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Abstract

In this paper we extend the concept of graphical models for multi-
variate data to multivariate time series. We define a partial correlation
graph for time series and use the partial spectral coherence between
two components given the remaining components to identify the edges
of the graph. As an example we consider multivariate autoregressive
processes. The method is applied to air pollution data.

1 Introduction

Graphical interaction models have become an important tool for analyzing
multivariate data - for an introduction to the topic, the basic notations and
an overview of the different methods see the recent monographs by Cox and
Wermuth (1996), Edwards (1995), Lauritzen (1996) and Whittaker (1990).
In this paper we extend the concept of undirected conditional independence
graphs to multivariate time series. The edges of a conditional independence
graph reflect the conditional dependence structure between several variables
and give the data analyst an idea of the interaction structure of the observed
variables. In particular, it helps to discriminate between direct and indirect

correlations between the variables.
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In this paper we discuss the concept of graphical models for multivariate
time series. The vertex set will consist of the components of the series while
the edges will reflect the partial correlation structure of the components given
the others. Thus, for Gaussian time series our graph is a conditional indepen-
dence graph (a generalisation of a concentration graph/covariance selection
model) while for non-Gaussian time series it is termed partial correlation
graph.

For the characterisation of the edges the partial spectral coherence is
used - a standard tool in the frequency domain analysis of time series (cf.
Brillinger, 1981, Chapter 8.3 and the references therein). It is a measure
for the dependence between two time series after removing the linear time
invariant effects of a third (or more) series. The partial spectral coherence
has been used for time series by Gersch (1972) in electrophysiological signal
analysis and for point processes by Brillinger, Bryant and Segundo (1976)
for the identification of synaptic interactions of neurons. Graphical models
for time series based on the partial spectral coherence have also been defined
by Brillinger (1996).

The paper is organized as follows. We discuss graphical models for time
series. In particular, we prove a property of the inverse of the spectral matrix
which helps to identify the graph. In Section 3 we prove a separation theorem
for time series graphs which is equivalent to the global Markov property
of the graph. In Section 4 we consider as a specific example multivariate
autoregressive processes. Section 5 contains as an example the analysis of

air pollution data.

2 Graphical models for time series

A graph GG = (V, E) consists of a set of vertices V, say V ={1,... k} and a
set of edges £ C {(a,b) € V x V'}. We only consider undirected graphs, i.e.



we assume (a,b) € E whenever (b,a) € F.

Suppose X (t) = (Xq1(¢),..., Xk(t))', t € Z is a multivariate stationary
time series. As the vertices of our graph we want to have the components of
the series, i.e. we set V ={1,...,k}. The basic idea is that an edge («a,b) is
missing if the components X,(-) and X,(-) are uncorrelated given the other
components of the series. To come to an exact definition we now make this
idea rigorous. Note, that in the following definitions we are dealing with the
stochastic properties of the process and not with empirical values based on
observations.

Let Yo (t) = (X;(t),7 # a,b). We remove the linear effects of Y, from
X, (t) by determining the optimal i, and the optimal 1 x (r—2) filter {d,(u)}
such that

E (Xa(t) — fa — Zuj da(t - U)Yéb(U))Z

is minimal. The remainder is denoted by £,(%), i.e.

€a(t) 1= eq)apye(t) := Xa(t) — Pt — Z doPH(t — ) Yop(u).

U

In the same way we define

eb(t) := epfapre(t) := Xp(t) — /,szt — Z dzpt(t —u)Yop(u).

U

We now set X, = (X, (t);t € Z) and YV = (Ya(t);t € 7Z) and define the

relation
Xy L | Vap & cov(eajapye(t), Egapye(t +u)) =0 forallu € Z (2.1)
leading to the definition of a partial correlation graph.

(2.1) Definition Let X(¢) = (X;(t),..., Xx(t)) be a multivariate stationary
time series and V' = {1, ..., k} the corresponding set of vertices. Let (a,b) ¢ F
if and only if X, LA} Vap. Then G = (V, E) is called a partial correlation graph

for time series.



We might also use the notation concentration graph instead of partial
correlation graph - in particular since the graph is a generalisation of an
ordinary concentration graph. However, we chose the above name since it
better describes the nature of the graph (Furthermore, the inverse spectral
matrix which characterizes the edges of the graph - see Theorem 2.4 below -
has also never been termed spectral concentration matrix).

