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Zusammenfassung

In dieser Doktorarbeit werden die globalen Eigenschaften der F-Theorie auf Calabi-Yau Faserungen

untersucht. Dies wird sowohl durch phänomenologische Aspekte als auch das tiefere Verständnis von

F-theorie Vakua begründet. Im Folgenden werden Faserungen von elliptischen Kurven und Genus-eins

Kurven behandelt. Die globalen geometrischen Charakteristika entstehen aus diskreten und arithmet-

ischen Eigenschaften der Faser. Diese können in Faserungen über eine generische Basis untersucht

werden.

Im ersten Teil analysieren wir die Rolle der Torsionsuntergruppe der Mordell-Weil Gruppe von

Schnitten in vierdimensionalen Kompaktifizierungen. Es wird gezeigt, wie ein Torsionselement die

möglichen Materiendarstellungen der Eichtheorie beschränkt. Dies ist äquivalent zur Entstehung einer

nicht-trivialen Fundamentalgruppe der Eichgruppe.

Diskrete Symmetriegruppen treten in der F-Theorie durch Kompaktifizierungen auf Torusfaser-

ungen auf. Die diskrete Gruppe ist in der Feldtheorie eine gebrochene U(1) Symmetrie und der

Higgs-Mechanismus entspricht einer Deformation in der Geometrie. Es wird im Detail erklärt, wie die

diskrete Symmetriegruppe aus zwei verschiedenen Phasen in der M-Theorie entsteht. Dazu wird die

Relation zu den homologischen Torsionsuntergruppen der Mannigfaltigkeit beschrieben. Das letzte

Kapitel beschäftigt sich mit einer systematischen Konstruktion von Eichflüssen auf Torusfaserungen.

Es wird gezeigt, dass das chirale Spektrum frei von Anomalien ist.



Abstract

In this thesis we study global properties of F-theory compactifications on elliptically and genus-

one fibered Calabi-Yau varieties. This is motivated by phenomenological considerations as well as by

the need for a deeper understanding of the set of consistent F-theory vacua. The global geometric

features arise from discrete and arithmetic structures in the torus fiber and can be studied in detail

for fibrations over generic bases.

In the case of elliptic fibrations we study the role of the torsion subgroup of the Mordell-Weil

group of sections in four dimensional compactifications. We show how the existence of a torsional

section restricts the admissible matter representations in the theory. This is shown to be equivalent

to inducing a non-trivial fundamental group of the gauge group.

Compactifying F-theory on genus-one fibrations with multisections gives rise to discrete selection

rules. In field theory the discrete symmetry is a broken U(1) symmetry. In the geometry the higgsing

corresponds to a conifold transition. We explain in detail the origin of the discrete symmetry from

two different M-theory phases and put the result into the context of torsion homology. Finally we

systematically construct consistent gauge fluxes on genus-one fibrations and show that these induce

an anomaly free chiral spectrum.



Acknowledgements

This thesis work has been done at the Institute for Theoretical Physics at the Ruperto-Carola-

University of Heidelberg. I would like to thank all the members of the string theory group for the

friendly and inspiring atmosphere during my PhD. I especially thank my collaborators Ling Lin,

Christoph Mayrhofer, Eran Palti and foremost my supervisor Timo Weigand.

For the nice environment and all good discussions I thank Arthur Hebecker, Stefan Sjörs, Florent
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Chapter 1

Introduction

The study of fundamental interactions in theoretical as well as experimental physics relies heavily on

the notion of a point particle. The fundamental particles of the Standard Model have no detected size

and are described as mathematical points. Likewise their interactions are described in terms of sharp

vertices where the propagating particles meet. The reason for this description of fundamental particles

is that it works exceedingly well. Quantum field theory, the marriage of special relativity and quantum

mechanics, has a spectacular history of explaining experimental results and of successful predictions of

new particles and phenomena. The inclusion of gauge symmetries leads to the framework of Yang-Mills

theory, of which the Standard Model is the front example. With the inclusion of the recently found

Higgs particle the Standard Model provides a detailed description of the fundamental interactions

that can be tested, in some cases to a very high precision. Despite the success of the Standard

Model it can not be a complete description of particle physics. Observables such as particle masses

and charges receive quantum corrections which are divergent. Nevertheless these observables may be

computed because the Standard Model is renormalisable. Through the technique of renormalisation

the infinites can be absorbed and give finite results, i.e renormalised quantitites, which can be compared

to measured values. This introduces a cut-off energy up to which the computations are valid and above

this scale these calculations can not be trusted. Renormalisation is a tool that allows for the extraction

of finite observables up to a certain scale but implies that above that scale we lack an understanding

of the physics.

Einstein gravity, which is a classical field theory, also has an associated point quantum, the graviton.

Due to the fact that the gravitational coupling is so small compared to the electro-weak and strong

coupling constants it is not observed. In any quantum theory of gravity this particle must exist, at

least as a first approximation. It is also clear that quantum gravity plays a role in nature since there

exist processes in nature where strong gravitational interaction is present at distances so short that

a quantum description is needed. The early universe and black hole interiors are maybe the most

obvious examples. General relativity is based on the assumption of a smooth spacetime geometry

where the gravitational force on matter and radiation arises from the spacetime curvature, which

itself is sourced by matter and energy. The incompleteness of general relativity alone can be seen by

considering the formation of a black hole. When a massive object collapses under its own gravitational

attraction, the Einstein field equations drive the system towards a singularity at the center of the black

hole. Thus the result of the collapse of initially well understood conditions is a solution which breaks

the basic assumption of a smooth spacetime. At the singularity, where the mass- and energy density

approaches infinity, one expects a quantum theory of gravity to take over and to resolve this apparent

singularity. However, by approaching a quantum theory of gravity through the framework of quantum

field theory one immediately encounters problems with infinities. As opposed to Yang-Mills theory

general relativity is not perturbatively renormalisable and correlation functions involving gravitons

3



4 CHAPTER 1. INTRODUCTION

have divergences that can not be cancelled by a finite number of counter-terms order by order in

perturbation theory.

String theory (e.g [1–5] and references therein) provides an ultra-violet completion of Yang-Mills

theory and gravity and does so by leaving the realm of point particles as fundamental entities. In

essence string theory is the quantized theory of a one-dimensional string propagating in spacetime.

From the beginning general covariance in spacetime and quantum mechanics are included and by

demanding a consistent quantization of the string a constrained and also remarkably rich theory is

obtained. In particular the quantization implies that the spacetime target space of the superstring1 has

ten dimensions. As the string propagates in spacetime general covariance implies that quantized string

modes transform as representations of the spacetime symmetry group. From the spacetime perspective

we can hence identify the different modes of the string as scalars, spinors and tensors under the Lorentz

group. In the low energy limit the string length is negligible and the string states are the particles of

the effective quantum field theory. The introduction of the string as the fundamental object implies

that there are two different cases to be considered. A string can be closed, sharing its topology with

a circle, or it can be an open interval. Among the modes of the open string there is always a massless

spin two excitation which is identified with the graviton. Open strings on the other hand always have a

massless vector with gauge symmetry in the spectrum, that is, the building block of Yang-Mills theory.

A string theory with open strings necessarily has also closed strings, which makes the unification of

Yang-Mills theory and gravity unavoidable. This is contrasted to the incompatibility of Yang-Mills

theory and gravity as fundamental descriptions of nature.

In the long wavelength limit of string theory the size of the string cannot be resolved and is effect-

ively described as a point particle. This is expected since any sensible ultra-violet completion must

reduce to the well established Standard Model in the limit of low energies. At distances comparable

to the string length the point particle description breaks down and the strings are resolved. In this

high energy regime correlation functions between particles turn into correlation functions of strings.

The world-lines of propagating particles get resolved to world-sheets of propagating strings and the

interaction vertices get replaced by smooth surfaces joining the string world-sheets. The foremost

consequence of this is that correlation functions of strings are finite and no divergences appear. String

theory is thus finite in the ultra-violet limit and provides a completion of particle physics that is valid

at all energies.

There are five different formulations of string theory named type I, type IIA, type IIB, heterotic

E8 × E8 and heterotic SO(32). They are all related through duality transformations. This web of

dualities include also the eleven dimensional supergravity, which is the low energy limit of M-theory,

an eleven dimensional theory coupled to branes. The five string theories and the 11D supergravity

can be seen as different perturbative limits of M-theory. In general the dualities between the different

formulations exchange strong and weak coupling. In other words, the perturbative expansion and

the fundamental degrees of freedom are not the same in two dual formulations. The strings of any

chosen formulation are approximated in the low energy, or long wavelength limit by point particles.

The point particle theory corresponding to each string theory formulation is the supergravity with the

same name, e.g the ten-dimensional type IIB supegravity. The field content of the supergravity comes

from the massless modes of the strings.

The strings propagate in a Lorentzian manifold with ten dimensions. If the theory is to be con-

sidered as an ultra-violet completion of particle physics this calls for an explanation. After all we

only observe four spacetime dimensions. The connection of string theory to four dimensional particle

physics and gravity is made by the concept of compactification. This amounts to solutions of string

theory where the target space has the form M1,3×X6 where M1,3 is the Lorentzian manifold in which

1Supersymmetry on the worldsheet of the string is necessary to have a stable vacuum and fermions in spacetime.
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we live and do experiments. X6 is a compact manifold with six dimensions and as it is compact

it has a finite volume. The compactification to four dimensions is the limit in which the volume is

negligible from a four-dimensional perspective. The field components along the compact directions are

integrated out, leaving an effective theory on M1,3. All four-dimensional particles, or fields, have their

origin in the ten-dimensional theory, satisfying ten-dimensional equations of motion. The equations

of motion for the massless modes take the form of Laplace and Dirac equations and their solutions

are classified by the topology of the compact space X6. For a fixed topology of X6 there are generally

many deformations of the geometry. These are parametrised by the components of the metric of X6

and appear as parameters (scalar vacuum expectation values) of the effective theory in four dimen-

sions. This means that a compactification on X6 allows for the study of a large class of quantum field

theories sharing the features dictated by the topology. The scalar deformations do moreover appear

as massless scalars after compactification, and a potential that gives them masses has to be generated.

This is the problem of moduli stabilization, which we will not comment further on in this thesis.

This thesis is devoted to the study of a framework of compactifications called F-theory [6–8]. These

compactifications interpolate between type IIB string theory with branes, weakly coupled heterotic

E8×E8 theory and M-theory. In this thesis we will discuss F-theory and its relation to type IIB string

theory and M-theory. F-theory compactifications are attractive from a number of viewpoints and we

mention here a few on which we will elaborate in the following. First, from the perspective of type IIB

theory F-theory is the generalisation to any value of the string coupling. By geometrising the type

IIB compactification data a much larger set of solutions can be studied, including features that do

not appear in perturbative type IIB string theory. Secondly, the geometrization of the type IIB data

has computational virtues. F-theory compactifications can be studied with powerful mathematical

methods from complex algebraic geometry. This way complicated dynamical type IIB systems can be

analysed by comparably simple geometric and topological calculations. In many cases special software

is available and can be utilized to a high degree. Finally we mention here that F-theory models can

be studied at a high degree of generality. The details of the F-theory background geometry implies

that large families of effective gauge theories can be studied without specifying all free parameters.

F-theory is thus well suited for adressing questions about generic features of gauge theories that come

from string compactifications.

In type IIB string theory four dimensional gauge theories are constructed by supplementing the

compactification with so called D-branes. They are higher dimensional analogues of strings which

wrap submanifolds of the spacetime. Open strings end on the branes and are the source of gauge

bosons in type IIB string theory. In the perturbative theory classical gauge groups can be constructed

this way. On the other hand, no exceptional Lie groups can arise from perturbative D-branes. By

leaving the weakly coupled regime new objects appear which are generalisations of the fundamental

string and the D-branes. F-theory is a framework in which all types of branes are treated on equal

footing and is in this way the generalisation of type IIB to any value of the string coupling.

F-theory can also be defined through the eleven-dimensional M-theory. To obtain a four-dimensional

theory M-theory is compactified on an eight-dimensional manifold which results in a three-dimensional

gauge theory. Through what is called the F-theory limit one of the compact directions is decompac-

tified and a four dimensional gauge theory is obtained. In M-theory there are no open strings and

instead the gauge bosons and matter states arise from M2-branes that wrap different submanifolds in

the compactification geometry. From this point of view F-theory models are a subset of all M-theory

compactifications, i.e they correspond to the manifolds that allow for the F-theory limit to be taken.

The four dimensional theory obtained from M-theory is dual to the IIB compactification with branes.

This is of great importance, as F-theory models that correspond to strongly coupled type IIB theory

can be studied through M-theory.
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The study of F-theory compactifications is centered around the complex geometry of Calabi-

Yau manifolds. As these are complex spaces they are of even real dimension and a multitude of

examples can be constructed with suitable topologies. By representing the Calabi-Yau manifolds

as hypersurfaces in toric varieties powerful tools and theorems from algebraic geometry apply and

allow for computations of geometric and topological data. The same mathematical tools apply for

the compactification geometry, regardless of whether the corresponding type IIB model is at weak

coupling. It follows that F-theory compactifications are not only in principle the strong coupling

generalisation of type IIB theory, but also in practical model building.

Here we also remark that the correspondence between geometry and gauge theory in F-theory is

a fascinating and beautiful one. The mathematics of F-theory compactifications has its origins in

number theory, complex algebraic geometry and singularity theory. The introduction of F-theory as

the strong coupling limit of type IIB string theory is a geometrisation of a modular symmetry in the

underlying string theory. Since the introduction of F-theory the understanding of this geometry has

developed, and with an ever increasing level of detail and abstraction the correspondence between

geometry and gauge theories in various dimensions unveils.

Throughout this thesis we will study numerous explicit geometries. Constructing an F-theory

model typically starts by choosing a representation of a smooth Calabi-Yau manifold embedded in an

ambient toric variety. By carefully modifying the geometry one introduces singularities as a particular

limit of the smooth space. As we will go through in detail in the next chapter the singularities are

associated to the gauge theory data of the compactification. The gauge algebra, matter representation

content and Yukawa couplings all arise from the singularity structure and can be explicitly computed.

By compactifying F-theory on Calabi-Yau manifolds of 4, 6, 8 and 10 real dimensions one obtains

gauge theories in 8, 6, 4 and 2 dimensions respectively. These gauge theories are all coupled to gravity

and have an ultra-violet completion in string/M-theory. Importantly, when compactifying F-theory

on a Calabi-Yau manifold one obtains not only one gauge theory with a certain gauge symmetry and

matter spectrum but a large family of theories. The deformations of the Calabi-Yau that preserve the

topology and singularity structure are all parameters of the effective gauge theory. Therefore one can

use F-theory to study generic properties of gauge theories with certain specified characteristics.

The geometric origin of the gauge theory data and the underlying string theory makes F-theory

interesting from a model building perspective, for example in grand unified theories (GUTs). The

problem of doublet-triplet splitting of the unified Higgs field and how to break the GUT symmetry to

the Standard Model gauge group are not easy to solve in field theory. By embedding the GUT model

into an F-theory compactification solutions to these problems can be searched for in a geometric way.

Doublet-triplet splitting can in this case be adressed in the geometric origin of the Higgs field and

the breaking of SU(5) to the Standard Model gauge group has a topological solution through the

introduction of gauge flux.

The main problem of SU(5) GUT models is proton decay operators. In a pure SU(5) GUT model

there are dimension four operators that make the proton unstable unless supressed or forbidden.

One way to solve this problem is by introducing a selection rule, an abelian continuous or discrete

symmetry. The matter fields are charged under this symmetry such that the proton decay operators

are forbidden. Non-abelian gauge symmetries in F-theory have been understood for a long time and

are related to local geometric data in the compactification. These can be studied even in the absence

of a full global description of the compactification geometry. Additional U(1) symmetries on the

other hand have their origin in global geometric properties, and for this reason they were only studied

and understood in detail more recently. Discrete symmetries are related to U(1) symmetries and the

subject of some of the most recent developments in F-theory.

This thesis is concerned with global geometric properties of F-theory compactifications. More
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specifically the discrete and arithmetic properties of tori and elliptic curves, which are essential in-

gredients in any F-theory background. The global structure of gauge theories i.e the topology of the

gauge group is determined by certain rational points on the elliptic curve. The study of such rational

points is an important subject in number theory and algebraic geometry and we can put this theory

in the context of gauge theory. The gauge algebra does not alone determine the global topology of the

actual gauge group. By considering so called torsional rational points of the elliptic curve we determine

the gauge group corresponding to the gauge algebra induced by the singularities. At the same time

we show how the matter spectrum restricts to the irreducible representations that transform under

the full gauge group.

The study of discrete symmetries in F-theory was initiated recently by the discovery that F-

theory can be compactified on a wider class of manifolds than previously considered. This new class of

geometries gives rise to discrete symmetries in the effective field theory upon compactification. In string

theory discrete symmetries always arise as broken gauge symmetries. By considering a pair of F-theory

models, one with a discrete Z2 symmetry and one with a U(1) gauge symmetry we show the geometric

manifestation of the spontaneous symmetry breaking as a geometric deformation. This involves subtle

details in the relation between M-theory in, say, three dimensions and F-theory in four dimensions.

Depending on how the geometric deformation is performed different M-theory compactifications arise,

which however share the same F-theory limit. In string theory compactifications discrete symmetries

are known to correspond to topological invariants known as torsion homology groups. We explain in

this thesis the link between torsion homology and discrete symmetries in F-theory.

All models and examples studied in the work underlying this thesis are compact and global Calabi-

Yau manifolds represented as hypersurfaces in toric varieties. By use of the software packages SAGE

and Singular computations of all relevant topological data can be performed. This is done in full

generality, valid for large topological classes of geometries. The results hence apply to families of

gauge theories rather than single examples.

This thesis is organised as follows: In chapter 2 we introduce F-theory from the type IIB perspect-

ive. The need for a consistent and controlled description of the theory when the string coupling grows

leads us to F-theory as a geometrisation of the symmetries and the states in type IIB string theory. To

understand the geometry we introduce tori, elliptic curves and fibrations of these. Since singularities

play a central role in F-theory we turn to describe singularities of tori and torus fibrations. With the

background geometry in place we introduce the duality of F-theory with M-theory and describe how

gauge symmetries, charged massless matter and couplings have their origin in the structure of the

fibration. Finally we introduce fluxes in F-theory compactification which are necessary for, among

other things, a chiral matter spectrum.

In chapter 3 we discuss the difference between gauge algebra and gauge symmetry in F-theory [9].

The main object of study in this chapter is the torsion subgroup of the Mordell-Weil group. We

show how the presence of an element in this subgroup affects the matter spectrum of the model. All

possible matter states in the representations of a Lie algebra are summarized in the weight lattice of

the algebra. Mordell-Weil torsion makes this lattice coarser, projecting out all states which are not in

representations also of the gauge group. The general theory is exemplified through a number explicit

fibrations where the gauge symmetry and the matter content are studied in detail.

In chapter 4 we study F-theory on genus-one fibrations. We show [10] how an F-theory compac-

tification on a genus-one fibration with a bisection results in a four dimensional theory with a Z2

selection rule. Central in the analysis is the conifold transition, which relates the genus-one fibration

to an F-theory model with an extra U(1) gauge symmetry. We show how the discrete symmetry is

the remnant of this U(1) symmetry after higgsing by a field with charge 2. The higgsing in field

theory is a geometric deformation in F-theory. We pay extra attention to the details of the lift from
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M-theory in three dimensions to F-theory in four dimensions. We find that there are two different

conifold transitions resulting in two different M-theory compactifications, and how these two theories

have the same four-dimensional limit. The relation to torsion homology is demonstrated in detail [11].

The discrete symmetry as a selection rule is demonstrated through explicit models with an additional

SU(5) gauge group. Indeed all geometrically realised Yukawa couplings are shown to be singlets under

the Z2 symmetry.

In chapter 5 we study fluxes in F-theory models with discrete symmetries [12]. We generalise the

consistency conditions for fluxes from elliptic fibrations to genus-one fibrations. In the model with

SU(5)×Z2 symmetry from chapter 4 we then put the consistency conditions to test. By systematically

constructing all gauge fluxes in the genus-one fibration we show that the fluxes obeying the consistency

conditions induce an anomaly free chiral spectrum. Furthermore, by constructing all gauge fluxes also

in the model with U(1) symmetry we show how the fluxes rearrange in the conifold transition so that

the anomalies vanish and the so called D3 tadpole does not change. Any flux solutions has to be

properly quantized and we show how the properly quantized fluxes imply the vanishing of the discrete

gauge anomalies.

Finally, in chapter 6 we summarise the results and discuss possible further directions of research.



Chapter 2

Physics and geometry of F-theory

To understand F-theory and how the gauge theory data it encodes arise from strings it is instructive

to start with type IIB string theory with branes. We take the IIB supergravity as the starting point,

and before introducing anything else we just consider the bosonic bulk fields.

The low energy limit of type IIB string theory is type IIB supergravity, where the field content is

given by the massless modes of the IIB string. At first we consider the bulk fields coming from closed

strings only and later we look at the open string sector and the branes. The fields from the NS-NS

sector are the dilaton φ, the Kalb-Ramond two-form B2 with field strength H3 and the metric tensor

field g. In addition there are the Ramond-Ramond form fields; the scalar C0, and the ascending C2

and C4 fields. For each RR field, the corresponding field strength is denoted Fn+1 = dCn and by

Hodge duality with respect to the background metric F10−n = ?Fn. In units where the string length

ls = 2π
√
α′ is set to one the bosonic part of the lagrangian can be written [1] as

L =
√
−gR− 1

2(Imτ)2
dτ ∧ ?dτ̄ +

1

Imτ
G3 ∧ ?dḠ3 +

1

2
F̃5 ∧ ?F̃5 + C4 ∧H3 ∧ F3 (2.0.1)

for G3 = F3− τH3 and F̃5 = ?F̃5 = F5− 1
2C2∧H3 + 1

2B2∧F3. The two real scalar fields are combined

into the complex scalar

τ = C0 + ie−φ . (2.0.2)

The string coupling gs is generated dynamically in string theory, as the expectation value 〈eφ〉, and

thus the field τ may be regarded as a complexification of the string coupling. The classical theory has

an SL(2,R) symmetry, under which τ and the 2-form fields transform as

τ 7→ aτ + b

cτ + d

(
C2

B2

)
7→M

(
C2

B2

)
=

(
aC2 + bB2

cC2 + dB2

)
(2.0.3)

and where detM = ad − bc = 1. In the quantized theory, this symmetry is broken to the SL(2,Z)

subgroup [13]. This can be seen by taking brane instantons into account. The D(−1) instanton

contribution to the partition function comes with a factor of exp(2πiτ). Invariance of this term under

the SL(2,R) transformation τ 7→ τ + b restricts b to an integer, implying that the symmetry is broken

to SL(2,Z). In type IIB there is also a parity symmetry which is generated by

(−1)FLΩ (2.0.4)

where FL is the left-moving fermion number and Ω is the world-sheet parity. It acts on the bosonic

fields as the SL(2,Z) transformation

−id =

(
−1 0
0 −1

)
. (2.0.5)

9
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Figure 2.1: Gauge bosons arise from open strings propagating along a stack of branes. Strings
strechting between two stacks give rise to charged states that become massless at the intersection of
the branes.

Branes in string theory and field theory

Branes are extended, dynamical objects present in type II string theories and M-theory. In the low-

energy perspective the branes are solutions of the supergravity theory, generalizing black hole solutions

in four dimensions. The supergravity solutions are not only solutions for the metric g but include in

general non-trivial profiles for the axio-dilaton τ and the form fields.

From the string theory perspective branes are submanifolds of the ten-dimensional background

geometry on which open string modes are localised. In type II string theories boundary conditions

have to be included for the embedding of the open strings in the target space. The Dirichlet boundary

conditions specify a submanifold in spacetime on which open strings can end, or along which the

open string states can propagate. A Dp-brane is such a submanifold where p is the number of spatial

dimensions along the brane. In type IIB string theory, with which we will be concerned here, there

are brane solutions for all odd p. This matches the RR field sector, as the even rank form fields Cp+1

can be coupled to, i.e integrated over, the p+ 1 dimensional world volumes of Dp branes.

As the open strings propagate only along the world-volume of the brane the modes of this string

give rise to fields localised on the brane. The massless spectrum of the open string contains a vector

field, and any massless vector field is a U(1) gauge field [14]. For the single brane there is therefore

a U(1) gauge theory localized on the world-volume of the brane. For N parallel branes there are

U(1) vectors along each brane, and also open strings stretching between the branes. These give rise

to massive vector states as their mass is proportional to the minimal length of the string. The IIB

open string is oriented, and thus the number of vectors are N2, which is the dimension of the adjoint

representation of U(N). However, at this point we only have the Cartan subgroup U(1)N , since the

states between the branes, corresponding to the W bosons of U(N), are massive. Putting the N branes

on top of each other the ’off-diagonal’ vector states becomes massless and fill out the full adjoint of
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U(N), and there is a U(N) gauge theory localized at the stack of branes1.

Consider now a stack of M +N branes on top of each other. The gauge group is U(M +N) of the

super-Yang-Mills theory on the stack. By rotating M branes we get two stacks of branes intersecting

along a submanifold of one lower dimension, see fig. 2.1. The dimension of the adjoint representation

may be rearranged as

(M +N)2 →M2 +N2 + 2MN (2.0.6)

indicating the branching rule

adU(M+N) → adU(M) + adU(N) + (M, N̄) + (M̄,N) . (2.0.7)

In this example the two brane stacks supports two gauge theories, with gauge groups U(M) and U(N),

and they are coupled via bifundamental matter representations. The massless matter states arise at

the intersection locus, where the constraint on the string length vanishes. As the matter string states

stretch between the two stacks they are charged under both gauge groups. Including brane solutions

in the supergravity amounts to coupling the gravity theory to localised gauge theories. In this case the

action has to be supplemented by terms which are restricted to the world-volume Dp of the branes.

Among these terms are the electric couplings

qp

∫
Dp
Cp+1 (2.0.8)

of the RR fields to the brane. qp denotes the brane charge. In particular, the field C8 of type IIB

theory couples electrically to the 8 dimensional world-volume of a D7-brane via the term

L ⊃
∫
D7
C8 (2.0.9)

and thus magnetically to the scalar C0, since dC8 = ?dC0. The D7 brane is of special interest

here since its spatial codimension equals two, and we can think of the branes as points on a two-

dimensional surface transversal to the branes. Integrating dC0 along a closed loop around the brane

in the transversal space defines the magnetic charge of the brane, and introduces a monodromy on

C0, and subsequently on τ . Travelling around a brane the axiodilaton transforms as

τ → τ + 1 , (2.0.10)

picking up one unit of magnetic charge (normalized to one). Encircling more than one brane will pick

up more units of brane charge to the monodromy. This would lead to an unacceptable multivaluedness

of the axio-dilaton, if it were not for the SL(2,Z) symmetry of the theory. The action of this symmetry

on the axio-dilation is through a linear fractional transformation (2.0.3), and any such transformation

can be obtained by composition of the two generators

T : τ 7→ τ + 1

S : τ 7→ −1

τ
.

(2.0.11)

The monodromy action by encircling a D7 brane is just a T-transformation. The T-generator acts

only on the real part of the axiodilaton, leaving the string coupling untouched. The S-transformation

on the other hand ’inverts’ τ , and exchange strong and weak coupling. A weakly coupled type IIB

model, is a setting where all monodromies are generated by T-transformations. We also note that the

monodromy around a 7-brane transforms not only τ , but the background of two-form fields as well,

as given in (2.0.3).

1In the string world-sheet theory, the open string end points carry Chan-Paton charges. In this language it can be
shown rigorously how the massless vectors transform in the adjoint of U(N).
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7-branes at any coupling

We have seen that the perturbative D7 brane induces a monodromy transformation

τ → τ + n (2.0.12)

on the axiodilaton, with n the number of D7 branes on top of each other. This transformation is

generated only by the T -generator of SL(2,Z), and it is natural to ask about monodromies involving

the S-generator of the modular group. Let us go back to the perturbative string in type IIB theory,

and the relation to the modular transformations. The fundamental string, F1, couples electrically to

the Kalb-Ramond field B2 in the Polyakov action. There is also the D1 string (D1 brane), which

couples electrically to the C2 field, by integration the 2-form over the world sheet of the D1. Now,

the B2 and C2 fields transform in a SL(2,Z) doublet, as in (2.0.3) and the modular group rotates the

field solutions into each other. A (p, q) string is defined as an one-dimensional object with p units of

B2 charge, and q units of C2 charge. The fundamental string is a (1, 0) string in this notation, and the

D1 string a (0, 1) string. In perturbative type IIB theory, there are only (1, 0) strings as fundamental

degrees of freedom (the D1 is a non-pertubative object). Away from the weak coupling limit, not

restricting to T -monodromies, we define a (p, q) 7-brane as a hypersurface on which a (p, q) string can

end. If all the branes are of the same (p, q) type, it is possible to choose a new SL(2,Z) frame, in

which all branes are D7 branes. However, if there are different types of (p, q) branes, not all of them

can be described as perturbative D7 branes, and in this case they are called mutually non-local.

The element of the modular group which transforms a fundamental string into a (p, q)-string is

gp,q =
(
p r
q s

)
. Using this matrix, one may represent the monodromy action of a general (p, q)-brane

on the background as

Mp,q = gp,qM1,0g
−1
p,q =

(
1− pq p2

−q2 1 + pq

)
(2.0.13)

where M1,0 =
(

1 1
0 1

)
is a representative of the T -generator.

By allowing for the most general monodromies around 7-branes, we leave the weakly coupled IIB

regime. This non-perturbative region of moduli space is populated by more general (p, q)-branes and

allows for physics which cannot be described in the perturbative type IIB theory. One example is the

occurence of exceptional gauge groups. F-theory is a framework which elegantly puts all monodromy

effects and the gauge theory data into a geometric framework.

2.1 Fibrations for F-theory compactifications

In this section we review the geometric ingredients of an F-theory model. The identification of the

axio-dilation with the complex structure of an auxiliary torus is the foundation of F-theory. Therefore

we start by describing the torus and its relation to the modular symmetry group. We introduce the

arithmetic of elliptic curves and the Mordell-Weil group of rational points. Then we move on to study

families of tori corresponding to non-trivial axio-dilaton profiles. For further background on F-theory

and compactifications we mention [13,15,16].

2.1.1 Tori and elliptic curves

Before describing the fibration structure of F-theory compactifications, we take some time to discuss

a single fiber. A torus T 2, or a genus one complex curve in the language of Riemann surfaces, is

topologically the product of two circles. The topological circle may be described as the quotient R/Z



2.1. FIBRATIONS FOR F-THEORY COMPACTIFICATIONS 13

τ

1

C

Figure 2.2: The torus T 2 as the quotient of C by the lattice generated by 1 and τ .

of the real line by a one-dimensional lattice. The real numbers modulo integer translations effectively

roll up the real line to a circle. The torus is the product of two such circles, and thus T 2 ≈ R2/Λ, where

Λ is a two-dimensional lattice. This is the well known construction of the flat torus by identifying

opposite sides of a parallellogram (see fig. 2.2). Treating the torus as a complex surface has the virtue

of working in an algebraically closed field. We will be studying properties of special points on the torus,

and the finding and counting of such points is facilitated by using complex equations. Furthermore, the

tori will be embedded in higher-dimensional complex varieties, in which the compatibility of complex

coordinates and the metric are dictated by the effective particle theories in four dimensions. In the

complex setting the torus is given as the quotient

T 2 ≈ C
Λ

(2.1.1)

where Λ is a lattice isomorphic to Z ⊕ iZ, and generated by any two complex numbers not lying on

the same complex line. By rescaling and rotating the coordinates the generators of Λ can be taken

to be 1 and τ ∈ C (see fig. 2.2). The complex number τ is commonly referred to as the complex

structure modulus of the torus. The freedom of changing the basis for the lattice implies that there is

a modular action on the complex structure

τ 7→ aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1 . (2.1.2)

The linear fractional transformation preserves the lattice, and thus the torus itself. These transform-

ations acting on the upper half plane generate the modular group, often denoted Γ. It is isomorphic

to the projective special linear group PSL(2,Z) of linear transformations, with unit determinant and

modulo the parity action M → −M that puts each matrix and its negative in the same equivalence

class 2. In other words, the modular group acts on the moduli space of the flat torus. The modular

group is generated by two elements,

T : τ 7→ τ + 1, S : τ 7→ −1

τ
(2.1.3)

obeying two relations, and has the presentation Γ = 〈S, T |S2 = id, (ST )3 = id〉 [17]. From the

generators one can see that any τ can be mapped to a point in the fundamental region (see fig. 2.2)

F : {τ | Im τ > 0, |τ | ≥ 1, −1
2 ≤ Re τ ≤ 1

2}, whose interior values of τ correspond to distinct tori. As

a quotient of the complex plane, the torus inherits the addition of complex numbers as an operation

on points on the torus. We will describe this more closely in the following.

2This Z2 parity is identified with the type IIB parity in (2.0.4)



14 CHAPTER 2. PHYSICS AND GEOMETRY OF F-THEORY

Represention as a hypersurface

The representation of the complex torus as a hypersurface may be derived from considerations of what

functions can be constructed on the torus. Any function on the torus has to be doubly periodic,

f(ζ) = f(ζ + 1) = f(ζ + τ), ζ ∈ C (2.1.4)

in order to be well defined on the quotient space. Since the torus is a compact space, any holomorphic

function on the torus will be a constant, and the non-trivial functions will be the meromorphic ones.

The Weierstrass elliptic function

℘(ζ; τ) =
1

ζ2
+

∑
w∈Λ\(0,0)

1

(ζ − w)2
− 1

w2
(2.1.5)

is the unique [17] complex function with a double pole at each lattice point. It is a theorem [17] that

any meromorphic function on the torus is a rational expression in ℘ and its first derivative ℘′. By

comparing the series expansions the equation

(℘′)2 = 4℘3 + f℘+ g (2.1.6)

is shown to hold for certain functions (Eisenstein series) f(τ) and g(τ). By identifying x↔ ℘, y ↔ ℘′

one obtains the equation3

y2 = x3 + fx+ g (2.1.7)

which is traditionally called an elliptic equation, or an elliptic curve 4. This equation constitutes a

double cover of the complex plane, branched at four points: the three zeros of the cubic in x, and a

’point at infinity’. If we add this point, performing a one-point compactification of C2 the expression

(2.1.7) is the inhomogeneous form of the so called Weierstrass equation

PW = y2 − x3 − fxz4 − gz6 = 0 (2.1.8)

in the weighted projective space P2,3,1 with homogeneous coordinates [x : y : z]. The coefficients f

and g may a priori be valued in any field K and the elliptic curve is often denoted E(K). The map

between the two descriptions of the torus is given by the Weierstrass equation and a point ζ ∈ C/Λ
maps as

ζ 7→ [℘(ζ) : ℘′(ζ) : 1] , (2.1.9)

a point lying on the torus embedded in P2,3,1
5. The ’point at infinity’ is given by [1 : 1 : 0], and this

point is the image of any lattice point in Λ, in particular the origin of C, and is commonly referred to

as the zero-point of the curve.

The smoothness of the hypersurface equation amounts to having a well defined gradient at every

point on the curve. In other words, the tangent space dimension are not allowed to jump in dimension

at any point. In practice we check that the system

PW = 0

dPW = 0
(2.1.10)

has no solution, and in this case the hypersurface is smooth. Singularities, or solutions to the above

equations, occur if two or more zeroes of the equation comes together. This is controlled by the

3For convenience and adopting to the standard in F-theory literature we are changing normalization such that the
prefactor of x3 disappears

4This name is due to the occurrence of this y as a function of x in the integrand when computing arclengths of ellipses.
5By a different homogenization the Weierstrass equation may be taken as a hypersurface in a projective space with

other weight assignments e.g. as a cubic equation in P2
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discriminant ∆, which vanishes iff the equation has multiple zeroes. For (2.1.8) the discriminant

takes the form

∆ = 4f3 + 27g2 (2.1.11)

and will play a central role in the following chapters. The link between the description of the torus as

a quotient by the lattice Λ = 〈1, τ〉 and the Weierstrass equation is provided by the Klein j-invariant,

or the j-function

j(τ) = q−1 + 744 + 196884q + . . . q = e2πiτ , (2.1.12)

which may be expressed in terms of the coefficients f and g of the Weierstrass equation. In this case

j(τ) = 4 · 243 f
3

∆
. (2.1.13)

The j-function is the unique modular invariant bijection from the fundamental region F to the

Riemann sphere, and as seen above it diverges when the elliptic curve develops a singularity. More

specifically, when j → ∞ the argument τ → i∞. This behaviour of τ is exactly what happens when

approaching a D7-brane in type IIB string theory. Hence, the zeroes of the discriminant in an F-theory

model correspond to branes in the dual type IIB theory. The details of this correspondence will be

elaborated upon in what follows.

Rational points and the Mordell-Weil group

A rational point on an elliptic curve is a point whose coordinates [x : y : z] are given by a rational

expression in the underlying field K. The zero-point is an example of a rational point, and generically

no other rational points exist. However, for certain forms of f and g more rational solutions to the

equation (2.1.8) may exist, and this set of rational points forms a group. The map (2.1.9) is in fact

an isomorphism, and as such preserving the addition of complex numbers as [17]

ζ + η 7→ [℘(ζ + η) : ℘′(ζ + η) : 1] . (2.1.14)

The set of rational points on the elliptic curve with this addition law is called the Mordell-Weil group.

The Mordell-Weil theorem asserts that this group is finitely generated when K is a number field, i.e.

a finite extension of the rational numbers. In this case,

E(K) = Zr ⊕ Zk1 ⊕ · · · ⊕ Zkn . (2.1.15)

The rank r of this group is the number of generators of the free subgroup and the finite part is

called the torsion subgroup E(K)tors. A theorem by Mazur states that for a curve over the rational

numbers, the torsion subgroup E(Q)tors is either Zk for k = 1, . . . , 10, 12 or Z2 ⊕ Zk for k = 2, 4, 6, 8.

The converse statement also holds, i.e. all possibilities are realised.

2.1.2 Elliptic fibrations

The equation which describes the elliptic curve as a surface in an ambient projective space may be

generalized to an equation describing a fibration. Take B to be a complex manifold. In four dimensional

F-theory compactifications B is a compact Kähler 3-fold. By taking the coefficents of (2.1.8) to be

dependent on the coordinates b on B we get an elliptic curve over each point of the base B. In the

Weierstrass representation we have

y2 − x3 − f(b)xz4 − g(b)z6 = 0 b ∈ B (2.1.16)
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describing an elliptic curve over each point of B. For f and g constant, the fibration is trivial,

describing the product space B × E. The fibration Y is a hypersurface in the ambient space X given

by fibering P2,3,1 over B. The divisor Z : {z = 0} in the ambient space intersects each fiber in a point,

which is the zero-point of the fiber. Globally this defines the zero-section of the fibration, which is an

embedding of the base into the fibration. A non-trivial fibration corresponds to non-constant f and

g. These can not be holomorphic functions, since the base is compact and on a compact space the

only holomorphic functions are the constant functions. To get a non-trivial fibration, we need to take

the coefficients to be meromorphic functions on each local patch of B. Globally they are sections of

some line bundle. For the hypersurface equation to be well defined with respect to the line bundle

scaling it has to be homogeneous, not only with respect to the projective action of P2,3,1, but also

with respect to the introduced line bundle L. A choice for scaling assignments leaving the zero section

holomorphic is to take x as a section6 of L2, y as section of L3, f a section of L4 and g a section of

L6. In compactifications to four dimensions that preserve N = 1 supersymmetry, the fibration has

to be a Calabi-Yau four-fold and thus the first Chern class must vanish. Denoting by [L] the divisor

class of the line bundle L, one may compute the total Chern class of the fibration by the adjunction

formula

c(Y ) =
c(X)

c(PW )
=
c(B)(1 + [x])(1 + [y])(1 + [z])

1 + 6[L] + 6[z]
(2.1.17)

where the denominator is the Chern class of the hypersurface, which is a divisor in the ambient space

and the divisor class is given by the power of the occuring sections i.e [gz6] = 6[L] + 6Dz. There is

only one independent divisor in P2,3,1, analogous to the hyperplane class in ordinary projective space,

and thus [x] = 2[z] + 2[L] and [y] = 3[z] + 3[L]. Expanding (2.1.17) to first order gives

c1(Y ) = c1(B)− [L] (2.1.18)

which forces [L] = c1(B) = [K̄B], the class of the anti-canonical bundle on B

Another way to see the Weierstrass equation arise is by using the properties of line bundles on

elliptic curves. On an elliptic curve E there is the distinguished zero-point P , which is a divisor on

the elliptic curve E. Let L = O(P ) be the dual line bundle on E. It has degree one. For any line

bundle on E with deg L > 0 it holds that deg L = dimH0(L), i.e the number of independent sections

equals the degree of the bundle. We assume here that this is the case. Furthermore the degree of the

n:th power of a linebundle is n times the degree of the bundle itself. Lets now consider the sections

of L and its powers. H0(L) is generated by a single section, which we may call z, H0(L2) has two

sections; z2 and another independent one, called x. H0(L3) is generated by three sections; we can

construct z3 and xz, and we denote the last one by y. Out of x, y and z the four sections in H0(L4)

and the five sections in H0(L5) can be constructed. The interesting case is at degree 6, since H0(L6)

has six independent sections but we can construct seven sections: y2, xyz, yz3, x3, x2z2, xz4 and z6.

Hence they have to obey a relation, usually written as

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6 (2.1.19)

for some coefficent sections ai. The unity coefficient of the y2 and x3 terms ensures that Z : {z = 0}
intersected with the equation describes the distinguished point holomorphically. If the function field

K on B has not characteristic 2 or 3, the square on the left hand side and the cube on the right hand

side may be completed, arriving at the Weierstrass equation y2 = x3 + fxz4 + gz6. The equation

(2.1.19) is usually referred to as the Tate form, or in the literature sometimes also as the Weierstrass

form. Since x, y and z has line bundle scalings 2,3 and 1 respectively, the above equation can be

consistently identified with a degree 6 hypersurface in P2,3,1. By adjunction we may compute the first

Chern class

c1(E) = c1(P2,3,1)− 6[z] = [x] + [y] + [z]− 6[z] = 0 (2.1.20)

6Exponents of line bundles are always tensor products e.g L2 = L ⊗ L.
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of this degree 6 hypersurface in P2,3,1 and since the weights of the ambient space add upp to the

degree of the hypersurface the first Chern class vanishes. This confirms that (2.1.19) (and also (2.1.8))

describes a compact Calabi-Yau 1-fold, i.e a torus. Taking the coefficents ai to be sections of some

line bundle on a compact base and imposing the Calabi-Yau condition on the fibered manifold, we are

led to taking x and y to transform under this line bundle as well.

Note that this method may be used to construct other representations of elliptic curves, with

different ambient spaces and even elliptic fibrations as complete intersections of two or more equations.

For example, if the elliptic curve has two rational points P and Q, we can repeat the above construction

for the line bundle O(P+Q), and this will lead to a representation of the elliptic curve as a degree four

hypersurface in P1,1,2 [18]. This is one example of the fact that the Weierstrass form is not the only

way to describe the elliptic fibration as a hypersurface. Any equation, or set of equations whose zero

locus defines an elliptic curve will do. One equation may make a certain geometric property easy to

analyse, while obscuring others. Any elliptic equation may be brought into Weierstrass form through

a birational transformation 7, while going from the Weierstrass form to e.g the Tate representation

is not always possible. A useful tool to study in particular higher-dimensional examples of elliptic

fibrations is toric geometry. In toric geometry an elliptic curve may be realized as a hypersurface or

a complete intersection in an ambient toric variety. The possible realizations of tori as hypersurfaces

are classified by the 16 reflexive polygons in two dimensions, see e.g [19]. The associated toric ambient

spaces are P2
1,1,2, P1 × P1, P2 or blow-ups thereof.

Depending on the choice of ambient toric variety, the most general hypersurface equation in this

space has different features. Out of the 16 reflexive polygons 13 have extra rational sections which arise

from ambient toric divisors, giving a Mordell-Weil rank of at least one [20]. Three of the 16 polygons

admit torsional sections given as the intersection of an ambient toric divisor with the elliptic curve.

According to the enumeration of polygons in [19], the elliptic curves in the ambient spaces defined

by polygon 13, 15 and 16 have toric Mordell-Weil groups Z2, Z ⊕ Z2 and Z3, respectively [20] (see

also [21]). In the later chapters we will study fibrations where the form of the hypersurface equation

is chosen to make relevant geometric aspects as lucid as possible.

Rational sections

In this section, we give a brief review of the Mordell-Weil group of a family of elliptic curves. We

describe how meromorphic sections naturally come with a group structure. This is a classic topic in

mathematics and for more extensive treatments see e.g. [17,22]. In chapter 3 we comment in particular

on the finite part of this group, the part associated to torsional sections.

An elliptic fibrationX over a base manifold B comes with a holomorphic projection map π : X → B.

Since the fibration locally takes the form E × U ⊂ B, a choice of projection is π(p, b) = b, for p ∈ E
and b ∈ B. The generic fiber is given by π−1(b). A rational section is a meromorphic map σ : B → X,

such that π ◦ σ = idB
8. In the Weierstrass form the section determines x = x(f, g) and y = y(f, g)

as meromorphic functions of the coefficient functions f(b), g(b) over each local patch on B. For the

generic fiber π−1(b) this solution determines a point on the fiber, as depicted in fig. 2.3. Since the

rational section intersects each smooth fiber in a point we have that σ(B) defines an embedding of

the base B into the elliptic fibration. A holomorphic section intersects each fiber in a single point

while a rational section may wrap irreducible fiber components over loci in the base where the fiber

degenerates.

A rational section assigns a rational point on the fiber for every generic point in the base. For any

7A birational transformation is rational in both the ambient projective coordinates and the function field on the base.
8If σ is a holomorphic map, then it is called a holomorphic section.
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b1

b2

π−1(b1) π−1(b2)

σ(b1) σ(b2)

Figure 2.3: An elliptic fibration with projection π. The rational section σ defines a rational point
σ(bi) on each generic fiber. Here the fibers π−1(bi) over two points in the base B are depicted.

fixed point b the rational points are elements of the Mordell-Weil group of the elliptic fiber π−1(b). We

can now extend the notion of Mordell-Weil group to elliptic fibrations. The zero point gets promoted

to the zero section, which in (2.1.16) is given by the intersection of the ambient divisor Z : {z = 0}
with the hypersurface. Rational points becomes rational sections and the group law is defined fiber-

wise. Abstractly, we are shifting from considering an elliptic curve over a number field, to an elliptic

curve over a function field (in the case of compact B the field of meromorphic sections of line bundles

on B). Note that the zero-section does not serve as one of the generators of the group. In particular,

the Mordell-Weil group is trivial when the zero section is the only section of the fibration, and extra

rational sections are needed to have a non-trivial group.

The Mordell-Weil theorem for function fields was proven by Lang and Neron [23] and states that

the Mordell-Weil group of an elliptic fibration is finitely generated, unless the fibration is birationally

equivalent to the trivial fibration E × B. For most physically interesting settings, which are dual to

IIB models with 7-branes, the fibration is non-trivial and the theorem applies.

Determining the Mordell-Weil group for elliptic curves over number fields, or even the rationals Q,

is an old and often hard problem in number theory. For certain elliptic surfaces the possible groups

E(K) have been classified analogously to the Mazur theorem for elliptic curves. For instance, for a

rational elliptic surface the non-trivial possibilities for the Mordell-Weil group are

Zr (1 ≤ r ≤ 8), Zr ⊕ Z2 (1 ≤ r ≤ 4), Zr ⊕ Z3 (1 ≤ r ≤ 2),

Zr ⊕ Z2 ⊕ Z2 (1 ≤ r ≤ 2), Z⊕ Z4, Z2 ⊕ Z4,

Z2 ⊕ Z2, Z3 ⊕ Z3, Zk (2 ≤ k ≤ 6)

(2.1.21)

and in particular the Mordell-Weil group for any rational elliptic surface is torsion-free if its rank is

greater than 4 [24]. The general situation for other elliptic surfaces such as elliptically fibered K3

manifolds and for higher-dimensional fibrations, e.g. three- and fourfolds, is not as well understood

and classifications only exist in special cases such as [25]. However, in the case of elliptic fibrations

realized as hypersurfaces in toric varieties there are well-understood cases, where the rational sections
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arise from the ambient toric variety. In these cases, geometries with low rank Mordell-Weil group, and

small torsion subgroups can be studied in generic settings, as presented in detail in chapter 3.

The Shioda map

An important ingredient in F-theory is the correspondence between rational sections and certain di-

visor classes on the fibration, more precisely elements of the Néron-Severi group of divisors modulo

algebraic equivalence. Any rational section defines a codimension one object embedded into the fibra-

tion. As it is rational, it transforms as a section of a line bundle, or in other words, it is a divisor in

the Calabi-Yau n-fold. Note that the Néron-Severi group coincides with the Picard group of divisors

modulo linear equivalence for spaces with vanishing first cohomology group, which is the situation of

relevance throughout this thesis.9 Let E be a general fiber of π and σ0 the zero section. Each divisor D

on X can be restricted to a divisor D|E on E which has a specific degree D ·E. For example, sections

restrict to divisors of degree 1. Now for an arbitrary divisor D, the linear combination D− (D ·E)σ0

restricts to a divisor of degree 0 on E. But the set of divisors of degree 0 on E is just E itself.

In this way, we get a surjective homomorphism of groups

ψ : NS(X)→ E(K) (2.1.22)

which sends [D] to the K-valued point of E determined by restricting the divisor D− (D ·E)σ0 to E.

(It is surjective because every element of E(K) arises from a rational section σ.) The kernel of this

homomorphism is generated by the zero section and by divisors whose restriction to the general fiber

E is trivial.

Since the group homomorphism (2.1.22) is surjective, there is an injective homomorphism in the

other direction after tensoring with Q. In the case of elliptic surfaces, Shioda [26] introduced such a

homomorphism with a specific additional property, which was extended in [27,28] to elliptic fibrations

of arbitrary dimension. Let T denote the subgroup of NS(X̂) generated by the zero-section [σ0], the

resolution divisors Fi, and divisors of the form π−1(δ) for δ ∈ NS(B) For the smooth elliptic fourfold

X̂4 obtained by a flat resolution of X4, the Shioda map

ϕ : E(K)→ NS(X̂4)⊗Q (2.1.23)

satisfies the property that 〈ϕ(σ), T 〉 = 0 for any divisor T ∈ T , where the pairing 〈 , 〉 is the height

pairing

〈D1, D2〉 := π(D1 ∩D2), (2.1.24)

which projects the intersection of two divisors to the base. It is well defined modulo linear equivalence,

and so defines a pairing on the Néron-Severi group. For example, given any section in an elliptic

fibration its divisor class S defines an element S − Z of the Mordell-Weil group and we have

ϕ(S − Z) = S − Z − π−1(δ) +
∑

liFi (2.1.25)

for some divisor δ on B and some rational numbers li ∈ Q, which is constructed so that for every

T ∈ T we have

π
(
T ∩ (S − Z − π−1(δ) +

∑
liFi)

)
(2.1.26)

is linearly equivalent to zero on the base B. The Shioda map will be frequently used in this thesis and

the corresponding physics will be reviewed in section 2.5.1.
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Figure 2.4: A genus-one fibration over the base B. The bisection (in red) intersect each generic fiber
in two points, and these are interchanged by monodromy over the base.

2.1.3 Genus-one fibrations

Up to this point we have studied elliptic curves and elliptic fibrations as a mean to geometrize the

axiodilaton τ and the monodromy action of SL(2,Z) on the axiodilaton and the 2-form fields of type

IIB theory. In more abstract terms we want to specify an axio-dilaton profile τ and a representation

of

π1(B −∆)→ SL(2,Z). (2.1.27)

The monodromy action on the type IIB fields corresponds to assigning an SL(2,Z) transformation

to each closed path around the degeneration loci ∆ ⊂ B. One may therefore consider a fibration

of tori, where the generic fiber has no distinguished zero point, but otherwise shares the defining τ

profile and monodromy behaviour [29]. By having local descriptions of τ and (B2, C2) in patches over

B the global model is obtained by gluing the patches with SL(2,Z) transformations. In going from

an elliptic fibration to a genus-one fibration one allows for translations along the fiber in the maps

between patches. This does not preserve the zero-section. In this case the description of each fiber is

a quotient of the complex plane by an affine lattice, which has no origin but still is doubly periodic

with periods 1 and τ . The fibrations are called genus-one fibrations, as the generic fiber is a genus-one

curve, not an elliptic curve which has a distinguished zero point. These fibrations can be constructed

explicitly and studied in much the same way as elliptic fibrations as we will see in detail in chapter 4

and 5.

A genus-one fibration has no zero-section, but it can have one or more n-sections, or multi-sections.

A section intersects the generic fiber in a point, while an n-section intersect the generic fiber in n points.

Globally an n-section constitutes a n-fold cover of the base B, embedded into the fibration. Locally,

the n intersection points are distinguishable, and ’look’ as n sections meeting the fiber. Globally

9For a Calabi-Yau manifold H1(X) is trivial. For this reason, we will systematically restrict our notation to refer to
the Néron-Severi group rather than the Picard group.
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these n points are interchanged, and are non-trivially glued up to one object, see fig. 2.4 One can

think about genus-one fibrations not as a special case, but as more general geometries that admit a

description in terms of fibered tori. In the cases where the genus-one fibration has at least one rational

section it is an elliptic fibration.

To any genus-one fibration there is a related elliptic fibration called the Jacobian fibration J(X).

The genus-one fibration and the Jacobian share the same τ and discriminant ∆. As the Jacobian

fibration is an elliptic fibration it has a zero section, and a representation as a Weierstrass equation.

