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REACT estimators for the mean of a linear model involve three steps
 transforming the

model to a canonical form that provides an economical representation of the unknown mean

vector� estimating the risks of a class of candidate linear shrinkage estimators� and adaptively

selecting the candidate estimator that minimizes estimated risk� When the mean vector is

smooth� the desired canonical form of the linear model is achieved by constructing a smooth

orthogonal basis for the regression space� Such a smooth basis for a complete� balanced

one�way layout is asymptotically equivalent to the discrete cosine basis� Applied to one�

or higher�way layouts� the REACT method generates automatic scatterplot smoothers that

compete well on standard data sets with the best �ts obtained by alternative techniques�

Historical precursors to REACT include nested model selection� ridge regression� and nested

principal component selection for the linear model� However� REACT�s insistence on working

with an economical basis greatly increases its supere�ciency relative to the least squares �t�

A secondary improvement stems from REACT�s use of �exible monotone shrinkage rather

than ��� shrinkage of components� Both improvements are demonstrated numerically on data

sets and theoretically through Pinsker bounds for minimax risk in the estimation problem�

AMS classi�cation� ��J��� ��G��

Keywords and phrases� risk estimation� adaptation� discrete cosine transform� economical

basis� minimum CL� symmetric linear smoother� asymptotic minimax� shrinkage�

�� INTRODUCTION

The acronymREACT stands for risk estimation� adaptation� coordinate transformation�

These are the three components of a methodology� described in this paper� that yields

supere�cient �ts to the Gaussian linear model� The risk of REACT �ts under quadratic loss

is often far smaller than the risk of the classically e�cient least squares �t� Applied to the

one�way layout� REACT �ts generate automatic scatterplot smoothers that compete well
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on test data with kernel or local polynomial techniques� Similarly� REACT for the two�way

layout provides an e�ective technique for �tting response surfaces to observations taken over

a two�dimensional grid�

Consider a Gaussian linear model in which the n�� response vector y has a Nn�X�� ��In�

distribution� For simplicity� assume that the n� p regression matrix X has full rank p � n�

Both the regression coe�cients � and the variance �� are unknown� The problem is to

estimate � � E�y� � X�� The risk of any estimator �� is the expectation of the normalized

quadratic loss p��j�� � �j�� In particular� the risk of the classical least squares estimator

��LS � X�X �X���X �y is ��� Stein ������ proved that ��LS is inadmissible whenever the

dimension p of the regression space exceeds �� While the theoretical depth of his result

was recognized quickly� development of its extensive implications for statistical practice has

been slow� However� the essential �aw in least squares�its propensity to over�t a linear

model when p is not small�has motivated work on principal component regression� ridge

regression� and model selection�

We outline the main steps of the REACT methodology


�� Coordinate transformation� By orthogonal transformation of y� reduce the model to

standard canonical form
 z and �z are independent� z has Np��� ��Ip� distribution� and �z

has Nn�p��� ��In�p� distribution� Sensible choice of the orthogonal transformation is es�

sential in obtaining REACT �ts with small risk� Ideally� all but the �rst few components

of � should be nearly zero�

�� Risk estimation� Let F be a subset of ��� ��p such that the components of each vector

f � F are monotone nonincreasing� Consider candidate estimators of � of the form
���f� � fz� The multiplication here is componentwise� as in S code� Such an estimator
���f� shrinks the components of z� which is the least squares estimator of �� downscaling

especially the higher�order components of z� For every f � F � estimate the risk of ���f�

from the data�

	� Adaptation� Find �f � F that minimizes the estimated risk function from step �� Esti�

mate � by ��� �f �� Mapping this adaptive estimator of � back into an estimator of � yields

the REACT �t�

Scatterplot �ts can be related to the one�way layout through the following model
 given

fxi
 � � i � ng� suppose that fyi
 � � i � ng are conditionally independent and that the

conditional distribution of yi is N�m�xi�� �
�� for every i� If the function m is unknown and

no ties exist among the fxig� then this conditional scatterplot model is equivalent to the

one�way layout with one observation per cell�the linear model with X � In� When there

are ties among the fxig� the scatterplot model is equivalent to an unbalanced one�way layout�

a linear model in which each row of the regression matrix X has a single nonzero entry that

takes the value �� rows are repeated to re�ect the pattern of ties among the fm�xi�g� By

reordering labels as necessary� suppose that xi is nondecreasing as a function of i� Then
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linear �or other� interpolation between the successive components of the REACT estimator

for the conditional means produces a curve �t to the scatterplot�

Section � describes REACT �ts in detail� Their application to one�way layouts is il�

lustrated on scatterplots drawn from the smoothing literature� Heteroscedasticity� two�way

layouts� and con�dence sets centered at REACT �ts are among the subjects of Section 	�

Section � presents theoretical properties of REACT �ts� relating these to estimators that

achieve the Pinsker ���
�� asymptotic minimax bound�

�� PROCEDURE AND EXAMPLES

To completely de�ne REACT �ts requires specifying the orthogonal transformation in

step �� the class of candidate estimators and risk estimator in step �� and the computational

algorithm for the minimization in step 	� We consider these matters in turn�

��� Choice of orthonormal basis

For any matrix A� let M�A� denote the subspace spanned by the columns of A� Let

U be an n � p matrix with orthonormal columns such that M�U� � M�X�� Select the

n� �n� p� matrix �U so that O � �U j �U� is an orthogonal matrix and de�ne

z � U �y� �z � �U �y� � � Ez � U ��� ���

Such orthogonal transformation reduces the linear model into the canonical form mentioned

in the Introduction
 z and �z are independent� z has Np��� ��Ip� distribution� and �z has

Nn�p��� ��In�p� distribution�

The mapping between �� whose range is Rp� and �� whose range is the p�dimensional

subspace M�X� � Rn� is one�to�one


� � U ��� � � U�� ���

Indeed� M�U� � M�X� if and only if X � UC for some p � p matrix C of rank p� From

this and ���� � � U �X� � U �UC� � C�� Consequently� � � X� � UC� � U��

Among the continuum of possible orthonormal bases for the regression spaceM�X�� how

should U be chosen Computer packages for linear algebra o�er numerically stable candidates

that include
 constructing U through the singular value decompositionX � ULV �� or taking

U � Q in the QR decomposition X � QR� where R is upper triangular� or using a standard

orthonormal basis� such as the discrete Fourier transform in the special case X � In� In fact�

nested principal component analysis relies on the singular value decomposition choice of U

while nested order selection in polynomial regression may use the QR choice� See Section

��� for details�

Theoretical analysis in Section ��	 indicates that the risk of a REACT �t is smaller if

all but the �rst few components of � are very nearly zero� In this case� we say that the
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orthogonal basis for the regression space is economical and will designate its matrix by UE�

Heuristically� the bene�t of using an economical basis is clear� In that case� one need only

identify and estimate the relatively few nonzero components of �� accumulating small squared

biases from ignoring the nearly zero components but not accumulating the many variances

that would arise from an attempt to estimate these unbiasedly� A basic �aw in the least

squares �t is that it estimates unbiasedly every component of �� even those whose values are

negligible�

The ideal choice of UE would have its �rst column proportional to the unknown mean

vector �� so that only the �rst component of � would be nonzero� Though unrealizable�

this ideal choice makes the point that prior information or conjecture about the nature of

