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REACT estimators for the mean of a linear model involve three steps: transforming the
model to a canonical form that provides an economical representation of the unknown mean
vector, estimating the risks of a class of candidate linear shrinkage estimators, and adaptively
selecting the candidate estimator that minimizes estimated risk. When the mean vector is
smooth, the desired canonical form of the linear model is achieved by constructing a smooth
orthogonal basis for the regression space. Such a smooth basis for a complete, balanced
one-way layout is asymptotically equivalent to the discrete cosine basis. Applied to one-
or higher-way layouts, the REACT method generates automatic scatterplot smoothers that
compete well on standard data sets with the best fits obtained by alternative techniques.
Historical precursors to REACT include nested model selection, ridge regression, and nested
principal component selection for the linear model. However, REACT’s insistence on working
with an economical basis greatly increases its superefliciency relative to the least squares fit.
A secondary improvement stems from REACT’s use of flexible monotone shrinkage rather
than 0-1 shrinkage of components. Both improvements are demonstrated numerically on data

sets and theoretically through Pinsker bounds for minimax risk in the estimation problem.

AMS classification: 62J05, 62G07
Keywords and phrases: risk estimation, adaptation, discrete cosine transform, economical
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1. INTRODUCTION

The acronym REACT stands for risk estimation, adaptation, coordinate transformation.
These are the three components of a methodology, described in this paper, that yields
superefficient fits to the Gaussian linear model. The risk of REACT fits under quadratic loss
is often far smaller than the risk of the classically efficient least squares fit. Applied to the

one-way layout, REACT fits generate automatic scatterplot smoothers that compete well
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on test data with kernel or local polynomial techniques. Similarly, REACT for the two-way
layout provides an effective technique for fitting response surfaces to observations taken over
a two-dimensional grid.

Consider a Gaussian linear model in which the nx 1 response vector y has a N,,(X, o21,,)
distribution. For simplicity, assume that the n X p regression matrix X has full rank p < n.

2 are unknown. The problem is to

Both the regression coefficients 8 and the variance o
estimate n = E(y) = XB. The risk of any estimator 7 is the expectation of the normalized
quadratic loss p~|5 — n|?. In particular, the risk of the classical least squares estimator
firs = X(X'X) X'y is o® Stein (1956) proved that 7.s is inadmissible whenever the
dimension p of the regression space exceeds 2. While the theoretical depth of his result
was recognized quickly, development of its extensive implications for statistical practice has
been slow. However, the essential flaw in least squares—its propensity to overfit a linear
model when p is not small—has motivated work on principal component regression, ridge
regression, and model selection.

We outline the main steps of the REACT methodology:

1) Coordinate transformation. By orthogonal transformation of y, reduce the model to
standard canonical form: z and z are independent, z has N (¢, 0?I,) distribution, and z
has N,_,(0,02I,_,) distribution. Sensible choice of the orthogonal transformation is es-
sential in obtaining REACT fits with small risk. Ideally, all but the first few components
of ¢ should be nearly zero.

2) Risk estimation. Let F be a subset of [0,1]? such that the components of each vector
f € F are monotone nonincreasing. Consider candidate estimators of ¢ of the form
f(f) = fz. The multiplication here is componentwise, as in S code. Such an estimator
é(f) shrinks the components of z, which is the least squares estimator of ¢, downscaling
especially the higher-order components of z. For every f € F, estimate the risk of f(f)
from the data.

3) Adaptation. Find f € F that minimizes the estimated risk function from step 2. Esti-

mate £ by é(f) Mapping this adaptive estimator of ¢ back into an estimator of 7 yields
the REACT fit.

Scatterplot fits can be related to the one-way layout through the following model: given
{z;:1 <1 < n}, suppose that {y;:1 <1 < n} are conditionally independent and that the
conditional distribution of y; is N(m(z;),o?) for every 4. If the function m is unknown and
no ties exist among the {z;}, then this conditional scatterplot model is equivalent to the
one-way layout with one observation per cell—the linear model with X = I,,. When there
are ties among the {z;}, the scatterplot model is equivalent to an unbalanced one-way layout,
a linear model in which each row of the regression matrix X has a single nonzero entry that
takes the value 1; rows are repeated to reflect the pattern of ties among the {m(z;)}. By

reordering labels as necessary, suppose that z; is nondecreasing as a function of z. Then
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linear (or other) interpolation between the successive components of the REACT estimator
for the conditional means produces a curve fit to the scatterplot.

Section 2 describes REACT fits in detail. Their application to one-way layouts is il-
lustrated on scatterplots drawn from the smoothing literature. Heteroscedasticity, two-way
layouts, and confidence sets centered at REACT fits are among the subjects of Section 3.
Section 4 presents theoretical properties of REACT fits, relating these to estimators that

achieve the Pinsker (1980) asymptotic minimax bound.

2. PROCEDURE AND EXAMPLES
To completely define REACT fits requires specifying the orthogonal transformation in
step 1, the class of candidate estimators and risk estimator in step 2, and the computational

algorithm for the minimization in step 3. We consider these matters in turn.

2.1 Choice of orthonormal basis

For any matrix A, let M(A) denote the subspace spanned by the columns of A. Let
U be an n X p matrix with orthonormal columns such that M(U) = M(X). Select the
n X (n — p) matrix U so that O = (U|U) is an orthogonal matrix and define

z=Uy, z="U'y, §E=Ez=U'n. (1)

Such orthogonal transformation reduces the linear model into the canonical form mentioned
in the Introduction: z and z are independent, z has Np(¢,0%1,) distribution, and z has
Npn_p(0,0%1,_,) distribution.

The mapping between ¢, whose range is RP, and 7, whose range is the p-dimensional
subspace M(X) C R, is one-to-one:

E=Un, n=Ut (2)

Indeed, M(U) = M(X) if and only if X = UC for some p X p matrix C of rank p. From
this and (1), ¢ = U'XB =U'UCPE = CB. Consequently, n = X =UCB = U¢.

Among the continuum of possible orthonormal bases for the regression space M(X), how
should U be chosen? Computer packages for linear algebra offer numerically stable candidates
that include: constructing U through the singular value decomposition X = ULV’; or taking
U = @ in the QR decomposition X = R, where R is upper triangular; or using a standard
orthonormal basis, such as the discrete Fourier transform in the special case X = I,,. In fact,
nested principal component analysis relies on the singular value decomposition choice of U
while nested order selection in polynomial regression may use the QR choice. See Section
2.4 for details.

Theoretical analysis in Section 4.3 indicates that the risk of a REACT fit is smaller if

all but the first few components of £ are very nearly zero. In this case, we say that the
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orthogonal basis for the regression space is economical and will designate its matrix by Ug.
Heuristically, the benefit of using an economical basis is clear. In that case, one need only
identify and estimate the relatively few nonzero components of ¢, accumulating small squared
biases from ignoring the nearly zero components but not accumulating the many variances
that would arise from an attempt to estimate these unbiasedly. A basic flaw in the least
squares fit is that it estimates unbiasedly every component of ¢, even those whose values are
negligible.

