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Abstract

In this thesis, we investigate dilaton quantum gravity using a functional renormaliza-
tion group approach. We derive and discuss flow equations both in the background
field approximation and using a vertex expansion as well as solve the fixed point
equations globally to show how realistic gravity, connecting ultraviolet and infrared
physics, can be realized on a pure fixed point trajectory by virtue of spontaneous
breaking of scale invariance.
The emerging physical system features a dynamically generated moving Planck scale
resembling the Newton coupling as well as slow roll inflation with an exponentially
decreasing effective cosmological constant that vanishes completely in the infrared.
The moving Planck scale might make quantum gravity experimentally accessible at a
different energy scale than previously believed. We therefore not only provide further
evidence for the existence of a consistent quantum theory of gravity based on general
relativity, but also offer potential solutions towards the hierarchy and cosmological
constant problems, thereby opening up exciting opportunities for further research.

Physik über alle Skalen: Skala-Tensor Theorien der Quantengravitation
in Teilchenphysik und Kosmologie

Kurzfassung

In dieser Arbeit widmen wir uns der Untersuchung der Dilaton-Quantengravitation
unter Zuhilfenahme der funktionalen Renormierungsgruppe. Wir leiten Flussgle-
ichungen sowohl im Hintergrundfeld-Formalismus als auch in einer verbesserten
Vertexentwicklung in Vertizes her und diskutieren diese. Wir lösen die Fixpunktgle-
ichungen global und demonstrieren, wie ein realistisches Modell der Gravitation auf
einer reinen Fixpunktkurve Infrarot- mit Ultraviolettphysik verbindet. Die spontane
Brechung von Skaleninvarianz ist dabei von zentraler Bedeutung.
Die so entstehende physikalische Theorie beinhaltet sowohl eine dynamisch generierte,
nicht-konstante Planckskala, die die Newton-Kopplung realisiert, als auch Slow-Roll
Inflation mit einer exponentiell abfallenden und im Infraroten verschwindenden kos-
mologischen Konstanten. Eine nicht-konstante Planckskala könnte dazu führen, dass
Spuren von Quantengravitation bei einer anderen Energieskala experimentell sichtbar
werden als bisher angenommen. Daher sammeln wir in dieser Arbeit nicht nur
weitere Hinweise für die Existenz einer konsistenten Quantentheorie der Gravitation
basierend auf der Allgemeinen Relativitätstheorie, sondern tragen auch zu möglichen
Lösungen des Hierarchie- und kosmologischen Konstantenproblems bei. Dabei öffnen
sich spannende Möglichkeiten für weitere Forschungsfragen.
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Introduction

Without doubt, modern physics has experienced remarkable validation in its quest to
describe the physical world in terms of only a few fundamental theories, culminating
in the recent probable experimental discovery of gravitational waves [1] as well
as the Higgs boson [2, 3]. However, the aforementioned spectacular verifications
of longstanding physical theories happened in radically different arenas: While
gravitational waves are a feature of general relativity, the underlying framework for
our understanding of the gravitational force between masses, the Higgs boson is a
cornerstone in the standard model of particle physics. The latter is based on quantum
field theory and the basis of our current understanding of the other three fundamental
forces of nature, namely the strong, weak and electromagnetic interactions.
To date however, a unified description of all of nature’s fundamental interactions is
still pending. At the root of this void is the lack of a quantum theory of gravity,
describing the gravitational interaction at high energies. On a conceptual level, the
difficulty in finding a quantum theory of gravity stems from the fact that with general
relativity and quantum field theory, two drastically different frameworks are used
to describe physical observations. While quantum field theory relies on a fixed and
flat spacetime, the spacetime itself is dynamical and usually also curved in general
relativity, adhering to its own set of field equations. A naive attempt to describe
gravity as a quantum field theory looses its predictivity by means of infinitely many
independent infinities arising in the process. This is equivalent to the statement that
a quantum field theory of gravity is perturbatively not renormalizable [4, 5].
Even more profoundly, the two theories describe physics at very different scales
with seemingly very little overlap. While gravity governs physical effects on large
length scales, thereby successfully describing cosmological phenomena, it becomes
mostly irrelevant at small length scales, where the standard model of particle physics
describes the interaction between the fundamental building blocks of matter with
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2 Introduction

remarkable precision. The reason for this separation lies in basic properties of
the forces involved: While strong and weak interactions are short-ranged and the
combination of positive and negative electrical charges shields the electromagnetic
interaction on large distances, gravity is not only long-ranged but also knows only
one charge, amounting to the absence of shielding effects. Furthermore, the measured
strength of gravity is approximately 1040 times smaller than the other forces, rendering
it irrelevant on small distance scales.
This separation is a demonstration of the immensely different scales present in modern
physics, which also manifests itself in the large Planck scale M ∼ 1019 GeV, where
effects of quantum gravity are believed to become important, in comparison with the
typical scale of the standard model of particle physics, which is determined by the
masses of W , Z and H bosons to be approximately 102 GeV. This, however, also
means that general relativity is a viable description of gravity as an effective field
theory for energies considerably below the Planck scale, without any need to know the
precise high energy limit [6,7]. With the formal development of renormalization group
methods, a mathematical tool became available to track the evolvement of a given
physical theory when the energy scale is varied. It is in this context that Weinberg’s
idea of asymptotic safety [8] was born, holding that the high energy behavior of
general relativity may be governed by a non-Gaussian fixed point inaccessible by
perturbation theory, rendering gravity non-perturbatively renormalizable and thus
"asymptotically safe".
Sparked by the development of the functional renormalization group [9,10], multi-
faceted evidence has been collected for the so called asymptotic safety scenario in
recent years [11–17] following the initial computations [18], thereby circumventing
the need to introduce radically new concepts for the description of the short range
effects of gravity.
Nevertheless, various important open questions still await a solution, such as the
dependency of the various results obtained on technical and mathematical tools
employed, as well as the stability under the inclusion of other theories, resembling
predominantly the standard model of particle physics. Finding a trajectory that
smoothly connects the ultraviolet fixed point with infrared physics is of paramount
importance, even though considerable progress has been made in recent times [19].
On top of that, the hierarchy and the cosmological constant problem play a crucial
role. The former refers to the very question of why there are so vastly different
scales emerging in physical theories, while the latter addresses the vast mismatch of
the value of the cosmological constant as predicted by quantum vacuum fluctuation
computations with what can be measured today.
In this thesis, we contribute to the current debate by considering asymptotic safety
in the context of dilaton gravity, at the core of which lies the idea to encode the
renormalization group scale in a scalar field. With that, it is possible on the one hand
to construct a theory that is scale invariant and thus does not contain a physical
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scale, and on the other hand to connect ultraviolet with infrared physics by means
of varying the value of the scalar field. In contrast to Einstein gravity approaches to
asymptotic safety, there is no need to deviate from the fixed point. If scale invariance
is spontaneously broken, a physical scale arises naturally in the theory.
The idea of introducing scalar fields into general relativity was first pursued as
early as 1961 by Brans and Dicke [20,21] with the aim of allowing for a spacetime
dependent Newton coupling. Some authors even argue that the notion of dynamical
“constants” lies at the very heart of general relativity [22] and quantum gravity [23].
Combining the ideas of dilaton gravity and dynamical couplings, hope is kindled
that dilaton gravity may be vital towards resolving the hierarchy and cosmological
constant problem [24,25].
It becomes evident that there are also multifaceted applications of such a system to
both particle physics and cosmology. In this work, we focus on the latter.
Specifically, we derive flow equations for dilaton gravity both with standard as well
as with improved functional renormalization group techniques and invest ourselves in
finding a globally defined fixed point solution. Once established, it turns out to have
remarkable physical features: Not only does it smoothly connect the infrared with
the ultraviolet limit in an intuitive manner, but we also find an explicit breaking of
scale invariance which leads to a naturally arising physical scale. The theory allows
for inflation with a moving Planck scale and a vanishing cosmological constant in the
deep infrared, as was already suspected in [26]. Moreover, we suggest a possibility
to connect the quantum field theory prediction for the value of the cosmological
constant with its measured infrared value, and show how a moving Planck scale
might make quantum gravity effects experimentally accessible at a different scale
than previously expected. This offers insights into possible solutions to both the
hierarchy and the cosmological constant problem.
Thus, dilaton gravity truly corresponds to physics on all scales: Not only do we
smoothly connect ultraviolet with infrared physics, but we also gain insights into the
origin of physical scales as such with applications from both fundamental physical
theories: General relativity with physics on large length scales and cosmology as well
as quantum field theory with the standard model of particle physics for small length
scales.
To cover these topics, this thesis is structured as follows: In part I, we set the stage
for the investigations to follow by introducing both functional renormalization group
as the formal framework in chapter 1 as well as the physical environment and scenario
of asymptotic safety in chapter 2 and connect it with scalar fields and dilaton gravity
in chapter 3. Moving forward, chapter 4 is devoted to discussing gauge theories in
the context of functional renormalization in general and to develop suitable methods
to deal with the challenges arising from overcounting and consecutive gauge fixing
which are then applied to dilaton gravity in the form of background field methods
and vertex expansions.
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Part II is devoted to the first analysis of this work, namely the global fixed point
structure of dilaton gravity derived from background flow equations. We sketch the
derivation of these equations in chapter 6, while results are presented and discussed
in chapter 7 and summarized in chapter 8.
In part III, we discuss flow equations for an enlarged truncation that are derived
using vertex expansions and a flat background spacetime. We explain the procedure
in chapter 10, after which we present prestudies leading to the final setup in chapter
11. In chapter 12, an approximated system of flow equations for the final system is
solved to gain insights into its features, before chapter 13 presents the final results of
this work, which are summarized in chapter 14.
After a summary of the overall findings, the appendix provides notes on mathematical
and technical details.



Part I

Setting the Stage: Quantum Gravity,
Asymptotic Safety, Scale Invariance, and

Scalar Fields
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CHAPTER 1

The Functional Renormalization Group

The functional renormalization group (FRG) offers a framework for a formal imple-
mentation of the Wilsonian idea of integration over momentum shells [27]. In order
to do so, an effective average action Γk, which can depend on a certain momentum
scale k, is introduced and a corresponding differential equation for its change with
said scale k is derived.
As a starting point, we recall several fundamental concepts from standard quantum
field theory, before we proceed to the derivation of the functional renormalization
group equation. At the end of this chapter, we discuss applications of the functional
renormalization group, with a special focus on a suitable formulation for gauge
theories.
We aim for an introduction that focuses on our later applications to scalar-tensor
theories of quantum gravity. For broader reviews in the context of asymptotic safety,
we suggest to consider [11–17] or [28–41] for general reviews and other applications
including QCD and cold atoms.
The presentation in this chapter merely serves to recapitulate the main points of
the tools used in this thesis. For a more comprehensive treatment, we point to [42],
which this chapter parallels in parts.

7



8 1 The Functional Renormalization Group

1.1 A Quantum Field Theory Primer
Our starting point for the description of a quantum field theory (QFT) is the
generating functional Z[J ], defined as1

Z[J ] =
∫
Dψ exp

[
iS[ψ] + i

∫
ddxJaψa

]
. (1.1)

We work in natural units setting ~ = c = 1. ψ ≡ {ψ1, ψ2, . . . , ψN} represents the
entire field content of the quantum field theory. This indicates in particular that the
path integral measure Dψ is to be taken as a product over all fields, Dψ =

∏
iDψi.

In contrast, Dψi itself is a formal Lebesgue measure at every space time point, that is
Dψi =

∏
x∈Rn Dψi(x). Moreover, the order in which the fields evaluated at different

points of spacetime enter is of importance. We will assume them to be time-ordered.
For simplicity, let us resort to a single bosonic scalar field ψ for the remainder of
this section, thus dropping the index at the field variable ψ and the sources J .
The generating functional Z[J ] plays a role that is comparable to the partition
function’s role in statistical physics: It allows for the extraction of all n point
correlation functions in the form of

〈ψ(x1) . . . ψ(xn)〉 ≡ N
∫
Dψ ψ(x1) . . . ψ(xn) exp [iS[ψ]]

= 1
Z[0] (−i)n δnZ[J ]

δJ(x1) . . . δJ(xn)
∣∣
J=0,

(1.2)

and thus for a complete description of the theory in question. The normalization
arises from the requirement that 〈1〉 = 1.
The measure Dψ can and usually will contain both infrared (IR) and ultraviolet (UV)
divergences, triggered by both infinitely many field configurations and over-counting
in gauge field theories. In this text, we will always assume that we are working with a
measure that has already been regularized to remove the divergences, Dψ ≡ Dψ[reg].
In our applications to the exact renormalization group, the factor of i in the exponen-
tial in equation 1.1 will cause some issues connected to the convergence properties
of the path integral. To at least partially cure these, we will henceforth work in
Euclidean, rather than in Minkowski spacetime. This is achieved by performing a
Wick rotation of the physical time t, t 7→ it, changing the signature of the metric
from (−1, 1, . . . , 1) to (1, 1, . . . , 1) and leaving us with a Riemannian rather than a
Lorentzian spacetime manifold. As this transformation also renders the exponent in
equation 1.1 real.
In general, one would expect physics to be invariant under Wick rotations, i.e. after
performing our computations, we should be able to apply an inverse mapping t 7→ −it

1See [43], for a more formal treatment also see [44].
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to recover the original theory. However, this is only true provided the Osterwalder-
Schrader axioms hold, for a thorough discussion see [45]. Furthermore, a discussion of
the implications for asymptotic safety, a concept which will be introduced in section
2.2, can be found in [46].
The correlation functions calculated with (1.2) contain both connected and uncon-
nected portions. Considering n = 2, we have

〈ψ(x1)ψ(x2)〉 = 〈ψ(x1)ψ(x2)〉c + 〈ψ(x1)〉 〈ψ(x2)〉, (1.3)

where the subscript c denotes the connected part of the correlation function. The
second term is a product of the two field expectation values, which arises already for
n = 1.
Since the physically relevant information is stored in the connected part, we further
introduce the generator of connected correlation functions W [J ] = logZ[J ], also
called the Schwinger functional, and its Legendre transform in the source J via

Γ [ϕ] = sup
J

(∫
ddxJ(x)ϕ(x)−W [J ]

)
, (1.4)

which is a convex function. From it, the one particle irreducible (1PI) Green functions
are generated through functional derivation with respect the field ϕ at ϕ = 0. Due
to Γ [ϕ] and W [J ] being related through a Legendre transform, we conclude

ϕ(x) = δW [J ]
δJ(x) = 〈ψ(x)〉 and J(x) = δΓ [ϕ]

δϕ(x) , (1.5)

where we always assume J to take the value needed to satisfy the supremum condition
from equation (1.4), J = Jsup. Here we discovered the full quantum equation of
motion in which the effective action Γ [ϕ] governs the evolution of the field expectation
value, taking all quantum effects into account.
At this point it is of paramount importance to understand that there are two
equivalent ways of defining a Quantum Field Theory: The more familiar way is to
define an action S leading to a generating functional Z[J ] which in turn gives rise to
the correlation functions (1.2). However, it is completely equivalent to start with
a complete set of correlation functions 〈ψ(x1) . . . ψ(xn)〉 and use these to define a
theory. This is of course also true when we consider connected one particle irreducible
representations. Though it is naturally always possible to derive correlation functions
from an action, finding an algebraically closed expression for an action for a given
set of correlation functions may not be possible. This will become important when
introducing the vertex construction in section 4.4.2.
Having understood the role that Γ [ϕ] plays in a generic quantum field theory, we
can take the definition of the generating functional to derive an equation obeyed by
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the effective action, reading

exp (−Γ [ϕ]) =
∫
Dψ exp

(
−S[ψ + ϕ] +

∫
ddxδΓ [ϕ]

δϕ
ψ

)
. (1.6)

Solving this functional integro-differential equation is rarely possible and solutions
are only known for special cases. That is why, when setting up the effective average
action for our theory in section 3.1, we will need to make an ansatz well suited for
the desired investigations. It is usually determined by demanding invariance with
respect to a certain symmetry group, it needs to tend to the full and quantum action
for large and small k, respectively.
Nevertheless, we can give a one-loop approximation to Γ [ϕ] reading

Γ [ϕ] = S[ψ]
∣∣
ψ=ϕ +1

2 Tr
(
logS(2)[ϕ]

)
+O(two loop), (1.7)

where S(2)[ϕ] = δ2S
δψδψ

∣∣
ψ=ϕ is the second functional derivative with respect to the

fields.
Having introduced some basic concepts of quantum field theory, we can now move on
to the derivation of the Wetterich equation, which governs the evolution of a scale
dependent effective average action Γk.

1.2 The Wetterich Equation
In this section, we will first introduce the effective average action Γk which depends
on a variable mass or momentum scale k, and then proceed to derive a differential
equation satisfied by Γk. This procedure should be thought of as a continuum
realization of the Wilsonian renormalization group in the sense that we do not, as in
equation (1.6), integrate over all quantum fluctuations (i.e. the field ψ) at once, but
use the mass scale k to divide the Fourier modes of the quantum field ψ into two
classes:

modes with p2
{
< k2 contribute with a reduced weight.
> k2 contribute without any supression. (1.8)

This is achieved by adding a cutoff term to the bare equation S, transforming

S[ψ]→ Sk[ψ] = S[ψ] +∆Sk[ψ], (1.9)

where ∆Sk[ψ] is assumed to be of second order in the fields and therefore acts like a
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Figure 1.1: Sketch of a typical regulator function Rk(p2) and its derivative ∂ tRk(p2), taken
from [33]. The regulator itself provides an infrared regularization, whereas its derivative
implements the integration over small momentum shells.

dynamical mass. In momentum space we write

∆Sk[ψ] = 1
2

∫ ddp
(2π)d ψ(−p)Rk(p2)ψ(p), (1.10)

where Rk(p2) is a regulator function. For later reference, we will also need the Fourier
transformed version in position space, which takes the form

∆Sk[ψ] = 1
2

∫
ddx ddy ψ(x)Rk(x, y)ψ(y). (1.11)

In order to achieve the suppression (1.8), we require Rk(p2) to scale like

Rk(p2) ∝
{
k2 for p2 � k2.
0 for p2 � k2.

(1.12)

A sketch of a typical regulator function is depicted in figure 1.1.
We further introduceWk asWk = logZk, where Zk = ZS→Sk . Γk then is the modified
Legendre transform of Wk (compare (1.4)), reading

Γk[ϕ] = sup
J

(∫
ddxJ(x)ϕ(x)−Wk[J ]

)
−∆Sk[ϕ], (1.13)

where we henceforth set J = Jsup as in (1.4).
There are two crucial points to notice: Firstly, the reason for the subtraction of
∆Sk[ϕ] is not obvious from the arguments presented so far. However, it allows for a
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cancellation when deriving the flow equation.2 Secondly, Γk is not guaranteed to be
convex anymore, in contrast to Γ from equation (1.4).
The quantum equations of motion receive regulator corrections and are transformed
to

ϕ(x) = δWk[J ]
δJ(x) = 〈ψ(x)〉 and J(x) = δΓk[ϕ]

δϕ(x) − (Rkϕ)(x), (1.14)

from which we deduce

δJ(x)
δϕ(y) = Γ

(2)
k [ϕ](x, y) +Rk(x, y). (1.15)

With this step, we introduced the n-th functional derivative of the effective average
action Γk with respect to the field φ as

Γ
(n)
k [ϕ](x1, . . . , xn) = δnΓk

δϕ(x1) . . . δϕ(xn) . (1.16)

The spacetime as well as the field dependence will be dropped, whenever there is no
potential for confusion.
Let us discuss some implications of the scaling (1.12) of Rk in connection with the
definition of Γk, equation (1.13). First and most prominently, we recover the full
effective action Γ in the limit of p2 � k2,

lim
p2/k2→∞

Γk = lim
k2→0

Γk = Γ (1.17)

for any finite momentum p.
Accordingly, in the other limiting case k2 → ∞, the regulator Rk diverges. Thus,
the saddle point approximation (1.7) to the path integral (1.6) becomes exact when
appropriately renormalized and we recover the bare action S,

lim
k2→Λ→∞

Γk = S, (1.18)

where Λ is an ultraviolet cutoff that is much larger than the physical scale of relevance.
Note that this also implements an infrared regularization, as infrared modes are
screened by the mass like regulator Rk ∝ k2ψ2.
Thus, Γk interpolates between the bare action S with no quantum fluctuations
integrated out for large k, and the effective average action Γ , where all quantum
fluctuations have been integrated out already for small k, therefore implementing
the Wilsonian idea of sequential integration over momentum shells.

2We will use the names FRGE as well as Wetterich and flow equation interchangeably.
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Having established the limiting cases, we can now compute the intermediate trajectory
of Γk, that is the dimensionless logarithmic derivative k d

dkΓk = ∂ tΓk with t = log k
k0
.3

We assume that the field ϕ = 〈ψ〉 does not depend on the scale k, which renders
the introduction of dimensionless quantities mandatory. A step by step derivation is
presented for instance in [42,47]. We only give the final result, called the Wetterich
[9,10], functional renormalization group equation (FRGE) or simply flow equation,
which reads

∂ tΓk = 1
2 STr

[
1

Γ
(2)
k +Rk

∂ tRk

]
. (1.19)

As this equation will be the starting point for our further investigations, let us review
its basic properties as far as they are apparent at this stage already.

Supertrace. In equation (1.19), STr denotes the supertrace, which entails the usual
Trace operator, tracing all discrete indices alongside with a spacetime or
momentum integration, and a factor of −1 for fermionic contributions as well
as an additional factor 2 for ghosts, such that they would enter with a prefactor
of −1 in total.

Trajectory. According to equations (1.18) and (1.17), we are now equipped with a
differential equation for the intermediate trajectory in the space of all effective
actions, the theory spaces (c.f. 1.2). Opposed to (1.6), no functional integral
has to be solved to reveal the full structure.
However, the intermediate trajectory will depend on the exact choice of the
regulator Rk. Only the endpoints S and Γ are fixed.

Finiteness. The flow equation ensure both infrared and ultraviolet finiteness. In the
infrared, the famous propagator singularity at 1/p2 is shifted to

1
p2 +Rk

→ 1
k2 for p2 → 0

due to equation (1.12). The occurrence of ∂ tRk on the RHS further implements
UV regularization, since the predominant support of ∂ tRk lies within a small
momentum shell around p2 ∼ k2 and limp2�k2 Rk = 0, see figure 1.1.

Quantization. Our starting point for deriving the flow equation was the standard
generating functional for a QFT (1.1). However, in the light of the previous two
remarks, an inverse perspective is also admissible: We can define a QFT based
on the flow equation, thus achieving a new kind of quantization procedure.

3The choice k0 = Λ, where Λ is the ultraviolet cutoff is most frequently made, especially when
ultraviolet poles make it impossible to consider the limit Λ→∞.
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Figure 1.2: Sketch of a trajectory in theory space, taken from [33]. The endpoints are fixed to
be S and Γ , but the intermediate trajectory depends on the exact choice of Rk (dashed lines).

Moreover, it is instructive to understand the link to standard perturbative
quantisation and renormalization in this process on a deeper level, see for
instance [35]. While in the latter one performs a loop expansion and adds
counterterms at a scale µ to subtract divergent quantities and realize experi-
mental results. In the context of FRG, the occurrence of divergent quantities
is avoided altogether. However, of course the same experimental input is still
necessary, but is now used to fix initial conditions at Γk=0 = Γ , since this is
where the cutoff is removed and thus pure physical observations can be made.4
Both constructions are explicitly compared in [49].

one-loop structure. Even though the flow equation has one-loop structure, it is an
exact equation, as the fully dressed propagator Γ (2)

k (or equivalently W
(2)
k )

entered the equation by virtue of having chosen ∆Sk to be of second order
in the fields only. To derive a true one-loop approximation, we expand Γk =
S + Γ one-loop

k +O(two loop) (equation (1.7)) and obtain

∂ tΓ
one-loop
k = 1

2 STr
[ 1
S(2) +Rk

∂ tRk
]
. (1.20)

Note how only the free propagator enters. The one-loop structure of the flow
equation becomes visible when seeking a diagrammatic representation, see
figure 1.3.

4We mention that at k = 0, the physical momentum plays its traditional role again, calling for full
momentum dependent flows. This is, however, a delicate task we will not tackle in this thesis. We
point to [48] for a thorough discussion.
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Figure 1.3: Diagrammatic representation of the flow equation (1.19). Due to all indices being
contracted, it is simply given by a full 1 PI loop (double line) with an insertion of ∂ tRk (crossed
circle).

1.3 Theory Space and Truncations
The flow equation (1.19) describes the change of arbitrary theories with the scale
k. A theory is specified by an effective average action, which a priori comprises an
infinite number of fields and couplings between theses fields. Thus, in order to allow
for feasible calculations in practice, we need to find a way to formally define a certain
theory as well as an approximation scheme.
To obtain such an approximation on a formal level, let us give some breadth to the
concept of a theory space. Assume that a set of basis functionals {Pα[ϕ]}1≤α≤∞
exists, such that every element A[ϕ] entering our considerations can be written as

A[ϕ] =
∞∑
α=1

ũαPα[ϕ]. (1.21)

Of course the set {Pα[ϕ]}1≤α≤∞ will be adapted to the problem considered. For
instance in a gauge theory, the elements Pα[ϕ] should be invariant under gauge
transformations.
In particular, we can expand the effective average action to read

Γk[ϕ] =
∞∑
α=1

ũα(k)Pα[ϕ], (1.22)

where the sum still runs over infinitely many elements. Substituting the expansion
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into both the left hand side (LHS) and the RHS of the flow equation, we obtain

LHS = ∂ tΓk[ϕ] =
∞∑
α=1

(∂ t ũα)Pα[ϕ]

RHS = 1
2 STr

[
1

Γ
(2)
k [ϕ] +Rk

∂ tRk

]
= 1

2 STr
[

1∑∞
α=1(∂ t ũα)P(2)

α [ϕ] +Rk
∂ tRk

]

=
∞∑
α=1

β̃α(ũi, 1 ≤ i ≤ ∞; k)Pα[ϕ],

(1.23)

and with that

∂ tũα = β̃α(ũi, 1 ≤ i ≤ ∞; k), 1 ≤ α ≤ ∞, (1.24)

which is a system of infinitely many coupled differential equations for the generalized
couplings ũα. The function β̃α is called the β-function of ũα and describes, how
the generalized coupling changes with the scale k. If the RHS of the functional
renormalization group equation contains derivatives of the generalized couplings
with respect to the scale t, the β-functions cannot be obtained from equation (1.23)
directly. Instead, a set of algebraic equation for the derivatives ∂ tũα needs to be
solved.
The twiddle signals that we are still working with dimensionful couplings. Introducing
their dimensionless counterparts as uα = k−nα ũα, we can rewrite equation (1.24) to

∂ tuα = βα(ui, 1 ≤ i ≤ ∞), 1 ≤ α ≤ ∞. (1.25)

Note that the explicit dependence on the scale k is no longer present within the
β-functions, leading to considerable simplifications. We will therefore almost exclu-
sively deal with dimensionless quantities and equations from now on.
Nevertheless, solving the system (1.25) is still impossible, which is why we need
to resort to an approximation scheme, namely truncating the theory space to be
spanned by only finitely many base elements. Thus we transform

{Pα[ϕ]}1≤α≤∞ → {Pα[ϕ]}1≤α≤N , (1.26)

where we assume that the base functionals have been reordered beforehand to produce
the desired truncation.
Recalculating the resulting β-functions in dimensionless units (equation (1.23)), we
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arrive at

LHS = ∂ tΓk[ϕ] =
N∑
α=1

(∂ t uα)Pα[ϕ]

RHS = 1
2 STr

[
1

Γ
(2)
k [ϕ] +Rk

∂ tRk

]
= 1

2 STr
[

1∑N
α=1(∂ t uα)P(2)

α [ϕ] +Rk
∂ tRk

]

∼=
N∑
α=1

βα(ui, 1 ≤ i ≤ N ; k)Pα[ϕ].

(1.27)

It is crucial to note that a second approximation has just been made: In general,
inverting

∑N
α=1(∂ t uα)P(2)

α [ϕ] +Rk and computing the trace will produce terms that
are not represented in the span of {Pα[ϕ]}1≤α≤N . However, using a truncation as an
approximation to the full theory, we will neglect these terms and write

∂ tuα = βα(ui, 1 ≤ i ≤ N), 1 ≤ α ≤ N, (1.28)

which is now a system of finitely many coupled differential equations and can, in
principle, be solved.
In this context, a good or stable truncation is one in which the couplings neglected
in equation (1.27) are not essential to the physics one seeks to describe. A given
truncation might be improved by either including more base functionals,

{Pα[ϕ]}1≤α≤N → {Pα[ϕ]}1≤α≤N+n,

or by changing the base system altogether,

{Pα[ϕ]}1≤α≤N → {P̄α[ϕ]}1≤α≤N̄ .

This somewhat weak definition of a stable truncation reveals one of the major
drawbacks of the non-perturbative equation (1.19): Once we utilize approximations,
we usually loose all means of estimating the error we are making. Thus, in practice
one would try to enlarge the truncation slightly by, for instance, looking at N → N+1
and study the effect of the enlarged theory.

1.4 Fixed Points and Linearizations
A fixed point is a point in theory space characterized by a set of generalized couplings
{u∗α} at which the renormalization group (RG) flow stops. That means that all
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β-functions need to vanish simultaneously, put in writing

0 = βα(u∗i , 1 ≤ i ≤ N) ∀ α ∈ {1, . . . , N}. (1.29)

Fixed points can be assumed for either t → −∞ (IR fixed point) or t → ∞ (UV
fixed point). The case of greater interest depends majorly on the problem under
consideration.
To study the flow near a fixed point, we introduce δui = ui − u∗i and linearize the
β-functions, reading

βα(δui) = βα(ui)
∣∣
ui=u∗

i
+∂ βα(ui)

∂ uγ

∣∣
ui=u∗

i
δuγ +O(δu2), (1.30)

where the first term on the RHS vanishes at a fixed point. Let us define

Bαγ = ∂ βα(ui)
∂ uγ

∣∣
ui=u∗

i
= ∂ 2uα
∂ t ∂ uγ

∣∣
ui=u∗

i
. (1.31)

Then Bαγ can be diagonalized with a complete set of eigenvectors ei and the corre-
sponding eigenvalues Θi,

Babeb = Θb(eb)a, no sum over b on RHS. (1.32)

Since the ei form a basis, we can understand uα and δuα as vectors and expand
them5 to be u =

∑
uiei and δu =

∑
δuiei, which allows us to rewrite equation

(1.30) as

∂ tδui = Θiδui, no sum over i on RHS. (1.33)

This is a set of N uncoupled differential equations and can therefore be solved directly
to

δui = C exp(Θit), (1.34)

where the constant of integration C can be fixed through the value of the couplings
at the fixed points. From this solution, it is obvious that the fixed point in the new
basis is (UV) attractive if all ReΘi < 0 and (UV) repulsive if all ReΘi > 0. In the
context of the functional renormalization group, we will seldom encounter a purely
attractive or repulsive fixed point. That is why we distinguish certain directions
in theory space and call them relevant if ReΘi > 0 and irrelevant if ReΘi < 0.
The notion of a relevant direction stems from the observation that the value of the
corresponding coupling constant needs to be chosen carefully in order to arrive at
5On a more formal level, we perform a change of basis in the theory space.
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the fixed point. A theory is predictive if there is only a finite number of relevant
couplings.
The UV-critical surface is the subspace of theory space consisting of all theories that
will hit the fixed point for k →∞. Therefore, its dimension is fixed by the numbers
of irrelevant coupling parameters.
For our later applications we also define a fixed point to be a Gaussian fixed point
if u∗α = 0 ∀α. Perturbation theory is always an expansion around Gaussian fixed
points.





CHAPTER 2

The Asymptotic Safety Scenario

In this chapter, we introduce the asymptotic safety conjecture first proposed by
Weinberg [8], starting from general relativity as a classical field theory and the arising
challenges for a direct perturbative quantisation. The chapter culminates in an
account of current research in the area, including the role of this thesis.