However, the Jacobian J(X) may have singularities which cannot be resolved while keeping the Calabi-

Yau condition. This holds in particular for smooth and Calabi-Yau genus-one fibrations. There might

exist several genus-one fibrations that share the same Jacobian fibration. The number of fibrations

with the same J(X), up to isomorphisms are counted by the Tate-Shafarevic group [29]. An elliptic

fibration is the trivial element of the Tate-Shafarevic group, while the genus-one fibrations are the

non-trivial elements. In the case of the bisection fibration the Tate Shafarevic group is Z2, with the

identity element the Jacobian fibration and the other element represented by the genus-one fibration.

2.2 Singular fibers

The gauge theory data in an F-theory compactification is encoded in the degeneration of the fiber. For

an elliptic curve in Weierstrass form, with fixed values of the coefficients f and g it may be singular or

smooth depending on whether the discriminant vanishes or not. For an elliptic fibration the singularity

structure is more interesting, where the singularity may arise along loci of different codimension. Since

the roots of the elliptic equation generally are distinct, the fiber over a generic point of the base is

smooth.

The duality of M-theory and F-theory relies on the compactification of the 11 dimensional theory

on the elliptic Calabi-Yau. This is very hard to do in the case of a singular geometry, where one

does not have control over the homology, i.e all cycles along which the fields reduce. If however, the

singular geometry can be described as a degenerate limit of a smooth manifold the reduction is more

tractable. There has been some work on F-theory on singular geometries [30] without resolution of

deformation, which we do not treat in more detail here.

2.2.1 Singularities in general

The following two sections briefly introduce the desingularization of a hypersurface. Understanding

singularities as limits of smooth spaces follows two main paths, called deformation and resolution, or

blow-up.

Deformation

The deformation of a singularity is a continous transformation. It is a parametrization of a family of

smooth spaces, where the singular geometry appears as a limit in the introduced parameter. Here we

illustrate the deformation through the following simple example for a real hypersurface. Consider the

quadric equation

x2 + y2 − z2 = 0 , (x, y, z) ∈ R3 (2.2.1)

This describes a double cone, seen in fig 2.5, where the two ’tips’ meet in a singular point at the

origin. Indeed, at this point on the hypersurface the gradient vanishes as in (2.1.10). The hypersurface

equation can be deformed to

x2 + y2 − z2 = α2 (2.2.2)
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S1

Figure 2.5: The deformation of a conic singularity. The the singularity is seen as the limit where
the radius of the circle S1 goes to zero.

by the introduction of a continuous parameter α, such that the singularity appears in the α→ 0 limit.

This is the equation of a hyperboloid, which asymptotes to the singular cone far away from the origin.

Around the ’waist’ of the hyperboloid there is a circle S1, whose radius is parametrized by α. In the

singular limit the size V ol(S1) of this non-trivial 1-cycle goes to zero, and is referred to as a collapsing

cycle. In other words, we may regard the singularity as the result of contracting a non-trivial cycle on

the manifold. In this case, the geometry is a two real dimensional surface, and the collapsing cycle is

one dimensional. For deformation of singularities this illustrates the general result that the collapsing

cycle is always an element of the middle homology group Hdim(X)/2(X).

Blow-up

The blow up resolution is the other way to desingularize a space. In this scheme the singular locus

is cut out, and replaced by a cycle in a way that make the total space smooth. We take the elliptic

curve

P = −y2 + x3 + ax2z2 a ∈ C (2.2.3)

as an example. a is a constant and this hypersurface defines an elliptic curve embedded in P2,3,1. As

in (2.1.16) the ambient space divisor Z : {z = 0} intersects the hypersurface in a point, which is a

divisor on the elliptic curve. This equation is singular at (x, y) = (0, 0) because (x = 0, y = 0, z 6= 0)

is a solution to the equations

P = 0, dP = x(3x+ 2az2) dx− 2y dy + 2ax2z dz = 0 . (2.2.4)

We desingularize this equation by an ambient space blow-up. By introducing a new ambient coordinate

s, and a new scaling relation (x, y, s) ∼ (λx, λy, λ−1s) the dimension of the ambient space does not

change. The blow-up transformation is

(x, y)→ (sx, sy) (2.2.5)

under which the hypersurface

P → s2(−y2 + sx3 + ax2z2) . (2.2.6)

The solution s = 0 to above equation is discarded in what is called the proper transform

P̃ = −y2 + sx3 + ax2z2 (2.2.7)
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θ1θ2

Figure 2.6: Some features of an F-theory fibration. Over a generic point on the base the fiber is
a smooth genus-one curve (left). Over certain loci θ1 in the base the fiber degenerates (middle). By
resolving the singularity over θ2 the fiber becomes a tree of curves, intersection as the Dynkin diagram
of an affine Lie algebra, in this case su(5).

since setting s to zero in (2.2.5) takes us back to the singularity at x = 0 and y = 0. The ambient

space now has the toric representation

x y z s

2 3 1 0
0 1 1 −1

(2.2.8)

and the Stanley-Reisner ideal is {xy, sz}, which means that neither x and y nor s and z can vanish

simultaneously, see e.g [31]. We see now that the singularity at x = y = 0 is ’cut out’ by the Stanley-

Reisner ideal. Using also the second generator of the SR-ideal one can check that

P̃ = 0 dP̃ = x(3xs+ 2az2) dx− 2y dy + 2ax2z dz + 3xs2 ds = 0 (2.2.9)

has no solutions and thus P̃ = 0 is a smooth hypersurface. The zero-point at z = 0 remains unaltered,

and in addition there is a new point on the elliptic curve given by s = 0. This point is called the

exceptional divisor of the blow-up. Importantly it is always a divisor, i.e a complex codimension one

object. For a hypersurface of any dimension the blow-up results in one or more exceptional divisors.

In this case only one blow-up was needed to make the hypersurface smooth and there is only one

exceptional divisor. If the hypersurface is not smooth after the blow-up, a sequence of blow-ups can

be performed, each introducing a new exceptional divisor and eventually reaching the smooth case.

The exceptional divisors have a certain intersection pattern, which can be used to identify and classify

the possible singularities. In the next section we review this for the case of elliptic fibrations.

2.2.2 Singularities in elliptic fibrations

The singularities of the elliptic fibration are found by analysing the discriminant, as introduced in

(2.1.11) for the single elliptic curve. The discriminant of the fibration takes the same form

∆ ∼ 4f(b)3 + 27g(b)2 (2.2.10)
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Figure 2.7: A singularity in the torus fiber arise when a 1-cycle collapses. On the right the singular
fiber resulting from a shrinking A-cycle.

but in this case it varies over the base manifold. If the discriminant vanishes at some sublocus of B, then

the fiber will become singular over this locus. The singular fiber arising can be described by the collapse

of a 1-cycle in the fiber. Note that this applies to a single fiber, or a fiber over a sublocus. For Calabi-

Yau manifolds, there is are globally defined 1-cycles as the Hodge numbers h1,0(X) = h0,1(X) vanish.

The type of singularity depends on the collapsing 1-cycle, and we will describe how to determine the

degeneration of the fibration in the following. Furthermore, since the discriminant varies over B, which

for 4-dimensional compactifications is a complex 3-fold, the degeneration can occur at loci of different

codimension. These have very different physical interpretations, and will be treated separately in the

following.

Singularity types of the elliptic fiber

The elliptic fiber E(K), over a fixed and generic point on the base, has first homology group H1(T 2) ≈
Z2. The generators of this group are usually called the A-cycle and the B-cycle as in fig. 2.7. We

choose the orientation so that the intersection number A ·B = 1. If either of these cycles collapses to

a point the torus pinches, developing a singularity. More generally, any element pA + qB ∈ H1(T 2)

may collapse, i.e V ol(pA+ qB)→ 0 giving rise to a certain singularity type. By construction, see fig.

2.7, the modular group acts on the 1-cycles of the torus, and for an elliptic fibration there is a relation

between the singularity type and the SL(2,Z) monodromy action on the first homology group. The

relation is given by the Picard-Lefschetz monodromy formula [32]

η 7→ η − (η · γ)γ (2.2.11)

which gives the monodromy action on a 1-cycle η when encircling a codimension one locus, where the

cycle γ collapses. Parametrizing η =

(
a
b

)
and the collapsing cycle γ =

(
p
q

)
the intersection form is

η · γ = aq − bp and the monodromy action may be written(
a
b

)
7→
(
a
b

)
− (aq − bp)

(
p
q

)
=

(
1− pq p2

−q2 1 + pq

)(
a
b

)
(2.2.12)

and we can take the monodromy to be defined by the matrix on the right hand side. This is the

SL(2,Z) action on the backgound fields induced by the (p, q) 7-brane in (2.0.13). Recall that the

presentation of the modular group in terms of the generators is 〈T, S|S2 = (ST )3 = id〉 and the

quadratic and cubic constraints reduce the possible monodromies to a few classes, up to change of

SL(2,Z)-frame. The monodromies associated with the different singularity types are given in (2.2.13).

In the F-theory fibration one may therefore identify the 7-branes in type IIB string theory by

finding the singularity type over the codimension one locus in the base B where the degeneration

occurs. The 1-cycles of the fiber do however exist only locally, and it is often not practical to find the

monodromy action this way. Luckily, the singularity type can be found also from the hypersurface

representation of the fibration, due to the work by Kodaira [33].
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Figure 2.8: A real projection of an elliptic curve, restricting to real x and y in the Weierstrass model.
On the left a smooth curve and on the right a singular one.

In the Weierstrass form, the type of singularity is encoded in the vanishing order of the coefficients

f , g and the discriminant ∆ at the locus of the singularity. For elliptic surfaces, that is elliptic

fibrations over one dimensional bases, Kodaira classified all possible degenerations as rational double

points (RDP)10. These are singularities occuring as self-intersections of the elliptic curve, depicted in

fig. 2.8. In this case, at a point b0 in the base where the fiber becomes singular, the discriminant

will vanish to some polynomial order in the local base coordinate b0. A point on a one dimensional

base is a divisor, here denoted D. In other words, at D the discriminant ∆ ∼ bn0 ∆̃. Furthermore, the

coefficient sections f and g may also have vanishing orders at this point. By analysing the possible

combinations of vanishing orders the singularities were classified in [33]. In the following table we

present the result, and supplement the monodromy action corresponding to each singularity.

ord(f)|D ord(g)|D ord(∆)|D Kodaira type Singularity Monodromy

≥ 0 ≥ 0 0 I0 −
(

1 0
0 1

)
0 0 1 I1 −

(
1 1
0 1

)
0 0 2 I2 A1

(
1 2
0 1

)
0 0 m Im Am−1

(
1 m
0 1

)
≥ 1 1 2 II −

(
1 1
−1 0

)
1 ≥ 2 3 III A1

(
0 1
−1 0

)
≥ 2 2 4 IV A2

(
0 1
−1 −1

)
≥ 2 ≥ 3 6 I∗0 D4 −

(
1 0
0 1

)
2 3 6 + n I∗n , n ≥ 1 D4+n −

(
1 n
0 1

)
≥ 3 4 8 IV ∗ E6

(
−1 −1
1 0

)
3 ≥ 5 9 III∗ E7

(
0 −1
1 0

)
≥ 4 5 10 II∗ E8

(
0 −1
1 1

)
≥ 4 ≥ 6 ≥ 12 non−minimal not a RDP −

(2.2.13)

10A rational double point, du Val singularity or a simple surface singularity is an isolated singularity of a complex
surface whose resolution consist of a tree of smooth rational curves.
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Figure 2.9: A conic singularity as a quotient of C by a discrete rotation. Here the example of a Z3

subgroup of all rotations of the complex plane is depicted.

The first line in (2.2.13) is the trivial case, where the fiber is smooth over the divisor D. In the I1

and II cases the fiber is singular but the fibration remains smooth. This is analogous to describing

a sphere S2 as a fibration of a circle S1 over an interval, where the circle contracts to a point at

the interval endpoints. In this case the fibre S1 degenerates over the endpoints, but the fibration is

smooth. The following lines are the descendent cases of degeneration types. The fourth column is the

notation Kodaira used and the fifth column the notation as an ADE classification. The final column

contains the SL(2,Z) monodromy action induced by the collapsing 1-cycle.

The ADE classification of the degeneration of the elliptic fiber over divisors in the base is a

beautiful correspondence, which underlies the appearence of gauge symmetries in F-theory. These

rational double point singularities are also known as du Val singularities. They can be understood in

several ways, and here we’ll briefly describe them first in terms of a local description of the singularity

and second through the resolution by a series of blow-ups.

Locally the elliptic surface at a smooth point is diffeomorphic to an open set in C2. By quotienting

C2 by the action of a discrete symmetry group singularities can arise, and the du Val singularities

all have a quotient description. An analogous example is the quotient of C by a rotation of 2π/n

rotation around the origin, making a cone with the singularity at the tip (fig. 2.9). The discrete

group in this example is the Zn subgroup of U(1) group of rotations of C. In the case of C2 the

rotation acts by SL(2,C), or equivalently by SU(2) on the doublet of the complex coordinates. Hence

we may construct singularities locally through quotients by discrete subgroups of SU(2). These are

visualized as the subgroups of the SO(3) ⊂ SU(2) rotations of the sphere S2. The discrete subgroups

are the rotation groups of the platonic solids, viewed as point sets on the sphere. These groups are

the polyhedral binary groups, including the Zn symmetry of n equidistant points along the equator of

S2. In the following table the ADE singularities are presented as quotients C2/G and the local form

of the hypersurface equation is given

Type G Equation

An Zn+1 x2 + y2 + zn+1

Dn Binary dihedral BD4(n−2) x2z + y2 + zn−1

E6 Binary tetrahedral x3 + y2 + z4

E7 Binary octahedral x3 + y2 + xz3

E8 Binary icosahedral x3 + y2 + z5

(2.2.14)

One may also approach the classification of singularity types through the resolution via blow-ups.

Depending on the singularity type, one or more blow-ups is required to achieve a smooth space. The
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Figure 2.10: The trees of intersecting curves P1
i in the fiber take the form of affine Dynkin diagrams

of ADE type. The resolved fibers are fibered over the divisor θ in the base where the singularity sits.

resolution introduces a new set of divisors in the elliptic fibration, and one may ask what happens

to the topological invariants of the geometry in the resolution process. For purposes of F-theory

models preserving N = 1 supersymmetry the Calabi-Yau condition c1(X) = 0 must hold also after

the resolution. The resolutions preserving the first Chern class are called crepant resolutions 11. Each

blow-up introduces an exceptional divisor, in the case of an elliptic surface X exceptional curves. The

intersection number of two such divisors is defined as

Fi · Fj =

∫
X
ηi ∧ ηj ≡ −Cij (2.2.15)

where ηi is the Poincare dual of the divisor Di. The right hand side is referred to as the intersection

form. By the resolution of a certain singularity, the singular point is replaced by a tree of divisors,

and it is observed that the tree takes the form of an affine Dynkin diagram of ADE type, see fig. 2.10.

The correspondence between the resolved geometry and the ADE Lie algebras is stated as12

{Intersection form of exceptional divisors} ↔ {Cartan matrix of ADE Lie algebra} . (2.2.16)

For elliptic surfaces with vanishing canonical class, i.e elliptic K3 surfaces the singularities which admit

crepant resolutions are precisely of ADE type [34]. For four-fold fibrations there is no intersection

number between two divisors and the above intersection form generalizes to∫
X4

Fi ∧ Fj ∧ π∗Da ∧ π∗Db = −Cij
∫
B
θ ∧Da ∧Db (2.2.17)

where Da,b are any two divisors on the base, and θ ⊂ B is the divisor over which the singularity

sits. In the case of fibrations of higher dimension, e.g Calabi-Yau threefolds and fourfolds the Kodaira

classification still holds for singularities in codimension one in the base, with the addition of the

possible monodromy action on the resolution divisors when moving along the divisor in the base.

This monodromy makes for the possibility of non-simply laced gauge algebras. For singularities in

higher codimension, the list of possibilities grows and a general classification is not completed. On the

other hand, when realising elliptic fibrations as hypersurfaces in toric varieties, the crepant resolution

is often easy to construct. And when a resolution is found, the intersection form of the resolution

divisors is explicitly constructed.

11As opposed to resolutions introducing a discrepancy in the canonical class, a term coined by M. Reid
12The self-intersection numbers are negative, so the intersection form is the negative of the Cartan matrix
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2.2.3 Summarizing the divisor classes

We have seen that divisors originating from the fiber in the resolved fibration X̂ come from two sources;

rational sections and resolution divisors. In the case of a genus-one fibration the rational sections are

exchanged for the multi-section classes. We here assume that the singularities in the fibration X

can be resolved such that X̂ is smooth and flat, i.e all the fibers are one-dimensional. The resolution

divisors Fi are P1 fibrations over the codimension one loci w in B where the singularity was located. In

addition there can be divisor classes Da coming from the base, which by pullback give rise to divisors

π∗Da on the full fibration. For any elliptic n-fold, the Neron-Severi group of divisors modulo algebraic

equivalence, is given by the class of the zero section, the classes of the generators of the Mordell-Weil

group, by resolution divisors and divisors pulled back from the base [27]. Algebraic equivalence is

a finer equivalence relation than linear equivalence of divisors, or homological equivalence of cycles.

In this thesis we will for simplicity use the coarser equivalences of divisors or homology cycles when

appropriate. In other words, for an elliptic fibration the rank of the Neron-Severi group

rank NS(X̂) = 1 + rank NS(B) + rank E(K) +
∑
w∈∆

(nw − 1), (2.2.18)

where nw is the number of irreducible fiber components over w which is a factor of the discriminant ∆.

The resolved fiber consists of the original component plus the components introduced by the blow-up.

This makes nw − 1 the number of resolution divisors. The first term corresponds to the zero section.

In the case of a genus-one fibration, no zero section and no Mordell-Weil group are present. The

formula will then get modified by exchanging the corresponding terms by the multi-section classes.

Recall that T is the subgroup of NS(X̂) generated by the zero-section [σ0], the resolution divisors Fi,

and divisors of the form π−1(δ) for δ ∈ NS(B). The divisors on X̂ are thus generated by the classes

in T and the divisor classes Si − Z = [σi]− [σ0] from the free generators of E(K).

We note here that the divisor class R−Z = [σr]− [σ0] ∈ NS(X̂) associated with a torsional section

σr has the property that k(R − Z) can be expressed in terms of the generators of T , where k is the

order of the torsional element of the Mordell-Weil group. It follows that R − Z can be expressed in

terms of these generators using Q-coefficients. The Neron-Severi group is thus torsion-free, since the

image of a torsion section can be expressed in terms of only non-torsional objects. This is crucial for

the analysis in chapter 3. As described in the next section, this expression for R−Z is closely related

to the so-called Shioda map [26], [27, 28]. This is in line with the result for elliptic surfaces in [35],

where a trivial class on the hypersurface is obtained by adding a certain rational linear combination

of resolution divisors to R− Z.

2.3 The Sen limit, or how to reconstruct type IIB string theory

We introduced F-theory by considering first weakly coupled type IIB string theory. The notion of

general (p, q) 7-branes as the objects that source all possible SL(2,Z) monodromies arise when leaving

the weak coupling limit and F-theory incorporates this full set of possibilities in the fibration structure.

Given an F-theory geometry one may ask how to recover the type IIB description, when the string

coupling goes to zero. This is the weak coupling limit of F-theory and was introduced by Sen in [36],

and therefore referred to as the Sen limit. By a certain parametrization of the fibration, the Sen limit

restricts all monodromies to the T -type monodromy induced by D7 branes, and at the same time

reproduces the orientifold involution of perturbative type IIB string theory.

When the string coupling gs = 〈exp(φ)〉 goes to zero, the axiodilation vev 〈τ〉 = 〈C0〉 + ig−1
s

approaches i∞. In this limit C0 is negligible, and the expansion (2.1.12) of the j-function is dominated
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by the first term

j(τ) ∼ e−2πiτ . (2.3.1)

Large values of the j-function correspond to large Im τ , which means small string coupling. In the

following we show how Sen’s parametrization allows for large j(τ) almost everywhere on the base. For

ε a constant the rewriting
f = −3h2 + εη

g = −2h3 + εhη + ε2χ
(2.3.2)

of the Weierstrass coefficients makes the leading terms cancel in the discriminant ∆ = 4f3 + 27g2.

The h, η and χ are sections of K̄2
B, K̄4

B and K̄6
B respectively. For any fixed and non-zero value of ε

there is no loss of generality since η and χ span all the values of f and g. If the fibration is given in

Tate form (2.1.19), the Sen limit amounts to replacing

a3 → εa3, a4 → εa4, a6 → ε2a6 . (2.3.3)

For the Weierstrass coefficients as above the j-function takes the form

j(τ) ∼ (εη − 3h2)3

∆
(2.3.4)

and the discriminant factors as

∆ ∼ ε2h2(η2 + 12hχ) +O(ε3) . (2.3.5)

Hence, for small values of ε the zero loci of the discriminant are found at

h = 0, and η2 + 12hχ = 0 (2.3.6)

in the base. As ε → 0 the j-function takes large values in all regions except where the nominator in

(2.3.4) goes to zero, i.e where |h| ∼
√
|ε|. Inspecting the discriminant, we see that the coupling remains

weak, except for the locus where h = 0. The monodromies around these loci can be computed using

the weak coupling assumption [36]. Around the locus η2 + 12hχ = 0 the monodromy is of T -type,

or SL(2,Z) conjugate to T . This is the monodromy induced by a single D7 brane. If this zero locus

has multiplicity n, the monodromy is Tn. Around h = 0 the monodromy can be shown to be −T−4,

which is the monodromy induced by the orientifold O7-plane in type IIB theory [36]. We collect the

results in the following table:

Locus Monodromy Type IIB solution

h = 0 −T−4 O7 plane
η2 + 12hχ = 0 T D7 brane .

(2.3.7)

In the discriminant the O7 locus at h = 0 appears as the factor h2. Thus, when leaving the ε → 0

limit this factor will split into two parts, each describing a non-perturbative 7-brane such that the

joint monodromy, when encircling both 7-branes is −T−4. The F-theory description of the O7-plane

is thus a bound state of non-perturbative branes which can be resolved at finite coupling.

By identifying the zero locus of h as the O7 plane it is possible to describe the Calabi-Yau threefold

from which the IIB orientifold is derived. The O7 plane is the fixed locus of an Z2 action and the

manifold M which is described by the equation

ξ2 = h (2.3.8)



30 CHAPTER 2. PHYSICS AND GEOMETRY OF F-THEORY

is the simplest realization of a hypersurface with a involution σ and a fixed point set at h = 0. The

Z2 involution

σ : ξ 7→ −ξ (2.3.9)

and since h is a section of K̄2
B the new coordinate ξ transforms as a section of K̄B. M is a double cover

of the base B of the F-theory elliptic fibration. M is a hypersurface in an ambient space with total

Chern class c(B)(1 + [K̄B]), since ξ transforms under the anticanonical bundle. The hypersurface is

of second order with respect to this class and by adjunction we have that

c1(M) = c1(B) + c1(K̄B)− 2c1(K̄B) = 0 (2.3.10)

and thus ξ2 = h describes a Calabi-Yau manifold. The F-theory description utilizes the modular

symmetry of the elliptic fiber, and not the full SL(2,Z) symmetry of type IIB. In (2.0.4) we saw that

the action of the left-handed fermion index and the worldsheet parity (−1)FLΩ gets quotiented out in

the F-theory description. Together with the orientifold involution the Sen limit gives a description of

Type IIB on M/(−1)FL · Ω · σ . (2.3.11)

There are many more F-theory compactifications on elliptic (n + 1)-folds than weakly coupled type

IIB compactifications on n-folds. In general it is impossible to find a parametrisation of the form

in (2.3.2) while keeping the full singularity structure of the fibration. If one insists on writing the

Weierstrass coefficients f and g as Sen suggested, one is forced to tune the complex structure moduli,

so that a weak coupling limit can be achieved. This amounts to finding an analogue of (2.3.3) and

can be very involved. In this case strong coupling effects such as exceptional gauge symmetries and

non-perturbative couplings disappear. However, by constructing F-theory models with classical gauge

groups which can be realised as brane stacks with orientifold planes, it might be possible to take the

Sen limit, and recovering the type IIB branes and compactification geometry. We note here that there

exist other versions of weak coupling limits [37]. These have other explicit forms or achieve a constant

j-function as opposed to a large-valued j-function. Finally we also note that the limit ε → 0 in the

Sen parametrisation renders the fibration singular. To avoid this conceptual problem the so called

stable Sen limit was introduced [38], wherein the singularity gets resolved.

2.4 Defining F-theory through the duality with M-theory

Approaching F-theory through type IIB string theory provides a lot of intuition about the four dimen-

sional gauge theory. Symmetries and physical degrees of freedom are often straightforward to evaluate

through knowledge about the physics of brane stacks in string theory. It also provides a description

of type IIB theory when the coupling is not weak. However, when the string coupling is not weak,

and there is no Sen limit available there is a need for another way of defining what F-theory is. The

question is, what is F-theory on any elliptically fibered Calabi-Yau variety? By using the T-duality

between type IIB and type IIA string theory, and that the strong coupling limit of type IIA theory is

the eleven dimensional M-theory a better definition of F-theory is available. In this chapter we review

this construction, and use it to describe the physics of elliptic fibrations with singularities in different

codimensions.

2.4.1 The F-theory limit

When the string coupling gets large the weakly coupled type IIA supergravity has a dual description.

By identifying the string coupling with the radius of a new circular physical dimension the strong

coupling limit is the unique eleven dimensional supergravity. This duality lifts at high energies to
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a duality between type IIA string theory and a eleven dimensional theory called M-theory. Weakly

coupled IIA theory is equivalent to strongly coupled M-theory, and vice versa. The strong coupling

limit amounts to infinite radius of the M-theory circle which decompactify to a eleven dimensional

theory.

The pure 11D supergravity has a simple spectrum. It consists of the eleven dimensional metric g

and a 3-form gauge field C3 together with the gravitino. This theory is coupled to the two dimen-

sional M2 and five dimensional M5 branes, which origin from the strings and branes in IIA string

theory. When compactifying M-theory, these branes may wrap submanifolds and give rise to massive

states. The mass of these states are proportional to the volume of the wrapped cycles, and in the

compactification limit additional massless states appear.

Four dimensional compactifications of M-theory with N = 1 supersymmetry are obtained by

vacuum solutions of the form M4 ×X7, where X7 is a real 7-manifold with one covariantly preserved

spinor, taking the role of the conserved supercharge. A compact and real Ricci flat 7-fold with a

covariantly constant spinor is known as a G2-manifold as the holonomy group acting on the tangent

bundle is G2. Although the basic principles of these compactifications are known very little model

building has been done with G2 manifolds. 13 This is mainly due to technical obstacles. Until recently,

very few explicit constructions of G2 manifolds were known. Also, since 7-manifolds cannot be complex

there is no use of holomorphic quantities or the powerful techniques from algebraic geometry over

algebraically closed fields. However, if we compactify M-theory on an elliptically fibered Calabi-Yau

manifold all these mathematical tools become available, and we can discuss F-theory from a M-theory

point of view.

Compactifying M-theory on a elliptic Calabi-Yau fourfold gives a N = 2 gauge theory in three

dimensions. This theory has four conserved supercharges. In what is called the F-theory limit, this

three dimensional theory gets lifted to four dimensions by decompactifying along one of the 1-cycles

of the fiber torus. This preserves all supercharges and they rearrange into one single Dirac spinor in

four dimensions, hence a N = 1 gauge theory. Lets review the F-theory limit in a little more detail

for a compactification on a Calabi-Yau fourfold, for a closer treatment see [13]. Locally the homology

basis of the torus fiber T 2, the A-cycle and the B-cycle have radii RA and RB. In the F-theory limit

the fiber volume Vol(T 2) goes to zero. The first step of the limit amounts to identifying the M-theory

circle with one of the fiber cycles, say the A-cycle. By taking RA → 0 a weakly coupled type IIA theory

is obtained. In the second step a T-duality transformation is performed along the B-cycle, giving a

type IIB theory on the dual circle woth radius R̃B = l2s
RB

. In the compactification limit RB → 0 and

the dual circle decompactifies and the three dimensional theory turns into a four dimensional theory.

Note here that one of the big dimensions has its origin in one of the torus dimensions. This is the

opposite of the case when we introduced F-theory through type IIB string theory, where the fiber

direction are just a tool, geometrizing the SL(2,Z) symmetry. Note also, that T-dualizing the weakly

coupled type IIA theory gives a type IIB theory which is generally not weakly coupled, agreeing with

our previous discussion of F-theory as the generalization of type IIB theory to any coupling.

Through the F-theory limit any elliptic, or genus-one fibration defines an F-theory model. Some

of these fibrations will have a perturbative type IIB, or a perturbative heterotic formulation but the

vast majority have neither. Using M-theory however gives a definition of what we mean by F-theory

when the geometry have no immediate interpretation in terms of branes or heterotic bundles.

13Recent progress [39–41] might bring new interest in G2 compactifications.
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2.5 Gauge theory data from geometry

Having introduced the definition of F-theory through M-theory we are ready to describe the four

dimensional gauge theory in terms of the fibration of the F-theory geometry. First we discuss gauge

symmetries, abelian and non-abelian ones, and then turn to charged matter and Yukawa couplings.

The treatment of global properties of the gauge theory as well as discrete symmetries will be left for

the following chapters.

2.5.1 Abelian gauge symmetries

In the sequel we denote by G the non-abelian part of the gauge group of an F-theory compactification

on an elliptically fibered Calabi-Yau 4-fold Y4 over the base manifold B and denote its Cartan subgroup

by H. Let us assume that the singularities of Y4 responsible for the appearance of a non-abelian gauge

group G in codimension-one admit a crepant resolution Ŷ4. Expanding the M-theory 3-form C3 as

C3 =
∑

iAi∧Fi with Fi the resolution divisors gives rise to the Cartan U(1) gauge fields Ai. Therefore

the resolution divisors Fi span the coroot lattice Q∨ of the Cartan subalgebra h.

We recall that the divisors originating from the fiber in an F-theory compactification are either

the classes of rational sections or resolution divisors. In this chapter we discuss the physics of the

rational sections. If σ is a rational section it defines a divisor on the elliptic fibration. The Poincaré

dual of the divisor class [σ] is a two-form w ∈ H1,1(X). We denote by x the local coordinates of the

compact manifold X, and y is the position in the Minkowski three-space M1,2 factor of the M-theory

background. Any solution for the three-form field can be expanded in the homology if the compact

space, each homology class beeing representated by a unique harmonic form. Hence we can write

C3 = Ai(y) ∧ wi(x) + . . . (2.5.1)

and we see that any harmonic two-form wi give rise to a corresponding 1-form Ai in the three-

dimensional field theory. This one form field has a U(1) gauge symmetry which descends from the

gauge transformation C3 → C3 + dΛ2 in the eleven dimensional theory. In other words, it is a U(1)

gauge field. In three dimensions any rational section correspond to a U(1) gauge field. Note especially

that the existence of abelian gauge symmetry is a global property of the fibration. It does not refer to

special loci in the base and in particular not to the codimension one singularity structure. In order to

have a U(1) gauge field in four dimensions the three dimensional one form must lift to a one form in

four dimension. Not all rational sections will give rise to extra U(1) gauge group factors. One will be

of another nature. This is because lifting the three dimensional theory to four dimensions is done on a

circle. In one limit this circle goes to zero radius and we have a three dimensional theory. In the other

limit the circle grows to infinite size, and the gauge theory is four dimensional. This is analogous to

the classical Kaluza-Klein theory, where gravity in n + 1 dimensions is compactified on a circle, and

gives rise to gravity plus electromagnetism in n dimensions. The extra one form is the gravi-photon

and has its origin in the metric. This will happen also in the F-theory limit, and one of the abelian

gauge fields in three dimensions will correspond to the gravi-photon, or the Kaluza-Klein (KK) U(1)

gauge field.

The Shioda map in F-theory

The Mordell-Weil group, as introduced previously in this chapter is not generated by all independent

rational sections. The zero-section σ0, being the trivial element of E(K), is not a generator, and a

generating set of the Mordell-Weil group can be taken to be

{σi − σ0} (2.5.2)
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for all σi 6= σ0. The rank of this group is the number of rational sections in addition to the zero

section. Each section gives rise to a divisor class. The Shioda map is a homomorphism

ϕ : E(K)→ NS(X)⊗Q (2.5.3)

from the Mordell-Weil group to the Neron-Severi group of all divisors, where the linear combinations

are taken with rational coefficients. Explicitly the Shioda map takes

ϕ(σ) ≡W = [σ]− [σ0]− π−1(δ) +
∑

liFi , li ∈ Q (2.5.4)

where δ is a divisor on B and the Fi are resolution divisors. The coefficients li and the class δ are

determined by demanding that the intersection numbers∫
X
W ∧ Z ∧Da ∧Db,∫

X
W ∧Da ∧Db ∧Dc,∫

X
W ∧ Fi ∧Da ∧Db

(2.5.5)

vanish for all Di, which are divisor classes pullbacked from B. This is just the statement made below

(2.1.23), that the image of the Shioda map has zero pairing with all divisors in T . The first two

conditions are often referred to as the one leg in the fiber condition and ensure that the divisor W

do not lie completely in the base or fill up the full fiber, respectively. Intuitively we want the divisor

class, or equivalently the two-form w to have support along only one of the fiber dimensions, since only

one of them decompactifies in the F-theory limit. The three dimensional gauge field then lifts to a

four dimensional field along this direction. The third condition expresses that W is orthogonal to the

resolution divisors Fi, which define the Cartan U(1) generators in the case where there are non-abelian

gauge factors coming from codimensions one singularities. The combination W ∧Da in (2.5.5) is a so

called vertical flux in H2,2(X). This can achieve any vacuum expectation value, which can be used

to engineer a chiral spectrum. If the one-leg condition is not fulfilled, this vacuum expectation value

breaks Lorentz invariance in four dimensions. Furthermore, if the last condition is not fulfilled, this

flux will break the gauge group. The discussion on valid fluxes is treated in more detail in section 2.6

and in chapter 5.

2.5.2 Non-abelian gauge symmetries

Lets turn to the next class of fibral divisors in an elliptic, or genus-one fibration. The resolution

divisors Fi of a codimension one singularity are localized, as opposed to the sections responsible for

abelian gauge groups. If θ denotes the divisor class in the base, over which the fiber degenerates and

the irreducible fiber components are the curves P1
i then

P1
i ↪−→ Fi → θ (2.5.6)

are the resolution divisors. Each is given by the fibration of one irreducible curve along over the divisor

θ in the base. We have seen that singularities in the F-theory geometry correspond to branes in the

type IIB theory. The gauge bosons origin from open string states, confined along the world-volume

of the branes. In F-theory and in particular the M-theory description of F-theory the gauge bosons

arise from M2 branes wrapping the irreducible fiber components over these loci in the base. As in

the open string case, these states are localized, as the resolution divisors are fibrations over the very

same loci. In the compactification limit, the volume of the resolution divisors goes to zero, and as
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the masses of the wrapped brane states are proportional to the cycle volume these become massless

vectors. To construct all gauge bosons in the adjoint representation we have to consider two cases.

As in the case of an abelian group factor, the resolution divisors Fi are dual to harmonic two-forms

wi, and expanding

C3 = Ai ∧ wi + · · · (2.5.7)

gives rise to one form fields Ai. This gives the Cartan elements of the non-abelian gauge group. To

fill out the full adjoint representation of the gauge group, that is the off-diagonal elements one must

also take into account states from branes wrapping more than one fiber component. In the SU(n)

case there are n− 1 Cartan U(1)’s from the resolution divisors. In addition the M2 branes can wrap

chains

Sij = Pi ∪ Pi+1 ∪ ... ∪ Pj , i ≤ j (2.5.8)

of adjacent fiber components over θ. Taking both orientations into account this gives n2 − n different

states corresponding to the off-diagonal W bosons of the SU(n). Together thy form the n2 − 1

dimensional adjoint representation [13]. This logic can be repeated and reproduces the adjoint states

of also the D and E-type Lie groups.

2.5.3 Charged matter representations

At codimension two loci in the base, where two of the discriminant factors meet, the degeneration of

the fiber generally enhances. We can illustrate this through the following toy model, which is not an

elliptic fibration. Consider the non-compact hypersurface

x2 + y2 = bm1 b
n
2 (2.5.9)

in an ambient space C2 × B. Here x and y are coordinates of the first factor, playing the role of

fiber coordinates, and bi are some functions on the base B. At the codimension one loci in the base

where b1 = 0 and b2 = 0, the hypersurface is singular, and the singularity type is Am−1 and An−1

respectively. If this were an F-theory background, the gauge group would be SU(m)×SU(n). At the

codimension two locus where b1 = b2 = 0, we can write the hypersurface as x2 + y2 = bm+n
1 , and the

singularity type enhances to Am+n−1. This is reminiscent of the discussion of brane stacks around

(2.0.7) and we can think about this enhanced singularity as the breaking of a larger gauge group. From

this viewpoint we think about the larger SU(m + n) gauge factor as the starting point, and when

the codimension two locus factors into two codimension one loci we obtain two gauge group factors.

By branching the adjoint representation into ad(SU(m))⊕ad(SU(n)) one get also two bifundamental

representations, which host matter states charged under the gauge group.

In type IIB string theory these extra charged matter states are due to open strings between different

brane stacks, see fig. 2.1. In the F-theory language we recall that the fibration is smooth, and that

all singularites are resolved. This implies that over the enhancement loci in the base, there are more

fiber components. In explicit examples one find that one or more irreducible curves in the fiber over

{b1 = 0} factors, or become reducible when b2 = 0. The wrapping of M2 branes on these extra curves

gives rise to states which are localized and charged under the gauge factors that meet.

The representations in which the charged matter transform can be obtained directly from the

geometry. The above case makes use of the local enhancement, and branching rules. This does not

always work, and one must check explicitly what states appear and how the transform. The world-

volume action of the M2 brane contains the term∫
V ol(M2)

C3 (2.5.10)
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analogous to the world line action q
∫
Aµdx

µ for a particle with charge q under a U(1) gauge field A.

Let C be a curve in B over which some fiber component split. We denote by P1
k the split curve in the

fiber, which is fibered over C. Using the expansion (2.5.7) we get from a M2 brane wrapping this split

curve ∫
C×P1

k

Ai ∧ wi =

∫
P1
k

wi

∫
C
Ai ≡ (µi)k

∫
C
Ai . (2.5.11)

The two forms wi are dual to the resolution divisors Fi. The last term is the world-line action of the

charged particled and the prefactor is the intersection numbers of the split curves with the divisors so

we write

(µi)k = Fi · P1
k (2.5.12)

in homology. These numbers are interpreted as the charges with respect to the diagonal U(1)’s Ai
of the non-abelian gauge group. These intersection numbers are thus the eigenvalues of the Cartan

generators Fi, i.e the weights of the representation in which the state transform [42]. This way the

charged matter representations are defined directly through the geometry, without referring to the

brane analogy and can be effectively computed in explicit models.

Note here, that obtaining the weights of the representations as topological intersection numbers

relies on the intersection pairing between curves and divisors. This applies also away from non-

abelian degeneration loci. In the case of abelian symmetries the charged matter appear as new fiber

components over a codimension two locus which does not lie in a non-abelian divisor in B. Recall that

the existence of an extra rational section is equivalent to an extra rational solution to the Weierstrass

equation. This implies, for a fully resolved model, that the hypersurface equation factors over a

codimension two locus. We can take the so called U(1) restricted model as an example. This is

the Tate model, restricted to the part of the moduli space where the coefficient section a6 vanishes

identically. This introduces a codimension two singularity which is resolved by a blow-up in the

ambient space. This gives a ambient divisor class S : {s = 0}, which restricts to an extra fiber

component over the locus in the base where the singularity appear. The resolved form [31] is

sy2 + a1sxyz + a3yz
3 = s2x3 + a2sx

2z2 + a4xz
4 (2.5.13)

and at the locus in B where {a3 = a4 = 0} it factorizes as

s(y2 − sx3 + a1xyz − a2x
2z2) = 0 . (2.5.14)

Each of the two factors above defines an irreducible fiber component, topologically equivalent to a

sphere, denoted P1
i for i = 1, 2. The U(1) charges of the states coming from wrapping an M2 brane

on these curves are given by the intersection number

W · [P1
i ] (2.5.15)

of the Shioda map W of the extra section and the class of the fiber component. This type of com-

putation will occur frequently in the following chapters, for different hypersurface equations and for

more than one matter curve in the base. Note also that singularity enhancement does not only occur

at the intersection of two different codimension one loci, but can also appear as self-intersection loci

of a single divisor in the base.

2.5.4 Yukawa couplings

To have interaction terms, or Yukawa couplings between the matter fields we must go to codimension

three in the base B, or in the fourfold X. A codimension three locus in the base is a point, and is
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referred to as a Yukawa point in this case. Since the charged matter is localized along curves in the

base, the interaction terms are only possible where two or more such curves meet. Again we can use

the type IIB intuition, using a setup with three stacks of branes. Generically they intersect along

three matter curves, which meet in a point. Localized matter propagating along the curves may meet,

or interact at the intersection point. To obtain a interaction term in the four dimensional field theory,

the three fields has to form a gauge singlet.

In the F-theory fibration the Yukawa point is the intersection point of matter curves. Each matter

curve has its corresponding singularity, or in the resolved model, its particular tree of intersecting

irreducible curves in the fiber. Over the point where the matter curves meet, there is a further

enhancement of the singularity. In the smooth geometry this means that further curves in the fiber

split by further factorization of the hypersurface equation over this point. In the simplest case the

curve P1
Ra

, which gives rise to a state in the representation Ra of the gauge group split into the

homological sum P1
Rb

+ P1
Rc

. Branes wrapping these two curves give rise to charged matter states in

representations Rb and Rc respectively. If the states in the three representations can be combined into

a gauge singlet then this is a coupling in the four dimensional theory. In general the matter states

correspond to sums of the fiber components, and arise from branes wrapping multiple irreducible

curves. To find gauge singlets from the geometry one can however use that fact the the full fiber

class is uncharged under the gauge groups. The homological sum of all fiber components, including

multiplicities, is the class of the full fiber which has zero charge with respect to both the abelian and

non-abelian Cartan generators. Therefore, if one can arrange the fiber components into three groups,

the homological sum of each group of curves correspond to a state in a certain representation, and

these three states form a gauge singlet since the total charge is zero. In homology [43] this is the

statement that the sum of the three curve classes associated with weights is trivial modulo the fiber

class. It follows that there is a 3-chain Γ whose boundary consist of these curves i.e

∂Γ =
∑
a

[CRa ] (2.5.16)

where [CRa ] = [
∑
niP1

i ] for fiber components P1
i with multiplicities ni. This three-chain can be thought

of as the equivalent of a Feynman rule vertex for the M2 brane states.

2.6 Fluxes in F-theory

In addition to the background geometry of a four-dimensional F-theory compactification, specifying

the metric g, there is a freedom in the choice of vacuum expectation value for the field strength

G4 = dC3. For F-theory model building the G4 flux is essential as it is the source of chirality in the

matter spectrum, can be used for gauge symmetry breaking in GUT models and has to be included

for moduli stabilization 14. In the following we briefly review the background on F-theory fluxes and

their properties. Extra focus will be put on the transversality condition to provide a foundation for

the developments presented in 5.

By considering M-theory on a Calabi-Yau fourfold it was shown [44] that in order to have a solution

to the supersymmetric equations of motion that the form of the G4 flux is restricted. The only non-

trivial flux solution is of cohomology type (2, 2), i.e an element of H2,2(X). Second, the flux solution

must be primitive in the sense of Lefschetz decomposition. For J the Kähler form of the fourfold∫
X
G4 ∧ J ∧D = 0 (2.6.1)

14This is to a large extent an open problem in F-theory.



2.6. FLUXES IN F-THEORY 37

must hold for any two-form class D on X. This is usally stated shortly as G4 ∧J = 0. In addition the

flux has to be properly quantized [45], which can be stated as

G4 +
c2(X)

2
∈ H4(X,Z) ∩H2,2(X4) (2.6.2)

in the case of M-theory on a Calabi-Yau fourfold. c2(X) is the second Chern class of the the tangent

bundle of X 15. For smooth elliptic fibrations the second Chern class is always even [46,47], and thus

the flux is integral. Odd second Chern classes are only due to effects from (resolved) singularities, and

if this is the case a non-trivial flux solution has to exist in order to satisfy (2.6.2). We will comment

more on the quantization condition in relation to discrete anomalies in chapter 5.

The 7-brane charges in F-theory is entirely encoded in the singularities. The charges of 3-branes

and 5-branes in type IIB other the other hand are induced by the flux configuration. The D3 brane is

especially interesting as it is an SL(2,Z) invariant. This is seens as it couples electrically to the 4-form

field C4 which is a SL(2,Z) singlet. The net D3 charge is the difference of number of D3 branes and

anti-D3 branes and is given by

nD3 =
χ(X4)

24
− 1

2

∫
X4

G4 ∧G4. (2.6.3)

This relation is known as the D3-tadpole condition. As seen there are two sources for D3 charge. The

first term is the Euler number of the fourfold, χ(X4) =
∫
X4
c4(X4) and sums up curvature contributions

to nD3. The second term is the flux-induced tadpole. If nD3 is negative, there is a net number of

anti-D3 branes and gives a possibly unstable vacuum with broken supersymmetry. Thus, the amount

of flux that can be introduced is limit from above by the Euler number.

2.6.1 The transversality condition

In an F-theory compactification some symmetries are generally desired to survive the F-theory limit.

In particular for model building the four dimensional Lorentz symmetry is to be respected, and the

carefully constructed gauge symmetries from the fibration as well. Introducing an arbitrary G4 flux

of the right type will generally break some or all of these symmetries. The solutions to the flux

transversality conditions which we introduce here are precisely the flux configurations that respect the

Lorentz and gauge symmetries in four dimensions. We will only consider fluxes on elliptic fibrations

here, as consistent flux solutions on genus-one fibrations is the main result which underlies chapter 5.

Recall that in the F-theory limit relies on a T-duality transformation along one of the 1-cycles of

the fiber. This compact direction grows to one of the macroscopic spatial directions in four dimensions.

One immediate consequence is that care must be taken when introducing fluxes [44, 48]. Since the

flux is a tensor quantity Lorentz invariance in four dimensions forbids fluxes with non-trivial vacuum

expectation value along the circle along which the T-dualization is performed [49]. More precisely, the

G4 flux must have one leg in the fiber to meet this requirement. Indeed, in [49] it was shown that a flux

with zero or two legs along the fiber maps to the self-dual 5-form flux F5 in type IIB string theory. In

this case the vacuum expectation value extends along the non-compact directions and breaks Lorentz

invariance. The remaining possibility is a flux with one (real) leg in the fiber. These solutions do not

lie completely in the base, nor do they fill the two fiber directions. For the elliptically fibered 4-fold

π : X4 → B (2.6.4)

15For M-theory on a general spin 8-manifold, the second Chern class is replaced by the first Pontryagin class.
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with projection π this transversality condition [49] is usually expressed in slightly more formal terms

as follows: By definition, an elliptic fibration has a zero section σ(0) : B → X4 which defines an

embedding of the base B as a divisor σ(0)(B) into X4,

ισ : σ(0)(B) ↪→ X4. (2.6.5)

For an elliptic fibration with a Mordell-Weil group of non-zero rank, i.e in the presence of several

independent sections the choice of zero-section is not unique [50,51]. However the different choices of

identity element in the Mordell-Weil group all asymptote to the same effective theory in the F-theory

limit.

Let us assume that one particular section is chosen as our zero-section and with Z we denote

its homology class. For simplicity we assume the zero-section to be holomorphic, but this is not

necessary [50, 52]. If the zero section is meromorphic it may wrap fiber components in codimension

two. In this case it is possible to take a linear combination with base divisors that have intersection

number one with all fibers, effectively acting as a holomorphic section. From the perspective of the

3-dimensional M-theory effective action, Z generates a U(1) gauge group which is to be identified with

the Kaluza-Klein U(1) obtained by reducing the 4-dimensional F-theory compactification along a circle

S1 (see section 2.4.1, and for a recent discussion in the language of 3-dimensional supergravity [53]).

As discussed above the effective action light charged matter states arise from M2-branes wrapping

suitable fibral curves [54–57]. This includes both the non-Cartan vector bosons and extra charged

localised matter. More precisely, each component field Ψ(y, z) of an N = 1 multiplet of the 4-

dimensional F-theory action decomposes, upon circle reduction to three dimensions, to a zero mode

plus a full tower of Kaluza-Klein (KK) excitations Ψ(y, z) =
∑

n∈Z ψn(y)einz. As before, y denotes

external coordinates in the 3-dimensional M-theory vacuum and z is the KK-circle coordinate. The

U(1) charge of the higher KK states is given by the intersection number n =
∫
Cn
Z of the zero-section

and Cn, the fibral curve wrapped by the M2-brane associated with state ψn(y). Since Z is a section,

it has intersection number +1 with a generic non-degenerate fiber. This is still true for split fibers in

higher codimension, but not all components of the fiber will intersect Z. The zero mode ψ0, which has

zero U(1)KK charge thus arise from M2-branes wrapping a fibral curve C0 with vanishing intersection

with the zero-section Z. As Z has intersection number one with the full fiber f the ascending KK

state of U(1)KK charge n is then created by an M2-brane wrapping in addition the full elliptic fiber

n times such that its associated fibral curve can be written as Cn = C0 + n f.

In terms of intersection numbers of (co-)homology classes the transversality condition of [49] takes

the form (e.g. [31, 58–61]) ∫
X4

G4 ∧ Z ∧ π−1Da
!

= 0, (2.6.6)∫
X4

G4 ∧ π−1Da ∧ π−1Db
!

= 0 (2.6.7)

for Da,b any divisor classes on the base.16 The first condition (2.6.6) guarantees that G4 does not lie

completely in the base because the zero section as an embedding of the base ensures that∫
X4

G4 ∧ Z ∧ π−1Da =

∫
σ(0)(B)

ι∗σ(G4 ∧ π−1Da)
!

= 0. (2.6.8)

We read this as the vanishing of the net flux through any 4-cycle Da on the base. The second condition

(2.6.7) expresses that the solution cannot have two legs along the fiber. This condition can be rephrased

16For ease of notation we will oftentimes omit the explicit pull-back symbol through this thesis. From the context it
will be clear which divisors comes from the base.
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as the constraint that the chiral index of all KK partners equals that of the zero mode. Indeed the

intersection π−1
X Da ∩ π−1

X Db is a 4-cycle extending along the full fiber over a curve Da ∩ Db in the

base and
∫
π−1
X Da∩π−1

X Db
G4 computes the chiral index of states associated with M2-branes wrapping

the full fiber over Da ∩Db. The fiber curves associated with the different KK states differ only by a

multiple of the fiber class. Hence, if the integral over any 4-cycle of this type vanishes, this guarantees

in particular that the multiplicities of the fields ψn are the same for all n. This is the field theoretic

way of stating the requirement of Lorentz invariance. A discussion along these lines can also be found

e.g. in [62,63].

In models with non-abelian gauge symmetries the Cartan generators correspond to the exceptional

divisor classes Fi from the resolution of the singularity. Introducing flux we must in addition demand

that ∫
X4

G4 ∧ Fi ∧ π−1Da
!

= 0 (2.6.9)

in order to leave the non-abelian gauge group unbroken in the F-theory limit. Recall from section 2.5.2

that the M2-branes that wrap combinations of the rational fibers P1
i of the resolution divisors Fi give

rise to non-abelian massless vector bosons in the F-theory limit [54]. Flux configurations that respect

(2.6.9) induces no chiral index for the associated gauginos. If all but one of the equations (2.6.9)

are satisfied the F-theory gauge group will be broken to the commutant of the associated Cartan

generator. This is utilized for example in models with hypercharge GUT breaking [64,65].

We can now give some examples of fluxes that satisy the transversality conditions. In type IIB

theory both the closed and open string sector contributes to the set of possible fluxes [44]. The former

case include the H3 and F3 fluxes corresponding to the B2 and C2 form fields. The second possibility is

brane fluxes f from localized one form fields along branes. In F-theory defined through M-theory both

kinds of fluxes are unified into G4. The brane fluxes f arise from so called vertical fluxes in F-theory.

These fluxes are elements of H1,1(X4)∧H1,1(X4) ⊂ H2,2(X4) and the simplest such flux is of the form

w ∧ f where the two form w correspond to a U(1) generator and f is the pullback of a divisor class

on the base. Thus the divisor class [w] correspond either to an element in the Mordell-Weil group or

to a Cartan generator of a non-abelian gauge group.

The so called Cartan fluxes are of the form Fi ∧ π−1
X D for any class D pulled back from the

base. Because the holomorphic zero-section intersects precisely the affine node of the Kodaira fiber

over a divisor with non-abelian gauge group the condition (2.6.6) is fulfilled by all the Cartan fluxes.

Therefore the special case of (2.6.6) for G4 = Fi ∧ π−1
X D is the condition that the KK U(1) is chosen

‘orthogonal’ to the non-abelian gauge group. If [w] correspond to an element of the Mordell-Weil

group the transversality conditions for the flux w ∧ f are identical with the construction of the U(1)

generator through the Shioda map. This means that for any F-theory compactification with abelian

gauge factors, there are corresponding flux configurations that can be consistently turned on.

The G4 fluxes that are not wedge products of two-forms are generally hard to describe and write

down explicitly. The fourth cohomology groups of elliptically fibered fourfolds are often large, which

makes the problem not only technical, but also computationally intensive. In chapter 5 we will

construct one example of a flux that cannot be written as a wedge product of (1, 1)-forms.
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Chapter 3

Non-simply connected gauge groups in
F-theory

The non-abelian gauge symmetries are directly linked to the codimension one singularities of the F-

theory fibration. The resolution divisors are identified with the Cartan generators of the Lie algebra

of the gauge group. The field theory in four dimensions has as gauge symmetry a Lie group whose Lie

algebra is given by the geometry. This can be ambiguous. For example, if the discriminant factors such

that there is a A1 singularity over a certain locus in the base the gauge algebra is su(2). In this case the

gauge group can be either SU(2) or SO(3) ≈ SU(2)/Z2, since they share the same Lie algebra. For a

pure gauge theory with only local operators there is no difference between these two gauge theories.