The ideal choice of Ug would have its first column proportional to the unknown mean
vector 7, so that only the first component of ¢ would be nonzero. Though unrealizable,
this ideal choice makes the point that prior information or conjecture about the nature of
n should be used in devising an economical basis matrix Ug for M(X). In many cases,
it 1s likely that 7 is varies slowly between most pairs of adjacent components; and then
it is plausible that the successive columns of an economical basis matrix are of increasing
variation or, equivalently, of decreasing smoothness.

One-way layout. To develop this idea for the case of one-way layouts, let D = {d;;}
denote the first difference operator, the (n — 1) x n matrix with d;; = —1, d; ;41 = 1 and

zeros elsewhere. Define the roughness of any vector z € R™ to be

n

V(z) =) (2 — 2i1)* = |Daf? (3)

=2
Slow variation in successive coordinates of 7 entails that V(n) is small. Construct a decreas-
ingly smooth basis for the regression space as follows:

a) Find an initial basis matrix Uy for M(X) that has orthonormal columns. Numerically
stable algorithms for the singular value decomposition or the QR decomposition provide

convenient methods for this step.

b) Find the smoothest unit vector in M(X) by minimizing the roughness V(Uyy) over all
p X 1 unit vectors 4. This smoothest vector is evidently Uyvy,, where 7; denotes the

eigenvector of UJD’' DU, associated with the j-th largest eigenvalue A;.
¢) Find the smoothest unit vector in M(X) that is orthogonal to the result of the previous

step by minimizing V(Uyy) over all unit vectors 4 that are orthogonal to 7,. The answer

is UO’Yp—l .

d) Continue sequential constrained minimization to obtain the smooth basis matrix
Us = (Uo’}’p, UO’Yp—l; ceey UO’Yl) = UoF, (4)
where I' = (vp, Yp—1, .- .,71) is an orthogonal matrix. If A = diag{,, Ap—1,..., A1}, then

ULD'DUg = I'U.D'DU,T = A (5)

4



and UgUs = I,. Equation (5) entails that the roughness of the k-th column of basis

matrix Ug is equal to Ap_g41.

Examples discussed in Section 2.5 illustrate that the basis Ug is economical for many
data sets taken from the literature on nonparametric smoothing when these are modelled
as a one-way layout. Section 3.3 develops a smooth basis Ugg that is often economical for
fitting a response surface to a two-way layout. This is not to say that all mean vectors 7
encountered in practice are smooth in the sense that V() is small. Section 3.4 illustrates
the differing economy of Us in representing various signal types. In some cases, other bases,
such as those related to wavelets, may be more economical. The REACT methodology can
be expected to work effectively with any economical basis Ug.

Of particular interest is the trend model where X = I,. Then the columns of the
sequentially smooth basis matrix Ug described above are the eigenvectors of D’'D, taken in
increasing order of the associated eigenvalues. Moreover, as n increases, these eigenvectors
converge swiftly to the discrete cosine basis, whose elements are the column vectors

clz{n_l/z:lgjgn} 6

e = {(2/n)? cos[(2j — 1)(k — 1w /(2n)]:1 < j <n} for2<k<n. (6)
This analytical approximation works very well because the eigenvector property, that D' Dc,
be proportional to c¢g, holds exactly apart from the first and last elements of the vector
D'Decy,. In the context of Fourier analysis, the discrete cosine transform is a modification of
the discrete Fourier transform that avoids creating Gibbs phenomena at the beginning and
end of the REACT estimator of . Rao and Yip (1990) discussed properties, algorithms and

applications of the discrete cosine transform to digital signal processing.

2.2 Candidate estimators and estimated risks
Let Ug denote an economical basis for M(X). The one-to-one correspondence between
the canonical mean ¢ = Ugn and the original mean n = Ugé carries over to estimators of

these parameters. The risks of the paired estimators f = Ugn and 5 = UEéc are identical:
R(i,m,0%) = p Bl —n|> = p'E|¢ — €|* = R({, ¢, 07). (7)
In the canonical model, consider the linear estimators {f(f) = fz: f € F}, where F is
a specified subset of [0,1]°. Such candidate estimators for ¢ are also called modulation
estimators or shrinkage estimators. The development here and in Section 2.3 draws on

Beran and Dimbgen (1999) and Beran(1996).
For any p x 1 vector h, let ave(h) = p™* > %  h,. The risk of f(f) is

R(E(f),€,0%) = ave[o” 2 + E(1 — £)’] = p(f, €, 0%). (8)
Define § = £2/(¢€2 + o?), the operations being performed coordinatewise. Then g € [0,1]?

and
p(f,€2,0%) = ave[(f — §)*(€* + 0°)] + ave(a?3?). (9)

5



Ideally, if we knew the risk function in (8) and (9), we would use the candidate estimator

E(f) = fz, where

F = argmin p(f, £, %) = argminavel(f — §)(€* + o*)]. (10)
feF feF
Enlarging F to be a subset of RP rather than [0,1]? does not reduce the minimal risk.
Equation (9) shows that all minimizers of the risk are necessarily in [0,1?. When F is a
convex subset of [0,1], then f is unique. Of special interest for the developments in this
paper are three choices of F:

The global class Fg = [0, 1]P is the largest possible. The value fe € Fe that minimizes
risk is just g, defined above. The global class yields the ideal linear estimator fc = §z in the
canonical model and fig = Ugdiag(§)Ugy in the original parametrization.

The monotone class Fys is the convex set {f € [0,1]7: fi > fo > ... > fp}. The impor-
tance of this class will become clearer in Section 2.3 on adaptation and in the asymptotic
theory of Section 4. Note that it makes sense to shrink more severely the higher order com-
ponents of z because the basis Ug provides an economical representation of . The value
far € Far that minimizes risk yields the ideal estimator ,7 = farz in the canonical model,
which maps into 77 = UEdiag(fM)Uny in the original parametrization.

To compute fM, we use the right side of (10). If H = {h € RP:: hy > hy > ... > hy},
then

fur = argminave[(h — §)%(€% + o2)]. (11)
heH

This minimization is a weighted least squares isotonic regression problem, which may be
solved numerically by the pooled adjacent violators (PAV) algorithm. For details of this
algorithm, see Robertson, Wright and Dykstra (1988).

The nested selection class Fyg is the subset of F defined as follows. For 0 < k < p, let
e(k) denote the p x 1 vector whose 4-th component is 1if 1 <7 < k and is 0 otherwise. Then
Fns = Usoo{e(k)}. Because Fygs is a finite set that contains p + 1 candidate values f, the
computation of fygis straightforward. In case of ties, we use as fws the minimizing value of f
that has the smallest number of nonzero entries. The resulting ideal estimator is ENS = stz
in the canonical model and 7755 = UEdiag(st)Uny in the original parametrization. Sections
2.4 and 2.5 compare REACT fits with classical nested model selection, ridge, and principal
component selection, none of which pay attention to economy of the regression basis in

representing 7.

2.3 Adaptation

The ideal linear estimators Eg, EM; or ENS are usually unrealizable because £? and o2,
which enter into the risk function p(f, £2, 0?), are unknown. We therefore turn to the question

of estimating risk. Three estimators of o2 prove useful for this purpose:
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The least squares variance estimator is the classical residual-based estimator from least
squares theory,
f2 -1 A2 —152
6Ls =(n—p)"'ly —iws|” = (n — p)7'|2[%, (12)
which is consistent if n — p tends to infinity. The two following biased estimators are useful

even when p = n. Their success relies on the economy of the basis Ug.

