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1 Introduction.

In this paper we consider triangular arrays of Markov chains that converge weakly to a
diffusion process. Our main result is that transition densities converges with parametric

rate [i.e. O(n~'/?)] to the transition density in the diffusion model.

This research is motivated by recent new approaches in time series analysis. In
a series of papers [see e.g. Doukhan and Nze (1995), Franke, Kreiss and Mammen
(1996), Masry and Tjgstheim (1994), Robinson (1983), Tjgstheim (1994), Tjgstheim
and Auestad (1994)] it has been proposed to use nonparametric approaches to model

time series. In particular nonparametric autoregression models have been considered:
(1) X(k+ 1) = m(X (k) + o (X (k))e(h + 1),

where the innovations ¢(1),(2),... are typically assumed to be i.i.d. mean zero vari-
ables. For the functions m and o nonparametric smoothness assumptions are made
and nonparametric smoothing methods are proposed for their estimation. For a dis-
cussion of different nonparametric statistical problems in these models we refer to the
references above. Under regularity conditions on m, o and the distribution of &(7),
solutions of (1.1) are stationary processes. In Dahlhaus (1997) models are proposed
for time series that are not stationary, however locally stationary. In particular he

considers autoregressive processes with time varying coefficients:

(1.2) Xo(k+1) = a(%)Xn(k)—l-e(k—l-l).

In this paper we discuss another model and use as in (1.2) the asymptotic approach

that we observe a function a on a finer grid for n — co. We consider the model
1
We make the Markov assumption that the conditional distribution of the innovation

en(k + 1) given the past X, (k), X,(k —1),... depends only on the last value X, (k).

[For a slightly more general model see the next section.] It is well known that [under

(1.3) Xo(k+1) = X, (k) + %m{g,Xn(k)}Jr

regularity conditions] the process Y,(s) = X, (k,(s)) [where £,(t) = max{k < nt}]
converges to a diffusion process [see e.g. Skorohod (1987)]. The main result of this
paper is that the conditional density of Y, (1) given Y, (0) converges with parametric
rate [i.e. O(n~/?)] to the conditonal density of the diffusion.

In particular, this result may be applied to discuss statistical nonparametric es-
timation problems of the transition density and the shift function m under different
smoothness and structural assumptions. Our result reduces the discussion of some of
such problems in model (1.3) to the analysis of corresponding problems in diffusion
models. For the discussion of some nonparametric estimation problems in diffusion
models see Kutoyants (1997, 1998). In this paper we will not address statistical prob-

lems.



2 Results.

For each n > 1 we consider Markov chains X, (k) where the time & runs from 0 to n.
The Markov chain X, is assumed to take values in IR?. The dynamics of the chain X,
is described by

Xo(k+1) = X, (k) + An(k 4 Dym{s,(k), Xn ()} + An(k 4+ 1)V 2%, (k 4+ 1).

Here A, (k) > 0 are real numbers with
S AL (k) =1
k=1

The numbers s, (k) are defined as s,(0) = 0 and

k
sn(k) = ZAn(z) for £ > 1.

i=1
Furthermore, m is a function m : [0,1] x IR — IR?. The stochastic structure of
the IR? valued error variables ¢, (k) is described as follows. Given X, (1) = x(¢) for
i = 0,...,k the variable ¢,(k 4+ 1) has a conditional density ¢{s,(k),z(k),e}. The
conditional covariance matrix of ¢, (k + 1) is denoted by ¥{s,(k),x(k)}. Here ¢ is a
function mapping [0, 1] x R x IR? into [R,. Furthermore, ¥ is a function mapping
[0, 1] x IR? into the set of positive definite p x p matrices. The Markov chain is supposed
to start in a deterministic point X, (0) = . The conditional density of X, (n), given
X, (0) = x, is denoted by p,(x,e). Study of the transition densities p,(x,z) is the
topic of this paper. Conditions on A, (k), m,¢{s.(k),z(k),e} and X{s,(k),x(k)} will

be given below.

