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Abstract

We investigate GARCH(1,1) processes and first prove their stability. Using the
representation of the squared GARCH model as an ARMA model we then consider
Yule-Walker type estimators for the parameters of the GARCH(1,1) model and
derive their asymptotic normality. We use a residual bootstrap to define bootstrap
estimators for the Yule-Walker estimates and prove the consistency of this bootstrap
method. Some simulation results will demonstrate the small sample behaviour of
the bootstrap procedure.

1 Introduction

Many time series exhibit non-constant conditional variance (conditional heteroskedastic-
ity). Nonlinear processes capable of modelling such volatility have come into particular
interest in time series analysis, especially in econometrics.

Conditional heteroskedasticity can be modelled by processes of the form

Xt = Ot&y, t:0,1,2,... (11)

where the innovations {e;} are independent identically distributed (i.i.d.) random vari-
ables with mean zero and unit variance, and the volatility o; describes the change of
(conditional) variance.

In financial time series such as stock returns or foreign exchange rates, volatility clus-
tering has been observed for a long time, i.e. periods of large price changes are followed by
periods of small price changes. This phenomenon can be modelled by autoregressive condi-

tional heteroskedastic (ARCH) models introduced by Engle (1982), where the conditional

variance o7 is a linear function of the squared past observations.

Bollerslev (1986) proposed the generalized ARCH or GARCH model by including
also lagged values of o7 in the conditional variance equation. The GARCH(p, ¢) model is
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defined by (1.1) with
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GARCH modelling allows a more flexible lag structure than ARCH models and often
permits a more parsimonious parametrization. Especially the GARCH(1,1) model has
served as an appropriate model in many applications.

Over the past years, many semiparametric and nonparametric approaches to the
ARCH model have been studied. For a variety of other extensions and applications of
the ARCH model, we refer to the survey article by Bollerslev, Chou and Kroner (1992)
and Engle (1995).

In the present work we investigate parameter estimation and bootstrap in GARCH(1,1)
models. Rewriting the GARCH(1,1) model it becomes obvious that the squared process
can be represented as an ARMA(1,1) (autoregressive moving-average) process. According
to this Yule-Walker type estimators for the parameters of the GARCH(1,1) processes can
be defined (Bollerslev (1986)). We prove stability of the GARCH(1,1) model and then
derive asymptotic normality of the Yule-Walker estimators.

The bootstrap is a method for estimating or approximating the distribution of a statis-
tic and its characteristics based on a resampling of the observed data. Since its introduc-
tion by Efron for models with i.i.d. observations, there have been many applications and
extensions of the bootstrap principle, also in case of dependent data. Bootstrap methods
for e.g. nonparametric ARCH models have been studied by Franke, Kreiss and Mammen
(1997), but they do not cover the GARCH case. A wild bootstrap method for quasi-
maximum likelihood estimators of GARCH(1,1) models is proposed in Maercker (1998).

We use a residual bootstrap to define bootstrap estimators for the Yule-Walker es-
timates and prove the consistency of the bootstap procedure. Some simulation results
demonstrate the small sample behaviour of the bootstrap method.

The paper is organized as follows. In Section 2 we state sufficient conditions for the
stability of GARCH(1,1) models. In Section 3 we define Yule-Walker type estimators
for the parameters in GARCH(1,1) processes and derive asymptotic normality of these
estimators. In Section 4 we construct bootstrap estimators for the Yule-Walker estimators.
We show that this bootstrap method works in the sense that it is consistent. In Section 5
some simulation results for the bootstrap method are presented. All proofs are deferred
to the Appendix. Some additional tools and notations about Markov chain theory and
mixing which are used for the proofs are also provided in the Appendix.



2 Stability of the GARCH(1,1) model

Assume that we are given observations Xi,..., X, from the heteroskedastic model
X, =0, teZ, (2.2)
with innovations
{e:}iid, Feo =0, Fel =1, (2.3)
and conditional variance
ol =w+aX} 4+ pBol,, te€Z, wherew,a,3>0. (2.4)

The process defined by (2.2) and (2.4) is called GARCH(1,1) (generalized autoregres-
sive conditional heteroskedastic) process (Bollerslev (1986)).
Combining (2.4) and (2.2) the conditional variance may be written as

of =w+of_ (B +aciy). (2.5)
[terating o in equation (2.4) and (2.5) respectively yields for h > 1
h—1 h—1
of = wy Bta) BXE L+, (2.6)
k=0 k=0
h—1 k h
of = wy ]I (5 + 0457?—2') +oi, 11 (5 + 0457?—2') ) (2.7)
k=0:=1 =1

where, as usual, empty products are set equal to one.
We make the following stability assumption on the model.

ASSUMPTION S
(S1) a+ 08 < 1.

(S2) The distribution G of ¢g has a Lebesgue density g which is positive and continuous.
By Jensen’s inequality, (S1) implies
B In(3+ acd)] <0. (2.8)

As is shown in Nelson (1990), condition (2.8) is necessary and sufficient for the existence
of a unique stationary solution of (2.5), which then is given by the infinite series

o k
ol =wd [[(B+easi,), teZ (2.9)

k=01=1



In the following we will assume that {¢?} is the stationary solution of (2.5) and hence
may be represented by (2.9). In particular, as Fe? = 1, we have

—EX?=Bot= : 2.10
H £ 0y 1—(Oé—|—ﬁ)<oo ( )

Furthermore, £ Y5°, 302, = # < oo implies 3"c2 , — 0 as h — oo almost surely,
thus (2.6) may be extended to
—p
Set o(x,s) = (w+ az? + [352)%. Then
1/75 = (Xt,O't)/ = 0'(1/75_1)(575, 1)/, te Z,

w o0
Uf = —+ aZﬁka_l_k, te 4.
k=0

is a bivariate Markov process with state space IR x | ﬁ, o0). With the help of a drift
criterion we will establish geometric ergodicity and absolute regularity for this process.
Whereas stability of ARCH processes was investigated before by e.g. Guegan and Diebolt
(1992), Doukhan (1994), and Borkovec and Kliippelberg (1998), the results do not cover
the GARCH case.

