was observed, indicating that these receptor-ligand pairs were irrelevant. 
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Figure 4.16 CD25 carries a functional role for NK cell expansion in co-culture with EBV-LCL, but CD25 
becomes dispensable when IL-21 is present. NK cells were cultivated with 500 U/mL IL-2 (gray bars) or 
with IL-2 and IL-21 (red bars) in the presence or absence of EBV-LCL feeder cells. (A) Blocking 
antibodies (10 µg/mL) or medium as a control was added to the cultures with EBV-LCL and expansion of 
NK cells was measured after 7 days. To better compare different donors the expansion of the different 
cultures was calculated relative to the medium control for each culture. Mean and SD of the relative 
expansion fold from three to six donors are displayed and statistical significance was determined by 
paired Student’s t-test. (B) Blocking experiments as described in A were performed for cultures with NK 
cells lacking EBV-LCL. Mean and SD of the relative expansion fold from three donors are displayed and 
statistical significance was determined by paired Student’s t-test. (C) NK cells were cultured at different 
IL-2 concentrations, as indicated. The NK cell expansion was determined after 7 days and mean and SD 
of the NK cell expansion fold from three donors is shown. 

Blocking CD25 clearly reduced the expansion of NK cells in culture with IL-2 and irradiated 

EBV-LCL, but surprisingly, this effect was completely abolished when IL-21 was present 

(Figure 4.16 A). Thus, CD25 expression indeed carried out a function during EBV-LCL-based 

NK cell expansion, but this function could be bypassed by IL-21, making CD25 expression 

dispensable. In the absence of irradiated EBV-LCL the blocking of CD25 had no effect on the 

expansion of NK cells, as expected due to the lack of CD25 expression under this condition 

(Figure 4.16 B). The results implied different IL-2 dependencies of the differentially expanded 

NK cells and the influence of the IL-2 concentration on NK cell expansion was tested (Figure 

4.16 C). The EBV-LCL-mediated NK cell expansion profoundly decreased when the culture 
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was started with IL-2 concentrations lower than 20 U/mL and IL-21 was lacking. In contrast, 

the EBV-LCL-mediated NK cell expansion was nearly independent of IL-2 when IL-21 was 

present, showing that IL-21 definitely compensates for IL-2 signaling. Of note, IL-21 also 

compensated the lack of IL-2 when irradiated EBV-LCL feeder cells were not present, but then 

the effect was less pronounced. In general, concentrations of IL-2 higher than a specific 

threshold did not further increase the NK cell expansion. This seemed logical, because beyond a 

certain threshold the IL-2 concentration efficiently triggers IL-2 signaling through the 

intermediate affinity IL-2Rßγ receptor without the need for CD25 to form the high affinity IL-

2Rαßγ receptor. Therefore, CD25 is considered redundant for efficient IL-2 signaling at higher 

IL-2 concentrations. However, standard NK cell cultivation as well as the blocking experiments 

were performed at a very high IL-2 concentration of 500 U/mL. Therefore, it could be 

demonstrated that CD25 is of functional importance for EBV-LCL-mediated NK cell expansion 

even at high concentrations of IL-2, because blocking of CD25 clearly reduced the expansion 

performance. The fact that IL-21 allows NK cells to expand more independently from IL-2 

could explain why EBV-LCL-mediated NK cell expansion is generally increased by IL-21 and 

why blocking of CD25 by blocking monoclonal antibodies has no effect when IL-21 is present. 

It’s published that cell-cell interactions between murine NK cells via 2B4 and its ligand CD48 

facilitate increased NK cell proliferation involving enhanced IL-2 signaling,357,358 and it was 

further investigated whether this plays a role for the EBV-LCL-based NK cell expansion. 

Indeed, blocking of 2B4 or its ligand CD48 significantly decreased the expansion of NK cells in 

the absence of irradiated EBV-LCL (Figure 4.16 B), confirming the data from studies with mice. 

Nevertheless, 2B4 and CD48 seemed not necessary for the expansion of NK cells in co-culture 

with irradiated EBV-LCL, because blocking of these markers had no obvious effect (Figure 

4.16 A). Thus, the exact factors that stimulate the NK cell proliferation upon cell-cell contact 

with irradiated EBV-LCL remained elusive. Nevertheless, the importance of CD25, which can 

be bypassed by IL-21, suggested an enhanced signaling through the common y-chain receptor 

as one underlying mechanism.  
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4.2.2 EBV-LCL co-culture combined with IL-21 supplementation yields NK cells 

with potent anti-tumor functions in vitro 

 

Figure 4.17 Ex vivo expanded NK cells were highly cytotoxic against different tumor cell lines and 
showed enhanced degranulation and production of IFN-γ and TNF-α. (A) Different NK cells were tested 
for cytotoxicity against four tumor cell lines using a standard chromium release assay. Specific lysis at 
different effector-to-target (E:T) ratios is shown for freshly isolated NK cells (black) and NK cells that 
have been expanded for 13 or 14 days, either with IL-2 (gray) or by use of IL-2, irradiated EBV-LCL and 
IL-21 supplemented at day 0 (red). Displayed are mean values and standard deviation of NK cells from 4-
8 donors per target cell line and statistical significance was tested by Student’s t-test. (B) NK cells were 
expanded as described in B and tested for degranulation and production of IFN-γ and TNF-α by flow 
cytometry upon stimulation with PMA/Iono. Displayed are mean values and SD of NK cells from five 
donors. Statistical significance was tested by paired Student’s t-test. 

To finally estimate the therapeutic value of NK cells that were obtained with the optimized 

expansion method, the functional competence of the cells was investigated in vitro. Before, it 

was verified that NK cells that have expanded ex vivo with irradiated EBV-LCL show similar 

cytotoxicity as long-term IL-2 activated NK cells without feeder cells (chapter 4.1.2). IL-2 

activated NK cells have proven clinical applicability and can be seen as a standard. NK cells 

generated by the optimized expansion method showed similar cytolytic activity as IL-2 

activated NK cells that were cultured without feeder cells (Figure 4.17 A). In contrast, freshly 

isolated, naive NK cells possessed only low cytotoxicity against leukemic K562 and Daudi cells 

and lacked cytotoxicity against SK-MEL-28 and UKRV-Mel-02 melanoma cells, confirming 

that ex vivo culturing led to NK cell activation and enhanced NK cell-mediated anti-tumor 
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activity. Compared to naive NK cells, ex vivo expanded NK cells displayed a significantly 

higher degranulation upon stimulation (Figure 4.17B). In addition, among ex vivo expanded NK 

cells the production of the immune stimulatory cytokines IFN-γ and TNF-α was significantly 

increased compared to naive NK cells. In conclusion, the optimized expansion protocol not only 

increased the numbers of NK cells but also enhanced their in vitro anti-tumor activity compared 

to freshly isolated NK cells from peripheral blood. 

 

Taken together, it was shown that an improved and highly efficient ex vivo expansion of NK 

cells over long time is achieved by repeated stimulation with irradiated EBV-LCL feeder cells, 

IL-2 and initial supplementation of IL-21. It was demonstrated that the stimulating effect of 

EBV-LCL is not primarily dependent on soluble factors and requires direct cell contact. The 

developed NK cell expansion protocol makes it possible to produce high numbers of NK cells 

with potent effector function and therefore represents a highly relevant method for NK cell 

based adoptive therapy. 
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4.3 Evaluation of e
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Evaluation of expanded human NK cells for therapeutic 

using a xenograft mouse model 

After successful development of an optimized method for ex vivo NK cell expansion
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model, representing a meaningful preclinical evaluation.
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Successful engraftment of SK-MEL-28 cells was observed in the lungs of the mice three days 

after transfer of the cells and an increased signal intensity seven days after injection indicated 

sustained growth of the tumors in vivo (Figure 4.18 B and C). As a first trial, NK cells that were 

cultivated with IL-2 for 14 days were evaluated. Transferring a high dose (1.5 x 107) of long-

term IL-2 activated NK cells together with the tumor cells at an effector-to-target ratio of 20:1 

resulted in a lower tumor burden compared to mice that did not receive NK cells (Figure 4.18 B 

and C). However, applying less NK cells at a lower E:T ratio of 0.5:1 had no obvious effect on 

the tumor load (Figure 4.18 B and C). This experiment demonstrated that tumors with human 

origin can be established in NSG mice and the mice tolerate injection of high NK cell numbers 

without unexpected side effects. The results further confirmed that transferred NK cells can 

mediate anti-tumor activity in vivo and it’s possible to monitor the effect by means of this model. 

