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Abstract

A new approximation to the Gaussian likelihood of a multivariate locally sta-
tionary process is introduced. It is based on an approximation of the inverse of the
covariance matrix of such processes. The new quasi-likelihood is a generalisation
of the classical Whittle-likelihood for stationary processes. For parametric models
asymptotic normality and efliciency of the resulting estimator are proved. Since the
likelihood has a special local structure it can be used for nonparametric inference
as well. This is briefly sketched for different estimates.

1 Introduction

Suppose we observe data Xi,..., X7 from some nonstationary process and we want to
fit a parametric model to the data. An example is an autoregressive process with time
varying coefficients where we model the coefficient functions by polynomials in time. If
the process is Gaussian we can write down the exact likelihood function which, in the

case of mean zero, takes the form

1
/Jgf)(e) = -5 Gaussian log likelihood
1 1 1 _
= 3 log(2m) + 57 log det X4 + ﬁilze 'X (1.1)
with X = (X1,..., X7)" (the assumption of a zero mean is given up later on).

However, for most of the time varying models the calculations needed for the min-
imisation of this function are too time consuming. Suppose for example we want to fit

a time varying AR-model to the data where the coefficient functions are polynomials in
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time and where the AR-model order and the polynomial orders have to be determined by
a model selection criterion. Such a model can be written in state space form with time
varying system matrices (cf. Dahlhaus, 1996b) and - in principle - the minimisation could
be done as in the stationary case by using the prediction error decomposition, the Kalman
filter and a numerical optimisation routine (cf. Harvey, 1989, Section 3.4). However, we
usually have a high dimensional parameter space, time dependent system matrices and a
large number of models at hand, which make the calculations practically impossible.

To overcome these problems we suggest in this paper an approximation to the above
likelihood which is a generalisation of Whittle’s approximation in the stationary case (cf.
Whittle, 1953, 1954). In the stationary case ¥, is the Toeplitz matrix of the spectral
density. Whittle had suggested to approximate X5 by the Toeplitz matrix of the inverse
of the spectral density leading with the Szegd formula (cf. Grenander and Szegé, 1958,
Section 5.2) to the Whittle likelihood

£09) = L /j {log A7 fo(N) + Z((i)) } dA

where

1

T

1) Xiexp(—idt)|?
t=1

is the periodogram.

In this paper we derive a similar approximation for processes that only show locally
some kind of stationary behaviour. More precisely we consider locally stationary pro-
cesses as defined in Dahlhaus (1996a,b; 1997), i.e. processes with a time varying spectral
representation as in (2.1) (the exact definition is given in Section 3). For an introduction
to univariate locally stationary processes we refer to Dahlhaus (1996¢).

In Section 2 we motivate the approximation and discuss its benefits in a simplified
setting (univariate processes, mean zero). In Section 3 we introduce multivariate locally
stationary processes and the generalisation of the Whittle likelihood for such processes.

We then investigate the properties of the resulting parameter estimate.



Technically the approximation is based on a special generalisation of Toeplitz matrices
(see (2.2)). The behaviour of norms and matrix products of such matrices is investigated

in the appendix.

2 A motivation for the likelihood approximation

In this section we use a simplified setting to introduce and motivate the likelihood ap-
proximation and to discuss its applications. Furthermore, we compare it to the Whittle
approximation in the stationary case.

Suppose the observed process has a time varying spectral representation of the form

Xor = /_ exp(iM) Ag (% A) dE) (t=1,....T), (2.1)

where () is a stochastic process on [—7, 7] with mean zero and orthonormal increments.
As e.g. in nonparametric regression the time parameter v = ¢/7 in Ay is rescaled for
a meaningful asymptotic theory (this is a special case of a locally stationary process as

defined in Definition 3.1 below). We obtain for the variance covariance matrix ¥,
Z@m = COV(X,,7T,X57T)
- A(r — s)VA <—,)\> A <—,)\>d)\.
[ esmtintr = s (7.0) 4 (5

In the stationary case where Ag(%, A) = Ag(A) does not depend on time this is equal to

[ ewlixe - 930

where fp(A\) = |Ag(A)|? is the spectral density of the process. In the derivation of the
Whittle approximation ¥, is approximated by the Toeplitz matrix

{ = / explid(r - 3)}fe(>\)_1d)\}

-7 rs=1,...,T
In the nonstationary case we have for r, s close to each other and for a function Ay which
is smooth in time

Yo, R / exp(iA(r — s))fs (—TQ—;S,)) d\

Kis
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where fg(u, \) := |Ag(u, A)|? is the time-varying spectral density of the process.

This suggests to use now

(et

as an approximation of X, in the nonstationary case. Since it leads to a slightly nicer

rs=1,...,T

criterion we use instead UT(#fe_l) where

([ (G e e

and [2]* denotes the smallest integer larger or equal to =. Note that Ur(s f, ') is the

classical Toeplitz/Whittle-approximation if f; is constant over time (stationary case).

Using this approximation, i.e.

_ .
291 ~ UT (mfe 1)

and a generalization of Szegd’s formula to the nonstationary case (see Proposition 3.4

below), nameley

1 1 1 ™
Tlog det ¥y ~ g/o /_7r log[27 fg(u, A)]dAdu

we obtain the following likelihood function as an approximation of the exact Gaussian
likelihood £47(8)

T

11 ™ ! 1 B
£90) = 7 Z/ log 472 f; <f,)\> A+ = XU (f; HX.
t=1 YT

The subsitution [“E2]* =, r —s = k yields

T ™ % -1
NUAX = Y XerXor [ explid — )} o (% {H ,A> A

r,s=1

T
7 t
B AT X X jat 1 exp(iMk)dA
;/_W f@(T ) zk: [t+k/2],T<>[t—k/2],T p( )
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where the second sum is over all k such that 1 < [t + k/2],[t — k/2] < T and [z] is the

largest integer smaller or equal to x. Thus,

Ir(5,2)
£ Z/ log 472 fg ~ )4+ T )\)}d)\ (2.3)
where
- 1 .
Ly(u, A) = o >, Xt r/2),r Xpur—ky21,7 eXp(iAk).
\<[uT+k/2),[uT —k/2]<T

[NT(%, A) may be regarded as a local version of the periodogram at time . It was introduced
by Neumann and von Sachs (1997) as a starting point for a wavelet estimate of the time-
varying spectral density. We will call [NT(%, A) the preperiodogram at time ¢.

