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Abstract

Models are studied where the response Y and covariates X� T are assumed

to ful�ll E�Y jX �T � � GfXT� � � � m��T�� � � � � � md�Td�g� Here G is a

known �link� function	 � is an unknown parameter	 and m�� � � � � md are unknown

functions� In particular	 we consider additive binary response models where the

response Y is binary� In these models	 given X and T 	 the response Y has

a Bernoulli distribution with parameter GfXT� � � �m��T�� � � � ��md�Td�g�

The paper discusses estimation of � andm�� � � � � md� Procedures are proposed for

testing linearity of the additive componentsm�� � � � � md� Furthermore	 bootstrap

uniform con�dence intervals for the additive components are introduced� The

practical performance of the proposed methods is discussed in simulations and

in two economic applications� �

�This research was supported by the Deutsche Forschungsgemeinschaft� Sonderforschungsbereich



� Introduction

Many problems in applied econometrics and other �elds require estimating the con�

ditional mean of a random response Y given random covariates� Assume that the

covariate vector is decomposed in two components �X�T �� This paper is concerned

with estimating the conditional mean m�x� t� � E�Y jX � x�T � t�� We will assume

that the in�uence of X is linked linearly to m�x� t�� The in�uence of T will be described

by additive nonparametric functions of the components of the vector T �Generalized

Additive Regression�� We will discuss construction of tests and con�dence bands for

these nonparametric functions�

A traditional estimation approach for m�x� t� begins by assuming that m belongs to

a known �nite�dimensional parametric family in the class of generalized linear mod�

els� That is� m�x� t� � G�xT� � � � tT�� for a known link function G and a linear

parametric index �xT� � � � tT�� � If the true relationship between �X�T � and Y is

given by such a generalized linear model then the parameters can be estimated with

OP �n
����� rates of convergence� The estimated parameter� though� can be misleading

if m�x� t� is misspeci�ed� The possibility of misspeci�cation may be eliminated by a

non� or semiparametric approach at the cost of less precise statistical estimation and

additional numerical burden� Bierens ������� H�ardle ������ provide overviews over

the nonparametric estimation methods and discuss the issue of rates of convergence�

An excellent introduction into semiparametrics in econometrics is given in Horowitz

������� The nonparametric rate of convergence decreases rapidly as the dimension of

the covariables increases �Stone ����	�� Silverman ������ Table ������ The rate of

convergence may be improved through the use of dimension reducing methods� One

popular method is the assumption of additivity for the nonparametric components�

The subject of this paper are tests and con�dence bands in generalized additive re�

gression where the in�uence of the X variable is kept linearly and the in�uence of T

is modelled in an additive nonparametric way� In these models the response Y and

covariates X�T are assumed to ful�ll

E�Y jX�T � � GfXT� � ��m��T�� � � � ��md�Td�g�

Here G is a known �link� function� � is an unknown parameter� and m�� � � � �md are

unknown functions� This model is a semiparametric generalisation of the generalized

linear model where the conditional expectation of the response depends on all covariates

via the link function G in a linear way� i�e� E�Y jX�T � � GfXT� � �� T T�g with an
additional parameter �� Models of this type are logit and probit models that are widely

used in mobility analysis� employment studies� marketing analysis� credit scoring and

��� �Quanti�kation und Simulation �okonomischer Prozesse�� Humboldt�Universit�at zu Berlin	
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many other �elds� They are often applied because they allow a simple interpretation

of a �linear index� and software is routinely widely accessible�

Appropriateness of linearity in these index models has been questioned in recent ap�

plications� Burda ����	� analysed East � West migration in Germany� Fahrmeir and

Hamerle ������ Fahrmeir and Tutz ����� used logit models in credit scoring and

found nonlinear in�uences in the predictor variables� Bertschek ������ and Horowitz

and H�ardle ������ analysed innovative behavior of �rms and proposed non� and semi�

parametric approaches which are shown to be a valuable alternative to linear index

modelling� Severini and Staniswalis ������ Ai ������� Ai and McFadden ������ demon�

strated how parametric and nonparametric components can be estimated e�ciently in

case of one nonparametric component� Their approach is based on an iterative appli�

cation of smoothed local and un�smoothed global likelihood functions� For a related

model with semiparametric index see Carroll� Fan� Gijbels and Wand ����
�� A non�

parametric bootstrap test for the parametric index can be found in H�ardle� Mammen

and M�uller ������� In this paper we improve upon this earlier work by considering

several additive nonparametric components and by constructing con�dence bands for

these components�

The additive modelling has been analysed theoretically for high�dimensional regression

data� see Stone ����
� ������ Andrews and Whang ������� Newey ������ It helps

to circumvent the curse of high dimension� �i� The model can be estimated at a rate

typical for one dimensional explanatory variables� �ii� The resulting curves are one�

dimensional and can be inspected graphically with the aid� e�g� of uniform con�dence

bands� Two practical proposals exist for the estimation of additive components in

regression models� Projection smoothers using back�tting techniques have been con�

sidered in Buja� Hastie and Tibshirani ������� Asymptotic theory for this iterative

technique is rather complicated� see Linton� Mammen and Nielsen ������� Opsomer

������ and Opsomer and Ruppert ������� Tools �e�g� tests and con�dence bands� for

statistical inference based on the estimates are rare and there is no complete mathemat�

ical knowledge on the choice of the bandwidth� Recently� an �integration� technique

of additive components has been introduced by Tj�stheim and Auestad ������ Lin�

ton and Nielsen ����
�� The technical treatment of this method is simple and allows

an asymptotic distribution theory� This approach has been applied in regression by

Fan� H�ardle and Mammen ������� Severance�Lossin and Sperlich ������ and in time

series analysis by Masry and Tj�stheim ����
������� For generalized additive models

this method has been discussed in Linton and H�ardle ������� Linton ������ proposed

a modi�cation that achieves certain oracle bounds� For a simulation comparison of

both approaches see Sperlich� Linton and H�ardle ������� Horowitz ������ provides an

estimation technique for a purly additive index with unknown link�

In this paper we study bootstrap tests and con�dence bands that are based on inte�

gration estimates� The paper is organised as follows� In the next section we introduce

integration estimates for additive binary choice models� Section 	 generalizes this



discussion to generalized additive models and it states asymptotics for integration es�

timates� Typically� the bias of the integration estimate depends on the shape of all

additive components� This complicates the data analytic interpretation of estimated

nonparametric components� We will show how bootstrap can be used to correct for

the bias� Section  introduces bootstrap tests for testing linearity of additive compo�

nents� The tests are modi�cations of an approach of Hastie and Tibshirani �������

They proposed to use the likelihood ratio test and to take critical values of a �� ap�

proximation� The test of this paper di�ers from this proposal by three modi�cations�

Instead of comparing the nonparametric estimate with a linear �t we propose to com�

pare the nonparametric �t with an bootstrap estimate of its expectation �under the

hypothesis of linearity�� Without this bias correction the test does not behave like an

overall test� see H�ardle and Mammen ����	� for a similiar discussion in a simple re�

gression model� Our second modi�cation takes care of the fact that di�erent likelihood

functions �smoothed and unsmoothed likelihood functions� are used in the construction

of the parametric and nonparametric estimates� Furthermore� we propose using the

bootstrap for the calculation of critical values� Consistency of bootstrap is shown by

asymptotic theory� Section 
 presents theory for uniform con�dence bands of nonpara�

metric additive components� Again� their construction uses bootstrap� In Section �

the presented methodology is applied to a migration problem and to a labour market

problem� This section also includes a small simulation study� Assumptions and proofs

are postponed to the appendix�

� Estimation in additive binary response models

In an additive binary response model i�i�d� tuples �Yi�Xi� Ti� are observed �i � �� � � � � n��

where Ti is a random variable in IRd�Xi is in IRp and Yi is a binary response� Condition�

ally given �Xi� Ti� the variable Yi is distributed as a Bernoulli variable with parameter

GfXT
i ����m��Ti���� � � ��md�Ti�d�g where G is a known �link� function� � is an un�

known parameter in IRp� and m�� � � � �md are unknown functions IR� IR� The param�

eter � is in IR� For identi�ability of this model it is assumed that E w��Ti��� m��Ti��� �

�� � � � � E wd�Ti�d� md�Ti�d� � � for weight functions w�� ��� wd� Given �Xi� Ti�� the �con�

ditional� likelihood of Yi is

Q��i�Yi� � Yi log �i � �� � Yi� log�� � �i�������

where �i � GfXT
i ����m��Ti���� � � ��md�Ti�d�g� The conditional likelihood function

is given by

L�m�� �� �
nX
i��

Q��i�Yi������

where m��t� is the additive function ��m��t�� � � � ��md�td��

We discuss now how the additive components m�� � � � �md can be estimated� Without

loss of generality� we will do this only for the �rst component m�� De�ne the smoothed



likelihood

LS�m�� �� �
Z nX

i��

Kh�t� � Ti���Lg�t�� � Ti����Q
h
GfXT

i � �m��t�g�Yi
i
dt����	�

where for a vector u � IRd we denote the vector �u�� � � � � ud�T by u��� Similarly� Ti��� �

�Ti��� � � � � Ti�d�T � For a kernel function L de�ned on IRd�� put Lg�v� � g��d���L�g��v�

and for a kernel function K de�ned on IR put Kh�v� � h��K�h��v�� for L take the

product kernel L �
Qd��
j�� Lj � The bandwidth g is related to smoothing in direction

of the �nuisance� covariates� The relative speed of g to h and the choice of these

bandwidths will be presented later� We de�ne now an estimate of � and a preliminary

estimate of m�� Following Severini and Wong ������� Severini and Staniswalis �����

and H�ardle� Mammen and M�uller ������ these estimates are based on an iterative

application of smoothed local and un�smoothed global likelihood functions� We de�ne

for � � B

cm��t� � arg max
�

nX
i��

Kh�t� � Ti���Lg�t�� � Ti����Q
h
GfXT

i � � 	g�Yi
i
�����

b� � arg max
��B

L�cm�� ������
�

cm � cmb�������

Equation ���� may be written as cm� � arg max
m

LS�m���� The result cm is a multivari�

ate kernel estimate of m� which makes no use of the additive structure of m�� Thiscm will be used in an additional step as an auxiliary quantity for obtaining estimates

���cm�� � � � �cmd of the additive components ��m�� � � � �md� The �nal additive estimate of

m��t� will then be given by ���cm��t���� � ��cmd�td�� For the estimation of the nonpara�

metric component m� the marginal integration method is applied� It is motivated by

the fact that up to a constant� m��t�� is equal to f
R
w���v�dvg��

R
w���v�m��t�� v�dv

or f �
n

Pn
i�� w���Ti����g�� �

n

Pn
i��w���Ti���� m��t�� Ti���� for a weight function w��� An

estimate of m� is achieved by marginal integration or summation of an estimate of m�

In particular� this method does not use iterations so that the explicit de�nition allows

a detailed asymptotic analysis� A weight function w�� is used here for two reasons�

Firstly� it may be useful to avoid problems at the boundary� Secondly� it can be chosen

to minimize the asymptotic variance� In particular� for a regression model �without

link function� it has been shown in Fan� H�ardle and Mammen ������ that after appro�

priate choice of w�� a component m� can be estimated with the same asymptotic bias

and variance as if the other components m�� � � � �md were known� For a weight function

w�� de�ne

m��t�� �
�
n

Pn
i�� w���Ti����cm�t�� Ti����

�
n

Pn
i�� w���Ti����

������

which estimates the function m� up to a constant� An estimate of the function m� is

given by norming with a weight function w�

cm��t�� � m��t�� �
�
n

Pn
i��w��Ti���m��Ti���
�
n

Pn
i��w��Ti���

������



The additive constant � is estimated by

�� �
�
n

Pn
i�� w��Ti� �cm�Ti��cm��Ti���� � � ��cmd�Ti�d��

�
n

Pn
i�� w��Ti�

������

Again� the weight functions w� and w� may be useful to avoid problems at the bound�

ary� The remaining nonparametric components are estimated analogously� The �nal

additive estimate of m is given by

cm��t� � ���cm��t�� � � � ��cmd�td��������

Asymptotics of cm� will be discussed in the next section for the general case of general�

ized additive models� We come back to binary choice models in Section � where some

simulations will be presented and where the methods will be applied to economic data�

� Estimation in generalized additive models� asymp�

totics� bootstrap bias correction

We come now to the discussion of the more general case of a generalized additive

model� Suppose that we observe an independent sample �Y��X�� T��� � � � � �Yn�Xn� Tn�

with E�YijXi� Ti� � GfXT
i � � m�Ti�g� Additional assumptions on the conditional

distribution of Yi will be given below� For a positive function V the quasi�likelihood

function is de�ned as

Q��� y� �

yZ
�

�s� y�

V �s�
ds�	���

where � is the �conditional� expectation of Y � i�e� � � GfXT� �m�T �g� The quasi�
likelihood function has been introduced for the case that the conditional variance of

Y is equal to 
�V ��� where 
� is an unknown scale parameter� The function Q can

be motivated by the following two considerations� Clearly� Q��� y� is equal to ��
����

y��v�� where v�� is a weighted average of ��V �s� for s between � and y� Maximum

quasi�likelihood estimates can thus be interpreted as a modi�cation of weighted least

squares� Another motivation comes from the fact that for exponential families the

maximum quasi�likelihood estimate coincides with the maximum likelihood estimate�

Note that the maximum likelihood estimate b�� based on an i�i�d� sample Y�� ���� Yn from
an exponential family with mean ���� and variance V ������� is given by

nX
i��



�
Q������Yi� � ��

We consider three models�



Model A �Y��X�� T��� � � � � �Yn�Xn� Tn� is an i�i�d� sample with E�YijXi� Ti� � GfXT
i ��

m�Ti�g�

Model B Model A holds and the conditional variance of Yi is equal to V ar�YijXi� Ti� �


�V ��i� where �i � GfXT
i � �m�Ti�g and where 
� is an unknown scale param�

eter�

Model C Model A holds and the conditional distribution of Yi belongs to an expo�

nential family with mean �i and variance V ��i� with �i as in Model B�

The quasi�likelihood function is well motivated for Models B and C� The more general

Model A is included here because we want to discuss the case of a wrongly speci�ed

�conditional� variance in Models B and C� If not otherwise stated all of the following

remarks and results treat the most general Model A� The quasi�likelihood function and

the smoothed quasi�likelihood function is now de�ned as in ����� and ���	� with �����

replaced by �	���� The estimates cm�� ��� cm� m�� cm�� cm� and �� are de�ned as in ����

� ������ Asymptotics for cm� are presented in the following theorem� The assumptions

can be found in Appendix A��

Theorem ���

Suppose that the assumptions �A�� � �A�� apply� Then if h and g tend to zero and

nhg��d����log n��� tends to in�nity	

p
nhfcm��t���m��t��� ��n�t��g

converges to a centered Gaussian variable with variance


�
��t�� �

Z
K��u� du

f��t��

fEw���T���g� E
�
Z�

Z�

����T� � t�

�
�

where fT��
and fT are the densities of T�� or T � �T�� T���	 respectively� 
For a

vector �v�� � � � � vd we denote the vector �v�� � � � � vj��� vj��� � � � � vd� by v�j�� Z� and Z�

are de�ned in the following way�

Z� � w�
��T���

Z�

V �GfXT� �m��T �g�f
�
T��
�T���V ar�Y jX�T ��

Z� � E
h
Z�
���T� � t�� T��

i�
f�
T �t�� T����

Z� �
G��XT� �m��T ���

V �GfXT� �m��T �g��

For the asymptotic bias ��n�t��	 one has

��n�t�� � d�n�t���
Z
d�n�v��w��v��fT��v�� dv� �

Z
w��v��fT��v�� dv� � oP �h

� � g���

�



where

d�n�t�� � g�
Z
IRd��

E

��a��X� t�� u� dX
j��


�
L�jbj�X� t�� u� jT � �t�� u�

�� fT��
�u�du

�h�
Z
IRd��

E
h
a��X� t�� u�


�
Kb��X� t�� u� jT � �t�� u�

i
fT��

�u�du�

Here fT� denotes the density of T�� We write f �Tj�v� �
�
�vj

fT �v�� Furthermore	 
�
L�j �R

s� dLj 	 

�
K �

R
s� dK and

a��x� v� �
w���v���G��xT� �m��v��

E�w���T����E�Z�jT � v�fT�v�V �G�xT� �m��v���
�

bj�x� v� �
�

�

h
G���xT� �m��v���m

�

j�vj��
� �G��xT� �m��v��m

��

j �vj�
i
fT �v�

�
h
G��xT� �m��v��m

�

j�vj�
i
f �Tj�v��

Under the additional assumption of �A�� the rest term oP �h
� � g�� in the expansion

of ��n�t�� can be replaced by OP �h� � g���

The optimal rate of convergence for twice di�erentiable functions m� is n���	� As

long as second order kernels K and L are used this rate can be achieved under the

assumptions of Theorem 	�� only for d � �� For higher dimensions d� one can see

from our expansions that the n���	 rate can be achieved by using higher order kernels