The high component variance estimator is

p

6% = (n—n"))_ 2+ 12, (13)
where n’ < p <n. Because E6}; = o®+(n—n')"13.%_ €2, this estimator of o2 is consistent
provided n — n’ tends to infinity and the bias term tends to zero. Economy of the basis Ug
ensures that this bias term is relatively small.

The first difference variance estimator, treated by Rice (1984), is

n

65 =[2(n — I Dy =2(n - 1] Y (yi —yir) (14)

=2

In view of (5), the bias of this estimator for o2 is
[2(n — D)) D(n)[* = [2(n — 1)]€'UsD'DUsE = [2(n — 1)] E'AE. (15)

Consistency of 6% is assured when n tends to infinity and the bias tends to zero. Because
the basis Ug is economical, the smallness of the first few diagonal elements of A combines
with the smallness of all but the first few components of ¢ to control the right side of (15).
Having devised a consistent estimator 6% of o2, we estimate £? by 22 — 62 and p(f, €2, o?)

by
p(f) = avel6”f* + (2* — 6*)(1 — f)7]. (16)
The rationale for p(f) includes the calculation Ez? = £2 + ¢? and the supposition that the
law of large numbers will make ave[(1 — f)?(2? — 6?)] consistent for ave[(1 — f)?¢?]. Section
4.2 makes this precise. Only the manner in which o2 is estimated distinguishes the risk
estimator p( f) from Stein’s (1981) unbiased estimator of risk or from the Mallows (1973) Cf,

criterion. Define § = (2? — 0?)/2%. Then g € [—o0, 1]?, not necessarily in [0, 1]P, and

5(f) = avel(f — §)22%) + ave(5%5°). (17)

Adaptive estimation consists in using p(f) as a surrogate for the risk p(f,£2,02%) in
identifying the best candidate estimator. Thus, for a given class F of shrinkage factors we
consider the fully data-based estimator f(f) = fz, where

A

f = argmin p(f) = argminave[(f — §)?2?]. (18)
feFr feFx
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We will write fg, EM; or ENS to distinguish among the estimators of ¢ that result from
this construction when F is Fg, Fur, or Fys respectively. The success or failure of this
adaptation idea depends on the richness of the class F. When F = Fg, it follows from (17)
that the corresponding adaptive global estimator is EG = gz, where ¢, is the positive part
of g. Unfortunately, the risk of EG can be poor, unlike the risk of {g. Suppose that 6% and
z are independent, as occurs when 62 = 62,. Under quadratic loss, the unique admissibility
of z; as an estimator of ¢; entails that

Ellée — €167 = ZE — 6%, /22 - &)

2] = 027 (19)

A2>ZE

for at least one value of £. At this ¢, the risk of EG exceeds the risk of ELS- Thus, the risk

function of EG does not converge asymptotically to the risk function of ¢e.

Adaptation works admirably for the smaller classes Fas and Fyg, which yield, in the
canonical parametrization, the adaptive monotone estimator EM = sz and the adaptive
nested selection estimator ENS = stz. Section 4.2 describes how EM and {CNS converge, both
as estimators and in risk, to the ideal {3 and £ns as p tends to infinity and 62 converges

in probability to o2.

Experiments with artificial data suggest that the convergence of the
adaptive estimators to their ideal counterparts is relatively quick.
Computing EM is slightly more involved than computing the ideal £ in that

fM = f_|_ with f = argmin ave[(h — §)*2%]. (20)
heH

The positive-part step arises because g need not lie in [0,1]?. For a proof of (20) as a
consequence of (18), see Beran and Diimbgen (1999). The PAV algorithm provides an ef-
fective method for obtaining f and hence fM. Computing st is straightforward minimiza-
tion over a finite set. In the original parametrization, the two adaptive estimators become

fin = Ugpdiag(fur)Uky and iins = Ugdiag(fas)Uky.

2.4 Connections

The adaptive estimators in Section 2.3 are defined to minimize estimated risk, or equiv-
alently, a Cf, criterion. Mallows (1973) noted heuristically that the size of F affects the
success or failure of minimum Cr. Li and Hwang (1984) presented Stein-type shrinkage
estimators that dominate 7g in risk. Li (1985) established for nested model selection, ridge
regression, and certain other examples the convergence of §(f) (with o® assumed known) to
the loss of é(f), uniformly over f in F. Kneip (1994) gave related results for the larger class
of ordered linear smoothers. The asymptotic equivalence in loss of estimators obtained by
minimizing Stein’s unbiased estimator of risk, or the generalized cross-validation criterion,
or the Cp, criterion was explored by Li (1985, 1987).

On the other hand, Efroimovich and Pinsker (1984) and Golubev (1987) constructed

adaptive estimators whose maximum risk converges asymptotically to the Pinsker (1980)
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bound for each member of a class of ellipsoids in the parameter space. Beran and Dumbgen
(1999) developed conditions on the covering number of F that ensure correct convergence of
the loss and risk of 77+ to their counterparts for 77+ and linked their results to Pinsker theory.
The Pinsker asymptotic minimaxity of EM and ENS are discussed further in Section 4. This
section compares REACT fits with several precursors and competitors.

Nested polynomsial regression. Suppose that the columns of the regression matrix X are
the powers {z*:0 < k < p—1} of an n x 1 covariate vector z. The QR decomposition of the
regression matrix is X = @R, where the columns of the n X p matrix ¢) are orthonormal and
R is upper triangular. Taking the orthonormal basis for the regression space to be @), reduce
the linear model to canonical form as in Section 2.1 and consider the fit Qdiag(st)Q'y,
which is the adaptive nested selection estimator in the canonical model, mapped back into
the original parametrization. Because the QR decomposition expresses the Gram-Schmidt
orthogonalization of X, this adaptive estimator is equivalent to choosing the order of the
original polynomial regression by minimizing the Cf, criterion and then fitting the polynomial
of this order by least squares.

To this extent, polynomial regression with order chosen to minimize the Cf criterion is
a precursor to REACT. Moreover, such an adaptive polynomial fit has smaller asymptotic
risk than the least squares estimator 75 because the asymptotic theory in Section 4 applies
to any canonical form of the linear model. However, because the basis matrix ¢ obtained
from the QR decomposition of polynomial X need not be economical for smooth signals, the
reduction in risk may be small. This difficulty is illustrated by the unsuccessful polynomial
fits to the motorcycle data displayed on p. 325 of Venables and Ripley (1997).

Nested principal component selection. The singular value decomposition of an n X p
regression matrix X is X = ULV’ where U isnxp, Vispxp, U'U=V'V =VV'= [, and
and L = diag{l;:1 <:<p}withl; >0, > ... > 1, > 0. The columns of V are eigenvectors
of X'X. Rao and Toutenberg (1995), p. 62, formulated nested principal component selection
as follows. The mean X of the linear model can be rewritten as X3, where X = XV and
B = V'B. Let X} denote the n x k matrix formed from the first k¥ columns of X. Candidate

nested principal components estimators for 7 are defined by
(k) = Xe(XeXp) ™ Xay (21)

for 1 <k <pandn(0)=0.

