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Abstract

A new approximation to the Gaussian likelihood of a multivariate locally sta�

tionary process is introduced� It is based on an approximation of the inverse of the

covariance matrix of such processes� The new quasi�likelihood is a generalisation

of the classical Whittle�likelihood for stationary processes� For parametric models

asymptotic normality and e�ciency of the resulting estimator are proved� Since the

likelihood has a special local structure it can be used for nonparametric inference

as well� This is brie�y sketched for di�erent estimates�

� Introduction

Suppose we observe data X�� � � � �XT from some nonstationary process and we want to

�t a parametric model to the data� An example is an autoregressive process with time

varying coe�cients where we model the coe�cient functions by polynomials in time� If

the process is Gaussian we can write down the exact likelihood function which� in the

case of mean zero� takes the form

L�e�
T ��� �	 � 


T
Gaussian log likelihood

	



�
log���� �




�T
log det
� �




�T
X �
��� X �
�
�

with X 	 �X�� � � � �XT �� �the assumption of a zero mean is given up later on��

However� for most of the time varying models the calculations needed for the min�

imisation of this function are too time consuming� Suppose for example we want to �t

a time varying AR�model to the data where the coe�cient functions are polynomials in
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time and where the AR�model order and the polynomial orders have to be determined by

a model selection criterion� Such a model can be written in state space form with time

varying system matrices �cf� Dahlhaus� 
���b� and � in principle � the minimisation could

be done as in the stationary case by using the prediction error decomposition� the Kalman

�lter and a numerical optimisation routine �cf� Harvey� 
���� Section ����� However� we

usually have a high dimensional parameter space� time dependent system matrices and a

large number of models at hand� which make the calculations practically impossible�

To overcome these problems we suggest in this paper an approximation to the above

likelihood which is a generalisation of Whittle�s approximation in the stationary case �cf�

Whittle� 
���� 
����� In the stationary case 
� is the Toeplitz matrix of the spectral

density� Whittle had suggested to approximate 
��� by the Toeplitz matrix of the inverse

of the spectral density leading with the Szeg�o formula �cf� Grenander and Szeg�o� 
����

Section ���� to the Whittle likelihood

L�W �
T ��� �	




��

Z �

��

�
log ���f���� �

IT ���

f����

�
d�

where

IT ��� 	



��T
j

TX
t��

Xt exp��i�t�j�

is the periodogram�

In this paper we derive a similar approximation for processes that only show locally

some kind of stationary behaviour� More precisely we consider locally stationary pro�

cesses as de�ned in Dahlhaus �
���a�b� 
����� i�e� processes with a time varying spectral

representation as in ���
� �the exact de�nition is given in Section ��� For an introduction

to univariate locally stationary processes we refer to Dahlhaus �
���c��

In Section � we motivate the approximation and discuss its bene�ts in a simpli�ed

setting �univariate processes� mean zero�� In Section � we introduce multivariate locally

stationary processes and the generalisation of the Whittle likelihood for such processes�

We then investigate the properties of the resulting parameter estimate�

�



Technically the approximation is based on a special generalisation of Toeplitz matrices

�see ������� The behaviour of norms and matrix products of such matrices is investigated

in the appendix�

� A motivation for the likelihood approximation

In this section we use a simpli�ed setting to introduce and motivate the likelihood ap�

proximation and to discuss its applications� Furthermore� we compare it to the Whittle

approximation in the stationary case�

Suppose the observed process has a time varying spectral representation of the form

Xt�T 	

Z �

��

exp�i�t�A�

�
t

T
� �

�
d���� �t 	 
� � � � � T �� ���
�

where ���� is a stochastic process on ���� �� with mean zero and orthonormal increments�
As e�g� in nonparametric regression the time parameter u 	 t�T in A� is rescaled for

a meaningful asymptotic theory �this is a special case of a locally stationary process as

de�ned in De�nition ��
 below�� We obtain for the variance covariance matrix 
�


�r�s 	 cov�Xr�T �Xs�T �

	

Z �

��

expfi��r � s�gA�

� r
T
� �
�
A�

� s
T
� �
�
d��

In the stationary case where A��
r
T
� �� 	 A���� does not depend on time this is equal toZ �

��

expfi��r � s�gf����d�

where f���� 	 jA����j� is the spectral density of the process� In the derivation of the

Whittle approximation 
��� is approximated by the Toeplitz matrix�



���

Z �

��

expfi��r � s�gf������d�
�
r�s������ �T

�

In the nonstationary case we have for r� s close to each other and for a function A� which

is smooth in time


�r�s �
Z �

��

exp�i��r � s��f�

�
r � s

�T
� �

�
d�

�



where f��u� �� �	 jA��u� ��j� is the time�varying spectral density of the process�
This suggests to use now�




���

Z �

��

expfi��r � s�gf�
�
r � s

�T
� �

���
d�

	
r�s������ �T

as an approximation of 
��� in the nonstationary case� Since it leads to a slightly nicer

criterion we use instead UT �
�

���f
��
� � where

UT �	� 	

�Z �

��

expfi��r � s�g	
�



T



r � s

�

��
� �

�
d�

�
r�s������ �T

�����

and �x�� denotes the smallest integer larger or equal to x� Note that UT �
�

���
f��� � is the

classical Toeplitz�Whittle�approximation if f� is constant over time �stationary case��

Using this approximation� i�e�


��� � UT

�



���
f���

�

and a generalization of Szeg�o�s formula to the nonstationary case �see Proposition ���

below�� nameley




T
log det
� � 
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Z �

�

Z �

��

log���f��u� ���d�du

we obtain the following likelihood function as an approximation of the exact Gaussian

likelihood L�e�
T ���

L���
T ��� 	
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The subsitution � r�s� �� 	 t� r � s 	 k yields

X �UT �f
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TX
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where the second sum is over all k such that 
 � �t � k���� �t � k��� � T and �x� is the

largest integer smaller or equal to x� Thus�

L���
T ��� 	
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t��
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n
log ���f��

t

T
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�IT �
t
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t
T
� ��

o
d� �����

where

�IT �u� �� �	



��

X
k

��	uT�k��
�	uT�k��
�T

X	uT�k��
�TX	uT�k��
�T exp�i�k��

�IT �
t
T
� �� may be regarded as a local version of the periodogram at time t� It was introduced

by Neumann and von Sachs �
���� as a starting point for a wavelet estimate of the time�

varying spectral density� We will call �IT �
t
T
� �� the preperiodogram at time t�

There exist several nice relations between the preperiodogram and the ordinary peri�

odogram and the above likelihood and the Whittle�likelihood� We have

IT ��� 	



��T
j
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Xr�T exp��i�r�j�
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i�e� the periodogram is the average of the preperiodogram over time� ����� means that the

periodogram IT ��� is the Fourier transform of the covariance estimator of lag k over the

whole segment while the preperiodogram �IT �
t
T
� �� just uses the pair X	t�k��
X	t�k��
 as a

kind of �local estimator� of the covariance of lag k at time t �note that �t�k�����t�k��� 	
k�� For this reason Neumann and von Sachs also called �IT �

t
T
� �� the localized periodogram�

A classical kernel estimator of the spectral density of a stationary process at some

frequency �� therefore can be regarded as an average of the preperiodogram over all time

