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Abstract

We investigate GARCH����� processes and �rst prove their stability� Using the
representation of the squared GARCH model as an ARMA model we then consider
Yule�Walker type estimators for the parameters of the GARCH����� model and
derive their asymptotic normality� We use a residual bootstrap to de�ne bootstrap
estimators for the Yule�Walker estimates and prove the consistency of this bootstrap
method� Some simulation results will demonstrate the small sample behaviour of
the bootstrap procedure�

� Introduction

Many time series exhibit non�constant conditional variance �conditional heteroskedastic�
ity�� Nonlinear processes capable of modelling such volatility have come into particular
interest in time series analysis� especially in econometrics�
Conditional heteroskedasticity can be modelled by processes of the form

Xt � �t�t� t � �� 	� 
� � � � �	�	�

where the innovations f�tg are independent identically distributed �i�i�d�� random vari�
ables with mean zero and unit variance� and the volatility �t describes the change of
�conditional� variance�
In �nancial time series such as stock returns or foreign exchange rates� volatility clus�

tering has been observed for a long time� i�e� periods of large price changes are followed by
periods of small price changes� This phenomenon can be modelled by autoregressive condi�
tional heteroskedastic �ARCH� models introduced by Engle �	�

�� where the conditional
variance ��t is a linear function of the squared past observations�
Bollerslev �	�
�� proposed the generalized ARCH or GARCH model by including

also lagged values of ��t in the conditional variance equation� The GARCH�p� q� model is

	



de�ned by �	�	� with

��t � �� �
pX

j��

�jX
�
t�j �

qX
i��

�i�
�
t�i� �� � �� ��� � � � � �p� ��� � � � � �q � �� �p � �� �q � ��

GARCH modelling allows a more �exible lag structure than ARCH models and often
permits a more parsimonious parametrization� Especially the GARCH�	�	� model has
served as an appropriate model in many applications�
Over the past years� many semiparametric and nonparametric approaches to the

ARCH model have been studied� For a variety of other extensions and applications of
the ARCH model� we refer to the survey article by Bollerslev� Chou and Kroner �	��
�
and Engle �	�����
In the present work we investigate parameter estimation and bootstrap in GARCH�	�	�

models� Rewriting the GARCH�	�	� model it becomes obvious that the squared process
can be represented as an ARMA�	�	� �autoregressive moving�average� process� According
to this Yule�Walker type estimators for the parameters of the GARCH�	�	� processes can
be de�ned �Bollerslev �	�
���� We prove stability of the GARCH�	�	� model and then
derive asymptotic normality of the Yule�Walker estimators�
The bootstrap is a method for estimating or approximating the distribution of a statis�

tic and its characteristics based on a resampling of the observed data� Since its introduc�
tion by Efron for models with i�i�d� observations� there have been many applications and
extensions of the bootstrap principle� also in case of dependent data� Bootstrap methods
for e�g� nonparametric ARCH models have been studied by Franke� Kreiss and Mammen
�	����� but they do not cover the GARCH case� A wild bootstrap method for quasi�
maximum likelihood estimators of GARCH�	�	� models is proposed in Maercker �	��
��
We use a residual bootstrap to de�ne bootstrap estimators for the Yule�Walker es�

timates and prove the consistency of the bootstap procedure� Some simulation results
demonstrate the small sample behaviour of the bootstrap method�
The paper is organized as follows� In Section 
 we state su�cient conditions for the

stability of GARCH�	�	� models� In Section � we de�ne Yule�Walker type estimators
for the parameters in GARCH�	�	� processes and derive asymptotic normality of these
estimators� In Section � we construct bootstrap estimators for the Yule�Walker estimators�
We show that this bootstrap method works in the sense that it is consistent� In Section �
some simulation results for the bootstrap method are presented� All proofs are deferred
to the Appendix� Some additional tools and notations about Markov chain theory and
mixing which are used for the proofs are also provided in the Appendix�






� Stability of the GARCH����� model

Assume that we are given observations X�� � � � �Xn from the heteroskedastic model

Xt � �t�t� t � ZZ� �
�
�

with innovations
f�tg i�i�d � E�� � �� E��� � 	� �
���

and conditional variance

��t � 	 � �X�
t�� � ���t��� t � ZZ� where 	� �� � � �� �
���

The process de�ned by �
�
� and �
��� is called GARCH�	�	� �generalized autoregres�
sive conditional heteroskedastic� process �Bollerslev �	�
����
Combining �
��� and �
�
� the conditional variance may be written as

��t � 	 � ��t���� � ���t���� �
���

Iterating �t in equation �
��� and �
��� respectively yields for h � 	

��t � 	
h��X
k��

�k � �
h��X
k��

�kX�
t���k � �h��t�h� �
���

��t � 	
h��X
k��

kY
i��

�
� � ���t�i

�
� ��t�h

hY
i��

�
� � ���t�i

�
� �
���

where� as usual� empty products are set equal to one�
We make the following stability assumption on the model�

Assumption S

�S	� �� � 
 	�

�S
� The distribution G of �� has a Lebesgue density g which is positive and continuous�

By Jensen�s inequality� �S	� implies

E
h
ln�� � �����

i

 �� �
�
�

As is shown in Nelson �	����� condition �
�
� is necessary and su�cient for the existence
of a unique stationary solution of �
���� which then is given by the in�nite series

