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Abstract

We consider a Gaussian stationary process with Pickands’ conditions and evaluate an
exact asymptotic behavior of probability of two high extremes on two disjoint intervals.

1 Introduction. Main results.

Let X(t), t € R, be a zero mean stationary Gaussian process with unit variance and covariance
function r(t). An object of our interest is the asymptotic behaviour of the probability

Py(u; [Th, T3], [T, T4])) =P | max X(t) >wu, max X(t)>u

405 03, (15, T3) = P gy X() >, e X(0>u)

as u — 00, where [71, T5] and [T}, 73] are disjoint intervals. To evaluate the asymptotic behaviour
we develop an analogue of Pickands’ theory of high extremes of Gaussian processes, see [1] and
extensions in [2]. We follow main steps of the theory. First we assume an analogue of the
Pickands’ conditions.

A1l For some a € (0,2),

r(t) =1 - [t|* +o([t|*) as t — 0,
|r(t)] <1 for all t> 0.

Then, we specify covariations between values of the process on intervals [T}, T5] and [T, T4].
We assume that there is an only domination point of correlation between the values. This
makes some similarity with Pirabarg&Prisyazhn’uck’s extension of the Pickands’ theory to non-
stationary Gaussian processes.

A2 In the interval S = [T3 — T5,Ty — Tj] there exists only point t, = argmaxiesr(t) €
(T3 — T, Ty — T1), r(t) is twice differentiable in a neighbourhood of t,, with 7" (tz) # 0.

As an alternative of assumption A2 one can suppose that the point of maximum of r(t) is one
of the end points of S, T3 — T» is more natural candidate.
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A3 r(t) is continuously differentiable in a neighbourhood of the point tm, = T3 — Tp, 7/ (tm) < 0
and r(t,,) > r(t) for all t € (T3 — T3, Ty ~ T1].

A3’ r(t) is continuously differentiable in a neighbourhood of the point tm = Ty — T3, 7' (tm) > 0
and r(tp,) >r(t) forall t € [T3 — T3, Ty — T1).

Denote by B,(t), t € R, a normed fractional Brownian motion with the Hurst parameter /2,
that is a Gaussian process with a.s. continuous trajectories, Bo(0) = 0 a.s., EB4(t) = 0, and
E(Bq(t) — By(s))? = 2|t — s|®. For any set T C R we denote

Ho(T) =Eexp (sup Ba(t) — |t|°‘> .
teT
It is known, [1], [2], that there exists a positive and finite limit
1
H, = lim =H,([0,T)), (1)

Tooo T

the Pickands’ constant. Further, for a number ¢ denote
H{(T) = Eexp (sup Bi(t) - |t| - ct) .
teT

It is known, [2], that for any positive ¢, the limit Hf := limp_,. Hf([0,T]) exists and is positive.
We stand a V b for max(a,b) and a A b for min(a, b). Denote

and notice that for a Gaussian vector (£,7) where the components are standard Gaussian and
correlation between them is r, P (£ > u,n > u) = pa(u,r)(1 + o(1)) as u — 0.

Theorem 1 Let X(t), t € R, be a Gaussian centred stationary process with a.s. continuous
trajectories. Let assumptions A1 and A2 be fulfilled for its covariance function r(t). Then
Py(ws[Th, T3], [T3, Tu))
=KVTA=T(1 + 1(tm)) Y H2u=3*py (u, r(tm)) (1 + 0(1))

asu— oo, where K =ToA(Ty —tm) —T1 V (T3 — tm) > 0,

1 r(tm)

A= T

Theorem 2 Let X(t), t € R, be a Gaussian centred stationary process with a.s. continuous
trajectories. Let assumptions Al and A3 or A3’ be fulfilled for its covariance function r(t).
Then,

(i)for oo > 1,

Pa(u;[Th, T3], [T3, Ta]) = p2(u, m(tm))(1 + o(1))



as u — 0o.
(it)For a =1,

Pafs (T3, T (T3, Tal) = (B ™) ot ()1 + 0(1)

as u — oo.
(tii) For oo < 1,

Py(u; (T3, Tl (T3, Ta]) = B™2(1 + 1(tm)) ™/ * Hou™ "/ *pa(u, 7(tm))(1 + 0(1))

as u — 00, where
o '(tm)
T+ r(tm))?’

2 Lemmas

For a set A C R and a number a we write aA = {ax: € A} anda+ A= {a+z: z € A}.