For a definition and discussion of geometric ergodicity and absolute regularity we refer
to the Appendix.

Lemma 2.1 Let Assumption S hold. Then the process {Y;} is geometrically ergodic and
absolutely regular. Furthermore, there exist constants ¢ > 0 and p > 1 such that the
B-mizing coefficients of {Y;} satisfy B < cp™*, k € IN.

We conclude this section with an ARMA-representation of the squared process { X?}
(cf. Bollerslev (1986)) which will be used frequently in the sequel. Set

ne=X{ — o} =0of(e{ —1).
Then, by (2.4), we have
th :w—l-(oz—l-ﬁ)Xf_l — Bne—1 + 1. (2.11)

Therefore { X7} is an ARMA(1,1) process with parameters o + 3 and —3 and innovations
{n:}. Defining F; as the o-field generated by {e¢; : s < ¢} we note

Elpe | Fioa] = 0l Ele} —1] = 0,

thus the innovations {n;} form a martingale difference sequence.



3 Yule—Walker type estimators — definition and
asymptotic normality

Consider the centered squared GARCH process {X}? — i} in the ARMA-representation
(X2 =) = (a+B) (X2y — 1) =me = B, (3.12)

n = o2(e?—1), derived from (2.11). As is well established in ARMA models the empirical
autocovariances of the process can be used to obtain Yule-Walker (YW) type estimators
for the parameters u, a + 3, and 3, respectively. Observe that the squared process { X?}
exhibits autocorrelation whereas the process itself is not correlated over time.

Let us assume that EXJ < oo. Conditions for the existence of moments are given
in Bollerslev (1986) and Nelson (1990). As we will need even more stringent conditions
for the proof of asymptotic normality of the YW type estimators the discussion of those
conditions will be postponed, see Remark 3.2 below.

Set o} = En}. Recalling E[n,|F,_1] = 0 we note that EnX? = o}, En,X?,, = ao and
En; X2 = 0for s < t. For the derivation of suitable identities involving the covariances v;, =
Cov(X3, X?), h > 0, we now proceed in the usual way, see also Bollerslev (1986, 1988),
by multiplying both sides in (3.12) with X2 ,, h = 0,1,..., and computing expectations.
This yields the following identities.

Yo—(a+8)m = (1-—pajoy, (3.13)
n—(a+8)pw = —fo, (3.14)
v — (a4 D)1 = 0, h > 2. (3.15)
Elimination of o7 gives the system
at+f = -2 (3.16)
M1
5o = (a+Bm =" _ Y2 — 7 (3.17)

H—(a+B)w m—(a+8)0

Using the empirical moments 7 = L 37| X7 and 4, = L S0 (X2 — 2)(XA, — 1) we get
the following Y W-type estimators

(a+8), = = (3.18)
71 ) )

BT aq) = R 3.19

S S e )

Gy o= p(1=(a+p),). (3.20)
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In order to derive estimators &, and Bn of a and 3, we set

JE—

BN Bo=(a+ B)n+ (BT —a),. (3.21)

Denoting the right-hand side of (3.21) by ¢, we obtain Bz —¢.8,+1 = 0. Hence, if &, > 2,

we set R
B, = én/Q — \/6721/4 —1

so that 0 < Bn <1 and Bn < 1if ¢, > 2. In practice it might happen that ¢, < 2, then
set 5, = 0. But by construction and the ergodic theorem ¢, is a consistent estimate for
1/8 4+ 8 and therefore, almost surely, ¢, > 2 for sufficiently large n. Finally we define

OA‘n = (Oz—|—ﬁ)n - ﬁn
Again, by the ergodic theorem, 0, = (G, Bn,djn)’ is a consistent estimator for § =
(o, B w)". )

Next, under additional moment assumptions, the asymptotic normality of 8, will be
shown. We may use this to construct confidence sets for . However, the normal distri-
bution is only an approximation to the exact distribution of 4,. An alternative approach
which often yields a better approximation is the bootstrap. Bootstrap confidence intervals
are obtained by replacing the unknown distribution with its bootstrap estimator. We shall
introduce a bootstrap method and study the consistency of this procedure.

Before doing so it should be mentioned that, as well in GARCH as in ARMA mod-
els, the YW estimators are less efficient than maximum likelihood (ML) estimators, or,
depending on the error distribution, quasi-maximum likelihood (ML) estimators which
are commonly used in practice. Indeed, simulation experiments underline this fact. Under
normality of the innovations, ML estimators outperform the YW estimators. This is not
necessarily true for QML estimators in case of non-normal innovation distributions.

QML estimates are found by an iterative procedure where the YW estimates may
be used as initial estimates. In contrast to this in the YW type estimation procedure the
observed data are used in a more direct way. This estimation procedure will be imitated by
an appropriate bootstrap technique. A bootstrap method for QML estimators is discussed
in Maercker (1997, 1998).

For the derivation of asymptotic normality of 0,, we shall make use of a central limit
theorem (CLT) for strongly mixing processes.

Theorem 3.1 Let Assumption S hold and suppose K |X0|8+5 < oo for some § > 0. Then
Vi (0, = 0) = N ((0,0,0),%) (3.22)
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if ¥ is positive definite where > = DngiD’lDé,

s 1 o 16— 0 L (3+8)
DIZ - _g jr_g ) D2: § § 0 ) <=:__ )
fu Yo 0 0 1 2 4\/(ﬁ‘1+6)2/4—1

and ¥ = En2ZyZ} with

iy = ’71_1 {_ﬁth—l + XtZ—z - (1= 5)/«‘} )
Zir = (= a+ D) B0 = B + (0 +5)+ 0= A= 577) X

XL+ (57— a) (1= B+l - B)].
Zis = 1— .

