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RUDOLF BERAN

Abstract — Suppose that the data is modeled as replicated realizations of a p-
dimensional random vector whose mean µ is a trend of interest and whose covariance
matrix Σ is unknown, positive definite. REACT estimators for the trend involve
transformation of the data to a new basis, estimating the risks of a class of candidate
linear shrinkage estimators, and selecting the candidate estimator with smallest esti-
mated risk. For Gaussian samples and quadratic loss, the maximum risks of REACT
estimators proposed in this paper undercut that of the classically efficient sample
mean vector. The superefficiency of the proposed estimators relative to the sample
mean is most pronounced when the new basis provides an economical description of
the vector Σ−1/2µ, dimension p is not small, and sample size is much larger than p.
A case study illustrates how vague prior knowledge may guide choice of a basis that
reduces risk substantially.

This research was supported at Universität Heidelberg by the Alexander von
Humboldt Foundation and at Berkeley by National Science Foundation Grant DMS
99-70266. Dean Huber of the U.S. Forest Service in San Francisco provided the
lumber-thickness data, both numbers and context.

1. INTRODUCTION

The average of a sample of random vectors drawn from a Np(µ,Σ) normal distribution
is inadmissible, under suitable quadratic loss, as an estimator of the mean vector
µ whenever the dimension p of the distribution exceeds two (see Stein [8]). The
insistence of the sample mean on unbiasedness can result in over-fitting of µ when p
is not small. Recent work on model-selection, shrinkage, and thresholding estimators
when Σ = σ2Ip has shown, in that case, that even uncertain prior knowledge about the
nature of µ can be translated into major reductions in estimation risk (cf. Donoho and
Johnstone [3], Efromovich [4], and Beran [1]). This paper develops REACT shrinkage
estimators of µ and their risk properties for situations where the covariance matrix
Σ is unknown, though possibly restricted as in spatial or time-series analysis. The
superior performance of the proposed estimators is illustrated on a set of multivariate
lumber-thickness measurements collected in a study of saw-mill operations.

As data model, suppose that (x1, x2, . . . , xn) are independent random column
vectors, each of which has a Np(µ,Σ) distribution. The components of µ constitute a
trend that is observed in correlated noise. The word trend indicates that component
order matters. Both µ and the covariance matrix Σ are unknown, though the latter
is assumed positive definite and may sometimes have further structure. It is tacitly
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assumed that observation dimension p is not small and that sample size n is much
larger than p, in ways that will be made precise. Let µ̂ denote any estimator of µ.
The quality of µ̂ is assessed through the quadratic loss

Ln,p(µ̂, µ,Σ) = (n/p)(µ̂− µ)′Σ−1(µ̂− µ). (1)

The risk Rn,p(µ̂, µ,Σ) is the expectation of this loss under the model. The normaliza-
tion factor n/p is convenient for asymptotics in which both n and p tend to infinity.
In particular, the risk of the sample mean x̄ is 1 for every value of µ and Σ.

The REACT estimator µ̂M developed in this paper has asymptotic risk that
can be characterized after we introduce some notation. The acronym itself will be
explained below. Let U be an orthogonal matrix, to be specified in the description of
the REACT method, and let ξ = n1/2U ′Σ−1/2µ. Define the function ave(·), applied
to any p-dimensional vector, to be the average of its components. For every vector
f ∈ [0, 1]p and every ξ in Rp, define

ρ(f, ξ2) = ave[f2 + (1− f)2ξ2], (2)

which is convex in f . The operations inside the average are performed coordinatewise,
as in the S language. Let FM denote the convex set of monotone nonincreasing
shrinkage vectors {f ∈ [0, 1]p: f1 ≥ f2 ≥ . . . ≥ fp} and let

τM (ξ2) = min
f∈FM

ρ(f, ξ2) < 1 ∀ξ,Σ. (3)

The quantity ave(ξ2) = (n/p)µ′Σ−1µ measures the signal-to-noise ratio under the
model.