Lemma 1 Let X(t) be a Gaussian process with mean zero and covariance function r(t) satis-
fuing assumptions A1, A2. Let a time moment 7 = 7(u) tends to t,, as u — oo in such a way
that |T — tp,| < Cy/logu/u, for some positive C. Let Ty and Ty be closures of two bounded open
subsets of R. Then

P( max X(f) >u, max X(t)>u)—_—

teu—2/oTy ter+u—2/aTy

(@R -2 7 B
=iy B () = () oo, ©

as u — 0o, where 8 = t,,.

Lemma 2 Let X(t) be a Gaussian process with mean zero and covariance function r(t) satis-
Jying assumptions A1, A2 with a < 1. Let Ty and Ty be closures of two bounded open subsets
of R. Then, for any (fized) T > 0 the asymptotic relation of Lemma 1 holds true with 8 = 7.

Lemma 3 Let X(t) be a Gaussian process with mean zero and covariance function r(t) satis-
fying assumptions A1, A2 with a = 1. Let T1 and Ty be closures of two bounded open subsets
of R. Then

P ( max X(t) >u, max X(t) >u) =
teu—2Ty teT+u—2Ty

_ gr'm) Ty —r(7) L w“r
= ((1_,_—7“(7.))5) H, ((1 +r(1’))2> p2(u,(1))(1 +o(1)), (3)

as y — Q.



Proof of Lemmas 1 - 3. We prove the three lemmas simultaneously, computations of
conditional expectation (4) and related evaluations are performed in parallel, separately for
each lemma. We have for u > 0,

P=P( max X(t)>u, max X(t)>u)=

teu—2/a7y ter+u—2/a7y
+o00 400
- / / P( max X(8) >u, max X(f)>u|X(0)=a X(r) = )Pof(a,b)dadb,
teu—2/eTy tertu—2/2Ty
—00 —00
where

POT(a, b)

1 1 a? —2r(T)ab+ b?
T /Ao T (_5’ 1-12(r) ) '
Now we change variables, a = u — z/u, b =u — y/u,
.
274/1 —r2(T)
(_1 (u—z/u)’ = 2r(r) (v~ z/u)(u ~ y/u) + (u - y/U)z)
2

1—72(1)

POT (217, y) =

X exp

- s ()

1 2 9z -2y 4 2 (7)(z +y) - 2r(T) T
XEXP Ty 1—72(7)

1 u? ~
- s (1) Py

Hence,
400 +00

=27r\/_—1—1—7—~———2(—7—)515ex ( 1+r7‘))// <t€f_1§/3§TlX(t)>u

max  X(t) >u| X(0) = u—z/u, X () = u — y/u) P(u, z,y) dedy.

ter+u—2/aTy

Consider the following families of random processes,
&u(t) =u (X(u'z/"‘t) - u) +z,teTn,
() =u (X(T +u~) - u) +y, t€Th.

We have,
1 +00 oo
m_ex ( 1+r(7)>_£_ZOP(ma~XEu t) >,

mex T (t) > y’ X(0)=u~z/u, X(T) =u— y/u) P(u,z,y) drdy.



Compute first two conditional moments of Gaussian random vector process (&, (t), 7.(t))T. We

have
= (%) -2 ()~ ().
where ]
ameor () GO [ (GR) GE))]

A= u r(u"z/at) —r(r)r(r — u‘2/°‘t) r(r — u‘z/at) - T(T)r(u—2/“t)
T 1—72(7) \r(T+ u~2/ot) — r(T)r(u=%t) ru=¥%) — r(T)r(t +u~2/et) )
We denote cov.X, the matrix of covariances of a vector X and cov(X,Y), the matrix of cross-

covariances between components of X and Y. Substituting the values X(0) = u — z/u, X(1) =
u — y/u, of the conditions, we get from here that

= (o) (-~ = ) ) +
<§u(t) X(0) =u-— :L"/u) _ +r(r —u2et) (u? —y — r(T)(u ~z))) ~u+z “
()| X (1) =u-y/u -

1—_;2-(—— (r(u=?et) (u? —y — r(7)(u? — z)) +
+r(7’+u"2/at) Wz —r(r)(u? -y))) —u® +y

In conditions of every lemma 1-3 we have
§u(t)‘ X0)=u- x/u)
E = 3
(nu(t) X()=u-y/lu ©)
—y—2/ep)—y —p(T~u—2/c
(——m, 1+ o(1) + I oy (y — an(r) )Luq(—l)