2.1 General Relativity as a Classical Field Theory and
Challenges for a Direct Quantisation

When aiming to study a quantum theory of gravity with functional renormalization
group methods, which in turn have been derived from the standard effective action
in quantum field theory, we first need to introduce general relativity as a classical
field theory before we can adapt it to the cases of special interest in this thesis.
Moreover, we will take prerequisites for our later quantization procedure by consider-
ing general relativity as a gauge theory with the group of general diffeomorphisms
as its gauge group. A detailed treatment of diffeomorphisms and their appearance
in general relativity is given in appendix F. In this spirit, we need to construct an
action S that is invariant under diffeomorphisms and produces field equations for the
metric gµν . Working in Wick rotated space time (section 1.1), the Einstein-Hilbert
action [50] with a metric gµν of Riemanian signature reads

SEH[gµν ] = 1
16πGN

∫
ddx√g (2Λ−R) , (2.1)

21
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denoting by GN and Λ the (dimensionful) Newton and cosmological constants,
respectively, and dropping the explicit spacetime dependence of the dynamical field
gµν = gµν(x). We identify √g =

√
det(gµν), and therefore ddx√g is a shorthand for

the covariantly invariant measure.1 For later use, we also define gN = kd−2GN and
λ = k−2Λ as the dimensionless counterparts to GN and Λ.
The Ricci scalar R is the fully contracted representative of the spacetime curvature
and is defined as usual.
The field equations for the metric gµν are obtained by varying (2.1) with respect to
the only dynamical field appearing at this stage, which is gµν itself. The equations
are usually expressed as

Rµν −
1
2Rgµν + Λgµν = 0. (2.2)

An important concept in the context of general relativity as a gauge theory is
the Lie derivative [51], as it generates the gauge transformations, namely general
coordinate diffeomorphisms, on the metric gµν . Consider an infinitesimal change in
the coordinates generated by εν(x)∂ ν . The coordinates xµ change according to

xµ → xµ + εµ(x), (2.3)

suggesting that the metric should transform as

gµν → gµν + Lεgµν . (2.4)

It appendix F it is shown that Lε is the Lie derivative assigned to the vector field
εν(x)∂ ν , which has a local coordinate representation of the form

Lεgµν = εσ∂ σgµν + ∂ µε
σgσν + ∂ νε

σgσµ

= ∇µεσgσν +∇νεσgσµ,
(2.5)

where the last equality holds if we use the covariant derivative operator ∇µ instead
of the ordinary partial derivative ∂ µ to define the vector fields on our spacetime
manifold.
Returning to the Einstein-Hilbert formulation of general relativity (2.1), we find
the Newton constant GN to have mass dimension [GN ] = 2 − d. Thus, for d > 2
we have [GN ] < 0, which renders standard general relativity asymptotically non-
renormalizable as a quantum field theory [4, 5]. This is rooted deeply in diffeomor-
phisms as the gauge group of gravity: Forgetting about a cosmological constant for
a moment, the Ricci scalar R scales like p2, which has mass dimension +2. But then

1At this stage, we have explicitly excluded a matter Lagrangian Lmatter in equation (2.1), which
would lead to an energy momentum tensor on the RHS of the field equations (2.2).
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the coupling necessarily needs to have mass dimension −2, and there are infinitely
many diagrams at tree level already, since the action is of infinite order in the metric
due to the canonical volume form. As perturbation theory is essentially a power
series in the coupling constant, there will be new divergences occurring in every order.
Thus, one needs to rely on new constants to counter these divergences at every order,
leaving us with an infinite number of constants to be fixed. Thereby, the theory
looses all its predictive power and a direct perturbative quantization fails.

2.2 Quantum Gravity and Asymptotic Safety
There have been innumerous attempts to provide alternative theories of quantum
gravity, usually also aiming for a unified description of particle physics and gravita-
tional effects, including but not limited to string theory and loop quantum gravity.
These solutions usually rely on the inclusion of completely new physics which are
not or just barely justifiable by current experiments.
However, Einstein’s theory of general relativity has been proved to provide an
accurate description of physics, ranging from cosmological scales down to one-tenth
of a millimeter, kindling the ambition to understand general relativity as an effective
low energy field theory rather than giving it up altogether [6, 7], possibly including
higher curvature derivative terms [52] or requiring BRST symmetry [53] or combining
both [54].
Given the functional renormalization group methods developed in chapter 1, which
allow to study the evolution of a given theory over energy scales, we are equipped
with means to proceed in this direction.
A major development is the rise of the idea of asymptotic safety, which can be traced
back to a 1979 text by Weinberg [8], stating:

A theory is said to be asymptotically safe if the essential coupling parame-
ters approach a fixed point as the momentum scale of their renormalization
point goes to infinity.

Translating this into the language of the FRG developed in chapter 1, the following
equivalence holds:

Quantum gravity is considered asymptotically safe if the UV-critical
surface is finite dimensional and the dimensionless coupling constants2

cease to increase if the momentum scale k goes to infinity, but approach
a set of ultraviolet fixed points instead.

2To be more precise, we should speak of the essential couplings here - couplings that cannot be
absorbed into field redefinitions and are thus independent.
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The requirement of the UV-critical surface being finite dimensional stems from the
fact that all parameters on the critical surface need to be determined experimentally.
Thus, the theory is only predictive if a finite number of parameters remains to be
fixed.
To date, there is much evidence for gravity’s asymptotic safety, starting with the
1998 paper by Reuter [18] and subsequent works, which are for instance summarized
in the review [11]. In [55], a discussion of possible underlying physical principles
is provided and for a comprehensive overview of papers on quantum gravity and
asymptotic safety we suggest [56]. However, since the RG flow depends on a variety
of input parameters, a rigid proof has not been given.
Even though numerical results differ slightly depending on the chosen method and
approximation, all authors find a Gaussian fixed point at g∗n = 0, λ∗ = 0 as well as a
second fixed point at g∗n > 0, λ∗ > 0 referred to as the Wilson-Fisher fixed point. As
perturbation theory is always an expansion around vanishing couplings, studying
a non-Gaussian fixed point inherently requires the utilization of non-perturbative
methods.3 That is the reason why in this thesis, we will use the non-perturbative
functional renormalization group to study the properties of dilatation symmetric
scalar-tensor theories of quantum gravity.

2.3 Advances in Asymptotic Safety
After the first hint towards asymptotic safety [18] to which numerical results where
added in [58] and the first diagram of the flow in the theory space provided by the
Einstein-Hilbert truncation was published in [59], which we show in figure 2.1, a
lot of progress has been made in terms of substantiating the non-perturbative fixed
point, realizing technical advances, enlarging the truncation and coupling to other
fundamental theories as well as applications. For reviews we point to [11–17].
To mention only a few important works, bootstrapping methods and f(R) truncations
also including higher derivative terms have been put forward in [60–63], in some cases
up to O(R34). Even then, only three relevant directions remain. [64–66] put even
more emphasis on higher derivative terms, while [12] considers higher asymptotic
safety in higher dimensions.
Unimodular gravity is studied [67,68], the ghost sector was made dynamical [69–71]
and the background approximation was partially lifted in bi-metric studies [72–74], see
also section 4.3. Matter interactions are studied in [75–88], while [84,86,89,90,90–92]
focus on scalar interaction.
Potential signatures at collider experiments such as the LHC are studied in [93–96],
usually in the context of extra dimensions that would lower the fundamental Planck

3We mention that limited evidence for the existence of a non-Gaussian expansion point was already
obtained in 2 + ε-gravity [8, 57].
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Figure 2.1: Original flow diagram of the flow of the Einstein-Hilbert truncation in theory
space, taken from [59].

scale. Asymptotic safety is used to predict the Higgs mass in [97], while the context
of black holes [98–100] and cosmology, more specifically inflation [101, 102] is also
studied.
On a more conceptual note, vertex expansions allow for a well defined expansion
around a flat background [19, 103, 104], see also section 4.4.2, and recently the
attention was brought to locality [105], which boils down to the very of when a
separation of momentum modes, as necessary for the FRG, is actually possible.
There is also a considerable amount of work put into connecting asymptotically safe
quantum gravity with other fundamental theories of physics. Whenever scalar fields
are involved, we refer to the more detailed treatment of sections 3.3 (cosmology) and
3.2 (particle physics).
In this cornucopia of research the current thesis connects at various junctions. Not
only do we extend the study of scalars coupled to asymptotically safe gravity, we
also use the emerging theory to establish a full theory of dilaton Gravity for the first
time, smoothly connecting infrared with ultraviolet physics on a pure fixed point
trajectory. While doing so, a dynamical generation of the Planck scale is explicitly
shown and cosmological scenarios are discussed.





CHAPTER 3

Scalar Fields in Quantum Gravity

This chapter serves as an introduction to scalar fields in quantum gravity. Focusing
on pure gravity first, we will give a brief historical outline pointing out the different
roles scalar fields can play, before we move to applications in the areas of both
cosmology and particle physics.

3.1 Pure Gravity and the Idea of Dilaton Quantum Gravity
In the context of pure gravity, there are two main motivations for including scalar
fields into the theory. On the one hand, replacing couplings by scalar fields is a way
of making said couplings spacetime dependent and with that, dynamical. On the
other hand, scalar fields can be used to encode the physical scale, thus accessing
questions of scale invariance and how physical scales are generated in a theory. While
both motivations have important applications, the latter one will be more relevant
to this thesis. The main result of this chapter will be the definition of the general
class of theories to be considered in this thesis.

Dynamical Couplings

The idea of introducing a scalar field into the pure theory of gravity was originally
presented by Brans and Dicke in 1961 [20] as an extension of Einstein’s theory of
general relativity [106], manifestly respecting Mach’s principle [107].

27
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When neglecting the cosmological constant, the action proposed reads

SBD =
∫

d4x
√
g

(
ω

φ
∂ µφ∂

µφ− φR
)
, (3.1)

where the field φ is associated with G−1
N and the factor ω

φ in front of the kinetic
term was introduced to account for correct dimensions. The field equations (2.2) are
altered to

Rµν −
1
2Rgµν = ω

φ2
(
∂ µφ∂ νφ−

1
2gµν∂ ρφ∂

ρφ
)

+ 1
φ

(
∂ µ ∂ νφ− gµν∂ ρ ∂ ρφ

)
(3.2)

as well as appended by a wave equation for the scalar field which remains sourceless
if no energy momentum tensor is introduced and reads

∂ µ∂
µφ = 0. (3.3)

Thus, the most striking change was the replacement of the static Newton constant
with a scalar field that depends on spacetime and was equipped with its own evolution
equation.
Brans-Dicke gravity was considered an extremely intriguing alternative to Einstein’s
pure general relativity at the time. As a member of Kip Thorne’s working group
allegedly once put it [108]:

We believed in Einstein’s general relativity on Mondays, Wedensdays,
and Fridays, and in Brans-Dicke gravity on Tuesdays, Thursdays, and
Saturdays.
On Sundays, we went to the beach.

With regard to the constant ω, which can be utilized to scale the modification made
to general relativity, it was shown that one recovers the pure Einstein theory in the
limit ω →∞ [109], provided certain conditions hold [110].
Experiments can be used to put constraints on ω which currently suggest ω & 40, 000,
meaning that experimental data suggests the convergence of Brans-Dicke theory to
classical general relativity. Despite this discouraging perspective for the traditional
Brans-Dicke theory, a more general class of scalar-tensor theories is still of great
importance for both cosmology and particle physics.

Scale Invariance and the Dilaton

As derived in appendix G, a theory is scale invariant if and only if all couplings
gj have scaling dimension 0. It is evident that this is not usually the case for an
arbitrarily given theory. For instance, looking at standard Einstein gravity as defined
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by the effective Einstein-Hilbert action

ΓEH [gµν ] = 1
16πGN

∫
d4x
√
g (2Λ−R) , (3.4)

where GN is the Newton coupling and Λ the cosmological constant, that are allowed
to depend on the renormalization group scale. We find

[GN ] = −2 and
[
Λ

GN

]
= 4.

However, introducing a scalar field χ with [χ] = 1, there is a way to make any theory
scale invariant: Simply replace any dimensionful coupling gi with [gi] = di with χdi ĝi
it is clear that now [ĝi] = 0: The theory is scale or dilatation invariant. That is why
we will call χ the dilaton henceforth.1
Turning back to Einstein gravity, it is straightforward from the scaling dimensions
given abovehand to find a Dilatation symmetric version, reading

Γ̃ [gµν , χ] =
∫

d4x
√
g

(
λχ4 − 1

2ξχ
2R

)
.

Note that λ and ξ, are both dimensionless and the coupling λ should not be confused
with the scaling parameter from appendix G. So far, Γ̃ has little physical significance,
as the scalar field will not be able to propagate. That is why in dilaton gravity, we
promote the mathematical field χ to a true physical scalar by virtue of a kinetic
term 1

2Zgµν∂
µχ∂νχ, where Z is a wave function renormalization rescaling the scalar

field and obeying [Z] = 0. Thus, we do not have to include additional powers of χ
and hence define dilaton gravity through the action

Γdilaton [gµν , χ] =
∫

d4x
√
g

(
λχ4 − 1

2ξχ
2R+ 1

2Zgµν∂
µχ∂νχ

)
. (3.5)

Given [ξ] = [λ] = [Z] = 0, the physical scale is only encoded in the scalar field
χ and its expectation value 〈χ〉, as we will show more explicitly in section 3.1.4.
Equivalently speaking, all scales are measured in units of the dilaton χ. Thus,
defining the dimensionless combination

y = χ2

k2

fulfills two purposes: It is not only the dimensionless version of the field χ2, but also

1Sometimes, the dilaton is also defined as the Goldstone boson emerging when Dilatation symmetry
is spontaneously broken. As we will not deal with that boson in this thesis explicitly, we will drop
the distinction.



30 3 Scalar Fields in Quantum Gravity

a bookkeeping device for the RG scale k. This may also be a step towards a physical
interpretation of the RG scale k.
In fact only two of the three couplings in this theory are independent, we can for
instance understand Z as a mere rescaling of the scalar field. We will revisit this
point in great detail in section 12.2.2.
For our later analysis it will be important to not only study theories in the dilatation
symmetric phase where scale symmetry is intact, but also emerge into the broken
phase. Furthermore, it will become evident in section 3.1.2 that in dilaton gravity, it
is important to understand the full dependency of a class of theories on the scalar
field χ. Hence, we need to enlarge the truncation (3.5). The truncation employed
throughout this thesis is therefore

Γ [gµν , χ] =
∫
d4x
√
g

(
V (χ2)− 1

2F (χ2)R+ 1
2K(χ2)gµν∂µχ∂νχ

)
. (3.6)

Classical field equations for the action (3.6) are presented in appendix E. As soon as
the form of the functions V , F and K admits a nonzero expectation value 〈χ〉, the
theory as a distinct scale and scale invariance is broken. In the appendix, we also
clarify the notion of an effective cosmological constant.
Before moving on, we want to comment on two more points. Firstly, so far we
only considered scale invariance. However, if one actually enhances the global scale
to a local conformal symmetry, thereby allowing for the scaling parameter Ω to
depend on spacetime, Ω = Ω(x) (see appendix G) and thus defines ĝi = Ω(x)digi
the introduction of the dilaton is mandatory on even more fundamental level: to
realize the induced spacetime dependency of couplings. This is precisely where our
two original motivations overlap.
Secondly, we want to point out the fact that there are two fundamentally different
interpretations of the field χ in the literature. If one is aiming for a manifestly
Dilatation invariant RG flow, as for instance [111, 112], one needs to gauge fix χ,
introduce position-dependent cut-off functions and modify geometrical quantities.
However, then χ is not a real propagating physical scalar anymore, thus we would be
unable to realise things like a spontaneous breaking of scale invariance and will not
be able to dynamically generate physical scales, as we describe in the next sections.
For an action of the type (3.5), global scale invariance is enhanced to local conformal
invariance at ξ = −1

6 [113–115]. This is also visible in the flow [111, 112], for a
detailed treatment see [42], section 5.3 and section 7.8 of this thesis. This may be
related to the classical conformal symmetry being broken on quantum level, which is
called the Weyl anomaly [116,117].
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3.1.1 Frame Freedom and Physical Scales
When considering scalar-tensor theories of gravity, there are two classically equivalent
frames available, the so called Jordan frame, in which the Ricci scalar R multiplies
the scalar field χ, and the Einstein frame, where it does not. Our considerations in
the last section clearly employed the Jordan frame, but can easily be transformed
into the Einstein frame by means of a conformal or Weyl-scaling of the metric.
Rescaling the metric according to

gµν = Ω(χ)2g̃µν , (3.7)

where we encoded the spacetime dependency through the scalar field, leads to a
rescaled Ricci scalar, more explicitly

R = Ω−2
[
R̃− 6g̃µν (∇µ∇ν lnΩ + ∂µ lnΩ ∂ν lnΩ)

]
.

Considering the action (3.5) with λ = 0, Z = 1 and ξ = 1 for simplicity, we find that
Ω = Mχ−1 produces the desired result, namely

Γ̃dilaton [gµν , χ] =
∫
d4x

√
g̃

(
−1

2M
2R̃+ 1

2gµν∂
µϕ∂νϕ

)
, where ϕ = M ln χ

M
.

Here, M is a scale which we will give meaning to in section 3.1.4.
Given that we have two equivalent frames at our disposal related by a conformal
transformation, it is natural to seek for a formulation invariant under (3.7). The full
truncation (3.6) maintains its form when setting

F̃ = Ω2F, Ṽ = Ω4V and K̃ = Ω2 [K − 6F∂χ lnΩ (∂χ lnΩ + ∂χ lnF )] .

Therefore, the combinations

V̂ = V

F 2 and K̂ = K

F
+ 3

2F 2 (∂χF )2 (3.8)

are invariant under (3.7) and thus contain the physical content of a given model [118].
To specify a certain frame, one needs to specify a form of the function F (χ2)
Thus, transforming to the Einstein frame (where F (χ2) = M2) and absorbing K̂ in
an appropriately redefined field φ, it is always possible to cast a theory (3.6) into its
standard form

Γ =
∫

d4x

(
V̂norm(φ)− 1

2M
2R+ 1

2gµν∂
µφ∂νφ

)
. (3.9)

In this form, the physical scale is encoded in the mass M , while the dynamics are
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those of a scalar field minimally coupled to gravity. This form is especially convenient
when discussing cosmic inflation, see section 3.3 and 13.4. Further note that since
V̂norm is the only dynamical function in this formulation, we can directly read off the
effective cosmological constant as a function of φ,

Λeff = 8πGN V̂norm(φ).

A small value of the potential in the infrared thus opens up intriguing possibilities for
explaining why the measured value of the cosmological constant is about 10−120 times
smaller than the value that can be estimated from quantum vacuum fluctuations
[119,120].

3.1.2 Fixed Points in Einstein and Dilaton Gravity
Let us step back for a moment and put some thought into the notion of a fixed
point. The traditional condition given in section 1.4 is rooted in sets of algebraic or
differential equations for the dimensionless couplings, reading

∂tgi = βi({gj}) = 0 ∀i, (3.10)

where gi is the i-th coupling of the system, and {gj} denotes a potential dependence
on all couplings present in the system. The physical meaning of this condition is
more readily put as follows: On the fixed point, the scale becomes irrelevant, the
theory exhibits a dilatation or scale symmetry.2
Having shown in the previous section that we can always make a theory dilatation
invariant by multiplying couplings with appropriate powers of a scalar field χ, and
also allowing for additional, not dilatation invariant terms to emerge, we can now
work with a different condition for a fixed point, applicable to dilaton gravity: On
the fixed point, Dilatation symmetry of the action Γ is exact, while away from the
fixed point, Dilatation symmetry is broken, leading to a nonzero Planck mass and
with that to an explicit scale in the theory as explained in section 3.1.4.
Hence, y parametrises a trajectory from the infrared to the ultraviolet regime of
gravity, and with that from classical general relativity to quantum gravity, which
we will map to different epochs of existence of the universe in several cosmological
applications. We emphasize that there is no need to deviate from the fixed point
as defined by 3.10 to evolve from the infrared to the ultraviolet in contrast to the
situation in standard Einstein gravity. We will make extensive use of this fact
when determining the fundamental scale of our theory, the Planck mass, in section
3.1.4. In this spirit, we will use ultraviolet interchangeably with y → 0 and infrared

2There is ongoing debate in the community whether this scale symmetry is always enhanced to a
conformal symmetry, see for instance [112,121–124].
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interchangeably with y → ∞ in this thesis. As it turns out, there are even more
profound reasons to do so: The system under considerations exhibits classical scaling
relations and vanishing quantum contributions to the flows for y →∞, while this is
not true for y → 0.
In particular that means that flow diagrams in theory space customary to treatments
of Einstein quantum gravity such as figures 1.2 and 2.1 are replaced with ordinary
plots of y dependent coupling functions, see for instance figure 12.4, in dilaton
quantum gravity. Thereby, different trajectories in Einstein quantum gravity may
correspond to different sets of initial conditions for functions potentially viable in
dilaton gravity. This is discussed in detail in sections 13.4 and 13.5.
Note that there is one more fundamental difference between a fixed point in Einstein
and dilaton gravity: A fixed point is always defined for the dimensionless couplings.
To determine the effective physical couplings, appropriate powers of the scale k need
to be added. However, this makes it impossible to write down a fixed point action,
the only thing we can give are fixed point values for the dimensionless couplings.
In contrast to that, for a dilatation symmetric theory no powers of k need to be
added, and we can write down the full fixed point action. This is precisely the reason
why the aforementioned scale invariance exhibited once a fixed point is approached
cannot manifestly be seen in any action in Einstein gravity. What may seem like a
pedagogical distinction will become very important in a bit.

3.1.3 An infrared fixed point for Dilaton Gravity
Without having to calculate any flow equations, we can already learn a lot about
possible infrared fixed points from simple physical arguments. The main ingredient
is the simple observation that if

F ∼ ξχ2 for y →∞ (3.11)

the strength of the gravitational interaction is given by ξ−1χ−2. The limit 3.11 is
inspired by Dilatation symmetry. For the gravity induced flow of the dimensionless
quantities only the dimensionless combination ξ−1y−1 can be of relevance. However,
this quantity vanishes for y → ∞ and the gravitational interactions are absent in
this limit. For y →∞ and V (y →∞)→ const. one is then left with a scalar field
that is only minimally coupled to gravity. In turn, for a free scalar field the flow
cannot induce a nontrivial χ-dependent effective potential, such that only a constant
term can flow in V . For large y, the leading term in vk is then proportional to y−2

and vanishes for y →∞, such that at the fixed point

lim
y→∞

V = const. (3.12)
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remains true. For a vanishing strength of the gravitational interaction the leading
term in the gravitational sector of the effective action does not flow either. Thus ξ
does not depend on k, establishing an asymptotic behavior

F ∼ ξχ2, V ∼ const. for y →∞.

Since the constant part of the potential would need to be multiplied by k4 to obtain
physical dimensionful quantities, infrared physics is solely driven by F .

3.1.4 The Planck scale in Einstein and Dilaton Quantum Gravity
The Planck mass as the fundamental scale of quantum gravity is of special importance
to our considerations. That is why we want to take a moment to comment on how it
emerges in the different approaches to quantum gravity.
Let us first consider the case of conventional Einstein Gravity, defined by the Euclidian
Einstein Hilbert action (3.4). Assuming the asymptotic safety scenario to hold, both
dimensionless couplings g = k2GN and λ = k−2Λ have to approach fixed points g∗
and λ∗ of the RG flow when the scale is increased. This is believed to happen around
the scale set by the Planck mass M . Furthermore, in the classical regime of small k

M
all quantum effects should vanish leading to a vanishing anomalous dimensions, and
the couplings should thus only run according to their canonical mass dimensions.
For GN we have [GN ] = 2 and would thus expect a straight line with slope +2 in
the infrared. This is schematically illustrated in figure 3.1.
Having established

g = Ak2 for k

M
� 1,

where A is the slope of the curce and keeping in mind that g = GNk
2, we can

immediately write

A = GN .

The constant that has mass dimension 1 derived from GN is called Planck mass. We
thus have

M2 = 1
8πGN

,

and can read off the Planck mass from the slope of the curve in the infrared,

M =
√

2
A
.
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Figure 3.1: Schematic plot of the scale dependence of the dimensionless Newton coupling g.
A physically realistic version of this can be found for instance in [48], figure 5.13.

Rewriting the Einstein-Hilbert action in terms of the Planck mass we have

ΓEH = 1
2ZhM

2
∫

d4x (2Λ−R) ,

where we also absorbed all RG runnings into a prefactor Zh. In this notation, M
is the constant fundamental scale of the physical system, and Zh acts as the wave
function renormalization for the graviton. Normalizing Z(k = 0) = 1, the RG flow
should yield

ηh = − Żh
Zh

= 0 for k

M
� 1,

in accordance with our previous analysis. This behavior has been established for
instance in [19].
Note that this way of defining the Planck mass crucially depends on the flow of a
relevant parameter away from the fixed point.
Let us now turn to dilaton Gravity. We have already established in section 3.1.2 that
dilaton Gravity offers a novel characterization of the fixed point by means of using
the scalar field χ to rescale all couplings in a way that makes them dimensionless
and thus the theory invariant under global rescalings, also see appendix G. When
this so called Dilatation symmetry is broken, the theory is no longer scale invariant
and we have therefore departed from the fixed point. This is encoded in a nonzero
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expectation value for the scalar field 〈χ〉. We give some details on how to determine
said expectation value in appendix E. The RG scale k is encoded in the field via
y = χ2

k2 . Taking the form of the proposed Dilatation symmetric fixed point for large
y (or small k) from section 3.1.3 reading

Γ (k → 0) =
∫
d4x
√
g

(1
2g

µν∂µχ∂νχ−
1
2ξχ

2R

)
, (3.13)

we can perform a Weyl rescaling to the Einstein frame (see section 3.1.1) to arrive at

Γ (k → 0) =
∫
d4x
√
g

(1
2g

µν∂µφ∂νφ−
1
2M

2R

)
.

Including a constant potential only makes the calculations more cumbersome but does
not change any physical aspects at this stage. This is the familiar Einstein-Hilbert
action with an additional massless scalar field. From here it becomes clear that in
dilaton gravity, the Planck mass emerges through the scalar field, namely

M =
√
ξ 〈χ〉.

We emphasize that the possibility to write down a full fixed point action and not
just fixed values for dimensionless couplings is a result of the construction of dilaton
gravity.
Note that there is no need to deviate from the fixed point to set the Planck scale. It is
set by the scalar field acquiring a nonzero expectation value 〈χ〉, signaling the breaking
of scale or dilatation invariance. Thus, the equivalent of classical infrared scaling
of Einstein Gravity in dilaton Gravity is the breaking of the dilatation symmetric
infrared fixed point [125,126]. This is the main reason why we are interested in the
full form of the functions V and F for all values of the scalar field χ, and do not
simply consider a finite subset of couplings.

3.2 Applications I: Particle Physics
Concerning applications to particle physics, the most immediate application could
be the coupling of the Standard Model Higgs Sector, which essentially consists of a
scalar φ4-theory, to gravity [127], also in relation with the scale of new physics [96].
In recent works [97], the authors have been able to forecast the mass of the Higgs
boson with great numerical accuracy to mH ∼ 126 GeV from the assumption that
gravity is asymptotically safe, which is in complete accordance with original data
from the Large Hadron Collider [2, 3].
On a more conceptual level, scalar fields can be used to generate arbitrary constants
dynamically. Thus, the study of scalar-tensor theories is a first step towards resolving
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the hierarchy problem, addressing the question why gravity is so much weaker than
the other three fundamental forces described by the standard model. Another facet
of the hierarchy problem is the small numerical value for the cosmological constant,
predicted by experiments. Explicit studies of a dilaton at the LHC are presented
in [128,129].
Furthermore, scalar matter is discussed in [86] and as a dark matter candidate
in [130,131].

3.3 Applications II: Cosmology
Shifting our focus to cosmology, scalar fields are known to appear at a variety of stages,
including but by far not limited to inflation [132] and dark matter, see [101,133,134]
for FRG studies. Moreover, virtually every constant can be promoted to a dynamical
variable by virtue of identifying it with a scalar field. For example, the implications
of a variable Newton constant were studied in [135], the investigation of a dynamical
cosmological constant was put forward in [136], while [118, 137–142] combine the
aforementioned ideas.
In this thesis, we will mainly be concerned with theories that possess a dilatation
symmetry, which were found to exhibit interesting properties as early as in the
1960s. The author of [143] showed that classical electrodynamics with charged
particles possessing finite mass is invariant under a group of mass dilatations and a
corresponding conservation law was derived.
As explained in greater detail in appendix G, the requirement of dilatation symmetry
takes the dynamical generation of constants to a new level, as in a dilatation symmetric
theory the only notion of scale itself is introduced through the expectation value of
the scalar field when the symmetry is spontaneously broken. The massless Goldstone
boson arising in this process is usually referred to as the dilaton [125,144].
In the framework of particle cosmology, a dilaton frequently arises. In cosmological
scenarios one usually needs to add a potential V (φ) for the scalar field φ to the
action (3.1). The dilaton arises naturally in the process of compactifying dimensions
in Kaluza-Klein theory (for a review see [145]) and with that in string theory.
Furthermore, it has a wide range of cosmologically relevant consequences, such as
within the context of inflation and emerging dark energy and matter [25,146–148]
and moreover due to the connection of its potential with the cosmological constant
and the hierarchy problem [149–151].
Using the Friedmann equations, on can show that accelerated expansion is possible
for sufficiently negative pressure, which can be translated into the kinetic term of a
scalar field needing to be sufficiently small with respect to its potential [152–154].
This is known as slow roll inflation. Exponentially decaying potentials are of special
interest [155–158]. They make slow roll expansion possible and they vanish for large
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fields, offering a potential explanation for the small value of the cosmological constant
today.
We mention that the classical equivalence of f(R) type theories and scalar-tensor
theories may also offer interesting prospects [159], and the relation between conformal
and nonconformal regimes are discussed [160,161].



CHAPTER 4

Background Field Methods and Vertex Expansions

In this chapter, we introduce the basic notion of background fields in section 4.1,
derive the formalism of background field approximations for quantum gravity and
discuss its shortcomings in section 4.2. Lastly, we consider replacing the background
approximation traditionally done in functional renormalization group quantum
gravity computations by a vertex construction, facilitated by expanding around a flat
background. This construction has both computational and conceptual advantages
that we will discuss in section 4.4.2.
This chapter therefore defines the technical environment in which the two major
computations presented in this thesis are carried out: In part II, we derive, solve
and discuss flow equations in a symmetric background field approximation, while
III deals with an expansion around a flat background, employing a partial vertex
construction.

4.1 Gauge Theories and Background Field Formalism
Gauge theories are clearly a fundamental theoretical building block of modern physics.
The formulation of the Standard Model of Particle Physics in terms of a quantum
field theory processing a local gauge invariance is beyond doubt one of the very
successful examples thereof. In order to formulate a quantum theory of gravity, this
thesis relies on the machinery of quantum field theory together with the functional
renormalization group, and with that on a formulation of classical general relativity
as a gauge theory (section 2.1).
However, the formal treatment of gauge theories is far from simple. That is why we

39
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will take some time here to develop technical means necessary, especially regarding
the formulation of a quantum field theory in terms of the effective average action.
Consider a quantum field theory defined by an action S that is invariant under
a certain global transformation with infinitesimal generator G, i.e. GS = 0. The
effective action Γ defined in (1.4) will be invariant if in addition to S also the measure
Dψ is invariant, in which case GΓ = 0 holds. At this point, GS = GΓ = 0 signals
that both the action as well as the average action are manifestly invariant under the
transformation G.
However, if G is promoted to a local gauge symmetry, the statement is not as
straightforward anymore: The definition of Γ involves a functional integral over
all field configurations. In the case of gauge theories, this is ill-defined a priori,
as one has to make sure that gauge equivalent field configurations only contribute
once. This is done by means of gauge fixing, usually through the standard Faddeev-
Popov prescription [162, 163]. Therefore, in an effective action for a gauge theory,
manifest gauge invariance is always lost, and the symmetry is now encoded in Ward
identities [33].
Moreover, for the effective average action Γk introduced in (1.13) to be invariant, the
transformation properties of the cutoff action ∆Sk need to be considered separately.
Nonetheless, given the special form we chose for ∆Sk in equation (1.10), the regulator
will rarely be invariant under the gauge symmetry: mass terms for gauge bosons are
usually excluded. Even for k = 0, where Γk = Γ , the symmetry is only restored if a
set of modified Ward identities, to be understood as Ward identities in the presence
of a regulator, are fulfilled,1 making keeping track of the fundamental symmetries a
cumbersome task.

4.1.1 Background Fields and Background Transformations
Therefore, wouldn’t it be nice to restore manifest gauge invariance in the effective
average action Γk by means of a special construction? That is exactly the aim of the
background field method widely used in functional renormalization group studies of
gauge theories. It was first introduced in [164], see [28,35,165,166] for applications
to QCD and [33,167] for reviews. Consider a generic quantum field theory defined
by an effective action Γ [ϕ]. Here, ϕ is an arbitrary (super-)field, not necessarily
a scalar, and not necessarily related to gravity at this stage. One possibility to
overcome the aforementioned problem is provided by the background field formalism,
which splits the field ϕ into a fixed background ϕ̄ as well as a fluctuating part δϕ,
ϕ = ϕ̄ + δϕ. We emphasize that this split is quite different from what is done in
standard perturbation theory, as δϕ is not required to be small. Since we want δϕ
to carry the dynamics of the theory, all functional integrals will be w.r.t φ, and thus
1Luckily it can be shown that the modified scale depended ward identity for a specific symmetry if
satisfied at some scale k = k0, Wk0 = 0 is a fixed point under the RG flow, ∂tWk = 0.
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the gauge transformation G also acts on ϕ, leaving ϕ̄ invariant. This allows for the
introduction of an independent gauge transformation Ḡ for the auxiliary field ϕ̄. We
can then construct a gauge fixed theory that is not manifestly invariant under G
but can be made manifestly invariant under the combination Ḡ + G by choosing Ḡ
appropriately,

0 = (Ḡ + G)Γk[ϕ̄, δϕ], (4.1)

thus saving us the trouble of having to deal with Ward identities. Note that the
switch from Γ to Γk means that we always have to also take care of (G + Ḡ)∆Sk = 0.
In order to let Γk inherit the full symmetry properties at the end, we will identify
ϕ = ϕ̄ at the end of our gauge fixed calculations,

0 = (Ḡ + G)Γk[ϕ̄, δϕ]
∣∣
ϕ=ϕ̄= GΓk[ϕ̄, ϕ̄]. (4.2)

Then, physics is encoded in ϕ̄, and the physically measurable couplings are the
couplings of ϕ̄.