We will prove, among other results, that the REACT estimator µ̂M satisfies

lim
n,p→∞

sup
(n/p)µ′Σ−1µ≤r

|Rn,p(µ̂M , µ,Σ)− τM (ξ2)| = 0 (4)

for every finite positive r. Here n must tend to infinity faster than p2 unless Σ is
significantly constrained. The asymptotic risk of µ̂M is thus strictly less than the risk
of the sample mean for every value of µ and of Σ. Moreover, µ̂M turns out to be
asymptotically minimax over certain subsets of the parameter space. The minimax
bound is smallest over subsets where all but the first few components of ξ are very
small, or equivalently, when the inner product of Σ−1/2µ with successive columns of
U is very small after the first few columns. Prior information can sometimes be used
to find such an economical basis U . This point is demonstrated in the case study
of Section 2. While limit (4) holds for every choice of orthogonal matrix U , we will
see that the superefficiency of µ̂M over the classically efficient (albeit inadmissible)
sample mean is most pronounced when U is most economical.

The acronym REACT stands for risk estimation after coordinate transformation.
The construction of µ̂M is briefly as follows. Let Σ̂ denote a suitably consistent esti-
mator of Σ that is independent of x̄. One candidate is the sample covariance matrix.
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After selecting a tentatively economical orthogonal basis U , define the canonical mean
vector

ẑ = n1/2U ′Σ̂−1/2x̄. (5)

This is the coordinate transformation step. Let diag(f) denote the diagonal matrix
whose diagonal is given by the vector f . The quantity

ρ̂(f) = ave[f2 + (1− f)2(ẑ2 − 1)]. (6)

will be seen to estimate the risk of the candidate estimator

µ̂(f, Σ̂) = Σ̂1/2U diag(f)U ′Σ̂−1/2x̄ (7)

for µ. This is the risk estimation step. Let f̂M = argminf∈FM ρ̂(f). This is the
adaptation step, which identifies the candidate estimator with smallest estimated
risk. Combining these three operations yields the REACT estimator

µ̂M = µ̂(f̂M , Σ̂) = n−1/2Σ̂1/2U diag(f̂M )ẑ. (8)

This estimator turns out to have the theoretical properties sketched above.
The aims of this paper are to establish the superefficiency of µ̂M as n and p tend

to infinity at suitable relative rates and to argue that this superefficiency has statistical
value. Section 2 illustrates how µ̂M improves on the sample mean vector in a case
study of lumber-thickness measurements that motivated parts of this paper. Section
3 begins with an asymptotic minimax bound for estimation of the mean vector µ as
its dimension p tends to infinity. The success of the adaptation step, the asymptotic
minimaxity of µ̂M , and the remarkable benefits of basis economy are the main topics
of that section. Section 4 gives proofs.

2. THE LUMBER-THICKNESS DATA

Softwood lumber mills in the western U.S. typically produce green boards through a
series of sawing operations. Initial slicing of the logs by a headrig yields boards that
are subsequently resawn one or more times by secondary saws. Variability in each of
the sequential sawing operations contributes to irregularities in the thickness of the
final green lumber. The data analyzed in this section was collected as part of a larger
study by the U.S. Forest Service that investigated how lumber thickness errors are
propagated through sequential sawing operations.

Boards selected “at random” as they came off a headrig bandsaw were followed
through two horizontal resaws. In a horizontal resaw, the board being divided in
two is pressed flat against a horizontal reference plane that is parallel to the saw
blade. Thickness errors in the offspring board that touches the reference plane are
due entirely to the resaw. However, thickness errors in the other offspring board are
the sum of resaw errors and of thickness errors in the parent board. Initially and
at each subsequent stage of processing, the thickness of every board produced was
measured at eight standardized points, the first four along the “upper” edge , the next
four at the opposed points along the “lower” edge. Board orientations were preserved
throughout the sequence of resawings and measurements.
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The particular sample analyzed in this section arose as follows. Boards of nominal
four inch thickness coming off a headrig were resawn horizontally into two inch lumber
and then again into one inch lumber. The top and bottom offspring boards from the
first resaw were coded, respectively, as samples 1 and 2. The second resaw of these
samples yielded four samples that were coded 11, 12, 21, 22. Here the right digit
refers to the position of the offspring board (top or bottom) during the second resaw.
The sample 11 that we consider consists of the top offspring from the second resaw
of the top offspring from the first resaw.