For Gaussian time series, ¢, and ¢, defined above are again Gaussian and
the above best linear predictor of X,(t) given Yy,(¢) is the best predictor.
Furthermore, X, 1LA;|YV,; if and only if €, and &, are independent. In this
situation the above graph is a conditional independence graph for time series.
Note, that the orthogonality relation 1L defined in (2.1) can be retained if
X, (t) and X,(t) are vector time series.

An important characterisation of the edges of the graph can be obtained
from the partial spectral coherence. An estimate of the partial spectral co-
herence will also be of importance in identifying the graph from an observed

time series. Let
cab(u) = ex,x,(u) = cov(Xo(t + u), Xo(1))

be the covariance function of the process. If

o0

Y leaw(u)] < oo

U=—00

then the (cross-)spectrum between X, () and X,(?) is defined by

o0

Jar(A) = fxox,(A) = L Z cap(u) exp(—iAu).

27

U=—00

Let fxx(A) = (fun(A)),pon, . p and exx(u) = (ca(u)), =y ;- The Fourier
inversion formula gives

Kis

exx(u) = Fxx(X) exp(eAu)dA.

—T



A similar Fourier-representation for the process itself holds (cf. Brillinger,
1981, Theorem 4.6.2).

If the components X, (¢ +u) and X, (¢) are uncorrelated at all lags u then
far(A) = 0 (and vice versa). Otherwise f,;(A) contains information on the
dependence structure, decomposed into different frequencies. arg f () is a
measure for the time delay of the two signals, also decomposed into different
frequency components (cf. Brillinger, 1981 Chapter 6 and 7).

A measure of the dependence between X, (¢) and X (¢) given Y,;(¢) is the
partial cross-spectrum of X,(t) and X,(¢) given Y,,()

fXaXb|Yab()\) = fsasb()‘)

where £,(t) and £,(¢) are as above. Rescaling leads to the partial spectral

coherence

fXaXb|Yab()\)
[Fxaxalvas V) xo v (V)

The solution of the above optimization problem can be found together

RXaXb|Yab()\) = (2'2)

}1/2'

with the form of the partial cross-spectrum in Brillinger (1981, Theorem

8.3.1). Brillinger proves that

Fxaxyy () = frax,(A) = Sy (W) fry ()7 frx (M) (2.3)

Since f.

obtain the following result.

(-) = 0 if and only if cov(e,(t),ep(t + u)) = 0 for all u € 7 we

a€p

(2.2) Proposition Suppose G = (V, F) is a partial correlation graph for a

multivariate time series. Then

(a,b) ¢ I/ if and only if  Rx, x,yv,(-) =0.

(2.3) Remark The orthogonality relation 1 can be defined in the same way
for arbitrary vector time series X4 := (X, (¢);a € A,t € 7). In particular we



have

.XAJ_XB|XC A= COV(€A|C(t),€B|C(t + u)) =0 forallueZ
A fXAXB|Xc(') =0
A RXAXB|XC(') =0 (2'4)

for disjoint sets A, B,C C V. Furthermore, (2.2) and (2.3) stay the same in

the vector case

We now prove that the partial spectral coherences can be obtained as the

negative values of the rescaled inverse of the spectral matrix. Let

g(A) = fxx (M)

and

0 gre(A) ™12 0 gre(A) ™12

(2.4) Theorem Suppose X (t) = (X,(t);a € V) is a multivariate time se-
ries with spectral density matriz fxx(X). If fxx(X) has full rank, we have

with the above notations

dab()‘) = _RXaXblyab()\)'

Furthermore,

Jaa(A) = 1/ [x xapva (A)
where Yy (1) = (X;(t)|5 # a). If X(t) = (X1(t),..., Xp(t)) and the X 4(t) are
vector processes then gap(A) = 0 (as a matriz) if and only if fx , xgv.s(A) =
0.



