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In this paper we deal with the problem of fitting an au-
toregression of order p to given data coming from a station-
ary autoregressive process with infinite order. The paper is
mainly concerned with the selection of an appropriate or-
der of the autoregressive model. Based on the so-called final
prediction error (FPE) a bootstrap order selection can be
proposed, because it turns out that one relevant expres-
sion occuring in the FPE is ready for the application of
the bootstrap principle. Some asymptotic properties of the
bootstrap order selection are proved. To carry through the
bootstrap procedure an autoregression with increasing but
non-stochastic order is fitted to the given data. The paper
is concluded by some simulations.
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1. Introduction

In this paper we deal with observations Xi,..., X, which are realizations of an infinite
order autoregressive model (AR(oco)-model) of the following type

Xt:ZaZXt—Z+€t7 tEZ:{O,il,iZ,}

=1

The process (g, : t € Z) consists of independent and identically distributed (i.i.d.) real
valued random variables on a probability space (€2, A, P) with (cumulative) distribution
function F. Furthermore we assume

Ee =0, Eej=0"€(0,00) and Eef < oo .

The parameter a = (ay : £ € IN), IN = {1,2,...}, is absolutely summable and the
generating function 1 — 52 a,2* has no zeros in the closed complex unit disk. More
formally, j(a) = (1,—ay, —ag,...) € * = {b € RNe : ||b|, = 372, 1be] < 0o}, INg =
INU{0}, and j(a) is invertible in /! with respect to the convolution (bxc), = Z?:o bico—j .
If a = j(a)~' denotes the inverse of j(a) with respect to convolution, then the process
X = (X;) allows the following representation as an infinite order moving average process



(MA(o0)-process)
thzaégt—fa tEZ,
£=0

where ap = 1 and the coefficients ay, £ > 1, can be computed recursively from the
convolution equation Z?:o oja—; = 0.

The paper is devoted to the problem of fitting an autoregression of order p (AR(p)-
model) to the given set of data Xi,..., X,. We start with a brief but careful study
of the final prediction error (FPE). We obtain that one of two relevant terms is ready
for an approximation through the bootstrap principle. In contrast to the construction of
usual order selection procedures (e.g. FPE- or AIC-method), which heavily depend on the
kind of the involved parameter estimator (mostly the usual Yule-Walker estimator or the
closely related least squares (LS) estimator), the bootstrap approximation is open for other
parameter estimates. This takes care of the fact that the more precise we can estimate
the parameter of an AR(p)-approximation to the given data the higher we probably want
to choose the definitive order to obtain a more precise fit. In this context we think of M-
estimators or ML-estimators for non-normally distributed situations or so-called adaptive
procedures.

The bootstrap procedure is based on a preliminary autoregressive approximation with a
non-stochastic order po(n) converging to infinity. The reader who is interested in a more
complete theory for the bootstrap procedure in this AR(oco)-setup is referred to Kreiss
(1988, 1997) and Biithlmann (1997).

The paper is concluded by some simulation results. There the properties of the bootstrap
version of FPE are compared with the AIC-method.

2. An Approximation of the Final Prediction Error

In this section, we derive an approximation of the well-known FPE-criterion function
which is of an appropriate form to apply the bootstrap. Here, we sometimes use heuristic
arguments just to motivate this approximation. A rigorous formulation of the asymptotic
properties of the order selection procedure, based on this approximation, is postponed to
Section 5.

The optimal parameter of a fitted autoregression of order p is defined as

_ - T ?
a(p) = aremin £ (X = e(p)" Xiea(p)

where X;_1(p) = (Xi1,..., Xy )T If 3, = EX; Xy, , h € INg, denote the autocovari-

ances and

P(p) = (Wit i 6d = Lovoup) and 3(p) = (1yees )



then a(p) is given by the Yule-Walker equations

a(p) = T(p)""(p). (2.1)

We note that under our assumptions on the parameter a the (p x p)—matrix I'(p) is always
positive definite, I'(p) and T'(p)~" are uniformly bounded in p € IN with respect to the

operator norm ||B|| := sup{||Bz||, : ||z]], := (fo)% = 1} and for the autocovariance
function v = (7, : h € INg) we have v € (*.
On the basis of the given observations Xi,..., X, suppose that we have an estimator

a(p) = (a(p),... ,&p(p))T of a(p) for all p up to a maximal order p(n). The FPE idea
suggests to choose the order for the definitive autoregressive fit as

Y _ T 2
Fo(n) = axgmin BXEY (Y= a(p)"Yia(p) (2.2)

where Y is an independent copy of the time series X. As the number of observations n
tends to infinity, the maximal order p(n) is also supposed to converge to infinity. Following