The thickness measurements for each board are viewed as an 8× 1 vector. Com-
ponents 1 to 4 come from the upper edge of the board while components 5 to 8 come
from the lower edge. The measurement sites

1 2 3 4

5 6 7 8

are opposed in pairs and ordered as indicated. In the notation of the Introduction,
the dimension p is 8. Figure 1 exhibits the thickness measurements for the 25 boards
in sample 11. In most cases, one edge of the board is thicker than the other, but
whether the upper or lower edge is thicker varies from board to board. The plot of
x̄ in cell (1,1) of Figure 2 shows that, on average, the upper edge is thinner than the
lower edge, despite considerable board-to-board variation.

Construction of the adaptive estimator µ̂M defined in (8) requires estimating
the covariance matrix Σ, choosing the orthogonal basis U , and computing f̂M =
argminf∈FM ρ̂(f), where ρ̂(f) is the estimated risk function defined in (1.6). We
consider these matters in turn.

Estimation of Σ. It seems plausible that the sawing errors at different mea-
surement sites are homoscedastic and positively correlated, the amount of correlation
depending on distance between the measurement sites. Because board width is very
small relative to the distance between measurement sites along either edge, these
considerations suggest that

Σ = Σ(A,B, C,D,E) =



A B C D E B C D
B A B C B E B C
C B A B C B E B
D C B A D C B E
E B C D A B C D
B E B C B A B C
C B E B C B A B
D C B E D C B A


(9)

with A ≥ E ≥ B ≥ C ≥ D > 0. By averaging the entries in the sample covariance
matrix that correspond to equal entries in (9), we obtain for Σ the estimate

Σ̂ = Σ(Â, B̂, Ĉ, D̂, Ê) (10)

where (Â, Ê, B̂, Ĉ, D̂) = (.00317, .00209, .00134, .00079, .00044).
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Figure 1. Thickness measurements on a sample of 25 boards. The symbols o and x
denote opposed upper and lower edge measurements at the four pairs of sites on each
board.
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REACT vs Sample Mean
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Figure 2. Cell (1,1) displays the REACT estimate µ̂M (with interpolated lines)
and the sample mean vector (points coded as in Figure 1). The other cells report
diagnostic plots discussed in Section 2.
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Orthonormal basis U . We construct an ordered tensor-product basis for R8 as
follows. Let s = (1, 2, 3, 4) and let V denote the 4×4 orthogonal matrix whose columns
are the orthonormal polynomials in s of degrees 0 to 3. The S-PLUS function poly()
computes V . Letting vi denote the i-th column of V , define W to be the partitioned
matrix

W = 2−1/2

(
v1 v1 v2 v2 v3 v3 v4 v4

v1 −v1 v2 −v2 v3 −v3 v4 −v4

)
. (11)

The columns of W form an orthonormal basis for R8. To obtain a basis that is
plausibly economical for expressing the transformed mean thickness vector Σ̂−1/2µ,
we reorder the columns {wi} of W from least to most rough. Such a reordered basis
should be economical if the components of transformed mean thickness vary slowly
as we move to adjacent measurement sites. The function

Rough(x) =
4∑
i=2

(xi − xi−1)2 +
8∑
i=6

(xi − xi−1)2 +
4∑
i=1

(xi+4 − xi)2 (12)

is taken to measure the roughness of any vector x ∈ R8. Reordering the columns of
W according to their Rough values generates the orthonormal basis matrix

U = (w1, w3, w5, w2, w4, w7, w6, w8). (13)

Cell (2,1) in Figure 2 displays the Rough values for successive columns of U . The
corresponding values of the canonical mean vector ẑ, defined in (5), are plotted in cell
(1,2). The small magnitudes of the higher order components of ẑ suggest that the
basis U is, in fact, economical in representing the mean vector µ.