By time change the Markov chain X, defines a process Y,, on [0,1]. More precisely,
put k,(t) = sup{k : s,(k) < t,1 <k < n}. This defines a monotone time transform
Kot [0,1] = {1,...,n}. Using this time transform we get the following process:

Yo (t) = X, {kalt)}.

Under our assumptions, see Section 3, the process Y, converges to a diffusion Y(¢).
This follows for instance from Theorem 1, p. 82 in Skorohod (1987). The diffusion is
defined by Y (0) = 2 and

dY (t) = m{t, Y(£)}dt + A{t, Y () dW (1),

where W is a p dimensional Brownian motion. The matrix A(¢, z) is the unique sym-
metric matrix defined by A(¢,z)A(t,2)T = %(¢,2). The conditional density of Y(1),
given Y(0) = z, is denoted by p(x, e). Note that the conditional density of Y,,(1), given
Y,(0) = x, is denoted by p,(x,e). The following theorem contains our main result. It

gives a bound for the rate of convergence of p, to p.

3



Theorem 2.1 Assume (A1) - (A5). Then the following estimate holds:

sup (1 lly = 2 ) Ipue,y) = ple.y)l = O,

z,yER

where S" is defined in Assumption (A2). The norm ||...|| is the usual Fuclidean norm.

Kasymdzganova (1981) considered the case of a homogeneous random walk on the
lattice ZP[with no drift, e.g. m = 0]. She assumed the following conditional distribu-

tion for the innovations

VX (k) = ) = 51 = -Q())

P(ea(k+1) = £e; =3

where ¢, = (1,0,...,0),...,e, = (0,...,1), 2 € Z? and LQ(x) is a probability of vanishing
of a particle at x. For this scheme she proved that for © € Z?,y € Z?

lim n?/?2pP (Xn(n) = y/\/ﬁ‘Xn(O) = SL’/\/E) = p(t,z,y)

n—0oo

where p(t,x,y) is the fundamental solution of the equation

9, t,l’, 1
% = 5Vap(toz,y) = Qa)p(t,a,y)

with p(0,z,y) = d(x — y) where § is the Dirac function. Local limit theorems for
homogeneous Markov chains with continuous state space and equidistant partitions

were given in Konakov and Molchanov (1984).

We use the parametrix method. This approach is well known in the theory of partial
differential equations [see II'in, Kalashnikov and Oleinik (1962) and McKean and Singer
(1967)] and was used e.g. in Kuznetsov (1998) to obtain bounds for Poisson kernels.
But as far as we know for Markov chains the parametrix method was not systematically

developed before.

3 Conditions.

For ¢t € [0,1] and = € IR? let ¢{t,x, 8} be a density in IR’. We make the following

assumptions.

(A1)
/q{t,x,u}u du=0 foralltel0,1],z¢€ R,

/q{t,x,u}uiuj du = o0;j(t,x) forallte[0,1],z € R andi,5=1,...,p.

The matrix with elements o;;(t, x) is denoted by (¢, ).



(A2) There exist a positive integer S” and a function ¢ : IRP — IR with sup ¢ ps [¢0(2)] <
oo and [, ||2]|°[¥(x)| dz < oo for S = 2pS’ + 4 such that

IDYg{t,x,u}| <(u) forallt €[0,1],x,u € IR, and || =0,...,4,

IDYg{t, z,u}| < (u) forallt €0,1],2,u€ R and |v| =0,...,2.

[For the case that S” = 1 Theorem 2.1 can be shown under the weaker assumption
that (A2) holds for a function ¢ with sup,¢ge [¢(2)] < 0o and [, ||z||*[¢(2)| do
< oo for an integer k > p + 4.]

(A3) There exist positive constants ¢ and C such that
c< <Z(t7x)070> <C
for all 4, ||0]| =1, ¢ and «.