L�� � � � � Ld��� Furthermore� it can be shown that Theorem 	�� holds under weaker

conditions on the bandwidths g and h� However� an essential generalization would

require complex higher order stochastic expansions of the pilot estimate cm�
The estimation of the other additive components mj for j � �� � � � � d can be done as

the estimation of m� in Theorem 	���If assumptions analogous to �A�� � �A�� ��A����

hold for the other components� then the corresponding limit theorems apply for their

estimates� �In the assumptions h denotes always the bandwidth of the estimated com�

ponent and g is chosen as bandwidth of the other components�� One sees that under

these conditions the estimatescm��t��� � � � �cmd�td� are asymptotically independent� This

leads to a multidimensional result� The random vector

p
nh

	BB

cm��t���m��t��� ��n�t��

���cmd�td��md�td�� �dn�td�

�CCA
converges to a centered Gaussian variable with covariance matrix����


��t�� � � � � �
���

� � �
���

� � � � � 
d�td�

�� �



The variance of the estimate cm��t�� can be estimated by

�
�
��t�� � nh

nX
i��

�� �i ��	���

where

��i �

���
n

nX
j��

w��Tj����

����
�

n

nX
j��

w��Tj�����j�t�� Ti����

�
�

n

nX
l��

G��XT
l
�� �cm��Tl��

V �GfXT
l
�� �cm��Tl�g�

�l�t�� Tj����

�
G��XT

i
�� �cm��t�� Tj�����

V �GfXT
i
�� �cm��t�� Tj����g�

�si�

�j�t� �
Kh�t� � Ti���Lg�t�� � Ti����

�
n

Pn
j��Kh�t� � Tj���Lg�t�� � Tj����

�	�	�

�s�i �

�������
�Yi � ��i�� in case of Model A�

�s�V ���i� in case of Model B�

V ���i� in case of Model C

with

�s� �
�

n

nX
i��

�Yi � ��i��
V ���i�

and

��i � GfXT
i
�� � ���cm��Ti��� � � � ��cmd�Ti�d�g�

Theorem 	�� shows that if the bandwidths h and g are of the same order� the bias ofcm��t�� depends on the shape of the other additive components m�� � � � �md� This may

lead to wrong interpretations of the estimate cm�� The bootstrap bias estimates help

here to judge such e�ects�

Three versions of bootstrap will be considered here �see also Mammen and van de Geer

������� H�ardle� Mammen and M�uller �������� The �rst version is Wild Bootstrap which

is related to proposals of Wu ������� Beran ������ and Mammen ������ and which was

�rst proposed by H�ardle and Mammen ����	� in nonparametric setups� Note that in

Model A the conditional distribution of Y is not speci�ed besides the conditional mean�

The Wild Bootstrap procedure works as follows�

Step �� Calculate residuals ��i � Yi � ��i�

Step �� Generate n i�i�d� random variables ���� � � � � �
�
n with mean �� variance � and

which ful�ll for a constant C that j��i j � C �a�s�� for i � �� � � � � n�

Step 	� Put Y �
i � ��i � ��i�

�
i for i � �� � � � � n�



Under the additional model assumption

V ar�Y jX�T � � 
�V �G�XT�� �m��T ���

�Model B� one may use a resampling scheme that takes care of this relation� For this

reason� we propose to modify Step 	 above by putting Y �
i � ��i � �
V f��ig�����i for

i � �� � � � � n� Here �
� is a consistent estimate of 
�� In this case the condition that j��i j
is bounded can be weakened to the assumption that ��i has sub�exponential tails� i�e�

for a constant C it holds that E�e
j�
�

i j�C�� � C for i � �� � � � � n �compare �A����

In the special situation of Model C �semiparametric generalized linear model�� Q�y���

is the log�likelihood� Then the conditional distribution of Yi is speci�ed by �i �

G�XT
i � � m��T ��� In this model we propose to generate n independent Y �

� � � � � � Y
�
n

with distributions de�ned by ��i� respectively� In the binary response example that we

considered in Section �� Yi is a Bernoulli variable with parameter �i � G�XT
i ��m

��T ���

Hence� here it is reasonable to resample from the Bernoulli distribution with parameter

��i�

In all three resampling schemes� one uses the data �X�� T�� Y
�
� �� � � � � �Xn� Tn� Y

�
n � to

calculate the estimate cm�
�� This is done with the same bandwidth h for the component

t� and with the same g for the other d� � components� The bootstrap estimate of the
mean of cm��t�� is given by E�cm�

��t��� where E
� denotes the conditional expectation

given the sample �X�� T�� Y��� � � � � �Xn� Tn� Yn�� The bias corrected estimate of m��t��

is de�ned by cmB
� �t�� � cm��t��� b��n�t���

where b��n�t�� � E�cm�
��t�� � cm��t��� The next theorem shows that the bias terms of

order g� are removed by this construction�

Theorem ���

Assume that Model A 	 Model B or Model C hold and that the corresponding version of

bootstrap is used� Furthermore suppose that assumptions �A�� � �A��� apply and that

assumptions analogous to �A�� and �A�� hold for the estimation of the other additive

components mj for j � �� � � � � d 
h being always the bandwidth used for the estimated

component mj and g the bandwidth for the nuisance components�� Furthermore	 sup�

pose that h and g tend to zero and that nhg��d����log n��� tends to in�nity� Then it

holds that cmB
� �t���m��t�� � Opfh� � g� � �nh�����g��	��

For application of bootstrap in nonparametric regression it has been proposed to gen�

erate the bootstrap samples from another estimate of the regression function� Suppose

e�g� that in the third step of the bootstrap algorithm ��i is replaced by GfXT
i
�� � �� �cmO

� �Ti��� �cm��Ti��� � � � ��cmd�Ti�d�g� where cmO
� is de�ned as cm� but with bandwidth

hO instead of h� Then if hO�h � � one can show that the left hand side of �	��



is of order Opf�hO�� � g� � �nhO�����g� Under weak conditions on hO and g this is

of order oP f�nh�����g� i�e� cmB
� �t�� has no bias of �rst order� Using this fact it can

be shown that under the assumptions of Theorem 	�� the unconditional distribution

of cm��t���m��t�� and the conditional distribution of cm�
��t�� �cmO

� �t�� have the same

normal limit� i�e� the distribution of cm��t�� �m��t�� is consistently estimated by the

bootstrap�

The estimation of the nonparametric components yields also an estimate of the pa�

rameter �� We show that under certain conditions a rate of order OP �n����� can be

achieved� This is a consequence of the iterative application of smoothed local and

un�smoothed global likelihood function in the de�nition of b�� Our conditions imply
that d � 	� Again this constraint can be weakened by assumption of higher order

smoothness of m�� � � � �md and by use of higher order kernels�

Theorem ���

Suppose that the assumptions �A�� � �A�� apply� Then	 if hgd��n����log n��� tends to

in�nity and h and g � o�n�����	 it holds that�

n���f b� � �g

converges in distribution to N��� I��� where Z� is de�ned as in Theorem ��� and where

I � EZ�fXfXT with

fX � X � fE�Z�jT �g��E�Z�XjT ��

� Bootstrap tests for linearity of additive compo�

nents�

Interesting shape characteristics may be visible in plots of estimates of additive com�

ponents� The complicated nature of the model may make it di�cult to judge the

statistical signi�cance of such �ndings� A �rst test would be a comparison of the

nonparametric estimates with linear functions� Deviance of the estimates from linear

functions may give an indication on the signi�cance of appearing shape characteristics�

The hypothesis of interest is therefore�

m��t�� � �� t� for all t� and a scalar �������

Our test is a modi�cation of a general test approach described in Hastie and Tibshirani

������� In semiparametric setups they propose to apply likelihood ratio tests and to

use �� approximations for the calculation of critical values� Approximate degrees of

freedom are derived by calculating the expectation of asymptotic expansions of the



test statistic under the null hypothesis� For this approach only heuristic justi�cation

has been given� Here we propose modi�cations of this approach that give better ap�

proximations for degrees of freedom� First we correct for the bias of the nonparametric

estimate� Secondly� we modify the test statistic for the reason that di�erent likelihoods

�smoothed or unsmoothed likelihood� respectively� have been used in the calculation of

the nonparametric or parametric components� For this modi�ed test statistic asymp�

totic normality �see �Theorem ���� is established� The convergence to the normal limit

is very slow� Therefore we propose using the bootstrap for the calculation of critical

values� Consistency of bootstrap is shown in Theorem ���

The bias correction is used because also on the hypothesis the estimate cm��t�� may

have a non�negligible bias� For this reason in our test� cm��t�� is compared with a boot�

strap estimate of its expectation under the hypothesis� For this purpose we calculate

semiparametric estimates in the hypothesis model ����

E�YijXi� Ti� � GfXT
i � � �� ��Ti�� �m��Ti��� � � � ��md�Ti�d�g�

The � occurring in the preceeding equation is di�erent from the � de�ned in Section ��

because Xi is now replaced by �Xi� Ti���� Estimation of the parametric components ��

� and �� and of the nonparametric components m�� � � � �md can be done� as described

in Section �� This de�nes estimates ��� ��� ����fm�� � � � �fmd� Put

��i � GfXT
i
�� � �� � ���Ti�� �fm��T��i� � � � ��fmd�Ti�d�g�

For the bootstrap proceed now as follows� generate independent samples �Y �
� � � � � �

Y �
n � as in the last section but with �i replaced by ��i� Furthermore� using the data

�X�� T�� Y
�
� �� � � � � �Xn� Tn� Y

�
n � calculate our estimate cm�

�� The bootstrap estimate of

the mean of cm��t�� is given by E�cm�
��t��� where E

� denotes the conditional expectation

given the sample �X�� T�� Y��� � � � � �Xn� Tn� Yn�� De�ne the following test statistic�

R �
nX
i��

w�Ti�
�G�fXT

i
b� �cm��Ti�g��

V �GfXT
i
b� �cm��Ti�g�

fcm��Ti���� E�cm�
��Ti���g� �

Here� cm��t� � �� � cm��t�� � � � � � cmd�td�� The weights �G�f� � �g���V �Gf� � �g� in the
summation of the test statistic are motivated by likelihood considerations� see H�ardle�

Mammen and M�uller ������� It should be remarked that in the de�nition of the test

statistic R the bootstrap estimate E�cm�
� should not be replaced by a semiparametric

estimate of the function m�� say fm��Ti��� � e��Ti��� This can be deduced from the

discussion in H�ardle and Mammen ����	� and H�ardle� Mammen and M�uller ������

who considered a similar test in another setup�

The following theorem states that the test statistic R has an asymptotic normal dis�

tribution�



Theorem ���

Assume that Model A 	 Model B or Model C hold and that the corresponding version

of bootstrap is used� Furthermore suppose that assumptions �A�� � �A��� hold with

Xi replaced by �Xi� Ti���� Then	 if additionally	 hgd��n����log n��� � � and h and

g � o�n�����	 on the hypotheses �����	 it holds that

v��
n �R� en�

D�� N��� ��

with

en � h��
Z
K�u�� duE�AfT��T����

v�n � h��
Z
K����u�� duE

n
E�AjT��

�fT��T��

o
�

A �
�

E�w���T����

w���T���w�T �Z�f�
T��
�T���

E�Z�jT ��f�
T �T �

V ar�Y jX�T �
V fXT� �m��T �g�

where K����u� �
R
K�u� v�K�v� dv is the convolution of K with itself�

The quantities en and vn can be consistently estimated� So� critical values for the test

statistic can be calculated using the normal approximation� Because in similar cases

the normal approximation does not perform well �see H�ardle� Mammen and M�uller�

����� we propose using the bootstrap for the calculation of critical values of the test

statistic R� The bootstrap estimate of the distribution of R is given by the conditional

distribution of the test statistic R�� where R� is de�ned as follows�

R� �
nX
i��

w�Ti�
�G�fXT

i
b� �cm��Ti�g��

V fXT
i
b� �cm��Ti�g

fcm�
��Ti���� E�cm�

��Ti���g� �

The quantities b� and cm� are not recalculated in the resampling �using the bootstrap

samples�� This has been done to save computation time� The conditional distribution

L��R�� of R� �given the original data �X�� T�� Y��� � � � � �Xn� Tn� Yn� � is our bootstrap

estimate of the distribution L�R� of R �on the hypotheses ������

Consistency of bootstrap is the content of the next theorem�

Theorem ���

Under the assumptions of Theorem ���	 it holds that

dKfL��R���L�R�g P�� �

where dK denotes the Kolmogorov distance	 which is de�ned for two probability mea�

sures � and � �on the real line� as

dK��� �� � sup
t�IR

�����X � t�� ��X � t�
����



The results of this section can be easily extended to tests of other parametric hypotheses

on m�� e�g�

m��t�� � m	�t�� for all t� and a parameter ��

where fm	 � � �  g is a parametric family� In particular� one could consider the simple
hypothesis that m� � ��

With similar arguments as in H�ardle and Mammen ����	� one can show that the

test R has nontrivial asymptotic power for deviations from the linear hypothesis of

order n����h����� This means that the test does not reject alternatives that have

a distance of order n����� However� the test detects also local deviations �of order

n����h����� that are concentrated on shrinking intervals with length of order h� The

test may be compared with overall tests that achieves nontrivial power for deviations

of order n����� Typically� such tests have poorer power performance for deviations

that are concentrated on shrinking intervals� For our test� the choice of the bandwidth

determines how sensitive the test reacts on local deviations� For smaller h the test

detects deviations that are more locally concentrated� at the cost of a poorer power

performance for more global deviations� In particular� as an extreme case one can

consider the case of a constant bandwidth h� This case was not covered by our theory�

It can be shown that in this case R is a n���� consistent overall test�

	 Uniform bootstrap con
dence bands�

In this section we propose using the bootstrap for the construction of uniform con�dence

bands� We de�ne

S � sup
t�

w��t��jcm��t�� �m��t��� ��n�t��j�
��
� �t���

where �
�
��t�� is the estimate of the variance of cm��t��� de�ned in �	���� For the es�

timation of the distribution of S we use again bootstrap� as introduced in Section 	

for Model C� This de�nes the statistic S� � supt w��t��jcm�
��t�� � E� cm�

��t��j�
��
� �t���

In the de�nition of S� the norming �
�t�� could be replaced by �
���t��� We write

S�� � suptw��t��jcm�
��t�� � E� cm�

��t��j��
������t��� Here �
���t�� is an estimate of the

variance of cm�
��t��� that is de�ned similarly as �
�t�� but that uses a bootstrap resam�

ple instead of the original sample� The �rst norming may help to save computation

time� for the second choice bootstrap theory from other set ups suggests higher order

accuracy of bootstrap�

Both bootstrap procedures can be used to construct valid uniform con�dence bands

for additive components� This follows from the following theorem�

Theorem ���

Assume that Model A 	 Model B or Model C hold and that the corresponding version



of bootstrap is used� Furthermore suppose that assumptions �A�� � �A��� apply	 that h

and g are of order o�n����� and that ng��d���h�log n��� ��� Then it holds that

dKfL��S���L�S�g P�� ��

dKfL��S����L�S�g P�� ��

From Theorem 
�� we see that critical values of S can be consistently estimated by

bootstrap� This gives uniform con�dence intervals for m��t��� ��n�t��� For con�dence

bands for m� we need a consistent estimate of ��n�t��� Estimation of �
�
n�t�� can be

done by plug�in or bootstrap� Both approaches require oversmoothing� i�e� choice

of a bandwidth hO with hO�h � �� see also the remark after Theorem 	��� For

related discussions in nonparametric density estimation and regression see Bickel and

Rosenblatt ����	�� Eubank and Speckman ����	�� Neumann and Polzehl �������

� Simulations and applications

The following model was used to simulate data from a binary response model

E�Y jX � x� T � t� � P �Y � �jx� t� � Gf�Tx�m��t�g������

where G is the Logit distribution function and m��t� � � �
P�

j��mj�tj�� The ex�

planatory variables X��X�� T� and T� are independent� The variables X� and X� are

standard normal and T� and T� have a uniform distribution on ���� ��� The sample
size was n � �
�� the number of replications in the bootstrap resampling was B � ���

For all computations in this section the quartic kernel K�u� � �	
��
�� � u���I�juj � ��

was used� Figure � shows plots of m��m� and of their estimates� This is done for

� � ���	������T � m��t�� � � sin���t��� m��t�� � t�� � E�T �
� � and � � �� The chosen

bandwidths are h� � ����� ����T � h � ��� and g � ���� Here� h� was used for the

estimation of �� For the estimation of m
 �� � ��� ��� the bandwidth h was applied

for m
 and g for the other nonparametric component mj �j �� ��� In Figure � the

estimates re�ect well the shape of the functions m� and m��
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Figure �� Plots of the nonparametric components m��t�� � � sin���t��	
m��t�� � t�� � E�T �

� � and their estimates�

Consider now the testing problem ���� H� � m��t�� is linear� As discussed above

the normal approximation of Theorem ��� is quite inaccurate for a small sample size

of n � �
�� This can be seen from Figure �� There a density estimate for the test

statistic R� based on 
�� Monte Carlo replications� is plotted together with its limiting

normal density� The parameters are chosen as � � ���	������T � m��t�� � t�� m��t�� �

t�� � E�T �
� � and � � �� This distribution lies on the hypothesis� The density estimate

for R is a kernel estimate with bandwidth according to Silverman!s rule of thumb�

i�e� ����	 ����	n���	 times the empirical standard deviation for the quartic kernel� For

better comparison� the normal density has been convoluted with the quartic kernel

�with the same bandwidth�� In a simulation with 
�� replications the level of the

bootstrap test was estimated� The result was a relative number of rejections of ���	

for � � ���
 and ���� for � � ���� i�e� the bootstrap test keeps its level� Figure 	

plots the power of the test �thick line� for the levels ���
 and ���� The power has been

plotted for the alternatives m��t�� � ��� v�t�� vf� sin���t��g� � � v � �� The other
parameters were chosen as above� For comparison� we made the same simulations for

a parametric Likelihood Ratio Test �LRT� of H� versus

P �Y � �jX � x� T � t� � G��x� ��t� � ��f� sin���t��g� �m��t�� � ����

Clearly� this comparison is far away from being fair since for the parametric test the

alternative as well as m� are assumed to be known� The better performance of the

parametric test �see Figure 	� is mainly due to the fact that the test R is conservative�

see above� �Compare the power of R in the right plot with the power of the Likelihood

Ratio Test in the left plot��
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Figure �� Standardized density estimate of the test
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Figure 	� Power functions for theoretical levels �� and �� 	 for the non�

parametric bootstrap test �thick line� and the likelihood ratio test �thin line��

We have considered two applications of our methods� For ����� one year after the uni�

�cation of East and West Germany� Burda ����	� investigated the impact of various

possible determinants on the intention of East�Germans to migrate from East to West

