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ESTIMATING YIELD CURVES BY KERNEL
SMOOTHING METHODS

O. Linton," E. Mammen,? J. Nielsen,® and C. Tanggaard?

December 16, 1998

Abstract

We introduce a new method for the estimation of discount functions, yield curves and forward
curves from government issued coupon bonds. Our approach is nonparametric and does not
assume a particular functional form for the discount function although we do show how to impose
various restrictions in the estimation. Our method is based on kernel smoothing and is defined
as the minimum of some localized population moment condition. The solution to the sample
problem is not explicit and our estimation procedure is iterative, rather like the backfitting
method of estimating additive nonparametric models. We establish the asymptotic normality
of our methods using the asymptotic representation of our estimator as an infinite series with
declining coefficients. The rate of convergence is standard for one dimensional nonparametric

regression.

KEY woORDS: Coupon bonds; Forward curve; Hilbert Space; Local linear; Nonparametric regres-

sion; Yield curve.
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1 Introduction

The term structure of interest rates is a central concept in monetary and financial economics. Prices
of fixed income securities like bonds, swaps, and mortgage backed bonds (MBB’s) are functions of the
yield curve, and pricing of derivatives also depends on the yield curve. The spread between long and
short term interest rates carries information about the level of future interest rates, see for example
Campbell and Shiller (1991) and Engsted and Tanggaard (1995). The slope of the yield curve has
frequently been used in empirical studies as a predictor of future inflation and national incomes, see
Frankel and Lown (1994) and Estrella and Mishkin (1998) for example. Therefore, estimation of
yield curves has had a long tradition among financial researchers and practitioners. See Campbell,
Lo, and Mackinlay (1997) for further discussion.

A fundamental problem is that the yield to maturity on coupon bonds are not directly comparable
between bonds with different maturities or coupons. Thus, there is a need for a standardized way of
measuring the term structure of interest rates. One such standard is the yield curve of zero-coupon
bonds issued by sovereign lenders.

The construction of this yield curve poses several problems for applied research. First, many
governments do not issue longer term (i.e., greater than 1-2 years) zero-coupon bonds. Hence the
yield curve must be inferred from other instruments. A simple solution can be derived from the
law of one price by assuming absence of arbitrage. Arbitrage in the bond market will cause the
price p of any bond (coupon or zero) with payments b(7;) at time 7; to be equal to the discounted
value of the future cash flow 7 = Z;nzl b(7;)d(7;), where the discount factor is d(7;) at time 7;. The
future income stream, b(7),...,b(7,), is assumed known and non-random. The second problem is

that, in practice, small pricing errors perhaps due to non-synchronous trading, taxation, illiquidity,
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and bid-ask spreads necessitates adding an error term to m. The error term should be sufficiently
small to ensure that they do not represent (gross) violations of the law of one price (no-arbitrage
condition). For example, Amihud and Mendelson (1991) find that close to maturity notes and T-
bills with identical payment streams can be priced differently, although when taking account of the
various transactions costs, there were not, on average, arbitrage opportunities.

The statistical problem we address is one of finding the function d(-) that minimizes the deviation
between observed prices in the market and the observed present value. The estimation is done using
a carefully selected sample of bonds or any instrument (swaps) with known cash flow. Note that,
based on a continuous time approximation, we have d(t) = exp(—ty(t)), where y(t) is the yield
curve, and y(t) = exp(— fg f(s)ds), where f(t) is the forward curve, see Anderson, Breedon, Deacon,
Derry, and Murphy (1996, pp 12-13). Both of these relationships are invertible, so that knowing d is
equivalent to knowing y or f. We shall suppose that the discount function d(-) is a continuous and
indeed smooth function of time to maturity. Although this is not guaranteed by purely arbitrage
arguments, it does seem plausible.

Following the seminal work of McCulloch (1971), the standard approach to estimation here is to
assume a parametric specification for d(¢) or y(t) or f(¢) and to use linear or nonlinear least squares to
estimate the unknown parameters. For example, McCulloch (1971, 1975), Shea (1984) use regression
splines for d(t), Chambers, Carleton, and Waldman (1984) uses polynomials for y(¢), Vasicek and
Fong (1982) uses exponential splines for d(t¢), while Nelson and Siegel (1988) proposes powers of
exponentials for y(¢). An approach based on linear programming methods has been suggested by
Schaefer (1981). If the specification is considered parametric, i.e., to be a complete and correct
representation of the functions of interest, i.e., the mean, then standard asymptotic theory can be
used to derive the limiting distribution of the estimator and to justify confidence intervals obtained
from this. However, a number of these authors are arguing against adherence to any fixed model
and really are viewing the problem as being nonparametric. Some recent studies by Fisher, Nychka,
and Zervos (1995) and Tanggaard (1997) have also taken this line. When we view the estimation
problem as nonparametric, there is little existing theory regarding the distribution of the estimators;
for example, no-one has established the asymptotic distribution of the spline estimates discussed

above.



We adopt a nonparametric approach in which we do not a priori specify the functional form of
the discount function or forward curve. In fact, we base our procedures on perhaps the most central
of all smoothing methods, the kernel method. The flexibility of our method is very important in
practical applications because parametric estimates are often flawed by specification biases. It is
not immediately obvious how to estimate the function d(-) by kernel methods, since this function
affects the mean function indirectly through a convolution with the payment function. We solve the
estimation problem by defining the function d as the solution of some population mean squared error
criterion, and then localizing the sample version of this to obtain an empirical criterion function.
Several versions of the localization are possible including local constant and local linear [which has
some well known advantages in other contexts, see Tsybakov (1986) and Fan (1992)]. It turns
out that our methods do not generally have explicit solutions, i.e., our estimator is defined as the
solution of a linear integral equation. In practice, our solutions are defined through the method of
successive approximations, but see Rust (1997) for discussion of some alternative methods. We also
give a ‘backfitting’ interpretation to our procedure, as in Opsomer and Ruppert (1997) and Linton,
Mammen and Nielsen (1998). We establish the convergence of our iterative scheme and establish
the asymptotic properties of the estimator. We use the method of successive approximations to
write our estimator as an infinite series with declining coefficients and thereby obtain its asymptotic
distribution — it is asymptotically normal at the standard rate of convergence for one-dimensional
kernel regression. The asymptotic distribution of the implied estimators of y(¢) and f(¢) can be
easily obtained by the delta method. Our regularity conditions are high level, but we show how
they are satisfied in some leading cases. We also exploit the relationships with the yield curve and
forward curve to suggest alternative methods, thus we write d(-) = t(0(+)) for some known function
1, making 6 now the object of estimation. The purpose of this is to give some added flexibility and /or
to enforce consistency with theory. For example, by taking d(t) = exp(—ty(t)) we can directly impose
the restrictions that d(0) = 1 and d(¢) > 0 for all ¢, at the same time we are directly estimating the
yield curve itself. We apply our methods to a sample of US Treasury bonds.

We point out that the estimation problem is similar to that considered in Engle, Granger, Rice,
and Weiss (1986) in which electricity demand over a billing period is modelled as a sum of individual

daily demands each determined by temperature on the day concerned. They used splines, which



effectively parameterizes the function d and makes the estimation problem standard nonlinear re-
gression. They did not provide any asymptotic theory to justify their approach, at least not for the
pointwise distribution of the nonparametric part. A similar estimation problem occurs quite widely
with grouped data. For example, Chesher (1997) estimates the individual nutrient intake-age rela-
tionship from household level intake and individual characteristics like age. Again, he used splines
but did not provide any justification for the validity of his method. A related problem arises in non-
parametric simultaneous equations [Newey and Powell (1988)] and in estimating solutions of integral
equations [Wahba (1979), Nychka, Wahba, Goldfarb, and Pugh (1984), and O’Sullivan (1986)]. See
also Hausman and Newey (1995) for a related problem involving differential equations. Finally, see
Horowitz (1998) for a discussion of other deconvolution problems.

In section 2 we discuss [for reasons of completeness] smoothing of pure discount bounds. In
section 3 we present our new methods for smoothing the yield curve. In subsection 3.1 we present
the local constant version of our estimate with ¢ the identity, i.e., the object of interest is the discount
function, while subsection 3.2 gives the local linear extension. Section 3.3 describes how to estimate
y and f from the estimate of d. We then present in subsections 3.4-3.6 the exponential version of
these methods. We present the asymptotic properties of our methods in section 4 and apply the
method to data in section 5. In section 6 we describe extensions to testing parametric hypotheses

and to estimating semiparametric models. Proofs are given in the appendix.