4.3.2 High numbers of ex vivo generated NK cells control tumor growth in a 

therapeutic xenograft model 

In a subsequent approach, tumors were established in the mice prior to the treatment with NK 

cells to better reflect the therapeutic situation. This xenograft mouse model was performed to 

extensively evaluate the efficacy of a therapeutic NK cell transfer (Figure 4.19 A). Human 

tumor cells successfully engrafted again three days after injection. Then, NK cells, which have 

been expanded by the optimized expansion method, were injected into tumor bearing mice. IL-2 

was injected repeatedly to support the in vivo persistence of transferred NK cells. Single doses 

of up to 30 x 106 NK cells per mouse were tolerated without any noticeable side effects. With an 

average weight of about 30 g per mouse the used dose corresponds to 109 NK cells per kg, 

representing the upper limit of NK cell doses considered for human studies. In the control group 

without transfer of NK cells, the tumor load significantly increased within the two weeks 

follow-up period (Figure 4.19 B). In contrast, treatment with expanded NK cells significantly 

controlled the tumor growth, indicating a potent anti-tumor activity of the ex vivo generated NK 

cells in vivo. Furthermore, there appeared to be a dose response relationship in terms of the 

number of injected NK cells correlating with control of tumor growth, with the highest dose of 

30 x 106 injected NK cells showing the best therapeutic effect (Figure 4.19 C). Injection of high 

human NK cell numbers also correlated with high numbers of NK cells that could be retrieved 

from blood and lungs 14 days after NK cell transfer (Figure 4.19 D). Thus, transferring higher 

numbers of NK cells resulted in increased numbers of NK cells in vivo post injection. 

Nevertheless, NK cell numbers continuously declined after the transfer (Figure 4.19 E), 

indicating that transferred NK cells were unable to sustain continuous expansion in vivo. In 
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conclusion, adoptive transfer of NK cells generated with the optimized protocol resulted in 

efficient control of tumor in a xenograft mouse mod

Figure 4.19 Adoptive transfer of NK cells expanded by the optimized protocol in tumor bearing mice 
resulted in pronounced tumor growth control. (A) Scheme is shown for ev
in vivo using a xenograft model. Mice were irradiated and received human SK
expressing luciferase by intravenous (i.v.) injection. Three days later, after tumor engraftment, the mice 
were treated (i.v.) with human NK cells expanded with the optimized protocol and the tumor load was 
monitored by luciferase activity. IL
described in A were treated with PBS, as a control, or with 30 x 10
days using the optimized expansion protocol. The pictures display the bioluminescence (radiance) 
showing the in vivo luciferase activity of four representative mice of each group at the day of NK cell 
transfer (top) and 13 days thereafter (bottom). (C) Tumor bearing mice were treated with NK cells as 
described in B using different NK cell doses. Mean and range of the tumor burden, measured by 
bioluminescence, is shown at different time points for one representative experimen
group. (D) Mice were treated as described in C, and the transferred human NK cells were re
blood and lungs of the mice 14 days after NK cell injection and were enumerated using flow cytometry. 
Mean and standard deviation of NK cell numbers per lung and per mL of blood are shown for four mice 
per group. (E) Tumor bearing mice were treated with 30 x 10
day 3, 7 and 14 the mice were sacrificed and human NK cells were re
Mean and standard deviation of NK cell numbers per lung or mL of blood are shown for four mice per 
group. Statistical significance in all experiments was tested by Student’s t

Evaluation of expanded NK cells for therapeutic efficacy using a xenograft model

conclusion, adoptive transfer of NK cells generated with the optimized protocol resulted in 

efficient control of tumor in a xenograft mouse model without noticeable side effects.

Adoptive transfer of NK cells expanded by the optimized protocol in tumor bearing mice 
resulted in pronounced tumor growth control. (A) Scheme is shown for evaluation of expanded NK cells 

using a xenograft model. Mice were irradiated and received human SK-MEL
expressing luciferase by intravenous (i.v.) injection. Three days later, after tumor engraftment, the mice 

ith human NK cells expanded with the optimized protocol and the tumor load was 
monitored by luciferase activity. IL-2 was repeatedly injected intraperitoneal. (B) Tumor bearing mice as 
described in A were treated with PBS, as a control, or with 30 x 106 NK cells that were expanded for 14 
days using the optimized expansion protocol. The pictures display the bioluminescence (radiance) 

luciferase activity of four representative mice of each group at the day of NK cell 
days thereafter (bottom). (C) Tumor bearing mice were treated with NK cells as 

described in B using different NK cell doses. Mean and range of the tumor burden, measured by 
bioluminescence, is shown at different time points for one representative experimen
group. (D) Mice were treated as described in C, and the transferred human NK cells were re
blood and lungs of the mice 14 days after NK cell injection and were enumerated using flow cytometry. 

f NK cell numbers per lung and per mL of blood are shown for four mice 
per group. (E) Tumor bearing mice were treated with 30 x 106 expanded NK cells as described in B and at 
day 3, 7 and 14 the mice were sacrificed and human NK cells were re-isolated from
Mean and standard deviation of NK cell numbers per lung or mL of blood are shown for four mice per 
group. Statistical significance in all experiments was tested by Student’s t-test. 
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4.3.3 Ex vivo generated NK cells change their phenotype and function in vivo 

Next, changes in phenotype and function of NK cells in vivo were monitored and NK cells that 

were isolated from the lungs shortly after adoptive transfer were analyzed in comparison to 

naive NK cells and ex vivo expanded NK cells (Figure 4.20 A). Based on previous results 

showing that NK cells greatly change their surface marker profile upon ex vivo activation 

(chapter 4.1.4), TRAIL, DNAM-1 and NKG2D surface markers were selected to assess NK cell 

activation. As expected, ex vivo expanded and activated NK cells exhibited up-regulated TRAIL, 

DNAM-1 and NKG2D compared to naive NK cells (Figure 4.20 B, C). Intriguingly, three days 

after adoptive transfer of ex vivo expanded NK cells, the cells expressed again low levels of 

TRAIL, DNAM-1 and NKG2D similar to naive NK cells. 

Next, the functional activity of NK cells was tested after their adoptive transfer. As expected 

from the low expression of TRAIL, DNAM-1 and NKG2D, NK cells retrieved from mice 3 

days after adoptive transfer had low cytotoxicity against SK-MEL-28 and K562 target cells, 

compared to NK cells expanded from the same donors that were maintained in ex vivo cell 

culture (Figure 4.20 D). In line with the reduced cytotoxicity, re-isolated NK cells had a 

diminished potential for degranulation compared to expanded NK cells that were maintained in 

ex vivo cell culture. Importantly, the ability of ex vivo activated NK cells to produce IFN-γ and 

TNF-α was retained in vivo and remained at significantly higher levels than that observed with 

naive NK cells. In an additional experiment NK cells were re-isolated also at later time points 

after NK cell injection (Figure 4.21). The results indicated that the high productivity of IFN-γ 

and TNF-α was still retained after 7 and 14 days following NK cell injection, but the 

experiment was performed only once with NK cells from a single donor. Of note, similar data as 

obtained with NK cells isolated from lungs as shown in Figure 4.20 were obtained with NK 

cells from blood (data not shown). Taken together, although the increased potential for 

degranulation and direct killing of tumor cells was short lived in vivo, the data suggested that 

NK cells generated by the optimized protocol had a sustained competence for cytokine 

production in vivo.  
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Figure 4.20 After transfer into NSG mice, 
and lost their cytotoxicity and potential for degranulation, while they retained an enhanced ability to 
produce IFN-γ and TNF-α. (A) Scheme for characterization of three types of NK cells from the same 
donor. First, freshly isolated, naive NK cells were analyzed (
vivo for 17 days by use of short term IL
Third, NK cells were expanded in the same way for 14 days before 
mice (30 x 106 NK cells per mouse)(
were re-isolated from the mouse lungs and NK cells from 3
differentially prepared NK cells as described in A were analyzed for the surface markers NKG2D, TRAIl 
and DNAM-1 by flow cytometry. Histograms for one representative NK cell donor are shown (back) 
together with isotype controls (gray
three different donors. For each marker the mean and standard deviation of all donors are shown for the 
mean fluorescence intensity (MFI) corrected by isotype subtraction (top) and the frequency of NK cells 
expressing the marker (bottom). (D) The 
for cytotoxicity against K562 and SK
standard deviation of one out of two representative experi
donors. (E) The differentially prepared NK cells as described in A 
production of IFN-γ and TNF-α 
different NK cell donors are displayed. Statistical significance was tested by paired Student’s t
experiments. 
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After transfer into NSG mice, ex vivo expanded NK cells rapidly changed their phenotype 
cytotoxicity and potential for degranulation, while they retained an enhanced ability to 

. (A) Scheme for characterization of three types of NK cells from the same 
hly isolated, naive NK cells were analyzed (black). Second, NK cells were expanded 

for 17 days by use of short term IL-21 stimulation, IL-2 and irradiated EBV-LCL feeder cells (
Third, NK cells were expanded in the same way for 14 days before they were transferred to tumor bearing 