� should be used in devising an economical basis matrix UE for M�X�� In many cases�

it is likely that � is varies slowly between most pairs of adjacent components� and then

it is plausible that the successive columns of an economical basis matrix are of increasing

variation or� equivalently� of decreasing smoothness�

One�way layout� To develop this idea for the case of one�way layouts� let D � fdi�jg

denote the �rst di�erence operator� the �n � �� � n matrix with di�i � ��� di�i�� � � and

zeros elsewhere� De�ne the roughness of any vector x � Rn to be

V �x� �
nX

i��

�xi � xi���
� � jDxj� �	�

Slow variation in successive coordinates of � entails that V ��� is small� Construct a decreas�

ingly smooth basis for the regression space as follows


a� Find an initial basis matrix U� for M�X� that has orthonormal columns� Numerically

stable algorithms for the singular value decomposition or the QR decomposition provide

convenient methods for this step�

b� Find the smoothest unit vector in M�X� by minimizing the roughness V �U��� over all

p � � unit vectors �� This smoothest vector is evidently U��p� where �j denotes the

eigenvector of U �
�D

�DU� associated with the j�th largest eigenvalue 	j�

c� Find the smoothest unit vector inM�X� that is orthogonal to the result of the previous

step by minimizing V �U��� over all unit vectors � that are orthogonal to �p� The answer

is U��p���

d� Continue sequential constrained minimization to obtain the smooth basis matrix

US � �U��p� U��p��� � � � � U���� � U�!� ���

where ! � ��p� �p��� � � � � ��� is an orthogonal matrix� If " � diagf	p� 	p��� � � � � 	�g� then

U �
SD

�DUS � !�U �
�D

�DU�! � " ���

�



and U �
SUS � Ip� Equation ��� entails that the roughness of the k�th column of basis

matrix US is equal to 	p�k���

Examples discussed in Section ��� illustrate that the basis US is economical for many

data sets taken from the literature on nonparametric smoothing when these are modelled

as a one�way layout� Section 	�	 develops a smooth basis USS that is often economical for

�tting a response surface to a two�way layout� This is not to say that all mean vectors �

encountered in practice are smooth in the sense that V ��� is small� Section 	�� illustrates

the di�ering economy of US in representing various signal types� In some cases� other bases�

such as those related to wavelets� may be more economical� The REACT methodology can

be expected to work e�ectively with any economical basis UE�

Of particular interest is the trend model where X � In� Then the columns of the

sequentially smooth basis matrix US described above are the eigenvectors of D�D� taken in

increasing order of the associated eigenvalues� Moreover� as n increases� these eigenvectors

converge swiftly to the discrete cosine basis� whose elements are the column vectors

c� � fn����
 � � j � ng

ck � f��
n���� cos���j � ���k � ���
��n��
 � � j � ng for � � k � n�
���

This analytical approximation works very well because the eigenvector property� that D�Dck

be proportional to ck� holds exactly apart from the �rst and last elements of the vector

D�Dck � In the context of Fourier analysis� the discrete cosine transform is a modi�cation of

the discrete Fourier transform that avoids creating Gibbs phenomena at the beginning and

end of the REACT estimator of �� Rao and Yip ������ discussed properties� algorithms and

applications of the discrete cosine transform to digital signal processing�

��� Candidate estimators and estimated risks

Let UE denote an economical basis for M�X�� The one�to�one correspondence between

the canonical mean � � U �
E� and the original mean � � UE� carries over to estimators of

these parameters� The risks of the paired estimators �� � U �
E�� and �� � UE �� are identical


R���� �� ��� � p��Ej�� � �j� � p��Ej�� � �j� � R���� �� ���� ���

In the canonical model� consider the linear estimators f���f� � fz
 f � Fg� where F is

a speci�ed subset of ��� ��p� Such candidate estimators for � are also called modulation

estimators or shrinkage estimators� The development here and in Section ��	 draws on

Beran and D�umbgen ������ and Beran�������

For any p� � vector h� let ave�h� � p��
Pp

i�� hi� The risk of ���f� is

R����f�� �� ��� � ave���f� # ����� f��� � ��f� ��� ���� �
�

De�ne $g � ��
��� # ���� the operations being performed coordinatewise� Then $g � ��� ��p

and

��f� ��� ��� � ave��f � $g����� # ���� # ave���$g��� ���
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Ideally� if we knew the risk function in �
� and ���� we would use the candidate estimator
��� $f� � $fz� where

$f � argmin
f�F

��f� ��� ��� � argmin
f�F

ave��f � $g����� # ����� ����

Enlarging F to be a subset of Rp rather than ��� ��p does not reduce the minimal risk�

Equation ��� shows that all minimizers of the risk are necessarily in ��� ��p� When F is a

convex subset of ��� ��� then $f is unique� Of special interest for the developments in this

paper are three choices of F 


The global class FG � ��� ��p is the largest possible� The value $fG � FG that minimizes

risk is just $g� de�ned above� The global class yields the ideal linear estimator $�G � $gz in the

canonical model and $�G � UEdiag�$g�U �
Ey in the original parametrization�

The monotone class FM is the convex set ff � ��� ��p
 f� � f� � � � � � fpg� The impor�

tance of this class will become clearer in Section ��	 on adaptation and in the asymptotic

theory of Section �� Note that it makes sense to shrink more severely the higher order com�

ponents of z because the basis UE provides an economical representation of �� The value
$fM � FM that minimizes risk yields the ideal estimator $�M � $fMz in the canonical model�

which maps into $� � UEdiag� $fM�U �
Ey in the original parametrization�

To compute $fM � we use the right side of ����� If H � fh � Rp
 
 h� � h� � � � � � hpg�

then

$fM � argmin
h�H

ave��h� $g����� # ����� ����

This minimization is a weighted least squares isotonic regression problem� which may be

solved numerically by the pooled adjacent violators �PAV� algorithm� For details of this

algorithm� see Robertson� Wright and Dykstra ���

��

The nested selection class FNS is the subset of FM de�ned as follows� For � � k � p� let

e�k� denote the p�� vector whose i�th component is � if � � i � k and is � otherwise� Then

FNS �
Sp
k��fe�k�g� Because FNS is a �nite set that contains p # � candidate values f � the

computation of $fNS is straightforward� In case of ties� we use as $fNS the minimizing value of f

that has the smallest number of nonzero entries� The resulting ideal estimator is $�NS � $fNSz

in the canonical model and $�NS � UEdiag� $fNS�U �
Ey in the original parametrization� Sections