Shibata (1980) we obtain
Fon) = argmin {o* + la - a(p)lly

1<p<p(

i(p) — a(p) i}
() = alp) ) -

where I' = (v, : 1,7 € IN), H:L'H% = 27 Bz and, for the sake of simplicity, a(p) also
denotes the (*-vector (ai(p),...,a,(p),0,...) filled up with zeros. Note that Py(n) is a
deterministic but not computable quantity. Now the idea is to estimate both parts of the
FPE. Let us start with the first expectation

E (X = a(p)" X, (p) = 70— 20(p) () + (Pl - (2.3)

If we denote by 4 any consistent estimator of the autocovariance function + (we will see
later that 4 need not be the empirical autocovariances) this expression can be estimated

by

= argmin {E (Xt —a(p) Xt—l(p))

1<p<p(n)

S0 = 2a(p)"4(p) + [la(p)I}, )

Next we intend to plug in a further estimate, namely estimators a(p) for a(p). As the
optimal parameters a(p) correspond to the autocovariance function ~ through the Yule-
Walker equations (2.1), the same should hold for the estimators a(p) and 4 belonging to
them, i.e.

C(palp) = 4(p), 1 <p<pn). (2.4)

Obviously, 4 needs only to be known up to lag p(n). For ease of notation we do not
explicitly indicate the dependence of the estimators on the number n of observations.
This second substitution introduces a systematic bias which, using (2.4), may be calculated
as

(30 = 2a(n)"3(p) + la(p) ) — (o — 200" 5(0) + Nap)l)
(v

= —2(a(p) — a(p))" 4(p) + (a(p) — a(p))" T'(p) (a(p) + a(p))
= |la(p) — a(p)llf,



Because of this a reasonable approximation of the argument of Py(n) is given by

Fo = a(p) 3(p) +2- Ella(p) — a(p)llt, - (2.5)

where the expectation is ready for an approximation through the bootstrap, which we
will discuss in detail in the next but one section. Note that we have so far not made any
assumptions on the estimates a(p) and 4 except (2.4).

Finally we need a further approximation of the expectation in (2.5) in order to be able to
evaluate some asymptotic properties of the bootstrap order selection. To this end observe
that

~ 2

) = T(p)ap) .

INCO

a(p) — a(p)H%(p) = Hf(p)_l (’AY( )H

We will now make use of the following approximation of the argument of Fy(n)

2

do — a(p)"4(p) i) = Lpap)| - - (2.6)
The construction of a bootstrap version of the following theoretical order selection proce-
dure
Pi(n) i= argmin {30 — a(p)"4(p) + 2+ Su(p)} (2.7)
where
R . 2
Sup) = Ein) ~Tpat),
R . 2
= B0 =)~ (F) = Tm) a)] - (2:8)

is exactly the goal of the next but one section. Of course P;(n) is closely related to

meu-mgmn{%—a p) () + 2 Ella(p) — ap)i, ) - (2.9)

1<p<p(

3. Estimators of Prediction Coefficients

In this section we want to present briefly some estimators for the autocovariance function
~ or the parameter value a(p) of an autoregressive fit of order p which we have in mind.
The easiest situation is to use the empirical autocovariances

R 1 = h
Vh-— EE:AX;;X}+h, h - EVO,

=1

(or asymptotically equivalent, their centered version yj = + 37~ Mx, -1 L X ) (Xepn—
L5 1 Xs)), to which belong the well-known Yule- Walker parameter estlmators

a(p) = T(p)~"4(p).



In this text we always equip empirical autocovariances and the corresponding Yule-Walker
parameter estimators with a tilde. In contrast to these estimators we propose the following
alternative. Fit in a first step an autoregression of (high) order p,, > p(n) to the given
data and compute M- or ML-parameter estimators, i.e. solutions of

Uy (enoonen) = 3 0 (Xt _pzMchXt_g) Xe_i(pa) = 0, (3.1)

t=par+1 =1

where ¢ : IR — IR denotes a suitable score function. We do not intend to discuss at this
place the problem of finding solutions of (3.1). If py, = py(n) converges to infinity with
an appropriate rate and if ¢ satisfies some regularity conditions it is possible to find a
solution of (3.1), denoted by a" = a"(py ), which is consistent for a, cf. Kreiss (1988) and
Moser (1997). As j(a) is invertible in /' and the set of invertible sequences in ¢! is open
in /', we may assume that j(a*) is invertible as well.