NK cells per mouse)(blue). Three days after the transfer, the transferred human NK cells 
isolated from the mouse lungs and NK cells from 3-4 mice were pooled per donor (blue). (B) The 
ally prepared NK cells as described in A were analyzed for the surface markers NKG2D, TRAIl 

1 by flow cytometry. Histograms for one representative NK cell donor are shown (back) 
gray). (C) The flow cytometric analysis as described in B is applied for 

three different donors. For each marker the mean and standard deviation of all donors are shown for the 
mean fluorescence intensity (MFI) corrected by isotype subtraction (top) and the frequency of NK cells 

e marker (bottom). (D) The differentially prepared NK cells as described in A 
for cytotoxicity against K562 and SK-MEL-28 target cell lines at a 3:1 effector-to-target ratio. Mean and 
standard deviation of one out of two representative experiments are shown using two different NK cell 

differentially prepared NK cells as described in A were analyzed for degranulation and 
α upon stimulation with PMA/Iono. Mean and standard deviation of three 
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Figure 4.21 NK cells that have been expanded with the optimized protocol lose their high cytotoxic 
potential shortly after in vivo transfer, but they retain their high potential to produce IFN-γ and TNF-α 
over long time. (A) Scheme for characterization of three types of NK cells from the same donor. First, 
freshly isolated, naive NK cells were analyzed (black). Second, NK cells were expanded ex vivo for 17 
days by use of short term IL-21 stimulation, IL-2 and irradiated EBV-LCL feeder cells (red). Third, NK 
cells were expanded in the same way for 14 days before they were transferred to tumor bearing mice (30 
x 106 NK cells per mouse)(blue). After 3, 7 and 14 days following NK cell transfer, human NK cells were 
re-isolated from the mouse lungs and NK cells from four mice were pooled (blue). (B) The differentially 
prepared NK cells as described in A were analyzed for degranulation and production of IFN-γ and TNF-
α upon stimulation with PMA/Iono. Displayed are results for NK cells from one donor. 

Then, it was investigated whether long-term IL-2 activated NK cells show the same changes in 

phenotype and function upon in vivo transfer as NK cells obtained by the optimized protocol 

(Figure 4.22). Indeed, long-term IL-2 activated NK cells similarly reduced the expression of 

NKG2D, DNAM-1 and TRAIL and possessed a low potential for degranulation such as naive 

NK cells after in vivo transfer. However, in contrast to NK cells that have been generated by the 

optimized expansion method, long term IL-2 activated NK cells appeared also incapable of 

maintaining an enhanced productivity for IFN-γ and TNF-α in vivo. This implied a different 

functional quality of NK cells obtained by the optimized expansion method compared to 

conventionally used long-term IL-2 activated NK cells. 
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Figure 4.22 After transfer into NSG mice, NK cells that have been expanded with IL-2 and without 
irradiated EBV-LCL changed their phenotype and lost their ex vivo acquired functionality including 
enhanced production of IFN-γ and TNF-α. (A) Scheme for characterization of three types of NK cells 
from the same donor. First, freshly isolated, naive NK cells were analyzed (black). Second, NK cells were 
expanded ex vivo for 17 days in IL-2 containing medium.(gray). Third, NK cells were expanded in the 
same way for 14 days before they were transferred to tumor bearing mice (30 x 106 NK cells per 
mouse)(blue). Three days after the transfer, the transferred human NK cells were re-isolated from the 
mouse lungs and NK cells from two mice were pooled per donor (blue). (B) The differentially prepared 
NK cells as described in A were analyzed for the surface markers NKG2D, TRAIl and DNAM-1 by flow 
cytometry. For each marker the mean value of two analyzed donors is shown for the mean fluorescence 
intensity (MFI) corrected by isotype subtraction (top) and the frequency of NK cells expressing the 
marker (bottom). (C) The differentially prepared NK cells as described in A were analyzed for 
degranulation and production of IFN-γ and TNF-α upon stimulation with PMA/Iono. Mean values of two 
analyzed donors are displayed.  

4.3.4 IFN-γ and TNF-α inhibit the growth of SK-MEL-28 cells in vitro 

Because NK cells in the xenograft model exhibited a sustained potential to produce IFN-γ and 

TNF-α, it was tested whether these factors can directly contribute to the NK cell mediated anti-

tumor efficacy. Since it was published recently that COLO-205 are highly sensitive and K562 

are less susceptible for growth inhibition by IFN-γ and TNF-α,119 the effect of IFN-γ and TNF-α 

on SK-MEL-28 melanoma target cells was analyzed in comparison to K562 and COLO-205 

cells (Figure 4.23 A). As expected, IFN-γ and TNF-α strongly reduced the cell growth of 

COLO-205 cells to 28%, while the effect was less pronounced in case of K562 cells (71%). 

Similar to COLO-205 cells, the growth of SK-MEL-28 dropped to 20% in the presence of IFN-γ 

and TNF-α, suggesting a high sensitivity of SK-MEL-28 for IFN-γ and TNF-α. The growth 

inhibition was dose dependent and low concentrations of IFN-γ and TNF-α were less efficient 

but still sufficient to mediate a detectable effect in vitro (Figure 4.23 B). 
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Figure 4.23 The growth of SK-MEL-28 melanoma target cells is inhibited by IFN-γ and TNF-α in vitro. 
(A) Different target cell lines were cultivated with or without IFN-γ (100 ng/mL) and TNF-α (10 ng/mL) 
for 4 days. The cell growth normalized to cultivation without IFN-γ and TNF-α is depicted for triplicate 
cultures. (B) Expanded NK cells were stimulated with SK-MEL-28 cells for 24 h and the culture 
supernatants were analyzed for IFN-γ and TNF-α using a multiplex bead-array assay. The NK cells were 
expanded before for 14 days by means of the optimized expansion protocol and mean and SD of three 
donors is shown. (C) SK-MEL-28 cells were cultured as described in A at different concentrations of 
IFN-γ and TNF-α. (D) SK-MEL-28 cells were cultured as described in C. Adding supernatants of 
stimulated NK cells as described in B were investigated in addition to IFN-γ and TNF-α. NK cell 
supernatants were 10-fold concentrated using centrifugal filters. Adding blocking antibodies (10 µg/mL) 
against IFN-γ or TNF-α at start of cultivation was tested. Mean and SD is shown for triplicate cultures 
and three different NK cell donors. Statistical significance was tested by Student’s t-test. 

Cultures of expanded NK cells that were stimulated with SK-MEL-28 cells contained 

concentrations of IFN-γ and TNF-α of about 100 pg/mL and 10 pg/mL, respectively (Figure 

4.23 C). To evaluate NK cell derived IFN-γ and TNF-α for growth inhibition of SK-MEL-28, 

the supernatants were concentrated by factor 10 to reach the concentration range of IFN-γ and 

TNF-α that is required to detect a possible effect in vitro. Indeed, NK cell derived supernatants 

reduced the growth of SK-MEL-28 in the same way as recombinant IFN-γ and TNF-α did at 

low concentrations (Figure 4.23 D). Blocking antibodies against IFN-γ and TNF-α clearly 
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abrogate the inhibitory effect of recombinant IFN-γ and TNF-α at high concentrations of the 

cytokines. But, at lower concentrations of IFN-γ and TNF-α the effect of the blocking 

antibodies did not reach statistical significance due to the worse “signal-to-noise ratio”, so that it 

was not possible to proof that IFN-γ and TNF-α were responsible for the inhibitory effect of the 

NK cell supernatants. In conclusion, it was shown that IFN-γ and TNF-α clearly inhibit the 

growth of SK-MEL-28. Soluble factors derived from stimulated NK cells reduced the growth of 

SK-MEL-28 cells, but it could not be confirmed that this was dependent on IFN-γ and TNF-α in 

vitro. 