��� and ��� compare REACT �ts with classical nested model selection� ridge� and principal

component selection� none of which pay attention to economy of the regression basis in

representing ��

��� Adaptation

The ideal linear estimators $�G� $�M � or $�NS are usually unrealizable because �� and ���

which enter into the risk function ��f� ��� ���� are unknown� We therefore turn to the question

of estimating risk� Three estimators of �� prove useful for this purpose
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The least squares variance estimator is the classical residual�based estimator from least

squares theory�

���
LS � �n � p���jy � ��LS j

� � �n� p���j�zj�� ����

which is consistent if n� p tends to in�nity� The two following biased estimators are useful

even when p � n� Their success relies on the economy of the basis UE�

The high component variance estimator is

���
H � �n� n�����

pX

i�n�

z�i # j�zj��� ��	�

where n� 
 p � n� Because E���
H � ��#�n�n����

Pp
i�n� �

�
i � this estimator of �� is consistent

provided n� n� tends to in�nity and the bias term tends to zero� Economy of the basis UE

ensures that this bias term is relatively small�

The �rst di�erence variance estimator� treated by Rice ���
��� is

���
D � ���n� �����jDyj� � ���n� �����

nX

i��

�yi � yi���
�� ����

In view of ���� the bias of this estimator for �� is

���n� �����jD��i�j
� � ���n� �������U �

SD
�DUS� � ���n� �������"�� ����

Consistency of ���
D is assured when n tends to in�nity and the bias tends to zero� Because

the basis UE is economical� the smallness of the �rst few diagonal elements of " combines

with the smallness of all but the �rst few components of � to control the right side of �����

Having devised a consistent estimator ��� of ��� we estimate �� by z�� ��� and ��f� ��� ���

by

���f� � ave����f� # �z� � ������ � f���� ����

The rationale for ���f� includes the calculation Ez� � �� # �� and the supposition that the

law of large numbers will make ave���� f���z�� ����� consistent for ave���� f������ Section

��� makes this precise� Only the manner in which �� is estimated distinguishes the risk

estimator ���f� from Stein�s ���
�� unbiased estimator of risk or from the Mallows ����	� CL

criterion� De�ne �g � �z� � ���
z�� Then �g � ���� ��p� not necessarily in ��� ��p� and

���f� � ave��f � �g��z�� # ave�����g��� ����

Adaptive estimation consists in using ���f� as a surrogate for the risk ��f� ��� ��� in

identifying the best candidate estimator� Thus� for a given class F of shrinkage factors we

consider the fully data�based estimator ��� �f� � �fz� where

�f � argmin
f�F

���f� � argmin
f�F

ave��f � �g��z��� ��
�
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We will write ��G� ��M � or ��NS to distinguish among the estimators of � that result from

this construction when F is FG� FM � or FNS respectively� The success or failure of this

adaptation idea depends on the richness of the class F � When F � FG� it follows from ����

that the corresponding adaptive global estimator is ��G � �g�z� where �g� is the positive part

of �g� Unfortunately� the risk of ��G can be poor� unlike the risk of $�G� Suppose that ��� and

z are independent� as occurs when ��� � ���
LS� Under quadratic loss� the unique admissibility

of zi as an estimator of �i entails that

E�j��G � �j�j���� �

pX

i��

E�f�z�i � �����
z
�
i � �ig

�j���� �

pX

i��

E��zi � �i�
�j���� � ��� ����

for at least one value of �� At this �� the risk of ��G exceeds the risk of ��LS � Thus� the risk

function of ��G does not converge asymptotically to the risk function of $�G�

Adaptation works admirably for the smaller classes FM and FNS� which yield� in the

canonical parametrization� the adaptive monotone estimator ��M � �fMz and the adaptive

nested selection estimator ��NS � �fNSz� Section ��� describes how ��M and ��NS converge� both

as estimators and in risk� to the ideal $�M and $�NS as p tends to in�nity and ��� converges

in probability to ��� Experiments with arti�cial data suggest that the convergence of the

adaptive estimators to their ideal counterparts is relatively quick�

Computing ��M is slightly more involved than computing the ideal $�M in that

�fM � %f� with %f � argmin
h�H

ave��h� �g��z��� ����

The positive�part step arises because �g need not lie in ��� ��p� For a proof of ���� as a

consequence of ��
�� see Beran and D�umbgen ������� The PAV algorithm provides an ef�

fective method for obtaining %f and hence �fM � Computing �fNS is straightforward minimiza�

tion over a �nite set� In the original parametrization� the two adaptive estimators become

��M � UEdiag� �fM �U �
Ey and ��NS � UEdiag� �fNS�U �

Ey�

��� Connections

The adaptive estimators in Section ��	 are de�ned to minimize estimated risk� or equiv�

alently� a CL criterion� Mallows ����	� noted heuristically that the size of F a�ects the

success or failure of minimum CL� Li and Hwang ���
�� presented Stein�type shrinkage

estimators that dominate ��LS in risk� Li ���
�� established for nested model selection� ridge

regression� and certain other examples the convergence of ���f� �with �� assumed known� to

the loss of ���f�� uniformly over f in F � Kneip ������ gave related results for the larger class

of ordered linear smoothers� The asymptotic equivalence in loss of estimators obtained by

minimizing Stein�s unbiased estimator of risk� or the generalized cross�validation criterion�

or the CL criterion was explored by Li ���
�� ��
���

On the other hand� Efroimovich and Pinsker ���
�� and Golubev ���
�� constructed

adaptive estimators whose maximum risk converges asymptotically to the Pinsker ���
��
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bound for each member of a class of ellipsoids in the parameter space� Beran and D�umbgen

������ developed conditions on the covering number of F that ensure correct convergence of

the loss and risk of ��F to their counterparts for $�F and linked their results to Pinsker theory�

The Pinsker asymptotic minimaxity of ��M and ��NS are discussed further in Section �� This

section compares REACT �ts with several precursors and competitors�

Nested polynomial regression� Suppose that the columns of the regression matrix X are

the powers fxk
 � � k � p� �g of an n� � covariate vector x� The QR decomposition of the

regression matrix is X � QR� where the columns of the n�p matrix Q are orthonormal and

R is upper triangular� Taking the orthonormal basis for the regression space to be Q� reduce

the linear model to canonical form as in Section ��� and consider the �t Qdiag� �fNS�Q�y�

which is the adaptive nested selection estimator in the canonical model� mapped back into

the original parametrization� Because the QR decomposition expresses the Gram�Schmidt

orthogonalization of X� this adaptive estimator is equivalent to choosing the order of the

original polynomial regression by minimizing the CL criterion and then �tting the polynomial

of this order by least squares�

To this extent� polynomial regression with order chosen to minimize the CL criterion is

a precursor to REACT� Moreover� such an adaptive polynomial �t has smaller asymptotic

risk than the least squares estimator ��LS because the asymptotic theory in Section � applies

to any canonical form of the linear model� However� because the basis matrix Q obtained

from the QR decomposition of polynomial X need not be economical for smooth signals� the

reduction in risk may be small� This di�culty is illustrated by the unsuccessful polynomial