��t � 	
�X
k��

kY
i��

�� � ���t�i�� t � ZZ� �
���

�



In the following we will assume that f��t g is the stationary solution of �
��� and hence
may be represented by �
���� In particular� as E��t � 	� we have

� � EX�
t � E��t �

	

	� ��� ��

�� �
�	��

Furthermore� E
P�

h�� �
h��t�h �

�
��� 
 � implies �h��t�h � � as h � � almost surely�

thus �
��� may be extended to

��t �
	

	� �
� �

�X
k��

�kX�
t���k� t � ZZ�

Set ��x� s� � �	 � �x� � �s��
�

� � Then

Yt �� �Xt� �t�
� � ��Yt�����t� 	��� t � ZZ�

is a bivariate Markov process with state space IR � �q �
��� ���� With the help of a drift

criterion we will establish geometric ergodicity and absolute regularity for this process�
Whereas stability of ARCH processes was investigated before by e�g� Guegan and Diebolt
�	��
�� Doukhan �	����� and Borkovec and Kl�uppelberg �	��
�� the results do not cover
the GARCH case�
For a de�nition and discussion of geometric ergodicity and absolute regularity we refer

to the Appendix�

Lemma ��� Let Assumption S hold� Then the process fYtg is geometrically ergodic and
absolutely regular� Furthermore� there exist constants c � � and � � 	 such that the
��mixing coe�cients of fYtg satisfy �k � c��k� k � IN �

We conclude this section with an ARMA�representation of the squared process fX�
t g

�cf� Bollerslev �	�
��� which will be used frequently in the sequel� Set


t � X�
t � ��t � ��t ��

�
t � 	��

Then� by �
���� we have

X�
t � 	 � ��� ��X�

t�� � �
t�� � 
t� �
�		�

Therefore fX�
t g is an ARMA�	�	� process with parameters ��� and �� and innovations

f
tg� De�ning Ft as the ���eld generated by f�s � s � tg we note
E�
t j Ft��� � ��tE��

�
t � 	� � ��

thus the innovations f
tg form a martingale di�erence sequence�

�



� Yule�Walker type estimators � de�nition and

asymptotic normality

Consider the centered squared GARCH process fX�
t � �g in the ARMA�representation�

X�
t � �

�
� ��� ��

�
X�

t�� � �
�
� 
t � �
t��� ���	
�


t � ��t ��
�
t �	�� derived from �
�		�� As is well established in ARMAmodels the empirical

autocovariances of the process can be used to obtain Yule�Walker �YW� type estimators
for the parameters �� �� �� and �� respectively� Observe that the squared process fX�

t g
exhibits autocorrelation whereas the process itself is not correlated over time�
Let us assume that EX�

� 
 �� Conditions for the existence of moments are given
in Bollerslev �	�
�� and Nelson �	����� As we will need even more stringent conditions
for the proof of asymptotic normality of the YW type estimators the discussion of those
conditions will be postponed� see Remark ��
 below�
Set ��� � E
�t � Recalling E�
tjFt��� � � we note that E
tX�

t � ���� E
tX
�
t�� � ���� and

E
tX
�
s � � for s 
 t� For the derivation of suitable identities involving the covariances �h �

Cov�X�
� �X

�
h�� h � �� we now proceed in the usual way� see also Bollerslev �	�
�� 	�

��

by multiplying both sides in ���	
� with X�
t�h� h � ��	�� � � � and computing expectations�

This yields the following identities�

�� � �� � ���� � �	� ������� ���	��

�� � �� � ���� � ������ ���	��

�h � �� � ���h�� � �� h � 
� ���	��

Elimination of ��� gives the system

� � � �
��
��
� ���	��

��� � � �
��� ���� � ��
�� � ��� ����

�
�� � ��

�� � �� � ����
� ���	��

Using the empirical moments �� � �
n

Pn
t��X

�
t and ��h �

�
n

Pn�h
t�� �X

�
t � ����X�

t�h� ��� we get
the following YW�type estimators

d��� ��n �
���
���
� ���	
�

d���� � ��n �
��� � ���

��� � d��� ��n���
� ���	��

�	n � ��
�
	� d��� ��n

�
� ���
��

�



In order to derive estimators ��n and ��n of � and �� we set

����n � ��n � � d�� ��n �
d���� � ��n� ���
	�

Denoting the right�hand side of ���
	� by �cn we obtain ���
n��cn ��n�	 � �� Hence� if �cn � 
�

we set
��n � �cn�
�

q
�c�n�� � 	

so that � 
 ��n � 	 and ��n 
 	 if �cn � 
� In practice it might happen that �cn 
 
� then
set ��n � �� But by construction and the ergodic theorem �cn is a consistent estimate for
	�� � � and therefore� almost surely� �cn � 
 for su�ciently large n� Finally we de�ne