There exist several nice relations between the preperiodogram and the ordinary peri-

odogram and the above likelihood and the Whittle-likelihood: We have

1

() = 5 ZXrTeXp(—z)\rﬂ
1 T-1 1 T—|k|
= % ) _2(7;_1) T ; Xt,TXt-I—|k|,T eXp(Z)\k) (24)

1 .
2— Zk Xieary2, 1 Xpe—ry2),1 €Xp(1Ak)

T:
>3
t=1 <[t+k/2],[t—k/2]<T
T
73

% |

ﬂl
’\qz

i.e. the periodogram is the average of the preperiodogram over time. (2.4) means that the
periodogram I7(A) is the Fourier transform of the covariance estimator of lag k over the
whole segment while the preperiodogram [NT(%, A) just uses the pair Xpyp/9Xp—k/2) as a
kind of “local estimator” of the covariance of lag k at time ¢ (note that [t+k/2]—[t—k/2] =
k). For this reason Neumann and von Sachs also called [NT(%, A) the localized periodogram.

A classical kernel estimator of the spectral density of a stationary process at some

frequency A therefore can be regarded as an average of the preperiodogram over all time
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points and over the frequencies in the neighbourhood of Ag. It is therefore plausible that
averaging the preperiodogram around some frequency Ag and around some time-point ¢,
gives an estimate of the time-varying spectrum f(%o, A).

For a locally stationary process the preperiodogram is asymptotically unbiased. How-
ever, its variance explodes as T' tends to infinity. Therefore, smoothing over time and
frequency is essential to make a consistent estimate out of it. This smoothing is im-
plicitely contained in the likelihood £¥)(0). Instead of using [NT(%, A) in (2.3) one could
think of using the classical periodogram over some small segment of data around . Such
a likelihood was studied in Dahlhaus (1997). The preperiodogram has advantages over
such an estimate since a classical periodogram always contains some implicit smoothing
over time (even if it is calculated over a small segment) which in the case of time varying
spectra means that some information is getting lost. For this reason the preperiodogram
is a valuable raw estimate, e.g. in (2.3) or for wavelet smoothing as in Neumann and von
Sachs (1997). Another advantage in the context of Whittle estimation is that no segment
length (e.g. for a periodogram) has to be selected.

The above likelihood ,C(TZ)(G) coincides with the Whittle likelihood in the stationary
case: If a stationary model is fitted, then fa(u, A) = fy(A) is constant over time and the
likelihood becomes
% EtT:1 [NT(%v A

fo(X)

Py = i/j{logélﬂfg()\)—l— [

For that reason the results on the asymptotic behaviour of the minimizer of ,C(TZ)(G)
contain most of the results on the classical Whittle estimate as a special case (apart from
our restriction to Gaussian processes). Among the large number of papers we mention
the results of Dzhaparidze (1971) and Hannan (1973) for univariate time series, Dunsmuir
(1979) for multivariate time series and Hosoya and Taniguchi (1982) for misspecified mul-
tivariate time series which follow as a special case from Theorem 3.8 below. A general

overview over Whittle-estimates for stationary models may be found in the monograph of



Dzhaparidze (1986). We also mention the results of Kliippelberg and Mikosch (1996) on
Whittle estimates for linear processes where the innovations have heavy tailed distribu-
tions, of Fox and Taqqu (1986) on Whittle estimates for long range dependent processes
and of Robinson (1995) on semiparametric Whittle estimates for long range dependent
processes. These results however are not a special case of Theorem 3.8.

There is another important aspect of the above likelihood approximation: The likeli-

hood is of the form
1 < ¢
Oy ==S"t1(0, =
0 = 320,

with
t 1 [" t Ir(%, )
lr(0, =) = — log 472 fo( =, A) + —LZ}dA
0.7 = g [ Aowam a0 + S

i.e. ,Cgf)(e) has a similar form as the negative log-likelihood function of iid observations
where (7(0, %) is the negative log-likelihood at time point ¢. In the present dependent
situation £7(6, %) may still be regarded as the negative log-likelihood at time point ¢ which

now in addition contains the full information on the dependence (correlation) structure

of X;r with all the other variables.

To illustrate this we give two examples:

1. Suppose we have the situation of nonparametric regression with heteroscedastic

errors, 1.e. our model is

[ [ ..
Xt,T = m(f) + O'(T)é’ft, E¢ ud N(O, 1),
with m(u) = mg(u), o(u) = og(u). This process is locally stationary in the sense of
Definition 3.1 below. Since the mean is different from zero, the preperiodogram in
(6, %) contains an extra term (see (3.7) below). It is easy to show that in this case
o1 L 1 Lo,
7) = 5 log2mog(7) + m(Xt,T —m(7))

lr(6
0. 7 T
which is exactly the Gaussian log-likelihood.
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2. Suppose

t
—)es, e iid N(0,1),

t
Xir = Q(T)Xt—l,T + U(T

with a(u) = ag(u), o(u) = og(u). Then X, 7 is locally stationary with time varying

spectrum
folu, A) = “32(:) 1 — ap(u)e™]?
leading to
{7(9, i) log 2#0§(i) + 21 ~(Xer —ag(= ! )Xio11)? 4
T T 205(5) T
with

[
re = Q(T)Q(Xt%T - th—l,T)v

ie. Ethl re = O,(1).

The fact that (7(8, ) can be seen as the local likelihood of the process at time ¢ opens
the door for various nonparametric estimation methods. In this situation the model is
parametrized by one or several curves in time (eg. as in Example 3.2).

Recall that several nonparametric estimation techniques can be written as the solution
of a least squares problem, for example for the simple nonparametric regression problem

t
Xt,T = m(—

T)—I—&:

a) a kernel estimate can be written as
—t/T
m(u) = argmm bTT Z K ( / > {Xir —m}?

where K is the kernel and b7 is some bandwidth;



b) a local polynomial fit can be written as

é(u)—argmmbTTZ[ ( t/T> {XtT—zd:c] L _w }2;

where ¢ = (co, ... ,cq)" are the coefficients of the fitted polynomial at time wu;

c¢) an orthogonal series estimator (e.g. wavelets) can be written as

J 2
_ . 1 t
o= argmmf zt: {Xt,T - ; O‘ﬂbj(f)}

O

together with some shrinkage to obtain the final estimator &. Here the ¢;(-) (j =
1

,...,J) denote some orthonormal functions. J usually increases with 7.

Note that the {...}-brackets always contain the negative log likelihood of the param-
eters up to some constants.

Suppose now we have a locally stationary model which is parametrized by one or
several curves in time. By using the local likelihood we may define completely analogous

to above

a) a kernel estimate by

together with some shrinkage of a.



In case of several parameter curves (a vector of curves) 4, the ¢; and the «; are also
vectors. In case of a multivariate process or a process with mean different from zero the
definition (3.6) of (7(0, %) has to be used.

It is obvious that the properties of these estimators have to be investigated in detail.
However, this is quite complicated and would exceed the scope of this paper. We only
want to demonstrate that the likelihood representation may have important applications
in nonparametric estimation as well.

In the next section we prove that ,C(TZ)(G) indeed is a good approximation of the exact
Gaussian likelihood ,Cg«e)(ﬁ). Furthermore, we consider parametric models and prove that
the resulting parameter estimates are consistent, asymptotically normal and efficient.
We do this for a larger class of processes than discussed in this section. In particular,
we study multivariate locally stationary processes and allow the mean to be a function

different from zero which introduces extra terms into the above expressions.

