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HIDDEN FREQUENCY ESTIMATION WITH

DATA TAPERS

Zhao-Guo Chen1, Ka Ho Wu2 and Rainer Dahlhaus3

Statistics Canada, The Chinese University of Hong Kong and Universit�at Heidelberg

SUMMARY

Detecting and estimating hidden frequencies have long been recognized as an important

problem in time series. This paper studies the asymptotic theory for two methods of high-

precision estimation of hidden frequencies (secondary analysis method and maximum

periodogram method) under the premise of using a data taper. In ordinary situations,

a data taper may reduce the estimation precision slightly. However, when there are

high peaks in the spectral density of the noise or other strong hidden periodicities with

frequencies close to the hidden frequency of interest, the procedures of detection of the

existence and the estimation for the hidden frequency of interest fail if data are non-

tapered whereas they may work well if the data are tapered. The theoretical results are

veri�ed by some simulated examples.
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1 Introduction

The model under consideration is

y(n) = s(n) + x(n): (1.1)

where the observations y(n) consists of two real components s(n) and x(n). Here x(n) is

the stochastic component called \noise" and s(n) is the deterministic component called

\signal" de�ned as

s(n) =
KX

k=�K

Ak exp(i!kn) =
KX
k=1

2jAkj cos(!kn + 'k); 0 < !k < �; (1.2)

where Ak = jAkjei'k , �� < 'k � �, !0 = 0 and A0 = 0. Each term in (1.2) is

called a hidden periodicity, and !k is called a hidden frequency. This model �nds wide

applications in the �elds of science, engineering and economics.

The ordinary assumption for fx(n)g in the literature is that it is a linear process of

the form

x(n) =
1X
j=0

�j"(n� j);
1X
j=0

j�jj <1; �0 = 1; (1.3)
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where "(n) are independent, or more generally, martingale di�erences satisfying

E("(n)jFn�1) = 0; E("(n)2jFn�1) = �2; (1.4)

where Fn are the �-algebras of events determined by "(t), t � n.

In the literature, it has long been recognized that the key step for modelling data as

(1.1) and (1.2) consists of two steps: detection and estimation of the !k. The history of

this research topic may go back as early as Fisher (1929), and others like Hartley (1949),

Grenander and Rosenblatt (1957). All these authors assumed fx(n)g be white noise, i.e.

x(n) = "(n). The methodology they used for detection is the following.

De�ne the �nite Fourier transform and periodogram of fy(n)g by

dy(!) = (2�N)�1=2
NX
n=1

y(n) exp(�i!n) (1.5)

and

Iy(!) = jdy(!)j
2 = (2�N)�1

�����
NX
n=1

y(n) exp(�i!n)

�����
2

(1.6)

respectively, where N is the number of observations. Similar notations are dx(!), Ix(!)

for fx(n)g. If fs(n)g is absent, then Iy(!) = Ix(!), and the periodogram ordinates

Iy(2�j=N); j = 1; 2; : : : ; [N=2], are independently distributed as (�2=4�)�22, if fx(n)g

is Gaussian white noise. Therefore, the statistic g = fmaxj Iy(2�j=N)g=
P
l Iy(2�l=N)

can be used to detect !k in which a value of g, larger than a preassigned critical value,

indicates the existence of an !k around the frequency where Iy(2�j=N) is the largest.

Whittle (1952), Hannan (1961) and other authors extended the methodology to fx(n)g

being a linear series. See Priestley (1981) for details.

Unfortunately, there are two major drawbacks of the above method. Firstly, when an

!k falls around the center between two successive 2�j=N , the power becomes particularly
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low. Secondly, when there are more than one !k, large contributions of other !j to the

denominator of the statistic g may result in an unacceptably low power of the test. For

redesigning a procedure detecting hidden frequencies, the background theory should not

restrict Iy(!) to ! = 2�j=N , and the testing statistics should not depend on the existence

of other hidden frequencies which keep away from the hidden frequence of interest.

Let f(!) be the spectral density of fx(n)g and f(!) > 0 for all !. Under the conditions

(1.3) with iid �(t), Turkman and Walker (1984) derived an asymptotic probability about

max! Ix(!)=f(!) which may be used to develop some testing procedures with higher

power than above reviewed methods. Another fundamental result given by An, Chen

and Hannan (1983) is that, under conditions (1.3) and (1.4),

lim sup
N!1

max
!

Ix(!)=ff(!) logNg � 1; a:s: (1.7)

This result motivated the following approach. Let

ẑj = Iy

�
�j

N

�
=
�
f̂N

�
�j

N

�
logN

�
(1.8)

where f̂N(�) is a nonparametric estimate of f(�). We may conclude that there exists a

hidden frequency !k around �!k = �j=N if ẑj exceeds the threshold 1 + " for some small

" > 0. The problem is to �nd an adequate estimate f̂N which is not in
uenced by large

values of Iy(�) at the hidden frequencies. Chen (1988a, 1988b) had proposed a method

which may be called \three-leave-out"-estimator. Von Sachs (1993) used a more general

peak-insensitive estimator for f(�). Furthermore, he already used data tapers. If one

regards this procedure as a testing procedure a heuristic rule for the selection of " in

dependence on the signi�cance level � is given in von Sachs (1993, Lemma 2). In general
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it is known that the so obtained initial estimate ful�lls

j�!k � !kj < �=N a:s: (1.9)

The second step consists of improving the initial estimate �!k. One straightforward

method is the value !̂k maximizing the periodogram Iy(!) in some neighbourhood of �!k

which we simply shall call MP. The other method is the so called secondary analysis (SA).

SA is quite an old method which is restated in Priestley (1981, p.413). Chen (1988a)

pointed out that there was a hidden 
aw in the procedure and made a revision.

Both methods o�er estimates !̂k of !k with precision O(N�3=2) which is a considerable

improvement of �!k. For !̂k obtained by MP, Hannan (1973) proved the following central

limit theorem (CLT):

N3=2(!̂k � !k)
d
!N (0; 6R�2k ): (1.10)

Hannan and Mackisack (1986) also proved the strong consistency, more precisely, the

following law of the iterated logarithm (LIL):

lim sup
N!1

(N3= log logN)1=2j!̂k � !kj � 121=2R�1k ; a:s: (1.11)

where

Rk = jAkj=(2�f(!k))
1=2 (1.12)

is called the local signal to noise ratio at !k. Notice that in this paper, the amplitude

of a sinusoid is 2jAkj [see (1.2)], while in above mentioned papers, 2 is dropped; so in

(1.10), the coeÆcient of R�2k is 4 times larger and in (1.11), the coeÆcient of R�1k is 2

times larger than those in the above mentioned papers. For !̂k obtained by SA, Chen
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(1988a) proved a LIL:

lim sup
N!1

(N3= log logN)1=2j!̂k � !kj � 2M3=2CMR
�1
k a:s: (1.13)

where M � 2 is an integer and CM is given by (2.25) in the next section. However, the

CLT for this estimate has not been proved so far. This paper �lls the gap.

Theoretically, as N !1, the above classical results seem to be satisfactory. However,

for �nite N , the periodogram may be heavily biased due to strong peaks in the spectrum

of the stochastic component or due to more than one hidden frequency in the periodic

component. This e�ect is called leakage e�ect. As we will show in Section 3 this leakage

may a�ect the estimates of the hidden frequencies discussed above.

To guard against such e�ects we suggest in this paper the use of data tapers for the

estimation of hidden frequencies. In ordinary spectral estimation, data-tapers are known

to be an e�ective tool in reducing the bias due to frequency leakage (cf. Dahlhaus, 1988,

1990).

De�ne a taper function hN(u) of order (l; �) as in Dahlhaus (1988, De�nition 5.1.).

Loosely speaking, l is the degree of smoothness (in particular at the edges) while � > 0

means that the portion of tapered data goes to zero with a certain rate. When � = 0, we

simply put hN (u) = h(u). Here, we list three important and well-known taper functions.

In all cases, hN (u) = 0, if u =2 (0; 1].

(a) l = 0; � = 0:

hN(u) = h(u) = 1; 0 < u � 1; (1.14)
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(b) l = 1, 0 � � < 1=2 (�
N
= �N��):

hN(u) =

8>>>>>>>><
>>>>>>>>:

2u=�
N
; 0 � u � �

N
=2;

1; �
N
=2 � u � 1=2;

hN(1� u); 1=2 � u � 1;

(1.15)

(c) l = 2, 0 � � < 1=2 (�
N
= �N��=3):

hN(u) =

8>>>>>>>><
>>>>>>>>:

[1� cos(2�u=�
N
)]=2; 0 � u � �

N
=2;

1; �
N
=2 � u � 1=2;

hN (1� u); 1=2 � u � 1;

(1.16)

where �N is the fraction of the data that are tapered. Letting �N tend to zero at some

slow rate seems to be realistic in most situations | in particular if one regards tapering

as smoothing the break from \data" to \no data" at the edges. Asymptotically, data

tapers with �N ! 0 very often lead to fully eÆcient procedures (compare for example

our Theorems 2.1 and 2.3 below) while on the other side the advantages of tapers can be

retained (cf. the discussion in Section 3).