PRrOOF. The proof is given in the appendix O

Theorem 2.4 has important consequences. First, with view to Propo-
sition 2.2 it means that the missing edges in the partial correlation graph
can uniquely be identified from zeroes in the rescaled inverse of the spectral
matrix (similar to concentration graphs/covariance selection models where
missing edges are characterized by zeroes of the concentration matrix (inverse
covariance matrix) - cf. Lauritzen, 1996, Chapter 5). This characterizes for
example the restrictions on the parameter space for parametric time series
models that have a certain graph (cp. (4.1) below for multivariate autore-
gressive models). This is for example important for likelihood ratio tests of
graphical models.

Second, Theorem 2.4 is the basis for a nonparametric identification of
the time series graph where an estimate of the spectral matrix is inverted
and rescaled (see Section 5). This is much less computerintensive than e.g.
the estimation of the residuals e4)(,}c(f) used in the definition of the graph
which would require the calculation of 2(5) linear filters.

For certain applications it may be interesting to study the situation where
dap(A) = 0 for certain frequency bands leading to the idea of a frequency

dependent graph. However, we do not want to pursue this any further.

(2.5) Remark The inverse of the spectral matrix may also be used to ex-
plain the effect of a confounder, i.e. an unobserved component X. of the time
series. Suppose X(t) = (X1(t),..., Xk(¢))" is the full time series including
X.(t),9(N) = fxx(N)7, )N((t) = (X(t); 7 # ¢)' is the observed reduced
series and g(A) := fz #(A)~*. Then we obtain with some matrix calculations

(see also the expressions for B~! in the appendix)

Gon(A) = gab(A) = Gac(A)gee(A) ™ g (V)
explaining the relations between edges in the full graph (g..(A) # 0) and
edges in the reduced graph (g.(A) # 0). In particular, if there is no edge

7



between a and b (g.(A) = 0) but edges between a and ¢ and ¢ and b with
9ac(A) # 0 and g (A) # 0 for the same A this causes an edge between a and
b in the reduced graph (note that it can be shown that 0 < fy x,()) < oo
implies 0 < g..(A) < 00).

We conclude this section with a remark on the possibilities of including

ordinary variables into the graph.

(2.6) Remark (Joint graphs for time series and ordinary variables)
In the ‘mixed case’ where one has time series and ordinary variables we have

to consider two different cases:

1. One observes the ordinary variables independently at each time point
where one observes the time series. In that case the ordinary variables
may be treated as a time series consisting of 12d observations and having
a constant spectrum. This situation is only a special case of the situ-
ation considered above. If e.g. all variables are ordinary, then fxx(X)
is constant with 27 fy x(A) being the variance covariance matrix of the
observations. In some sense covariance selection models may therefore

be regarded as a special case of the time series graph above.

2. With each time series one only has one observation of the ordinary vari-
able (e.g one investigates the blood and an EEG-recording of a patient).
In this case the time series may be regarded as one (multivariate) vari-
able leading to a classical graphical model. Usually one would even
summarize the information contained in the time series into one (or
several) variables (e.g. for EEG data one might consider a variable

which reflects the occurrence of an epileptic seizure).



3 Markov properties of time series graphs

In this chapter we prove the separation theorem for time series graphs. This

is equivalent to the global Markov property.

(3.1) Lemma Suppose X (1) = (X,(1);a € V) is a multivariate time series

whose spectral matriz fxx(X) has full rank (for all X) and X4 = (X,(1);a €

At €7), Xp, Xo and Xp are vector time series with disjoint sets A, B,C, D C
V. Then we have

(i) Xal(Xp, Xo)|Xp implies X4 LXB| XD,

(i) Xal(Xp, Xo)|Xp if and only if X4 LXp|(Xe, Xp) and X4 LXc|(Xp, Xp).

ProoOF. (i) From (2.4) we get fx,(xpx0)xp, = 0 whichimplies fx, x,x, =
0, i.e. XallXp|Xp.
(ii) Consider the matrix g(A) from Theorem 2.4. If X4 LXg|(Xc, Ap) and
X4 LXc| (X, Xp) then Theorem 2.4 implies gap(-) = 0 and gac(-) = 0. If we
set Yy = X4,Yp = (X, X¢) and Yo = Xp then g(+) = ¢¥(-) and Theorem
2.4 implies X4 LAX¢|(Xp, Xp). The other direction follows in the same way.
|

(3.2) Remark For ordinary graphical models assertion (ii) only holds un-
der additional assumptions, for example under the condition that the joint
density of the variables involved is positive everywhere (cf. Lauritzen, 1996,
Proposition 3.1). For time series graphs also additional assumptions are
needed for assertion (ii) to hold. As an example consider the case where
A={a},B ={b},C =Hc},D = {d}, Xo(t) = X.(1), Xu(t) = Xp(t) + ()
where () is an iid sequence independent of the other components and X4(t)
is also independent of all other components. Then X4ILXg|(Xc, Xp) and
X LXc| (X, Xp) but we do not have X4l (X, Xe)|Xp. In this case the

spectral matrix is singular since the columns b and ¢ are identical.