3 Asymptotic properties of parameter estimates

We start with the definition of a multivariate locally stationary process.

(3.1) Definition A sequence of multivariate stochastic processes X; 1 = (Xt(}T), - Xt(flT))/

(t = 1,...,T) is called locally stationary with transfer function matrix A° and mean

function vector u if there exists a representation
t 7 .
Xor = (1) + [ explidnaz vy (3.1)

where

(i) £(X) is a stochastic vector process on [—m, 7] with ,(A) = £, (—A) and

k

cum {déu, (M), .., d€a, (M)} = 1 (Z )\]) hrayoar (A ooy Aot )dAy . d N
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where cum{...} denotes the cumulant of k — th order, h, = 0, hgp(A) = dgp,
1Py oap (At ooy Aot )| < consty for all ay,...,a, € {1,...,d} and (X)) = E;’;_OO d(A + 2mj)
is the period 27 extension of the Dirac delta function.

(ii) There exists a constant K and a 27-periodic matrix valued function A :[0,1] x R —

C™? with A(u,\) = A(u, —A) and

t
sup | A7 p(A)ap — A <T, )\> | < KT (3.2)
£

ab

forall a,b=1,... ,dand T € N. A(u, ) and p(u) are assumed to be continuous in u.

flu, A) == A(u, )\)m/ is the time varying spectral density matrix of the process.

Processes with an evolutionary spectral representation were introduced and investi-
gated by Priestley (1965, 1981). The above definition is the multivariate generalization of
the definition of univariate local stationarity as given in Dahlhaus (1997). This approach
to local stationarity may be regarded as a setting which allows for a meaningful asymptotic
theory for processes with an evolutionary spectral representation. The classical asymp-
totics for stationary sequences is contained as a special case (if ¢ and A do not depend on
t). A detailed discussion of this definition and a comparison to Priestley’s approach can
be found in Dahlhaus (1996¢). Another definition of local stationarity has recently been
given by Mallat, Papanicolaou and Zhang (1998). We remark that the methods presented
in this paper do not depend on the special definition of local stationarity. In some sense
the above definition is only a framework for investigating the asymptotic properties of the
estimates.

Examples of locally stationary processes in the univariate case can be found in Dahlhaus

(1996a). For the multivariate case we give the following examples.

(3.2) Examples (i) Suppose Y; is a multivariate stationary process, pu(-) is a vector
function and X(-) is a matrix function. Then

t t

Xir = M(T) Z(T)Yt

11



is locally stationary. If Y, is an iid sequence we have the situation of multivariate non-
parametric regression.
(ii) Suppose X;r is a time varying multivariate ARMA-model, that is X; 7 is definied

by the difference equations

a7 (i) = > WS

where ¢; are iid with mean zero and variance-covariance matrix I, and @,(u) = W, (u) = I,.
Under regularity conditions on the coefficient functions ®;(u) and W;(u) it can be shown
similarly to the univariate case (Dahlhaus, 1996a, Theorem 2.3) that these difference
equations define a locally stationary process of the form (3.1). The time varying spectral

density of the process is

P A) = {270, A) S0, AV B, )
m
where ®(u,A) = 3%, ®.(u)e™ and W(u,\) = > o U (u)e™. We omit details of the
derivation. However, we remark that in this case the functions A7(\) and A(¢/T, ) do
not coincide. They only fulfill (3.2).

In the following we look at parametric locally stationary models. An example is the
case where the curves in the above examples are parametrized in time, e.g. by polynomials
(for an example see Dahlhaus, 1997, Section 6).

Let X = (X{ 7., Xqp)s 1 = (u(F),... ,/,L(%)’)’, and let the d7T' x dT-matrices
Yr(A, B) and Ur(¢) be defined by

Kis

Sr(A, Bl = [ explidlr = s) AL OB (-AVdA (3.3)

—T

and

Ur(h = [ esptirtr—sns (7 [752] ) (3.4
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(r,s = 1,...T) where A?1(\), BZp()\) and ¢(u, ) are d x d-matrices. Then the exact

(Gaussian likelihood is

. d 1 1 _
,C(T)(Q) = §log(27r) + ﬁlog det ¥y + ﬁ(z_ 1,5 X - r,) (3.5)

where Y5 = Y7(Ag, Ag) and B(X — p)(X — p)' = Xr(A, A) with A from Definition 3.1.
We now proceed as in the univariate case (Section 2) to find a local likelihood approx-
imation. We use a generalisation of the multivariate Szegd identity (see Proposition 3.4

below) and UT(#fe_l) as an approximation of Y7 to obtain

£r(0) = £§0) = =33 [ towlzmdet . 3
+87T12T(X — /ubé,)/UT(fe_l)(X - Ee)
— %2:: i /_: {log [(QW)M det fﬁ(%v)‘):| +tr {fe(%’)‘)_li%e(%’)\)] } A

s (3.6

where

. 1 . o [T + k)2
Boml Y. [ (S22

\<[uT+k/2),[uT—k/2]<T
b o [ uT —k/2] ,
X {X[(u)T_k/QLT —u® (# exp(—iAk) (3.7)
is the multivariate version of the preperiodogram.

In the univariate case and for g = 0 this is the likelihood we have already discussed in
Section 2. We call (7(0, %) the local likelihood at time ¢. If the mean is not zero and one
is not interested in modelling the mean one may use [Néf(u, A) instead of [Néfe(u, A) where [
is the arithmetic mean or some kernel estimate (if the mean is not believed to be constant
over time).

Before investigating the asymptotic properties of the minimizer of L7(8) we prove

some results on the likelihood approximation itself. First we state two results which show
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that Ur({472fs}~1) and Lr(f) are approximations of X' and ,Cg«e) respectively. We also
show that

[
=

= i/ /7r {log det fo(u, N) + tr[fo(u, \) 7 f(u, )\)]} dMdu

e / o) — () £ (0, 0) (o) — p(u))du— (3.8)

is the limit of £r(6) and ,C (

The technical parts of the followmg proofs consist of the derivation of properties of
products of matrices Yr(A, B), Xr(A, A)~! and Ur(¢). These properties are derived in
the appendix. In particular Lemma A.1, A.5 and A.8 are of relevance for the following
proofs.

For convenience we refer in the following proposition to Assumption A.3 in the ap-
pendix concerning the smoothness of the transfer function and the mean. These conditions
are fulfilled under Assumption 3.6 below. By ||A]| and I A I we denote the spectral norm
and the Euclidean norm of a matrix A (cp. (A.1) and (A.2)). ||v]|2 is the Euclidean norm

of a vector.