Computing µ̂M . This is straightforward from (8) and the preceding definitions
once we have found the empirically best monotone shrinkage vector f̂M , which mini-
mizes ρ̂(f) over f ∈ FM . Let ĝ = 1− 1/ẑ2. Then

ρ̂(f) = ave[(f − ĝ)2ẑ2] + ave(ĝ2). (14)

Let H = {h ∈ Rp: h1 ≥ h2 ≥ . . . ≥ hp}. An argument in Beran and Dümbgen [2]
deduces from (14) that

f̂M = f̆+ with f̆ = argmin
h∈H

ave[(h− ĝ)2ẑ2]. (15)

The positive-part step arises in (15) because ĝ lies in [−∞, 1]p rather than in [0, 1]p.
The pool-adjacent-violators algorithm, treated by Robertson, Wright and Dykstra [7],
provides an effective technique for computing f̆ and hence f̂M .

Cell (2,2) of Figure 2 displays the components of f̂M for the lumber thickness
case study. The first three components are very close to 1, the fourth is .89, the fifth is
.20, and the last three components are zero. The estimated risk of µ̂M is ρ̂(f̂M ) = .24,
sharply lower than the risk or estimated risk of the sample mean x̄, which is 1.

Cell (1,1) in Figure 2 plots the components of µ̂M (with linear interpolation
between adjacent sites along each edge) and the corresponding components of x̄. The
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plot of µ̂M suggests that mean thickness decreases as we move down the length of
a board; that upper edge means are consistently smaller than corresponding lower
edge means; and that the difference in cross-board mean thickness grows only slowly
down the length of the board. The impression left by the plot of x̄ is more confused
and does not bring out the last feature. In this particular case study, µ̂M smooths
x̄ through shrinkage and choice of the basis U , even though the primary goal is to
reduce risk. As an incidental but useful consequence, µ̂M is more intelligible than x̄.

Cell (3,1) of Figure 2 displays, component by component, the normalized residual
vectors n1/2Σ̂−1/2(xi − µ̂M ), where 1 ≤ i ≤ 25. The Q-Q plot in cell (3,2) compares
all 200 residuals against the standard normal distribution. There is no evidence of
serious departures from marginal normality of the lumber thickness measurements,
from the postulated covariance structure (9), and from the fitted mean vector µ̂M .

3. ASYMPTOTICALLY MINIMAX ESTIMATORS

This section begins with asymptotic minimax bounds for estimation of µ over certain
subsets of the parameter space. Subsection 3.1 gives an oracle estimator that achieves
these bounds. The oracle estimator is usually not realizable because its definition
requires knowledge of µ′Σ−1µ and of Σ. However, the form of the oracle estimator
motivates, in Subsection 3.2, the definition of the fully adaptive estimator µ̂M and
provides a path to establishing asymptotic minimaxity of the latter. The choice of the
orthogonal basis U is discussed theoretically after Theorems 1 and 4 and is carried
out in Section 2 for the lumber-thickness data.

3.1. Minimax Oracle Estimation. We begin by reparametrizing the estimation
problem in the oracle world where Σ and µ′Σ−1µ are known. Let

z = n1/2U ′Σ−1/2x̄ ξ = Ez = n1/2U ′Σ−1/2µ. (16)

Any estimator µ̂ of µ induces the estimator ξ̂ = n1/2U ′Σ−1/2µ̂ of ξ. The mapping
between µ̂ and ξ̂ is one-to-one as is the mapping between µ and ξ. Risks are placed
into correspondence through the loss identity

Ln,p(µ̂, µ,Σ) = p−1|ξ̂ − ξ|2. (17)

In the oracle world, the problem of estimating µ under loss (1) is equivalent to esti-
mating ξ under quadratic loss (17).