Denote the autocorrelation function belonging to an autoregressive process of order p,,
with parameter a™ by r. As the autocovariance function r is a continuous function of the
parameter a (with respect to ||-||,), & will be a consistent estimator for the theoretical
autocorrelation function r = L. The estimate T coincides with the empirical autocor-
relation function up to lag p,, if and only if " is the Yule-Walker estimate. r may be
computed using the MA(oco)-representation of the AR—process with parameter a". As
only the components of & up to lag p(n) < p,, are needed, an easier approach is to solve

A

R(pw)a™ = #(pu),

or equivalently

21 ay’

R prm—1
. _ . A~ _AM AM A~
C(pM — 1) : = - : ) Tpar = Qpyy + Z Upp—eTt >
aM =1

rpM_l pap—1

where C’(pM—l) = (&ﬁj+&ﬁj:1§i,j§pM—1), ay = —land @ =0if k <0 or
k > py. Asj(a) is supposed to be invertible in !, the matrix C'(py, —1) will be invertible,
too.

Based on the autocorrelation estimates -, we may calculate new estimates of a(p) using
the Yule-Walker equations:

a(p) = R(p)~'#(p).  p=L2,....p(n). (3.2)

Why do we introduce such estimators? It is known that M-estimators " are more efficient
for a if the innovations ¢; are not normally distributed, see e.g. Martin (1983) or Kreiss
(1988). In particular, this is true if the distribution of the innovations has a Lebesgue
density f and we take v = —f'/f, i.e. if we use ML-estimates. The gain in efficiency
carries over to the estimators t and a(p), which are smooth functions of a™ = a™(py).



It is not possible to use the M-estimators a™(p) directly as estimators for a(p), because, in
general, they are not even consistent. Therefore, we have to use the detour of calculating
i from @ (pys) and then define a(p) as in (3.2) to get robust and consistent estimates of
a(p) for p < par. For a different approach where the quadratic loss function in (2.2) is
replaced by some loss function L, and where the optimal parameters may be estimated
directly by the M-estimators, see Behrens (1990).

To avoid too much technical details, we consider in the following two sections only the
easiest case where 7, = 7, h < p(n), are the empirical autocorrelations and a(p) = a(p)
are the Yule-Walker estimates. A theoretical investigation of the asymptotic properties of
our bootstrap order selection procedure when t corresponds to some M-estimator " (py,)
is considerably more involved and will be the subject of a forthcoming paper, see also

Moser (1997).

4. Bootstrap Order Selection

Let us first briefly introduce the bootstrap principle for AR(oo)-processes which will be
applied in the following. For a fuller account the interested reader is referred to Kreiss

(1988, 1997) and Biithlmann (1997).

Given the observations Xi,..., X, we fit an autoregression of "large” order py = po(n) >
p(n) and compute approximate innovations

eia(po)) = Xy — a(po)" Xi—1(po) , t=po+1,...,n,

with empirical and centered (around mean 0) empirical (cumulative) distribution functions
F,, ¢, respectively.

Now suppose that the process (7 : ¢t € Z) consists of i.i.d. random variables with distri-
bution function F¢. This ensures E*ef = 0, where E* denotes the conditional expecta-
tion E[-|Xi,...,X,]. It is well-known known that 1 — 37%, @s(po)z* has no zeros in the
closed unit disk and therefore j(a(po)) has an inverse &(pg) in ! with respect to convolu-
tion; cf. Brockwell and Davis (1991), p. 240. Hence we may define the bootstrap process
(X :t € Z) as an autoregression of order py with coefficients a* = @(po) and white noise
process (e :t € Z) , i.e

Po

X::Zaf(po) e ter = ZWPOQ 0> te .

=1

For later reference we note some asymptotic properties of the bootstrap construction.
Assuming po(n) — oo and po(n)!/n — 0 we have from Kreiss (1997) E*** — Ec¥ in
probability, & = 2,4, (Proposition 3.1) and |[[a — &(po)||; — 0 in probability (Lemma
8.2 and 8.3). As the autocovariance function = is a continuous function of E&2 € IR and
o € (' this implies || — ||, — 0 in probability for the autocovariance function ~* with
components v; = E* X7 X[, of the bootstrap autoregressive process.

6



Of course ~* is closely related to the empirical autocovariance function 4. In fact, the

corresponding autocorrelation functions r* = W%'y* and T = %'Ny coincide up to lag po,
0

where both 75 and 7y converge to vy in probability. In particular, we have

a*(p) = I"(p)™'v*(p) = T(p)™"4(p) = alp), 1<p<po.