(3.3) Proposition Suppose the matrices A and ¢ fulfill the smoothness conditions of

Assumption A.3 (i) - (iii) (appendiz) with existing and bounded derivatives 8—228%14(11 A)ab

and eigenvalues of ¢(u, X) which are bounded from below uniformly in w and . Then we

have
F e 7 —urtpast a1 = o ) (3.9)
and
U —Urtano) ) | = o0 nT),

PROOF. Let Y7 = Y7(A, A) and Ur = Up({472AA’}~1). We obtain with Lemma A.1
(b,c) and Lemma A.5

o DA R VS S U RO |

IA

2 1
I((d — Ttr{UTZT} + Ttr{UTZTUTZT})-
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Lemma A.7 (i) now implies the result. The second result is obtained in the same way

with Lemma A.S. O

We now state the generalisation of the Szegé identity (cf. Grenander and Szego, 1958,

Section 5.2) to multivariate locally stationary process.

(3.4) Proposition Suppose A fulfills Assumption A.3 (i), (ii), with bounded derivatives
2 0 S A(u, N)ap. Then we have with f(u, ) = A(u, A\)A(u, =)

52 O\
Tlog det ¥7(A, A) / / log[(2m)* det f(u, \)]dAdu + O(T ™' In'' T).

If A= Ay depends on a parameter 0 and fulfills the smoothness conditions of Assumption
3.6 (iii), (iv), then the O(T~ In"" T') term is uniform in 0.

PRrOOF. The proof can be found in A.9 of the appendix. O
From now on we set V; = W and V2 = 86’?20]‘

(3.5) Theorem Suppose X; 1 is a locally stationary Gaussian process with transfer func-
tion matriz A° and mean function vector p and we fit a locally stationary model with
transfer function matriz A and mean function vector pg. Suppose further that all eigen-
values of fo(u, ) = A@(U,)\)A@(u,)\)/ are bounded from below uniformly in u and A and
the components of A, Ay, u, pg are differentiable with uniformly bounded derivatives

8852 aaAA(u Aab, 8852 aaAAg(u Aab, 8u/,c(u)a, aa—u/,cg(u)a respectively. Then we have
(i)
Lr(0) — LY(0) = Op(T~ 1" T).

(ii) If in addition the first derivatives VjAg(u, N)ap and V;pg(w), fulfill the above smooth-

ness properties, we also have
V,Lr(0) — VL4900 = Op(T ' In? T).
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(ti1) Furthermore,

£(0) = lim ELY () = lim EL7(0)
—+00

T—oo
and

P

L0 5 cw), cr0)5 co).

A similar result also holds for the higher order derivatives of the likelihoods. We
conjecture that also a uniform result (in #) holds and that the log-terms and the Gaussian
assumption can be dropped. However, a uniform result requires much more effort. In order

not to blow up the paper we omit these generalisations.

PROOF. (i) We obtain with Proposition 3.4 and Br := Sr(Ag, Ag) ' —Ur({472A,A}} 1)

1

2T(X p,) Br(X —p,)+O(T ™' T).

Since

1 (X — Ee)BT(X - Ee)

= H(X—p)Br(X —p) (3.10)
+ A (X =) Br(p —p,)

(1 —p,) Br(p — p,)

N =S o) =

_|_

we obtain with Lemma A.8 and ¥ = ¥7(A, A)

B{Lr(0) = £90)) = Smtr{BrS) + gl — 1, Brlp — ) + O(T ™ "' )
= O(T Hnt 7
and

¢ 1 1 /
var{Lr(0) = L7)(0)} = Gt{BrEBrY} + (e — ) BrSBr(p — p,)

= O(T*W®T)
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which implies the result.
(ii) We obtain with Lemma A.8, Br as above and Cr := —Xqp( Ay, Ag) " H{Er(V;Ag, Ag) +
ZT(A@, VJ‘AQ)}ZT(A97 A@)_l — UT(VJ‘{ZLTFQA@A/@}_l)

. 1 1 , _
Vilr(0) = ViLy(0) = (X = 1 Y Or(X = ) = (Vi ) Br(X — ) + O(I" " 1),

2T

Analogously to above we obtain with Lemma A 8
E(V,Lr(0) = v,£9(0) = o(T~ In® T)
and
var(V,Lr(0) — V,£(0)) = O(T~2 1n*" T))

which gives the result.

(i) follows similarly to (i) (use e.g. By = Xr(Ay, Ag)~! in the above derivation). O

Theorem 3.5 (iii) basically gives the asymptotic Kullback-Leibler-information diver-
gence of two multivariate locally stationary processes: If XLT()NQ’T) are multivariate lo-
cally stationary with spectral densities [ = AA’(]E = A;l/), mean functions p(f) and
Gaussian densities ¢(g), then we obtain for the information divergence

1

T—oo T

= —/ / {log det[f(u, A) f(w, )7 4 te[f(u, \) 71 f(u, A) — 1] }dAdu
+ (/1() p(w))' F(u, 0)7 () — p(w))du.

47

This is the time average of the Kullback-Leibler divergence in the stationary case (cf.
Parzen, 1983, for the univariate stationary case with mean zero).

We now study the behaviour of

Op = argmin L7(6).
0c©
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Furthermore, let

fo := argmin L(9).

6co

The results are proved under the following assumptions.

(3.6) Assumption (i) We observe a realisation Xj r,..., X7 r of a d-dimensional sta-
tionary Gaussian process with true mean function vector g and transfer function
matrix A and fit a class of locally stationary Gaussian processes with mean function
vector py and transfer function matrix Aj, § € © C R?, © compact.

(ii) 6o = argmin £(9) exists uniquely and lies in the interior of ©.

(iii) The components of Ag(u, A) are differentiable in 6, « and A with uniformly continuous

derivatives Vé%%Ag(u, A)ab-

iv) All eigenvalues of fg(u, \) = Ag(u, M) Ag(w, —A) are bounded from below by some

(iv) g Jo(u, ) (u; A)Ag(u, —A) y
constant €' > 0 uniformly in 6, v and .

(v) The components of A(u, ) are differentiable in « and A with uniformly bounded
derivatives %%A(u, A)ab-

vi) The components of p(u), pug(u), Vips(u) and VZug(u) are differentiable in u with

p(u), p M il

uniformly bounded derivatives.

In the case where the model is correctly specified, i.e. A(u, A) = Ag«(u, A) and p(u) =
o« (u) with some 6 € © one can show that 6, = 6*.

(3.7) Theorem Suppose that Assumption 3.6 holds. Then

N

or 5 0,

PROOF. The basic idea is taken from Walker (1964), Section 2. In Theorem 3.5 (iii) we
have proved that
Lr(0) 5 £(9).

18



Since §, is assumed to be unique it follows that for all #; # 6, there exists a constant

lim P(Ly(0,) — L7(00) < c(0;)) = 0.