4.1.2 Background Field Formalism and the Functional Renormalization
Group

However, there are two major drawbacks of this formalism. The first concerns the
dependence of the results on the specific background and gauge fixing chosen: Even
though one could argue that the introduction of a separate background field is only
an intermediate step, and thus the results should not depend on the background
chosen, this is evidently not true for truncated FRG computations, and an open line
of research.
Furthermore, one has to take care of the dependence of the results on the specific
gauge fixing conditions used. This can be done by means of geometrical flows as
briefly outlined in section 4.3.
The second drawback is related to the flow equation itself. After the background
field split, the flow equation (1.19) is a function of both ϕ̄ and δϕ separately and not
just of the sum ϕ = ϕ̄+ δϕ.
The LHS of the flow equation is a function of ϕ̄ and δϕ at ϕ̄ = ϕ,

∂ tΓk = ∂ tΓk[ϕ̄, δϕ]
∣∣
ϕ̄=ϕ .

In contradistinction, the RHS depends on Γ (2)
k as

δ2Γk[ϕ̄, δϕ]
δϕ δϕ

∣∣
ϕ̄=ϕ, (4.3)
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which cannot be obtained from the LHS, as it is already evaluated at ϕ̄ = ϕ. That
means that all we can feed back into the RHS is the background approximation

δ2Γk[ϕ,ϕ]
δϕ δϕ

= δ2Γk[ϕ̄, ϕ̄]
δϕ̄ δϕ̄

, (4.4)

producing an inaccuracy triggered by

δ2Γk[ϕ,ϕ]
δϕ δϕ

= δ2Γk[ϕ̄, ϕ]
δϕ δϕ

∣∣
ϕ̄=ϕ +δ2Γk[ϕ̄, ϕ]

δϕ̄ δϕ̄

∣∣
ϕ̄=ϕ +2 δ

δϕ

δ

δϕ̄
Γk[ϕ̄, ϕ]

∣∣
ϕ̄=ϕ . (4.5)

Thus, the flow only closes and, with that, identification is only possible on an exact
level if

δ2Γk[ϕ̄, ϕ]
δϕ̄ δϕ̄

∣∣
ϕ̄=ϕ +2 δ

δϕ

δ

δϕ̄
Γk[ϕ̄, ϕ]

∣∣
ϕ̄=ϕ= 0. (4.6)

In quantum gravity, the situation is even worse: Any combination of metrics invariant
under diffeomorphisms is automatically of infinite order in the field due to the factor√
g in the canonical volume element, thus spoiling the one loop structure of the flow

equation. The only way out is to ensure that the regulator for the gravitational part
of the theory is a function of the background metric only to make the full theory,
including the inserted regulator part, invariant under G+ Ḡ, in the process furthering
the individual dependence on background and fluctuating field. This is deeply routed
in the structure of the flow equations for quantum gravity, even without any gauge
fixing present.
In [168], a consistency criterion was derived based on the so called split identities
[73,74,169–171] which control the inaccuracy. It reads

Tr
[

1
Γ

(2)
k [ϕ̄, ϕ] +Rk[ϕ̄]

Γ
(3)
k [ϕ̄, ϕ, ϕ] 1

Γ
(2)
k [ϕ̄, ϕ] +Rk[ϕ̄]

∂ tRk[ϕ̄]
]

= Tr
[

1
Γ

(2)
k [ϕ̄, ϕ] +Rk[ϕ̄]

(
∂ tΓ

(2)
k [ϕ,ϕ]

) 1
Γ

(2)
k [ϕ̄, ϕ] +Rk[ϕ̄]

δRk
δϕ̄

] (4.7)

and can be used to measure the inaccuracy produced by the background approxi-
mation. More loosely speaking, the effect of the background approximation is that
the flow picks up unphysical regulator contributions. It was shown that these can
gain physical relevance in [172,173], as the authors were able to flip the sign of the
one-loop β-functions for QCD, which destroys the essential feature of confinement.
For a further discussion of stability issues related to the background formalism in
QCD coupled to quantum gravity we refer to [174,175].
Even though for a general flow equation (4.6) certainly does not hold, we will
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henceforth assume it as an approximation, the so called background approximation.
Hence, the background approximation enables us to perform the field identification
and close the flow equation.
Despite those difficulties, we will employ the background field formalism when
deriving a first flow equation for scalar-tensor theories of quantum gravity in part II.
In part III we will take a slightly different approach that will be explained in section
4.4.2.

4.2 Background Field Formalism for Quantum Gravity
This section is devoted to crafting the building blocks needed to investigate the
coupling of scalar theories to general relativity in the context of gauge field theory.
In order to do so, we resort to the ideas of section 4.1 applied to classical general
relativity as defined in section 2.1 and modify them to fit quantum gravity.
Our derivation needs to focus on the graviton degrees of freedom, as they transform
non-trivially under the gauge group of gravity, namely the group of diffeomorphisms
on the spacetime manifold M usually denoted by Diff(M). This statement is further
explained in appendix F. Thus, in order to not over-count, we need to restrain all
path integrals to precisely one gauge orbit (i.e. a subspace of field configuration space
that contains exactly one representative per gauge equivalent class). In mathematical
terms, we need to find the factor-manifold M(gµν)/Diff(M). This is a delicate
task, which is actually not carried out very well by standard quantum field theory
gauge fixing procedures [176]. However, it can be shown [33] that if suitable initial
conditions are picked for the FRG flow it automatically stays within one Gribov
region, thus ensuring a well defined functional measure.
Having fixed the factor-manifold, we can then apply the standard Faddeev-Popov
gauge fixing and quantization prescription, breaking the physical symmetry and
collecting ghost and anti-ghost degrees of freedom Cµ and C̄µ in the process.
Let us now proceed to substantiate the construction of a background split presented
in section 4.1 to quantum gravity, coupled to a scalar theory. We write

gµν = ḡµν + hµν (4.8)

for the graviton degrees of freedom and split the scalar field according to

χ = χ̄+ δχ. (4.9)

The group Diff(M) acts on the dynamical metric hµν , leading to the necessity of
performing the factorization as M(hµν)/Diff(M). In a local chart, the action of a
diffeomorphism is expressed through the Lie derivative and leaves the background
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metric ḡµν unaltered,

G :
∣∣∣∣∣ hµν → hµν + Lεhµν ,
ḡµν → ḡµν ,

(4.10)

in complete accordance with the statements made in section 2.1. The additional
auxiliary gauge transformation Ḡ, rendering the theory invariant under G + Ḡ, can
now be readily written as

Ḡ :
∣∣∣∣∣ hµν → hµν − Lεhµν ,
ḡµν → ḡµν + Lεḡµν .

(4.11)

By definition, this construction remains valid if scalar fields are introduced.
Two more steps are to be completed: Extracting an action for the ghosts on the level
of the effective action Γ from the elected gauge fixing condition and proving that the
procedure still yields the desired results when carrying over to the effective average
action Γk for our further renormalization group analysis.
Concerning the first, we select a gauge fixing action of the form

Sgauge fixing = 1
2α

∫
ddx

√
ḡF (χ̄2)ḡµνF̄µF̄ν , (4.12)

where F (χ2) accounts for a later coupling of the scalar field to gravity via the Ricci
scalar R and F̄µ(hρσ) is a function of the dynamical metric and the background
covariant derivative. The choice

F̄µ =
(
∇̄νhνµ −

β + 1
d
∇̄µh

)
(4.13)

is linear in the fluctuation field and thus only introduces linear interactions between
gravitons and ghosts. Furthermore, this choice is invariant under G+ Ḡ as introduced
before.
Throughout this thesis, we will employ the limit α → 0, which ensures an exact
implementation of the gauge fixing condition and is a fixed point of the renormalization
group flow of both α and β for arbitrary β [177]. That is why we will always work
with α = 0, while will set β in a way to simplify computations where possible.
Exponentiating the Faddeev-Popov determinant, we arrive at a corresponding ghost
action that reads

Sghost = −
∫

ddx
√
ḡCµ

[
δρµ�̄+

(
1− 2(1 + β)

d

)
∇̄µ∇̄ρ + R̄ρµ

]
Cρ. (4.14)

Note that it is not necessary to introduce a background split for Cµ, and we regard
the full Cµ as a fluctuating quantum field.
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From a standard quantum field theory perspective no second step would be necessary.
However, in the context of the functional renormalization group we still need to
consider the transformation Γ → Γk, which is carried out by adding a regulator
action ∆Sk (see section 4.1). In appendix C.4 we address this issue by electing a
regulator Rk that depends on the background fields only and scales like Γ (2)

k , thereby
respecting the requirement of invariance under G + Ḡ by construction. Even though
we derive the properties of the regulator in the context of the calculation done in
part III of this thesis, they also hold for the background calculation in part II with
the exception of the insertion of anomalous dimensions. These can simply be set to
0 to arrive at the background results.

4.3 Extensions of the Background Field Method
Geometrical Flow Equations

We briefly mention a more enhanced approach for the construction of a diffeomorphism
invariant2 renormalization group flow for quantum gravity, utilizing geometrical flow
equations through Vilkovisky connections. It was first introduced in [178] and
subsequently put forward in [179] as well as more recently in [47,180] and applied
in [19, 48]. In contrast to the background field formalism, the split in the fields is
not necessarily linear, allowing for the introduction of a nontrivial metric γ on the
field space, which would be the space of all Riemannian metrics in the application
to quantum gravity. Having introduced γ, the path integral measure Dgµν can be
made invariant under reparameterizations by the inclusion of a factor

√
det γ with a

suitable definition of the determinant function det. This leads to the effective average
action depending on two independent dynamical fields, Γ = Γ [g̃µν ; gµν ], and being
invariant under gauge transformations with respect to either of them. The standard
background field formalism as used in this thesis is recovered when performing a
linear approximation. The geometrical approach provides further support for the
asymptotic safety scenario as well as prospects for an infrared fixed point structure.

Nonlinear splits

There is no fundamental reason for the split (4.8) to be linear. In principle, one
could construct an arbitrary background split with some function Z,

gµν = Z(ḡµν , hµν).

2When talking about gravity as a gauge theory, its gauge group is the group of coordinate diffeo-
morphisms. Thus, we use gauge invariant and diffeomorphism invariant interchangeably.
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Originally introduced in a 2 + ε dimensions study [181], it was used in [91], where an
exponential split

gµν = ḡµρ
(
eh
)ρ
ν

was used to circumvent some of the problems of the scalar-tensor system that we
will also encounter in part II of this thesis. However, we will use a different approach
to circumvent these shortcomings in part III.

Bimetric Approximations

A detailed account of the background dependence in quantum gravity is further given
in [72]. Therein, the field identification is not performed and quantum gravity is
considered as a bimetric theory. Conceptual issues are discussed in detail and some
evidence pointing towards asymptotic safety is presented, but only in a conformally
reduced toy model. Recent results are presented in [73, 74], where it was shown that
it is possible to restore split symmetries in asymptotically safe gravity.

4.4 Approximation Schemes
In equation (1.22), we introduced an expansion of the effective action in terms of
some basis functions {Pα}, and how the normally infinite basis needs to be reduced
to a finite subset for practical calculations. Here we introduce two commonly used
systematic expansion schemes that will also be employed in part II and III of this
thesis, respectively: The derivative and the vertex expansion.

4.4.1 Derivative Expansion
Within a derivative expansion one sets a maximum number of spacetime derivatives
of fields to appear in the effective action. In gravity, operators of O(Rn) contain 2n
spacetime derivatives, such that the Einstein-Hilbert action is a derivative expansion
of order 2. Since also the kinetic term for a generic scalar field ∼ gµν∂

µχ∂νχ
effectively contains two spacetime derivatives, a derivative expansion of order 2 is
commonly employed in quantum gravity calculations with and without scalar fields.
This sets our truncation in consistency with equation (3.6). The approximation is
again made if in equation (1.27) also the RHS is expanded in the exact same basis,
allowing only for operators with up to two spacetime derivatives. The implications of
this approximation are not easily assessed. Furthermore, since in momentum space
a derivative is replaced by the momentum p, one might argue that the derivative
expansion is an expansion in small momenta, the consequences of which are not
clear to date. This is mainly due to the fact that it only recently became possible to
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capture the momentum dependence of flowing quantities, using the vertex expansion
discussed below [105].
Throughout part II of this thesis, we employ a derivative expansion. Additionally,
to treat the functions V , F and K, an expansion in powers or inverse powers of χ2

is used, which can be interpreted as an additional operator expansion, including
operators up to a certain mass dimension.

4.4.2 Vertex Expansion
The vertex expansion as employed in part III of this thesis is a systematic expansion
of the effective action in powers of the field ϕ according to

Γk[ϕ] =
∞∑
n=0

1
n!

∫
d4x1 . . . d4xnΓ

(n)
k (x1, . . . , xn) |ϕ=0 ϕ(x1) . . . ϕ(xn), (4.15)

meaning that the basis functionals are now expressed through the n-th correlation
function,

ũnPn = 1
n!

∫
d4x1 . . . d4xnΓ

(n)
k (x1, . . . , xn) |ϕ=0 ϕ(x1) . . . ϕ(xn). (4.16)

A truncation thus amounts to cutting the series at a finite n = N , and the ansatz is
not made for the effective action, but for Γ (n)

k , n ≤ N . Γ (n) is a fully dressed vertex
in the language of standard quantum field theory and will therefore also ne referred to
the RG improved object Γ (n)

k as a vertex or n-point function. The generalization to
more than one field (or to superfield space) is straightforward and we have suppressed
all indices for to unclutter notation. For instance, a vertex with m1 gravitons and
m2 scalars has 2m1 spacetime indices.
In equation (4.16), ũn is a (dimensionful) coupling. We can then project on the
coupling by using an appropriate projector Πn,

ũn = Πn

( 1
n!

∫
d4x1 . . . d4xnΓ

(n)
k (x1, . . . , xn) |ϕ=0 ϕ(x1) . . . ϕ(xn)

)
.

Finding suitable projectors is closely related with finding a suitable ansatz for the
n-point functions and by no means trivial [48, 175].

Hierarchy of Flow Equations for Vertex Functions

One of the advantages of a vertex expansion [182] is that flow equations for n-point
functions can readily be obtained by taking functional derivatives on both sides
of the functional renormalization group equation (1.19). Note that the flow of the
n-point function ∂tΓ (n)

k will be a function of the n+ 1- and n+ 2-point functions.
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Figure 4.1: Structure of the flow of the 2- and 3-point functions.

While these calculations are technically involved and will only be presented in the
cases needed for the theories considered in this thesis in chapter 10 and appendix C,
a simple diagramatic representation is readily available and shown for the 2- and
3-point functions in figure 4.1.
The projection on the flow of a specific coupling is then carried out via

∂tũn = Πn

( 1
n!

∫
d4x1 . . . d4xn (∂tΓk)(n) (x1, . . . , xn) |ϕ=0 ϕ(x1) . . . ϕ(xn)

)
.

Here, (∂tΓk)(n) symbolizes the n-th functional derivative of equation (1.19), which
itself is an expansion in the n + 1 and n + 2 point functions. The flow of the
dimensionless functions can then be computed through standard methods. We also
use the notation Flow(n) as a shorthand for the RHS of the Wetterich equation of an
n-point function.
The fact that the flow Flow(n) depends on the n+ 1- and n+ 2-point functions also
means that it depends on the corresponding couplings. Therefore, to close the flow,
we have to set ũn+1 = ũn+2 = ũn at n = N . Note how this is different from simply
setting these couplings to zero.

Flat Backgrounds

So far, we did not have to worry about gauge symmetries or background fields.
However, at some point we will have to deal with these issues. In the context of
gauge symmetries, the vertex expansion (4.15) is carried out in the fluctuating field,
so we replace ϕ → δϕ, which also yields ϕ = 0 → δϕ = 0 ⇔ ϕ = ϕ̄. Thus, the
vertex expansion systematically disentangles background and fluctuating fields. In
this thesis, ϕ contains the fluctuating graviton and scalar fields as well as ghost and
antighost.
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A priori, the choice of background spacetime ḡµν is arbitrary. However, working
with a flat background ḡµν = ηµν or, since all calculations are carried out in Eu-
clidian spacetime, ḡµν = δµν has conceptual advantageous on top of the obvious
computational simplifications.
Firstly, it restricts the higher derivative operators that can enter the vertices, as
after taking n derivatives with respect to the metric, operators with more than n
derivatives vanish on a flat background. Thus, the highest order operator entering
the two point function is R2.
Moreover, since R̄ = 0 we do not need to resort to heat-kernel techniques to capture
the spectrum of the Laplace operator, allowing us to extract the flow of the kinetial
K for the first time.
Note however, that R̄ = 0 also forces us to consider flows of higher correlation
functions, as it is impossible to extract the running of the couplings of the Einstein-
Hilbert action already from the original flow equation (1.19). Vice versa the latter also
means that computations with a flat background are not possible without performing
a vertex expansion.

Physical Scaling of the Vertices and Ansatz for the n-point functions

The last piece of ingredient is an ansatz for the n-point function Γ (n)
k , consisting of

a tensor structure as well as some couplings. Taking the standpoint of traditional
Einstein gravity for a moment, the requirement of constructing a consistent quantum
field theory and recovering classical general relativity in the infrared is the main
guiding principle. Therefore, it seems natural to derive the tensor structure of the
graviton n-point function (a vertex with n graviton legs) from the n-th functional
derivative of the classical Einstein-Hilbert action SEH with respect to the metric.
Note how our starting point here is the action S and not some ansatz for the effective
average action Γk. However, it turns out that if one also defines the couplings by
just using the ones already present in the Einstein-Hilbert action, one ends up with
an ill-defined infrared limit [19, 48]. Similar observations are already known from
Yang-Mills theories [166].
That is why more general vertex functions are considered, first constructed for
Yang-Mills theories [182] and also suggested in the context of quantum gravity [104].
Those vertex functions not only yield a physically well defined infrared limit in the
form of classical general relativity, but also ensure the correct scaling of quantum
fields via wave function renormalizations and disentangle the momentum dependent
and momentum independent part of the vertex functions. They read

Γ
(m1,...,mn)
k (p1, . . . , pn) =

n∏
i=1

(√
Zi(pi)

(
G

(n)
k

)n
2−1

)
T m1,...,mn
k

(
p1, . . . , pn;Λ(n)

k

)
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(4.17)

with the tensor structure

T m1,...,mn
k

(
p1, . . . , pn;Λ(n)

k

)
= S

(m1,...,mn)
EH

(
p1, . . . , pn;GN = k2, Λ→ Λ

(n)
k

)
. (4.18)

Here, we have generalized our notation to m distinct fields and explicitly written all
momentum dependencies. Zi(pi) is the wave function renormalization for the i-th
field, and G

(n)
k and Λ

(n)
k parametrize the momentum dependent and independent

part of the n-point function, respectively. What looks like a technically involved
construction has actually a very simple physical interpretation: As suggested by the
vertex construction, we introduce different couplings at each order. We then proceed
to disentangle the wave function renormlizations which rescale quantum fields and
should be obtained from propagators, IE (inverse) 2-point functions from couplings
that cannot occur for any n-point function with n < 3. That is the reason for the
different exponents. To take full advantage of the wave function renormalization,
we will later on pick a regulator which ensures that all explicit dependencies on Zi
cancel out, and only the anomalous dimensions

ηi = − Żi
Zi

remain [35].
Results have been obtained up to N = 3, for the first time separately computing wave
function renormalizations and flows of dynamical couplings [19,105], also partially
resolving the momentum dependence of the flows. Computations for N = 4 are still
pending to date.
When transforming Einstein gravity into dilaton gravity along the derivation of
section 3.1, we introduce arbitrary functions of a scalar field χ2, and with that
couplings on infinite order in the dialaton-graviton system. That is why when
applying the ideas presented in this section to dilaton gravity in the next chapters,
we will adapt the ansatz 4.17 in the sense that we cut the expansion at N = 2, and
will thus introduce an independent wave-function renormalization for the scalar field
only, while the full function F (χ2) serves as a coupling, and is not replaced in the
classical action.
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CHAPTER 5

Introduction

This part is devoted to presenting one of the two main analyses of this thesis: The
flow and fixed point structure of dilaton gravity as a scalar-tensor theory, introduced
in chapter 3, in the background field approximation as defined in section 4.2 and,
more specifically, 4.4.1. Our background spacetime here is a four dimensional sphere
and thus maximally symmetric.
In this context, we gain considerable insight into the structure of the fixed point
equations and their solutions, and with that a first glimpse at a globally defined fixed
point solution, connecting ultraviolet with infrared physics on a pure fixed point
trajectory.
Specifically, we show that for large ratios of y = χ2/k2, which corresponds to the
infrared regime, the fixed point equations are closed with respect to an expansion
in inverse powers of y. Moreover, there exists a physically intriguing limiting case
action of the form

Γ (k → 0) =
∫

d4x
√
g

(
−1

2MR+ 1
2g

µν∂µφ∂νφ

)
in the Einstein frame, which features a Planck mass as well as a vanishing cosmological
constant.
Nevertheless, the exact global solution and with that, the theory approaching the
aforementioned physical infrared limit remain indeterminably in the current frame-
work. It becomes clear that we need to upgrade the kinetic configuration of the
scalar χ to capture the physical features. This is done in part III.
However, even without the full theory it is possible to gain considerable insight
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into the role of the scalar kinetic term and its influence on the flows, and to draw
conclusions from the connection with the kinetic term of the graviton. The latter
stems from the coupling to the Ricci scalar.
We furthermore explicitly demonstrate that the infrared limit is independent of
ultraviolet couplings in our approach, while the ultraviolet limit is influenced by
operators dominating infrared physics. With that insight, we refine our strategy for
the search of global solutions.
This part is organized as follows: In chapter 6, we state our truncation and recap
the most important steps of the derivation of the flow equations that will be used
throughout this part. In chapter 7, we use the flow equations to pave the path
towards a global solution by studying different special and limiting cases as well as
expansions and improvements (sections 7.1 - 7.6) and finally presenting our current
best approximation to a global solution in section 7.7. In section 7.8 we introduce
a rescaled kinetic term for the scalar and study its implication with respect to
field rescalings as well as regulator singularities, before we close the analysis of the
background approximated flow equations in section 7.9 by utilizing simple truncation
not aimed at solving the system to any accuracy, but rather at providing physical
insights into the couplings of limiting cases to be used as guiding principled for part
III. We summarize our findings in chapter 8.



CHAPTER 6

Setup and Derivation of the Background Flow Equations

To keep this introduction compact, we focus on the main points necessary to under-
stand the procedure. A more comprehensive derivation can be found in [42].

6.1 Action and Inverse Propagators
In the spirit of chapter 3 and section 4.2 we define

Γk[gµν , χ] =
∫

ddx√g
(
Vk(χ2)− 1

2Fk(χ
2)R[gµν ] + 1

2g
µν∂ µχ∂ νχ

)
+ Sgauge fixing[ḡµν , hµν , χ̄] + Sghosts[ḡµν , Cµ, C̄µ],

(6.1)

thus supplementing the physical ansatz with a gauge fixing and ghost term.
We work in the background field formalism performing linear splits gµν = ḡµν + hµν
and χ = χ̄+ δχ. The gauge group of our theory is the group of diffeomoprhisms on
the spacetime manifold, with which we carry out the procedure discussed in section
4.2, and set α = 0, β = 1 in the following analysis.
Note that in this part of the thesis, the kinetic term and the ghost action are k-
independent, whereas Sgauge fixing depends on the scale through the function Fk(χ2).
Nevertheless, the gauge fixing action will not contribute to the flow after we identify
ḡµν = gµν .
We compute Γ (2)

φφ by expanding (6.1) up to second order in the fluctuating field δϕ,
where at this stage δϕ = (hµν , δχ, Cµ).
To allow for partial decomposition of the kinetic operators and with that, inversion,
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we perform a transverse-traceless or York decomposition according to [183–185]

hµν = hTTµν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ −
1
d
gµν�σ + 1

d
gµνh (6.2)

as well as

C̄µ = C̄µT + ∇̄µC̄ , Cµ = CTµ + ∇̄µC , (6.3)

where the transverse part satisfies the following differential constraints:

∇̄µC̄µT = 0 , ∇̄µCTµ = 0. (6.4)

These decompositions are orthogonal for a maximally symmetric background. With
that in mind, we will restrict ourselves to work on a d-dimensional sphere from now on.
Arising Jacobians are cancelled by appropriate redefinitions of the fields, such that
there are no further determinants to be exponentiated similar to the Faddeev-Popov
determinant.
While at this stage, the transverse traceless decomposition was merely a technical tool
to facilitate inversion of the kinetic operators, it will gain greater physical significance
when working on a flat background in chapter 10. Details on the algebraic background
are given in appendix C.3.
Collecting terms quadratic in δϕ we arrive at an inverse propagator that can be rewrit-
ten in superfield space with now decomposed fields δϕ =

(
hTTµν , ξµ, σ, h, χ, C

T
µ , C

)
.

Since we will not have to distinguish χ̄ from δχ again, we will just use χ from here
on to simplify the notation.
This leads to

Γ
(2)
k =



Γ
(2)
hTµν

0 01×3 02×2
0 Γ

(2)
ξ 01×3

03×1 03×1 Γ
(2)
scalar 03×1 03×1

02×2
01×3 Γ

(2)
CTµ

0

01×3 0 Γ
(2)
C


, (6.5)

where

Γ
(2)
scalar =


Γ

(2)
σσ Γ

(2)
σh Γ

(2)
σφ

Γ
(2)
hσ Γ

(2)
hh Γ

(2)
hφ

Γ
(2)
φσ Γ

(2)
φh Γ

(2)
φφ

 (6.6)

is a 3 × 3 matrix coupling the three scalar modes of our theory. The detailed
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expressions can be found in [42]. We will only give them here whenever needed at a
later stage.

6.2 Flow Equations
In order to implement the momentum shell integration we choose an optimized
cut-off [186, 187] and require the regulator function to scale like the second variation
of the effective average action, thus introducing

Γ
(2)
k

(
p2
)

+Rk(p2) = Γ
(2)
k

(
p2 + rk(p2)

)
,

rk(p2) = (k2 − p2)×Θ(k2 − p2).
(6.7)

Therein, p2 stands for the covariant Laplacian, p2=̂ − � with � = ∇µ∇µ. This
cut-off corresponds to the one also used in part III of this thesis.
We can now solve for Rk and obtain

Rk(p2) =
(
Γ

(2)
k (k2)− Γ (2)

k (p2)
)
×Θ(k2 − p2), (6.8)

and derive an expression for ∂ tRk, reading

∂ tRk(p2) =
(
∂ tΓ

(2)
k (k2)− ∂ tΓ (2)

k (p2)
)
×Θ(k2 − p2)

+
(
Γ

(2)
k (k2)− Γ (2)

k (p2)
)
× 2k δ(k2 − p2),

(6.9)

where we use a simplified notation and did not explicitly write out all integrals.
Recognizing that the latter part assumes a zero at k2 = p2, it will not contribute
to any integrals performed and will thus not explicitly be written out anymore.
Furthermore, the Θ-function in the first part acts as a cutoff to the momentum
integrals at p2 = k2, also allowing us to deal with the Θ-function in equation (6.7)
in an easy and intuitive manner. This procedure applies to both the graviton and
scalar field comprising the bosonic degrees of freedom and to the ghosts. A more
detailed analysis can be found for instance in [188].
With the flow equation (1.19) we arrive at

∂ tΓk =
∑

a∈{hTµν ,ξ,scalar,CTµ ,C}
∂ tΓ

a
k

= 1
2

∑
a∈{hTµν ,ξ,scalar}

∫ k2

0
dp2 Tr

[
∂ tΓ

(2)
a (k2)− ∂ tΓ (2)

a (p2)
Γ

(2)
a (k2)

]
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−
∑

a∈{CTµ ,C}

∫ k2

0
dp2 Tr

[
∂ tΓ

(2)
a (k2)− ∂ tΓ (2)

a (p2)
Γ

(2)
a (k2)

]
. (6.10)

We use heat kernel expansions as introduced in appendix B to compute the functional
trace occurring on the RHS of equation (6.10) and keep only terms up to first order
in the Ricci scalar. The expressions in square brackets are at most of order p2 = z
and R1, so we can define

W a(z) ≡ ∂ tΓ
(2)
a (k2)− ∂ tΓ (2)

a (z)
Γ

(2)
a (k2)

= pa0 + pa2 z (6.11)

with pa0 = W a(0) and pa2 = ∂ zW
a(0). Using

Qn(W ) = 1
Γ (n)

∫ ∞
0

dzzn−1W (z)

= 1
Γ (n)

∫ k2

0
dzzn−1(p0 + p2 z)

= k2n

Γ (n)

(
p0
n

+ p2
n+ 1k

2
)
,

(6.12)

in the language of the aforementioned appendix, we are now able to compute the
remaining functional trace. For instance, for the spin 2 graviton contributions, this
leads to

∂ tΓ
hTTµν
k = 1

2 (4π)d/2
∫

ddx√g
{(d+ 1)(d− 2)

2 Q d
2
(W hTTµν )

+R (d+ 1)(d+ 2)(d− 5)
12(d− 1) Q d

2−1(W hTTµν ) +O(R2)
}
,

the other contributions are constructed accordingly.
Computing all terms in equation (6.10) we project on flow equations for V and F
by considering the terms of order R0 and R1, respectively. This is the heat kernel
analogon to disentangling momentum dependent and momentum independent parts
in the language of vertex expansions.
So far, we derived flow equations for dimensionful functions of a dimensionful field.
However, we want to be able to distinguish the canonical running, induced by the
canonical mass dimension, from the RG running introduced by quantum fluctuations.
A generic β-function for a field independent coupling g with mass dimension d will
then be of the form

β = −dg + k−dβ̃,
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where −dg is the canonical running, and k−dβ̃ stems from quantum fluctuations. If
g is field dependent, an additional canonical running from the mass dimension of the
field enters, in our case

[
χ2] = 2.

We thus transform to a dimensionless field and dimensionless functions

y = χ2

k2 , Ṽ (y) = V (χ2)
k4 , F̃ (y) = F (χ2)

k2

as well as to the dimensionless RG time

t = log
(
k

k0

)
.

Since we will only work with dimensionless functions for the remainder of this thesis,
we drop the tilde. Furthermore, given the association of background and fluctuating
field discussed in chapter 4, we write hµν for the metric and χ or y for the scalar
field and arrive at flow equations

∂tV = 2yV ′ − 4V + ζV ,

∂tF = 2yF ′ − 2F + ζF ,
(6.13)

where the flow generators ζV and ζF are given in appendix A for d = 4 and β = 1,
α = 0. A more detailed derivation and analysis of these equations for general
dimensions d and gauge parameters α and β is presented in [42].





CHAPTER 7

Towards a Global Solution

Results presented in this chapter have partially been published in [26], and we are
extending results from [42]. To unclutter notation, we drop the explicit k subscript
for scale dependent quantities.

7.1 Einstein-Hilbert Solution
The most readily available global fixed-point solution to the flow equations (6.13)
is given by setting both V (y) and F (y) equal to constants V and F , respectively.
This corresponds to Einstein-Hilbert gravity with an additional scalar field χ, which
couples to gravity only through the metric gµν . This solution obeys equation (6.13)
exactly for all y and is numerically given by

V = 0.008620 and F = 0.04751. (7.1)

As presented in appendix B to [42], there are no more real fixed point solutions, and
both eigenvalues have negative real parts. Note that the definition of F differs by a
factor of 2.

61
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The fixed points (7.1) stem from the equations

∂tV =− 4V + 19F + 5V
96π2(F − V ) + (5F − 2V )

96π2(F − V )
∂ tF

F
,

∂tF =− 2F + 265F 2 − 138FV + 4608π2F 2V + 33V 2

1152π2(F − V )2

+ 17F 2 + 18FV − 15V 2

1152π2(F − V )2
∂ tF

F
.

(7.2)

For comparisons with results to be derived later, we also solved the reduced flow
equations, which are obtained by setting δV = δF = 0. This amounts to neglecting
RG-time derivatives in the regulator, and yields

V = 0.004089 and F = 0.03084. (7.3)

It is intuitive that the numerical values differ, but physical features do not change.
Even though we will not explicitly report results for reduced flows in this chapter,
we have checked all features reported for their stability under reducing the flow
equations.
Since in the spirit of section 3.1 we will be more interested in solving the fixed point
equations for a general value of the scalar field than to consider the flow into the fixed
point an RG trajectory in this thesis, we point to [42] for a more detailed classical
RG treatment of the flow in theory space.

7.2 The Large Field Limit
We first investigate the generators ζV and ζF in the limit y →∞. In this limit we
expand the dimensionless functions V and F in inverse powers of y

V = λy2 +m2y +
a∑
i=0

vi
yii! , F = ξy +

b∑
i=0

fi
yii! , (7.4)

additionally allowing for dilatation symmetric contributions in both functions. Note
that if k → 0 the physical mass m2k2 also vanishes and thus does not spoil dilatation
symmetry in this limit.
Equations (A.2) yield

lim
y→∞

ζV = ζ̄V , lim
y→∞

ζF = ζ̄F , (7.5)

where the limits depend on ξ and λ. For reasons given in section 7.3, we concentrate
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Figure 7.1: Taylor expansions around y = ∞ for ξ = 4000 up to order a = b = n with
1 ≤ n ≤ 7.

on λ = m2 = 0,1 where

ζ̄V = 3
32π2 + 5 + 33ξ

96π2(1 + 6ξ)
∂tξ

ξ
,

ζ̄F = 77 + 534ξ
192π2(1 + 6ξ) + 17 + 186ξ + 720ξ2

576π2(1 + 6ξ)2
∂tξ

ξ
.