��n �
d��� ��n � ��n�

Again� by the ergodic theorem� ��n � ���n� ��n� �	n�� is a consistent estimator for � �
��� �� 	���
Next� under additional moment assumptions� the asymptotic normality of ��n will be

shown� We may use this to construct con�dence sets for �� However� the normal distri�
bution is only an approximation to the exact distribution of �n� An alternative approach
which often yields a better approximation is the bootstrap� Bootstrap con�dence intervals
are obtained by replacing the unknown distribution with its bootstrap estimator� We shall
introduce a bootstrap method and study the consistency of this procedure�
Before doing so it should be mentioned that� as well in GARCH as in ARMA mod�

els� the YW estimators are less e�cient than maximum likelihood �ML� estimators� or�
depending on the error distribution� quasi�maximum likelihood �QML� estimators which
are commonly used in practice� Indeed� simulation experiments underline this fact� Under
normality of the innovations� ML estimators outperform the YW estimators� This is not
necessarily true for QML estimators in case of non�normal innovation distributions�
QML estimates are found by an iterative procedure where the YW estimates may

be used as initial estimates� In contrast to this in the YW type estimation procedure the
observed data are used in a more direct way� This estimation procedure will be imitated by
an appropriate bootstrap technique� A bootstrap method for QML estimators is discussed
in Maercker �	���� 	��
��
For the derivation of asymptotic normality of ��n we shall make use of a central limit

theorem �CLT� for strongly mixing processes�

Theorem ��� Let Assumption S hold and suppose E jX�j��� 
� for some � � �� Then

p
n
�
��n � �

�
D�� N ���� �� ������ ���

�

�



if � is positive de�nite where � � D�D�
��D�

�D
�
��

D� �

�BB�
	 � �

�����
��

��
	��

	 �

�� � 	

�CCA � D� �

�B� 	� � �� �
� � �
� � 	

�CA � � �
	



� ���� � ��

�
q
���� � ����� � 	

�

and �� � E
��Z�Z
�
� with

Zt
� � ����

h
��X�

t�� �X�
t�� � �	� ���

i
�

Zt
� � ��� � ��� �����
��
�
��	� ���
t�� �

�
���� � �� � �� � � ���

�
Xt��

�X�
t�� �

�
��� � �

�
�	� ���� 	�	� ��

�
�

Zt
� � 	 � ��

Remark ��� As ��n is based on the empirical autocovariances ��h� i�e� on lagged empirical
fourth moments of Xt� the need for the rather stringent moment condition EjX�j��� 
�
in Theorem ��	 becomes obvious� Under Assumption S expansion �
��� holds and� by
Minkowski�s inequality� for any p � � a su�cient condition for EjX�j�p 
 � is given
by E �� � �����

p

 	� This condition is also necessary� see Nelson �	����� For the case

of normally distributed innovations �t the restrictions on the parameter space implied
by EX�

� 
 � and EX��
� 
 � are� among others� illustrated in Figure ��	 of Bollerslev

�	�
���

	 The bootstrap procedure

We now discuss a bootstrap method for estimating the distribution of
p
n
�
��n � �

�
� We

use a residual bootstrap to construct bootstrap estimators� It will be shown that the
�conditional� distribution of these bootstrap estimators converges in probability to the
same asymptotic distribution as given in Theorem ��	 for the original estimators� that is�
the bootstrap procedure is �weakly� consistent�
Given a sample X�� � � � �Xn� the bootstrap process fX�

t g will be of the form

X�
t � ��t �

�
t � ���t � �	 � ��X

��
t�� � ���

��
t��� t � ZZ� ���
��

f��tg i�i�d � E���� � �� E�
��
� � 	� ���
��

�



where the distribution G� of ��� is an estimate of the distribution G of �� and E
� denotes

the conditional expectation E�	jX�� � � � �Xn�� The distribution L�pn��� � ��� will then be
approximated by the �conditional� distribution L��pn����� ���� where ��� � ����� ���� �	�� is
calculated in the same way as ��� with X�� � � � �Xn replaced by X�

� � � � � �X
�
n� For notational

simplicity here and later the index n indicating the dependence of the estimators and the
bootstrap process on the number of observations will be omitted�
In detail� the construction of fX�

t g consists of the following steps� Compute the Yule�
Walker estimate �� as described in Section 
� Set ���� � �� and de�ne

���t � �	 � ��X
�
t�� � ����

�
t��� t � 	� � � � � n�

or equivalently�

���t � �	
t��X
k��

��k � ��
t��X
k��

��kX�
t���k � ��

t��� t � 	� � � � � n� ���
��

Calculate empirical residuals

��t �
Xt

��t
� t � 	� � � � � n�

and let �G�x� � �
n

Pn
t�� 	f��t � xg denote their empirical distribution� In view of Assump�

tion S smooth �G by convolution and set �G � �G 
 N ��� h�� where h � n�
�

� � De�ne the
distribution G� of ��� as the standardized form of �G� i�e� G

��x� � �G �� 	Gx� � 	G� where
� 	G �

�
n

Pn
t�� ��t and �

�
	G
� �

n

Pn
t�� ���t � � 	G�

� � h� are the mean and variance of �G� respec�

tively� As ��� � almost surely we may assume

�	� ��� �� � � and ��� �� 
 	� ���
��

Finally� de�ne the bootstrap GARCH process fX�
t g as the stationary solution of ���
���

In particular� we have as in �
���

���t � �	
�X
k��

kY
i��

�
�� � �����t�i

�
� t � ZZ� ���
��

Furthermore� by construction and ���
��� fX�
t g ful�lls Assumption S� Hence� the conclu�

sions of Lemma 
�	 apply and Y �
t � �X

�
t � �

�
t �
� is a geometrically ergodic and absolutely

regular process with exponential decay of the mixing coe�cients�
The density g� of the bootstrap innovations is given by

g��x� �
� 	G

nh

nX
t��

�

	
� 	Gx� � 	G � ��t

h









where ��x� � �p
��
e�

�

�
x� � Hence� g� may be understood as a standardized kernel estimate

of g with kernel � and bandwidth h� We have chosen h � n�
�

� as the rate common in
kernel smoothing�
For the consistency proof of the bootstrap proposal we need the fact that� at least on

average� ���t is a good estimate for �
�
t � as well as the consistency of g

� and the moments of
the bootstrap process� Let kfk� � supx�IR jf�x�j for f � IR� IR�

Lemma ��� Let Assumption S hold and suppose EjX�j�p 
� for some p � ��
�a� For any r � 	

	

n

nX
t��

������t � ��t

���r � OP

�
n�

p�r
�

�
�

�b�

� 	G � OP

�
n�

�

�

�
�

�����	G � 	��� � OP

�
n�

�

�

�
�

�c� If g is uniformly continuous then

kg� � gk� � oP �	��

�d� For q � ��� 
p�� ki � f�� 
g and ti � ZZ� i � 	� � � � � ��

E� j���jq � E j��jq � E�
�Y

i��

��kiti
� E

�Y
i��

�kiti � E�
�Y

i��

X�ki
ti

� E
�Y
i��

Xki
ti
�

in probability� Furthermore� there is a constant c � � such that for any subsequence
�k� � IN there exists a subsequence �k�� � �k� such that almost surely

lim sup
���

E���q� � c� lim sup
���

E� jX�
� jq � c�

In particular�
E���q� � OP �	�� E� jX�

� jq � OP �	��

As already observed� the Markov process fY �
t g is ��mixing with exponential decay of

the mixing coe�cients� The parameters �� and g� determining the process fY �
t g converge

in probability to � and g� respectively� and so even more can be said about the ��mixing
coe�cients ��n�j� � ���j�� j � IN � of fY �

t g� This is done in the following theorem where
we �nd it convenient to phrase arguments concerning convergence in probability in terms
of almost sure convergence along subsequences�

�



Theorem ��� Let Assumption S hold� Suppose that EX�
� 
 � and that g is uniformly

continuous� Then for any subsequence �k� � IN there exist a subsequence �k�� � �k� and
constants Cb � � and �b � 	 such that almost surely

��k��j� � Cb�
�j
b for all �� j � IN�

As a corollary we obtain the consistency of the bootstrap estimators in the sense of� for
example� P � �j��� � �j � �� � oP �	� for all � � �� This is not immediate from the ergodic
theorem applied to the bootstrap process fY �

t g� as for each sample X�� � � � �Xn there is a
di�erent process fY �

t g under consideration�

Corollary ��� Let Assumption S hold and suppose E jX�j��� 
� for some � � �� Then
���� ���h� h � �� and ��� are consistent for �� �h� h � �� and � in the sense mentioned above�

Now we are ready for the main result of this section� which states the consistency of
the proposed bootstrap procedure�

Theorem ��� Let Assumption S hold� Suppose that E jX�j��� 
� for some � � � and
that g is uniformly continuous� Then

L�
�p

n
�
��� � ��

��
D�� N ���� �� ������ in prabability ���

�

if � as de�ned in Theorem ��	 is positive de�nite�


 Simulations

In order to illustrate the performance of the bootstrap procedures described in the preced�
ing section� we show some results of simulation experiments� We simulate GARCH�	�	�
processes of length n � 	��� with standard normal error distribution and with parameter
� � ��� �� 	�� The parameter is estimated by the Yule�Walker type estimator� We repeat
this procedure to estimate the distribution of the YW estimator� More speci�cally� the
distribution of the standardized estimator is approximated by the estimated density cal�
culated from 
��� Monte Carlo replications� Then the bootstrap approximation of this
distribution is calculated� To this aim we calculate the YW estimator ��n from one simu�
lated GARCH�	�	� process of length n � 	���� Based on ��n we generate 
��� bootstrap
processes and calculate the bootstrap YW estimator for each bootstrap sample of length
n � 	���� The estimated density for the standardized bootstrap estimator calculated

	�



from the 
��� bootstrap replications is plotted against the distribution of the original
YW estimator�
It should be remarked that the YW estimation procedure is not very stable if ��� ��

are chosen near the admissible parameter space with respect to the moment condition�
We show the results for � � ���	� ���� ��	�� Figure 	 compares the distribution ofp

n���n � �� with the bootstrap distribution of
p
n����n � ��n�� Note that the bootstrap

procedure is based on only one �randomly chosen� sample of the underlying GARCH
process�
Figure 
 and Figure � show the results for the parameters � and 	� respectively�

A Appendix

A�� Proofs

Proof of Lemma 
�	�We will show that fYtg is ��irreducible with � being the Lebesgue
measure restricted to IR � �q �

��� ���� aperiodic� and that compact sets are small� Then
we shall apply the drift criterion given in Theorem A�� to obtain geometric ergodicity�
In order to avoid a parameter�dependent state space and with an eye to situations

where fYtg may be started non�stationarily at time t � �� we will formulate the proof for
the state space IR� IR��
Let A � IR � �q �

��� ��� be measurable with ��A� � �� � denoting the Lebesgue

measure� Without loss of generality we may assume A � IR � �q �
��� � ���� for some

� � ��
We will show that� given y � IR � IR�� there exists an m � IN such that

for all measurable sets A� � �
q

�
��� � ���� with positive Lebesgue measure we have

P ��m � A� j Y� � y� � �� This implies P �Ym � A j Y� � y� � � since Ym � �m��m� 	��

where �m is independent of �m and has positive Lebesgue density�
Let �m�x� s� � 	

Pm��
k�� �k � �m����s� � �x��� Then given Y� � y � IR � IR� we can

�nd positive functions hi��i��� � � � � �m���� i � 	� � � � �m� 	� such that �
��� takes the form