In Section 2, we prove some CLT and LIL for the SA estimate and the MP estimate. All

discussions are under the premise of using data taper. The coeÆcient on the right hand

side of (1.13) is reduced from 2 to 1. The performance of the SA and MP procedures,

and the e�ect of data taper are compared.

When the performance of a procedure for detecting or estimating hidden frequencies

with data taper is judged, there is a fact that the bias due to leakage disappears asymp-

totically. But this advantage of data taper cannot be re
ected by a classical CLT or

LIL. For this reason, we adopt in Section 3 the special asymptotic approach of Dahlhaus

(1988, 1990) for spectra with strong peaks: The peaks are assumed to increase with the
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sample size leading to di�erent asymptotic results which seem to be more realistic for

�nite sample situations with strong peaks. By this approach, we show that data tapers

diminish the leakage e�ect and that this advantage overcomes the increase of estimation

variance derived from the classical CLT and LIL in Section 2 which may be a misleading

in the situations of \strong peak" or \more than one hidden frequency".

In Section 4, we provide some simulation results which verify our theoretical proposi-

tions and Section 5 o�ers some concluding remarks.

2 Asymptotic properties of estimates

For a taper function hN(u) we use the following notations:

H(N)
r (!) =

NX
n=1

fhN(
n

N
)gr exp(�i!n); H(N)

r = H(N)
r (0); h(N)

r =
Z 1

0
fhN(u)g

rdu:

(2.1)

We assume that the taper function is symmetric about 0 with hN (0) = hN(1) = 0

The taper (1.14) which belongs to the non-tapered case does not ful�ll this. However,

all results proved below also hold for this case since the contribution resulting from the

observation y(N), [u = 1 in (1.14)] can be neglected asymptotically.

Furthermore, we always assume in this section that the taper is of the order (l; 0).

Setting � = 0 is not a substantial restriction because if � > 0, the situation is closer and

closer to the non-tapered case as N !1, i.e. hN(u) converges to (1.14). However, the

case � = 0 is easier to treat theoretically.

If � = 0, hN(u) and h
(N)
r are independent of N . We simply denote them by h(u) and
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hr respectively. Obviously, for large N ,

H(N)
r

:
= Nhr: (2.2)

2.1 How to use data tapers to SA

For the sake of simplicity, we concentrate our discussion on the hidden frequency !1,

and �!1 is an initial estimate of !1, satisfying (1.9). The main steps of SA are (see Chen

1988a):

(1) Choose a small integerM � 2 and divide the data of size N intoM equal segments.

As M is small, we may throw away the last few data points until N is divisible by M .

On the other hand, note that hN(1) = 0, so y(N) is always diminished to zero and hence

sometimes we may add fy(N)g of any values to make N being divisible by M . In either

case, we always can assume that M divides N . Let

�(s) = �1(s)� i�2(s) =
sN=MX

n=(s�1)N=M+1

y(n) exp(�i�!1n); s = 1; 2; : : : ;M (2.3)

(2) Denote

z(s) = arg(�(s)) (2.4)

which takes values in, say, [0; 2�) or [��; �): Form a linear regression model

z(s) = � + �s+ e(s); s = 1; 2; : : : ;M: (2.5)

(3) The LSE of � is

�̂ =
MX
s=1

z(s)(s�
M + 1

2
)

,
MX
s=1

(s�
M + 1

2
)2; (2.6)
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and the �nal estimate !̂1 of !1 is

!̂1 = �!1 + �̂M=N; i.e. �̂ = (!̂1 � �!1)N=M: (2.7)

Chen (1988a) pointed out that step (2) should be revised as the result depends on

the choice of an interval of length 2�. Using the \mean direction" ��, he puts �0(s) =

�(s) exp(�i��) = �01(s) + i�02(s) and replaces z(s) in (2.4) by

z(s) = arg(�0(s)); �� < z(s) < �: (2.4')

It can be shown that, for large N , values of z(s) are within or around the interval

[��=2; �=2]. (See the end of Section 3, Chen 1988a). In this interval, 0 corresponds to

the \main direction".

We now introduce data taper to every segment of data. Suppose h(u) is an ordinary

taper function, put

h(u; s) =

8>>><
>>>:
h(Mu� (s� 1)); (s� 1)=M < u � s=M;

0; otherwise,

(2.8)

s = 1; 2; : : : ;M: Then instead of (2.3), we have

�(s) =
NX
n=1

h(
n

N
; s)y(n) exp(�i�!1n); s = 1; 2; : : : ;M: (2.3')

Using (2.3'), (2.4'), (2.6) and (2.7), we obtain !̂1.

For taper (2.8), corresponding to (2.1), we may de�ne H(N)
r;s (!) from h(n=N; s) and

H(N)
r;s = H(N)

r;s (0) =
NX
n=1

fh(
n

N
; s)gr =

N=MX
n=1

fh(
Mn

N
)gr = H

(N)
r;1

:
=
N

M
hr: (2.9)
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In view of (1.1), (1.2) and (2.3'), and notice that h(u) is symmetric about 1=2,

�(s) = A1 exp(is(!1 � �!1)N=M)
N=MX
n=1

h(nM=N) exp(�i(!1 � �!1)n)

+
X
k 6=1

Ak
NX
n=1

h(
n

N
; s) exp(i(!k � �!1)n) +

NX
n=1

h(
n

N
; s)x(n) exp(�i�!1n)

which can be rewritten as

�(s) = A1G exp(i�s) +
X
k 6=1

AkH
(N)
1;s (!k � �!1) + �x(s) (2.10)

where

� = (!1 � �!1)N=M; (2.11)

G = H
(N)
1;1 (!1 � �!1) =

N=MX
n=1

h(nM=N) exp(�i(!1 � �!1)n); (2.12)

and the de�nition of �x(s) is self-clear from (2.10) by referring to (2.3') with x(n) replacing

y(n). It is worth noting that �!1; �; G all depend on N .

Lemma 2.1 For any �!1 satisfying (1.9), as N !1,

N

M
h0 � jGj � H

(N)
1;1

:
=
N

M
h1 a:s: (2.13)

where

h
0 :
= inf

0� ��=M
f(
Z 1

0
h(u)(cos u)du)2 + (

Z 1

0
h(u)(sin u)du)2g1=2 > 0:

If j!1 � �!1j = o(N�1) a:s:, then jGj
:
= (N=M)h1 a:s:.

Proof: Suppose j!1 � �!1j =  =Nwithj j < �. For n = 1; : : : ; N=M , 0 � j!1 � �!1jn =

( =N)n < �=M always holds. Hence the �rst inequality of (2.13) follows from (2.12)

immediately. The second inequality and the approximation in (2.13) are obvious.
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2.2 CLT for SA

Lemma 2.2 Suppose x(n) satis�es

x(n) =
1X

j=�1

�j"(n� j);
1X

j=�1

�2j <1; (2.14)

where "(n) are i.i.d. with E"(n) = 0 and E"(n)2 = �2, f(!) = (2�)�1�2j
P
�je

�i!jj2 is

piecewise continuous and continuous at !1. Put �x(s) = �x1 (s)� i�x2 (s). If �!1 ! !1 a:s:,

then

(2�H
(N)
2;1 )

�1=2(�x1 (1);��
x
2 (1); : : : ; �

x
1 (M);��x2 (M))�

d
!N2(0; (f(!1)=2)I2M) (2.15)

where I2M is the unit matrix of order 2M and � denotes transposition.

Proof: The proof can be viewed as an application of Theorems 8 and 10 of Chapter IV

in Hannan (1970) by taking (referring to examples therein)

y
(N)
2s�1(n) = h(

n

N
; s) cos �!1n; y

(N)
2s (n) = h(

n

N
; s) sin �!1n:

We omit the details.

Remark: Notice that (2.14) is a weaker condition than (1.3). Alternative conditions

for (2.15) to hold are given in Hannan (1970, p.226) by assuming fx(n)g being uniform

mixing and some others.