Remark 3.2 As 6, is based on the empirical autocovariances 4y, i.e. on lagged empirical
fourth moments of X,, the need for the rather stringent moment condition F|X,[3*® < oo
in Theorem 3.1 becomes obvious. Under Assumption S expansion (2.9) holds and, by
Minkowski’s inequality, for any p > 0 a sufficient condition for F|Xy|?? < oo is given
by E(3+ as?)’ < 1. This condition is also necessary, see Nelson (1990). For the case
of normally distributed innovations ¢; the restrictions on the parameter space implied
by EX§ < oo and EX}° < oo are, among others, illustrated in Figure 3.1 of Bollerslev
(1986).

4 The bootstrap procedure

We now discuss a bootstrap method for estimating the distribution of \/n (én — (9). We
use a residual bootstrap to construct bootstrap estimators. It will be shown that the
(conditional) distribution of these bootstrap estimators converges in probability to the
same asymptotic distribution as given in Theorem 3.1 for the original estimators, that is,
the bootstrap procedure is (weakly) consistent.

Given a sample Xi,..., X, the bootstrap process { X/} will be of the form

Xr=orel, ol=0+aX? 4+ 002, tel, (4.23)
{er}iid, E'ehy =0, Eei? =1, (4.24)



where the distribution G* of £ is an estimate of the distribution G of g and E* denotes
the conditional expectation E[-| X1, ..., X,]. The distribution £(/n(f — 0)) will then be
approximated by the (conditional) distribution E*(\/ﬁ(é* — é)) where 6% = (6, B*,&J*) is
calculated in the same way as é, with Xy,..., X, replaced by X7,..., X”. For notational
simplicity here and later the index n indicating the dependence of the estimators and the
bootstrap process on the number of observations will be omitted.

In detail, the construction of {X;} consists of the following steps. Compute the Yule-
Walker estimate § as described in Section 2. Set 65 = fi and define

67 =0+ axXt l—l—ﬁat » t=1,...,n,

or equivalently,

t—1 t—1
6r =0 BF+ad BPXE L+, t=1,...n. (4.25)
k=0 k=0
Calculate empirical residuals
X
ét:At, tzl,...,n,
O

and let G’(:L') = Ly°7_ 1{é; < 2} denote their empirical distribution. In view of Assump-

tion S smooth by convolution and set G = G ox ./N\/(O,hz) where A = n™%. Define the
distribution G* of ¢ as the standardized form of G, i.e. G*(z) = G(UG:L' + MG) where
e =LY 7 € and 0% = Ly (60— MG) + h? are the mean and variance of (7, respec-

tively. As 0 — 0 almost surely we may assume
5,6, 3> 0and &+ 3 < 1. (4.26)

Finally, define the bootstrap GARCH process { X} as the stationary solution of (4.23).
In particular, we have as in (2.9)

i ﬁ ( B+ o?eﬁi) , LEZ. (4.27)
(4.2

Furthermore, by construction and 6), {X;} fulfills Assumption S. Hence, the conclu-
sions of Lemma 2.1 apply and Y;* = (X}, 07)" is a geometrically ergodic and absolutely
regular process with exponential decay of the mixing coefficients.

The density ¢ of the bootstrap innovations is given by

Zn: (UG“/' +1e — At)
2 h

8

\m

g (z) =



where p(z) = \/%6_%902. Hence, ¢* may be understood as a standardized kernel estimate

of g with kernel ¢ and bandwidth h. We have chosen h = n~% as the rate common in
kernel smoothing.
For the consistency proof of the bootstrap proposal we need the fact that, at least on

average, 67 is a good estimate for o2, as well as the consistency of g* and the moments of

the bootstrap process. Let || f||__ = sup,cr |f(2)| for f: IR — IR.

Lemma 4.1 Let Assumption S hold and suppose E|Xo|** < oo for some p > 4.
(a) For any r > 1

r _pAT

= 0p (n=%7).

~2 2
0y — 0y

1 n

wi

(b) 1 1
ta = Op (n_5) , ‘Ué - 1‘ =0Op (n_5) .

(¢c) If g is uniformly continuous then

lg™ = gl = 0r(1).

(d) For q € (0,2p), k; € {0,2} and t, € Z,i=1,...,4,

4 4 4 4
E*|eg|” = Eleo|*, E*[[of® = E][of, ET[X — ET] X,
=1 =1 =1 =1
in probability. Furthermore, there is a constant ¢ > 0 such that for any subsequence
(k) C IN there exists a subsequence (k¢) C (k) such that almost surely

limsup E*op? < ¢, limsup E* | X;]? < e

L— 00 L— 00

In particular,

Eoi? = Op(1), E*|X:|* = Op(1).

As already observed, the Markov process {Y;*} is f-mixing with exponential decay of
the mixing coefficients. The parameters 0 and g* determining the process {Y;*} converge
in probability to § and g, respectively, and so even more can be said about the S-mixing
coefficients 3(j) = 8*(y), j € IN, of {Y;*}. This is done in the following theorem where
we find it convenient to phrase arguments concerning convergence in probability in terms
of almost sure convergence along subsequences.



Theorem 4.2 Let Assumption S hold. Suppose that EX3 < oo and that g is uniformly
continuous. Then for any subsequence (k) C IN there exist a subsequence (k¢) C (k) and
constants Cy > 0 and py > 1 such that almost surely

Br(4) < Copy”  forall 5 € N,

As a corollary we obtain the consistency of the bootstrap estimators in the sense of, for
example, P* (|f* — p| > €) = op(1) for all € > 0. This is not immediate from the ergodic
theorem applied to the bootstrap process {Y;*}, as for each sample Xi,..., X, there is a

different process {Y;*} under consideration.