If non-local operators e.g line operators are included there is however a difference [66]. More striking

differences are found when including matter. SO(3) has no spinor representation, while its double

cover SU(2) ≈ Spin(3) has the two dimensional spinor representation 1. The Lie group SU(2) is simply

connected, π1(SU(2)) ≈ 0, while SO(3) is a non-simply connected group with π1(SO(3)) ≈ Z2.

Another example is the Standard Model, where all matter representations are invariant under the

Z6 subgroup of the center Z3⊕Z2⊕U(1) ⊂ SU(3)c×SU(2)L×U(1)Y . This indicates that the gauge

group is in fact (SU(3)c × SU(2)L × U(1)Y )/Z6 [67]. This can be put into a GUT perspective. The

smallest simple Lie group that contains the Standard Model gauge group is SU(5). Embedding the

Standard Model into this unifying group amounts to a choice of a block diagonal form S(U(3)×U(2)) ⊂
SU(5) with unit determinant. Group theoretically S(U(3)×U(2)) is isomorphic to (SU(3)×SU(2)×
U(1))/Z6, following [68].

The main result in this chapter is that torsion elements in the Mordell-Weil group give rise to four

dimensional gauge theories with non-simply connected gauge groups. The first result on this relation

[69] considered eight dimensional compactifications. The duality with heterotic string theory was used

to show that the torsion subgroup of the Mordell-Weil group is isomorphic to the fundamental group

of the gauge group. This was conjectured to hold also in six dimensional F-theory models [57]. The

results presented in this chapter gives a constructive method for determining the fundamental group of

the gauge group also in any F-theory model, in particular in four dimensional compactifications. In F-

theory we do not directly see the difference between one gauge group or a finite quotient thereof, since

the singularity only provides information about the Lie algebra. However the matter spectrum will

indicate what the possible gauge group of the theory is. If the F-theory model of the above example

features a curve in the base over which states in the two dimensional representation are localized,

then the gauge group has to be SU(2), since no such representation of SO(3) exist. The theoretical

background and the presentation of explicit examples with a non-simply connected gauge group is the

1Quotienting out the Z2 center of Spin(3) projects out all half-integer spin representations.
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main content of this chapter.

Recall that the Shioda map associates a divisor class to every rational section. For rational sections

that generate the free part of the Mordell-Weil group the divisor classes are non-trivial. The Shioda

map of a torsion element of the Mordell-Weil group is a trivial divisor on the fibration. By using this

fact we construct a divisor class corresponding to an element in the coweight lattice. As such it has

integer pairing with any element of the weight lattice or in other words, it has integer intersection

numbers with all curves corresponding to matter states. As the Shioda map gives a divisor class

as a fractional linear combination of resolution divisors, this integer pairing is non-trivial. The only

possible matter representations are the ones which are integrally paired with the new coweight. The

center and the fundamental group of the gauge group may be computed from this relation between

the weight and the coweight lattices.

This chapter is largely based on [9]. In particular the explicit models presented are the same.

Related work include [20,69,70]. We first give the general structure and make the connection between

torsional sections, divisor classes and the representation theory. The theory is then applied to explicit

examples. We study fibrations that has a description as hypersurfaces in toric varieties we consider

a number of different models with non-abelian as well as abelian gauge factors. Out of the 16 toric

realizations as reflexive polygons three hypersurface equations have non-trivial Mordell-Weil torsion.

The Mordell-Weil groups of these fibrations are Z2,Z3 and Z ⊕ Z2. The first two cases appeared

in [69] and the third one can be seen as a restriction of the first one that results in one new rational

section. A generic hypersurface equation have no torsion sections 2. The specialization that ensures

the existence of torsion sections also imply that there are a non-abelian singularity in codimension one.

In addition, using the classification of toric tops [19,71] we implement further non-abelian singularities,

more intricate matter spectra and show how the new coweight have integral pairing with all weights.

The torsion subgroup of the Mordell-Weil group has also been studied via string junctions and

configurations of (p, q)-branes [72]. As the paper [69] this approach is also eight-dimensional and

reproduces the classification of Mordell-Weil lattices for elliptic surfaces [24]. Subsequent work ad-

dressed the same problem for elliptic threefolds [73]. In this thesis we will not comment further on

this approach.

3.1 Torsional sections and divisor classes

Throughout this chapter we consider a singular elliptic fourfold Y4 and its crepant resolution Ŷ4.

Lets start by considering the divisor class R of a torsional meromorphic section [σr] of order k. The

corresponding generator of the Mordell-Weil group is σr − σ0 such that R − Z is a generator of the

torsional part of the Mordell-Weil group of Ŷ4. In section 2.2.3 we saw that the image of a torsion

element under the Shioda map is trivial, since the Neron-Severi group is torsion-free. The divisor

class of a torsion section is not independent and hence it exists some linear combination of resolution

divisors Fi such that

Σ := R− Z − π−1(δ) +
1

k

∑
aiFi with ai ∈ Z (3.1.1)

is trivial in NS(Ŷ4)⊗Q and thus in particular in H2(Ŷ4,R). Indeed, as described in section 2.2.3, it is

guaranteed that R−Z can be expressed as a linear combination with Q coefficients of the generators

of T , the subgroup of NS(Ŷ4) generated by [σ0], the resolution divisors Fi and π−1(δ) for some divisor

class δ on B. Thus, R − Z minus this linear combination is trivial in NS(Ŷ4) ⊗ Q. By constructing

2One may view the toric constructions as realizing the most general form with this prescribed Mordell-Weil group.
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the Shioda map one obtain a specific such linear combination of the form (2.1.25) as

ϕ(R− Z) = R− Z − π−1(δ) +
∑
i

liFi. (3.1.2)

The rational numbers li are in fact of the form ai
k with ai ∈ Z. Since ϕ is a homomorphism, ϕ(k(σr −

σ0)) = k(R − Z − π−1(δ) +
∑

i liFi) and this must be trivial in NS(Ŷ4) ⊗ Q because σr − σ0 is

k-torsion. The homomorphism ϕ map identify the identity elements of respective groups and thus

R− Z − π−1(δ) +
∑

i liFi is trivial in NS(Ŷ4)⊗Q, as claimed above.

In our examples Ŷ4 is given by a hypersurface equation in an ambient toric variety. In these

fibrations the class −kΣ turns out to be a toric divisor on the toric ambient space which does not

intersect the Calabi-Yau hypersurface Ŷ4. Furthermore, in the toric examples we will consider the

base divisor δ will be given by K̄B, the anti-canonical divisor of B. If the hypersurface equation is

homogeneous with respect to further line bundle classes on B our examples generalize correspondingly.

Since [Σ] is trivial as an element of H2(Ŷ4,R), it does not define an extra U(1) generator as would

be the case if σr were a non-torsional rational section. Since discrete symmetries in string theory arise

as broken gauge symmetries we do not see Zk symmetry factors arising from torsion sections. The

origin of discrete symmetry factors is treated in detail in the next chapter. We may use the triviality

of Σ in NS(Ŷ4)⊗Q to define the class

Ξk ≡ R− Z − π−1(δ) = −1

k

∑
i

aiFi, ai ∈ Z, (3.1.3)

which defines an element in H2(Ŷ4,Z). The left hand side is by construction valued in the integer

cohomology and thus the right hand side is integral as well, though the form suggests otherwise. In

the explicit examples we will see that the pairing of this divisor class with all matter curves is indeed

integer.

At a first glance one may guess that the k-torsional section in the elliptic fibration induces a

k-torsional element in H2(Ŷ4,Z). The fibrations with Mordell-Weil torsion always come with codi-

mension one singularities which have to be resolved. The resolution divisors Fi provide an obstruction

to having torsion in cohomology. Indeed, from (3.1.3) we see that while the class [Ξk] is not torsion in

the cohomology H1,1
Z (Ŷ4) = H2(Ŷ4,Z) ∩H1,1(Ŷ4), it does represent a k-torsional element in the quo-

tient cohomology H1,1
Z (Ŷ4)/〈[Fi]〉Z of classes modulo integer linear combinations of resolution classes.

Namely,

k · [Ξk] = −
∑
i

ai[Fi] = 0 mod f ∈ 〈[Fi]〉Z, (3.1.4)

which establishes [Ξk] as k-torsion up to resolution divisors. Hence we can think of torsion sections

as giving rise to a kind of torsion in (co-)homology, but torsion homology cycles will not play a role

when compactifying this theory. In section 3.3.1 we give an intuitive argument of why such a torsional

element arise in the elliptic fibrations studied in the examples.

3.2 The global structure of the gauge group in presence of Mordell-
Weil torsion

In the previous section we outlined the properties of a torsional section and its associated divisor class.

The two main main conclusions is that a torsional element of the Mordell-Weil group does not give

rise to a independent divisor class nor to torsion in homology. Hence we do not have an extra U(1)

symmetry nor a discrete Zk selection rule [74] in the four dimensional compactification. By analyzing
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the representation theory we will put the torsional section into the context of the lift from the gauge

algebra to the gauge group. This determines the global structure of the gauge group and implies

restrictions on the matter spectrum.

The non-abelian gauge algebra g in an F-theory compactification on Ŷ4 is dictated entirely by the

resolved fibers in codimension one. The algebra g governs the local behaviour of the gauge group G

and can be defined through a linear expansion around the identity element of G. The global structure

of G can generally not be obtained only by the knowledge of the algebra. When the algebra and

the representation content are known, then G can be obtained and we will outline this theory in this

section.

For any state in a representation of g there is a corresponding weight vector, see e.g [75, 76]

[Slansky] for background on the representation theory of Lie groups and algebras. Each component

of this vector are the eigenvalues of the Cartan generators acting on the state. Thus, a n-dimensional

representation can be seen as a certain collection of n weight vectors, or shortly: weights. All weights

in all representations of g that occur lie in the weight lattice Λ. The root lattice Q ⊂ Λ is the smallest

sublattice of Λ that contains the weights in the adjoint representation. It is spanned by the simple

roots. Both these lattices have dual lattices Λ∨ and Q∨ ⊂ Λ∨ containing the coweights and coroots

respectively. Any element of the coweight lattice is, by definition, integrally paired with an element

of the weight lattice through the non-degenerate form (scalar product)

Λ∨ × Λ→ Z. (3.2.1)

Obtaining the representation content of an F-theory model relies on the identification of curves and

divisors with elements in Λ and Λ∨. The integral pairing is provided by the homological intersection

number between suitable classes. The divisors Fi correspond to the generators of the Cartan subalgebra

h of g. The Cartan generators, or equivalently the resolution divisors, span the coroot lattice Q∨ =

〈Fi〉Z. As the coroots lie in Λ∨ they are integrally paired with the weights in any representation. Recall

that the localised charged massless matter states in representation ρ of the full gauge group G arise

from M2-branes wrapping suitable fiber components P1
ρ over codimension-two loci on B. The fiber

components in question can be identified with the weights of the representation ρ. The intersection

number Fi · P1
ρ is the i:th component of the weight λρ identified with the matter state.

The global structure of the gauge group is encoded in the representation data encoded in the

weight and root lattices. For definiteness we consider in the following a semi-simple Lie group G. For

such G it holds [75,76] that

π1(G) ≈ Λ∨

Q∨
. (3.2.2)

Since the fundamental group is given in relative terms, i.e comparing the ’fineness’ of two lattices

it will be useful to compare G to its universal cover G0. They share the same Lie algebra g and

the coweight lattice of G0 is by definition Λ∨0 ≈ 〈Fi〉Z. The dual weight lattice Λ0 then contains all

information about the representations that occur in a gauge theory with gauge group G0. Since by

assumption Λ∨0 = Q∨, the group G0 is simply-connected.

Now, suppose without lack of generality that the F-theory compactification gives rise to gauge

algebra g ⊕ g′, for g semi-simple and whose Cartan subgroups are spanned by two sets of resolution

divisors Fi and F ′i . In the following analysis g′ and its gauge group G′ take a spectator role and are

included for generality. We are interested in the structure of the global gauge group G×G′. Suppose

furthermore that the Mordell-Weil group has k-torsion and that the class Ξk defined in (3.1.3) involves

only the Cartan generators Fi of g, and not the generators F ′i of g′. The class Ξk is integer and therefore

its intersection with the split fiber components P1
ρ is integer as well. Group theoretically this implies

that we can identify Ξk with a coweight in Λ∨ since P1
ρ correspond to a weight in Λ. Having fractional
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Lie algebra Center of universal covering group
An≥ 1 Zn+1

Bn≥ 2 Z2

Cn≥ 3 Z2

D2n+1≥ 4 Z4

D2n≥ 4 Z2 ⊕ Z2

E6 Z3

E7 Z2

E8 -
F4 -
G2 -

Table 3.2.1: Simple Lie algebras and the center of their universal covering groups.

coefficients in 1
kZ with respect to the Fi, the class Ξk corresponds to an element in the coweight

lattice Λ∨ which is finer (by order k) compared to the sublattice Λ∨0 = 〈Fi〉Z spanned by the Fi alone.

Therefore the fundamental group π1(G) ≈ Λ∨

Q∨ has a Zk component, compared to the first fundamental

group of G0 and thus we have a non-simply connected gauge group. The universal covering group G0

is simply connected and therefore the gauge group G×G′ in such an F-theory compactification with

Mordell-Weil torsion Zk has as first fundamental group

π1(G)× π1(G′) = Zk × π1(G′). (3.2.3)

By comparing what order the coroot sublattice is in the coweight lattice we see that Mordell-Weil

torsion affect the topology of the gauge group. By comparing the root and the weight lattices we will see

that the possible representations get restricted at the same time. Introducing the coweight Ξk refines

the coweight lattice. To preserve the integer pairing (3.2.1) the weight lattice Λ is forced to be coarser

compared to the weight lattice Λ0, which is the dual of Λ∨0 . The possible weights become a subset of

all weights that would be possible on the basis of the Lie algebra alone. In the F-theory fibration the

only realized fiber components which are identified with weights have integer pairing with the class of

Ξk. Considering the maximal weight lattice Λ0 there are many representations whose weight vectors

do not pair integrally with Ξk, and are therefore ’forbidden’. No matter representations are actively

removed from the spectrum, since they did not appear in the first place. Rather, by comparing to

more generic fibrations, without torsional sections one observe that certain representations, which are

otherwise present and expected, are not realized in the geometry.

The statement about a courser weight lattice can be coined in terms of the center ZG of the gauge

group G. The center ZG is the subgroup of G that commute with all elements in G. For a semi-simple

Lie group G the center is given by [75,76]

ZG ≈
Λ

Q
. (3.2.4)

where the root lattice Q ⊂ Λ. In Table 3.2.1 a list of the centers of the universal covering groups of

the simple Lie algebras is given. Geometrically Q is spanned by the fiber components associated with

the adjoint representation of G localised in codimension one. To have a reference point, let us again

consider the universal cover group G0 introduced above with center ZG0 . Since Mordell-Weil torsion

Zk renders Λ coarser by a factor of Zk compared to Λ0, the center of G is smaller by the same amount,

ZG = ZG0/Zk. (3.2.5)
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Importantly, this means that Zk be equal to, or a subgroup of the center of G0, which constrains the

possible gauge algebra g that can possibly be realized. By contrast, any extra spectator Lie algebra g′

whose generators do not enter Ξk is unconstrained. For example, if the Mordell-Weil torsion is Z2, then

a gauge algebra g = su(k) is possible only for k = 2n. We will see examples of this when constructing

explicit F-theory fibrations with torsion in the Mordell-Weil group. In particular in section 3.3.5 we

comment more on this general result. Accounting for the change of the center, the total gauge group

is given by

G0/Zk ×G′. (3.2.6)

This can be directly understood in terms of the construction of our coweight element Ξk in (3.1.3).

The exponential map lifts an element of g to the group G. The exponentiation of Ξk generates a Zk
subgroup of ZG0 . Since Ξk has integer pairing with every representation that is present (i.e. with

every lattice point in the weight lattice Λ, but not with all elements of Λ0), the corresponding center

element (viewed as an element of G0) acts trivially on every such representation. In effect the actual

gauge group is therefore not G0 ×G′, but G0/Zk ×G′.

Let’s analyze the lifting to the Lie group in a bit more detail. To construct an element in the

center of G0 one exponentiates a linear combination Ξ =
∑
miFi of Cartan generators Fi for some,

for now arbitrary, coefficients mi. We denote by ρd a d-dimensional representation of g. Any state

|λn, ρd〉 in the representation ρd is labeled by a weight λn in the weight system of ρd. Letting Ξ act

on such a state gives

Ξ · |λn, ρd〉 =
∑
i

miλ
n
i |λn, ρd〉, n = 1, . . . , d, i = 1, . . . , r, (3.2.7)

where λni is the eigenvalue of Fi on this state vector. An element c in the center ZG0 ∈ G0 commutes

with any element in G0 and can therefore be represented as a multiple of the d× d unit matrix when

acting on the state |λn, ρd〉, i.e

c|ρd · |λ
n, ρd〉 = an 1 · |λn, ρd〉 (3.2.8)

for an ∈ C. The matrix c is identified as the exponentiation of Ξ acting on ρd if

an = exp (2πi
∑

miλ
n
i ). (3.2.9)

Moreover, for c to lie in a Zk subgroup of the center of G0, ck acts as 1 on any representation ρd, or

equivalently (an)k = 1 for all n. Therefore, if we identify Ξ with the k-fractional linear combination

Ξk = − 1
k

∑
i aiFi, we see that this does indeed generate a Zk subgroup of ZG0 . Moreover, since Ξk

has integer pairing with all weights in the weight lattice Λ of the actual gauge group G, the element

c acts trivially on every such representation. We note here that all results of this section carries over

to the general case where the Mordell-Weil group has as torsion subgroup a sum Zk1 ⊕ . . . ⊕ Zkn of

finite groups.

3.3 Mordell-Weil group Z2

In the subsequent sections we exemplify the structure of F-theory compactifications on elliptic fibra-

tions with torsional Mordell-Weil group as outlined above. In [69] defining equations for elliptic

fibrations with Mordell-Weil group Zk for k = 2, 3, 4, 5, 6, Z2 ⊕ Zn with n = 2, 4 and Z3 ⊕ Z3 as hy-

persurfaces in P2,3,1[6] fibrations was derived. As it turns out, the restriction of the complex structure

moduli of the fibration necessary for the Mordell-Weil group to have torsion induces singularities in

the fiber over divisors on the base B. To explicitly analyse these singular loci and their resolution we
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focus in this work on the subset of geometries in the list of [69] which can be treated torically as certain

hypersurfaces. As noted already, there exist 16 reflexive polygons in two dimensions which describe an

elliptic curve as a hypersurface in a toric ambient space. Of these only three admit torsional sections

in the Mordell-Weil group as the intersection of a toric divisor with the generic hypersurface defined

by the dual polygon. The Mordell-Weil group of these fibrations has already been provided in [20].

As we will show, they correspond to the geometries with Mordell-Weil group Z2 and Z3 as well as a

further specialisation of the Z2-model in the list of [69]. For each of these three fibration types we

construct a compact model fibered over a generic base B and analyse in detail the interplay between

the torsional sections and the global structure of the gauge group. In addition we implement further

non-abelian gauge symmetries by the construction of toric tops [19].

3.3.1 An SU(2)/Z2-fibration

We begin with the simplest example, which is an elliptic fibration with torsional Mordell-Weil group

Z2.As derived in [69], an elliptic fibration with a Z2-torsional section admits a representation as the

hypersurface P = 0 with

P = −y2 − a1x y z + x3 + a2 x
2 z2 + a4 x z

4 (3.3.1)

and [x : y : z] fiber coordinates in a P2,3,1-fibration over some base B. To ensure that the variety P = 0

satisfies the Calabi-Yau condition the coefficients ai must be sections of K̄iB with K̄B the anti-canonical

bundle of the base B. Note that (3.3.1) corresponds to an otherwise generic Tate model with a6 ≡ 0

and a3 ≡ 0. It can therefore be viewed as a further specialisation of the U(1) restricted Tate model,

defined in [77] by setting a6 ≡ 0. The latter has Mordell-Weil group Z and in turn represents a special

case of the elliptic fibrations with Mordell-Weil group Z as described in [18].

Singularity structure and resolution

The elliptic fibration (3.3.1) is easily brought into Weierstrass form with

f = a4 −
1

3

(
a2 +

a2
1

4

)2

, g =
1

27

(
a2 +

a2
1

4

)(
2(a2 +

a2
1

4
)2 − 9a4

)
.

From f and g and the discriminant

∆ =
1

16
a2

4

(
4 a4 −

(
a2 + 1

4a
2
1

)2)
(3.3.2)

one infers an su(2)-singularity at a4 = 0. Indeed, the gradient of (3.3.1) in the patch z 6= 0,

dP = (−a1 y + 3x2 + 2 a2 x+ a4) dx− (2 y + a1 x) dy − xy dB a1 + x2 dB a2 + x dB a4 , (3.3.3)

with dB the total derivative with respect to the base coordinates, vanishes together with the hyper-

surface equation (3.3.1) for x = y = a4 = 0. The situation is similar to the U(1)-restricted model with

a6 ≡ 0 but a3 6= 0 [77], in which, however, the singularity appeared over the curve {a3 = 0}∩{a4 = 0}
on B. Since in (3.3.1) a3 is set to zero from the very beginning, the su(2) locus is promoted to the

divisor {a4 = 0}. We will come back to this enhancement of the u(1) gauge algebra of the U(1)

restricted Tate model to su(2) by setting a3 ≡ 0 in section 3.4.2.

To resolve the singularity we perform a blow-up in the fiber ambient space

x→ s x , y → s y . (3.3.4)
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Figure 3.1: Polygon 13 of [19] together with its dual polygon. The coordinate x is blown-down, and
not part of the fan.

Since a6 ≡ 0, this does not spoil the Calabi-Yau condition of the hypersurface as one can see from the

proper transform of (3.3.1) given by

P̂ = −y2 s− a1x y z s+ x3 s2 + a2 x
2 z2 s+ a4 x z

4 , (3.3.5)

which is checked to be smooth (see [31,77] for the analogous blow-up if a3 6= 0). In order to facilitate

the description of the Z2-torsional section it turns out useful to perform a further ambient space

blow-up

s→ t s , x→ t x , (3.3.6)

under which the proper transform of (3.3.5) becomes

P̂ = −y2 s− a1x y z s t+ x3 s2 t4 + a2 x
2 z2 s t2 + a4 x z

4. (3.3.7)

The Stanley-Reisner ideal after the two blow-ups id obtained from the fan in fig. 3.1 and is generated

by

SR-i : {y t, y x, s x, s z, t z} , (3.3.8)

We observe that the divisor X : {x = 0} does not intersect the hypersurface which will be crucial in

the following. For now it means that x can be set to one in (3.3.7) and we will analyse the fibration

P̂ = 0 with

P̂ = −y2 s− a1y z s t+ s2 t4 + a2 z
2 s t2 + a4 z

4 (3.3.9)

over a suitable base B. If B is 3-dimensional, this defines an elliptically fibered Calabi-Yau 4-fold Ŷ4.

The weight matrix of the homogeneous coordinates can be taken to be

y z s t
∑

2 1 0 1 4

1 1 2 0 4

(3.3.10)

and the Stanley-Reisner ideal simplifies to

{y t, s z} . (3.3.11)

Note that the weight matrix (3.3.10) coincides with the weight matrix as read off from the toric fan

depicted in Figure 3.1, which corresponds to polygon 13 in the list [19] of 16 torically embedded

hypersurface elliptic curves. The fibration (3.3.9) with s ≡ 1, corresponding to the blow-down of

the resolution divisor associated with the su(2) singularity over a4 = 0, has been analysed previously

in [78] and shown to correspond to an elliptic fibration with restricted SL(2,Z) monodromy. We will

analyze this relation in more detail in section 3.3.5.
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Figure 3.2: To the left we depict the factorised fiber over the base locus a4 = 0; the purple P1

indicates the s = 0 part while the grey P1 is the second irreducible part of the elliptic curve. To the
right the fiber over the base locus a4 = 1

4(a2 + 1
4a

2
1)2 is shown. The multiplicity is one, and the fiber

is singular. The blue and green crosses indicate the specified points z = 0 and the Z2-point t = 0 of
the elliptic curve, respectively.

The advantage of passing to the hypersurface representation (3.3.9) is that the Z2-torsional point

on the elliptic fiber is now explictly given by the intersection of the fiber with the toric divisor

T : t = 0. (3.3.12)

This can be checked via the group law on the elliptic curve. We will henceforth denote T as the Z2

section of the fibration. The holomorphic zero-section is given by Z : z = 0.

To study the geometry further we note that the fibration restricted to the su(2)-sublocus {a4 = 0}
in the discriminant (3.3.2) factorises as

P̂ |a4=0 = s
(
−y2 − a1 y z t+

(
s t4 + a2 z

2 t2
))
. (3.3.13)

The resolution divisor S : s = 0 is a P1-fibration over the locus {a4 = 0} on B as the coordinate s is

just a toric ambient space coordinate. The other irreducible component of (3.3.13) is quadratic in y

and must therefore be studied in more detail. Note first that this component does not intersect the

Z2 section T , but only the holomorphic zero-section Z. Since z and t cannot both vanish along it,

we can go to the patch where y and s can vanish simultaneously. Here the second factor of (3.3.13)

becomes

y2 + a1 y − (s+ a2) = 0 . (3.3.14)

The discriminant of this quadratic equation is a linear function in s so that we find one branching point

in the s-plane. Since the point at ‘s = ∞’ (z = 0) is also single valued, we can take the branch-cut

from s = −(1
4a

2
1 +a2) to infinity. Gluing the two P1s viewed as compactified complex planes along the

branch-cut, we obtain again a P1. The two irreducible parts of (3.3.13) intersect each other in two

points, as can be seen from (3.3.14). The factorised fiber over the base divisor {a4 = 0} is depicted

on the left in Figure 3.2. Over the zero set of the second factor of the discriminant (3.3.2),

4 a4 − (a2 + 1
4a

2
1)2 = 0 , (3.3.15)

we analyse the fiber structure by substituting (3.3.15) into (3.3.9). This gives the hypersurface equation

P̂ |(...=0) = −y2 s− a1 y z s t+ s2 t4 + a2 z
2 s t2 + 1

4(a2 + 1
4a

2
1)2 z4 .

To determine the fiber type, we can go to the patch where y and z are allowed to vanish simultaneously.

We set s = 1 since the divisor {s = 0} does not intersect the elliptic curve away from {a4 = 0} and
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complete the square as

y2 + a1 y z = 1 + a2 z
2 + 1

4(a2 + 1
4a

2
1)2 z4

⇒ (y +
1

2
a1 z)

2 = 1 + (a2 + 1
4a

2
1) z2 + 1

4(a2 + a2
1)2 z4

⇒ (y +
1

2
a1 z)

2 =
(
1 + 1

2(a2 + 1
4a

2
1) z2

)2
⇒
(
y +

1

2
a1 z − 1− 1

2(a2 + 1
4a

2
1) z2

)(
y +

1

2
a1 z + 1 + 1

2(a2 + 1
4a

2
1) z2

)
= 0 .

Therefore, it appears as if the elliptic curve factorises into two rational curves. However, these two P1s

are equivalent as follows from the second row of the weight matrix (3.3.10) because the equivalence

relation (y, z) ∼ (−y,−z) is left over after setting s to one3. Thus the fiber is just a single rational

curve; moreover, it has a singular point, cf. Figure 3.2, at y = −1
2a1z, s = −1

8(a2
1 + 4a2)z2 (and t = 1

due to the Stanley-Reisner ideal), where the gradient along the fiber coordinates vanishes even though

the fibration as such is non-singular. Thus the fiber is of Kodaira-type I1, and the locus (3.3.15) does

not give rise to any further gauge symmetry.

Interestingly, apart from the codimension-one splitting of the fiber over {a4 = 0} no further

degeneration of the fiber occurs in higher codimension. In particular, the fiber over the intersection

curve {a4 = 0}∩ {a2 + 1
4a

2
1 = 0} of the two components of the discriminant does not factorise further.

This can be understood by considering the vanishing of f and g along that locus: f vanishes to order

1, g vanishes to order 2 and the discriminant ∆ consequently to order 3, giving a Kodaira fiber of type

III. This type of fiber has two components just like the familiar A1-fiber, but they are tangent to each

other rather than meeting at two distinct points, and there is no enhancement or matter (consistent

with [79, 80]). This is remarkable because naively one might have expected an enhancement from A1

to A2 at the intersection of the A1-locus with the I1-component of the discriminant and thus localised

massless matter in the fundamental of su(2). The absence of this enhancement and the associated

fundamental representation is a typical property of fibrations with torsional Mordell-Weil group. To

summarize, the fibration (3.3.1) gives rise to an F-theory compactification with gauge algebra su(2)

and no localised charged matter.

Torsional divisors and free quotient

The absence of charged localized matter in the fundamental representation is a consequence of the

Z2 Mordell-Weil group and the resulting global structure of the gauge group. To see this let us first

exemplify how the torsional Mordell-Weil group of the elliptic fiber induces a torsional element in

H1,1(Ŷ4,Z) modulo the integer lattice spanned by the resolution divisors. In the present model with

gauge algebra g = su(2) the lattice of resolution divisors is simply 〈S〉Z. To find the element Σ2 of the

form (3.1.1) we make an Ansatz and demand that (2.1.26) be satisfied. In the present situation this

amounts to demanding that Σ2 have ‘one leg in the fiber’ and that it be orthogonal to the exceptional

divisor S, in the sense that for all ω4 ∈ H4(B) and ω2 ∈ H2(B)∫
Ŷ4

Σ2 ∧ Z ∧ π∗ω4 =

∫
Ŷ4

Σ2 ∧ π∗ω2 ∧ π∗ω4 =

∫
Ŷ4

Σ2 ∧ S ∧ π∗ω4 = 0. (3.3.16)

This uniquely determines

Σ2 = T − Z − K̄ +
1

2
S (3.3.17)

3This can also be seen from the N -lattice polygon of Figure 3.1 because y and z do not span the lattice. The patch
where y and z are allowed to vanish simultaneously is, therefore, C2/Z2 and not C2 as one would näıvely think.
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with K̄ = π−1K̄B . This element is in fact trivial in H2(Ŷ4,R). Indeed, recall that the fibration Ŷ4 is

described as the hypersurface (3.3.7) in an ambient toric space. Consider the toric divisor X : {x = 0}
in this ambient space. Its class is

X = 2Z − S − 2T + 2K̄ = −2Σ2. (3.3.18)

However, as discussed, X does not intersect the hypersurface Ŷ4 and therefore its class is trivial on

the hypersurface. Thus also Σ2 is trivial in H1,1(Ŷ4,R). This implies that

Ξ2 := T − Z − K̄ = −1

2
S, (3.3.19)

thereby identifying Ξ2 as 2-torsion in H1,1(Ŷ4,Z)/〈S〉Z.

According to the discussion in section 3.1, associated with Ξ2 is an extra coweight defined over 1
2Z.

Thus, to preserve the pairing with the weights, the weight lattice is forced to be coarser. In particular

the representation 2 of su(2) cannot be present in this model as its weight would have half-integer

pairing with the fractional coweight Ξ2 = −1
2S, in contradiction with the fact that T − Z − K̄ is

manifestly integer. This is the deeper reason behind the absence of a fundamental representation at

the intersection of the su(2)-divisor {a4 = 0} with the second discriminant component. The gauge

group of the model is thus

G = SU(2)/Z2 (3.3.20)

with π1(G) = Z2.

One can give an intuitive geometric explanation for the appearance of the 2-torsion element Ξ2

in H1,1(Ŷ4,Z)/〈S〉Z as follows: Restrict the elliptically fibered Calabi-Yau Ŷ4 over B given by the

hypersurface equation (3.3.7) to B\{a4 = 0}. As will be discussed momentarily, the resulting space

Ŷ ′4 is a free Z2 quotient,

Ŷ ′4 =
˜̂
Y ′4/Z2, (3.3.21)

with
˜̂
Y ′4 an elliptic fibration over B\{a4 = 0}. Correspondingly

π1(Ŷ ′4) ⊃ Z2, (3.3.22)

where additional discrete torsion pieces may arise if π1(B\{a4 = 0}) is non-trivial. Since the resolution

divisor S is fibered over {a4 = 0} this is in agreement with the appearance of a torsional element in

H1,1(Ŷ4,Z)/〈S〉Z.

The relation (3.3.21) can be seen as follows: Consider the fibration over a generic locus on the

base B where a4 6= 0. Since the resolution divisor s = 0 intersects the fiber only over {a4 = 0} we can

set s to one away from that locus. Then (3.3.9) becomes

y2 + a1y z t = t4 + a2z
2 t2 + a4 z

4 . (3.3.23)

This is a special P1,1,2[4] fibration with homogeneous coordinates [t : z : y], which in addition to the

equivalence relation (t, z, y) ∼ (λt, λz, λ2y) enjoys a further Z2 identification

t ∼ −t, y ∼ −y. (3.3.24)

In fact, the most generic P1,1,2[4] representation of an elliptic curve contains the nine terms

y2, t4, z4, z2t2, yzt; yt2, yz2, zt3, tz3. (3.3.25)
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Figure 3.3: On the lefthand side the only possible su(2)-top over polygon 13 of [19] is depicted. The
green color indicates the layer at height one, containing the nodes e0 and e1. On the righthand side
we give the dual top, bounded from below by the values zmin, shown next to the nodes.

Precisely the first five terms present in (3.3.23) are compatible with the Z2 identification (3.3.24). Note

that by a coordinate redefinition we can set a1 ≡ 0, thereby arriving at the special P1,1,2[4]-fibration

that goes by the name of the Légendre family. In any case, we can view (3.3.23) as the result of

starting with a P1,1,2[4] fibration described by the hypersurface equation

y2 + a1y z t = t4 + a2z
2 t2 + a4 z

4 + c1 y t
2 + c2 y z

2 + c3 z t
3 + c4 t z

3, (3.3.26)

enforcing the Z2 symmetry by setting ci ≡ 0 (we call the resulting space
˜̂
Y ′4) and then quotienting by

this Z2 symmetry. The fact that Ŷ ′4 is really the quotient of
˜̂
Y ′4 by (3.3.24) is automatically implemented

by the toric description because the dual polyhedron exclusively contains monomials invariant under

(3.3.24). Importantly, the Z2 acts freely as the fixed point sets {t = y = 0} and {z = y = 0} do not lie

on Ŷ ′4 due to the Stanely-Reisner ideal. Note that the role of this Z2 quotient symmetry was stressed

already in [78] albeit in a slightly different context.

This description makes the existence of discrete one-cycles on Ŷ ′4 manifest: Consider the locus

z = 0 on (3.3.23). On
˜̂
Y ′4 it is given by y = ±1, where we have used the scaling of P1,1,2 to set t = 1

since t and z cannot simultaneously vanish as a consequence of the Stanely-Reisner ideal. A path from

y = −1 to y = +1 on the double cover
˜̂
Y ′4 corresponds to a non-contractible closed loop on Ŷ ′4 . This

loop is torsional as going along it twice is contractible again.

The existence of a torsion one-cycle implies also a torsion six-cycle because in general

Torp(Y ) ' TorD−p−1(Y ) (3.3.27)

with D the real dimension of Y . This picture has relied on setting s = 1 and is thus really valid

away from the locus a4 = 0. Therefore all we can conclude is the existence of a 2-torsion element in

H1,1(Ŷ4,Z)/〈S〉Z.

3.3.2 An (SU(2)× SU(2))/Z2-fibration

The analysis so far has treated all coefficients ai appearing in (3.3.1) as maximally generic. We now

further restrict the coefficients ai defining the Z2-torsional fibration in its singular form (3.3.1) or its

resolution (3.3.9) such as to create additional non-abelian singularities in the fiber. A special class of

such restrictions corresponds to specializations ai → ai,jw
j with W : {w = 0} a base divisor and ai,j

generic. Since the fibration (3.3.1) is in global Tate form, the possible enhancements one can obtain

via such specialisations can be conveniently determined via Tate’s algorithm [79–81] as summarized

e.g. in table 2 of [81]. Another advantage of this class of enhancements is that the corresponding
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fibrations can be treated torically. Indeed, the possible enhancements of type ai → ai,jw
j with generic

ai,j which admit a crepant resolution are classified by the tops construction [71, 82], which provides

both the possible vanishing patterns ai,j (coinciding with Tate’s algorithm) and the toric resolution.

For a detailed account of how to read off the vanishing orders from the toric data of a top in the

present context we also refer to [83].

From the classification of tops by Bouchard and Skarke [19] for the 16 hypersurface elliptic fibra-

tions, we note that the only tops possible for the fiber (3.3.7) correspond to singularity type A2n+1 for

n ≥ 0, Cn and D2n+4 for n ≥ 1, B3 and E7. This is indeed in agreement with an analysis via Tate’s

algorithm as a consequence of a3 ≡ 0 and a6 ≡ 0. The associated gauge algebras have the property

that their universal cover groups have a center with a Z2-subgroup. Indeed, as we will exemplify

below, in all models of this type the Mordell-Weil torsion Z2 will be identified with this Z2-subgroup

of the center.

To verify this pattern explicitly we begin with an A1 top, corresponding to an affine su(2)-type

fiber over a divisor W : w = 0 on B. There is, in fact, only one possible A1 top over this polygon, see

Figure 3.3. The singular version of the associated fibration is obtained by replacing in (3.3.1) a4 by

a4,1w. The discriminant of this fibration,

∆ ∼ w2a2
4,1

(
(a2

1 − 4a2)2 − 64wa4,1

)
, (3.3.28)

reflects the gauge algebra su(2)⊕ su(2).

The toric resolution of this fibration is described by the hypersurface equation

P̂ = sy2 + a1styz − e1s
2t4 − a2st

2z2 − a4,1e0z
4 , (3.3.29)

corresponding to the reflexive pair in Figure 3.3 (again after scaling x to one, since X does not intersect

the hypersurface). For definiteness we choose a triangulation with Stanley-Reisner ideal

{sz, tz, ty, e0s, e1z}. (3.3.30)

The extra su(2)-fiber is found over W : {w = 0} with π∗w = e0e1. Indeed, over W the two fiber

components P1
0 and P1

1 are given by the intersection of the ambient divisors E0 : {e0 = 0} and

E1 : {e1 = 0} with the hypersurface equation and two generic divisors in the base,

P1
i = Ei ∩ P̂ |ei=0 ∩Da ∩Db, i = 0, 1. (3.3.31)

They intersect as the affine su(2) Dynkin diagram.

The discriminant also suggests three codimension-two enhancement loci, at W ∩ {a4,1 = 0}, W ∩
{a2

1 = 4a2} and {a4,1 = 0} ∩ {a2
1 = 4a2}. Splitting of fiber components only occurs over the first one4,

where P1
1 factors into the two components

P1
1s = E1 ∩ {s = 0} ∩ {a4,1 = 0} ∩Da ∩Db, (3.3.32)

P1
1A = E1 ∩ (y +

1

2
a1t± t

√
a2

1

4
− a2)(y +

1

2
a1t∓ t

√
a2

1

4
− a2) = 0} ∩ {a4,1 = 0} ∩Da ∩Db.

Note that the two factors in brackets appearing in P1
1A get exchanged when the sign of the square root

changes across a branch cut on B so that P1
1A really describes a single P1. The weight

P1
1A · (E1, S) = (−1, 1) (3.3.33)

4The other two loci are completely analogous to the curve {a4 = 0} ∩ {a21 = 4a2} analysed in the previous section,
where no splitting of the fiber was found despite an enhancement of the vanishing order of the discriminant.
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is in the weight system of the (2,2) of su(2) ⊕ su(2). This implies massless matter in the (2,2)

representation over W ∩ {a4,1 = 0}. Again, no fundamental matter (1,2) or (2,1) is found.

Our derivation of the extra coweight induced by the torsional section T : {t = 0} is only mildly

modified by the extra su(2) singularity compared to the previous section. The Shioda map Σ2 of T

takes the form

Σ2 = T − Z − K̄ +
1

2
(S + E1), (3.3.34)

which is trivial on the hypersurface since the divisor class

X = 2Z − S − 2T + 2K̄ − E1 (3.3.35)

does not intersect (3.3.29) due to the Stanley-Reisner ideal. The extra coweight is associated with the

class

Ξ2 ≡ T − Z − K̄ = −1

2
(S + E1), (3.3.36)

which is torsion in H1,1(Ŷ4,Z)/〈S,E1〉Z and manifestly integral on the split curves over W ∩ {a4,1 =

0}. This explains why the bifundamental representation is indeed present, whereas fundamental

representations of the form (1,2) or (2,1), which for group theoretic reasons would have fractional

pairing with the coweight Ξ2, are not possible.

This refinement of the coweight lattice makes the gauge group non-simply connected and the gauge

group is

G =
SU(2)× SU(2)

Z2
. (3.3.37)

An example of this type was also given in [84].
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Figure 3.4: The lefthand side shows an su(4)-top over polygon 13 of [19]. The green layer contains
the points at height one. On the righthand side we depict the dual top, bounded from below by the
values zmin, shown next to the nodes.

3.3.3 An (SU(4)× SU(2))/Z2-fibration

In this section we consider the next example in the A-series [19], corresponding to an affine su(4)-type

fiber. This construction yields the unique top of Figure 3.4 associated with the hypersurface equation

P̂ = −y2 s e1 − a1 y z s t+ s2 t4 e2
2 e3 + a2,1 z

2 s t2 e0 e2 e3 + a4,2 z
4 e2

0 e3 . (3.3.38)

The pullback of the projection of the fibration obeys e0e1e2e3 = π∗w, defining an affine su(4) fiber over

W : {w = 0} in the base. From one of the 16 triangulations of this top we obtain the Stanley-Reisner

ideal

SR-i : {y t, y e0, y e2, y e3, s z, s e0, s e2, s e3, z e2, z e3, e0 e2, t z e1, t e0 e1, t e1 e3} . (3.3.39)
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The three exceptional divisors e1, e2, e3 and the part of the original fiber e0 are all fibered over {w = 0}
with fiber components

P1
i = {Ei} ∩ {P̂ |ei=0 = 0} ∩Da ∩Db i = 0, . . . , 3. (3.3.40)

The explicit equations are provided in appendix A.1. The irreducible fiber components intersect like

the nodes of the affine Dynkin diagram of su(4) type. This is also seen in Figure 3.4, where the upper

layer reproduces this structure by construction. To analyze the localised charged matter we infer from

the discriminant of (3.3.38),

∆ = 16w4 a2
4,2

((
4w a2,1 + a2

1

)
2 − 64w2 a4,2

)
, (3.3.41)

the codimension-two enhancement loci5

{w = a4,2 = 0} and {w = a1 = 0} . (3.3.42)

The factorization properties of the fiber components (see appendix A.1) identify the split curves in the

fiber. At {w = a4,2 = 0} the component P1
1 splits into three components, whose intersection numbers

with the exceptional divisors from the su(4) and su(2) singularities are

P1
e1=s=0 · (E1, E2, E3) = (0, 0, 0) , P1

e1=s=0 · (S) = (−2) ,

P1
e1=t=0 · (E1, E2, E3) = (−1, 1, 0) , P1

e1=t=0 · (S) = (1) ,

P1
e1=R1=0 · (E1, E2, E3) = (−1, 0, 0) , P1

e1=R1=0 · (S) = (1) ,

(3.3.43)

respectively. The (−1, 1, 0) and (−1, 0, 0) are weights in the fundamental of su(4) and from the right

column we find the weights of the fundamental representation of su(2) (which is the same as the

anti-fundamental). Indeed the full weight system is reproduced by taking linear combinations of fibral

curves. Hence the charged matter at this locus transforms in representation (4,2) of su(4)⊕ su(2).

Over {w = a1 = 0} the relevant intersections are

P1
e1=e3=0 · (E1, E2, E3) = (0, 1,−2) , P1

e1=e3=0 · (S) = (0) ,

P1
e1=R21=0 · (E1, E2, E3) = (−1, 0, 1) , P1

e1=R21=0 · (S) = (0) ,

P1
e1=R22=0 · (E1, E2, E3) = (−1, 0, 1) , P1

e1=R22=0 · (S) = (0) ,

(3.3.44)

where (−1, 0, 1) is one of the weights in the 6-representation of su(4). States originating from these

curves are uncharged under su(2). This is as expected since this locus is away from the su(2) divisor

{a4,2 = 0}. The following table summarizes the matter spectrum:

Top over polygon 13: su(4)× su(2)

Locus Charged matter
w ∩ a4,2 (4,2)
w ∩ a1 (6,1)

. (3.3.45)

Again we stress the absence of fundamental representations. The Shioda-type Ansatz for the toric

divisor class T yields

Σ2 = T − Z − K̄ +
1

2
(S + E1 + 2E2 + E3) , (3.3.46)

which for the same reasons as before turns out to be trivial in H1,1(Y4,R). The coweight element

Ξ2 = T − Z − K̄ = −1

2
(S + E1 + 2E2 + E3), (3.3.47)

5All other enhancement loci as read off from the discriminant do not correspond to an extra fiber splitting.
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Figure 3.5: The lefthand side shows the unique B3-top over polygon 13 of [19]. The green layer
contains the points at height one and the node labelled e2 is at height two. On the right side we depict
the dual top, bounded from below by the values zmin, shown next to the nodes.

which is 2-torsion in H1,1(Ŷ4,Z)/〈S,E1, E2, E3〉Z, forces the weight lattice to be coarser in order to

preserve the integer pairing of coweights and weights. Indeed, the intersection of Ξ2 with all split

curves corresponding to weights of the matter representations is integer, and representations such as

(4, 1) or (1,2) which would violate this integral pairing are absent. This identifies the global gauge

group as

G =
SU(4)× SU(2)

Z2
. (3.3.48)

3.3.4 A (Spin(7)× SU(2))/Z2-fibration

Keeping the same ambient fiber space as in previous section, we now consider a top corresponding to

the non-simply laced Lie algebra B3. The top is constructed uniquely from the classification [19] and

the corresponding hypersurface equation is

P̂ = e2
1s

2t4 + e3sy
2 + a1e0e1e2e3styz + a2e0e1st

2z2 + a4e
2
0z

4 . (3.3.49)

Having a node at z = 2 in the top defines the divisor W = {w = 0} in the base with π∗w = e0e1e
2
2e3

and gives multiplicity 2 to the corresponding curve P1
2 in the fiber over W . The occurrence of the

multiplicity of the node in the projection to the base is crucial to make W scale under the scaling

relations coming from the z ≥ 1 layers of the top. The affine B3 Dynkin diagram is read off along the

edges at z ≥ 1 of the top in Figure 3.5. The non-simply laced structure of this algebra is reflected in

the fact that the intersection of the ambient divisor E3 with the hypersurface

E3 ∩ P̂ |e3=0 ∩Da ∩Db, Da,b ⊂ B (3.3.50)

gives rise to two curves. These are described by the factorization

{e3 = 0} ∩ {s2 + a2e0s+ a4e
2
0 = 0} ⇔

{e3 = 0} ∩ {(s+
1

2
a2e0 ± e0

√
a2

2

4
− a4)(s+

1

2
a2e0 ∓ e0

√
a2

2

4
− a4) = 0} .

(3.3.51)

The two factors on the righthand side give rise to the curves P1
3± and they get exchanged when the

signs of the square roots shift upon travelling along W in the base. As a check, the negative of the

Cartan matrix Cij of B3 is reproduced as the intersection numbers

Ei · (P1
0,P1

1,P1
2,P1

3±)j = −Cij . (3.3.52)
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By analyzing the codimension-two loci, we find only one curve in B over which the fiber degenerates

further. This happens over W ∩{a4 = 0} and by calculating the charges of the split fiber components

weights in the weight system of the (8,2) of so(7)⊕su(2) are found, where 8 is the spinor representation.

By using that the toric divisor X does not restrict to the hypersurface the Shioda map of the torsional

section gives a class

Ξ2 ≡ T − Z − K̄ = −1

2
(S + 2E1 + 2E2 + E3) (3.3.53)

with integer intersection with all fiber components over the matter curve. Consistently with the

appearance of the representation (8,2) of so(7)⊕ su(2) the gauge group is

G =
Spin(7)× SU(2)

Z2
, (3.3.54)

where the Z2 is the common center of Spin(7) and SU(2) and π1(G) = Z2. Even though not realized in

this geometry, all representations (8,Re) for Re an even-dimensional representation of SU(2) would

also be allowed, and also the representations (7,Ro) for Ro an odd-dimensional representation of

SU(2).

3.3.5 Generalisation to Sp(n)/Z2, SU(2n)/Z2, Spin(4n)/Z2, Type IIB limit and re-
stricted monodromies

The toric enhancements described in the previous sections involved the specialization a4 → a4,nw
n for

W : {w = 0} some divisor different from the A1-locus {a4 = 0}. Clearly one can also identify w with

a4, thereby producing a single gauge group factor. According to the general discussion, this single

group factor will be strongly constrained by the requirement that the universal cover gauge group G0

contain a Z2-subgroup in its center.

Indeed, if K̄4/n
B exists as a line bundle with non-trivial sections, we can simply factorise

a4 = (ã4)n (3.3.55)

with ã4 ∈ H0(B, K̄4/n
B ). Since the analysis of the singular geometry and its resolution has been

exemplified in detail in the previous sections, we content ourselves with determining the resulting

gauge groups by application of Tate’s algorithm [79,81] without explicitly constructing the resolution.

For generic a2, Tate’s algorithm in the form of table 2 of [81] indicates that the fiber over ã4 = 0 is

of Kodaira type Ins2n , with the superscript denoting the non-split type. The associated gauge algebra

is the rank n Lie algebra sp(n) (with the convention that sp(1) ' su(2)). This identifies the gauge

group as

G =
Sp(n)

Z2
. (3.3.56)

As described in subsection 3.3.1, if n = 1 the global structure of G makes extra massless representations

along the curve {ã4 = 0} ∩ {1
4a

2
1 + a2 = 0} impossible; this is no longer true for n ≥ 2. Indeed, in this

case Tate’s algorithm predicts, as described in detail in [80], for the fiber type over this curve Kodaira

type I∗s2n−4 (with the superscript standing for split type), corresponding to gauge algebra so(4n). From

the branching rule of the adjoint of SO(4n) along SO(4n) → SU(2n) × U(1) → Sp(n) × U(1) one

deduces matter in the 2-index antisymmetric representation of Sp(n) of dimension 2n2 − n− 1 along

{ã4 = 0}∩ {1
4a

2
1 + a2 = 0} (see in particular Table 9 of [80]). This is compatible with the gauge group

G = Sp(n)/Z2.
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Next, one can engineer a gauge algebra su(2n) by factoring a4 = (ã4)n and in addition restricting

a2 = a2,1ã4 for suitable a2,1 ∈ H0(B, K̄2−4/n
B ) (if existent). In this case the gauge group is

G =
SU(2n)

Z2
, n ≥ 2. (3.3.57)

Note that the Mordell-Weil torsion group Z2 appears here as a proper subgroup of the center Z2n

of the universal cover G0 = SU(2n). The same argument as above predicts massless matter in the

antisymmetric representation of SU(2n) localised on the curve {ã4 = 0} ∩ {a1 = 0}. The appearance

of this matter distinguishes G = SU(2n)/Z2 as realized here from SU(2n)/Z2n. The possibility that

the Mordell-Weil torsion appears as a proper subgroup of the center of the universal cover G0 had

previously been noted in eight-dimensional F-theory compactifications on K3 in [69,85].

The only remaining chain of enhancements of this type which is possible according to Tate’s

algorithm leads to gauge algebra so(4n) with n ≥ 4 and corresponds to a4 = (ã4)n, a2 = a2,1ã4

and a1 = a1,1ã4. The restriction to n ≥ 4 comes about as a necessary condition for a section a1 ∈
H0(B, K̄1−4/n

B ) to exist. According to the analysis in [80] we expect matter in the vector representation

along the curve {ã4 = 0} ∩ {a2,1 = 0}. Note that the universal cover group G0 = Spin(4n) has center

Z2 × Z2. The appearance of the vector representation (but not the spinor) is in perfect agreement

with the gauge group being

G =
Spin(4n)

Z2
= SO(4n), n ≥ 4. (3.3.58)

The observed pattern has a natural interpretation in the weak coupling Type IIB orientifold limit.

This Sen limit [36] is realized as the limit ε → 0 after rescaling a3 → ε a3, a4 → ε a4, a6 → ε2 a6 [86].

The discriminant locus can be brought into the form

∆ ' ε2h2(η2 − hχ) +O(ε3), (3.3.59)

and the Type IIB Calabi-Yau

XIIB : ξ2 = h (3.3.60)

is a double cover of the F-theory base B branched over the orientifold plane localised at h = 0. The

orientifold action on XIIB acts as ξ → −ξ. The locus η2−hχ = 0 on B and its uplift to the Calabi-Yau

double cover XIIB represents the D7-brane locus. In the configuration at hand, due to the restriction

a3 ≡ 0 and a6 ≡ 0, one finds

h = − 1

12
(a2

1 + 4a2), χ = 0, η = a4 = (ã4)n. (3.3.61)

For generic a2 the D7-brane system is given by a stack of D7-branes on the uplift of the divisor

{a4 = 0} to the double cover XIIB; since this locus is invariant under the orientifold projection, the

D7-brane stack supports gauge algebra sp(n). The antisymmetric matter appears at the intersection

with the O7-plane at h = 0. If a2 = a2,1ã4, then the analysis of [87] shows that the D7-branes wrap a

divisor on the Calabi-Yau double cover which is not mapped to itself under the orientifold action. Its

corresponding non-abelian gauge algebra is therefore indeed su(n) with antisymmetric matter at the

intersection of the D7-brane stack with its image on top of the O7-plane. For completeness, note that

the further specialization a1 = a1,1ã4, corresponding to the Spin(4n)/Z2 series in F-theory, has an

ill-defined weak-coupling limit with two O7-planes intersecting over a curve of conifold singularities.