Applying the singular value decomposition to (21) yields the equivalent expression 7(k) =
Udiag(e(k))U'y, where e(k) is the vector of k ones and n — k zeros defined in the paragraph
that follows (11). Thus, if k is chosen to minimize the Cf, criterion, nested principal compo-
nent regression is analogous to the adaptive nested selection estimator of Section 2.3, with
the principal component basis in place of Ug. Because the asymptotic theory in Section 4

applies to any canonical form of the linear model, the adaptive nested principal component
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fit has no greater asymptotic risk than the least squares fit 7.5. However, the uncertain
success of principal component regression in applications stems from its use of an orthogonal
basis that does not attempt an economical representation of 7. Section 2.5 illustrates this
difficulty in fitting one-way layouts to two well-known sets of data.

Ruidge regression. In the notation of the singular value decomposition for X, the candidate

estimators for 7 in ridge regression are
i(c) = X(X'X + clp) "' X'y = Uf(c)U'y, (22)

where ¢ > 0 and f(c) = {{2/(1? + ¢):1 < : < p}. Evidently the range of the candidate
shrinkage vectors {f(c): ¢ > 0} is a proper subset of Fps. Thus, if ¢ is chosen to minimize
the Cf, criterion, the resulting ridge regression estimator fg;per has no greater asymptotic
risk than 7.5 (see Section 4). However, because it tacitly uses the principal component basis
without regard to the economy of that basis in representing 7, ridge regression may not
improve significantly upon least squares. See Section 2.5 for examples.

Symmetric linear smoothers. In REACT, the candidate estimators for 7 take the form
n = Ugdiag(f)Ugy, where f € F C [0,1]? and the economical regression basis Ug depends
upon X. The matrix A = Ugdiag(f)Uf, is symmetric with eigenvalues restricted to [0,1] and
does not depend on y. The candidate estimators are thus symmetric linear smoothers, in the
terminology of Buja, Hastie, and Tibshriani (1989). For given linear smoother, that paper
identifies the matrix A and analyzes its singular value decomposition, which reduces to the
spectral decomposition when A is symmetric.

The REACT approach is synthetic, defining a class of candidate symmetric matrices
A through a class of possible eigenvalues f € F and through the eigenvectors Ug. The
restriction to an economical basis Ug when specifying candidate values of A is motivated
by efficiency arguments in Sections 2.1 and 4.3. The main thrusts of this paper are: (a)
justifying theoretically the use of an economical basis Ug followed by adaptive selection of
f through minimization of the estimated risk p(f); (b) showing empirically that the smooth
basis Ug is often economical for one-way layouts; (c) developing and probing confidence sets
for n that are centered at REACT fits. The asymptotics in Section 4 also support adaptation
over a finite collection of plausible economical bases. Unlike the candidate estimators, the
REACT estimator 7x = UEdiag(ff)Uny is nonlinear in y because f]-' depends on both y and
X. Mallows (1980) treated properties of nonlinear smoothers in a random signal model. His
framework contrasts with the present analysis of REACT estimators under a linear model
having deterministic regressors.

Sparse bases and hard thresholding. A sparse basis is one in which only a few basis vectors
are needed to obtain a good approximation to 7. An economical basis, as described in Section
2.1, is a sparse basis in which the first few basis vectors provide the good approximation.
Donoho and Johnstone (1994) studied hard-thresholding estimators of the form EAZ = z if
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|2;| > Apo? and EAZ = 0 otherwise. Such nonlinear shrinkage estimators were shown to have
surprisingly small risk when the canonical model is sparse and A,/[2log(p)]*/? tends to 1
as p increases. A numerical experiment in Beran and Diimgben (1999) suggested that the
success of hard-thresholding estimators may be more sensitive to the choice of basis than the
success of adaptive linear shrinkage estimators. Confidence sets based on hard-thresholding

estimators appear to be an open question.

2.5 REACT on Data

After the initial choices of regression matrix, basis, variance estimator, and shrinkage
class F, REACT fits are completely defined through the process of minimizing estimated
risk. There is no need to guess or estimate bandwidth parameters. This and further points
will now be illustrated through examples.

Motorcycle data. Competing nonparametric smoothing fits to the motorcycle data are
displayed on p. 325 of Venables and Ripley (1997), on p. 97 of Fan and Miiller (1995), and on
pp. 8-11 of Silverman (1985). Conditioning on the observed times, we will fit an unbalanced
one-way layout to the n = 133 observed accelerations, the factor levels being the p = 94
times taken in increasing order. Each row in the regression matrix X thus contains a single 1,
the other elements all being 0. Repeated observations at a time point induce repeated rows

in X. Because of replication, it is reasonable to estimate o by the least squares estimator

67s = 599.5 defined in (12).
[Figures 1, 2 and 3 go near here|

The right column in Fig. 1 displays the least squares, adaptive nested principal compo-
nent, and adaptive ridge fits to this linear model, line segments being drawn between the
successive fitted means. Minimum estimated risk (or equivalently, minimum Cf) was used
to select the ridge parameter and the number of principal components used. Visually, the
latter two fits are no improvement over the unconvincing least squares fit. Clearly evident
is the tendency of least squares to overfit whenever p is not small.

The left column in Fig. 1 exhibits the motorcycle data and two REACT fits that use
the smooth basis Ug: the adaptive nested selection fit 7ys and the adaptive monotone fit
N, both defined in Section 2.3. Line segments are drawn between the means fitted in this
manner to the one-way layout. It is striking how well these two REACT fits to the motorcycle
data compare visually with the best competing fits in the literature cited above.

The estimated risks for the various fits in Fig. 1 reveal the heart of the story. On the
one hand, prg = 599.5, ppe = 423.2, and pripce = 497.0, all of which are similarly high.
In sharp contrast the two REACT fits have pys = —75.2 and par = —76.4. The negative
values cause no concern because the risk estimator, defined in (16), is not constrained to be
positive. Of interest are three points: (a) both REACT fits have much smaller risk than the

least squares, nested principal component, or ridge fits; (b) in terms of estimated risk, the
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nested selection smooth fit does nearly as well as the monotone smooth fit in this example;
(c) much smaller estimated risk corresponds to a better visual fit.

The first row of Fig. 2 presents two diagnostic plots: on the left, the canonical response
z = Ugy and, on the right, the adaptive shrinkage factors st and fM. The relatively small
magnitude of all but the first few components of z supports the belief that the smooth basis
Ug represents 1 economically. Note that the plot of z displays the square roots {21-1/2}, SO
as to better scrutinize values near 0. The close similarity of the two f plots explains the
near coincidence of the two smooth REACT fits in Fig. 1. As might be expected from the
discussion in Section 2.1, the first four basis vectors in Ug, displayed in the second and third
rows of Fig. 2, are a perturbation of the first four vectors in the discrete cosine basis. The
flat steps in the basis vectors reflect repeated observations at some of the factor levels of the
one-way layout being fitted to the motorcycle data.

Fig. 3 presents analogous diagnostic plots for the principal component basis that underlies
the principal component (PC) and ridge fits in Fig. 1. It is clear from the (1,1) plot that
that the PC basis does not represent the mean acceleration economically. Consequently, as
displayed in the (1,2) plot, most basis vectors are retained when minimizing estimate risk.
This circumstance precludes much reduction in risk by either nested principal component or
ridge regression. On looking at the first four vectors in the principal component basis, this
lack of success is not entirely surprising.