Corollary 4.3 Let Assumption S hold and suppose E |X0|8+5 < oo for some § > 0. Then
L5, Ar, h >0, and 0% are consistent for p, v,, h > 0, and 0 in the sense mentioned above.

Now we are ready for the main result of this section, which states the consistency of
the proposed bootstrap procedure.

Theorem 4.4 Let Assumption S hold. Suppose that |X0|8—|_5 < oo for some § > 0 and
that g is uniformly continuous. Then

£ (v (- = 0)) = N ((0,0,0),3)  in prabability (4.28)

if ¥ as defined in Theorem 3.1 is positive definite.

5 Simulations

In order to illustrate the performance of the bootstrap procedures described in the preced-
ing section, we show some results of simulation experiments. We simulate GARCH(1,1)
processes of length n = 1000 with standard normal error distribution and with parameter
0 = (o, 3,w). The parameter is estimated by the Yule-Walker type estimator. We repeat
this procedure to estimate the distribution of the YW estimator. More specifically, the
distribution of the standardized estimator is approximated by the estimated density cal-
culated from 2500 Monte Carlo replications. Then the bootstrap approximation of this
distribution is calculated. To this aim we calculate the YW estimator én from one simu-
lated GARCH(1,1) process of length n = 1000. Based on 4, we generate 2500 bootstrap
processes and calculate the bootstrap YW estimator for each bootstrap sample of length
n = 1000. The estimated density for the standardized bootstrap estimator calculated
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from the 2500 bootstrap replications is plotted against the distribution of the original
YW estimator.

It should be remarked that the YW estimation procedure is not very stable if (o, 3)
are chosen near the admissible parameter space with respect to the moment condition.

We show the results for § = (0.1,0.4,0.1). Figure 1 compares the distribution of
V/n(é, — a) with the bootstrap distribution of \/n(&; — é&,). Note that the bootstrap
procedure is based on only one (randomly chosen) sample of the underlying GARCH
process.

Figure 2 and Figure 3 show the results for the parameters 3 and w, respectively.

A Appendix

A.1 Proofs

PROOF OF LEMMA 2.1: We will show that {Y;} is ¢-irreducible with ¢ being the Lebesgue
measure restricted to IR x [, /ﬁ, o0), aperiodic, and that compact sets are small. Then

we shall apply the drift criterion given in Theorem A.4 to obtain geometric ergodicity.
In order to avoid a parameter-dependent state space and with an eye to situations
where {Y;} may be started non-stationarily at time ¢ = 0, we will formulate the proof for
the state space IR x IR*.
Let A C IR x [\/g,oo) be measurable with A(A) > 0, A denoting the Lebesgue

measure. Without loss of generality we may assume A C IR x [, /ﬁ + ¢,00) for some
e> 0.

We will show that, given y € IR x IRT, there exists an m € IN such that
for all measurable sets A’ C [,/ﬁ + €,00) with positive Lebesgue measure we have
P(om, € A'| Yo =y) > 0. This implies P (Y, € A| Yo =y) > 0 since Y,, = onl(em, 1)
where ¢, is independent of o, and has positive Lebesgue density.

Let &,,(z,s) = w7y A% + 377 1(Bs? + az?). Then given Yy = y € IR x IRT we can
find positive functions (€41, ... Em-1), 2 = 1,...,m — 1, such that (2.7) takes the form

m—1
ol = 6(y) + Z E7hi(8ig1s ey Emet)-
=1

Let A” = {r* | r € A’}. Choosing m large enough, we have ‘5m(y) — ﬁ‘ < € and hence

PloneA|Yo=y) = P (o} €A"[Yo=y)

11



alpha—estimator
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Fig. 1: Distribution of \/n(&,, — «) with bootstrap approximation and for simulated
GARCH(1,1) processes with (a, 8,w) = (0.1,0.4,0.1), sample size n = 1000. All plots are based
on 2500 Monte Carlo replications.
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Fig. 2: Distribution of ﬁ(ﬁn — () with bootstrap approximation. Parameter as in Figure 1.
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omega—estimator
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Fig. 3: Distribution of \/n(&, — w) with bootstrap approximation. Parameter as in Figure 1.
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m—1 m—1

= //1{2222h2(22+1,,Zm_l)EA//_(Sm(y)} Hg(Zz)dﬁdZm_l
=1 =1

> 0

as g > 0 and A” — §,,(y) C IR*. Thus {Y;} is ¢-irreducible with ¢ being the Lebesgue

measure restricted to IR X | 00).

Using Lemma A.3, the aperiodicity follows similarly. Choose the compact set A =

[0,1] x [\/125.+/15 + 1], say, and my € IN such that

w

Om(y) — m

Then, with the same arguments as above, for all B C A with A(B) > 0 we obtain

max <€, m>my.

yeA

PY,€B|Yo=y)>0 and P (Y41 € B|Yo=y)>0 forallye B.

In order to prove that compact sets are small, consider the 2-step transition probability
and let C' = [—M, M] x [0, M] for some M > 0. We obtain for any Borel set A C IR x IRt
and any y € C'

P(Y2eA|Yo=y) = // 1 {\/w + (azi + B)o(y) (22, 1) € A} 9(21)g(22) dz1dzy

// 1 {u(z2, 1) € A} go(u)g(zs) dudzs (1.29)

Y

where we substituted u = \/w + (azi + B)o?(y), used u > \/w, ac?(y) < M? 4+ w and, if
z1 =0, u < M 4+ 2w, and put

w2 —w—PF0?(y)

go(u) = 1prszece) (W) Grtos 3239( ao?(y) )

As g is positive and continuous, g¢ is positive on [M + 2w, 00), and
vol) = [[ Hulz1) € Jge(uig(z) dudz.
defines a non-trivial measure on IR x IRT with

P(Y,e A|Yo=y)>vc(A) forally € C, and all Borel sets A C IR x IR*.