Denote � = arg(A1G),

�(s) =

8<
:
X
k 6=1

AkH
(N)
1;s (!k � �!1) + �x(s)

9=
; =jA1Gj; (2.16)

and

�0(s) = exp(�i(� + �s))�(s): (2.16')

12



In view of (2.10), we have

�(s)=jA1Gj = exp(i(� + �s))f1 + �0(s)g; (2.17)

�0(s)=jA1Gj = exp(�i��)f�(s)=jA1Gjg = exp(i(�0 + �s))f1 + �0(s)g (2.17')

where �0 = �� ��. Denote �0(s) = �01(s) + i�02(s). Since all !k (k 6= 1) stay away from !1

(and hence from �!1), H
(N)
1;s (!k� �!1) = O(1). In view of Lemmas 2.1 and 2.2, and (2.16')

[i.e. the transformation from (�1(s); �2(s)) to (�
0
1(s); �

0
2(s)) is orthogonal], asymptotically,

we have

jA1G j

(2�H
(N)
2;1 )1=2

(�01(1); �
0
2(1); : : : ; �

0
1(M); �02(M))�

d
!N2(0;

f(!1)

2
I2M): (2.18)

The scaling factor on the left hand side is O(N1=2), that means the mean of both �01(s)

and �02(s) is o(N
�1=2) and the standard deviations of both �01(s) and �

0
2(s) are of order

O(N�1=2). With some elemental discussion and inequalities in the probability theory, it

is easy to show the following property: If a random sequence, xN , has mean o(N�1=2)

and standard deviation O(N�1=2), then N1=2x2N
p
! 0:

Now, the right hand side of (2.17') can be viewed as j1+ �0(s)j expf(i(�0+�s+ e(s))g,

where

e(s) = arg(1 + �0(s)); (2.19)

which is the expression of e(s) in (2.5). By Taylor expansion and the above mentioned

property, one sees that N1=2(e(s)� �02(s))
p
! 0: Hence,

jA1G j

(2�H
(N)
2;1 )1=2

(e(1); : : : ; e(M))�
d
! N (0;

f(!1)

2
IM): (2.20)
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In view of (2.9), Lemma 2.1 and notation (1.12), if j!1 � �!1j = o(N�1) a:s:, then

(N=M)(2�H
(N)
2;1 =jA1Gj

2)f(!1)=2
p
! (h2=h

2
1)R

�2
1 =2: (2.21)

If it only holds j!1� �!1j < �=N a:s:, h1 may be replaced by a stochastic number between

h1 and h
0 de�ned in Lemma 2.1.

>From (2.6) and (2.5), it is easy to show that

�̂ � � =
MX
1

(s�
M + 1

2
)e(s)

,
MX
1

(s�
M + 1

2
)2 : (2.22)

Therefore, �̂�� is asymptotically normal with Var(�̂��) = 12Varfe(1)g=f(M�1)M(M+

1)g. By (2.7) and (2.11), !̂1 � !1 = (�̂ � �)M=N . Combining these results, we have the

following theorem.

Theorem 2.1 For model (1.1) and (1.2), where fx(n)g satis�es conditions in Lemma

2.2, if the initial estimate �!1 of !1 satis�es j!1 � �!1j = o(N�1) a:s:, then as N ! 1,

the estimate !̂1 obtained by SA satis�es

N3=2(!̂1 � !1)
d
!N (0; f6M2=(M2 � 1)g(h2=h

2
1)R

�2
1 ): (2.23)

In the case where �!1 only satis�es (1.9), then asymptotically, the mean of !̂1 � !1 is

o(N�3=2) and its asymptotic variance is between N�3f6M2=(M2 � 1)g(h2=h21)R
�2
1 and

N�3f6M2=(M2 � 1)g(h2=h02)R
�2
1 .

Remark: (i) Usually, the �rst �!1 obtained in the stage of detecting the hidden frequency

with special form of �j=N , (j is an integer in [1,N ]) only satis�es (1.9); however, as the

theorem does not require �!1 to be of any special form, we may use the resulted �!1 from
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the preliminarily use of SA which satis�es j�!1� !1j = O(N�3=2) = o(N�1) a:s: (see next

subsection); i.e. when the SA procedure is iterated twice, (2.23) is assured.

(ii) The data taper introduces the extra factor h2=h
2
1 into the asymptotic variance (and

its square root into the upper bound of the LIL | see Theorem 2.2 below). By using

Cauchy-Schwarz inequality it can easily be shown that h2=h
2
1 � 1 with equality if and

only if h(u) = 1 for 0 < u � 1 a:s: which is the non-tapered case. Equality also holds

for an asymptotically vanishing taper with �N ! 0. Thus, we have an asymptotic loss

of eÆciency by using a non-vanishing data taper. Nevertheless, tapering may be very

bene�cial in certain situations as we will point out in Sections 3 and 4.

2.3 LIL for SA

Theorem 2.2 For model (1.1) and (1.2), where fx(n)g is de�ned by (1.3) and (1.4)

with some further conditions as stated in Theorem 3.1 of Chen (1988a), if jdh(u)=duj is

uniformly bounded in (0; 1) and the initial estimate �!1 satis�es j�!1� !1j = o(N�1); then

as N !1, the estimate !̂1 obtained by SA satis�es

lim sup
N!1

(N3= log logN)1=2j!̂1 � !1j �M3=2CM(h
1=2
2 =h1)R

�1
1 ; a:s: (2.24)

where

CM =
MX
i=1

js�
M + 1

2
j=

MX
j=1

(s�
M + 1

2
)2: (2.25)

In the case that �!1 only satis�es (1.8), h1 in the right hand side of (2.24) should be

replaced by h0 de�ned in Lemma 2.1.

Proof: It is trivial to introduce the factor h
1=2
2 =h1 into the formula. For that, all we

have to do is replacing \h(u; s) = 1, if (s � 1)=M < u < s=M ; or 0, otherwise" (that

15



gives h1 = h2 = 1) by a general taper function satisfying the conditions mentioned in

the theorem and carry on the proof in Chen (1988a). The major task is then to reduce

coeÆcient 2 in (1.13) to 1.

Consider [see (3.30) in Chen, 1988a]

NX
n=1

h(
n

N
; s)x(n) exp(�i�!1n) =

NX
n=1

h
(�)
N (

n

N
; s)x(n) exp(�i!1n); (2.26)

where

h(�)N (u; s) = h(u; s) cosN ~!1u� ih(u; s) sinN ~!1u (2.27)

and ~!1 = �!1�!1. As j~!1j < �=N , so, jN ~!1j < � and hence jdh
(�)
N (u; s)=duj are uniformly

bounded in u and in N .

Lemma 3.1 in Chen (1988a) may be extended to the complex situation: 'N = '
(1)
N �

i'
(2)
N ,  N =  

(1)
N � i 

(2)
N , with

P (lim sup
N!1

j N(UN)j � lim sup
N!1

sup
x2K

j'N(z)j) = 1; (2.28)

where '
(j)
N and  

(j)
N are sequences of linear functional in C[0,1]. Similar to (3.21), (3.22)

in Chen (1988a), put

'N (z) =
Z 1

0
_z(u)h

(�)
N (u; s)du;

 N(z) =
Z 1

0
_z(u)~h

(�)
N (u; s)du =

NX
n=1

fz(
n

N
)� z(

n� 1

N
)gh(�)N (

n

N
; s);

then k Nk is bounded in N , lim supN!1 supz2K j N(z) � 'N(z)j = 0 where K is a

compact subset of C[0,1] with its elements z(u) satisfying z(0) = 0 and
R 1
0 _z(u)du = 1

where _z(u) denotes dz(u)=du. Hence the conditions of the lemma are all satis�ed. Thus

(2.28) gives

lim sup
N!1

j
NX
n=1

fUN(
n

N
)� UN (

n� 1

N
)gh(�)N (

n

N
; s)j

16



� lim sup
N!1

sup
z2K

j
Z 1

0
_z(u)h

(�)
N (

n

N
; s)duj

� lim sup
N!1

sup
z2K

(
Z 1

0
_z(u)2du)1=2(

Z 1

0
jh(�)N (u; s)j2du)1=2

= lim sup
N!1

(
Z 1

0
h(u; s)2f(cosN ~!1u)

2 + (sinN ~!1u)
2gdu)1=2

= (h2=M)1=2 a:s: (2.29)

Therefore except introducing some factors of h1 and h2, the coeÆcient 2 + � in (3.31)

of Chen (1988a) may reduce to 1 + �. The rest of the proof is exactly the same. There

is a slip in Chen (1988a) of ignoring the condition j�!1 � !1j = o(N�1) for (2.24) to be

true which has been taken into consideration in Lemma 2.1 of this paper. As it was

pointed out in the remark right after Theorem 2.1, iterating the SA procedure once more

is suggested.