�



points and over the frequencies in the neighbourhood of ��� It is therefore plausible that

averaging the preperiodogram around some frequency �� and around some time�point t�

gives an estimate of the time�varying spectrum f� to
T
� ���

For a locally stationary process the preperiodogram is asymptotically unbiased� How�

ever� its variance explodes as T tends to in�nity� Therefore� smoothing over time and

frequency is essential to make a consistent estimate out of it� This smoothing is im�

plicitely contained in the likelihood L���
T ���� Instead of using �IT �

t
T
� �� in ����� one could

think of using the classical periodogram over some small segment of data around t� Such

a likelihood was studied in Dahlhaus �
����� The preperiodogram has advantages over

such an estimate since a classical periodogram always contains some implicit smoothing

over time �even if it is calculated over a small segment� which in the case of time varying

spectra means that some information is getting lost� For this reason the preperiodogram

is a valuable raw estimate� e�g� in ����� or for wavelet smoothing as in Neumann and von

Sachs �
����� Another advantage in the context of Whittle estimation is that no segment

length �e�g� for a periodogram� has to be selected�

The above likelihood L���
T ��� coincides with the Whittle likelihood in the stationary

case� If a stationary model is �tted� then f��u� �� 	 f���� is constant over time and the

likelihood becomes

L���
T ��� 	




��

Z �

��

flog ���f���� �
�
T

PT
t��

�IT �
t
T
� ��

f����
gd�

	 L�W �
T ����

For that reason the results on the asymptotic behaviour of the minimizer of L���
T ���

contain most of the results on the classical Whittle estimate as a special case �apart from

our restriction to Gaussian processes�� Among the large number of papers we mention

the results of Dzhaparidze �
��
� and Hannan �
���� for univariate time series� Dunsmuir

�
���� for multivariate time series and Hosoya and Taniguchi �
���� for misspeci�ed mul�

tivariate time series which follow as a special case from Theorem ��� below� A general

overview over Whittle�estimates for stationary models may be found in the monograph of

�



Dzhaparidze �
����� We also mention the results of Kl�uppelberg and Mikosch �
���� on

Whittle estimates for linear processes where the innovations have heavy tailed distribu�

tions� of Fox and Taqqu �
���� on Whittle estimates for long range dependent processes

and of Robinson �
���� on semiparametric Whittle estimates for long range dependent

processes� These results however are not a special case of Theorem ����

There is another important aspect of the above likelihood approximation� The likeli�

hood is of the form

L���
T ��� 	




T

TX
t��
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t

T
�

with
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t

T
� 	
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t
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�IT �
t
T
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f��
t
T
� ��

gd��

i�e� L���
T ��� has a similar form as the negative log�likelihood function of iid observations

where 
T ���
t
T
� is the negative log�likelihood at time point t� In the present dependent

situation 
T ���
t
T
� may still be regarded as the negative log�likelihood at time point t which

now in addition contains the full information on the dependence �correlation� structure

of Xt�T with all the other variables�

To illustrate this we give two examples�


� Suppose we have the situation of nonparametric regression with heteroscedastic

errors� i�e� our model is

Xt�T 	 m�
t

T
� � ��

t

T
��t� �t iid N ��� 
��

with m�u� 	 m��u�� ��u� 	 ���u�� This process is locally stationary in the sense of

De�nition ��
 below� Since the mean is di erent from zero� the preperiodogram in


��� t
T
� contains an extra term �see ����� below�� It is easy to show that in this case


T ���
t

T
� 	




�
log ����

��
t

T
� �




���
��

t
T
�
�Xt�T �m��

t

T
���

which is exactly the Gaussian log�likelihood�

�



�� Suppose

Xt�T 	 a�
t

T
�Xt���T � ��

t

T
��t� �t iid N ��� 
��

with a�u� 	 a��u�� ��u� 	 ���u�� Then Xt�T is locally stationary with time varying

spectrum

f��u� �� 	
��
��u�

��
j
� a��u�e

i�j��

leading to


T ���
t

T
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log ����

��
t

T
� �




���
� �

t
T
�
�Xt�T � a��

t

T
�Xt���T �

� � rt

with

rt 	 a�
t

T
���X�

t�T �X�
t���T ��

i�e�
PT

t�� rt 	 Op�
��

The fact that 
T ���
t
T
� can be seen as the local likelihood of the process at time t opens

the door for various nonparametric estimation methods� In this situation the model is

parametrized by one or several curves in time �eg� as in Example �����

Recall that several nonparametric estimation techniques can be written as the solution

of a least squares problem� for example for the simple nonparametric regression problem

Xt�T 	 m�
t

T
� � �t

a� a kernel estimate can be written as

!m�u� 	 argmin
m




bTT

X
t

K

�
u� t�T

bT

�
fXt�T �mg�

where K is the kernel and bT is some bandwidth�

�



b� a local polynomial �t can be written as

!c�u� 	 argmin
c




bTT

X
t

K

�
u� t�T

bT

��
Xt�T �

dX
j��

cj�
t

T
� u�j

	�

�

where c 	 �c�� � � � � cd�� are the coe�cients of the �tted polynomial at time u�

c� an orthogonal series estimator �e�g� wavelets� can be written as

"
 	 argmin
	




T

X
t

�
Xt�T �

JX
j��


j�j�
t

T
�

	�

together with some shrinkage to obtain the �nal estimator !
� Here the �j��� �j 	

� � � � � J� denote some orthonormal functions� J usually increases with T �

Note that the f� � �g�brackets always contain the negative log likelihood of the param�
eters up to some constants�

Suppose now we have a locally stationary model which is parametrized by one or

several curves in time� By using the local likelihood we may de�ne completely analogous

to above

a� a kernel estimate by

!��u� 	 argmin
�




bTT

TX
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K

�
u� t�T

bT

�

T

�
��

t

T

�
�

b� a local polynomial �t by

!c�u� 	 argmin
c
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bT
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T
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c� an orthogonal series estimator �e�g� wavelets� by

"
 	 argmin
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t

T
��

t
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together with some shrinkage of "
�

�



In case of several parameter curves �a vector of curves� �� the cj and the 
j are also

vectors� In case of a multivariate process or a process with mean di erent from zero the

de�nition ����� of 
T ���
t
T
� has to be used�

It is obvious that the properties of these estimators have to be investigated in detail�

However� this is quite complicated and would exceed the scope of this paper� We only

want to demonstrate that the likelihood representation may have important applications

in nonparametric estimation as well�

In the next section we prove that L���
T ��� indeed is a good approximation of the exact

Gaussian likelihood L�e�
T ���� Furthermore� we consider parametric models and prove that

the resulting parameter estimates are consistent� asymptotically normal and e�cient�

We do this for a larger class of processes than discussed in this section� In particular�

we study multivariate locally stationary processes and allow the mean to be a function

di erent from zero which introduces extra terms into the above expressions�

� Asymptotic properties of parameter estimates

We start with the de�nition of a multivariate locally stationary process�

����� De�nition A sequence of multivariate stochastic processes Xt�T 	 �X
���
t�T � ����X