Thus we have shown that C is small.
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Now we are ready to apply the drift criterion given in Theorem A.4. Set d =
% (% + ﬁ) — 1 and define the test function V(y) = 1+ da?+s* for y = (x,s) € R x IRT.
Then we have d > 0 and, as Fe? =1,
AV(y) = E{l—I—Xmz—l-O'f | Yozy} —(1—|—d:1;2—|—52)
= (14+d)(w+ ax? + [352) — (d:z;2 + 32)

= (1—0z)91:2<%—al)—I-@’S2 (1—|—d—%)—|—(1—|—d)w

1/1 1
= — (1 —a)? H = =— 1 4 d)w.
(-] 5 (5 - 12g ) + 0+ e
Now a 4+ < 1 implies § < 1 — « and % — ﬁ > 0. Defining the constants § =
imaxﬁ(w) (% — ﬁ) = % and b = (1 4+ d)w + 24, and the compact set C' =
[—\/g, 2 x [0, \/g] we thus have § € (0,1) and
AV(y) < =26V(y)+ (1 +d)w+26
< —6V(y) +blo(y) forally € IR x IR*. (1.30)

Thus the drift criterion holds. As EV(Yy) =1+ (d + 1) < oo, this concludes the proof
of the lemma. H

Proor oF THEOREM 3.1: In order to avoid cumbersome notation, we will not
distinguish between, say, >°7_; z; and 7, ., ;. So, for instance, we will write 4, =
L5 X?X? , — (? neglecting terms of order Op(n™!).

In a first step we will prove joint asymptotic normality of

o o
o+ =
@t = 2

(ﬁ—t o), = b2 T 0

A1 —(a+8)3]
e = A(l—(a+8)).

By (3.12) we have
Vi(@n—w) = Vi(i—p) (1= (a+8) = (1= > . (131)
Furthermore
Vi ((0+8), = (a+5) = A7'Vi(3% - (a+8)h)
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_ \/_ZXEQ[( P i) =t B) (X2, =)
\/_ZXt 2 (e = B+ (L= (e + 8)) (n — 1))
- =Y (—@X3_1+X3_2 - (1= 5)p)

using (1.31). In a similar way we get

(0 Ao = S (0N X2, — (1= )4),
%0 = 3 [(a 4 DXL 4~ ] (XE, - X7)

1
= g Z Nt (5X7:2+1 - th - 5X3—1 + XtZ—z)

and therefore
=40 — (87" —a) (31 — (a + B)4)
= %Zm (BXZ, —aBX?— (B+ 87 —a) X2, + X2, + (B —a) (1 - B)ir) .
Observing that
Xl —aX? = w4 BXE 4 — By = w1+ 8)+ Bla+ B)XE, = B2y + i
we conclude that
V(=) = (57 = a)) = (= e+ B30 = w301 = Pt
+(Ba+B) +a—B-F7 )X+ X, + (87" —a) (1= Bt +w(l + m]'
By the ergodic theorem we have fi — 1 and 4, — v, almost surely. In order to prove
Vi ((a+8), = (a+8).(37 =a), — (B —a) &, —w) SN (0,3)  (1.32)

it is therefore sufficient to show

L mc Ze 2 N (0,¢Sc),  ce IR?, 1.33
NG
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using the Cramer-Wold device. As Z; is F;_i-measurable and F [, | Fi_1] = 0 we observe
that {n:Z:(c)} is a martingale difference sequence and hence

Z Cov (n:c' Ze,noc' Zo) =  Ent Zie.

t=—o0

An application of the CLT for strongly mixing sequences, see Appendix A.2, now gives
(1.33).

For the next step we note

R e (o) I (R N
(87 =)= (87—, = ;o he (@ +8), —(a+8)),

on = = —fi((a+8),—(a+8)

Hence (1.32), the relationship y1 — (e 4 3)y0 = —f0} and the ergodic theorem imply

Vi (04 8), = (a+5),(37=a), = (B —a) & —w) 5 N (0,D:5D}) .
An application of the delta method, using the function

x—%—l—\/(aj—l—y)z/ll—l

Tleyz)=| = — Ja+y)2/a—1 (1.34)
z
with derivative VT (a + 3,57 — a,w) = D3, concludes the proof of the theorem. [

PROOF OF LEMMA 4.1: (a) ;From (2.6) and (4.25) we have

5 = o? = 3 [(06* — w¥) + (a8 — ap¥) X2_(] + 30— 0ok,

k=0

Choose b € (3,1) and set B, = {B < b} If 1 < r < p, application of the Holder

inequality with 7 and ¢ = (1 — L)™' gives

i—1 r =1, s /i1 .
(o) < (So%) (Sosae)
k=0 k=0 k=0

and hence

E%i (tz_f bkxf_k_l)r < (1-v8) 7" (1-85) " EXZ,

t=1 \k=0
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implying %Z?:l (ZZ_:IO katZ—kq)r = Op(1). Similarly, ) B (22_10 REXT ) 1)7’ =
Op(1). Part (a) follows now from Theorem 3.1, P(B,) — 1 and ‘ﬁk ﬁk‘ < ‘[3 ﬁ‘kbk !

on B,. The case r =1 is even simpler. If r > p write
= ' o k ’
2 < ( ) _ 2
(;b Xt—k—l) < Oglgxl)( (1 —=0)" Zb X{
and use the fact that n_%maxogssn X? = op(1) by the stationarity of {X?} and as

EX} < co.
(b) It suffices to show L 27 |&, — ;| = Op (n_%) From

| Ut h

Vi (Vo + Va)

) 1 1 o — O
el < X5 - 1 < gl =l o,
O O

VW

and 37 X2 = [i we conclude

[T

The assertion now follows from part (a) and the ergodic theorem. In the same way we
have £ 37 |&7 —¢f| = Op (n_%) and hence ‘Ué —1|=0p (n_%)