Germany� The original data set contains 	��� East Germans who have been surveyed

in ���� in the Socio�Economic Panel of Germany� see GSOEP ������� Here we con�

sider the datasets from two East German countries� the most northern �Mecklenburg�

Vorpommern� n � ��� and the most southern �Sachsen� n � �

� country of East

�



Germany� We use the following explanatory variables� family"friend in West� unem�

ployed"job loss certain� middle sized city ������������� habitants� and female �dum�

mies �� � if yes� � � if no�� age �Age� and household income �HhIncome� �continuous

variables�� The response is � if the person is willing to migrate and � otherwise� Figures

 and 
 give plots for the densities of Age and HhIncome for both countries� Tables

� and � contain descriptive statistics�
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Figure � Density plots for Mecklenburg�Vorpommern	 Age on the left	 HhIn�

come on the right�
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Figure 
� Density plots for Sachsen	 Age on the left	 HhIncome on the

right�

Mecklenburg�Vorpommern

sample size n ��

min� max� mean stdev�

response y � � ��	��
� ������

family"friends in West x� � � ������� ��	�
���

unemployed"job loss certain x� � � �����	 �����

city size �������������� x � � ��	
���� �������

female x� � � ��
���� ��
�����

age t� �� �
 	���	
	 �������

household income t� �� ��� ������� �������



Table �� Descriptive statistic for our data of Mecklenburg�Vorpommern�

Sachsen

sample size n �



min� max� mean stdev�

response y � � ��	�
��� �������

family"friends in West x� � � ������ ��	����

unemployed"job loss certain x� � � ����	�� ��	�����

city size �������������� x � � ���
���� ��	����

female x� � � ��
���	 �������

age t� �� �
 ��	��
 ������

household income t� ��� ��� ��	��	� �	�����

Table �� Descriptive statistic for our data of Sachsen�

In the following� the variables Age and HhIncome have been standardized to ��� ���

In a �rst step we �tted a parametric generalized linear regression model with logit link�

The results are presented in Table 	 for both countries� Mecklenburg�Vorpommern and

Sachsen�

Parametric estimation results

Mecklenburg�Vorpommern Sachsen

Coe�� stdev� P � jzj Coe�� stdev� P � jzj
family"friends West ��
��	 ��	��� ���� ����� ������ ������

unemployed"��� ������ ������ ����
 ���	
 �����	 ���

middle sized city ������ ����� ����� ���
�� ���

� ����


female ���	�� ���	�
 ����	 ������� ���	�� �����

age �standardized� ������� ���		� ������ ���
�
� ������ ������

hh� income �stand�� ���	�� ������ ���
� ����	� ������ �����

constant ���	��	 ������ ����� ������ �����	 ������

Table 	� Results of a generalized linear regression�

The variable Age is by far the most signi�cant variable� This holds true for both

countries� Obviously people behave quite di�erently in the two countries� especially

concerning X� �relatives or friends in West Germany� and for X� �their status of em�

ployment� and X �city size��



In a second step we �tted a semiparametric generalized additive model for both data

sets� We present the results for di�erent smoothing parameters� see the captions of

Figures � and �� We choose h � ��� and h � ���
 for Mecklenburg�Vorpommern and

h � ���
� h � ��� for Sachsen� The other bandwidths have always been h� � g � ���	h�
In Figures � and � the additive components for Age and HhIncome are plotted�

Table  gives the parametric estimates of the semiparametric model for both choices

of the bandwidth� The estimates do not seem to depend strongly on the bandwidth�

Furthermore they are simliar to the values of the parametric model� compare Table �

So the qualitative interpretation of these coe�cients does not change� In the �gures

the in�uence of Age in Mecklenburg�Vorpommern does not di�er strongly from the

in�uence of Age in Sachsen� except that the curve from Sachsen is more �at in the

middle part� For HhIncome the curves from both countries have a totally di�erent

shape�

Coefficients of the linear part

Mecklenburg�Vorpommern Sachsen

semi� a semi� b semi� a semi� b

family"friends West ��
��� ��
��� ����	� ������

unemployed"��� ������ ������ ����� ���	��

middle sized city ����
� ������ ��	�	 �����

female ���		�� ���	�
 ������� �������

constant ������ ������ �����
 �������

Table � Results for the pure parametric estimation �par� � and for the parametric

part of the generalized additive partially linear regression model� semi� a �with

bandwidth h � ����	 semi� b �h � ���
� for Mecklenburg�Vorpommern� semi� a

�h � ���
� and semi� b �h � ���� for Sachsen�

In a third step we applied the bootstrap test procedure to the variables Age and

HhIncome� We always used �� replications in the bootstrap resampling� The band�

widths have been chosen as above� For the input Age� linearity has always been

rejected for the � percent level� for all bandwidths in both countries� For the variable

HhIncome� the observed p�values are ��� �for h � ���� Mecklenburg�Vorpommern��

�� �for h � ���
� Mecklenburg�Vorpommern�� ��� �for h � ���
� Sachsen�� and ��� �for

h � ���� Sachsen�� So the deviations of curves for Age from linearity are much more

signi�cant� At �rst sight� this seems to be surprising because the plots for HhIncome

di�er more from linearity� The reason is that the estimates for HhIncome have a

larger variance�
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Figure �� The semiparametric estimates for the in�uence of Age �left� and

HhIncome �right� in Mecklenburg�Vorpommern� The upper plots were esti�

mated with h � ���	 the lower plots with h � ���
�
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Figure �� The semiparametric estimates for the in�uence of Age �left� and

HhIncome �right� in Sachsen� The upper plots were estimated with h � ���
	

the lower plots with h � ����

As a second example we considered a data set on the probability that an apprentice

becomes unemployed directly after �nishing his apprenticeship� The data set has al�

ready been discussed by Proen#ca and Werwatz ����
�� They considered a sample of

�� individuals from the �rst nine waves ���� to ����� of the GSOEP �German socio



economic panel� only West Germany�� All people who had completed an apprentice�

ship between ��� and ���� were included in the sample� We give a brief description

of the data� The dependent variable takes on the value $�� if an individual is regis�

tered as unemployed in the year following the completion of the apprenticeship� The

explanatory variables are summarized in Table 
�

Variable De�nition"Comments

Sex Sex of the respondent� It takes the value $�� if the respon�

dent is female� $�� if male�

Age Age of the respondent in the year the apprenticeship was

completed�

Schooling Years of schooling �� � �	��

Earnings Gross monthly earnings as an apprentice�

Big City $�� if the city where the respondent lived at end of his ap�

prenticeship has between �
� ��� and 
�� ��� inhabitants�

Huge City $�� if the city has more than 
�� ��� inhabitants�

Degree Percentage of people apprenticed in a certain occupation�

divided by the percentage of people employed in this occu�

pation in the entire economy�

U�Rate Unemployment rate in the state the respondent lived in dur�

ing the year the apprenticeship was completed�

Table 
� Explanatory variables�

In Figure � we present the nonparametric regression curves for Age� Earnings and

Degree using bandwidths h � 
T � 
 ���
� ���� ����T � g � 
T � 
 ����� ���� ����T � Here
�
 means elementwise multiplication and 
T is the vector of standard deviations of

T � In the parametric logit �t of Proen#ca and Werwatz ����
� all variables except the

constant and Urate have been not signi�cant� We wanted to check if the reason

for insigni�cance could be the assumption of linearity in their model� The plots in

Figure � show very strong nonlinearities� However� the �jumps� in the plots could be

caused by boundary e�ects and data sparseness� So we applied our bootstrap linearity

test for these three covariates� All observed critical levels were more than �� percent�

Therefore the nonlinearities in the plots are not signi�cant� A plausible explanation

for the nonlinearities is data sparseness� We conclude that our test safeguards against

an overinterpretation of observed shapes of nonparametric smoothers�
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Linear Effects:

----------------------

Sex (female=1) -0.4742

Schooling       0.0616

Big City        1.0341

Huge City      -0.2497

U-Rate          0.2616

Constant       -4.3536

Figure �� Estimates of the additive components in the reduced model and the

coe�cients for the linear part�

A� Assumptions

We state now the assumptions used in the results in Sections � and 	� We use the

notation

hmax � maxfh� gg�
hprod � hgd���

�� � h�max � �nhprod�
�����

�� � h�max � �log n�
����nhprod�

�����

Furthermore� we put

�i�u� � QfG�u��Yig�
��u� � QfG�u��Y g�

Then we have

��i�u� �
Yi �G�u�

V �G�u��
G��u���A����

���i �u� � fYi �G�u�g
�
G���u�

V �G�u��
� V ��G�u�� G��u��

V �G�u���

�
� G��u��

V �G�u��
�



For the asymptotic expansions we make the following assumptions�

�A�� �X�� T�� Y��� � � � � �Xn� Tn� Yn� are i�i�d� tuples� Ti takes values in IRd�Xi is IRp

valued� and Yi is IR valued�

�A�� E�Y jX�T � � GfXT� � m��T �g with � � IRp� Here m� denotes the function

m��t� � ��m��t��� � � ��md�td�� with E mj�Ti�j� � � for j � �� � � � � d� The con�

ditional variance V ar�YijTi � t� has a bounded second derivative� Furthermore

the Laplace transform E exp tjYij is �nite for t � � small enough�

�A	� Xi and Ti have compact support SX � ST � The support ST is of the form ST�� �
ST��� with ST�� � IR and ST��� � IRd��� T has a twice continuously di�erentiable

density fT with inf
t�ST

fT �t� � ��

�A� For compact sets B � IRp and H � IR we de�ne

b� � arg max
��B

L�cm�� ���

where� as above�

L�	� �� �
nX
i��

QfG�XT
i � � 	�Ti��Yig�

cm��t� is de�ned as

cm��t� � arg max
��H

nX
i��

Kh�t� � Ti���Lg�t�� � Ti����Q
h
GfXT

i � � 	g�Yi
i
�

For � � B we put

m��t� � arg max
��H

E
h
��XT� � 	�jT � t

i
�

We assume that m��t� lies in the interior of H for all t � ST and � � B� This

implies Ef����TX � m��t��jT � tg � �� We assume also that E����f�TX �

m��T �gjT � t� �� � for all t � ST and � � B and that for all � � � there exists a