[t]® + o(1) + u? ’"(T‘“‘:: ‘Z’Tt;—fu + (y — zr(r)) D=t 2/at)

T+r(r) 1-r%(7)

as u — 0o.
Now, let conditions of the Lemma 1 be fulfilled. Since @ < 2 and 7'(7) = O(y/logu/u)
uniformly in |7 - t,,| < Cy/logu/u, we have,

r(r —u=?*t) —r(r) 2 —2/ap_T(T) | _
’ 1+4r(r) - |T_tm|rgnc?x¢m/u w(-u t)l + (T )‘ o(1). (6)
Thus
&u(t)| X(0) =u—=z/u) _ +r(t e t® +o(l)
5 (56 X(r) = w— o) - ( — g 1%+ 0(2). @

Let now the conditions of Lemma 2 be fulfilled, that is @ < 1. In this situation even for
fixed 7, by Taylor, the third terms in the column array of right-hand part of (5) tend to zero as
u — 00, hence (7) takes place, with 6 = 7.

Next, let o = 1, by differentiability of r,

W (r(r —u2) — r(1)) > —tr'(7) and W (r(T +u"2t) — (1)) — tr'(7)

5



as u — oo, therefore in conditions of Lemma. 3,

(e ) - (B ) 0
It is clear that
= (olx) =4 5) = o) 0
= (ol ¥ 2u 237 - o)

Computing conditional covariance matrix, we have,

oo ( (st Zlo)) [ (o) =0 (B =) —meov (30 B

- (0 28)- G P (D G )]

Using expressions for &,(t) and 7,(t),

r(u‘z/"‘t) —r(r)r(T — u_z/"‘t)— (T — u“2/°‘t) - r(T)r(u_z/at)—
—r(u—2/°‘s) +r(T)r(T - u‘z/“s) —r(T — u‘2/°‘s) + r(r)r(u‘z/"‘s)

where

u

= 1—1r2 (T) 7'(7' + u-2/at) _ r(T)r(u_2/°‘t)— r(u"z/"‘t) - T(T)’I”(T + u"z/at)—

—r(T +u2s) +r(r)r(u=2s)  r(ums) +r(T)r(T + u"?/%s)

Letting now u — oo, we get

Eu(t) — Eu(s)| X(0) =u—E/u) _ (2]t — s]*(1 +0(1) o(1)
cov (nu(t)—nu(S) X(T)=u—n/U>—( o(1) 2|t—saa<1+o(1>)>’ (10)

where o(1)s are uniform of z and y, moreover they do not depends of values of conditions X (0)
and X (7). Note that (10) holds true for all @ € (0,2). From (10) it also followed that for some
C >0 allt, s and all sufficiently large u,

var (&u(t) — &(s)] (X(0), X (7)) = (v — z/u,u - y/u)) < Clt — 5[% (11)
var (7(t) = nu(s)| (X(0), X (7)) = (u — z/u,u — y/u)) < CJt — s|*. (12)

Thus from (7-11) it follows that the family of conditional Gaussian distributions

P(HOIFZuT), 19

is weakly compact in C(T7) x C(T2) and converges weakly, under conditions of Lemmas 1 and
2, to the distribution of the random vector process

(€®),n(1)7 = (Bal®) = [t1*/(1 +7(r)), Balt) = 1%/ L +r(r)) T,

6



t € R, where B is an independent copy of B. If the conditions of Lemma 3 are fulfilled, the
family of Gaussian conditional distributions converges to the distribution of

(€0, nENT = (Ba(®) — (It + () /(1 + (1), But) - (I — ' (2))/ (1 + ().
Thus
tim P (maxeu(t) > 2y > | X(O0 = w2/, X(7) = u=y/u)
=P (rtrg,ﬁcé(t) >z, maxn(t) > y) :

In order to prove a convergence of the integral

+00 400
I(TlaT2)=/ /P(gé%ﬁu(tbm,
-0 —00

man(t) > 1| X(O) = u = /1, X(r) = u—y/u) Blw,3) dedy

as u — 00, we construct an integrable dominating function, which have different representation
in different quadrants of the plane. 3

1. For the quadrant (z < 0,y < 0) we bound the probability by 1, and the P(u,z,y) by
exp(i+”"—r"('t%)), using relations |r(t)| < 1 and z? +y? > 2zy. The last function is integrable in the
considered quadrant, so it is a desirable dominating function.