(c) We first note that g(z) — 0 for |#| — oo as ¢ is a uniformly continuous density
function. Because of this and part (b) it is therefore sufficient to show ||g — g||.. = op(1)

where g(z) = -0 ¢ (95 Et) is the density of G. As

w—ét T — & ’ 11& R _ 1
— < R — = 10
¥ ( h ) ¥ ( h )‘ = HS‘Q Hoo h2n P €t| OP (n )

by the proof of part (b), § may be replaced by g(z) = 37, ¢ (“’ Et) The result
now follows from supy, <, [9(z) — g(z)| — 0 almost surely (Bosq (1996), Theorem 2.2),
sup,s, 9(x)] < 3¢ (;—h) on A, = {SUPlgtgn |lee| > %} and P(A,) — 0.
(d) In view of (b) and h — 0 the first assertion will follow from L Y7 (6,7 — |e/|!) =
op(1),0<q<2p. Set £ =1-— 2~ Then, as min (6%,07) > min (&, w),

1
T2 (&

t=1

1 -
oD

t=1

qg+1
1 L gl min (W, w)” 2 .
L L < g ymin @) B o — ol < (g4 DG ey
g o w2 + w2




and therefore

1

— e’ = gZPﬁ

1

&9 q
¢
1

P SN .
el (o)

=1
= or(l)

by part (a) and the ergodic theorem.

With regard to the conditional variances, we first prove the boundedness of E*o;? along
subsequences of arbitrary subsequences. Recall from Remark 3.2 that E(8 + ae%)% <1
and choose k € (F ([3—|—0z50)2 1). If (k) C IN is any subsequence, choose (k¢) C (k) in such

IA

a way that £~ ([3 + agf ) converges to E(3+ aeg)% almost surely. Then, by Minkowski’s
inequality and (2.9),

2k L
o] . a g 2 1 2
limsup (E*oy?) < limsup (Z (E* ([3 + &582) 2) ) < ( )
£—00 £—00 k=0

1 —&

Q=

(SR

almost surely.
For the mixed moments of conditional variances we only discuss the case ky = ky =
ks = k4 = 2, the other cases being similar. Consider

4 k1 ks ks ks 4
B ]l o3 ®4ZZZZE*HHHHH(5+a€t—])-
=1 k1=0 ko=0 k3=0 k4 =0 71=172=133=1 33=1:=1

R 4
Again, we may assume F* ([3 + &582) < k < 1. Hence, by independence,

ki ka ks kg 4

10 IT IO I1 10 (ﬁ—l-ozstl jl) < pghrthath+ha

J1=1j2=1ja=1j34=1:=1

as, for given s € Z, the factor (B + &5?2) appears at most four times in each product.
The assertion now follows by dominated convergence.
The assertions concerning X then follow from E*|X3|? = E* |e5|? E*o’. [ ]

PrROOF OF THEOREM 4.2: The proof is an adaptation of the proof of Theorem 3.1
in Franke et al. (1998), referred to as (F) from now on, to our situation. As in (F) the
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proof consists of two steps. First, the identification of the parameters on which the mixing
coefficients of the process {Y;} depend, and second, the convergence of these parameters
for the bootstrap processes. The first step is formulated in the following lemma which
corresponds to Theorem 2.1 and Corollary 2.1 in (F).

Lemma A.1 Let Assumption S hold. Then there exist constants Cy > 0 and py > 1
such that

B(n) < Cypy’  forallje N
where 3(j), 7 € IN, are the B-mizing coefficients of the process {Y:}. The constants Cy

and py depend only on the parameters K, p, e, ng, v, k,d specified in conditions (A1) and
(A2) below.

(Al) K is a compact set, p > 1, d,e > 0, A < oo such that

EIYi]l ] Yier = y] < Liee(w) (o7 lyll — €) + Al ()

where |[(z,s)]| = dz? + 2.
(A2) We have ng € IN, v € (0,1), and there is a probability measure ¢ such that

inf P™(y, B) = v¢(B)
yeK
for all measurable sets B. Furthermore x > 0 and

inf P(y, K) > k. (1.35)
yeK

Condition (A1), a reformulation of the drift condition, and condition (A2), whose first part
concerns the ‘smallness’ of K, are as in (F), with the only exception that the absolute value
| X;| of the one-dimensional process there has been replaced by the norm ||Y;|| = dX? + 7.
Both conditions are fulfilled in our setting as the following arguments will show.

Recall
AV(y) < =6V(y) +ble(y), y € R x RY, (1.36)

ifrom drift equation (1.30) where
Viy) = 14yl =1+da* +5°, y=(z,5),

1/1 1
d = == —1
2(ﬁ+1—0z) ’

5 = 1—(Oé—|-ﬁ)
N dmax(1,d) l—a

- [ o]

b = (14 d)w+ 24
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As (1.36) is equivalent to

EYi[ 1 Yeer =yl < (1 =) [lyll = ¢ + ble(y),

(A1) holds with K =C, p=(1—-06)"", e=4dand A =b.
Furthermore, by (1.29), the first part of (A2) holds with ng = 2, v = v (IR x IRT)
and ¢ = v 1y where

vl = [[ Hu(=1) € Jnu)g(=) duds.

g(0) = Tarsaun (v) @ﬁ;ﬁ;gg( L%%%ﬁﬂa
b
Moo= /2
5
For the second part of (A2) consider y = (z,s) € K, that is 0 < 2?,5? < % Note that
o*(y) < gbecauseofa (y) = w+ax? + (3s? §§(‘”—5 (oz—l—ﬁ)) and 2 < Ld <2(1 —a).