(A4) There exists a constant B with

—1_ An(k)
B™ <« An(l) < B

for n > 1 and 1 < k,I < n. [Then it follows that A, = maxi<j<n An(7) =
O(n='2)]

(A5) The functions m(¢, x) and (¢, #) and their first derivatives with respect to x and
with respect to t are continuous and bounded (uniformly in ¢ and x). All these
functions are Lipschitz continuous with respect to x (with a Lipschitz constant
that does not depend on ¢). Furthermore, 9*/(9x;0x)X(t, x) exists for 1 <
J,k < p and is Holder continuous with respect to a (with positive exponent &

and constant that do not depend on ?).

4 Examples and extensions.

(i) The result can be extended to the case that ¢, m and ¥ depend on n. For this
purpose conditions (A2), ..., (A5) have to be replaced by assumptions that hold

uniformly in n.

(ii) Unbounded drift function. Our result can be extended to the case of an unbounded
drift function m that is of the form b(¢)x + a(¢, x) where a fullfills the conditions

stated for m and where b(¢) is a matrix that depends continuously on t.

(ii1) Unbounded one step transition density. Our results can be extended to un-
bounded transition densities if the transition density for a finite number of steps

is bounded, see e.g. (vii).



(iv) Functionals of Markov chains. Our theorem implies that the density of (Y, (t1),
., Yo () converges to the density of (Y (¢1),...,Y(¢x)) in Ly norm for any tuple
0 <t <...<t <1. We conjecture that with the approach of Davydov (1980,
1981) these results can be used to show that the density of H(Y,(e)) converges
to the density of H(Y (e)) for a wide range of functionals H.

(v) Conditional Markov chains. In particular, our result can be used to show that
the conditional density of (Y,(¢1), ..., Y.(fx)) given Y, (1)) converges to the
conditional density of (Y(t1),...,Y(fx)) given Y (1)) (in L; norm), where tuple
ty,. .. tp1s a tuple with 0 <t < ... <t < 1.

(vi) Fuler approzimations. The case where ¢ is a normal density corresponds to Eu-
ler approximations that are the simplest strong Taylor approximations used as

numerical solutions to stochastic differential equations, see Kloeden and Platen

(1992).

(vii) Transport processes. Let us consider a symmetric and positively definite p x p
matrix S(z) and vector m(z) = (my(z),...,my(x))T where z € IRP. For a > 0
we consider independent variables Ry1, Ro2,...,Uq1,Uq2,... where R,; have
density a=! exp(—r/a) and where U, ; are uniformly distributed on the unit sphere

in IR?. We define the following chain (transport processes, see e.g. Pinsky, 1991):

Xo(i4+1) = =,
X,(i4+1) = X,(0)+a*m(X,(0)) + S(Xo(0))UyiRai, for 0 <i <[1/a?].

This process has no bounded one step transition density and it does not fulfill
the conditions of our theorem for this reason. However it is easy to show that
for a finite numbers k of steps the transition density of X,(i + k) given X,(7)
is bounded, so that we can apply our theorem to the process i — X,(¢k). This
shows that the density X,([1/a?]) converges to the density of the diffusion Y at

time point ¢ = 1 for ¢ — 0 where

Y(0) = a,
dY (t) = S(Y () dW () +m(Y(t)) dt, for0<t<1,

where ¢ is an appropriate constant. The speed of convergence is of order O(a).

(viii) Lattice distributions. Our approach can be extended to obtain local limit theo-
rems for a general class of nonhomogeneous random walks on a lattice Z?. An
essential tool are finite difference methods for uniformly parabolic equations (see
e.g. Thomée, 1990). This would generalize the results of Konovalov (1981) and
Kasymdzganova (1981).



5 Proofs.

For all 0 < j < n and u,v € IR? we define additional Markov chains )N(n = )~(n7j7u7v. For
fixed j,u and v, the chain is defined for ¢+ with 7 <7 < n. The dynamics of the chain
is described by

and
Xo(i41) = X, (0) + An(i + Dm{sa(i), v} + An(i + 1), (1 + 1).