2. Within the quadrant (z > 0,y < 0) we bound the probability by

P (rtrégglcfu(t) >z, | X(0) =u—z/u,X(1) = u—y/u)

and, using arguments similar the above, we bound 13(u, z,y) by

€ Y + ad
PAT+7(tm) 09+ 7(tm) )

for sufficiently large u. The function p(z) can be bounded by a function of type C exp(—ez?),
€ is positive, using, for example the Borel inequality with relations (7 - 10). Similar arguments
one can find in [2].

3. Considerations in the quarter-plane (z < 0,y > 0) are similar, the dominating function is

oy T Y
C exp(—ey”) exp (1 +7(tm) + 0.9 +'r(tm)) '

4. In the quarter-plane (z > 0,y > 0) we bound P by

exp ad + Y )
09 +7r(tm)  0.9+7(tm)



and the probability by
P ax t =y — X(7)=u—
((t,s)rngxTz Sld) 1) > +y [ X(0) = v —afu, X(r) = u y/u) '

Again, for the probability we can apply the Borel inequality, just in the same way, to get the
bound C exp(—¢(z + y)?), for a positive .
Thus we have the desirable domination on the hole plane and therefore we have,

+o0 400

Jm / / P (rtrég,itéu(t) >z,
e (t)> 3| X(0) = u = 2/, X(1) = u = /u) Blus,9) dady
2

+o0 400

- i
/ e P %%g(t) >z, rtré%n(t) >y | dzdy
—00 —0OQ
+00 +o0

= [ e =) :
/ e P (rtréggl{&(t) > a:) dz / e P (Itré%cn(t) > y) dy
oo —00

Then we proceed,
+00
/erZ")P (maxE(t) > :1:) dz =
teTy

—00

- e
= (1+7(0))Eexp inix_qlé(t_)] = (1+7(6))Eexp maxy; Ba(t) -lJ—i-_rl‘@j:| _

| 1+7(6) 1+ 7(6)

= A +r@)Eexp ;mT?XB" ((1 +r€9))2/“) B ((1 +r§9))2/“)a] j
Bas) - o*] = 0+ OV e (rraye )

where we use self-similarity properties of Fractional Brownian Motion. Similarly for 7(t), t € T.

Similarly for Hli ") Thus Lemmas follow.
The following lemma is proved in [2] in multidimensional case. We formulate it here for

one-dimensional time.

= (14+7(0))Eex max
( ©) P LTy /(1+r(8))2/=

Lemma 4 Suppose that X(t) is a Gaussian stationary zero mean process with covariance func-
tion r(t) satisfying assumption Al. Let ¢, % > e > 0 be such that

1 Sl 2 () 21 - 20f°

for allt € [0,¢]. Then there exists an absolute constant F such that the inequality

P ( max X(t) > u, max X(t) > ’LL) < FT2u—1e_%u2_é(to_T)a
te[0,Tu—2/=} te[tou—2/= (to-+T)u—2/e]

8



holds for any T, to > T and for any u > (4(T + to)/e)*/2.
The following two lemmas are straightforward consequences of Lemma 6.1, [2].

Lemma 5 Suppose that X (t) is a Gaussian stationary zero mean process with covariance func-
tion r(t) satisfying assumption Al. Then

(t) > “) = Ho([0,T] U [to, to + T)) e 5 (1+0(1))

1
V2Tu

P ( max X
te[0,Tu~2/*|Ultou—2/2,(to+T)u~2/ ]

as u — 00, where

Ha(10,T] U [to, o + T) = Bexp ( (Balt) - |t|°')) .

max
t€[0,T]Ulto,to+T]

Lemma 6 Suppose that X (t) is a Gaussian stationary zero mean process with covariance func-
tion 7(t) satisfying assumption Al. Then

P( max X(t) >u, max
tef0,Tu—2/2] teftou—2/> (to+T)u—2/2]

X(t) > u)

1
Varu

= Ha([0, T}, [to, to + T])——=e"2** (1 + o(1))

as u — 00, where

o0
H T, [to, ¢ = § — [¢|® B,(t) — |t|¢ ds.
0Tt to+ T = [ &P (e Bult) = > 5, _gmax Bult) =" > ) ds

Proof. Write

P( max  X(t) >u, max X(t)>u)
te[0,Tu—2/=] te[tou—2/e (to+T)u"2/|

=P< max X(t)>u>+P( max X(t)>u>
te[0,Tu—2/} te[tou—2/a,(to+T)u—2/a]