Let 4" and a*(p) be exactly defined as 4 and a(p), with (Xi,...,X,) replaced by
(X7,...,X}), the bootstrap observations.
We propose to replace E||a(p) — a(p)le(p) in the definition of the order selection P{(n)
(cf. (2.9)) by its bootstrap approximation

B [|a*(p) = a™(p)llgxy = £ [la(p) — a(p)

To avoid technical problems, we will work with the order selection P;(n) instead of Pj(n),
so we will use the bootstrap analogon

2
™*(p) -

~ok Tk ~ 2
of S,(p), as we already mentioned in Section 2, cf. (2.7).
Hence we define the bootstrap order selection as
R : X Tx L Qx
Pg(n) := argmin {Bo—am) ™) +2-S:(n)} - (4.2)

We remark that the whole procedure resulting in the order selection Pg(n) can be done
with general autocovariance estimates 4 and the corresponding sample prediction coef-
ficients a(p), given by (3.2). We restrict ourselves to the sample autocovariances 4 and
the Yule-Walker estimates a(p) only to simplify the proofs. One of our main results is as
follows.

Theorem 4.1 : Let {p(n) :n € IN} and {po(n) : n € IN} be two sequences of integers
with p(n) < po(n) for all n € IN and p(n) — oo, po(n)*/n — 0 asn — co. Then we have

for Su(p), Si(p) defined in (2.8) and (4.1)

nas {3|S;<p> - Sn<p>|} = on().

1<p<p(n) | P

All proofs are collected in Section 7.

As will be seen in the proof of Theorem 5.1, %Sn(p) — o2 if p is "large”. Hence Theorem
4.1 basically maintains that the difference between S, (p) and its bootstrap approximation
S*(p) tends faster to 0 than S,(p) itself, i.e. S,(p)~' |S*(p) — S.(p)| = op(1), uniformly
in all "large” p. If p is "small”, then 3o — a(p)T¥(p) will be the dominating term in
Ao — a(p)T4(p) — 25,(p), the expression minimized by Pj(n), cf. (2.7). In this case the
relative difference S, (p)~' [S%(p) — S.(p)| will be of secondary importance as long as the
absolute difference tends to 0 fast enough.



5. Asymptotic Properties of the Bootstrap Order Selection

In this section we deal with some asymptotic properties of the proposed bootstrap order

selection Pg(n) defined by (4.2):

f@@)—a@mm,{m—a p)i(p)+2- 85 (p)} -

1<p<p(
The first part of the criterion function can be written in the more familiar way
TRy 1 . < \T 2 ~2
Fo—alp) ip) = — 3 (Xi —a(p)" Xica(p)) = 62(p).
t=po(n)+1

if we assume that, for the sake of simplicity, we slightly modify the definitions of Section 3

to
. J R
o= = Y XXy, h=0,1,2,..,p(n) (5.1)
nt:p(n)—l—l
and .
N 1 . N -
a(p) == |— Z Xea(p)Xeci ()] Gieen3e)” = Tp)H4(p), (5.2)
n)+1

which are essentially the usual Yule-Walker estimators up to asymptotically negligible
terms.

Now we state the main result of this section. Again, the proof is deferred to Section 7.

Theorem 5.1 : Under the assumptions of Theorem .1 we have

L S = o).

where o*(p) = F (Xt — a(p)TXt_l(p))z.

JFrom this result we can derive an interesting property of the bootstrap order selection,
observing that

sy S Mg = e = o)
and
£ 15a(p) — o*(p)] <2 2
max L e < max|on() — o)
. L& ?
< max Gip)—— >, (Xt —a(p) Xt—l(p))
" i=p(n)+1



LS (M=) X ) - o)

4+ max
P
" =p(n)+1

= max||a(p) - a(p)|F,) + max

= op(1)

t

%Z (Xt — cz(JO)T)Q_l(z?))2 - 02(19)‘

as the first expression is op(1) by (7.6) and (7.9) and the second expression by an appli-
cation of Lemma 7.1 to the process Y; = X; — a(p)T X;_1(p).

This together with Theorem 5.1 and with Theorem 7.4.7 of Deistler and Hannan (1988)
implies that we have uniformly in p € {1,...,p(n)}

log {#2(p) + 2 S2(p)}

= log&Z(p) + log (1 +2-

~ tog () +log (14 2|2 {2 o2+

P
2
~ 1og&2<p>+23+3[ - {
n n
(

2 Si(p) —p/nén(p) [p | o*(p) — o
+5—721(p) p/n—l-ﬂ%ng2 {n+ : }
= logé? + {g + W} (1 + op(1)) (5.3)

where 62 is defined in Deistler and Hannan (1988), above Theorem 7.4.5, and is equal to
-2 L&
6 = =Y e, nelN. (5.4)
n =1
Summarizing we obtain from Theorem 5.1 the following expansion, which holds uniformly
in p € {1, p(n)}

o*(p) — o*

log {52(p) +2- Si(p} = log &2 + {g +— } (14 op(1)) .

g

This is exactly the same expansion as Deistler and Hannan obtained for the AIC, cf.
Deistler and Hannan (1988), Theorem 7.4.7. In other words, the considerations given

9



below Theorem 7.4.7 in Deistler and Hannan (1988) hold also true for the bootstrap
order selection.