Apart from reproducing the F-theory predictions, this weak coupling analysis exemplifies how the

global structure of the gauge group in the Type IIB limit can be understood from the specific D7-brane
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configuration and the absence (or presence) of certain matter representations. In the situation under

consideration, what changes the gauge group from Sp(n) or SU(2n) to Sp(n)/Z2 and SU(2n)/Z2 is

that in the discriminant (3.3.59) no extra single D7-brane arises in addition to the non-abelian brane

stack at {ã4 = 0}; if present the intersection curve of such a brane with the D7-brane stack would lead

to matter in the fundamental representation of Sp(n) or SU(2n) and thus change the global structure

of the gauge group.

Finally, let us point out that the elliptic fibration (3.3.9) with s ≡ 1, i.e. the singular model

corresponding to the blow-down of the A1-fiber at {a4 = 0}, was considered in [78] from a related,

but slightly different perspective: In this work it was shown that this class of elliptic fibrations does

not exhaust the full SL(2,Z) monodromy group, but only the subgroup Γ0(2) ⊂ SL(2,Z).6 In fact,

restricted Γ0(k)-monodromy is a consequence of the existence of an order k point on the elliptic

fiber [78], which, in the language of our analysis, is equivalent to Mordell-Weil k-torsion. There are

a number of geometric consequences of this [17]. For example, the modular curve h/Γ0(2) has two

“cusp” points at which j =∞, corresponding to the two irreducible factors a4 and
(
4a4 − (a2 + 1

4a
2
1)2
)

of the discriminant (3.3.2). As we have seen in examples, it is the factor a4 which vanishes when the

corresponding gauge group factor is related to Z2 torsion. By contrast, one can in principle also

engineer additional gauge group factors by factorising
(
4a4 − (a2 + 1

4a
2
1)2
)

without factorising a4 as

such. Such non-toric enhancements would lead to what we called the ’spectator’ gauge group G′ in

section 3.2 and which is unconstrained by the Z2 torsion. Indeed, while all gauge algebras that can

be engineered torically are easily checked to lead to Kodaira monodromies contained in Γ0(2), this set

does not exhaust the list of Γ0(2)-compatible singularities (e.g. it misses A2k - see appendix B of [78]).

Such algebras would have to come from a non-toric enhancement involving the second factor of the

discriminant. We will see an example of an abelian spectator group G′ = U(1) in the next section.

3.4 Mordell-Weil group Z⊕ Z2

3.4.1 An (SU(2)× SU(2))/Z2 × U(1) fibration

The generic elliptic fibration with Z2-torsional Mordell-Weil group admits an interesting specialization

such as to enhance the Mordell-Weil group to Z2 ⊕ Z. As it turns out the generator of the free part

of the Mordell-Weil group can be described again very conveniently as a toric section.

In fact, the specialization we have in mind gives rise to the second of the three elliptic fibrations

realized as hypersurfaces in a toric ambient space with Mordell-Weil torsion [20]. The fiber is defined

by the reflexive pair in Figure 3.6, which corresponds to polygon 15 and its dual in the classification

of [19]. The associated elliptic curve is the vanishing locus of a biquadric in a blow-up of P1 × P1.

The hypersurface equation defined via the dual polygon is

P̂ = cd2v2w2 + c2du2v2 + γ1cduvwz + γ2dw
2z2 + δ2cu

2z2, (3.4.1)

where we have set the coefficients of the first two terms to one since they are sections of the trivial

bundle over the base7. The coefficients γi and δi are sections of K̄i. A choice for the scaling relations

6Recall that Γ0(k) is defined as the subgroup of SL(2,Z)-matrices

(
a b
c d

)
with c ≡ 0 mod k.

7If we had chosen a fibration such that these two coefficients are sections of non-trivial bundles, z = 0 would not be
a holomorphic section but a birational one.
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Figure 3.6: Polygon 15 of [19] together with its dual polygon.

of the fiber coordinates is
u v w z c d

∑
1 0 1 0 0 0 2

0 1 0 1 0 0 2

0 0 0 1 1 1 3

0 0 1 1 2 0 4

, (3.4.2)

which is consistent with the degree of homogeneity of (3.4.1). The Stanley-Reisner ideal of the toric

ambient space of the fiber takes the form {uv, uw, ud, vz, zc, zd, wc, cd, vw}.

The biquadric (3.4.1) can be brought into Weierstrass form, where it can be compared with the

Weierstrass model associated with the fibration (3.3.1) analysed in the previous section. This identifies

a1 = γ1 , a2 = −(γ2 + δ2) , a4 = γ2δ2 , (3.4.3)

where ai are the coefficients of the generic Z2-torsion fibration (3.3.1). As we will show, the result of

this specialization of a2 and a4 is the enhancement of the Mordell-Weil group from Z2 to Z2 ⊕ Z (as

computed previously in [20]) and the appearance of an extra su(2) factor.

To analyse the non-abelian sector, we first note that the discriminant of equation (3.4.1) takes the

form

∆ ∼ γ2
2δ

2
2 [γ4

1 − 8γ2
1(γ2 + δ2) + 16(γ2 − δ2)2]. (3.4.4)

Together with the Weierstrass functions f and g of the associated Weierstrass model this suggests an

A1 singularity at {γ2 = 0} and {δ2 = 0} respectively. Indeed, the hypersurface equation factorises

over these loci as

{γ2 = 0} : c
(
cdu2v2 + d2v2w2 + γ1duvwz + δ2u

2z2
)
,

{δ2 = 0} : d
(
cdv2w2 + c2u2v2 + γ1cuvwz + γ2w

2z2
)
,

(3.4.5)

and we identify the irreducible components P1
c and P1

d as the restriction to the fiber of the resolution

divisors C : {c = 0} and D : {d = 0} of these singularities.

On general grounds [20,21], the intersection of the toric divisors U : {u = 0}, V : {v = 0}, W : {w = 0},
Z : {z = 0} with the hypersurface give rise to sections of the fibration, not all of which are independent.

Since Z : {z = 0} is a holomorphic section we choose it as the zero-section. Then, the Mordell-Weil

group is generated by differences of sections U − Z, V − Z, W − Z, which are not all independent.

Let us first consider the Shioda map for the section U : {u = 0}. Requiring, as usual, one leg in the

fiber as well as orthogonality with the exceptional divisors gives

WU = 2(U − Z − K̄) + C , (3.4.6)
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which is unique up to an overall normalization, here chosen such as to arrive at integer charges below.

We take this non-trivial element WU as the generator of the free part of the Mordell-Weil group, and

physically identify it with the generator of the associated, suitably normalized U(1) part of the gauge

group.

On the other hand, the intersection of the section V : {v = 0} with the elliptic curve describes a

2-torsion point, as noted already in [20]. The Shioda map for V : {v = 0} yields the element

Σ2 = V − Z − K̄ +
1

2
(C +D) . (3.4.7)

However, V is not an independent toric divisor class, but may be expressed as

V = Z + K̄ − 1

2
(C +D), (3.4.8)

which makes Σ2 a trivial class. Since the model we consider here is a restriction of the model with

just a Z2 section we have the analogous situation that Σ2 is given by a divisor in the ambient space

which restricts to a trivial class on the hypersurface. The integer class

Ξ2 ≡ V − Z − K̄ =
1

2
(C +D) (3.4.9)

is 2-torsion in H1,1(Ŷ4,Z) modulo resolution classes and to be identified with a coweight element

momentarily.

Having established the gauge algebra su(2)⊕ su(2)⊕u(1) we turn to the matter representations in

codimension 2. From the discriminant (3.4.4) the three potential enhancement loci which could host

matter charged under the non-abelian gauge groups are identified as

{γ2 = δ2 = 0}, {γ1 = γ2 = 0}, {γ1 = δ2 = 0} . (3.4.10)

At the loci {γ1 = γ2 = 0} and {γ1 = δ2 = 0}, which would naively give rise to fundamental matter,

the equation does not factorize further, and hence no extra matter is found there. But at the locus

{γ2 = δ2 = 0} the equation factorizes as

cdv (cu2v + dvw2 + γ1uwz)︸ ︷︷ ︸
R

, (3.4.11)

where the curves P1
c , P1

d, P1
v and the last component P1

R intersect as the affine A3 Dynkin diagram.

We calculate the charges of the split component P1
v=0 as

P1
v=0 · (C,D) = (1, 1), (3.4.12)

giving the highest weights of the bifundamental (2,2). By acting on this with the respective roots the

entire (2,2) is reproduced. With the normalization (3.4.6) the U(1) charge of this state is

WU · P1
v=0 = 1. (3.4.13)

Extra massless matter is localized at the singlet curve {γ2 = δ2} ∩ {γ1 = 0}. This is an I2 locus over

which the hypersurface equation factorizes as

(cu2 + dw2)(cdv2 + δ2z
2), (3.4.14)

and we denote the fiber components by P1
− and P1

+ respectively. These have zero intersection with

the Cartan divisors C,D (and are thus invariant also under the center of the gauge group) and their

U(1)-charges are computed as

WU · P1
± = ±2. (3.4.15)
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Hence we find a representation (1,1)±2 with respect to su(2)C ⊕ su(2)D ⊕ U(1).

At the intersection points γ1 = γ2 = δ2 = 0 of the two matter curves the fiber type changes to form

a non-affine Dynkin diagram of D4. This is because the component (cu2v + dvw2 + γ1uwz)R in the

fiber over the curve {γ2 = δ2 = 0} splits off a factor of v as γ1 = 0, corresponding to a factorisation

c d v2 (cu2 + dw2). (3.4.16)

At those points a Yukawa coupling (2,2)1 (2,2)1 (1,1)−2 is localised.

As is manifest, the divisor Ξ2 has integer pairing with all split curves associated with the rep-

resentations (2,2)1 and (1,1)±2 and is therefore identified with a coweight. With coefficients in 1
2Z

the coweight lattice is made finer by this extra coweight, and only weights in representations integer

paired with Ξ2 are allowed. Again this is the reason for the absence of for example a fundamental

representation at the loci {γ1 = γ2 = 0} and {γ1 = δ2 = 0}. Note that the expression for Σ2 does

not include a term proportional to the U(1)-generator WU , but only the generators C and D of the

su(2)C ⊕ su(2)D Cartan U(1)s. In particular, integrality of the pairing of Ξ2 does therefore not con-

strain the allowed U(1) charges, but only the non-abelian part of the representation. We conclude

that the gauge group is

G =
SU(2)C × SU(2)D

Z2
× U(1), (3.4.17)

whose first fundamental group π1(G) = Z⊕ Z2 coincides with the Mordell-Weil group as expected.

3.4.2 A chain of fibrations via Higgsing

The elliptic fibrations described in sections 3.3.1, 3.3.2 and 3.4.1 can be viewed as a successive spe-

cialization of a Tate model

P = y2 − x3 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6, (3.4.18)

which for generic ai ∈ H0(B, K̄i) has trivial Mordell-Weil and gauge group. If a6 ≡ 0, the fibration

corresponds to a U(1) restricted Tate model [77] with Mordell-Weil group Z, gauge group G = U(1)

and a massless singlet 1±1 localized at the curve {a3 = 0}∩{a4 = 0}. The extra section degenerates to

a P1 over this matter curve [59,77,87]. From this, one reaches the fibration (3.3.1) with Mordell-Weil

group Z2 and G = SU(2)/Z2 by setting in addition a3 ≡ 0. This promotes the U(1) generator of

the U(1) restricted model to the su(2) Cartan generator, which is P1 fibered over the su(2)-divisor

{a4 = 0}. Since the U(1) restricted model has only one type of charged singlet, which becomes part

of the su(2) adjoint multiplet, the specialization to a3 ≡ 0 does not give rise to any extra matter

states. This way the gauge group G = SU(2)/Z2 could in fact have been anticipated even without

any knowledge of the torsional Mordell-Weil group. The reverse process corresponds to the Higgsing

of G = SU(2)/Z2 to U(1) via a Higgs in the adjoint of SU(2), more precisely the component with

zero Cartan charge.

A further factorisation a4 = a4,1w enhances, as described, the gauge group to G = (SU(2) ×
SU(2))/Z2 (cf. 3.3.29) without changing the Mordell-Weil group. Finally, if w ∈ H0(B, K̄2), special-

ising in addition to a2 = −(w+ a4,1) enhances the Mordell-Weil group to Z2⊕Z and the gauge group

to G = (SU(2) × SU(2))/Z2 × U(1) - see (3.4.3) with γ2 = a4,1 and δ2 = w. The reversed chain of

Higgsing thus relates all these fibrations as

SU(2)× SU(2)

Z2
× U(1)→ SU(2)× SU(2)

Z2
→ SU(2)

Z2
→ U(1) → ∅. (3.4.19)
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Figure 3.7: To the left a su(4) top over polygon 15 of [19]. The green layer contains the points at
height one. To the right the dual top, bounded from below by the values zmin shown next to the
nodes.

Note that the fibration (3.3.29) with G = (SU(2)×SU(2))/Z2 can be shown to coincide with a model

that was recently considered in [84]. In this paper, a different chain of Higgsing was considered which

takes the form
SU(2)× SU(2)

Z2
→ SU(2) → U(1) → Z2. (3.4.20)

The chain (3.4.19) is a specialization of the deformations involved in (3.4.20). In particular, the

fibration with Mordell-Weil group Z and G = U(1) reached in (3.4.20) is described as a special P1,1,2[4]-

fibration [18] and can in general not be represented as a global Tate model. However, a specialization

of this family of fibrations corresponds to the U(1) restricted Tate model appearing in (3.4.19). The

endpoint of the Higgsing process (3.4.20) with gauge group Z2 is a genus-one fibration [29] which is

not an elliptic fibration. The absence of a Z2 remnant in the last step in our chain (3.4.19) can be

viewed as a consequence of the division by the Z2 center in the G = SU(2)/Z2 model.

3.4.3 An (SU(4)× SU(2)× SU(2))/Z2 × U(1) fibration

We now exemplify the implementation of a further non-abelian singularity by constructing a top.

According to the classification in [19] the only A-type singularities admissible over this polygon are

A3+2n, in agreement with Tate’s algorithm. We consider here the A3 = su(4) case, with a unique top

corresponding to the dual on the righthand side in Figure 3.7. The hypersurface equation is given by

P̂ = e2e3c
2du2v2 + e1e2cd

2v2w2 + γ1cduvwz + γ2e0e1dw
2z2 + δ2e0e3cu

2z2 (3.4.21)

with discriminant

∆ ∼ $4γ2
2δ

2
2

[
γ4

1 − 8$γ2
1(δ2 + γ2) + 16$2(γ2 − δ2)2

]
(3.4.22)

for π∗$ = e0e1e2e3. We see that imposing the factorization

γ1 → γ1, γ2 → $γ2, δ2 → $δ2 (3.4.23)

on the coefficients of (3.4.1) gives the same behaviour as the top construction. This pattern is just

the standard factorisation deduced by the Tate algorithm. For the chosen triangulation of this top we

obtain a Stanley-Reisner ideal generated by

{uv, uw, ud, vz, zc, zd, wc, cd, vw,
ce0, de0, ve0, ce1, ue1, ze1, de2, we2, ze2, ce3, de3, ve3, we3, ze3, e1e3, ue0e2}.
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In addition to the A1 singularities, with resolution divisors C and D, we have a fiber degeneration

over {$ = 0} with irreducible components

P1
i = {Ei} ∩ {P̂ |ei=0 = 0} ∩Da ∩Db i = 0, . . . , 3, (3.4.24)

where Da and Db are some generic divisors in B. These are intersecting as the affine su(4) Dynkin

diagram, as can be read off from the top in Figure 3.7. For the explicit expressions we refer to appendix

A.2. The U(1)-generator from the previous section gets corrected by the exceptional divisors from the

extra su(4) locus and takes the form

WU = 4(U − Z − K̄) + 2C + E1 + 2E2 + 3E3 . (3.4.25)

The normalization is chosen such as to give integer charges of all matter states. In the same way we

get additional contributions to the Shioda map Σ2 of the torsion section, which is a trivial class since

V can be written as the linear combination

V = Z + K̄ − 1

2
(C +D + E1 + 2E2 + E3) . (3.4.26)

We identify with the new coweight the integer class

Ξ2 ≡ V − Z − K̄ =
1

2
(C +D + E1 + 2E2 + E3), (3.4.27)

which is 2-torsion in H1,1(Ŷ4,Z) modulo resolution classes. Repeating the analysis of the previous

section we find that the extra coweight class Ξ2 is independent of the U(1)-generator.

In what follows we compute the additional charged matter representations localized at codimension-

two loci in the base, i.e. the matter curves that lie in the su(4) divisor {$ = 0}. The full equations

are omitted here and are found appendix A.2. By inspection of the discriminant (3.4.22) the potential

enhancement loci are

{$ = γ1 = 0}, {$ = γ2 = 0}, {$ = δ2 = 0} , (3.4.28)

in addition to the curves considered in the previous section. At {$ = γ1 = 0} the fiber components

P1
0 and P1

2 split and the total fiber has the intersection structure of the affine D4 Dynkin diagram.

The weights of the split curves are

P1
e0=e2=0 · (E1, E2, E3) = (1,−1, 1) , P1

e0=e2=0 · (C,D) = (0, 0) ,

P1
e0=e3u2+e1w2=0 · (E1, E2, E3) = (0, 1, 0) , P1

e0=e3u2+e1w2=0 · (C,D) = (0, 0) ,

P1
e2=γ2e1+δ2e3cu2=0, · (E1, E2, E3) = (0,−1, 0) , P1

e2=γ2e1+δ2e3cu2=0 · (C,D) = (0, 0) .

(3.4.29)

The (0, 1, 0) is the highest weight of the 6 of su(4). Including the U(1) charges we therefore find the

representation (6,1,1)2 + c.c..

At {$ = γ2 = 0} the curve P1
2 splits into three components and the full fiber has the structure

of an affine A5 Dynkin diagram. We expect to find matter charged under the su(4) and the su(2)C
factors along this curve in the base. Indeed the split curves have charges

P1
e2=c=0 · (E1, E2, E3) = (0, 0, 0) , P1

e2=c=0 · (C,D) = (−2, 0) ,

P1
e2=u=0 · (E1, E2, E3) = (0,−1, 1) , P1

e2=u=0 · (C,D) = (1, 0) ,

P1
e2=γ1v+δ2e0e3u=0 · (E1, E2, E3) = (1,−1, 0) , P1

e2=γ1v+δ2e0e3u=0 · (C,D) = (1, 0) ,

(3.4.30)

where the (0,−1, 1) and the (1,−1, 0) are weights in the fundamentals 4 and 4̄ respectively. Including

the U(1) charges we have the (4,2,1)1 + c.c. along this matter curve.
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Along $ = δ2 = 0 the configuration is completely analogous to that along $ = γ2 = 0 and gives

rise to massless matter in representation (4,1,2)1 + c.c.. The massless matter spectrum is summar-

ized in the following table:

Top over polygon 15: su(4)× su(2)C × su(2)D × U(1)

Locus Charged matter
γ1 ∩ {γ2 = δ2} (1,1,1)4 , (1,1,1)−4

γ2 ∩ δ2 (1,2,2)2 , (1,2,2)−2

$ ∩ γ1 (6,1,1)2 , (6,1,1)−2

$ ∩ γ2 (4,2,1)1 , (4̄,2,1)−1

$ ∩ δ2 (4,1,2)1 , (4̄,1,2)−1

(3.4.31)

It is confirmed that the coweight element Ξ2 is integer-valued on all split curves responsible for the

matter representations. We finally conclude that the gauge group is

SU(4)× SU(2)C × SU(2)D
Z2

× U(1) . (3.4.32)

3.5 Mordell-Weil group Z3

As a further illustration we now analyze elliptic fibrations with Z3 torsional Mordell-Weil group. The

general form of such fibrations was derived in [69]. As we will show this fibration allows for a toric

representation, which in fact coincides with the last of the 3 reflexive pairs of polygons admitting a

torsional Mordell-Weil group [20]. The fan is given by the 16th reflexive polygon in the enumeration

by [19]. We first present the toric representation of this fibration, its singularity structure and impose

further non-abelian degenerations of the fiber to analyse the resulting matter spectrum and global

structure of the gauge group.

3.5.1 An SU(3)/Z3-fibration

The generic form of an elliptic fibration with a Z3-section is given by the vanishing locus of the

hypersurface equation [69]

P = y2 + a1xyz + a3yz
3 − x3 (3.5.1)

in weighted projective space P[2,3,1]. Such fibrations therefore fit again into the class of global Tate

models, but with a6 ≡ 0 and in addition a2 ≡ 0 and a4 ≡ 0. The equivalent Weierstrass model is

defined by

f =
1

2
a1a3 −

1

48
a4

1 , g =
1

4
a2

3 +
1

864
a6

1 −
1

24
a3

1a3 (3.5.2)

with discriminant

∆ =
1

16
a3

3(27a3 − a3
1). (3.5.3)

The vanishing order of ∆ at {a3 = 0}, where neither f nor g vanish, signals an A2-singularity over

this locus. The singularity at x = y = a3 = 0 is resolved by two blow-ups

(x, y)→ (sx, sy), (s, y)→ (qs, qy) (3.5.4)

with proper transform

P̂ = sq2y2 + a1qsxyz + a3yz
3 − qs2x3 (3.5.5)
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Figure 3.8: Polygon 16 of [19] together with its dual polygon. The coordinate y is scaled to one and
does not contribute to the monomials.

as the resulting equation. The Stanley-Reisner ideal after these two blow-ups is {qx, qy, qz, xy, sz}
(see Fig 3.8). The hypersurface equation (3.5.1) has an equivalent toric description as a generic

hypersurface which makes the vanishing of the coefficients a2, a4 and a6 manifest. To see this we

perform yet another blow-up by

q → pq, y → py , (3.5.6)

under which the proper transform of equation (3.5.5) is

P̂ = sp3q2y2 + a1pqsxyz + a3yz
3 − qs2x3. (3.5.7)

The Stanley-Reisner ideal now extends to {sz, qz, pz, xy, sy, qy, ps, px, qx} and implies that the locus

{y = 0} does not intersect the hypersurface any more. Hence we can use one scaling relation to set

y = 1. After this step we arrive at the hypersurface equation

P̂ = p3q2s+ a1pqsxz + a3z
3 − qs2x3 (3.5.8)

defined in the ambient space with scaling relations

x z s q p
∑

1 1 0 0 1 3

1 2 0 3 0 6

0 1 1 1 0 3

(3.5.9)

and SR ideal {sz, qz, px, ps, qx}. A blow-down of this fibration was also considered in [78], where it

was shown that the structure group of the elliptic fibration is the subgroup Γ0(3) of SL(2,Z). As

we will see, the structure of admissible gauge groups is in agreement with the appearance of such

restricted monodromy.

Over the locus {a3 = 0} the hypersurface equation (3.5.8) factors as

P̂ |a3=0 = qs(p3q − sx3 − a1pxz) (3.5.10)

with three irreducible factors. The intersection pattern of the irreducible parts of the fiber, denoted

by P1
s, P1

q and P1
eq, is shown in Fig. 3.9. The two resolution divisors Q : {q = 0} and S : {s = 0} are

P1-fibrations over {a3 = 0} and are associated with the two Cartan generators of su(3).

The vanishing order of the discriminant increases by 1 on the curve {a3 = 0} ∩ {a1 = 0}, naively

suggesting an enhancement of the singularity type from A2 to A3 and thus localised matter in the
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Figure 3.9: The factorised fiber over the base locus a3 = 0; The blue cross indicates the zero point
z = 0 and the green and red crosses indicates the points p = 0 and x = 0, respectively.

fundamental 3 of su(3). In actuality, however, no higher degeneration of the fiber structure occurs

over this curve because none of the three components in (3.5.10) factorises further. This can be seen

directly by considering the Weierstrass coefficients f and g (3.5.2): along {a3 = 0} ∩ {a1 = 0}, each

coefficient vanishes to order 2, which implies that the Kodaira type of the degenerate fibers is type

IV . This is very similar to the familiar A2, except that the three components of the fibers meet in a

single point rather than meeting pairwise at three different points. There is no enhancement or matter

(consistent with [79, 80]). The absence of the fundamental representation, which would be expected

to be present in generic fibrations with su(3) gauge algebra, will be understood momentarily from the

global structure of the gauge group.

The toric Mordell-Weil group is generated by the differences P − Z or X − Z with P,X,Z cor-

responding to the vertices of polygon 16 [20] with coordinates as in Fig. 3.8. Using the SR-ideal, we

conclude that each of these sections intersects only one of the P1’s, and each P1 intersects only one of

the sections.

The divisor class Y : {y = 0} does not intersect the hypersurface and may be expressed as

Y = 3Z − S − 2Q− 3P + 3K̄. (3.5.11)

Hence we can define the integer class

Ξ3 ≡ P − Z − K̄ = −1

3
(S + 2Q) (3.5.12)

associated with a new coweight. Any weight of a charged matter representation has to have integer

pairing with Ξ3, making the weight lattice an order three coarser lattice. In particular, this forbids

the fundamental representation of SU(3), in agreement with our findings above. Note also that the

fundamental representation would be transforming under the center Z3 of SU(3). Thus the gauge

group is SU(3)/Z3. Note that the specialization a3 = (ã3)n, if admissible, modifies the gauge group

to

G = SU(3n)/Z3, (3.5.13)

corresponding to a fiber structure of split Kodaira type Is3n. For n = 2, the fiber over the curve

{ã3 = 0} ∩ {a1 = 0} degenerates further to Kodaira type IV ∗, as reflected in the vanishing orders

(3, 4, 8) of (f, g,∆) in the Weierstrass model. This signals an enhancement of the singularity type

from A5 ' su(6) to E6. From the branching rules of the adjoint representation of E6 under the
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Figure 3.10: The su(6) top over polygon 16 is shown to the left. The green layer contains the points
at height one. The right side defines the dual top, bounded from below by the values zmin shown next
to the nodes.

decomposition to su(6) one infers massless matter in the triple-antisymmetric representation 20 of

su(6), in agreement with the gauge group SU(6)/Z3. However, for n ≥ 3 the Kodaira type fiber over

{ã3 = 0}∩{a1 = 0} is beyond E8 according to Kodaira’s list. This means that no crepant resolution of

the fibration exists whenever the locus {ã3 = 0}∩{a1 = 0} is non-trivial, and F-theory on such spaces

is ill-defined. This complication does not arise for eight-dimensional F-theory compactifications on K3,

where the codimension-one loci are points on the base B = P1 and thus no problematic enhancement

of this type arises. Indeed, the case n = 6 corresponds to the SU(18)/Z3 model presented in equ.

(5.4) of [85] for F-theory on a K3 surface.

Finally, let us note that the F-theory model does not possess a well-defined weak coupling Type

IIB limit, at least not of the usual type à la Sen: Since a2 ≡ 0 (in addition to a4 ≡ 0 and a6 ≡ 0), the

quantity h defining the Type IIB Calabi-Yau XIIB as the hypersurface ξ2 = h factorises, h = − 1
12a

2
1.

Thus the locus ξ = 0 = a1 is singular.

3.5.2 An (SU(6)× SU(3))/Z3-fibration

To further illustrate this relation between the Z3 Mordell-Weil group and the global structure of the

gauge group we implement an additional non-abelian fiber degeneration in codimension-one. This

results in an F-theory compactification with a richer matter spectrum. As we will see, only matter

representations occur which are compatible with the extra coweight induced by the torsion generator

of the Mordell-Weil group. To implement an extra non-Abelian singularity in the hypersurface (3.5.8)

we construct a top. According to the classification in [19] the only possible tops encoding A-type

degenerations are the affine A2, A5, A8 etc. Here we construct the single top corresponding to the

affine A5, realizing an su(6) theory along a divisor in the base. The hypersurface equation in the

ambient space defined by the top is now given by

P̂ = e1e
2
2e3p

3q2s+ a1pqsxz + a3e
2
0e1e5z

3 − e3e
2
4e5qs

2x3, (3.5.14)

where the coefficients of the monomials are chosen to match (3.5.8). The discriminant takes the form

∆ ∼ w6a3
3(a3

1 − 27w2a3) , (3.5.15)

where π∗w = e0e1e2e3e4e5 defines the su(6)-divisor as W : {w = 0} in the base B. For the chosen

triangulation of the top we obtain the Stanley-Reisner ideal

{ps, px, qx, qz, sz, pe3, pe4, pe5, qe0, qe1, qe3, qe4, qe5, ze1, ze2, ze3, ze4, ze5,

se0, se1, se3, se4, se5, xe1, xe0e3, xe3e5, e0e2, e0e4, e1e4, e1e5, e2e4, e2e5}.
(3.5.16)
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In addition to the A2 singularity with resolution divisors S and Q one finds a fiber degeneration over

W : {w = 0} with irreducible components

P1
i = {Ei} ∩ {PW |ei=0 = 0} ∩Da ∩Db i = 0, . . . , 5, (3.5.17)

where Da and Db are some generic divisors in B. These are intersecting as the affine A5 Dynkin

diagram as can also be read off from the top in Figure 3.10. For the explicit expressions we refer to

appendix A.3.

We next compute the charged matter representations at enhancement loci in codimension-two. By

inspection of the discriminant (3.5.15) we see that there are three potentially interesting loci,

{w = a1 = 0} , {w = a3 = 0} and {a1 = a3 = 0} . (3.5.18)

The locus {a1 = a3 = 0}, despite the increased vanishing order of ∆, does not give rise any massless

matter, as discussed already in the previous section. Thus, no massless states in representation (1,3)

of su(6)⊕ su(3) exist. The enhancement over the remaining two loci is determined by calculating the

factorization of the fiber components over these loci. The explicit equations are presented in appendix

A.3.

At {w = a1 = 0} the fiber components P1
0 and P1

3 factorize, resulting in six distinct fiber compon-

ents. They intersect as the non-affine E6 Dynkin diagram. The weights at this locus are obtained

by computing the intersection numbers of the split fiber components with the resolution divisors Ei
and S,Q of the su(6) and su(3) singularities, respectively. As an example we consider the split curves

arising from P1
0 and compute the weights

P1
e0=e3=0 · (E1, E2, E3, E4, E5) = (1, 0,−1, 0, 1) , P1

e0=e3=0 · (S,Q) = (0, 0) ,

P1
e0=e1p3+e5x3=0 · (E1, E2, E3, E4, E5) = (0, 0, 1, 0, 0) , P1

e0=e1p3+e5x3=0 · (S,Q) = (0, 0) ,
(3.5.19)

which are in the (20,1) of su(6)⊕ su(3).

Over {w = a3 = 0} the component P1
3 factorizes. This results in 9 distinct curves, intersecting as

the affine su(9) Dynkin diagram. We compute the charges

P1
e2=x=0 · (E1, E2, E3, E4, E5) = (0,−1, 1, 0, 0) , P1

e2=x=0 · (S,Q) = (1, 0) ,

P1
e2=a1p+e3sx2=0 · (E1, E2, E3, E4, E5) = (1,−1, 0, 0, 0) , P1

e2=a1p+e3sx2=0 · (S,Q) = (0, 1) ,
(3.5.20)

recognizing the (0,−1, 1, 0, 0) and (1,−1, 0, 0, 0) as a weight of the 6 and 6̄ of su(6), respectively.

Taking into account also the 3 and 3̄ weights of su(3) on the right one deduces along {w = a3 = 0}
matter in the bifundamental (6,3) (plus its conjugate).

The matter spectrum is summarized in the following table:

Top over polygon 16: su(6)× su(3)

Locus Charged matter
w ∩ a3 (6,3) , (6̄, 3̄)
w ∩ a1 (20,1)

(3.5.21)

Finally we remark that the fibration is non-flat at the codimension-three points w = a1 = a3 = 0,

where one of the defining equations of the fiber components vanishes identically. This is precisely

the intersection locus of the matter curves supporting the (6,3) and (20,1) representations. The

severe degeneration of the fibration at this locus reflects the fact no triple Yukawa coupling can be

constructed out of the 20 (antisymmetric in three indices) together with the 6 and the 6̄. Thus,

in order to make sense out of F-theory compactified on the associated Calabi-Yau 4-fold the matter
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curves in question must not meet, which is a strong constraint on the base space B. This constraint

does not arise for F-theory on lower-dimensional Calabi-Yau n-folds.

We are now in a position to discuss the global structure of the gauge group. The Shioda-type map

for the generator of the Z3-torsional Mordell-Weil group reads

Σ3 = P − Z − K̄ +
1

3
(S + 2Q+ 2E1 + 4E2 + 3E3 + 2E4 + E5) (3.5.22)

with K̄ = π∗K̄B. Here P = {p = 0}, whose intersection with the fiber is the Z3 torsion point. From

the su(6) top we infer that the toric divisor class {y = 0} in the ambient space is expressed as

Y = 3Z − S − 2Q− 3P + 3K̄ − 2E1 − 4E2 − 3E3 − 2E4 − E5 . (3.5.23)

We thus see that

−3Σ3 = Y (3.5.24)

and Y does not intersect the hypersurface. Hence Σ3 is trivial in H1,1(Y4,R) and

Ξ3 ≡ P − Z − K̄ = −1

3
(S + 2Q+ 2E1 + 4E2 + 3E3 + 2E4 + E5) . (3.5.25)

Again, P − Z − K̄ is a 3-torsion element of H1,1(Ŷ4,Z)/〈Fi〉Z for 〈Fi〉Z the lattice spanned by all the

exceptional divisors. Furthermore, it is easy to check that Ξ3 has integer intersection with all weights

computed computed above. Due to the refinement of the coweight lattice the gauge group for this

model is thus

G =
SU(6)× SU(3)

Z3
(3.5.26)

with π1(G) = Z3. The correspondingly coarser weight lattice implies that the center Λ/Q of the gauge

group is trivial.

3.6 Summary

In this chapter we have studied F-theory compactifications on elliptic fibrations with torsional Mordell-

Weil group. While non-torsional rational sections give rise to massless U(1) gauge symmetries, the

torsional subgroup affects the global structure of the gauge group. In general, the gauge group is of

the form G×G′, where G is affected by the Mordell-Weil torsion and G′ is a spectator with respect to

torsion elements which can be trivial. The presence of Zk-torsional sections guarantees the existence

of a k-fractional linear combination of resolution divisors associated with the Cartan generators of G

which has integer intersection number with every fiber component. We have showed how to identify

this linear combination with an element of the coweight lattice of G, which is rendered finer by a

factor k compared to the universal cover G0 of G. This enhances the first fundamental group of G by

Zk with respect to to G0. It follows that the gauge group is non-simply connected.

The spectrum of allowed matter representations is constrained to the extent that only those ele-

ments in the weight lattice are allowed which have an integer pairing with the coweights associated

with the Mordell-Weil torsion. This makes the weight lattice coarser than expected as the coweight

is k-fractional by construction. The points of the weight lattice that remains correspond precisely

to the states that are not only representations of the algebra, but also of the non-simply connected

gauge group. An equivalent way of putting this is that the torsional subgroup Zk1 ⊕ . . .⊕ Zkn of the

Mordell-Weil group can be identified with a subgroup of the center of the universal cover group G0,

and the gauge group of the F-theory compactification is G0/(Zk1 ⊕ . . .⊕ Zkn)×G′. Importantly the
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torsional Mordell-Weil group has no particular effect on the structure of the Yukawa couplings between

the matter states as such, which is encoded in the fiber type in codimension-three. Contrary to naive

expectations, torsional section are not responsible for e.g. discrete selection rules in the effective action

of an F-theory compactification.

We have exemplified this picture for elliptic fibrations with torsional Mordell-Weil group Z2 and

Z3, whose defining equation had already been presented in [69]. These fibrations can be analysed

torically as hypersurfaces in toric ambient spaces, and, as we have seen, coincide with two out of the

16 possible hypersurface torus fibrations, whose Mordell-Weil group has been computed also in [20].

The third possible hypersurface elliptic fibration with Mordell-Weil group Z⊕ Z2 [20], is shown to be

complex structure specialization of the Z2-model. All these fibrations are related to a special class of

elliptic fibrations with Mordell-Weil group Z [77] by a chain of (un)Higgsings.

An interesting next step would be to study also fibrations with Mordell-Weil group Z4 and higher.

The defining Tate model for examples of such fibrations has been given in [69]. It would be interesting

to express these fibrations as complete intersections (as opposed to hypersurfaces) or even determin-

antal varieties and to study their properties at the same level of detail as achieved for the hypersurface

models in this article. An example of particular interest would be the realisation of an Standard Model

gauge symmetry in a fibration with a Z6 torsion section. The matter spectrum of such a model would

be expected to agree with that of the standard model.

An exciting aspect of gauge theories with non-simply connected gauge groups is the physics of

non-local operators such as the spectrum of dyonic Wilson line operators. As studied e.g. in [66],

the spectrum of such dyonic operators depends on the weight lattice of the gauge group G and of

its Langlands dual G∗. As we have seen, the weight lattice Λ of an F-theory compactification on an

elliptic fibration is intimately related to the geometry of torsional sections. It would be interesting to

investigate further the relation between torsional sections, the spectrum of dyonic Wilson line operat-

ors and the global structure of the gauge group in F-theory.
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Chapter 4

Discrete symmetries and F-theory on
genus-one fibrations

In F-theory the framework for geometric realisations of gauge symmetries is by now well understood.

Already in the original work [6–8] it was outlined how non-abelian gauge symmetries and charged

matter representations appear in the four dimensional quantum field theory. More recently the global

structure of elliptic fibrations and the link between the free Mordell-Weil group and abelian gauge

groups have been worked out [18, 20, 31, 52, 59, 61–63, 70, 77, 83, 84, 88–100]. On the other hand, the

realisation of discrete symmetries from the F-theory fibration was only recently understood, with the

work by the author and collaborators [10,11] and the parallell work in [70,101]. Until only recently [29]

all work on F-theory, both model building and phenomenology as well as more conceptual work and the

study of string dualities has been done under the assumption of an elliptically fibered compactification

manifold. Relaxing the requirement of having a distinguished zero-section enlargens the set of possible

F-theory vacua to incorporate also genus-one fibrations, introduced in section 2.1.3.

In this chapter we analyse four dimensional F-theory models with discrete symmetries. In string

theory all discrete symmetries have to arise as broken continuous symmetries [102]. As in the case

of abelian gauge symmetries, the presence of a discrete symmetry restricts the operator spectrum of

the theory, in particular the Yukawa couplings in four dimensions. A discrete symmetry has however

no associated propagating degrees of freedom. Recent work on discrete symmetries in string theory is

e.g [103–111]. With this as the starting point the simplest case of a discrete symmetry is a Zk subgroup

of an abelian gauge group. In field theory such a discrete remnant of a U(1) symmetry appears by

higgsing with a field which has charge k under this group. In other words, if the higgs field is invariant

only under a Zk subgroup of the U(1), then this subgroup remains unbroken1. By constructing a pair

of F-theory fibrations we show the geometric manifestation of this higgsing as a conifold transition

between an elliptic fibration and a genus-one fibration. Having the explicit transition between the two

geometries, where the elliptic fibration is well understood, we carefully map out the physics associated

with the genus-one fibration and how the discrete symmetry and the matter state charges can be

understood geometrically.

We will start by studying the model considered in [18], which is the most general form of an elliptic

fibration over B with a Mordell-Weil group of rank one. This implies, as we have seen, an extra U(1)

gauge group in four dimensions. This model has two charged matter representations residing over

codimension-two loci in the base. Over these loci Kodaira I2 fibers are found [18] and M2 branes

1For recent work studying the Higgsing of abelian symmetries in smooth heterotic string models see [112–114]. The
Higgsing of non-abelian gauge symmetries in F-theory compactifications via deformations has been described in detail
in [115,116].

73
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wrapping the fiber components give rise to matter charged under the U(1) gauge group. The matter

fields, denoted 11 and 12 have charge one and two under the U(1) symmetry, respectively. Via a

conifold transition this model is related to a generic quartic equation in P1,1,2 and this hypersurface

equation describes a genus-one fibration over the same base B. The genus-one fibration has no zero

section, but a bisection and has an associated Jacobian fibration described by a Weierstrass model.

The Jacobian fibration is singular and does not admit a crepant resolution. The genus-one fibration is

however smooth and admits a full analysis of the fiber structure in all codimensions and subsequently

the corresponding physics. In [84] the conifold transition was given an interpretation in terms of the

Higgsing by giving the field 12 a vev which breaks the U(1) to a Z2 discrete group. In this work [84] the

fibration was studied over explicit complex two-dimensional bases which means that the field theories

was studied in six dimensions. The same fibration, slightly generalized, was also studied in [117]. In

the next section the details of these two fibrations, and the linking conifold transition is presented.

In this chapter, which is based on the papers [10, 11] we will study a genus-one fibration with a

bisection. We show in detail how the Z2 discrete group arise from the geometry of four dimensional F-

theory compactifications. The analysis is very general as we consider fibrations over generic three-fold

bases. In addition to the discrete group Z2 we implement a further non-abelian gauge symmetry. In

the explicit examples, first studied in [10], we consider two different embeddings of the GUT symmetry

SU(5). Constructing four dimensional models differs in several ways from the previously studied six

dimensional compactifications. The first is that in the four-dimensional models there are Yukawa

couplings between the charged fields. These arise at points of codimension three in the base where the

matter curves meet. In the presence of the SU(5) singularity we have five types of couplings between

the singlet, the fundamental and the anti-symmetric SU(5) representations: 5̄ 5̄ 10, 5 10 10, 1 5̄ 5,

1 10 1̄0, 1 1 1. The elliptic fibration with the massless U(1) symmetry has already been studied in the

presence of an additional SU(5) singularity in [83], wherein it was shown that all the possible couplings

which are singlets w.r.t the U(1) group appear in the geometry. When higgsing the four dimensional

theory with the field 12 two main effects are expected. The first is that one expects the selection rules

governing the presence of a coupling to be modified from the U(1) charge to a Z2 charge. In other

words, the Yukawa couplings should be singlets with respect to the discete symmetry instead of the

abelian gauge symmetry. The second is that some fields can gain a mass from operators of the type

1 5̄ 5, 1 10 1̄0, 1 1 1 which involve the SU(5) singlet which obtains a vacuum expectation value. The

geometric manifestation of these effects are the main results of this chapter. We will show how the

conifold transition leads to a recombination of the matter curves that host charged matter coupled to

the Higgs field. This would correspond to a rearrangement and splitting of the 7-branes in a type IIB

compactification. It follows that the massless matter spectrum change and that the couplings after the

transition respect not the abelian gauge symmetry, but the discrete Z2 subgroup. A third important

difference is that in four dimensions also G4 flux has to be considered as part of the compactification.

In the conifold transition this is not only a possibility, but a necessity. The discussion of fluxes in

F-theory on genus-one fibrations is the subject of chapter 5.

To give a complementary picture we also study the four dimensional theory, and its reduction to

three dimensions on the M-theory circle. The state 12 gives rise to a tower of Kaluza-Klein (KK) modes

when put on this circle. Here we observe that the Higgs field responsible for the deformation of the

geometry is to be identified with a specific mode in this reduction. Identifying the relevant KK mode

in the geometry enables us to further support and extend the field theory picture suggested in [84,117].

The four dimensional field theory is of course an important motivation for this work. Developing the

technical tools and the understanding of genus-one fibrations allows us to implement discrete gauge

symmetries relevant for string theory phenomenology. Indeed, the particular geometries studied in

this chapter, being grand unified theories with a remnant discrete gauge symmetry, are interesting

starting points for model building. E.g the model in section 4.7 has a remnant Z2 symmetry which
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u v w s

K̄ · 1 2 ·
b2 · -1 -1 ·
U 1 1 2 ·
S · 1 1 1

Table 4.1.1: Divisor classes and coordinates of the fiber ambient space, with K the canonical bundle
of the base B and b2 the line bundle defined by the divisor class [b2] on B.

can be identified with the R-parity of the Minimal Supersymmetric Standard Model (MSSM).

String compactifications on geometries with torsional homology cycles are known to give rise to

discrete symmetries. In section 4.5 we put torsion homology in the context of F-theory on genus-one

fibrations. Crucial here is that to the genus-one fibration with a bisection there are two different

phases of M-theory that share the same F-theory limit. The genus-one fibration has no torsion in

homology, but in the associated Jacobian fibration torsional cycles appear in the deformation. We

show in detail how these cycles appear in the conifold transition and how the Z2 torsion subgroup is

linked to the bisection.

4.1 An elliptic fibration with U(1) gauge symmetry

We will start by considering the fibration considered in [18], which is the most general form of an elliptic

fibration supporting two sections: the zero section and an additional section which is associated to

a massless U(1) gauge symmetry. In other words the Mordell-Weil group has rank one. The elliptic

fiber is given by the hypersurface equation

P1 := sw2 + b0s
2u2w + b1suvw + b2v

2w + c0s
3u4 + c1s

2u3v + c2su
2v2 + c3uv

3 = 0 (4.1.1)

for bi and ci sections of suitable line bundles on B chosen such that the total fibration is Calabi-Yau2.

The ambient coordinates [u : v : w : s] are subject to the scaling relations

(u, v, w, s) ' (λu, λµv, λ2µw, µ s), µ, λ ∈ C∗ (4.1.2)

and the Stanley-Reisner ideal is generated by {uw, v s}. This ambient toric variety corresponds to

the fan given by polygon 6 in the enumeration of [19] and the monomials of the hypersurface equation

are given by the dual polygon. As in the previous chapter we adopt their enumeration of the reflexive

polygons since we are applying their construction and classification of toric tops in section 4.6 and

4.7. For (4.1.1) to describe a Calabi-Yau fibration b1 has to transform as a section of the canonical

bundle K̄ on the base. For this hypersurface this does not determine all coefficient sections, but one

has the freedom to introduce a scaling under one more line bundle L on B. We make the choice to

parametrise this line bundle by the divisor class of the section b2 i.e the first Chern class c1(L) = [b2].

The scaling relations of the fiber coordinates is summarised in Table (4.1.1). The coefficients bi and ci
transform as sections of line bundles on B whose first Chern classes are displayed in Table 4.1.2. This

ambient fiber space can be thought of as the blow-up of the point u = w = 0 in the projective space

P1,1,2 where S : {s = 0} is the exceptional divisor. Note especially that this resolution is performed in

the ambient space, and the exceptional divisor is a toric divisor in Bl1P1,1,2, not on the hypersurface.

If we take (4.1.1) and set s ≡ 1, which is a reversal of the resolution or a ’blow down’, we obtain the

2In a common notation this fibration is referred to as a Bl1P1,1,2[4]-fibration over B. This is read as a general degree
four hypersurface in the ambient space given by one blow-up of P1,1,2, fibered over B.
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b0 b1 b2 c0 c1 c2 c3 c4

2K̄ − b2 K̄ b2 4K̄ − 2b2 3K̄ − b2 2K̄ K̄ + b2 2b2

Table 4.1.2: Classes of the coefficients entering (4.1.1).

polynomial of a non-generic quartic in P1,1,2. The conifold transition amounts to the deformation of

the blow-down to a generic quartic, which will be described in the next section.

The fibration (4.1.1) has a family of conifold singularities over the curve in the base where b2 =

c3 = 0. Restricting the hypersurface equation to this locus reveals the singular point on the fiber at

u = w = 0. The appearance of this curve of singularities is a consequence of the non-generic form

of the hypersurface as a quartic in P1,1,2 i.e the abscence of a monomial term c4v
4 which would be

present in the general case. At the same time this implies the appearance of two independent sections

in the singular model, which generate a Mordell-Weil group of rank one,

Sec1 : [u : v : w] = [0 : 1 : −b2], Sec2 : [u : v : w] = [0 : 1 : 0]. (4.1.3)

The section Sec1 intersects the conifold points over the curve b2 = c3 = 0. After the blow-up resolution

of this conifold point, u→ u s,w → w s, Sec1 is replaced by the resolution divisor S : {s = 0}, whose

intersection with the hypersurface defines a rational section. As we have taken U and S as the basis for

the ambient divisor classes we can identify the holomorphic zero-section of the fibration (4.1.1) with

the intersection of U with the fibration.3 The image of the extra rational section under the Shioda

map is

w = S − U − K̄ − [b2], (4.1.4)

and is the generator of a U(1) gauge symmetry in F-theory compactifications on the elliptic fibration.

The details of this geometry were given in [18] for a generic base space B of complex dimension two.

Here we are interested in the conifold transition as a higgsing in four dimensional field theory and the

resulting discrete selection rule. Hence we extend this analysis to base spaces B of complex dimension

three. This adds to the work [18] a more complicated structure of the matter curves (as opposed to

matter points) on B and their intersection at Yukawa points in codimension three on B.

Over codimension-two loci in the base in this fibration Kodaira I2 fibers are found [18] giving

rise to matter charged under the U(1) gauge group. There are two types of such splittings which

means there are two types of matter fields, 11 and 12, with the subscript denoting their charge, which

reside over two distinct loci in the base. We have chosen the notation 1 since these matter states will

remain singlets under the SU(5) gauge group introduced later. By inspection of (4.1.1) one finds one

factorisation over the codimension-two locus

C1 : (b2, c3) , (4.1.5)

written in the ideal notation. The subvariety corresponding to this ideal is the conifold curve b2 =

c3 = 0 mentioned above. Over C1 the fiber factorises into

P1|C1 = s (w2 + b0s u
2w + b1 u v w + c0 s

2 u4 + c1 s u
3 v + c2 u

2 v2). (4.1.6)

The two factors define two rational curves P1
s and P1

res. intersecting as the affine SU(2) Dynkin diagram.

As seen from the factorisation the rational section S degenerates over C1, where it wraps the entire fiber

component P1
s. This is an example of the behaviour of a rational section, as opposed to a holomorphic

3We will sometimes use the rational section and the corresponding ambient divisor class interchangably. It is always
the case that the divisor class restricts to the class of the section on the hypersurface.



4.1. AN ELLIPTIC FIBRATION WITH U(1) GAUGE SYMMETRY 77

fiber over C1 fiber over C2

Figure 4.1: The fiber structure over the singlet curves C1 and C2. Blue denotes the section S and
green the section U .

one. M2-branes wrapping the fiber component P1
res. yield states with charge q =

∫
P1
res.

w = +2 since

the section S intersects P1
res. in two points and the section U intersects the fiber only in one point

on P1
s, cf. Figure 4.1. The charged matter localized along C1 is the state 12 and its conjugate. The

specific intersection numbers with the fiber curves becomes important in section 4.3, where we provide

more details on the interpretation of M2-branes wrapped on the distinct fiber components. As found

in [18], the fiber can also factorise into two components none of which is wrapped by the section S. As

this I2 fiber exist without reference to the extra section it will exist also in the singular blow-down of

(4.1.1) corresponding to s ≡ 1. To find the locus in B over which the I2 fiber appears one completes

the square in w and writes the hypersurface equation as

P1 =

[
w +

1

2
(b0u

2 + b1uv + b2v
2)

]2

+ (c0 −
1

4
b20)u4 + (c1 −

1

2
b0b1)u3v + (c2 −

1

2
b0b2 −

1

4
b21)u2v2 + (c3 −

1

2
b1b2)uv3 − 1

4
b22v

4.

(4.1.7)

The equation factorises if the polynomial in u and v in the second line is a perfect square. By making

an Ansatz of the form (Au2 + Buv + Cv2)2 one obtain five equations, three of which determine the

coefficients A, B and C in terms of the bi and ci. The remaining two equations takes the form

− c1b
4
2 + b1b

3
2c2 + b0b

3
2c3 − b21b22c3 − 2b22c2c3 + 3b1b2c

2
3 − 2c3

3 = 0,

− c2
3b

2
0 + b1b2b

2
0c3 − b1b22b0c1 + b22c

2
1 + b21b

2
2c0 − 4b1b2c0c3 + 4c0c

2
3 = 0.

(4.1.8)

These two polynomials generate an ideal of the polynomial ring C[bi, ci] over B whose vanishing locus

defines a variety on B with a complicated substructure. The individual irreducible components of

(4.1.8) are found by decomposing the ideal into prime ideals. The prime ideals define varieties of

different codimension in C[bi, ci] and the components relevant for the matter spectrum are singled out

as the codimension-two loci. The solutions for A and B in the Ansatz above are rational in bi and

ci. In particular b2 and 2c3 − b1b2 appear as denominators and thus the factorization is valid away

from the vanishing locus of these two polynomials which define the ideal (b2, 2c3 − b1b2). As the ideal

(b2, 2c3− b1b2) = (b2, c3) we see that this new I2 locus in the base is well defined away from the curve

C1 hosting the 12 state. The method of prime ideal decomposition was used in [63,93] (see also [118])

to determine the irreducible singlet curves in an analogous fibration with Mordell-Weil group of rank

two [52,63,83,92] (see [70,94] for an analysis in this spirit of, among other things, the singlet locus of

even more general fibrations).

By using Singular [119], a software package for polynomial algebra we can analyse the locus

(4.1.8) in detail. By taking the saturation of C1 in (4.1.8), i.e the ideal obtained by factoring out

all powers of C1 in (4.1.8), we find that it does not split into further components. Hence we can

take this new ideal to define our I2 locus, without any complications coming from poles at C1 in the
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1−2 11 11

C1

C2

Figure 4.2: The singlet curves and the Yukawa coupling in codimension three.

factorization. The only component of (4.1.8) is

C2 : {An ideal with 15 generators}, (4.1.9)

which is of codimension two despite the large number of generators. Thus the generators do not

intersect transversally. The explicit form is given in (B.2.1) in the appendix. One can furthermore,

with the aid of Singular, show that the curve C2 is singular along a sublocus, a point of self-

intersection to be discussed in more detail momentarily. By construction, the fiber over C2 splits into

homologous P1s. The charges of the corresponding states are the intersection numbers ±1 with the

U(1) generator. Thus, along C2 the matter states 1±1 are localised.