��m � �m�y� �
m��X
i��

��ihi��i��� � � � � �m����

Let A�� � fr� j r � A�g� Choosing m large enough� we have
����m�y�� �

���
��� 
 � and hence

P ��m � A� j Y� � y� � P
�
��m � A�� j Y� � y

�

		



Fig� �	 Distribution of
p
n�
�n � �� with bootstrap approximation and for simulated

GARCH����� processes with ��� �� �� � ����� ��
� ����� sample size n � ����� All plots are based
on ���� Monte Carlo replications�

	




Fig� �	 Distribution of
p
n�
�n � �� with bootstrap approximation� Parameter as in Figure ��
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Fig� �	 Distribution of
p
n�
�n � �� with bootstrap approximation� Parameter as in Figure ��
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z�i hi�zi��� � � � � zm��� � A�� � �m�y�



m��Y
i��

g�zi� dz� � � � dzm��

� �

as g � � and A�� � �m�y� � IR�� Thus fYtg is ��irreducible with � being the Lebesgue
measure restricted to IR� �q �

��� ����
Using Lemma A��� the aperiodicity follows similarly� Choose the compact set A �

��� 	�� �q �
��� �

q
�

��� � 	�� say� and m� � IN such that

max
y�A

������m�y�� 	

	� �

����� 
 �� m � m��

Then� with the same arguments as above� for all B � A with ��B� � � we obtain

P �Ym � B j Y� � y� � � and P �Ym�� � B j Y� � y� � � for all y � B�

In order to prove that compact sets are small� consider the 
�step transition probability
and let C � ��M�M �� ���M � for someM � �� We obtain for any Borel set A � IR� IR�

and any y � C

P �Y� � A j Y� � y� �
ZZ
	
�q

	 � ��z�� � �����y��z�� 	�
� � A

�
g�z��g�z�� dz�dz�

�
ZZ
	 fu�z�� 	�� � Ag gC�u�g�z�� dudz� �	�
��

where we substituted u �
q
	 � ��z�� � �����y�� used u � p

	� ����y� �M� � 	 and� if
z� � �� u �M � 
	� and put

gC�u� � 	
M���
���u�
q

�
�M����u infy�C

g

	r
u�����	��y�

�	��y�



�

As g is positive and continuous� gC is positive on �M � 
	���� and

�C�	� �
ZZ
	fu�z� 	�� � 	ggC�u�g�z� dudz�

de�nes a non�trivial measure on IR � IR� with

P �Y� � A j Y� � y� � �C�A� for all y � C� and all Borel setsA � IR� IR��

Thus we have shown that C is small�
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Now we are ready to apply the drift criterion given in Theorem A��� Set d �
�
�

�
�
�
� �

���
�
�	 and de�ne the test function V �y� � 	�dx��s� for y � �x� s�� � IR�IR��

Then we have d � � and� as E��� � 	�

 V �y� � E
h
	 � dX�

� � ��� j Y� � y
i
� �	 � dx� � s��
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Now � � � 
 	 implies � 
 	 � � and �
�
� �

��� � �� De�ning the constants � �
�
�

�
max��
d�

�
�
�
� �

���
�
� �������

�max��
d������ and b � �	 � d�	 � 
�� and the compact set C �

��
q

b
�
�
q

b
�
�� ���

q
b
�
� we thus have � � ��� �

�
� and

 V �y� � �
�V �y� � �	 � d�	 � 
�

� ��V �y� � b	C�y� for all y � IR� IR�� �	����

Thus the drift criterion holds� As EV �Y�� � 	 � �d � 	�� 
 �� this concludes the proof
of the lemma�

Proof of Theorem ��	� In order to avoid cumbersome notation� we will not
distinguish between� say�

Pn
t�� xt and

Pn
t�h�� xt� So� for instance� we will write ��h �

�
n

P
X�
tX

�
t�h � ��� neglecting terms of order OP �n����

In a �rst step we will prove joint asymptotic normality of
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using �	��	�� In a similar way we get
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Observing that
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t � 
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we conclude that

p
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By the ergodic theorem we have ��� � and ��h � �h almost surely� In order to prove

p
n
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�
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�
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it is therefore su�cient to show
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using the Cramer�Wold device� As Zt is Ft���measurable and E �
t j Ft��� � � we observe
that f
tZt�c�g is a martingale di�erence sequence and hence

�X
t���

Cov �
tc
�Zt� 
�c

�Z�� � c�E
��Z
�
�c�

An application of the CLT for strongly mixing sequences� see Appendix A�
� now gives
�	�����
For the next step we note

d���� � ��n � g���� � ��n �
d���� � ��n���

��� � ��� �����

� d�� � ��n � �� � ��
�
�

�	n � �	n � ���
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�
Hence �	��
�� the relationship �� � �� � ���� � ����� and the ergodic theorem imply
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An application of the delta method� using the function
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�BB�
x� x�y

�
�
q
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x�y
� �

q
�x� y���� � 	
z
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with derivative rT ��� �� ��� � �� 	� � D�� concludes the proof of the theorem�

Proof of Lemma ��	� �a� !From �
��� and ���
�� we have
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 r � p� application of the H�older
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OP �	�� Part �a� follows now from Theorem ��	� P �Bn�� 	 and
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on Bn� The case r � 	 is even simpler� If r � p write	
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and use the fact that n�
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s � oP �	� by the stationarity of fX�
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EX�

t 
��
�b� It su�ces to show �

n

Pn
t�� j��t � �tj � OP

�
n�

�

�

�
� From

j��t � �tj � jXtj
���� 	��t � 	

�t

���� � jXtj j�t � ��tjp
	�	

� jXtj j��t � ���t jp
	�	

�p
	 �

p
�	
�

and �
n

Pn
t��X

�
t � �� we conclude����� 	n

nX
t��

���t � �t�

����� �
p
��p

	�	
�p

	 �
p
�	
� �	

n

nX
t��

�
��t � ���t

��� �

�

�

The assertion now follows from part �a� and the ergodic theorem� In the same way we
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n
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t�� j���t � ��t j � OP

�
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and hence

�����	G � 	��� � OP

�
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�
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�c� We �rst note that g�x� � � for jxj � � as g is a uniformly continuous density
function� Because of this and part �b� it is therefore su�cient to show k�g � gk� � oP �	�
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t
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� The result

now follows from supjxj�n j"g�x�� g�x�j � � almost surely �Bosq �	����� Theorem 
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�
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by part �a� and the ergodic theorem�
With regard to the conditional variances� we �rst prove the boundedness of E���q� along

subsequences of arbitrary subsequences� Recall from Remark ��
 that E�� � �����
q
� 
 	

and choose � � �E��������
q
� � 	�� If �k� � IN is any subsequence� choose �k�� � �k� in such

a way that E�
�
�� � ������

� q
� converges to E��������

q
� almost surely� Then� by Minkowski�s
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almost surely�
For the mixed moments of conditional variances we only discuss the case k� � k� �

k� � k� � 
� the other cases being similar� Consider
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Again� we may assume E�
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as� for given s � ZZ� the factor
�
�� � �����s

�
appears at most four times in each product�

The assertion now follows by dominated convergence�
The assertions concerning X�

t then follow from E� jX�
� jq � E� j���jq E���q� �

Proof of Theorem ��
� The proof is an adaptation of the proof of Theorem ��	
in Franke et al� �	��
�� referred to as �F� from now on� to our situation� As in �F� the


�



proof consists of two steps� First� the identi�cation of the parameters on which the mixing
coe�cients of the process fYtg depend� and second� the convergence of these parameters
for the bootstrap processes� The �rst step is formulated in the following lemma which
corresponds to Theorem 
�	 and Corollary 
�	 in �F��

Lemma A�� Let Assumption S hold� Then there exist constants CY � � and �Y � 	
such that

��n� � CY �
�j
Y for all j � IN

where ��j�� j � IN � are the ��mixing coe�cients of the process fYtg� The constants CY

and �Y depend only on the parameters K� �� �� n�� �� �� d speci�ed in conditions �A	� and
�A
� below�

�A	� K is a compact set� � � 	� d� � � � � A 
� such that

E �kYtk j Yt�� � y� � 	Kc�y�
�
��� kyk � �

�
�A	K�y�

where k�x� s�k � dx� � s��
�A
� We have n� � IN � � � ��� 	�� and there is a probability measure � such that

inf
y�K

P n��y�B� � ���B�

for all measurable sets B� Furthermore � � � and

inf
y�K

P �y�K� � �� �	����

Condition �A	�� a reformulation of the drift condition� and condition �A
�� whose �rst part
concerns the #smallness� ofK� are as in �F�� with the only exception that the absolute value
jXtj of the one�dimensional process there has been replaced by the norm kYtk � dX�

t ��
�
t �

Both conditions are ful�lled in our setting as the following arguments will show�
Recall

 V �y� � ��V �y� � b	C�y�� y � IR� IR�� �	����

!from drift equation �	���� where

V �y� � 	 � kyk � 	 � dx� � s�� y � �x� s���
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As �	���� is equivalent to

E �kYtk j Yt�� � y� � �	� �� kyk � � � b	C�y��

�A	� holds with K � C� � � �	� ����� � � � and A � b�
Furthermore� by �	�
��� the �rst part of �A
� holds with n� � 
� � � �K�IR � IR��

and � � ����K where

�K�	� �
ZZ
	fu�z� 	�� � 	ggK�u�g�z� dudz�
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�M����u

inf
y�C

g

	r
u�����	��y�

�	��y�



�

M �

s
b

�
�

For the second part of �A
� consider y � �x� s� � K� that is � � x�� s� � b
�
� Note that

���y� � b
�
because of ���y� � 	 ��x�� �s� � b

�

�
��
b
� ��� ��

�
and �

b
� �

��d
� 
�	����

Hence we have

P �Y� � K j Y� � y� �
Z
	 f��y��z� 	�� � Kg g�z� dz

�
Z
	fjzj � 	gg�z� dz

and �	���� holds with � �
R
	fjzj � 	gg�z� dz�

Proof of Lemma A�	� The proof is completely analogous to the proof of Theorem 
�	
and Corollary 
�	 in �F�� again the only di�erence being the replacement of jXtj by
kYtk � dX�

t � ��t � In particular� Lemma 
�	 in �F� concerning the return times �K �
infft � 	 j Yt � Kg here takes the following form�
Lemma A�� Suppose �A	� is ful�lled� Then
�i� Ey�

�K � ��� kyk for all y �� K�
�ii� Ey�

�K � ��	 � ���A� for all y � K�

With these changes� the arguments in �F� carry over to our situation without further
modi�cation�

Proof of Theorem ��
 �continuation�� The proof is completed by showing that�
along suitable subsequences� the constants K� �� �� n�� �� �� d speci�ed in conditions �A	�







and �A
� may be chosen in such a way that� outside some null set� they are valid simul�
taneously for all bootstrap processes� By Theorem ��	 and Lemma ��	 we may choose
a subseqence such that �� � �� k�g � gk� � � and ���
�� is satis�ed almost surely� By
a slight abuse of notation we will denote this subsequence again by �n�� Hence outside
some null set the bootstrap processes fY �

t g based on the observations X�� � � � �Xn are ape�
riodic� ��irreducible Markov processes� The argument is completed by showing that the
bootstrap constants K�� ��� ��� n��� �

�� ��� d� converge against K� �� �� n�� �� �� d when both
are de�ned as in the discussion after the formulation of �A	� and �A
�� This is obvious
for �� � �	 � ������ �� � �� and d�� Furthermore K� � ��M��M�� � ���M�� converges
in an obvious way to K and we may set n�� � n� � 
� Finally� uniform convergence of
g� � �g implies convergence of �� and pointwise convergence of g�K in IR n fM � 
	g� and
the latter implies convergence of the integrals ���

Proof of Corollary ����We only prove the assertion for ���� � The proof for ��
� and

���h� h � �� is similar� and the result extends to ��� by continuity� De�ning �
r
� ���

�����
and

�
p
� �

q
� �

����� we obtain from the covariance inequality in Appendix A�
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As E�X��������
� � OP �	� and E����� � �� � oP �	� by Lemma ��	� Theorem ��
 implies

E� j���� � ��j � oP �	� and hence P � �j���� � ��j � �� � oP �	� for all � � ��

Proof of Theorem ���� By Corollary ��� the bootstrap estimators are consistent�
It is therefore su�cient to prove
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�t and Z�
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t and Zt in the proof of Theorem ��	� with

X�� � � � �Xn replaced by X�
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�
n� As f �p
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�
t g is P ��tight by the martingale prop�

erty and Lemma ��	� the corresponding characteristic functions are uniformly equicontin�
uous and �	���� is equivalent to

	p
n

X

�t c

�Z�
t

D�� N
�
�� c���c

�
in probability� for all c � Q�

We will apply Theorem A	 of Politis et al� �	���� which states a central limit theorem
for a triangular array of mixing sequences� We have to verify the three conditions of


�



this theorem� The moment condition is ful�lled by the moment assumptions on Xt� The
condition for the mixing conditions is ful�lled by Theorem ��
� The convergence of the
bootstrap variance follows from Lemma ��	� This concludes the proof of Theorem ����

A�� Geometric ergodicity

Here we give a short introduction into some Markov chain terminology and a criterion for
geometric ergodicity� For details and proofs we refer to the book of Meyn and Tweedie
�	�����
Let X � fXtgt�� be a time�homogeneous Markov chain with state space �X �B�X ���

where B�X � is a countably generated ��algebra on X � In our examples in the previous
sections we have X � IR � IR� and B�X � the Borel���algebra on IR � IR�� Let P �
fP �x�A� � x � X � A � B�X �g denote the transition probability kernel and � the initial
distribution� De�ne the n�step transition probabilities inductively by P ��x�A� � P �x�A�
and� for n � 
� by

P n�x�A� �
Z
X
P �x� dy�P n���y�A�� x � X � A � B�X ��

Let P� be the corresponding probability measure such that� under P� � X is a Markov
chain with transition probability P and initial distribution �� Write Px for P� if the
process is started in x� i�e� if � � �x is the Dirac measure in x� In particular we have
Px�Xn � A� � P �Xn � A j X� � x� � P n�x�A� for n � IN� A � B�X ��
De�ne for any set A � B�X � the occupation time 
A� which counts the numbers of

visits to A� by 
A �
P�

t�� 	fXt � Ag� and the �rst return time on A� �A� by �A �
minft � 	 � Xt � Ag so that Px��A 
 �g � Px�X ever enters A�� We call X ��
irreducible if there exists a measure � on B�X � such that� whenever ��A� � �� we have
Px��A 
 �� � � for allx � X � An irreducibility measure � is called maximal if for any
irreducibility measure � we have that ��A� � � implies ��A� � �� A � B�X �� If X is
��irreducible then there exists a maximal irreducibility measure �� see Meyn and Tweedie
�	����� Proposition ��
�
� The Markov chain is called ��irreducible if it is ��irreducible
for some � and the measure � is a maximal irreducibility measure�
The set A � B�X � is called recurrent if Ex�
A� �� for all x � A� The chainX is called

recurrent if it is ��irreducible and every set A � B�X � with ��A� � � is recurrent� The
set A is called Harris recurrent if PxfX � A in�nitely ofteng � Px�
A ��� � 	� x � A�
This is equivalent to Px��A 
�� � 	� x � A� The chain X is called Harris recurrent if it
is ��irreducible and every set A � B�X � with ��A� � � is Harris recurrent� Note that if
a set is Harris recurrent� then it is recurrent�


�



If the chain X is recurrent then there exists an invariant measure �� i�e� a ���nite
measure � on B�X � with the property