Redoing the analysis of the motorcycle data with the first difference variance estimator
62 in place of 62, makes no perceptible difference to the plotted fits.

Geyser data. Simonoff (1996), pp. 135-6, smoothed nonparametrically the Old Faithful
geyser data. Conditioning on the observed eruption durations, we will fit an unbalanced
one-way layout to the n = 222 observed eruption intervals, the factor levels being the p = 34
eruption durations taken in increasing order. The regression matrix X is analogous to the

2

one used for the motorcycle data and the variance o? is reasonably estimated by 624 = 35.6.

[Figures 4 and 5 go near here]

Figs. 4 and 5 are counterparts for the geyser data of Figs. 1 and 2 for the motorcycle
data. Visually, the least squares, principal component and ridge fits in Fig. 4 are virtually
identical and are far less satisfactory than the nested selection and monotone fits that use
the smooth basis Us. Of the two REACT fits, the monotone selection fit seems slightly
better in capturing nuances of the data. The estimated risks for the various fits agree with
the visual impressions. On the one hand, prg = 35.6, ppc = 35.6, and pripge = 35.5. On
the other hand, pys = 5.2 and ppr = 4.5.

The diagnostic plot of z in Fig. 5 supports the belief that the smooth basis Ug represents
1 economically. The f plots show that the monotone smooth fit reduces risk over the nested
selection fit by using additional, greatly shrunk, components of 2. As might be expected,

the first four basis vectors in Ug, displayed in the second and third rows of Fig. 2, are
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a perturbation of the first four vectors in the discrete cosine basis. Their form reflects
repeated observations at many factor levels of the one-way layout.
Redoing the analysis of the geyser data with the first difference variance estimator 6%

in place of 62, makes no visible difference to the plotted fits.

3. EXTENSIONS

The discussion in Section 2 focused on REACT fits to the one-way layout with ho-
moscedastic errors. This section fits the two-way layout, deals with a simple form of het-
eroscedasticity, constructs and explores confidence sets for 7, and looks numerically at the

role of an economical basis in REACT.

3.1. Two-way layout
The coal ash data from p. 34 of Cressie (1993) will be fitted as an incomplete two-
way layout with n = p = 208, the factor pairs being the grid coordinates at which the
measurements are taken. To obtain an economical basis, the concept of smoothness that
was used in Section 2 for the one-way layout now needs to be extended. Let C denote the
subset of factor level pairs for which there is a measurement y,;. For any incomplete matrix
A = {a;j:(2,7) € C}, let D;. A denote the vector of first differences computed from the z-th
row of A, ignoring missing elements. Similarly, let D.; A denote the vector of first differences
computed from the j-th column of A. The roughness of the mean matrixn = {n;;: (z,7) € C}
is now defined to be
V(n) = |Dinf*+ > |D.nl. (23)
all 4 all j
If we systematically rearrange the matrix 7, row by row, into a long vector vec(n), then
V(n) = |Dvec(n)|?, where D is a matrix each of whose rows contains a single 1 and a single
—1, the other row entries all being 0. With this change in the definition of D, we now
construct a smooth basis Ugg for the regression space of the two-way layout by the method
described in Section 2.1. Fig. 7 displays the first six members of Ugg for the coal ash data
as surfaces on C, with linear interpolation between grid points. When the two-way layout
is complete, the basis Ugg is asymptotically equivalent, as both dimensions of the two-way
layout increase, to a bivariate discrete cosine transform. The basis vectors in Fig. 7 are

visibly related to this transform.
[Figures 6 and 7 go near here]

Let y = {y:5:(3,7) € C} and let n denote the cardinality of C. Adapted to the two-way

layout, the first difference variance estimator becomes
61 = [2(n — 1)] 7" | Duvec(y)?, (24)

where D is now defined as in the preceding paragraph, not as in (14). The least squares
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estimator of o2 is not available for the coal ash data because there is only one observation
per cell.

The left column in Fig. 6 exhibits the least squares fit to the coal ash data (i.e. the
data itself with linear interpolation between grid points) and two REACT fits that use the
smooth basis Ugg: the adaptive nested selection fit 7y and the adaptive monotone fit 7y,
both defined as in Section 2.3 after setting Ug = Ugg. The estimated risks for these fits
are prs = 1.03, pys = .17 and ppr = .12. Not only are the two REACT fits more pleasing
visually; they also have much smaller estimated risk than the least squares fit.

The diagnostic plot of z in the right column of Fig. 6 indicates that the smooth basis Ugg
represents 77 economically. The f plots help explain why the monotone and nested selection
smooth fits to the coal ash data are similar, although the monotone fit uses additional,

greatly shrunk, components of z to achieve higher fidelity to the data without overfitting.

3.2. Heteroscedasticity

The first 21 accelerations in the motorcycle data of Fig. 1 appear to have much smaller
variability than the other accelerations. This is a consequence of the experimental conditions,
some details of which are reported by Silverman (1985). To take the possible change in
variability into account, we divide the sample into two subsamples, consisting of the first
21 and the remaining 112 data points. The aim is to fit a separate one-way layout to each
subsample by the REACT method, using the appropriate smooth basis Us and monotone
shrinkage for each subsample. The first difference variance estimator for subsample 1 and
the least squares variance estimator for subsample 2 provide the estimated variances required
for this procedure. The right plot in Fig. 8 is the result after linear interpolation between
adjacent fitted points. The left plot in Fig. 8 is the monotone smooth basis fit obtained on the
assumption that the data is homoscedastic (see also Fig. 1). The fit under the heteroscedastic

model better captures the abrupt change in acceleration from zero to negative.

[Figure 8 goes near here]

3.3. Probing confidence sets
To construct a confidence set for the unknown mean vector n that is centered at the

estimator 7, consider the root
tr = p' 2o ir —nf* — p(f#)), (25)

where F is either the monotone class Fjs or the nested selection class Fns. The right side
of (25) compares the normalized quadratic loss L(nz,7n) = L(ff,f) with the estimated risk
of nr or ff. As discussed in Section 4, the loss and risk of ff converge together when p
increases. A confidence set for 77 is obtained by referring ¢ to the a-th quantile of its
estimated distribution. The general idea behind such confidence sets was sketched in the
last paragraphs of Stein (1981).

14



Further details of the construction depend on the the variance estimator that enters into
the definition of ir. We take 6% = 62 in (25). For large p and n — p, the distribution of tr
is then approximately N(0,72) with

#% = 267 save[(2fr — 1)) + 2[p/(n — p)|67 s[ave(2f5 — 1))?

~2 2 ~2 £ \2 (26)
+ 4o gavel(z” — op5)(1 — fr)°].
A confidence set of approximate coverage probability a for 7 is accordingly
Cr = {0 € M(X):lfir — 6] < pp(fr) + p/*##3 7" (a)}. (27)

Here, as usual, ® ! denotes the quantile function of the standard normal distribution. Section
4.4 presents the underlying asymptotic theory.

When the construction is carried out for the least squares estimator 7z, the root in (25)
simplifies to

V2 hLs —n)? — 2] (28)

trs = p
The approximate distribution of g for large p and n — p is now N(0,75), with 725 =

26*(n/p). The confidence set for  centered at 7ips is thus
Crs = {6 € M:|irs — 0* < pots +p'/*(2n/p)/?61587" ()} (29)

If p and n — p both tend to infinity and p/(n — p) converges to a finite constant, then Crs
approximates the classical confidence set that refers (pGig)~!|7Ls — 7| to the a-th quantile
of the F' distribution with p and n — p degrees of freedom.