2.4 CLT and LIL for MP

Apart from the notations in (2.1) and (2.2), we introduce the following notations:

_hr =
R 1
0 ufh(u)g

rdu �hr =
R 1
0 u

2fh(u)grdu

_H
(N)

r (!) =
PN
n=1(

n
N
)fh( n

N
)gr exp(�i!n); �H

(N)

r (!) =
PN
n=1(

n
N
)2fh( n

N
)gr exp(�i!n);

_H
(N)

r = _H
(N)

r (0)
:
= N _hr; �H

(N)

r = �H
(N)

r (0)
:
= N �hr:

9>>>>>>>>=
>>>>>>>>;

(2.30)

We do not go into the details of proving theorems, as Hannan (1973) and Hannan and

Mackisack (1986) have already got the results for the non-tapered case. We just show,

under the conditions given in this paper, what happens if a data taper is introduced.
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Imitating Hannan (1973), put

q
N
(!) = N�2

�����
NX
n=1

y(n)h(
n

N
) exp(�i!n)

�����
2

: (2.31)

By expressing y(n) by (1.1) and (1.2) and focusing our attention to !1, under conditions

of either Theorem 2.3 or Theorem 2.4 below, we may show that:

N�1=2dqN (!1)

d!
= N�5=2if(A1NH

(N)
1

NX
1

h(
n

N
)
n

N
x(n) exp(i!1n)� the conjugate)

�(A1N _H
(N)

1

NX
1

h(
n

N
)x(n) exp(i!1n)� the conjugate)g

+O(N�1=2); (2.32)

N�2d
2q

N
(!01)

d!2
= �2jA1j

2(h1�h1 � _h
2

1) +O(N�1=2); if j!01 � !1j = o(N�1); (2.33)

where the meaning of O(N�1=2) in (2.32) and (2.33) is \O(N�1=2) a:s:", and dq(!1)=d!

etc means fdq(!)=d!g!=!1 etc. By Taylor expansion,

N�1=2 dqN (!1)

d!
= �N3=2(!̂1 � !1)N

�2d
2q

N
(!01)

d!2
; (2.34)

where !̂1 in the MP estimate satisfying dq
N
(!̂1)=d! = 0 and !01 is a value between !1 and

!̂1. Similarly to Lemma 2.2 with hN (u; s) replaced by hN (u) or uhN(u), we can show

that the right hand side of (2.32) is asymptotically normal with mean 0 and variance

2jA1j2(h21�h2 + _h21h2 � 2h1 _h1 _h2)(2�f(!1)). Combining (2.32) through (3.34), we have the

following theorem.

Theorem 2.3 For model (2.1) and (2.2), where fx(n)g satis�es the conditions in Lemma

2.2, the solution of (2.34), !̂1, exists (in probability) in a neighbourhood of !1, and

N3=2(!̂1 � !1)
d
!N (0; (�1=2�

2
2)R

�2
1 ); (2.35)
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where

�1 = h21
�h2 + _h

2

1h2 � 2h1 _h1 _h2;

�2 = h1�h1 � _h
2

1:

9>>>=
>>>;

(2.36)

The proof of the existence of the solution of (2.34) [i.e. there is an !̂1 satisfying (2.34)]

is outlined as follows. Consider all ! in a neighbourhood of !1, say f! : j!�!1j < N�9=8g,

and Æ > 0 (say, 1=8), in view of (2.33) and (2.36), put (2.34) in the form of

N3=2�Æ(! � !1) = fN�(1=2+Æ)dq
N
(!1)=dqg=f2jA1j

2�2 +O(N�1=2)g: (2.37)

Notice that d2qN(!
0
1)=d!

2 is a function of ! (since !01 depends on !), we may put (2.37)

as D1(N)=D2(N;!). Then P (jD1(N)j � c) � 1 � � (c > 0 is a constant) for any � > 0

and all suÆciently large N [since N ÆD1(N) is asymptotically normal with �nite variance].

For �xed large N , with jD1(N)j � c, since D2(N;!) is a continuous function of ! and

takes values around 2jA1j2�2, D1(N)=D2(N;!) is a continuous bounded function of !.

But since N3=2�Æ(!�!1) is a linear function and reaches �N1=4 in !̂1 2 (!1�N
�9=8; !1+

N�9=8), there must be a solution !̂1 in this neighbourhood. Similarly, !̂1 exists a.s. in

the following theorem.

Theorem 2.4 For model (1.1) and (1.2), under the conditions of Theorem 2.2, the

solution of (2.34), !̂1, exists almost surely in a neighbourhood of !1 and

lim sup
N!1

N3=2(log logN)�1=2j!̂1 � !1j � (�
1=2
1 =�2)R

�1
1 ; a:s: (2.38)

Proof: From (2.32), we have

jdq
N
(!1)=d!j

:
= 2jA1j j cos'1

NX
1

g(
n

N
)x(n) cos!1n� sin'1

NX
1

g(
n

N
)x(n) sin!1nj
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= 2jA1j j Refe
i'1

NX
1

g(
n

N
)x(n) exp(i!1n)gj

� 2jA1j j
NX
1

g(
n

N
)x(n) exp(�i!1n)j; (2.39)

where A1 = jA1j exp(i'1), g(
n
N
) = h1h(

n
N
) n
N
� _h1h(

n
N
): We have

R 1
0 g(u)

2du = �1. How-

ever, (see Theorem 3.1 in Chen, 1988a)

lim sup
N!1

(2�N log logN)�1=2j
NX
1

g(
n

N
)x(n)e�i!1nj

� ff(!)
Z 1

0
g(u)2dug1=2

= f(!)1=2�1=21 a:s:; (2.40)

therefore (2.38) follows from (2.40) and (2.32) through (2.34).

Remark: Data taper introduces the extra factor �1=(12�
2
2) into the asymptotic variance

of the CLT and its square root into the upper bound of the LIL [cf. (1.10) and (1.11)].

Below, we prove that this factor is larger than or equal to 1 with equality in the non-

tapered case which leads to the same situation as for SA estimates [see Remark (ii) after

Theorem 2.1].

To prove the inequality �1=(12�
2
2) � 1, we �rst note that due to the symmetry of the

taper about 1=2 we have _h1=h1 = 1=2. We then get with the Cauchy-Schwarz inequality

�22 = h1�h1 � _h21 =
1

h21

�Z 1

0
(uh1 � _h1)

2h(u)du
�2

�
�Z 1

0
(uh1 � _h1)

2h(u)2du
�
1

h21

Z 1

0
(uh1 � _h1)

2du

= �1

2
4Z 1

0

 
u�

_h1
h1

!2

du

3
5 = �1

12
:

Theorems 2.3 and 2.4 give (1.10) and (1.11) respectively, where equality holds in (2.38)

for the non-tapered case. In fact, under some other conditions (Theorem 3 in Chen, 1990),
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it can be shown that the equality in (2.38) holds for general taper functions. For SA we

do not know whether equality in (2.24) holds under some conditions.

2.5 Comparison

For SA, the e�ect of a data taper produces a factor h2=h
2
1 in the asymptotic variance and

a factor h
1=2
2 =h1 in the a.s. upper bound; while for MP, correspondingly, �1=(12�

2
2) and

�
1=2
1 =(121=2�2). For the non-tapered case (1.14), and the cases of using tapers (1.15) and

(1.16) with �
N
= � = 1 (full size tapers), we list these values in Table 2.1. For tapers

with smaller �, the eÆciency loss is smaller.

Table 2.1 The taper e�ects

SA MP

Taper h2 h1 h
1=2
2 =h1 �1 �2 �

1=2
1 =(121=2�2)

(1.14) 1 1 1 0.0833 0.0833 1

(1.15) 1/3 1/2 1.15 0.00208 0.01042 1.27

(1.16) 3/8 1/2 1.22 0.00148 0.00820 1.36

Intuitively, in SA, we may regard �(s) as a vector in the complex plane of length

about jA1Gj
:
= h1N=M turning an angle of � every time for s = 1; : : :M with a

disturbance which has mean O(1) and standard deviation in each dimension about

(2�N
(N)
2;1 f(!1)=2)

1=2 :
= (h2�Nf(!1)=M)1=2 [see (2.10), (2.15) and (2.9)]. When a data

taper is used, the disturbances become smaller (smaller h2) but the vector becomes

shorter (smaller h1). As the result of balancing, h
1=2
2 =h1 increases and hence the stochas-

tic error of the actual turning angle from � increases by the data taper. That leads to a
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larger estimation error of � and a larger estimation error of !1.

For MP, �1 may represent the e�ect of tapers on the scale of disturbances, and �2

represents the e�ect on the sharpness of the peak generated by !1 (a sharper peak leads

to a more accurate estimate). As the result of balancing, �
1=2
1 =�2 increases, and so

tapering also increases the stochastic error. In ordinary situations [no high peaks in the

spectrum of fx(n)g, no other close and strong hidden frequencies], \no taper" or \light

taper" (say, � = 0:1) are recommended (cf. Section 4).