�d�
t�T �

�

�t 	 
� ���� T � is called locally stationary with transfer function matrix Ao and mean

function vector � if there exists a representation

Xt�T 	 �

�
t

T

�
�

Z �

��

exp�i�t�Ao
t�T ���d���� ���
�

where

�i� ���� is a stochastic vector process on ���� �� with �a��� 	 �a���� and

cumfd�a������ ���� d�ak��k�g 	 �

�
kX

j��

�j

�
ha����ak���� ���� �k���d�����d�k


�



where cumf���g denotes the cumulant of k � th order� ha 	 �� hab��� 	 �ab�

jha����ak���� ���� �k���j � constk for all a�� ���� ak � f
� ���� dg and ���� 	
P�

j��� ��� � ��j�

is the period �� extension of the Dirac delta function�

�ii� There exists a constant K and a ���periodic matrix valued function A � ��� 
��R�
Cd�d with A�u� �� 	 A�u���� and

sup
t��
jAo

t�T���ab �A

�
t

T
� �

�
ab

j � KT�� �����

for all a� b 	 
� � � � � d and T � N� A�u� �� and ��u� are assumed to be continuous in u�

f�u� �� �	 A�u� ��A�u� ��
�
is the time varying spectral density matrix of the process�

Processes with an evolutionary spectral representation were introduced and investi�

gated by Priestley �
���� 
��
�� The above de�nition is the multivariate generalization of

the de�nition of univariate local stationarity as given in Dahlhaus �
����� This approach

to local stationarity may be regarded as a setting which allows for a meaningful asymptotic

theory for processes with an evolutionary spectral representation� The classical asymp�

totics for stationary sequences is contained as a special case �if � and A do not depend on

t�� A detailed discussion of this de�nition and a comparison to Priestley�s approach can

be found in Dahlhaus �
���c�� Another de�nition of local stationarity has recently been

given by Mallat� Papanicolaou and Zhang �
����� We remark that the methods presented

in this paper do not depend on the special de�nition of local stationarity� In some sense

the above de�nition is only a framework for investigating the asymptotic properties of the

estimates�

Examples of locally stationary processes in the univariate case can be found in Dahlhaus

�
���a�� For the multivariate case we give the following examples�

����� Examples �i� Suppose Yt is a multivariate stationary process� ���� is a vector

function and 
��� is a matrix function� Then

Xt�T 	 ��
t

T
� � 
�

t

T
�Yt







is locally stationary� If Yt is an iid sequence we have the situation of multivariate non�

parametric regression�

�ii� Suppose Xt�T is a time varying multivariate ARMA�model� that is Xt�T is de�nied

by the di erence equations

pX
j��

#j�
t

T
�

�
Xt�j�T � ��

t� j

T
�

�
	

qX
j��

$j�
t

T
�
�

t� j

T
��t�j

where �t are iid with mean zero and variance�covariance matrix Id and #o�u� 	 $o�u� 	 Id�

Under regularity conditions on the coe�cient functions #j�u� and $j�u� it can be shown

similarly to the univariate case �Dahlhaus� 
���a� Theorem ���� that these di erence

equations de�ne a locally stationary process of the form ���
�� The time varying spectral

density of the process is

f�u� �� 	



��
#�u� ����$�u� ��
�u�$�u�����#�u�������

where #�u� �� 	
Pp

j�� #j�u�ei�j and $�u� �� 	
Pq

j��$j�u�ei�j� We omit details of the

derivation� However� we remark that in this case the functions Ao
t�T ��� and A�t�T� �� do

not coincide� They only ful�ll ������

In the following we look at parametric locally stationary models� An example is the

case where the curves in the above examples are parametrized in time� e�g� by polynomials

�for an example see Dahlhaus� 
���� Section ���

Let X 	 �X �
��T � � � � �X

�
T�T �

�� � 	 ��� �
T
��� � � � � ��T

T
����� and let the dT �dT �matrices


T �A�B� and UT �	� be de�ned by


T �A�B�r�s 	

Z �

��

exp�i��r � s��Ao
r�T ���B

o
s�T �����d� �����

and

UT �	�r�s 	

Z �

��

exp�i��r � s��	

�
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r � s

�
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� �

�
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�



�r� s 	 
� � � � T � where Ao
r�T ���� B

o
r�T ��� and 	�u� �� are d�d�matrices� Then the exact

Gaussian likelihood is

L�e�
T ��� �	

d

�
log���� �




�T
log det
� �




�T
�X � �

�
��
��� �X � �

�
� �����

where 
� 	 
T �A�� A�� and E�X � ���X � ��� 	 
T �A�A� with A from De�nition ��
�

We now proceed as in the univariate case �Section �� to �nd a local likelihood approx�

imation� We use a generalisation of the multivariate Szeg�o identity �see Proposition ���

below� and UT �
�

���f
��
� � as an approximation of 
��� to obtain

LT ��� �	 L���
T ��� �	
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TX
t��

Z �
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log������d det f��
t

T
� ���d�
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�X � �

�
��UT �f

��
� ��X � �

�
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�
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�����d det f��

t

T
� ��

�
� tr



f��

t

T
� ���� �I
�T �

t

T
� ��

��
d�
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T

TX
t��


T ���
t

T
� �����

where

�I
T �u� ��ab �	



��

X
k

��	uT�k��
�	uT�k��
�T



X

�a�
	uT�k��
�T � ��a�

�
�uT � k���

T

��

�


X

�b�
	uT�k��
�T � ��b�

�
�uT � k���

T

��
exp��i�k� �����

is the multivariate version of the preperiodogram�

In the univariate case and for �� 	 � this is the likelihood we have already discussed in

Section �� We call 
T ���
t
T
� the local likelihood at time t� If the mean is not zero and one

is not interested in modelling the mean one may use �I �
T �u� �� instead of
�I
�T �u� �� where !�

is the arithmetic mean or some kernel estimate �if the mean is not believed to be constant

over time��

Before investigating the asymptotic properties of the minimizer of LT ��� we prove

some results on the likelihood approximation itself� First we state two results which show


�



that UT �f���f�g��� and LT ��� are approximations of 

��
� and L�e�

T respectively� We also

show that

L��� �	



��

Z �

�

Z �

��

�
log det f��u� �� � tr�f��u� ��

��f�u� ���
�
d�du

�



��

Z �

�

����u�� ��u���f��� �u� ������u�� ��u��du �����

is the limit of LT ��� and L�e�
T ����

The technical parts of the following proofs consist of the derivation of properties of

products of matrices 
T �A�B�� 
T �A�A��� and UT �	�� These properties are derived in

the appendix� In particular Lemma A�
� A�� and A�� are of relevance for the following

proofs�

For convenience we refer in the following proposition to Assumption A�� in the ap�

pendix concerning the smoothness of the transfer function and the mean� These conditions

are ful�lled under Assumption ��� below� By kAk and A we denote the spectral norm

and the Euclidean norm of a matrix A �cp� �A�
� and �A����� kvk� is the Euclidean norm
of a vector�

����� Proposition Suppose the matrices A and 	 ful�ll the smoothness conditions of

Assumption A�� �i� � �iii� �appendix� with existing and bounded derivatives ��

�u�
�
��
A�u� ��ab

and eigenvalues of 	�u� �� which are bounded from below uniformly in u and �� Then we

have




T

T �A�A�

�� � UT �f���A "A�g��� �
	 O�T�� ln� T � �����

and




T
UT �	�

�� � UT �f���	g��� �
	 O�T��ln���T ��

Proof� Let 
T 	 
T �A�A� and UT 	 UT �f���A "A�g���� We obtain with Lemma A�


�b�c� and Lemma A��




T

��T � UT

� � 


T
I � 
���

T UT

���
T

�k
��T k�

� K�d� �

T
trfUT
Tg� 


T
trfUT
TUT
Tg��


�



Lemma A�� �i� now implies the result� The second result is obtained in the same way

with Lemma A���

We now state the generalisation of the Szeg�o identity �cf� Grenander and Szeg�o� 
����

Section ���� to multivariate locally stationary process�

���	� Proposition Suppose A ful�lls Assumption A�� �i�	 �ii�	 with bounded derivatives
��

�u�
�
��
A�u� ��ab� Then we have with f�u� �� 	 A�u� ��A�u�����




T
log det
T �A�A� 	




��

Z �

�

Z �

��

log�����d det f�u� ���d�du �O�T�� ln�� T ��

If A 	 A� depends on a parameter � and ful�lls the smoothness conditions of Assumption

��
 �iii�	 �iv�	 then the O�T�� ln�� T � term is uniform in ��

Proof� The proof can be found in A�� of the appendix�

From now on we set ri 	
�
��i

and r�
ij 	

��

��i��j
�

���
� Theorem Suppose Xt�T is a locally stationary Gaussian process with transfer func�

tion matrix Ao and mean function vector � and we �t a locally stationary model with

transfer function matrix Ao
� and mean function vector ��� Suppose further that all eigen�

values of f��u� �� 	 A��u� ��A��u� ��
�
are bounded from below uniformly in u and � and

the components of A	 A�	 �	 �� are di�erentiable with uniformly bounded derivatives
��

�u�
�
��
A�u� ��ab	

��

�u�
�
��
A��u� ��ab	

�
�u
��u�a	

�
�u
���u�a respectively� Then we have

�i�

LT ���� L�e�
T ��� 	 OP �T

�� ln�� T ��

�ii� If in addition the �rst derivatives rjA��u� ��ab and rj���u�a ful�ll the above smooth�

ness properties	 we also have

rjLT ����rjL�e�
T ��� 	 OP �T

�� ln�� T ��


�



�iii� Furthermore	

L��� 	 lim
T��

EL�e�
T ��� 	 lim

T��
ELT ���

and

L�e�
T ���

P� L���� LT ���
P� L����

A similar result also holds for the higher order derivatives of the likelihoods� We

conjecture that also a uniform result �in �� holds and that the log�terms and the Gaussian

assumption can be dropped� However� a uniform result requires muchmore e ort� In order

not to blow up the paper we omit these generalisations�

Proof� �i�We obtain with Proposition ��� andBT �	 
T �A�� A�����UT �f���A�
"A�
�g���

LT ���� L�e�
T ��� 	




�T
�X � �

�
��BT �X � �

�
� �O�T�� ln�� T ��

Since




T
�X � �

�
�BT �X � �

�
�

	



T
�X � ��BT �X � �� ���
��

�
�

T
�X � ���BT �� � �

�
�

�



T
��� �

�
��BT ��� �

�
�

we obtain with Lemma A�� and 
 	 
T �A�A�

EfLT ���� L�e�
T ���g 	




�T
trfBT
g� 


�T
�� � �

�
��BT �� � �

�
� �O�T�� ln�� T �

	 O�T�� ln�� T �

and

varfLT ���� L�e�
T ���g 	




�T �
trfBT
BT
g� 


T �
��� �

�
��BT
BT ��� �

�
�

	 O�T�� ln�� T �


�



which implies the result�

�ii� We obtain with Lemma A��� BT as above and CT �	 �
T �A�� A����f
T �rjA�� A�� �


T �A��rjA��g
T �A�� A���� � UT �rjf���A�
"A�
�g���

rjLT ����rjL�e�
T ��� 	




�T
�X � �

�
��CT �X � �

�
�� 


T
�rj���

�BT �X � �
�
� �O�T�� ln�� T ��

Analogously to above we obtain with Lemma A��

E�rjLT ��� �rjL�e�
T ���� 	 O�T�� ln�� T �

and

var�rjLT ����rjL�e�
T ���� 	 O�T�� ln�
 T �

which gives the result�

�iii� follows similarly to �i� �use e�g� BT 	 
T �A�� A���� in the above derivation��

Theorem ��� �iii� basically gives the asymptotic Kullback�Leibler�information diver�

gence of two multivariate locally stationary processes� If Xt�T � �Xt�T � are multivariate lo�

cally stationary with spectral densities f 	 A "A�� �f 	 �A"�A
�
�� mean functions ����� and

Gaussian densities g��g�� then we obtain for the information divergence

D� �f � ��� f� �� 	 lim
T��




T
Eg log

g

�g

	



��

Z �

�

Z �

��

flog det� �f�u� ��f�u� ����� � tr� �f�u� ����f�u� ��� I�gd�du

�



��

Z �

�

����u�� ��u��� �f �u� ��������u�� ��u��du�

This is the time average of the Kullback�Leibler divergence in the stationary case �cf�

Parzen� 
���� for the univariate stationary case with mean zero��

We now study the behaviour of

!�T �	 argmin
���

LT ����


�



Furthermore� let

�� �	 argmin
���

L����

The results are proved under the following assumptions�

����� Assumption �i� We observe a realisation X��T � ����XT�T of a d�dimensional sta�

tionary Gaussian process with true mean function vector � and transfer function

matrix Ao and �t a class of locally stationary Gaussian processes with mean function

vector �� and transfer function matrix Ao
�� � � % 
 Rp� % compact�

�ii� �� 	 argminL��� exists uniquely and lies in the interior of %�

�iii� The components of A��u� �� are di erentiable in �� u and � with uniformly continuous

derivatives r�
ij

��

�u�
�
��
A��u� ��ab�

�iv� All eigenvalues of f��u� �� 	 A��u� ��A��u����� are bounded from below by some

constant C � � uniformly in �� u and ��

�v� The components of A�u� �� are di erentiable in u and � with uniformly bounded

derivatives �
�u

�
��
A�u� ��ab�

�vi� The components of ��u�� ���u�� ri���u� and r�
ij���u� are di erentiable in u with

uniformly bounded derivatives�

In the case where the model is correctly speci�ed� i�e� A�u� �� 	 A���u� �� and ��u� 	

����u� with some �� � % one can show that �� 	 ���

����� Theorem Suppose that Assumption ��
 holds� Then

!�T
P� ���

Proof� The basic idea is taken from Walker �
����� Section �� In Theorem ��� �iii� we

have proved that

LT ���
P� L����


�



Since �� is assumed to be unique it follows that for all �� �	 �� there exists a constant

c���� � � with

lim
T��

P �LT ���� �LT ���� � c����� 	 ��

Furthermore� we have with a mean value "�

LT ����� LT ���� 	 ��� � ���
�rLT �"��

where �cp� ���
���

riLT ��� 	



��




T

TX
t��

Z �

��

tr

�
f��

t

T
� ��rif��

t

T
� ����

�
d�

�



���T
�X � �

�
��UT �rif

��
� ��X � �

�
� ���

�

� 


���T
�ri���

�UT �f
��
� ��X � �

�
�

	