The stochastic structure of the IR? valued error variables &, () is described as follows.
Given )N(n(l) = x(l) for [ = j,...,i the variable £,(: + 1) has a conditional density
q{sn(1),v,e}. Note that the conditional distribution of )N(n(z + 1) — )N(n(@) does not
depend on the past )N(n(l) for [ = j,...,i. Let us call X, the Markov chain frozen at
v. We put Y, (t) = X, {r,(t)} and we write p,(s,(5),sn(k),u,v) for the conditional
density of )N(n(k)[: )N(n]uv(k)] at the point v, given )N(n(]) = u. Note that the variable
v acts here twice: as the argument of the density and as a defining quantity of the
process X, = )~(n7j7u7v. Furthermore, we denote by p;, :(u,w) the conditional density of

Xo.(7 4 D= Xojun (5 + 1)] at the point w, given X, (j) = u.

Similarly for 0 < s < 1 and u,v € IRP we define diffusions Y = Y/Sﬂw that are defined
for s <z <1by
Y/(S) =u

and

dY (z) = m{z,v}dz + Az, 0}dW (2).
Now p(s,t,u,v) denotes the conditional density of Y/(t)[: Y/Suu(t)] at the point v,

given Y/(S) = u. Note again that the variable v acts here twice: as the argument of the
density and as a defining quantity of the process Y = Y/Suv Furthermore, we denote
by p¥(u,w) the conditional density of Y(s,(j+1))[= Kn(j)7u7v(3n(j + 1))] at the point
w, given Y (s,(j)) = u. By definition, we have that

(5.1)  pls,t,w,y) = (2m) 7" (det Cy(s, 1))~"/?
eXp[—%{y v ’Yy(s,t)}lcy(37t)_1{y — T — ’yy(s,t)}],
where
Oyf(s,1) = /:Z(U,y) du,

Yy(s,t) = /:m(u,y) du.

v

».; acting on func-

Let us introduce the following infinitesimal operators A, ; and A
tions f : IR — IR:
[ paglusw)f(w)dw = f(u)

A f(u) A+ T)




and
P (uw) fw)dw — f(u)
a An(j+1) '

Here we write p, ;(u,e) for p,(s,(j),s.(j + 1),u,®) where p,(s,t,u,o) denotes the

conditional density of Y, (), given Y, (s) = u. For k > j we put

HN(SH(])v SN(k)v u, U) = {An,j - AZ,J}f(u)v

where f(u) = pn(su(7+1), s, (k),u,v). In the following we use the following convolution
type binary operation ©,:

Rp

(g®nf)(571(j)75n(k)vuvv) = Z:: An(i‘l‘l)/ g(SN(j)vSN(i)vuvw)f(sn(i)v‘%(k)vwvv) dw,

where 0 < 5 < k < n. In this definition the convention is used that Zf:_jl ...=0
if 7 > k. We write ¢ @, H® for ¢ and for r = 1,2,...,n, we denote the r fold

n

”convolution” (g @, HU™Y) @, H, by ¢ ®, H). Our first lemma states a simple

n n

relation between p, and p,:

Lemma 5.1 For 0 < j <k <n the following formula holds:

pn(sn(j),sn(k),u,v) = i(ﬁn @n Hér))(SN(j)v*SN(k)vuvv)v

r=0

where in the calculation of p, @, H) we define

n

Po(5(3); 50(3), 2, y) = Pulsa(k), sn(k), 2, y) = 6(z — y).

Here § denotes the Dirac function.