Now, the performance of SA and MP are compared for the non-tapered case. Table 2.2

lists the asymptotic standard deviation (A.S.D.) for CLT and the almost sure boundary

(A.S.B.) for LIL where M = 2; 3; 5; 7. Since R�11 is common in all the formulae, only the

coeÆcients are listed. Theoretically, M may take any integer value greater than 1.

Table 2.2 A.S.D. and A.S.B. in the non-tapered case

SA MP

M 2 3 5 7

A.S.D. 61=2M=(M2 � 1)1=2 2.83 2.60 2.50 2.48 �
1=2
1 =(21=2�2) = 2:45

A.S.B. M3=2CM 5.7 5.2 6.7 7.9 �
1=2
1 =�2 = 3:46

notes CM 2 1 3/5 3/7 �1 = �2 = 1=12

If we take A.S.D. as the measure of accuracy, we observe that a large value of M is

preferred for the SA method which converges to the A.S.D. of the MP method (i.e. as

M increases, 61=2M=(M2�1)1=2 ! �
1=2
1 =(21=2�2) = 61=2

:
= 2:45). However, all di�erences

are insigni�cant. If we take A.S.B. as the measure of accuracy, the minimum for SA is

attained atM = 3 and increases rapidly asM increases. The values are much larger than
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the A.S.B. via MP. However, for SA, we are not sure whether this bound can be achieved

or not. It could be a conservative bound. Anyway, a large M is not recommended for

SA. From Table 2.2, we see MP is better than SA in ordinary situations.

In practice, the solution via MP is obtained by a grid search (say, in a �ner lattice

than �j=N) rather than by solving dIy(!)=d! = 0 [Iy(!) is given by (1.6) with tapers].

SA obtains the solution by a simple analytic formula which is computationally far more

eÆcient. In our experience, for N = 150, SA only takes about 1/50 of the time used by

MP.

3 The advantages of using a data taper

3.1 A model coping with leakage e�ect

Theorems 2.1 and 2.3 only show a disadvantage of using data taper, namely the increase of

the asymptotic variance of the SA estimates and the MP estimates. This is typical when

data tapers are used. A similar increase of the asymptotic variance can be observed in

several other situations, for example for tapered kernel spectral estimates (cf. Dahlhaus,

1990) or for tapered Whittle estimates and tapered Yule-Walker estimates (cf. Dahlhaus,

1988). Nevertheless, tapering may lead to dramatic improvements of the bias of the

estimates. Simulations which show these improvements for kernel spectral estimates

and tapered Yule-Walker estimates can be found in Dahlhaus (1988, 1990). The bias

of non-tapered estimates usually results from spectral leakage from strong peaks in the

spectrum, or - from the periodic components. The leakage e�ect is a �nite sample e�ect
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and the classical asymptotic analysis therefore is not suitable for describing this e�ect.

For this reason Dahlhaus (1988) had introduced a di�erent type of asymptotic analysis.

In his approach, the magnitudes of peaks in the spectrum were allowed to increase with

the sample size. With this (di�erent) asymptotic theory, the leakage e�ect does not

disappear asymptotically and the bene�t of data tapers can be seen. Thus, the use of

this theory re
ects some problems for a �xed sample size in a much better way.

We basically follow the notation of Dahlhaus (1990) where he introduced a class of

stationary processes X (N; s1; s2; Æ0; c0). An element, fx(n)g, in X (N; s1; s2; Æ0; c0) can be

represented in the form

x(n) =
1X

j=�1

�
(N)
j �(n� j) (3.1)

where, f�(n)g is an ordinary stationary series with spectral density satisfying c�10 �

f�(!) � c0. Dahlhaus also requires stationarity up to 4th order and that the 4th order

spectral density is bounded, but these are not necessary in our study. The transfer

function �(N)(!) =
P1
j=�1 �

(N)
j e�i!j can be written as

�(N)(!) =
r1Y
j=1

f�(N)
1j (! � �1j)g

s1j
,

r2Y
j=1

f�(N)
2j (! � �2j)g

s2j
(3.2)

with sij � si (i = 1; 2), j�i1j1 � �i2j2j > 2Æ0 (mod 2�) for (i1; j1) 6= (i2; j2). If we denote

j�(N)
ij (�) j

2
= g

(N)
ij (�), then

c�10 fLNij
(�)g2 � fg(N)

ij (�)g�1 � c0fLNij
(�)g2; (3.3)

where Nij � N and LN (�) is a function de�ned as

LN(�) =

8>>><
>>>:
N; j�j � 1=N;

1=j� j; 1=N < j�j � �:

(3.4)
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This means that the spectral density may have peaks of order O(N2s2) and troughs of

order O(N�2s1).

We do not try to convince readers that there must be realistic series like that, but we

use this model as a tool to describe the situations that for a given N , the heights of peaks

or the depths of troughs of the spectral density are competitive with N2s2j or N�2s1j and

embed such situations into the model for theoretical discussion. We now use this model

to describe the advantages of using a taper.

3.2 A property of data tapers

We may introduce data tapers in (1.5) and (1.6) to de�ne dy(!) and Iy(!). Similarly,

Ix(!) = jdx(!)j
2 = (2�H

(N)
2 )�1

�����
NX
n=1

x(n)hN (
n

N
) exp(�i!n)

�����
2

: (3.5)

Here, we temporarily assume that fx(n)g is observable. From (2.1), it is easy to show

that

EIx(!) =
Z �

��
f(! � �)(2�H

(N)
2 )�1jH

(N)
1 (�)j2d�: (3.6)

The classical result is that as N !1; EIx(!)! f(!). However this is not necessarily

true for fx(n)g 2 X (N; s1; s2; Æ0; c0).

Put � =  =N , and denote the Fourier transform of hN (u) by

HN( ) = (2�)�1
Z 1

�1
hN(u) exp(�i u)du

:
= (2�N)�1H

(N)
1 (

 

N
); (3.7)

then we have

EIx(!)
:
=

2�

h2

Z N�

�N�
f(! �

 

N
)jHN( )j

2d : (3.8)
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Using integration by parts, if hN(u) is of order (l; �), and d
jhN(u)=du

j is a piecewise

continuous function plus Dirac-Æ function, then for j � l + 1,

HN( ) = (i )�j
Z 1+

0�
(djhN(u)=du

j) exp(�iu )du=(2�): (3.9)

For (1.14), (1.15) and (1.16), we obtain respectively:

HN( ) = H( ) = (i )�1f1� exp(�i )g=2�; (3.10a)

HN( ) = (i )�2f1� exp(�i )gf1� exp(i�
N
 =2)g=(��

N
); (3.10b)

HN( ) = (i )�3f(1� exp(�i ))(1 + exp(i�
N
 =2))

�
Z �N=2

0
sin

2�u

�
N

exp(�iu )du(
2�

�
N

)

+
Z 1

1��N=2
sin

2�(1� u)

�
N

exp(�iu )du(
2�

�
N

)g
�

�2
N

: (3.10c)

In general, we may write formulae of (3.10) as

HN( ) =  �(l+1)��l
N
�l( ; �N ); (3.11)

where j�l( ; �N )j is bounded for all  and �
N
. Unlike Dahlhaus (1988, 1990), we simply

de�ne the order of a taper by (l; �), ifHN( ) has an expression like (3.11) and �N = �N�� ,

where � � 0, usually, is very small. Now (3.11) may be written as

HN( ) =  �(l+1)N �l ~�l( ;N
��); j~�l( ;N

��)j < c; (3.12)

where, c > 0 is a constant. From (3.12), we see that larger l gives smaller jHN( )j (for

j j > 1), and hence (3.8) is closer to f(!). In particular (3.8) shows that EIx(!) is less

a�ected from peaks of f(�) at frequencies � di�erent from !.
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3.3 Eliminating leakage

In the following, we denote the spectral density of fx(n)g 2 X (N; s1; s2; Æ0; c0) by fN (!).

A simulation (Dahlhaus, 1990) has shown that if fx(n)g 2 X (N; s1; s2; Æ0; c0), with non-

tapered data, there is no indication in Ix(!) to re
ect small peaks of fN (!). But with

data tapers, the small peaks of fN (!) can be discovered by Ix(!). We now show more

detailed why leakage from large peaks of fN(!) can be eliminated by data tapers.

In view of (3.2) through (3.4) and c�10 � f�(!) � c0, for fN(!) = j�(N)(!)j2f�(!), we

have8>>>>>>>><
>>>>>>>>:

c2LN (! � �2j)
2s2j � fN (!) � c1LN (! � �2j)

2s2j ; ! 2 [�2j � Æ0; �2j + Æ0];

c2LN (! � �1j)
2s1j � fN (!)