�ts to the motorcycle data displayed on p� 	�� of Venables and Ripley �������

Nested principal component selection� The singular value decomposition of an n � p

regression matrix X is X � ULV �� where U is n�p� V is p�p� U �U � V �V � V V � � Ip and

and L � diagfli
 � � i � pg with l� � l� � � � � � lp � �� The columns of V are eigenvectors

of X �X� Rao and Toutenberg ������� p� ��� formulated nested principal component selection

as follows� The mean X� of the linear model can be rewritten as $X $�� where $X � XV and
$� � V ��� Let $Xk denote the n� k matrix formed from the �rst k columns of $X � Candidate

nested principal components estimators for � are de�ned by

���k� � $Xk� $Xk
$X �
k�
�� $Xky ����

for � � k � p and ����� � ��

Applying the singular value decomposition to ���� yields the equivalent expression ���k� �

Udiag�e�k��U �y� where e�k� is the vector of k ones and n� k zeros de�ned in the paragraph

that follows ����� Thus� if k is chosen to minimize the CL criterion� nested principal compo�

nent regression is analogous to the adaptive nested selection estimator of Section ��	� with

the principal component basis in place of UE� Because the asymptotic theory in Section �

applies to any canonical form of the linear model� the adaptive nested principal component

	



�t has no greater asymptotic risk than the least squares �t ��LS � However� the uncertain

success of principal component regression in applications stems from its use of an orthogonal

basis that does not attempt an economical representation of �� Section ��� illustrates this

di�culty in �tting one�way layouts to two well�known sets of data�

Ridge regression� In the notation of the singular value decomposition forX� the candidate

estimators for � in ridge regression are

���c� � X�X �X # cIp�
��X �y � Uf�c�U �y� ����

where c � � and f�c� � fl�i 
�l
�
i # c�
 � � i � pg� Evidently the range of the candidate

shrinkage vectors ff�c�
 c � �g is a proper subset of FM � Thus� if c is chosen to minimize

the CL criterion� the resulting ridge regression estimator ��RIDGE has no greater asymptotic

risk than ��LS �see Section ��� However� because it tacitly uses the principal component basis

without regard to the economy of that basis in representing �� ridge regression may not

improve signi�cantly upon least squares� See Section ��� for examples�

Symmetric linear smoothers� In REACT� the candidate estimators for � take the form

�� � UEdiag�f�U �
Ey� where f � F � ��� ��p and the economical regression basis UE depends

upon X� The matrix A � UEdiag�f�U �
E is symmetric with eigenvalues restricted to ��� �� and

does not depend on y� The candidate estimators are thus symmetric linear smoothers� in the

terminology of Buja� Hastie� and Tibshriani ���
��� For given linear smoother� that paper

identi�es the matrix A and analyzes its singular value decomposition� which reduces to the

spectral decomposition when A is symmetric�

The REACT approach is synthetic� de�ning a class of candidate symmetric matrices

A through a class of possible eigenvalues f � F and through the eigenvectors UE� The

restriction to an economical basis UE when specifying candidate values of A is motivated

by e�ciency arguments in Sections ��� and ��	� The main thrusts of this paper are
 �a�

justifying theoretically the use of an economical basis UE followed by adaptive selection of

f through minimization of the estimated risk ���f�� �b� showing empirically that the smooth

basis US is often economical for one�way layouts� �c� developing and probing con�dence sets

for � that are centered at REACT �ts� The asymptotics in Section � also support adaptation

over a �nite collection of plausible economical bases� Unlike the candidate estimators� the

REACT estimator ��F � UEdiag� �fF �U �
Ey is nonlinear in y because �fF depends on both y and

X� Mallows ���
�� treated properties of nonlinear smoothers in a random signal model� His

framework contrasts with the present analysis of REACT estimators under a linear model

having deterministic regressors�

Sparse bases and hard thresholding� A sparse basis is one in which only a few basis vectors

are needed to obtain a good approximation to �� An economical basis� as described in Section

���� is a sparse basis in which the �rst few basis vectors provide the good approximation�

Donoho and Johnstone ������ studied hard�thresholding estimators of the form ��i � zi if

�




jzij � 	p�
� and ��i � � otherwise� Such nonlinear shrinkage estimators were shown to have

surprisingly small risk when the canonical model is sparse and 	p
�� log�p����� tends to �

as p increases� A numerical experiment in Beran and D�umgben ������ suggested that the

success of hard�thresholding estimators may be more sensitive to the choice of basis than the

success of adaptive linear shrinkage estimators� Con�dence sets based on hard�thresholding

estimators appear to be an open question�

��� REACT on Data

After the initial choices of regression matrix� basis� variance estimator� and shrinkage

class F � REACT �ts are completely de�ned through the process of minimizing estimated

risk� There is no need to guess or estimate bandwidth parameters� This and further points

will now be illustrated through examples�

Motorcycle data� Competing nonparametric smoothing �ts to the motorcycle data are

displayed on p� 	�� of Venables and Ripley ������� on p� �� of Fan and M�uller ������� and on

pp� 
��� of Silverman ���
��� Conditioning on the observed times� we will �t an unbalanced

one�way layout to the n � �		 observed accelerations� the factor levels being the p � ��

times taken in increasing order� Each row in the regression matrixX thus contains a single ��

the other elements all being �� Repeated observations at a time point induce repeated rows

in X� Because of replication� it is reasonable to estimate �� by the least squares estimator

���
LS � ����� de�ned in �����

�Figures �� � and 	 go near here�

The right column in Fig� � displays the least squares� adaptive nested principal compo�

nent� and adaptive ridge �ts to this linear model� line segments being drawn between the

successive �tted means� Minimum estimated risk �or equivalently� minimum CL� was used

to select the ridge parameter and the number of principal components used� Visually� the

latter two �ts are no improvement over the unconvincing least squares �t� Clearly evident

is the tendency of least squares to over�t whenever p is not small�

The left column in Fig� � exhibits the motorcycle data and two REACT �ts that use

the smooth basis US 
 the adaptive nested selection �t ��NS and the adaptive monotone �t

��M � both de�ned in Section ��	� Line segments are drawn between the means �tted in this

manner to the one�way layout� It is striking how well these two REACT �ts to the motorcycle

data compare visually with the best competing �ts in the literature cited above�

The estimated risks for the various �ts in Fig� � reveal the heart of the story� On the

one hand� ��LS � ������ ��PC � ��	��� and ��RIDGE � ������ all of which are similarly high�

In sharp contrast the two REACT �ts have ��NS � ����� and ��M � ������ The negative

values cause no concern because the risk estimator� de�ned in ����� is not constrained to be

positive� Of interest are three points
 �a� both REACT �ts have much smaller risk than the

least squares� nested principal component� or ridge �ts� �b� in terms of estimated risk� the

��



nested selection smooth �t does nearly as well as the monotone smooth �t in this example�

�c� much smaller estimated risk corresponds to a better visual �t�

The �rst row of Fig� � presents two diagnostic plots
 on the left� the canonical response

z � U �
Sy and� on the right� the adaptive shrinkage factors �fNS and �fM � The relatively small

magnitude of all but the �rst few components of z supports the belief that the smooth basis

US represents � economically� Note that the plot of z displays the square roots fz���i g� so

as to better scrutinize values near �� The close similarity of the two �f plots explains the

near coincidence of the two smooth REACT �ts in Fig� �� As might be expected from the

discussion in Section ���� the �rst four basis vectors in US� displayed in the second and third

rows of Fig� �� are a perturbation of the �rst four vectors in the discrete cosine basis� The