-P ( max X(t) > u)

tG[O,Tu‘z/“]U[tou—z/“ ,(to+T)u_2/°‘]

and apply Lemma 6.1, [2] and Lemma 3 to the right-hand part.
From Lemmas 4 and 2 we get,

Lemma 7 For anyto > T,
Ha([0,T, lto,to + T)) < FVarT%e 400",

When t; = T the Lemma holds true, but the bound is trivial. A non-trivial bound for
H,([0,T],[T,2T]) one can get from the proof of Lemma 7.1, [2], see page 107, inequalities
(7.5) and the previous one. These inequalities, Lemma 6.8, [2] and Lemma 5 give the following,



Lemma 8 There erists a constant Fy such that for all T > 1,
Ho((0,T),17,2T)) < Fi (VT + 724

Applying Lemma 1 to the sets 7} = [0, T| U [to, tg + T], T2 = [0,T| U [t1,t1 + T] and combining
probabilities similarly as in the proof of Lemma 4, we get,

Lemma 9 Let X (t) be a Gaussian process with mean zero and covariance function r(t) sat-
isfying conditions of Theorem 1. Let T = 7(u) tends to t,, as u — o0 in such a way that
|7 — tm| < Clog u/u, for some positive C. Then for allT >0,t0>T,t1 > T

P( max X(t)>u X(t) > u,

( , max
tef0,u—2/eT) tefu—2/tgu—2/2(t+T))

X(t) >y, X(t) > u)

max max
telr,T4+u—2/2T) te[r+u~2/eaty r4u—2/2(t1+T)]
(1+r(tm)? 1 2

= P e O}

x Ha ([0 1+ r(fm))%] ’ [(1 +r€?m))2/a’ (1 +t:ng))2/“J>
<o (0 i) [Tt st ) O o

as u — 0Q.

3 Proofs

3.1 Proof of Theorem 1

We denote IT = [T}, T%] x [T3,T4], 6 = 6(u) = Cy/logu/u, the value of the positive C' we specify
later on. D = {(t,s) € II: |t — 8 — t;n] < 6}. We have,

P( max X(t) >, m?x4]X(t)>u)=P( U {X(t)>u}ﬂ{X(s)>u})

te[T1,Th) te[13,T. (s,Hell

(s;t)eD (s,£)€I\D

=P({ U {X(t)>u}ﬂ{X(s)>u}}U{ U {X(t)>u}ﬂ{X(s)>u}})

gp( U {X(t)>u}ﬂ{X(s)>u}) +P( U {X(t)>u}ﬂ{X(s)>u}) .(14)

(s,t)eD (s,t)eTI\D

10



From the other hand,

P(ter[r%‘%Z]X(t)>u Ilna.x X(t)>u> =P< U {X(t)>u}ﬂ{X(s)>u})

Ty.T,
4 (s,t)€ell

=p({ U {X(t)>u}n{X(s)>u}}U{ U {X(t)>u}ﬂ{X(s)>u}})

(s,t)eD (s,t)eI\D

(s,t)eD

P ( U x@® >u}n{X(s) >u}) : (15)

The second term in the right-hand part of (14) we estimate as following,

P( U {X(t)>u}ﬂ{X(s)>u}) gP(( gleaIJIc\DX(t)-I—X(s)>2u> (16)

(s,t)el\D

Making use of Theorem 8.1, [2], we get that the last probability does not ecceed

2
=142/ _ u
const - u exp ( I —— = s)) . (17

Further, for € = 1/6 and all sufficiently large u,

o 2% 1(E =) < 7{tm) + (- — )" (tm) 8 = r(tm) + 3 02 " (tm) log u/u.

Hence,

2

P ( U {X(@) >u}n{X(s) > u}) < const - u™ % exp (_u—)) u ¢ (18)

(s,t)eII\D L+ 7(tm

where

—2C%7" ()

31+ 7(tm))?

Now we deal with the first probability in the right-hand part of (14). It is equal to the probability
in right-hand part of (15). We are hence in a position to bound the probability from above and

from below getting equal orders for the bounds. Denote A = Tu~%/¢, T > 0, and define the
intervals

G=

Ap= [Ty + kAT + (k+1)A], 0< k< Ny, N =[(Tz - T1)/A],
A= +IAT3+(1+1)A,0<I<N, Ny= [(T4 - T3)/4],

11



where [-] stands for the integer part of a number. In virtue of Lemma 1,

P ( U {X® >u}n{x(s) > u})