2 Smoothing of Pure Discount Bond Yields

In an efficient bond market, $1 delivered at some future date 7 has one, and only one, price, d.
The function d(7), giving the discount factor as a function of 7, is called the discount function. In
practice small pricing errors due to rounding-off, tax effects, and inefficiencies distort the pricing
mechanism. Therefore, the discount function must be derived from a sample of noisy zero coupon
bond prices, p1,...,p, with times to maturity 7 < ... < 7,. We shall not require that the times be
equally spaced. The statistical model is based on random perturbations of the present value pricing

relationship, i.e.,



Pi = bZ(TZ)d(Tl) + Eis 1= 1, R (1)

where ¢; constitute an independent random sequence with E¢;] = 0,1 =1,...,n, where b;(7;) is the
payment, i.e., the principal, returned to the bond investor when bond i matures at date 7,. Note
that b;(7;) and 7; are known and fixed constants, and that the statistical problem is one of estimating
the discount function d(7). The discount function can be defined as that smooth function d(-) which
minimizes the population criterion function

n

=1
with respect to 0(-). The limiting criterion function exists and has a unique minimum provided that
{7;} is dense in a compact interval and that the first two moments of p; are finite. This suggests the

following localized sample based criterion function

Qu(0) = S Wilr) (i = b0 2)

where {W;} is a set of smoothing weights, depending only on the 7's, which are small for 7; distant
from 7, i.e., the criterion is weighting preferentially bonds with similar maturities to 7. Let c?()

minimize @, (#) with respect to (-). The solution to the first order condition is given by

5y 2aimy Wilm)bi(mi)pi
N W) )

In kernel smoothing, the weight sequence is derived from a kernel function. A kernel function is a

symmetric, continuously bounded real function, K, that integrates to one. The weights are then
determined by the formula W;(7) = K,(7 — 1), where K;(u) = K(u/h)/h, where K(-) is a density

function and h = h(n) is a sequence of positive numbers. The bandwidth parameter, h, determines

the degree of smoothing. Small values make the estimated curve d(7) very approximate and irregular,

while large values of h make the estimate close to the sample average. This estimation method was

suggested in Tanggaard (1992). The asymptotic distribution of d(7) is covered by Theorems 1 and
2 of Gozalo and Linton (1998).



There are two aspects of the estimation procedure. First, there is the smoothing aspect. Smooth-
ing is necessary because prices are noisy. The noise can originate from minor market imperfections,
non-synchronous trading, price-discreteness (tick size), temporary imbalances in demand and sup-
ply. Furthermore, tax-effects (clienteles), and illiquidity premia may also affect the present value
relationship. The need for smoothing can be reduced by a careful sample selection procedure. How-
ever, in general it is not possible to completely avoid the need for smoothing. The second aspect is
interpolation. Interpolation becomes necessary when markets are not complete. In the US market,
for example, T-notes are issued with original time to maturity 1,2,3,5, 10, and 20 years. Thus, if
we want to avoid using off-the-run issues in estimation, there is a clear need for interpolation of the
yield curve between 5 and 10 years. And in general we do not want to plot the yields as a scatter
plot, which further necessitates a smooth graphical picture of the yield curve.

However, a proper interpolation of yields between maturities where no payments are due, requires
a formal model of the dynamics of the term structure of interest rates. This is not the objective
of this paper, and we therefore take a purely statistical approach and smooth the yield curve using

kernel smoothing.

3 Smoothing of Coupon Bonds

As discussed in section 2, most bond markets do not posses zero coupon bonds for useful spans of
maturities. The discount function must therefore be extracted from quotations of coupon bond data
instead. Coupon bonds generate several payments at future dates, and in an efficient bond market,
the present value of these future payments should, apart from a small error, be equal to the trading
price, p;. As in section 2, the sample consists of n bonds with quoted prices py, ..., p,. Furthermore,
b;(7;;) # 0 denotes the payment returned to the owner of bond i at date 7;;, where 751 < ... < Ty,
are the possible payment dates. For United States treasury issued notes and bonds, the payments

are usually equal semiannual coupons ¢;, 7 = 1,...,m;_;, while in the final period one receives the



redemption value R; [usually this is normalized to be 100] plus the final coupon ¢;.! The model
considered in section 2 corresponds to the special case where m; = 1. In general, m; will be larger
than one and will vary from bond to bond. Frequently, however, some maturities will coincide, so
that the total number, say m, of distinct times {7;;} will lie somewhere between maxi<i<n m; and

>, m;. The statistical model we adopt is

m;
pi= Y birg)d(ryy) +e;, i=1,...n, (4)
Jj=1
where ¢; is an independent random sequence satisfying Fle;] = 0, ¢ = 1,...,n. The statistical

problem is to extract estimates of the unknown discount function d(-) based on a sample of observed
bond prices, coupon payments, and times.? We can write this relation as p = Bd + ¢, where p, ¢
are the n x 1 vectors of prices and errors respectively, while B is an n X m matrix containing the
payments, and d is the m x 1 vector of discount factors. This would suggest estimating the unknown
vector d by regression techniques such as least squares. However, the number m can be very large
[rn >> n] in a typical sample of bonds, because there is little overlap in payment times. Furthermore,
for each bond the payments are usually the same until the last period, i.e., b;j(7;;) = b;(7) for all
7,k with 1 < 5,k < m;. This tends to make the matrix B rank deficient and preclude the direct use
of ordinary least squares to estimate d. The problem is really that the finite sample least squares
criterion function does not impose smoothness on the function d [this problem arises generically in
standard nonparametric regression and, indeed, in the no-coupon bond case]. We can interpret the
function d(+) in (4) as being the continuous minimizer [with respect to 4(-)] of the limiting criterion

function

, 2
. 1 n my
JLTOEZE{M —sz‘(m)@(m)} : (5)
i=1 J=1

!Sometimes there are short or long first and last coupons, meaning that these coupons may be larger or smaller

than the other coupons. Other bond markets have similar payment schemes with annual and semi-annual payments

being the norm.

“Note that the Engle, Granger, Rice and Weiss (1986) model allowed the regression function to be observed only

through a linear functional but also included some parametric effects.



which exists provided the sequence {7;;} becomes dense in a compact set. We choose an alternative
finite sample criterion which imposes smoothness throughout its approach to infinity. One simple
method is to group the data into bins which have similar 7;;, and then to do least squares on this
grouped data. This amounts to a histogram approach to estimation. We shall use a kernel version

of this procedure, which improves on the poor bias of this method.

3.1 Local Constant Smoothing

Our trick is to generalize an interpretation of a smoother in terms of a global projection. We first
outline this interpretation in the pure discount bond setting and then see how to apply it to the

general case (4). Consider the following global criterion function

_ %Z / Kou(t = 72) {py — bilm)0(0)} dt, (6)

and let @\() minimize this criterion with respect to functions 6(-). The solution to this calculus of
variations problem can be obtained from the necessary condition for 5() to be a minimizer, see
Weinstock (1951, pp 20-22), which is that the Gateaux derivative of @), with respect to § must be
zero in all directions. To find the solution, however, it is convenient just to look in the direction of
point masses. Let &, be the Dirac [generalized] function at 7, that is, [d.(u)f(u)du = f(r) for any
function f which is continuous at 7, see Lighthill (1958). Now replace 6(-) by 5() + €d-(+), where ¢

is a real number, and differentiate the criterion function with respect to ¢ at ¢ = 0. We obtain

Z/r\h t— 7)bi(:)6-(1){p; — bi(:)B(1) }dt = 0.

Now use the fact that [ 8,({)K,(t —7;)dt = Kp(1 —7;) and [ 6,( )[&h(t —7;)dl = (9( VEKL(T— X))
to see that 9(7) = > pibi(m)Kn(r — 1)/ Do b () Ku(T 7'2-), which is in fact the kernel version
of (3). In this case, we already arrived at 0(7’) as the minimizer of a local criterion function and the

global criterion function (6) just provides a nice interpretation.® In our case, however, it is essential

3See Nielsen and Linton (1998) for some discussion of a similar example where global criterion functions provide

interpretation.



to start with the global criterion function.

We define the following localized sample criterion function

= %Z / {Pi - zZ: bqj(Tz'j)H(S?;j)} 1_1 {Ku(sa —Ta) dsu}, (7)

where for each {s;}, the local criterion function

Z{pZ Zb 7'” S” } H[Xh 21—7'21

=1

is preferentially weighting bonds whose maturities 7, ..., 7;,, are close to the sequence {s;}. Al-
though the local criterion does impose the requirement that 6(-) is constant in a small neighborhood
of s;;, unfortunately it does not provide sensible estimates because we have to allow the evaluation
points of § to vary with both 7 and j, so that there is not enough restriction imposed at a single
point. The averaging in (7) imposes the necessary structure. We define our estimator JLO(-) as
the minimizer of Q,(#) with respect to 8(-). We discuss existence of a solution below, but we next
show how to solve the minimization in (7) using the method introduced above. Replace 6(-) in (7)
by gl\Lo(-) + €ds(-), where € is a real number, and differentiate the right hand side of (7) with respect

to e at € = 0. This gives the following first order condition

0 = ZZ/{P 1[j # rlbi(ri;)drc(s:7) —bé(m)gw(s)}

=1 r=1

bi(ir) H [ # r]{Kn(si; — 7;) dsij} Kn(s — 7ir)

7=1
= sz (7o ) K (s — 73r) ZZZb 7;5)bi (T3 ) K (s — TZ,)/JLO(t)[&'h(t— ;) dt(8)
=1 r=1 =1 r=1 j=1

it

4Note also that by a change of variable

2
= %Z/ {pi - Z bi(7i;)0(7i; + hu”)} H {K (ug)dug
i=1 Jj=1 =1

which is asymptotically equivalent to (5).