The two singlet curves intersect in codimension three on B, i.e. at points. The singular locus of C2

coincides with the intersection point C1 ∩ C2 and by prime decomposition the complicated structure

of C2 reduce to

C1 ∩ C2 : (b2, c3, b
2
1c0 − b0b1c1 + b20c2 + c2

1 − 4c0c2) . (4.1.10)

By restricting the hypersurface to this point the fiber factors into three rational curves

P |C1∩C2 = s

(
w̃2 −

( u√
b21 − 4c2

[(c1 −
1

2
b0b1)su+ 2(c2 −

1

4
b21)v]

)2)
(4.1.11)

intersecting as the affine SU(3) Dynkin diagram. The first factor defines the curve P1
s, with U(1)

charge −2, and the second factor is the difference of two squares which defines two curves, each with

charge 1. This confirms the presence of the Yukawa coupling 1−2 11 11 + c.c at this point. Note that

the non-meromorphic prefactor (b21−4c2)−1/2 presents no difficulty as it evaluates to a number at this

point and no monodromy can occur.

4.2 A genus-one fibration with Z2 symmetry

In the previous section we saw how the appearance of a rank-one Mordell-Weil group and thus the

presence of a U(1) gauge group factor in F-theory fibrations of the form (4.1.1) is a consequence of

the non-generic form of the hypersurface equation in which the potential quartic term c4v
4 is missing.

From here on we treat the abscence of this term as the restriction to a sublocus of the complex

structure moduli space where c4 vanishes identically. By starting with the blow-down of s in (4.1.1)

and moving away from the c4 ≡ 0 locus in moduli space one is effectively turning on this quartic term.

The resulting generic quartic equation in P1,1,2 describes a smooth genus-one fibration and is given by

the hypersurface equation

P2 = w2 + b0u
2w + b1uvw + b2v

2w + c0u
4 + c1u

3v + c2u
2v2 + c3uv

3 + c4v
4 = 0 (4.2.1)
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in a P1,1,2 fibration over B. The scaling relations of u, v, w as well as the classes of bi and ci are the

same as in section 4.1. This model was first discussed in [29,84] as an example of a genus-one fibration

with a bi-section (see also [117]). The intersection of U with the generic fiber consists of two points,

as seen by the factorization

P2|u=0 =

(
w +

1

2

(
b2 +

√
b22 − 4 c4

)
v2

)(
w +

1

2

(
b2 −

√
b22 − 4 c4

)
v2

)
. (4.2.2)

As c4 6= 0 these two points are the two branches of the square root
√
b22 − 4 c4, and moving over the

branch cut in the base exchanges these two points. Globally this means that the two intersection

points cannot be separated, and the intersection of U with the hypersurface defines the class of a

bisection. Over each local patch in B the generic fiber is intersected in two points, as in fig. 2.4. In

the limit c4 → 0, the square roots disappear and the bisection splits into the two rational sections

in (4.1.3). One is the zero-section in the U(1) model in the previous section, the other is the extra

rational section, given by S upon resolution.

The singularity at (b2, c3) in the previously discussed U(1) model is not present in this genus-one

fibration, due to the deformation term. There is however still a codimension two locus over which the

fiber factorises [29, 84]. This locus is found in the same way as around (4.1.8) by making an Ansatz

for the factorisation. This follows the analysis as in [84] but as we are considering fibrations over

three-fold bases we need to take some extra care in finding the matter curve. Completing the square

in w yields

P2 = w̃2 + a0u
4 + a1u

3v + a2u
2v2 + a3u

2v2 + a4v
4 (4.2.3)

with w̃ = w + 1
2(b0u

2 + b1uv + b2v
2) and the shifted coefficients

a0 = −c0 +
1

4
b20, a1 = −c1 +

1

2
b0b1, (4.2.4)

a2 = −c2 +
1

2
b0b2 +

1

4
b21, a3 = −c3 +

1

2
b1b2, a4 = −c4 +

1

4
b22. (4.2.5)

There are two cases to consider: If a4 6= 0 we can make the ansatz [84]

P2 = w̃2 − a4(Au2 +Buv + v2)2 = (w̃ −
√
a4(Au2 +Buv + v2))(w̃ +

√
a4(Au2 +Buv + v2)).(4.2.6)

By comparing this ansatz to the original equation P2 one finds a solution for A and B as [84]

A =
4a2a4 − a2

3

8a2
4

, B =
a3

2a4
(4.2.7)

and in addition two constraints p1 = p2 = 0 for

p1 =b62c0 − b21b32c4b0 + b1b
4
2c3b0 − b52c2b0 + b42c4b

2
0 + b41c

2
4 − 2b31b2c4c3 + b21b

2
2c

2
3 + 2b21b

2
2c4c2+

− 2b1b
3
2c3c2 + b42c

2
2 − 12b42c4c0 + 4b21b2c

2
4b0 − 4b1b

2
2c4c3b0 − b32c2

3b0 + 8b32c4c2b0+

− 8b22c
2
4b

2
0 + 2b21c4c

2
3 − 2b1b2c

3
3 − 8b21c

2
4c2 + 8b1b2c4c3c2 + 2b22c

2
3c2 − 8b22c4c

2
2+

+ 48b22c
2
4c0 + 4b2c4c

2
3b0 − 16b2c

2
4c2b0 + 16c3

4b
2
0 + c4

3 − 8c4c
2
3c2 + 16c2

4c
2
2 − 64c3

4c0 ,

p2 =− 1
2b

3
1b2c4 + 1

2b
2
1b

2
2c3 − 1

2b1b
3
2c2 + 1

2b
4
2c1 + b1b

2
2c4b0 −

1

2
b32c3b0 + b21c4c3+

− 3
2b1b2c

2
3 + 2b1b2c4c2 + b22c3c2 − 4b22c4c1 − 4b1c

2
4b0 + 2b2c4c3b0 + c3

3 − 4c4c3c2 + 8c2
4c1 .

(4.2.8)

This shows that the factorisation (4.2.6) occurs over the variety defined by

C̃1 = {p1 = 0} ∩ {p2 = 0} − {a4 = 0} ∩ {p1 = 0} ∩ {p2 = 0} , (4.2.9)
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where the subset of the solution over which a4 = 0 is subtracted. One can show that a4 = 0 implies

a3 = 0 when {p1 = 0} ∩ {p2 = 0}. For base spaces of dimension two, as analysed in [84], this is the

complete I2 locus. Here we consider three-dimensional bases and hence the case a4 = 0 must also be

taken into account. For a4 = 0, the above ansatz for the factorisation is not valid. Let us assume that

a0 6= 0 and instead make the ansatz

P2|a4=0 = w̃2 − a0(u2 +Duv)2 = (w̃ +
√
a0u(u+Dv))(w̃ −

√
a0u(u+Dv)). (4.2.10)

Expanding and comparing coefficients identifies the solution

D =
a1

2 a0
(4.2.11)

and gives two more constraints a3 = a2
1 − 4a2a0 = 0. For a generic base B and a generic choice of

sections bi, ci we note that the assumption a0 6= 0 holds at {a4 = 0} ∩ {a3 = 0} ∩ {a2
1 − 4a2a0 = 0}.

Thus the above factorisation (4.2.10) is valid at the codimension-three loci

C̃2 = {a4 = 0} ∩ {a3 = 0} ∩ {a2
1 − 4a2a0 = 0}. (4.2.12)

Summarizing the two cases the I2 type fiber factorisation occurs over the locus

C = C̃1 ∪ C̃2. (4.2.13)

It turns out that this locus C has a representation as the vanishing locus of a prime ideal. This

ideal is found by taking the saturation of the ideal generated by p1 and p2 with respect to (a3, a4).

This representation of C may be decomposed into 16 prime ideal factors presented in (B.2.2) in the

appendix. The codimension two curve is hence described as the non-transversal intersection of 16

polynomials on the base. One can show that the points C̃2 all lie on the variety defined by this

prime ideal and are indeed the only loci on p1 ∩ p2 for which a4 = 0. Importantly, we can use our

representation of C in terms of prime ideals to show that C defines an irreducible, smooth curve on

B. This is the locus where the fiber is of I2-type, over which the matter states are localised.

M2-branes wrapping either of the two fiber components over C give rise, in the F-theory limit, to

massless singlet states. Due to the absence of sections, it is not possible to define a U(1) generator

w as in equation (4.1.4). There is not even a zero section in this fibration, and there is no notion

of a Mordell-Weil group. As explained above, S and the zero-section are ’glued’ together into the

bi-section U which intersects the fiber class in two points. Only when c4 vanishes, the two points

can be globally distinguished. By global monodromy effects these two points are interchanged over

the base B [29] and there is no possibility to globally single one of the points out. Nonetheless it is

possible to define a Z2-charge of the singlet states with respect to the bisection U . By setting u = 0

in (4.2.8) one can confirm that the divisor class U intersects each of the two split fiber components

over the locus C̃1 in a single point given by

u = 0, w = ± 1√
b22 − 4c4

v2, (4.2.14)

respectively. Since a4 = b22−4c4 does no vanish along C̃1 these two points are well-defined, and are not

identified through the scaling relation in P1,1,2. By approaching the points in the codimension three

locus C̃2, the two intersection points of the bisection coincide not only with each other but also with

one of the intersection points of the rational lines of the I2 fiber. That the two points come together

is the expected behaviour of the monodromy of the two points u = 0 around this codimension-three

locus on B. As pointed out in [29],this behaviour prevents us from defining a well-defined U(1) charge.

If we would take the difference of the two points, as in the Shioda map, the charge would change
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sign when going around the the point in C. This observation leads to a better guess, if we instead

take the sum of the points this combination is even, or invariant, under the monodromy and this sign

ambiguity is solved. In order for the two states that come from the two different P1s of the I2 fiber to

have conjugate charges we can only take the charges modulo two. The interpretation of this behaviour

is that the intersection of the bi-section U with the rational lines of the fiber is a Z2 quantum number.

In section 4.6.2 we will study this model with additional non-abelian gauge symmetry, and confirm

that the Z2 charge of all matter states is consistent with the couplings and thus the discrete symmetry

acts as a selection rule in four dimensions.

4.3 The field theory picture

In this section, we discuss the interpretation of the geometry from a field theory perspective. These

results [10, 11] extend considerably the work [84] in which the field theory was also discussed. In

particular we show how the discrete symmetry arises in one of the two M-theory phases, while absent

in the other. In the M-theory/F-theory duality the geometry that we discuss can be understood in

terms of the four-dimensional field theory associated to the F-theory compactification. We start by

considering the elliptic compactification with an extra U(1) gauge group and later study the higgsing

of this theory. The three dimensional M-theory compactification is obtained by a circle reduction of

the four dimensional F-theory model on a three dimensional Lorentzian manifold M1,2 times a circle

S1. We will take a three dimensional perspective, and include not only the zero-modes on the circle,

but also the KK modes. In particular we are interested in the three dimensional U(1) gauge fields

corresponding to U(1)0 and U(1)1. The U(1)0 is the graviphoton originating from the metric along

the S1 and is called the KK U(1). The second gauge factor, U(1)1, is the three dimensional vector

coming from the zero mode (along the circle) of the U(1) in four dimensions which has its origin

in the additional rational section. The fourth components of the four-dimensional vectors become

scalars, denoted ξ0 and ξ1 in the three-dimensional theory. The first scalar is the metric component

parametrising the volume of the compactification circle and its vev 〈ξ0〉 = 1/R where R is the circle

radius. The second scalar is the component of the four dimensional gauge vector A1
4D along the S1 and

is related to the Wilson line as ξ1 =
∫
S1 A

1
4D. The shift symmetry ξ1 → ξ1 + 1/R from the periodicity

of the Wilson line is a large gauge symmetry.

To probe the theory we introduce a couple of matter fields in the four dimensional gauge theory

Ψ1 and Ψ2. The superscript denotes the U(1) charge in four dimensions. Upon compactification to

three dimensions these fields give rise to a KK tower

Ψi
n =

n=+∞∑
n=−∞

ψine
2πiny (4.3.1)

of three dimensional fields ψin. Here y is the coordinate along the circle S1. The masses of the ψin are

given by mn =
∣∣ n
R

∣∣ as long as the vev 〈ξ1〉 vanishes. In this case only the zero modes remain massless.

For any non-zero n there are two fields of the same mass, corresponding to the modes ±n. By turning

on a vev for ξ1 or equivalently, moving on the Coulomb branch, the mass formula changes to

mq
n =

∣∣∣q 〈ξ1〉+
n

R

∣∣∣ , (4.3.2)

as seen by reducing the U(1) covariant derivative. Here q denotes the charge with respect to the gauge

field A1
4D. By recalling that 〈ξ0〉 = 1/R, and that the KK level n is the U(1)0 charge we see that the

two terms on the right in have the same structure. By turning on a vev for ξ1 the zero mode is not

massless anymore. The masses of the two modes at the first KK level cease to be degenerate. One of
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fiber over C1

A2 B2

fiber over C2

A1 B1

Figure 4.3: The fiber structure over the singlet curves C1 and C2 taken from [10] with blue denoting
the section S and green the section U .

them becomes lighter and the other heavier. As ξ1 → 1
qR the lighter one becomes massless, and takes

the role of the zero mode, all the other modes rearrange such that the KK tower is the same as for

ξ1 = 0.4

We will now explain how this field theory picture is manifest in the F-theory geometry. The states

ψ1
n and ψ2

n are associated to membranes wrapping certain components of the fiber over the C1 and

C2 loci in (4.1.5) and (4.1.9). We are considering the resolved fibration (4.1.1) with the two sections

represented by the classes U and S. Both sections give rise to a U(1) gauge field in three dimensions,

and we denote them by U(1)U and U(1)S . The zero-section is identified with the graviphoton and the

Shioda map gives the second gauge factor. In the field theory notation above this reads

U(1)0 = U(1)U , U(1)1 = U(1)S − U(1)U . (4.3.3)

Recall that the charges of the matter states are computed by integrating the M2 action over the

components of the fiber that they wrap. As we saw in section 4.1 the intersection of U and S with

the split fiber components is different. Here we denote the irreducible fiber components by Ai and Bi,

with A and B beeing the two curves in the fiber. Over the double-charged locus C1 the component

A2 is wrapped by the section S, which is also the component intersected by U in a point. Over

the single-charged locus C2 the curve A1 is the component intersected by U and B1 the component

intersected by S. This situation is depicted in Figure 4.3. The charges of the states wrapping them

are simply given by the appropriate intersection numbers with the sections. In terms of U(1)0 and

U(1)1 this gives the charges of
Q (MA2) = (1,−2) ,

Q (MB2) = (0, 2) ,

Q (MA1) = (1,−1) ,

Q (MB1) = (0, 1) .

(4.3.4)

Here, for instance, MA1 denotes the state wrapping the A1-cycle over the curve C2 with the single-

charged states. For each of the states there will also be anti-M2 states of opposite charge wrapping the

same fiber components which will form their (four-dimensional N = 2) superpartners. When we now

turn to discussion of the Higgs mechanism, the higgsing is to be performed along the D-flat direction,

where the states and their partners have equal vacuum expectation values.

The higgsing that we are interested in corresponds to giving a vacuum expectation value to a

state on the doubly-charged curve C1. This corresponds to a geometric deformation of the Bl1P1,1,2

4Note that for a field of charge q it is sufficient to shift ξ1 → ξ1 + 1
qR

. One consequence of this is that, if we have
also a state of charge one say, then there are q different vacua for the charge one state which are all equivalent from the
charge q state perspective. In particular in a background where the state of charge q obtains a VEV there are q different
vacua for the charge one state. This can also be thought of in terms of the spectrum of Wilson line operators in the
four-dimensional theory that are not gauge equivalent, see for example [102].
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A2 B2 A1 B1

S -1 2 0 1
U 1 0 1 0

S + U 0 2 1 1
S − U -2 2 -1 1

Table 4.3.1: U(1) charges of M2-branes wrapping fiber components in M-theory compactified on P1.

model with two sections. Importantly, the deformation occurs after first blowing down the divisor S,

which corresponds to shrinking the curve A2 over the double-charged locus. The conifold transition

is a transition over the singularity, where the blow-down renders the Calabi-Yau singular, and the

deformation by the term c4v
4 in the conifold transition gives a new fibration which is smooth. The

Higgs field in the field theory comes from the massless spectrum of the F-theory compactification.

Therefore, the Higgs must be the massless state after the blow-down, i.e. it is the state MA2 as its

mass goes to zero when the curve A2 collapses. We see that this state has charge 1 under U(1)0

and therefore it is a first excited KK state, or at level one in (4.3.1). The fact that the vev is given

to a KK state was first shown in [117] and in particular this was shown to recover the appropriate

Chern-Simons terms. From the geometric perspective it is clear that the higgsed field is massless

since it corresponds to a deformation mode of the geometry, or in other words, a flat direction in

the moduli space. More general discussions of the importance of Kaluza-Klein modes in F/M-theory

duality are found in [50,52]. From the charges we can also read off the remaining massless combination

of three-dimensional U(1)’s which remains after Higgsing. This is precisely the linear combination

U(1)massless = 2U(1)0 + U(1)1 (4.3.5)

of gauge fields under which the state MA2 is uncharged and hence the vev do not break this U(1). This

combination is precisely the one found in [117], based on the geometric data in an explicit conifold

transition between explicit example geometries. From the field theory perspective we see why the

massless U(1) in three dimensions must be given by this specific combination. The reason why the

same combination is found in [117] over explicitly chosen base manifolds is that it only depends on

the fiber and is independent of B.

The fact that the higgsed state is not the zero mode in the Kaluza-Klein expansion is, although

maybe surprising, in perfect match with the field theory discussion we have presented. As long as the

vacuum expectation value of ξ1 is chosen to be 〈ξ1〉 = 1
2R , in which case the mass (4.3) vanishes. By

fixing this point on the Coulomb branch of U(1)1 implies that the fiber over the single charge locus

C2 to be resolved. This is because the states from wrapping A1 and B1 are both massive, and the

mass of charged matter states is, as we recall, due to the volume of the fiber component. This is in

nice agreement with the geometry since the fibration is smooth by construction and the fiber over C2

is resolved in the first place. Moreover, the mass of the two states is seen to be equal for this specific

vev of 〈ξ1〉 and both M(A1) and M(B1) have mass m = 1/2R. This implies that the volume, i.e the

area of the two fiber components is equal, as required by the presence of a multi-section, which was

pointed out in [84].

Since the Higgs state has charge 2 we expect two vacua [102] in the three-dimensional theory after

the Higgsing. Indeed, as seen below (4.3) the periodicity of the Wilson line ξ1 is reduced by a factor

of q−1. If this was the only field it has no further implication, but in presence of the field of charge

one there are now two equivalence classes of solutions. The geometric reason for the two solutions lie

in the blow-down to the singular fibration. For the conifold transition outlined above we considered

the blow-down realised by setting s ≡ 1. The singular quartic hypersurface in P1,1,2 arise as the curve
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Figure 4.4: The fiber over the charge-two locus C1. As in Figure 4.1, blue denotes the section, in
the resolved model identified with S, and green the section U .

A2 collapses. The other possibility is the collapse of B2, as depicted in Fig 4.4. By constructing

the Jacobian form, through a birational transformation into the Weierstrass form one find that the

fibration is singular both at the charge two locus C1 and the singly charged curve C2
5. To study this

vacuum we first identify the M2 brane states that is massless. Over C2 it is the curve B1 that shrinks

to zero size, as it is not intersected by the zero-section. Over C2 the component B2 is the collapsing

cycle. This is shown by mapping the singular Weierstrass model back to a Bl1P1,1,2 fibration which,

crucially, corresponds to a different blow-down than in the model previously considered. In particular

the cycle B2 shrinks to zero size in this blow-down.

We can therefore identify the massless states as coming from MB2 and MB1 . Both these states are

massless only at the origin 〈ξ1〉 = 0 of the Coulomb branch. By giving a vev to the Higgs state MB2

fixes the point on the Coulomb branch where MB1 is massless. This is equivalent to the vanishing

volume of B1, and thus at this point the singly charged locus is not resolved. This is the manifestation

of the statement that the Jacobian fibration of the deformed geometry does not admit a Kähler

resolution [29]. We point out that in the two vacua, or geometrically in the P1,1,2 fibration and its

Jacobian, the Higgs fields are two different fields. In one case it is MB2 and in the other case MA2 and

they are modes at different KK levels. Since the higgsing is by different fields in the two cases, the

two vacua we are discussing are two different Higgs branches in the three dimensional theory, coming

from a four dimensional theory on a circle. The general picture is that a Higgs field of charge n in

four dimensions leads to n three dimensional vacua, each associated to one of the n KK modes. The

geometric manifestation of the n vacua is n different blow-downs to a singular fibration. These n three

5If we turn off the doubly-charged locus C1, e.g by choosing a base in which the intersection of b2 and c3 is zero, we
reach the U(1)-restricted model studied in [77,89], in which the singly-charged locus has been analysed in detail.
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dimensional vacua are physically distinct, and are not mere reformulations of the same physics.

4.4 The symmetry group in three and four dimensions

In the four dimensional F-theory limit the remaining symmetry group after the Higgsing is Z2. In

three dimensions there are however different gauge groups in the two physically distinct higgsings in

the P1,1,2 fibration and in the Jacobian fibration. In the Jacobian the Higgs field M(B2) has charges

(0, 2) and therefore the gauge group is broken as U(1)0 × U(1)1 → U(1)0 × Z2. The Higgs is not

charged under the KK U(1) which is therefore unbroken. In the P1,1,2 fibration the Higgs state M(A2)

has charges (1,−2). As we have seen this higgsing breaks one U(1) while the linear combination of

U(1)’s under which the Higgs is uncharged remains unbroken. By changing the basis for the two U(1)

generators appropriately the breaking is seen to be U(1)0 × U(1)1 → U(1)2 and there is no discrete

gauge group remnant, cf. appendix B.1. This further shows how the two three-dimensional vacua are

physically distinct.

In the second case where there is no discrete symmetry the Higgs has charge one under U(1)U i.e it

is a first excited KK mode. This implies that the background has a vacuum expectation value for the

Higgs which is spatially varying along the circle. This mixes the geometric action on the wavefunctions

associated to translations along the circle with the internal gauge symmetry. Since it is a first excited

KK mode but has charge 2 under the four dimensional U(1)S−U the remaining symmetry

U(1)2 = U(1)S+U = U(1)S−U + 2U(1)U (4.4.1)

corresponds to moving at twice the rate along the circle as along the internal U(1). In particular it

means that the Z2 subgroup of U(1)S−U corresponding to a shift in phase by π takes us a full path

around the circle, i.e acts trivially. The Z2 is therefore actually a three dimensional symmetry and

becomes a subgroup of the remnant three dimensional symmetry U(1)S+U constructed from U(1)U
and the zero mode of U(1)S−U .

This picture of Higgsing has a nice reformulation in terms of a Stückelberg mechanism. The usual

map is to write the Higgs field as a modulus and a phase, φ = heic, the phase part being associated

with an axion c. Now since the Higgs has a first KK mode profile it depends on the circle coordinate

y as eiy, which implies a linear profile for the axion field. The field therefore has an associated flux

when integrated over the circle. This matches the observation in [120] (see also [101, 117]) that the

F-theory T-dual perspective to the M-theory geometry should be a fluxed reduction over a circle. The

flux then breaks the KK U(1)U while the fact that the Higgs has charge 2 under the four dimensional

U(1)S−U means that the axion couples to it with coefficient 2 and (linearly) breaks it. The resulting

three-dimensional U(1) is then the combination that remains of the zero mode of U(1)S−U and U(1)U
as discussed above.

It remains to show how the four-dimensional Z2 symmetry emerges from the three-dimensional

U(1) symmetry. To understand this we consider the states in the theory. Before the gauge symmetry

breaking there is a tower of KK states associated to the circle reduction. In the M-theory compacti-

fication the KK number n corresponds to the wrapping number of the M2-brane on the full fiber. In

order to uplift a three-dimensional field to a four-dimensional one we need the full set of KK states

to recreate the four dimensional field. The KK modes span the full set of harmonic functions when

expanding the wavefunction of the four-dimensional field in the fourth dimension, which is the decom-

pactification of the circular dimension. Since the KK U(1) is a section of the singular P1,1,2 fibration

it intersects the fiber in a point, and for each full fiber wrapping the KK number is increased by one,

eventually filling the full KK tower. After the higgsing, i.e the deformation there is no zero section

nor an extra section and the surviving symmetry is U(1)2 = 2U(1)0 + U(1)1. From (4.3.3) we see
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that this combination corresponds to U(1)U + U(1)S which correspond to the class U + S before the

deformation. By deforming this sum becomes the bisection of the genus-one fibration. The wrapping

number of the full fiber by the bisection is now 2, and the KK number increase in steps of two. We see

from (4.3.4) that the U(1)2 charges of the singly charged states M(A1) and M(B1) are odd. Since the

KK numbers differ by two, the full Kaluza-Klein tower of these singly charged states have only odd KK

numbers. When uplifting this expansion of odd KK modes to four dimensions the four dimensional

field will be odd under a reflection parity in the fourth direction. This is an effective Z2 symmetry in

four dimensions, as any odd number of fields will integrate to zero. The same Z2 symmetry seen from

the perspective of the singular Weierstrass model will be discussed in the next chapter.

4.5 Torsion homology and genus one fibrations

In this section we discuss the appearance of a Z2 symmetry in four dimensions from the singular

Weierstrass form we introduced in the previous section. We will show how torsional homology cycles

appear in the geometry and explain the relation to the discrete symmetry in the F-theory limit. To

put torsion homology cycles into the perspective of string compactifications we turn briefly to type IIA

compactifications on a Calabi-Yau 3-fold X3. Here the appearance of a closed string Ramond-Ramond

(RR) Zk symmetry is in one-to-one correspondence with the existence of torsional (co)homology

groups on X3 [74]. Since there are no propagating degrees of freedom associated with a discrete

symmetry, the ’smoking gun’ for a Zk symmetry in four-dimensional field theory is matter charged

under the symmetry. In this case the existence of Zk charged particles and strings [102]. In field

theory these arise a priori as operators describing the associated probe particles and strings. In a UV

completion including gravity all such operators are conjectured to be realized as physical objects [102].

In compactifications of type IIA string theory these Zk charged particles and strings are due to wrapped

D2- and D4-branes along k-torsional 2- and 3-cycles. By definition, k copies of such k-torsional cycles

are homologically trivial and thus k copies of the Zk charged particles and strings are uncharged and

can thus decay [74]. Furthermore, the existence of such torsional 2- and 3-cycles implies also torsional

cocycles in cohomology. In particular the existence of a torsional 3-form α which by definition satisfies

dw = k α (4.5.1)

for some 2-form w. The type IIA 3-form C3 in the RR sector can be decomposed as C3 = A∧w + . . .

gives rise to a massive U(1) gauge potential A. Because it aquires a mass the gauge symmetry group is

in fact broken to Zk. The effective action in four dimensions features precisely this discrete symmetry.

To summarize, a closed string Zk symmetry in type IIA on X3 manifests itself geometrically in the

fact that [74]
TorH2(X3,Z) ' TorH3(X3,Z) = Zk,
TorH3(X3,Z) ' TorH4(X3,Z) = Zk.

(4.5.2)

Because of the duality between type IIA theory and M-theory one expect that torsion homology has

a role to play also in F-theory compactifications. Until our work [11] the question on how this comes

about was not answered. The reason for this was that the genus-one fibrations studied [10, 29, 70, 84,

101,117] all had homology groups with trivial torsion subgroups [121]. In this section we present the

link between torsion cycles and discrete symmetries in F-theory by discussing both the field theory

and the associated fibration. For concreteness we will stick to the example of a Z2 symmetry and to

the quartic hypersurface in P1,1,2 which is genus-one fibered with a bisection. The conclusions however

extend immediately to larger discrete symmetry groups.

As we have seen, a Z2 symmetry in the effective action of F-theory compactified to 2n large

dimensions is related to a pair of fibrations: the hypersurface P2 and the Jacobian PW . These
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fiber over C1

A2 B2

fiber over C2

A1 B1

Figure 4.5: The fiber structure over the singlet curves C1 and C2 taken from [10] with blue denoting
the section S and green the section U .

are both fibrations over a base B of complex dimension 5 − n. The fibration P2 is the genus-one

fibration given by a general quartic in P1,1,2 [29]. PW is the singular Jacobian fibration of P2 whose

Weierstrass form has a zero-section, but also terminal singularities. The number of distinct fibrations,

or isomorphism classes of fibrations that share the same Jacobian fibration is counted by the Tate-

Shafarevic group, and the Zk symmetry in the F-theory compactification on a genus-one fibration

is related to k equivalence classes of fibrations [84]. In our Z2 example the two classes in the Tate-

Shafarevic group is the trivial element, the Jacobian fibration PW itself, and a representative of the

second element is P2. The two fibrations give rise to one and the same F-theory compactification in

2n dimensions, but the M-theory compactifications to 2n− 1 dimensions are different, as we already

have seen in previous section. By taking into account that the Higgs vacuum expectation value can

vary along the compactification circle we put our results into the context of F/M-theory duality for

genus-one fibrations where a flux is introduced on the circle in the F-theory limit [101, 117, 120]. For

simplicity we will mostly consider the case n = 3 which correspond to a six dimensional F-theory

compactification, and compactifications of M-theory to five dimensions6. This means that matter is

localised at points in the base B2, and that there are no Yukawa points realized at codimension three

loci. We are interested in torsion cycles and the F-theory limit here and not in discrete selection rules,

which we will discuss in the SU(5) examples in the following sections.

4.5.1 Torsion from the Weierstrass fibration

The Jacobian fibration associated with the fibration P2 [29, 84] has the non-generic Weierstrass rep-

resentation

PW = y2 − x3 − fxz4 − gz6 (4.5.3)

with [x : y : z] homogeneous coordinates of P231 and

f = e1 e3 −
1

3
e2

2 − 4e0 e4, (4.5.4)

g = −e0e
2
3 +

1

3
e1e2e3 −

2

27
e3

2 +
8

3
e0e2e4 − e2

1e4

for

e0 = −c0 +
1

4
b20, e1 = −c1 +

1

2
b0b1,

e2 = −c2 +
1

2
b0b2 +

1

4
b21, e3 = −c3 +

1

2
b1b2,

6In the end of section 4.5.1 we will comment on the four dimensional case.
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e4 = −c4 +
1

4
b22. (4.5.5)

While P2 and PW have the same discriminant, their fiber structure are different [29]. The Weierstrass

model has a holomorphic zero-section, given by the intersection of the ambient divisor Z : z = 0 with

PW . Furthermore PW exhibits non crepant-resolvable I2-singularities over the specific locus C on B
over which the fiber in P2 is a smooth I2 fiber. The Weierstrass model PW is related via a conifold

transition to a smooth fibration P̂W . This resolved model can be identified with the geometry of

P1 in (4.1.1) by mapping the Weierstrass model to a P112[4]-fibration and resolving the latter into a

Bl1P112[4]-fibration over B2. The conifold transition occurs as the 2-step process

P̂W → PW |c4≡0 → PW . (4.5.6)

As pointed out in section 4.3 the crucial difference compared to the transition relating P1 to P2 is that

now in passing from P̂W → PW |c4≡0 the fiber component B2 and, simultaneously, B1 shrink to zero

size. Recall that in the transition P1 → P2 it is instead the curve A2 over C1 that shrinks. From the

intersection numbers in table 4.3.1 we deduce the Kähler cone on Bl1P112[4] relevant for the curves in

the fiber. In this choice of basis these are the divisor classes, or (1, 1)-forms, with positive intersection

numbers with all fibral curves. A Kähler form inside this Kähler cone is given by

J = t1 U + t2 (S + U)

with t1, t2 > 0. Integrating this two-form over the curves AI , A1, B2 and B1 yields∫
A2

J = t1,

∫
B2

J = 2 t2,

∫
A1

J = t1 + t2,

∫
B1

J = t2 .

In this way we get a parametrisation of the volumes of the irreducible curves over C2 and C1 in

terms of t1 and t2. The blow-down to the singular quartic P2 is therefore identified with the limit

t1 → 0, while the blow-down to the singular Weierstrass (4.5.6) corresponds to t2 → 0. The states

that become massless in the second case are M2-branes wrapping B2 (and also those wrapping B1).

The M2-brane on the vanishing B2 is the Higgs field which acquires a vev upon deforming the model

from PW |c4≡0 → PW . The states associated with B1 are mere spectators in this process. From table

4.3.1 we see that under U(1)U × U(1)S−U the Higgs field has charges (0, 2) and as a result it breaks

U(1)U × U(1)S−U → U(1)U × Z2. (4.5.7)

This result does not depend on the chosen basis for the two U(1)’s. Any other basis for the charges that

preservs the physics has to be related to the chosen one by a unimodular transformation. But a Higgs

field which is charged only under one of the U(1)s with charge 1 can’t be the image of the vector (0, 2)

under such a transformation. As the Higgs has charge 2 under one of the U(1)’s a compactification

of M-theory to five dimensions on PW does exhibit a Z2 symmetry. The Weierstrass model has a

zero-section which means that under the standard duality to F-theory in six-dimensions the U(1)U
embeds into the six-dimensional diffeomorphism invariance and only the Z2 symmetry remains. This

origin of the discrete Z2 in F-theory on PW is contrasted to how the Z2 arise in the P2 model.

Since no torsion cycles exist in the P2 hypersurface we now turn to the geometry PW . We will

show how the torsional cycles appear and that the group of torsion cycles is the discrete symmetry

group. To understand this we will analyze in detail the conifold transition from the smooth P̂W to

PW in more detail. The conifold transition occurs is in line with the well-known general analysis

of [122–124] except for some details which has not appeared in the F-theory literature before and

which are responsible for the appearance of torsion homology groups.

On P̂W the locus C1 = {b2 = 0} ∩ {c3 = 0} consists of N = [b2] · [c3] points on the base B2 of the

fibration over which the fiber factorises. Let us label the two fiber components by Bi
2 and Ai2 with
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blow down

to sing. Weierstraß

deformation

of sing. Weierstraß

Figure 4.6: Figure showing the boundaries induced after the conifold transition in the Weierstrass
hypersurface in P231. The divisor S is denoted in blue and U is denoted in green. After the transition
U does not develop a boundary and therefore is associated to the five-dimensional U(1)U symmetry.
On the other hand S develops two boundaries of the same orientation. The sum over all the points
Bi
I for each one of the two boundaries illustrated gives the torsional 3-cycle associated to the Z2

symmetry.

i = 1, . . . , N . Due to the fibration structure all Bi
2 are homologous to each other. This gives rise to

N −M = N − 1 homology relations of the form B1
2 = Bj

2 for j = 2, . . . , N . Each of these homology

relations is associated with a 3-chain Γ1j such that ∂Γ1j = B1
2 − B

j
2 which states the homological

equivalence of B1
2 and Bj

2. In the conifold transition the Bi
2 first shrinks to zero size and then, by

the deformation they get replaced by 3-spheres Si3
7 In [122–124] the general result that the 3-spheres

enjoy M = 1 homology relations was showed. Hence the number of independent spheres after the

deformation is N − 1.

At the same time as the Bi
2 shrink, also the fiber component B1 over the locus C2 shrinks to zero

size, but the deformation corresponding to switching on c4 does not deform the resulting singularities

into 3-spheres. This is another incarnation of the statement that on PW non-crepant resolvable I2

singularities in the fiber remain. We will comment more on these singularities in the following.

According to the analysis [122–124] of the conifold transition with M = 1, there must exist one

’magnetic’ 4-cycle which intersects each of the two-spheres Bi
2. This 4-cycle is identified with the

divisor S with intersection numbers

S ·Bi
2 = 2. (4.5.8)

Indeed, the rational section S wraps the entire fiber Ai2, and the two intersection points with Bi
2 are

evident from figure 4.1. Importantly, the other section U does not intersect the Bi
2 and therefore,

since the Bi
2 are fibral curves and there are only two divisor classes coming from the fiber. These are

U and S and thus he fibration structure guarantees that no other integer four-cycle exists intersecting

the Bi
2. In particular there exists no such divisor with intersection number 1 (as opposed to 2). After

shrinking the Bi
2 cycles to nodes and deforming them into Si3 they each induce a boundary on S

turning it into a 4-chain. At the intersection points on S the deformation three-spheres are glued in,

and as S ’ends’ on the Si3 all the deformation cycles constitute a boundary in homology.

Here we point out a crucial detail of the conifold transition P̂W → PW . The divisor S intersects

the two-cycles Bi
2 at two points and so they each induce two boundaries of the same orientation. Thus

the precise homological relation obeyed by the S3
i is

2 Γ = ∂Ŝ, Γ =
∑
i

Si3 (4.5.9)

7Recall that the deformation of a singularity introduces cycles in the mid homology. Here we are studying complex
three-fold fibrations, and hence the new cycles have 3 real dimensions.
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where Ŝ is the 4-chain arising from S in the deformation. This is illustrated in fig. 4.6. The torsional

cycle is hence identified with the 3-chain Γ as a Z2 element of TorH3(PW ,Z). Since the base B2 is

generic no other torsion elements occurs and so

TorH3(PW ,Z) = Z2. (4.5.10)

We stress that the appearance of the torsion cycle Γ as the boundary of the 4-chain Ŝ relies on the

fact that S intersects each of the shrinking 2-cycles Bi
2. Note that in addition, S also intersects

the shrinking fiber component B1 over C2 as is evident from table 4.3.1. The singular fibers over C2

remains after the deformation but it is possible [125] to resolve these singularities after a suitable blow-

up in the base B2. This will replace the former intersection points with S by an even-dimensional cycle

and thus does not induce any additional boundaries for the 4-chain Ŝ which could spoil the argument.

Consistently, the general analysis of [125] shows that after resolving the singularities by a blow-up in

the base the resulting geometry has non-trivial torsional cohomology.

As we have shown that TorH3(PW ,Z) = Z2 the universal coefficient theorem implies that on a

smooth manifold also TorH2(PW ,Z) = Z2. In order to identify these torsional cycles we study the

resolved Bl1P112[4]-fibration. Recall that this is the general form of a fibration with rank one Mordell-

Weil group. Since we are looking for a torsional 2-cycle we are interested in the homology classes

of the fiber components A1, B1, A2 and B2. Since there are only two homologically independent

sections these four fiber components must enjoy certain homology relations. This is because they are

fibral curves and hence only intersect the sections S and U . Therefore these intersection numbers, as

given in table 4.3.1, determine uniquely their homology classes. In particular we see that in homology

2B1 = B2, which means that there are 3-chains stretching between a point in the set of points C1 and

two points in the set C2 with a boundary 2B1 − B2. An illustration of this is given in fig. 4.7. Now

as we perform the conifold transition over the C1 loci the B2 shrink and then are deformed as S3s

and can no longer form boundaries to these 3-chains. Hence, essentially, the remaining 3-chain has

boundary 2B1 and should be identified with the torsional element. The complication is that before

the deformation the blow-down has to be performed and in this both B2 and B1 collapses, and as B1

shrinks the fibration becomes singular over the point set C2 in B2.

In order to find the torsional elements on the smooth space, the singularities at C2 must be resolved.

Here we do not perform the resolution explicitly but work under the assumption that a resolution can

be found. In this case the full fibration is smooth and the universal coefficient theorem applies. The

previously identified torsional 3-cycle implies an element in TorH2(PW ,Z) = Z2. In [126] a small

resolution of the base was discussed. This resolution is non-Kähler but could be used to identify

the torsional cycles. The other way, in terms of a full resolution by a blow-up of the base locus C2

introduces an exceptional divisor E2 on the base. This divisor replaces the points C2 and results in an

I2 fiber over a divisor in the base. This case is analogous to the introduction of SU(2) gauge symmetry

by an SU(2) singularity over a divisor. In [125] it was shown that at certain points Ĉ2 ⊂ E2 the fiber

type will enhance and give rise to matter charged under this SU(2). In this smooth fibration the

torsional 2-cycles would be indentified by 3-chains stretching between the points C1 and the matter

loci Ĉ2 as before. In an explicit example on would have to check that the blow-up in the base can be

performed in a crepant way.

Since we have shown how the non-trivial torsion homology arise in the PW model we can return

to the P2 fibration and see why the torsion is absent in this case. As in this case the A2 curve shrinks

the divisors S and U both develop a single boundary from each of the Ai2 of opposite orientation, see

fig. 4.8. This implies that neither U nor S can be identified with a torsion element. If we take the sum

S+U formed by gluing the boundaries together we get a 4-cycle. Note that if we chose to consider the

4-chain corresponding to S − U instead it would indeed have 2 boundaries of the same orientation at

each locus, but this would not imply torsion since these boundaries are just the boundaries of S and
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Figure 4.7: Figure showing the 3-chains stretching between a point in the set of points C1 and two
points in the set C2 in the resolved space. The boundary of the chain is therefore 2B1−B2. After the
deformation the boundary B2 is lost leaving a chain with a boundary 2B1 and thereby identifying B1

as the torsional 2-cycle.

blow down

to sing. quartic

deformation

of sing. quartic

Figure 4.8: Figure showing the boundaries induced after the conifold transition in the quartic
hypersurface in P112. The divisors S, denoted in blue, and U , denoted in green, both develop a single
boundary from each of the Ai2 of opposite orientation. The two boundaries are then glued together to
form the divisor S + U corresponding to the remnant five-dimensional U(1) symmetry.
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U , which have ’half’ the boundary of S − U . Indeed, the analogue of the construction pictured in fig

4.7, but for shrinking A2 components imply homology relations between the fiber components. But

in this case there is no double intersection points and as the Ai2 shrinks it only implies that A1 = B1

in homology and no any torsion elements.

By Poincaré duality the existence of a Z2 torsional 3-cycle implies the existence of a 3-form α such

that

2α = dw. (4.5.11)

The 2-form w is not closed and is the Poincaré dual to the 4-chain Ŝ and can be interpreted as the

generator of the Z2 symmetry. Expanding the M-theory 3-form C3 as C3 = A ∧ w + . . . gives rise to

a massive U(1) gauge field in five spacetime dimensions. This corresponds precisely to the U(1)S−U
gauge symmetry which gets broken by the Higgsing (see [88] for a discussion of this mechanism in the

context of F-theory).

We now turn to discuss further physical significances of the identified torsional cycles8. A gauge

theory with a Z2 symmetry has a set of Wilson line operators [102]. In the case that the matter

spectrum contains particles with electric Z2 charge the line operators can be seen as the corresponding

world-lines. In a quantum field theory the Wilson line operators exist even in the absence of the

charged particles but in a completion of the gauge theory that include gravity it is conjectured [102]

that all possible charges must be populated by physical states, in this case the charged particles. To

appreciate how this conjecture is indeed confirmed in our M/F-theoretic setting, consider the five-

dimensional effective field theory associated with M-theory compactified on PW . The Wilson line

operators describe the word-line of M2-branes wrapping the identified torsional 2-cycles, which do

exist as physical particles, in perfect agreement with the above conjecture. One might wonder if a

modification of the geometry would be possible that gives rise to a Z2 gauge theory without such

physical Z2 charged particles. As we have seen, the torsional 2-cycles wrapped by the associated M2-

branes are related to the fibre components over C2 before the deformation. The class of C2 depends

on the class of the coefficients ci and bi defining the Weierstraß model. Recall that these transform as

sections of certain line bundles on the base. One might try to exploit the existing freedom in choosing

these line bundles to arrange for the cohomology class of the locus C2 to be trivial, in which case no

Z2 charged states would exist. It is easy to see by direct inspection of the coefficient classes (cf. e.g.

Table 1 of [10]), however, that this also removes the Higgs field along C1 and thus destroys the Z2

gauge theory in the first place. This is of course in agreement with the universal coefficient theorem

which guarantees that TorH3(PW ,Z) ' TorH2(PW ,Z).

In five dimensions, the magnetic dual to an electrically charged particle is a string. In our setting

these magnetic objects again exist as physical objects arising from M5-branes wrapping the 4-chain

D̂. Since D̂ has the boundary 2 Γ, one can consider a configuration consisting of an M5-brane on

the 4-chain D̂ together with two M5-branes on Γ. This is the M-theory analogue of the configuration

considered before in [124] with the important difference that here the M5-branes on the boundary

of D̂ give rise to two membranes in five dimensions ending on the (‘magnetic’) string. This again

realises the expectations based on the general framework of Z2 gauge theory described in [102]: In a

four-dimensional Zk gauge theory, k units of flux tubes (strings) end on a magnetic monopole to turn

the full configuration into a stable object, and in five dimensions the strings and magnetic monopoles

become membranes and ‘magnetic’ strings.

8See [74] for an analogous analysis in four-dimensional Type II compactifications.
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Figure 4.9: SU(5) top 2 over polygon 6 of [19] together with its dual polygon, bounded below by
the values zmin, shown next to the nodes.

4.6 Models with SU(5) gauge symmetry

In this section we combine the U(1) and Z2 symmetries studied previously with additional non-abelian

gauge symmetry. Due to the appearance of additional charged matter and Yukawa interactions, we

will be able to lend further support to the role of the Z2 symmetry as a discrete selection rule for the

couplings of the theory. We present in the following sections the explicit models considered in [10].

We will implement an extra SU(5) gauge theory along a divisor W : θ = 0 on the base B. Among

the possible complex structure moduli restrictions giving rise to such a gauge group enhancement, a

special class is given by toric tops [71, 82]. In this approach the base sections bi and ck factorise as

bi = bi,jθ
j and ck = ck,lθ

l for suitable powers j and l and bi,j and ck,l generic. All such consistent

configurations for all 16 torus fibrations realised as toric hypersurfaces have been classified in [19],

including their corresponding non-abelian gauge symmetries. Using the techniques of [19], one finds

that there are five such inequivalent specifications compatible with an SU(5) gauge symmetry along

θ = 0 for the U(1) model [20, 83, 92] described in section 4.1. For the Z2 model of section 4.2 there

are three inequivalent tops [20]. But we should note here that the five tops in the U(1) case can

be matched by the three tops in the Z2 case by the additional symmetry of the fiber polygon after

removing the point corresponding to the ambient fiber coordinate s.

4.6.1 The SU(5)× U(1) case

The details of the SU(5)× U(1) models have already been analysed in [83], cf. appendix B.3, but for

the convenience of the reader we will repeat here the derivation of the most important results. We

begin with the model described by the second SU(5) top [92] over polygon six in the enumeration

by [19], see fig. 4.9. The proper transform of the hypersurface equation after resolution takes the form9

P
SU(5)
1 = sw2e1e2 + b0s

2u2we2
0e

2
1e2e4 + b1suvw + b2v

2we2e
2
3e4

+ c0s
3u4e4

0e
3
1e2e

2
4 + c1s

2u3ve2
0e1e4 + c2su

2v2e0e3e4 + c3uv
3e0e2e

3
3e

2
4,

(4.6.1)

where to avoid clutter we use bi and ck instead of bi,j and ck,l although we really mean the latter when

referring to bi and ck in the sequel.

Using the hypersurface equation (4.6.1) and the following Stanley-Reisner ideal

SR-i : {vs, ve1, ve2, wu,we0, we4, ue3, se3, e0e3, e1e3, ue1, ue2, ue4, se4, e1e4, se2} , (4.6.2)

9Note the modified order of the exceptional divisors compared to [83].
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which corresponds to one of the phases of the resolution, we can work out the splitting of the fiber

along the GUT divisor W . The five fiber components are given by

P1
0 = e0 ∩ b1suv + se1e2 + b2v

2e2e4 , w = e3 = 1 ,

P1
1 = e1 ∩ b1sw + b2we2 + c2se0 + c3e0e2 , u = v = e3 = e4 = 1 ,

P1
2 = e2 ∩ b1w + c1e

2
0e1e4 + c2e0e3e4 , u = v = s = 1 ,

P1
3 = e3 ∩ b0we2e4 + b1vw + w2e2 + c0e2e

2
4 + c1ve4 , u = s = e0 = e1 = 1 ,

P1
4 = e4 ∩ b1v + e2 , u = w = s = e1 = 1 .

(4.6.3)

Due to the additional non-abelian singularity, the divisor (4.1.4) associated with the U(1) symmetry

of section 4.1 gets modified by the exceptional divisors Ei of the SU(5). The new U(1) generator,

which is uncharged under the non-abelian singularity, is given by

w = 5(S − U − K̄ − [b2]) + 4E1 + 3E2 + 2E3 + E4 , (4.6.4)

where the overall normalisation has been chosen such as to render all appearing U(1) charges integer

in the sequel.

Matter curves

To obtain the matter curves, we take the hypersurface equation (4.6.1) prior to resolution10 and

calculate from it f and g of its associate Jacobian fibration. From f and g we can calculate the

discriminant ∆ of the fibration, which agrees with the discriminant of (4.6.1). The divisor ∆ = 0 gives

the locus of the singular torus fibers. The vanishing order of ∆ at that locus relates to the order of

the singularity. We expand the discriminant in θ,

∆ ∼ θ5[b41b2(b1c3 − b2c2)(b21c0 − b0b1c1 + c2
1) +O(θ)] , (4.6.5)

to look for singularity enhancements beyond SU(5) along the GUT divisor. As we can see from the

above equation, these lie at

θ = b1 = 0 , θ = b2 = 0 , θ = (b1c3 − b2c2) = 0 , θ = (b21c0 − b0b1c1 + c2
1) = 0 .

At these four curves matter transforming under the SU(5) is localised. To determine the type of

matter, one can either explore the vanishing orders of f and g at these curves or directly analyse the

characteristics of the resolved fibers over these loci, which is the approach we will take in the following.

Along the curve11 C10−2 = W ∩ {b1 = 0} the fiber components

P1
0 = e0 ∩ e2(se1 + b2v

2e4),

P1
2 = e2 ∩ e0e4(c1e0e1 + c2e3)

(4.6.6)

factorise and the fiber topology becomes that of the affine SO(10) Dynkin diagram. The intersection

numbers of the new effective curves with the divisors E1 up to E4 are

P1
e0=e2=0 · (E1, E2, E3, E4) = (1,−1, 0, 1) ,

P1
e0=se1+b2v2e4=0 · (E1, E2, E3, E4) = (0, 1, 0, 0) .

(4.6.7)

These intersection vectors are just the U(1)-Cartan charges of M2-branes wrapping these P1s. There-

fore, they can be associated with states in the 10 and 10 representation of SU(5), respectively.

10To obtain the original singular form of (4.6.1) we just have to set e0 to θ and e1, e2, e3, e4 to one.
11The labeling of the curve will be justified a posteriori.
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At the locus C5−6 = W ∩ {b2 = 0} the fiber curve

P1
0 = e0 ∩ s(b1uv + e1e2) (4.6.8)

factorises. Calculating again the charges under the exceptional divisors, we find

P1
e0=s=0 · (E1, E2, E3, E4) = (1, 0, 0, 0) ,

P1
e0=b1uv+e1e2=0 · (E1, E2, E3, E4) = (0, 0, 0, 1) ,

(4.6.9)

which are the highest weights of the 5- and 5̄-representation of SU(5).

At the third enhancement locus, C54 = W ∩ {b1c3 − b2c2 = 0}, we find the splitting

P1
1 = e1 ∩ (c3e2 + c2s)(b1w + c2e0)/c2 (4.6.10)

when solving for b2 = b1c3/c2 away from {c2 = 0}. The charges under the exceptional divisors reveals

again states in the 5̄- and the 5-representation.

Finally, at the matter curve C5−1 = W ∩ {b21c0 − b0b1c1 + c2
1 = 0} we find the splitting

P3
1 = e3 ∩ (b1w + c1e4)(b21v + b0b1e2e4 − c1e2e4)/b21 (4.6.11)

when solving for c0 away from the locus {b1 = 0}. These two new states correspond again to the

fundamental and anti-fundamental representation of SU(5).

The U(1) charges for the matter states over the four curves C10−2 , C5−6 , C54 and C5−1 are obtained

by intersecting the new effective fiber components with the U(1) generator w given in (4.6.4). The

intersection numbers are −2, −6, 4 and −1, respectively, thereby justifying the labeling of the curves.

The intersection numbers with the fibral curves corresponding to conjugate states have opposite signs.

Finally, we should note that the structure of U(1) charged singlets is unaffected by the addition of

the non-abelian gauge group factor along the divisor W , even though the specific form of the defining

equations for the two types of singlet curves may differ slightly compared to the pure U(1) model. To

derive the singlet curves we must take into account the appearance of factors of θ in ck = ck,lθ
l etc.

The structure of the curves and their intersections is unchanged, though. Due to the overall—and

arbitrary—normalization factor of 5 in the U(1) generator (4.6.4), the singlets are now of charge 110

and 15.

Yukawa couplings on W

There are three types of Yukawa points with couplings involving only the states charged under the

SU(5). The 10−2-curve meets the 54- and the 5−6-curves at W ∩ {b1 = 0} ∩ {b2 = 0}. The fiber

enhances to the affine SO(12) diagram at this locus. By grouping the irreducible fiber components

one may construct a gauge singlet of states with the coupling 10−2 5̄6 5̄−4 + c.c.

The 10−2-curve intersects the 5−1-curve at the points W ∩{b1 = 0}∩{c1 = 0}. Over this locus the

resolved fiber takes the form of the affine SO(12) diagram. Constructing the gauge singlet identifies

the coupling 1̄02 5−1 5−1 + c.c.

The last Yukawa coupling between the 10−2- and the 54-states are located at the point W ∩{b1 =

0} ∩ {c2 = 0}. Here the enhancement type is E6 and the invariant coupling is 10−2 10−2 54 + c.c.

In addition, three types of Yukawa couplings between the fundamental fields and the singlets occur:

At the intersection of the 1±10-curve with the GUT divisor W , i.e. at W ∩ {b2 = 0} ∩ {c3 = 0}, the

fiber enhances to an SU(7). At this type of points the 5−6- and 54-curve intersect, and by computing

the charges of the split curves the Yukawa coupling 1−10 5̄6 54 + c.c. is found.
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Figure 4.10: SU(5) top over polygon 4 of [19] together with its dual polygon, bounded below by the
values zmin, shown next to the nodes.