� � � such that for all 	 � H� t � ST � � � B���E h
���XT� � 	�jT � t

i��� � �

implies that

j	 �m��t�j � ��

�A
� There exists an � � � such that G�k��u�� k � �� � � � � 	 and G��u��� are bounded

on u � S� � fxTb � 	 � � � x � SX� b � B and 	 � H�� � IR with j�j � �g�
Furthermore V ��� V � and V �� are bounded on G�S���



�A�� m�� � � � �md are twice continuously di�erentiable on IR� The weight functions w�

w�� and w� are positive and twice continuously di�erentiable� To avoid problems

on the boundary� we assume that for a � � � we have that w���t� � �� w��t� � ��

and w�t� � � for t � S�T��� � fs � there exists an u �� ST��� with ks � uk � �g�
t � S�T�� � fs � there exists an u �� ST�� with ks � uk � �g or t � S�T � fs �
there exists an u �� ST with ks�uk � �g� respectively� Furthermore� the weight
function w� is such that

R
ST��

w��t��m��t��fT��t��dt� � �� where fT� denotes the

density of T��

�A�� The kernel L is a product kernel L�v� � L��v�� 	 � � � 	 Ld���vd���� The kernels

Lj are symmetric probability densities with compact support ����� ��� say�� j �
�� � � � � d � �� The kernel K is a symmetric probability density with compact

support �e�g����� ����too�

�A�� E
h
����fXT

� �� �m��T��gjT� � t
i
and E

h
����fXT

� �� �m��T��gX�jT� � t
i
are twice

continuously di�erentiable functions for t � ST �

�A�� The matrix E Z�fXfXT is strictly positive de�nite� The random vectors Z and fX
have been de�ned in Theorems 	�� and 	�	� respectively�

This assumption implies that X does not contain an intercept� Note that if the

�rst element of X would be constant� a�s�� e�g� Xi� � �� then fXi� � ��

�A��� m�� � � � �md are four times continuously di�erentiable on IR�

�A��� The kernels K and L are twice continuously di�erentiable�

A� Proof of Theorem ���

We start by showing consistency of the estimate b��
b� � �� � oP �����A����

For the proof of �A���� we show �rst that

sup
t��

jcm��t��m��t�j � op�����A����

Proof of �A����� For the proof of claim �A���� we show �rst that�

sup
��t��

j%�m��t�� t� ��j � Op������A��	�



where the following notation has been used�

%�	� t� �� � %��	� t� ���%��	� t� ���

%��	� t� �� �
�

n

X
i

��i�X
T
i � � 	��i�t��

%��	� t� �� � E
h
���XT� � 	�jT � t

i
�

�i�t� �
Kh�t� � Ti���Lg�t�� � Ti����

�
n

nP
j��

Kh�t� � Tj���Lg�t�� � Tj����
��A���

For the proof of �A��	� we remark �rst that

E%�	� t� �� � O�h� � g���

This can be seen by standard smoothing arguments� Furthermore� %��	� t� �� is a sum

of i�i�d� random variables with bounded Laplace transform� see �A��� By standard

application of exponential inequalities we get for every �� � � that for C � large enough

Pfj%�	� t� ��j � C ���g � o�n��� ���A��
�

We consider now the partial derivatives of the summands of %�	� t� �� with respect to

	� t and �� They are bounded by C ��n�� for C �� and �� large enough� Together with

�A��
�� following the same argument as for example in H�ardle and Mammen ����	��

this shows �A��	��

For the proof of �A����� one can conclude from �A��	� that� with probability tending

to one� cm��t� lies in the interior of H� see �A�� This gives

%��cm��t�� t� �� � ���A����

Because of �A��	� this shows

sup
t��

j%��cm��t�� t� ��j � Op�����

Because of assumption �A� this implies �A�����

We apply now �A���� to prove �A���� i�e� that b� is a consistent estimator of ��� We
proceed similarly as in the proof of Proposition � in Severini and Wong �������

Proof of �A����� Let k��� � E�QfXT� �m��T ��Y g�� We will show that

sup
��B

�����nL�cm�� ��� k���

����� � �in probability���A����

This implies claim �A���� because

k������ � E

�����fXT�� �m��T �g
�
X �

m�

�
���� T �

��
X �

m�

�
���� T �

�T
��

� �E�Z� �X �XT �



is strictly negative de�nite and k���� � sup��H k����

It remains to prove �A����� This follows from the following two properties�

sup
��B

�����nL�m�� ��� k���
����� � �in probability���A����

sup
��B

�����nL�cm�� ��� �

n
L�m�� ��

����� � �in probability���A����

Claim �A���� holds because L�m�� ���n converges to k��� by the law of large numbers

and because fL�m�� ���n� � � Bg is tight� For the proof of tightness note �rst that�����nL�m��� ����
�

n
L�m��� ���

���� � Tn��k�� � ��k� Tn�� sup
t
jm���t��m���t�j

� Tn��k�� � ��k� Tn�� sup
t��

�����
����� �m��t�

�����
����� k�� � ��k�

where

Tn�� � sup
���

�

n

nX
i��

���XT
i � � 	�kXik�

Tn�� � sup
���

�

n

nX
i��

���XT
i � � 	��

It is easy to see that� under our conditions� Tn�� and Tn�� are bounded in probability�

To see that �
��
m��t� is uniformly bounded in � and t note that

m�

�
��� t� � �E��

��f�TX �m��T �gXjT � t�

E����f�TX �m��t�gjT � t�
��A�����

Equation �A����� follows by di�erentiation of Ef����TX � m��t��jT � tg � �� This
shows �A�����

Claim �A���� follows from

sup
�

�����nL�cm�� ��� �

n
L�m�� ��

���� � sup
���

j���XT� � 	�j sup
t��

jcm��t��m��t�j�

Thus claim �A���� is shown�

Now� we show the following uniform stochastic expansions of b� and cm�t��
b� � � � fE�Z�fXfXT �g�� �

n

nX
i��

fXi �
�
ifXT

i � �m��Ti�g�Op��
�
����A�����

sup
t�S�

T

�����%�t�
����� � Op��

�
����A�����

�



with

%�t� � cm�t�� �
m�t�

�fE�Z�jT � t�g��E�Z�XT jT � t� fE�Z�fXfXT �g���A���	�

��
n

nX
i��

fXi �
�
ifXT

i � �m��Ti�g
�
�

m�t� � m��t� � fE�Z�jT � t�g�� �

n

nX
i��

�i�t��
�
ifXT

i � �m��t�g��A����

S�T � ft � ST � t� 	 � ST

for all 	 with j	�j � g and j	jj � h �j � �� � � � � d�g�
fXi � Xi � fE�Z�

i jTi�g��E�Z�
iXijTi���A���
�

Z�
i �

G��XT
i � �m��Ti���

V �G�XT
i � �m��Ti���

��A�����

Equations �A����� and �A����� follow from a slight modi�cation of Lemma A	�	 and

Corollary A	� in H�ardle� Mammen and M�uller ������� There it has been assumed

that the likelihood is maximized for � in a neighborhood of �� with radius ��� see

assumption �A�� in H�ardle� Mammen and M�uller ������� In our set up we have that

for a sequence ��n with �
�
n � � with probability tending to one

b� � arg max
��k����k���n

L�cm�� ���

Using the same arguments as in H�ardle� Mammen and M�uller ������� one can show

that

b� � � � fE�Z�fXfXT �g�� �

n

nX
i��

fXi �
�
ifXT

i � �m��Ti�g�Op��
�
�� � jj b� � �jj�Op����

This shows �A������ Equation �A����� can be shown similarly�

With the help of �A����� we arrive at

m��t�� �

Pn
i��w���Ti����m�t�� Ti����Pn

i�� w���Ti����
�OP ��

�
� � n������A�����

� m��t�� �R� �%��t�� �OP ��
�
� � n������

where

R� �
�Pn

i��w���Ti����

nX
i��

w���Ti���� �m��Ti��� � � � ��md�Ti�d��

%��t�� �
�Pn

i��w���Ti����

�

n

nX
i�j��

w���Ti�����j�t�� Ti����

E�Z�
i jTi�� � t�� Ti����

��jfXT
j � �m��t�� Ti����g�



where ��j � �j and Zi are de�ned by equations �A����� �	�	� and �A����� respectively�

Given Zn � ��X�� T���� � � � � T��d�� � � � � �Xn� Tn��� � � � � Tn�d��� the term %��t�� is a sum of

independent variables� For the conditional variance the following convergence holds in

probability

nhV ar�%��t��jZn�

�
Z
L��u� du E

h w��T���

fEw���T���g�
E�Z�jT� � t��

E�Z�jT� � t�� T����
f�
T��
�T���

f�
T �t�� T���

i
�

For this convergence� one uses for instance���� sup
t��t��t����S

�

T

n��
nX

k��

Kh�t� � T��k�Lg�t�� � T���k� � fT �t�� t���
���� � oP ����

n��
nX

k��

Kh�t� � T��k� � fT��t�� � oP ����

Asymptotic normality of %��t�� � E�%��t��jZn� follows from the convergence of the

conditional variance and from

P �dK

�
L
�
%��t��� E�%��t��jZn�

�
� N��� V ar�%��t��jZn��

�
� ��� ��A�����

for all � � �� Here dK is the Kolmogorov distance� which is for two probability measures

� and � �on the real line� de�ned as

dK��� �� � sup
t�IR

�����X � t�� ��X � t�
����

For the proof of �A����� one shows that a conditional Lindeberg condition holds

with probability tending to one� It remains to study the conditional expectation

E�%��t��jZn�� This can be done by showing �rst that

E�%��t��jZn� �
�

n

nX
i��

Z
Kh�t� � v��Lg�Ti��� � v����A�����

E
hn
G�XT� �m��v���G�XT� �m��t�� Ti�����

o
a��X� t�� Ti����jTi�� � t�� Ti���

i
fT �v�dv � rn

where the function a� is de�ned in Theorem 	��� rn � OP ���� � n����� � oP �h� � g���

Furthermore� rn � OP ���� � n���� � h� � g�� under the additional assumption �A����

The proof of �A����� follows by standard� but tedious calculations� The asymptotic

form of E�%��t��jZn� can be easily calculated from �A������ Note that the asymptotic

bias of cm��t�� is asymptotically equal to

E�%��t��jZn��
Z
E�%��v��jZn�w��v��fT��v�� dv��

Z
w��v��fT��v�� dv�

because we assumed that
R
w��v�� m��v�� fT��v��dv� � �� Furthermore� note that up

to �rst order� cm��t�� and fm��t�� have the same asymptotic variance�



A� Proof of Theorem ���

The statement of the theorem follows from

�cm��t��� E�cm�
��t���m��t�� � OP �h

� � g� � �nh��������A	���

Claim �A	��� follows from

�m��t��� E� m �
� �t���m��t�� � R� � �R� �OP �h

� � g� � �nh��������A	���

�

n

nX
i��

w��Ti��� ��m��Ti���� E� m �
� �Ti����m��Ti�����A	�	�

�
h
R� � �R�

i �
n

nX
i��

w��Ti��� �OP �h
� � g� � �nh�������

where

�R� �
�Pn

i�� w���Ti����

nX
i��

w���Ti���� �cm��Ti��� � � � ��cmd�Ti�d��

and where R� has been de�ned after �A������

We give only the proof of �A	���� Claim �A	�	� follows similarly� Because of �A�����

we have that

m��t�� � m��t�� �R� �D��t�� �OP �h
� � g� � �nh�������

where

D��t�� �
�Pn

i��w���Ti����

�

n

nX
i�j��

w���Ti�����j�t�� Ti����

E�Z�
i jTi�� � t�� Ti����

G�fXT
j � �m��t�� Ti����g

V �GfXT
j � �m��t�� Ti����g�h

GfXT
j � �m��Tj�g �GfXT

j � �m��t�� Ti����g
i
�

Similarly� one gets

E� m �
� �t�� � m��t�� � �R� � �D��t�� �OP �h

� � g� � �nh�������

where

�D��t�� �
�Pn

i��w���Ti����

�

n

nX
i�j��

w���Ti�����j�t�� Ti����

E�Z�
i jTi�� � t�� Ti����

G�fXT
j
�� �cm��t�� Ti����g

V �GfXT
j
�� �cm��t�� Ti����g�h

GfXT
j
�� �cm��Tj�g �GfXT

j
�� �cm��t�� Ti����g

i
�

For claim �A	��� it su�ces to show

D��t��� �D��t�� � OP �h
� � g� � �nh��������A	��

This can be done by lengthy calculations� We do not want to give all details here� In

a �rst step one shows that

D��t��� �D��t�� �
nX

i�j��

Wi�j

h
GfXT

j � �m��Tj�g �GfXT
j � �m��t�� Ti����g

�GfXT
j
�� �cm��Tj�g�GfXT

j
�� �cm��t�� Ti����g

i
�A	�
�

�OP �h
� � g� � �nh�������



where

Wi�j �
�Pn

i�� w���Ti����

�

n

w���Ti�����j�t�� Ti����

E�Z�
i jTi�� � t�� Ti����

G�fXT
j � �m��t�� Ti����g

V �GfXT
j � �m��t�� Ti����g� �

The left hand side of �A	�
� can be treated by using Taylor expansions of G and the

stochastic expansions of cmj given in �A������ Consider e�g� for k �� �

Ck�t�� �
nX

i�j��

Wi�jG
�fXT

j � �m��Tj�g �mk�Tj�k��mk�Ti�k�

�cmk�Tj�k� �cmk�Ti�k�� �

Then by using the expansions of cmk given in �A����� and the expansion of the bias ofcmk �see Theorem 	��� one can show

Ck�t�� � Ck��t�� � Ck��t�� �OP �h
� � g� � �nh�������

where

Ck��t�� �
nX

i�j��

Wi�jG
�fXT

j � �m��Tj�g
h
��kn�Tj�k� � �kn�Ti�k�

i
�

and where

Ck��t�� �
�

n

nX
i��

�i�n�Zn� t���i

with some uniformly bounded constants �i�n�Zn� t���

sup
��i�n

sup
t��S

�

T��

�i�n�Zn� t�� � OP ����

It can be easily seen that

Ck��t�� � OP �h
� � g� � n�����

and

Ck��t�� � OP �n
������

We have discussed this term because it shows how the terms of order g� cancel incmB
� �t���m��t��� By similar calculations for the other terms one can show the theorem�

A� Proof of Theorem ���

The conditions on h and g imply ��� � o�n������ Therefore the statement of Theorem

	�	 can be followed from �A������



A	 Proof of Theorem ���

We consider the statistic

U �
nX
i��

Wi fcm��Ti���� E�cm�
��Ti���g� �

where

Wi � w�Ti�
�G�fXT

i � �m��Ti�g��
V fXT

i � �m��Ti�g �

Note that

R �
nX
i��

�Wi fcm��Ti��� �E�cm�
��Ti���g�

with

�Wi � w�Ti�
�G�fXT

i
b� �cm��Ti�g��

V fXT
i
b� �cm��Ti�g

�

We will show that

U � V � op�h
�������A
���

R � U � op�h
�������A
���

where

V �
nX
i��

Wi

ncmAPPR�
� �Ti���

o�
�

cmAPPR�
� �t�� �

�

n

nX
i��

a��Xi� t�� Ti����fT��
�Ti����Kh�t� � Ti����i�

�i � Yi � ��Xi� Ti��

��x� t� � G
h
xT� � � � ��t� �m��t�� � � � ��md�td�

i
�

The function a� has been de�ned in the statement of Theorem 	��� Asymptotic nor�

mality of V can be shown as in H�ardle and Mammen ������� In particular� one gets

�with pairwise di�erent indices i� j� k and l�

EV � E
n
Wia

��Xj � Ti��� Tj����fT��
�Tj����

�K�
h�Ti�� � Tj���V ar�YjjXj � Tj��

o
�O�n��h���

� en �O�h � n��h����

V ar�V � � E
n
WiWla

��Xj � Ti��� Tj����a
��Xj � Tl��� Tj����a

��Xk� Ti��� Tk����

a��Xk� Tl��� Tk����f
�
T��
�Tj����f

�
T��
�Tk����

Kh�Ti�� � Tj���Kh�Tl�� � Tj���Kh�Ti�� � Tk���

Kh�Tl�� � Tk���V ar�YjjXj� Tj�V ar�YkjXk� Tk��g
�O�n��h���

� v�n �O�h � n��h����



Because v�n is of order h
�� for the proof of the theorem it remains to show �A
��� and