10



_ Z Z (i) Ki(s — m)gLo(S),

1=1 r=1
which has used the fact that f Kp(sij — 7ij)dsij = 1 to eliminate many of the integrals. This can be

written as

gLC = E /HLC S t )dt (9)

where
= D it Dopey Pibi(Tir) K (s — 7ir)
) = S T B PR — i) (19)
 imn 2oz 2 bilmar)bi(7i) Kn(s — i) K (1 — 735) an
D iy Dopty bi(7ir )2 K (s — 7ir) ’

Relation (9) suggests the following iteration for the calculation of drc

I::[Lc(s, IL) =

dr (s /H,p (s, )d¥L(1)dt, a=0,1,..., (12)

where the starting value C’ZTL]C is equal to d, say. The integration in (12) can be computed numerically.
We discuss this further in the application section below, see also Linton, Mammen, and Nielsen
(1997) for a related computation. The quantity d(s) can be thought of as the minimizer with respect

to the scalar 8 of the criterion function
Z Z{P7 - TM‘ 9} [\h(s - Tqr) (13)
i=1 r=1

This function corresponds to a sum of zero-coupon bond criteria. Therefore, an alternative interpre-
tation of our algorithm is that at each stage we are applying the smoother defined by (13) with p;
replaced by the partial residuals

Zb ng /dL]C )[Xh( Tij)dt.
J#T

This gives our algorithm a backfitting interpretation [see Hastie and Tibshirani (1990)] in which the

basic smoothing operation is given by (13).

11



A necessary condition that the iterative calculation C/i\LC converges can be based on a check of the
operator norm of the operator ﬁ]ij(') =/ ﬁLc(-,t)g(t) dt. For a norm || - || on the functions g the
corresponding norm of the operator 'ﬁLc is defined as HﬁLOH = SUP||g/|=1 |‘7?[ch|‘. If ||g|| is defined
as the supremum norm ||g||« = sup, |g(z)], we get that |Hrclle = sup, | Hre(s,t) dt. If ||g| is
defined as the Ly norm ||g||3 = [ |g(z)|* dz, then “ﬁLCHZ can be calculated by an iterative algorithm
HﬁLCHE = limy_o HﬁLcekﬂg, where the function ¢ is defined as ¢, = ﬁLCek—l/HﬁLCek—IHZ- Under
reasonable conditions, the function d has a bounded sup norm and a bounded Ly norm. Furthermore,
it follows from a Neumann expansion that the linear transformation I — ﬁLc has the inverse (I —
7:\[1;0)_1 = 0 7:\[%0, provided HﬁLOH < 1 with respect to either the sup norm or to the L, norm
(see e.g., Riesz and Sz.-Nagy (1990), p. 152). When HﬁLO“Q <1or HﬁLCHoo < 1, it therefore follows

that the iterative calculation of C?LC converges and that the solution is

The resulting estimate JLC can be interpreted as least squares projection of the data in an

appropriate function space. For this purpose we consider the following norm on n tuples of functions

9= 1(q1,---,9n), namely

lgll* = Z/ {ibi(w)gi(%)} H{Kh(sz-j —7ij) dsij} (14)

If one puts n;(-) as equal to p;[>

m
i=1

bi(7i;)]~" [which is a constant function], then the function tuple
(c/l\Lc, .. .,C/Z\Lo) is the projection of n = (n1,...,n,) onto the linear subspace {g = (¢1,...,9s) :
g1 = ... = gn} with respect to the norm || - ||. This relation helps to understand that dre is
always well defined (up to differences that have norm 0 with respect to || - ||). In particular, for the
unique existence of c/i\Lc it is not required that HﬁLcH < 1. Furthermore, our approach allows us to
incorporate restrictions on the shape of d. For example, a natural constraint is to suppose that d is
monotone. A natural estimate based on kernel smoothing is defined as minimizer of (7) where the

minimization runs now over the constrained class of functions [e.g., over all monotone functions d.]

Let us denote the resulting estimate by deonsir- Then it is easy to see that doons is the projection of

12



d onto the constrained class with respect to the norm || - || defined in (14). This means that

n mg 2 my
deonstr = arg HIEIHZ/ {sz’(ﬂ'j)[d(sm) - d(&'j)} [T{Ku(si; = 7) dsis}
i=1 7=1 7=1

where the minimization runs over the constrained class of functions d. See Mammen (1991) and
Matzkin (1994) for discussion of nonparametric estimation of monotone and other constrained func-
tions.

Finally, it can be expected that &; will be heteroskedastic, since bonds with a long time to
maturity can be affected by many sources of errors. Consequently, we expect the variance of ¢,
denoted o?, will vary proportionately with 7;,.. In this case a weighted criterion function taking
account of the different accuracies of each bond would perhaps lead to more efficient estimates, at
least in terms of variance. Suppose that o; = v f(7,,) for some known function f and unknown
parameter 4. Then, the weighted criterion function is given by (5) where we redefine p; — p;/ f(Tim,)
and b;(7;;) — bi(75;)/ f(Tim,). Therefore, estimation proceeds as above with the transformed data.

3.2 Local linear smoothing

Kernel smoothing leads to estimates with design dependent bias and with poor accuracy at bound-
aries, see for example Tsybakov (1986) and Fan (1992). An approach that is known to overcome
these disadvantages in regression is local linear smoothing. For the definition of the local linear
smooth in our model we just replace §(-) in (7) by a linear function. Thus, consider the following

tuple (C/Z\LL, c/l\LL,l) that minimizes

Z/ {Pi - Z bi(mij)[d(si) + (7 — Sz'j)dl(sz'j)]} H {Kn(sij — mj) dsij} (15)

with respect to (d,d;). The local linear smooth is now defined as c/l\LL. Again, the minimizer of (15)
can be easily calculated by an iterative algorithm. To solve the minimization in (15) we proceed as

in the last section and put d = c/Z\LL + €8s where ¢ is a real number and where §, is the Dirac function

13



in s. Differentiation of the right hand side with respect to € gives (at ¢ = 0):

1= 3% / {pz Ljrlbi(r )i (siy) = birin)dia(s) = bilin)dua(s)(rr = )

i=1 r=1

- Z 1[j#r]bi(7ij) dLL 1 (si)(mi; — Sij)}

Xbi(ﬂ'r) H 1[]7&?“] {Kh(sij — Tij) dS]’} K}L(s — TZ',-)

j=1

= Zzpz T Tzr [\h Tzr Zzb 7—27‘ [\h g_TN‘)dLL( )

=1 r=1 =1 r=1

— ZZZZ) T” 7'“- [&h(s — TZ,A)/C,Z\LL(t)I(h(t — 7'2']') dit
_ Z Z Zb (1ij)bi(Tir ) Ki(s — 73r) / gLL,l(t)(thj — ) Ku(t —75) dt

N b ) K(s — i )dppa(s) (i — s).

=1 r=1

Doing the same for d; = L/Z\LLJ + €ds gives another equation:

Z Z/ {Pz 1j # rlbilrig)drr(s;) = bi(min)die(s) —bi(ri)diza(s)(mir — )

i=1 r=1

- Z [j # rlbi(rij)drra (sis)(mij — Sz‘j)} bi(7ir ) (Tir — 8)

H 1[j # r]{Kn(sij — i) dsi;} Kn(s — 7ir)

7=1
Z Zpibi(Tir>(7—ir - [\h ‘; - Tzr Z Zb Tzr Tzr - g) [\h(g - Tzr)dLL 1( )
i=1 r=1 i=1 r=1
=N bi(ri) (i — ) Kn(s — i )dri(s)
i=1 r=1
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’/"“n ’/"“n — S)[X’h(s — Tir) / C,i\LL(t)[X’h(t — Tij) dt

=1 r=1 j=1
J'?éf‘
— Z Z Zb 7'” TW TW — S)[X/’h(s — TZ'T) / JLL,I(t)(Tij — t)](h(t — TZ']') dt.
i=1 r=1 j5=1
i#r
This can be written as:
dpp(. d(s dpr(t
/\LL(g) = _ /HLL é t ALL( ) dt, (16)
hdpr,1(s) dy ( hdpp(1)
where B
( (s) ) _ M) ( LY S pibi(rie) Kin(s = i) )
d1(8> E Zi:l Zr:l Pi Z'(Th‘)[(h(s - 7'”)%

bi(rir ) 22222 Ky (5 — 73 ) an

and
Tzr 27” Slxh('s - Tzr) bi(Tir>2(T” i [Xh(b - Tzr)

n
i=1

( i (Tir ) Kh (s — 7ir)
r=1
Furthermore HLL(S t) is equal to M(s)™' Hrr(s,t), where Hrz(s,t) is a two times two matrix with

Tir)lﬁrh(t — TZ']'),

elements:
H11 (s,t) = ——ZZZE) (Tir)bi(7i;) Ki(s

=1 r=1 j=1
J#r

noom; m;
[\h(

ngsf :——Zzzb (7ir)b 7'2] h

n o m; m;
[Xh(

Hglst ———ZZZZ) (7ir)b 7'” h

i=1 r=1 j7=1
J#Fr

Tir>[\fh(t — Tij)a
Tir>[\"h(t — 7'2']'),

e — 1
Tir — S Tij Kp(s — 1) Ki(t — 755).