4.3.5 NK cells obtained by the optimized protocol show better anti-tumor efficacy 

and in vivo persistence compared to conventionally IL-2 activated NK cells 

Finally, the in vivo anti-tumor activity of NK cells generated with the optimized expansion 

protocol were compared to NK cells activated long-term with IL-2 alone without feeder cells. A 

comprehensive evaluation was performed using expanded NK cells from three different NK cell 

donors during different experiments. For both expansion protocols, a high number of 30 x 106 

NK cells per mouse were applied. Both protocols were suitable to obtain this high NK cell dose 

for use in this mouse model, even though expansion with IL-2 without feeder cells resulted in a 

minor NK cell expansion of 2- to 10-fold, whereas the optimized expansion protocol yielded a 

mean 2900 fold NK cell expansion after two weeks. However, it’s important to clarify that only 

the optimized expansion method would be able to provide this dose of NK cells for humans 

receiving this type of therapy. As shown before, the optimized expansion protocol led to NK 

cells that were able to control tumor growth also at later time points. In contrast, even though 

conventionally IL-2 activated NK cells showed a similar anti-tumor efficacy shortly after the 

transfer, they were less effective at later time points (Figure 4.24 A). Importantly, despite 

infusing identical numbers of IL-2 activated and optimally expanded NK cells, there was a 

striking difference in the numbers of NK cells that could be isolated from the mice two weeks 

after the transfer. On day 14 after injection, the numbers of NK cells in blood, lungs and spleen 

were around ten times lower for IL-2 activated NK cells compared to NK cells that have been 

expanded with the optimized expansion method (Figure 4.24 B). These data indicate that NK 

cells that were generated with the optimized protocol exhibited enhanced in vivo persistence and 

significantly controlled tumor growth at later time points. 
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Figure 4.24 Expansion of NK cells using the optimized protocol results in NK cells with better in vivo 
persistence and anti-tumor activity compared to IL-2 expanded NK cells. (A) Mice bearing SK-MEL-28 
cells expressing luciferase received either intravenous (i.v.) PBS (white bars) or human NK cells. The 
injected NK cells were previously expanded ex vivo for 14 days, either with IL-2 (gray bars) or with IL-2, 
irradiated EBV-LCL and IL-21 supplemented at day 0 (red bars). In total, three independent NK cell 
donors were used in different experiments and the bioluminescence (radiance) of each mouse at day 3, 7 
and 13 was measured and analyzed relative to the bioluminescence at day 0. For each donor two to eight 
mice were used per group and mean and SD of all donors are shown for different time points. (B) Tumor 
bearing mice were treated as described in A and human NK cells were re-isolated from blood, lungs and 
spleen of the mice 14 days after NK cell injection. NK cells were enumerated using flow cytometry and 
mean and SD of the NK cell numbers are shown for one representative donor using four mice per group. 
Statistical significance was tested by Student’s t-test in all experiments. 

In summary, adoptive transfer of ex vivo expanded NK cells has a therapeutic effect against 

melanoma derived human tumors in a xenograft mouse model and a high dose of transferred 

NK cells is crucial for the outcome of the treatment. Furthermore, the optimized method for ex 

vivo NK cell expansion, which was developed in this project, enables the generation of NK cells 

that feature enhanced in vivo persistence after adoptive transfer and the ability for sustained 

productivity of IFN-γ and TNF-α in response to re-stimulation. Most importantly, the 

therapeutic efficacy of these generated NK cells is superior over conventionally IL-2 expanded 

NK cells. 
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5 Discussion 

Parts of the text in this chapter have been directly taken or slightly modified from Granzin et al. 

(2015)346 and from a second manuscript that is currently submitted.347 The text has been 

originally written by myself. 

In this chapter the conclusions of the project results are discussed in the context of existing 

knowledge. The chapter first deals with aspects that arise from the development of the fully 

automated NK cell expansion (chapter 5.1). Then, findings of the development of the optimized 

NK expansion protocol are discussed (chapter 5.2), followed by conclusions that can be drawn 

from the therapeutic xenograft mouse model for adoptive NK cell transfer (chapter 5.3). Finally, 

the results of the entire project are reviewed in the context of the aims (chapter 5.4). 

5.1 Fully automated expansion and activation of clinical-grade NK 

cells for adoptive immunotherapy 

The developed expansion process is a valuable tool to bring NK cells “from bench to bedside” 

An automated cell expansion process was successfully developed by the use of an automated 

system and results were reported for the production of activated NK cells for their use in clinical 

cell therapy applications. For large-scale expansion of clinical-grade cells, NK cell cultures 

normally are maintained for 14 to 28 days and typically require frequent interventions such as 

media changes to refresh cytokines and other growth factors as well as to ensure that NK cells 

are maintained at a concentration that optimizes their growth and viability.139 This procedure 

was efficiently automated allowing for clinical-grade production of high NK cell numbers that 

showed the same in vitro functionality and similar phenotype and gene expression as manually 

expanded NK cells. The automation requires financial investment for the instrument but enables 

significantly reduced running costs for an actively used clean-room, representing a major 

expense factor for the cellular product. Therefore, the automated process will be cost-saving in 

production scale in case of numerous performed processes per year. But, most importantly, the 

automation within a closed system substantially facilitates the expansion procedure by saving 

not only time but also minimizing the risk of culture contamination while introducing 

consistency in the production process. Thus, the process allows efficient GMP-compliant 

expansion of NK cells to best possible meet clinical needs and thereby it supports the translation 

of NK cell therapy to therapeutic use.  
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Ex vivo expansion changes the NK cell phenotype with possible consequences for their use in 

therapy 

In line with previous findings,341 many NK cell relevant markers and apoptosis-inducing 

molecules were up-regulated upon ex vivo expansion (chapters 4.1.4, 4.1.5). This change in 

phenotype might contribute to an increase of the therapeutic potential of the ex vivo generated 

NK cells. In particular, up-regulation of TRAIL by expanded NK cells can be utilized to 

efficiently treat tumors that express TRAIL death receptors and/or are sensitized to TRAIL by 

drugs such as bortezomib or doxorubicin.182,360,361 Furthermore, the up-regulated expression of 

DNAM-1 and NKG2D by expanded NK cells increases their responsiveness and lead to 

enhanced NK cell mediated natural killing of tumor cells expressing ligands for these receptors, 

which is important for improved elimination of leukemia and solid tumors (chapter 0). Here, 

similar to TRAIL, the susceptibility of cancer cells can be further increased by different 

chemotherapeutic agents or hyperthermia, which induce the expression of ligands for DNAM-1 

and NKG2D on tumor cells.362,363 Importantly, NK cells from cancer patients often show 

diminished cytotoxic response due to impaired expression of activating NK cell receptors.364 

Therefore, ex vivo activation and expansion of patient derived autologous NK cells can be 

helpful to restore the repertoire of activating receptors on autologous NK cells, pointing out the 

importance of ex vivo expansion in particular for adoptive NK cell therapy in autologous 

settings. 

Similar to a bioreactor, the presented system for NK cell expansion is very convenient, but it 

does not require manual pre-cultivation and allows lower starting cell numbers 

Although some methods for effective NK cell expansion were developed in the past and have 

proven their applicability in large-scale by use of manual cultivation systems, such as cell 

culture bags or G-Rex containers,154,206,287,318,337,365 there has been virtually no progress in the 

development of a fully automated and controlled process for clinical-scale NK cell expansion. 

An early report in 1996 showed the feasibility of automated NK cell cultivation by means of a 

stirred bioreactor,366 but no further applications of this approach have been published. Sutlu et al. 

and Lapteva et al., independent of each other, applied an automated Wave Bioreactor system for 

clinical-grade NK cell expansion from PBMCs,312,344 and Spanholtz et al. used the same system 

to generate clinical-grade NK cells expanded from cord blood hematopoietic progenitor cells.277 

Sutlu et al. concluded that automation of the cultivation is more practical and generated more 

activated NK cells compared with manual approaches. The results presented here confirm the 

practicability of an automated system, whereas, in this project, NK cells neither differed 

significantly in phenotype nor in function, whether they have been cultivated manually or 
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automatically (chapters 4.1.2, 4.1.3, 4.1.4, 4.1.5), similar to observations from Lapteva et al. and 

Spanholtz et al.. In comparison, the Wave Bioreactor system requires a high cell number to 

initiate the culture, which inevitably implicates a manual pre-cultivation until enough cells are 

generated to start the automated process. In the system presented here, low starting cell numbers 

were not a limitation, because the automation covered the whole cultivation phase including an 

early static cultivation phase with very low cell numbers, with 106 NK cells being sufficient to 

initiate the current process. 

The combination of automated cell separation and NK cell cultivation within a single system is 

unique and allows full-automation of the whole NK cell expansion procedure 

In contrast to other expansion approaches, this project shows that the entire cell cultivation 

phase, including preceding cell separation steps, can be done fully automated by a single 

instrument, enabling complete cell processing from the starting material to the final “ready-to-

use” cell product (chapter 4.1.6). Starting the NK cell production process with a cell separation 

step to enrich for NK cells is beneficial, because it results in high-purity expanded NK cells 

without contaminating T cells in the final cell product.206 The purity of the produced NK cells is 

important to avoid T cell mediated toxicities such as GvHD, especially in allogeneic settings, 

but also to directly trace back any treatment effects, positive and negative ones, to NK cells and 

allow a proper clinical evaluation of NK cells as therapeutic effector cells (chapter 1.5.1).  