At the intersection of the curves along which the 54 and 5−1 are localised, which corresponds to

the points

W ∩ {b1c3 = b2c2} ∩ {b21c0 − b0b1c1 + c2
1 = 0}, (4.6.12)

the fiber enhances to SU(7). Here the Yukawa coupling 1−5 54 5̄1 + c.c. is localised.

At W ∩ {b2 = 0} ∩ {b21c0 − b0b1c1 + c2
1 = 0}, where the 5−6- and the 5̄1-curves intersect, the fiber

looks again like an affine SU(7) Dynkin diagram. Thus we have the coupling 15 5−6 5̄1 + c.c..

Finally, the universal 1101−51−5 + c.c. exists at the intersection of the two singlet curves, as in the

model without SU(5) enhancement.

4.6.2 The SU(5)× Z2 case

In this subsection we will introduce an SU(5) singularity for the Z2 model. Since we are interested in

studying the relation of the U(1) and the Z2 model via Higgsing, we will take the top which becomes

the top of section 4.6.1 after introducing the point corresponding to s. In the list of SU(5) tops

of [20], this is the third top over polygon four, denoted τ4,3. The proper transform of the hypersurface

equation after resolving the SU(5) singularity reads

P
SU(5)
2 =e1e2w

2 + b0u
2we2

0e
2
1e2e4 + b1uvw + b2v

2we2e
2
3e4

+ c0u
4e4

0e
3
1e2e

2
4 + c1u

3ve2
0e1e4 + c2u

2v2e0e3e4 + c3uv
3e0e2e

3
3e

2
4 + c4v

4e0e
2
2e

5
3e

3
4 ,

(4.6.13)

where we used again bi and ck instead of bi,j and ck,l. The scaling relations in the ambient space are

given in appendix B.3. As in the U(1) case, we work out the fiber components over the divisor W .

They are given by

P1
0 = e0 ∩ b1u+ e1e2 + b2e2e3 , v = w = e3 = 1 ,

P1
1 = e1 ∩ b1uw + b2we2 + c2u

2e0 + c3ue0e2 + c4e0e
2
2 , v = e3 = e4 = 1 ,

P1
2 = e2 ∩ b1w + c1e

2
0e1e4 + c2e0e3e4 , u = v = 1 ,

P1
3 = e3 ∩ b0u2we2e4 + b1uvw + w2e2 + c0u

4e2e
2
4 + c1u

3ve4 , e0 = e1 = 1 ,

P1
4 = e4 ∩ b1u+ e2 , v = w = e1 = 1 ,

(4.6.14)

where we used the SR-ideal

SR-i : {v e0, v e1, v e2, w e0, w e4, u e3, e0 e3, e1 e3, u e2, e1 e4, v w u} (4.6.15)

corresponding to one of the phases of the resolution.
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Figure 4.11: The matter curves in W : {θ = 0} and the Yukawa couplings involving the SU(5)
charged matter in codimension three.

Matter curves

Calculating again the discriminant of the associate Jacobian fibration to (4.6.13) and expanding it in

θ yields

∆ ∼ θ5[b41(b21c0 − b0b1c1 + c2
1)(b22c2 − b1b2c3 + b21c4) +O(θ)] . (4.6.16)

Interestingly, this time we only find three matter curves charged under the SU(5). To identify the

type of matter along these curves we redo the analysis of the last section.

At C10 = W ∩ {b1 = 0} the following fiber components split,

P1
0 = e0 ∩ e2(e1 + b2e3) ,

P1
2 = e2 ∩ e0e4(c1e0e1 + c2e3) .

(4.6.17)

For the intersection numbers with the exceptional divisors Ei we find

P1
e0=e2=0 · (E1, E2, E3, E4) = (1,−1, 0, 1) ,

P1
e0=e1+b2e3=0 · (E1, E2, E3, E4) = (0, 1, 0, 0) ,

(4.6.18)

which are weight vectors in the 1̄0- and the 10-representation of SU(5), respectively. The fiber

topology is that of the affine SO(10) diagram. For later purposes we also give the intersection with U .

The bi-section intersects two of the P1’s with multiplicity one, specifically P1
1|b1=0 and P1

e0=e1+b2e4=0.

The first fundamental matter curve, which we will call the A-curve in the following, is C5A =

W ∩ {b21c0 − b0b1c1 + c2
1 = 0}, because along it P1

3 factorises as

P1
3 = e3 ∩

1

b21
(b1w + c1u

2e4)
(
b1(b1uv + we2 + b0u

2e2e4)− c1u
2e2e4)

)
. (4.6.19)

We used here that away from {b1 = 0} we may solve for c0 and resubstitute back into the equations

defining the fiber components. The intersection numbers for the two rational curves are

P1
e3=b1w+c1u2e4=0 · (E1, E2, E3, E4) = (0, 1,−1, 0) ,

P1
e3=b1(b1uv+we2+b0u2e2e4)−c1u2e2e4=0 · (E1, E2, E3, E4) = (0, 0,−1, 1) ,

(4.6.20)
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which correspond to weight vectors associated with two states in the 5̄- and the 5-representation,

respectively. The fiber topology is that of the SU(6) Dynkin diagram. The divisor class of the bi-

section U intersects the two adjacent nodes P1
0 and P1

1, each with multiplicity one. Note that these

are roots.

Solving for c4 along the third matter curve C5B = W ∩ {b22c2 − b1b2c3 + b21c4 = 0} we find the

factorisation

P1
1 = e1 ∩

1

b21
(b1u+ b2e2)

(
b1(b1w + c2ue0 + c3e0e2)− b2c2e0e2)

)
(4.6.21)

and the weights

P1
e1=b1u+b2e2=0 · (E1, E2, E3, E4) = (−1, 0, 0, 0) ,

P1
e1=b1(b1w+c2ue0+c3e0e2)−b2c2e0e2=0 · (E1, E2, E3, E4) = (−1, 1, 0, 0) .

(4.6.22)

These again correspond to states in the 5̄- and the 5-representation of SU(5), respectively. The fiber

forms again an SU(6) structure over C5B . The divisor U intersects the irreducible curves P1
0 and the

second curve in (4.6.22). Thus, over the B-curve the bi-section intersects one of the two new effective

curves responsible for the fundamental matter at this locus.

The Z2-charges of the states

As explained already at the end of section 4.2, we can use the divisor U to define a notion of Z2-charges

for the singlets. As in the presence of a U(1) gauge group we demand that the actual divisor whose

intersection numbers with the fiber P1s wrapped by the associated M2-branes give the charges fulfils

a suitable of horizontality condition, i.e. the intersection with the bi-section U should vanish. Hence

the appropriate divisor before adding the non-abelian singularities is not just U but

wZ2 = U − [b2] + K̄ . (4.6.23)

Similarly to the divisors we usually obtain from sections via the Shioda map, we also demand that

the intersections of such a divisor with all P1 fibers of the fibral divisors vanish, at least modulo two.

A divisor with this property is given by

wZ2 + 4
5 E1 + 3

5 E2 + 2
5 E3 + 1

5E4 . (4.6.24)

For convenience we rescale the above divisor such as to achieve integer intersections with all rational

lines and define

QZ2 := 5 wZ2 + 4E1 + 3E2 + 2E3 + E4 . (4.6.25)

The intersection numbers of this divisor with the five rational fibers of the divisors E0 to E4 are given

by

QZ2 · (P1
0, P1

1, P1
2, P1

3, P1
4, ) = (10, 0, 0, 0, 0) (4.6.26)

and thus vanish modulo 2 × 5, as demanded. Hence, QZ2 is a candidate to calculate a Z2-charge of

the matter states. To see this we calculate the intersection of QZ2 with the two fibral P1s over the

10-curve defined in (4.6.7) associated with the 1̄0 and 10 representation,

QZ2 · (P1
e0=e2=0 ,P1

e0=e1+b2e3=0) = (2, 8) = (2, −2), mod 10 , (4.6.27)

its intersection with anti-fundamental and fundamental fibral P1s over the 5A-curve,

QZ2 · (P1
e3=b1w+c1u2e4=0, P

1
e3=b1(b1uv+we2+b0u2e2e4)−c1u2e2e4=0) = (1, −1) , (4.6.28)
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the corresponding intersections with the fiber over the 5B-curve,

QZ2 · (P1
e1=b1u+b2e2=0, P1

e1=b1(b1w+c2ue0+c3e0e2)−b2c2e0e2=0) = (−4, 4) , (4.6.29)

as well as the charges of the states over the singlet curve,

QZ2 · (P1
+, P1

−) = (5, 5) = (−5, 5) mod 10 . (4.6.30)

As explained in appendix B.1, these charges generate at first sight a Z10 symmetry, which however

contains the center of SU(5). To determine the actual discrete symmetry group realised in addition

to the non-abelian SU(5) we must correctly divide out this center. Following appendix B.1, we can

shift the discrete charges of the fundamentals and antisymmetric states by 2n and 4n with n ∈ Z,

respectively, to find a canonical representative of Z10/Z5. Choosing n = −2 gives

(1̄0,10) : (10, −10) = (0, 0) mod 10 ,

(5̄A,5A) : (5,−5) (5̄B,5B) : (0, 0).
(4.6.31)

Recaling these charges by the inverse of the factor relating (4.6.24) and (4.6.25) gives us the co-prime

Z2-charges of the canonical representative of Z10/Z5.

Hence, QZ2 gives, as expected, well defined Z2-charges. In the sequel we will denote the Z2 charges

by a superscript (to distinguish them from the U(1) charges prior to Higgsing). The massless spectrum

thus consists of the fields 10(0), 5
(1)
A , 5

(0)
B plus conjugates and the singlet 1(1), see Figure 5.1.

Yukawa points

There is only one type of intersection points W ∩{b1 = 0}∩{c1 = 0} between the 10(0)-curve and the

fundamental A-curve. Here the fiber takes the form of an affine SO(12) Dynkin diagram. From the

fiber topology the coupling 10(0) 5̄
(1)
A 5̄

(1)
A + c.c. together is deduced. Clearly this is invariant under

the assigned Z2 charges.

By contrast, the fundamental B-curve intersects the 10(0)-curve at two types of Yukawa points.

At W ∩ {b1 = 0} ∩ {b2 = 0} the fiber takes again the form of an affine SO(12) Dynkin diagram. The

Yukawa coupling here is the 10(0) 5̄
(0)
B 5̄

(0)
B + c.c.. At W ∩ {b1 = 0} ∩ {c2 = 0} the fiber P1s intersect

in the form of the non-affine E6 Dynkin diagram. As we approach the points W ∩{b1 = 0}∩ {c2 = 0}
along the 10(0)-curve, the following splitting occurs:

P1
e2=c1e0e1+c2e3=0 → P1

e2=e0=0 + P1
e2=e1=0 ,

(0,−1, 0, 1) → (1,−1, 0, 1) + (−1, 0, 0, 0) ,

10 → 1̄0 + 5̄B .

(4.6.32)

Following the logic of [60] this gives a 10(0) 10(0) 5
(0)
B + c.c. Yukawa coupling.

The intersection locus of the singlet locus C with the fundamental matter curves can be shown to

take the form C
5
(1)
A

∩ C
5
(0)
B

∩ {b0b22c1c2 − b21b2c0c3 − b2c2
1c3 + b31c0c4 + b1c

2
1c4} by using the prime ideal

decomposition. It may be checked that this is a codimension three point lying in the GUT divisor.

Consistently, the fiber over these points degenerates to form an SU(7) Dynkin diagram. This indicates

a Yukawa coupling 5
(1)
A 5̄

(0)
B 1(1).
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4.6.3 Interpretation

The observed structure of matter curves and Yukawa interactions is indeed consistent not only with

the appearance of a discrete Z2 selection rule for the SU(5) model of section 4.6.2, but in particular

also with the interpretation of this selection rule precisely as the discrete remnant of the U(1) gauge

group realised in the SU(5)×U(1) fibration of section 4.6.1 upon Higgsing along the 110 state. The Z2

selection rule manifests itself in the appearance of two distinct fundamental matter curves C
5
(1)
A

and

C
5
(0)
B

and the fact that the corresponding states enjoy different couplings: After all, while the coupling

10(0) 10(0) 5
(0)
B + c.c. is realised, an analogous coupling of the form 10(0) 10(0) 5

(1)
A + c.c. is absent from

the geometry even though this coupling would be allowed on the basis of the SU(5) symmetry. This

and the structure of the remaining Yukawas is consistent with our Z2 charge assignments.

Moreover, comparing the SU(5) × U(1) and the SU(5) × Z2 models, the curve C
5
(0)
B

is the result

of recombining the matter curves C54 and C5−6 upon Higgsing the 110 states, while the curve C
5
(1)
A

and C53 are to be identified. Geometrically, if we un-Higgs the Z2 to U(1) by setting c4 = 0, the

curve C
5
(0)
B

splits into C54 and C5−6 . The recombination of the two curves upon Higgsing is possible

due to the existence of the Yukawa coupling 5−65̄−4110 + c.c.. As 110 develops a VEV, a holomorphic

off-diagonal mass term for the fields 5−6 + c.c. and 54 + c.c. is induced such that only a single type of

fundamental fields along the recombined locus remains.

Note that naively it might seem that due to the normalization of the U(1) charges in presence

of SU(5) charged matter, the remnant discrete selection rule upon Higgsing the singlet field 110 is

Z10 and not Z2. However, a Z5 subgroup thereof is already accounted for by the center Z5 of the

non-abelian SU(5). In conclusion only an extra Z2 selection rule remains in addition to the selection

rules due to the SU(5) gauge symmetry. The details of the embedding of the center group and how

things can change if we go to other gauge groups in the A-series, we refer the reader to appendix B.1.

4.7 R-parity by Higgsing a U(1) in F-theory

As a second example we present, in this section, an SU(5) × Z2 GUT model in which the discrete

symmetry can be identified with R-parity. In this realisation of the non-abelian gauge symmetry the

matter spectrum has different charges under the discrete group. We will see that the spectrum in this

model agrees with the embedding of the MSSM with R-parity into the SU(5) GUT model. The model

we study here is related via Higgsing to the SU(5) × U(1) model which has been constructed as top

4 over polygon 6 in [83]. The hypersurface equation of this resolved SU(5)× U(1) fibration takes the

form
w2se2e

2
3e4 + b0s

2u2we0e3e4 + b1suvw + b2v
2we1e2

+ c0s
3u4e3

0e1e3e
2
4 + c1s

2u3ve2
0e1e4 + c2su

2v2e2
0e

2
1e2e4 + c3uv

3e2
0e

3
1e

2
2e4 = 0 .

(4.7.1)

The Shioda map of the extra section is

W = 5(S − U − K̄ − [b2]) +
∑

miEi , mi = (2, 4, 6, 3). (4.7.2)

Since the analysis of the charged matter representations and Yukawa couplings for this model has been

performed in [83], we merely restate the results here. Along W ∩ {b1 = 0} the antisymmetric 10−1

is found. In addition, there are three fundamental matter curves. At W ∩ {b2 = 0} the states in the

57 + c.c. are located. Along W ∩ {b1c0 − b0c1 = 0} the 52 + c.c. states are found and over the curve

W ∩ {b22c1 + b1c2 − b21c3 = 0} 5−3 + c.c. matter is localised.

There are two types of codimension-three enhancement points giving rise to Yukawa couplings

among the SU(5) charged matter. At W ∩ {b1 = 0} ∩ {b0 = 0} the coupling 10−1 10−1 52 + c.c. is
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Figure 4.12: SU(5) top over polygon 4 of [19] together with its dual polygon, bounded below by the
values zmin, shown next to the nodes.

Figure 4.13: fiber topology at the Yukawa point W ∩ {b0 = 0} ∩ {b1 = 0}.

located, and at W ∩{b1 = 0}∩{c1 = 0} the 1̄01 5−3 52 +c.c. is found. There is also a non-flat point at

W ∩ {b1 = 0} ∩ {b2 = 0}. The presence of this point has no effect on the following discussion. By an

appropriate choice of the base for the fibration this point can be forbidden. In addition, all Yukawa

couplings involving the singlets allowed by the SU(5) × U(1) gauge symmetry are indeed realised,

specifically 1−10 57 5̄3, 1−5 57 5̄−2, 15 5−3 5̄−2 and of course 110 1−5 1−5, plus their conjugates.

Giving a vacuum expectation value to the states in the 1±10 representation breaks the U(1) sym-

metry again to a remnant Z2. The Higgsed model is described by the first top over polygon 4, denoted

τ4,1 in [20], which gives for the hypersurface equation of the fourfold the following polynomial:

w2e2e
2
3e4 + b0u

2we0e3e4 + b1uvw + b2v
2we1e2

+ c0u
4e3

0e1e3e
2
4 + c1u

3ve2
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2v2e2
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2
1e2e4 + c3uv

3e2
0e

3
1e

2
2e4 + c4v

4e2
0e

4
1e

3
2e4 = 0.

(4.7.3)

From the class U of the bi-section we construct the divisor

QZ2 = 5wZ2 + 2E1 + 4E2 + 6E3 + 3E4, wZ2 = U − [b2] + K̄ , (4.7.4)

which has intersection number zero (modulo ten) with all fiber components in codimension one such

that the roots are uncharged under the Z2 generator.

Along the GUT divisor W we now find only three, as opposed to four, matter curves. At W ∩{b1 =

0} the enhancement is of SO(10) type, and by computing the intersection numbers of the split curves

with the exceptional divisors Ei we find weights of the anti-symmetric representation. Computing also

the Z2 charges, which we denote again by a superscript, gives states in the 10(1) and 1̄0(1).

Along the two curves at which the fundamental representations are localised the enhancement type

is SU(6). Along W ∩ {b1c0 − b0c1 = 0} we find states in the 5(0) + c.c. These are the only invariant

states under the action of Z2. Along the last matter curve W ∩ {b1b22c2 − b21b2c3 + b31c4 − c1b
3
2 = 0}

there is a 5(1) + c.c.
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There are altogether three types of enhancement points in codimension three. At W ∩ {b0 =

0}∩{b1 = 0} the 101- and the 50- curve intersect. Here the fiber topology is of non-standard, E6-like,

form where the three inner nodes all intersect in one point, see Figure 4.13. At this point the coupling

10(1) 10(1) 5(0) + c.c. is localized. The second Yukawa coupling is found at W ∩ {b1 = 0} ∩ {c1 = 0},
which is a point of SO(12) enhancement. This is where all the three SU(5)-charged matter curves

meet, and we confirm the coupling 1̄0(1) 5(0) 5(1) + c.c. from the fiber topology. Finally, the two

distinct 5-curves intersect at the point C5(0) ∩ C5(1) ∩ {b32c0 − b0b22c2 + b0b1b2c3 − b0b21c4 = 0}. This

is computed as the prime ideal decomposition of the intersection of the singlet locus at W with the

fundamental matter curves. Here the Yukawa coupling 1(1) 5(0) 5̄(1) + c.c. arises. Note that at the

point W ∩{b1 = 0}∩{b2 = 0} the fiber is again non-flat, and this point must be absent in order for the

fibration to give rise to a well-defined F-theory compactification. This can be achieved by choosing a

base space B with specific intersection properties.

The interpretation of this spectrum and the interactions is again consistent with the origin of the

Z2 as a discrete subgroup of the Higgsed U(1). The Higgsing recombines the curves with states 57

and 5−3, which couple to the Higgs field via the Yukawa 1−10 57 5̄3, into a single curve with states

of Z2-charge 1. This is evident by noting that this latter curve factorises accordingly as we un-Higgs

the U(1) by setting c4 = 0. All other curves are unaffected (since they do not couple to the Higgs

field) and the Z2 charges of the states after the transition equal the former U(1) charges mod 2. The

realised Yukawa couplings respect this Z2 symmetry and are related to the Yukawa couplings in the

SU(5)× U(1)-model as expected upon Higgsing.

Interestingly, the Z2 selection rule realised in this SU(5) GUT model coincides precisely with matter

R-parity: The only field with trivial Z2 charge is the 5(0) + c.c., which is consequently identified with

5Hu+5̄Hd field. The non-trivial representations under Z2 are taken as the GUT matter representations,

in particular the 5̄(1) is identified with 5̄m and the singlet 1(1) corresponds to the right-handed neutrino.

The singlet coupling 1(1) 5(0) 5̄(1) thus describes a Dirac mass for the right-handed neutrinos.

4.8 Summary

In this chapter we have studied the realisation of discrete gauge symmetries in F-theory compacti-

fications to four dimensions via Higgsing. In the setup we have considered, a discrete Z2 symmetry

originates as the remnant of a U(1) gauge symmetry upon Higgsing the latter by a field of charge

2. This amounts to a deformation [84] of the generic elliptic fibration with two sections [18] into a

bi-section fibration [29]. We have studied this process in detail focusing on aspects which are new to

four-dimensional compactifications and in the presence of an additional non-abelian gauge group. We

have shown that the Higgsing induces matter curve recombination, and that the resulting curves can

be associated a Z2 charge through a generalisation of the Shioda map for multi-sections. We have

further shown that the induced Z2 charge implies a selection rule on Yukawa couplings which leads

to couplings being absent in the geometry even without a U(1) symmetry forbidding them. This is

the first implementation of these aspects of discrete symmetries in a semi-realistic F-theory compac-

tification. In particular we have presented an SU(5) model with Z2 charge assignments which are

equivalent to R-parity in the MSSM. It would be very interesting to apply this technology to induce

other phenomenologically desirable discrete symmetries.

We have shown an explicit map between a three-dimensional field theory description of the Higgsing

and the geometry. This involves an interesting interplay between the Coulomb branch and Kaluza-

Klein modes. Further, we have been able to calculate the mixing of the three-dimensional Kaluza-Klein

gauge field with the U(1) field by calculating the charges of the Higgsed state. Importantly there are

two different M-theory compactifications, or M-theory phases associated with a genus-one fibration
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with a bisection. They can be seen as two different blow-downs of the smooth geometry. This is

expected to hold generally, in that n different M-theory vacua arise from a four-dimensional Higgs

field of charge n. They are associated to Higgsing n different KK modes in the compactification

on a circle. The corresponding geometric point of view is that the existence of n vacua correspond

to n different blow-downs. We highlight that these vacua are really physically distinct and do not

correspond to a different formulation of the same physics.

From the F-theory perspective a Zn discrete symmetry is associated with the n isomorphism classes

of inequivalent genus-one fibrations with the same Jacobian. These form the Tate-Shafarevich group,

of which the Jacobian represents the trivial element. For simplicity we have studied the n = 2 case

in this work, where there are two different fibrations; P2 and PW . The smooth P112[4]-fibration P2

and its singular Jacobian fibration PW in Weierstrass form [29]. Compactifications on P2 have been

studied in quite some detail recently in [10,29,70,84,101,117].

We have showed in detail how compactification of M-theory on P2 gives rise to a fibral U(1) gauge

symmetry and discussed how this symmetry is lifted to a Z2 symmetry in the F-theory limit. By

contrast, M-theory on PW yields fibral gauge group U(1) × Z2, of which only the Z2 part survives

in the F-theory limit. Consistently with field theoretic expectations based on the different M-theory

compactifications on P2 and PW , it is only on PW that torsional homology arises. We have explicitly

identified Z2 torsional 2- and 3-cycles by analyzing a birational blowup-up of PW . On P2, on the other

hand, torsional homology appears only in the formal sense of a Z2 torsional fibral 2-cycle modulo the

fiber class. It would be interesting to explicitly generalize our analysis of the appearance of torsion to

fibrations which give rise to higher discrete symmetry groups.

Finally we note that fibrations with Mordell-Weil Zn torsion, treated in chapter 3 and fibrations

with n-sections are interchanged by mirror symmetry in the fiber [70]. This is observed for the 16

hypersurface representations of tori, where the dual reflexive polygon with Zn Mordell-Weil torsion

has a Zn discrete symmetry group in F-theory. This suggests an intriguing connection between the

Tate-Shafarevich group underlying discrete symmetries and the torsion component of the Mordell-Weil

group of rational sections, which would be exciting to further study in more detail.
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Chapter 5

Gauge fluxes on genus-one fibrations

The discovery that F-theory can be consistently compactified not only on elliptic fibrations but also

on genus-one fibrations has significantly enlarged the set of plausible geometries for F-theory models.

In the previous chapter we have given a detailed account for the relation between the fiber structure,

the duality between F-theory and M-theory and the origin of discrete symmetry in compactifications

on genus-one fibrations. The natural next step in the study of F-theory backgrounds without zero

section is the inclusion of G4 flux. As mentioned in section 2.6 the G4 flux in F-theory unifies the

closed string fluxes and the gauge fluxes from the open string sector. In this chapter we will focus on

fluxes corresponding to the gauge sector. The study of such fluxes has received a lot of attention in

recent F-theory literature, including [31,46,47,59–63,83,88,89,93,95,99,127–133].

Extending the study of G4 flux to genus-one compactifications was initiated in [10] by the author

and collaborators, followed up by the work [12] on which this chapter is based. In particular we present

the explicit examples and calculations from [12]. We discuss in the following which consistent flux

solutions that can be turned on in a F-theory model with discrete symmetry. Furthermore we show

how to systemize the search for all gauge fluxes in multi-section fibrations as well as elliptic fibrations.

The first question to answer is how to generalise the transversality conditions that ensure a correct

uplift from M-theory in three dimensions to the four dimensional F-theory compactification. In section

5.1 we will show how the standard transversality condition is to be modified. The zero-section in (2.6.6)

provides an embedding of the base B into the fibration X while an n-section on the other hand is an

embedding of an n-fold cover of B. The essential solution is that the zero section is to be replaced

by the n-section in the transversality conditions. This relies on the correct identification of a Kaluza-

Klein U(1) associated with the multi-section, as discussed in depth in the previous chapter. In general

the divisor class of the embedding multi-section must be corrected such as to single out the KK U(1)

relative to the Cartan U(1)’s of any additional non-abelian gauge group. The details of this solution

are presented in section 5.1 which extends the introduction to F-theory flux in section 2.6. In the

subsequent sections our proposal for the generalised consistency conditions is subjected to a number

of non-trivial tests.

In section 5.2 we use the generalised transversality conditions to construct all vertical flux solutions

for a bisection fibration with F-theory gauge group SU(5)×Z2. Here we review the model from section

4.6.2 [10] and use it as an explicit example background. Throughout this chapter we take the fibration

to be defined over a generic base space B. This implies that our general solution is spanned by those

fluxes that are guaranteed to exist in the fibration for any choice of the base manifold. We show also,

in section 5.2.3, that the basis for the vertical fluxes can be written in terms of the SU(5) matter

surfaces i.e the 4-cycles given by fibering the split curves in the fiber over the matter loci in the

base. In addition we study a certain non-vertical flux which is directly linked to the existence of the

105
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bisection and which turns out to be crucial for a consistent conifold transition. For this set of fluxes

we compute the chiral indices of all matter representations in full generality and show that the fluxes

that satisfy the generalised transversality condition do not induce any SU(5) anomaly. This serves as

a first non-trivial check of our proposal.

Further consistency checks can be obtained from the conifold transition to the model with SU(5)×
U(1) gauge group. In the general setting one expect the gauge fluxes on both sides of the transition

to be related such that the induced D3 charge and the chiral indices do not change. Therefore we

construct also all vertical gauge fluxes in the elliptic SU(5) × U(1) model in section 5.3. We use

the same methods as in the SU(5) × Z2 geometry and since the fibration has a zero section the well

established standard transversality conditions apply. Under the conifold transition a matching relation

between the two sets of fluxes is found which leaves the D3 tadpole and the chiral spectrum invariant.

This constitutes another consistency check of the flux construction. This kind of matching over the

conifold transition has been demonstrated before [59, 89] in the transition between the SU(5)× U(1)

restricted Tate model to a generic SU(5) Tate model.

In the last part of this chapter, in section 5.4, we address two subtle and related issues, the flux

quantization condition and the cancellation of discrete gauge anomalies. For the explicit SU(5)× Z2

and SU(5) × U(1) fibrations under consideration the quantization condition can be cast in terms of

intersection number of base divisors. In order to have integral chiral indices this amounts to arithmetic

constraints on these intersection numbers. These constraints ensure that that the term 1
2c2(M4) from

the quantization condition integrate to an integer on all matter surfaces. We conjecture here that

this constraint is satisfied when the considered fibrations are smooth. Furthermore, by assuming that

this holds and with our proposed transversality condition, this implies the cancellation of the discrete

gauge anomalies associated with the Z2 symmetry. For the genus-one fibration considered this discrete

anomaly must vanish [103, 134] because the discrete symmetry is non-perturbatively exacvt [43, 135].

This provides the final non-trivial test of our construction.

5.1 The transversality condition for fluxes on genus-one fibrations

In this section we propose a generalization of the well-known transversality conditions on G4-fluxes

on elliptic fibrations to fibrations with a multi-section only. The standard consistency conditions were

reviewed in section 2.6 and the importance of the divisor class corresponding to the Kaluza-Klein U(1)

in three dimensions was stressed. Here we present our proposal for a modified notion of transversality

for gauge fluxes in F-theory compactifications without section. The aim will thus be to find a substitute

for the zero-section, and re-analyse the lift from M-theory to F-theory. Our construction will apply

to a general genus-one fibration X4 with projection

π : X4 → B (5.1.1)

onto a generic 3-dimensional base space B. The n-section of the fibration is a multi-valued map

assigning to each point in the base locally n-points in the fiber which are globally exchanged by

monodromies. This defines an n-fold branched cover µn(B) of the base B inside X4 together with an

embedding

ιµ : µn(B) ↪→ X4. (5.1.2)

We will denote by N the divisor class of the n-section. Recall that in the absence of a zero section the

multi-section defines a KK U(1) in three dimensions [10,11,101,117]. The expansion of the M-theory

C3 field will hence contain the term AKK ∧ N . The KK U(1) specifies the lift from three to four
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dimensions in the F-theory limit and thus transversality of the flux is to be taken with respect to the

class N . In terms of the multi-section as an embedding we have that∫
X4

G4 ∧N ∧ π−1Da =

∫
µn(B)

ι∗n(G4 ∧ π−1Da) (5.1.3)

and by comparing to (2.6.6) we see that the analogue condition is∫
X4

G4 ∧N ∧ π−1Da
!

= 0. (5.1.4)

This guarantees that net flux vanishes through any 4-cycle in B and thus have zero legs in the fiber.

The second condition (2.6.7) must still hold and do not change when considering a genus-one fibration.

Bacause the multi-section still defines the notion of a KK U(1) this condition ensures that all elements

of the KK tower should have the same chiral index, exactly as in the case of an elliptic fibration.

In general the n-section intersects more than one of the irreducible curves in the Kodaira fiber

over a divisor with non-abelian gauge group. This implies that the Cartan fluxes associated with the

resolution divisors do not satisfy (5.1.4) in general. One may however construct a linear combination

N̂ = N +
∑
i

aiEi (5.1.5)

of the the class N and the resolution divisors such that the modified condition∫
X4

G4 ∧ N̂ ∧ π−1Da = 0 (5.1.6)

is satisfied for all Cartan fluxes G4 = Ei ∧π−1F and an arbitrary class F ∈ H1,1(B). Using N̂ instead

of N amounts to a redefinition of the KK U(1) symmetry such that it does not mix with the Cartan

U(1) generators Ei associated with the resolution divisors of the non-abelian singularity. In the case

of an elliptic fibration this complication do not arise, as the zero section intersects the affine node of

the Kodaira fiber, and thus the Cartan fluxes satisfy (2.6.6) automatically. A similar redefinition has

been discussed in a different context in [51].

We conclude this section by outlining the method used in the next section. To construct a trans-

versal flux on a genus-one fibration we single out the n-section class N and determine the shifted class

N̂ = N +
∑

i aiEi such that∫
X4

Ei ∧ N̂ ∧ π−1Da ∧ π−1Da = 0 ∀Da, Db ⊂ B (5.1.7)

for all resolution divisors Ei. This N̂ defines the KK U(1) in the reduction of the 4-dimensional F-

theory vacuum to three dimensions and does not mix with the Cartan generators Ei. The transversality

conditions on the fluxes are then ∫
X4

G4 ∧ N̂ ∧ π−1Da
!

= 0, (5.1.8)∫
X4

G4 ∧ π−1Da ∧ π−1Db
!

= 0. (5.1.9)

Furthermore, to preserve the non-abelian gauge symmetries we demand in addition∫
X4

G4 ∧ Ei ∧ π−1Da
!

= 0. (5.1.10)

Here we note that for any flux that satisfy the equations (5.1.10) the first transversality condition in

(5.1.8) reduces to the same constraint with N̂ replaced by the n-section class N . We will see that

this simplifies the calculations, but obscures the fact that N̂ is the divisor class identified with the

Kaluza-Klein U(1).
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5.2 Fluxes on a genus-one fibration with a bisection

We will here briefly review the P112[4]-fibration with gauge group SU(5)×Z2 from section 4.6.2. This

geometry has all the features needed to test the construction presented in the previous section. The

4-fold X4 is given by the hypersurface equation

P
SU(5)
Z2

= e1e2w
2 + b0,2u

2we2
0e

2
1e2e4 + b1uvw + b2v

2we2e
2
3e4

+ c0,4u
4e4

0e
3
1e2e

2
4 + c1,2u

3ve2
0e1e4 + c2,1u

2v2e0e3e4 + c3,1uv
3e0e2e

3
3e

2
4 + c4,1v

4e0e
2
2e

5
3e

3
4

(5.2.1)

in the toric ambient space specified in the appendix table B.3.1. The fiber coordinates [u : v : w] are

as before homogeneous coordinates of P1,1,2. An SU(5) singularity sits in the fiber over the divisor

Θ : {θ = 0} in B. The hypersurface equation is the proper transform under the resolution of this

singularity, with blow-up coordinates ei, i = 1, . . . , 4 and with e0 the proper transform of θ. The

Calabi-Yau hypersurface comes with the choice of a line bundle on B with first Chern class [b2]. Given

this line bundle on B the coefficients bi and cj transform as sections of the bundles displayed in table

5.2.1, where K̄ is the anti-canonical bundle on the base.

b0,2 b1 b2 c0,4 c1,2 c2,1 c3,1 c4,1

2K̄ − b2 − 2Θ K̄ b2 4K̄ − 2b2 − 4Θ 3K̄ − b2 − 2Θ 2K̄ −Θ K̄ + b2 −Θ 2b2 −Θ

Table 5.2.1: Classes of the coefficients entering (4.6.13).

The smooth geometry is constructed via a top [19,82], denoted τ4,3 in [20], and the exceptional divisors

are Ei : {ei = 0}, i = 1, . . . , 4. Furthermore E0 = Θ−
∑

iEi. The Stanley-Reisner ideal for our choice

of resolution phase is generated by

SR-i : {v e0, v e1, v e2, w e0, w e4, u e3, e0 e3, e1 e3, u e2, e1 e4, v w u} . (5.2.2)

The intersection of the ambient divisor U : {u = 0} with the hypersurface gives a representative of the

homology class of the bisection, which intersects each generic fiber in two points exchanged globally

by a monodromy. From our previous discussion we would like to associate with U the notion of a KK

U(1) in the 3-dimensional M-theory compactification on X4. It is here that the shift (5.1.5) becomes

important because the bisection locally intersects both E0 and E1 in one point in the fiber. The (up

to normalization) unique solution to the constraints (5.1.7) is given by

Û = U +
1

5
(4E1 + 3E2 + 2E3 + E4). (5.2.3)

If we fix the (a priori arbitrary) overall normalization such as to achieve integer intersections with all

fibral curves by defining

wZ2 = 5 Û , (5.2.4)

then the intersection numbers of wZ2 with the irreducible split fiber components consistently assign

Z2 charges to the corresponding states modulo 2 in the F-theory limit. Indeed, a Z2 subgroup of the

KK U(1), normalised as in (5.2.4), survives in the F-theory limit as an independent discrete gauge

group which we saw in the previous chapter.1 The discriminant of the hypersurface equation takes

the form

∆ ∼ θ5[b41(b21c0,4 − b0b1c1,2 + c2
1,2)(b22c2,1 − b1b2c3,1 + b41c4,1) +O(θ)], (5.2.5)

1Apart from an extra shift in terms of base divisors this agrees with the Z2 generator as presented in previous chapter
(also [10,70,101]). This shift does not change the notion of fibral curves and is therefore not of importance for us.
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Figure 5.1: The matter curves on the SU(5) divisor {θ = 0} and the Yukawa couplings involving
the SU(5) charged matter in codimension three.

which indicates three matter curves on the SU(5) divisor Θ. Away from Θ there is one more matter

locus [29], describable as an ideal which defines an irreducible curve on B [10]. This complicated

codimension-two locus C2 over which the fiber is of type I2 hosts singlet states that carry Z2 charge.

These states originate from singly charged states in the SU(5)×U(1) model related to this geometry

by a conifold transition. The matter spectrum and the associated Z2 charges are summarized in table

5.2.2. The intersection structure of the matter curves along the SU(5) divisor Θ is shown in figure 5.1,

locus in base irrep SU(5) Z2 charge

θ ∩ b1 10, 1̄0 [0]
θ ∩ {b21c0,4 − b0b1c1,2 + c2

1,2} 5A, 5̄A [1]

θ ∩ {b22c2,1 − b1b2c3,1 + b41c4,1} 5B, 5̄B [0]
C2 1 [1]

Table 5.2.2: Matter spectrum in the SU(5)× Z2 model.

which we reproduce from [10] for convenience, and the corresponding Yukawa couplings are indicated,

all consistent with the Z2 charges.

5.2.1 A horizontal flux solution

Having reviewed the geometry we now study the proposed transversality conditions,∫
X4

G4 ∧ Û ∧ π−1Da = 0,∫
X4

G4 ∧ π−1Da ∧ π−1Db = 0,∫
X4

G4 ∧ Ei ∧ π−1Da = 0 ,

(5.2.6)

in the SU(5) × Z2 geometry. The last condition only applies if we require the flux solution G4 to

leave a full SU(5) gauge group unbroken in the F-theory limit. As noted before, this eliminates the

correction terms in Û and reduces the system to the usual transversality conditions with respect to

the unshifted bisection U .
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The first flux solution is an example of a horizontal gauge flux which generalizes the horizontal G4

flux constructed in [10] for the bisection model without further non-abelian gauge enhancement. The

flux is associated with a special algebraic 4-cycle which appears on the sublocus in complex structure

moduli space where c4 = ρ τ . This is modeled after a similar construction in the context of a Tate

model [59]. In the presence of an SU(5) singularity the same type of fluxes exists, mutatis mutandis,

on the sublocus in moduli space where c4,1 = ρ τ . In this case the two algebraic 4-cycles described as

the complete intersections

σ0 = (u,w, ρ), (5.2.7)

σ1 = (u,we1 + b2v
2e2

3e4, ρ) (5.2.8)

in the ambient space X5 of X4 automatically lie on X4. This notation indicates that the 4-cycles

should be thought of as the algebraic varieties associated with the ideal generated by the polynomials

in brackets.

The two 4-cycles each define one of the two intersection points of the bisection U with the fiber,

fibered over the divisor P : {ρ = 0} in the base. The dual cohomology classes [σ0] and [σ1] are

candidates for a flux. To obtain a well-defined flux we add an ansatz of correction terms
∑
aiDi ∧ P

where Di runs over a basis of divisors in the 4-fold. Solving for the coefficients ai yields the flux

solutions

G4(P, σ0) = 5[σ0] +
1

2
(−5U + (4E1 + 3E2 + 2E3 + E4)− 2θ) ∧ P, (5.2.9)

G4(P, σ1) = 5[σ1]− 1

2
(5U + (4E1 + 3E2 + 2E3 + E4)− 2θ) ∧ P, (5.2.10)

where, for now, the overall normalization is chosen to give manifestly integral chiral indices as will be

discussed later. The two flux solutions are not independent on the hypersurface and for definiteness

we choose to consider G4(P, σ0) in the following.

5.2.2 All vertical fluxes

We next address the problem of describing all independent vertical fluxes on the SU(5)×Z2 fibration

which exist over a generic base B. We follow the strategy in [89], where the first such classification

of vertical gauge fluxes has been undertaken for (U(1) restricted) Tate models with gauge groups

SU(N)(×U(1)) for N = 2, 3, 4, 5 over a generic base B. See [63, 99, 131] for classifications for other

types of fibrations. To this end we first compute a basis for the vertical (2, 2)-forms in the ambient

space X5 of X4. To simplify the notation we will from now on omit the pull-back symbol ‘π−1’

whenever there is no ambiguity about a divisor coming from the base. Due to relations between the

divisors from the Stanley-Reisner ideal SR given in (5.2.2) and from homology relations in the fiber

ambient space, not all products of divisors are linearly independent. With the help of Singular we

can take these relations into account by computing a basis for the quotient ring

H(∗,∗)(X5) ∼=
C[Di]

SR+HOM
, (5.2.11)

where C[Di] is the formal polynomial ring with all divisors of X5 as variables.2 The homology relations

HOM , which can be read off from the top, are encoded in the scaling relations in table B.3.1 and take

the form
W = 2U + 2K̄ − [b2]− E1 − 2E2 − 2E3 − E4 ,

V = U + K̄ − [b2]− E2 − 2E3 − E4 ,

Θ = E0 + E1 + E2 + E3 + E4 .

(5.2.12)

2Strictly speaking this construction only gives the vertical part – i.e. linear combinations of products of divisors – of
the ambient space cohomology H(∗,∗)(X5), which however suffices for all the computations we perform here.
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This basis is then used to make an ansatz for the most general flux. The transversality conditions

(5.2.6) become a set of equations expressed in intersection numbers on the ambient 5-fold, e.g.∫
X4

G4 ∧Da ∧Db =

∫
X5

[P
SU(5)
Z2

] ∧G4 ∧Da ∧Db . (5.2.13)

Intersection numbers like these can be reduced to intersection numbers on the base by employing

the Stanley-Reisner ideal and the homology relations, thereby eliminating redundancies due to the

known homology relations in the fiber ambient space. The Stanley-Reisner ideal trivially sets many

intersections to zero. Likewise, due to the fibration structure, any intersection number with more than

3 divisor classes pulled back from the base will vanish. Let Fi denote all fibral divisors classes, both

the toric classes Ti associated with the homogeneous coordinates of the original fiber ambient space

P1,1,2 and exceptional divisors Ei. For i, j, k distinct, and Da,b,c base divisor classes, the non-vanishing

intersections (omitting the wedges) are∫
X5

TiTjDaDbDc =
1

V (i, j)

∫
B
DaDbDc ,∫

X5

EiFjFkDaDb =
1

V (i, j, k)

∫
B

ΘDaDb .

(5.2.14)

Here V (i, j), (V (i, j, k)) is the lattice volume of the cell spanned by the fan vectors fi, fj , (fk). For

the top used here, all cell volumes are one, except the one spanned by fu and fv corresponding to

the divisors U and V , which has volume 2. When the i, j, k are non-distinct, we are dealing with a

self-intersection of fibral divisor classes. These can be reduced to transversal intersections by using

the homology relations in the ambient fiber space. As an example consider the reduction∫
X5

W 2DaDbDc =

∫
X5

W (2U + 2K̄ − [b2]− E1 − 2E2 − 2E3 − E4)DaDbDc

=

∫
X5

W (2U + 2K̄ − [b2]− E1 − 2E2 − 2E3)DaDbDc = 2

∫
B
DaDbDc .

(5.2.15)

This way also (self-)intersections of 3,4 or 5 fibral divisor classes may be computed iteratively and re-

duced to the cases (5.2.14). Singular automatically applies this method and reduces the transversality

conditions to a system of linear combinations of intersection numbers on the base.

As discussed above, if we demand orthogonality with respect to the Cartan generators, i.e. (5.1.10),

this effectively replaces Û by U in the modified transversality condition (5.1.8). The solution to all

transversality conditions, expressed in a chosen basis, takes the form

G4 =

z1(5E1E2 + 4E2
2 + 2E3E4 +

1

2
UΘ + Θ2 + (−1,−3, 0, 1)Ei[b2] + (1, 8, 0,−2)iEiK̄

+
1

2
(−4,−19,−2, 3)iEiΘ)

+z2(5E1E2 +
5

2
E2

2 + K̄Θ + (0,−5

2
, 0, 0)Ei[b2] +

1

2
(−4, 7,−2,−1)iEiK̄ + (0,−5, 0, 0)iEiΘ)

+z3(5E1E2 + 2E2
2 + E3E4 − UΘ + [b2]Θ + (0,−3,−1, 0)Ei[b2] + (−2, 4, 0,−1)iEiK̄

+ (0,−4, 0, 1)iEiΘ)

+z4(E2E4 − E4K̄) .

(5.2.16)

However, the last term is a trivial solution on the hypersurface as can be verified by wedging it with the

hypersurface class and employing the homology relations. Furthermore, the terms with coefficients z2
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and z3 are identical when restricted to the fourfold, again easily seen using the SR-ideal and homology

relations. The most general solution for vertical fluxes is thus expressed as

G4 = z1G
z1
4 + z2G

z2
4 =

z1(5E1E2 + 4E2
2 + 2E3E4 +

1

2
UΘ + Θ2 + (−1,−3, 0, 1)Ei[b2] + (1, 8, 0,−2)iEiK̄

+
1

2
(−4,−19,−2, 3)iEiΘ)

+ z2(5E1E2 +
5

2
E2

2 + K̄Θ + (0,−5

2
, 0, 0)Ei[b2] +

1

2
(−4, 7,−2,−1)iEiK̄ + (0,−5, 0, 0)iEiΘ) .

(5.2.17)

Note again that the normalizations for Gz14 and Gz24 is chosen to give manifestly integer chiralities.

5.2.3 Fluxes from matter surfaces

So far we have constructed the most general vertical fluxes by systematically implementing the trans-

versality conditions on a basis of H2,2
vert(X5) and pulling these fluxes back to X4. From a conceptual

point of view, the gauge data can be encoded in rational equivalence classes of 4-cycles [130] whose

homology class is dual to G4 viewed as an element of H2,2(X4). The transversality conditions suggest

that natural building blocks for the construction of such 4-cycles are the matter surfaces. This ap-

proach was, for instance, taken in [83] to construct non-Cartan vertical gauge fluxes. In this section

we will analyse the matter surfaces associated with states in the antisymmetric and fundamental rep-

resentations of SU(5) and relate their cohomology classes to the general vertical flux solution found

in the previous section.

As a general remark, recall that the fiber over the 10-curve in the base – see figure 5.1 – splits

into a collection of rational curves intersecting like the nodes of the affine Dynkin diagram of SO(10).

Suitable combinations of fibral curves are associated with each of the ten entries of the weight vector

of the 10-representation, and these curves with opposite orientation give rise to the conjugate weights.

In the sequel, when we talk about ‘the 1̄0 surface’ we have one particular such fibral cycle fibered over

the base curve in mind. Since different weights differ only by combinations of simple roots, different

such 4-cycles differ by suitable combinations of resolution divisors restricted to the base curve and we

will not need to consider all different choices independently. Similar remarks apply to the 5A and 5B
representations and their associated matter surfaces.

The 1̄0 Surface

A representative of the matter surface [C1̄0] is given by the complete ambient intersection (e0, e2, b1).

By employing the SR-ideal we find that restricting the hypersurface to (e0, e2) implies b1 = 0, and

hence we can represent the matter surface by E0 ∧ E2 in the ambient vertical cohomology. This

combination is however not orthogonal to the Cartan divisors, and we have to add correction terms

to arrive at a valid flux. An ansatz for the correction term of the form
∑
aiEiK̄ + λK̄Θ turns out to

be sufficient. This results in the flux

G4(1̄0) = E0E2 −
1

5
K̄Θ− 1

5
(−2, 1,−1,−3)iEiK̄

= −E1E2 −
1

2
E2

2 −
1

5
K̄Θ +

1

2
E2[b2]− 1

10
(−4, 7,−2,−1)iEiK̄ + E2Θ,

(5.2.18)

where we have rewritten the first line in the chosen vertical basis. Up to a factor of −5 the flux agrees

exactly with the flux solution with coefficient z2 in (5.2.17).
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The 5̄A Surface

The homology class of the 5̄A matter surface is not straightforwardly given. Over the matter curve

Θ ∩ {b21c0,4 − b0,2b1c1,2 + c2
1,2 = 0} the rational fiber of the exceptional divisor E3 splits. This can

be seen by solving the second polynomial rationally for c0,4 and inserting this together with e3 = 0

into the hypersurface equation. This locally valid approach is enough for computing the weight of the

state in the representation, but in order to construct a global flux the homology class of the rationally

fibered surface has to be determined. Using Singular we compute the intersection of the hypersurface

with the exceptional divisor E3 and the matter curve in the base as the ideal

(P
SU(5)
Z2

, e3, b
2
1c0,4 − b0,2b1c1,2 + c2

1,2) . (5.2.19)

This ideal prime decomposes into two components, corresponding to states in the fundamental and

anti-fundamental representations, respectively. The anti-fundamental surface C5̄A is given as the non-

transversal intersection

C5̄A = (e3, b
2
1c0,4 − b0,2b1c1,2 + c2

1,2, e
2
0e1e4u

2c1,2 + wb1,

e2
0e1e4u

2b1c0,4 + wb0,2b1 − wc1,2, e
4
0e

2
1e

2
4u

4c0,4 + e2
0e1e4u

2wb0,2 + w2) .
(5.2.20)

To make sense of the matter surface as a transversal intersection of three equations in the ambient 5-

fold we employ a trick. By prime decomposing the ideal given by the first three equations (e3, b
2
1c0,4−

b0,2b1c1,2 + c2
1,2, e

2
0e1e4u

2c1,2 + wb1) of the above ideal two irreducible components are revealed. The

first one is the matter surface (5.2.20) itself, and the second is the ideal (e3, b1, c1,2) with multiplicity

two. In homology we can ‘solve’ for the matter surface in terms of the two transversal intersections

as

[C5̄A ] = E3 ∧ 2[c1,2] ∧ (W + [b1])− 2 · E3 ∧ [b1] ∧ [c1,2] . (5.2.21)

Having obtained the homology class we may construct a transversal flux solution by making an ansatz

of correction terms. However, to compare with the previously obtained vertical flux solutions we

would like to represent the matter surface as a vertical (2,2)-form in the ambient space which, when

restricted to the hypersurface, gives the class [C5̄A ]. To obtain the solution in this form we make the

ansatz

[C5̄A ] = E3 ∧

(∑
i

aiDi

)
∧ [P

SU(5)
Z2

] (5.2.22)

where the Di is a basis for the divisors on X4. By expanding both sides in a basis for H3,3(X5) in

Singular we solve for the ai and obtain that

E3

(∑
i

aiDi

)
=E3(E3 + 2E4 − [b2] + 3K̄ − 3Θ)

=
1

2
E2

2 + E3E4 + (0,
1

2
,−1, 0)iEi[b2] + (0,−1

2
, 3,

1

2
)iEiK̄ + (0, 0,−2, 0)iEiΘ

(5.2.23)

restricts to the 5̄A matter surface on the hypersurface. On the righthand side the solution is given in

the chosen basis for H2,2
vert.

At this point we are ready to construct a well-defined flux by adding a linear combination of terms

with at least one factor coming from the base such that the transversality conditions are satisfied.
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The result is

G4(5̄A) = [C5̄A ] + {correction terms}

=
1

2
E2

2 + E3E4 +
1

5
[b2]Θ− 3

5
K̄Θ +

2

5
Θ2

+
1

10
(−4,−3,−2, 4)iEi[b2] +

1

10
(12, 19, 6,−14)iEiK̄ +

1

5
(−4,−8,−2, 4)iEiΘ

=
2

5
(Gz14 −G

z2
4 ).

(5.2.24)

The last line relates this flux to one combination of vertical fluxes constructed in the previous section.

The 5̄B Surface

By the same technique, we construct a flux from the 5̄B surface. The homology class, obtained by

prime decomposition, is

[C5̄B ] = E1 ∧ (2[b2] + [c2,1]) ∧ (K̄ + U)− 2E1 ∧ K̄ ∧ [b2]. (5.2.25)

By making a suitable ansatz we find that the element

E1(E1 + 2E2 + [b2]−Θ) (5.2.26)

in the ambient vertical cohomology reproduces [C5̄B ] when restricted to the hypersurface. Using this

representative we construct the transversal flux as

G4(5̄B) = [C5̄B ] + {correction terms}

= E1E2 − E2
2 + E3E4 − 2UΘ +

9

5
[b2]Θ− 6

5
K̄Θ− 2

5
Θ2

+
1

5
(2,−6,−9,−2)iEi[b2] +

1

5
(−8,−1, 6,−2)iEiK̄ +

1

5
(4, 13, 2, 6)iEiΘ

=
1

5
(−2Gz14 + 3Gz24 ),

(5.2.27)

where the second term is expanded in the chosen basis, and the last line gives the flux as a linear

combination of the vertical flux solutions in (5.2.17).