T—o0

Furthermore, we have with a mean value
ET(GQ) — ,CT((%) — ((92 — 01)/V,CT(g)

where (cp. (3.10))

Vilz(®) = %TZ/W { Aol A 1}d)\
+87T12T(X_E@)/UT(vifév_l)(X_Ee) (3.11)
(S, U X = )

= 87r12T(X — g)’UT(Vifg_l)(X — 1)
+4 12Tv {(M Me)UT(fe )}(K-g)—l—const. (3.12)

with a constant independent of X (but dependent on # and T'). With the Cauchy-Schwarz
inequality and Lemma A.1(h) we get

F (Vi Y Ur(f7)(X ~ 1)
1

T S O Vi) (5 = U )}

1 12 (9 9 1/2
< {qimmlz} " {20+ Znglz} 1o

which by Assumption 3.6 and Lemma A.5 is uniformly bounded by

IA

. 1
K+ K fHXH%-
Similarly, we can estimate the other terms in (3.11) leading to
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1

sup |Lr(02) — Lr(01)] < K6(1 + =X'X)
0 €Us(01) T

with some constant K. Since EZX'X = Z||ull3 — Ea lfo fta(1)?du and varzX'X =

Str{E?} < 2|81 < & (Lemma A.1 and A.5) T7'X'X is bounded in probability. Thus

there exists for all 6; # 0y a ¢(0;) > 0 and a § = §(0;) with

lim P( inf ,CT((%) Lr(8) > ¢(01)/2)

T—oco f,eUs(0,

> 1 Th_r}{)lo P(,CT((%) — L7(0y) < c(by)) — hm P( sup |Lr(8y) — Lr(61)] > ¢(01)/2)

oo G,€Us(61)
= 1.

A compactness argument as in Walker (1964) implies the result. O

(3.8) Theorem Suppose that Assumption 3.6 holds. Then we have

VT (07 — 05) 5 A0,V

with
%/01 /_7r tr{(f = foo ) Visfg, } drdu — i /01 /_7r tr { (Vifoo )(Vif3,!) } dAdu
[V 0 = ) (0 0) i) = )}
and
1 Lo .
Vi = —/ | LS (V) o

/ / [ {(ga(0e) = ey () F521 (0, 0)}] £(20,0) [V { £521 (0, 0) (1) — gy () }] .
PRrROOF. We obtain with the mean value theorem
ViLr(0r) — ViLr(0o) = {V2Lr(05)) (07 — 00)}:

20



with |0¥) —bp| < |éT—(90|(i =1,..,p). If éT lies in the interior of © we have V,CT(éT) = 0.
If O lies on the boundary of O, then the assumption that 6, is in the interior implies
|éT — 0| > 6 for some § > 0, i.e. we obtain P(\/T|V£T(éT)| >e) < P(|éT — 6| >6) =0
for all € > 0. Thus, the result follows if we prove

(i) V2L (04)) — V2L (05) 5 0

(ii) V2Lr(6o) Ar

(iii) \/_V,CT((%) — N(0,V).

We now obtain from (3.11)

T 7

11
2 f— _—
vieo) = —ppd [

tr{fe(%,x)v;fe(%,x)—l} I\ (3.13)
; T
_%%Z/_ tr{vifé’(%v)‘)v]fé’(%v)‘)_l}d)‘

t=1 4
1 _
g (X i UV )X~ )
1

o (Vi) Ur (F7 ) (Vi)

1

_47T2T(viﬂe)/UT(vjf€_1)(X 1)
1

— o (Vi Ur (Vi (X — )
1

_47T2T(Vi2]‘E9)/UT(f€_1)(X 1)

To prove (i) we have to consider the above terms separately. The assertion is obvious for
the first and second term. Let 07 = 0¥). The remaining terms of (3.13) can all be written

as sums of expressions of the form

1 1, 1,
TXUeX fngeX or TZwUé’Zze (3.14)

with Uy being equal to Ur(f; "), Ur(Vify ") or UT(ijf@_l). Lemma A.5(iii) implies ||Us.. —
Us, || — 0 in probability. Furthermore, %Hg@T — g, ||3 = 0 in probability. This implies for
example with the Cauchy-Schwarz inequality
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1 1

1 1
< T (Zé’T - Z6’0)/‘497“X| + T|Z€0 (Aé’T - A90 )X|

1/2

1 1 1/2
< 7 sy = vaol BIXIZ} 1 Aer |+ =5 Ll IZ1XI5} 7 1Ay — Agol-

As in the proof of Theorem 3.7 we have that +||X]|3 is bounded in probability. Further-
more, ||Ag,|| is uniformly bounded by Lemma A.5 (iii). Therefore, the above expression
tends to zero in probability. The other two expressions of (3.14) can be handled similarly
which implies (i).

(ii) It follows from (3.12) (or from (3.13))

Vikr(0,) = &%T(i— 1) Ur(VEf7 )X — )
1
—I_mvfj{(ﬁ B Ee)/UT(fe_l)}(X — ) + const.

and therefore (note that X is Gaussian)

var(ViLr(0,)) = 32;—4T2tr{UT(v}; FHEU(VEfE)
1
+ 1677472 [VZQJ{(M - Mé’o)/UT(fe_ol)}]Z[Vizj‘{UT(fev_ol)(M - M&o)}]-

Lemma A.7 shows that this is of order O(T~!). To calculate EV%,CT(GO) we consider
again all terms of (3.13) separately. The expectation of the third term of (3.13) is

1
&m2T

o (UL 4 i~ 1) U (VS - ) (39)

The first two terms of (3.13) together with the first term of (3.15) tend with Lemma A.7
to the first and second term of I';; and the expectation of the last four terms of (3.13) and

the last term of (3.15) converge with Lemma A.7 to the last term of I';; which proves (ii).
(iii) We use the method of cumulants. We have
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o=vLm) = g / | = sav i
+ %/0 VZ(MH(U) - M(u))/fe_l(% 0)(Mg(u) — M(U))du

It follows from (3.11) and Lemma A.7 that EV;Lr(6y) converges to the same expression
with rate O(T~'In’ T'), i.e. we have

VTEV L1 (8s) = o(1).
Furthermore, we get from (3.12)

T'cov(V;L(0o), ViLr(6s))

= 32714Tt1’ {U(Vi i) 2U2(V )2}
i [V { e O 2[5 {0}

Lemma A.7 implies that this tends to Vi;.