When F is either the monotone or nested selection class and o € (0,1) is fixed, the
maximum distance between 7 and elements of the confidence set is asymptotically smaller
for é’; than for éLS (see Section 4.4). Unfortunately, visualizing either of these confidence
sets for 7 1s difficult. In the canonical parametrization, Cr simplifies to a ball in RP centered
at the estimated canonical mean é]-‘. However, the canonical confidence ball, like the original
confidence ball, lacks convenient interpretation in the examples of Section 2.5.

A useful idea is to probe the extent of the confidence set by identifying extreme elements
in Cr. For instance, we can refit the model after replacing 62 ¢ with c67 ¢, where c is a positive
constant. For monotone or nested selection fits using a smooth basis, the smoothness of the

estimator 77(c) increases with ¢. Let
¢ = inf{c > 0:77(c) € Cr}, &y = sup{c > 0:7ix(c) € Cr}. (30)

Then 7#(¢1) and 77(év) are, respectively, the roughest and smoothest rescaled-variance fits

that lie in the confidence set.

[Figure 9 goes near here]
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Fig. 9 displays (solid line) roughest and smoothest rescaled-variance refits for the motor-
cycle data previously analyzed. These two refits lie on the boundary of the asymptotic 90%
confidence set for n that is centered at the monotone smooth basis fit 7 (dashed line) from
Fig. 1. One can reasonably have confidence in the existence of broad features preserved by

the two extreme refits.

3.4. Role of an economical basis

Both the heuristic considerations of Section 2.1 and the asymptotics in Section 4 indicate
that REACT reduces risk most when the basis for the regression space is economical. To
see directly the effects of economy on the fit, we consider three numerical examples based
on artificial data. In each case the regression matrix is the identity I,,. The z-th component
of the mean vector 7 takes the form n; = m(i/(n + 1)), 1 <: < n, where m is a function

defined on the interval [0, 1]. Three choices for m are considered:
Smooth: my(t) = 2(6.75z%(1 — z))>.
Burst: my(t) =0if 0 <¢ < .25 and = sin(27/t) if .25 < ¢ < 1.

Steps: ma(t) =0if0<¢t<.15, =15if .15 <t<.3,=5if 3<t<.6,=—.5if
b6<t< .8, and =1if 8<t<1.

[Figure 10 goes near here]

The left column of Fig. 10 displays for each j a pseudo-random sample of size n = 200
in which the i-th observation is drawn from the N(m;(i/(n + 1)),0?) distribution with
o = .2. The dashed line plots in this column represent the respective vectors n, with linear
interpolation between components. The solid line plots similarly display, for the discrete
cosine basis Up¢, monotone fits to the three samples. Comparison of the fits with the data
and with the true n brings out several points: (a) the REACT fits quickly track sharp
changes in 7; (b) the fits to the second and third cases are rougher than the fit to the first
case; (c) wiggles in the fits accurately reflect patterns in the data. These findings are not
very sensitive to the choices of n and ¢? in the numerical experiment.

The right column in Fig. 10 displays the components of the canonical mean vector
& = Upen for each of the three cases. These diagnostic plots show that the discrete cosine
basis is substantially more economical for the first  than for the other two. Consequently,
in the second and third cases, the monotone REACT estimator shrinks the higher-order
components of z more conservatively than in the first case. This explains point (b) in the
preceding paragraph.

Further numerical experimentation reveals that the monotone Fourier-basis fit to the
step function data suffers from Gibbs phenomena jumps at its two endpoints. This difficulty
arises because the endpoints of the true n are not equal. The discrete cosine basis avoids

such end effects, as does the smooth basis Us more generally for one-way layouts.
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4. SUPPORTING ASYMPTOTICS

Several theoretical results on the performance of REACT fits are the topic of this section.
The asymptotics require that the dimension p of the regression space tend to infinity and,
at a minimum, that the variance estimator 62 be consistent for o2. Further properties are

required of the variance estimator in constructing confidence sets for 7.

4.1. Minimax bounds

The analysis in Pinsker’s (1980) paper yields the two minimax theorems stated below for
estimation in a canonical linear model. The formulation is that of Section 2, the quadratic
risk Rp(f, £,0?%) being defined by (7). Both theorems hold for every possible selection of the
orthonormal basis U in (1). How the choice of basis affects the minimax risk is studied in
Section 4.3.

Let £ ={a € RP:q; € [1,0],1 <1 < p}. For every a € &, define the ellipsoid

E(r,a,0%) = {£ € RP:ave(al?) < o?0?}. (31)

If £ € E(r,a,0%) and a; = o0, it is to be understood that & = 0 and a;' = 0. Let

&=0pa)? =1y go=8/(c*+8&)=[1—(a/u)’]4, (32)
where  is the unique positive number such that ave(aé?) = o?r. Define
vp(r, a,0%) = p(g0, &5, 0°) = oavel§5 /(0 + &) (33)

Evidently, v,(r, a,0?) € [0, 0?] for every r > 0 and every a € £.
The first theorem specialized from Pinsker’s argument identifies the linear estimator that

is minimax among all linear estimators of ¢ and finds the minimax risk for this class.
Theorem 1. For every a € £ and every r > 0,

iIlf sup Rp(fz7€7o-2) = VP(T7a’70-2) = sup R(goz7€702)' (34)
ferr E€E(r,a,0?) ¢€E(r,a,0?)

The second theorem establishes that the minimax linear estimator goz is often asymp-
totically minimax among all estimators of €.
Theorem 2. For every a € £ and every r > 0 such that lim,_,o pvp(r, a,0?) = oo,
limfinf  sup  Ry(,,0%)/up(ra,0%)] = 1 (35)
P ¢ ¢cE(ra,0?)

and

lim[ sup Ry(goz,&,0%)/vp(r,a,0%)] = 1. (36)

P ¢cE(r,a,02)

If liminf,_, o ¥p(7, @,0%) > 0, then also
lim [inf sup Rp(£,¢,0%) — vp(r,a,0%)] =0 (37)

p—oe ¢ ¢€E(r,a,0?)
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and
lim|[ sup Rp(goz,&,0%) — vp(r,a,0%)] = 0. (38)
P00 ¢e B(r,a,0?)

Because gy depends on r, a, and o2, the asymptotic minimaxity of goz is assured only
over the one ellipsoid E(r,a,c?). The following idealized estimator, which depends on &2
and o2, is asymptotically minimax over a class of such ellipsoids. Let & C £ and F be
such that go(r,a,c?) € F for every a € &, every r > 0, and every o? > 0. For the sake of
successful adaptation in the next subsection, we desire that the shrinkage class F be not too

large. This requirement limits the choice of &. Because both f and go lie in F, it follows

from (10) that
sup Rp(f2,€,0°) < sup  Ry(goz,€,0%) (39)

¢€E(r,a,0?) ¢€E(r,a,0?)
for every a € &, every r > 0 and every o2 > 0. Thus, if go is replaced by f, the limits (36)
and (38) continue to hold for every a € &, every r > 0 and every o® > 0. This establishes

the asymptotic minimaxity of fz over the class of ellipsoids E(r,a,0?) generated as a ranges

over & and r ranges over the positive reals.