To formulate the notion of basis economy, consider for every b ∈ [0, 1] and every
r > 0 the ball

B(r, b) = {ξ: ave(ξ2) ≤ r and ξi = 0 for i > bp}. (18)

Let ui denote the i-th column of U . In the original parametrization, B(r, b) corre-
sponds to the ellipsoid

D(r, b) = {µ: (n/p)µ′Σ−1µ ≤ r and u′iΣ
−1/2µ = 0 for i > bp}. (19)

If µ lies in D(r, b), then Σ−1/2µ lies in the subspace spanned by the first bbpc columns
of U . Regression coefficients with respect to these orthonormal vectors provide a de-
scription of Σ−1/2µ which is highly compressed when b is small. We then say that the
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basis is economical for estimating µ. Though overly idealized, this definition of econ-
omy leads to explicit results that link the economy of the basis with the superefficiency
of µ̂M .

Consider candidate estimators for ξ of the form ξ̂(f) = fz, where f ∈ FM . These
correspond to the candidate estimators

µ̂(f,Σ) = Σ1/2U diag(f)U ′Σ−1/2x̄ = n−1/2Σ1/2U diag(f)z (20)

for µ. Because of (17), the risk of µ̂(f,Σ) is

Rn,p(µ̂(f,Σ), µ,Σ) = ρ(f, ξ2), (21)

the function ρ being defined in (2). Let f̃M = argminf∈FM ρ(f, ξ2). The oracle
estimator is µ̂(f̃M ,Σ), the candidate estimator that minimizes risk. The restriction
to candidate estimators indexed by f ∈ FM makes possible successful adaptation
(see remarks preceding Theorem 2) as well as fine performance when the basis U is
economical (see remarks following Theorems 1 and 4).

Theorem 1. For every r > 0 and b ∈ [0, 1],

lim
p→∞

sup
µ∈D(r,b)

Rn,p(µ̂(f̃M ,Σ), µ,Σ) = rb/(r + b). (22)

The asymptotic minimax risk over all estimators of µ is

lim
p→∞

inf
µ̂

sup
µ∈D(r,b)

Rn,p(µ̂, µ,Σ) = rb/(r + b). (23)

The asymptotic minimax bound in (23) is thus achieved by the oracle estimator.
For fixed b, the asymptotic maximum risk of µ̂(f̃M ,Σ) increases monotonically in r
but never exceeds b. In sharp contrast, the risk of x̄ is always 1 whatever the value of
µ. The first message of Theorem 1 is that we can only gain, when p is not small, by
using the oracle estimator in place of the sample mean x̄. The second message is that
the reduction in maximum risk achieved by the oracle estimator can be remarkable if
b is close to zero. This occurs when the basis U used to define the oracle estimator is
highly economical. We note that the minimax asymptotics are uniform over subsets
of µ and thus are considerably more trustworthy than risk limits computed pointwise
in µ.

3.2. Successful Adaptation. The oracle estimator depends on µ′Σ−1µ and Σ, both
of which are typically unknown. To devise a realizable estimator that does not depend
on unknown parameters, we proceed as follows. Let Σ̂ be a consistent estimator of Σ.
Then

ẑ = n1/2U ′Σ̂−1/2x̄ (24)

plausibly estimates z = n1/2U ′Σ−1/2x̄. Consider the realizable candidate estimators
µ̂(f, Σ̂) where f ranges over FM . In view of (21), the function ρ̂(f) defined in (6)
estimates the risk of these candidate estimators. This risk estimator is suggested by



10 Rudolf Beran

the Mallows [5] CL criterion or the Stein [9] unbiased risk estimator, with plug-in
estimation of the unknown covariance matrix. By analogy with the construction of
the oracle estimator, we minimize estimated risk over the candidate estimators to
obtain the estimator µ̂M defined in (8). We will show in Theorem 4 that µ̂M shares
the asymptotic minimaxity of the oracle estimator.