Similar to a bioreactor, the presented system for NK cell expansion yields sufficient NK cells 

for cell doses typically used in clinical trials, but considering strategies to increase the 

achievable number are needed since future applications probably require more NK cells  

On average, with one instrument 1.3 x 109 activated NK cells could be generated within two 

weeks, enough to treat a typical 70- to 100-kg patient with 1 to 2 x 107 NK cells/kg. This would 

fall within the range of NK cells typically used in most investigational trials of adoptive NK cell 

immunotherapy.367 Nevertheless, the optimal dose for NK cell injections has not yet been 

determined, and, because no dose dependent side effects have been observed, NK cell injections 

of 108 to 109/kg are imaginable in future.139 Whereas bioreactor systems provide a volume of up 

to 3 L for cultivation and can yield 2 x 109 NK cells derived from umbilical cord blood 

hematopoietic stem cells,277 or 9.8 x 109 NK cells from expansion of PBMCs,312,344 the current 

system presented here is equipped with a medium scale culture volume of only 300 mL, which 

allowed a maximum NK cell number of 2.7 x 109. Thus, if higher doses of NK cells are needed, 

several process runs or multiple devices might be necessary for one application. In case that NK 

cell therapy turns out to be an efficient treatment option, it’s even imaginable that production of 

NK cells could be realized in highly standardized bioreactor systems equipped with volumes up 
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to 10,000 liters similar to large cell cultures for production of therapeutic antibodies. Of note, 

the optimized protocol for NK cell expansion, which is discussed later, makes it possible to 

reach extremely high NK cell numbers, which could indeed require the capacity of such large 

culture systems. Then, the developed automated NK cell expansion would be ideal for initial 

NK cell processing, which includes NK cell separation and early cultivation steps, to provide 

clinical-grade NK cells as inoculum for subsequent expansion using a suitable bioreactor system.  

Multiple NK cell infusions over time, which could be achieved by continuous production of NK 

cells, could be an alternative to infusion of a single large NK cell dose 

Another strategy is the continuous production of NK cells that can be infused during multiple 

courses, allowing a high dose of applied NK cells in the end. With the current instrumentation, 

it’s already possible to perform a continuously running process that maintains the NK cells in 

the expansion phase with repeated harvesting of cells whenever the maximum cell density is 

reached. Of note, with the optimized expansion protocol, a continuously running process could 

be maintained over weeks and very high NK cell doses could be achieved from a single blood 

donation. Repeated administration of ex vivo expanded NK cells at low numbers could be 

already sufficient for inducing a long-lasting anti-tumor response, since it has been shown in 

mice that adoptively transferred NK cells are able to trigger tumor specific endogenous memory 

T cell responses as antigen presenting cells or through cross-talk with DCs.368  

The expanded NK cells keep their proliferative potential during ex vivo expansion, so that NK 

cells could further expand in vivo after  adoptive transfer 

The number of NK cells that is required for the transfer to the patient may be lower, if better in 

vivo persistence and expansion of the transferred cells could be achieved through post infusion 

strategies, such as cytokine administration. Clinical trials showed that it’s possible to induce in 

vivo NK cell expansion in humans by means of IL-2 injection or endogenous production of IL-

15 that can be stimulated by preparative chemotherapy with high dose cyclophosphamide and 

fludarabine.177,190 Importantly, NK cells produced with the use of the automated method showed 

no noticeable telomere length shortening after expansion (chapter 4.1.3), indicating that the cells 

do not become senescent, and the regular proliferative potential is conserved, potentially 

allowing ex vivo expanded NK cells to further expand in vivo.  

Specific expansion of therapeutically relevant NK cells could reduce the required NK cell dose 

Another aspect to consider is that NK cells are heterogeneous in phenotype and function, with 

only a fraction of NK cell subsets driving their major cytotoxic effects.369,370 As a consequence, 

effective NK cell based immunotherapy may not necessarily require the transfer of a high 
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number of bulk NK cells but the transfer of sufficient cells of therapeutically relevant NK cell 

subsets. For example, expanded single KIR+ NK cells are proven to be advantageous over bulk 

NK cells in an AML xenograft model.287 But, detailed characterization of the optimal NK cell 

subset for therapy is still pending. Nevertheless, because the automated expansion system 

combines the feature of cell separation and the possibility to use a very low starting NK cell 

number, it would be possible to isolate only a rare, therapeutically relevant NK cell subset and 

expand these cells to clinically needed numbers within a single process, representing a 

promising future strategy. 

The applied clinical NK cell enrichment using TCR-α/β-CD19 depletion followed by CD56 

enrichment could be better than conventional CD3 depletion and CD56 enrichment 

In the presented work, the used system was automated through the use of TCR-α/β-CD19 

depletion followed by CD56 enrichment as a novel strategy to enrich for bulk NK cells in 

clinical scale from leukapheresis products (chapter 4.1.6). This strategy may be promising, 

because TCR-α/β depletion has been shown to be superior over conventional CD3/CD19 

depletion in stem cell transplantation settings due to a more efficient removal of TCR-α/β T 

cells,371,372 which are responsible for GvHD. Furthermore, remaining TCR-γ/δ T lymphocytes 

rather possess positive features as they exhibit direct anti-tumor activity,373,374 augment NK cell 

activity through CD137 engagement,375 and eliminate recipient DCs and T cells, thereby 

preventing GvHD.162 Indeed, a highly efficient depletion of TCR-α/β cells was achieved in the 

presented project and the obtained NK cells had the same potential to proliferate and showed the 

same functionality after expansion as NK cells, which were obtained by CD3 depletion and 

CD56 enrichment. The latter method has been used as a standard strategy for clinical scale NK 

cell separation in therapeutic settings so far.170,198,284,285 

As the automated NK cell expansion process allows centralized and de-centralized production, 

it facilitates different strategies for large scale manufacturing of NK cells for therapeutic use 

In view of the need to develop standardized methods to expand NK cells for clinical use, this 

automated process enables easy up-scaling for cost-efficient, centralized manufacturing of the 

therapeutic cell product. On the other hand, the closed system allows scale-out strategies and 

decentralized cell processing directly at the location of use,376 avoiding the need for cell 

shipping, which often represents a logistic challenge, and, if done incorrectly, can compromise 

the NK cell product quality.344 In general, both models, centralized and de-centralized 

manufacturing, have advantages and disadvantages and the choice for the best production model 

may rely mainly on the product stability and the necessity for a fast delivery to the patient, 

which is more critical for autologous than for allogeneic cellular therapies in most cases.377 
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Importantly, NK cells are applied in autologous but also in allogeneic therapeutic settings and 

the presented system supports the optimal NK cell production model for both settings. 

5.2 Development of an optimized protocol for expansion and 

activation of human NK cells 

In the first part of the project, a fully automated process for NK cell expansion was developed 

based on a clinical protocol that makes use of IL-2 and irradiated, clinical-grade EBV-LCL 

feeder cells to stimulate NK cell. Although this is an attractive strategy for clinical NK cell 

expansion, it’s restricted to a relatively limited period of 2-4 weeks when expansion occurs and 

the achievable yield of NK cells remains limited. Here, it was demonstrated for the first time 

that the expansion of NK cells from peripheral blood by use of clinical-grade irradiated EBV-

LCL feeder cells can be greatly increased by one single initial addition of IL-21 into the culture 

medium. This resulted in a long-lasting highly efficient proliferation of NK cells with potent in 

vitro and in vivo anti-tumor activity (chapters 4.2, 4.3). 

The efficacy of the developed method for NK cell expansion is unprecedentedly high 

Repeated stimulation with K562 feeder cells bearing membrane-bound IL-21 has been reported 

to facilitate a long-term expansion of NK cells allowing around 108–fold NK cell expansion 

after six weeks.203 Here, a much higher 1011–fold NK cell expansion was reached after six 

weeks by combining repeated stimulation with irradiated EBV-LCL feeder cells with IL-21 

addition at the initiation of culture (chapter 4.2.1). It was sufficient to supplement soluble IL-21 

only at start of cultivation to achieve high expansion of NK cells using stimulation with 

irradiated EBV-LCL. These data are in concordance with recent data showing exposure time of 

soluble IL-21 is critical for the yield of NK cells during co-culture with K562 feeder cells 

expressing membrane-bound IL-15.378 Importantly, IL-21 has been shown to cause apoptosis of 

NK cells which is enhanced when this cytokine is membrane-bound compared to when it’s in its 

soluble state.301 This implies that stimulation of NK cells using feeder cells expressing 

membrane-bound IL-21 may have disadvantages compared to the approach utilized here, where 

IL-21 was incorporated only briefly into the media at the start of cell culture. The combination 

of repeated stimulation with clinical-grade irradiated EBV-LCL feeder cells and the short term 

presence of soluble IL-21 in the medium results in unparalleled efficacy in expanding NK cells. 