5.2.4 Chiralities and non-abelian anomalies

With the explicit flux solutions and also representatives of the homology classes of the matter surfaces

at hand, it is straightforward to compute the induced chiralities for all SU(5) representations. The

net chirality χ of a state in representation R of SU(5) induced by a flux G4 is given by

χ(R) =

∫
[CR]

G4 . (5.2.28)

These integrals lift to intersection numbers in the ambient space upon multiplication with the hyper-

surface class. Using the techniques described above all these intersections are reduced to intersection

numbers on the base. The induced chiralities from the three flux solutions described above are, with

respect to the general flux combination G4 = aG4(P, σ0) + z1G
z1
4 + z2G

z2
4 ,

χ(10) =
[
−aP + z1(−2[b2] + 12K̄ − 9Θ) + z2(6K̄ − 5Θ)

]
K̄Θ,

χ(5̄A) =
[
−aP + z1(−2[b2]− 8K̄ + Θ)− 4z2K̄

]
([b2]− 3K̄ + 2Θ)Θ,

χ(5̄B) =
[
aP ([b2]− 4K̄ + 2Θ) + z1(2[b2]2 + 3[b2]Θ− 2(6K̄2 − 5K̄Θ + Θ2))

+ z2(4[b2]− 6K̄ + 3Θ)K̄
]

Θ,

(5.2.29)
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where we have suppressed integration over the base. It is easily checked that the SU(5) anomaly

condition

χ(10) = χ(5̄A) + χ(5̄B) (5.2.30)

is satisfied without further restrictions on a, z1 and z2. In fact, this follows directly from the 4-cycle

class [1̄0] + [5̄A] + [5̄B]: Due to the homology relations (5.2.12) and SR-ideal (5.2.2) this combination

is equal to

[PSU(5)] ∧
{

2[b2] ∧ (E1 + E2) + K̄ ∧ (−E2 + 3E3 + E4) + Θ ∧ (E2 − 2E3 − E4)−Θ ∧ [b2]
}
. (5.2.31)

In this form, it is obvious that any valid G4 yields zero upon integration over this cycle. In particular,

the cancellation of the pure SU(5) anomaly only requires conditions (5.1.9) (G4 does not have two

legs along the fiber) and (5.1.10) (G4 does not break gauge symmetry) since the 4-cycle class (5.2.31)

only involves terms of the form π−1Da ∧ Ei and π−1Da ∧ π−1Db. The missing condition (5.1.8) will

become relevant in the context of the discrete Z2 anomaly to be discussed in section 5.5.

In addition to the SU(5) charged states, there are localised states with Z2 charge 1 mod 2 which

transform as singlets under SU(5). These states are localised on the curve called C2 in table 5.2.2,

which, as we recall, can be described by an ideal generated by 15 non-transversely intersecting elements

[10]. The I2-fiber over C2 splits into two rational curves A and B with [A] = [B] in homology. Indeed,

both curves are exchanged by a global monodromy over C2 provided the intersection of the monodromy

locus of the bisection with C2 is non-empty, as is generically the case [10] (see [43,135] for a discussion

of the implications of the absence of this monodromy point on C2 in non-generic models). The states

associated with an M2-brane wrapping A and B have the same quantum numbers. In order to count

the number of N = 1 chiral multiplets of the 4-dimensional F-theory vacuum with Z2 charge 1,

we must therefore add the zero modes from M2-branes wrapping both fibral curves [11]. One can

separately compute the overlap of G4 with the 4-cycle CA or CB given by fibering A or B over C2, and

e.g. the flux G4(P, σ0) indeed gives a non-zero result for both individual surfaces [11]. However, in

total

χ(1) =

∫
CA
G4 +

∫
CB
G4 = 0 (5.2.32)

by the transversality condition (5.1.9) because A and B sum up to the total fiber class. This is the

geometric manifestation of the statement that an SU(5) singlet carrying only Z2 charge does not

admit a notion of chirality, of course.

5.3 Fluxes on an elliptic fibration with an extra section

The bisection P112[4]-fibration X4 is related, via a conifold transition [10, 11, 70, 84, 101, 117], to the

elliptic Bl1P112[4]-fibration with Mordell-Weil group of rank 1 of [18]. In general, in a conifold transition

between F/M-theory 4-folds conservation of M2-brane charge dynamically relates the 4-form fluxes

on both sides [59,89,136]. For the specific transition between the P112[4]-fibration and the Bl1P112[4]-

model without extra non-abelian gauge groups, the U(1) flux and the Z2 flux (5.2.9) have been

successfully matched along these lines in [10]. In section 5.4 we will extend this match to the full set

of fluxes constructed in the previous section. This will serve as an additional non-trivial check on the

consistency of our construction. As a preparation we need to construct, in this section, the complete

set of vertical fluxes on the U(1) side of the transition with which we will compare the flux solutions

in the bisection model.

Let us briefly recap the properties of the Bl1P112[4]-fibration of [18], but including an extra SU(5)

factor [10] as in the previous chapter. We start from the model (4.6.13) and by a complex structure
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deformation set c4,1 ≡ 0. This introduces a singularity in codimension 2, which is resolved by a

blow-up in the ambient space. The proper transform describing an elliptically fibered 4-fold Y4 reads

P
SU(5)
U(1) = e1e2sw

2 + b0,2s
2u2we2

0e
2
1e2e4 + b1suvw + b2v

2we2e
2
3e4

+ c0,4u
4e4

0e
3
1e2e

2
4 + c1,2u

3ve2
0e1e4 + c2,1u

2v2e0e3e4 + c3,1uv
3e0e2e

3
3e

2
4,

(5.3.1)

where s is the blow-up coordinate. The divisor class S : {s = 0} is the class of an extra rational

section, and U : {u = 0} is the holomorphic zero-section of the elliptic fibration. The structure

of the exceptional coordinates ei is identical to its counterpart in the bisection model because the

toric description of P112 and Bl1P112 admit the construction of the same top [19]. For the chosen

triangulation we obtain the Stanley-Reisner ideal generators

{uw, vs, ve1, ve2, we0, we4, ue1, ue2, ue3, ue4, se2, se3, se4, e0e3, e1e3, e1e4} . (5.3.2)

The U(1) generator is determined by the Shioda map as

wU(1) = 5(S − U − K̄ − [b2]) + 4E1 + 3E2 + 2E3 + E4. (5.3.3)

The discriminant

∆ ∼ θ5[ b41b2(b1c3,1 − b2c2,1)(b21c0,4 − b0,2b1c1,2 + c2
1,2) +O(θ)] (5.3.4)

indicates four matter curves with SU(5) charged matter. In addition there are two singlet curves,

not lying completely in the SU(5) divisor Θ. The first one is the curve C1 : (b2, c3,1) of conifold

singularities which got resolved in the conifold transition. M2-branes wrapping the irreducible fiber

components give rise to states of U(1) charge ±10 (in the normalization (5.3.3)), called doubly charged

states. The second curve is the more complicated locus, denoted C2 in (4.1.9) and given explicitly in

(B.2.1). Over C2 the fiber is of type I2, similarly as in the bisection model. The states localized along

this curve have U(1) charge ±5 and are referred to as singly charged. In table 5.3.1 we summarize the

matter spectrum for this model.

The matter curves intersect at a number of loci, giving rise to 6 different Yukawa couplings involving

SU(5) charged fields. These are shown in figure 5.2. In addition there is one coupling that is localized

outside the GUT divisor. This is the coupling 1−101515 together with its conjugate, and it exists

regardless of the SU(5) enhancement.

locus in base irrep SU(5)U(1)

θ ∩ b1 10−2, 1̄02

θ ∩ b2 5−6, 5̄6

θ ∩ {b1c3,1 − b2c2,1} 54, 5̄−4

θ ∩ {b21c0,4 − b0,2b1c1,2 + c2
1,2} 5−1, 5̄1

C1 = b2 ∩ c3,1 1±10

C2 1±5

Table 5.3.1: Matter curves in the SU(5)× U(1) model.

5.3.1 All vertical fluxes

We now construct all vertical flux solutions to the – in presence of a section standard – transversality

conditions∫
Y4

G4 ∧ U ∧ π−1Da = 0,

∫
Y4

G4 ∧Da ∧ π−1Db = 0,

∫
Y4

G4 ∧ Ei ∧ π−1Da = 0. (5.3.5)
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θ

54

10−2

5−6

10−210−254

10−25̄65̄−4

155−65̄1

1−5545̄1

1̄025−15−1

5−1

1−105̄654

Figure 5.2: The matter curves in the SU(5) divisor {θ = 0} and the Yukawa couplings involving the
SU(5) charged matter in codimension three.

As always in the presence of a U(1) gauge group, the U(1) generator wU(1) in (5.3.3) gives rise to

a vertical flux solution

G4(F ) = wU(1) ∧ π−1F, (5.3.6)

which satisfies the transversality conditions for any choice of base divisor class F .

To find more vertical solutions we make a general ansatz, as in the previous section, expressed in a

basis for the vertical cohomology of the ambient space Y5. Subjecting this ansatz to the transversality

conditions and reducing all terms to intersection numbers in the base we find a family of solutions

valid over a generic base B,

G4 =G4(F ) + u1G
u1
4 + u2G

u2
4 + u3G

u3
4

= wU(1) ∧ F
+ u1(−15E1E2 + 5E2

2 + 25E3E4 + (−10, 0,−5, 10)iEi[b2]

+ (36, 37, 18,−16)iEiK̄ + (−20,−25,−10, 20)i)EiΘ)

+ u2(−10E1E2 − 5E2
2 + (0, 5, 0, 0)iEi[b2] + (4,−7, 2, 1)iEiK̄ + (0, 10, 0, 0)iEiΘ)

+ u3(5E1E2 + 5E2
2 − 5E3E4 + 10UΘ + 10K̄Θ + (0, 0, 5, 0)iEi[b2]

+ (−2, 1,−6, 2)iEiK̄ + (−4,−13,−2,−6)iEiΘ).

(5.3.7)

The normalization is chosen such as to give manifestly integral chiralities, as presented in following

sections. By restricting the solution to the hypersurface and expanding it in a basis for H3,3
vert(Y5), it

is shown that the three solutions Gui4 are independent.

5.3.2 Fluxes from matter surfaces

As in the bisection model, it is possible to express all fluxes originating from SU(5) charged matter

surfaces in terms of the general vertical flux solution above. In the sequel we derive the map between
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the two representations of the fluxes.

The 1̄02 surface

One possible representative for the matter surface [C1̄02
] is given by the complete ambient intersection

(e0, e2, b1), which agrees with the corresponding representation of the 10-surface considered in the

SU(5) × Z2 model. To find the flux associated with this matter surface, we start from an ansatz

E0 ∧ E2 in the ambient space cohomology and add a linear combination of correction terms of the

form U ∧ Da, S ∧ Da, Ei ∧ Da and Da ∧ Db, for Da,b pullback divisors from the base and solve for

the coefficients. Up to the addition of an arbitrary U(1) flux, which we set to zero, the transversality

conditions fix the correction terms such that

G4(1̄02) = E0E2 +
1

10
(4,−2, 2, 6)iEiK̄

= −E1E2 −
1

2
E2

2 +
1

2
E2[b2] +

1

10
(4,−7, 2, 1)iEiK̄ + E2Θ ,

(5.3.8)

where we have rewritten the first line in the chosen vertical basis. Up to a scaling factor the flux

agrees exactly with the flux solution Gu24 in (5.3.7).

The 5−6 surface

A representative of the 5−6 surface is given by the complete intersection of (e0, s) with the hypersurface.

Indeed this implies b2 = 0 and thus reproduces the curve in the base over which the 5−6 matter is

localized. Repeating verbatim the steps performed for the 1̄02-flux we arrive at,

G4(5−6) = E0S − SΘ + UΘ + K̄Θ +
1

5
(4, 3, 2, 1)iEi[b2]− 1

5
(4, 3, 2, 1)iEiΘ

= −E1E2 + UΘ + K̄Θ +
1

5
(−1, 3, 2, 1)iEi[b2] + E1K̄ −

1

5
(4, 3, 2, 1)iEiΘ

=
1

50
(Gu14 + 6Gu24 + 5Gu34 ).

(5.3.9)

In the second line we have used that E0S − SΘ = −E1(E2 − K̄ + [b2]) in the ambient cohomology.

The 5̄−4 surface

The cohomology class of a representative of C5̄−4
can be obtained by an ideal decomposition in

Singular and is given in the ambient space as

C5̄−4
= E1(2K̄2 + S[b2] + 2SK̄ − SΘ− K̄Θ) . (5.3.10)

Out of this class a transversal flux may be constructed by adding possible correction terms and solving

the transversality conditions. As in the previous chapter we aim at comparing the matter surface to

the vertical flux solution. By making the analogous ansatz as in section 5.2.3, we find that

C5̄−4
= E1 ∧ (E1 + 2E2 + [b2]−Θ) ∧ [PSU(5)] . (5.3.11)

The factor of E1 reflects the fact that it is the fiber component of this divisor which splits into

weights over the curve. We use this solution to make an ansatz for a well-defined flux as G4 =

E1(E1 + 2E2 + [b2] − Θ) + vertical correction terms. As in the previous case, the solution allows
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for an arbitrary U(1)-flux contribution which can be subtracted. There is also a U(1)-flux with fixed

coefficient appearing and after rewriting the flux in the chosen vertical basis we find the solution

G4(5̄−4) = −E2
2 + E3E4 − 3UΘ− 3K̄Θ

+
1

5
(1,−3,−7,−1)iEi[b2] +

1

5
(−3,−1, 6,−2)iEiK̄ +

1

5
(8, 16, 4, 7)iEiΘ−

1

5
wU(1)Θ

=
1

50
(−Gu14 − 6Gu24 − 15Gu34 )− 1

5
wU(1)Θ.

(5.3.12)

The 5̄1 surface

By the same method we find that

C5̄1
= E3 ∧ (E3 + 2E4 + 3K̄ − [b2]− 2Θ) ∧ [PSU(5)] . (5.3.13)

By adding correction terms we get a well-defined, transversal flux which takes the form

G4(5̄1) =
1

2
E2

2 − E3E4 +
1

10
(−4,−3,−2, 4)iEi[b2] +

1

10
(12, 19, 6,−7)iEiK̄ +

1

5
(−4,−8,−2, 4)iEiΘ

=
2

50
(Gu14 −

3

2
Gu24 ).

(5.3.14)

We conclude with a summary of the full relation between the vertical flux solutions on one side and

the matter surface fluxes on the other,

G4(1̄02) =
1

10
Gu24 ,

G4(5̄1) =
2

50
(Gu14 −

3

2
Gu24 ),

G4(5̄−4) =
1

50
(−Gu14 − 6Gu24 − 15Gu34 )− 1

5
wU(1)Θ,

G4(5−6) =
1

50
(Gu14 + 6Gu24 + 5Gu34 ) .

(5.3.15)

5.3.3 Chiralities and non-abelian anomalies

The chiralities induced by the general vertical flux solution G4(F ) +
∑

iG
ui
4 are computed as

χ(10−2) = −2[b1]FΘ +
[
u1(−20[b2] + 42K̄ − 25Θ) + u2(−12K̄ + 10Θ) + u3(6K̄ − 3Θ)

]
K̄Θ,

χ(5̄1) = 2[c1,2]FΘ + 2
[
u1(−10[b2]− 14K̄ + 5Θ) + 4u2K̄ + u3(−2K̄ + Θ)

]
([b2 − 3K̄ + 2Θ])Θ,

χ(5̄−4) = [−4([b2] + [c2,1])F + u1(10[b2]2 − 16[b2]K̄ − 42K̄2 + 10[b2]Θ + 61K̄Θ− 20Θ2)

+ 2u2K̄(−2[b2] + 6K̄ − 3Θ) + u3(2[b2]K̄ − 6K̄2 + 4[b2]Θ + 11K̄Θ− 4Θ2)]Θ,

χ(5̄6) = 2
[
3F + u1(5[b2]− 18K̄ + 10Θ)− 2u2K̄ + u3(K̄ − 3Θ)

]
[b2]Θ ,

(5.3.16)

where integration over the base is understood. Consistently, the SU(5) anomaly cancellation condition

χ(10−2) = χ(5̄1) + χ(5̄−4) + χ(5̄6) (5.3.17)

holds for all choices of the coefficients ui and for arbitrary base class F . As in the Z2 model, we can

directly see the SU(5) anomaly cancellation in the geometry because

[1̄02] + [5̄1] + [5̄−4] + [5̄6] =

[PSU(5)] ∧
(
2[b2] ∧ (E1 + E2) + K̄ ∧ (−E2 + 3E3 + E4) + Θ ∧ (−[b2] + E2 − E3 − E4)

)
.

(5.3.18)
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Again this is of the schematic form Ei ∧ π−1Da + π−1Da ∧ π−1Db, which yields zero when integrating

a valid G4-flux over it.

5.4 Comparison over the conifold transition

In this section we compare the flux solutions in the bisection P112[4]-fibration X4 and in the related

elliptic Bl1P112[4]-fibration Y4 upon performing a topological transition between both sides. Since the

construction of fluxes in F-theory models on elliptic fibrations is well established, as is the topology

change in the conifold transition, we will interpret this as another test of our flux construction for

the genus-one fibration. In particular, we will construct an explicit map between the flux solutions in

both models and show that all fluxes in the bisection model are accounted for by a corresponding flux

in the U(1) model upon performing the conifold transition. This map has already been established

in [10] in absence of additional non-abelian gauge data.

In order to find a map between the general flux solutions, we look for quantities that are preserved

under the conifold transition. The first such quantity is the total D3-brane charge. Recall that the

number of D3-branes is related to the flux and curvature induced D3-charge as [48]

nD3 =
χ(X4)

24
− 1

2

∫
X4

G4 ∧G4. (5.4.1)

We are interested in transitions without explicit participation of D3-branes, and for such transitions

nD3 must match on both sides of the transition [137]. We therefore demand that

∆nD3 ≡ nD3|X4 − nD3|Y4
!

= 0 . (5.4.2)

The topological transition from Y4 to X4 proceeds by first creating a conifold singularity in the

fiber over the curve C1 ⊂ B given in table 5.3.1 and then deforming [10, 11, 70, 84, 101, 117]. The

resulting change [59,89,136]

∆χ = χ(X4)− χ(Y4) = −3χ(C1) (5.4.3)

of Euler numbers allows us to rephrase (5.4.2) in terms of the flux-induced D3 tadpoles as

1

2

∫
X4

G4 ∧G4
!

= −1

8
χ(C1) +

1

2

∫
Y4

G̃4 ∧ G̃4 . (5.4.4)

Here G4 and G̃4 denote the fluxes on X4 and Y4, respectively.

The chiral spectra of the two models are topological quantities as well and must be conserved under

the transition. This applies to the notion of chirality with respect to the unbroken gauge subgroups on

both sides of the transition. In the case at hand, this is the non-abelian SU(5) factor. From the field

theory perspective this is clear because the Higgsing of the U(1) gauge symmetry to a Z2 subgroup

does not change the SU(5) chiralities of the states. However, the number of individual matter curves

as such is not equal. By comparing the discriminants (5.2.5) for c4,1 6= 0 and (5.3.4) for c4,1 = 0, we

confirm that the matter curves in the base relate as [10,101]

X4 Y4

C10 ↔ C10−2

C5̄A ↔ C5̄1

C5̄B ↔ C5̄−4
+ C5̄6

.

(5.4.5)
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Since the chiral indices are linear in the matter surface classes, we arrive at the following matching

condition for the chiral spectra,

χ(10)
!

= χ(10−2),

χ(5̄A)
!

= χ(5̄1),

χ(5̄B)
!

= χ(5̄−4) + χ(5̄6) .

(5.4.6)

To derive the map between the flux solutions recall first that C1 = (b2, c3,1) is the doubly charged

curve along which the Higgsing is performed. The Euler number of this singlet curve is given by

χ(C1) =

∫
C1

c1(C1) (5.4.7)

and with help of the adjunction formula

c(C1) =
c(B)

1 + [(b2, c3,1)]
⇒ c1(C1) = c1(B)−[b2]−[c3,1] = K̄−[b2]−([K̄+[b2]−Θ]) = −[c4,1] (5.4.8)

the Euler number contribution is found as

−1

8
χ(C1) = −1

8

∫
B
c1(C1) ∧ [c3,1] ∧ [b2] =

1

8

∫
B

[b2] ∧ [c3,1] ∧ [c4,1]. (5.4.9)

To gain some intuition, let us first consider the situation in which we switch on only U(1)-flux

G4(F ) on Y4 and no further vertical flux solutions. The tadpole contribution on the righthand side of

(5.4.4) can then be evaluated as

−1

8
χ(C1) +

1

2

∫
Y4

G4(F ) ∧G4(F ) =
1

8

∫
B

[b2] ∧ [c3,1] ∧ [c4,1]−
∫
B
F ∧ F ∧ (K̄ + [b2]− 2

5
Θ). (5.4.10)

From the corresponding transition in [10] without SU(5) gauge factor, and also from the general

considerations in [136], we expect that we must allow, possibly amongst other fluxes, for non-vanishing

Z2-flux aG4(P, σ0) on X4, with a coefficient a to be determined. Part of the contribution of such

aG4(P, σ0) to the lefthand side of (5.4.4) is given by the square 1
2

∫
X4

(aG4(P, σ0))2 (in addition

to cross-terms with the other fluxes). This expression requires in particular the calculation of the

self-intersection of [σ0]. The computation proceeds using the normal bundle of σ0 embedded in the

hypersurface [59] and closely follows the steps spelled out in [10]. The intersection numbers of [σ0]

with the vertical correction term in (5.2.9) are straightforwardly computed in the ambient space, as

is the self-intersection of the vertical correction terms. After reducing everything to base intersection

numbers we obtain

1

2

∫
X4

(aG4(P, σ0))2 =
25 a2

4

∫
B

(
−P ∧ P ∧ (K̄ + [b2]− 2

5
Θ) + 2P ∧ [b2] ∧ [c3,1]

)
. (5.4.11)

Let us first see if it is sufficient to only invoke aG4(P, σ0) in order to reproduce (5.4.10) on the Z2

side, i.e. whether we can match (5.4.10) and (5.4.11). As seen from (5.4.10), for a general choice of

F the U(1)-tadpole has a quadratic term in Θ from the singlet curve (hidden in the classes [c3,1] and

[c4,1]), and a linear term in Θ from the flux contribution. On the other hand, the class P on the Z2

side may a priori be dependent or independent of Θ. If it carries no multiple of Θ, then the induced

tadpole is only linear in the SU(5) divisor class, which can be excluded. If P = . . . + kΘ (which

we expect, since c4,1 = ρ τ), then the induced tadpole will have a cubic term in Θ, which has to be

cancelled in order to match the U(1)-tadpole and the singlet curve term. We thus conclude that some
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other flux has to be turned on in order to satisfy the constraint. In order to see what flux contribution

is needed we make the general ansatz

G4 = aG4(P, σ0) +

2∑
i=1

ziG
zi
4 (5.4.12)

for the flux on the Z2-side, with i running over the two solutions (5.2.17). We furthermore make an

ansatz for the class P = k F + α [b2] + β K̄+ γΘ as a multiple of F plus a correction expanded in the

base classes which are generically available on any choice of base B. The resulting matching equations

of induced tadpoles (5.4.4) and chiral indices (5.4.6) are quite lengthy and we do not display them

explicitly here. For our ansatz above and ui = 0, there is one solution given by

P = 10F +
1

2
c4,1, a =

1

5
, z1 = − 1

10
, z2 =

1

5
. (5.4.13)

This confirms that it is not enough to turn on only G4(P, σ0), but that it is also required to allow for

the other vertical fluxes to find a matching configuration. This is in agreement with similar findings

in [31,89] for a transition from an SU(5)× U(1) elliptic fibration to an SU(5) elliptic fibration.

Computing the D3-tadpole contributions for a general linear combination of fluxes on both sides

of the conifold transition is tedious, but straightforward. We keep the general flux (5.4.12) in the

bisection model and since we are searching for the most general solution, we make the ansatz P =

kF + α[b2] + βK̄ + γΘ. In the U(1) model we add the linear combination

G4 = G4(F ) +

3∑
i=1

uiG
ui
4 (5.4.14)

of all vertical flux solutions. The reduction of all intersection numbers in (5.4.4) and(5.4.6) to inter-

section numbers of base divisors results in a system of equations for the coefficients a, zi, ui, k, α, β

and γ. The result is that both constraints (5.4.4) and (5.4.6) can be solved by

P = 10F +
1

2
c4,1 − 10u3Θ, a =

1

5
, z1 =

1

10
(−1 + 100u1), z2 =

1

5
(1− 65u1 − 10u2 + 5u3)(5.4.15)

and we further note the Θ-term contribution to the class P : {ρ = 0}.

It is reassuring that the possible range 0 ≤ P ≤ c4,1 of the divisor class P = [ρ] with c4,1 = ρ τ is

in beautiful agreement with the observation that fluxes on the U(1) side may obstruct the topological

transition provided they induce a purely chiral spectrum of Higgs states [89,136]. The Higgs fields are

the charged singlets localised on the curve C1. The formalism of [130] suggests that these are counted

by the cohomology groups of a line bundle L ⊗ K1/2
C1

with deg(L) =
∫
C1

(10F − 10u3Θ). This is in

agreement with a direct computation of the chiral spectrum of these states, starting from the general

flux ansatz (5.4.14). A necessary condition for the existence of vectorlike pairs of Higgs fields, and thus

for the existence of a flat direction for the conifold transition, is that 1
2c1(C1) ≤ deg(L) ≤ −1

2c1(C1).

With c1(C1) = −c4,1|C1 this is in agreement, for the solution P = 10F + 1
2c4,1− 10u3Θ, precisely with

the inequality 0 ≤ P ≤ c4,1 – see the analogous discussion [10] in absence of an SU(5) factor. For us,

this serves as an additional consistency check of the whole construction.

5.5 Flux quantization and discrete anomalies

All results so far have been independent of the overall normalization of the constructed fluxes and tested

only the transversality conditions as such. The proper normalization becomes crucial for instance when
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it comes to detecting discrete anomalies such as the ones scrutinized in [45, 138]. In particular, the

total number of D3-branes as determined by the tadpole equation (5.4.1) must be integer, and this is

guaranteed [45] for a flux satisfying the quantization condition (2.6.2). Furthermore the chiral indices

must be integer in a consistent theory and this should follow from the quantization condition as well.

Indeed, as exemplified in previous sections, we can write the homology classes of all matter surfaces CR
in terms of complete intersections on the hypersurface and so the [CR] are integer classes themselves.

Hence ∫
CR

(
G4 +

1

2
c2(M4)

)
= χ(R) +

1

2

∫
CR
c2(M4) ∈ Z (5.5.1)

if the flux is quantized according to (2.6.2). Thus, as stressed in [47,89], if 1
2

∫
CR c2(M4) is integer by

itself for every matter surface, then the quantization condition ensures integrality of the chiral indices.

To the best of our knowledge, it has not been proven from first principles in the literature that c2(M4)

automatically satisfies these constraints in any smooth Calabi-Yau genus-one fibration. In the sequel

will analyze this constraint for the two fibrations X4 and Y4, and relate it to the cancellation of Z2

anomalies.

5.5.1 c2(M4) and an arithmetic constraint

To compute c2(M4) for M4 either the P112[4]-fibration X4 or the Bl1P112[4]-fibration Y4 we use the

standard adjunction formula

c(M4) =
c(M5)

1 + [P ]
(5.5.2)

with P the respective hypersurface equation. The answer is expressed in the chosen vertical basis as

c2(X4) = 5U2 − E1E2 +
7

2
E2

2 − 6E3E4 +
1

2
(−4, 9, 20, 4)iEi[b2] +

1

2
(0,−19,−34,−3)iEiK̄

+ (0,−6, 4,−5)iEiθ − 5U [b2] + 11UK̄ + 7Uθ

− 6[b2]θ − 5[b2]K̄ + 7K̄θ + [b2]2 + 5K̄2 + c2(B),

(5.5.3)

c2(Y4) = −7U2 + E2
2 − E3E4 + (−1, 2, 5, 2)iEi[b2] + (−1,−7,−12,−4)iEiK̄

+ (0,−1, 4, 0)iEiθ + U [b2]− UK̄ + 2Uθ − S[b2] + 6SK̄ + Sθ

− [b2]θ − 5[b2]K̄ + 2K̄θ + [b2]2 + 5K̄2 + c2(B) .

(5.5.4)

Recall that the change in Euler characteristic between the two geometries is given by the Euler number

of the doubly charged singlet curve. This provides a cross-check of the Chern classes computed above.

The arithmetic genus χ0 = 1+h1,0−h2,0 + ... is given by the integral of the Todd class over the 4-fold,

χ0 =

∫
M4

Td(M4) =
1

720

∫
M4

3c2
2 − c4 =

1

720

[∫
M4

3c2
2 − χ(M4)

]
. (5.5.5)

For a Calabi-Yau 4-fold the arithmetic genus is χ0 = 2, from which one gets a relation between

the squared second Chern class and the Euler characteristic. In particular, for the change in Euler

characteristic we have
1

3
∆χ =

∫
X4

c2(X4)2 −
∫
Y4

c2(Y4)2 . (5.5.6)

In the conifold transition we have the relation (5.4.3), which in terms of the second Chern classes

reads ∫
X4

c2(X4)2 −
∫
Y4

c2(Y4)2 = −χ(C1) =

∫
B

[b2] ∧ [c3,1] ∧ [c4,1] . (5.5.7)

Given the second Chern classes above it is straightforward to check that (5.5.7) indeed holds.
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Note furthermore that for the quantization condition only c2(M4) modulo even forms is relevant.

In [46] it was shown that c2(B)− K̄2 is an even class for smooth complex threefolds so that the terms

5K̄2 + c2(B) in c2(X4) and c2(Y4) can be eliminated mod 2. In principle the quantization condition

can now be checked by demanding that the integral of G4 + 1
2c2(M4) over every integer 4-cycle be

integer. This requires finding an integral basis of H4(M4), which we do not attempt here.

However, we make a curious observation: For the elliptic fibration Y4, the integral of c2(Y4) over

the matter surfaces can be evaluated as

1

2

∫
C1̄02

c2(Y4) =
1

2

∫
B

Θ2K̄, (5.5.8)

1

2

∫
C5−6

c2(Y4) =
1

2

∫
B

(−K̄[b2]Θ + [b2]2Θ + [b2]Θ2), (5.5.9)

1

2

∫
C5̄−4

c2(Y4) =
1

2

∫
B

(2K̄2Θ + 3K̄[b2]Θ + [b2]2Θ− K̄Θ2 − [b2]Θ2), (5.5.10)

1

2

∫
C5̄1

c2(Y4) =

∫
B

(12K̄2Θ− 10K̄[b2]Θ + 2[b2]2Θ− 12K̄Θ2 + 5[b2]Θ2 + 3Θ3). (5.5.11)

Note that the first three expressions are not automatically integer. However, in this case also the chiral

indices would be non-integer as a result of (5.5.1). Similar expressions can be derived for the singlets.3

A similar problem arises in the bisection model X4, where the potentially non-integer pairings are

1

2

∫
C1̄0

c2(X4) =
1

2

∫
B

Θ2K̄ ,

1

2

∫
C
5̄A

c2(X4) =

∫
B

2[b2]2 + 2K̄[b2]Θ− [b2]Θ2 + K̄2Θ− 1

2
K̄Θ2 .

(5.5.12)

Physical consistency therefore requires the expressions (5.5.8), (5.5.9), (5.5.10) (and also the ex-

pressions for the singlet surfaces) as well as (5.5.12) to be integer. Note that integrality of (5.5.8)

and (5.5.9) of the U(1) model implies integrality of the other expressions including (5.5.12) on the Z2

side, but integrality of (5.5.12) alone is not enough to guarantee integrality on the U(1) side. We will

resolve this puzzle momentarily.

In principle, the above observation could hint at an additional physical constraint such as a previ-

ously unnoticed anomaly which could require this. A more likely option is that these constraints are

automatically satisfied for every smooth Calabi-Yau space Y4 or X4 described as the respective toric

tops. In other words, integrality of the above expressions is most likely a necessary condition for a

specific base B, together with a choice of Θ and [b2], to give rise to a well-defined Calabi-Yau fibration

Y4 or X4. It would be interesting, but certainly challenging to prove in full generality that in every

geometrically consistent fibration c2(M4) automatically satisfies these arithmetic properties.

5.5.2 Cancellation of Z2 anomalies

The quantization condition is also crucial in order investigate possible Z2 anomalies in the bisection

model and their interplay with the G4-flux. Due to the charge assignments the possible Z2 anomalies

3A related puzzle was also observed in [89] for the integral of 1
2
c2 over the 101-matter surface in the vanilla SU(5)×U(1)

restricted Tate model. Interestingly, existence of a smooth type IIB limit of the latter model implies that this equation
is integer, reproducing the known result that the Freed-Witten anomaly cancellation in Type IIB guarantees integer
chiralities [47,139].
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[140] are given by the chiral index of the 5̄A states modulo 2,

AZ3
2

=
∑
R

(qZ2
R )3 dim(R)χ(R) = χ(5̄A) mod 2, (5.5.13)

AZ2−SU(5)2 =
∑
R

qZ2
R c(R)χ(R) = χ(5̄A) mod 2, (5.5.14)

AZ2−grav. =
∑
R

qZ2
R dim(R)χ(R) = χ(5̄A) mod 2 (5.5.15)

with c(R) the index of the representation. In general, discrete field theoretic anomalies need not

vanish by themselves provided they are cancelled by a suitable discrete version of the Green-Schwarz

mechanism [134]. This happens when an anomalous U(1) is Higgsed to a discrete subgroup which is

also anomalous. In this case, the anomalous discrete subgroup is not preserved at the non-perturbative

level because instantons can violate it. In our case, however, the Z2 symmetry is exact at the non-

perturbative level. Potential non-perturbative effects would be M2-brane instantons or fluxed M5-

instantons. Their interplay with the discrete symmetry Z2 has been studied in detail recently [43,

135], and as expected from the general formalism of [74, 103] the discrete symmetry is indeed non-

perturbatively exact. Therefore the mixed Z2 symmetries must vanish by themselves. Consistently,

we can adapt the analysis of [62] of the Green-Schwarz mechanism for (mixed) abelian anomalies. The

potential Green-Schwarz counter-terms would then be proportional to∫
X4

G4 ∧ Û ∧Da. (5.5.16)

As a result of the transversality condition (5.1.8) this vanishes identically, confirming once more that

the Z2 anomalies must vanish by themselves.

We would like to see the manifestation of this field theoretic argument in the geometry. To this

end, we use the homology relations (5.2.12) and the SR-ideal (5.2.2) to rewrite the homology class

[C5̄A ] as

[PSU(5)] ∧
(
2E3 ∧ E4 − U ∧Θ + E3 ∧ (4 K̄ − 2 [b2]) + Θ ∧ ([b2] + E2 − 2E3 + E4 − K̄)

)
. (5.5.17)

In this representation we see that if we impose the transversality conditions (5.1.8), (5.1.9) and the

gauge symmetry condition (5.1.10) on G4, then we simply have

χ(5̄A) =

∫
X4

G4 ∧ (2E3 ∧ E4) . (5.5.18)

The question now is whether
∫
X4
G4 ∧ E3 ∧ E4 ∈ Z since this would imply that the chirality is even

and therefore the discrete Z2 anomalies vanish. For a well-quantized flux satisfying the quantization

condition G4 + 1
2c2(X4) ∈ H4(X4,Z), with c2(X4) given in (5.5.3), Z2 cancellation would follow from

1/2
∫
X4
c2 ∧ E3 ∧ E4 ∈ Z, since E3 ∧ E4 is manifestly integer. Direct calculation reveals that∫
X4

c2(X4)

2
∧ E3 ∧ E4 =∫

B
Θ ∧

(
1

2
(c2(B)− K̄2)− K̄2 −Θ2

)
− 1

2

(
[b2]2 Θ− 3 K̄ [b2] Θ + 3 [b2]Θ2 − 5 K̄Θ2

)
.

(5.5.19)

While the first term is integer (using the result cited above that c2(B) − K̄2 is even), the latter part

is not guaranteed to be integer without any further input. However, if we assume integrality of all

chiral indices in the U(1) model, i.e. integrality of (5.5.8), (5.5.9) and (5.5.10), then also (5.5.19) is

integral and therefore the discrete Z2-anomalies vanish by themselves. On the other hand, if we impose
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integrality of chiral indices (5.5.12) as well as the absence of anomalies in the Z2 model, the arithmetic

constraints on the fibration guarantee a consistent (i.e. integral) chiral spectrum of the U(1) model.

Therefore we see that physical consistency conditions on both the U(1) and the Z2 model pose

exactly the same constraints on the geometry. Since the Z2 and the U(1) model are related by a conifold

transition, it is not surprising that cancellation of the Z2 anomalies requires not only integrality of

(5.5.12), but of the corresponding expressions in the U(1) model. We know that any consistent Z2

fibration defined by [b2] and Θ on the base B originates via Higgsing from a U(1) model over the same

base with the same fibration data [b2] and Θ. Now if the U(1) model is consistent, the chiralities

and therefore also (5.5.8), (5.5.9) and (5.5.10) must be integer. These intersection properties of B of

course still hold in the Z2 model and lead to integrality of (5.5.12) as well as the vanishing of the

discrete anomaly. From a field theoretic perspective, cancellation of the discrete anomalies is tied to a

consistent embedding of the discrete symmetry into a gauged continuous symmetry at high energies.

This underlying gauge symmetry is precisely the U(1) symmetry of the model on Y4 and the relation

between consistency of the latter and discrete anomaly cancellation is also expected from this point

of view.

Finally, note that the crucial relation (5.5.18) depends not only on the conditions (5.1.9) and

(5.1.10), as does the proof for cancellation of the non-abelian cubic anomaly, but also on (5.1.8), where

the bisection appears explicitly. This is our final consistency check of the transversality conditions.

5.6 Summary

In this chapter we have systematically studied gauge fluxes in F-theory compactifications on genus-

one fibrations. These are F-theory backgrounds without a zero section that provide an embedding

of the base manifold into the fibration. Our starting point has been a generalization of the known

transversality conditions on 4-form fluxes in F-theory models on elliptic 4-folds to compactifications

on genus-one fibrations. The role of the zero-section in these conditions is replaced by the available

multi-section which defines an embedding of a multi-cover of the base into the 4-fold. We have then

put our proposal for the flux consistency conditions to test by constructing all vertical fluxes available

for a bisection fibration including an extra non-abelian gauge factor, which for definiteness we have

taken to be SU(5). The total gauge group in F-theory is thus SU(5) × Z2. We have focused on

those fluxes which exist over a generic base B without imposing further conditions on the intersection

numbers. For a concrete choice of such a base, additional solutions to the transversality conditions

may of course arise. We have derived general expressions for the chiral indices of all matter states and

confirmed that the transversality conditions automatically imply cancellation of the cubic non-abelian

anomalies. As a further test we have dynamically related the constructed fluxes to a basis of vertical

fluxes in an F-theory model with gauge group SU(5)×U(1) which is related to the SU(5)×Z2 model

via a conifold transition [10, 11, 70, 84, 101, 117]. We have found perfect match between both sets

of fluxes in such a way that a dynamical transition implies a change in the flux quantum numbers

without changing the induced M2/D3-brane charge and the chiral indices. This parallels earlier studies

performed in [10,59,89,136].

A typical challenge in the construction of gauge fluxes is the proper quantization in the sense

of [45–47]. We have shown that a smooth fibration of the type considered must necessarily satisfy

a set of arithmetic constraints on certain intersection numbers in the base which guarantee that,

independently of the concrete choice of fluxes, all chiral indices are integer. It would be very interesting

to prove in full generality that these arithmetic constraints automatically hold on smooth fibrations

solely based on geometric arguments. With the help of these relations we have been able to exemplify

that the discrete Z2 anomalies vanish by themselves. This is in agreement [103] with the fact in this
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geometry non-perturbative effects respect the Z2-symmetry [43,135].

An obvious next step would be to apply the same reasoning also to genus-one fibrations with higher-

degree multi-sections such as the trisection (Z3) model studied in [70,141]. From a phenomenological

point of view, discrete symmetries are known to be crucial ingredients in MSSM and GUT model

building. A systematic search for 3-generation models e.g. with gauge group SU(5) × Z2 (with Z2

playing the role of R-parity, as exemplified in [10,101]) can now be undertaken, along the lines of the

global 3-generation examples [31,132] based on elliptic fibrations with other gauge groups.

Finally, recall that in general, the gauge data associated with the 3-form potential C3 and its 4-form

field strength G4 in F/M-theory is encoded [142, 143] in the Deligne cohomology group H4
D(Ŷ ,Z(2)).

A useful parametrization of this rather abstract object can be given in terms of algebraic 4-cycles,

up to rational equivalence [130]. When speaking of fluxes, it is typically only the cohomology class

that one specifies, but one should keep in mind that this data is sufficient only for the computation of

topological quantities such as chiral indices or flux-induced charges. A more refined analysis also of

the vector-like spectrum, possibly along the lines of [130] (or, alternatively, [30]), would be desirable

and important also for fibrations without section. This would be an interesting topic for a future

project.
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Chapter 6

Summary and outlook

We have studied in this thesis discrete structures in F-theory compactified on elliptic and genus-one

fibrations. The central objects of study, sections and multisections are global objects and require a full

understanding of the fibrations. This is contrasted to the study of e.g non-abelian gauge symmetries

as they are localised along divisors in the base and can be studied in local F-theory models. By

representing the torus fiber as a hypersurface in an ambient toric variety the fibrations can be studied

in great generality, without having to specify the base of the fibration. This means that the four-

dimensional effective gauge theories are in effect large classes of gauge theories which share generic

features coming from the fiber structure.

The fact that the F-theory backgrounds are torus-fibered Calabi-Yau varieties has big computa-

tional virtues. By using methods and theorems from algebraic geometry the four dimensional gauge

theory data may be computed, often with ease. While many of these techniques are well known tools

for F-theory compactifactions we have in this work extended the computational reach and enlargened

the ’tool box’ for F-theory model building. In particular we have utilized the theory of ideals of poly-

nomial rings and prime ideal decomposition in the computation of the singlet curves in section 4.1,

and in the systematic computation of gauge fluxes in terms of matter surfaces, e.g in eq. (5.3.15).

As highlighted in the introduction, and discussed in some detail in chapter 2, F-theory can be

defined as the generalisation of type IIB string theory at any value of the string coupling. The general

characteristics of an F-theory fibration and in particular the computationals methods are independent

of whether the dual type IIB theory is weakly coupled. The intuition from type IIB theory with branes

can be used as a guiding principle for the physics related to singularities in different codimensions, but

is not needed because of the definition through M-theory. All the models studied in this thesis and

the results pertaining to torsional sections and discrete selection rules are non-perturbative as they

make no reference to the weakly coupled type IIB limit. This is another aspect in which F-theory is

a valuable framework for studying generic properties of gauge theories.

In chapter 3 we studied in depth the role of torsional elements in the Mordell-Weil group of an

elliptic fibration [9]. Guided by earlier results [69] from eight-dimensional compactifications we showed

how the global structure of the gauge group in four dimensions is determined by torsional sections.

The foremost difference between two gauge theories whose gauge groups share the same Lie algebra is

in the matter representation content. All states in all representations of a Lie algebra are collected in

the so called weight lattice. If the Mordell-Weil torsion group is trivial, all these representations lift

from the algebra to representations of the gauge group. We showed how the presence of a torsional

section forces the weight lattice to be coarser. The remaining states in the lattice are exactly the ones

transforming under the gauge group, in this case a finite quotient of the universal covering group.

From the representation theory data we derived the change in the center of the gauge group, and the

129
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change of fundamental group relative to the universal cover.

In numerous explicit examples we computed the gauge groups and matter content in four dimen-

sional compactifications with torsional sections. Here we considered three classes of fibrations with

Mordell-Weil group Z2, Z ⊕ Z2 and Z3. These are the three generic hypersurface representations of

an elliptic fibration with torsion and the class of the torsional section descends from an ambient toric

divisor. In each of these geometries we introduced further non-abelian singularities and computed the

matter spectrum. The first signs of a non-simply connected gauge groups was noticed through the

absence of matter representations which normally would be present. By using the properties of the

divisor class of the torsional section we showed how the weight lattice got coarser than what would be

that case without torsion. This explained the restricted matter spectrum. By using the representation

theoretical data we computed the center and fundamental groups of the gauge groups. This together

with the knowledge of the gauge algebra gives the four dimensional gauge group.

It would be interesting to extend this work to bigger torsion groups. By describing the fiber as

a complete intersection in a toric variety, as opposed to a hypersurface, further examples could be

studied [144]. In particular it would be interesting to study a fibration with Mordell-Weil group Z⊕Z6.

By implementing a su(3) × su(2) gauge algebra an (SU(3) × SU(2) × U(1))/Z6 gauge theory would

be plausible. This would be an interesting starting point for an F-theory realisation of the Standard

Model with realistic matter spectrum.

In chapter 4 we changed focus from elliptic fibrations to genus-one fibrations [10,11]. In general an

F-theory compactification on a genus-one fibration with an n-section has a discrete Zn symmetry in

four dimensions. For definiteness we considered here the case of a bisection. The genus-one fibration is

related to an elliptic fibration with an extra U(1) symmetry by a conifold transition. In this topological

transition a curve in the fiber shrinks to zero size and introduces a singularity. By deforming the

hypersurface equation to a genus-one fibration this singularity is smoothened out. This deformation

of the geometry is identified by the higgsing of the U(1) to a Z2 symmetry in four dimensions. There

are two choices in how to shrink a curve in the fiber which, in the M-theory perspective, give rise to

two different gauge theories in three dimensions. These two M-theory phases share the same F-theory

limit in four dimensions. Important and interesting is how the discrete symmetry in four dimensions

arise in two different ways which we adressed in section 4.4.

Discrete symmetries in compactifications of type IIA string theory are known to arise from torsion

in the homology of the compactification space. We stress here the difference between torsion homology

and torsion in the Mordell-Weil group of elliptic fibrations. The two M-theory phases correspond to

compactifications on the genus-one fibration and its associated Jacobian fibration. We show how the

torsion homology cycles appear by studying the Jacobian of the genus-one fibration, and explain why

no torsion is present in the genus-one fibration. To extend this result and show how the torsion

homology cycles appear in genus-one fibrations with trisections or even higher degree multisections

would be an interesting subject for future work. We also note here a curious relationship between

Mordell-Weil torsion and multi-section fibrations. In the classification of hypersurface representations

of tori through reflexive polygons the fibrations with n-sections are dual to fibrations with Zn torsional

sections. This is an example of mirror symmetry, applied fiberwise. It would be interesting to study

this in more detail and for more examples.

From the perspective of model building discrete symmetries are interesting as selection rules. In

section 4.6 we introduced an additional SU(5) gauge factor in the models with Z2 and U(1) symmetries

and showed geometrically how to assign Z2 charges to all matter representations. As expected from the

higgsing of the U(1) symmetry by a field of charge 2 the discrete charges was found to correspond to

the U(1) charges modulo two. We also demonstrated how the geometrically realised Yukawa couplings

are singlets under the discrete symmetry.
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In the last chapter we studied gauge fluxes on genus-one fibrations [12]. The introduction of flux

in F-theory is essential for having a chiral matter spectrum. The consistent fluxes on elliptic fibrations

are solutions to certain transversality conditions. We have shown how these consistency conditions

can be generalised to genus-one fibrations. To test our proposal for transversal fluxes in models with

discrete symmetries we computed all gauge fluxes in the SU(5) × Z2 fibration from chapter 4. In

addition we constructed a non-vertical flux solution related to the bisection. By computing all chiral

indices we showed that the solutions to our proposed transversality condition induce an anomaly free

chiral matter spectrum. To further test our construction we computed all gauge fluxes also in the

SU(5)×U(1) fibration which is related by a conifold transition. The chiral indices and the number of

D3 branes are invariants under this transition. We showed that this is indeed that case and how the

flux solution on one side of the transition rearrange to preserve the anomaly free chiral spectrum and

the total D3 charge. A model with SU(5) × Z2 symmetry would be an interesting starting point for

an supersymmetric GUT model with R-parity. By the use of the techniques for computing all gauge

fluxes a systematic search for 3-generation models could be performed.

In addition to the transversality condition any flux solution in F-theory must be properly quantized.

In essence this amounts to finding flux solutions in the integral cohomology of the fibration and is a

subtle problem. For the model with discrete symmetry we showed that assuming a properly quantized

flux this implies that the discrete gauge anomaly vanishes. This served as a final test of our proposal

for consistent fluxes on genus-one fibrations.
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Appendix A

In this appendix we present the details of the resolved fibers in the models with additional non-abelian

gauge groups in chapter 3. We show the explicit form of the irreducible fiber curves in codimension

one and two. The ambient coordinates that can not vanish due to SR-ideal relations are for simplicity

set to one.

A.1 su(4) top over polygon 13

Here provide the explicit equations for the fiber components of the (SU(4) × SU(2))/Z2-model dis-

cussed in section 3.3.3.

A.1.1 Codimension one

The equations for the fiber components over {w = 0} ⊂ B are

e0 = 0 : e1 + a1tz − e3t
4 = 0 (y = s = e2 = 1) ,

e1 = 0 : a1styz − e0e2e3st
2z2a2,1 − e2

0e3z
4a4,2 − e2

2e3s
2t4 = 0 ,

e2 = 0 : e1 − e3a4,2 + a1t = 0 (y = s = z = e0 = 1) ,

e3 = 0 : e1 + a1t = 0 (y = s = z = 1) .

(A.1.1)

Here we impose the SR-ideal (3.3.39). The four curves P1
i of these divisors intersect like the nodes of

the affine Dynkin diagram of A3.

A.1.2 Codimension two

Over {w = a4,2 = 0} we obtain:

e0 = 0 : a1tz − e3t
4 + e1 = 0 (y = s = e2 = 1) ,

e1 = 0 : s t
(
e0e2e3tz

2a2,1 − a1yz + e2
2e3st

3
)︸ ︷︷ ︸

R1

= 0 ,

e2 = 0 : a1t+ e1 = 0 (y = s = z = e0 = 1) ,

e3 = 0 : a1t+ e1 = 0 (y = s = z = 1) ,

(A.1.2)

133



134 APPENDIX A.

and over {w = a1 = 0}:

e0 = 0 : e1 − e3t
4 = 0 (y = s = e2 = 1) ,

e1 = 0 : e3

(
e0e2st

2z2a2,1 + e2
0z

4a4,2 + e2
2s

2t4
)︸ ︷︷ ︸

R2

= 0 ,

e2 = 0 : e1 − e3a4,2 = 0 (y = s = z = e0 = 1) ,

e3 = 0 : e1 = 0 (y = s = z = 1) .

(A.1.3)

Before calculating the weights we analyse the parts R1 and R2 in detail. For R1 one can check that

the divisors {e2 = 0}, {e3 = 0}, {t = 0} and {z = 0} do not intersect the divisor given by R1 in the

toric variety given by the projection along e1. Therefore we can rewrite it as

e0 a2,1 − y a1 + s = 0 (A.1.4)

with e0, y and s the homogeneous coordinates of P2. Since (A.1.4) is a linear equation, we obtain a P1

for the curve given by e1 = 0 = R1. In the case of R2, we find that {e0 = 0}, {e2 = 0}, {z = 0} and

{t = 0} does not intersect the divisor R2 in the toric variety given by the projection along e1. Hence,

we rewrite R2 as

s a2,1 + a4,2 + s2 = 0, (A.1.5)

where s is now the affine coordinate parametrising C and the remaining homogeneous coordinates y

and e3 parametrise a P1. Therefore, we obtain two P1s from R2 which are, however, exchanged when

going along the matter curve. Around the branch points {w = a1 = a4,2 − 1
4a

2
2,1 = 0} the solutions of

s to (A.1.5) are exchanged.

A.2 su(4) top over polygon 15

This appendix contains more information on the (SU(4)×SU(2)×SU(2))/Z2×U(1) fibration presented

in section 3.4.3.

A.2.1 Codimension one

The irreducible fiber components over {$ = 0} are:

e0 = 0 : e2e3u
2 + e1e2w

2 + γ1uwz = 0 (c = d = v = 1) ,

e1 = 0 : e2dv
2 + γ1dvw + δ2e0 = 0 (c = u = z = e3 = 1) ,

e2 = 0 : γ1cuv + γ2e0e1 + δ2e0e3cu
2 = 0 (d = w = z = 1) ,

e3 = 0 : e2 + γ1u+ γ2e0 = 0 (c = d = v = w = z = e1 = 1) .

(A.2.1)

The resolution P1’s is the intersection of above equations with two generic and independent divisors

in the base and they intersect in the pattern of the affine A3 Dynkin diagram.

A.2.2 Codimension two

Over {$ = γ1 = 0} the components of the fiber factorizes as

e0 = 0 : e2(e3u
2 + e1w

2) = 0 (c = d = v = 1) ,

e1 = 0 : e2dv
2 + δ2e0 = 0 (c = u = z = e3 = 1) ,

e2 = 0 : e0(γ2e1 + δ2e3cu
2) = 0 (d = w = z = 1) ,

e3 = 0 : e2 + γ2e0 = 0 (c = d = v = w = z = e1 = 1)

(A.2.2)
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and the components intersect as the affine D4 Dynkin diagram.

Over {$ = γ2 = 0} the components of the fiber factorizes as

e0 = 0 : e2e3u
2 + e1e2w

2 + γ1uwz = 0 (c = d = v = 1) ,

e1 = 0 : e2dv
2 + γ1dvw + δ2e0 = 0 (c = u = z = e3 = 1) ,

e2 = 0 : cu(γ1v + δ2e0e3u) = 0 (d = w = z = 1) ,

e3 = 0 : e2 + γ1u = 0 (c = d = v = w = z = e1 = 1)

(A.2.3)

with the intersection structure given by the affine A5 Dynkin diagram.

Over {$ = δ2 = 0} the components of the fiber factorizes as

e0 = 0 : e2e3u
2 + e1e2w

2 + γ1uwz = 0 (c = d = v = 1) ,

e1 = 0 : dv(e2v + γ1w = 0) (c = u = z = e3 = 1) ,

e2 = 0 : γ1cuv + γ2e0e1 = 0 (d = w = z = 1) ,

e3 = 0 : e2 + γ1u+ γ2e0 = 0 (c = d = v = w = z = e1 = 1)

(A.2.4)

intersecting as the affine A5 Dynkin diagram.

A.3 su(6) top over polygon 16

The fiber structure of the (SU(6)×SU(3))/Z3-fibration of section 3.5.2 can be summarized as follows:

A.3.1 Codimension one

The irreducible fiber components over {w = 0} take the form

e0 = 0 : e1e3p
3 + e3e5x

3 + a1pxz = 0 (s = q = e2 = e4 = 1) ,

e1 = 0 : e3 + a1p = 0 (x = s = q = z = e4 = e5 = 1) ,

e2 = 0 : a3e1 + a1pqsx+ e3qs
2x3 = 0 (z = e0 = e4 = e5 = 1) ,

e3 = 0 : a3e
2
0e1e5 + a1x = 0 (s = q = p = z = 1)

e4 = 0 : e3 + a3e5 + a1x = 0 (s = q = p = z = e0 = e1 = e2 = 1)

e5 = 0 : e3 + a1x = 0 (s = q = p = z = e1 = e2 = 1) .