(s,t)eD
<P U U {X®>u}n{X(s)>u}
(k,0): AxND#Q, A;ND#P tEA, ,sEA,

<
< Z P ({ggoiX(t) > u, Itreli),(X(t) >u>
(k.1): AxnD#0, A;nD#£0

A+7@) T o
= 2nu2,/1 — rz(tm)Ha ((1 + 7(tm) )2 @ xp ( 1+ T(Tk,l))’ (19)

where y(u) | 0 as u — 0o and 7y = T3 — T1 + (I — k)A. For the last sum we get,

S= 3 exp (-W:—E-Tk—l))

(k,1): AxND#B, AND5#D

— (‘1—;%) 2 o™ (T )

(k,1): ApND#D, AyND#D
Define @ by t,, = T3 — T1 + A8, we obtain,

) (k,1): AxND#D, AND#£D

T(tm) — 7(7i,) —37" (bm) (Tht — tm)?
(1 +r(m))(1 -:fr(tm) <(2)— (14 7r(tm))? 1+ (=Im(w)

= —A((k= 1A - 68)* (1 + (=)n(w),

where y;(u) | 0 as © — oo. In the last sum, index k variates between (Tyin + O(6(u)))/A
and (Tmax + O(6(u)))/A, as u — 00, where Ty = 11 V (T3 — tp) and Tmax = T2 A (Ta — tm).
Indeed, for the co-ordinate x of the left end of a segment of length ¢,, which variates having
left end inside [T7,T5] and right end inside [T}, 73], we have the restrictions 71 < = < T3, and
T3 < z+tym < Ty, so that £ € (Tinin, Tmax)- The index m = k — [ — § variates thus between
—6(u)/A + O(A) and §(u)/A + O(A) as u — co. Note that uA — 0 as u — oo. Using this, we
continue,

&(u)/ A+O(A)

u2 T T . .
=(1+ - mex e E xp (—A(mul
S=(1 0(1))exp( T+t )) ps ( )e p( ( ) )

ud(u)+0(ul?)

u2 Tma,x - Tmin 2
= (1+o0(1)) exp (— ) exp (—A(mul)*) uA
1+ T(tm) u\? muA:—u%-FO(UAz)

u? Tmax — Tin [ _az2
_ _ “dx.
oy (-t ) B o

12



Compute the integral and substitute this in right-hand part of (19), we get,

P ( U {X® >u}n{x(s) >u}) (20)
(s,t)eD
<0+ r(tm))2(1 + Y2(w))(Tmax — Tmin)u= 3+ 1 T u?
An(1 = r2(t,,) T2 . <(1 +r(tm))2/°‘> P (“1 +r(tm))

where yo(u) | 0 as u — oo.
Now we bound from below the probability in the right-hand part of (15). We have

P ( U {X(@) >u}n{X(s) >u})

(s,t)eD
>P U U {x@®)>u}n{X(s)>u}
(k,1): AL CD,A,CD tEAL,SEA;

>
> Z P (?EIZ‘):X@) > u, grelz)ch(t) > u)
(k,0): AyCD,ACD

—ZZP(maxX(t)>u maxX(t)>u maxX(t)>u 12axX(t)>u) (21)
where the double-sum is taken over the set

{(e, LEUY : (K1) # (K1), Ak ND#0, AAND#0, Ay N D #0, Ay N D # @}

The first sum in the right-hand part of (21) can be bounded from below exactly by the same
way as the previous sum, thus we have,

P | max X(t) > u, ma.xX( ) >u (22)
(k,): A CD, A, CD (tGA" tea )
(1 + 7(tm))2(1 — 72(u)) (Trmax — Tnin)u~ 34/ 1. T o [ — u?
2/ An(1 - Tz(t TzHa ((1+T(tm))2/a) =P ( 1 +T(tm)) ’

where ya(u) | 0 as u — co. We are now able to select the constant C. We take it as large as
G > 2 - 2/a to get that left-hand part of (18) is infinitely smaller then left-hand part of (22) as
U — 00 .