Hggst ———ZZZ[) (7ir)b Tm h 3

=1 r=1 j=1
J#r

Equation (16) suggests the following iteration for the calculation of drs, and dyr,
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i) ) () - )
<h$551]<>>_<81<s> e fAueo | g ) o 19
791

As starting value (d7, hdy} ;) one can choose (d,d,) for example.

A sufficient condition that the iterative calculation C?LL and (lil,LL converges can be based on a
check of the operator norm of the operator HLLg =/ HLL t)g(t) dt. Tt is easy to see that the
iterative calculation of dLL and dLLL converges if HHLLH < 1, where “/}:ZLLH is defined with respect

to the sup norm or to the L, norm. In this case the limit is given as

C/i\LL g
~ E Hh _

3.3 Estimating the yield and forward curve

Practitioners often prefer to have visual presentation (and an estimate) of both the yield curve and the
forward curve. By definition the two representations are equivalent. However, in discussions of, for
example, the effects of monetary policy it is customary to relate the discussion to forward curves [see
Svensson (1994) and Dahlquist and Svensson (1996)]. Estimates of the yield curve and forward curve
can be obtained from estimates of d by the relations y(t) = —log(d(t))/t and f(t) = —d'(t)/d(t).
Specifically, y;(t) = —log(c/l\j(t))/t, where 5 = LC,LL. In the forward curve case we can take the

following estimator based on the local constant,

f[ t—s ch(.s>d
fAh t— S)dLC(S)dS

or we can make use of the local linear estimation to define

Fro(t) =

J

Fuult) = —dgLL;l((:)).

3.4 Local Constant Exponential Smoothing

We now consider an important modification to the basic smoothing methods we outlined above.

Instead of fitting locally linear functions we fit now locally exponential functions. This approach is

16



motivated by the fact that we can expect the discount function to be closer to log linear than linear,
as was suggested by Vasicek and Fong (1982). We shall fit the function d(s) = exp(—y(s)s), in other
words we will estimate the yield curve directly. This specification imposes the natural restriction
that d(-) be positive and that d(0) = 1.> Alternative specifications here include d(s) = 1 4 sg(s) for
some function g, which was used in Jordan (1994), and d(s) = exp(—su(s)/(1 + s)), which imposes
the additional restriction that d(s) — 0 as s — oo and was used in Tanggaard (1997). See Gozalo
and Linton (1998) for discussion of local nonlinear smoothing methods in nonparametric regression.

We define now the function ypcg(+) which minimizes

Z/{Pz Zb (7ij) exp{—7ijy(si;) } } H{[‘h (sij — 7ij) dsij} (19)

with respect to y(-). To solve the minimization we put y = yrcg + €ds where ¢ is a real number and
ds is the Dirac [generalized] function in s. Differentiation of the right hand side with respect to ¢
gives (at € = 0):

0 = ZZ/{Z’Z 1[j # klbi(7i;) exp{—Ti;yrcr(si;)} —bi(Tik)eXp{—Tik:/y\LCE(s>}}

=1 k=1

><bz'<7'z'k>7—z'k eXP{—Tz’k@\LCE(S)} H 1[j # k] {Kh(su — Til) dsi } Kh(S — Til)

i=1

= Z Z pibi(Tie ) Tiw exp{ —TikYror(s) Y Ki(s — i) (20)

=1 k=1

— Z Z bi(ik)* ik exp{—27ikYrcr(s) }Ku(s — k)
i=1 k=1

— ZZZZ) (73 )bi (73t ) i exp{ —TirYrcr () } Kin(s — Tix) /GXP{—Tz'j@\LCE(t)}Kh(t —7ij) di.
=1 k=1 j=1

%k

*It also allows estimation of y(s) for s close to zero, which is generally not possible when the discount function is
estimated directly because the direct estimate does not impose that d(s) = 1+ 0(s) as s = 0 [i.e, lim;0 — log (}\(9)/9

may not exist, while lim,_¢ y(s) does].
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There are a number of solution methods applicable here. We suggest the following approach

based on the local nonlinear least squares criterion function in 6
SN {pi = bilmik) exp(—=7id)} Ki(s = 7ie). (21)

The first order condition for the minimizer of this function is precisely the first two terms in (20).

Now let yrcr(t) be given and define /y\EZéE( t) as the minimizer of (21) with p; replaced by

- Zb / exp{—miiGnen (D)} EA(t — 7).
J#k
0]

Taking some initial value ij:CE(t), we proceed a = 1,2,.... The nonlinear optimization problem (21)
can itself be approximately solved using Newton’s method or Fisher scoring. Note that a consistent
initial value is provided by y;(t) = —log c@-(t)/t, where 7 = LC, LL. We can also define ‘one-step’

estimators, denoted @\iCE(t), which use y;(¢) as initial condition and terminate at a = 1.

3.5 Local Linear Exponential Smoothing

The natural extension of the local constant procedure to the local linear is also important for the

same reasons outlined above. Define the following criterion function.
/Z[Pi = > bilmg) exp{—=Tizy(si5) — 7ij (75 — sij)yn (i)} H{Bh sit — Ta)dsit},
=1 7=1
and let (Y5, Yroe,1) minimize this with respect to (y,y1). As before, let y = yp,1,5 + €ds and

Z Zpibi(Tik)Kh(S - Tz’k) eXp{_TikgLLE(*S) - Tz’kgLLE,l(S)(Tz’k - 5)}7—z’k

=1 k=1

- Z Z Z bi(7i;)bi( i) Kn (s — 7ir) exp{ —=Tixyrre(s) — mauyreea(s)(mie — s) bk

X /[X’h(t — Tij) eXp{—TZ'j:/y\LLE(t) — TingLE,l(t)(Tij — t)}dt

Z Z bi(Tik>2 exp{_QTik@\LLE(5> - 27ik§LLE,1(S)(Tik - 5)}Tik-

=1 k=1
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Furthermore, let y1 = yrre1 + €05 and

0 = Z Zpibi(Tik)Kh(S — 7ir) exp{—Tixyrre(s) — Ty () (Tik — $) }rin(min — )
1=1 k=1

n m; m;

- E E E bi(Tz’j)bz’(Tik)[(h(S - Tik) eXp{_Tik?J\LCE(S) - Tz’k?/\LLEJ(S)(Tik - 5>}Tik(7'z'k - 3)
=1 k=1 j=1
7k

< [ Kt = 5 expl=risfiar(t) — Guaea(0)(r; — )}
- Z Z bi(Tij)2 eXp{_QTik/y\LLE(S) - 2ﬁk§LLE,1(S)(T¢k - 5)}Tik(7'z'k - S)-
i=1 k=1

We can obtain iterative equations from this as in the previous section to define estimates of yrrr(s)

and yrrm(s).

3.6 Estimating the discount function and forward curve

The discount function can of course be estimated by c/l;(t) = exp(—ty;(t)), where j = LCE, LLE.
The implicit forward curve, f(1), is defined through the relation y(t) = fot f(u)du/t. Note that
differentiation of the last equality gives f(t) = y(t) + ty'(¢). Given an estimate, y, of the yield curve

y and an estimate y’ of its derivative, we can estimate [ by

An estimate §' of y' is given by the estimate yrrp1 (see the last section) or can be calculated by

smoothed differentiation of an estimate g of y, ¥ro5(t) = [ Ki(t — $)gron(s)ds.

4 Asymptotic Properties

Our main results are for the local constant and local linear discount function smoothing methods. We
also provide a result for the one-step local exponential methods and indicate the expected result for

the ‘iterate to convergence’ versions. As we show, the asymptotic variances of the four procedures
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described above are identical [when estimating the same quantity], although the bias is certainly
influenced by the chosen functional form. For comparison, Gozalo and Linton (1998) show that
the asymptotic variance of local nonlinear least squares estimators does not depend on the specific

functional form used in the estimation, although the bias does.

4.1 Local Constant Smoothing

Our asymptotics will be stated for the case of nonrandom 7;; and m;. We concentrate on the case
of a nonrandom “design” because a stochastic model for 7;; and m,; that would be adequate for our
application is rather complicated. It must take into consideration some very special properties of
these data (e.g., 741 — 7, is constant and a multiple of half years). Furthermore our model (4)
arises in other applications that would require another stochastic model for the design (for another
application see e.g., Engle et al. (1986)). So we prefer to state the theorem under conditions that
may work also in these applications. Our conditions are ‘high level’ and we discuss further below

how they can be verified in some special cases.

ASSUMPTIONS FOR THEOREM 1

(A1) Model (4) holds. The error variables e4,...,¢, are independent with mean zero and with
Ee?*0 < 0?5 for n large enough with constants C,§ > 0. [This implies that o? = var[e;] < C?
for n large enough.] The values 7;; and rn; are deterministic and they, the distributions of ¢;

and the functions b;(-) may depend on the sample size n. For two constants 1,72 > 0 the

bandwidth A fulfills n='*t" < h < n=" for n large enough.

(A2) There exist constants p < 1, C' > 0 and & > 1 such that for n large enough |\ﬁLo]\p < C and
IHicll, < p for p=2.