(A.3.1)

The resolution P1’s is the intersection of above equations with two generic and independent divisors

in the base and they intersect in the pattern of the affine A5 Dynkin diagram.

A.3.2 Codimension two

Over {w = a1 = 0} the components of the fiber takes the form

e0 = 0 : e3(e1p
3 + e5x

3) = 0 (s = q = e2 = e4 = 1) ,

e1 = 0 : e3 = 0 (x = y = s = q = z = e4 = e5 = 1) ,

e2 = 0 : a3e1 + e3qs
2x3 = 0 (y = z = e0 = e4 = e5 = 1) ,

e3 = 0 : a3e
2
0e1e5 = 0 (y = s = q = p = z = 1)

e4 = 0 : e3 + a3e5 = 0 (y = s = q = p = z = e0 = e1 = e2 = 1)

e5 = 0 : e3 = 0 (y = s = q = p = z = e1 = e2 = 1)

(A.3.2)
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resulting in 6 distinct P1’s, intersecting as the E6 Dynkin diagram (not affine).

Over {w = a3 = 0} the components of the fiber takes the form

e0 = 0 : e1e3p
3 + e3e5x

3 + a1pxz = 0 (s = q = e2 = e4 = 1) ,

e1 = 0 : e3 + a1p = 0 (x = y = s = q = z = e4 = e5 = 1) ,

e2 = 0 : qsx(a1p+ e3sx
2) = 0 (y = z = e0 = e4 = e5 = 1) ,

e3 = 0 : a1x = 0 (y = s = q = p = z = 1)

e4 = 0 : e3 + a1x = 0 (y = s = q = p = z = e0 = e1 = e2 = 1)

e5 = 0 : e3 + a1x = 0 (y = s = q = p = z = e1 = e2 = 1)

(A.3.3)

resulting in 9 distinct P1’s, intersecting as the affine A8 Dynkin diagram.
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In this appendix we present some technical details from chapter 4. The scaling relations for the divisor

classes in the models with SU(5)× Z2 and SU(5)× U(1) apply to the models in chapter 5 as well.

B.1 Discrete subgroups after Higgsing

In this appendix we derive in detail the remnant discrete subgroup after Higgsing a U(1) in the

presence of matter charged under another ‘spectator’ gauge group. We exemplify our general results

for additional U(1) or SU(N) spectator groups as appearing in the recent F-theory literature.

As is well-known, if we give a VEV to a field transforming only under a U(1) with charge qH ,

we Higgs the U(1) gauge symmetry to ZqH . However, this is only true if the U(1)-charges of all

the fields {ϕI}1 charged under the U(1) are properly normalised or co-prime2 , i.e. GCD({qI}) =

GCD({qH , qi}) = 1. Therefore, the actual discrete symmetry is ZqH/GCD({qI}). To prevent cumber-

some notation we will use capital letters for co-prime charges, i.e. QI = qI/GCD({qI}).

Further subtleties can arise if some of the fields {ϕi} transform in non-trivial representations of

other abelian or non-abelian gauge symmetries Gr (with abelian discrete subgroups). This is because

a subgroup ZNsub
of ZQH might be part (or all) of the discrete abelian subgroups ZNr of Gr and thus

needs to be divided out to avoid double-counting. In such a situation the actual remaining symmetry

group after Higgsing is

Gr ×
ZQH
ZNsub

.

To obtain the subgroup ZNsub
we first consider the subgroup ZNtsg of ZQH which acts trivially on all

the fields {ϕα} ⊂ {ϕI} which are uncharged under Gr. The generator of ZNtsg is given by taking

LCM

({
LCM(Qα, QH)

Qα

})
times the generator of ZQH , i.e.

Ntsg =
QH

LCM
({

LCM(Qα,QH)
Qα

}) .
1Note that this set also includes the Higgs H, i.e. the field which obtains the VEV. In the sequel we will sometimes

treat the Higgs field, for presentational purposes, separately. In this case we will use a lower case i to denote all fields
different from the Higgs.

2Note that in the full theory there are also line operators which define a quantised unit charge independent of matter
fields. However in the following analysis we are concerned with discrete symmetries acting on matter fields and with
such symmetries there is not a notion of an absolute charge but only a relative one.
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If GCD(Ntsg, Nr) 6= 1 then there can be a subgroup ZNsub
of both ZNtsg and ZNr such that the elements

of the representations of ZNtsg and ZNr agree on this subgroup ZNsub
. In this case Nsub is the order of

this subgroup. If GCD(Ntsg, Nr) = 1, there cannot be a common non-trivial subgroup of both ZNtsg

and ZNr .

To be more specific about the identification of ZNsub
, we will now consider two explicit examples,

given by Gr = SU(N) with N = 4, 5 and, respectively, Gr = U(1). For the first example with

Gr = SU(N), we specify the matter content, i.e. the set of fields {ϕI}, as appearing in the theories

realised (by top constructions) in [83,92],

12N , 1N ,
2n

,
{

n+iN

}
i∈Si

(B.1.1)

with n = 0, . . . , N − 1 for the different tops, Si some ‘integer interval’ which has zero as an element,

cf. [20], and and the fundamental and anti-symmetric representation, respectively. The subscripts

next to the states denote the charge under the U(1) which is Higgsed by giving 12N a VEV. QH is

therefore

QH =

{
10 : N = 5, n = 1, . . . , 4
2 : N = 5, n = 0

, QH =


8 : N = 4, n = 1, 3
4 : N = 4, n = 2
2 : N = 4, n = 0

. (B.1.2)

Since there is only one additional SU(N) singlet with half the U(1)-charge of the Higgs, one concludes

Ntsg = 1
2Q

H . Hence for n = 0, Nsub = 1. For the rest we have to work a bit more. The action of ZNtsg

on the fields can be identified by with a Z 1
2
QH action with generator

e
2πi 2Q

i

QH with

(
2Q

2n

QH
, 2Q

n

QH

)
∼=


(2n
N ,

n
N ) = (2n

5 ,
n
5 ) : N = 5, n = 1, . . . , 4

(2n
N ,

n
N ) = (2n

4 ,
n
4 ) : N = 4, n = 1, 3

(2n
N ,

n
N ) ∼= (0, 1

2) : N = 4, n = 2
. (B.1.3)

We have given only one generator of ZNtsg for the fundamentals because they are the same for all i’s.

In the first two cases ZNtsg agrees with the center of SU(5) and SU(4), respectively. In the last case

only the Z2 subgroup of the SU(4) center is generated. Hence we obtain

ZQH
ZNsub

=

{
Z10/Z5 : N = 5, n = 1, . . . , 4

Z2 : N = 5, n = 0
,

ZQH
ZNsub

=


Z8/Z4 : N = 4, n = 1, 3
Z4/Z2 : N = 4, n = 2

Z2 : N = 4, n = 0
. (B.1.4)

We find that the discrete part is for all examples Z2. Its realisation depends however strongly on the

matter content. For Z10/Z5 and Z8/Z4 there is a (canonical) representative within the equivalence

class generating the Z2, which acts either with 1 or −1 on all the matter states—like for the n = 0

cases where the charges are right from the beginning either zero or one-half. However there is no such

representative for N = 4 and n = 1, 3.3

Our second example is a U(1)a × U(1)b-model with the matter content

10,2, 1−1,−2, 11,−1, 11,0, 1−1,−1, 10,1 . (B.1.5)

This theory is realised by F-theory on the elliptic fibrations studied in [52, 63, 83, 92]. We Higgs this

model in two different ways. In the first case we will give 10,2 a VEV and in the second case we switch

3Repeating the same analysis for a spectator SU(2) with charge one modulo two for the fundamentals, one finds a
remaining Z4/Z2-symmetry upon switching on a VEV for the singlet of charge four. This situation describes a transition
from the Bl1P[1,1,2]-fibration to a P[1,1,2]-fibration in the presence of an SU(2). Hence one would naively expect a Z4

after Higgsing, cf. [70], but as the above analysis shows the actual discrete abelian group is just Z2.
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on a VEV for 1−1,−2. For 〈10,2〉 6= 0 the situation is pretty obvious. First of all we note that all

the charges are co-prime. Secondly, the Higgs 10,2 is only charged under U(1)b. Hence, Gr = U(1)a
and ZQH = Z2. There is one other field 10,1 which is only charged under the second factor. Hence,

Ntsg = 1 and

U(1)a × Z2

is the remaining symmetry. This agrees with the model considered in [70].

Alternatively let us consider a Higgsing with 〈1−1,−2〉 6= 0. In this case, we have to choose a

different basis for the U(1)s. For general qHa and qHb , the direction which leaves ϕH invariant is

φa =
LCM(qHa , q

H
b )

qHa
φa′ , φb = −

LCM(qHa , q
H
b )

qHb
φa′ . (B.1.6)

The second direction we choose such that it generates together with (B.1.6) the Z2 charge-lattice of

U(1)a × U(1)b, i.e.

φa = Dφb′ , φb = C φb′ with C
LCM(qHa , q

H
b )

qHa
+D

LCM(qHa , q
H
b )

qHb
= 1 . (B.1.7)

Hence, we obtain (2,−1) for the U(1)a′ direction and for U(1)b′ we choose (−1, 0) out of the possible

solutions to (B.1.7). The states (B.1.5) read as follows in the new U(1)a′ × U(1)b′ basis:

1−2,0, 10,1, 13,−1, 12,−1, 1−1,1, 1−1,0 . (B.1.8)

Since all the QI charges are co-prime and QH = 1, the remaining symmetry is just U(1)a′ .
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B.2 Singlet matter curves

In this appendix we give the explicit form of the complicated matter curves in the model with an extra

U(1) and the model with a bisection. The ideal C2 in (4.1.9) with 15 generators has the form

(c1b
4
2 − b1c2b

3
2 − b0c3b

3
2 + b21c3b

2
2 + 2c2c3b

2
2 − 3b1c

2
3b2 + 2c3

3,

4c0b
4
2 + b1c1b

3
2 − 4b0c2b

3
2 + 4c2

2b
2
2 − b21c2b

2
2 + 3b0b1c3b

2
2 − 2c1c3b

2
2 − 2b0c

2
3b2 + b31c3b2

− 4b1c2c3b2 − b21c2
3 + 4c2c

2
3,

2b1c0b
3
2 − b0c1b

3
2 − b0b1c2b

2
2 + 2c1c2b

2
2 + b20c3b

2
2 − 4c0c3b

2
2 + b0b

2
1c3b2 − 2b1c1c3b2 − b0b1c2

3 + 2c1c
2
3,

− c2
3b

2
0 + b1b2c3b

2
0 − b1b22c1b0 + b22c

2
1 + 4c0c

2
3 + b21b

2
2c0 − 4b1b2c0c3,

b2c3b
3
0 − b22c1b

2
0 + b1b2c2b

2
0 − 2c2c3b

2
0 − b21b2c1b0 − 4b2c0c3b0 + 2b1c1c3b0 + b1b2c

2
1 + b31b2c0 + 4b22c0c1

− 4b1b2c0c2 − 2c2
1c3 − 2b21c0c3 + 8c0c2c3,

c0b
4
1 − b0c1b

3
1 + c2

1b
2
1 + 2b0b2c0b

2
1 + b20c2b

2
1 − 8c0c2b

2
1 − 3b20b2c1b1 + 4b2c0c1b1 + 4b0c1c2b1 − b30c3b1

+ 4b0c0c3b1 + 16b22c
2
0 + 2b0b2c

2
1 − 4b20c

2
2 + 16c0c

2
2 − 4b20b

2
2c0 − 4c2

1c2 + 4b30b2c2 − 16b0b2c0c2

+ 2b20c1c3 − 8c0c1c3,

− c3b
4
0 + b2c1b

3
0 + b1c2b

3
0 − 2b1b2c0b

2
0 − b21c1b

2
0 − 2c1c2b

2
0 + 8c0c3b

2
0 + 3b1c

2
1b0 + b31c0b0 − 4b2c0c1b0

− 4b1c0c2b0 − 2c3
1 + 8b1b2c

2
0 − 2b21c0c1 + 8c0c1c2 − 16c2

0c3,

c0c
2
3b

3
1 − b0c1c

2
3b

2
1 + b2c

2
1c3b

2
1 − 4b2c0c2c3b

2
1 + 4b22c0c

2
2b1 + 6b0b2c0c

2
3b1 + b20c2c

2
3b1 − b22c2

1c2b1

− 2b22c0c1c3b1 + b32c
3
1 − b30c3

3 − b20b2c1c
2
3 − 4b32c0c1c2 + 8b32c

2
0c3 + b0b

2
2c

2
1c3 − 4b0b

2
2c0c2c3,

b2c1c3b
3
1 − c1c

2
3b

2
1 − b22c1c2b

2
1 − 2b0b2c2c3b

2
1 + b32c

2
1b1 + 2b0b

2
2c

2
2b1 + 4b20b2c

2
3b1 − 4b2c0c

2
3b1 + 2b0c2c

2
3b1

− b0b22c1c3b1 − 4b20c
3
3 + 8c0c

3
3 − 2b0b2c1c

2
3 − 2b0b

3
2c1c2 + 2b22c

2
1c3 + 4b0b

3
2c0c3 − 2b20b

2
2c2c3,

b2c3b
4
1 − c2

3b
3
1 − b22c2b

3
1 + b32c1b

2
1 − b0b22c3b

2
1 − 4b2c2c3b

2
1 + 4b22c

2
2b1 + 6b0b2c

2
3b1 + 4c2c

2
3b1 + 2b22c1c3b1

− 4b0c
3
3 − 4b2c1c

2
3 − 4b32c1c2 + 8b32c0c3 − 4b0b

2
2c2c3,

b0b2c3b
3
1 − b0c2

3b
2
1 − b0b22c2b

2
1 − 2b2c1c3b

2
1 + 2c1c

2
3b1 + b0b

3
2c1b1 + 2b22c1c2b1 − b20b22c3b1 + 4b22c0c3b1

− 2b32c
2
1 + 2b20b2c

2
3 − 8b2c0c

2
3,

− b22c3b
3
0 − b1c2

3b
2
0 + b32c1b

2
0 − b1b22c2b

2
0 + b21b2c3b

2
0 + 2b2c2c3b

2
0 + 4b22c0c3b0 − 2b1b2c1c3b0 + 4b1c0c

2
3

− 4b32c0c1 + 4b1b
2
2c0c2 + 2b2c

2
1c3 − 2b21b2c0c3 − 8b2c0c2c3,

− c2
3b

3
0 − 2b22c2b

3
0 + 2b1b2c3b

3
0 + 2b2c

2
2b

2
0 + 2b32c0b

2
0 − b2c1c3b

2
0 − b1c2c3b

2
0 + 4c0c

2
3b0 + 8b22c0c2b0

− 2b1b2c1c2b0 − 8b1b2c0c3b0 + b21c1c3b0 − 8b32c
2
0 − 8b2c0c

2
2 + 2b2c

2
1c2 + 2b21b2c0c2 − b1c2

1c3

− b31c0c3 + 4b2c0c1c3 + 4b1c0c2c3,

b2c3b
4
0 − b22c1b

3
0 − c2c3b

3
0 + b1b

2
2c0b

2
0 + b2c1c2b

2
0 − 6b2c0c3b

2
0 + b1c1c3b

2
0 − b1b2c2

1b0 + 4b22c0c1b0

− c2
1c3b0 − b21c0c3b0 + 4c0c2c3b0 + b2c

3
1 − 4b1b

2
2c

2
0 + b21b2c0c1 − 4b2c0c1c2 + 8b2c

2
0c3,

2b2c2b
4
0 − 2c2

2b
3
0 − 2b22c0b

3
0 − 2b1b2c1b

3
0 + c1c3b

3
0 + b2c

2
1b

2
0 + 2b21b2c0b

2
0 − 8b2c0c2b

2
0 + 3b1c1c2b

2
0

− 2b1c0c3b
2
0 + 8b22c

2
0b0 − b21c2

1b0 + 8c0c
2
2b0 + 4b1b2c0c1b0 − 2c2

1c2b0 − 2b21c0c2b0 − 4c0c1c3b0

+ b1c
3
1 − 4b21b2c

2
0 + b31c0c1 − 4b1c0c1c2 + 8b1c

2
0c3).

(B.2.1)

The matter locus in the Z2 model is given by the ideal C in (4.2.13). The explicit form is

(c3
4b

6
1 − 3b2c3c

2
4b

5
1 − 8c2c

3
4b

4
1 + 3c2

3c
2
4b

4
1 + 2b22c2c

2
4b

4
1 + 3b22c

2
3c4b

4
1 − b32c3

3b
3
1 + 16b2c2c3c

2
4b

3
1 − 6b2c

3
3c4b

3
1

− 4b32c2c3c4b
3
1 + 3b22c

4
3b

2
1 − 64c0c

4
4b

2
1 + 16c2

2c
3
4b

2
1 + 32b22c0c

3
4b

2
1 + 16c1c3c

3
4b

2
1 + 2b42c2c

2
3b

2
1

− 8b22c
2
2c

2
4b

2
1 − 16c2c

2
3c

2
4b

2
1 − 4b42c0c

2
4b

2
1 − 8b22c1c3c

2
4b

2
1 + 3c4

3c4b
2
1 + b42c

2
2c4b

2
1 − 4b22c2c

2
3c4b

2
1

+ b42c1c3c4b
2
1 − 3b2c

5
3b1 − 4b32c2c

3
3b1 + 64b2c0c3c

3
4b1 − b52c1c

2
3b1 − 16b2c1c

2
3c

2
4b1 − 16b2c

2
2c3c

2
4b1

− 32b32c0c3c
2
4b1 − b52c2

2c3b1 + 16b2c2c
3
3c4b1 + 8b32c1c

2
3c4b1 + 8b32c

2
2c3c4b1 + 4b52c0c3c4b1 + c6

3
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+ 2b22c2c
4
3 + 64c2

1c
4
4 + b42c1c

3
3 − 48b22c

2
1c

3
4 − 64c1c2c3c

3
4 + b42c

2
2c

2
3 − b62c0c

2
3 + 16c1c

3
3c

2
4 + 12b42c

2
1c

2
4

+ 16c2
2c

2
3c

2
4 − 16b22c0c

2
3c

2
4 + 48b22c1c2c3c

2
4 + b62c1c2c3 − 8c2c

4
3c4 − 8b22c1c

3
3c4 − b62c2

1c4 − 8b22c
2
2c

2
3c4

+ 8b42c0c
2
3c4 − 12b42c1c2c3c4,

4c3
4b

5
1 − 10b2c3c

2
4b

4
1 − 32c2c

3
4b

3
1 + 12c2

3c
2
4b

3
1 + 8b22c2c

2
4b

3
1 + 7b22c

2
3c4b

3
1 − b32c3

3b
2
1 + 16b2c1c

3
4b

2
1 − 4b32c1c

2
4b

2
1

+ 40b2c2c3c
2
4b

2
1 − 16b2c

3
3c4b

2
1 − 10b32c2c3c4b

2
1 + 3b22c

4
3b1 − 256c0c

4
4b1 + 64c2

2c
3
4b1 + 128b22c0c

3
4b1

+ 32c1c3c
3
4b1 + b42c2c

2
3b1 − 32b22c

2
2c

2
4b1 − 48c2c

2
3c

2
4b1 − 16b42c0c

2
4b1 − 32b22c1c3c

2
4b1 + 8c4

3c4b1

+ 4b42c
2
2c4b1 + 8b22c2c

2
3c4b1 + 6b42c1c3c4b1 − 2b2c

5
3 + 128b0c1c

4
4 + b0b

4
2c

3
3 − 2b32c2c

3
3 − 64b0b

2
2c1c

3
4

− 64b2c1c2c
3
4 + 128b2c0c3c

3
4 − 64b0c2c3c

3
4 − b52c1c

2
3 + 16b0c

3
3c

2
4 + 8b0b

4
2c1c

2
4 + 32b32c1c2c

2
4

− 64b32c0c3c
2
4 + 32b0b

2
2c2c3c

2
4 − 8b0b

2
2c

3
3c4 + 8b2c2c

3
3c4 + 4b32c1c

2
3c4 − 4b52c1c2c4 + 8b52c0c3c4

− 4b0b
4
2c2c3c4,

c1b
4
2 − b1c2b

3
2 − b0c3b

3
2 + b21c3b

2
2 + 2c2c3b

2
2 + 2b0b1c4b

2
2 − 8c1c4b

2
2 − 3b1c

2
3b2 − b31c4b2 + 4b1c2c4b2

+ 4b0c3c4b2 + 2c3
3 − 8b0b1c

2
4 + 16c1c

2
4 + 2b21c3c4 − 8c2c3c4,

2c2
4b

5
1 − 5b2c3c4b

4
1 + 3b22c

2
3b

3
1 − 16c2c

2
4b

3
1 + 6c2

3c4b
3
1 + 4b22c2c4b

3
1 − 7b2c

3
3b

2
1 + 8b2c1c

2
4b

2
1 − 5b32c2c3b

2
1

− 2b32c1c4b
2
1 + 20b2c2c3c4b

2
1 + 4c4

3b1 − 128c0c
3
4b1 + 2b42c

2
2b1 + b0b

3
2c

2
3b1 + 6b22c2c

2
3b1 + 32c2

2c
2
4b1

+ 64b22c0c
2
4b1 + 16c1c3c

2
4b1 + 3b42c1c3b1 − 16b22c

2
2c4b1 − 4b0b2c

2
3c4b1 − 24c2c

2
3c4b1 − 8b42c0c4b1

− 16b22c1c3c4b1 − 2b0b
2
2c

3
3 + 64b0c1c

3
4 − 2b32c1c

2
3 − 32b0b

2
2c1c

2
4 − 32b2c1c2c

2
4 + 64b2c0c3c

2
4

− 32b0c2c3c
2
4 − 2b52c1c2 + 4b52c0c3 − 2b0b

4
2c2c3 + 8b0c

3
3c4 + 8b2c1c

2
3c4 + 4b0b

4
2c1c4 + 16b32c1c2c4

− 32b32c0c3c4 + 16b0b
2
2c2c3c4,

− c3c4b
4
1 + b2c

2
3b

3
1 + 4b0c

2
4b

3
1 − c3

3b
2
1 − 8c1c

2
4b

2
1 − b22c2c3b

2
1 − 6b0b2c3c4b

2
1 + 8c2c3c4b

2
1 + 3b0b

2
2c

2
3b1

− 4b2c2c
2
3b1 + 32b2c0c

2
4b1 − 16b0c2c

2
4b1 + b32c1c3b1 − 8b32c0c4b1 + 4b0b

2
2c2c4b1 + 4b2c1c3c4b1

− 2b0b2c
3
3 + 4c2c

3
3 − 2b22c1c

2
3 − 16b0b2c1c

2
4 + 32c1c2c

2
4 + 4b22c

2
2c3 + 4b42c0c3 − 4b0b

3
2c2c3

+ 4b0b
3
2c1c4 − 8b22c1c2c4 − 16c2

2c3c4 − 16b22c0c3c4 + 16b0b2c2c3c4,

− c4b
5
1 + b2c3b

4
1 − c2

3b
3
1 − b22c2b

3
1 + 2b0b2c4b

3
1 + 8c2c4b

3
1 + b32c1b

2
1 − b0b22c3b

2
1 − 4b2c2c3b

2
1 − 8b2c1c4b

2
1

− 8b0c3c4b
2
1 + 4b22c

2
2b1 + 6b0b2c

2
3b1 + 4c2c

2
3b1 + 64c0c

2
4b1 + 2b22c1c3b1 − 16c2

2c4b1 − 16b22c0c4b1

+ 8c1c3c4b1 − 4b0c
3
3 − 4b2c1c

2
3 − 32b0c1c

2
4 − 4b32c1c2 + 8b32c0c3 − 4b0b

2
2c2c3 + 8b0b

2
2c1c4

+ 16b2c1c2c4 − 32b2c0c3c4 + 16b0c2c3c4,

− c4b
4
1 + b2c3b

3
1 − c2

3b
2
1 − b22c2b

2
1 − 2b0b2c4b

2
1 + 8c2c4b

2
1 + b32c1b1 + 3b0b

2
2c3b1 − 4b2c2c3b1 − 4b2c1c4b1

− 4b0c3c4b1 + 4b22c
2
2 − 2b0b2c

2
3 + 4c2c

2
3 − 16b20c

2
4 + 64c0c

2
4 + 4b42c0 − 4b0b

3
2c2 − 2b22c1c3 + 4b20b

2
2c4

− 16c2
2c4 − 32b22c0c4 + 16b0b2c2c4 + 8c1c3c4,

− b0c4b
3
1 + b0b2c3b

2
1 + 2c1c4b

2
1 − b0c2

3b1 + 2b32c0b1 − b0b22c2b1 − 2b2c1c3b1 − 8b2c0c4b1 + 4b0c2c4b1

+ 2c1c
2
3 − b0b32c1 + 2b22c1c2 + b20b

2
2c3 − 4b22c0c3 + 4b0b2c1c4 − 8c1c2c4 − 4b20c3c4 + 16c0c3c4,

c2
3b

2
0 − b1b2c3b

2
0 + b21c4b

2
0 + b1b

2
2c1b0 − 4b1c1c4b0 − b22c2

1 − 4c0c
2
3 − b21b22c0 + 4b1b2c0c3 + 4c2

1c4,

c3
3b

3
0 + 8c1c

2
4b

3
0 − 4c2c3c4b

3
0 + b2c1c

2
3b

2
0 − b1c2c

2
3b

2
0 − 16b1c0c

2
4b

2
0 + 4b1c

2
2c4b

2
0 − 4b2c1c2c4b

2
0 + 8b2c0c3c4b

2
0

− 2b1c1c3c4b
2
0 − 6b1b2c0c

2
3b0 + b21c1c

2
3b0 − b22c2

1c3b0 + 4b22c0c2c3b0 + 6b1b2c
2
1c4b0 − 8b22c0c1c4b0

− 4b21c1c2c4b0 + 8b21c0c3c4b0 − b32c3
1 − 4b1b

2
2c0c

2
2 − b31c0c

2
3 + b1b

2
2c

2
1c2 + 4b32c0c1c2 − 8b32c

2
0c3

− b21b2c2
1c3 + 2b1b

2
2c0c1c3 + 4b21b2c0c2c3 + 16b1b

2
2c

2
0c4 + b31c

2
1c4 − 8b21b2c0c1c4,

− b2c3b
3
0 + 2b1c4b

3
0 + b22c1b

2
0 − b1b2c2b

2
0 + 2c2c3b

2
0 − 4c1c4b

2
0 + b21b2c1b0 + 4b2c0c3b0 − 2b1c1c3b0

− 8b1c0c4b0 − b1b2c2
1 − b31b2c0 − 4b22c0c1 + 4b1b2c0c2 + 2c2

1c3 + 2b21c0c3 − 8c0c2c3 + 16c0c1c4,
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− c0c3b
4
1 + 2b2c0c2b

3
1 + b0c1c3b

3
1 + 4b0c0c4b

3
1 − 2b0b2c1c2b

2
1 − c2

1c3b
2
1 − 2b0b2c0c3b

2
1 − b20c2c3b

2
1 + 4c0c2c3b

2
1

− 4b20c1c4b
2
1 − 8c0c1c4b

2
1 + 2b20b2c

2
2b1 − 8b2c0c

2
2b1 + b30c

2
3b1 − 4b0c0c

2
3b1 + 2b2c

2
1c2b1 + 3b20b2c1c3b1

− 4b2c0c1c3b1 + 32b2c
2
0c4b1 + 12b0c

2
1c4b1 − 8b20b2c0c4b1 − 2b20c1c

2
3 + 8c0c1c

2
3 − 2b20b

2
2c1c2

+ 8b22c0c1c2 − 16b22c
2
0c3 − 2b0b2c

2
1c3 + 4b20b

2
2c0c3 − 2b30b2c2c3 + 8b0b2c0c2c3 − 8c3

1c4 + 4b30b2c1c4

− 16b0b2c0c1c4,

− b2c0b
4
1 + b0b2c1b

3
1 + 2c0c3b

3
1 − b2c2

1b
2
1 + 2b0b

2
2c0b

2
1 − b20b2c2b

2
1 + 4b2c0c2b

2
1 − 2b0c1c3b

2
1 − 8b0c0c4b

2
1

− b20b22c1b1 − 4b22c0c1b1 + 2c2
1c3b1 + b30b2c3b1 − 4b0b2c0c3b1 + 2b20c2c3b1 − 8c0c2c3b1 + 4b20c1c4b1

+ 16c0c1c4b1 + 2b0b
2
2c

2
1 − 2b30c

2
3 + 8b0c0c

2
3 − 8b0c

2
1c4,

− c0b
5
1 + b0c1b

4
1 − c2

1b
3
1 + 2b0b2c0b

3
1 − b20c2b

3
1 + 8c0c2b

3
1 − b20b2c1b

2
1 − 8b2c0c1b

2
1 − 4b0c1c2b

2
1 + b30c3b

2
1

− 8b0c0c3b
2
1 + 6b0b2c

2
1b1 + 4b20c

2
2b1 − 16c0c

2
2b1 + 4c2

1c2b1 + 2b20c1c3b1 + 8c0c1c3b1 + 64c2
0c4b1

− 16b20c0c4b1 − 4b2c
3
1 − 4b20b2c1c2 + 16b2c0c1c2 − 32b2c

2
0c3 − 4b0c

2
1c3 + 8b20b2c0c3 − 4b30c2c3

+ 16b0c0c2c3 + 8b30c1c4 − 32b0c0c1c4,

4c4b
4
0 − 4b2c2b

3
0 + b1c3b

3
0 + 4c2

2b
2
0 + 4b22c0b

2
0 + 3b1b2c1b

2
0 − b21c2b

2
0 − 2c1c3b

2
0 − 32c0c4b

2
0 − 2b2c

2
1b0

− 2b21b2c0b0 + b31c1b0 + 16b2c0c2b0 − 4b1c1c2b0 − 4b1c0c3b0 − 16b22c
2
0 − b21c2

1 − 16c0c
2
2 − b41c0

− 4b1b2c0c1 + 4c2
1c2 + 8b21c0c2 + 8c0c1c3 + 64c2

0c4,

c3b
4
0 − b2c1b

3
0 − b1c2b

3
0 + 2b1b2c0b

2
0 + b21c1b

2
0 + 2c1c2b

2
0 − 8c0c3b

2
0 − 3b1c

2
1b0 − b31c0b0 + 4b2c0c1b0

+ 4b1c0c2b0 + 2c3
1 − 8b1b2c

2
0 + 2b21c0c1 − 8c0c1c2 + 16c2

0c3) (B.2.2)

B.3 Scalings and divisor classes

Here we present the scaling relations for the coordinates in the two geometries discussed in chapter 4

and 5. For the bisection model described by the hypersurface equation (4.6.13) (also (5.2.1)) the toric

coordinates scale as presented in Table B.3.1. For the model with an extra section with hypersurface

equation (4.6.1) (and in (5.3.1)) the scaling relations are collected in Table B.3.2.

u v w e0 e1 e2 e3 e4

K̄ · 1 2 · · · · ·
[b2] · −1 −1 · · · · ·
θ · · · 1 · · · ·
U 1 1 2 · · · · ·
E1 · · −1 −1 1 · · ·
E2 · −1 −2 −1 · 1 · ·
E3 · −2 −2 −1 · · 1 ·
E4 · −1 −1 −1 · · · 1

Table B.3.1: Scaling relations for the toric coordinates in the Z2-model.
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u v w s e0 e1 e2 e3 e4

K̄ · 1 2 · · · · · ·
[b2] · −1 −1 · · · · · ·
θ · · · · 1 · · · ·
U 1 1 2 · · · · · ·
S · 1 1 1 · · · · ·
E1 · · −1 · −1 1 · · ·
E2 · −1 −2 · −1 · 1 · ·
E3 · −2 −2 · −1 · · 1 ·
E4 · −1 −1 · −1 · · · 1

Table B.3.2: Scaling relations for the toric coordinates in the U(1)-model.

B.4 Blowing up the Matter Locus

As outlined in section 4.5.1, one way to identify the torsional 2-cycles in a smooth geometry is by

blowing up the C2 locus in the base of the fibration [125]. The resulting space is birationally equivalent

to the original one and therefore allows one to deduce the torsional cohomology also for the latter [29].

In this appendix we give the technical details of this procedure.

Let us begin with a simple example which we will build up to the final result. Consider the

U(1)-restricted Tate model presented in [77] given by the hypersurface PT in P231

PT = y2 + a1xyz + a3yz
3 − x3 − a2x

2z2 − a4xz
4 = 0 . (B.4.1)

This fibration is a specialization of the Weierstrass model (4.5.3) with no double-charged singlets. It

exhibits two independent sections and a set of points with conifold singularities T2 where matter with

charge one with respect to the associated U(1) symmetry resides,

T2 : a3 = a4 = 0 . (B.4.2)

One can resolve these singularities through a blow-up in the ambient variety, involving the fibre co-

ordinates by sending (x, y) → (xs, ys) and imposing the scaling relation (x, y, s) ∼
(
λ−1x, λ−1y, λs

)
.

The blowup divisor S : s = 0 acts as a rational section, in addition to the zero section Z : z = 0.

The resulting manifold is smooth and over the locus a3 = a4 = 0 the fibre is of type I2.

Let us now consider starting from the singular fibration but instead of resolving we blow up the

base over the locus T2 by sending (a3, a4) → (a3t, a4t) and introducing the relation (a3, a4, t) ∼(
λ−1a3, λ

−1a4, λt
)
. The resulting geometry now has an SU(2) singularity over the exceptional divisor

T : t = 0. (B.4.3)

Note that after this replacement t does not factor from PT , which means that the proper transform

of the hypersurface equation has non-vanishing first Chern class, i.e. is not Calabi-Yau any more.

Nonetheless the space is Kähler and we can proceed, though dynamically this configuration is unlikely

to be stable due to the absence of supersymmetry. It merely serves as a birational auxiliary geometry

which allows us to identify the torsional cycles. We can resolve the SU(2) singularity in the standard

way of resolving non-abelian singularities over divisors by performing a second blow-up involving now

the fibre coordinates (x, y, t) → (xs, ys, ts) and identifying (x, y, t, s) ∼
(
λ−1x, λ−1y, λ−1t, λs

)
. The

resolved fibration takes the form

P̂T = y2 + a1xyz + a3tyz
3 − sx3 − a2x

2z2 − a4txz
4 = 0 . (B.4.4)
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This is a smooth space. The fibre over a generic point on T is of type I2 with the two components

A1 : T ∩ P̂T ∩ {Cbase} ,
B1 : S ∩ P̂T ∩ {Cbase} ,

(B.4.5)

where {Cbase} is some curve in the base intersecting intersecting T at a generic point. These two

components intersect at two points.

Over two sets of special points along the divisor t = 0 in the base the fibre changes. The first

set D2 corresponds to the locus D2 : {t = 0} ∩
{

4a2 + a2
1 = 0

}
. Over this locus the fibre becomes of

Kodaira type III. There is no symmetry enhancement or matter states associated to this locus. The

second more interesting locus is given by Ĉ2 : {t = 0} ∩
{
a2a

2
3 − a1a3a4 − a2

4 = 0
}

. Over this locus of

points the B components of the fibre splits into 2 components

B1|Ĉ2
→ B1,1 +B1,2. (B.4.6)

The fibre becomes type I3 which signals the presence of matter transforming in the fundamental of

SU(2).

There are two important ways that this toy example differs from the singular Weierstraß model we

are interested in. The first, quantitative, difference is that the matter point locus T2 in the example

is very simple while the corresponding locus C2 in the full model (4.5.3) is very complicated. This

makes performing the blow-up in the base, though conceptually equivalent, technically difficult. We

will return to this later. The second, qualitative, difference is that in the full model there are two

rather than one matter loci, C1 and C2. We can proceed by blowing up C2 → T as in the example

above. However the key point is that the resolution (x, y, t)→ (xs, ys, ts) will only resolve the SU(2)

singularity over T but not the singularity of C1.

We will therefore require a further resolution. Importantly this will introduce another independent

homology class for the components of the fibre independent of the Cartan of the SU(2). Therefore

now in the Kähler cone we will have an additional degeneration possibility where the C1 locus becomes

singular while the T divisor remains smooth. In this limit we can then deform the C1 locus and reach

the smooth geometry with the Z2 discrete symmetry and torsion. Alternatively we can perform the

deformation first and then blow up the base in the deformed model, since the blow-up is localised

away from the deformation locus this should lead to the same result.

In the main text we have identified the torsional 2-cycles by studying the intersection numbers of

the sections with the resolved Weierstraß model. This is equivalent to looking at their U(1) charges.

The intersection of the section with the components of the fibre over the C1 locus remain unchanged by

a blow-up in the base over the C2 locus. Indeed it is clear that the component B1 of the fibre over C1

which shrinks and is then deformed must have vanishing intersection with U , since this remains as the

zero section after the deformation; furthermore since the intersection with S −U is the 6-dimensional

U(1) charge (of the massless Higgs), it is independentof the resolution. Therefore it must be that the

shrinking component intersects S with +2 and so the argument for the existence of the 3-chains goes

through for the blown-up base geometry as long as we can identify components of the fibre which have

the same intersection numbers as B1 in table 4.3.1. Since this would mean they cannot intersect the

Cartan of the SU(2) they can only arise as combinations of the fibre components over the analogue

of the matter points Ĉ2 in the full Weierstrass model PW . They therefore will induce the 3-chains as

described in the main text.

Let us now turn to applying this procedure to the full model PW (4.5.3). As analysed in [10,70,84],

the single-charged locus C2 is given by a complicated prime ideal. We shall use the particular form
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given in [84] where it is given by the (non-transversal) intersection of the 7 polynomials

H1 =e1b
4 − 2e2e3b

2 + 2e3
3,

H2 =2e0b
4 − 2e2

2b
2 + e1e3b

2 + 2e2e
2
3,

H3 =− e1e2b
2 + 2e0e3b

2 + e1e
2
3,

H4 =− e2
1b

2 + 4e0e
2
3,

H5 =2e0e1b
2 + e2

1e3 − 4e0e2e3,

H6 =4e2
0b

2 + e2
1e2 − 4e0e

2
2 + 2e0e1e3,

H7 =e3
1 − 4e0e1e2 + 8e2

0e3 .

(B.4.7)

Here the ei are as defined below (4.5.3) and we are working with the singular geometry corresponding

to c4 ≡ 0, which implies e4 = 1
4b

2 (after relabeling b2 → b). To blow up the zero-locus of this ideal we

can introduce new coordinates fi and t and write the blown-up space as the variety corresponding to

the vanishing locus of the ideal

(PW , f1t−H1, . . . , f7t−H7). (B.4.8)

We further impose the scaling relation associated to the new coordinate t

(f1, f2, ..., t) ∼
(
λf1, λf2, ..., λ

−1t
)
. (B.4.9)

We can then resolve the SU(2) singularity over T : t = 0 as before by (x, y, t) → (xr, yr, tr) and by

imposing (x, y, t, r) ∼
(
λ−1x, λ−1y, λ−1t, λr

)
. The resulting space is now smooth over T with an I2

fibre over a generic point, while over certain points in T , denoted Ĉ2, the fibre will factorise to an I3.

The exceptional divisor R : r = 0 forms the Cartan of the SU(2) on the Coulomb branch.

We can perform this blow-up and resolution in the deformed geometry PW which directly gives

the final smooth space with torsion cycles. This simply amounts to dropping the restriction e4 = 1
4b

2.

However to identify the torsional 2-cycles using the arguments presented in the main text we need

to work with the resolved geometry over C2. Since the blow-up in the base is localised away from

the locus C1, it does not affect this locus. The crucial information is the intersection numbers of the

sections with the fibre components over the points Ĉ2. These will allow us to identify the 3-chains

that will, after the deformation, become the chains with a boundary of twice the torsional two-cycles.

In principle this analysis can be done by using the computer package Singular [119], leading to

a globally valid blowup and resolution of the singularities over C2. However, it is more instructive

to perform a local analysis of the fibre over the C2 which will be sufficient to extract the relevant

intersection numbers with the sections. Our approach is to consider the locus given by H6 = H7 = 0.

This can be shown, by a prime decomposition, to be composed of the locus C2 and the separate set of

points e0 = e1 = 0. We will ignore these points in our local analysis though they would lead to SU(2)

singularities over points in the base after the blow-up. Indeed since the set of points C2 does not

intersect the curve e0 = 0 [84], we can restrict our attention to the subset e0 6= 0, where in particular

we can allow for functions meromorphic in e0. We can now explicitly solve the two equations

f6t−H6 = 0 , f7t−H7 = 0 , (B.4.10)

which gives

e3 =
−e3

1 + 4e0e1e2 + f7t

8e2
0

,

b2 =
e4

1 − 8e0e
2
1e2 + 16e2

0e
2
2 + 4e0f6t− e1f7t

16e3
0

.

(B.4.11)
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Since only b2 appears in PW we can plug this back into the equation to analyse the fibre structure

explicitly. This solution is valid away from e0 = 0 and also away from b = 0, where the coordinate

change (e3, b)→ (f6, f7) degenerates. We now redefine

x→ x+

(
−3e2

1 + 8e0e2

)
z2

12e0
(B.4.12)

to bring the SU(2) singularity over T to x = y = 0. Finally we resolve it by introducing R : r = 0 as

(x, y, t)→ (xr, yr, tr). There are then two fibre components over the exceptional divisor in the base,

A1 : T ∩ P̂W ∩ {Cbase} ,
B1 : R ∩ P̂W ∩ {Cbase} .

(B.4.13)

The interesting I3 locus can be identified from the discriminant to lie on

Ĉ2 :
{
−32e2f

2
7 − 16e2

0f
2
6 + 24e0e1f6f7 + 3e2

1f
2
7 = 0

}
∩{t = 0}

(B.4.14)

(viewed as a locus on the base), and over this locus the fibre component B1 splits into components

B1,1 : {8f7y − 8f6xz − 6e1f7xz − f2
7 tz

3 = 0} ∩R ∩ PĈ2
,

B1,2 : {8f7y + 8f6xz + 6e1f7xz + f2
7 tz

3 = 0} ∩R ∩ PĈ2

with PĈ2
the divisor associated to the first polynomial in (B.4.14). Note that we have set e0 = −1 in

the above for simplicity, and have given only the important component of the intersecting equations

defining the fibre. The other component of the fibre over these points is

A1 : {16rf2
2x

3 − 16f2
2 y

2 + 16f2
1x

2z2 + 24e1f6f7x
2z2

+9e2
1f

2
7x

2z2 = 0} ∩ T ∩ PĈ2
.

We can now intersect these components with the proper transform of the sections U : z = 0 and

S : [x, y, z] =
[
e2

3 − 2
3b

2e2,−e3
3 + b2e2e3 − 1

2b
4e1, ib

]
[18], given here on the Weierstraß model before

blowup and resolution, which after some calculation eventually yields the intersection numbers

U ·A1 = 1 , U ·B1,1 = 0 , U ·B1,2 = 0 ,

S ·A1 = 0 , S ·B1,1 = 1 , S ·B1,2 = 0 .

R ·A1 = 2 , R ·B1,1 = −1 , R ·B1,2 = −1 .

This identifies the component of the fibre which becomes the torsional 2-cycle after the deformation

as B1,1 −B1,2.
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[94] M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic Fibrations with Rank Three Mordell-Weil

Group: F-theory with U(1) x U(1) x U(1) Gauge Symmetry [1310.0463].

[95] C. Mayrhofer, E. Palti and T. Weigand, Hypercharge Flux in IIB and F-theory: Anomalies and

Gauge Coupling Unification [1303.3589].

151

http://www.arxiv.org/abs/hep-th/9805189
http://www.arxiv.org/abs/hep-th/9605200
http://www.arxiv.org/abs/1109.0042
http://www.arxiv.org/abs/1106.3854
http://www.arxiv.org/abs/hep-th/9603170
http://www.arxiv.org/abs/1307.2902
http://www.arxiv.org/abs/1404.1527
http://www.arxiv.org/abs/hep-th/9610251
http://www.arxiv.org/abs/0904.1218
http://www.arxiv.org/abs/1202.3138
http://www.arxiv.org/abs/1107.3842
http://www.arxiv.org/abs/1202.3138
http://www.arxiv.org/abs/1211.6742
http://www.arxiv.org/abs/1302.1854
http://www.arxiv.org/abs/1303.5054
http://www.arxiv.org/abs/1307.6425
http://www.arxiv.org/abs/1310.0463
http://www.arxiv.org/abs/1303.3589


[96] S. Krippendorf, D. K. Mayorga Pena, P.-K. Oehlmann and F. Ruehle, Rational F-Theory GUTs

without exotics, JHEP 1407 (2014) 013, [1401.5084].

[97] A. P. Braun, A. Collinucci and R. Valandro, The fate of U(1)’s at strong coupling in F-theory ,

JHEP 07 (2014) 028, [1402.4054].

[98] G. Martini and W. Taylor, 6D F-theory models and elliptically fibered Calabi-Yau threefolds over

semi-toric base surfaces [1404.6300].

[99] N. C. Bizet, A. Klemm and D. V. Lopes, Landscaping with fluxes and the E8 Yukawa Point in

F-theory [1404.7645].
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[101] I. Garćıa-Etxebarria, T. W. Grimm and J. Keitel, Yukawas and discrete symmetries in F-theory

compactifications without section [1408.6448].

[102] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity , Phys.Rev. D83

(2011) 084019, [1011.5120].

[103] M. Berasaluce-Gonzalez, L. E. Ibanez, P. Soler and A. M. Uranga, Discrete gauge symmetries

in D-brane models, JHEP 1112 (2011) 113, [1106.4169].

[104] L. Ibanez, A. Schellekens and A. Uranga, Discrete Gauge Symmetries in Discrete MSSM-like

Orientifolds, Nucl.Phys. B865 (2012) 509–540, [1205.5364].

[105] M. Berasaluce-Gonzalez, P. Camara, F. Marchesano, D. Regalado and A. Uranga, Non-Abelian

discrete gauge symmetries in 4d string models, JHEP 1209 (2012) 059, [1206.2383].

[106] M. Berasaluce-Gonzalez, P. Camara, F. Marchesano and A. Uranga, Zp charged branes in flux

compactifications, JHEP 1304 (2013) 138, [1211.5317].

[107] F. Marchesano, D. Regalado and L. Vazquez-Mercado, Discrete flavor symmetries in D-brane

models, JHEP 1309 (2013) 028, [1306.1284].

[108] G. Honecker and W. Staessens, To Tilt or Not To Tilt: Discrete Gauge Symmetries in Global

Intersecting D-Brane Models, JHEP 1310 (2013) 146, [1303.4415].

[109] Antisymmetric tensor Zp gauge symmetries in field theory and string theory , JHEP 1401 (2014)

059, [1310.5582].

[110] I. Antoniadis and G. Leontaris, Neutrino mass textures from F-theory , Eur.Phys.J. C73 (2013)

2670, [1308.1581].

[111] A. Karozas, S. F. King, G. K. Leontaris and A. Meadowcroft, Discrete Family Symmetry from

F-Theory GUTs [1406.6290].

[112] E. I. Buchbinder, A. Constantin and A. Lukas, The Moduli Space of Heterotic Line Bundle

Models: a Case Study for the Tetra-Quadric, JHEP 1403 (2014) 025, [1311.1941].

[113] E. I. Buchbinder, A. Constantin and A. Lukas, A heterotic standard model with B−L symmetry

and a stable proton, JHEP 1406 (2014) 100, [1404.2767].

[114] E. I. Buchbinder, A. Constantin and A. Lukas, Non-generic Couplings in Supersymmetric Stand-

ard Models [1409.2412].

152

http://www.arxiv.org/abs/1401.5084
http://www.arxiv.org/abs/1402.4054
http://www.arxiv.org/abs/1404.6300
http://www.arxiv.org/abs/1404.7645
http://www.arxiv.org/abs/1406.5174
http://www.arxiv.org/abs/1408.6448
http://www.arxiv.org/abs/1011.5120
http://www.arxiv.org/abs/1106.4169
http://www.arxiv.org/abs/1205.5364
http://www.arxiv.org/abs/1206.2383
http://www.arxiv.org/abs/1211.5317
http://www.arxiv.org/abs/1306.1284
http://www.arxiv.org/abs/1303.4415
http://www.arxiv.org/abs/1310.5582
http://www.arxiv.org/abs/1308.1581
http://www.arxiv.org/abs/1406.6290
http://www.arxiv.org/abs/1311.1941
http://www.arxiv.org/abs/1404.2767
http://www.arxiv.org/abs/1409.2412


[115] A. Grassi, J. Halverson and J. L. Shaneson, Matter From Geometry Without Resolution

[1306.1832].

[116] A. Grassi, J. Halverson and J. L. Shaneson, Non-Abelian Gauge Symmetry and the Higgs Mech-

anism in F-theory [1402.5962].

[117] L. B. Anderson, I. Garcia-Etxebarria, T. W. Grimm and J. Keitel, Physics of F-theory compac-

tifications without section, JHEP 12 (2014) 156, [1406.5180].

[118] L. Lin and T. Weigand, Towards the Standard Model in F-theory , Fortsch.Phys. 63, no. 2 (2015)

55–104, [1406.6071].

[119] W. Decker, G.-M. Greuel, G. Pfister and H. Schoenemann, Singular 3-1-6 — A computer

algebra system for polynomial computations, http://www.singular.uni-kl.de, 2012.

[120] E. Witten, Nonperturbative superpotentials in string theory , Nucl.Phys. B474 (1996) 343–360,

[hep-th/9604030].

[121] V. Batyrev and M. Kreuzer, Intergral cohomology and miror symmetry for Calabi-Yau 3-folds

[alg-geom/0505432].

[122] A. Strominger, Massless black holes and conifolds in string theory , Nucl.Phys. B451 (1995)

96–108, [hep-th/9504090].

[123] B. R. Greene, D. R. Morrison and A. Strominger, Black hole condensation and the unification

of string vacua, Nucl.Phys. B451 (1995) 109–120, [hep-th/9504145].

[124] B. R. Greene, D. R. Morrison and C. Vafa, A Geometric realization of confinement , Nucl.Phys.

B481 (1996) 513–538, [hep-th/9608039].

[125] M. Dolgachev, I. Gross, Elliptic Three-folds I: Ogg-Shafarevich Theory , J. Algebraic Geom. 3

(1994) 38–80, [alg-geom/9210009].

[126] P. S. Aspinwall, D. R. Morrison and M. Gross, Stable singularities in string theory , Com-

mun.Math.Phys. 178 (1996) 115–134, [hep-th/9503208].

[127] R. Tatar and W. Walters, GUT theories from Calabi-Yau 4-folds with SO(10) Singularities,

JHEP 12 (2012) 092, [1206.5090].

[128] M. Kuntzler and S. Schafer-Nameki, G-flux and Spectral Divisors, JHEP 11 (2012) 025,

[1205.5688].

[129] A. P. Braun, A. Collinucci and R. Valandro, Hypercharge flux in F-theory and the stable Sen

limit , JHEP 1407 (2014) 121, [1402.4096].

[130] M. Bies, C. Mayrhofer, C. Pehle and T. Weigand, Chow groups, Deligne cohomology and massless

matter in F-theory [1402.5144].

[131] A. P. Braun and T. Watari, The Vertical, the Horizontal and the Rest: anatomy of the middle co-

homology of Calabi-Yau fourfolds and F-theory applications, JHEP 01 (2015) 047, [1408.6167].

[132] M. Cvetic, D. Klevers, D. K. M. Pena, P.-K. Oehlmann and J. Reuter, Three-Family Particle

Physics Models from Global F-theory Compactifications [1503.02068].

[133] T. Watari, Statistics of Flux Vacua for Particle Physics [1506.08433].

153

http://www.arxiv.org/abs/1306.1832
http://www.arxiv.org/abs/1402.5962
http://www.arxiv.org/abs/1406.5180
http://www.arxiv.org/abs/1406.6071
http://www.singular.uni-kl.de
http://www.arxiv.org/abs/hep-th/9604030
http://www.arxiv.org/abs/alg-geom/0505432
http://www.arxiv.org/abs/hep-th/9504090
http://www.arxiv.org/abs/hep-th/9504145
http://www.arxiv.org/abs/hep-th/9608039
http://www.arxiv.org/abs/alg-geom/9210009
http://www.arxiv.org/abs/hep-th/9503208
http://www.arxiv.org/abs/1206.5090
http://www.arxiv.org/abs/1205.5688
http://www.arxiv.org/abs/1402.4096
http://www.arxiv.org/abs/1402.5144
http://www.arxiv.org/abs/1408.6167
http://www.arxiv.org/abs/1503.02068
http://www.arxiv.org/abs/1506.08433


[134] L. E. Ibanez, More about discrete gauge anomalies, Nucl. Phys. B398 (1993) 301–318,

[hep-ph/9210211].

[135] L. Martucci and T. Weigand, Hidden Selection Rules, M5-instantons and Fluxes in F-theory

[1507.06999].

[136] K. Intriligator, H. Jockers, P. Mayr, D. R. Morrison and M. R. Plesser, Conifold Transitions in

M-theory on Calabi-Yau Fourfolds with Background Fluxes [1203.6662].

[137] D. Gaiotto, M. Guica, L. Huang, A. Simons, A. Strominger et al., D4-D0 branes on the quintic,

JHEP 0603 (2006) 019, [hep-th/0509168].

[138] D. S. Freed and E. Witten, Anomalies in string theory with D-branes [hep-th/9907189].

[139] R. Minasian and G. W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002,

[hep-th/9710230].

[140] L. E. Ibanez and G. G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B260 (1991)

291–295.
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