We now establish the separation theorem for a time series graph (V) F).
For A,B,S C V we say that S separates A and B if every path from an
element from A to an element from B contains at least one vertex from the

separating set S (a path is a sequence of distinct vertices iy,...,4, with

(i¢,9041) € E foreach £ =1,...,m —1).

(3.3) Theorem Suppose X (t) is a multivariate time series with everywhere

regular spectral matriz and corresponding partial correlation graph (V, F). Let

A, B, S CV where S separates A and B. Then we have
XalXp|Xs.

ProOOF. With the assertions of Lemma 3.1 (i) (ii) the result can be

proved in exactly the same way as Theorem 3.7 in Lauritzen (1996). O

(3.4) Remark (Markov properties) The relation X4 L X5| X constitutes
a range of different Markov properties (cf. Lauritzen, 1996, Section 3.2.1).
Without repeating all the definitions we remark that the separation theorem

implies that the global Markov property holds for a time series graph.
(3.5) Example Let Xi(¢) = a1 X1(t — 1) + £1(2),
Xi(t) = ;X5 =1) + 0, X (E = ;) +&;(1)  (J=2,3,4)

with some time lags ¢; € No. The ¢;(t) are assumed to be itd N'(0,?). This
means that each process depends on its own past and its predecessor with

some time lag ;. Then all processes are correlated while the conditional

O—CE—E—©

This follows from the next section where the more general class of multi-

correlation graph is

variate autoregressive processes is treated. The separation theorem gives for

example in this situation X 1LX|X,.
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4 Vector autoregressive processes

The class of vector autoregressive processes provides an intuitive example for

time series graphs. Let
p .
X(t) = ®;X(t—j)+Z(1)
7=1
where the ®; are k x k matrices and Z(¢) are itd N'(0, ). Let
G(z)i=1—P1z— ... — D27

be the characteristic polynomial of the process. If det ®(z) £ 0 for all z € C
with |z| < 1 then the above recursion has a stationary solution (cf. Brockwell
and Davis, 1987, Theorem 11.3.1).

In the above model the components ®; ., may intuitively be regarded as
the ‘influence’ from X,(t — j) on X,(¢), that is we have no influence from
component b on a if () = 0.

The spectral density matrix of X(¢) is (cf. Brockwell and Davis, 1987,
Example 11.8.1)

fXX()\) — %Cb‘l(e‘M)Z@‘l(eM)',

i.e. we have
gA) = fxx(N)7h=270(™) S0,
Suppose now for simplicity ¥ = ¢?I;. Then we have

gun(A) = i—z > P (€M) Do) (4.1)

c=1
If @ and b do not ‘influence’ jointly another component ¢ then we have g.(-) =

0 if and only if ®,(-) = 0 and Py, () = 0, i.e. with view to Theorem 2.4

11



we obtain the result we would expect. In particular this proves the assertion
from Example 3.5.

The above restriction seems to be strange from a first view. The following
example demonstrates that this is a natural restriction: Suppose Xj, Xy and
¢ are independent and X3 = X; + X3 + . Then X; and X, are no longer
independent conditional on X3 and the conditional correlation graph will
show a connection between X and X, contrary to the intuition. In Dahlhaus,
Fichler and Sandkiihler (1997) we have studied this effect more detailed in
the context of point processes.

The situation is very similar to ordinary graphical models where the prob-
lem of equivalence of directed and undirected graphs arises (cf. Whittaker,
1990, Chapter 3.5). Both graphs have the same independence interpretations
if the directed graph satisfies the so called Wermuth condition which forbids
that non-connected variables have ‘influence’ on the same variable. For an
arbitrary directed graph the corresponding (undirected) conditional indepen-
dence graph is a subgraph of the so called moral graph where ‘parents are
married’ (cf. Whittaker, 1990, Chapter 3.9; Wermuth, 1980). Relation (4.1)
implies that the same holds in the above situation if an influence from b to
a (Pu(-) £ 0) is represented by a directed edge (b, a) in a directed graph.