4.2. Adaptation

As described in Section 2.3, adaptation consists in using the estimator fz, which depends
only on the data, as a surrogate for the idealized estimator fz. Equation (18) defines f
The following result, which specializes Theorems 2.1 and 2.2 in Beran and Dimbgen (1999),

gives sufficient conditions on F and 6% to ensure that fz behaves asymptotically like fz.

Theorem 8. Let F be any subset of Fys that is closed in [0,1]? and contains the vector

0. Suppose that &2 is consistent in that, for every r > 0 and o2 > 0,

lim sup E|6®—0o?| =0. (40)

PO ave(¢2)<o?r

Then, for every r > 0 and every o2 > 0,

lim sup  Esup|p(f) — plf,&,0%)] = 0. (41)

P ave(¢2)<a2r  fEF

Moreover, the estimators ff = fz and &7 = fz satisfy, for every r > 0 and o2 > 0,

lim  sup |Ry(ér,&,0%) — Ry(€r, &, 0%) =0 (42)

P20 ave(€2)<a?r

and

lim  sup Eave[(ff — E]-‘)z] =0. (43)

P20 ave(€2)<a?r

This theorem gives conditions under which the adaptive estimator ff and the ideal-

ized estimator & converge together as random vectors and in risk. The hypothesis on
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the shrinkage class F includes both Fjr and Fys. Condition (40) on the variance esti-
mator holds for 67¢ if n — p tends to infinity with p. The same condition holds for & if
limy oo p ' Y0 ,(mi — mi—1)? = 0. This conclusion follows from (15); for details see Beran

(1996).

4.3. Effect of basis choice
The results of Sections 4.1 and 4.2 enable us to study quantitatively how choice of
the basis affects the efficiency of REACT estimators. To formulate the notion of economy,

consider for every b € [0, 1], every 7 > 0, and every o2 > 0 the ball
B(r,b,0%) = {£&: ave(€?) < o’r and & = 0 for 1 > bp}. (44)

Evidently, B(r,b,0?) is a special case of the ellipsoid E(r,a,c?) that arises when a; = 1 for
1 <2< bpand a; =0 for bp < 7 < p. A basis U for the linear model is clearly economical if,
in the resulting canonical model, ¢ € B(r, b, 0?) for some small value of b and some value of
r > 0. While this formulation is too stringent to serve as a complete definition of economy,

it yields an illuminating first result on the interplay between basis economy and the risk of

REACT estimators.
Theorem 4. Suppose that 62 satisfies (40). For every r > 0, b € [0,1], and o2 > 0, the

following two limits hold:

lim  sup Rp(st,f, 0?) = o’ min{r, b} > o’rb/(r + b) (45)
P30 ¢eB(rb,0?)
lim  sup Rp(éM;f; o?) = o?rb/(r +b). (46)

P ¢cB(r,b,02?)

The asymptotic minimax risk over all estimators is
lim inf  sup Rp(f,f, o?) = o?rb/(r +b). (47)
P00 ¢ ¢eB(rbo?)

Limit (47) is the specialization of (37) when a; = 1 for 1 <17 < bp and = 0 otherwise. In
this case, it follows from (33) and (32) that limp_, ¥,(7, a,c?) = o?rb/(r + b). Moreover, go
has coefficients go; = [1 — p~?), for 1 <1 < bp and = 0 otherwise. Because go € Fuy, the
reasoning in the last paragraph of Section 4.1 entails that furz is asymptotically minimax
over B(r,b,0?) for every r > 0, every b € [0,1], and every ¢ > 0. This result together with
Theorem 4.3 establishes (46).

Verification of (45) is by direct calculation of maximum risk. From (42) in Theorem 3,

lim sup Ry(éns,&0°) = lim sup  Ry(€ws,é,0%). (48)
P ave(¢2)<o2r P ave(¢2)<o?r
By the definitions of p(f,£2,0?) and of Fus,
ol £°) = g ovlo's* + 60— )= gin 7ok 4 6 (49
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Therefore, when ¢ € B(r, b, 0?),

Ry(éns,¢,0%) < min{p™ ) €,0°b} < 0 min{r, b}. (50)
1<bp
On the other hand, let {2 = ro?/b for 1 <1 < bp and = 0 otherwise. The vector ¢ so
defined clearly lies in B(r,b,0?). Moreover, from (49),

0<k

Ry(éns,¢,0%) = min p~'(o°k + [|bp] — kl4ro’/b) = o® min{r, b} + O(p™"), (51)
<p
where |-| denotes the floor function. Consequently,

sup Rp(gNS; £,0%) > o?min{r,b} + O(p7"). (52)
¢€B(r,a,0?)
Together, (50) and (52) establish (45).

The most important implications of Theorem 4 are as follows:

(a) The asymptotic minimax bound on the risk of any estimator over B(r,b,o?) is
achieved by EM- For fixed b and o2, this asymptotic minimax bound increases monoton-
ically in r but never exceeds o2?b. The asymptotic maximum risk of ENS also increases
monotonically in r but never exceeds o?b. However, the risk of the least squares estimator
is o2 for every value of £. Thus, economy of the basis in the sense of small b makes the
asymptotic maximum risk of REACT estimators far smaller than that of the least squares
estimator. The estimated risks for 737 and fys in the data analyses of Sections 2.5 and 3.1
reflect this ability of REACT estimators to improve greatly on least squares.

(b) The asymptotic maximum risk of ENS is never more than twice the asymptotic
maximum risk of EM- The worst risk ratio of 2 occurs when r = b. In the data analyses cited
above, the estimated risks were in fact close to one another. The reduction in risk achieved by
a REACT estimator through using monotone shrinkage rather than nested selection comes
distant second to the reduction achieved through using an economical basis for the regression
space.

The monotone class Fys of shrinkage vectors is not the smallest generating an estimator
of £ that is asymptotically minimax over each B(r,b,0?). An enrichment of Fyg suffices for
that purpose. In the notation of Section 2.2, consider the nested selection with shrinkage
class

P
Fnss = U U{e(k)} (53)
0<c<1 k=0
Let fNSs = argminfestAs o(f) and sts = stsz. Inspeftion of the argument given above
for (46) establishes that &3 may be replaced in (46) with {yss. While interesting technically,
this result should not be viewed as a recommendation to use ENSS rather than EM- The latter
estimator continues to behave well under the more general definition of economy that we

consider next.
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Let
Em(d)={ac RPra; =1for 1 <i<bp, 1 <appy1 < ... < ap < 00} (54)

Less restrictively than above, we might say that a basis is economical if, in the resulting
canonical model, £ € E(r,a,o0?) for some r > 0, some a € Ey(b), and some small value of b.
Evidently,

B(r,b,0%) C E(r,a,0%) if a € Ey(b). (55)

For every r > 0, every a € Exy(b), every b € (0,1], and every o? > 0, it follows from (55),
Theorem 1 and (47) that
lim inf v,(r, a, 0%) > o?rb/(r + b) > 0. (56)

p—o0

The shrinkage vector go, defined in (32), lies in Fas whenever & € E(r, a,0?) with a € Ep ().
Consequently, the first part of Theorem 2 and the reasoning at the end of Section 4.1 yield

the following result.