Remark . (i) Shibata has a result similar to Theorem 5.1 in his paper, cf. Shibata (1980)
Lemma 7.1, but we can dispend with the assumption of normality.

(ii) From Theorem 5.1 we obtain exactly along the lines of Section 4 in Shibata (1980)
the asymptotic efficiency of the bootstrap order selection under the same assumptions as
in Shibata. The concept of asymptotic efficiency is also defined by Shibata.

Following the arguments given in Deistler and Hannan (1988), p. 333/334, we obtain
exactly along the same lines and under the same assumption that

PB n)

(
argminlﬁpﬁp(n) (% + 2 L) )

o2

— 1 in probability.

In the next Section we report some simulation results for the bootstrap order selection in
comparison with other order selection procedures.

6. Simulations

Let us consider the following two order selection procedures for a simulation study. The

argument of the minimum (argmin) is in both cases computed over the range {1, ..., p(n)}.
N 2p

AIC = argmin, {O'n(p) : (1 + —)} (6.1)
n

Pp = argming {57(p) + 2+ E"[|a"(p) — ()l } - (6.2)

In all cases

and 7, denotes an estimator of the autocorrelation at lag i, which does not necessarily
have to coincide with the empirical autocorrelation 7, of the observations. This deviates
slightly from the preceding sections, where we preferred to work with the autocovariances
in order to simplify the proofs, and obviates the need for an M-estimator of 5. The AIC
goes back to Akaike (1973a,b, 1974). Pg denotes the bootstrap order selection proposed
in Section 4 of the present paper. Note that for the theoretical investigation we used a
slightly modified version of Pg.

10



criterion H p=1 ‘ p=2 ‘ p=3 ‘ p=4 ‘ p=5 ‘ p=>6 ‘ p=T7 ‘ p=S8 ‘

AIC 2 0 67 14 8 3 3 3
AIC 3 0 72 16 4 4 1 0
AIC 4 0 69 13 5 6 2 1
Pg, ¥iq 1 1 68 13 6 4 2 5
Pg, ¥iq 5 1 70 12 5 3 2 2
Pg, ¥iq 5 0 63 14 9 3 3 3
Ps, Yyuber 1 1 68 10 7 8 3 2
Ps, Yyuber 3 0 66 17 3 6 2 3
Ps, Yyuber 3 0 65 12 9 4 3 4
Table 6.1

frequencies of selected orders (100 repetitions)
model (6.3), normal innovations, sample size=100, p(n)=8

The simulations we are going to report are based on the following three stationary time
series models

X, = 0.64- X —0.19- X, o +0.39 - X, 5 + &, (6.3)
Xt = _Xt—2 —0.1- Xt_4 + & (64)
Xt = —0.5- Xt—2 + 0.5- g1+ €& . (65)

The first two models are of finite autoregressive order, while the ARMA(2,1)-model (6.5)
possesses an autoregressive representation of infinite order.

For the innovations &; we use the following distributions

ey ~ N(0,1) normally distributed innovations (6.6)
g1~ 0.8N(0,1)+ 0.2V (0,25) contaminated innovations .
er ~ 0.5(N(=3,1)+N(3,1)) bimodal normal innovations (6.8)

The AIC is always computed using least squares parameter estimates, for which this
criterion is designed. However, changing the parameter estimates does not affect the AIC
essentially. The bootstrap order selection Pg is computed for different M-estimators. Here
we make use of ¥jq(x) = z, corresponding to least squares, and Yuuper(2) = —L(p<—1) +
T 1l1<o<t)y T Lz -

We report on the simulated behaviour of the procedures on two different random samples
of 100 time series each in order to give an impression of the stochastic fluctuation of the
results.
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criterion H p=1 ‘ p=2 ‘ p=3 ‘ p=4 ‘ p=5 ‘ p=>6 ‘ p=T7 ‘ p=S8 ‘

