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Abstract

In this paper we extend the concept of graphical models for multi�
variate data to multivariate time series� We de�ne a partial correlation
graph for time series and use the partial spectral coherence between
two components given the remaining components to identify the edges
of the graph� As an example we consider multivariate autoregressive
processes� The method is applied to air pollution data�

� Introduction

Graphical interaction models have become an important tool for analyzing

multivariate data � for an introduction to the topic� the basic notations and

an overview of the di�erent methods see the recent monographs by Cox and

Wermuth �����	� Edwards ����
	� Lauritzen �����	 and Whittaker �����	�

In this paper we extend the concept of undirected conditional independence

graphs to multivariate time series� The edges of a conditional independence

graph re
ect the conditional dependence structure between several variables

and give the data analyst an idea of the interaction structure of the observed

variables� In particular� it helps to discriminate between direct and indirect

correlations between the variables�
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In this paper we discuss the concept of graphical models for multivariate

time series� The vertex set will consist of the components of the series while

the edges will re
ect the partial correlation structure of the components given

the others� Thus� for Gaussian time series our graph is a conditional indepen�

dence graph �a generalisation of a concentration graph�covariance selection

model	 while for non�Gaussian time series it is termed partial correlation

graph�

For the characterisation of the edges the partial spectral coherence is

used � a standard tool in the frequency domain analysis of time series �cf�

Brillinger� ����� Chapter ��� and the references therein	� It is a measure

for the dependence between two time series after removing the linear time

invariant e�ects of a third �or more	 series� The partial spectral coherence

has been used for time series by Gersch �����	 in electrophysiological signal

analysis and for point processes by Brillinger� Bryant and Segundo �����	

for the identi�cation of synaptic interactions of neurons� Graphical models

for time series based on the partial spectral coherence have also been de�ned

by Brillinger �����	�

The paper is organized as follows� We discuss graphical models for time

series� In particular� we prove a property of the inverse of the spectral matrix

which helps to identify the graph� In Section � we prove a separation theorem

for time series graphs which is equivalent to the global Markov property

of the graph� In Section � we consider as a speci�c example multivariate

autoregressive processes� Section 
 contains as an example the analysis of

air pollution data�

� Graphical models for time series

A graph G � �V�E	 consists of a set of vertices V � say V � f�� � � � � kg and a

set of edges E � f�a� b	 � V � V g� We only consider undirected graphs� i�e�
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we assume �a� b	 � E whenever �b� a	 � E�

Suppose X�t	 � �X��t	� � � � �Xk�t		�� t � Z is a multivariate stationary

time series� As the vertices of our graph we want to have the components of

the series� i�e� we set V � f�� � � � � kg� The basic idea is that an edge �a� b	 is

missing if the components Xa��	 and Xb��	 are uncorrelated given the other

components of the series� To come to an exact de�nition we now make this

idea rigorous� Note� that in the following de�nitions we are dealing with the

stochastic properties of the process and not with empirical values based on

observations�

Let Yab�t	 � �Xj�t	� j �� a� b	� We remove the linear e�ects of Yab from

Xa�t	 by determining the optimal �a and the optimal ���r��	 �lter fda�u	g

such that

E

�
Xa�t	� �a �

X
u

da�t� u	Yab�u	

��

is minimal� The remainder is denoted by �a�t	� i�e�

�a�t	 �� �ajfa�bgc�t	 �� Xa�t	� �opta �
X
u

dopta �t� u	Yab�u	�

In the same way we de�ne

�b�t	 �� �bjfa�bgc�t	 �� Xb�t	� �optb �
X
u

doptb �t� u	Yab�u	�

We now set Xa � �Xa�t	� t � Z	 and Yab � �Yab�t	� t � Z	 and de�ne the

relation

Xa XbjYab �� cov��ajfa�bgc�t	� �bjfa�bgc�t� u		 � � for all u � Z ����	

leading to the de�nition of a partial correlation graph�

����� De�nition Let X�t	 � �X��t	� ����Xk�t		
� be a multivariate stationary

time series and V � f�� ���� kg the corresponding set of vertices� Let �a� b	 �� E

if and only if Xa XbjYab� ThenG � �V�E	 is called a partial correlation graph

for time series�
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We might also use the notation concentration graph instead of partial