Let | · | denote the Euclidean matrix norm, which is defined by |A|2 = tr[AA′]. If
A1 and A2 are both p×p matrices, then the Cauchy-Schwarz inequality for this norm
asserts that |A1A2| ≤ |A1||A2|. The following consistency condition will be imposed
upon the estimator Σ̂.

Condition C. The estimators Σ̂ and x̄ are independent. Let V̂ = Σ−1/2Σ̂1/2. For
every r > 0,

lim
n,p→∞

sup
µ∈D(r,1)

E|V̂ − Ip|2 = 0 lim
n,p→∞

sup
µ∈D(r,1)

E|V̂ −1 − Ip|2 = 0. (25)

In this statement, the relative rates at which n and p tend to infinity will depend
on the covariance estimator Σ̂. For instance, if Σ̂ is the sample covariance matrix
based on the observed (x1, x2, . . . , xn), then Condition C holds provided p and n tend
to infinity in such a way that p2/n tends to zero. In the lumber data example or
in time-series contexts, restrictions may be imposed on the form of Σ. Condition C
may then hold for suitably constructed Σ̂ under less severe limitations on the rate at
which p increases with n.

The next two theorems, proved in Section 4, show that the estimated risk func-
tion ρ̂(f) and the adaptive estimator µ̂M serve asymptotically as valid surrogates for
ρ(f, ξ2) and the oracle estimator µ̂(f̃M ,Σ). It is important to note that similar re-
sults do not hold if the class of monotone shrinkage vectors FM , defined before display
(3), is replaced by a much larger class of shrinkage vectors such as the global class
FG = [0, 1]p. Adaptation over FG produces an inadmissible estimator of µ, as shown
in [2].

Theorem 2. Suppose that Σ̂ satisfies Condition C. For every r > 0 and every positive
definite Σ,

lim
n,p→∞

sup
µ∈D(r,1)

E sup
f∈FM

|Ln,p(µ̂(f, Σ̂), µ,Σ)− ρ(f, ξ2)| = 0 (26)

and
lim

n,p→∞
sup

µ∈D(r,1)
E sup
f∈FM

|ρ̂(f) − ρ(f, ξ2)| = 0. (27)

Because τM (ξ2) = ρ(f̃M , ξ2), a consequence of Theorem 2 is

Theorem 3. Suppose that Σ̂ satisfies Condition C. For every r > 0 and every positive
definite Σ,

lim
n,p→∞

sup
µ∈D(r,1)

E|T − τM (ξ2)| = 0, (28)

where T can be any one of Ln,p(µ̂M , µ,Σ), Ln,p(µ̂(f̃M ,Σ), µ,Σ), or ρ̂(f̂M ).
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Theorem 3 implies the risk convergence (4) and

Theorem 4. Suppose that Σ̂ satisfies Condition C. For every r > 0, every b ∈ [0, 1],
and every positive definite Σ,

lim
n,p→∞

sup
µ∈D(r,1)

|Rn,p(µ̂M , µ,Σ)− Rn,p(µ̂(f̃M ,Σ), µ,Σ)|= 0 (29)

and
lim

n,p→∞
sup

µ∈D(r,b)

Rn,p(µ̂M , µ,Σ) = rb/(r + b). (30)

By comparing (30) with (23), we see that the adaptive estimator µ̂M is asymptotically
minimax over D(r, b) and has small maximum risk when b is small, in which event
the basis U represents Σ−1/2µ economically. Moreover, (29) shows that the risk of
µ̂M mimics that of the oracle estimator µ̂(f̃M ,Σ), uniformly over ellipsoids in the
parameter space that correspond to bounds on the signal-to-noise ratio. Theorem 4
thus establishes the success of the adaptation strategy over shrinkage vectors f ∈ FM
that is expressed in the definition of µ̂M .