(7.6)

We are interested in fixed-point solutions F (y), V (y) for which ∂tF (y) = ∂tV (y) = 0.
The contributions ∼ ∂tξ vanish in this case. This can also already be inferred from
the fact that the limits of the flow generators remain finite for y →∞, and thus not
running of the ξy term is induced. This also means that ξ is a free parameter at this
stage. For y →∞ limit the equations (6.13) are then easily solved by

lim
y→∞

F (y) = ξy + ζ̄F
2 , lim

y→∞
V (y) = ζ̄V

4 . (7.7)

This coincides with the expectations (3.11) and (3.12).
In order to gain insight into other classes of solutions, we have performed an expansion
of F (y) and V (y) in powers of y−1 including the order a = b = 7. We confirm that
the fixed point equation for vi and fi only depend on vj and fk with j, k ≤ i, thus
allowing us to solve order by order. As is depicted in figure 7.1, the series show
excellent convergence up to a distinct point, where the approximation breaks down.
It is curious to notice that we apparently found the radius of convergence around
y0 = ∞, as the series cannot be improved by pushing the order of the expansions
higher and higher. This signals a breakdown of perturbation theory as such as we

1On a physical level, the potential V is related to an effective cosmological constant. This will be
discussed in detail in section 13.5.
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Figure 7.2: Taylor expansions around y =∞ for a = b = 7 and for different values of ξ.

are leaving the infrared and move towards the ultraviolet regime of dilaton gravity
and with that towards dilaton quantum gravity.
The result depends on the value ξ which is not fixed at present. In figure 7.2, we show
the solutions gained via the Taylor expansion for different values of the parameter
The series shows excellent apparent convergence for y ≥ y0 ≈ 1/|ξ|. The dependence
of the breakdown of convergence on ξ is already a hint towards the fact that the
true physical variable of our system is yξ rather than y, the formal version whereof
would be the introduction of a wave function renormalization. We will explore this
observation further in part II.

7.3 Positivity of Propagators and the Limit of V
We emphasize that the flow equations (6.13) are meaningful only if the relevant
inverse propagators Σ0 and ∆ in the spin 2 and spin 0 sector (see also appendix
A for analytic expressions) remain positive for all y. These quantities correspond
to the inverse graviton and scalar propagators in the presence of the cutoff k. For
y →∞ one has Σ0 = 1

2ξy,Σ1 = 1, ∆ = 1
2ξ(1 + 6ξ)y such that Σ0 and ∆ are positive

provided ξ > 0. This is true for the value of ξ shown in figure 7.1, which is the value
we will use later in this chapter to obtain a globally defined approximate solution.
The positivity requirement for the propagators singles out asymptotic solutions for
y →∞ for which λ ≤ 0. In fact, the asymptotic fixed-point solutions of equations
(6.13) also can be solved with λ 6= 0, with

ζ̄V = − 1
48π2

(
6− ∂tξ

ξ

)
,

ζ̄F = 1
1728π2

(
249− 41∂tξ

ξ

)
, (7.8)

and corresponding values for the lowest order coefficients v0 = −0.00317 and f0 =
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0.0073. For λ 6= 0 the asymptotic form V = λy2, F = ξy implies a negative Σ0 if
λ > 0, rendering the propagation of the graviton unstable. With Σ0 = −λy2, Σ1 =
12λy, one has ∆ = 36λ2y3 which remains positive for arbitrary y 6= 0.
Furthermore, we require that the potential V in our ansatz (6.1) is bounded from
below in order to describe a stable theory. This holds for an asymptotic behavior
with λ ≥ 0. Combining the two requirements of a positive inverse propagator and
a bounded potential only the asymptotic behavior λ = 0 is left. This absence of
a term ∼ v0y

2 is the crucial ingredient for the absence of a cosmological constant
after Weyl scaling in (3.6), see section 13.5 for a detailed discussion in the case of
flat backgrounds, where equivalent results were obtained.
Further arguments for λ = 0 were discussed in [42], section 5.1.2, where, though
formally in the context of a weak field limit, a theory with F ∼ ξχ2 and V ∼ λχ4

was investigated. The main result was that the line of fixed points has a repulsive
direction which can effectively be mapped onto λ, thus requiring λ = 0.
We will therefore consider theories with limy→∞ V (y) = const. from hereon out.

7.4 The Small Field Limit
The region of small y is more difficult to access. One may investigate a Taylor
expansion around y = 0 for the functions F and V,

V =
a∑
j=0

Vj
j! y

j , F =
b∑

j=0

Fj
j! y

j . (7.9)

The fixed-point equations

ζF − 2F + 2yF ′ = 0,
ζV − 4V + 2yV ′ = 0, (7.10)

involve F0, F1 and V0, V1 to O(y0) already. The system is not closed, and this property
extends to higher orders in the Taylor expansion. For given F0 and V0 the Taylor
expansion shows apparent convergence, where we have expanded up to y5.
Note that the method of truncating is different from what was done in [42], as we
interpret the fact that the hierarchy of equations is not closed to yield two free
parameters V0 and F0, whereas in [42] the system was solved by adding an additional
power in y, but setting the corresponding coupling to 0, thus closing the system as a
whole.
We show Taylor expansions around y = 0 in figure 7.3, where we set V0 = 0.01 and
F0 = 0.05. In figure 7.4 we also present the small field expansions for different values
of V0 and F0.
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Figure 7.3: Taylor expansions around y = 0 for V0 = 0.01 and F0 = 0.05 up to order a = b = n
with 1 ≤ n ≤ 5.
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Figure 7.4: Taylor expansions around y = 0 to order y5 for different values of V0 and F0.
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7.5 Padé Improvement
It is of course no surprise that an expansion in negative powers of y does not approach
a finite limit as y approaches 0. One simple way to circumvent this obvious shortfall
is to use Padé approximations, where a function H(y) is expanded in a rational
function according to

HP (y) =
∑m
k=0Hnum,kyk

1 +
∑n
j=1Hden,jyj

(7.11)

with

lim
y→0
HP (y) = Hnum,0 and lim

y→∞
HP =


0, n > m,

∞,m > n,

Hnum,m
Hden,n

, n = m.

The convergence for smaller y can be improved in this way, we call the corresponding
Padé approximations ṼPadé and F̃Padé, respectively. We show the result in figure
7.5, where numerator and denominator are expanded up to order y−4 and Padé and
Taylor approximations agree at y =∞.
While the Padé improvement provides a smooth function interpolating from y =∞
to y = 0, it is evident that this cannot be the desired global fixed point solution yet.
On the one hand, we would expect the limit of y approaching 0 to converge in the
vicinity of the Einstein-Hilbert solution (7.1). This is clearly not the case for the
Padé Improvement considered here, and we infer from section 7.4 that corrections to
that Einstein-Hilbert value will not be large enough to account for this difference.
Moreover, drawing from the error analysis presented later on, specifically in figure
7.7, we also conclude that the Padé Improvement does not yet capture the features
of the solution well enough in an intermediate region.
We will work our way towards a global solution by first addressing the first shortcoming
mentioned and seek an improved y → 0 limit.



68 7 Towards a Global Solution

y-1

y-3

y-4

y-5

y-7

y-8

V
˜
Padé

5.×10-6 1.×10-5 5.×10-5 1.×10-4
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

y

V
˜
(y)

y-1

y-3

y-4

y-5

y-7

y-8

F
˜
Padé

5.×10-7 1.×10-6 5.×10-6 1.×10-5 5.×10-5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

y

F
˜
(y)

Figure 7.5: Taylor expansions for Ṽ (y) and F̃ (y) at y0 =∞ with ξ = 1000, truncated at y0

to y−8 and Padé improvement including powers of y−4 in both numerator and denominator,
also carried out at y0 =∞. The splitting up of the Taylor series at the radius of convergence
points to a breakdown of perturbation theory.

7.6 Exponential Improvements
In order to do so, we match the Taylor expansion to the Padé expansion by the
ansatz

Fexp(y) = FTaylor(y) + e−c/yFe(y),
Vexp(y) = VTaylor(y) + e−c/yVe(y),

(7.12)

where FTaylor, VTaylor are the Taylor expansions around 0 to order y5 and Fe, Ve are
polynomial functions of y to order yn:

Ve = Ve0+Ve1(y−y0)+1
2Ve2(y−y0)2+. . . , Fe = Fe0+Fe1(y−y0)+1

2Fe2(y−y0)2+. . . .

The form of the expansion (7.12) is motivated by similar exponential contributions
occurring in massless gauge theories with a singularity for the coupling g approaching
zero [189], keeping in mind that y triggers couplings in dilaton quantum gravity.

Matching algorithm

As a measure of the quality of the approximate solution, we have solved equations
(6.13) to read

V ′′(y) = GV (y, F, F ′, V, V ′),
F ′′(y) = GF (y, F, F ′, V, V ′)
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and defined

ε = 1
2

(GV − V ′′)2

G2
V + V ′′2

+ 1
2

(GF − F ′′)2

G2
F + F ′′2

, (7.13)

where ε is evaluated on the proposed approximate solution. On an exact solution, ε
vanishes for all y. We also define the integrated error

E = y−1
0

∫ y0

0
ε(y) dy. (7.14)

The expansion (7.12) has a total of 3 + 2n free parameters: The lowest order Taylor
coefficients V0 and F0, the exponential coupling c, as well as the 2n expansion
coefficients for Ve and Fe.
They are determined as follows: For y → 0, we have exp(−c/y) → 0, and thus
only the Taylor part of (7.12) remains relevant. However, once we depart from
y = 0, the exponential part quickly prevails. That is why we use the parameters
{Ve0, Ve1, Ve2, . . . , Fe0, Fe1, Fe2, . . .} to ensure a smooth2 matching between the ex-
ponential improvement and the Padé solution at some y = y0, which we set to
y0 = 5 · 10−6. This yields a system of 2n conditions in total.
Additionally, we vary V0, F0 around the Einstein Hilbert values (7.1) as well as c
around c0 = 10−7, which is the right order of magnitude to achieve the transition
from the Taylor to the exponential parts between y = 0 and y = y0 = 5 · 10−6,
thereby optimising the value of the integrated error (7.14) for the functions (7.12).

7.7 Approximate Global Solution
The best match

V0 = 0.0062, F0 = 0.0226, c = 2.1 · 10−6,

Ve0 = −0.003300, Ve1 = −33.7745, Ve2 = −1.4250 · 107,

Fe0 = 0.002358, Fe1 = 2176.8945, Fe2 = −5.4727 · 107
(7.15)

is shown in figure 7.6 and was obtained including powers up to y6 in the polynomial
and up to y2 in the exponential part.
It yields an integrated error of E ≈ 0.3, which is a significant improvement over
the results obtained with expansions around ∞ and could be further improved by
extending the ansatz (7.12) and optimising the matching procedure. The detailed
error is depicted in figure 7.7.
Even though the solution depicted in figure 7.6 is defined globally and our current

2More strictly speaking, of course we can only match up to two derivatives.
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best approximation to an exact global solution, the error plot 7.7 alongside with the
large highest order coefficients in equation (7.15) and the fact that we glued together
a variety of approximations, makes it without any doubt necessary to employ different
methods for finding a solution.
In the next two sections we will, building on the same flow equations, aim at gaining
more physical insights by employing simple truncations, before we head out to derive
a new set of flow equations in part III that not only employs a different truncation
scheme and background, but also contains a completely new function alongside V
and F .

7.8 Enhancing the Scalar Kinetic Term by a Constant
Factor K

Even though our analysis with Taylor and Padé expansions complemented by an
exponential improvement enabled us to gain considerable insight into the form of a
global solution of the fixed point equations, we did not yet succeed in finding an actual
solution. Of course there is a variety of possible reasons for that beyond technical
insufficiency. In fact, advanced methods, specifically pseudo-scalar methods were
successfully employed in [190] to solve a variety of challenging equations originating
from functional renormalization group computations, but still failed to produce a
global solution to the system considered here in d = 4 dimensions.
Assuming that there exists a global solution, which is not clear from the outset, it is
very well conceivable that our current truncation is not able to capture its features,
which would make it unlikely for to even find a satisfactory approximation at this
point. In particular, there are solid reasons to consider a dynamical function K(χ2)
multiplying the scalar kinetic term, thus ultimately enlarging our truncation to

Γ =
∫
d4x
√
g

(
V (χ2)− 1

2F (χ2)R+ K(χ2)
2 gµν∂µχ∂νχ

)
. (7.16)

The logic behind considering the enlarged truncation (7.16) goes as follows. First,
consider the following consistency argument: While we did multiply the Ricci Scalar
R with an arbitrary function F (χ2), thus allowing for a generic coupling of gravity
to the scalar theory, and included a generic potential V (χ2), which is equivalent to
coupling the cosmological constant from the familiar Einstein-Hilbert action to a
scalar theory in a general manner, we only included the simplest form of the scalar
kinetic term. However, as much as gravity relies on derivatives of the metric tensor,
as much may the true coupling of the graviton rely on derivative couplings. To be
consistent with gravity, we should at least include two derivatives of the scalar field,
which exactly amounts to multiplying the scalar kinetic term by K(χ2).
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Moreover, it is well known for theories of a scalar coupled to gravity already in the
classical regime that the scalar propagator shifts its momentum dependence from

∝ 1
Zp2

for small field values to scaling like

∝ 1
(Z + 6)p2

for large field values, where Z is the familiar wave function renormalization for the
scalar field. A trace of this behavior in our system is visible for instance through the
(ξ + 1/6) denominator in equation (7.6). The relation between ξ and a rescaling of
the scalar field is of great importance for the system, as will become clear in a bit.
Not only does this mean that stability bound for the propagator for the latter case
is not at Z = 0 like one would naively expect, but at

Z = −6.

In particular that means that negative factors multiplying the scalar kinetic term may
be physically stable and should be included in our considerations, which amounts
to K(χ2) < 0 in (7.16). Moreover, when seeking for a global solution connecting
y →∞ and y → 0, we should allow for K(χ2) to be a generic function of the scalar
field, including the possibility of a change of signs.
However, deriving a flow equation for K(χ2) is infeasible with the method employed
in this part of the thesis, as it would require the use of off-shell heat kernel techniques,
as the scalar kinetic term to which K(χ2) vanishes on a constant background scalar
field, and thus deviations from the background, scaling like p2 in momentum space,
would need to be considered. That is why we postpone the analysis of the full
enlarged system to part III of this thesis, where expansions around a flat background
will put us in a position to derive the desired flow equation.
However, it is possible with the current techniques to include a factor K independent
of the scale k as well as the scalar field χ multiplying the scalar kinetic term and
thus exploring the influence of such a factor on the current system. That is what
this section is devoted to. More specifically, we will first understand the origin
of the stability bound at K = −6 in our current system, before we move on to
understand the interplay of K and ξ, leading us to some insights about the scalar
propagator singularity which occurs at K

ξ = −6. This is the first hint towards a
deeper connection between K and ξ, which will raise to its full glory in sections
12.2.2 and 13.1.
In section 7.9 we will further this analysis by including K in some simple, globally
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defined expansions putting us into the position to gain more physical insight into
the dilaton-graviton system.
In order to do so, we rederive the flow equations 6.13, and give the explicit expressions
for the flow generators in appendix A.2. Unless explicitly noted otherwise, we set
ξ = 1 in the following analysis

7.8.1 Origin of the K + 6 Denominator
As a first step we will spend some time to understand the mixed scalar propagator

Γ
(2)
scalar =


Γ

(2)
σσ Γ

(2)
σh Γ

(2)
σχ

Γ
(2)
hσ Γ

(2)
hh Γ

(2)
hχ

Γ
(2)
χσ Γ

(2)
χh Γ

(2)
χχ


introduced in equation (6.6) a bit better, in particular the role of K for large values of
the field. Here, h is the trace of the graviton fluctuation hµν and σ is the longitudinal
part of the vector degree of freedom in the York decomposition of the graviton.
In de Donder gauge and d = 4 we find for the limit χ→∞ to O(R)

lim
χ→∞

Γ (2)(p2)−1 =

 0 0 0
0 0 0
0 0 1

(K+6)p2 − 6R
(K+6)2p4

 ,
meaning the scalar modes of the graviton do not propagate at all in this limit. This is
in accordance with the simple analysis leading to the proposed fixed point presented
in section 3.1.3.
Moving forward, we want to understand how the (K + 6) denominator came to be in
the first place. For this purpose is suffices to consider O(R0). Formally inverting the
scalar inverse propagator matrix, we find for its (3, 3) component

(
Γ (2)−1)

33
= ΓhhΓσσ − Γ 2

σh

ΓhhΓσσΓχχ + 2ΓσhΓσχΓχh − Γ 2
σhΓχχ − ΓhhΓ 2

σχ − ΓσσΓ 2
χh

,

as well as

lim
χ→∞

(
Γ (2)−1)

33
= lim

χ→∞
ΓhhΓσσ

ΓhhΓσσΓχχ − ΓhhΓ 2
σχ − ΓσσΓ 2

χh

,

meaning that the σh component does not contribute in this limit.
Even though the inversion and the limit χ→∞ do not commute as operations, we
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can still gain some insights from varying their order. In particular, we have

lim
χ→∞

ΓhhΓσσ − Γ 2
σh

ΓhhΓσσΓχχ − Γ 2
σhΓχχ

= lim
χ→∞

ΓhhΓσσ
ΓhhΓσσΓχχ

= R

K2p2 + 1
Kp

and

lim
χ→∞

ΓhhΓσσ − Γ 2
σh

+2ΓσhΓσχΓχh − ΓhhΓ 2
σχ − ΓσσΓ 2

χh

= lim
χ→∞

ΓhhΓσσ
−ΓhhΓ 2

σχ − ΓσσΓ 2
χh

= 1
6p−

7R
36p2 ,

as well as to O(R)

Γ (2) →

 3
16
(
χ2p2 + F∞p

2 − 2V∞
)

0 −1
4
(
3p2χ

)
0 1

16
(
−F∞p2 − p2χ2 + 2V∞

)
−1

4
(
3p2χ

)
−1

4
(
3p2χ

)
−1

4
(
3p2χ

)
Kp2

 ,
where V∞ = limχ→∞ V , F∞ = limχ→∞ F .
Thus, the number 6 in the factor K + 6 is a combination of Γχh and Γχσ, which have
the form

Γ (2)
σχ = Γ (2)

χσ =− 2χ 3
4 F

′(χ2)
√
−�

(
−�− R

3

)
,

Γ
(2)
hχ = Γ

(2)
χh =

[
−23

4 χF
′(χ2) (−�) + χV ′(χ2)− 1

2 χF
′(χ2)R

]
,

and thus a genuine feature of a scalar-tensor theory.

7.8.2 Treatment of the Singularity K
Moreover, we might be tempted to set K = −6 already before inverting Γ (2), thus
avoiding the emerging singularity. When doing so, the first observation is that a
term proportional to the inverse Ricci scalar R−1 arises. Even though in our current
regularization scheme this term is canceled by the regulator, it should be kept in
mind for general considerations. More severely, fixing both K and ξ leads to

∂tF ∝ χ2

for large values of χ2, in disagreement with fixing ξ to 1. This divergence in the
β-function of F can be cured by ensuring that V grows faster than F , meaning
V
F → ∞, for χ → ∞, amounting to introducing the by now familiar λχ4 term in
the potential V , spoiling the favored limit with a vanishing effective cosmological
constant as well as rendering the system unstable as explained in section 7.3, and
additionally leading to a vanishing scalar propagator for χ → ∞, rendering the
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scalar sector of the theory completely trivial. This is due to the fact that in the
infrared limit, the flow is governed by canonical contributions which vanish for the
dimensionless couplings ξ and λ.
The singularity of 1

K+6 at K = −6 and the singularity in F
V at χ = ∞ are both

characteristic to coupling a scalar field to gravity in the infrared regime. Indeed,
the line separating singular from non-singular behavior at K = −6 is a singularity
of the spin 0 scalar propagator, while F

V = 2 is a singularity of the spin 2 graviton
propagator. We speculate that there is a deeper physical meaning, even though we
will not focus on this anymore in this thesis.
Allowing for both K and ξ in the system, the scalar propagator is shifted to

∝ 1
(K + 6ξ)p2 + . . .

,

shifting the singularity to

K

ξ
= −6.

This is in accordance with the observation that at χ =∞ both K and ξ rescale the
scalar field, and thus only their ratio has physical significance. We will formalize this
notion in section 12.2.2.
Lastly, we mention that K

ξ = −6 is exactly the point at which the global scale
variance is enhanced to a conformal symmetry [191] (see also [111,112] in the context
of functional renormalization). Further research should also focus on understanding
the implications of the singularity encountered on the symmetry group of the system
as K

ξ is varied.

7.9 Physical Insights from Globally Defined Expansions
Clearly, connecting the limits y → 0 and y →∞ is a formidable task still remaining
to be accomplished. In order to take a further step towards a global solution, we
thus devote this section to understanding the connection of the two limiting cases by
investigating very simple truncations that have clear-cut features and are well defined
in both limits. We emphasize that the aim is not to find a precise global solution,
but to merely understand the connection and the coupling of the two limiting cases.
To that end, we first disentangle the limits in the potential V (Truncation I), before
we move on to also disentangle them in F (Truncation II).
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7.9.1 Truncation I
We start by setting

V = V∞y + V0
1 + y

,

F = F∞ + ξy,

satisfying

lim
y→0

V = V0, lim
y→∞

V = V∞.

Note that the limit in F is ambiguous, as F∞ is of course also the limit of the function
when y approaches 0. We will take care of that in the next section.
Plugging the truncation into our flow equations and projecting on the fixed point
equations for V0, V∞ and F∞ (note that ∂tξ = 0 is trivially satisfied) we find

0 = −4V0 −
1

8π2 −
3F∞

16π2 (2V0 − F∞) + K

32π2 (K + 2V∞ − 2V0) ,

0 = −4V∞ + 3
32π2 ,

0 = −2F∞ + 77K + 534ξ
192π2(K + 6ξ) .

There are two observations that we want to draw the reader’s attention to: While
it is unclear whether or not the apparent coupling of the limiting cases through
the term 2V0 − F∞, stemming from the graviton propagator, is spurious and due
to the ambiguous limits of F , the combination K + 2V∞ − 2V0, stemming from the
propagator of the physical scalar χ, is a true feature of the theory, coupling y → 0 to
y → ∞. Moreover, the two latter equations, stemming from the limit y → ∞ are
closed in the sense that there are no traces of the limit y → 0, while this is not true
vice versa.

7.9.2 Truncation II
Aiming at disentangling the limit in F as well, we set

V = V∞y + V0
1 + y

,

F = F∞y + F0
1 + y

+ ξy,
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satisfying

lim
y→0

V = V0, lim
y→∞

V = V∞, lim
y→0

F = F0, lim
y→∞

F = F∞ + ξy.

Plugging the truncation into our flow equations and projecting on the fixed point
equations for V0, V∞ and F0, F∞ we find

0 = −4V0 −
1

8π2 −
3F0

16π2 (2V0 − F0) + K

32π2 (K + 2V∞ − 2V0) ,

0 = −4V∞ + 3
32π2 ,

0 = −2F0 + 25
192π2 + 5F0

2

24π2 (2V0 − F0) 2 −
F0

12π2 (2V0 − F0)

+ K (F0 − F∞ − ξ)
16π2 (K + 2V∞ − 2V0) 2 −

K

48π2 (K + 2V∞ − 2V0) ,

0 = −2F∞ + 77K + 534ξ
192π2(K + 6ξ) .

In accordance with our suspicion from earlier, the inverse graviton propagator only
enters as 2V0 − F0 and is therefore not responsible for the coupling of the limits.
Furthermore, F0 − F∞ does not stem from a pure propagator, and is thus merely
an algebraic collection of originally separate terms. Thus, the nontrivial coupling of
y → 0 and y →∞ is solely due to the propagator of the physical scalar containing
2V∞ − 2V0, and thus solely through the limits of the potential V .
Even more importantly, we manifest our earlier statement that solving the fixed
point equations close to y =∞ first, and then moving towards lower values of y is
the appropriate path to take, as those equations do not contain any contributions
from y = 0.





CHAPTER 8

Conclusions and Extensions

Let us pause for a moment to collect our findings from this part’s analysis. We
derived field equations on a spherical background using heat kernel techniques for the
functions V and F . In the simplest case of field independent V and F , one recovers a
fixed point solution which resembles Einstein-Hilbert gravity, with only a minimally
coupled massless scalar field. This solution is globally defined, but not well suited
for dilaton gravity.
When expanding the functions in inverse powers of y = χ2/k2, we found that an
additional term proportional to ξχ2 coupling to the Ricci scalar R is necessary
to deviate from the Einstein-Hilbert solution. This term represents the strength
of the gravitational coupling for large y, which corresponds to an infrared limit.
It thus makes sense that ξ remains undetermined, as it has mass dimension 0,
and all quantum contributions vanishing in the infrared, rendering its flow trivial.
Furthermore, a finite rescaling of an infinite field is meaningless.
We provided arguments for V becoming constant in the infrared, amounting to a
vanishing cosmological constant in the Einstein frame as represented by the infrared
action

Γ (k → 0) =
∫

d4x
√
g

(
−1

2MR+ 1
2g

µν∂µφ∂νφ

)
.

This action not only features a nonvanishing Planck mass, thus making the scale of
gravity naturally arise within the theory, but also a vanishing cosmological constant,
which may be vital to resolving the cosmological constant problem.
Aiming at connecting infrared with ultraviolet physics, we investigated the limit of

79



80 8 Conclusions and Extensions

small y, which allows for a natural generalization of the constant Einstein-Hilbert
type solution. To connect these limits, we optimized an exponentially improved
expansion, and presented our current best solution in figure 7.6.
Nevertheless, the quality of the global solution of the fixed point equations is not
satisfactory at this point, and will be improved with the analysis presented in part
III. In particular, it is not clear from the background field approximations how
exactly scale invariance is broken and the Planck mass is generated, and therefore
we lack a way of determining the relative strength of gravity. What is more is that a
vanishing cosmological constant for k → 0 is a desirable outcome from a cosmological
perspective, but since we were unable to determine how the potential approaches its
asymptotic value, we are unable to reconstruct the cosmology leading to it.
Furthermore, we understood that the inclusion of a field and RG scale dependent
function K is a mandatory next step on the path towards establishing a global
solution, both for reasons of consistency as well as to allow for the correct scaling of
the scalar field, with emerging limiting cases for ultraviolet and infrared physics.
That is why part III of this thesis is devoted to address the shortcomings encountered.
Last but not least, we established that starting from the limit of large fields is the
appropriate approach, given that the flow equations are not only closed in each order
of a Taylor expansion, but also do not receive any small field contributions. Moving
from large towards lower fields, the potential V will play a crucial role.
Given the results we obtained, it seems like there are two distinct possibilities to carry
on. On the one hand, we could set out to improve calculations in the background
field formalism. To this end, different implementations of the background split or
the background field method in general as described in section 4.3 alongside with
the inclusion of terms proportional to R2, which have scale invariant couplings even
without any powers of the scalar, come to mind. Furthermore, when continuing down
this path, studies of background, regulator and gauge dependence are inevitable.
However, none of the aforementioned extensions or modifications offer a practicable
possibility to include a field dependent function K(χ2), multiplying the scalar kinetic
term, or a wave function renormalization for any of the fields involved. In this spirit,
we set out to include K, rederiving flow equations for V and F , supplemented by an
equation for K using expansions around flat backgrounds and a vertex construction
(section 4.4.2), thereby not only circumventing problems rooted in the background
approximation, but also deriving flow equations for the enlarged truncation, with or
without explicit anomalous dimensions for the scalar field. This will be the content
of part III of this thesis.



Part III

Vertex Expansions and Flat Backgrounds
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CHAPTER 9

Introduction

Inspired by both the result and the shortcomings of part II, we set out to substantiate
and extend the results as well as to address the shortcomings.
To that end, we commit ourselves to implement the vertex construction on flat
backgrounds as introduced in section 4.4.2 in our dilaton-graviton system, and derive
flow equations for not only the functions V and F , but additionally for the function
K and thereby for the full action

Γ [gµν , χ] =
∫
d4x
√
g

(
V (χ2)− 1

2F (χ2)R+ 1
2K(χ2)gµν∂µχ∂νχ

)
.

This enables us to derive the central result of this thesis, namely a global solution to
the dilaton gravity system as depicted in figure 9.1.
As argued in section 7.8, upgrading the system with a field dependent function K
is crucial not only for reasons of consistency, but more importantly because it is
believed that the scalar field scales differently in the infrared and ultraviolet regime,
rendering the inclusion of K(χ2) vital to finding a global solution. Moreover, we will
disentangle the two roles played by K, namely mediating derivative couplings as well
as rescaling the scalar field. We will therefore replace χ → χ̄ = Zχ2 to make the
rescaling explicit. Moreover, we will investigate the relationship between rescalings
of the graviton and scalar kinetic term at large fields to eliminate redundancies in
our description.
In the process, we will gain considerable insight in the physical features of the system,
which can be written down in a compact form with only one remaining potential
V̂norm, driving the generation of the Planck scale as well as inflation.
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Figure 9.1: Global scaling solution for dilaton gravity.

In the process, we confirm the results presented in part II, most importantly the
features of infrared physics, in the context of a vertex expansion with a flat background
spacetime, taking advantage not only in terms of having a practicable way of deriving
a flow equation for the function K, but also in terms of having a systematic expansion
that disentangles background and fluctuating metric at our disposal. Moreover, this
setup allows for multiple extensions.
This part is organized as follows. In chapter 10, we sketch the derivation of the
desired flow equations using a vertex expansion and a flat background spacetime. In
chapter 11, we discuss various prestudies to fix our final setup, where we study K
mediated derivative couplings and field rescalings via wave function renormalizations
and anomalous dimensions independently. In chapter 12 we derive a global solution
using the final physical setup, but with an approximated set of flow equations, which
will serve to both gain insights into general features as well as into physical ranges
for the so far undetermined parameter ξ characterizing the strength of gravity in the
infrared, while chapter 13 uses the full flow equations alongside the insights gathered
to derive the final result of this thesis: A globally defined fixed point solution for
the dilaton-graviton system, smoothly connecting infrared with ultraviolet physics.
Physical implication with emphasis on cosmology, more specifically a moving Planck
scale and a cosmology with slow roll inflation and a cosmological constant that
decreases with scale are discussed in section 13.5, and we summarize our findings in
chapter 14.



CHAPTER 10

Setup and Derivation of the Vertex Expanded Flow Equations

In this chapter, we outline the derivation of the flow equations for the functions V ,
F and K for a flat background and using an adapted version of the vertex expansion.
Some notes on notation can be found in appendix C.1.

10.1 General Strategy
The crucial ingredient to being able to calculate the flow of the function K(χ2), of
course alongside with the flows of V (χ2) and F (χ2) is that in the context of the
vertex construction introduced in section 4.4.2, we can resort to flows of correlation
functions Γ (n)

k with n 6= 0. In particular, starting from the action (3.6) let us consider
Γ (χχ) first. We have

Γ (χχ) = δ2Γ
(2)
k

δχδχ

=
∫

d4x
√
g

(
δ2V (χ2)
δχδχ

− 1
2R

δ2F (χ2)
δχδχ

+ 1
2

δ2

δχδχ

(
K(χ2)gµν∂µχ∂νχ

))
.