We hesitate to set down the definitions of directed graphs, moral graphs
etc. indicated above in a rigorous way for time series. The reason is that
we feel that in a careful (and meaningful) definition of ‘direction’ of time
series graphs time should play a major role (e.g. in the model X,(t) =
bX1(t — 1) + &(t) the direction should be from X; to X, due to the time
lag). Such a definition therefore requires more and deeper considerations.
In particular it will not be totally analogous to the definition of ordinary

directed graphs.

12



5 Identification of the time series graph for air pollution data

Given a k-dimensional multivariate time series of length n the problem arises
how to identify the corresponding graph. By Proposition 2.2 the presence of
an edge is equivalent to a non-vanishing partial spectral coherence. There-
fore, we build the graph by testing whether the different spectral coherences
disappear.

For an estimate of the partial spectral coherence we use the characterisa-
tion from Theorem 2.4:

We nonparametrically estimate the spectral matrix and invert and rescale

this estimate. As an estimator for f,,(A) we take

Fal) = 5 W (—A )] T) (%)

where W is a kernel with [ W(a)da =1 and

1Dy = {27réh (%) }_2 {ZT:h (%) (Xu(t) - X.) exp(—i)\t)}

t=1
< {Z h (%) (X(1) - X%,) exp(i)\t)}
t=1
is the tapered periodogram.

The method was used to analyze a 5-dimensional time series of length
4386 of air pollutants recorded from January 1991 to December 1992 in Hei-
delberg (6 equidistant recordings a day). The recorded variables were CO
and NO (mainly emitted from cars, house-heating and industry), NOy and
O3 (created in different reactions in the atmosphere) and the global radiation
intensity gr: which plays a major role in these reactions, in particular in the
generations of ozone.

The original data were recorded with a distance of 30 minutes. Figure 5.1
shows the daily course of the five variables averaged over 61 consecutive days

in summer. CO and NO increase early in the morning due to traffic and, as

13
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Figure 5.1: Average of the daily measurements of CO, NO, NO3, O3 and gr¢ over

61 days in summer.

a consequence, also NO, increases. Oj increases later due to the higher level
of NO; and the increase of the global radiation. Figure 5.1 indicates that all
variables are correlated at different lags.

Beside the original series we will also analyze the residual series after
subtracting the (local) average course as shown in Figure 5.1 (trend corrected
data). The original series contained a few missing values (less than 2%) which
were completed by interpolation of the residual series with splines. For the
final investigation each 8th value of the original series was taken (i.e. 6 values
per day).

Figure 5.2 shows above the diagonal the squared empirical coherences

|]%XaXb()‘)|2 of the original series with

BTG AENTR
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partial coherence

ori

00 0.5 00 0500 05 00 05

frequency

Figure 5.2: Spectral coherences (above diagonal) and partial spectral coherences

(below diagonal) for air pollution data.

These plots show strong dependencies between all of the variables. The peak
at frequency 7/3 and its harmonic at (27)/3 corresponds to the periodic
behaviour of length 6 (one day). Below the diagonal we have plotted the
partial coherences |]%XaXb|Yab()‘)|2 as defined in Section 2. The dashed line in
the plots is a 95%-test bound (as described below) for the supremum of the

estimates under the hypothesis Ry, x,y,,(-) = 0.

The test indicates that some of the processes are uncorrelated given the
remaining processes. Although the test bound was slightly exceeded at a few

frequencies we found it reasonable to draw the time series graph as in Figure

15
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Figure 5.3: Estimated partial correlation graph for air pollution data.

5.3 from the partial spectral coherences.

The graph correctly reflects the creation of Oz from NO; and the fact
that the global radiation intensity plays a major role in the process of Os-
generation. Furthermore, CO and NO are correlated (both are emitted from
cars etc. ).

The meaning of the other edges (and of some of the missing edges) is less
obvious. Chemical reactions between air pollutants are very complex and
still not completely understood (cf. the monograph on this topic by
Seinfeld, 1986). In particular, one has to be aware of the fact that NO, and
O3 are not only increased but also decreased by several chemical reactions
and that several other chemicals play an important role.