For the asymptotic treatment of our estimate at a fixed point s we make the following condition.

(A3) There exists a constant C' such that for n large enough
/ Hpo(s,0)* dt < C? (22)
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2

dt = o(h™'), (23)

%z:/ ‘/ﬁLo(t,u)Ri(u) du

|/ﬁ[Lo(s,'u)R¢('u) du| = 0((n/h)1/210g(n)_1), (24)
max |R;(s)] = 0((n/h)1/2), (25)

1<i<n

where

Yo bi(ma) K (t — 7ar)
% Z?:l 221 bi(Tir )2 Ka(t — 7'777“)’

R(t) = %ZRi(t).

Furthermore, it holds that
sEC(s)72 = O(1). (26)
The quantity s“(s) is defined in the statement of Theorem 1 below.

For the uniform asymptotic expansion of our estimate on an interval S we need the following

additional condition.

(A4) Condition (22) holds for all s € S with a constant C' that does not depend on s. The supremum
of the left hand side of (23) and of (24) over s € S is of order o(h™!) or o(n/h)"/*log(n)~")

respectively. The error variables have a finite Laplace transform

Y

sup Fexp(tle;|) < C (27)

1<i<n

for a constant (', for ¢ > 0 small enough, and for n large enough. Furthermore there exists a

constant C' such that for n large enough for all s € S
9 = c
%HLc(s,t) R(t) dt <n". (28)

Our results can be used to treat random 7;; and m;. In this case, one has to assume that our

conditions hold conditionally given 7;; and m; with probability tending to one. In particular, if one
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assumes that the variables m; are 1.i.d. from some distribution with bounded support and that the
distribution of (71,. .., Tim,), conditional on m;, is absolutely continuous with respect to Lebesgue
measure, it follows [under some additional regularity conditions] that the kernel ﬁ]Lc(s, 1) converges
to a function Hrc(s,t) with probability one as n — oo. In this case for the verification of (A2) it
suffices to show that the operator Hpc defined by Hrcg(s) = f Hrc(s,t)g(t)dt satisfies |H5 || < 1
for a k > 1. Similarly one can check (22) and (28). The operator Hyc depends on the payment
functions and on the time distributions. Suppose that m; = mn for all i and that b;(7;;) = §; for all

i, 7. Then, if the time distributions are completely homogenous, i.e., fi; = fix for all 7, 7,1, k, one can

show that .
DD i Bibr
2 B

for K = oco. The limit will be less than one provided the 3;’s are sufficiently heterogeneous. This

(Il = (29)

condition is likely to met in practice because the redemption value is usually considerably larger
than the coupons. For an analytical example, suppose that 3; = ¢ for 3 = 1,...,m — 1 and that
Brm = 100 4 ¢, then ||[H5,|l2 < 1 for & large enough, provided ¢(m — 1)/(100 4+ ¢) < (v/5 — 1)/2.
This amounts to the requirement that slightly more than half of the total payment be received at
the end point. This condition can be satisfied provided the dataset contains many short maturity
bonds/small coupon bonds relative to long maturity/large coupons.

We give now a rough discussion why the other conditions hold under appropriate regularity as-
sumptions on the distribution of 7;; and m;. We will do this for the case that m; has bounded support.
For a motivation of conditions (23) and (24) consider for simplicity the case m; = 1 (with probability
one), b; = 1. Then we get fﬁ[Lc(s,u)Ri(U) du ~ fHLC(s,u)RZ-(u) du =~ Hpc(s,m1)/f(7i1), where
f is the density of 7. So under boundedness conditions of H/f one expects that the left hand side
of (23) and (24) is of order O(1). For more general conditions on m; and b; a similar discussion
applies with another definition of f. For a check of (25) note first that under regularity conditions
the denominator in the definition of R;(s) converges to a smooth function g. So we get that the left
hand side of (25) is of order O(h™") if max; b;(s) and the kernel K are bounded and if g(s) > 0.
So (25) follows because nh — oo. The assumption (27) can be considerably weakened when more
specific assumptions are made on the data generating process and kernel.

In our first theorem we will state asymptotic properties of the local constant estimate JLO.
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THEOREM 1 [ASYMPTOTIC NORMALITY OF LOCAL CONSTANT ESTIMATE]. Suppose that
Conditions A1-A2 hold and that A3 holds for a fixred s. Then

\/%JLC(S) — o) = 5(s) _, N(0,1), (30)

57°(s)

where

SLO<S)2 _ Z Ly D27 bl ) K (s — Tir)]Q 32'27

[ Y 2 bilmie ) Kon(s — i)
ZC(s) = ZHLOﬂ:LC< ),

k=0
Yo > b )P Ki(s — 1 )[d(7ir) — d(s)]
izt 2opm bilTir ) Kh(s — i)
+Z¢=1 Doy Dt g OilTin )bi( i) K (s — 7ir) [ Kn(t — 75)[d(7i) — d(1)] di
izt Doz bi(7ir )2 Ka(s — 7ir)
Under the assumption thal conditions A1-A2 hold and that A4 holds for a finite interval S the

following uniform expansion holds

su 7, s) — s) — LC s Ez 1Eml b(Tir>B’h(3 —7'2'7“)52'
seIS) dLO( ) d( ) ﬂn ( ) 27 ]Zmz b (Tir>2[(h(5 _Tir>

A version of Theorem 1 can be proved for the case that the operator norm Hﬁchm < 1 for a

k > 1, i.e. that Condition A2 holds for p = oo

= ()p((TL]’L)_]/Z). (31)

The expansion (31) shows that asymptotically the estimate c/l\L(;(s) behaves like a statistic that
is linear in the error variables and that has a similar structure to a univariate kernel regression
smoother. Proceeding as in standard theory of kernel smoothing one can use expansion (31) for the
construction of pointwise confidence intervals and of uniform confidence bands and for the discussion
of optimal bandwidths, see e.g. Hardle (1990). We will not pursue these points here, although we
give formulae for standard errors in section 5 below. Under additional regularity conditions it can
be shown that the bias 8¢ is of order A%. This follows by showing that 37 is of this order. For
this reason we will get the same asymptotic optimal rates in our model as in standard nonparametric

regression.
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Theorem 1 can be used to determine the asymptotic distribution of the corresponding estimates
of y(t) and f(t). By the delta method,
dre(s) — d(s)

Tros) = yls) = === + 0y (|dres) — dls)

). (32)

provided s > 0, from which we see that the asymptotic bias and standard deviation of yrc(s) are
those of JLO(S) multiplied by 1/sd(s). The estimated forward curve ﬁ;c(s) can be handled similarly.
Suppose that K has a bounded support [—a, a] and that it has a bounded derivative. Then if A1-A4
hold for S = [s — ah, s + ah| we get from (31) that

Jrels) = f(s)+ A(s +Zwm Jei + op((nh®)7'1%),

1=1

where A(s) = d7'(s) [ Kn(s = )[d'(t) — d'(s)]dt + d='(s) [ K} (s — 0)BEC()dt — d=2(s)d'(s) [ Kn(s —
1)BEC(t)dt, and

e bz' i K, (t — i
Wi((s) :d"l(s)/[x”( 1) 2 =L (7 “2( 7 )
Doimr 2jey bi(mi )P K (t — 75)

One can check that under regularity conditions this implies that ]?Lc(s) has an asymptotic bias
of order h? and variance of order (nh?)~'. This coincides with rates of convergence of derivative
estimates based on (smoothed) derivatives of local constant smoothers in standard nonparametric

regression.

4.2 Local Linear Smoothing

For a 2 x 2 matrix M we define ||M||* = sup,r._, ¢’ Me.

ASSUMPTIONS FOR THEOREM 2
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(B1) Assumption Al holds and there exist constants p < 1, C' > 0 and s > 1 such that for n large

enough |\'?[LL]|2 = SUp||g(,=1 H?T[LLgHz < (' and H?:ZEL”Q = SUP||y|l,=1 Hﬁ]ELqHQ < p, where for a
function g : R* — R? we define ||g||5 = fR2 llg(2)||* d.

For the asymptotic treatment of our estimate at a fixed point s we make the following condition.

(B2) There exists a constant C' such that for n large enough

/Hﬁ[LL(s,t)yP dt <, (33)

%Z/ H/ Hyp (s, u)Ri(w) dul| - dt = o(h™"), (34)

H/ﬁLL(57U>Ri<u) dull = o((n/h)"*log(n)™"), (35)
s [Ri(5)]| = ol (nh)' %),

where now

» my (s (h . 1
R(t) = M(s) ;bz( ) K (t Z)<(m_t)/h>’
RO = ~ 3R

Furthermore, it holds that
1525 (s) 7l = O(1),

where

ettt (B0

vi (s Zb (1ir) K1 (s — 7ir) {T —° fori=1,....n and 5 =0,1.
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(B3) It holds that

Doimt Doy bilTin ) Ka (s — 7 ) 5
n i <4 Tir—S 2
Zi:] ZT:] bi(Tir)leh(S - Tir) [ h ]
Z?:l ZT:H bi(Tir)ZI—(h(S - Tir)%
E?:] 2;21 bi(Tir>2Kh(5 — Tz’r)

— 0,

— 0.