�1 � c1LN(! � �1j)
2s1j ; ! 2 [�1j � Æ0; �1j + Æ0];

c2 � fN(!) � c1; otherwise;

(3.13)

where c1; c2 > 0 are constants.

For simplicity of notation, suppose at �2j = �2, fN(�) has a highest peak with s2j =

s2 � 1: Fix ! =2 (�2�Æ0; �2+Æ0). The cumulated leakage from fN(�); � 2 (�2�Æ0; �2+Æ0),

to EIx(!) is then the integral (3.6) but with lower integration bound ! � �2 � Æ0 and

upper integration bound ! � �2 + Æ0, or in (3.8), the bounds are N(! � �2 � Æ0) and

N(! � �2 + Æ0). In view of (3.11) and (3.13), for large N ,

Z N(!��2+Æ0)

N(!��2�Æ0)
fN(! �

 

N
)jHN( )j

2d 

� cgN�2(l+1)��2l
N

Z N(!��2+Æ0)

N(!��2�Æ0)
c1LN(! � �2 �

 

N
)2s2d 

= cgN�2(l+1)+2l�
Z NÆ0

�NÆ0
LN(�

 

N
)2s2d = cgN�2l�1+2l�

Z Æ0

�Æ0
LN(�)

2s2d�

= cgN�2l�1+2l�(
N2s2

N
+
Z Æ0

1

N

��2s2d�) = cgN2s2�2(l+1)+2l� ; (3.14)

where g = maxfj! � �2 + Æ0j�2(l+1); j! � �2 � Æ0j�2(l+1)g and c > 0 is some constant
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that may be di�erent in di�erent formulae. Note that (3.14) is true only for s2 > 0. If

s2 = 0, we obtain cgN�2l�1+2l� for the last expression; it could be O(N�1) even for l = 0

(non-tapered) by choosing � = 0 | this is not the situation of our concern.

On the other hand, again by (3.11) and (3.13), for large N (so N�1 � Æ0),

Z N(!��2+Æ0)

N(!��2�Æ0)
fN (! �

 

N
)jHN( )j

2d 

� ��2l
N

Z N(!��2+N�1)

N(!��2�N�1)
c2LN(! � �2 �

 

N
)2s2j j�2(l+1)j�l( ; �N )j

2d 

:
= c2j! � �2j

�2(l+1)��2l
N
N2s2�2(l+1)

Z 1

�1
j�l(N(! � �2) + �; �

N
)j2d�: (3.15)

If data are non-tapered (l = 0), we obtain from (3.10a), with  = N(! � �2),

Z 1

�1
j�0( + �; �

N
)j2d� =

Z 1

�1
j1� exp(�i ) exp(�i�)j2(2�)�2d� � c; (3.16)

then, from (3.15), (3.16) and noticing ��2lN � c, we see that the leakage from this highest

peak reaches the order O(N2(s2�1)). Therefore the periodogram can not be asymptotically

unbiased if s2 � 1.

In general, the leakage is dominated by (3.14), that is O(N2(s2�l+l��1)). For l > 0,

from (3.10), we may also show that
R 1
�1 j�l( + �; �

N
)j2d� is bounded away from 0, so

that (3.15) may reach the order of O(N2(s2�l+l��1)), it means that a data taper with an

adequate l and � eliminates the leakage.

Not only high peaks of fN (�) may produce large frequency leakage, strong hidden

periodicities can also produce leakage. The main contribution of a hidden frequency, !1,

to dy(!) is like a term in the middle summation of (2.10). Referring to (2.1), (3.7) and

(3.11), we have

Ak(2�N)�1=2H
(N)
1 (! � !k)
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= Ak(2�N)1=2(2�N)�1
NX
n=1

hN (
n

N
) expf�iN(! � !k)

n

N
)g

:
= Ak(2�N)1=2HN(N(! � !k))

= Ak(2�)
1=2N�l�1=2��l

N
(! � !k)

�(l+1)�l(N(! � !k); �N ): (3.17)

If jAkj is a constant, (3.17) is the order of O(N�l�1=2+l�). The main contribution of !k

to Iy(!) = jdy(!)j2 is the squared value of (3.17), which is O(N�1) in the non-tapered

situation for ! =2 (!k�Æo; !k+Æo). However, the coeÆcient in the O(N�1) - term depends

on jAkj2. Let us put

jAkj = O(Np); p � 0 (p = 0 is the ordinary case): (3.18)

Here again this model is used to describe such critical situations although it does not

necessarily exist in the real world. The leakage from !k to Iy(!) now is O(N2(p�l+l��1=2))

(which also fades away as ! goes away from !k), and the use of a data taper (l > 0)

again helps to eliminate the leakage.

In the following subsections, we discuss how data taper may improve the methods for

detecting and estimating hidden frequencies discussed in this paper.

3.4 SA and MP may not work without data taper

Let !1 be a hidden frequency and �!1 be an initial estimate, for them, (1.9) holds. Using

the de�nition of �(s) in (2.3'), we have

(2�N)�1=2�x(s) = dx(�!1) with taper function hN(u; s); s = 1; : : :M: (3.19)

Suppose that fN(!) has a peak of order s2 at �2; !1 =2 (�2 � Æ0; �2 + Æ0). Since

the asymptotic variance of dx(�!1) is EIx(�!1), in view of (3.14) and (3.15), the cumu-
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lated leakage from fN (�), � 2 (�2 � Æ0; �2 + Æ0), to EIx(�!1) may reach the order of

O(N2(s2�l+l��1)); or this leakage to the asymptotic standard deviation of �x(s) may be

as large as O(N s2�l�1=2+l�).

For SA to work, the error of regression model (2.5), e(s), must be of order at most

o(1). Since �(s), �0(s) and e(s) [for the de�nition, see (2.16), (2.16') and (2.19)] are of

the same order, so �(s) must be of the order of at most o(1). Now, jA1Gj
:
= cN (Lemma

2.1), so, the deviation of �x(s) is allowed to be at most o(N). Hence, the requirement for

suppressing the leakage is

s2 � l � 1=2 + l� < 1: (3.20)

For the leakage does not a�ect the asymptotic properties of the estimate (Theorems 2.1

and 2.2) which hold under the conditions that the deviation of �x(!)=jA1Gj is O(N�1=2)

the other term in (2.16) is of smaller order, we require that

s2 � l � 1=2 + l� < 1=2: (3.21)

If we take l = 0, then for s2 = 1, the left hand side of (3.21) is 1/2. SA works but the

asymptotic properties are jeopardized, while s2 = 2, SA fails to work. Now, we take

l = 2 and a small value for � (simply, � = 0), the left hand side of (3.21) may be even

less than 0, SA works as good as in the ordinary situations.

For MP, consider the e�ect of the cumulated leakage from fN(�), � 2 (�2�Æ0; �2+Æ0), to

the standard deviation ofN1=2PN
1 hN(

n
N
) n
N
x(n) exp(i!1n) andN

1=2PN
1 hN(

n
N
)x(n) exp(i!1n)

in N1=2dqN(!1)=d! of (2.32), where notice that N�5=2(NH(N)
1 ) = O(N�1=2), h(u) and

_h(u) = h(u)u have the same order l [though _h(u) is not a usual taper function as it is not

symmetric about 1/2]. This cumulated leakage may reach the order of O(N s2�l�1=2+l�).
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But the variance of the left side of (2.34) is O(1) [similar to EIx(w)]; so, only if the

contribution of the leakage is of o(1), then its e�ect on the estimate of !1 can be ignored.

It means that s2 � l � 1=2 + l� < 0 is required, and we have to choose some l > 0 if

s2 > 0.

Data tapers also help if Ak in the model are of the form (3.18), i.e. Ak = O(Npk); pk �

0. Applying (3.17) to H(N)
1;s (! � !1), we have

AkH
(N)
1;s (!k � �!1) = O(Npk�l+l�): (3.22)

Suppose that fx(n)g is an ordinary series (no sharp high peaks in its spectrum) and

p1 = 0. Consider the estimation of !1. Due to (3.19), a term in the summation of the

right hand side of (2.10) is O(Npk�l+l�). In the ordinary situation where all pk = 0 and

l = 0 (no taper) we have O(Npk�l+l�) = O(1). Now, some pk > 0. For SA may work

as well as in the ordinary situation, it requires pk � l + l� � 0. Note that the standard

deviation of �x(s) is O(N1=2). If pk � l+ l� < 1=2 is not ful�lled then SA does not work.

Obviously, these inequalities may be ful�lled for pk > 0 if l is chosen large enough. A

similar discussion can be carried out for the MP method.