correlation graph � in particular since the graph is a generalisation of an

ordinary concentration graph� However� we chose the above name since it

better describes the nature of the graph �Furthermore� the inverse spectral

matrix which characterizes the edges of the graph � see Theorem ��� below �

has also never been termed spectral concentration matrix	�

For Gaussian time series� �a and �b de�ned above are again Gaussian and

the above best linear predictor of Xa�t	 given Yab�t	 is the best predictor�

Furthermore� Xa XbjYab if and only if �a and �b are independent� In this

situation the above graph is a conditional independence graph for time series�

Note� that the orthogonality relation de�ned in ����	 can be retained if

Xa�t	 and Xb�t	 are vector time series�

An important characterisation of the edges of the graph can be obtained

from the partial spectral coherence� An estimate of the partial spectral co�

herence will also be of importance in identifying the graph from an observed

time series� Let

cab�u	 � cXaXb�u	 � cov�Xa�t� u	�Xb�t		

be the covariance function of the process� If

�X
u���

jcab�u	j �	

then the �cross�	spectrum between Xa�t	 and Xb�t	 is de�ned by

fab��	 � fXaXb��	 �
�

��

�X
u���

cab�u	 exp��i�u	�

Let fXX��	 � �fab��		a�b�������k and cXX�u	 � �cab�u		a�b�������k� The Fourier

inversion formula gives

cXX�u	 �
Z �

��
fXX��	 exp�i�u	d��

�



A similar Fourier�representation for the process itself holds �cf� Brillinger�

����� Theorem �����	�

If the components Xa�t�u	 and Xb�t	 are uncorrelated at all lags u then

fab��	 � � �and vice versa	� Otherwise fab��	 contains information on the

dependence structure� decomposed into di�erent frequencies� arg fab��	 is a

measure for the time delay of the two signals� also decomposed into di�erent

frequency components �cf� Brillinger� ���� Chapter � and �	�

A measure of the dependence between Xa�t	 and Xb�t	 given Yab�t	 is the

partial cross�spectrum of Xa�t	 and Xb�t	 given Yab�t	

fXaXbjYab��	 �� f�a�b��	

where �a�t	 and �b�t	 are as above� Rescaling leads to the partial spectral

coherence

RXaXbjYab��	 ��
fXaXbjYab��	h

fXaXajYab��	fXbXbjYab��	
i��� � ����	

The solution of the above optimization problem can be found together

with the form of the partial cross�spectrum in Brillinger ������ Theorem

�����	� Brillinger proves that

fXaXbjY ��	 � fXaXb��	� fXaY ��	fY Y ��	
��fY Xb��	� ����	

Since f�a�b��	 
 � if and only if cov��a�t	� �b�t� u		 � � for all u � Z we

obtain the following result�

����� Proposition Suppose G � �V�E	 is a partial correlation graph for a

multivariate time series� Then

�a� b	 �� E if and only if RXaXbjYab��	 
 ��

����� Remark The orthogonality relation can be de�ned in the same way

for arbitrary vector time series XA �� �Xa�t	� a � A� t � Z	� In particular we






have

XA XBjXC � cov��AjC�t	� �BjC�t� u		 � � for all u � Z

� fXAXB jXC��	 
 �

� RXAXB jXC��	 
 � ����	

for disjoint sets A�B�C � V � Furthermore� ����	 and ����	 stay the same in

the vector case

We now prove that the partial spectral coherences can be obtained as the

negative values of the rescaled inverse of the spectral matrix� Let

g��	 �� fXX��	
��

and

d��	 ��

�
BBB�

g����	
���� �

� � �

� gkk��	����

�
CCCA g��	

�
BBB�

g����	���� �
� � �

� gkk��	����

�
CCCA �

���	� Theorem Suppose X�t	 � �Xa�t	� a � V 	 is a multivariate time se�

ries with spectral density matrix fXX��	� If fXX��	 has full rank� we have

with the above notations

dab��	 � �RXaXbjYab��	�

Furthermore�

gaa��	 � �	fXaXajYa��	

where Ya�t	 � �Xj�t	jj �� a	� If X�t	 � �X��t	� ����Xk�t		
� and the XA�t	 are

vector processes then gAB��	 � � �as a matrix� if and only if fXAXBjYAB ��	 �

��
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Proof� The proof is given in the appendix