(10.1)

Now, to safe us the trouble of actually computing each term, let us keep in mind
that ultimately, we will evaluate all expressions on a flat background spacetime
and with a constant background scalar field. While this does not help us with the
derivative of the potential, the second term clearly vanishes, as in flat space R = 0.
For the third term, formally carrying out a partial integration as customary to
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shift both spacetime derivatives on one scalar field, we find that at χ = χ̄ the only
nonvanishing contribution is the one where no derivative hits the function K(χ2).
Due to combinatorics (or a second power in the scalar if you prefer), this term exists
exactly twice, canceling the prefactor 1

2 . Now, carrying over to momentum space,
this contribution goes with p2, while the first term in equation (10.1) is momentum
independent. Applying an RG time derivative on both sides, we learn that we can
extract the flow of K(χ2) through the flow of the momentum dependent part of Γχχ,

∂tK(χ2) = ∂p2Flow(2)
χχ(V, F,K) |p=0 . (10.2)

Extracting flow equations for V (χ2) and F (χ2) works completely analogous to what
was done in [103, 192] when replacing the cosmological constant times the inverse
Newton coupling with the potential V and the inverse Newton coupling with F , as
the dependency on the scalar field does not change the derivation of the graviton
correlators, and we will not recast the derivation here. It yields

∂tV (χ2) =− Flow(2)
hTT hTT

(V, F,K) |p=0,

∂tF (χ2) =∂p2Flow(2)
hTT hTT

(V, F,K) |p=0 .
(10.3)

Note that at this point, all functions and fields still carry their canonical mass
dimension, and Flow thus is a flow of dimensionful quantities.
A few comments are in order. Our derivation is equivalent to a vertex expansion
with N = 2, which is the lowest nontrivial order. Thus, at this point, we do not
distinguish between a graviton wave function renormalization and a Newton coupling,
like introduced in [19] and therefore do not to formally rescale any fields through
the vertex construction. The reason for this is threefold. Firstly, already at N = 2,
correlation functions up to n = 4 enter the flow. Given the arbitrary scalar functions
introduced, this computation already is a formidable task on a computational level.
We will give details in the next section. We mention that we did indeed attempt to
also compute flows of the three point functions, but were not able to obtain analytic
results with the computer soft- and hardware at our disposal.
What is more, one of the fundamental motivations to disentangle graviton wave func-
tion renormalization, entering the propagator, and the Newton coupling, stemming
from the three graviton vertex, in the first place is the ill defined infrared limit in
earlier pure gravity studies. However, we already found a well defined infrared limit
within the framework of background field methods in part II, such that carrying over
to the three point function might not even be necessary physically.
Thirdly, in the context of dilaton gravity we are more interested in higher correlations
involving the scalar χ, which are automatically included in the functions V , F and
K, than in graviton correlators. That is why, rather than focusing on a wave function
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renormalization Zh for the graviton and the emerging anomalous dimension ηh, we
will introduce a simple case of the vertex constructions focusing on the scalar χ and
its anomalous dimension Zχ = Z and corresponding ηχ = η.
Moreover, in equation (10.3), we use the transverse traceless mode of the graviton.
There are two main reasons for this. On the one hand, numerically computing
contributions from all modes, it turns out that the TT mode gives the dominant
contribution, as one might expect given that classically, the graviton is believed to
have spin 2 [193]. On the other hand, we show in appendix C.2 that this mode can
be made gauge independent.
In addition to that, when deriving equation (10.2), we might have been tempted to also
extract a flow for the potential V from the flow of the scalar-scalar two point function,
as one would need to do in a scalar theory without gravity present. However, as we
show in appendix E, the potential V is closely related to the effective cosmological
constant, and so we prefer extracting the flow from the graviton contributions, as is
done for a cosmological constant in quantum gravity.
Now, what is left is to compute the quantities Flow(2)

hTT hTT
and Flow(2)

χχ.

10.2 Deriving the Flows
Throughout the derivation of the flow equations, we use an early version of the
unpublished software package TARDIS (figure 10.1), which uses the proprietary
software mathematica as a wrapper and was developed in Heidelberg mainly by
Andreas Rodigast, with the help and support of various members of the institute,
including myself.
In general, analytic expressions are lengthy and offer only very limited insights. That
is why we refrain from writing them out explicitly in most places, and instead refer
to mathematica files that can be made available upon request.
At various points of this section we refer to techniques first used in part II. We
emphasize that this is solely due to the fact that we present the background derivations
first and thus had to introduce certain general concepts also applicable to the current
derivation in the context of background fields.

10.2.1 Propagators and Vertices
Starting from the action (3.6) with added gauge fixing (4.12) we derive expressions
for Γ (2), Γ (3) and Γ (4), which are the quantities that enter the flow of a 2-point
function. Here, we neglect ghost contributions for technical reasons. We perform a
York decomposition (6.2), and gauge with α = β = 0, which simplifies calculations
considerably as derived in appendix C.2. For the derivation of vertices we rely heavily
on xTensor [194].
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Figure 10.1: Logo of the main software package used in the derivation of the flat flow
equations.

The inversion of the scalar 2-point function, which mixed scalar degrees of freedom of
the graviton and the physical scalar χ, to derive the scalar propagator is an ordinary
matrix inversion and thus straightforward. The inversion of the spin 2 component,
which carries 4 spacetime indices is a bit more involved and depends on inverting
the transverse traceless projector. We give details in appendix C.3.
To prepare for the later insertion of regulator, we already now replace all combinations
of momenta pφ1 ·pφ2 where φi ∈ {hµνTT , h, χ} and we simply use χ to denote the scalar
fluctuations, by

pφ1 · pφ2 (1 + r (pφ1 · pφ2)) ,

where the function r will be determined later. Note that in this construction, V does
not enter the regulator as it is does not couple to momentum directly.
To accommodate ∂ tRk, we also construct the corresponding combination where
pφ1 · pφ2 is replaced by

ṙφ1φ2 (pφ1 · pφ2) pφ1 · pφ2 ,

where V needs to be set to zero manually. Note that ṙφ1φ2 is a distinct function and
not any direct derivative of r, as will become evident later.
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10.2.2 Diagrammatic Expansion

Having derived Γ (3), Γ (4) and
(
Γ (2) +Rk

)−1
, we are now able to compute the flows

Flow(2)
hTT hTT

and Flow(2)
χχ by applying the diagrammatic expressions given in the top

panel of figure 4.1 to our scalar-tensor system with a York decomposed graviton.
We use DoFUN [195] do carry out the contractions of fully dressed propagators and
3- and 4-point vertices as well as to keep track of symmetry factors. The quantity
Flow(2)

χχ is a scalar expression already, while we need to employ the transverse traceless
projector to arrive at the scalar quantity Flow(2)

hTT hTT
, which is part of the Supertrace

operator in the functional renormalization group equation (1.19). These traces are
computed in FORM [196], and details are given in appendix C.3.
There is a total of 28 diagrams to be treated, and for computational reasons we apply
the projector to each one individually and add them up as scalar expressions.
The next step now it to replace the functions r(pφ1 · pφ2) and ṙφ1φ2(pφ1 · pφ2) by their
specific expressions.

10.2.3 Regulator Insertions
We us the Litim [186,187] shape function

r(x) = 1− x
x

Θ (1− x) .

With φi ∈ {hµνTT , h, χ}, we have 3 distinct RG derivatives appearing in the regulator.
They are given by

ṙχχ(x) = 2
x
Θ(1− x)− η1− x

x
Θ(1− x),

ṙĥχ(x) = 2
x
Θ(1− x)− 1

2η
1− x
x

Θ(1− x),

ṙĥĥ(x) = 2
x
Θ(1− x),

(10.4)

where ĥ is shorthand for an arbitrary graviton fluctuation. However, only the trace
mode mixes with the scalar χ.
Note that the distribution of η is due to the fact that in this work, η = ηχ, and we
do not introduce a wave function renormalization for the graviton. Furthermore,
setting the functions ṙφ1φ2 in the way specified abovehand is exactly where the vertex
construction enters, ensuring that Γ (nχ)(mφ) ∝ Z

n
2 , where Z is the wave function

renormalization for the scalar χ. When we work without an anomalous dimension,
setting η = 0 recovers the expression without the correct scaling for the scalar
propagator. When we work with a field dependent anomalous dimension, we set
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η = η(y), y = χ2

k2 . Note that there are no derivatives of η(y) entering the flows. r
does not depend on the choice of fields, as all Z factors drop out by virtue of the
correct scaling of propagators. Details can be found in appendix C.4.
Whenever we consider η 6= 0, we have to think of the field χ as ppearing in combination
with an explicit wave function renormalization Z, and thus replace χ with χ̄ = Z1/2χ
in all functions.

10.2.4 Momentum Dependencies
Given momentum integration, there are two distinct four-momenta present in our
expressions, the external momentum p and one loop momentum q, entering as
p · p = p2, q · q = q2 and q · p = p · q. We deal with the mixed scalar product in the
standard way by setting q · p = p · q =

√
p2
√
q2x, where x = cos(θ) and θ is the angle

between p and q in four-space.
For the flows of F (χ̄2) and K(χ̄2) we compute derivatives with respect to the
external momentum and evaluate all expressions at vanishing external momentum
p2. The lingering integration over the loop momenta is then carried out in spherical
coordinates by integrating over q2, which is constrained by the Θ functions in the
expressions, and the angular distribution separately. For the latter, we do not
attempt a direct integration due to the size of the analytic expressions, but rather
use systematics of products of sines and cosines in a fully expanded version of the
expressions as given in appendix C.6 to solve the integrals.
We circumvent difficulties with the delta distribution [188] by carefully setting the
momentum projections in the derivatives of the Θ-function by hand.

10.2.5 Dimensionless Functions
After integrating over the loop momentum and thus arriving at Flow(2)

hTT hTT
and

Flow(2)
χχ, we are almost done. The last step to complete is to transform the flow of the

dimensionful fields of dimensionful functions to a flow of dimensionless functions of a
dimensionless field, thus disentangling canonical running and quantum contributions.
This goes through in parallel to what we introduced at the end of section 6.2 given
that [Z] = 0. There are two additions: First, we need to deal with K(χ̄2). Given
that [K(χ̄2)] = 0 already, the dimensionless K(y) only receives a contribution from
the mass dimension of χ̄2.
The second, more subtle point is that we need to take care of the scale derivative of
the rescaled field properly. For a function H(χ̄2) we have

∂t
(
H
(
χ̄2
))

= χ2Ż
∂H
∂χ̄2 + (∂tH)

(
χ̄2
)

= −ηχ̄2 ∂H
∂χ̄2 + (∂tH)

(
χ̄2
)
,

and thus the flows receive an additional term proportional to ηyH′. Since we will
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use different types of exact implementations of this procedure in the different studies
carried out in chapters 11 to 13, we will introduce the explicit expressions for the
flows in the respective sections.
Last but not least, note that global rescalings of fields are always allowed, since they
only alter the path integral by a constant. We can thus carry on with y = χ2

k2 as the
dimensionless field supplemented by its wave function renormalization Z.





CHAPTER 11

Results I: Prestudies

In this chapter, we present a series of prestudies alongside with their results that
serve to fix the final setup with which we will work in chapter 12 and 13 to find a
global solution for the dilaton-graviton system and discuss its physical consequences.
In particular, we independently explore the properties of K(y) as a mediator of
derivative couplings with arbitrary powers of the scalar field, as well as in the
framework of a in general field dependent anomalous dimension η(y).

11.1 K(y) as a Coupling
To compare the flat expansion with what was previously derived using a symmetrical
background, we drop the distinction between χ and χ̄ for a first calculation, regarding
K(y) as a coupling, and thus not introducing an anomalous dimension η. We derive
flow equations according to

∂tV = −4V (y) + 2yV ′(y)− Flow(2)
hTT hTT

(V, F,K) |p=0,

∂tF = −2F (y) + 2yF ′(y) + ∂p2Flow(2)
hTT hTT

(V, F,K) |p=0,

∂tK = 2yK ′(y) + ∂p2Flow(2)
χχ(V, F,K) |p=0,

and focus on solving the corresponding fixed point equations, which are derived from
the flow equations by setting ∂tV = ∂tF = ∂tK = 0.
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11.1.1 Lowest Order Results
Setting all functions equal to a constant, namely

V = v0, F = f0, K = k0, (11.1)

we find fixed point equations given in appendix D.1, equations (D.1), (D.2) and (D.3).
They yield three sets of real fixed points that are numerically given by

(v0, f0, k0) =(−4.655, − 9.990, 0 ),
(5.721 · 10−4, − 2.751 · 10−3, 0 ),
(6.346 · 10−4, 2.713 · 10−3, 0 ).

(11.2)

Out of these fixed points, only the last one hast v0 > 0 and f0 > 0 corresponding to
positive Newton coupling and cosmological constant and is thus physically viable.
The result k0 = 0, which is common to all three real fixed points, already provides
deep insights into the structure of the equations. Even though we had introduced
K as a coupling in the current analysis, at y =∞ and in the truncation (11.1) it is
evident that K = k0 rescales the scalar field y ∝ χ2 and thus acts as a wave function
renormalization for the scalar field, commonly denoted by Z. However, we can already
see from the original Callan–Symanzik equation [197], carried over to the functional
context in [198], that the proper way to handle a wave function renormalization is to
introduce an anomalous dimension and introduce a corresponding equation, rather
than demanding k̇0 = Ż = 0. We will present a proper treatment in chapters 12 and
13, where we completely disentangle the influence of wave function renormalization
and couplings. For the time being, note that

η = − Ż
Z

u − k̇0
k0

leads to

Z(t) = Z(tinit) exp
(
−
∫ t

tinit
η(t′) dt′

)
,

where t is the dimensionless RG time and tinit denotes some initial scale of integration.
At some t, η will approach its fixed point value and become scale independent, and
the integral can be replaced by a multiplication with t over a still infinite range. But
then, if η > 0, the negative overall sign of the argument of the exponential forces the
exponential to tend to 0 for an ultraviolet fixed point t→∞ leading to k0 = 0. We
suspect that this is exactly what we are witnessing here, and this observation points
to a finite η 6= 0, which cannot be accommodated in the current setup.
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Figure 11.1: Functions V (y), F (y) and K(y) Taylor expanded around y =∞ to orders 0 to
7 and with ξ = 4000 and k0 = 1. The breakdown of the expansion around y ≈ 1/ξ is clearly
visible, in agreement with earlier calculations on symmetrical backgrounds.

11.1.2 Large Field Limit
Taylor expanding around y =∞ according to

V =
a∑
i=0

vi
yii! , F = ξy +

b∑
i=0

fi
yii! , K =

c∑
i=0

ki
yii! , (11.3)

we find that the inclusion of a term ξy in F is necessary to move beyond the Einstein-
Hilbert solution, characterized by setting all couplings to a single, field independent
value. Once a term ξy, resembling the original Brans-Dicke idea of including scalar
fields into classical gravity, is included, we find non-constant solutions which have
∂tξ = ∂tk0 = 0 and therefore depend on ξ and k0 = limy→∞K parametrically,
consistently extending previous computations. The form of different orders of the
Taylor expansions is shown in figure 11.1.
Once again we find excellent agreement between the different orders of the Taylor ex-
pansion, corresponding to only very small deviations from V = v0, F = ξy+f0, K =
k0, up until the point where all orders in the expansion diverge at approximately the
same value of y, signalling the breakdown of the expansion. This is in parallel to
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Figure 11.2: V (y) plotted with ξ = +10α (LHS) and ξ = −10α (RHS) and k0 = 1. Note,
how the point where the expansion breaks down scales with ξ−1, and how the influence of ξ is
especially visible near the propagator singularity at ξ = − 1

6 .

the results obtained with the background field formalism in part II. Note however
that K deviates from its asymptotic value before V and F diverge. We speculate
that the so far insufficient treatment of a non-constant K triggers the breakdown. In
figure 11.2 we study the point of divergence as a function of ξ for the potential V
and find that it approximately scales with ξ−1, already hinting towards the fact that
the true physical field variable might need to be transformed in a similar manner.

11.1.3 Padé Improvements
We construct Padé improvements to the Taylor approximations by means of a smooth
matching at some intermediate point y0, much like in section 7.5. In figure 11.3, we
show Padé improved approximations for n = m = 5 and different matching points y0.
We stress that we do not expect the Padé improvement to fully capture the solution
for large y, as this is already sufficiently done by the Taylor approximations, and
focus on the behavior for small y. It is evident that the Padé approximations are
able to provide smooth continuations towards y = 0, but do not provide a unique
limit, the value of the small field limit depends on the matching point.
Moreover, we observe that finding a Padé improvement for K(y) seems to be numeri-
cally challenging. We interpret this as a further hint towards the fact that it is not
consistent to simply treat K(y) as a coupling, and progress to formally introducing
a wave function renormalization η in the next section.
We conclude that the inclusion of K(y) into the equations alone does not yet provide
the desired improvement outlined in section 7, but that we are indeed able to
reproduce the results gained therein.
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Figure 11.3: Taylor approximations to the solution of the fixed point equations obtained at
y0 =∞ alongside with their Padé improved versions at different matching points y0.
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11.2 Introducing the Anomalous Dimension η
Having derived the need to introduce a wave function renormalization η in the last
section, we will now prepare the formal means to do so. For that, we employ the
vertex construction introduced in section 4.4.2 to ensure that

Γ
(nχ)(mφ)
k ∝ Z

n
2
k , (11.4)

where φ labels all other fields of the theory under consideration. Note that since we
only introduce one wave function renormalization Z for the scalar field, we won’t
explicitly label it, Z = Zχ.
To that end, we consider the action

S =
∫
d4x
√
g

(
Vk(χ̄2)− 1

2Fk(χ̄
2)R+ 1

2g
µν∂µχ̄∂νχ̄

)
, χ̄ =

√
Zk(χ2)χ, (11.5)

from which we derive vertices by taking functional derivatives and enforcing the
scaling (11.4). Then,

η(χ2) := − Ż(χ2)
Z(χ2)

only enters through the regulators, in direct generalizations of the deviation presented
in appendix C.4. We arrive at equations

∂tV = ηy∂yV − 4V + 2yV ′ − Flow(2)
hTT hTT

(V, F, η) |p=0,

∂tF = ηy∂yF − 2F + 2yF ′ + ∂p2Flow(2)
hTT hTT

(V, F, η) |p=0,

η = 2yη′ − ∂p2Flow(2)
χχ(V, F, η) |p=0,

where the dependence on the field y = χ2

k2 is understood.
Note that the absence of a term proportional to ηy∂yη in the equation for η is due
to the fact that we used Z(χ2) instead of Z(χ̄2) to rescale fields and form η, which
is consistent with neglecting derivative couplings of vertices with Z on the RHS of
the flow equation. On the same grounds we also neglected a term 2yη′, which arises
due to the canonical running of the scalar field
Investigating the simplest case again, meaning setting

V = v0, F = f0, η = η0

we find fixed point equations given in appendix D.2, equations (D.4), (D.5) and (D.6).
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Figure 11.4: Field dependent anomalous dimension η as a function of y and for different
ξ = 10α.

They lead to real fixed points

(v0, f0, η0) =(−4.6546, − 9.9903, − 1.354 · 10−3 )
(5.675 · 10−4, − 2.7624 · 10−3, − 0.7514 )
(−1.932 · 10−4, − 4.334 · 10−4, 78444.1639 )
(−5.882 · 10−5, − 2.874 · 10−4, − 101.1822 )
(6.365 · 10−4, 6.769 · 10−4, − 1006.13 )
(1.444 · 10−3, 1.753 · 10−3, − 4354.5049 )
(6.460 · 10−4, 2.757 · 10−3, 1.6669 ).

(11.6)

For comments on their physical viability we refer the reader to the discussion in
section 12.4.1.
Moving past constant order by expanding V , F and η in negative powers of y and
allowing for an additional term ξy in F, similar to equation (11.3), we find that η
vanishes at y →∞, that is

lim
y→∞

η(y) = 0. (11.7)

This is consistent with the physical expectation that the anomalous dimension should
vanish in the infrared, signalling classical scaling.
Investigating η for finite y, we find that the deviations from η = 0 are only marginal
for a wide range of large field values y, as depicted in figure 11.4.
There are two important conclusions to draw from this: Firstly, an almost vanishing
η will not change the form of V and F considerably in comparison with what we
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found in section 11.1, which is why we do not provide additional plots for V and F
at this point.
Secondly, we stress that η is almost constant up until close to the point where we
already know the Taylor approximations to break down. This means on the one hand
that approximating η by a constant and neglecting derivative couplings is justified
for large y, but once we approach an intermediate range of y, this approximation is
no longer valid.
That is why in the next chapter we proceed to considering the constant anomalous
dimension η and the field dependent coupling K(y) in one truncation, but disentan-
gling their influence. Partially neglecting derivative couplings for large y in a first
attempt at solving the system will provide vital to understanding the influence of
the currently free parameter ξ.



CHAPTER 12

Results II: Approximated Vertex Expanded Version

Having understood that we need a field dependency in the term multiplying the scalar
kinetic term, and derivatives become important in the critical intermediate range.
These cannot be captured by a field dependent anomalous dimension, therefore we
now set out to disentangle a constant wave function renormalization for the scalar
field and a dynamical function K(y) accounting for derivative couplings in the flows.
We call the wave function renormalization Z. It leads to a constant anomalous
dimension η defined at a certain y = y0.
In order to ultimately arrive at a global solution using numerical solvers for the
flow equations, it will be crucial to find a suitable set of initial conditions. For
that, understanding what values of the so far undetermined couplings ξ and k0, or a
combination thereof, might be suitable is crucial. To that end, we will first analyze
an approximation to the full flow equations, partially incorporating derivatives of
K(y), before we use that knowledge to solve the complete system in chapter 13.

12.1 Generalities and Setup
In order to include an anomalous dimension η through a wave function renormalization
Z we generalize our truncation to

S =
∫
d4x
√
g

(
V (χ̄2)− 1

2F (χ̄2)R+ 1
2K(χ̄2)gµν∂µχ̄∂νχ̄

)
, (12.1)

where χ̄ = Z1/2χ, and this rescaled field should not be confused with the background
field.
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To compute quantum effective correlation functions, we take the tensor structures
from S and construct Γ from S such that Γ (nχ) scales with Zn/2, and write η = −Ż/Z
where Z does not depend on χ, inspired by section 4.4.2.
We work at constant y = χ2

k2 In order to distinguish between the field independent
anomalous dimension η and the field dependent kinetial K(y) we pick a reference
field y0 and set k0 = K(y0) = ±1, such that we can compute η at y = y0.
This leads to flow equations

∂tV = η y∂yV − 4V + 2yV ′ − Flow(2)
hTT hTT

(V, F,K, η) |p=0,

∂tF = η y∂yF − 2F + 2yF ′ + ∂p2Flow(2)
hTT hTT

(V, F,K, η) |p=0,

∂tK = η y∂yK + 2yK ′ + ∂p2Flow(2)
χχ(V, F,K, η) |p=0, k0=±1,

η = −∂p2Flow(2)
χχ(V, F,K, η) |p=0, y=y0 .

(12.2)

Note that η is not field dependent in this approach, but all field dependencies are
encoded in K = K(y). This allows for the inclusion of couplings that contain
derivatives of K(y) that were not included in the previous truncation.

12.1.1 Approximation
From the discussion of figure 11.4 we learned that ∂p2Flow(2)

χχ, which enters the
equations for η and K admits a solution that is constant for large y. Furthermore,
as pointed out in chapter 7, understanding the influence and with that potential
physical bounds of the so far undetermined parameter ξ may be integral to finding
a global scaling solution. To that end, we approximate the β-function for K by
neglecting the dimensional running 2yK ′ for the remainder of this chapter. The
advantages of this approximation will become evident later. We again have η = 0 for
y0 =∞, such that the flow equation for K reduces to

∂tK = ∂p2Flow(2)
χχ(V, F,K, η) |p=0, k0=±1 . (12.3)

12.2 Large Field Expansion
In this spirit we expand the functions V , F and K in negative powers of y according
to

V = λy2 +m2y +
a∑
i=0

vi
yii! , F = ξy +

b∑
i=0

fi
yii! , K =

c∑
i=0

ki
yii! , (12.4)

where we also accounted for the possibility of a Brans-Dicke like term ξy in F , as
it is exactly scale invariant. We put k0 in for pedagogical reasons, and will set it
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to ±1 later to not infer with the scaling via Z. Following this argument it would
also be possible to include a term λy2 to the potential V , and when doing so, a
scalar mass term m2y should also be included. However, the same arguments as
in the background analysis in part II hold and unless otherwise noted, we will set
λ = m2 = 0.

Hierarchy of fixed point equations

The first important observation is that

lim
y→∞

βK = 0,

yielding

η = 0

independently of the approximation.
In agreement with the results from the background calculations in section 7.2 we find
a hierarchy of fixed point equations which is closed to each order in y, meaning that
the β-function for the i-th order couplings, corresponding to y−i, only contain j-th
order couplings with j ≤ i. In particular this property ensures η = 0 to all orders,
and prevents new fixed points to arise when new orders of y are included.
More specifically, projecting on the β-function to lowest order y1 we have

∂tξ = 0 ⇒ ξη = 0, (12.5)

which is trivially true for η = 0.
To order y0 we find

∂tv0 = 0⇒ v0(ξ) = η(−1104ξ3 − 20ξ2 + 32ξ + 1)
7680π2(6ξ + 1)3

+2760ξ3 + 612ξ2 + 82ξ + 9
768π2(6ξ + 1)3 ,

∂tf0 = 0⇒ f0(ξ) = −ξη
(
756ξ2 + 1884ξ + 293

)
27648π2(6ξ + 1)3

−51840ξ3 + 36240ξ2 + 6094ξ + 253
6912π2(6ξ + 1)3 ,

while ∂tk0 = 0 is trivially satisfied, in agreement with η = 0.
To order y−1 we find conditions

∂tv1 = 0 ⇒ v1(v0, f0, k1, ξ),
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∂tf1 = 0 ⇒ f1(v0, f0, k1, ξ),

and exploiting the equation ∂tk1 = 0 we find

0 =− k1η + η
(
−1296ξ4 + 108ξ2 + 12ξ + 1

)
576πξ(1 + 6ξ)3

+
(
26244ξ4 + 12636ξ3 + 2079ξ2 + 90ξ − 1

)
36π2ξ(6ξ + 1)3 ,

(12.6)

which for η = 0 does not yield a condition for k1 but rather for ξ, and is for finite k1
and ξ 6= 0, −1/6 only solved by

26244ξ4 + 12636ξ3 + 2079ξ2 + 90ξ − 1 = 0, (12.7)

thus yielding a condition to compute ξ. Note that this equation is due to the
approximation (12.3), in the full version it would receive an additional term −2k1.
However, for the time being we assume this equation to be true in order to understand
the influence of and physical bounds on ξ a bit better.
This is an important difference to the background calculations in section 7.2, where
ξ was the free parameter of the theory, as being able to determine ξ allows to set
precise initial conditions for numerical routines, which will ultimately enable us to
globally understand the scalar-tensor system.
At this point, the free parameter of the system is k1. Writing down the next order of
equations, k1 is determined by ∂tk2 = 0, while k2 remains free, and using the equation
∂tkc = 0 we are able to determine all ki, i < c, making kc the free parameter. As
the influence of kc is suppressed by a factor of y−c, it does not play a role for y � 1.

Classifying the Solutions

Solving equation 12.7 for ξ we find two real solutions for k0 = +1 and two real
solutions for k0 = −1.
For k0 = +1 we find two classes of solutions with

ξ = 0.00909 or ξ = −0.0854, k0 = +1.

Since ξ is connected to the strength of the gravitational interaction, we focus on
solutions with ξ > 0. At the outset of this paragraph, we argued that fixing K(y0) = 1
allows for an unambiguous calculation of ∂tK and η. Of course this argument goes
through exactly as stated, if we fix K(y0) = −1. When doing so we get two additional
classes of solutions, connected to the first two classes by all even powers in K and
all odd powers in F and V flipping sign. In particular, K(y0) = −1 thus yields

ξ = −0.00909 or ξ = 0.0854, k0 = −1,
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Figure 12.1: Plots of the different classes of solutions for the three functions V , F and K.

in agreement with the observation that for y →∞ only the ratio ε = k0
ξ has physical

relevance. Given that for large y the leading term in V and K is an even power and an
odd power in F , at y =∞ the transformation K(y0 =∞) = 1→ K(y0 =∞) = −1
thus provides us with two solutions for K and V , distinguished by a flip in overall
sign, while there are four distinct solutions for F , two with negative and two with
positive ξ. All deviations are of subleading order and become more and more visible
when y becomes smaller and smaller, as depicted in figure 12.1.
Solutions with k0 > 0 are automatically stable, and we only need to ensure ξ > 0
to warrant for a positive effective gravitational coupling. To meet stability bounds
known from earlier work on scalar-tensor theories of gravity (see section 7.8) also for
k0 < 0 we require k0/ξ > −6, which translates to ξ > 1/6. We are thus left with a
unique, physical solution at

k0 = 1 and ξ = 0.00909. (12.8)

Our flow equations have vanishing denominators as ξ approaches −1/6, as one would
expect from an infrared limit of a scalar-tensor theory of gravity. We point out that
there is no consistent fixed point solution to lowest order already when approaching
ξ = −1/6. The same is true when approaching ξ = 0.
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ξ = 9.0934× 10−3, η = 0

i vi fi ki
0 1.1022× 10−3 −3.8929× 10−3 1
1 2.8936× 10−4 −2.5218× 10−4 0.6860
2 3.2830× 10−4 −5.8109× 10−5 1.3777
3 5.0355× 10−4 5.2381× 10−4 4.1194
4 6.1776× 10−4 3.8452× 10−3 15.6006
5 −2.2771× 10−3 2.4944× 10−2 68.0385
6 1.8779× 10−5 × (k6 − 2363.26) 2.3542× 10−5 × (k6 + 6926.28) k6

Table 12.1: Expansion coefficients in the for the large field expansion 12.4 on the fixed point
up to order y−6.

12.2.1 The Parameter kc
Plotting the Taylor expansions with a = b = c = 5 and for different positive values of
kc = k5 we can investigate the dependence on k5. As expected, the dependence is only
visible once y is approximately unity. Furthermore, as can be seen from figure 12.2,
the value of k5 changes the characteristics of the divergence of the Taylor expansion
for small values of y. This is also true for negative values of k5. Additionally,
figure 12.2 suggests a convergence of the expansions for k5 → 0, k5 > 0. A similar
observation can be made for k5 → 0, k5 < 0, such that a small absolute value of k5
brings the different solutions closer and closer together. We also point out that the
influence of the parameter kc only becomes relevant shortly before the expansions
break down, and thus only controls the exact form of divergence. The solutions are
thus nearly unambiguous up until that point.
The picture is similar for the other classes of solutions. Note that even though we are
able to flip the direction of divergence by virtue of varying kc, we cannot avoid the
divergence altogether. Furthermore, the influence of the parameter can be restricted
to K by setting a = b = c− 1.

12.2.2 Scaling Relations
It may seem slightly odd that after putting a considerable effort into defining a scalar
η we wind up with η = 0 to all orders for y0 = ∞. This section aims at shedding
some light onto the role of η, especially for large values of y. Furthermore we point
out that for small y there are solutions with η 6= 0. They are discussed in section
12.4.1.
For large y, we effectively approach a free scalar theory. The argument goes as follows:
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Figure 12.2: Taylor expansions for the functions V (y), F (y) and K(y) to order 5 and different
values of k5 = 10α, α ∈ [−5, 5]. We see a convergence of the solutions towards the solution with
k5 → 0, k5 > 0.
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The effective strength of gravity, as given by the Newton constant, is determined by
ξ−1y−1, which approaches 0 for y →∞. This is the only dimensionless combination
that can possibly enter the other flows, and thus gravity ceases to drive the flow.
Therefore one would expect both ξ and k0 = K(y0) to globally rescale the scalar
field strength. Indeed, for K = k0 and F = ξy + f0, V = v0 only the ratio

ε := k0
ξ

enters the equations.
More specifically, projecting on the β-function to order y1 we have

∂tξ = 0, (12.9)

while the order y0 yields

∂tv0 = 9ε3 + 82ε2 + 612ε+ 2760
192π2(ε+ 6)3 − 4v0,

∂tf0 = −253ε3 − 6094ε2 − 36240ε− 51840
3456π2(ε+ 6)3 − 2f0,

∂tk0 = 0.

(12.10)

So far, we lack any conditions on the function K. Thus, we supplement these
equations with ∂tk1 reading

∂tk1 = −ε
4 + 90ε3 + 2079ε2 + 12636ε+ 26244

36π2(ε+ 6)3 . (12.11)

Note how all quantum contributions stem from ε and v0 and f0 exclusively enter
canonically. Of course, ∂tξ = ∂tk0 = 0 yields ∂tε = 0. Then the three remaining
β-functions yield fixed point values for v0, f0 and ε, which are numerically given by

v0 = 0.00110, f0 = −0.00389, ε = 109.97,

where we have excluded complex solutions as well as one real solution in the unstable
region of ε ≤ −6. Note how this made the slightly complicated argument used earlier
to determine the physical solutions much more concise.
The β-functions just discussed alongside ∂tv1 and ∂tf1 are depicted in figure 12.3 as
functions of ε, showing the simultaneous zero at ε = 109.97 as well as the pole at
ε = −6. We point out that there is no consistent fixed point solution emerging when
approaching this pole.
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Figure 12.3: β-functions in next to leading order as functions of ε and on the fixed point
values of the other couplings, showing the simultaneous zero at ε = 109.97 as well as the pole
at ε = −6.

Turning to explicitly investigating the β-functions to order y−1, we find for ∂tv1

ξ∂tv1 = 1
2592π2(ε+ 6)4 (1080f0ε

3 − 3240f0ε
2 − 62208f0ε

+ 1080k1ε
2 − 3240k1ε− 62208k1 + 383v0ε

4

+ 5004v0ε
3 + 51120v0ε

2 + 278208v0ε

+ 382320v0)− 6ξv1.

(12.12)

Note how ξ explicitly enters the flow again, always in combination with v1. This
is also true for f1 in ∂tf1. More generally, every factor of vi or fi appears with an
explicit ξi, while every factor of ki comes with a factor of ξi−1, apparently rendering
the introduction of ε pointless. However, this can easily be circumvented by noting
that vi and fi always multiply yi, while ki multiplies yi−1, due to the additional fields
in the scalar kinetic term. We conclude that in order to keep the scaling relation
intact, every power of y needs to be rescaled by a power of k0 or, equivalently, ξ.
This is, however, exactly what a wave function renormalization does. This is why
henceforth we work with the physical solution

η = 0, k0 = 1 and ξ = k0
ε

= 0.00909, (12.13)

circumventing the need to rescale fields by hand.