�at steps in the basis vectors re�ect repeated observations at some of the factor levels of the

one�way layout being �tted to the motorcycle data�

Fig� 	 presents analogous diagnostic plots for the principal component basis that underlies

the principal component �PC� and ridge �ts in Fig� �� It is clear from the ��� �� plot that

that the PC basis does not represent the mean acceleration economically� Consequently� as

displayed in the ����� plot� most basis vectors are retained when minimizing estimate risk�

This circumstance precludes much reduction in risk by either nested principal component or

ridge regression� On looking at the �rst four vectors in the principal component basis� this

lack of success is not entirely surprising�

Redoing the analysis of the motorcycle data with the �rst di�erence variance estimator

���
D in place of ���

LS makes no perceptible di�erence to the plotted �ts�

Geyser data� Simono� ������� pp� �	���� smoothed nonparametrically the Old Faithful

geyser data� Conditioning on the observed eruption durations� we will �t an unbalanced

one�way layout to the n � ��� observed eruption intervals� the factor levels being the p � 	�

eruption durations taken in increasing order� The regression matrix X is analogous to the

one used for the motorcycle data and the variance �� is reasonably estimated by ���
LS � 	����

�Figures � and � go near here�

Figs� � and � are counterparts for the geyser data of Figs� � and � for the motorcycle

data� Visually� the least squares� principal component and ridge �ts in Fig� � are virtually

identical and are far less satisfactory than the nested selection and monotone �ts that use

the smooth basis US � Of the two REACT �ts� the monotone selection �t seems slightly

better in capturing nuances of the data� The estimated risks for the various �ts agree with

the visual impressions� On the one hand� ��LS � 	���� ��PC � 	���� and ��RIDGE � 	���� On

the other hand� ��NS � ��� and ��M � ����

The diagnostic plot of z in Fig� � supports the belief that the smooth basis US represents

� economically� The �f plots show that the monotone smooth �t reduces risk over the nested

selection �t by using additional� greatly shrunk� components of z� As might be expected�

the �rst four basis vectors in US� displayed in the second and third rows of Fig� �� are

��



a perturbation of the �rst four vectors in the discrete cosine basis� Their form re�ects

repeated observations at many factor levels of the one�way layout�

Redoing the analysis of the geyser data with the �rst di�erence variance estimator ���
D

in place of ���
LS makes no visible di�erence to the plotted �ts�

�� EXTENSIONS

The discussion in Section � focused on REACT �ts to the one�way layout with ho�

moscedastic errors� This section �ts the two�way layout� deals with a simple form of het�

eroscedasticity� constructs and explores con�dence sets for �� and looks numerically at the

role of an economical basis in REACT�

���� Two�way layout

The coal ash data from p� 	� of Cressie ����	� will be �tted as an incomplete two�

way layout with n � p � ��
� the factor pairs being the grid coordinates at which the

measurements are taken� To obtain an economical basis� the concept of smoothness that

was used in Section � for the one�way layout now needs to be extended� Let C denote the

subset of factor level pairs for which there is a measurement yij� For any incomplete matrix

A � faij
 �i� j� � Cg� let Di�A denote the vector of �rst di�erences computed from the i�th

row of A� ignoring missing elements� Similarly� let D�jA denote the vector of �rst di�erences

computed from the j�th column of A� The roughness of the mean matrix � � f�ij
 �i� j� � Cg

is now de�ned to be

V ��� �
X

all i

jDi��j
� #
X

all j

jD�j�j
�� ��	�

If we systematically rearrange the matrix �� row by row� into a long vector vec���� then

V ��� � jDvec���j�� where D is a matrix each of whose rows contains a single � and a single

��� the other row entries all being �� With this change in the de�nition of D� we now

construct a smooth basis USS for the regression space of the two�way layout by the method

described in Section ���� Fig� � displays the �rst six members of USS for the coal ash data

as surfaces on C� with linear interpolation between grid points� When the two�way layout

is complete� the basis USS is asymptotically equivalent� as both dimensions of the two�way

layout increase� to a bivariate discrete cosine transform� The basis vectors in Fig� � are

visibly related to this transform�

�Figures � and � go near here�

Let y � fyij
 �i� j� � Cg and let n denote the cardinality of C� Adapted to the two�way

layout� the �rst di�erence variance estimator becomes

���
D � ���n� �����jDuvec�y�j�� ����

where D is now de�ned as in the preceding paragraph� not as in ����� The least squares

��



estimator of �� is not available for the coal ash data because there is only one observation

per cell�

The left column in Fig� � exhibits the least squares �t to the coal ash data �i�e� the

data itself with linear interpolation between grid points� and two REACT �ts that use the

smooth basis USS 
 the adaptive nested selection �t ��NS and the adaptive monotone �t ��M �

both de�ned as in Section ��	 after setting UE � USS � The estimated risks for these �ts

are ��LS � ���	� ��NS � ��� and ��M � ���� Not only are the two REACT �ts more pleasing

visually� they also have much smaller estimated risk than the least squares �t�

The diagnostic plot of z in the right column of Fig� � indicates that the smooth basis USS

represents � economically� The �f plots help explain why the monotone and nested selection

smooth �ts to the coal ash data are similar� although the monotone �t uses additional�

greatly shrunk� components of z to achieve higher �delity to the data without over�tting�

���� Heteroscedasticity

The �rst �� accelerations in the motorcycle data of Fig� � appear to have much smaller

variability than the other accelerations� This is a consequence of the experimental conditions�

some details of which are reported by Silverman ���
��� To take the possible change in

variability into account� we divide the sample into two subsamples� consisting of the �rst

�� and the remaining ��� data points� The aim is to �t a separate one�way layout to each

subsample by the REACT method� using the appropriate smooth basis US and monotone

shrinkage for each subsample� The �rst di�erence variance estimator for subsample � and

the least squares variance estimator for subsample � provide the estimated variances required

for this procedure� The right plot in Fig� 
 is the result after linear interpolation between

adjacent �tted points� The left plot in Fig� 
 is the monotone smooth basis �t obtained on the

assumption that the data is homoscedastic �see also Fig� ��� The �t under the heteroscedastic

model better captures the abrupt change in acceleration from zero to negative�

�Figure 
 goes near here�

���� Probing con	dence sets

To construct a con�dence set for the unknown mean vector � that is centered at the

estimator ��F � consider the root

�tF � p����p��j��F � �j� � ��� �fF��� ����

where F is either the monotone class FM or the nested selection class FNS� The right side

of ���� compares the normalized quadratic loss L���F � �� � L���F � �� with the estimated risk

of ��F or ��F � As discussed in Section �� the loss and risk of ��F converge together when p

increases� A con�dence set for ��F is obtained by referring �tF to the ��th quantile of its

estimated distribution� The general idea behind such con�dence sets was sketched in the

last paragraphs of Stein ���
���

��



Further details of the construction depend on the the variance estimator that enters into

the de�nition of �tF � We take ��� � ���
LS in ����� For large p and n� p� the distribution of �tF

is then approximately N��� �� �F � with

�� �F � ����
LSave���

�fF � ���� # ��p
�n� p�����
LS�ave��

�fF � ����

# ����
LSave��z

� � ���
LS��� �

�fF �
���

����

A con�dence set of approximate coverage probability � for � is accordingly

�CF � f� � M�X�
 j��F � �j� � p��� �fF � # p�����F&
�����g� ����

Here� as usual� &�� denotes the quantile function of the standard normal distribution� Section