Theorem ��� has important consequences� First� with view to Propo�

sition ��� it means that the missing edges in the partial correlation graph

can uniquely be identi�ed from zeroes in the rescaled inverse of the spectral

matrix �similar to concentration graphs�covariance selection models where

missing edges are characterized by zeroes of the concentration matrix �inverse

covariance matrix	 � cf� Lauritzen� ����� Chapter 
	� This characterizes for

example the restrictions on the parameter space for parametric time series

models that have a certain graph �cp� ����	 below for multivariate autore�

gressive models	� This is for example important for likelihood ratio tests of

graphical models�

Second� Theorem ��� is the basis for a nonparametric identi�cation of

the time series graph where an estimate of the spectral matrix is inverted

and rescaled �see Section 
	� This is much less computerintensive than e�g�

the estimation of the residuals �ajfa�bgc�t	 used in the de�nition of the graph

which would require the calculation of ��k
�
	 linear �lters�

For certain applications it may be interesting to study the situation where

dab��	 � � for certain frequency bands leading to the idea of a frequency

dependent graph� However� we do not want to pursue this any further�

���
� Remark The inverse of the spectral matrix may also be used to ex�

plain the e�ect of a confounder� i�e� an unobserved componentXc of the time

series� Suppose X�t	 � �X��t	� � � � �Xk�t		
� is the full time series including

Xc�t	� g��	 �� fXX��	��� �X�t	 � �Xj�t	� j �� c	� is the observed reduced

series and �g��	 �� f �X �X��	
��� Then we obtain with some matrix calculations

�see also the expressions for B�� in the appendix	

�gab��	 � gab��	 � gac��	gcc��	
��gcb��	

explaining the relations between edges in the full graph �gab��	 �
 �	 and

edges in the reduced graph ��gab��	 �
 �	� In particular� if there is no edge
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between a and b �gab��	 
 �	 but edges between a and c and c and b with