Hence we have
PYVER[Yo=y) = [1{o(y)(=1) € Khglz)d
> [ 1l < (=) d=
and (1.35) holds with x = [1{|z| < 1}g(2)d=

ProOOF OF LEMMA A.1: The proof is completely analogous to the proof of Theorem 2.1
and Corollary 2.1 in (F), again the only difference being the replacement of |X;| by

|Yil| = dX}? + o}. In particular, Lemma 2.1 in (F) concerning the return times 75 =
inf{t > 1|Y; € K} here takes the following form:

Lemma A.2 Suppose (A1) is fulfilled. Then
(i) Eyp™= <e 'yl forally¢ K,
(ii) E,p7% <p(1+etA)  forally e K.

With these changes, the arguments in (F) carry over to our situation without further
modification. H

PROOF OF THEOREM 4.2 (CONTINUATION): The proof is completed by showing that,
along suitable subsequences, the constants K, p, €, no, v, &, d specified in conditions (A1)
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and (A2) may be chosen in such a way that, outside some null set, they are valid simul-
taneously for all bootstrap processes. By Theorem 3.1 and Lemma 4.1 we may choose
a subseqence such that § — 6, |G — glloc — 0 and (4.26) is satisfied almost surely. By
a slight abuse of notation we will denote this subsequence again by (n). Hence outside
some null set the bootstrap processes {Y,;*} based on the observations Xi,..., X, are ape-
riodic, ¢-irreducible Markov processes. The argument is completed by showing that the
bootstrap constants K™, p*, €*, nj,v*, k™, d* converge against K, p, €, no,7,k,d when both
are defined as in the discussion after the formulation of (A1) and (A2). This is obvious
for p* = (1 —&*)7', € = §° and d*. Furthermore K* = [—M*, M*] x [0, M*] converges
in an obvious way to K and we may set nj, = no = 2. Finally, uniform convergence of
g* = ¢ implies convergence of £* and pointwise convergence of g5 in IR\ {M + 2w}, and
the latter implies convergence of the integrals v*. [

PRrROOF OF COROLLARY 4.3: We only prove the assertion for 4. The proof for i* and
5/2

51672 and

Ay, h >0, is similar, and the result extends to o by continuity. Defining % =

zla = 5 = 8_:5/2 we obtain from the covariance inequality in Appendix A.2

Vary; < %nz—:l ‘Cov (X§4,X;4)‘ 8 nz:l 3 (k 8+5/2 (E X (8+5/2)) ) ‘
k=0

As E*X*(8+5/2 Op(1) and E*4; — v = op(l) by Lemma 4.1, Theorem 4.2 implies
E* 1% — v0| = op(1) and hence P* (|35 — 70| > €) = op(1) for all € > 0. [ ]

PrROOF OF THEOREM 4.4: By Corollary 4.3 the bootstrap estimators are consistent.
It is therefore sufficient to prove

ny Z; LN 0,%) in probability, (1.37)
cp. (1.33), where n; and Z; are defined as n; and Z; in the proof of Theorem 3.1, with
Xi,..., X, replaced by X7,... X . As {\/Lﬁ SnrZr} is P*-tight by the martingale prop-
erty and Lemma 4.1, the corresponding characteristic functions are uniformly equicontin-
uous and (1.37) is equivalent to

\/_ > nidz; LN (0 c Zc) in probability, for all c € @.

We will apply Theorem Al of Politis et al. (1997) which states a central limit theorem
for a triangular array of mixing sequences. We have to verify the three conditions of
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this theorem. The moment condition is fulfilled by the moment assumptions on X;. The
condition for the mixing conditions is fulfilled by Theorem 4.2. The convergence of the
bootstrap variance follows from Lemma 4.1. This concludes the proof of Theorem 4.4. m

A.2 Geometric ergodicity

Here we give a short introduction into some Markov chain terminology and a criterion for
geometric ergodicity. For details and proofs we refer to the book of Meyn and Tweedie
(1993).

Let X = {X;}/>0 be a time-homogeneous Markov chain with state space (X, B(X)),
where B(X') is a countably generated o-algebra on X'. In our examples in the previous
sections we have X = IR x IRt and B(X') the Borel-c-algebra on IR x IRt. Let P =
{P(z,A): 2z € X, A € B(X)} denote the transition probability kernel and v the initial
distribution. Define the n-step transition probabilities inductively by P'(z, A) = P(z, A)
and, for n > 2, by

Pz, A) = /X P(e,dy) P (y, A), =€ X, A€ B(X).

Let P, be the corresponding probability measure such that, under P,, X is a Markov
chain with transition probability P and initial distribution v. Write P, for P, if the
process is started in x, i.e. if v = §, is the Dirac measure in z. In particular we have
P (X,€eA)=PX,€A|Xo=2)=P"(z,A)forne IN, A B(X).

Define for any set A € B(X') the occupation time 14, which counts the numbers of
visits to A, by na = 302, 1{X; € A}, and the first return time on A, 74, by 74 =
min{t > 1 : X; € A} so that P.,(t4 < oo} = P,(X ever enters A). We call X ¢-
irreducible if there exists a measure ¢ on B(X') such that, whenever ¢(A) > 0, we have
Po(t4 < 00) > 0for allz € X. An irreducibility measure ¢ is called maximal if for any
irreducibility measure ¢ we have that ¢(A) = 0 implies ¢p(A) = 0, A € B(&X). If X is
¢-irreducible then there exists a maximal irreducibility measure ¢, see Meyn and Tweedie
(1993), Proposition 4.2.2. The Markov chain is called i-irreducible if it is ¢-irreducible
for some ¢ and the measure ¢ is a maximal irreducibility measure.