Consider the second sum (the double-sum) in the right-hand part of (21). For sakes of
simplicity we denote

Hm) = He ([ <1+rT ))2/4’[<1+Zi>)2/a’<1Tr2;3;/aD

and notice that
- ()
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In virtue of Lemma 9 we have for the double-sum in (21), taking into account only different
(k,l) and (K',0'),

Yo = P X(t
2 ZZ (max ()>u,§2%X(t)>u,trg§chX(t)>u,tré12§X(t)>u)

< (47(tn))*( + T(w)) 7 / v?
N DY H(k- k)H(|l——l|)exp( m)

21+ 7(tm))?(A + T(u
B 27ru2\/2)(r2—(t)ZH()<H(0)+2ZH(m))

el

(k,l): AxND#£D, A;AD#AD

where I'(u) | 0 as u — co. The last sum is already bounded from above, therefore by (19) and
(20) we have,

<75 ZH(n) (H(O)+2 ZH )

(1+ r(tm))2(1 + FZ(U))(Tmax — TpinJu~3+4/ w2
’ Am(1 = r2(tm) P <* 1+ r(tm))

By Lemmas 6.8, [2], 7 and 8 we get that H(0) < const - T, H(1) < const - VT and for m > 1,

H(m) < const - g sm* /T2

hence

o0 o0

ZH(n) (H(O) +2 Z H(m)) < const - T*/2,

n=1 m=1
Thus

2
5y < const - T2y =3+ oxp <—#(t7n)) . (23)

Now since by (1),

1 T e
75, T (W) = (1 +7(tm)) ™/ *Ha,

we get that the double sum can be made infinitely smaller by choosing large T'. Thus Theorem
1 follows.

3.2 Proof of Theorem 2.

We prove the theorem for the case t,, = T3 — T3, another case can be considered similarly.
First, as in the proof of Theorem 1 put D = {(¢,s) € Il : |t — s — ty| < 6}, but with
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6 = 6(u) = Cy/logu/u?, for sufficiently large C. The evaluations (14), (16) and (17) still hold
true. Further we have for € = 1/6 and all sufficiently large u,

1 1
m t—38)<r(tm)+ (= — ) = + =C¥ (tr, 2,
(t,s)ear)lc\Dr( s) <7(tm) (2 ' (tm)6 = r(tm) 3C’ ' (tm) log u/u

Hence, (18) holds true with
G = ~2C%7! (tm)
3(1+7(tm))?
Let now a > 1. For any positive arbitrarily small ¢ we have for all sufficiently large u that,
eu2/% > §(u), hence for such values of u,

P ( U {X(t) >u}n{X(s) >u})

(s,t)eD

<P ( max X(t) > u, max X(t) > u) . (24)
te[Ty —eu—2/ Ty te([Ts, Ta+eu—2/]

We wish to apply Lemma 1 to the last probability for the intervals [—¢, 0] and [tm,t, +¢€]. To
this end we turn to (5). Since for a sufficiently small ¢, r'(tm,) < 0, we have that

(T — u~%/ ) —r(71)

< Ofor all t€[—¢0)

1+4+7(7)
and o/
r(t+u=4'%) - r(7t
( 1+7‘(7?) ™ < Ofor all t € [tm,tm + ¢,
hence

lim sup B (€,()| X (0) = u = =/, X(r) = w = /) € sl

for all t € [—¢,0], and
1
14+ 7(tm)

for all t € [tm,tm + €]. All other arguments in the proof of Lemma 1 still hold true, therefore,
using time-symmetry of the fractional Brownian motion, we have,

limsup E (7u(£)] X (0) = v — 2/, X(7) = u —y/u) < |¢]%,

u2
lim sup u2e T+ Gm) P < max X(t) > u, max X(t) > u)
U— 00 te[Tr—eu—2/= Ty] te[Ts, T3 +eu—2/]
(1+7(tm))? H? ( [0, €] ) (25)
2y /1= 12(tm) © \(1+7(tm))?/®

Using Fatou monotone convergence we have lim o Hq(€) = 1, therefore

w2
lim sup u?e @ P ( max X(t) > u, max X(t) > u)
U— 00 te[Ta—eu=2/a Ty] t€[T3,Ta+eu—2/2]
(1 + T(t’m))2 (26)

27/1 — r2(tp)
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But
(1+ T(tm))z

ul /1 —12(ty,)

u2
e T+r(tm) (]_ + o(]_))

Pa(u; [T, T, [Ts, Ta]) 2 P (X(T2) > w, X(T3) > u) = 5
as u — o0o. Thus (i) follows.
Let now a = 1. From now on, we redefine Ag and 4;, by

Ap=[Ta—(k+1)A, Tz —kA], 0< k< Ni, N = [(Tz - T1)/A],
A =[Ts+IATs+ (1 +1DA], 0<I <Ny, Ny = [(Ty — Tz)/4],

for the case of Ay, k = 0, we denote Ag = A_yp, indicating difference with Ag for the case 4,
I = 0. Recall that now A = Tu~%/® = Tu~2, We have for sufficiently large u,