For the uniform asymptotic expansion of our estimate on an interval S we need the following

additional condition.

(B4) Condition (33) holds for all s € S with a constant C' that does not depend on s. The
supremum of the left hand side of (34) and of (35) over s € S is of order o(h™" log(n)™?) or

o((n/h)Y?1og(n)™1), respectively. The error variables have a finite Laplace transform
sup Fexp(tle;]) < C
1<i<n

for a constant ', for ¢ > 0 small enough, and for n large enough. Furthermore there exists a

constant C' such that for n large enough for all s € S
J & c
%Hw@ﬁAMﬂﬁSn. (36)

THEOREM 2 [ASYMPTOTIC NORMALITY OF LOCAL LINEAR ESTIMATE]. Suppose that Condi-
tion B1 holds and that B2 holds for a fired s. Then

dr(s) — d(s)

meL(S)_I/Z h (C/Z\LL,I(‘S) o dl(s))

— BEE(s) | = N(0, I,), (37)

where Iy is a 2 X 2 identity matriz and where

BEE(s) = Y HEB(s),

k=0

B (s) = M<s>'12ibf:<m>”ﬂ’h<s—mﬂd(m)‘d“)‘(”’“s)‘ll(sﬂ<<T- _1,;)/;7,)

i=1 r=1
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n

+M(S)_1 ZZ ZZ bz’(Tir)bi(Tij)[(h(s — TZ',-) / [X’h(t — Tz'j)[d(’i'z‘j) — d(t)

i=1 r=1 j=1,r#j
, 1
—(mi; — O)d'(t)] dt ( (re — 8/ ) .
Here, again o} denoles the variance of p;. Under the additional assumption of B3 we get that
sﬁo(s)_lgl\LL(s) has asymptotic variance one, i.e., C/l\LL(S) has the same asymptotic variance as C/i\Lc(S).
Under the assumption that Condition B1 holds and that Bj holds for a finite interval S the following

uniform expansion holds

JLL(S) d(s) LI
( Wy (s) ) - < hd'(s) ) )

_ M(S)_I%Zibi(ﬂr)[(h(s — Tir )& ( - —15)/h )H = op((nh)~"?). (38)

sup
SES

i=1 r=1

The asymptotic properties of yrr(s) and ﬁ;L(s) follow as above.

4.3 Local Exponential Smoothing

We just outline the result for the local constant exponential method. Consider the one-step problem
in which g/g\iCE(s) minimizes

noom;

Qn(0) = Z Z {Pix — bi(Tir) eXP(—Tika)}Q Ki(s — i)
=1 k=1
with respect to 6, where py, = p; — Y1y bi(7;) [ exp{—7;;5; (1)} Ky (L —7i;)dt and g;(t) = —log c/l;(t)/t
ik

with j = LC', LL. We shall approximate aiCE(§> by an infeasible procedure that is easier to work with.
Let Q% () be the same criterion function with p;, replaced by pix = p; — Z;ﬂ:‘l bi(7i;) exp{—mijy(7i;)},
and let y; -5 (s) be the minimizer of Q%(0). It is a straightforward applica‘giokn of Gozalo and Linton
(1998, Theorem 2) to deduce the asymptotic distribution of y} . ;(s); specifically, we obtain ¥} 5 (s) ~
(5)+ Bi(s) + ap(s), where

F(s) - izt 2 Fn(s = 7in)bilmir ) 7ir ex(=27iry(5))[exP(—7ir (9 (7ir) =~ (s)) — 1]
2oim1 2army Wnls = 7ir)bi(7ir 275 exp( =27,y (s))
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n my

al(s) = i=1 ,;1 Ky(s — 7ir ) bi(7i ) Tir exp(—Tiry ())&, .
i1 2omty K(s = 7 )bi(7ir )27 exp( =275,y (s))

We now turn to the feasible one-step estimator. In the previous sections we established the

uniform asymptotic expansion 7;(s) ~ y(s) + B(s) + ai(s), where af(s) is a sum of independent
mean zero random variables, while 37 (s) is a deterministic bias function [j = LC, LL]. Combining the
expansions for §} 5 (s) and y;(s), we obtain after some manipulations that ;/y\iCE(s) ~ Urop(8)+05(s)

uniformly in s, where 3*(s) =
S S ST K (s — i )b )bi(7ij ) i T o) [ KG (1 — i) [em o WOV — ] dy

i=lri
Doimt Dy Kils — 7 )bi(7ir ) 277 exp( =270y (s))

+ Doy vy 2oy g Kn(s = i) bi(7ip )i (i) iV )y [ (8 — i) B3 (1) dt
Dict 2opty Konls = 7ir ) bi(7ir )75 exp( =27y (s)) '

Note that the stochastic terms from gj(s) do not appear in the asymptotics for ;’g\%oE(s), i.e., the

asymptotic variance of @%OE(G) is the same as that of yjpz(s); this follows by the same arguments
used in the proof of Theorem 1. The bias is changed though. If we iterate once more the variance is
again unaffected but the bias formula replaces 3/(s) by B7(s) + B8:*(s).

In conclusion, §7.-5(s) is asymptotically normal with variance var(a(s)).

5 Numerical Results

5.1 Methodology
5.1.1 Bandwidth Choice

The first problem when implementing the algorithm is to choose a suitable bandwidth. The band-
width must be large enough to produce a smooth curve, while on the other being small enough
not to produce too much bias. In the calculations presented here we have used the ocular method.
For an automatic bandwidth choice we recommend the Generalized Cross-Validation (GCV) method

discussed in Hastie and Tibshirani (1990, p. 49). Denote by S the n x n smoother matrix that maps
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the vector of prices into their corresponding present values. This matrix has elements sy, where for

the linear smoother the weights are, approximately,

mi (i ) K i — Tir
sy = be ;) >ore 1 (7ir) U;(TI’J Tir) 7
Doy Dy b7 )2 K (125 — Tir)

while for the nonlinear smoother

Zbé (1) ooy K15 = 7o)l ) 2 5027l 7))
O Yoty Ki(mej — 7ir )bi(7r )27k exp( =273 (715))

We can now define the GC'V-criterion as

GCV = Lizi & - (39)
[1—tr (Sh) /n]

where &; = p; — Em‘ bi(;r)d (T,,) are the corresponding residuals and d( ) is any of our estimates of
d(s). Minimizing GC'V over h produces an estimate of the bandwidth which is optimal according to

mean squared error, under some conditions.

5.1.2 Confidence Intervals

Let

S [ i) Ku(s — 7ir)] €2
Doy 2oy bil7ir )2 K (s — 7ir)]
Uyn(s)® = Dicy Dorey Ki(s = 7 )bi(mr )i exp(—7i7(s)))? é‘;?’
(220 22 Kol — 7ir )bil(7ir ) 277 exp( =273, 4(s))]
where & = p; — Y bi(T,) A(TZ-T) are the corresponding residuals and c/f(s) is any of our estimates of

d(s). Then

Ua(s)? =

d(s) + zaps0a(s)

is an asymptotic 1 — a confidence interval for d(s), where z, is the 1 — a quantile of a standard

normal distribution. As in usual nonparametric regression this property holds if the bias of c,l\(s) is
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~1/2, Because under appropriate regularity conditions the bias is of order

of smaller order than (nh)
h?, this requires a choice of h that is of order o(n~'/?) (i.e., undersmoothing). For other choices of
h the confidence intervals need bias corrections, see the related discussions in usual nonparametric

regression in Hardle (1990). Furthermore,
Y(s) £ Za/styn(s)

is an asymptotic 1 — a confidence interval for y(s) subject to the same provisos.

5.1.3 Implementing the algorithm

We use the local linear exponential method throughout because of its superior bias performance,
which has been established in simulations available from the authors upon request. Furthermore,
to take account of the pronounced heteroskedasticity we use a weighting scheme with the weight on
bond i being proportional to the inverse of the bonds time to maturity [as suggested by Chambers
et al. (1984)]. A computer program in Pascal is available from Tanggaard and in Gauss from Linton

for carrying out the calculations.

5.2 Application

The smoothing procedure is now illustrated using actual market data. The data consists of dealer
quotes of US Treasury bonds in the 6 year period November 1990 to October 1996. The data set
was obtained from the Federal Reserve Bank of New York based on quotations at 3:30 PM from a
sample of market participants.® According to the Federal Reserve Bank of New York, the prices are
believed to be reliable, thus, representing actual trading possibilities.

The number of outstanding issues at a given time is more than 200, and there are several con-
siderations to take into account when reducing the sample. First of all, callable bonds with interest
rate dependent cashflow must be removed. Today all US Treasury bonds are issued as non-callable,

and as we consider only recently issued bonds, this is really not a problem. Because we use quotes

6The data were posted on the ftp-server ftp://ftp.ny.frb.org/qsheet.
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instead of traded prices, non-synchronous trading is not a problem. However, tax—clientele effects
and illiquidity may affect the estimation.