AIC 0 71 7 12 4 2 0 4
AIC 0 61 11 15 7 2 2 2
AIC 0 65 13 13 3 4 1 1
Pg, ¥iq 0 68 5 16 5 2 2 2
Pg, ¥iq 0 59 10 13 6 3 3 6
Pg, ¥iq 0 70 6 17 2 4 0 1
Py, Yopt 0 55 3 37 4 0 1 0
Py, Yopt 0 67 0 30 1 1 0 1
Py, Yopt 0 62 6 27 5 0 0 0
Table 6.2

frequencies of selected orders (100 repetitions)
model (6.4), bimodal innovations, sample size=100, p(n)=8

Tables 6.1 gives the results for model (6.3). From this table it can be seen that the re-
sults for normally distributed observations do not differ very much. This means that the
proposed bootstrap order selection procedure behaves more or less like the AIC for stan-
dard situations. For non-normally distributed innovations the situation is quite different.
To demonstrate this let us first consider model (6.4) with bimodal normally distributed
innovations and sample sizes n = 100 (cf. Table 6.2) and n = 200 (cf. Table 6.3). Here we
make use of the asymptotically optimal choice of the i)-function, namely ¥ equal to the
logarithmic derivative of the underlying density, i.e. » = —f'/f . Additionally we present
results for the least-squares estimator, i.e. ¢ (2) = x .

‘ criterion H p=1 ‘ p=2 ‘ p=3 ‘ p=4 ‘ p=5 ‘ p=>6 ‘ p=T7 ‘ p=S8 ‘

AIC 0 55 8 26 4 2 0 5
AIC 0 57 2 32 3 2 0 4
AIC 0 45 5 31 6 7 4 2
Pg, ¥iq 0 51 8 26 4 6 4 1
Pg, ¥iq 0 52 7 24 10 4 2 1
Pg, ¥iq 0 59 3 28 7 0 1 2
Py, Yopt 0 9 0 79 7 2 3 0
Py, Yopt 0 14 0 74 9 2 0 1
Py, Yopt 0 5 0 81 9 3 0 2
Table 6.3

frequencies of selected orders (100 repetitions)
model (6.4), bimodal innovations, sample size=200, p(n)=8

12



criterion H p=1 ‘ p=2 ‘ p=3 ‘ p=4 ‘ p=>5 ‘ p=6 ‘ p=7 ‘ p=8 ‘ p=9 ‘ p=10 ‘

AIC 0 1 22 414 18 11 0 0 1 3
AIC 0 1 17 42 20 10 5 3 1 1
AIC 0 0 18 52 17 3 4 5 0 1
Ps, YHuber 0 0 4 31 29 21 8 2 4 1
Ps, YHuber 0 0 3 30 29 18 7 5 5 3
Ps, YHuber 0 0 4 11 30 11 8 2 4 0
Py, Yopt 0 0 2 40 38 6 8 3 2 1
Py, Yopt 0 0 1 39 40 13 2 2 0 3
Py, Yopt 0 0 3 37 29 11 9 3 8 0
Table 6.4

frequencies of selected orders (100 repetitions)
model (6.5), contaminated innovations, sample size=200, p(n)=200

It can be seen clearly, especially from Table 6.3, that the bootstrap order selection using
the asymptotically optimal ¥-function tends to select the true order with much higher
probability. This is due to the fact that M-estimators with this -function have much
smaller variance than, for example, the least squares estimator used in the construction

of the AIC.

Finally, for the ARMA(2,1)-model (6.5) we again demonstrate the behaviour of the boot-
strap order selection for two different M-estimators (¥puber and ¢ope = — f'/f) and con-
taminated innovations (cf. Table 6.4). The precision of the parameter estimates increases
from the Huber M-estimator to M-estimates with asymptotically optimal score-function,
which implies the desired property that the Pg tends to higher orders for the autoregres-
sive fit.

Acknowledgement. Parts of the research presented in this paper was done while the
second author enjoyed the hospitality of the Sonderforschungsbereich 123 at the Univer-
sity of Heidelberg which is gratefully acknowledged. The third author acknowledges the
support of the DFG-project MA 1026/6-1.

7. Proofs

The proof of Theorem 4.1 will be based on the following approximation lemma, which is
of interest on its own.

Lemma 7.1 : Under the assumptions of Theorem 4.1 we have

Jmax |Cov™ (37, 4%) — Cov (n, )| = op(n™), (7.1)
(max [Cov (3, 34)] = O(n™). (7.2)
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Proof : We will show the following inequality

koK g g 3 % %
max [Cov™ (37,37) = Cov (3, ) < —lla = a7l (flexlly + Jla”]l,)” £ 5

) (7.3)

+ % [l (‘(Esg)Z — (E* 532)2‘ + ‘E et — Er et

where a* = &(po) = j(a(po))~'. The asymptotic properties of the bootstrap construction
mentioned in Section 4 will then imply (7.1), and (7.2) will follow from (7.3) by setting
a*=~"=0.