3.5 A data taper helps detecting !1

The basic statistic for detecting !1 in model (1.1) and (1.2) is ẑ(!) = Iy(!)=
n
f̂N(!) logN

o
,

where

Iy(!) = (2�N)�1
KX

j;k=�K

AkA
�
jH

(N)
1 (! � !k)H

(N)
1 (! � !j)

�

+(2�N)�1=2(
KX

k=�K

AkH
(N)
1 (! � !k))dx(!)

�
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+(2�N)�1=2(
KX

k=�K

AkH
(N)
1 (! � !k))

�dx(!) + Ix(!): (3.23)

and f̂N(!) is a nonparametric estimate of f(�) | usually an average of neighbouring

periodogram values where Iy(!) is left out, or some peak insensitive estimator for f(�)

as in von Sachs (1993).

Consider ! in a neighbourhood of !1. In ordinary situations, !1 contributes a peak to

Iy(!) at !1 through the �rst summation of (3.23), with the height of (2�N)�1jA1H
(N)
1 j2 =

O(N), while the estimator f̂N(!) should not be in
uenced too much by the peak of Iy(!)

at !1 [it is one of the major problems to design the estimator f̂N(!) in such a way -

however, this is not discussed in the present paper]. Ideally, f̂N(!1) should be of order

O(1) leading to a value for ẑ(!) of magnitude O(N= logN). The test suggested in Section

1 then detects the existence of a hidden frequency.

When heavy leakage is present, these ideal properties of Iy(!) and f̂N(!) are corrupted.

In particular f̂N (!1) may increase substantially which leads to a much lower value of ẑ(!)

around !1. A similar situation may happen if there are other hidden periodicities of strong

magnitude. However, leakage e�ect can be eliminated or reduced by data taper.

4 Simulation

4.1 An ordinary situation

The following speci�cation is used in our simulation to verify the theorems in Section 2.

Let N = 150, fx(n)g in (1.1) be a Gaussian white noise with variance one, and three
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hidden periodicities with jAkj = 1 at frequencies (10k + 4:5)�=150 for k = 0; 4; 5, i.e.

!0 = 0:0942; !4 = 0:9320; !5 = 1:1410: (4.1)

Obviously either (10k+4)�=150 or (10k+5)�=150 can be used or regarded as the initial

estimate of !k as !k is almost the average of these two points. The error of the initial

estimate is always about �0:0105. This setting provides an easy way to demonstrate the

improvement of the �nal estimate and leads to a fair comparison for di�erent procedures

and di�erent k. Notice that, for SA, the �nal estimate heavily depends on the initial

estimate, while for MP, the initial estimate only serves as a reference of the location.

According to the above model, samples of 150 observations y(n) with 1000 replications

are generated with 'k, k = 0; 4; 5, being independent uniform random numbers in (��; �]

in each replication.

First, we use the procedure discussed in Section 1 [around (1.8)] with " = 0 to detect !k.

The choice of " = 0 may lead to the detection of spurious hidden periodicities. However,

we took this value since our concern was to study the e�ect that hidden frequencies which

could not be discovered due to leakage. In our simulation study, all the !k; k = 0; 4; 5

are always detected throughout the 1000 replications with the initial estimate, �!k being

either (10k+4)�=150 or (10k+ 5)�=150 no matter whether the data are tapered or not.

Let �!
(p)
k be an initial estimate in the pth replication and !̂

(p)
k be the corresponding �nal

estimate �!
(p)
k obtained by either SA or MP. The quantities

MEAN(k) =
1

1000

1000X
p=1

!̂
(p)
k (4.2)

and

RMSE(k) = f
1

1000

1000X
p=1

(!̂
(p)
k � !k)

2g1=2; (4.3)
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indicate the bias and the accuracy of the estimate respectively. Here RMSE stands for

the \Root of Mean Square Error". RMSE(k) < 0:0105 indicates that the estimate has

been improved from its initial value.

Table 4.1 lists the RMSE of both SA and MP procedures for all the combinations of

� = 0 (non-taper), 0:4 (medium-size taper), 1:0 (full-size taper) and M = 2; 3; 5; 7. Since

MEAN(k) is very close to the true value !k in all cases, its values are not shown.

The numbers with brackets and without brackets under the SA part of Table 4.1 are

the results of using SA once and twice respectively. It is evident that using SA twice

reduces the error signi�cantly in many cases. Among all the M used in SA, M = 3 and

5 provide better results (M = 4 should also be good).

For MP, we do not use the avenue of solving (2.34), since we believe that the remainder

terms in (2.32) and (2.33) are too complicated. We simply calculate Iy(j�=f150� 100g),

where j runs over all integers between (10k+3)�100 and (10k+6)�100; i.e. the values

of the periodogram Iy(!) in the range [(10k + 3)�=150, (10k+ 6)�=150] and on a lattice

100 times �ner than �=150 are calculated. The �nal estimate of !k is then the value

maximizing Iy(!).

To compare the SA and MP procedures, we observe that we can often �nd a value in

SA part which is better than, or at least, competitive to the corresponding value given

by MP in each case. However, we see that, MP is more stable than SA.

For !0 = 0:0942, the results con�rm that data taper increases the estimation error

which is theoretically demonstrated in Table 2.1. However, the results for !4 and !5 do

not support the theoretical conclusion as data taper does not make RMSE larger, but

contrarily, often smaller.

In fact, this is the advantage of data taper mentioned in Section 3. This example makes
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us aware that, even for such small jA4j = jA5j = 1, the e�ect of frequency leakage exists

because !4 and !5 are close; but data taper may reduce this mutual e�ect. To illustrate

this, an experiment was carried out as follows. Using the same parameter as before to

generate y(n) except for putting jA5j = 0, the RMSEs of MP estimation procedure for

!4 are shown in the brackets of MP column and the rows of !4 in Table 4.1. These

numbers follow the same pattern as those in the rows of !0, because now the estimate

of !4 is no longer a�ected by the leakage from !5. The numbers in the brackets of MP

column and the rows of !5 are obtained by the similar way (putting jA4j = 0).

4.2 Some critical situations

We now study the estimation of the same hidden frequencies !0; !4; !5 under the situation

where either additional strong peaks at frequencies �1; �2 or additional hidden frequencies

!1; !2 with strong amplitudes are present. Here !k = �k = (10k + 4:5)�=150, i.e. the

strong peaks or hidden frequencies are at frequencies

!1 = �1 = 0:3040; !2 = �2 = 0:5130: (4.4)

Again, let

jA0j = jA4j = jA5j = 1: (4.5)

The following four speci�ed situations are employed to demonstrate the advantage of

data taper in detecting and estimating !0, !4 and !5.

(A) fx(n)g 2 X (N; 0; 2; Æ0; c0) is the AR(4)-model given by

f1� 2rN(cos�2)B + r2NB
2g2x(n) = �(n); (4.6)

where B is the backward shift operator and f�(n)g is white noise series with N(0; 1)

distribution. By choosing rN = 1 � 1:1=N , N = 150 gives rN = 0:9927. As fx(n)g has
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spectral density fN(!) = (2�)j1� rNe
�i(!��2)j�4, we see that the peak of fN (!) at �2 is

(150=1:1)4=2�. Furthermore, jA1j = 0 and jA2j = 0.

(B) fx(n)g 2 X (N; 0; 1; Æ0; c0) is given by

f1� 2rN(cos�1)B + r2NB
2gf1� 2qN(cos�2)B + q2NB

2gx(n) = �(n); (4.7)

where 1 � qN = 5(1 � rN) gives qN = 0:9633 for N = 150, fN(!) has peaks at �1 with

height (150=1:1)2=2� and at �2 with height (30=1:1)2=2�. jA1j = 0 and jA2j = 0.

(C) fx(n) = �(n)g is a white noise series with N(0; 1) distribution

jA1j = 45; jA2j = 0 and (4.5) holds. (4.8)

(D) The same as in (C) except

jA1j = 30; jA2j = 15: (4.9)

In the simulation, all initial estimation errors are supposed to be (�=150)=2 = 0:0105.

If the RMSE of the �nal estimate, given either by the SA method or the MP method, is

larger than 0.0105 in a case, then the method is regarded as o�ering no further improve-

ment and we simply say that the method \fails to work" in this case.

Tables 4.2 and 4.3 list the MEAN and the RMSE of MP estimates for 1000 replications.

The column \No:" represents the number of times (among 1000 replications) that !k is

detected for each �. Although !k may not be detected in many cases, the MP estimation

procedure is carried out throughout all 1000 replications.