12.2.3 The Role of ξ
We argued earlier that a term ξy should be allowed in our large field expansion 12.4,
because it is the scale invariant combination determining the effective strength of
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gravity. While this is of course true, there is another reason why only the inclusion
of a term of that variety allows for non-trivial solutions: Assume we set ξ = 0, and
solve the lowest order equations for v0, f0 and η.1 As a next step, we would include
corrections of O(y−1), which however, following our earlier discussion, cannot alter
the fixed point values at O(y0). That is why all corrections are trivial, and the only
solution we can obtain with ξ = 0 is one completely independent of y. We conclude
that the inclusion of ξy in F is necessary to obtain non-trivial solutions.

12.2.4 Remarks on a λχ4 Term in V
In our large field expansion 12.4 we did not include a term λy2 in the potential,
even though λ has scaling dimension 0 and this term would be allowed by dilatation
symmetry. The reason for this is that if one allows for such a term, as well as
an additional term m2y for reasons of consistency, the flow is governed by the
contributions from λy2, drawing all quantum corrections to 0 in first order, such that
the flow is solely driven by the canonical running induced by the scaling dimensions
of the couplings. Thus, all β-functions for dilatation symmetric couplings λ, ξ, k1 are
trivially satisfied and yield no conditions, while m2 = v0 = ξ = f0 = 0, v1, f1 ∝ 1/λ
and K remains completely undetermined. If we do not include m2y, we find a similar
result.
This is in addition to arguments presented in part II already based on positivity of
propagators, which are of course still valid.
We conclude that the inclusion of such a term does not yield more physically
interesting solutions.

12.3 Global Scaling Solution
In this section, we present our global solution in the context of the current approxi-
mation, which is obtained by numerical methods, and discuss its accuracy.

12.3.1 Numerical Solutions
To extend our solution for large y further towards small values of y, we solve the fixed
point equations numerically, setting the initial conditions on the Taylor expansion
12.4 with a = b = c = 5 in a regime where they are still well behaved.
In figure 12.4 we show the numerical solutions, which resemble global solutions to
our fixed point equations. The value of ξ from equation 12.13 is a crucial ingredient,
as it allows us to set precise initial conditions.

1Note that in this case, the absence of the ξy term in ∂tK gives a non-vanishing anomalous dimension
η.
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Figure 12.4: Global solutions for the functions V (y), F (y) and K(y) in a double-log plot.
The matching with the Taylor expansion was carried out at y = 105.

Note how there is no point at which 1
2F − V ≈ 0, meaning that the previously

bothersome singularity discussed in [91] is not reached by the global scaling solution.

12.3.2 Error Estimates
We also attempt to integrate from a finite y towards ∞ to test agreement with the
Taylor approximations. We find excellent agreement for F , while K quickly starts
to oscillate around the Taylor approximation and V diverges to either +∞ or −∞,
depending on where we define our initial conditions. We suspect numerical instability
when integrating towards larger y.
However, when we choose initial conditions at an arbitrary y = y0 and integrate up
or down, read off new initial conditions and integrate back down or up, we are able
to recover the scaling solution, as long as the interval does not become too large. We
thus furthermore speculate that the manifold of solutions is larger locally, but only
the scaling solution exists globally. This behavior is demonstrated in figure 12.5 for
the potential V and the case when one integrates up first.
Note that in the light of the approximation made in this chapter this means that
even though our initial conditions are probably slightly off, we can still be confident
that the solution found resembles the main features of the physical solution.
Since it is infeasible to solve the fixed point equations into an explicit form for an
error estimate, we instead use the value of the exact β-function normalized by the
internal accuracy of the implicit numerical differential equation solver employed,
provided by mathematica, as an estimate for the error. More precisely, we define the
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Figure 12.5: Exploration of the manifold of local solutions around y0 = 102, . . . , 107.

error for a function H(y) understood to be an approximate solution to the equation

G(H,H′, . . . , y) = 0

to be

εH(y) = G(H,H′, . . . , y)
10−p , (12.14)

where p is the number of decimal digits guaranteed to be correct by the numerical
routine. In our application, H = V, F,K, and G = βV,F,K .
As long as the relative error is of order 1, we can assume the solution to be reliable.
As can be understood from figure 12.6, this is the case for most parts of the interval
under consideration. The deviations are due to interpolation errors between the
grid points of the numerical solution, which are inevitable when plotting and taking
derivatives.
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Figure 12.6: Value of the exact β-functions normalized to the accuracy of the numerical
solver.

12.4 Small Field Limit
It is impossible to continue the numerical solution all the way until y = 0. Therefore,
in this section we will present two different approaches to understanding the small
field limit of our theory, which, when taken together, complete the global solution
presented in section 12.3.

12.4.1 Small Field Expansions
In the spirit of what is presented in section 7.4 for the background field calculations,
we attempt to expand the functions V , F and K in positive powers of y, again taking
K(y = 0) = 1 to allow for the introduction of a scalar anomalous dimension η.

Leading order contributions

Keeping only the lowest order contributions, that is setting V and F equal to a field
independent value and also retaining the anomalous dimension η, we find the fixed
points reported in table 12.2. In order to keep our presentation concise we have
excluded complex solutions already.
Physical fixed points have V > 0, F > 0, excluding fixed points 1 through 4. Fixed
point 3 is also excluded for a different reason: The large positive anomalous dimension
is likely to turn off the regulator, as well as to flip the sign of the β-function (appendix
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FP V F η

1 −4.6546 −9.9903 −1.3537 · 10−3

2 5.6751 · 10−4 −2.7624 · 10−3 −0.75136
3 −1.9319 · 10−4 −4.3343 · 10−4 78444.2
4 −5.8818 · 10−5 −2.8737 · 10−4 −101.18
5 6.3653 · 10−4 6.7691 · 10−4 −1006.13
6 1.4444 · 10−3 1.7529 · 10−3 −4354.50
7 6.4603 · 10−4 2.7575 · 10−3 1.6669

Table 12.2: Fixed point values for the small y expansion to lowest order in y.

C.4 and [87]), such that it is at least doubtful if a physical trajectory could arise
from it.
Moreover, even though the large negative anomalous dimenisions of fixed points 5
and 6 are not excluded by any bounds a priori, they would hint to extremely large
quantum corrections, which would point to both a fast residual running of Z on the
fixed point and a drastic variation of η as y goes from ∞ to 0. The latter argument,
being the requirement for a smooth connection of the IR and UV physics, will be
substantiated in section 12.4.1.
For there reasons, we call the fixed point at

V = 0.0006460, F = 0.002757, η = 1.6669 (12.15)

the Einstein-Hilbert limit of our theory. Note that this limit is independent of the
approximation made to determine ξ earlier on.
When deriving the flat flow equations, we had neglected RG-time derivatives on the
RHS of the flow equation. Comparing to numerical values derived in the symmetric
background configuration (7.3), we find qualitative agreement, even though the
solutions obtained with the flat expansion are approximately one order of magnitude
smaller. Furthermore it is remarkable that the inclusion of an anomalous dimension
leads to a significantly larger number of potential fixed points, but only one physical
solution prevails.

Past leading order

As discussed in section 7.4 the hierarchy of fixed point equations is not closed order
by order when expanding around y = 0. That is why solving the coupled system past
leading order is extremely challenging, given the size of the algebraic expressions
that enter in the flat background calculations.
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FP k1 k2 k3
7.1 −39.5175 2502.6 −135823.0
7.2 −6.9321 77.009 1581.35
7.3 3.3708 · 10−15 0 0
7.4 0 0 0

Table 12.3: Splitting up of the fixed point 7 for c 6= 0. Note that the vanishing values for k2
and k3 in fixed point 7.3 are likely due to numerical effects.

That is why when expanding the functions according to

V =
a∑
i=0

viy
i

i! , F =
b∑
i=0

fiy
i

i! , K = 1 +
c∑
i=1

kiy
i

i! , (12.16)

and projecting on the respective β-functions for the coefficients by means of expanding
the full β-functions, we are to date only able to find solutions for a = b = 0, but
including powers up to y3 in K, meaning c ≤ 3. We find that each fixed point
reportet in table 12.2 splits up into c+ 1 fixed points, one of which has ki = 0, i ≥ 1,
confirming the stability of the Einstein-Hilbert solution 12.15. The numerical values
for fixed point 7 are reported in table 12.3.

12.4.2 Fits
From section 12.3 we infer that when y approaches zero, the functions become
essentially flat. Therefore, it seems possible to fit their form with a simple ansatz,
understanding the small y behavior even better. We emphasize that no input from
section 12.4.1 is used unless explicitly state otherwise. We employ optimized fit
routines provided by mathematica.

Fixing the ansatz

In order to derive an appropriate ansatz, we investigate all three functions and, more
specifically, their derivatives for small values of y more closely. In figure 12.7 we
show the three coupling functions alongside their first two derivatives, showcasing the
divergence of the derivatives for y → 0. In contrast to that, the functions themselves
stay finite. This is exactly the behavior exhibited by a monomial

∼ yα with 0 < α < 1.

We also allow for another constant to be added. Indeed, the first derivative of all three
functions diverge linearly in the double logarithmic plots, meaning their divergence is
likely to be governed by a simple monomial. The dashed lines in the plots represent
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Figure 12.7: Functions V , F and K as well as their first two derivatives for 10−7 ≤ y ≤ 10−1

in double logarithmic plot, showcasing the divergence of the derivatives for y → 0. The dashed
lines are proportional to y− 1

2 .

monomials y−
1
2 , and we conclude from the fact that those lines seem to be almost

parallel to the first derivatives of the functions that α = −1
2 is a good ansatz for the

exponent, leaving us to fix the exact form through fit routines.
Since we are ultimately interested in the functions themselves rather than in their
derivatives, we point out that for H′ ∼ y−1/2 + const. we have H ∼ y + y1/2 + const,
leading to the general ansatz

V = v0+v1/2y
1/2+v1y, F = f0+f1/2y

1/2+f1y, K = k0+k1/2y
1/2+k1y. (12.17)

We take approximately n ∼ 106 data points in the range 10−7 ≤ y ≤ 10−5 to generate
input for the fit routines in the form or pairs (y, V (y)), (y, F (y)), (y,K(y)), where
the values are taken on the numerical solutions derived in the previous chapter. The
range is chosen in such a way that y is small enough so we can expect only a few
leading order contributions to contribute, yet large enough so the numerical solutions
are still accurate.
Starting from the ansatz 12.17, we also present various extensions. Similar to the
error definition in section 12.3.2 we use the values of the exact β-functions as error
estimates for our solution. However, unlike previously we do not normalize them to
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y−1/2 1 y1/2 y y3/2

V

a − 6.3233 · 10−4 −2.5068 · 10−5 3.4680 · 10−5 −
b − 6.4604 · 10−4 −1.4361 · 10−2 3.3859 −
c − 6.3234 · 10−4 −2.5066 · 10−5 3.3543 · 10−5 2.0266 · 10−4

d −6.2068 · 10−16 6.3234 · 10−4 −2.5069 · 10−5 3.4876 · 10−5 −
F

a − 2.7026 · 10−3 −1.1056 · 10−4 1.5034 · 10−4 −
b − 2.7575 · 10−3 −5.7426 · 10−2 13.537 −
c − 2.7027 · 10−3 −1.1054 · 10−4 1.4529 · 10−4 9.0227 · 10−4

d 2.7634 · 10−15 2.7026 · 10−3 −1.1055 · 10−4 1.5122 · 10−4 −
K

a − 2.3540 · 10−2 7.8323 · 10−2 0.1854 −
b − 2.3540 · 10−2 7.8323 · 10−2 0.1854 −
c − 2.3540 · 10−2 7.8323 · 10−2 0.1858 0.3602
d −1.1035 · 10−12 2.3540 · 10−2 7.8323 · 10−2 0.1858 −

Table 12.4: Fit parameters for the small y fits.

the precision of the routines used, as at this point both the precision of the numerical
solver as well as the precision of the plot functions enter, limiting the amount of
information to be gathered from such a normalization.

Results

Numerical results for four different variants are listed in table 12.4. These are:

a Three parameter fits

b Three parameter fits with v0 and f0 taken from the Einstein-Hilbert solution
12.15

c Four parameter fits, including y3/2

d Four parameter fits, including y−1/2

In addition to the values presented, we enlarged the working precision of the numerical
input as well as the fit routines, upgraded our calculation to n ∼ 108 data points and
varied the interval that data is generated from. However, we could not see significant
improvements in the quality of the fits.
The error estimates for the four variants are shown in figure 12.8, where the tail
on the right hand side stems from the numerical solution. While we find the fits to
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Figure 12.8: Plots of the error estimates for the fits for small y in variations a-d.

be a reasonable solution up until some y0, which depends on the specific setup, we
also point out that for very small y our routines are not able to properly calculate
values for the β-functions anymore, such that numerical noise becomes visible again.
Furthermore, the slope of these functions suggest that for even smaller values of y,
there may be additional terms proportional to yα, α < 1

2 present. However, since it
seems far fetched to generate data from ranges of even smaller y for such a fit, we do
not investigate this possibility any further here.

Discussion

Starting with variant a, we find excellent numerical agreement with the small y
expansion solution that we favoured for physical reasons already in section 12.4.1.
This agreement is another reason why we call the solution 12.15 the Einstein-Hilbert
solution and assume it to be the ultraviolet limit of dilaton quantum gravity.
In this spirit we attempt to improve the fits by setting the lowest order parameters v0
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and f0 to their exact respective Einstein-Hilbert values, which constitutes variant b.
From figure 12.8 we infer that this does lead to numerical noise taking over somewhat
later, however, the overall quality of the solution is not improved. This is due to the
fact that for small y, the Taylor expanded system is not closed order by order, thus
higher order corrections will slightly alter the values of the Einstein-Hilbert limit.
Note how the fitted k0 is not equal to 1 in any of the cases considered. This is due
to the scalar wave function renormalization Z, which is not trivial in the ultraviolet
limit, in agreement with η 6= 0, and in contrast to the infrared limit discussed in
section 12.2, as well as due to the approximation made in this section. We will revisit
this point in the next chapter.
From the numerical values for variant c we conclude that there does not seem to be a
term proportional to a negative power of y present in any of the functions, meaning
that the Einstein-Hilbert solution indeed is the limit we are aiming to find. We
expect terms proportional to y

3
2 to be present as confirmed by variant d. However,

they only become relevant once our numerical solutions are an accurate solution to
the fixed point equations again, and are thus not relevant for us here.
These results suggest that if one attempts to do a Taylor expansion around y = 0
discussed in section, it should be carried out in √y rather than in y as discussed in
section 12.4.1. However, the technical difficulties discussed above still remain, such
that we will not pursue this path any further in this chapter.
We point out that even though the Einstein-Hilbert limit is independent of the
approximation made in this chapter, the numerically determined solutions for V
and F show excellent agreement with this limit, furthering our statement that
the approximation produces physically meaningful results. Due to the anomalous
dimensions, such a statement cannot be made for K, as we simply cannot infer the
correct limit at this point. We will comment more on that later, when we present
the corresponding analysis for the full set of equations.





CHAPTER 13

Results III: Full Vertex Expanded Version

In this chapter, we present and discuss the final result of this thesis: A global scaling
solution to the full set of flow equations (12.2) stemming from the action (12.1),
without the approximation (12.3), as well as its physical consequences.
As discussed in the previous chapter, many physical features will remain the same.
The most disruptive change in the process of determining the scaling solution will be
that ξ, determined by equation (12.7) in our previous treatment, will become a free
parameter again. However, it turns out that realistic physical solutions can best be
found in the close vicinity of the value of ξ singled out by equation (12.7). We will
call this value ξ0, and the corresponding value of ε will be denoted by ε0.
Deriving a solution for large y again first, we will refine and substantiate the analysis
presented in section 12.2.2, in the process eliminating one redundant parameter from
the system to all orders by means of a redefined field and set of couplings.
After that, we will present our global scaling solution obtained by numerical proce-
dures as before, and lay emphasis on comparing it with the old solution as well as on
physical consequences for the spontaneous generation of the Planck scale as well as
cosmological models in sections 13.4 and 13.5.
Throughout this chapter, we will focus on what substantially changes when abandon-
ing the approximation and will thus not rederive all results or restate all equations.

121
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13.1 Large Field Scalings
Not neglecting the term 2yK ′ in ∂tK and redoing the analysis from section 12.2,
equation (12.6) picks up an extra term −2k1, now reading

0 =− k1η − 2k1 + 2yη
(
−1296ξ4 + 108ξ2 + 12ξ + 1

)
576πξ(1 + 6ξ)3

+
(
26244ξ4 + 12636ξ3 + 2079ξ2 + 90ξ − 1

)
36π2ξ(6ξ + 1)3 .

(13.1)

Even though η = 0 remains true for y0 = ∞, the extra term spoils our equation
(12.7) to determine ξ, such that now ξ is a free parameter in the system, much like in
part II. However, in part II, we had no approximation that told us which values of ξ
might be suitable for finding a global scaling solution, which will be of paramount
importance throughout the rest of this chapter.
Given that ξ will now explicitly enter all equations, extracting the physical scaling
like we already started to do in section 12.2.2 when classifying the solutions becomes
even more important. The previous treatment ended with the result that past leading
order, one needs to put a bit more effort into redefining variables and couplings to
make the all equations depend on

ε = k0
ξ

only. This is exactly what we will do here.
Of course we have the wave function renormalization for the scalar at our disposal
and could thus use it to implicitly carry out the rescalings. However, as argued in
the introductory remarks to section 7.8, negative values for K are physically viable,
and we are thus seeking a formulation where this becomes manifest.
To that end, we modify the large field expansion (12.4), already setting λ = m2 = 0
by redefining the couplings to now read

V =
a∑
i=0

vi
ξii!y

−i, F = ξy +
b∑
i=0

fi
ξii!y

−i, K = k0 +
c∑
i=1

ki
ξi−1i!y

−i. (13.2)

After plugging these expansions into the flow equation we replace k0 = ξε, after
which every power of y is accompanied by the respective power of ξ. Thus, redefining
y → ξy makes our system completely independent of ξ and k0 to all orders, and the
free parameter is henceforth ε. Translated to the context of explicit wave function
remormalization, this amounts to dividing the lingering Z ∼ ε dependence from the
variable y, to be able to study the scaling separately and consistently. Note that
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global rescalings of fields only later the path integral by a constant and are thus
allowed.
Henceforth, unless explicitly stated otherwise, y will denote the rescaled field. Note
that since ξ0 ≈ 10−2, the old and rescaled fields differ approximately by a factor of
102 if we evaluate our equations at ξ = ξ0. This of course corresponds to ε0 ≈ 102.
There is one more subtlety when using ξ instead of Z to rescale fields: since K(y)
enters the action together with two powers of the scalar field χ, we need to put
in the additional rescalings by hand. This is done in equation (13.2) by means of
rescaling the couplings differently, as well as by at the end dividing ∂tK by a factor
of ξ to account for the additional scaling stemming from the scalar kinetic term. We
then obtain K(y →∞) = ε, contrary to K(y →∞) = 1 if using the wave function
renormalization Z.
Exactly like before, we derive β-functions for the redefined couplings and solve them,
to obtain an expansion for large y.

13.2 Global Scaling Solution
We are now ready to present the scaling solution obtained by the exact same numerical
procedure as in chapter 12 and at ε = ε0, picking initial conditions on the large
field expansions. It is depicted in figure 13.1, and is the starting point for all future
investigations in this chapter. Note how due to the rescaling, the intermediate range
is shifted to y ∼ 10−2.

13.2.1 Comparison to the Approximated Scaling Solution
Our first step in the analysis is to compare the newly obtained solutions to the ones
obtained in chapter 12. We show both in figure 13.2, where we voided the rescaling
procedure presented in the previous section to allow for easier comparison.
It is evident that V and F change only slightly in the intermediate region, where also
derivatives of K enter the flow equations, while K remains the same for large y thus
a posteriori justifying the application made, but assumes a numerically different limit
for y → 0. Note that we could not have possibly have seen that when comparing to
the Einstein-Hilbert limit in section 12.4, as the anomalous dimension η is nontrivial
in this limit.
We emphasize that the physically relevant minimum in the potential V is still present
(see inset of figure 13.1), and the singularity in the graviton propagator at 1

2F −V = 0
that caused much trouble in earlier investigations [91] is not hit.
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Figure 13.1: Full solutions to the fixed point equations when starting at the initial conditions
defined by the large field expansions and ε = ε0 as determined in chapter 12 at y = 103.
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Figure 13.2: Approximated (gray) and full (colored) solutions to the fixed point equations,
when starting at the equivalent initial conditions defined by ε0.
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13.2.2 ε Dependence
We study the scaling solutions for different values of ε. It turns out that it is not
possible to obtain a solution numerically for arbitrary values of ε. This was tested
by attempting to solve the system for a large number of different numerical values
−6 < ε ≤ 105. In fact, solutions could only be obtained in the vicinity of ε0, more
specifically for

ε ∈ {79.43, 100, 125.89, 158.49, 199.53, 316.23} . (13.3)

We emphasize that there are most likely more solutions in the vicinity of ε0 and that
we are of course unable to exclude the possibility of more solutions in a different
regime by means of this procedure, for there might always be a different way to solve
the system numerically, or of course even some kind of analytic procedure. Despite
that, we observe that the numerical routine systematically breaks down earlier and
earlier when deviating from ε0, until we are not able to initiate it at all in the vicinity
of ε = −6.
The aforementioned observation is curious. Note that due to equation (13.1), ε =
ε0 ⇔ ξ = ξ0 yields k1 = 0, making K field independent to leading order for large y.
This seems to be favored by the system, and we will investigate it in greater detail
later.
In figure 13.3, we depict the solutions for the 6 values of ε given in equation (13.3)
in the original and a rescaled version K → ε−1K. Note that the location of the
intermediate regime does not change visibly, and V and F are independent of ε to
good accuracy. Regarding K, while ε rescales the large field limit, it seems to become
less and less relevant for smaller fields. However, with the current methods we do
not find ε to become completely irrelevant in K for y → 0. At this point, we cannot
decide if this is rooted in technical inaccuracies or physically relevant. As argued
in section 3.1.1, at this stage the system still has a physical redundancy. That is
why we defer any further discussion of the dependency on the parameter ε until after
section, 13.4 where we will present conformal invariants as well as the normal form
of the theory on the scaling solution.

13.2.3 Error Estimates
We use the error definition from equation (12.14) and find what is shown in figure
13.4. Note that in comparison to previous studies, the current error plot was obtained
using a much larger working precision due to the current system being numerically
more challenging, and thus shows much more noise. Despite that, we again find that
βK is the most sensitive β-function, but still remains well behaved even after the
intermediate region around y = 10−2. The fact that the error becomes smaller again
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Figure 13.3: Functions V , F andK for ε ∈ {79.43, 100, 125.89, 158, 49, 199.53, 316.228} (LHS),
alongside with a version where K → ε−1K (RHS).
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Figure 13.4: Value of the exact β-functions normalized to the accuracy of the numerical
solver.

after it spiked suggests that the solver is able to stabilize the system, and we can
thus trust the solutions obtained.
Now that we have the full β-functions at our disposal, it is also insightful to study
the approximated solution from chapter 12 on the full β-functions. Results are
depicted in figure 13.5, where the left panel shows the regime of large y, where a
Taylor expansion was performed, while the right panel uses the numerical solution in
the intermediate range and the fits for small y.
Just like one would expect, the error εK is the first one to become large, signalling
the breakdown of our approximation. Since βF dominates the system for y → ∞
due to the divergent 2yF ′ term and ξ is inaccurate in approximation, εF ultimately
diverges. Just like V and F change very little when lifting the approximation, εV
and εF are also well behaved, while εK grows large.
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Figure 13.5: Value of the full β-functions on the approximated solutions for large field Taylor
(LHS) and fitted approximations (RHS).

13.3 Extending to y → 0
While we have carried out the calculations presented here for all values of ε for which
solutions were found, we only present the results for ε = ε0, since ε seems to become
less and less relevant for small fields. To substantiate this statement, we report
that while the difference between the smallest and largest possible value for ε from
equation (13.3) is of the order of 300%, the limits of K for small fields differ by only
about 50%.
We present two ways of continuing our numerical solutions towards smaller values of
y: Fits as well as numerical searches in expansion in √y.

13.3.1 Fits
Drawing from our insights presented in section 12.4.2, we first attempt to continue our
solution further towards y = 0 by means of fits, sparked by the discovery that all first
derivatives diverge with y−1/2. The procedure goes through exactly as beforehand,
but we find that the inclusion of a term proportional to y3/2 is crucial to obtain
satisfactory results. This is due to the fact that the variable transformation presented
in section 13.1 trigger higher order terms to become important earlier.
We find as the best fits

V (y) = 6.3350 · 10−4 − 1.7137 · 10−4 y1/2 + 8.3172 · 10−3 y + 0.5626 y3/2,

F (y) = 2.7077 · 10−3 − 3.7688 · 10−4 y1/2 + 3.6550 · 10−3 y + 2.4944 y3/2,

K(y) = 8.7018 + 455.269 y1/2 + 12940.3 y + 223285 y3/2.

(13.4)

The values of the β functions on the best fit are depicted in figure 13.6. It is
well conceivable that the errors could be improved by adding more powers of y1/2.
However, since we are only interested in the general behavior of our solution for
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Figure 13.6: Value of the β-function on the small y fits.

small y, and since we see numerics break down at some point anyway, we will not
pursue this path any further.
We emphasize again that the values obtained for the Einstein-Hilbert limit, equation
(12.15) remain accurate even after the approximation is lifted. Comparing the limits
of y → 0 with the Einstein-Hilbert limit, we again find excellent agreement. Also note
however that the slight differences between the limits of the fits and the numerical
values of the Einstein-Hilbert limit only decreased marginally by considering the full
β functions.
What is more, the y3/2 contributions are comparatively large, especially in K. We
take that as a hint that our definition of a wave function renormalization at one scale
set by y0 is not sufficient to capture all physical features.

13.3.2 Numerical Searches
To further understand the aforementioned difference, we move on to seeking a small y
expansion by means of numerically converging to solutions from given initial guesses.
This was done for a large number of initial values. To order √y,

V = v0 + v1/2
√
y, F = f0 + f1/2

√
y, K = 1 + k1/2

√
y

we find 4 distinct solutions which are presented in table 13.1.
The first crucial observation is that pure Einstein-Hilbert, where all nontrivial orders
in y are simply zero, is a viable, yet hardly intriguing possibility even for finite y
(FP 1). Furthermore, it is consistent to only allow for nontrivial y dependencies in
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FP v0 v1/2 η

1 6.4604 · 10−4 0 1.6669
2 6.4604 · 10−4 0 1.6669
3 6.7120 · 10−4 −3.2918 · 10−3 5.3724
4 6.7476 · 10−7 1.2541 · 10−4 −72.590

f0 f1/2 k1/2
1 2.7575 · 10−3 0 0
2 2.7575 · 10−3 0 −3.0926
3 2.8576 · 10−3 −3.0269 · 10−3 −6672.85
4 3.4630 · 10−6 6.2473 · 10−4 111.06

Table 13.1: Numerical expansion parameters around y = 0 in powers of √y.

K, while V and F remain constant (FP 2). This changes the scaling of the fields,
and we will comment more on the role of K and possible rescalings and anomalous
dimensions for finite y in section 13.5.
While especially fixed point 3 appears interesting, as it allows for field dependencies
in all functions while still having a small field limit close to the Einstein-Hilbert
values, η > 2 is beyond the bond for an anomalous dimension that we can resolve
with our current regulator setup (see appendix C.4.2), and fixed point 4 suggests a
scaling of the scalar that can hardly be considered physically viable.
Despite these pessimistic results, it is both possible that there are fixed point solutions
that we did not capture with our current procedure, or that for instance the anomalous
dimension of FP 3 is pushed back below the bound by the next order in √y, and
that also the values of the limit for y → 0 are changed, potentially alongside the
value for k1/2, which strongly disagrees with our fitted results. This may be due
to the fact that we are not yet resolving the anomalous dimension for y 6= y0 and
thus are potentially requiring fixed points where in fact physically there is a residual
running of the wave function renormalization. We refer to section 13.5 for a more
detailed account.
Moreover, we explicitly checked that the β-functions depend on the expansion
parameters of the function to order √y to order y0 already, thus making it likely for
the Einstein-Hilbert limit to be slightly changed in the presence of nontrivial √y
terms. This would mean that there is no smooth connection between the global field
independent and the field dependent solutions.
We thus conclude that the small field limit remains challenging to resolve, but
we are confident that our global scaling solution has a limit closely related to the
Einstein-Hilbert solution for small fields.
We also point out that drawing from insights gained in section 12.4.1 it seems
reasonable to believe that more classes of solutions indeed do exist.
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13.4 Physical Models
Inspired by the discussion in section 3.1.1 we compute and present both the conformal
invariants V̂ and K̂, equation (3.8), as well as the potential for the standard form
(3.9) V̂norm. This section serves to state the results, while they are discussed in
section 13.5.

13.4.1 Conformal Invariants
The physical content of a model is specified by the two invariants V̂ and K̂. In figure
13.7 we show these invariants for different values of ε. The numerical invariants obey

lim
y→∞

V̂ = 0, lim
y→∞

K̂ = 0, (13.5)

as can be easily inferred from their definition and the form of the functions V , F and
K for large y: As both V and K go to a constant for y →∞, while F grows with
ξy, we can immediately understand that the ratios V/F 2 and K/F vanish in this
limit. Furthermore, we have y(F ′)2/F 2 = 1/y, such that the claim becomes clear.
The maximum in the function V̂ is located at

ymax = 3.8362 · 10−5, V̂ (ymax) = 86.494, (13.6)

whereas K̂ has its maximum at

ymax = 4.9878 · 10−3, K̂(ymax) = 27854.8.

We find that V̂ is essentially independent of ε as is clear from its definition, while
ε rescales K but leaves the position of the maximum unaltered. Further note that
while the limit y → 0 may very well remain ε dependent, the limit for y →∞ must
be independent of ε. This is encouraging, as y →∞ corresponds to infrared physics
observable today.

13.4.2 Einstein Frame and Standard Form
We are interested in transforming the physical model defined by the conformal
invariants V̂ and F̂ into its standard form in the Einstein frame (3.9). In order to do
so, two steps are necessary: We first need to define F (χ2), thereby picking a physical
reference frame, and then will rescale our scalar field in such a way that the kinetic
term also assumes its standard form. The first step is simple - for the Einstein frame
we have F (χ2) = M2, and we now deal with a field ϕ as described in section 3.1.1.
The second steps needs a bit more careful work.
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Figure 13.7: Invariants V̂ and K̂ for different values of ε around ε0.

Coming from a kinetic term 1
2K̂(ϕ2)∂µϕ∂µϕ, we need to define a field φ, such that

1
2K̂(ϕ2)∂µϕ∂νϕ = ∂µφ∂

νφ, (13.7)

meaning we need to loosely speaking wrap
∫ √

K̂(ϕ2) dϕ into the new field. More
precisely, we can rewrite the LHS of the condition (13.7) to read

1
2K̂(ϕ2)∂µϕ∂νϕ = 1

2K̂(ϕ2)
( dϕ

dφ

)2
∂µφ∂

νφ⇒ K̂(ϕ2)
( dϕ

dφ

)2
= 1.

To compute the field transformation, we then define x = √y, where here y = ϕ2/k2,
and transform the dimensionless function K̂(y) to K̂(x), after which we compute

x̃(x) = x̃(x0) +
∫ x

x0

√
K̂(x̄) dx̄.

However, since the function K̂(x) is only known numerically, there is no direct way
to computer this expression. Therefore, we pick an x0 low enough to capture all
interesting features and large enough to be able to still rely on the accuracy of
the function K̂(x) in the vicinity of x0. The results presented here were obtained
with x2

0 = y0 = 10−6. After that, we pick 103 logarithmically spread points in the
y-interval

[
10−6, 102], numerically compute the integral for each one, and obtain x̃(x)

by means of interpolating.



132 13 Results III: Full Vertex Expanded Version

Vnorm

0 10 20 30 40 50 60

10-7

10-4

0.1

100

y˜

0 0.0040.002
86.4

86.45

86.5

Figure 13.8: Potential for the standard form for inflation V̂norm for different values of ε around
ε0. Note the maximum for small ỹ as well as the exponential tail for large ỹ.

The last step left to complete is to evaluate V̂ on the new field variable, for which we
have to invert x̃(x) to x(x̃). The result, to be interpreted as V̂norm(ỹ) in the Einstein
frame with ỹ = x̃2 = φ2

k2 is shown in figure 13.8 for different values of ε. The subscript
"norm" signals, that this is the potential that enters into the form (3.9).
V̂norm assumes a maximum at

ymax = 3.1628 · 10−3, V̂norm(ymax) = 86.4937.

We once again study the ε dependency of the solution. Since V̂norm now captures the
whole system in just one function, the ε dependency becomes visible in the potential
and cannot be absorbed any further. Since we lack an analytic expression for V̂norm,
we are unable to comment on limiting cases, but assume that the potential approaches
0 for large fields ỹ, which would then be ε independent again. The exponential form
is visible for y & 10.
It is instructive to study the position and the values of the maxima as a function
of ε. We present them in table 13.2. Note that while the value of the standardized
potential is rather stable, ymax changes considerably, and even becomes negative,
signaling a breakdown of our numerical routine. Nevertheless, it appears that for
ε . ε0 ∼ 109, the results agree much better. This can readily be interpreted by
reconsidering equation (13.1) rewritten in terms of ε, which is equation (12.11) with
an additional −2k1 added. From there (also see the right panel of figure 12.3) it
becomes clear that ε < ε0 yields k1 > 0, and since K ′ ∼ −k1y

−2 to leading order, we
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ε V̂norm(ỹmax) ỹmax [10−3]
79.43 86.501 2.381

100.00 86.496 2.211
125.89 86.490 2.000
158.49 86.481 −84.22
199.53 86.471 12.69
316.23 86.445 1.485

Table 13.2: Position and value of the maxima of V̂norm for different values of ε.

have for large y

ε < ε0 ⇒ K ′ < 0.