���T
�X � ���UT �rif

��
� ��X � ��

�



���T
ri

n
��� �

�
��UT �f

��
� �

o
�X � �� � const� ���
��

with a constant independent of X �but dependent on � and T �� With the Cauchy�Schwarz

inequality and Lemma A�
�h� we get




T
�ri���

�UT �f
��
� ��X � �

�
�

� 


T

n
�ri���

�UT �f
��
� ��ri��� � �X � �

�
��UT �f

��
� ��X � �

�
�
o���

�
�



T
kri��k��

�����
�

T
kXk�� �

�

T
k�

�
k��
����

kUT �f
��
� �k

which by Assumption ��� and Lemma A�� is uniformly bounded by

K �K



T
kXk���

Similarly� we can estimate the other terms in ���

� leading to


�



sup
���U�����

jLT ����� LT ����j � K��
 �



T
X �X�

with some constant K� Since E �
T
X �X 	 �

T
k�k�� �

PT
a��

R �

�
�a�u��du and var �

T
X �X 	

�
T �
trf
�g � �

T
k
k� � K

T
�Lemma A�
 and A��� T��X �X is bounded in probability� Thus

there exists for all �� �	 �� a c���� � � and a � 	 ����� with

lim
T��

P � inf
���U�����

LT ���� �LT ���� � c�������

� 
� lim
T��

P �LT ����� LT ���� � c������ lim
T��

P � sup
���U�����

jLT ����� LT ����j � c�������

	 
�

A compactness argument as in Walker �
���� implies the result�

���
� Theorem Suppose that Assumption ��
 holds� Then we have

p
T �!�T � ���

D�N ���&��V &���

with

&ij 	



��

Z �

�

Z �

��

tr
�
�f � f���rijf

��
��

�
d�du � 


��

Z �

�

Z �

��

tr
�
�rif����rjf

��
��
�
�
d�du

�



��

Z �

�

r�
ij

�
���u�� ����u��

�f����
�u� �����u�� ����u��

�
du

and

Vij 	



��

Z �

�

Z �

��

tr
�
f �rif

��
� �f �rjf

��
� �

�
d�du

�



��

Z �

�

Z �

��

�ri

�
���u� � ��� �u��

�f����
�u� ��

��
f�u� ��

�rj

�
f����

�u� �����u�� ��� �u��
��

du�

Proof� We obtain with the mean value theorem

riLT �!�T ��riLT ���� 	 fr�LT ��
�i�
T ��!�T � ���gi

��



with j��i�T ���j � j!�T���j�i 	 
� ���� p�� If !�T lies in the interior of % we have rLT �!�T � 	 ��

If !�T lies on the boundary of %� then the assumption that �� is in the interior implies

j!�T � ��j � � for some � � �� i�e� we obtain P �
p
T jrLT �!�T �j � �� � P �j!�T � ��j � ��� �

for all � � �� Thus� the result follows if we prove

�i� r�LT ��
�i�
T ��r�LT ����

P� �

�ii� r�LT ����
P� &

�iii�
p
TrLT ����

D� N ��� V ��

We now obtain from ���

�

r�
ijLT ��� 	 � 


��




T

TX
t��

Z �

��

tr

�
f��

t

T
� ��r�

ijf��
t

T
� ����

�
d� ���
��
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��




T

TX
t��

Z �
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tr

�
rif��

t

T
� ��rjf��

t

T
� ����

�
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�



���T
�X � �

�
��UT �r�

ijf
��
� ��X � �

�
�

�



���T
�ri���

�UT �f
��
� ��rj���

� 


���T
�ri���

�UT �rjf
��
� ��X � �

�
�

� 


���T
�rj���

�UT �rif
��
� ��X � �

�
�

� 


���T
�r�

ij���
�UT �f

��
� ��X � �

�
��

To prove �i� we have to consider the above terms separately� The assertion is obvious for

the �rst and second term� Let �T 	 �
�i�
T � The remaining terms of ���
�� can all be written

as sums of expressions of the form




T
X �U�X�




T
�
�

�U�X or



T
�
�

��U���� ���
��

with U� being equal to UT �f
��
� �� UT �rif

��
� � or UT �r�

ijf
��
� �� LemmaA���iii� implies kU�T �

U��k � � in probability� Furthermore� �
T
k��T � ���k�� � � in probability� This implies for

example with the Cauchy�Schwarz inequality

�




j 

T
�
�

�T
A�TX � 


T
�
�

��
A��X j

� 


T
j���T � ����

�A�TX j�



T
j� ����A�T �A���Xj

� 


T

�k��T � ���k��kXk��
���� kA�T k�




T

�k���k��kXk������ kA�T �A��k�

As in the proof of Theorem ��� we have that �
T
kXk�� is bounded in probability� Further�

more� kA�T k is uniformly bounded by Lemma A�� �iii�� Therefore� the above expression

tends to zero in probability� The other two expressions of ���
�� can be handled similarly

which implies �i��

�ii� It follows from ���
�� �or from ���
���

r�
ijLT ��o� 	




���T
�X � ���UT �r�

ijf
��
� ��X � ��

�



���T
r�
ijf��� �

�
��UT �f

��
� �g�X � �� � const�

and therefore �note that X is Gaussian�

var�r�
ijLT ��o�� 	




����T �
trfUT �r�

ijf
��
�o
�
UT �r�

ijf
��
�o
�
g

�




���T �
�r�

ijf��� ��o�
�UT �f

��
�o
�g�
�r�

ijfUT �f
��
�o
���� ��o�g��

Lemma A�� shows that this is of order O�T���� To calculate Er�
ijLT ���� we consider

again all terms of ���
�� separately� The expectation of the third term of ���
�� is




���T
tr
�

UT �r�

ijf
��
� �

�
�




���T
��� �

�
��UT �r�

ijf
��
� ���� �

�
�� ���
��

The �rst two terms of ���
�� together with the �rst term of ���
�� tend with Lemma A��

to the �rst and second term of &ij and the expectation of the last four terms of ���
�� and

the last term of ���
�� converge with Lemma A�� to the last term of &ij which proves �ii��

�iii� We use the method of cumulants� We have

��



� 	 riL���� 	



��

Z �

�

Z �

��

tr
�
�f � f��rif

��
�

�
d�du

�



��

Z �

�

ri����u�� ��u���f��� �u� ������u�� ��u��du�

It follows from ���

� and Lemma A�� that EriLT ���� converges to the same expression

with rate O�T�� ln� T �� i�e� we have

p
TErLT ���� 	 o�
��

Furthermore� we get from ���
��

T cov�riL����� rjLT �����
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Lemma A�� implies that this tends to Vij �

To study the higher�order cumulants we see from ���
�� that riLT ���� can be written

as

riLT ���� 	



���T
Y �AiY �




���T
�
�

iBY � const�

where EY 	 �� The cumulants of order � � of the �iBY �terms are zero� while the mixed

cumulants of the Y �AiY and �
�

iBY �terms are nonzero if and only if there are exactly two

�
�

iBY �terms involved �this follows from the product theorem for cumulants� cf� Brillinger�


��
� Theorem ������ EY 	 �� and the normality of Y ��

��



Therefore� we obtain with the product theorem for cumulants

T ���cum�ri�LT ����� ����ri�LT �����

	 C�T
����

X
�j������j��

permutation of
�i������i��

tr

�
�Y

k��


UT �rjkf
��
� �

	

� C�T
����

X
�j������j��

permutation of
�i������i��

�
�

j�
B

�
���Y
k��


UT �rjkf
��
� �

	

B�

�

j�
�

Lemma A�
 implies that all terms are of order O�T�������� Therefore� the theorem is

proved�

����� Remark �i� Theorem ��� contains the asymptotic distribution of the Whittle�

estimate in the stationary case as a special case �if f � f�o � � and ��o do not depend

on u�� The result for the classical Whittle�estimator is obtained if in addition � 	 �� 	 �

and f 	 f�o � Theorem ��� also gives the asymptotic distribution in the case where a sta�

tionary model is used with the classical Whittle�likelihood but the process is only locally

stationary�

�ii� The matrices & and V from Theorem ��� simplify in several situations� in particular

when the model is correctly speci�ed �f 	 f�o � � 	 ��o � cf� Remark ��

 below�� when

a stationary model is �tted �f� and �� do not depend on u�� and when the parameters

separate� For univariate processes this has been discussed in Dahlhaus �
���b� Remark