The results for !4 and !5 in these tables show that the medium-size and full-size taper

may make the detection procedure and MP estimation procedure work very well while

they fail to work or work badly for non-tapered data. The further !k stays away from

those high peaks, the better estimation results we have. The results of !0 show the
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limitation of data tapers since !0 is too close to the highest peak of the spectrum or the

hidden frequency with largest jAkj.

Here, the improvement of the estimates are in both MEAN and RMSE. For !4 and

!5, perhaps, medium-size taper is slightly more preferable. However for !0, the most

diÆcult situation, full-size taper makes MP work for (C) and (D), while medium-size

taper fails at all.

These two tables also show that light taper does not make a di�erence for situation

(A), but has more or less help for situations (B), (C) and (D).

Table 4.4 shows some RMSE of the SA estimation procedure. The results are the

average of using both (10k + 4)�=150 and (10k + 5)�=150 as the �rst initial estimate of

!k. Similar to the MP procedure, basically, SA fails to work for !0, and � = 0:1 does not

make much di�erence with � = 0. We only list the results for !4 and !5 with � = 0:4 and

� = 1:0. The numbers with brackets and without brackets are again the results of using

the SA once and twice respectively. In all these situations, di�erent from the ordinary

situation, M = 2 is always better than M = 3 [with one exception in situation (B) and

� = 1:0]. SA almost \fails to work" for higherM (those results are not listed). The reason

for this is that in critical situations with strong peaks or strong periodic components as

much data as possible are needed for a reasonably good Fourier transform.

For ease of comparison of SA with MP, we put the corresponding numbers of MP (has

been given in Tables 4.2 and 4.3) again in this table (columns MP). We see that for

situation (A), SA is better than MP; for (B), both methods are competitive; for (C) and

(D), MP is better.
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Table 4.1 RMSEs of SA and MP estimates (white noise case)

SA

!k � M = 2 M = 3 M = 5 M = 7 MP

0.0942 0 0.0037 0.0017 0.0019 0.0021 0.0016

(!0) (0.0059) (0.0018) (0.0020) (0.0021)

0.4 0.0036 0.0018 0.0041 0.0025 0.0018

(0.0059) (0.0019) (0.0041) (0.0026)

1.0 0.0036 0.0024 0.0063 0.0032 0.0022

(0.0058) (0.0025) (0.0069) (0.0033)

0.9320 0 0.0044 0.0025 0.0014 0.0024 0.0026

(!4) (0.0063) (0.0025) (0.0014) (0.0025) (0.0014)

0.4 0.0037 0.0027 0.0015 0.0034 0.0019

(0.0055) (0.0026) (0.0017) (0.0038) (0.0016)

1.0 0.0036 0.0021 0.0020 0.0048 0.0020

(0.0061) (0.0049) (0.0032) (0.0066) (0.0020)

1.1410 0 0.0044 0.0025 0.0014 0.0023 0.0022

(!5) (0.0063) (0.0025) (0.0014) (0.0024) (0.0014)

0.4 0.0037 0.0026 0.0015 0.0033 0.0019

(0.0054) (0.0024) (0.0017) (0.0040) (0.0017)

1.0 0.0036 0.0021 0.0020 0.0048 0.0021

(0.0066) (0.0067) (0.0035) (0.0068) (0.0021)
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Table 4.2 Detected numbers and MP estimates (cases A and B)

Situation A Situation B

!k � No: Mean RMSE No: Mean RMSE

0.0942 0 1 0.1187 0.0385 4 0.1109 0.0373

(!0) 0.1 0 0.1228 0.0400 3 0.01145 0.0385

0.4 0 0.1254 0.0394 5 0.1140 0.0382

1.0 1 0.1153 0.0422 6 0.1088 0.0403

0.9320 0 0 0.9082 0.0335 57 0.9237 0.0220

(!4) 0.1 0 0.9043 0.0337 156 0.9237 0.0219

0.4 905 0.9305 0.0117 843 0.9312 0.0065

1.0 872 0.9297 0.0101 705 0.9310 0.0077

1.1410 0 0 1.1233 0.0305 175 1.1388 0.0186

(!5) 0.1 9 1.1256 0.0281 729 1.1404 0.0191

0.4 999 1.1401 0.0066 1000 1.1408 0.0027

1.0 996 1.1391 0.0080 1000 1.1405 0.0038
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Table 4.3 Detected numbers and MP estimates (cases C and D)

Situation C Situation D

!k � No: Mean RMSE No: Mean RMSE

0.0942 0 0 0.1089 0.0279 0 0.1008 0.0228

(!0) 0.1 0 0.1405 0.0484 0 0.1274 0.0415

0.4 0 0.1158 0.0274 0 0.1065 0.0227

1.0 0 0.0955 0.0080 149 0.0949 0.0058

0.9320 0 92 0.9311 0.0165 419 0.9308 0.0142

(!4) 0.1 551 0.9280 0.0140 644 0.9281 0.0138

0.4 1000 0.9321 0.0022 1000 0.9321 0.0024

1.0 1000 0.9320 0.0020 1000 0.9320 0.0020

1.1410 0 405 1.1411 0.0150 687 1.1416 0.0126

(!5) 0.1 1000 1.1411 0.0070 1000 1.1410 0.0068

0.4 1000 1.1411 0.0020 1000 1.1410 0.0020

1.0 1000 1.1410 0.0021 1000 1.1410 0.0021
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Table 4.4 Some RMSEs of SA estimates (cases A,B,C,D)

!4 = 0:9320 !5 = 1:1410

SA SA

Situation � M = 2 M = 3 MP M = 2 M = 3 MP

A 0.4 0.0069 0.0196 0.0117 0.0076 0.0252 0.0066

(0.0069) (0.0190) (0.0070) (0.0235)

1.0 0.0066 0.0099 0.0101 0.0031 0.0057 0.0080

(0.0066) (0.0087) (0.0053) (0.0061)

B 0.4 0.0075 0.0189 0.0065 0.0032 0.0067 0.0027

(0.0070) (0.0176) (0.0054) (0.0070)

1.0 0.0052 0.0070 0.0077 0.0031 0.0025 0.0038

(0.0060) (0.0070) (0.0054) (0.0026)

C 0.4 0.0069 0.0197 0.0022 0.0078 0.0248 0.0020

(0.0069) (0.0191) (0.0070) (0.0235)

1.0 0.0066 0.0100 0.0020 0.0031 0.0057 0.0021

(0.0066) (0.0087) (0.0053) (0.0062)

D 0.4 0.0070 0.0200 0.0024 0.0077 0.0251 0.0020

(0.0069) (0.0192) (0.0070) (0.0235)

1.0 0.0066 0.0100 0.0020 0.0031 0.0056 0.0021

(0.0066) (0.0087) (0.0053) (0.0062)
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5 Conclusion

In this article, we study the asymptotic properties of (the central limit theorem and

the law of the iterated logarithm) of the hidden frequency estimates by using secondary

analysis (SA) and the maximum periodogram method (MP). The general model is given

by (1.1) and (1.2). We demonstrated how data taper a�ects these asymptotic properties.

We concluded that data taper makes the estimation error larger in ordinary situations,

i.e. the noise fx(n)g follows a linear process with a 
at spectrum and there is no strong

hidden periodicity with its frequency close the hidden frequency of interest. MP is slightly

better, but computationally less eÆcient than SA.

We also show that, when there are high peaks in the spectral density of fx(n)g, or there

are strong hidden periodicities, with their frequencies close to the hidden frequency of

interest, the nature of the estimates are no longer well described by these asymptotic the-

orems. In such situations, the contribution of such hidden frequency to the periodogram

or Fourier transformation is blurred by frequency leakage from those high peaks or strong

periodicities. However, leakage e�ect may be eliminated by data taper which makes these

estimation procedures work again. A data taper may also make a procedure of detecting

hidden frequencies work very well while the procedure fails with non-tapered data.

The theorems are veri�ed by simulation. Our simulation results shows that, even in

some ordinary situations, if two hidden frequencies are close, data taper may improve

the estimate.

In ordinary situation, using SA for estimating !k with M = 3; 4 or 5 can possibly

provide a better estimate than MP estimate but the result strongly depends on M . SA

is not as stable as MP. In critical situation,M = 2 is the best choice for SA estimate and

higher M are not recommended. Moreover, SA is recommended when the noise has high

peaks in its spectral density, while for the situations where some very strong periodicities

exist, MP estimates are much better.

If the spectrum of the series is 
at and the hidden frequencies are well separated we
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recommend a small taper with, say, � = 0:1. This has only a minor eÆciency loss but

protects a bit against leakage problems. If the spectrum really has strong peaks or hidden

frequencies close to each other we recommend a medium- or full-size taper. In any case

the periodogram with di�erent tapers should be plotted prior to the analysis.
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