_|_

To study the higher-order cumulants we see from (3.12) that V;Lr(6y) can be written

as

1
Y'AY + ——v.BY + const.

L1 (60) =
Vilr(0o) Ry Ar2 T~

where FY = 0. The cumulants of order > 3 of the v, BY -terms are zero, while the mixed
cumulants of the Y'A,;Y and géBZ—terms are nonzero if and only if there are exactly two

v;BY -terms involved (this follows from the product theorem for cumulants, cf. Brillinger,

1981, Theorem 2.3.2, EY = 0, and the normality of Y).
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Therefore, we obtain with the product theorem for cumulants
Té/zcum(vil,CT(Go), ceey ViZL‘T(GO))

¢
- o177 Z tr{HEUT(V]‘kfe_l)}

(J15ee0de) k=1
permutation of

(i1,-vic)

-1
+CTT N v B {H D UT(ijfe_l)} SBy,,.
(J15ee50) k=2
permutation of

(i1,-vi¢)

Lemma A.l implies that all terms are of order O(T~%?*!). Therefore, the theorem is

proved. O

(3.9) Remark (i) Theorem 3.8 contains the asymptotic distribution of the Whittle-
estimate in the stationary case as a special case (if f, fs,, ¢ and pg, do not depend
on u). The result for the classical Whittle-estimator is obtained if in addition p = g =0
and f = fs,. Theorem 3.8 also gives the asymptotic distribution in the case where a sta-
tionary model is used with the classical Whittle-likelihood but the process is only locally
stationary.

(ii) The matrices I' and V' from Theorem 3.8 simplify in several situations, in particular
when the model is correctly specified (f = fs,, ot = pg, - cf. Remark 3.11 below), when
a stationary model is fitted (fy and pg do not depend on w), and when the parameters
separate. For univariate processes this has been discussed in Dahlhaus (1996b, Remark

2.6 and 2.7) in the context of univariate maximum likelihood estimation.

The technical results proved in the appendix also can be used to derive the asymptotic

properties of the exact maximum likelihood estimator

07 := argmin ,Cgf) (9).
(=]
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(3.10) Theorem Suppose that Assumption 3.6 holds. Then we have
VT (07 —0,) B A0, 7'V
with I' and V' as in Theorem 3.8.

PROOF. By using Lemma A.5 (ii) and Lemma A.8 (with V, = I';! for all /) the result can
be proved in the same way as the result of Theorem 3.8 (cp. also Dahlhaus, 1996b, Theo-
rem 2.4, where the asymptotic normality of the univariate maximum likelihood estimator
has been proved by a slightly different proof method). Note, that first the consistency of
the estimate has to be established. We omit details.

(3.11) Remark In the correctly specified case (f = fo,, 1 = pg,) it is easy to see that
V =T with

1T e
Iy = E/o /_7r tr{ fo.(Vifo, ) fo.(Vifs )} dAdu + g/o (Vipta, () f5,! (u, 0)(Vipto, (w))du.

In that case both estimates are asymptotically efficient. One way to see this is to prove
an LAN-expansion and to show that \/T(éT —0,) and \/T(éT —0,) are equivalent to the
central sequence. For univariate processes and the MLE 07 this has been done in Dahlhaus
(1996b, Theorem 4.1 and 4.2). By using the technical lemmata of this appendix the LAN-
property and the efficiency of both estimates can be derived in the same way as in that

paper. We omit details.

A Appendix: Norms and matrix products of generalized Toeplitz matrices

In this section we study the behaviour of the matrix Uz(¢) in some detail. In particular, we
prove that Up({4m2f}~") with f(u, ) = A(u, \)A(u, =) is a reasonable approximation
of the inverse of ¥r(A, A). The results of this section are frequently used in Section 3.
There are a few similarities to Section 4 of Dahlhaus (1996a) where we have constructed

a different (less precise) approximation of the inverse of (A, A).

25



Suppose A is an n X n matrix. We denote by

A A=Az \ '
R T (A1)
vecn [ secn \ T
= [maximum characteristic root of A*A]'/2,
where A* denotes the conjugate transpose of A, the spectral norm and by
4] = [tx(aar) (A2)

the Euclidean norm of A. If A is a real positive semidefinite symmetric matrix, i.e.
A = P'DP with PP' = P'P = [ and D = diag{\,...,\,}, where A\; > 0, then we
define A2 = P'DV2P_ where D'/? = diag{\/A1,...,v/An}. Thus, A2 is also positive
semidefinite and symmetric with AY24'/2 = A. Furthermore, A='/2 = (AY2)=1 if A is
positive definite.

The following results are well known [see, e.g., Davies (1973), Appendix II, or Graybill
(1983), Section 5.6].

(A.1) Lemma Let A, B be n x n matrices. Then
(a) lt(AB)| < Al |B].

o) Tasl <ja)lsl,

(¢) laBl <Al

(@) 1Al < Tal < vallall,

(e) [AB| < | AlllBI,

(1) AI* < (sup; 3272 lai)(sup; 320 fasi]),

(9) Al = sup,een
(h) |a*Az| < a*z||A|], z € C",

(i) logdet A < tr{A — I} for A positive definite.

~— Nl

~—

z* Ax :
W‘ for A symmetric,

Suppose now that the elements of A are continuously differentiable functions of 8. Then
(j) ZA'=-AT1(ZA)AT,
(k) Zlogdet A =tr{A"'ZA}.
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Furthermore, let Ly : R — R, T' € R, be the periodic extension (with period 27) of

Y )__{ T,Ja| < 1/T

L7 (o
1lal, /T < Ja] < .

Properties of Ly(«) are listed in Dahlhaus (1997, Lemma A.4). We remark that we have

with a generic constant

K
/ Ly(a)da is monotone increasing in T,
—T

LT(Oé) S QLT(QOé),

/7r Ly(f —a)Lr(a+v)da < KLyp(8 4 v)inT,

Kis

/ Lr(a)fda < KTFnT =1,

Kis

Let

Ar(A) = Z exp(—iAr).

r=1

Direct verification shows

|IAT(N)] < wLp(N).

(A.2) Lemma (i) Let :]0,1] — C be differentiable with bounded derivative.

> () exp(=id) = @(DAT() + Ofsup [ (u) Lr()

= O(Lr())).

The same holds if (%) is replaced on the left side by .1 with
sup, |1 —(7)] = O(T71).
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(ii) Suppose 1 : [0,1]F — € has bounded derivative M Then

By - Oug
T
Z ;b(;—l, >exp( Z)\ m)‘

T geeey T’kZI

i 0"
< Ksup sup sup |m————5—
<k {iryicbC{l k) w | O - auu

PROOF. (i) Summation by parts gives

> vlpexn(-in) == - () - 600 b A0 + p0ar(Y

r=1 r=1
which implies with (A.7) the result. (ii) Let D; be the difference operator with respect to

the j —th component, i.e. D;p(%, ..., %) = ;/)(%,...,TJT_l,TJ;I, ML) (B ).