(s,t)eD

P ( U {X(@) >utn{Xx(s) > u}) >P (tnga,icoX(t) > u, ?é%’éx(t) > u) , (27)

and

P( U {X(t)>u}ﬂ{X(s)>u}) SP(trenAazcoX(t)>u, irexgagX(t)>u)+

(st)eD
[logu/T|+1
+ ) P <%1e12>:X(t) > u, max X (t) > u) . (28)
k=0,1=0, k+1>0

First probability in right-hand parts of the inequalities is already considered by Lemma 3. We
set T =ty = T3 — Tz, Th = [-T,0], T> = [0, T), by time-symmetry of Brownian motion, we have
that

H] O((~T,0) = H” ([0, T)). (29)

In order to estimate the sum, we observe, that for all sufficiently large u and all ¢ € [T3,73 +
6(u)], s € [Th — 8(u), Ts],

r(t —s) <r(tm) + %r'(tm)(t —8~tm) and 7(t — 8) 2> r(tm) + gr'(tm)(t —s—1tm). (30

Hence
—y2 < —u?
L4 7(tm + (E+0DA) = 14+ 7(tm) + 37 (tm) (k + ) Tu~?
—u? )+ 0T —u?

< 1+ r(tn) 61 +7(Em))2  1+7(tm) —a(k+ 1T,

where a > 0. Now, in Lemma 3 let 7 = t,, + (k+1)A, Ty = [-T,0], T> = [0, T}, using the above
mentioned property of the constants H{(T), we get, that for all sufficiently large v and T,

< —a(k+)T
P (trélg):X(t) > u, ’féi’fx(t) > u) < Cpa(u,r(Tm))e ’
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From here we get,

[logu/T]+1
>. P (maxX (t) > u, max X (1) > u) < Cpa(, ()T,
teAy tel\;
k=0,1=0, k+1>0

Applying now Lemma 3 to first summands in right-part hands of (27, 28) and letting T — oo,
we get the assertion (ii) of Theorem.

Let now a < 1. Proof of the Theorem in this case is similar to the proof of Theorem 1. We
have to consider a sum of small almost equal probabilities and a double sum. Using the more
recent definition of Ax and A;, we have by Lemma 2,

(s,t)eD

P ( U {x@) >uv}n{X(s) > u})

<P ( U U &x@)>uwin{X(s)> u})

(k): ApND#£D, AINDH#DtEA L, s€LN;

<
< Z | ({22}:)&'(:‘.) > u, ?éi’fx(t) > u)
(k,1): ApND#£D, A\ND#D

(L + r(tm))2(L+7(w)) , o T exp [V
< 2mu? /1 —ri(tm) e ((1+T(tm))2/a) (k,l):AkﬂDZ#@,AmD#Q p( 1+T(Tk’l)>, )

where y(u) | 0 as u — 0o and now 7; = T3 — Ty + (I + k)A. For the last sum we get,

> v
§= exp (—-______>
(k,1): ApND#0, A;nD#0 1+ 7(7,)

u? r(tm) — 7(Tk1)
=P (‘ 1+ r(tm‘)) > exp ("“2 @+ () + r(tm)> :

(k): AxND#D, AND#D

Next,
T(tm) — 7(Tky) —7' (tn) (tm = Trt)
y £ 1 —
T rre) A+ rEm) = O Carty )
= —B(k + A1+ (=)m(w),
where v;(u) | 0 as u — co. Remind that now u?A — 0 as u — oo. Using this, and denoting
m =k + [, we continue,

5(u)/ A+0(A)

2
S = (1+ o(1)) exp <—#(t)) Z mexp (——Bu2mA)
m m=0
’lL2 1 5(u)/A+0O(A) \
= (1 4+ o(1)) exp (—1 n r(tm)) (Au2)? g::o mAu? exp (-BmAu?) (Au?)
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= (+o(m)exp (- ﬁitm)) ae [, o = (o) (5 +’Lf~itm)) FiaT

Substitute this in right-hand part of (31), we get,

P ( U {x® >u}n{x(s) > u}) (32)
(s,t)eD
(L+r(tm)2 (1 + v )u=sF¥e 1, T u2
2y v B G ((1 +r(tm))2/a) =P (" I +r(tm>> !
where y2(u) | 0 as u — co.

Estimation the probability from below repeats the corresponding steps in the proof of The-
orem 1, see (21) and followed. Thus Theorem 2 follows.
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