Theorem 5. Suppose that 62 satisfies (40). Then, for every r > 0, every a € Ey(b), every
b€ (0,1], and every o > 0 ,

im[ sup Rp(ém,é,0%)/inf sup Ry({,&0%)] =1 (57)

P ¢ecE(r,a,0?) § ¢€E(ra,0?)

The monotone REACT estimator 77 is thus asymptotically minimax for any basis that
is economical in the general sense stated after (54), in addition to being asymptotically

minimax in the more restricted setting of Theorem 4.

4.4. Confidence sets

The following two theorems find the asymptotic distribution of ¢z, defined in (25), and
determine the asymptotic coverage probability and asymptotic loss of the confidence set é’;,
defined in (27). Both results follow from Theorems 3.1 and 3.2 of Beran and Dimbgen
(1999) upon recalling that

convergence of probability measures on the real line and let ,C(ff) denote the distribution of

fr —n|? = |£_7-‘ — ¢|%. In the sequel, let d be any metric for weak

{7 under the model.

Theorem 6. Let m = min{p,n — p}. Suppose that 6% = 624, F is Far or Fus, and

lim p/(n —p) =+* < co. (58)

m—00

Then, for every r > 0 and every o2 > 0,

lim sup d[L(iF), N(0,72)] =0, (59)
P ave(¢2)<o?r
where

72 = 20tave[(2fr — 1)%] + 2720 [ave(2fF — 1)] + 4o%ave[€2(1 — fr)?]. (60)
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The variance 7% is a function of p, n — p, €2, and o®. The estimator 72 defined in (26)
is obtained by substituting z? — 3¢ for £2, f]-' for fr, and 62 for o2 in (60). Theorem 7
below establishes the consistency of 72 in the sense that 72 — 72 converges in probability to
zero. Because the a-th quantile of the N(0,7%) distribution is estimable by 7#® (), limit
(59) leads to the confidence ball Cx for 7 defined in (27).

Let 77 = ﬁ(ff) + p_l/zf'f@_l(a). The performance of Cr will be measured through its
coverage probability P(n € Cr and through its geometrical loss

L(Cr,n) = sup L(8,n) = [[AF — 0| + 7], (61)
GEC]:

which treats Cr as a set-valued estimator of 7.

Theorem 7. Under the hypotheses for Theorem 3.3, for every r > 0 and every o2 > 0,

lim sup P[|L(é’;,77) —4p(fr, 82,00 > Kp/?] =0
P00, K200 ave(g2)<or (62)
lim sup  P[|F% — o(fr,€%,0%)| > Kp~ /%] = 0.
p—00, K—00 ave(£2)<o?r
For every € > 0,
lim P[|#% — 72| > ¢ = 0. (63)
p—oo
Moreover,
liminf inf 72>0 64
p—oo  ave(€2)<o?r 7 ( )
and
lim sup |P(ne€Cr)—al=0. (65)

P ave(¢2)<o?r

In particular, the classical least squares confidence set éLS, the nested selection confi-
dence set Cys and the monotone confidence set Cjs each have asymptotic coverage prob-
ability @. The asymptotic geometrical loss of each confidence set is just four times the
asymptotic risk of the estimator at the center of the confidence set. Thus, for every non-
trivial coverage probability «, Cps is no smaller asymptotically than either Cns or Cur. It
is not too surprising that the efficiency of the estimator at the center of the confidence set
should influence its geometrical size. However it is remarkable that this reduction in the size

of the confidence set can be very substantial, as indicated by the estimated risks in Sections

2.5 and 3.1.
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FIG 1. The left column displays the motorcycle data and the nested selection and monotone
REACT fits using smooth basis Ug. The right column displays the least squares fit, the
nested principal component fit, and the ridge fit.

23



Motorcycle Canonical z NS and Monotone f

for Smooth Basis for Smooth Basis
© . ©
o
o ] sl T T o
N g
3 =
04 % g.
9
- - =
o
0 20 40 60 80 0 20 40 60 80
Component Component
Smooth Basis Vector 1 Smooth Basis Vector 2
3
o
(0] 8 (0]
g s g S
> >
o
N~ =
o o
2 .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Component Component
Smooth Basis Vector 3 Smooth Basis Vector 4
3
e 8
o
R R
S S 2
o
— o
S b
' S
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Component Component

FIG 2. The second and third rows exhibit the first four vectors in the smooth basis Ug for
the motorcycle data. The top row displays the canonical response z = Uiy and, on the right,

the shrinkage vectors st (solid line) and fM (dashed line) for the smooth basis.

24



Motorcycle Canonical z NS and Ridge f

for PC Basis for PC Basis
o . '."._." """""""""
— o' [ ] S
& o
. 2
ST e, <
E o ST E 3
o -
o
o
0 20 40 60 80 0 20 40 60 80
Component Component
PC Basis Vector 1 PC Basis Vector 2
Q
o
=
Q@
g o g
s 9 g
> > g
< 0
Q@ — (=) -
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Component Component
PC Basis Vector 3 PC Basis Vector 4
o
o
—
o
' o~
o
g g
K «
> @ >
< <
Q@
: - :
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Component Component

FIG 3. The second and third rows exhibit the first four vectors of the principal component
basis Upc for the motorcycle data. The top row displays the canonical response z = Upoy
and, on the right, the shrinkage vectors fpc (solid line) and friper (dashed line) for the
PC basis.
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Geyser Data Least Squares Fit
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FIG 4. The left column displays the geyser data and the nested selection 4 and monotone
REACT fits using smooth basis Ug. The right column displays the least squares fit, the
nested principal component fit, and the ridge fit.
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FIG 5. The second and third rows exhibit the first four vectors in the smooth basis Ug for
the geyser data. The top row displays the canonical response z = Ugy and, on the right, the

shrinkage vectors st (solid line) and fM (dashed line) for the smooth basis.
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Least Squares Fit to Coal Ash Data Canonical z for Smooth Basis
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FIG 6. The left column displays the least squares fit and the nested selection and monotone
REACT fits to the coal ash data using smooth basis Uss. The right column displays the

canonical response z, the shrinkage vectors fas (solid line) and fps (dashed line), and a
contour plot of the monotone smooth-basis fit.
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FIG 7. The first six vectors in the smooth basis Ugg for the coal ash data.



Motorcycle Monotone Fit Split Monotone Fits

with Smooth Basis with Smooth Bases
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FIG 8. On the left is the smooth-basis monotone fit to the motorcycle data while on the
right, spliced together, are separate smooth-basis monotone fits to the first 21 and remaining
112 data points. The separate REACT fits handle heteroscedasticity.
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Upper Rescaled (90% level) Lower Rescaled (90% level)
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FIG 9. Displayed here (solid line) are the two smooth-basis monotone REACT fits, obtained
by scaling 62 upwards or downwards, that just lie on the boundary of the 90% confidence
set. The dashed line is the monotone fit at the center of the confidence set.
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Monotone Fit and Signal Canonical Signal
with DCT Basis
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FIG 10. For three trend vectors 7 (dashed line), the left column displays a trend plus noise
sample y of size 200 and its monotone REACT fit (solid line) using the discrete cosine basis
Upc. The canonical mean vectors ¢ = Up o7 in the right column show that this basis is less
economical for the second and third trends.
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