It seems natural that this favored by the system, as K ′ > 0 would require an
additional minimum in K, which may change physics. We thus conclude that the
most reliable choices for ε are ε . ε0.

13.5 Discussion and Conclusions
Based on the results of this chapter, we discuss physical consequences regarding the
dependence on the parameter ε, Planck scale generation as well as cosmology and
inflation.

13.5.1 ε Dependency
Up until now one may have hoped that the ε dependency observed was just owed to
the fact that we used more functions than necessary to describe our system, and that
the potential for the standard form V̂norm would have turned out to be independent
of the parameter. However, this is clearly not the case.
Nevertheless, in the context of dilaton gravity, we would ultimately expect a distinct
solution given that there is only one physical Planck mass and scale of gravity.
However, after the results of the previous sections it is well conceivable that our
formulation does not yet capture all physical features of the full theory, which leads
to the unsettling dependence on the parameter ε. Looking back at figure 13.7 we see
that the potential V̂ is largely ε independent, and the ε dependence in V̂norm thus
stems from K̂. The latter however corresponds to a field-dependent rescaling of the
scalar field itself, as is evident from the derivation of the standard form in section
13.4.2.
From there it almost seems likely that our definition of the anomalous dimension at
a fixed value of the field y = y0 (equation (12.2)) overdetermines the system, as we
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demand fixed points of the renormalization group flow in K(y 6= y0) where in fact a
residual running of a wave function renormalization should be allowed.
What is more, our theory was originally defined in terms of three functions, then
reduced to two conformal invariants, and then further reduced to one redefined
field and one potential. It is also well conceivable that including these redundant
functions from the onset on leads to the lingering dependence on ε and that it would
be resolved if we were able to find a formulation that only included the physically
relevant information from the beginning on and ensured the correct physical scaling
of fields. This idea is somewhat parallel to the vertex construction as introduced in
the process of the vertex expansion procedure, section 4.4.2, but of course technically
much more involved and beyond the scope of this thesis.

13.5.2 Scale Generation
One of our main motivations when starting the quest to find a global scaling solution
in dilaton gravity was the dynamical generation of a Planck mass via a nontrivial
expectation value for the scalar field 〈χ〉, see section 3.1. For that, the minimum in
V in figure 13.1 at

ymin = 3.8684 · 10−5

looked promising. However, given the field equations presented in appendix E, the
situation is a little more involved, and an extremum of V only determines 〈χ〉 if
F and K are approximately independent of the scalar around that point. In our
solution this is clearly not the case at least for K.
That is why even though scale invariance is manifestly broken for y 6=∞, we need to
work a bit more to extract the Planck scale.
Nonwithstanding that, we point out that F also exhibits a minimum at ymin =
3.8530 · 10−5, which almost coincides with the minimum of V . That is why when
carrying over to V̂ and K̂ (see figure 13.7), the potential now exhibits a maximum
at the same position (equation (13.6)), again explicitly breaking scale invariance.
Interpreted in the Einstein frame, we have F ′ = 0, simplifying analysis. This is
however again accompanied by a nontrivial, field dependent K 6= 1, thus V̂ ′ alone is
not decisive for 〈χ〉: We are still neglecting a field rescaling, highlighting the need to
carry over to V̂norm to capture the full physical picture, and already hinting towards
a moving, nonconstant Planck scale as we will discuss in greater detail in the next
section.
Note that once a Planck scale is established by means of the dimensionless field y,
we still need one other reference scale to fix the ratio of the Planck scale to that
reference scale.
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13.5.3 Cosmology and Inflation
From figure 13.8 we know that the potential potential V̂norm decays exponentially for
sufficiently large values of ỹ. This represents a realistic cosmology in the infrared
with inflation of the slow roll type [152].
More explicitly, for slow roll inflation to be realized we need the two conditions

M

(
V ′(Φ)
V (Φ)

)2
� 1, M V ′′(Φ)

V (Φ) � 1

to be satisfied [153,154].
Let’s safe ourselves the trouble of taking care of the fact that all our functinos
dependent on the square of the scalar instead of the scalar itself. The derivation
goes through similarly, just with additional terms stemming from chain rules. To
make the argument of V dimensionless in the physical regime, where the cutoff can
ultimately be removed, we need to write

V = V

(
Φ

M

)
∼ exp

(
C
φ

M

)
,

where C is a dimensionless constant of order unity. But then, each derivative produces
an additional factor of 1

M , so that ultimately

M

(
V ′(Φ)
V (Φ)

)2
∼ 1
M
� 1, M V ′′(Φ)

V (Φ) ∼
1
M
� 1

holds, and our exponential solution realizes slow roll inflation initialized at the
maximum of V̂norm.
In this scenario, there is no stable vacuum configuration of the system, since the
potential does not exhibit a minimum. However, there is still a maximum solving
the field equations. In the context of dilaton gravity, this would amount to a moving
Planck scale, initialized at the maximum and then moving towards larger y, offering
exciting prospects to tune the Newton constant to today’s measured value and
thereby towards resolving the hierarchy problem.
Moreover, the solution for V̂norm in figure 13.8 has a vanishing effective cosmological
constant in the Einstein frame for large values of the field, offering a possibility to
explain today’s measured value which is very close to but yet non zero. Since this
result is derived in the context of quantum gravity, a potential of this form explains
why the cosmological constant indeed deviates from the value expected by simple
estimates of the vacuum energy density. It becomes smaller as the energy scale is
lowered, which is closely related to the fact that the that the potential V̂norm does
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not exhibit a minimum and thus allows for a moving Planck scale in combination
with slow roll inflation.
We mention that a moving Planck scale that is smaller today than expected from
dimensional analysis might make quantum gravity effects accessible much more
easily [93–95].
Before proceeding, let us go back to the conformal invariants V̂ and K̂ depicted in
figure 13.7 for a moment. By definition, we can interpret them in any frame, and
more specifically, we want to interpret them in the Einstein frame for convenience.
Though the details are a bit more complicated due the nontrivial field dependencies,
we in principle need to rescale our scalar field χ as described in section 3.1.1, such
that ϕ ∼ ln(χ) or χ ∼ exp(ϕ). Since V̂ = V/F 2 ∼ χ−4 for large χ/k, this leads to
V̂ ∼ exp(−4ϕ) in this limit. This is precisely where the exponential form appears,
even without transforming the potential into its standard form V̂norm. Note that this
would not be true if V would scale like χ4 for large fields.

Deviations from an exact scaling solution

To wrap up, let us demonstrate an application to cosmology where we assume the
fixed point of dilaton gravity is only approximately realized. We are interested in
the range of large y or small k, where the fixed point potential V is approximately
constant with asymptotic value V0 and the fixed point of F scales like F0 + ξy. In
this scenario, we start out with a constant K that we have rescaled to 1. Let us
then assume that V and F are perturbed by dimensionful values V̄ and F̄ . For the
dimensionful functions we can then write

V = V0k
4 + V̄ ,

F = ξχ2 + F0k
2 + F̄ . (13.8)

Plugging this ansatz into the fixed point equations, we see that the addition of V̄
and F̄ does not change the asymptotic values, as both perturbations only enter in
O(y−1). Note that this is different for a χ dependent mass term in V .
Then, the effective action of dilaton quantum gravity for k → 0 tends to

Γ =
∫
d4x
√
g

(1
2g

µν∂µχ∂νχ−
1
2(ξχ2 + F̄ )R+ V̄

)
, (13.9)

generalizing the simple fixed point in equation (3.13). Here, V̄ plays the role of an
effective cosmological constant in the Jordan frame. Transforming to the Einstein
frame via a Weyl scaling

g̃µν = ξχ2 + F̄

M2 gµν ,
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combined with a rescaling of the scalar field

ϕ = M ln
(
ξχ2 + F̄

M2

)
, (13.10)

we arrive at an effective action of the form

Γ =
∫
d4x
√
g

{
−M

2

2 R+ 1
2K(ϕ)∂µϕ∂µϕ+ V (ϕ)

}
,

K(ϕ) = 1
4ξ

1 + 6ξ +
(
M2

F̄
exp

(
ϕ

M

)
− 1

)−1
 , (13.11)

with a potential

V (ϕ) = V̄ exp
(
−2ϕ
M

)
, (13.12)

which decays exponentially for large ϕ/M . This is in line with what we found in
earlier in this section, even though here the exponential potential was generated via
small deviations from the fixed point solution, rather than by the fixed point solution
itself.
Note how, even though we started out with K = 1 in the Jordan frame, the
transformation to the Einstein frame generated a nontrivial, field dependent K as
a function of the rescaled field ϕ, underlining the importance of considering such a
function in the context of dilaton gravity.





CHAPTER 14

Conclusions and Extensions

14.1 Conclusions
In this part, we derived, investigated and globally solved the fixed point equations for
the dilaton-graviton system (3.6), thus smoothly connecting infrared with ultraviolet
physics on a pure fixed point trajectory.
In order to do so, we had to derive a set of flow equations for the functions V , F
and K using a vertex expansion as well as a flat background spacetime, and carefully
disentangle couplings from field rescalings.
The physical features of dilaton gravity turn out to be rich an can be described in a
very concise manner, as discussed at length in section 13.5. Among those features,
the explicit breaking of scale invariance through a finite expectation value 〈χ〉 is
of paramount importance, as it introduces an explicit scale into our theory. While
the potential V exhibits a minimum, the conformally reduced potential V̂ does not
anymore, highlighting the need to eliminate physical redundancies. The same is
true when we absorb the lingering prefactor of the scalar kinetic term K̂ into a field
redefinition to arrive at the final potential V̂norm, which captures the whole physical
content of the model in just one function. This potential exhibits a maximum, which
of course solves the field equations, but is not a stable configuration. This hints
towards a moving Planck scale, which may be vital towards resolving the hierarchy
problem. Furthermore, quantum gravity effects may arise at a different scale than
expected. Our solution additionally naturally implements inflation.
When moving from the maximum further towards the infrared, we showed the
potential to decay exponentially, and explicitly demonstrated the slow roll conditions
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to be satisfied. Thus slow roll inflation takes place in the universe described by the
fixed point trajectory of dilaton gravity. An exponentially decaying potential vanishes
in the deep infrared, which corresponds to a vanishing effective cosmological constant.
This explains why the cosmological constant measured today differs by many orders
of magnitude from the value expected by pure quantum vacuum expectation value
computations.
On a slightly more technical note, we find that the system shows a residual dependency
on the ratio of kinetic terms of scalar and graviton in the infrared ε, which should
ultimately be resolved to arrive at one definite model for our universe without
explicitly given initial conditions in the form of initial scales. We argue that this
residual dependency might be rooted in the way we describe the system and set up
the flow equations. A possible resolution lies in a generalized vertex construction
procedure, but the details are beyond the scope of the current work and material for
future research.

14.2 Extensions
The research presented in this part opens up a cornucopia of possibilities for extensions,
in addition to the upgraded setup mentioned at the end of the previous section.
As for technical aspects, the inclusion of terms of order O(R2) is even more intriguing
than it has already been in the background calculations, as these still appear in
the flows of the two point functions, while terms of O(R3) do not by virtue of the
vertex expansion with a flat background. Furthermore, we learned that disentangling
couplings from rescalings is important for the system, so it would be insightful to
understand the role of a wave function renormalization for the graviton as well, ideally
dependent on the scalar field and therefore on the scale, similar to the upgrades
proposed for the scalar wave function renormalization. This, however, requires
the flow of the three point function in order to disentangle kinematic quantities,
entering the propagators, from couplings, entering the n-point functions with n ≥ 3.
Calculating flows for the three point functions for the dilaton-graviton system is a
formidable task, but we report that considerable progress has already been made
towards completion, and we are confident that improved and optimized programs
currently being developed will help us overcome technical difficulties in the near
future.
Moving on to connections to particle physics, the inclusion of fermions into the
system would be a vital step towards modeling a more realistic standard model scalar
sector, and with that understand scale generation in the context of particle physics,
that can then ultimately be compared to the Planck scale generated in pure dilaton
gravity. To that end, both mechanisms would need to be studied in a coupled system,
requiring at least two scalar fields. Shifting our focus to cosmology, we would like to
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further disentangle the role of the scalar in regards to scale generation and inflation,
which also points to studying a similar theory like the one considered in this part
with a second scalar field added.
On a more technical note, including the full ghost interactions as well as RG time
derivatives on the RHS of the flow equations is a natrual next step and last but not
least, the numerical results obtained need to be tested for stability with respect to all
approximations made to ultimately extract solid numerical values for experimentally
accessible quantities from an enlarged truncation.





Conclusions and Outlook

In this thesis, we set out to investigate dilaton gravity as a theory of quantum gravity
using functional renormalization group methods. To that end, we introduced a
formulation of dilaton gravity and the notion of scale invariance in the context of
scalar-tensor theories and discussed the differences to traditional Einstein gravity. In
dilaton gravity, the scalar field serves as a bookkeeping device for the renormalization
group scale and a spontaneously broken scale symmetry leads to a natural notion
of the Planck scale even without deviating from the fixed point. We then derived
flow equations utilizing background field methods first, and an upgraded approach
that more clearly disentangles background from fluctuation fields and allows for the
correct implementation of physical scalings in a second step.
Conclusions emphasizing the individual part’s contributions were already given at
the end of the respective parts. We therefore only summarize the most important
results at this point.
When investigating special and limiting cases we found that in the regime where the
scale is much smaller than the scalar field, the system exhibits features of infrared
physics, more specifically a classical scaling law for the scalar field as well as vanishing
quantum contributions in the flow, while the contrary is true for the reverse limiting
case. We find a direct generalization of the ultraviolet fixed point in the Einstein-
Hilbert truncation, thereby collecting further evidence for the asymptotic safety
scenario.
Intrigued by these observations we derived a global fixed point solution connecting
the limiting cases, for which we find it to be vital to allow for derivative couplings in
the scalar sector and to carefully disentangle these from rescalings of the scalar field.
We therefore discuss at length the relations between different scaling parameters of
the theory and reformulate our theory in terms of a reduced number of physically
relevant parameters and functions.
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Once achieved, this reformulation makes the rich physical content of dilaton grav-
ity readily accessible. We demonstrate explicitly how infrared scale invariance is
spontaneously broken and thereby the scale of quantum gravity is set. However, the
corresponding solution is not stable, leading to a scenario with a moving Planck
scale. Not only does this offer a possibility to understand the measured value of
Newtons constant today, but also features naturally arising slow roll inflation on
an exponentially decreasing potential, which leads to a cosmological constant that
vanishes in the infrared limit. In this context, the unstable solution offers a natural
opportunity to explain why the measured value of the cosmological constant today
differs from predictions made by vacuum energy computations. Furthermore, a
moving Planck scale might make quantum gravity effects experimentally accessible
at a different scale than currently believed.
While these results are certainly encouraging, we also mention that work remains
to be done to single out only one physical solution, that is to eliminate a lingering
dependence on the ratio of scalar and graviton kinetic term in the infrared. We
emphasize that this unsettling parametric dependence does not change any physical
features, and is likely due to our system falling short at correctly implementing field
rescalings at finite values of the scalar field, or due to the current infeasibility of
formulating flow equations that only depend on the physically relevant functions
from the outset on. Finding this formulation is certainly material for further research
and pushes towards further disentangling the distinct roles of different parts of the
system. An improved vertex expansion including flows for the three point functions
would contribute towards this goal as well, as it would allow to distinguish wave
function renormalizations from couplings also in the gravity sector. Furthermore,
the inclusion of a term of order O(R2) as well as ghost and RG time derivatives
is suggested for reasons of consistency and closure of the truncation and stability
under all approximations made is vital to extract solid numerical results. Adding a
second scalar is suggested to disentangle the role a scalar field plays for inflation and
the generation of the physical scale. Furthermore, a second scalar is also needed to
ultimately compare the scale generated in pure gravity with another physical scale,
ideally from the area of particle physics. This would bring us considerably closer to
our ultimate goal of finding a unified and natural mathematical description of all of
nature’s features and further our understanding of physics on all scales.
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APPENDIX A

Background flows in d = 4, α = 0, β = 1

The full flow equation in arbitrary dimensions d > 2 and gauge parameters α and β
can be found in [42]. However, since for most of the work in the following chapters,
the structure of the equation can be very well inspected in d = 4 and deDonder
gauge, we give those results explicitly at this point.

A.1 Original System

Γk =
∫
d4x
√
g

(
Vk(χ2)− 1

2Fk(χ
2)R+ 1

2g
µν∂µχ∂νχ

)
We use the same notations and shorthands as [26] and write

∂tV = 2χ2V ′ − 4V + ζV ,

∂tF = 2χ2F ′ − 2F + ζF , (A.1)

where the flow generators ζV and ζF are given by

ζV = 1
192π2

{
6 + 30V

Σ0
+ 3(2Σ0 + 24 y F ′Σ′0 + FΣ1)

∆
+ δV

}
,

ζF = 1
1152π2

{
150 + 30F (3F − 2V )

Σ2
0

(A.2)
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−12
∆

(
24 y F ′Σ′0 + 2Σ0 + FΣ1

)
− 6y (3F ′2 + 2Σ′20 )

− 36
∆2

[
2y Σ0Σ

′
0 (7F ′ − 2V ′) (Σ1 − 1) + 2Σ2

0 Σ2

+2 yΣ1 (7F ′ − 2V ′) (2Σ0 V
′ − V Σ′0)

+24 y F ′Σ0Σ
′
0Σ2 − 12 y F Σ′20 Σ2

]
+ δF

}
.

Here we employ

Σ0 = 1
2F − V , ∆ =

(
12 y Σ′20 +Σ0Σ1

)
,

Σ1 = 1 + 2V ′ + 4 y V ′′ , Σ2 = F ′ + 2 y F ′′. (A.3)

The contributions

δV =
( 4
F

+ 5
2Σ0

+ Σ1
2∆

) (
∂tF + 2F − 2 y F ′

)
+12 y Σ′0

∆

(
∂tF

′ − 2 y F ′′
)
,

δF = −∂tF + 2F − 2 y F ′

F

[
30− 5F (7Σ0 + 4V )

Σ2
0

+ 3
∆2

(
F Σ1∆+ 8 y V ′Σ′0∆− 24 y F Σ′20 Σ2

−2y F Σ′0Σ1(7F ′ − 2V ′)
)]

(A.4)

+ 6 y
∆2

[
(F ′ + 10V ′)∆− 24Σ0Σ

′
0Σ2

−2 (7F ′ − 2V ′)Σ0Σ1

] (
∂tF

′ − 2 y F ′′
)
,

arise from the field dependence in the cutoff. They vanish for y →∞ and neglecting
these contributions altogether does not change the structure of the results obtained.

A.2 System with a Scaled Kinetic Term

Γk =
∫
d4x
√
g

(
Vk(χ2)− 1

2Fk(χ
2)R+ K

2 g
µν∂µχ∂νχ

)
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Introducing an RG-constant K to scale the kinetic term changes the flow generators
ζV and ζF to

ζV = 1
192π2

{
6 + 30V

Σ0
+ 3(2KΣ0 + 24 y F ′Σ′0 + FΣ1)

∆
+ δV

}
,

ζF = 1
1152π2

{
150 + 30F (3F − 2V )

Σ2
0

(A.5)

−12
∆

(
24 y F ′Σ′0 + 2KΣ0 + FΣ1

)
− 6y (3F ′2 + 2Σ′20 )

− 36
∆2

[
2y Σ0Σ

′
0 (7F ′ − 2V ′) (Σ1 −K) + 2Σ2

0 Σ2

+2 yΣ1 (7F ′ − 2V ′) (2Σ0 V
′ − V Σ′0)

+24 y F ′Σ0Σ
′
0Σ2 − 12 y F Σ′20 Σ2

]
+ δF

}
.

The shorthands introduced originally remain unchanged with the exception of Σ1,
which no reads

Σ1 = K + 2V ′ + 4 y V ′′ .

Furthermore, whenever referring to this class of equations, we understand

δV = δF = 0.

Note that the alteration in Σ1 is directly due to the propagator of the scalar field,
while the additional factors of K explicitly entering the flow generators are due to
inverting Γ (2) and multiplying with our field dependent ∂tRk.





APPENDIX B

Heat Kernel Expansions

In this appendix, we will develop the tools necessary to evaluate the functional traces
occurring on the RHS of the FRGE. Our presentation is footed on three distinct
sets of sources: The mathematically rigorous part is inspired by [199,200], whereas
the practical computations are sparked by [201]. Lastly, [202,203] provide a way of
applying our findings to the setup of this thesis.
Throughout this appendix, M will denote a smooth and compact Riemannian
manifold of dimension d, which is usually taken to not have a boundary.

B.1 Motivation
First of all, let us introduce a rewriting of our setup enabling us to use heat kernel
techniques. To that end, let D be a second order differential operator of Laplace
type on the vector bundle V on M . Then a unique connection and an endomorphism
E on V exist such that locally

D = −(gµν∇µ∇ν + E), (B.1)

where ∇µ is a covariant derivative, containing both curvature and gauge parts if
applicable. Note that in this appendix we explicitly write out the covariant derivatives
to emphasize their geometrical meaning.
Let W (D) be a function of the operator D. Its trace over the space of square
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integrable functions can then be written as

TrL2 W (D) =
∑
i

W (λi), (B.2)

where λi are the eigenvalues of the the operator D. Note that usually, i will assume
infinitely many values, so properly defining the trace is actually more subtle than
it might seem. For a short introduction to calculus on spaces of infinite dimension,
see [47].
With W̃ (s) being connected to W (z) via a Laplace transformation,

W (z) =
∫ ∞

0
dse−zsW̃ (s),

we can now rewrite equation (B.2) as

TrL2 W (D) =
∫ ∞

0
dsK(s, f = id, D)W̃ (s), (B.3)

where

K(s, f,D) = TrL2 (f exp(−sD)) =
∑
i

f exp(−sλi) (B.4)

is the trace of the heat kernel1 f exp(−sD) of D.
These somewhat tedious rewritings lead to the advantage of allowing for the ready
application of a well established asymptotic expansion (see for instance [204]) for the
trace in the limit s→ 0+ reading

TrL2 (f exp(−sD)) = K(s, f,D) =
∑
k≥0

s
k−d

2 ak(f,D), (B.5)

where the objects ak(f,D) are the heat kernel coefficients of the differential operator
D.
Further introducing Qn(W ) =

∫∞
0 dt t−nW̃ (t) and using

Γ (n) =
∫ ∞

0
dte−ttn−1

1The name heat kernel stems from the fact that it is a fundamental solution to the heat equation,
used to study heat conduction as well as diffusion in solid state physics. It describes the evolution
of temperature.
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allows us to write

Qn(W ) = 1
Γ (n)

∫ ∞
0

dt tn−1W (t) (B.6)

for n a positive real number. Since we are only interested in the local behavior of
the theory, that is on length scales much smaller than the typical curvature radius,
we can plug (B.5) into (B.3) to obtain

TrL2 W (D) =
∑
k≥0

s
k−d

2 ak(f,D)Q d−k
2

(W ). (B.7)

This is our desired result, as it enables us to rewrite the functional trace in terms of
the heat kernel coefficients ak(f,D).2 Even though we will need the case f = id for
our concrete calculations, we left the function f arbitrary to be able to obtain the
form of ak(f,D) for the differential operators in consideration.
It should be mentioned that there is a close relationship between the function Qn(W )
and the well known ζ function [205] of a Laplace type differential operator D, used
to make rigor sense of the trace on the infinitesimally dimensional function space L2.
Defining, as usual in mathematical literature,

ζ(u, f,D) = TrL2(fD−u), (B.8)

we can carry out the same steps as in (B.6) to arrive at

ζ(u, f,D) = 1
Γ (u)

∫ ∞
0

dt tu−1K(t, f,D). (B.9)

Thus, Qn(W ) is a version of ζ(u, f,D), adapted to our task of obtaining the spectrum
of a function of the differential operator D.
In principle, equation (B.9) can be inverted directly to

K(t, f,D) = 1
2πi

∮
ds t−sΓ (s)ζ(s, f,D), (B.10)

meaning that we would be able to obtain the coefficients an(f,D) by applying the
residue theorem,

ak(f,D) = Ress= d−k
2

(Γ (s)ζ(s, f,D)) , (B.11)

and, in particular, ad(f,D) = ζ(0, f,D). However, we will employ a different
approach, emphasizing the geometrical aspects of the heat kernel expansion.
2For our discussion, we only need heat kernel coefficients for d > 2 and k ≤ 2, thus d−k

2 is always
greater than zero.
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B.2 Obtaining the Coefficients ak(f,D)
The most important property of the coefficients ak(f,D), which we will not proof in
this thesis, is that they can locally be expressed in terms of geometrical invariants AIk
of dimension k. Given the fact that for manifolds without a boundary all boundary
integrals need to vanish, we conclude that no odd-dimensional invariant constructed
from the metric gµν and its derivatives exists. Thus,

a2k+1(f,D) = 0 (B.12)

holds.
Furthermore, we are only interested in expansions that are at most linear in the
curvature scalar R, hence we only need a0(f,D) and a2(f,D).
To obtain explicit expressions, we write

ak(f,D) = TrV
∫

ddx√g(fuIkAIk), (B.13)

where the uIk are constants and a summation over I is assumed. Note that the
trace is now taken on the vector bundle V , a much more accessible space than the
functional space L2. For k = 0, there is only one invariant, namely the identity
matrix 1, whereas for k = 2 we already have R as well as the endomorphism E.
Thus we are now able to write, using rescaled constants αIk

a0(f,D) = 1
(4π)d/2

∫
ddx√gTrV (α0f),

a2(f,D) = 1
(4π)d/2

1
6

∫
ddx√gTrV f(α1

2E + α2
2R),

a4(f,D) = 1
(4π)d/2

1
360

∫
ddx√gTrV f(α1

3�E + α2
3RE + α3

3E
2

+ α4
3�R+ α5

3R
2 + α6

3R
µνRµν + α7

3R
µνρσRµνρσ + α8

3Ω
µνΩµν),

(B.14)

with � = ∇µ∇µ and Ωµν = [∇µ,∇ν ] and expressions within the traces multiplied by
the identity 1 on the space V where necessary.
Even though it will not be needed in this thesis, we briefly mention that for k = 6,
there are already 37 invariants to be considered. Thus, the complexity of obtaining
the coefficients increases rapidly.
Our goal for the remainder of this section is to determine the three constants αIk
relevant for our O(R) considerations. Let us begin with a rather simple observation:
Assume that M can be written as a direct sum of two manifolds M1 and M2, that
is M = M1 ⊕M2. Then, the differential operator D can be decomposed into its
actions on the manifolds M1 and M2, namely D = D1 ⊗ 1 + 1 ⊗D2, also leading
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to two independent sets of indices and coordinates on the vector bundles V1 and
V2. Symbolically, we are then able to write exp(−tD) = exp(−tD1)⊗ exp(−tD2) or,
after plugging the decompositions just obtained into the expressions for the heat
kernel coefficients,

ak(x,D) =
∑
i+j=k

ai(x1, D1) aj(x2, D2), (B.15)

where we have taken f to be just the coordinate function, canonically defined on the
manifolds M as well as on M1 and M2.
Let us further specialize M1 = S1 and choose a simple Laplacian, D1 = −∂ 2

x1 . This
means that the geometric invariants are solely determined by D2 on M2 and by
virtue of equation (B.13), therefore we can write

ak(f(x2), D) =
∫
S1×M2

ddx√g
∑
i

TrV (f(x2)uI(d)A
I
k(D))

= 2π
∫
M2

dd−1√g
∑
i

TrV (f(x2)uI(d)A
I
k(D2)).

(B.16)

As a second step, we can employ equation (B.15). Thee spectrum of the operator
−∂ x1 on S1 is just {l2}l∈Z. Utilizing the Poisson summation formula, we can obtain
the asymptotic behavior of the heat kernel explicitly, reading

K(t,D1) =
∑
l∈Z

exp(−tl2)

=
√
π

t

∑
l∈Z

exp(−π2l2/t)

=
√
π

t
+O(exp(−1/t)).

(B.17)

Moreover, we can also rewrite equation (B.16) to read

ak(f(x2), D) =
√
π

∫
M2

dd−1√g
∑
i

TrV (f(x2)uI(d−1)A
I
k(D2)), (B.18)

which yields upon comparison with equation (B.16)

uI(d) =
√

4πuI(d+1). (B.19)

These investigations reveal two conclusions: Firstly, we fixed the dependence of the
constants uI on the dimension d to be encoded in prefactors (4π)−d/2 only. That
is why we rescaled the prefactors in equation (B.14), transforming them into true
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constants in the process. Secondly, we fixed the constant α0 to equal unity, α0 = 1,
when considering the free Laplacian on the sphere S1.
Proceeding to calculate α1

2 and α2
2, we will need the function f introduced with the

definition of the heat kernel expansion. So let f and F be smooth functions. The
following relations can be checked by explicit calculations:

d

dε
ak(1, e−2εfD)

∣∣
ε=0= (d− k)ak(f,D), (B.20)

d

dε
ak(1, D − εF )

∣∣
ε=0= ak−2(F,D), (B.21)

d

dε
ad−2(e−2εfF, e−2εfD)

∣∣
ε=0= 0. (B.22)

Equation (B.21) restricts the coefficients in the presence of an endomorphism E,
whereas equations (B.20) and (B.22) yield properties for the behavior under local
scale transformations.
Let us use equation (B.21) for k = 2 to see that

1
6

∫
ddx√gTrV fα1

1 =
∫

ddx√gTrV f, (B.23)

or equivalently, α1
1 = 6. For k = 4 we obtain α3

2 = 180 as well as α2
2 = 60α2

1. To
proceed further, we will need to examine how the quantities involved in equation
(B.14) scale under the transformation gµν → exp(2εf)gµν . Again, the following
equations can be checked via explicit calculations:

d

dε

√
g
∣∣
ε=0 = df

√
g ,

d

dε
Rµνρσ

∣∣
ε=0 = −2fRµνρσ

+gνσ∇µ∇ρf + gµρ∇ν∇σf;νσ − gµσ∇ν∇ρf − gνρ∇µ∇σf ,
d

dε
E
∣∣
ε=0 = −2fE + 1

2(d− 2)�f ,

d

dε
R
∣∣
ε=0 = −2fR− 2(d− 1)�f ,

d

dε
�E

∣∣
ε=0 = −4f�E − 2�fE + 1

2(d− 2)�2f + (d− 6)∇µf∇µE ,

d

dε
RE

∣∣
ε=0 = −4fRE + 1

2(d− 2)�fR− 2(d− 1)�fE ,

d

dε
E2 ∣∣

ε=0 = −4fE2 + (d− 2)�fE ,
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d

dε
�R

∣∣
ε=0 = −4f�R− 2�fR− 2(d− 1)�2f + (d− 6)∇µf∇µR ,

d

dε
R2 ∣∣

ε=0 = −4fR2 − 4(d− 1)�fR ,

d

dε
RµνRµν

∣∣
ε=0 = −4fRµνRµν − 2�fR− 2(d− 2)∇µ∇νf∇µ∇νR ,

d

dε
RµνρσRµνρσ

∣∣
ε=0 = −4fRµνρσRµνρσ − 8∇µ∇νf∇µ∇νR ,

d

dε
ΩµνΩµν

∣∣
ε=0 = −4fΩµνΩµν . (B.24)

We can now apply equation (B.22) to d = 4 to obtain α1
1 = 6α2

1 or α2
1 = 1 and

α2
2 = 60. The other coefficients present in equation (B.14) can be obtained with

similar techniques, with the exception of α8
2, for which one can apply the Gauss-

Bonnet theorem [200]. However, since in this thesis our considerations are restricted
to α0 and α1

1, α
2
1, we only state the final version of equation (B.14), reading

a0(f,D) = 1
(4π)d/2

∫
ddx√gTrV (f),

a2(f,D) = 1
(4π)d/2

1
6

∫
ddx√gTrV f(6E +R),

a4(f,D) = 1
(4π)d/2

1
360

∫
ddx√gTrV f(60�E + 60RE + 180E2

+ 12�R+ 5R2 − 2RµνRµν + 2RµνρσRµνρσ + 30ΩµνΩµν).

(B.25)

In order to obtain expressions for a4(f,D) that only depend on the fully contracted
curvature scalar R as a geometrical quantity, we would need to explicitly work in a
maximally symmetric background, allowing for construction of Rµν from R.
We are now able to apply our findings to the fields carrying different spin and
satisfying numerous differential constraints from our theory. For this, we will set
f = id. The main goal will be to determine the dimensionality of the respective
vector bundles and with that TrV 1.