The optimized expansion method would allow to generate an off-the-shelf NK cell product 

Unlike other effector cells, NK cells can be applied not only in an autologous but also 

allogeneic setting and receptor-ligand mismatches of donor and recipient may support a better 

NK cell versus tumor effect without inducing unwanted toxicities.379 Thus, at some stage NK 
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cell products may become universally applicable “off-the-shelf” with the optimized expansion 

method enabling the production of activated NK cells to an industrial scale. Until now, this was 

only possible by using continuously growing NK cell lines like NK-92 that proved its 

applicability in mouse studies and in pilot trials with cancer patients.380,381 However, due to 

safety concerns, NK cell lines require proper inactivation by irradiation prior to infusion in the 

patient, preventing their ability to proliferate in vivo which could potentially compromise their 

therapeutic potential. To avoid this major drawback of NK cell lines, it would be advantageous 

to use primary NK cells and expand them to very high cell numbers using the presented 

optimized method, to manufacture off-the-shelf NK cell products that are suitable for use in 

protocols treating a variety of different cancer patients. Compared to individually generated 

therapeutic NK cell units, off-the-shelf NK cell products would not only ensure a more constant 

product quality and efficacy, but also the production process could be designed in a centralized 

and more cost-efficient way. Apart from the therapeutic efficacy, these aspects are essential for 

the success of a cellular therapy in the long run. 

EBV-LCL-mediated NK cell expansion is not primarily dependent on soluble factors 

Although EBV transformed B cell lines are used for NK cell expansion for long time, the 

expansion inducing mechanisms are still unclear. Interestingly, IL-12 is known to induce NK 

cell activation and IFN-γ production and IL-12 was originally purified from the supernatant of 

the EBV-LCL cell line RPMI 8866.323,382 However, the EBV-LCL used in this project did not 

secrete noticeable amounts of IL-12 (chapter 4.2.2). This can be explained by the heterogeneity 

of EBV-LCL cell lines. In a study analyzing the cytokine secretion of different EBV-LCL cell 

lines only 19 out of 39 tested EBV-LCL cell lines produced IL-12.383 Furthermore, early reports 

already claimed that EBV-LCL-mediated NK cell expansion is not dependent on soluble 

factors,309 which is in agreement with the here presented data that imply an important role for 

the direct cell-cell contact between EBV-LCL and NK cells (chapter 4.2.3). 

EBV-LCL-mediated NK cell expansion relies on cell-cell contact, but the relevant factors for 

this interaction remain elusive 

It’s known that expansion of NK cells in co-cultures with different other cells is often based on 

heterotypic cell-cell contact, as shown for autologous PBMCs384 and CD14+ cells306 or 

allogeneic feeder cells including K562385, HFWT324,325, KL-1321 and MM-170.322 However, in 

most cases, the essential factors for this interaction are unknown. Therefore, different surface 

marker were targeted with blocking antibodies to reveal important factor for the interaction 

between the used EBV-LCL and NK cells, (chapter 4.2.1). In general, allogeneic feeder cells 

can support NK cell expansion in vitro due to the mismatch of expressed KIR ligands and NK 
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cell KIRs.386 Interactions with CD16 on NK cells were required for KL-1–mediated expansion 

of NK cells from PBMCs, and, interestingly, depletion of B cells from the PBMCs abrogated 

NK cell expansion, while addition of an EBV-LCL cell line further increased the expansion.321 

However, in my experiments CD16 was irrelevant for the interaction between the EBV-LCL 

and NK cells, since two different blocking antibodies directed against CD16 did not reveal any 

effect on the EBV-LCL-mediated NK cell expansion. 41BBL is an important ligand on 

engineered K562 triggering NK cell proliferation,266 but blocking of this ligand also had no 

consequence on the expansion of NK cells in co-culture with EBV-LCL. Because EBV 

infection can induce CD40 ligand expression it was suggested that CD40/CD40L signaling 

could play a role,387 but blocking CD40 in the NK-EBV-LCL co-culture did not make a 

difference. CD48 and 2B4 are critical for the proliferation of NK cells in response to IL-2 

during homotypic interactions between different NK cells, and they play a role for interactions 

between CD48+ T cells and 2B4+ NK cells.129,357,358 Indeed, it was observed that blocking of 2B4 

or CD48 reduced the expansion of NK cells in cultures with NK cells alone, but these blockings 

had no significant effect when EBV-LCL were present, implying that the character of the NK-

EBV-LCL interaction is independent of CD48 and 2B4. Unfortunately, none of the targeted 

receptors appeared to be important for the EBV-LCL NK cell expansion with the exception of 

the high affinity IL-2 receptor CD25, pointing to the relevance of IL-2 signaling, which is 

addressed in the next section. 

The γ-chain cytokines IL-2 and IL-21 seem critical for EBV-LCL-mediated NK cell expansion  

To understand the relevant factors of EBV-LCL-mediated NK cell expansion, it would be 

necessary to understand the general mechanisms of NK cell expansion. For T cell expansion, 

it’s an accepted model that engagement of the TCR followed by a second co-stimulatory signal, 

such as CD28 triggering, enables full T cell activation and induces up-regulation of cytokine 

receptors, which then allow T cell proliferation in response to different cytokines.388 Although 

the relevant parameters for NK cell expansion are less clear, one could imagine a similar model 

for NK cells, as NK cell expansion during formation of memory NK cells seems to rely on 

comparable mechanisms as for memory T cells. For NK cells in mice, MCMV lead to 

engagement of the Ly49H receptor and co-stimulation through DNAM.-1, provoking a clonal 

expansion of Ly49H+ NK cells in response to pro-inflammatory cytokines such as IL-12.48 In 

humans, HCMV causes the specific expansion of NKG2C+ NK cells and the exact ligand that 

act as first signal and drives this expansion is unknown, but, similar to mice, IL-12 plays a 

critical role, because it induces CD25 expression and drives expansion of NKG2C+ NK cells in 

response to CMV in vitro57. Intriguingly, induction of high CD25 expression was observed by 

NK cells in co-culture with EBV-LCL (chapter 4.2.1). This may indicate that EBV-LCL 
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provide the required signals for an initial NK cell activation, which then lead to up-regulation of 

cytokine receptors, such as CD25, which in turn would allow cytokine-driven expansion of NK 

cells, for instance by IL-2. In fact, even at high IL-2 concentrations blocking of CD25 

significantly reduced the EBV-LCL-mediated NK cell expansion, showing the relevance of 

CD25 for EBV-LCL-mediated NK cell expansion. Importantly, blocking of CD25 had no effect 

on the expansion of NK cells in response to EBV-LCL when IL-21 was present, indicating that 

IL-2 signaling can be replaced by IL-21 that as well can signal through the common γ-chain. 

This hypothesis was confirmed by the fact that a relatively robust NK cell expansion was still 

possible without IL-2 when IL-21 was present, whereas the expansion was dramatically reduced 

when both were missing. The fact that IL-21 compensates the need for IL-2 could at least 

partially explain the good performance of the optimized expansion method, using EBV-LCL 

and adding of IL-21 at start of the culture. However, total replacement of IL-2 by IL-21 seems 

not to be an option for NK cell expansion protocols, because IL-21 counteracted the NK cell 

expansion when it was present in culture over longer time (chapter 4.2.1). This emphasizes the 

actual need to dissect the effects of the different cytokines during NK cell expansion in more 

detail. In addition, the signals that are provided by EBV-LCL represent an important topic to 

better understand the mechanisms behind the effective NK cell expansion. 

Better understanding of the mechanisms behind the EBV-LCL-mediated NK cell expansion 

would help to develop NK cell expansion protocols without the need for feeder cells 

Identification of the signals provided by EBV-LCL for NK cell expansion would not only help 

to understand the biology of NK cell proliferation, but it could also help to design NK cell 

expansion approaches without feeder cells. The avoidance of feeder cells would further improve 

the standardization of the NK cell expansion procedure, since it can be assumed that feeder cells 

are undefined cell culture components with varying quality. A recent study showed that it can 

be sufficient to utilize cell membrane particles of feeder cells for NK cell expansion rather than 

intact feeder cells,389 which could already be an improvement from a regulatory standpoint. An 

even more advanced strategy could be the use of GMP-grade artificial particles carrying the 

relevant factors for NK cell expansion, similar to T cell expansion that can be achieved by non-

biological particles loaded with anti-CD3/anti-CD28 antibodies.390 A recent approach using 

bead-bound IL-21 and 41BBL demonstrated the general feasibility of this strategy for NK cell 

expansion, but the achieved performance is far behind that achievable with feeder cells (140-

fold NK cell expansion in 3 weeks), showing that it’s necessary to better understand the relevant 

factors for NK cell proliferation first.391 Since it was demonstrated that the EBV-LCL-

dependent NK cell expansion relies on cell-contact, the use of membrane particles of EBV-LCL 
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for NK cell expansion should be feasible and could simplify the identification of relevant 

membrane components of these feeder cells in a next step. 