Then we obtain with repeated partial summation and the convention ¢(u) = 0 for

u ¢ [0,1]*

T1geeey T’kZI j:l
d r r
. k 1 k
SN EY <D1 Dyt <T" ,T>>HA,,J()\])
1y =1 7=1
We have
Dy...D (— )‘ =Pt gy | — L
‘ 1D (g P | G
where {i1,... 1} = {i|r; # T}, leading to the result. |

(A.3) Assumption

(i) Suppose A : [0,1] x R — €% is a 27-periodic matrix function with A(u,\) =

A(u, —X) whose components are differentiable in « and A with uniformly bounded

Bu O
sup; \ [A7 7(Nab — A(F, A)ap| < KT for all a,b € {1,... ,d}.

derivatives =2 A, Afp iR — C**4 are 2mw-periodic matrix functions with
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(ii) Suppose in addition to (i) that all eigenvalues of A(w, \)A(u, )\)/ are bounded from
below by some €' > 0 uniformly in u and A.
(iii) Suppose ¢ : [0,1] x R — €% is a 27-periodic matrix function whose components

are twice differentiable in u and differentiable in A with uniformly bounded derivative

22 9
5uZ X"

(iv) Suppose the components of x : [0,1] — R? are differentiable with uniformly bounded

derivatives.

(A.4) Remark All results stated in this appendix are uniform in the sense that the
upper bounds depend only on the bounds of the involved functions A, ¢ and p and their

derivatives and not on the particular values.

(A.5) Lemma
(i) Suppose A and B fulfill Assumption A.3 (i) and the components of ¢ are differentiable

with uniformly bounded derivative 2Zdq,. Then we have
1X7(A, B)|| < Cy
and
1Ur()]| < Cy

with some constants Cy, C,.

(ii) More precisely we have under Assumption A.3 (i)
I1S2(A, A)|| < 27 sup || A, A)A(u, XY || + Cao(1).
Uy A

where C'4 is a constant depending on the upper bounds of A and its derivatives. If in

addition A fulfills Assumption A.3 (ii) we have
[20(A, )7 < (2minf Abif (1, A) + Cao(1))™
where )\ﬁi (u, A) is the smallest eigenvalue of A(u, \)A(u, )\)/.
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(tii) If ¢ is symmetric and fulfills Assumption A.3 (iii) we have
1T (@)l < 27 sup [lg(u, M| + Coo(1)

where Cy is a constant depending on the upper bounds of ¢ and its derivatives. If
in addition the smallest eigenvalue )\iﬁn(u,)\) of d(u, A) is uniformly bounded from

below, then

min

U2(6) 1 < (2 inf Ay, X) + Cao(1) .
PRrROOF. (i) Lemma A.1 (f) implies

Ur(@ <dTes s | [ oluAmesplidr)di| + K
a,b Eu{GI[(j’.l]. .,d}

The smoothness conditions then imply the result (cf. Dahlhaus, 1996a, p. 156). The
upper bound for ||X7(A, B)|| is obtained in the same way.

(ii) follows for d = 1 from Lemma 4.4 of Dahlhaus (1996a). In the multivariate case the
proof is completely analogous to that lemma. We omit the details.

(iii) The bounds for ||Ur(¢)|| and ||[Ur(¢)™Y|| can be established in exactly the same way
as the bounds for ||Xr(A, A)|| and [|E7(A, A)~!|| by a straightforward generalisation of

Lemma 4.4 of Dahlhaus (1996a). We omit the details. a
In the proof of Lemma A.7 we frequently make use of the following result.

(A.6) Lemma Suppose A and B fulfill Assumption A.3 (i) and ¢ fulfills Assumption
A.3 (iii) with d = 1. Then we have

> 6 (1[5 2) Aaton Bt esp 3 05 a0

Z 10 (%, )\> A <%, )\> B <%, —)\> exp{—i(A —y1)s —i(ya — A)r}
b O(Lr(2A — 290)) + O(Le(29, — 2)
= O(Lr(2) — 290) (29— 20)
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PrOOF. We start by replacing A 7(71) by A(F,71). Lemma A.2 (i) and (A.4) imply

1 |r+s
T
which gives a replacement error of K L7(2y2 —2A). In the same way we replace By 7(—72)

by B(%,—72). We then replace qb(%[r";]* A) by &( 7’2"'TS, A). For r + s even those two are

|/ 3) Batom) explitn = A} < KLa(e - 24

the same. The replacement error therefore is (r = 2k, s =20 — 1)

S () o () () o (7 )

cexp{—i(A — )20 — 1) — (v — A)2k} 4 a similar term.

Since ¢(2 ;HT'Z JA) — qb(%,)\) = %[auqb(k“ A) + O(T71)] we get with Lemma A.2
(i) that this expression is bounded by K L7(2A — 2v1). Finally, we replace A(%,71) by
A(%,A) with a replacement error of K|A—~1 [Lr(A—~1)Lr(y2 —A) < K Lp(2v, —2)) (by

using Lemma A.2 (ii)). Similarly, we obtain K Ly(2X — 2v,) as the replacement error for

T

replacing B(%, —y2) by B(%, —A) which leads to the first equation. The second equation
then follows with Lemma A.2 (ii) and (A.4). O

(A.7) Lemma Let k € N, Ay, By fulfill Assumption A.3 (i), ¢¢ fulfill Assumption A.3
(iii) and /,Ll,/,eg fulfill Assumption A.3 (iv). Then we have

(i) —tr{H Ur(0)S7(Ae, Be)}

(2m)2- 1/ / tr{qug w, \)Ag (1, N) Be(u, —A) YdAdu + O(T = In** =1 Ty,
- =1

(it) TMIT{H Ur(0)Sr(Ae, B)YUr () par

k—1

:(27r)2k—1/0 /«LI(U)I{HQbé(u,O)Az(u,O)Bg(u,0)/}¢k(u,0)ﬂ2(u)du+O(T—l1n2k—1 T).
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Remark. If ] is the d x d identity matrix then %ZT([N, ]N) = %UT(IN) is the dT x dT

identity matrix. Therefore Lemma A.7 also give the asymptotic expressions for

1 i 1 -
i {E S ( Ay, Bz)} and Tt {g UT(@)}

and more general for the trace of an arbitrary product of ¥¢’s and Ur’s.

PROOF. (i) We give the proof for k = 1 and afterwards for general k > 2. We have

—tf{UT(éb)ET( B)}

PN RICIE

a,b,c=1
which by using Lemma A.6 and (A.6) is equal to

F S [[o(SE) 4G, B () et =~

a, C

) A B e li = )0 - )i

E T~ 'InT).