�A
����

Proof of �A����� Because ��� � o�n������ it follows from �A����� �compare �A������ that

uniformly for t� in S
�
T���

m��t�� � m��t�� �R� �%��t�� �
E �w���T���M�t�� T����

E �w���T����
Bn � oP �n

������

where

M�t� �
�

E �Z�jT � t�
E
h
Z�XT jT � t

i
E
h
�X �XT jT � t

i��
�

Bn �
�

n

nX
i��

�Xi�
�
i�X

T
j � �m��Tj���

Furthermore� for %��t�� one can show the following uniform expansion�

%��t�� �
�

n

nX
i��

a��Xi� t�� Ti���Kh�t� � Ti����Yi � ��Xi� t�� Ti����� � oP �n
������

By similar expansions as in the proof of Theorem 	�� one can show that this implies

the following uniform expansion of cm��

cm��t�� � ��t� �cmAPPR�
� �t�� �cmAPPR�

� �t�� � ��n�t�� � oP �n
�������A
�	�

where cmAPPR�
� �t�� �

�

n

nX
i��

�i�n���t���i

with some uniformly bounded functions �i�n���

sup
��i�n

sup
t��S

�

T��

�i�n���t�� � O����

The function ��n has been de�ned in Theorem 	���

Furthermore� using similar arguments as in the proof of Theorem 	�� one can show

that

E�cm�
��t�� � ���t� � ��n�t�� � �cmAPPR

� �t�� � oP �n
�����

with cmAPPR
� �t�� �

�

n

nX
i��

�i�n��t���i

for some uniformly bounded functions �i�n��

Together with �A
�	� and a stochastic expansion of �� this gives that uniformly for t�
in S�T��� cm���t�� �E�cm�

��t�� � cmAPPR�
� �t�� �cmAPPR�

� �t�� � oP �n
�����



with cmAPPR�
� �t�� �

�

n

nX
i��

�i�n���t���i

for some uniformly bounded functions �i�n���

Claim �A
��� follows from

nX
i��

Wi

ncmAPPR�
� �Ti���

o�
� oP �h

������

nX
i��

WicmAPPR�
� �Ti���cmAPPR�

� �Ti��� � oP �h
������

nX
i��

���WicmAPPR�
� �Ti���

��� � oP �n
���h������

nX
i��

���WicmAPPR�
� �Ti���

��� � oP �n
���h������

These bounds can be shown by calculation of expectations of the terms on the left

hand side�

Proof of �A����� Because of Theorem 	�	� we have that b� � � � OP �n
����� andb�� � � OP �n������ Moreover we can easily show that

sup
t�

j%��t��� �

n

X
i

%��Ti���j � OP ���� �

It follows that

sup
��i�n

j �Wi �Wij � OP

�
�� � n����

�
�

Now�

jU �Rj � sup
��i�n

j �Wi �Wij
nX
i��

fcm��Ti���� E� cm�
��Ti���g�

� OP

�
�� � n����

�
OP �h

���

� oP �h
������

This shows �A
����

A� Proof of Theorem ���

This theorem follows by replication of the arguments in the proof of the last theorem

for the �Bootstrap world��



A� Proof of Theorem 	��

The proofs for Models A and B can be done as in Neumann and Polzehl ������� where

wild bootstrap of one�dimensional regression functions has been considered� In this

paper it has been shown that the regression estimates in the bootstrap world and in

the real world can be approximated by the same Gaussian process� For this purpose

one shows that cm��t�� � E�cm��t��jZn� and cm�
��t�� � E��cm�

��t��� have linear stochastic

expansions� In particular� using the expansions given in the proof of Theorem 	��� one

shows that

sup
t��S

�

T��

�����cm��t��� E�cm��t��jZn�� �

n

nX
i��

a��Xi� t�� Ti����fT��
�Ti����Kh�t� � Ti����i

�����
� OP �n

����
q
log n��

Here� for � � � small enough we have put S�T�� � fs � there exists an u �� ST�� with

js�uj � �g� �Then� if � is small enough we have that w��t�� � � for s �� S�T���� Similarly

one can see that

sup
t��S

�

T��

�����cm�
��t��� E��cm�

��t����
�

n

nX
i��

a��Xi� t�� Ti����fT��
�Ti����Kh�t� � Ti����

�
i

�����
� OP �n

����
q
log n��

By small modi�cations of the arguments of Neumann and Polzehl ������ one can see

that their approach carries over to our estimates�

We will give now a sketch of the proof for Model C� First note that dK�L��S��L�S���
� in probability where L� denotes the conditional distribution givenZn � ��X�� T���� � � � �

T��d�� � � � � �Xn� Tn��� � � � � Tn�d��� This can be seen as in Neumann and Polzehl �������

The proof of the theorem will be based on strong approximations� For this purpose

we introduce random variables Y �
� � Y ��

� � � � � � Y �
� � Y ��

� � � � � � Y �
n � Y

��
n by the follow�

ing construction� choose an i�i�d� sample U�� � � � � Un that is independent of Zn� We

put Y �
i � F��

i �Ui� and Y ��
i � G��

i �Ui�� where Fi and Gi are the distribution func�

tions of L��Yi� and L��Y �
i �� respectively� Then we have� that given the original

data �X�� T�� Y��� � � � � �Xn� Tn� Yn�� �Y
�
� � Y

��
� �� � � � � �Y �

n � Y
��
n � are conditionally i�i�d��

L��Y �
i � � L��Yi� and L��Y ��

i � � L��Y �
i �� Furthermore we have that

max
��i�n

E�jY ��
i � Y �

i j � OP ������A����

HereE� denotes the conditional expectation given the original data �X�� T�� Y��� � � � � �Xn�

Tn� Yn�� Note that L��Y �
i � and L��Y ��

i � belong to the same exponential family with

expectation �i or ��i� respectively� Property �A���� follows from

E�jY ��
i � Y �

i j �
Z �

�
jF��

i �u��G��
i �u�j du

�
Z �

��
jFi�v��Gi�v�j dv

� O��i � ��i� � OP �����



Put ��i � Y �
i � �i and �

��
i � Y ��

i � ��i� The estimate of the �rst component that is
based on the sample Y �

� � � � � � Y �
n is denoted by cm�

� �t��� The estimate that is based on

Y ��
� � � � � � Y ��

n is denoted by cm��
� �t���

We argue now that for � � � small enough

max
��i�n

sup
��t�

E�j���
i � ��i j�

n
� � exp�tj��i j� � exp�tj���

i j�
o
� OP ������A����

This can be seen by straight forward calculations using �A���� and the fact that the

natural parameter of L��Y �
i � and L��Y ��

i � is bounded away from the boundary of the

natural parameter space of the exponential family� see �A���

It can be shown that for a sequence cn � o��� and for all an � bn with bn � an �
cn log n �nh����� one has that P �S �� �an� bn�� converges to �� This can be seen similarly
as for kernel smoothers in one�dimensional regression� see e�g� Neumann and Polzehl

������� The statements of Theorem 
�� follow from

sup
t��S

�

T��

j�
��t��� 
��t��j � oP �����A��	�

sup
t��S

�

T��

j�
���t��� 
��t��j � oP ��logn�
�����A���

sup
t��S

�

T��

���hcm��
� �t���cm��t��

i
�A��
�

�
hcm�

� �t���m��t��
i��� � oP ��nh�

�����log n�������

We give here only the proof of �A��
�� One shows �rst that

sup
t��S

�

T��

jcm�
� �t���m��t��� �

n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti����
�
i j

� oP ��nh�
�����log n�������

sup
t��S

�

T��

jcm��
� �t���cm��t��� �

n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti����
��
i j

� oP ��nh�
�����logn�������

This can be done by using expansions of the type �A������ Note that the bias of cm�
� �t��

and cm��
� �t�� is of order oP ��nh������log n������� So� for �A��
� it remains to show

sup
t��S

�

T��

j�
n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i �j�A����

� oP ��nh�
�����logn�������

For the proof of this claim we use a standard method that has been applied for calcu�

lation of the sup�norm of linear smoothers� We show �rst that for all constants C� � �



there exists a constant C� such that

sup
t��S

�

T��

P �

�
j�
n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i �j � C��n

�
�A����

� oP �n
�C���

where �n�nh���������log n��� and where P � denotes the conditional distribution given

given the original data �X�� T�� Y��� � � � � �Xn� Tn� Yn�� Note that �n � o��nh������log n�������

Equation �A���� shows that �A���� if the supremum runs over a �nite set with O�nC� �

elements� This implies �A���� by taking a crude bound on

sup
t��S

�

T��

����� t� �n
nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i �

����� �
It remains to show �A����� Note that

P �

�
�

n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i � � C��n

�

� E� exp

�
log n���

n

�

n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i �

�
exp�log n���

n C��n�

� n�C�

nY
i��

E� exp

�
log n

�nn
a��Xi� t�� Ti����Kh�t� � Ti�����

�
i � ���

i �

�
�

We use now the expansion exp�x� � ��x�x��� f��exp�x�g� Because of E���i ����
i � �

and because of �A���� this gives that the last term is bounded by

� n�C�

nY
i��

�
� � C

�log n��

��nn
�
a��Xi� t�� Ti����K

�
h�t� � Ti�����

�
�

where C is a constant� We use now � � x � exp�x�� This gives the bound

� n�C� exp

�
nX
i��

C
�log n��

��nn
�
a��Xi� t�� Ti����K

�
h�t� � Ti�����

�
�

With another constant C � this can be bounded by

� n�C� exp

�
C � �log n�

�

��nnh
��

�
� nC

��C� �

For C� large enough� this is of order o�nC��� This shows �A�����
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