B.3 Differentially Constrained Fields
Reconsidering equation (6.1), we see that the fields occurring in the FRGE for
our theory are the scalar φ as well as a vector ghost Cµ, C̄µ and the symmetric
tensor graviton hµν . Obtaining the expressions for TrV 1 for these unconstrained
fields is a simple task in d dimension, as a scalar has only one, a vector d and a
symmetric tensor d(d+1)

2 independent components. However, to allow for feasible
inversion of the kinetic operators, we decomposed our fields in equations (6.2) and
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(6.3), leaving us with the computation of TrV 1 for scalars (φ, σ, h, C, C̄), transverse
vectors (CTµ , C̄Tµ , ξµ) and transverse traceless symmetric tensors (hTµν) instead.
Let us proceed to calculating the trace of the heat kernel coefficients K(s, f = id, D),
using equation (B.4). To unclutter the notation, we will drop the explicit dependence
on s and f . Consider a vector field decomposed into its transverse and its longitudinal
part first,

Aµ = ATµ +∇µΦ (B.26)

where we require ∇µATµ = 0. Our task is to relate the spectrum of � = ∇µ∇µ when
acting on the longitudinal part ∇µΦ to its spectrum when acting on scalars.
On a d-dimensional sphere, the following commutation relation holds:

� (∇µΦ) = ∇µ
(
�+ R

d

)
Φ, (B.27)

allowing us to write K(−�) as

K (−�) |Aµ= K(−�) |ATµ +K
(
−
(
�+ R

d

))
|Φ − exp

(
s
R

d

)
. (B.28)

The first two terms arise directly from the commutation relation, whereas the last
term needs to be subtracted to exclude the constant eigenfunction of −

(
�+ R

d

)
,

leading to a negative, unphysical eigenmode, which will be dealt with separately.
Similarly, the two commutation relations

� (∇µξµ +∇νξµ) =∇µ
(
�+ d+ 1

d(d− 1)R
)
ξν +∇ν

(
�+ d+ 1

d(d− 1)R
)
ξµ and

�
(
∇µ∇ν −

1
d
gµν�

)
σ =

(
∇µ∇ν −

1
d
gµν�

)(
�− 2

d− 1R
)
σ

(B.29)

enable us to write for the fields appearing in the York decomposition (6.2)

K (−�) |hµν=K (−�) |hTµν +K
(
−
(
�+ d+ 1

d(d− 1)R
))
|ξµ

+K (−�) |h +K
(
−
(
�+ 2

d− 1R
))
|σ

− exp
(
s

2
d− 1R

)
− (d+ 1) exp

(
s

1
d− 1R

)
− d(d+ 1)

2 exp
(
s

2
d(d− 1)R

)
.

(B.30)
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field S V V T T TTT

Tr(1) 1 d d− 1 d(d+1)
2

(d+1)(d−2)
2

Tr(1R) R dR d(d−1)−6
d R d(d+1)

2 R (d+1)(d+2)(d−5)
2(d−1) R

Table B.1: Traces for use in the heat kernel coefficients a0 and a2 in d-dimensions. We
adopted the shorthands S (scalar), V (vector), V T (transverse vector), T (symmetric tensor)
and TTT (symmetric transverse traceless tensor).

The subtractions appear as explained above. To see where the excluded modes enter,
recall that ak(D) = O

(∫
ddx√gR

k
2
)

= O
(
R
k−d

2
)
. Expanding the exponential

subtractions in Taylor series of the form
∑
i ciR

i, we see that the coefficient ci enters
into the heat kernel coefficient with i = k−d

2 , or, put in another way, there is no
contributions for k < d. For our O(R) analyses, this means that the only critical
case is d = 2, which we will exclude from our further considerations.
We will demonstrate how to obtain explicit expressions for a0 and ai1 for the de-
composition of a vector. The coefficients for the York decomposed symmetric rank
two tensor are obtained in a completely equivalent manner. Reconsidering equation
(B.5), we apply it to both the RHS and the LHS of equation (B.28), neglecting the
constant subtractions. Comparing powers of s yields for a0

TrAµ(1) = TrATµ (1) + TrΦ(1)

=⇒ TrATµ (1) = d− 1
(B.31)

and for a2

TrAµ (R1) = TrATµ (R1) + TrΦ
(

6R
d

+R1

)
=⇒ TrATµ (R1) = R

(
d(d− 1)− 6

d

)
.

(B.32)

We summarize the coefficients in table B.1.





APPENDIX C

Notes on the Derivation of the Flat Flow Equations

C.1 Notation
For n point functions involving ni derivatives of the field φi and m distinct fields in
total, we use different, equivalent notations, including

Γ
(n)
n1φ1...nmφm

, Γ
(n)
φ1 . . . φ1︸ ︷︷ ︸
n1 times

,...φm . . . φm︸ ︷︷ ︸
nm times

, Γ (n1φ1...nmφm), Γ (

n1 times︷ ︸︸ ︷
φ1 . . . φ1,...

nm times︷ ︸︸ ︷
φm . . . φm),

depending on what needs to be emphasized in a specific situation. When it is either
obvious from the context or insignificant what the specific fields are, we abbreviate
to Γ (n).
Furthermore, we denote the RHS of the flow equation for the function Γ (n) with
Flow(n), and use the same different notations as abovehand when multiple fields are
involved.

C.2 Gauge Fixing
We consider the gauge fixing (4.12), and start out with simply decomposing the
graviton into a tracefree part hTFµν and the trace,

hµν = hTFµν + 1
d
ḡµνh. (C.1)
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Thus, in comparison with the Yorck decomposition (6.2), we did not decompose the
tracefree part further for the time being. Now consider the gauge function in the
gauge fixing, reading

F̄µ = ∇̄νhνµ −
β + 1
d
∇̄µh

= ∇̄νhνµ TF + 1
d
ḡµν∇̄νh−

β + 1
d
∇̄µh

= ∇̄νhνµ TF +
(1
d
− β + 1

d

)
∇̄µh.

(C.2)

The bracketed prefactor of the second term vanished for β = 0 making the gauge
fixing independent of the trace h. But then also, ∇̄νhνµ TF is exclusively longitudinal
such that, when carrying over to the full Yorck decomposition (6.2), the transverse
traceless mode hTTµν does not enter the gauge fixing. That is why we think about
this mode as the gauge independent and, since it is also numerically dominating, the
physical mode.
Now, if we fix α = 0 in the gauge fixing (4.12), we ensure an exact implementation of
the gauge fixing in the sense that the integral kernel tends towards a δ distribution,
and thus the gauge fixing condition gets reduced even further to the statement that
only hTTµν and h will be able to propagate. This can also be shown by explicitly
computing all propagators [206]. We conclude that the gauge fixing α = 0, β = 0
significantly simplifies our computations, which is why we use it throughout part
III of this thesis, and leave the study of dependencies of the results of the choice of
gauge parameters for later work.

C.3 Projectors
Any vector vµ can be decomposed into its transverse and longitudinal components
through the projectors

ΠT
µν = δµν −

pµpν
p2 ,

ΠL
µν = pµpν

p2 .
(C.3)

This decomposition is orthogonal and we can then write

vµ = vTµ + vLµ = ΠT
µνv

ν +ΠT
µνv

ν .

This is possible, because the projectors (C.3) form a basis of the space of symmetric
rank two tensors. Similar systems can be found for tensors of higher rank, even
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though they are usually much more difficult to access. For instance, for the York
decomposition [183–185] as used in equation (6.2) or chapter 10, expressions for
the projectors on the spin 0 modes are unknown. A potential way out is the Stelle
decomposition [52], which differs from the Yorck decomposition in the spin 0 modes.
However, in this thesis we only explicitly need the transverse traceless propagator. It
is given by

ΠTT
µνρσ = 1

2
(
ΠT
µρΠ

T
νσ +ΠT

µσΠ
T
νρ

)
− 1

3Π
T
µνΠ

T
ρσ. (C.4)

We use it at two points during the derivation of the flat flow equations: Firstly, we
decompose the graviton into its York components. After having done so, inversion is
straightforward: We can write the full propagator in matrix notation, see the explicit
formula in the background derivation (6.5), invert the block diagonal matrix, and add
the TT projector to the transverse traceless component, since it is the corresponding
basis element.
Secondly, to extract Flow(2)

hTT hTT
from the diagrammatic expressions, which amounts

to tracing over spacetime indices in the process of carrying out the Supertrace in
equation (1.19), we also use the TT projector (C.4).

C.4 Vertex Construction and Regulator
We implement the regularization of our theory by replacing

p2 → p2 + rk(p2),

to form the fully dressed propagator

G :=
(
Γ

(2)
k +Rk

)−1
,

where the k-dependent function rk(p2) realizes an optimized Litim cutoff [186,187],

r(x) = 1− x
x

Θ (1− x) . (C.5)

Then, consider the flow equation (1.19) for the effective action, from which the flow
equations for the n-point function are derived by means of functional derivation.
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Schematically we can write

∂tΓ ∼
Ṙk

Γ (2) +Rk

=
˙

Γ
(2)
k (p2)− ˙

Γ
(2)
k

(
p2 + rk(p2)

)
Γ

(2)
k (p2 + rk(p2)) .

(C.6)

At this point, we need an ansatz for the 2-point functions to carry out our vertex
construction. Focusing on Γ (2)

χχ , we set

Γ (2)
χχ = Z

(
K(χ̄2)p2 + 2V ′(χ̄2) + 4χ̄2V ′′(χ̄2)

)
,

which is just the well known inverse propagator for a rescaled scalar field χ̄2 = Zχ2,
which should not be confused with the background field, with the additional function
K(χ2). It becomes visible at this stage already that we will need to set a relative
scaling of Z and K to avoid double ambiguities. Note that on a flat background
R̄ = 0, and thus no terms proportional to F (χ̄2) should enter. All other 2-point
function will just be set to be their respective functional derivatives of Γ from
equation (3.6).
Now, going back to equation (C.6), we can write

∂tΓ ∼
∂t
(
ZK(χ̄2)r

)
Z

G |Z=1

∼ K(χ̄2) (ṙ − ηr)G |Z=1 .

(C.7)

Note that in the second step we neglected RG time derivatives of the function K,
which is consistent with neglecting all RG time derivatives on the RHS of the flow
equation in the current analysis, and corresponds to neglecting Ḟ in the equivalent
expressions with the graviton 2 point function.
Having understood the construction for a pure scalar two point function, the gener-
alization to mixed two point functions as well as higher order correlation functions
that enter, once we differentiate equation (1.19) twice with respect to χ or hµνTT is
straightforward. The crucial ingredient is to require any n-point function to scale
according to

Γ (nχmĥ) ∝ Z
n
2 ,
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C.4.1 Z Factors from the Vertex Construction
More explicitly, we use equations (4.17) with

Γ (nχmĥ)(p1, . . . , pn+m) = Z
n
2
δn+m

δχ̄nδĥm
Γ (p1, . . . , pn+m). (C.8)

Note how at this point also the generalization to more than one wave function
renormalization is straightforward but would, however, require the flows of the 3-
point functions to distinguish wave function renormalizations from couplings for the
graviton modes.
The first point we want to make here is that for a mixed two point function, the
above derivation goes through almost exactly alike, with the slight complication that
now there is a term ∂tZ

1/2, which, however, is of course simple to calculate, and the
result is the one stated in equation (10.4).
The second point concerns higher correlation functions entering diagrammatic expan-
sions like the ones we showed in figure 4.1. For simplicity, assume that we introduce
wave function renormalization for all fields φi and call them Zi. We can of course
set an arbitrary number equal to 1 if desired. We further assume that there are n
distinct fields at an n-point vertex to simplify combinatorics. Again, setting φi = φj
is straightforward. Then, an n-point vertex Γ (n) scales like

√
Z1Z2 . . . Zn, and has

n propagators attached. If we assume there is no regulator insertion, then each
regulator scales like (Zi)−1/2, so the contraction is Z independent like it should be.
Adding the regulator, whenever the RG time derivative in ∂tRk hits a Z it gets
combined to η, and whenever it hits anything else, the Z factors drop out again.
That is why our schematic derivation also holds once higher correlation functions are
involved.

C.4.2 Bounds the Anomalous Dimensions
In equation (C.7), we derived that

∂tRk ∼ ṙ − ηr.

This must not become negative, as otherwise the suppression of momentum modes
would be turned around. This condition depends on the choice of shape function.
Considering the limit k � p for the shape function (C.5), which we only use in the
bosonic case, we arrive at the bound

η < 2.

For details or the fermionic case, see [206].
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C.5 Master Equation
We explain how to arrive at diagrammatic expansions like the ones shown in figure
4.1. For a complete, closed formula we refer to [48,192].
Start from the flow equation (1.19). Then, the flow of the n-point function of an
arbitrary field φ is derived by taking n functional derivatives with respect to φ. The
field dependent quantity is the fully dressed propagator

G =
(
Γ (2) +Rk

)−1
.

For a general invertable tensor T (φ) we have

1 = T (φ)T−1(φ)

⇒0 =
(
δ

δφ
T (φ)

)
T−1(φ) + T (φ)

(
δ

δφ
T−1(φ)

)
⇒ δ

δφ
T (−1)(φ) = −T−1(φ)δT (φ)

δφ
T (φ)T−1(φ).

(C.9)

Then G evolves to

δ

δφ
G = −GΓ (3)G,

and further to

δ2

δφ2 = 2GΓ (3)GΓ (3)G−GΓ (4)G,

where we have dropped all indices to unclutter notation.
After inserting the RG time derivative of the regulator ∂tRk, carrying out the
supertrace and adding the prefactor, this is exactly what is represented in the upper
pane of figure 4.1. The specific expressions for scalar and transverse traceless graviton
mode are derived exactly like this, only taking care of the different field combinations
that can enter propagators and vertices.

C.6 Momentum Integrals
Having set x = cos(θ), where θ is the angle between loop and external momentum,
we necessarily pick up an additional factor of

√
1− x2 = sin(θ) from the volume

element. Directly solving these momentum integrals is impossible given the size of
the expressions. But note that all combinations that can enter the flow are of the
form xn

√
1− x2 with n an integer. Then, expanding all expressions in powers of x
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we can solve the angular integrals by setting

xn
√

1− x2 =



π
2 if n = 0,
0 if n = 1,
√
π

2
Γ( 1+n

2 )
Γ(2+n

2 ) if n is even,
0 if n is odd,

(C.10)

in exchange for the angular integral
∫

dΩxn
√

1− x2.





APPENDIX D

Flat Flow Equations

D.1 K(y) as a Coupling

0 = 355f3
0

5184π2(2v0 − f0)3 + f3
0

64π2(4v0 − 3f0)3 + 395f2
0

2592π2(2v0 − f0)2

+ f2
0

12π2(4v0 − 3f0)2 + 25f0
864π2(2v0 − f0) + 5f0

144π2(4v0 − 3f0) − 4v0 −
1

192π2

(D.1)

0 =− 5f4
0

384π2(2v0 − f0)4 −
3f4

0
128π2(4v0 − 3f0)4 −

185f3
0

1296π2(2v0 − f0)3

− 235f2
0

1152π2(2v0 − f0)2 + 233f2
0

576π2(4v0 − 3f0)2 + 115f0
1152π2(2v0 − f0)

− 305f0
1728π2(4v0 − 3f0) −

1
384π2 − 2f0

(D.2)

0 = k0
24π2(4v0 − 3f0) −

f0k0
8π2(4v0 − 3f0)2 (D.3)
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D.2 Introducing the Anomalous Dimension η

0 =− 2048v7
0

(3f0 − 4v0) 3 (f0 − 2v0) 3 + 7680f0v
6
0

(3f0 − 4v0) 3 (f0 − 2v0) 3

− 8v6
0

3π2 (3f0 − 4v0) 3 (f0 − 2v0) 3 −
11904f2

0 v
5
0

(3f0 − 4v0) 3 (f0 − 2v0) 3

+ 590f0v
5
0

27π2 (3f0 − 4v0) 3 (f0 − 2v0) 3 + 9760f3
0 v

4
0

(3f0 − 4v0) 3 (f0 − 2v0) 3

− 4979f2
0 v

4
0

162π2 (3f0 − 4v0) 3 (f0 − 2v0) 3 −
4464f4

0 v
3
0

(3f0 − 4v0) 3 (f0 − 2v0) 3

+ 239f3
0 v

3
0

54π2 (3f0 − 4v0) 3 (f0 − 2v0) 3 + 1080f5
0 v

2
0

(3f0 − 4v0) 3 (f0 − 2v0) 3

+ 1073f4
0 v

2
0

72π2 (3f0 − 4v0) 3 (f0 − 2v0) 3 −
108f6

0 v0
(3f0 − 4v0) 3 (f0 − 2v0) 3

− 26f5
0 v0

3π2 (3f0 − 4v0) 3 (f0 − 2v0) 3 + 81f6
0

64π2 (3f0 − 4v0) 3 (f0 − 2v0) 3

+ η0
1920π2
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384π2 (2v0 − f0) 4 −
3f4

0
128π2 (4v0 − 3f0) 4

− 185f3
0

1296π2 (2v0 − f0) 3 −
235f2

0
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0

576π2 (4v0 − 3f0) 2 + 115f0
1152π2 (2v0 − f0)

− 305f0
1728π2 (4v0 − 3f0) − 2f0 −

1
384π2

(D.5)

η0 = 3f0 − 2v0
12π2 (3f0 − 4v0) 2 + η0
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APPENDIX E

Notes on Classical Dilaton Gravity

Building on our discussion of scalar fields in gravity in section 3.1, we give the classical
field equations for the action (3.6), where we replaced χ2 → χ for convenience,
obtained by varying w.r.t to the metric gµν as well as to the scalar field χ. We neglect
possible energy momentum tensors.
Using standard tensor calculus, δΓ

δgµν = 0 yields

0 =F
(
Rµν −

1
2Rgµν

)
+�Fgµν −∇µ∇νF

+ V gµν + 1
2K∂

ρχ∂ρχgµν −K∂µχ∂νχ.
(E.1)

Here, � = ∇µ∇µ, where ∇µ is the covariant derivative. δΓ
δχ = 0 on the other hand

gives

∇µ (K∂µχ) + ∂χV = 1
2 [(∂χF )R− (∂χK)∂µχ∂µχ] . (E.2)

Note that this only reduces to the curved generalization of the Klein-Gordan equa-
tion K�χ + ∂χV = 0 well known from scalar field theories if F and K are field
independent.1
In reminiscence of the classical Einstein field equations

Gµν + Λgµν = Tµν ,

1Note that � explicitly contains the spacetime connection, for a scalar field � = ∇µ∂µ.
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where Gµν is the Einstein and Tµν the energy momentum tensor, we call the term
multiplying the metric the effective cosmological constant throughout this thesis.
In equation (E.1) there are contributions from all three functions V , F and K
to the effective cosmological constant. Since we will regard scalar contributions
as contributions to the effective cosmological constant rather than to the energy
momentum tensor, the latter does not play a role in our treatment. However, it
is exactly this equivalence that triggers the connection between the cosmological
constant and the vacuum energy [119,120].



APPENDIX F

Diffeomorphisms and Lie Derivatives

This appendix serves as a brief introduction to diffeomorphisms as the gauge group
of general relativity and their action on the dynamical degrees of freedom. This can
infinitesimally best be described with the help of Lie derivatives, as was done already
in equation (2.5). We follow the treatment outlined in [207].

F.1 Coordinate Transformations and Diffeomorphisms
Let us begin with a brief discussion concerning the classification of diffeomorphisms
as the gauge group of general relativity. Let

Φ : M → N

p 7→ Φ(p), (F.1)

where M and N are manifolds with dimM = dimN = n and p ∈M . Φ is called a
diffeomorphism if Φ ∈ C∞ is one-to-one, onto and Φ−1 exists as well as Φ−1 ∈ C∞
holds.
Two manifolds M and N are said to be diffeomorphic if a diffeomorphism Φ exists
between them. Diffeomorphic manifolds have the same manifold structure and
thus the spacetime structure will result in equivalent physics. To understand this
statement in greater detail, let us find a definition of a diffeomorphism based on our
knowledge of mappings on the vector space Rn rather than on the abstract manifolds
M and N . Let a ∈ M and b ∈ N be points on the manifolds and Ψa and Ψb local

173



174 F Diffeomorphisms and Lie Derivatives

coordinate charts defined on neighborhoods Ua and Ub, i.e.

Ψa : Ua ⊂M → Rn,
Ψb : Ub ⊂ N → Rn. (F.2)

We can then introduce the notion of a C∞ map between manifolds resorting to
ordinary functions on Rn via the identification

Φ ∈ C∞ ⇔ Ψb ◦ Φ ◦ Ψ−1
a ∈ C∞, (F.3)

illustrating how M and N have identical manifold structure.
It is in this sense that diffeomorphisms are to be understood as the gauge group of
general relativity. If two spacetime manifolds are diffeomorphic, the physics in the
context of general relativity are equivalent, and therefore altering the spacetime by
means of the action of a diffeomorphism is a gauge freedom.
To this end, it is useful to familiarize oneself with the two different viewpoints that
can be taken when considering a diffeomorphism. The perspective taken so far is
an active one, as a point p ∈ M was carried over to a different point Φ(p) ∈ M1

and with that, all tensor quantities are now evaluated at Φ(p). On the other hand,
we could also use local charts Ψp and ΨΦ(p) acting on Up ⊂ M and UΦ(p) ⊂ M ,
respectively, and defining local coordinate systems {xµ} and {yµ} to understand the
action of Φ as defining a new local coordinate system {x′µ} on U ′p = Φ−1(UΦ(p)) via
the identification

x′µ(q) = yµ(Φ(q)) ∀ q ∈ U ′p. (F.4)

This second, passive point of view demonstrates why invariance under general
coordinate transformations is equivalent to requiring the action of diffeomorphisms
to represent a gauge freedom.
For our later applications, we will need the notion of a one-parameter group of
diffeomorphisms. Let

Φt : R×M → M,

(t, p) 7→ Φt(p), (F.5)

and require the map Φt to be a diffeomorphism for fixed t ∈ R. We call Φt a
one-paramter group of diffeomorphisms, if for s, t ∈ R

Φs ◦ Φt = Φs+t (F.6)

1Since M and N are assumed to be diffeomorphic and thus equivalent from a physical point of view,
we will resort to diffeomorphisms Φ : M →M .
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holds. We can now naturally associate a vector field v with Φt as follows. For fixed
p ∈ M , Φt : R → M defines a curve on the manifold M . Define v(p) to be the
tangent to this curve at t = 0, i.e. at the point p. Then v is a vector field on M and
generates the infinitesimal version of the transformation induced by Φt.

F.2 Maps of Manifolds
Let us go back one step and consider an arbitrary C∞ map

Φ : M → N

p 7→ Φ(p),
(F.7)

where now M and N do not necessarily need to have the same dimension anymore.
We can use Φ to define a pull-back of a function f : N → R onto the manifold M by
considering f ◦ Φ : M → R. In a similar manner, we can use Φ to identify tangent
vectors at p ∈M with tangent vectors at Φ(p) ∈ N by virtue of the map Φ∗, defined
as

Φ∗ : TpM → TΦ(p)M,

v 7→ Φ∗v, (F.8)

where Φ∗v is defined with the help of the pull-back f ◦Φ to act on a smooth function
f as

(Φ∗v)(f) = v(f ◦ Φ). (F.9)

An identical construction can be utilized to introduce a map Φ∗ which identifies
cotangent vectors w ∈ TΦ(p)M

∗ with their canonical counterparts in TpM∗, requiring

(Φ∗w)v = w(Φ∗v) (F.10)

for any v ∈ TpM . The action of Φ∗ can be extended in a natural way to (l, 0)-tensor
fields Tµ1...µl and the action of Φ∗to (0, k)-tensor fields Tν1...νk as

(Φ∗ T )µ1...µl(w1)µ1 . . . (wl)µl = Tµ1...µl(Φ∗w1)µ1 . . . (Φ∗wl)µl
(Φ∗T )ν1...νk(v1)ν1 . . . (vk)νk = Tν1...νk(Φ∗v1)ν1 . . . (Φ∗vk)νk ,

(F.11)

where we introduced the usual index notation for vectors and their duals and used
equation (F.10) to rewrite our original condition (F.9). Note that Φ∗ only acts on
upper indices, whereas the action of Φ∗ is limited to lower indices. Thus, so far we are
unable to transform tensors of type (l, k) for both l and k being nonzero. However,
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if Φ is both one-to-one, onto, and if in addition Φ−1 exists and is in C∞ as well (i.e.
if Φ is a diffeomorphism, equation (F.1)), we can extend the action of Φ∗ to tensors
of arbitrary type by using the fact that for a diffeomorphism, Φ−1 : N → M and
thus, identifying M with N as before,(

Φ−1
)∗

: TΦ(p)M
∗ → TpM

∗, (F.12)

which leads to

(Φ∗T )µ1...µl
ν1...νk (v1)ν1 . . . (vk)νk (w1)µ1 . . . (wl)µl

=Tµ1...µl
ν1...νk ((Φ−1)∗v1)ν1 . . . ((Φ−1)∗vk)νk (Φ∗w1)µ1 . . . (Φ∗wl)µl .

(F.13)

It is of course also possible to perform the corresponding construction, using Φ∗
instead of Φ∗.

F.3 The Lie Derivative
Let us now proceed to define the Lie derivative Lv along a vector field v. In order to
do so, let Φt be a one-parameter group of diffeomorphisms that generates the vector
field v. For a small t, we define Lv to be the change in a tensor field as Tµ1...µl

ν1...νk
is carried over to Φ∗−tTµ1...µl

ν1...νk , more precisely

Lv Tµ1...µl
ν1...νk

∣∣
p
= lim

t→0


(
Φ∗−tT

µ1...µl
ν1...νk

)
− Tµ1...µl

ν1...νk

t


p

. (F.14)

By virtue of defining v to be tangent to the curve Φt (equation (F.5)) this definition
is reduced to

Lv f = v(f) (F.15)

for smooth functions f : M → R, for instance if taking f to be the scalar field
considered in this thesis.
Note that (F.14) defines a linear map on the space of all (l, k)-tensor fields and
satisfies the Leibniz rule.
We will now derive a local coordinate representation of the Lie derivative (F.14).
Let us begin by assuming that we elect a local coordinate basis such that v = ∂ 1.
Then the action of Φ−t from the passive point of view is simply a shift in the first
coordinate with all others held fixed, namely Φ−t : (x1, . . . , xn) 7→ (x1 + t, . . . , xn).
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But that means that the Lie derivative has a local coordinate representation reading

Lv Tµ1...µl
ν1...νk

∣∣
p↔(x1,...,xn)=

∂Tµ1...µl
ν1...νk

∂ x1

∣∣
p↔(x1,...,xn) . (F.16)

To obtain a more general expression, we expand v as well as an arbitrary vector w to

w = wµ∂ µ and v = vµ∂ µ, v
µ = δµ1 . (F.17)

Computing the commutator [v, w] we find

[v, w] = (vν∂ ν)(wµ∂ µ)− (wν∂ ν)(vµ∂ µ)
= ∂ 1w

µ∂ µ

= Lv(wµ∂ ν),
(F.18)

and therefore, for an arbitrary vector field w we have

Lvw = [v, w], (F.19)

which is our desired local coordinate expression. Note that at this point we can
resort to the covariant derivative ∇µ, writing

Lvw = [v, w] = (vν∇ν)(wµ∇µ)− (wν∇ν)(vµ∇µ). (F.20)

Expressions for higher order tensors can be obtained by using (F.15), (F.19) as well
as the Leibniz rule for the Lie derivative acting on the scalar function vµwµ. By
induction, the most general result reads

Lv Tµ1...µl
ν1...νk =vρ∇ρ Tµ1...µl

ν1...νk

−
l∑

i=1
Tµ1...σ...µl

ν1...νk∇σv
µi

+
k∑
i=1

Tµ1...µl
ν1...σ...νk∇νiv

σ,

(F.21)

where σ is substituted into the ith slot. Specializing to the metric gµν , we use
∇ρ gµν = 0 and obtain

Lvgµν = ∇µvσgσν +∇νvσgσµ, (F.22)

which is the same as equation (2.5).





APPENDIX G

Dilatations and Conformal Transformations

This appendix serves both to give a more precise mathematical meaning to the notion
of conformal and scale invariance as well as to discuss the physical implications
of both concepts. Large portions of this section have been inspired by works on
conformal field theory and string theory [208,209], where conformal invariance on the
two-dimensional worldsheet is a crucial property, but we also refer to less generalized
physical literature such as [210] and works on canonical quantum gravity [211] for
further discussion.

G.1 The Conformal Group
Let us begin with the discussion of the conformal group in d spacetime dimensions.
As laid out in appendix F, a physical theory of general relativity is characterized by
the structure of its spacetime manifold M , which in turn is identified with metric
gµν . We define a conformal transformation Φ as a scaling of the metric by a factor,
namely

Φ : gµν(x) 7→ Ω(x) gµν(x), (G.1)

where we emphasize the spacetime dependence of both the metric and the conformal
factor Ω(x). To obtain infinitesimal counterparts of (G.1) on the level of local
coordinates, we assume that one can write

Φx : xµ 7→ xµ + εµ (G.2)
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for a suitable to choice of ε. In order to derive constraints on ε, we consider the line
element gµν dxµ dxν , which transforms under (G.2) as

Φx (gµν dxµ dxν) = gµν d (xµ + εµ) d (xν + εν)
= gµν dxµxν + (∂ µεν + ∂ νεµ) dxµ dxν .

(G.3)

However, we may also write

Φ (gµν dxµ dxν) = Ω(x)gµν dxµ dxν , (G.4)

leading to

(Ω(x)− 1) gµν = ∂ µεν + ∂ νεµ ⇒ Ω(x)− 1 = 2
d

(∂ · ε) , (G.5)

or, combining the two previous equations,

2
d

(∂ · ε) gµν = ∂ µεν + ∂ νεµ. (G.6)

From here on it can be shown using standard tensor calculus that the constraint
(G.6) leads to a fairly limited possible form of εµ provided d > 2, reading

εµ = aµ − ωµνxν − λxµ + (bµ (x · x)− 2xµ (b · x)) , (G.7)

where ωµν is antisymmetric. Thus, the d-dimensional conformal group has (d +
d(d− 1)/2+1+d) generators, corresponding to translations, Lorentz transformations,
dilatations and proper conformal transformations, respectively. Hence, the conformal
group consists of the Poincaré group appended by proper conformal transformations
and their global counterparts, the dilatations. As will be apparent shortly, the latter
are of paramount importance for the physical aim of this thesis.
The case d = 2 is special, as may already be seen from (G.6). As is revealed in
the course of the derivation of equation (G.7), all constraints vanish for d = 2 and
we obtain an infinite numbers of generators, rendering the study of 2-dimensional
conformal field theories especially fascinating, because a wide class of theories is
actually completely soluble just from the requirement of conformal invariance.

G.2 Physical Implications
Restricting ourselves to global rescalings that act on local coordinates via xµ 7→ λxµ,
we may define the scaling dimension of a dynamical physical quantity z as the number
s which enters the transformation law z 7→ λsz. In the context of quantum gravity, it
is customary to think of scale transformations as transformations acting on the fields
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rather than on the coordinates, thereby using coordinates as labels for spacetime
points only. That means for reasons of consistency that the metric gµν needs to
scale as gµν 7→ λ2 gµν . To determine the scaling dimensions of all other fields φi
and couplings gj , we use the requirement that the (effective) action needs to be
dimensionless, that is Γ 7→ Γ , which is equivalent to

Γ [gµν , φi, gj ] = Γ
[
λ2gµν , λ

siφi, λ
sjgj

]
. (G.8)

From (G.8) it follows that a rescaling of all dimensionful quantities is always an
exact symmetry of the theory. However, the rescaling of the coupling coefficients
is not included in the transformation law expressed in and (G.1) and (G.7), as the
couplings are taken to be independent of spacetime.1 But that means that true
dilatations opposed to simple rescalings act on the action as

Γ [gµν , φi, gj ] 7→ Γ
[
λ2gµν , λ

siφi, gj
]
, (G.9)

leading to a condition for an action to be invariant under dilatations:

Γ is invariant under dilatations
m

all couplings gj have scaling dimension 0.

Up to now, we did not comment on the connection between the canonical length
dimension and the scaling dimension. At the beginning of this section stood the
statement that we will consider scalings and dilatations as transformations on the
fields and coordinates as labels for spacetime points only. Thus, coordinates can not
carry a physical dimension. It is due to this approach that the scaling dimension of
gµν is 2, whereas its canonical length dimension is 0. Nevertheless, both viewpoints
agree on the level of physical quantities, the simplest of which is the line element
ds2 = gµν dxµ dxν . Here, we can treat either the metric or the differentials as
dimensionless. The same is true for the volume form ddx√g or the scalar kinetic
term gµν ∂

µφ∂ νφ, where the latter example shows that both the canonical length
and scaling dimension of a scalar field are equal to −1, corresponding to a mass
dimension of +1. Thus, when it comes to singling out the terms allowed by the
requirement of dilatation symmetry, we may adopt either strategy.
We emphasize that in a dilatation symmetric theory, the only nontrivial notion
of dimension arises from a scalar field. Thus, the notion of dilatation symmetry
takes the ideas that sparked the original idea of a scalar-tensor theory by Brans
and Dicke [20,21] to the next level and has been discussed vividly in literature ever
since [212]. On a technical level, a scale is generated from a scalar field if dilatation
1If we aim to introduce a spacetime dependence of a coupling parameter, we would have to replace
it by a scalar field. This is what was described in section 3.1.
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symmetry is spontaneously broken and a nonzero expectation value of the scalar
field arises. The associated massless Goldstone boson is usually referred to as the
dilaton [144].
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