Integration over v now gives the result.
To simplify notation we use in the rest of the proof the "trace”-notation keeping in
mind that in the calculation of remainders usually the individual components have to be

considered. For k£ > 2 we then have

where 411 = r1 and Agy1 = A;. Application of Lemma A.6 together with (A.5) and (A.6)
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shows that this is equal to

Z/ﬁmwwww@ww%mﬁ

.....

k
X exp { —1 Z ’YJ s+ (’Yj - )\j+1)7“j+1]} dAdv + O(T‘l 1n2k-1 T),

=1

Integration over all v; shows that this is equal to

z/ﬁh%ﬂmwﬁMMWww

T yeees rp=1
X exp {— Z()\j - )\j+1)7“]‘+1} d\ 4+ O(T~ In?*1 1),
7=1

We now replace the argument A\; in ¢, Ap and By_y by Ax_1. The replacement error is

of the form

Z / /%/JA eXp{ zk:()\j — AHl)er} d)

7’1 ..... rp=1 7=1

where sup,, |8u11878w@/)(u)| < K| Mg — Ay for all {4y, ...,4,} C{1,....k}, i.e. we obtain for

the replacement error with Lemma A.2 (ii) and (A.6) as an upper bound

/ /|)\k—)\k1|HLT Ai_1)d\ < KT7'In* ' T

In the same way we successively replace all A; by A; and integrate finally over A,, ..., A;

which proves the assertion.
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(ii) The proof of (ii) is completely analogous to (i). We therefore only give a brief sketch
for the case &k > 2. We have

%MllT {1:[ Ur(¢;)Xr(A;, BJ‘)} Ur(éx)par

7=1
1 T a T] —|— s * ] )
—= T Z qu] )\ A] 5] (Vj)Bj,qu.l,T(_ﬁyj)
aaET
1 [rr + sg - Sk
X Py, (T [ 5 ] 7)\k> 12 <T>
k—1

J=1

X exp R —1t [(Aj — )85 + (37 — Ajp1)rjgr] + tAr — i)\ksk} dMd~y.

We now use similar replacement steps as in (i) (note that Lemma A.6 also holds if e.g.

Bf7T(—72) = p1( %) and 7, is set equal to zero) which leads with s; = rrq; to

(QW)H% Z / /Ml r—l {H ¢, (r] Ll j) A; <rj7+la/\j> B; <ro+17—>\j+1>}

T geeey T’k+1 1

E—1
rk —I_ rk rk M . .
X Oy, (T“, )\k> I < TH) exp {z)qu —1 ;()\]‘ — A1) — l)\mH} d)\
—|—O(T_1 In2+-1 T).
As before we now replace all A; by A; and finally Ay by 0 leading to the result. 0

(A.8) Lemma Let k € N and {I1,..., L4} be a partition of {1,... ,k}. Let the matrices
A, Be (for 0 € 1) fulfill Assumption A.3 (i), Cy (for € € I3) fulfill Assumption A.3 (i),
(it) with bounded derivatives 822 aACf(u Nab, Q0 (for 0 € 15U 1y) fulfill Assumption A.3
(ii1) with eigenvalues (for { € 14) that are bounded from below uniformly in u and X, and
s o fulfill Assumption A.3 (iv).
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Let further

Vi = Xr(As, Be), Yo(u, A) = 2w Ag(u, A) Be(u, —X) (t € ),
Vo= S0(Cr, Co)™h whe(u, N) = 2C(u, =X)L C(u, )™ (€€ L),
Ve = Ur(de), Ye(u, \) = 21 de(u, A) (L € L),
Ve =Ur(é)™ Ye(u, A) = 5-de(u, A) 7 (L€ I4)

Then we have

(1)
%u{klvg} 27T/ / tr{HWuA }d)\du—|-0( T~ n® 1T,

T/,LIT {H }ILLQT = / {H;/}g (u,0 } (u)du 4+ O(T lln6k_1T).

ProOOF. (i) Let j = |I3| + |I4]. More precisely we prove the result with the rate
O(T~ n?*+4=1). TFor j = 0 the assertion follows for all k& from Lemma A.7. Sup-
pose now the assertion holds for all £ and some fixed j. Consider the case 5 + 1. By

(i)

renumbering the V, we can assume that k € I, U 4. Suppose k& € [,. We approximate
Vi = X7 = S0 (Cy, Cr) ™ by U= Ur({4=%C.C,}~Y). We have with Lemma A.1, Lemma
A.5 and Proposition 3.3

Pl ()
- e{ () - om0

1 <12
< (H HVzH) ISl s =01 = orn'T).
=1

This implies the convergence with rate O(T ™ n2*+2+4-1) = O(T 12 +4+D=1) which
gives the result. If k € I, the result is obtained in the same way by using the second

equation of Proposition 3.3. (ii) follows similarly. a
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Technically, Lemma A.7 and Lemma A.8 are the key results for proving the asymptotic
properties of the local likelihood estimator and of the exact MLE as done in Section 3. For
I = {{|l even}, I, = {{|{ odd}, Is = I, = ) Lemma A.8 is a generalisation of a central
result for Gaussian stationary processes to the locally stationary case (cf. Taniguchi, 1983,
Theorem 1). Note, that it is not very difficult to improve the rate [n®*~!T in the above

lemma.

(A.9) Proof of Proposition 3.4 We replace Y7 := Y7(A, A) by Ur := Up(AA"). We
obtain with Lemma A.1 (i)

1 1 1 _ _
|T log det Y7 — T logdet Urp| = |T log det ZTI/QUTZT1/2|
1 1
< maX{Ttr(Z}IUT - 1), Ttr(UT_IZT — 1)}

Lemma A.8 yields that both terms are of order O(T~*{n!'T). Since f(u, ) = A(u, \)A(u, )\)/
is symmetric and positive definite there exist an orthonormal matrix B(u, ) and a diag-

onal matrix D(u, ) = diag{dy(u, \), ... ,ds(u, \)} with positive d;(u, \) such that
flu, \) = B(u, \)D(u, \)B(u, \)'.
Now let = € [0,1] and
FO(u, A) = B(u, \) D@ (w, \)B(u, \)’
with
D (u, \) := diag{dy(u, \)*,... ,ds(u,\)"}.

We have Up(fV) = Ur and Up(f©) = 271 where I in the dT x dT identity matrix. We
therefore obtain with U;x) = UT(f(x))

1 1
Tlogdet Yr = Tlogdet Ur + O(T~Hn'T)

1 1
= & g log det U;x)dx + log(Zw)d + O(T_llnHT)
0 x
L w19
— —/ tr {UTQU —UTx ] dr + log(Zw)d + O(T_llnHT).
T Jo Ox
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FPurthermore

a (x) - i . a (x) l T—|—S %
SV = [ exptidtr = )2 P

Kis

with

ag @ (w, \) = B(u, \)diag{d; (1, \)® log dy (u, A), ... , dg(u, \)® log dg(uw, \)} B(u, \)'.
T

Since f(*)(u, \) and aa—l,f(l’)(u, A) have the same smoothness properties as ¢(u, A) uniformly

in x we obtain from Lemma A.8 with straightforward calculations

1 N I R .
i [Up 18_1; ;1 — ﬁ/o /_W{;logdj(u,)\)}d)\du—l—O(T n™ )

1 1 ™
= - / / log det f(u, \)dAdu + O(T~ 1n'' T)
™ Jo -7

uniformly in @ which implies the result. O

Acknowledgement. The author is grateful to M. Sahm for correcting a mistake in the

proof of Proposition 3.4.
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