The set A € B(X) is called recurrent if E,[na] = oo for all x € A. The chain X is called
recurrent if it is ¢-irreducible and every set A € B(X') with ¢)(A) > 0 is recurrent. The
set A is called Harris recurrent if P,{X € Ainfinitely often} = P.(na = o) =1, x € A.
This is equivalent to P,(74 < o0) =1, @ € A. The chain X is called Harris recurrent if it
is ¢-irreducible and every set A € B(X') with ¢»(A) > 0 is Harris recurrent. Note that if
a set is Harris recurrent, then it is recurrent.
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If the chain X is recurrent then there exists an invariant measure 7, i.e. a o-finite
measure 7 on B(X') with the property

w(A):/Xw(dx)P(:z;,A), A€ B(X).

This invariant measure is not necessarily finite. If it is finite, then it can be normalized
to an invariant probability measure. Suppose that X is ¢ -irreducible, and admits an in-
variant probability measure 7. Then X is called a positive chain. If X is Harris recurrent
and positive, then X is called a positive Harris (recurrent) chain. Observe that invariant
probability measures define stationary processes if we choose them as initial distribution
for Xo. Moreover, if a limiting distribution of P,(X, € -) exists, it is an invariant prob-
ability measure. Hence invariant probability measures also define the long term behavior
of the chain. Before we can state the existence of such limits, we need to introduce small
sets.

A set C € B(X)is called a small set if there exists an m > 0, and a non-trivial measure

Vm on B(X'), such that for all x € O, B € B(X)

Moreover, we define the one-step “mean drift”: The drift operator A is defined for any
non-negative measurable function V' by

AV(z) = /XP(:I;,dy)V(y)—V(:z;)
— EV(X)) - V(Xo), €.

Henceforth we concentrate on aperiodic i-irreducible Markov chains. For a formal defi-
nition of periodic respectively aperiodic chains see Meyn and Tweedie (1993). A useful
criterion to check aperiodicity is given in the following Lemma, cf. Tong (1990).

Lemma A.3 If X is i-irreducible, a necessary and sufficient condition for X to be ape-

riodic is that there exists an A € B(X') with ¥(A) > 0 and the property: For all B C A
with B € B(X) and ¢»(B) > 0 there exists a positive integer n such that

P™x,B)>0 and P""'(z,B)>0, x¢€ B.

PRrOOF: Tong (1990), Proposition Al.2. [

If X is a positive Harris chain, then X is called geometrically ergodic if there is some
p > 1 and some function W : X — (0, 00) such that F,W(Xy) < oo and

[P (2, ) =7l < W(z)p™, ze€d,
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where ||-|| denotes the total variation norm.
Now we are ready to state the following drift criterion for geometric ergodicity, cf.

Meyn and Tweedie (1993), Theorem 15.0.1.

Theorem A.4 Suppose that the chain X is i-irreducible and aperiodic. If there exists a
small set C', constants b < 0o, 3 > 0, and a measurable function V : X — [1, 00) satisfying

AV(z) < =pV(x)+ble(x), =€ X, (1.38)

then the chain X is positive recurrent with invariant probability measure m and there exist
constants p > 1, M < oo such that

|P"(x,) —m|]| < MV(x)p™, x€X. (1.39)

PROOF: Meyn and Tweedie (1993). ]

Finally we state the ergodic theorem. It shows that the strong law of large numbers
also holds for positive Harris recurrent Markov chains, cf. Meyn and Tweedie (1993),
Theorem 17.1.7.

Theorem A.5 (ergodic theorem) The following are equivalent when an invariant proba-
bility measure 7 exists for X:

(i) X is positive Harris recurrent.

(i) For each f € Li(X,B(X),n),

o1
lim —

Zf(Xt) = /fdw almost surely
1

i=
for any initial distribution.

PROOF: Meyn and Tweedie (1993). ]

A.3 Mixing

We give definitions of a- and J-mixing and state some results for mixing sequences which
are used in the previous sections. For details we refer to Doukhan (1994) and the references
therein.

Let (2, A, P) be a probability space and B, C two o-subfields of A. Then the a-mizing
coefficient of B and C is defined as

a(B,C)= sup |P(BNC)— P(B)P(C)|

BeB, CceC
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and the B-mizing coefficient of B and C as

5(B,C) = I |sup|P(C | B) - P(C)]|
cecC
The mixing coefficients may be used to obtain covariance inequalities. If X and Y are
measurable random variables with respect to B and C, respectively, then
11

L 1
(EY|")s forany p,q,r > 1and —+ —4+ — =1,
r-pr q

=

ICov(X,Y)| < 8ar(B,C) (E|X|?)

see Doukhan (1994), p. 9.

Let X = {X,}iez be a sequence of random variables taking values in IR* and F be
the o-algebra generated by {X; :n <t < m}, —oo <n < m < oo. Then the process X
is called a-mizing (or strongly mizing) if

k—oo

Q1= sup a (fioo, fjk) — 0
tez

and G-mizing (or absolutely regular) if

‘= su I R,
B tegﬁ ( 00 t-l—k)
As a-mizing and [(-miving coeflicients are related by 2«(B,C) < 3(B,C), see Doukhan
(1994), p.4, absolute regularity implies strong mixing.
If X is a time-homogeneous Markov process with marginal distributions vy, then

Br = sup | vi(dx) HPk(l', ) — Vitk
teX

Y

see Doukhan (1994), p. 88. In particular, if X is stationary and geometrically ergodic,
then there exist constants ¢ > 0 and p > 1 such that

ﬁkgcp_kv ke IN.

Finally we state the central limit theorem for strongly mixing sequences (Ibragimov

(1962)).

Theorem A.6 (CLT for strongly mixing sequences) Let {X:} be a real valued, centered,
stationary, strongly mizing sequence, and put S, = >0 Xy, 0, = ES2. If, for some

6 >0,

EX, " <00 and Zai/(ﬂé) < 00,
k=1
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then

2 00

o= BIXi P +2Y EXi X,
n k=2
If, in addition, o* > 0, then
Sy
L5 N(0,1).

N
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