The proof of (7.3) will be based on the MA(oo)-representation of the process (X;), which

yields the following formula for the empirical autocovariances:

1n— o0 1nhoo
N o 2
Yo — By, = gE:E: Qe — it h— €‘|‘n§:§:a1ay+h(5t] Ego)
t=1 7,0=0 t=1 7=0

= V(h) + W(h),

where the dagger indicates that summation takes place only over those pairs (7, ) with
{ # j+ h. For any hq, hy, the sums V(hy) and W{(hy) are uncorrelated which implies
Cov (An,,4n,) = EV(h1)V (h2) + EW(hy)W (hs). Furthermore

1 2 n—h; oo
EV(h)V(hy) = EEH ( f Oéj@[@t_j€t+hi_g)
=1 t=1 54=0
2 n—h1 n—ho 2
= ZT ZT H O‘jio%‘) Z Z EH(gti—jigtﬁhi—&)'

]1 Zl 0]2 42 0 =1 t1:1 t2:1 =1

As j; # hi+/{;, the last expectation equals zero unless {1 —j; = to—jy or t1—7j; = ta+ha—1s,
in which case it may be (Ee?2)? instead of zero. Hence the double sum over ¢, ¢y reduces
to two single sums over t;. Taking the difference EV (hy)V (he) — E*V*(hy)V*(hs) we first

replace a by a* to get

n—h1 n—h2

1 00 2 2 2
_2 ZT ZT (H Q0 — H O‘;,O‘Z) Z Z E H (5ti—ji5ti+hi—&‘)
=1

1 Zl 0 ]2 42 0 i=1 t1:1 t2:1 =1

2 % % 2
< e aclly (el + llec],)* (£e3) (7.4)

In a second step the innovations ¢; are exchanged for the bootstrap innovations €}, yielding

n— hln h2

S SIS | CTTD i 32} | CRE —E*Het b,

1[10]242021 t11t21 =1

11 (Easg) - (E532)2 .

<

14



A bound for £ V(h1)V(hy) — E*V*(h1)V*(hy) is obtained by adding the bounds in (7.4)

and (7.5). A similar calculation leads to

% % % 1 % %
[EW (h)W (ha) = B= W (hi)W(ha)| < ~ e = ||y (lexlly + |e[]y)” E ey

E (53 - Esg)z — B (532 - E*sgz)z‘.

1 %
+ ~ e}
n

This proves the lemma.

Proof of Theorem 4.1 : We first note that S,(p) and S’(p) , cf. (2.8) and (4.1), can

be written as

Su(p) = EAP) (1 (p) = 1n(p)llFe-

and
Se(p) = E" A () (31 (P) = A5 (D) ey »
where the p x 2p -matrix A(p) is defined as
0 0 0 0 1 —ai(p) - —ap(p) —ay(p) ]
0 0 o 001 —ai(p) —axp) - —ap(p) 0
0 1 —alp) -+ —ay(p) 0 0
| 1 —ai(p) —aap) .. —ap(p) O - 0 ]

Y1(p) == (Ypr Vo1, - - - ,’yl_p)T € IR* with v_, = v, A*(p) is defined as A(p) with a,(p)
instead of a,(p) and 31(p), Y7 (p), vi(p) are defined analogously to v1(p).

Writing X(p) = A(p) T'(p)~ A(p), ¥(p) = A*(p)"T"(p)~' A*(p), we have
S50 = Sup)l = |E ) = 0y — ElFn() — 1))

|
< B () = ey — BT IAT ) = )|
+ [E 1B () =i )3y — Elln®) = np)llsg,| -

=% =%

2

-7 =*(p)
2

-7 £*(p)

Bound the first summand through ||X*(p) — (p)|| - £* |35 (p) _71*(}7)”3 Because of
Lemma 7.1 it suffices to show that

max [£(p) = S(p)|l = max|A7(p) T (p) " A p) — A(p)'T(p)" Alp)|
= OP(l).