5.3 Evaluation of expanded human NK cells for therapeutic 

efficacy using a xenograft mouse model 

With the optimized expansion method it’s possible to produce high NK cell doses for adoptive 

transfer that are required to mediate a noticeable anti-tumor effect 

NK cells expanded with the optimized method mediated pronounced anti-tumor activity in a 

mouse model and they showed superior persistence in vivo compared to conventional IL-2 

activated NK cells (chapters 4.3.2, 4.3.5). To optimize this anti-tumor effect, injection of up to 

30 x 106 NK cells per mouse is needed, corresponding to 109 NK cells/kg, which is in the upper 

range of considered doses for studies in humans.139 Thus, the results of the here presented 

xenograft mouse model indeed support the rationale for transferring preferably high NK cell 

doses to maximize a therapeutic anti-tumor effect. This is in agreement with a published 

xenograft model with NSG mice bearing human myeloma derived tumors, where transfer of 140 

x 106 ex vivo expanded K cells were required to achieve NK cell mediated tumor growth control, 

while injection of 40 x 106 NK cells was not sufficient for tumor control.330 Importantly, the 

optimized NK cell expansion method is capable of providing these high numbers of clinical-

grade NK cells for treatment of humans, whereas conventional NK cell expansion protocols 

may not reach these NK cell doses required for clinical use. 

IL-2 injections did not maintain NK cell activation and persistence in the experimental system 

in vivo 

To maintain sustained activation and expansion of NK cells in vivo, injection of low dose IL-2 

has frequently been utilized in clinical studies. However, despite treatment with low dose IL-2 

in the animal model, neither noticeable in vivo expansion was detected, nor did adoptively 

transferred NK cells maintain the phenotypic profile of activation that was acquired during ex 

vivo culture (chapters 4.3.2, 4.3.3). Possibly, the great quantity of transferred NK cells caused a 

very high demand for IL-2 that could not be obtained by the low dose of administered IL-2. Of 

note, it was published recently that, in contrast to IL-15, IL-2 was inefficient to promote 

noticeable in vivo NK cell expansion in a similar xenograft mouse model.392 Therefore, IL-15 

may be a better cytokine to improve NK cell persistence, which also has the added benefit of 

avoiding unfavorable proliferation of regulatory T cells which occurs commonly with IL-

2.190,193,237 An additional option would be to utilize an IL-2 “superkine”, which is an engineered 
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IL-2 that binds with high affinity to the IL-2Rß and eliminates the functional requirement for 

CD25.393 

Limited in vivo persistence of NK cells could also be of advantage for their use in therapy 

Although an extending lifespan of adoptively transferred effector cells seems desirable,394 the 

limited in vivo persistence and the short lifespan of transferred NK cells could have benefits that 

would make sustained in vivo NK cell expansion needless. Adoptive therapy using T cells 

expressing CARs currently represents a breakthrough for cancer immunotherapy, but the 

longevity of T cells may cause severe and potentially life-long side effects, such as B cell 

aplasia upon infusion of anti-CD20 CAR T cells.395 These unwanted side effects of CAR T cells 

could be avoided by the use of short-lived CAR expressing NK cells, potentially making them 

better controlled, potentially superior “car drivers”.249 

Similar to cytokine-induced memory-like NK cells, NK cells obtained with the optimized NK 

cell expansion method maintain an increased potential for production of IFN-γ and TNF-α 

Although activated NK cells had a rapid decline in their ability kill tumor target cells after 

adoptive transfer, they retained their enhanced potential to produce IFN-γ and TNF-α in 

response to stimulation (chapter 4.3.3). Similarly, pre-activation of murine or human NK cells 

with IL-12, IL-15 and IL-18 leads to cytokine-induced memory-like NK cells that maintain the 

ability to respond to stimulation with higher production of IFN-γ.60,61 Furthermore, murine and 

human cytokine induced memory-like NK cells possess improved anti-tumor activity in vivo, as 

shown by a mouse lymphoma model and a leukemia xenograft model.62,396 Thus, the results 

presented here indicate that expansion of NK cells with the optimized expansion method may 

lead to a type of NK cells similar memory-like NK cells with sustained production of IFN-γ and 

TNF-α upon stimulation. Importantly, up-regulation of CD25 is another important characteristic 

of cytokine-induced memory-like NK cells, allowing them to respond to picomolar 

concentrations of IL-2.62,200 As the optimized expansion also results in NK cells with 

significantly up-regulated CD25 (chapter 4.2.1), this could be another hint that NK cells 

obtained with the optimized expansion protocol share features with the type of memory-like NK 

cells generated with IL-12, IL-15 and IL-18. 

NK cell derived IFN-γ and TNF-α could contribute to the anti-tumor effect in vivo 

IFN-γ and TNF-α could play a direct role in the anti-tumor effect that was observed in the 

xenograft mouse model. In combination, IFN-γ and TNF-α can induce permanent growth arrest 

in numerous human cancers and both cytokines together are essential for destroying established 

tumors in mice by eradication of tumor associated stroma cells.119,120 Importantly, it could be 
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shown that SK-MEL-28 melanoma cells, which were engrafted in the mouse xenograft model, 

were sensitive for growth arrest by IFN-γ and TNF-α in vitro (chapter 4.3.4). Unfortunately, at 

least in vitro it was not possible to proof that IFN-γ and TNF-α derived from expanded NK cells 

are sufficient to mediate direct growth inhibition of SK-MEL-28. Nevertheless, IFN-γ also can 

polarize T cells into type-1 effector cells and upregulates MHC class I on target cells and DCs 

that could potentially facilitate subsequent T cell mediated anti-tumor responses. Accordingly, 

in a therapeutic mouse model of RMA-S lymphoma, the production of IFN-γ by transferred NK 

cells was essential for their tumor growth control.62 Thus, it would be reasonable to further 

investigate whether IFN-γ and TNF-α produced by adoptively transferred NK cells contribute to 

the NK cell-mediated anti-tumor activity. While current NK cell based therapies focus on the 

direct cytotoxic effect of NK cells, the possible importance of NK cell derived cytokines could 

be a relevant aspect for NK cells therapeutic function. 

NK cell derived anti-tumor responses that engage other immune cells cannot be determined in 

the utilized xenograft mouse model 

As already discussed before, some effects from the transferred NK cells could involve other 

immune cells to induce effective anti-tumor immunity (see also chapter 1.3.3). Of note, some of 

these effects, such as IFN-γ secretion that triggers MHC class I up-regulation on target cells and 

thereby makes them more vulnerable for T cell responses could in turn also dampen NK cells by 

inhibition through KIR signaling.115 Effects that inhibit the function of transferred NK cells 

would affect the tumor control in the xenograft mouse model. However, effects from the 

adaptive immune system are not reflected by the used xenograft mouse model, because the mice 

are immunocompromised and they lack T cells and B cells to allow engraftment of human cells 

without rejection. This is a possible drawback of the used model that could be overcome by 

utilizing mice with a humanized immune system. These humanized mice can be generated by 

injection of human primary hematopoietic cells that give rise to the different human immune 

cells.397,398 This model then allows to engraft human derived tumors without rejection of the 

graft as shown for breast cancer for example, and, in addition, the established human immune 

system enables better investigation of the complex anti-tumor immunity.399 To further improve 

the informative value of the model, engraftment of different primary human tumors instead of 

tumor cell lines would be more close to the situation in the clinic, but this approach could be 

complicated by the poor availability of these tumor materials.400 Nevertheless, although the here 

used xenograft mouse model lacks other immune cells than the transferred NK cells, it could be 

demonstrated that adoptive NK cell transfer clearly controlled the tumor growth. Thus, the 

model was suitable to proof the therapeutic efficacy of expanded NK cells in vivo. Nevertheless, 
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with view on the possible importance of other immune cells, which could be triggered by the 

transferred NK cells, the observed anti-tumor effect in the xenograft model could be 

underestimated or at least different to the expected effect with an immune competent individual. 

The optimized expansion of clinical-grade NK cells and the established xenograft model are 

useful tools for the implementation and testing of improved NK cell therapy concepts in future  

Adoptive transfer of expanded NK cells in combination with other anti-cancer therapies could 

open new perspectives for cancer treatment in future. Considering the described recent 

developments in the field and taking the results of the presented project into account, future 

scenarios of cancer immunotherapy with NK cell transfer could combine several aspects. An 

exemplary scenario in the near future could be the adoptive transfer of clinical-grade ex vivo 

expanded NK cells at very high cell doses during multiple courses together with multi-specific 

antibodies directed against tumor antigens. An outlook to the more distant future could be for 

instance the therapy with genetically modified off-the-shelf NK cell products, which express 

their own IL-2 and CARs against tumor antigens, and which could be applied together with 

antibodies targeting inhibitory KIRs. Many different treatment settings that include NK cell 

transfer are possible and these approaches could be evaluated using the established preclinical 

xenograft model. Furthermore, the here developed method for clinical-grade NK cell expansion 

is essential to overcome the normally limited numbers of available primary NK cells. These 

limited NK cell numbers could be particular relevant for intended approaches involving genetic 

modification of NK cells, such as generation of CAR expressing NK cells. Because genetic 

engineering of NK cells require further processing steps that are associated with potential loss 

of NK cells, further reducing the amount of NK cells that is available for the intended therapy. 
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5.4 Conclusion and Perspectives 

The first aim of the project was to identify a suitable technical method to translate protocols for 

NK cell expansion from early development in laboratory scale to large scale for clinical use. 