4. PROOFS

Pinsker’s paper [6] yields two minimax theorems for the estimation of ξ from z in the
oracle world. Let E = {a ∈ Rp: ai ∈ [1,∞], 1 ≤ i ≤ p}. For every a ∈ E , define the
ellipsoid

E(r, a) = {ξ ∈ Rp: ave(aξ2) ≤ r}. (31)

When ξ ∈ E(r, a) and ai =∞, it is to be understood that ξi = 0 and a−1
i = 0. Let

ξ2
0 = [(δ/a)1/2 − 1]+ g0 = ξ2

0/(1 + ξ2
0) = [1− (a/δ)1/2]+, (32)

where δ is the unique positive number such that ave(aξ2
0) = r. Define

νp(r, a) = ρ(g0, ξ
2
0) = ave[ξ2

0/(1 + ξ2
0)]. (33)

Evidently, νp(r, a) ∈ [0, 1] for every r > 0 and every a ∈ E .
The first theorem that can be specialized from Pinsker’s reasoning identifies the

linear estimator that is minimax among all linear estimators of ξ and finds the mini-
max risk for this class.

Theorem 5. For every a ∈ E and every r > 0,

inf
f∈Rp

sup
ξ∈E(r,a)

E|fz − ξ|2 = νp(r, a) = sup
ξ∈E(r,a)

E|g0z − ξ|2. (34)

The second theorem gives conditions under which the minimax linear estimator
g0z is asymptotically minimax among all estimators of ξ.

Theorem 6. For every a ∈ E and every r > 0 such that limp→∞ pνp(r, a) =∞,

lim
p→∞

[inf
ξ̂

sup
ξ∈E(r,a)

E|ξ̂ − ξ|2/νp(r, a)] = 1. (35)
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If lim infp→∞ νp(r, a) > 0, then also

lim
p→∞

[inf
ξ̂

sup
ξ∈E(r,a)

E|ξ̂ − ξ|2 − νp(r, a)] = 0. (36)

Because g0 depends on r and a, the asymptotic minimaxity of g0z is assured only
over the one ellipsoid E(r, a). The following construction yields an oracle estimator
that is asymptotically minimax over a class of such ellipsoids. Let E0 ⊂ E and F be
such that g0(r, a) ∈ F for every a ∈ E0 and every r > 0. To enable successful adap-
tation, we will require that the shrinkage class F be not too large. This requirement
limits the choice of E0. Let f̃ = argminf∈F ρ(f, ξ2). Because both f̃ and g0 lie in F ,
it follows that

sup
ξ∈E(r,a)

E|f̃z − ξ2| ≤ sup
ξ∈E(r,a)

E|g0z − ξ|2 = νp(r, a) (37)

for every a ∈ E0 and every r > 0. This implies the asymptotic minimaxity of f̃ z over
the class of ellipsoids E(r, a) that is generated as a ranges over E0 and r ranges over
the positive reals.

Proof of Theorem 1. In the transformed problem, candidate estimator µ̂(f,Σ) =
fz. The ball B(r, b) defined in (18) is the specialization of E(r, a) when ai = 1 for 1 ≤
i ≤ bp and = ∞ otherwise. In this case, (32) and (33) imply that limp→∞ νp(r, a) =
rb/(r + b) and that g0 has coefficients g0,i = [1 − δ−1/2]+ for 1 ≤ i ≤ bp and = 0
otherwise. Consequently, g0 ∈ FM . The asymptotic minimax bound (23) is the
specialization of (36) while (22) follows from (37) with F = FM .