��A� �
Z
X
��dx�P �x�A�� A � B�X ��

This invariant measure is not necessarily �nite� If it is �nite� then it can be normalized
to an invariant probability measure� Suppose that X is ��irreducible� and admits an in�
variant probability measure �� Then X is called a positive chain� If X is Harris recurrent
and positive� then X is called a positive Harris �recurrent� chain� Observe that invariant
probability measures de�ne stationary processes if we choose them as initial distribution
for X�� Moreover� if a limiting distribution of P��Xn � 	� exists� it is an invariant prob�
ability measure� Hence invariant probability measures also de�ne the long term behavior
of the chain� Before we can state the existence of such limits� we need to introduce small
sets�
A set C � B�X � is called a small set if there exists an m � �� and a non�trivial measure

�m on B�X �� such that for all x � C�B � B�X �
Pm�x�B� � �m�B��

Moreover� we de�ne the one�step $mean drift%� The drift operator  is de�ned for any
non�negative measurable function V by

 V �x� ��
Z
X
P �x� dy�V �y�� V �x�

� Ex�V �X��� V �X���� x � X �
Henceforth we concentrate on aperiodic ��irreducible Markov chains� For a formal de��
nition of periodic respectively aperiodic chains see Meyn and Tweedie �	����� A useful
criterion to check aperiodicity is given in the following Lemma� cf� Tong �	�����

Lemma A�� If X is ��irreducible� a necessary and su�cient condition for X to be ape�
riodic is that there exists an A � B�X � with ��A� � � and the property� For all B � A
with B � B�X � and ��B� � � there exists a positive integer n such that

P n�x�B� � � and P n���x�B� � �� x � B�

Proof� Tong �	����� Proposition A	�
�

If X is a positive Harris chain� then X is called geometrically ergodic if there is some
� � 	 and some function W � X � ����� such that E�W �X�� 
� and

kP n�x� 	�� �k � W �x���n� x � X �


�



where k	k denotes the total variation norm�
Now we are ready to state the following drift criterion for geometric ergodicity� cf�

Meyn and Tweedie �	����� Theorem 	����	�

Theorem A�� Suppose that the chain X is ��irreducible and aperiodic� If there exists a
small set C� constants b 
�� � � �� and a measurable function V � X � �	��� satisfying

 V �x� � ��V �x� � b	C�x�� x � X � �	��
�

then the chain X is positive recurrent with invariant probability measure � and there exist
constants � � 	� M 
� such that

kP n�x� 	�� �k �MV �x���n� x � X � �	����

Proof� Meyn and Tweedie �	�����

Finally we state the ergodic theorem� It shows that the strong law of large numbers
also holds for positive Harris recurrent Markov chains� cf� Meyn and Tweedie �	�����
Theorem 	��	���

Theorem A�� �ergodic theorem� The following are equivalent when an invariant proba�
bility measure � exists for X�

�i� X is positive Harris recurrent�

�ii� For each f � L��X �B�X �� ���

lim
n��

	

n

nX
t��

f�Xt� �
Z
fd� almost surely

for any initial distribution�

Proof� Meyn and Tweedie �	�����

A�� Mixing

We give de�nitions of �� and ��mixing and state some results for mixing sequences which
are used in the previous sections� For details we refer to Doukhan �	���� and the references
therein�
Let �&�A� P � be a probability space and B� C two ��sub�elds of A� Then the ��mixing

coe�cient of B and C is de�ned as
��B� C� � sup

B�B
 C�C
jP �B 
 C�� P �B�P �C�j


�



and the ��mixing coe�cient of B and C as

��B� C� � E

�
sup
C�C

jP �C j B�� P �C�j
�
�

The mixing coe�cients may be used to obtain covariance inequalities� If X and Y are
measurable random variables with respect to B and C� respectively� then

jCov�X�Y �j � 
� �

r �B� C� �EjXjp� �p �EjY jq��q for any p� q� r � 	 and 	
r
�
	

p
�
	

q
� 	�

see Doukhan �	����� p� ��
Let X � fXtgt�ZZ be a sequence of random variables taking values in IRd and Fm

n be
the ��algebra generated by fXt � n � t � mg� �� � n � m � �� Then the process X
is called ��mixing �or strongly mixing� if

�k �� sup
t�ZZ

�
�
F t
���F�

t�k

�
k���� �

and ��mixing �or absolutely regular� if

�k �� sup
t�ZZ

�
�
F t
���F�

t�k

�
k���� ��

As ��mixing and ��mixing coe�cients are related by 
��B� C� � ��B� C�� see Doukhan
�	����� p��� absolute regularity implies strong mixing�
If X is a time�homogeneous Markov process with marginal distributions �t� then

�k � sup
t�ZZ

Z
�t�dx�

���P k�x� 	�� �t�k
��� �

see Doukhan �	����� p� 

� In particular� if X is stationary and geometrically ergodic�
then there exist constants c � � and � � 	 such that

�k � c��k� k � IN�

Finally we state the central limit theorem for strongly mixing sequences �Ibragimov
�	��
���

Theorem A�� �CLT for strongly mixing sequences� Let fXtg be a real valued� centered�
stationary� strongly mixing sequence� and put Sn �

Pn
t��Xt� �n � ES�

n� If� for some
� � ��

E jX�j��� 
� and
�X
k��

�
�������
k 
��


�



then
��n
n
�� �� � EjX�j� � 


�X
k��

EX�Xk�

If� in addition� �� � �� then
Snp
n�

D�� N ��� 	��
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