This was worked out by the automation of an entire NK cell expansion process with the use of a 

single instrument, allowing for the efficient production of clinical-grade NK effector cells. 

Because all processing steps are done automated in a closed system, this provides the highest 

standards for GMP conformity and it best possible meets clinical requests. Importantly, apart 

from the clinical-grade quality, the automated procedure yields sufficient quantities of activated 

NK cells for most of the current clinical NK cell applications. Strategies to obtain higher NK 

cell doses that are possibly required in future could be the combination of the current processing 

system with a bioreactor, or increasing the capacity of the available culture volume of the 

current system, or producing NK cells in a continuously running expansion process that is 

already possible with the current system. 

A second aim of the project was the development of a highly efficient method to expand NK 

cells ex vivo to best possible serve clinical needs. Therefore, an optimized protocol was 

established for ex vivo expansion of primary human NK cells with outstanding cell yields. This 

was achieved by stimulation of NK cells with irradiated EBV-LCL feeder cells, IL-2 and adding 

IL-21 at the start of the culture. NK cells expanded and activated under this condition possess 

potent anti-tumor activity. Thus, the method is suitable to provide very high doses of functional 

NK cells for clinical use, which is at least in terms of quantity not possible by other protocols 

reported so far. It’s imaginable that this method can pave the way for off-the-shelf primary NK 

cell products, opening new perspectives for cellular therapy with NK cells. Furthermore, 

identification and understanding of the EBV-LCL-derived signals for NK cell expansion would 

be a reasonable next step to allow the development of NK cell expansion methods without 

feeder cells, further improving NK cell expansion from a regulatory standpoint. 

The third aim of the project was to investigate how ex vivo expansion and activation of NK cells 

affect their anti-tumor properties. Characterization of ex vivo activated and expanded NK cells 

revealed that expanded NK cells exhibit alterations in gene expression, surface marker profiles 

and function. Upon ex vivo expansion, NK cells up-regulate activating receptors and effector 

molecules, they become more cytotoxic against several tumor cell lines, and they exhibit 

enhanced production of IFN-γ and TNF-α upon stimulation in vitro. Furthermore, adoptive 

transfer of NK cells expanded with the optimized expansion method led to significant inhibition 

of tumor growth in a melanoma xenograft mouse model in vivo. This anti-tumor efficacy was 
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superior over that from conventionally IL-2 activated NK cells, demonstrating that the 

developed NK cell expansion method enhances not only the quantity but also the therapeutic 

quality of NK cells. Intriguingly, NK cells expanded with the optimized method maintained 

their enhanced potential to produce IFN-γ and TNF-α after adoptive transfer, although these NK 

cells again became similar to naive NK cells in terms of their surface marker profile and a low 

potential to kill tumor cells. Thus, subsequent work could focus on the role of IFN-γ and TNF-

α for NK cells anti-tumor function. Further, it could be investigated why the cytotoxicity of 

expanded NK rapidly declines after adoptive transfer and whether it’s possible to anticipate this 

loss of cytotoxic function. In addition, the established xenograft model could be used for the 

testing of strategies to further improve the NK cell anti-tumor effect. Such strategies could 

include repeated injection of high NK cell doses instead of a single NK cell injection. The 

injection of IL-15 or other suitable agents to enhance the NK cell persistence and function in 

vivo could be tested. Additional promising treatment options are the combination of NK cell 

transfer with therapeutic antibodies or the use of genetically modified NK cells, such as CAR-

expressing NK cells. 

In summary, the project yields a novel technical procedure for automated ex vivo expansion of 

clinical-grade NK cells and an optimized method for NK cell expansion with unparalleled 

efficacy, allowing to generate large numbers of NK cells with pre-clinically approved 

therapeutic function. Thereby, the outcome of the project meets a critical clinical need as it 

allows for the production of functional NK cells that can be applied in the clinics for adoptive 

NK cell therapy at high cell doses. Furthermore, the outcome of the project creates a basis to 

develop and improve future strategies for cancer therapy with NK cells. 
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6 Abbreviations 

1301 T cell leukemia cell line 

ADCC Antibody-dependent cellular 
cytotoxicity 

ALL Acute lymphoblastic leukemia 

AML Acute myeloid leukemia 

APC Antigen presenting cell 

ATP Adenosine triphosphate; 
allophycocyanin 

BAT3 HLA-B-associated transcript 3 

BCR B cell receptor 

BiKe Bi-specific killer cell engagers 

B-RAF B-rapidly accelerated  
fibrosarcoma 

C Celsius 

CAR Chimeric antigen receptor 

CCL CC-chemokine ligand 

CCU CentriCult Unit 

CD Cluster of differentiation 

CEACAM1 Carcinoembryonic antigen-
related cell adhesion molecule 1 

CFSE Carboxyfluorescein 
succinimidyl ester 

CLL Chronic lymphocytic leukemia 

CO2 Carbon dioxide 

COLO-205 Human colorectal 
adenocarcinoma cell line 

CTLA-4 T-lymphocyte-associated 
protein 4 

Daudi Burkitt’s lymphoma cell line 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

DNAM-1 DNAX accessory Molecule-1 

EBV Epstein-Barr virus 

EBV-LCL Epstein-Barr virus-transformed 
lymphoblastoid cell line 

EDTA Ethylenediaminetetraacetic acid 

EGFR Epidermal growth factor 
receptor 

EMT Epithelial-mesenchymal  
 transition 

ERK Extracellular signal-regulated  
 kinase 

Fab Fragment for antigen-binding 

FasL FAS receptor ligand 

Fc Constant fragment 

FITC Fluorescein Isothiocyanate 

FPS Flexible programming suite 

g Gram; gravity acceleration 

GM-CSF Granulocyte-macrophage 
colony-stimulating factor 

GvHD Graft versus host disease 

GvL Graft versus leukemia 

GvT Graft versus tumor 

Gy Gray 

h Hour(s) 

HCMV Human cytomegalovirus 

HER  Human epidermal growth factor 
receptor 

HFWT Wilms tumor cell line 

HSCT Hematopoietic stem cell 
transplantation 

IDO Indoleamine-pyrrole 2,3-
dioxygenase 

IFN Interferon 

IG Immunoglobulin 

IL Interleukin 

ILC Innate lymphoid cell 

Iono Ionomycin 

ITAM Immunoreceptor tyrosine-based 
activating motif 

ITIM Immunoreceptor tyrosine-based 
inhibitory motif 

k Kilo 
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K562 Human myelogenous leukemia 
cell line 

KIR Killer-immunoglobulin-like 
receptor 

KLRG1 Killer-cell lectin like receptor 
G1 

L Liter 

LAK Lymphokine-activated killer 

LAZ 388 Specific EBV-LCL cell line 

LN Lymphotoxin 

LTi Lymphoid tissue–inducer 

m Milli; meter 

µ Mirco 

M Molar 

MACS Magnetic cell separation 

MAGE Melanoma-associated antigen 

MAP Mercapturic acid pathway 

MCMV Mouse cytomegalovirus 

MDS Myelodysplastic syndrome 

MDSC  Myeloid-derived suppressor 
cells 

MFI Mean fluorescence intensity 

MHC Histocompatibility complex 

MIC MHC class I polypeptide-related 
sequence 

min Minute(s) 

MM Multiple myeloma 

n Nano 

NCR Natural cytotoxicity receptor 

NK Natural killer 

NKG2 NK group 2 

NSG NOD-scid IL-2Rgammanull 

O2 Oxygen 

PBMC  Peripheral blood mononuclear 
cell 

PCNA Proliferating cell nuclear 
antigen 

PD-1 Programmed cell death protein 1 

PE Phycoerythrin 

PEB PBS/EDTA/BSA buffer 

PMA Phorbol myristate acetate 

Raji Burkitt’s lymphoma cell line 

RCC Renal cell carcinoma 

REA REAfinity antibody 

RNA Ribonucleic acid 

RPMI Roswell Park Memorial Institute 

RPMI-8866 ß-lymphoid cell line from 
chronic myelogenous leukemia 
patient 

RTL Relative telomere length 

s Second(s) 

SK-MEL-28 Human melanoma cell line 

SLAM Signaling lymphocyte activation 
molecule 

TCR T cell receptor 

T-flask Tissue culture flask 

TGF Transforming growth factor 

Th T helper 

TIGIT T-cell immunoreceptor with Ig 
and ITIM domains 

TLR Toll-like receptor 

TNF Tumor necrosis factor 

TP Tumor protein 

TRAIL  TNF related apoptosis inducing 
ligand 

TRIKE Tri-specific killer cell engagers 

U Units 

UKRV Human melanoma cell line 

-MEL-02  

ULBP UL16-binding protein 

VEGF-A Vascular endothelial growth 
factor 

w/o Without 
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