��� and ���� in the context of univariate maximum likelihood estimation�

The technical results proved in the appendix also can be used to derive the asymptotic

properties of the exact maximum likelihood estimator

��T �	 argmin
���

L�e�
T ����

��



������ Theorem Suppose that Assumption ��
 holds� Then we have

p
T ���T � �o�

D� N ���&��V &���

with & and V as in Theorem ����

Proof� By using Lemma A�� �ii� and Lemma A�� �with V� 	 &��� for all 
� the result can

be proved in the same way as the result of Theorem ��� �cp� also Dahlhaus� 
���b� Theo�

rem ���� where the asymptotic normality of the univariate maximum likelihood estimator

has been proved by a slightly di erent proof method�� Note� that �rst the consistency of

the estimate has to be established� We omit details�

������ Remark In the correctly speci�ed case �f 	 f�o � � 	 ��o� it is easy to see that

V 	 & with

&ij 	
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Z �

�
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��

tr
�
f�o�rif

��
�o
�f�o�rjf

��
�o
�
�
d�du �




��

Z �

�

�ri��o�u��
�f���o

�u� ���rj��o �u��du�

In that case both estimates are asymptotically e�cient� One way to see this is to prove

an LAN�expansion and to show that
p
T �!�T � �o� and

p
T ���T � �o� are equivalent to the

central sequence� For univariate processes and the MLE ��T this has been done in Dahlhaus

�
���b� Theorem ��
 and ����� By using the technical lemmata of this appendix the LAN�

property and the e�ciency of both estimates can be derived in the same way as in that

paper� We omit details�

A Appendix� Norms and matrix products of generalized Toeplitz matrices

In this section we study the behaviour of the matrixUT �	� in some detail� In particular� we

prove that UT �f���fg��� with f�u� �� 	 A�u� ��A�u����� is a reasonable approximation
of the inverse of 
T �A�A�� The results of this section are frequently used in Section ��

There are a few similarities to Section � of Dahlhaus �
���a� where we have constructed

a di erent �less precise� approximation of the inverse of 
T �A�A��

��



Suppose A is an n� n matrix� We denote by

kAk 	 sup
x�Cn

jAxj
jxj 	 sup

x�Cn

�
x�A�Ax

x�x

����

�A�
�

	 �maximum characteristic root of A�A�����

where A� denotes the conjugate transpose of A� the spectral norm and by

A 	 �tr�AA������ �A���

the Euclidean norm of A� If A is a real positive semide�nite symmetric matrix� i�e�

A 	 P �DP with PP � 	 P �P 	 I and D 	 diagf��� ���� �ng� where �i � �� then we

de�ne A��� 	 P �D���P � where D��� 	 diagfp��� ����
p
�ng� Thus� A��� is also positive

semide�nite and symmetric with A���A��� 	 A� Furthermore� A���� 	 �A������ if A is

positive de�nite�

The following results are well known �see� e�g�� Davies �
����� Appendix II� or Graybill

�
����� Section �����

�A��� Lemma Let A�B be n� n matrices� Then

�a� jtr�AB�j � A B 	

�b� AB � kAk B 	

�c� AB � A kBk	
�d� kAk � A �

p
nkAk	

�e� kABk � kAkkBk	
�f� kAk� � �supi

Pn
j�� jaijj��supj

Pn
i�� jaijj�	

�g� kAk 	 supx�Cn

��x�Ax
x�x

�� for A symmetric	

�h� jx�Axj � x�xkAk	 x � Cn	

�i� log detA � trfA� Ig for A positive de�nite�

Suppose now that the elements of A are continuously di�erentiable functions of �� Then

�j� �
��
A�� 	 �A��

�
�
��
A
�
A��	

�k� �
��
log detA 	 tr

�
A�� �

��
A
�
�

��



Furthermore� let LT � R� R� T � R�� be the periodic extension �with period ��� of

L�T �
� �	

�
T� j
j � 
�T


�j
j� 
�T � j
j � ��

Properties of LT �
� are listed in Dahlhaus �
���� Lemma A���� We remark that we have

with a generic constantZ �

��

LT �
�d
 is monotone increasing in T� �A���

LT �
� � �LT ��
�� �A���

Z �

��

LT �� � 
�LT �
 � ��d
 � KLT �� � ��lnT� �A���

Z �

��

LT �
�
kd
 � KT k��lnT fk��g� �A���

Let

'T ��� �	
TX
r��

exp��i�r��

Direct veri�cation shows

j'T ���j � �LT ���� �A���

�A��� Lemma �i� Let � � ��� 
�� C be di�erentiable with bounded derivative� Then

TX
r��

�
� r
T

�
exp��i�r� 	 ��
�'T ��� �O�sup

u
j��

�u�jLT ����

	 O�LT �����

The same holds if �� r
T
� is replaced on the left side by �r�T with

supr j�r�T � �� r
T
�j 	 O�T����

��



�ii� Suppose � � ��� 
�k � C has bounded derivative �k�
�u�����uk

� Then�����
TX

r������rk��

�
�r�
T
� ����

rk
T

�
exp

�
�i

kX
j��

�jrj

������
� K sup

��k
sup

fi������i�g	f�����kg

sup
u

���� ��

�ui� � � � �ui�
��u�

����
kY

j��

LT ��j� 	 O

�
kY

j��

LT ��j�

�
�

Proof� �i� Summation by parts gives

TX
r��

��
r

T
� exp��i�r� 	 �

T��X
r��

�
��

r � 


T
�� ��

r

T
�

�
'r��� � ��
�'T ���

which implies with �A��� the result� �ii� Let Dj be the di erence operator with respect to

the j � th component� i�e� Dj��
r�
T
� ���� rk

T
� �	 �� r�

T
� ����

rj��
T
�
rj��

T
�
rj��
T
� ���� rk

T
���� r�

T
� ���� rk

T
��

Then we obtain with repeated partial summation and the convention ��u� 	 � for

u �� ��� 
�k

TX
r������rk��

�
�r�
T
� ����

rk
T

�
exp

�
�i

kX
j��

�jrj

�

	 ��
�k
TX

r������rk��

�
D����Dk�

�r�
T
� ����

rk
T

�� kY
j��

'rj��j��

We have ���D����Dk�
�r�
T
� ����

rk
T

���� � �k��T�� sup
u

���� ��

�ui�����ui�
��u�

����
where fi�� � � � � i�g 	 fijri �	 Tg� leading to the result�

�A��� Assumption

�i� Suppose A � ��� 
� � R � C
d�d is a ���periodic matrix function with A�u� �� 	

A�u���� whose components are di erentiable in u and � with uniformly bounded

derivatives �
�u

�
��
Aab� Ao

t�T � R� Cd�d are ���periodic matrix functions with

supt�� jAo
t�T ���ab �A� t

T
� ��abj � KT�� for all a� b � f
� � � � � dg�

��



�ii� Suppose in addition to �i� that all eigenvalues of A�u� ��A�u� ��
�
are bounded from

below by some C � � uniformly in u and ��

�iii� Suppose 	 � ��� 
� � R � Cd�d is a ���periodic matrix function whose components

are twice di erentiable in u and di erentiable in � with uniformly bounded derivative
��

�u�
�
��
	�

�iv� Suppose the components of � � ��� 
�� Rd are di erentiable with uniformly bounded

derivatives�

�A�	� Remark All results stated in this appendix are uniform in the sense that the

upper bounds depend only on the bounds of the involved functions A�	 and � and their

derivatives and not on the particular values�

�A�
� Lemma

�i� Suppose A and B ful�ll Assumption A�� �i� and the components of 	 are di�erentiable

with uniformly bounded derivative �
�u

�
��
	ab� Then we have

k
T �A�B�k � C�

and

kUT �	�k � C�

with some constants C�	 C��

�ii� More precisely we have under Assumption A�� �i�

k
T �A�A�k � �� sup
u��

kA�u� ��A�u� ���k� CAo�
��

where CA is a constant depending on the upper bounds of A and its derivatives� If in

addition A ful�lls Assumption A�� �ii� we have

k
T �A�A�
��k � ��� inf

u��
�
jAj�

min �u� �� � CAo�
��
��

where �jAj
�

min �u� �� is the smallest eigenvalue of A�u� ��A�u� ��
�
�

��



�iii� If 	 is symmetric and ful�lls Assumption A�� �iii� we have

kUT �	�k � �� sup
u��

k	�u� ��k� C
o�
�

where C
 is a constant depending on the upper bounds of 	 and its derivatives� If

in addition the smallest eigenvalue �
min�u� �� of 	�u� �� is uniformly bounded from

below	 then

kUT �	�
��k � ��� inf

u��
�
min�u� �� � C
o�
��

���

Proof� �i� Lemma A�
 �f� implies

kUT �	�k � d
P

r�Z sup
u�	���


a� b � f
� � � � � dg
j
Z

	�u� ��ab exp�i�r�d�j �K�

The smoothness conditions then imply the result �cf� Dahlhaus� 
���a� p� 
���� The

upper bound for k
T �A�B�k is obtained in the same way�

�ii� follows for d 	 
 from Lemma ��� of Dahlhaus �
���a�� In the multivariate case the

proof is completely analogous to that lemma� We omit the details�

�iii� The bounds for kUT �	�k and kUT �	�
��k can be established in exactly the same way

as the bounds for k
T �A�A�k and k
T �A�A���k by a straightforward generalisation of

Lemma ��� of Dahlhaus �
���a�� We omit the details�

In the proof of Lemma A�� we frequently make use of the following result�

�A��� Lemma Suppose A and B ful�ll Assumption A�� �i� and 	 ful�lls Assumption

A�� �iii� with d 	 
� Then we have

TX
r�s��

	

�



T



r � s

�

��
� �

�
Ao
s�T ����B

o
r�T ����� expf�i��� ���s� i��� � ��rg

	
TX

r�s��

	

�
r � s

�T
� �

�
A
� s
T
� �
�
B
� r
T
���

�
expf�i��� ���s� i��� � ��rg

� O�LT ��� � ����� �O�LT ���� � ����

	 O�LT ��� � ����LT ���� � ����

��



Proof� We start by replacing Ao
s�T ���� by A� s

T
� ���� Lemma A�� �i� and �A��� imply�����

TX
r��

	

�



T



r � s

�

��
� �

�
Bo
r�T ����� expf�i��� � ��rg

����� � KLT ���� � ���

which gives a replacement error of KLT ��������� In the same way we replace Bo
r�T �����

by B� r
T
������ We then replace 	� �

T
� r�s

�
��� �� by 	� r�s

�T
� ��� For r � s even those two are

the same� The replacement error therefore is �r 	 �k� s 	 �
 � 
�

	T��
X
k����



	

�
��k � 
�

�T
� �

�
� 	

�
��k � 
�� 


�T
� �

��
A

�
�
 � 


T
� ��

�
B

�
�k

T
����

�
�

� expf�i��� �����
 � 
�� i��� � ���kg � a similar term�

Since 	���k���
�T

� �� � 	���k������
�T

� �� 	 �
T
� �
�u
	�k��

T
� �� � O�T���� we get with Lemma A��

�i� that this expression is bounded by KLT ��� � ����� Finally� we replace A� s
T
� ��� by

A� s
T
� �� with a replacement error of Kj���� jLT ������LT ������ � KLT �������� �by

using Lemma A�� �ii��� Similarly� we obtain KLT ��� � ���� as the replacement error for

replacing B� r
T
����� by B� rT ���� which leads to the �rst equation� The second equation

then follows with Lemma A�� �ii� and �A����

�A��� Lemma Let k � N	 A�	 B� ful�ll Assumption A�� �i�	 	� ful�ll Assumption A��

�iii� and ��� �� ful�ll Assumption A�� �iv�� Then we have

�i�



T
trf

kY
���

UT �	��
T �A�� B��g

	 �����k��
Z �

�

Z �

��

trf
kY

���

	��u� ��A��u� ��B��u�����gd�du �O�T�� ln�k�� T ��

�ii�



T
�
�

�Tf
k��Y
���

UT �	��
T �A�� B��gUT �	k���T

	 �����k��
Z �

�

���u�
�f
k��Y
���

	��u� ��A��u� ��B��u� ��
�g	k�u� �����u�du�O�T�� ln�k�� T ��

�




Remark� If �I is the d � d identity matrix then �
��

T ��I� �I� 	

�
��
UT ��I� is the dT � dT

identity matrix� Therefore Lemma A�� also give the asymptotic expressions for




T
tr

�
kY

���


T �A�� B��

	
and




T
tr

�
kY

���

UT �	��

	

and more general for the trace of an arbitrary product of 
T �s and UT �s�

Proof� �i� We give the proof for k 	 
 and afterwards for general k � �� We have




T
trfUT �	�
T �A�B�g

	



T

dX
a�b�c��

TX
r�s��

Z �

��

Z �

��

	

�



T



r � s

�

��
� �

�
ab

Ao
s�T ���bcB

o
r�T ����ac expfi��� ���r � s�gd�d�

which by using Lemma A�� and �A��� is equal to




T

dX
a�b�c��

TX
r�s��

Z �

��

Z �

��

	

�
r � s

�T
� �

�
ab

A
� s
T
� �
�
bc
B
� r
T
���

�
ac
expfi��� ���r � s�gd�d�

�O�T�� lnT ��

Integration over � now gives the result�

To simplify notation we use in the rest of the proof the �trace��notation keeping in

mind that in the calculation of remainders usually the individual components have to be

considered� For k � � we then have




T
tr

�
kY

j��

UT �	j�
T �Aj� Bj�

	

	



T

TX
r� �
s��

����
����

rk �

sk��

�Z
���

Z
��

tr

�
kY

j��

	j

�



T



rj � sj

�

��
� �j

�
Ao
j�sj�T

��j�B
o
j�rj���T

���j�
	

� exp

�
�i

kX
j��

���j � �j�sj � ��j � �j���rj���

	
d�d�

where rk�� 	 r� and �k�� 	 ��� Application of Lemma A�� together with �A��� and �A���

��



shows that this is equal to




T

TX
r��
s��

����
����

rk�

sk��

�Z
���

Z
��

tr

�
kY

j��

	j

�
rj � sj
�T

� �j

�
Aj

�sj
T
� �j

�
Bj

�rj��

T
���j��

�	

� exp

�
�i

kX
j��

���j � �j�sj � ��j � �j���rj���

	
d�d� �O�T�� ln�k�� T ��

Integration over all �j shows that this is equal to

����k



T

TX
r������rk��

�Z
���

Z
��

tr

�
kY

j��

	j

�
rj � rj��

�T
� �j

�
Aj

�rj��

T
� �j

�
Bj

�rj��

T
���j��

�	

� exp

�
�i

kX
j��

��j � �j���rj��

	
d� �O�T�� ln�k�� T ��

We now replace the argument �k in 	k� Ak and Bk�� by �k��� The replacement error is

of the form




T

TX
r������rk��

�Z
���

Z
��

��

�r�
T
� ����

rk
T

�
exp

�
�i

kX
j��

��j � �j���rj��

	
d�

where supu j ��

�u�� ����ui�
��u�j � Kj�k��k��j for all fi�� ���� i�g 
 f
� ���� kg� i�e� we obtain for

the replacement error with Lemma A�� �ii� and �A��� as an upper bound

K



T

�Z
���

Z
��

j�k � �k��j
kY

j��

LT ��j � �j���d� � KT�� lnk�� T�

In the same way we successively replace all �j by �� and integrate �nally over ��� ���� �k

which proves the assertion�

��



�ii� The proof of �ii� is completely analogous to �i�� We therefore only give a brief sketch

for the case k � �� We have




T
�
�

�T

�
k��Y
j��

UT �	j�
T �Aj� Bj�

	
UT �	k���T

	



T

TX
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����
����
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sk��

�Z
���

Z
��

���
r�
T
�
�

�
k��Y
j��

	j

�



T



rj � sj

�

��
� �j

�
Ao
j�sj �T

��j�B
o
j�rj���T

���j�
	

�	k
�



T



rk � sk

�

��
� �k

�
��

�sk
T

�

� exp

�
�i

k��X
j��

���j � �j�sj � ��j � �j���rj��� � i��r� � i�ksk

	
d�d��

We now use similar replacement steps as in �i� �note that Lemma A�� also holds if e�g�

Bo
r�T ����� 	 ���

r
T
� and �� is set equal to zero� which leads with sk 	 rk�� to

����k��



T

TX
r� �����rk����

�Z
���

Z
��

��

�r�
T

��

�
k��Y
j��

	j

�
rj � rj��

�T
� �j

�
Aj

�rj��

T
� �j

�
Bj

�rj��

T
���j��

�	

�	k
�
rk � rk��

T
� �k

�
��

�rk��

T

�
exp

�
i��r� � i

k��X
j��

��j � �j���rj�� � i�krk��

	
d�

�O�T�� ln�k�� T ��

As before we now replace all �j by �� and �nally �� by � leading to the result�

�A�
� Lemma Let k � N and fI�� � � � � I�g be a partition of f
� � � � � kg� Let the matrices

A�� B� �for 
 � I�� ful�ll Assumption A�� �i�	 C� �for 
 � I�� ful�ll Assumption A�� �i�	

�ii� with bounded derivatives ��

�u�
�
��
C��u� ��ab	 	� �for 
 � I� 
 I�� ful�ll Assumption A��

�iii� with eigenvalues �for 
 � I�� that are bounded from below uniformly in u and �	 and

��� �� ful�ll Assumption A�� �iv��

��



Let further

V� 	 
T �A�� B��� ���u� �� 	 ��A��u� ��B��u����� �
 � I���

V� 	 
T �C�� C����� ���u� �� 	
�
��
C��u�������C��u� ���� �
 � I���

V� 	 UT �	��� ���u� �� 	 ��	��u� �� �
 � I���

V� 	 UT �	���� ���u� �� 	
�
��	��u� ��

�� �
 � I���

Then we have

�i�




T
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�
kY
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Z �

�

Z �
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�
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d�du �O�T��ln�k��T ��

�ii�




T
���T

�
kY

���
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��T 	
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Z �

�

���u�
�

�
kY

���

���u� ��

	
���u�du�O�T��ln�k��T ��

Proof� �i� Let j 	 jI�j � jI�j� More precisely we prove the result with the rate

O�T��ln�k��j���� For j 	 � the assertion follows for all k from Lemma A��� Sup�

pose now the assertion holds for all k and some �xed j� Consider the case j � 
� By

renumbering the V� we can assume that k � I� 
 I�� Suppose k � I�� We approximate

Vk 	 
�� �	 
T �Ck� Ck��� by �U �	 UT �f���Ck
"C �
kg���� We have with LemmaA�
� Lemma

A�� and Proposition ���
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T
tr

�
kY
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���
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k��Y
���
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T

�� � �U

�
	 O�T��ln�T ��

This implies the convergence with rate O�T��ln��k�����j��� 	 O�T��ln�k���j������ which

gives the result� If k � I� the result is obtained in the same way by using the second

equation of Proposition ���� �ii� follows similarly�

��



Technically� LemmaA�� and LemmaA�� are the key results for proving the asymptotic

properties of the local likelihood estimator and of the exact MLE as done in Section �� For

I� 	 f
j
 eveng� I� 	 f
j
 oddg� I� 	 I� 	 � Lemma A�� is a generalisation of a central

result for Gaussian stationary processes to the locally stationary case �cf� Taniguchi� 
����

Theorem 
�� Note� that it is not very di�cult to improve the rate ln�k��T in the above

lemma�

�A��� Proof of Proposition ��	 We replace 
T �	 
T �A�A� by UT �	 UT �A "A��� We

obtain with Lemma A�
 �i�

j 

T
log det
T � 


T
log detUT j 	 j 


T
log det
����T UT


����
T j

� maxf 

T
tr�
��T UT � I��




T
tr�U��

T 
T � I�g�

LemmaA�� yields that both terms are of orderO�T��ln��T �� Since f�u� �� 	 A�u� ��A�u� ��
�

is symmetric and positive de�nite there exist an orthonormal matrix B�u� �� and a diag�

onal matrix D�u� �� 	 diagfd��u� ��� � � � � dd�u� ��g with positive dj�u� �� such that

f�u� �� 	 B�u� ��D�u� ��B�u� ����

Now let x � ��� 
� and

f �x��u� �� �	 B�u� ��D�x��u� ��B�u� ���

with

D�x��u� �� �	 diagfd��u� ��x� � � � � dd�u� ��xg�

We have UT �f ���� 	 UT and UT �f ���� 	 ��I where I in the dT � dT identity matrix� We

therefore obtain with U
�x�
T �	 UT �f �x��
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T
log detUT �O�T��ln��T �
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T dx � log����d �O�T��ln��T �
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Furthermore

�

�x
U

�x�
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exp�i��r � s��
�

�x
f �x��




T
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r � s
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��� ��d�
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�

�x
f �x��u� �� 	 B�u� ��diagfd��u� ��x log d��u� ��� � � � � dd�u� ��x log dd�u� ��gB�u� ����

Since f �x��u� �� and �
�x
f �x��u� �� have the same smoothness properties as 	�u� �� uniformly

in x we obtain from Lemma A�� with straightforward calculations
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tr
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�x���
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�

�x
U

�x�
T
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��

Z �

�

Z �

��

�
dX

j��

log dj�u� ��

	
d�du �O�T�� ln�� T �

	



��

Z �

�

Z �

��

log det f�u� ��d�du �O�T�� ln�� T �

uniformly in x which implies the result�
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