gac��	 �� � and gcb��	 �� � for the same � this causes an edge between a and

b in the reduced graph �note that it can be shown that � � fXcXc��	 � 	

implies � � gcc��	 �		�

We conclude this section with a remark on the possibilities of including

ordinary variables into the graph�

����� Remark �Joint graphs for time series and ordinary variables�

In the �mixed case� where one has time series and ordinary variables we have

to consider two di�erent cases�

�� One observes the ordinary variables independently at each time point

where one observes the time series� In that case the ordinary variables

may be treated as a time series consisting of iid observations and having

a constant spectrum� This situation is only a special case of the situ�

ation considered above� If e�g� all variables are ordinary� then fXX��	

is constant with ��fXX��	 being the variance covariance matrix of the

observations� In some sense covariance selection models may therefore

be regarded as a special case of the time series graph above�

�� With each time series one only has one observation of the ordinary vari�

able �e�g one investigates the blood and an EEG�recording of a patient	�

In this case the time series may be regarded as one �multivariate	 vari�

able leading to a classical graphical model� Usually one would even

summarize the information contained in the time series into one �or

several	 variables �e�g� for EEG data one might consider a variable

which re
ects the occurrence of an epileptic seizure	�

�



� Markov properties of time series graphs

In this chapter we prove the separation theorem for time series graphs� This

is equivalent to the global Markov property�

����� Lemma Suppose X�t	 � �Xa�t	� a � V 	 is a multivariate time series

whose spectral matrix fXX��	 has full rank �for all �� and XA � �Xa�t	� a �

A� t � Z	� XB� XC and XD are vector time series with disjoint sets A�B�C�D �

V � Then we have

�i� XA �XB�XC	jXD implies XA XBjXD�

�ii� XA �XB�XC	jXD if and only if XA XBj�XC�XD	 and XA XC j�XB�XD	�

Proof� �i	 From ����	 we get fXA�XB �XC�jXD 
 � which implies fXAXBjXD 


�� i�e� XA XBjXD�

�ii	 Consider the matrix g��	 from Theorem ���� If XA XBj�XC�XD	 and

XA XCj�XB�XD	 then Theorem ��� implies gAB��	 
 � and gAC��	 
 �� If we

set YA 
 XA� YB � �XB�XC	 and YC 
 XD then g��	 
 gY ��	 and Theorem

��� implies XA XCj�XB�XD	� The other direction follows in the same way�

����� Remark For ordinary graphical models assertion �ii	 only holds un�

der additional assumptions� for example under the condition that the joint

density of the variables involved is positive everywhere �cf� Lauritzen� �����

Proposition ���	� For time series graphs also additional assumptions are

needed for assertion �ii	 to hold� As an example consider the case where

A � fag� B � fbg� C � fcg�D � fdg� Xb�t	 � Xc�t	�Xa�t	 � Xb�t	 � ��t	

where ��t	 is an iid sequence independent of the other components and Xd�t	

is also independent of all other components� Then XA XBj�XC�XD	 and

XA XCj�XB�XD	 but we do not have XA �XB�XC	jXD� In this case the

spectral matrix is singular since the columns b and c are identical�

�



We now establish the separation theorem for a time series graph �V�E	�

For A�B� S � V we say that S separates A and B if every path from an

element from A to an element from B contains at least one vertex from the

separating set S �a path is a sequence of distinct vertices i�� � � � � im with

�i�� i���	 � E for each 
 � �� � � � �m� �	�

����� Theorem Suppose X�t	 is a multivariate time series with everywhere

regular spectral matrix and corresponding partial correlation graph �V�E	� Let

A�B� S � V where S separates A and B� Then we have

XA XBjXS�

Proof� With the assertions of Lemma ��� �i	 �ii	 the result can be

proved in exactly the same way as Theorem ��� in Lauritzen �����	�

���	� Remark �Markov properties� The relation XA XBjXC constitutes

a range of di�erent Markov properties �cf� Lauritzen� ����� Section �����	�

Without repeating all the de�nitions we remark that the separation theorem

implies that the global Markov property holds for a time series graph�

���
� Example Let X��t	 � a�X��t� �	 � ���t	�

Xj�t	 � ajXj�t� �	 � bjXj���t� tj	 � �j�t	 �j � �� �� �	

with some time lags tj � N�� The �j�t	 are assumed to be iidN ��� ��	� This

means that each process depends on its own past and its predecessor with

some time lag tj� Then all processes are correlated while the conditional

correlation graph is

41 2 3

This follows from the next section where the more general class of multi�

variate autoregressive processes is treated� The separation theorem gives for

example in this situation X� X	jX��

��



	 Vector autoregressive processes

The class of vector autoregressive processes provides an intuitive example for

time series graphs� Let

X�t	 �
pX

j��

�jX�t� j	 � Z�t	

where the �j are k � k matrices and Z�t	 are iidN ����	� Let

��z	 �� I � ��z � �����pz
p

be the characteristic polynomial of the process� If det��z	 �� � for all z � C

with jzj � � then the above recursion has a stationary solution �cf� Brockwell

and Davis� ����� Theorem ������	�

In the above model the components �j�ab may intuitively be regarded as

the �in
uence� from Xb�t � j	 on Xa�t	� that is we have no in
uence from

component b on a if �ab��	 
 ��

The spectral density matrix of X�t	 is �cf� Brockwell and Davis� �����

Example ������	

fXX��	 �
�

��
����e�i�	�����ei�	

�

�

i�e� we have

g��	 � fXX��	
�� � ����ei�	

�

�����e�i�	�

Suppose now for simplicity � � ��Ik� Then we have

gab��	 �
��

��

kX
c��

�ca�e
i�	�cb�e

�i�	 ����	

If a and b do not �in
uence� jointly another component c then we have gab��	 


� if and only if �ab��	 
 � and �ba��	 
 �� i�e� with view to Theorem ���

��



we obtain the result we would expect� In particular this proves the assertion

from Example ��
�

The above restriction seems to be strange from a �rst view� The following

example demonstrates that this is a natural restriction� Suppose X��X� and

� are independent and X
 � X� � X� � �� Then X� and X� are no longer

independent conditional on X
 and the conditional correlation graph will

show a connection betweenX� andX� contrary to the intuition� In Dahlhaus�

Eichler and Sandk�uhler �����	 we have studied this e�ect more detailed in

the context of point processes�

The situation is very similar to ordinary graphical models where the prob�

lem of equivalence of directed and undirected graphs arises �cf� Whittaker�

����� Chapter ��
	� Both graphs have the same independence interpretations

if the directed graph satis�es the so called Wermuth condition which forbids

that non�connected variables have �in
uence� on the same variable� For an

arbitrary directed graph the corresponding �undirected	 conditional indepen�

dence graph is a subgraph of the so called moral graph where �parents are

married� �cf� Whittaker� ����� Chapter ���� Wermuth� ����	� Relation ����	

implies that the same holds in the above situation if an in
uence from b to

a ��ab��	 �
 �	 is represented by a directed edge �b� a	 in a directed graph�

We hesitate to set down the de�nitions of directed graphs� moral graphs

etc� indicated above in a rigorous way for time series� The reason is that

we feel that in a careful �and meaningful	 de�nition of �direction� of time

series graphs time should play a major role �e�g� in the model X��t	 �

bX��t � �	 � ��t	 the direction should be from X� to X� due to the time

lag	� Such a de�nition therefore requires more and deeper considerations�

In particular it will not be totally analogous to the de�nition of ordinary

directed graphs�

��




 Identi�cation of the time series graph for air pollution data

Given a k�dimensional multivariate time series of length n the problem arises

how to identify the corresponding graph� By Proposition ��� the presence of

an edge is equivalent to a non�vanishing partial spectral coherence� There�

fore� we build the graph by testing whether the di�erent spectral coherences

disappear�

For an estimate of the partial spectral coherence we use the characterisa�

tion from Theorem ����

We nonparametrically estimate the spectral matrix and invert and rescale

this estimate� As an estimator for fab��	 we take

�fab��	 �
��

bT

X
s

W

�
�� ���s		T

b

�
I
�T �
ab

�
��s

T

�

where W is a kernel with
R �
�� W ��	d� � � and

I
�T �
ab ��	 �

�
��

TX
t��

h
�
t

T

�	�� � TX
t��

h
�
t

T

�

Xa�t	�  Xa

�
exp��i�t	

	

�

�
TX
t��

h
�
t

T

�

Xb�t	�  Xb

�
exp�i�t	

	

is the tapered periodogram�

The method was used to analyze a 
�dimensional time series of length

���� of air pollutants recorded from January ���� to December ���� in Hei�

delberg �� equidistant recordings a day	� The recorded variables were CO

and NO �mainly emitted from cars� house�heating and industry	� NO� and

O
 �created in di�erent reactions in the atmosphere	 and the global radiation

intensity gri which plays a major role in these reactions� in particular in the

generations of ozone�

The original data were recorded with a distance of �� minutes� Figure 
��

shows the daily course of the �ve variables averaged over �� consecutive days

in summer� CO and NO increase early in the morning due to tra!c and� as

��
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Figure ���� Average of the daily measurements of CO� NO� NO�� O
 and gri over

	� days in summer�

a consequence� also NO� increases� O
 increases later due to the higher level

of NO� and the increase of the global radiation� Figure 
�� indicates that all

variables are correlated at di�erent lags�

Beside the original series we will also analyze the residual series after

subtracting the �local	 average course as shown in Figure 
�� �trend corrected

data	� The original series contained a few missing values �less than �"	 which

were completed by interpolation of the residual series with splines� For the

�nal investigation each �th value of the original series was taken �i�e� � values

per day	�

Figure 
�� shows above the diagonal the squared empirical coherences

j �RXaXb��	j
� of the original series with

�RXaXb��	 ��
�fab��	

# �faa��	 �fbb��	$���
�

��
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Figure ��
� Spectral coherences �above diagonal� and partial spectral coherences

�below diagonal� for air pollution data�

These plots show strong dependencies between all of the variables� The peak

at frequency �	� and its harmonic at ���		� corresponds to the periodic

behaviour of length � �one day	� Below the diagonal we have plotted the

partial coherences j �RXaXbjYab��	j
� as de�ned in Section �� The dashed line in

the plots is a �
"�test bound �as described below	 for the supremum of the

estimates under the hypothesis RXaXbjYab��	 
 ��

The test indicates that some of the processes are uncorrelated given the

remaining processes� Although the test bound was slightly exceeded at a few

frequencies we found it reasonable to draw the time series graph as in Figure

�
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Figure ��
� Estimated partial correlation graph for air pollution data�


�� from the partial spectral coherences�

The graph correctly re
ects the creation of O
 from NO� and the fact

that the global radiation intensity plays a major role in the process of O
�

generation� Furthermore� CO and NO are correlated �both are emitted from

cars etc�	�

The meaning of the other edges �and of some of the missing edges	 is less

obvious� Chemical reactions between air pollutants are very complex and

still not completely understood �cf� the monograph on this topic by

Seinfeld� ����	� In particular� one has to be aware of the fact that NO� and

O
 are not only increased but also decreased by several chemical reactions

and that several other chemicals play an important role�

Part of these reactions can be explained by a photochemical theory �cf�

Seinfeld� ����� Section ���	� This theory is con�rmed by the above graph�

the edge between gri and NO� represents the photolysis of NO� and the edge

between CO and NO� supports that most of NO� is generated via a radical

reaction where CO is involved� A bit surprising is the missing edge between

NO and NO�� This missing edge and the edge between CO and NO indicate

that mainly the concentration of CO �and not of NO	 is responsible for the

generation of NO�� This means in particular that NO� is generated via a

radical reaction �where CO plays a major role	 and not in a direct reaction

�where CO is not involved	� It is remarkable that a direct correlation analysis

indicates the opposite since the spectral coherence between NO and NO� in

Figure 
�� is highly signi�cant�

��
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Figure ���� Spectral coherences �above diagonal� and partial spectral coherences

�below diagonal� for the trend corrected air pollution data�

One may raise the question to what extent the above �ndings are due to

the daily up and down of the �ve variables� For this reason we have repeated

the analysis with the residual series �obtained as described above	� The plots

in Figure 
�� show that the analysis of the residual series leads exactly to the

same graph�

Figure 
�
 shows above the diagonal the cross correlations and below

the diagonal the partial cross correlations of the trend corrected series �i�e�

estimates of the correlations used in ����		� These partial cross correlations

have been calculated by the inverse Fourier transform of estimates of the

��
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Figure ���� Correlations �above diagonal� and partial correlations �below diagonal�

for trend corrected air pollution data�

partial cross spectra� which in turn have been calculated by using Theorem

���� The partial correlations lead to the same graph as before� Remarkable

is the negative correlation between NO� and O
 and the positive correlation

between O
 and gri with negative lag �a high global radiation leads with

some time lag to an increase of ozone which at the same time reduces the

amount of NO�	�

The dashed line in Figures 
�� and 
�� is a �
"�test bound of an approx�

imate distribution of

sup
�
j �RXaXbjYab��	j

� �
��	

��



derived under the hypothesis that RXaXbjYab��	 
 �� Let Hk �
R �
� h�x	

kdx and

cT � �
bT

H�
H�

�

R
W ��	�d�� It can be concluded that the real and the imaginary

part of

c
����
T



�RXaXbjYab��	 �RXaXbjYab��	

�

are asymptotically independent and standard normally distributed leading

under the hypothesisRXaXbjYab��	 
 � to a 
�
� distribution for c��T j �RXaXbjYab��	j

�

�cf� Dahlhaus et al�� ����� Section � and Brillinger� ����� Section ���	� We

then have taken the supremum of m�n	 independent 
�
� distributions where

m�n	 is the maximum number of frequencies � such that the smoothing

intervals of the spectral estimates do not overlap� i�e� the dashed line is

cT

�
�����	���m�n� �for the air pollution data m�n	 was ��	�

It is very di!cult to determine the exact asymptotic distribution of �
��	 �

in particular since the values of �RXaXbjYab��	 are dependent for neighbouring

��

Furthermore� the problem of multiple testing has to be addressed� An

alternative would be to determine the %best approximating graph& by using

a model selection criterion which penalizes the complexity of the graph in an

adequate way�

We also mention that the partial correlation graph only re
ects linear

dependencies� Nevertheless� the above method may be useful for exploration

of the dependence structure even if nonlinear dependencies are present �an

example for neuron nets is given in Dahlhaus et al�� ����	�

Appendix

Proof of Theorem ���� Suppose B is a regular matrix of the form

B �

�
� B�� B��

B�� B��

�
A

��



Direct veri�cation gives

B�� �

�
� E�� �E��F

�GE�� B��
�� �GE��F

�
A

where E � B�� �B��B
��
�� B��� F � B��B

��
�� and G � B��

�� B��� To prove the

�rst part we can assume without loss of generality a � � and b � �� We set

B � fXX��	 with B�� �

�
� f����	 f����	

f����	 f����	

�
A �

E then is a �� � matrix whose rescaled inverse is

�
� � �e��	�e��e��	���

�e��	�e��e��	��� �

�
A

which proves the �rst part� The second part follows by setting B � fXX��	

and B�� � f����	� For processes with vector components the assertion follows

similarly�
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