Proof of Theorem 2. If X and Y are non-negative random variables, then

E|X2 − Y 2| ≤ E|X − Y |2 + 2E1/2Y 2 · E1/2|X − Y |2. (38)

We first prove (27). The definitions (16) and (24) of z and ẑ entail that

ẑ − z = n1/2U ′(V̂ −1 − Ip)Σ−1/2x̄. (39)

From this, Condition C, and the Cauchy-Schwarz inequality for the matrix norm,

E|ẑ − z|2 ≤ p[1 + ave(ξ2)]E|V̂ −1 − Ip|2. (40)

Let
ρ̆(f) = ave[f2 + (1− f)2(z2 − 1)]. (41)

It follows from the definition (6) of ρ̂(f), (38), (40) and Condition C that

lim
n,p→∞

sup
ξ∈B(r,1)

E sup
f∈[0,1]p

|ρ̂(f) − ρ̆(f)|2 = 0. (42)

On the other hand, Lemmas 6.3 (first part) and 6.4 in [2] imply

lim
p→∞

sup
ξ∈B(r,1)

E sup
f∈FM

|ρ̆(f) − ρ(f, ξ2))|2 = 0. (43)



REACT in correlated noise 13

In (43), the distribution of the difference does not depend on n; and it is not possible
to replace f ∈ FM with f ∈ [0, 1]p for reasons discussed in [2]. Limit (27) is immediate
from (42) and (43).

Next, observe that

Ln,p(µ̂(f, Σ̂), µ,Σ) = p−1|V̂ U diag(f)ẑ − Uξ|2. (44)

and that |U diag(f)z−Uξ|2 = |fz−ξ|2. From these facts plus (38), (40) and Condition
C follows

lim
n,p→∞

sup
ξ∈B(r,1)

E sup
f∈[0,1]p

|Ln,p(µ̂(f, Σ̂), µ,Σ)− p−1|fz − ξ|2| = 0. (45)

On the other hand, Lemmas 6.3 (second part) and 6.4 in [2] entail

lim
p→∞

sup
ξ∈B(r,1)

E sup
f∈FM

|p−1|fz − ξ|2 − ρ(f, ξ2)| = 0. (46)

Limit (26) is the consequence of (45) and (46).

Proof of Theorem 3. Limit (27) implies that

lim
n,p→∞

sup
ξ∈B(r,1)

E|ρ̂(f̂M ) − ρ(f̂M , ξ2)| = 0 (47)

and
lim

n,p→∞
sup

ξ∈B(r,1)

E|ρ̂(f̂M )− ρ(f̃M , ξ2)| = 0. (48)

In view of (3), τM (ξ2) = ρ(f̃M , ξ2). Consequently, limit (28) holds for T = ρ̂(f̂M )
and, in addition,

lim
n,p→∞

sup
ξ∈B(r,1)

E|ρ(f̂M , ξ2) − τM (ξ2)| = 0. (49)

On the other hand, limit (26) implies that

lim
n,p→∞

sup
ξ∈B(r,1)

E|Ln,p(µ̂M , µ,Σ)− ρ(f̂M , ξ2)| = 0. (50)

Combining this result with (49) yields (28) for T = Ln,p(µ̂M , µ,Σ). Because Σ̂ = Σ
satisfies Condition C, it is also true that (28) holds for T = Ln,p(µ̂(f̃M ,Σ), µ,Σ).

Proof of Theorem 4. Note that

|Rn,p(µ̂M , µ,Σ)− Rn,p(µ̂(f̃M ,Σ), µ,Σ)| ≤ E|Ln,p(µ̂M , µ,Σ)− Ln,p(µ̂(f̃M ,Σ), µ,Σ)|.
(51)

Limit (29) follows from this inequality and Theorem 3.
Because D(r, b) is a subset of D(r, 1), limit (29) entails

lim
n,p→∞

| sup
µ∈D(r,b)

Rn,p(µ̂M , µ,Σ)− sup
µ∈D(r,b)

Rn,p(µ̂(f̃M ,Σ), µ,Σ)| = 0. (52)

This together with (22) implies (30).
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