Part of these reactions can be explained by a photochemical theory (cf.
Seinfeld, 1986, Section 4.2). This theory is confirmed by the above graph:
the edge between gri and NO; represents the photolysis of NO, and the edge
between CO and NO; supports that most of NO; is generated via a radical
reaction where CO is involved. A bit surprising is the missing edge between
NO and NO;. This missing edge and the edge between CO and NO indicate
that mainly the concentration of CO (and not of NO) is responsible for the
generation of NOy. This means in particular that NO; is generated via a
radical reaction (where CO plays a major role) and not in a direct reaction
(where CO is not involved). It is remarkable that a direct correlation analysis
indicates the opposite since the spectral coherence between NO and NO, in

Figure 5.2 is highly significant.

16
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Figure 5.4: Spectral coherences (above diagonal) and partial spectral coherences

(below diagonal) for the trend corrected air pollution data.

One may raise the question to what extent the above findings are due to
the daily up and down of the five variables. For this reason we have repeated
the analysis with the residual series (obtained as described above). The plots
in Figure 5.4 show that the analysis of the residual series leads exactly to the
same graph.

Figure 5.5 shows above the diagonal the cross correlations and below
the diagonal the partial cross correlations of the trend corrected series (i.e.
estimates of the correlations used in (2.1)). These partial cross correlations

have been calculated by the inverse Fourier transform of estimates of the

17
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Figure 5.5: Correlations (above diagonal) and partial correlations (below diagonal)

for trend corrected air pollution data.

partial cross spectra, which in turn have been calculated by using Theorem
2.4. The partial correlations lead to the same graph as before. Remarkable
is the negative correlation between NO, and O3 and the positive correlation
between Os and gri with negative lag (a high global radiation leads with
some time lag to an increase of ozone which at the same time reduces the
amount of NOy).

The dashed line in Figures 5.3 and 5.4 is a 95%-test bound of an approx-

imate distribution of

S]‘;p |EXaXb|Yab(A)|2 (51)
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derived under the hypothesis that Rx,_x,v,,(-) = 0. Let H} = 3 h(z)*dx and
cr = %% [ W(a)*da. Tt can be concluded that the real and the imaginary

part of

67_“1/2 (EXQXHYab()‘) - RXaXb|Yab()\))

are asymptotically independent and standard normally distributed leading
under the hypothesis Rx,x,v,,(-) = 0 to a 3 distribution for et |]%XaXb|Yab()‘) |?
(cf. Dahlhaus et al., 1997, Section 2 and Brillinger, 1981, Section 8.8). We
then have taken the supremum of m(n) independent x3 distributions where
m(n) is the maximum number of frequencies A such that the smoothing
intervals of the spectral estimates do not overlap, i.e. the dashed line is
CTX;(l_a)l/m(n) (for the air pollution data m(n) was 31).

It is very difficult to determine the exact asymptotic distribution of (5.1) -
in particular since the values of ]%XaXblYab()‘) are dependent for neighbouring
A.

Furthermore, the problem of multiple testing has to be addressed. An
alternative would be to determine the “best approximating graph” by using
a model selection criterion which penalizes the complexity of the graph in an
adequate way.

We also mention that the partial correlation graph only reflects linear
dependencies. Nevertheless, the above method may be useful for exploration
of the dependence structure even if nonlinear dependencies are present (an

example for neuron nets is given in Dahlhaus et al., 1997).

Appendix

Proof of Theorem 3.2. Suppose B is a regular matrix of the form

By, B
B 1 Do
By B

19




Direct verification gives

. E-1 —E'F
B~ =
—~GE™' By'+GE'F
where £/ = By, — BlzBilBgl,F = 31232_21 and G = 32_21321. To prove the

first part we can assume without loss of generality « = 1 and b = 2. We set

Fir(N) fra(N) ) |

= fxx(A with 11 =
B = P with B (le(A) faa(A)

F then is a 2 X 2 matrix whose rescaled inverse is

1 —612/(611622)1/2
—621/(611622)1/2 1

which proves the first part. The second part follows by setting B = fxx())
and By; = fi1(A). For processes with vector components the assertion follows

similarly.
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