Proor or LEMMA 5.1. Note that by definition:

(52) Hn(Sn(j)asn(k)7u7v)
f[pn,j(uv w) - ﬁz,j(uv w)]ﬁn(sno + 1)7 SN(k)v w, U) dw
An(j+1) '

Using the Markov property we get the following identity:
pn(sn(.])v Sn(k)7 u? U) - ﬁn(sn(-])7 Sn(k)7 u7 U)
k-1
= S A+ 1) [ palsald)ssali) o w)
i=j

/ [pn,i(wv w/) - ﬁ%,i(wv w/)]ﬁn(SN(i + 1)7 SN(k)v w', U)
Ayt +1)

— Tl )0 0 810

= (pn @n HN)(SN(j)vsn(k)vuvv)'

dw' dw

8



The lemma follows by iterative application of this identity. O

Let us introduce the following differential operators Ly and fﬂs/

Laf() = 7/ m(s,u) 4 5 t1{AGs,u)" () A(s, )]

and

B () = )T ms,9) 4 5 A,y (A, )]
We put i
H(s, t,u,v) = (Ls — Ly) f(u),
where f(u) = p(s,t,u,v). Then

azﬁ(87 t? x? y)

(5.3) H(s,t,z,y) = (iils, @) = ouils ) =55

[N
=

% 1

&
Il

aﬁ(‘s? t? x? y)

+> (mi(s,x) —mi(s,y)) O

-

Il
—

K3

Now we define the convolution ®:
(f@g)(s,t,u,v) /da/ (s,0,u,w)g(o,t,w,v) dw.

We write g @ H® for g and for » = 1,2,... we denote the r-fold convolution (g ®
H(r_l)) @ H by g ® H) . With these notations we can formulate our next lemmas.
Proofs of the first two lemmas can be found in McKean and Singer (1967). For a more

detailed proof of Lemma 5.3 see also Il'in, Kalashnikov and Oleinik (1962).

Lemma 5.2 For 0 < s <t <1 the following formula holds:

o0

p(s, t,u,v) = Z(ﬁ@ H(r))(s,t,u,v).

r=0

Lemma 5.3 There exist constants C' and Cy (that do not depend on = and y) such
that the following inequalities hold:

|H(S,t,$,y)| < Clﬂ_lﬁbC,p(y - l’),

and
.

|ﬁ® H(r)(S,t,l‘,y” < Cf—l—lmqbcp(y - l’)

where p? =t — s, dc,(u) = p~oc(ufp) and

exp(=Clull?)

20 () = T (=CTol)




Lemma 5.4 There exist constants C' and Cy such that the following estimate holds

‘aH(S,t,x,y)

Js < Clp—3¢07p(y - l’),

where p and ¢c , are defined as in Lemma 5.3.

PrROOF OF LEMMA 5.4. By Assumption (A5), oy;(s,x) and m;(s,x) have partial
derivatives with respect to s that are Lipschitz continuous with respect to x. Using

(5.3), one sees that for the statement of the lemma it suffices to show for some constants

C1 and C7 that

82}5(3,t,x,y) ! =2
TSI , _
al’ial']‘ = Clp ¢027P(y l’),
d 0*p(s,t,x,y) ;4
A I L / — .
aS axlax] — Clp qbcgv/)(y $)

These claims follow from Assumption (A5) by taking partial derivatives of p, see (5.1).
O

Lemma 5.5 There exist constants Cy and C' such that the following estimates hold for
IL<k<p

0 0
. - < -1 _
(5.4) ‘awfﬂst w)+amfﬂ&hxwﬂ < Cip~ o,y — ),
0
(5.5) \— P T y>\ < Cupdely— ),

ot

where p and ¢c , are defined as in Lemma 5.3.

PROOF OF LEMMA 5.5. The statements of the lemma can be seen from the definition
of H(s,t,x,y), well-known properties of Gaussian densities and (A5). 0

Lemma 5.6 There exist constants Cy and C such that the following estimate holds

r—2

ap @ H(s,t, ,y) p
) s by by < r41 _

where p and ¢c , are defined as in Lemma 5.3.

PrROOF OF LEMMA 5.6. We will prove (5.6) for r = 1 and the following recursion
formula for r > 2

5,
(r)
(5.7) 5 p @ H(s,t,2.y)
/ dT/ 87’ "Uis, Z)} -H(7,t, z,y)dz + R.(s,t,2,y),

10



where for some constants C] and 7,

[SH .
(58) |R7’(57t7x7y)| < mp gbCé,p(y_x)'

These claims imply the statement of the lemma: iterating (5.7) we get (5.6).