As ||[T(p)|| and ||T'(p)~*|| are uniformly bounded in p € IN, the last equation will follow
from

max||A*(p) = A(p)]|, max |[[=(p)™" = T(p)™"| = 0p(1), max [ A(p)l| = O(1).
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In view of the matrix inequalities ||B|| < |[|B], = (Z|bij|2)% and [|[B~!'—C7Y <

BB . _ )
% if ||B7Y|||B — C]| < 1, we obtain from Lemma 7.1

max
p

[(p) = T(p)| = or(1), (7.6)

P(p)™ = T(p) ™| = or(1). (7.7)

A(s f*(p) = %f(p) and % — 1 in probability, (7.6) and (7.7) hold with f(p) replaced by
['(p)*.

max
p

Now, for any = € IR? the vector A(p)x obviously consists of certain entries of the con-
volution j(a(p)) * z~ where j(a(p)), z are embedded in IRZ, (x~), = x_;, and convolution
takes place over Z. From the convolution inequality ||b * c||, < ||b]], ||c||, we conclude

[AP) = sup [[A(p)zll, < 1+ [la(p)l];, (7.8)

|zl =1

where the latter is bounded uniformly in p € IN according to Theorem 2.2 of Baxter
(1962). As by Lemma 7.1 and (7.7)

(dnax la(p) —a(p)ll, = max

we get in the same manner as in (7.8)

max||A*(p) — A(p)| < max |a(p) — a(p)ll, = or(1).

For the second summand we have

B 151 () = 110y — E ) = 1)

L * o~k o~k ~ o~ hk ~ o~
< > 12(p)ur] |Cov* (35, %%) — Cov (’Yha’Yk)‘Fﬁ(’Yh’Yk_’Yh’Yk) :
h,k=1

Now, from Shibata (1980), p. 151, there is a constant (' such that 2} ,_, |F(p);}g| <Cp
for all p € IN. Hence we have 3} ,_; [X(p)ur] < Cp(1+]la(p)][;)?, and by Lemma 7.1 and
the uniform boundedness of ||a(p)||,,

n * || 2k * ~
max B 13 0) = 50y = B 1nle) = n(@)lg| = or():

This concludes the proof of Theorem 4.1.
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Proof of Theorem 5.1 : Because of Theorem 4.1 it suffices to consider

S.(p) — Lo?
max M . (7.10)
1<p<p(n) % + %

Using convention (5.1), (5.2) we obtain

2

LS~ alp)) X (p)

n—y

2

Wp)=T(palp)|, ., = F

Snlp) = B P!

I'(p)—*

where &:(a(p)) = X; — a(p)? X;_1(p). Now, since

2

E

1
— X
nzt:&f t 1(}?)

= Y B B (X TR ) ()
F(p)—l t

_ norp s (7.12)

n n

we have to show
2

E|iz, et(a(p))Xt—l(mHi(p)—l ~ B3 eXin )], -
max p y 22p)=0? = orth:

To this end consider

2 2

E

1
— b H " Z erXe-1(p)

t

L3 el X ()

[(p)—? I(p)—t

2

LS~ (cu(alp)) - 20) X (p)

n—

1
—|—2\| E H g Z 575Xt_1(p)
t

< E

I'(p)—*

\I E H%Z (ee(a(p)) — &) Xima(p)
(p)~!

r

Because of (7.12), we may restrict our attention to

E LY (eila(p) — =) Xf—l(p)H;p)—l

max

4 £+M
n o2

Now, ||[T'(p)|| and ||['(p)~!|| are uniformly bounded in p € IN, o*(p) — % = ||a — a(p)HI%
and

J P25 et - 2 X

t

Therefore it suffices to show

2 O ,




where ' > 0 is a constant independent of p. For this purpose, we fix p and write Z; :=
ei(a(p)) —er. Then Z; = 372, Beet—e where B = (j(a(p)) —j(a)) * a and a = a~'. With

these notations, (7.13) becomes

1 C
;§§:EZJ;%&XFh§ Eua—qm@, h=1,...,p. (7.14)
s,

Using the MA(oo)-representations of the processes (X3),(Z;) and the orthogonality
EZ/ X, =0,h=1,...,p, it is easy to see that for s <t

EZX,_ 1 Z. Xy, = EZ I EX, 3y Xoph +EZ2,Xi_ EZ: X, (7.15)
+ Zﬁ(—l—haéﬁé-l—t—s-l—haé-l—t—s (E 53 — 304) .
£=0

Setting oy, By = 0 if £ < 0 we note that for any k € Z

EZoXp= Y Beoupr = >, Bea_—o—py = ([3 * a_)_k

{=—c0 {=—c0

where a™ = (o : £ € Z) and convolution takes place over Z. Similar expressions may be
derived for the autocovariances £ ZyZ; and £ Xy X;. Summation of the first term on the
right side of (7.15) over ¢t > s gives

SIEZZEX X = Y |(B+87), (axa”)

t>s t>0

IA

[8+87], e = ]

2 4
< lla—ap)ll; llelly

by repeated use of the convolution inequality ||b *c||, < ||b||, |lc||; and ||b~||, = ||b||;-
Summation of the other two terms on the right side of (7.15) leads to similar expressions,
so we may conclude (7.14).
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