��� presents the underlying asymptotic theory�

When the construction is carried out for the least squares estimator ��LS� the root in ����

simpli�es to

�tLS � p����p��j��LS � �j� � ���
LS�� ��
�

The approximate distribution of �tLS for large p and n � p is now N��� �� �LS�� with �� �LS �

�����n
p�� The con�dence set for � centered at ��LS is thus

�CLS � f� � M
 j��LS � �j� � p���
LS # p�����n
p�������

LS&
�����g� ����

If p and n � p both tend to in�nity and p
�n � p� converges to a �nite constant� then �CLS

approximates the classical con�dence set that refers �p���
LS�

��j��LS � �j� to the ��th quantile

of the F distribution with p and n� p degrees of freedom�

When F is either the monotone or nested selection class and � � ��� �� is �xed� the

maximum distance between � and elements of the con�dence set is asymptotically smaller

for �CF than for �CLS �see Section ����� Unfortunately� visualizing either of these con�dence

sets for � is di�cult� In the canonical parametrization� �CF simpli�es to a ball in Rp centered

at the estimated canonical mean ��F � However� the canonical con�dence ball� like the original

con�dence ball� lacks convenient interpretation in the examples of Section ����

A useful idea is to probe the extent of the con�dence set by identifying extreme elements

in �CF � For instance� we can re�t the model after replacing ���
LS with c���

LS� where c is a positive

constant� For monotone or nested selection �ts using a smooth basis� the smoothness of the

estimator ��F �c� increases with c� Let

�cL � inffc � �
 ��F�c� � �CFg� �cU � supfc � �
 ��F �c� � �CFg� �	��

Then ��F��cL� and ��F ��cU� are� respectively� the roughest and smoothest rescaled�variance �ts

that lie in the con�dence set�

�Figure � goes near here�

��



Fig� � displays �solid line� roughest and smoothest rescaled�variance re�ts for the motor�

cycle data previously analyzed� These two re�ts lie on the boundary of the asymptotic ��'

con�dence set for � that is centered at the monotone smooth basis �t ��M �dashed line� from

Fig� �� One can reasonably have con�dence in the existence of broad features preserved by

the two extreme re�ts�

���� Role of an economical basis

Both the heuristic considerations of Section ��� and the asymptotics in Section � indicate

that REACT reduces risk most when the basis for the regression space is economical� To

see directly the e�ects of economy on the �t� we consider three numerical examples based

on arti�cial data� In each case the regression matrix is the identity In� The i�th component

of the mean vector � takes the form �i � m�i
�n # ���� � � i � n� where m is a function

de�ned on the interval ��� ��� Three choices for m are considered


Smooth� m��t� � ������x��� � x����

Burst� m��t� � � if � � t � ��� and � sin���
t� if ��� 
 t � ��

Steps� m��t� � � if � � t � ���� � ��� if ��� 
 t � �	� � �� if �	 
 t � ��� � ��� if

�� 
 t � �
� and � � if �
 
 t � ��

�Figure �� goes near here�

The left column of Fig� �� displays for each j a pseudo�random sample of size n � ���

in which the i�th observation is drawn from the N�mj�i
�n # ���� ��� distribution with

� � ��� The dashed line plots in this column represent the respective vectors �� with linear

interpolation between components� The solid line plots similarly display� for the discrete

cosine basis UDC � monotone �ts to the three samples� Comparison of the �ts with the data

and with the true � brings out several points
 �a� the REACT �ts quickly track sharp

changes in �� �b� the �ts to the second and third cases are rougher than the �t to the �rst

case� �c� wiggles in the �ts accurately re�ect patterns in the data� These �ndings are not

very sensitive to the choices of n and �� in the numerical experiment�

The right column in Fig� �� displays the components of the canonical mean vector

� � U �
DC� for each of the three cases� These diagnostic plots show that the discrete cosine

basis is substantially more economical for the �rst � than for the other two� Consequently�

in the second and third cases� the monotone REACT estimator shrinks the higher�order

components of z more conservatively than in the �rst case� This explains point �b� in the

preceding paragraph�

Further numerical experimentation reveals that the monotone Fourier�basis �t to the

step function data su�ers from Gibbs phenomena jumps at its two endpoints� This di�culty

arises because the endpoints of the true � are not equal� The discrete cosine basis avoids

such end e�ects� as does the smooth basis US more generally for one�way layouts�

��



�� SUPPORTING ASYMPTOTICS

Several theoretical results on the performance of REACT �ts are the topic of this section�

The asymptotics require that the dimension p of the regression space tend to in�nity and�

at a minimum� that the variance estimator ��� be consistent for ��� Further properties are

required of the variance estimator in constructing con�dence sets for ��

���� Minimax bounds

The analysis in Pinsker�s ���
�� paper yields the two minimax theorems stated below for

estimation in a canonical linear model� The formulation is that of Section �� the quadratic

risk Rp���� �� ��� being de�ned by ���� Both theorems hold for every possible selection of the

orthonormal basis U in ���� How the choice of basis a�ects the minimax risk is studied in

Section ��	�

Let E � fa � Rp
 ai � ������ � � i � pg� For every a � E� de�ne the ellipsoid

E�r� a� ��� � f� � Rp
 ave�a��� � ����g� �	��

If � � E�r� a� ��� and ai ��� it is to be understood that �i � � and a��i � �� Let

��� � �����
a���� � ��� g� � ���
��
� # ���� � ��� �a
�������� �	��

where � is the unique positive number such that ave�a���� � ��r� De�ne

�p�r� a� �
�� � ��g�� �

�
�� �

�� � ��ave����
��
� # ������ �		�

Evidently� �p�r� a� ��� � ��� ��� for every r � � and every a � E�

The �rst theorem specialized from Pinsker�s argument identi�es the linear estimator that

is minimax among all linear estimators of � and �nds the minimax risk for this class�

Theorem �� For every a � E and every r � ��

inf
f�Rp

sup
��E�r�a���	

Rp�fz� �� �
�� � �p�r� a� �

�� � sup
��E�r�a���	

R�g�z� �� �
��� �	��

The second theorem establishes that the minimax linear estimator g�z is often asymp�

totically minimax among all estimators of ��

Theorem �� For every a � E and every r � � such that limp�� p�p�r� a� ��� ���

lim
p��

�inf

�

sup
��E�r�a���	

Rp���� �� �
��
�p�r� a� �

��� � � �	��

and

lim
p��

� sup
��E�r�a���	

Rp�g�z� �� �
��
�p�r� a� �

��� � �� �	��

If lim infp�� �p�r� a� ��� � �� then also

lim
p��

�inf

�

sup
��E�r�a���	

Rp���� �� �
��� �p�r� a� �

��� � � �	��

��



and

lim
p��

� sup
��E�r�a���	

Rp�g�z� �� �
��� �p�r� a� �

��� � �� �	
�

Because g� depends on r� a� and ��� the asymptotic minimaxity of g�z is assured only

over the one ellipsoid E�r� a� ���� The following idealized estimator� which depends on ��

and ��� is asymptotically minimax over a class of such ellipsoids� Let E� � E and F be

such that g��r� a� ��� � F for every a � E�� every r � �� and every �� � �� For the sake of

successful adaptation in the next subsection� we desire that the shrinkage class F be not too

large� This requirement limits the choice of E�� Because both $f and g� lie in F � it follows

from ���� that

sup
��E�r�a���	

Rp� $fz� �� �
�� � sup

��E�r�a���	

Rp�g�z� �� �
�� �	��

for every a � E�� every r � � and every �� � �� Thus� if g� is replaced by $f � the limits �	��

and �	
� continue to hold for every a � E�� every r � � and every �� � �� This establishes

the asymptotic minimaxity of $fz over the class of ellipsoids E�r� a� ��� generated as a ranges

over E� and r ranges over the positive reals�

���� Adaptation

As described in Section ��	� adaptation consists in using the estimator �fz� which depends

only on the data� as a surrogate for the idealized estimator $fz� Equation ��
� de�nes �f �

The following result� which specializes Theorems ��� and ��� in Beran and D�umbgen �������

gives su�cient conditions on F and ��� to ensure that �fz behaves asymptotically like $fz�

Theorem 	� Let F be any subset of FM that is closed in ��� ��p and contains the vector

�� Suppose that ��� is consistent in that� for every r � � and �� � ��

lim
p��

sup
ave���	���r

Ej��� � ��j � �� ����

Then� for every r � � and every �� � ��

lim
p��

sup
ave���	���r

E sup
f�F

j���f�� ��f� ��� ���j � �� ����

Moreover� the estimators ��F � �fz and $�F � $fz satisfy� for every r � � and �� � ��

lim
p��

sup
ave���	���r

jRp���F � �� �
���Rp�$�F � �� �

��j � � ����

and

lim
p��

sup
ave���	���r

Eave����F � $�F �
�� � �� ��	�

This theorem gives conditions under which the adaptive estimator ��F and the ideal�

ized estimator $�F converge together as random vectors and in risk� The hypothesis on

��



the shrinkage class F includes both FM and FNS� Condition ���� on the variance esti�

mator holds for ���
LS if n � p tends to in�nity with p� The same condition holds for ���

D if

limp�� p��
Pp

i����i � �i���� � �� This conclusion follows from ����� for details see Beran

�������

���� E
ect of basis choice

The results of Sections ��� and ��� enable us to study quantitatively how choice of

the basis a�ects the e�ciency of REACT estimators� To formulate the notion of economy�

consider for every b � ��� ��� every r � �� and every �� � � the ball

B�r� b� ��� � f�
 ave���� � ��r and �i � � for i � bpg� ����

Evidently� B�r� b� ��� is a special case of the ellipsoid E�r� a� ��� that arises when ai � � for

� � i � bp and ai � � for bp 
 i � p� A basis U for the linear model is clearly economical if�

in the resulting canonical model� � � B�r� b� ��� for some small value of b and some value of

r � �� While this formulation is too stringent to serve as a complete de�nition of economy�

it yields an illuminating �rst result on the interplay between basis economy and the risk of

REACT estimators�

Theorem 
� Suppose that ��� satis�es ����� For every r � �� b � ��� ��� and �� � �� the

following two limits hold


lim
p��

sup
��B�r�b���	

Rp���NS� �� �
�� � ��minfr� bg � ��rb
�r # b� ����

lim
p��

sup
��B�r�b���	

Rp���M � �� �
�� � ��rb
�r # b�� ����

The asymptotic minimax risk over all estimators is

lim
p��

inf

�

sup
��B�r�b���	

Rp���� �� �
�� � ��rb
�r # b�� ����

Limit ���� is the specialization of �	�� when ai � � for � � i � bp and � � otherwise� In

this case� it follows from �		� and �	�� that limp�� �p�r� a� ��� � ��rb
�r# b�� Moreover� g�
has coe�cients g��i � ��� ������� for � � i � bp and � � otherwise� Because g� � FM � the

reasoning in the last paragraph of Section ��� entails that $fMz is asymptotically minimax

over B�r� b� ��� for every r � �� every b � ��� ��� and every �� � �� This result together with

Theorem ��	 establishes �����

Veri�cation of ���� is by direct calculation of maximum risk� From ���� in Theorem 	�

lim
p��

sup
ave���	���r

Rp���NS� �� �
�� � lim

p��
sup

ave���	���r

Rp�$�NS � �� �
��� ��
�

By the de�nitions of ��f� ��� ��� and of FNS�

Rp�$�NS� �� �
�� � min

f�FNS
ave���f� # ���� � f��� � min

��k�p
p�����k #

X

i�k

��i �� ����

�	



Therefore� when � � B�r� b� ����

Rp�$�NS� �� �
�� � minfp��

X

i�bp

��i � �
�bg � ��minfr� bg� ����

On the other hand� let ��i � r��
b for � � i � bp and � � otherwise� The vector � so

de�ned clearly lies in B�r� b� ���� Moreover� from �����

Rp�$�NS� �� �
�� � min

��k�p
p�����k # �bbpc � k��r�

�
b� � ��minfr� bg#O�p���� ����

where b	c denotes the �oor function� Consequently�

sup
��B�r�a���	

Rp�$�NS� �� �
�� � ��minfr� bg#O�p���� ����

Together� ���� and ���� establish �����

The most important implications of Theorem � are as follows


�a� The asymptotic minimax bound on the risk of any estimator over B�r� b� ��� is

achieved by ��M � For �xed b and ��� this asymptotic minimax bound increases monoton�

ically in r but never exceeds ��b� The asymptotic maximum risk of ��NS also increases

monotonically in r but never exceeds ��b� However� the risk of the least squares estimator

is �� for every value of �� Thus� economy of the basis in the sense of small b makes the

asymptotic maximum risk of REACT estimators far smaller than that of the least squares

estimator� The estimated risks for ��M and ��NS in the data analyses of Sections ��� and 	��

re�ect this ability of REACT estimators to improve greatly on least squares�

�b� The asymptotic maximum risk of ��NS is never more than twice the asymptotic

maximum risk of ��M � The worst risk ratio of � occurs when r � b� In the data analyses cited

above� the estimated risks were in fact close to one another� The reduction in risk achieved by

a REACT estimator through using monotone shrinkage rather than nested selection comes

distant second to the reduction achieved through using an economical basis for the regression

space�

The monotone class FM of shrinkage vectors is not the smallest generating an estimator

of � that is asymptotically minimax over each B�r� b� ���� An enrichment of FNS su�ces for

that purpose� In the notation of Section ���� consider the nested selection with shrinkage

class

FNSS �
�

��c��

p�

k��

fe�k�g� ��	�

Let �fNSS � argminf�FNSS ���f� and ��NSS � �fNSSz� Inspection of the argument given above

for ���� establishes that ��M may be replaced in ���� with ��NSS � While interesting technically�

this result should not be viewed as a recommendation to use ��NSS rather than ��M � The latter

estimator continues to behave well under the more general de�nition of economy that we

consider next�

�




Let

EM �b� � fa � Rp
 ai � � for � � i � bp� � � abbpc�� � � � � � ap � �g� ����

Less restrictively than above� we might say that a basis is economical if� in the resulting

canonical model� � � E�r� a� ��� for some r � �� some a � EM�b�� and some small value of b�

Evidently�

B�r� b� ��� � E�r� a� ��� if a � EM �b�� ����

For every r � �� every a � EM �b�� every b � ��� ��� and every �� � �� it follows from �����

Theorem � and ���� that

lim inf
p��

�p�r� a� �
�� � ��rb
�r # b� � �� ����

The shrinkage vector g�� de�ned in �	��� lies in FM whenever � � E�r� a� ��� with a � EM �b��

Consequently� the �rst part of Theorem � and the reasoning at the end of Section ��� yield

the following result�

Theorem �� Suppose that ��� satis�es ����� Then� for every r � �� every a � EM �b�� every

b � ��� ��� and every �� � � �

lim
p��

� sup
��E�r�a���	

Rp���M � �� �
��
 inf


�
sup

��E�r�a���	

Rp���� �� �
��� � �� ����

The monotone REACT estimator ��M is thus asymptotically minimax for any basis that

is economical in the general sense stated after ����� in addition to being asymptotically

minimax in the more restricted setting of Theorem ��

���� Con	dence sets

The following two theorems �nd the asymptotic distribution of �tF � de�ned in ����� and

determine the asymptotic coverage probability and asymptotic loss of the con�dence set �CF �

de�ned in ����� Both results follow from Theorems 	�� and 	�� of Beran and D�umbgen

������ upon recalling that j��F � �j� � j��F � �j�� In the sequel� let d be any metric for weak

convergence of probability measures on the real line and let L��tF� denote the distribution of
�tF under the model�

Theorem �� Let m � minfp� n� pg� Suppose that ��� � ���
LS� F is FM or FNS� and

lim
m��

p
�n � p� � �� 
�� ��
�

Then� for every r � � and every �� � ��

lim
p��

sup
ave���	���r

d�L��tF �� N��� � �F �� � �� ����

where

� �F � ���ave��� $fF � ���� # ������ave�� $fF � ���� # ���ave������ $fF �
��� ����

��



The variance � �F is a function of p� n � p� ��� and ��� The estimator �� �F de�ned in ����

is obtained by substituting z� � ���
LS for ��� �fF for $fF � and ���

LS for �� in ����� Theorem �

below establishes the consistency of �� �F in the sense that �� �F � � �F converges in probability to

zero� Because the ��th quantile of the N��� � �F � distribution is estimable by ��F&������ limit

���� leads to the con�dence ball �CF for � de�ned in �����

Let �rF � ��� �fF � # p������F&������ The performance of �CF will be measured through its

coverage probability P�� � �CF and through its geometrical loss

L� �CF � �� � sup
�� 
CF

L��� �� � �j��F � �j# �rF �
�� ����

which treats �CF as a set�valued estimator of ��

Theorem 
� Under the hypotheses for Theorem 	�	� for every r � � and every �� � ��

lim
p��� K��

sup
ave���	���r

P�jL� �CF � ��� ��� $fF � �
�� ���j � Kp����� � �

lim
p��� K��

sup
ave���	���r

P�j�r�F � �� $fF � �
�� ���j � Kp����� � ��

����

For every � � ��

lim
p��

P�j�� �F � � �F j � �� � �� ��	�

Moreover�

lim inf
p��

inf
ave���	���r

� �F � � ����

and

lim
p��

sup
ave���	���r

jP�� � �CF �� �j � �� ����

In particular� the classical least squares con�dence set �CLS� the nested selection con��

dence set �CNS and the monotone con�dence set �CM each have asymptotic coverage prob�

ability �� The asymptotic geometrical loss of each con�dence set is just four times the

asymptotic risk of the estimator at the center of the con�dence set� Thus� for every non�

trivial coverage probability �� �CLS is no smaller asymptotically than either �CNS or �CM � It

is not too surprising that the e�ciency of the estimator at the center of the con�dence set

should in�uence its geometrical size� However it is remarkable that this reduction in the size

of the con�dence set can be very substantial� as indicated by the estimated risks in Sections

��� and 	���
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Motorcycle Data
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FIG �� The left column displays the motorcycle data and the nested selection and monotone
REACT �ts using smooth basis US� The right column displays the least squares �t� the
nested principal component �t� and the ridge �t�
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Motorcycle Canonical z
for Smooth Basis
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FIG �� The second and third rows exhibit the �rst four vectors in the smooth basis US for
the motorcycle data� The top row displays the canonical response z � U �

Sy and� on the right�

the shrinkage vectors �fNS �solid line� and �fM �dashed line� for the smooth basis�
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Motorcycle Canonical z
for PC Basis
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FIG 	� The second and third rows exhibit the �rst four vectors of the principal component
basis UPC for the motorcycle data� The top row displays the canonical response z � U �

PCy

and� on the right� the shrinkage vectors �fPC �solid line� and �fRIDGE �dashed line� for the
PC basis�
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Geyser Data
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FIG �� The left column displays the geyser data and the nested selection � and monotone
REACT �ts using smooth basis US� The right column displays the least squares �t� the
nested principal component �t� and the ridge �t�

��
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FIG �� The second and third rows exhibit the �rst four vectors in the smooth basis US for
the geyser data� The top row displays the canonical response z � U �

Sy and� on the right� the

shrinkage vectors �fNS �solid line� and �fM �dashed line� for the smooth basis�
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Monotone Fit with Smooth Basis
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FIG �� The left column displays the least squares �t and the nested selection and monotone
REACT �ts to the coal ash data using smooth basis USS � The right column displays the
canonical response z� the shrinkage vectors �fNS �solid line� and �fM �dashed line�� and a
contour plot of the monotone smooth�basis �t�
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FIG �� The �rst six vectors in the smooth basis USS for the coal ash data�
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Motorcycle Monotone Fit
with Smooth Basis
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FIG 
� On the left is the smooth�basis monotone �t to the motorcycle data while on the
right� spliced together� are separate smooth�basis monotone �ts to the �rst �� and remaining
��� data points� The separate REACT �ts handle heteroscedasticity�
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Upper Rescaled (90% level)
Monotone Smooth Fit
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FIG �� Displayed here �solid line� are the two smooth�basis monotone REACT �ts� obtained
by scaling ��� upwards or downwards� that just lie on the boundary of the ��' con�dence
set� The dashed line is the monotone �t at the center of the con�dence set�
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Monotone Fit and Signal
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FIG ��� For three trend vectors � �dashed line�� the left column displays a trend plus noise
sample y of size ��� and its monotone REACT �t �solid line� using the discrete cosine basis
UDC � The canonical mean vectors � � U �

DC� in the right column show that this basis is less
economical for the second and third trends�
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