US Treasury notes are issued with original redemption dates after 2,3,5,10, and 20 years and with
a coupon which is close to the market rate. Thus, in a short period after the auction the bonds may
trade close to par. This reduces the effects of different taxation of interest income and capital gains.
We therefore, consider the present value equation on a pre-tax basis. T-Bills are zero-coupon bonds
with remaining time to maturity less than or equal to one year. As there is no interest income, we
can also consider T-Bills as priced on a before-tax basis.

The market for US Treasuries is the most liquid security market in the world. For example, the
bid-ask spread on a T-Bill is about 1/16 the bid-ask spread on the highly liquid IBM stock, and the
T-Bills are an order of magnitude more liquid than the Notes of comparable maturity [see Amihud
and Mendelsohn (1991)]. We do not know the depth behind the quotes used here, so we abstain
from a detailed selection according to liquidity. But, for each day in our sample we group the Notes
according to their original maturity and select the most recently issued Notes in each group. This
is because the most recent issued (on-the-run) Notes are generally considered more liquid than older
(off-the-run) issues.

In order to reduce the effects of having to interpolate the yield curve between 5 and 10 years we
also select 2 bonds with remaining time to maturity close to but less than 7.5 years. Furthermore,
in order to avoid interpolating the yield curve between 10 and 20 years we exclude the longest Notes
(original maturity 20 years). Finally, for each day we include 12 T-Bills. Thus, for each day we have
a sample of 24 bonds in the maturity interval from 0 to 10 years. Accordingly, we smooth the yield
curve on the interval [0,10] only.

The next problem is the selection of an appropriate bandwidth. We have an automatic procedure
based on minimizing the linearized GC'V statistic. In principle we can choose a new value of h every
day. However, for many applications it is better to use a suitable fixed bandwidth every day. One
explanation is that choosing a new value of h every day adds some noise. For example, popular
models of the term structure of interest rates [Hull-White (1990) and Heath-Jarrow-Morton (1992)],
used in pricing interest-rate derivatives, require estimates of the volatility of forward interest rates.

Needless to say that such volatility estimates can be severely affected by noise if forward rates are
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estimated from coupon bond data. At the risk of introducing some extra bias, the problem can be
reduced by using the same fixed bandwidth for an extended period. Clearly, this may in certain
periods give biased estimates, and the procedure requires a careful validation of the results. Based
on visual inspection and experiments with automatic bandwidth selection we decided to h = 3 as a
bandwidth for the full period.

The smoothing procedure also requires a discretization of the interval [0, 10]. This discretization
is used among other things for evaluation of the integral in the smoothing equations (see sections 3.4
and 3.5). The density of this grid may affect the estimated yield and forward curves. Experiments
with different densities indicate that there is no visible difference between the results when using
100 and 1000 grid points. In order to save computing time we use a discretization of [0, 10] into 100

intervals.
Insert figures 1-8 aboul here

Figure 1 shows a time series plot of the estimated 0, 5, and 10 year yields. The estimation day
was the 15th of each month (or the nearest trading day to the 15th). In order to assess the possible
effects of using a fixed bandwidth we also show in figure 2 the evolution of (empirical) root mean
squared errors (RMSE) [i.e., m] for each day in the period. Except for a peek in 1991
there is no systematic time series pattern in the errors. A more careful investigation revealed that
the peak is due to an increased spread in the long end of the term structure. This is illustrated in
figure 3, which shows a similar peak in the spread between the 10 and the 7.5 year yield. Whether
this is due to a genuine increase in the spread or the result of an inappropriately chosen bandwidth
will not be pursued here.

Figure 4 shows the estimated yield curve for October 15, 1996 together with associated 95%
pointwise confidence intervals. For smaller maturities the confidence interval is about 20 basis points,
while in the long end the error is considerably larger. The explanation, of course, is that all bonds
in the sample convey information about the short end yields, while the long end is determined by a

few noisy issues.
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Figure 4 together with the plot of the forward curve in figure 5, indicates that there is a need for
a variable that varies across maturities. This problem will, however, be left for future research.

Figure 6 shows the discount function for October 15, 1996 together with 95% confidence pointwise
intervals. The discount function is much more smooth also for longer maturities than the yield and
forward curves.

Figure 7 shows a plot of prices against fitted values for October 15, 1996. Except for a few outliers
the model clearly fits data very well. The outliers may be removed by a more careful sample selection
procedure that might include only the most recent issues. This will, however, not be pursued further.

Finally, figure 8 shows a plot of residuals against time to maturity. The graph clearly demonstrates

how the variability in prices increases with time to maturity, thus, justifying the weighting procedure.

6 Extensions and Conclusions

We can use the nonparametric methods described above to provide a test of a parametric specification
for d,y, or f. This type of analysis is the subject of Chapter 3 of Anderson et al. (1996). Define the

following test statistic

n o m;

=) {CRTij) - da‘(m‘)}Z m(7ij),

i=1 j=1

where d is any of the above nonparametric estimators, d; is a parametric estimator, and 7 is a
weighting function used to downplay boundary observations. Under reasonable conditions, (7, —
,un)/Vn]/2 is asymptotically standard normal under the null hypothesis that d = dg, for some 6y,
where f1,,, V,, are the mean and variance of 7,,. See Héardle and Mammen (1993) for an exposition of
the theoretical issues involved.

Consideration of tax effects, coupon effects, and other anomalies have lead various authors to
consider what amounts to a semiparametric modification of the arbitrage relationship (4). For

example, McCullogh (1975) specified that
p o= (L=t)eY d(r)+{R—toa(R — p)}d(rm)
7=1
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(1= eXn, dn)
T oy e

where ¢ is the coupon payed for y = 1,...,m and R is the redemption value. He assumed that the

capital gains rate {cg is known but the income tax for the marginal investor ¢, is not known and
must be estimated from the data along with the discount function. See also , see Jordan (1984) and

Eom, Subrahmanyam, and Uno (1998). Motivated by this, consider the following model
Z b sz; zya (TZ]> + aTXi + Eiy (40>

where Z;; and X; are of covariates thought to affect the bond price. The payment function mod-
ification is often undertaken to account for taxes, where not all relevant tax rates are known with
certainty and hence should be estimated from the data. Liquidity effects can also be modelled in this
way. The additive effect of X has a more informal justification in terms of looking for systematically
different pricing of some group of bonds like low coupons. A general estimation method that works
here is to apply our nonparametric estimations for each parameter value #, @ and then optimize some
profiled likelihood function, as for example in Klein and Spady (1994). We just outline the theory
for the case where b;(7;, Zij, 0) = bi(7i;), which includes the Engle et al. (1986) model.
For any sequence u; let d,(-) denote the [sequence of] functions which minimize

lim,_yee % Yo fui — Z;n:ll bi(7;;)0(7i;)}* with respect to functions 4(-) [and let C/l\u() be the empirical
version].” We take u; = p; and u; = Xj;, respectively. This operation is a projection, i.e., is linear

and idempotent, as discussed above, so that
Zb 7—” 7—” + O[TX“ (41)

where p, = Em bi(r:;)dy(mi;) and X;; = S bi(7;)dx, (7i;), while X; is the vector of all X;.

7=1
Subtracting (41) from (40) gives the regression equation iD= aT(X; — X;) +¢&;. We now replace

p; and X; by the estimates ZT;Z = Z b (sz)d (7;;) and X}; = Zml b; (Tij)gXI(Tij) constructed above
and let

n =1 5

8= S (X X)X = X)T| S =X - B

If u; is random then the limit should be interpreted as the almost sure limit, which is assumed to exist.
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This estimator is similar to the Robinson (1988) estimator of the slopes in partially linear regression
except that we have replaced conditional expectation by a different type of projection. Having esti-
mated a, we let c/i\a() be c/l\() applied to p; —a® X;. Tt is possible to establish the asymptotic properties
of @ under slightly stronger regularity conditions. Specifically, we must have that X; does not itself
lie in the linear space {Z;nz’l bi(7:;)0(7i;) : 6 € Lz}. Furthermore, we must use undersmoothing to

control the bias terms. We then have:
ﬂ(a —a) = N(0, Q_ICI)Q_I), (42)

1 n ¥ YT 1 n b AT
where ® —nh_)r(r)lo %Ei:l O'Z-QE[(XZ' - X)(X; — X;)'] and Q —nh_)r(r)lo %Zi:l E(X; — X)(Xi — X)'].
Furthermore, dz(-) has the same asymptotic distribution as d,,(+). Finally, the asymptotic covariance
maftrix can be consistently estimated by 0130 where ® = % TLENX - 71)()(2 — 72>T and
0= % Z?:l(Xi—yi)(Xi—yi)T, where g; = pz-—z;n:"l bi('rz-j)c,l\('rz-j)—aTXi are residuals. The covariates
can be discrete or continuous. This method can easily be extended to incorporate parametric or

nonparametric heteroskedasticity in the errors.

7 Appendix: Proofs of Theorems

Proor or THEOREM 1. For simplicity we suppose that Condition A2 holds with k = 1. The
general case can be treated by slightly more complicated arguments. We start with the proof of
(31). Suppose that Al and A2 hold and that A4 holds for a finite interval S. We note first that for
functions g with ||g||2 < oo one gets by application of the Cauchy Schwarz inequality from (22), see
also (A4), that

sup| [ Hyo(s, t)g(t) di| < sup| [ Hye(s,1)* di]'/*|gll2 < Clg]l.- (43)
SES SES

Note now that

Edpe(s) Zargumiﬂ Z / {ibi(Tij)[d(Tij) - U(Sz’j)]} H {Kn(sij — i) dsij} (44)
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and

c/l\Lc(s) - EC/i\Lc(S) —arg min Z/ {52- - Zbi(nj u(sij) } H{[xh sij — Tij) dsij}. (45)
u =1 7=1

For the proof of (31) we show first that
Bdze(s) = d(s) = 3(s). (46)

For the proof of (46) note first that equation (44) implies that

Ec/i\Lc(s) —d(s) :argurnin Z/ {ibi(ﬂ'j)[d(ﬂ'j) —u(sy) — d(s;y) } H{Ah (si — 7ij) dsij}.

This minimization can be solved like in Section 3.1. This gives

>y Z bi(ri )2 K(s — 700)[d(mir) — d(3)]

1=1 r=1

+ZZZb o )bi(7i;) Kn(s — 7ir) / Ku(t = 3)[d(ri;) — d(1)] di
Y3 S bt b it =) [ Kt =) [Bdset0) 0]
{Ed[(v } Z Zb (7ir)? Kn(s — 7).

i=1 r=1

This equation can be written as

Edie(s) — d(s) = 351 (s) /Hst [Edm() d(t)} dt.

Iterative application of this equation gives (46) because of (A2).
For the study of the stochastic component JLC(S) = C/i\Lc(S) — EC/{LC(S) we get from (45) that

o0

dio(s Z Hiodo(s)
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where

= 2y 2o eibi(mi ) Ki(s — i)

d3 = = = _ )
el = S S B Rl — i)
We show now that ,
| S T ()] = o (k)17 (47)
s€S k=1
holds. This shows
en |dic(s) = di o (s)] = op((nh) ™). (48)
s€

Therefore, (46) and (47) imply (31).
For the proof of claim (47) we will show
Slelg |/H§odzc(5)| < p"Ra, (49)

where p < 1 is introduced in Condition (A2) and where R, is a random variable with R, =

0p(<nh>_]/2>. This implies (47) because of

up | 3" Ao (5)] < 30 4 B = Raf(1 = p) = op((nh)™2)
k=1

SES E—1

For the proof of (49) we will show that

[Hrcdicl: = op((nh)™'1%), (50)
sup [Hicdio(s)) = op((nh)™"?). (51)
sE

We argue now that (50) and (51) imply (49). Note that (A2) implies
[Hicdiclle < p" [ Hicdioll:
for k > 1. Because of (43) this implies

Slelg |H§cgzc(5>| < CHHEZ‘IJECHZ < PkRn
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for £ > 2 with R, = H,?/'ZLCJECHQ/pQ. With (50) and (51) we get (49). So for the proof of (31) it
remains to show (50) and (51). For the proof of (50) we get using (A1) and (23)

Emw@ﬁzzﬂ_z/mﬂ“ W) RO R, (u) du di ds 2z,

1 ~ ~
= 2 Z/HLC(Sut)HLC(SvU>Ri(t>Ri(U) du dt ds af
=1

< %é/‘/ﬁhc(t,u)]ﬁ(u) au|
= of(nh)™)

This shows (50). For the proof of (51) we write

dt C

1 n
HLCdLC — E 7“2 527
i=1

where

Note first that for s € S and a,¢ > 0 we have
Pr( (nh)'*[Hrcdie(s)) > o)
alog(n ~
E exp <# {(nh)]/QHLCdEO(S) — c})

< n® HE exp ((a/c) log(n)(h/n)]ﬂn(s)&)a

i=1

IN

where the independence of the error variables ¢; has been used. We use now exp(:c) <1l1+z+
(1/2)2[1 + exp(z)]. With di(s) = (a/c)log(n)(h/n)"/?r;(s)e; this gives the following upper bound

for the last term

IN

n= H{1+E )+ E (di(s))" [1+ exp (di(s))]}
- -“H{1+E ))* [1 + exp (di(s))]} -
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We use now that for a constant D the following inequality holds
E 71 +exp (di(s))] < D.
This follows from the uniform bound for the Laplace transform of ¢;, see (27), and from

sup(a/c)log(n)(h/n)'*|ri(s)| = 0,

SES
see (24). In a next step we apply 1 + 2 < exp(z). This gives

Pr( (nh)/*[Hyed;o(s)] > c)

n

< poo H {1 +D ((a/c) log(n)(h/n)lﬁm(s))'z}

=1

< n™" exp

Z D ((G/C) 10g(n)<h/n>l/2n(s))2]
< nf(1+ 0(1_))7

where in the last step (23) has been used, see also Condition A4. With the same arguments one gets

a bound for Pr( (nh)l/Q[ﬁLcJ}C(s)] < —c). This gives that for a,c¢ > 0
Pr( (nh)*Hpod(s)] > ¢) < n™(2 + o(1)).
This implies that for all constants b > 0 and finite sets S, C S with n® elements we have that

sup [Hrodie(s)| = op((nh)™'17). (52)

SESn
Because ¢; has a bounded Laplace transform [see (27)] it holds that sup,;c, [e:] = Op(log(n)).
Because of assumption (28) this implies that for a constant C’ large enough
05 = o'
sup [0 (5)] = op(n”).
sES S

Therefore for an appropriate choice of S,, we can achieve that

sup inf [Hpodio(s) — Hiodia ()] = op((nh)~'?). (53)

SES t€Sn
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Claim (51) follows from (52) and (53). This shows (31). Note that the above argument can be
extended to allow for only a finite number of moments on ¢; using a truncation argument, provided
stronger assumptions on the operator ﬁLc are made. We come now to the proof of (30). Because of
(46) we have to show

Vinhdyo(s)st(s)™ = N(0,1) (54)

in distribution. We argue now that
dio(s) = dio(s) = op((nh)™'/?). (55)

This follows as in the proof of (48) where now S = {s}. Note that now, because S is finite, the proof
of (51) follows immediately from (23) and the boundedness of o7, see (A1). Because of (55) and (26)
For the proof of (54) it suffices to show

Vnhds e (s)sh¢(s)™" = N(0,1) (56)

in distribution. Note that

di o (s) = /h/n Z Ri(s)ei.

Now, claim (56) follows with a standard version of the central limit theorem from (25) and the

existence of a uniform bound for Fe?*?, see (A1). This finishes the proof of Theorem 1. [ |

7

Proor or THEOREM 2. Claims (37) and (38) can be shown as in the proof of Theorem 1.
Under the additional assumption of B3 one gets that M(s) is asymptotically equivalent to a diagonal
matrix with diagonal elements: n=t " > bi(7;, )2 Kp(s — 7)) and n=t 300 3™ b7, )2 Ku(s —

r=

7ir ) (7ir — 5)//1]2. Using expansion (38) for S = {s} one gets that C/i\LL(S) has the same asymptotic

variance as dpc(s). [ ]
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SKETCH PROOF OF (42). It suffices to show that

G = (X = X7 - (X = X)X - )T} 0 (57)
Ln y (X — %7:)67; 50 (58)
LS =X [ B e (K- X o, (59)

since %Z?ZI(XZ — 72)()(2 — Yﬁ)T} L0 and \/Lﬁ Z?:1(Xi — 72-)52- = N(0,®) by standard laws of
large numbers and central limit theorems for independent random variables respectively. The proof
of (57)-(59) is similar to Robinson (1988). Clearly, (57) follows directly from the uniform expansion

for d. The main detail in the proof of (58) concerns the quadratic form
22 e, (60)
=1 f=1

where 1, = X, — X, and

- - bZ r ]/ 17 — Ter
3 o Sy )
=1 ZZ ZT:I bé(Tér) [X}L(TZ‘]' — TET)

=1

The magnitude of (60) follows from standard kernel arguments. The bias terms in (59) are of order

V/nht. n
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FIGURES

Figure 1. Estimated yields, November 1990 - October 1996.

Figure 2. Root mean squared error, November 1990 - October 1996.

Figure 3. Yield curve spread, November 1990 - October 1996.

Figure 4. Yield curve with 95% confidence intervals, October 15, 1996.
Figure 5. Yield and forward curves, October 15, 1996.

Figure 6. Discount function with 95% confidence intervals, October 15, 1996.
Figure 7. Discounted values against price, October 15, 1996.

Figure 8. Residuals against time to maturity, October 15, 1996.
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Figure 1: Estimated yields, November 1990 - October 1996.

The thick solid line is the 0 year yield, the thin solid line is the 5 year yield, while the dashed line is
the 10 year yield.
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Figure 2: Root mean squared error, November 1990 - October 1996
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Figure 3: Yield curve spread, November 1990 - October 1996

Note: The spread is belween the 10 and the 7.5 year yield.
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Figure 4: Yield curve with 95% confidence intervals, October 15, 1996
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Figure 5: Yield and forward curves, October 15 1996

The solid line is the yield curve. The dashed line is the forward curve.
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Figure 6: Discount function with 95% confidence intervals, October 15, 1996
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Figure 7: Discounted values against price, October 15, 1996
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Figure 8: Residuals against time to maturity, October 15, 1996
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