We prove now (5.7) for r > 2. From (5.5) we have for fixed 7 € (s,¢) and r > 2

(5.9) % (/}5 @ H (s, r 2, 2) - H(7,1, 2, y)dz)
= /}5 ® H(r_l)(s,r,x,z) . %H(T,t,z,y)dz

0
— —/}5® H(r_l)(s,r,x,z) . a—H(T,t,Z,y)dZ +
T
—I_RT(S?T?t?x?y)?

where .
Ci(r—s)7 -(t— 7')_1/2

|RT(S,T,t,$,y)| S F(l-l—r) ¢O27P(y_x)'

Note now that
d
(5.10) p /}5 ® H(r_l)(s, ra,z) - H(r,t, z,y)dz
T
d
= [l HO s ra, )] H b 2y +
-

0
/}5 & H(r_l)(s, T, X, Z) - a—H(T,t, z,y)dz.
T

Comparing (5.9) and (5.10) we get
J ~ (r—1)
(5.11) a/p@]-[ (s,my2,2)- H(r,t,z,y)dz+
5,
— [ 50 HO D s ra,2) - H(rt, 2, )z
-

- /aﬂ |:ﬁ® H(r_l)(577—7x72)i| ) H(T7t727y)dz —I_ RT(S7T7t7x7y)'
T

Integrating (5.9) in 7 we have from (5.11)

¢
Ga2) [ ([pe HOI s me ) Hn L)) =
¢ 0
“ 5 (r-1) ) _
/Sdr/aT [p@H (S,T,J},Z)} H(7,t,z,y)dz

/}5 ® H(r_l)(s, Tz, 2)H(m t, 2, y)dz [TZ8 + R, (s, t, 2, y),

11



where R,.(s,t,x,y) satisfies (5.8). Now (5.7) for r > 2 immediately follows from
(5.12) if we take into account that for r > 2

/}5 ® H(r_l)(S,T,J},Z)H(T7t7z7y)dz |T=s =0

and

0

t
She ity = [ ([5e HOD om0 2 Hr 2, y)ie)

‘|‘/}5 @ H(r—l)(877_7x72) ’ H(Tvtvzvy)dz |T=t

For the statement of the lemma it remains to show that (5.6) holds for » = 1. Denote

Uy(s,t,2,y) = p(s,t,z,y) and
(5.13) (s, t,z,y)=p@ H (s, t,2,y).

We have to prove that there exist some constants €y and 5 with

‘anZ(Sv tv s y)

(5.14) -~

‘ < Clp_lqb(;%p(y - x)

Remind that .
Uy(s,t,x,y) :/ dT/ﬁ(s,r,x,w)H(T,t,w,y)dw
where H and p have been defined in (5.3) or (5.1), respectively. The proof of (5.14) is

rather simple but very lengthy. For the proof we plug in Taylor expansions of o;;(7,w)
and m;(7,w) and use the fact that for densities convolution and differentiation can be
interchanged. We denote the elements of the matrix C,(s,t) by ¢;;(s,t), the elements
of the vector 7,(s,t) are denoted by v1(s,1), ..., vp(s, ). Furthermore the elements of
C; ' (s,t) are denoted by ¢ (s,t). Let c(;)(s,t) and c(s,t) be the i—th row of C,(s,1)

and C'(s,t), respectively, (.,.) means the usual scalar product in IR”.

For our claim (5.14) it suffices for a fixed pair (7, j) or for a fixed ¢, respectively, to

show
oW s, t,x, _
(5.15) ‘%‘ Cip™ dcyply — )
oVi(s,t,x, _
(5.16) ‘%‘ < Cip~ oo,y — o).
Here
.. t
(5.17) Uy (s, t,x,y) = /dT/ﬁ(Sawaw)(Uz’j(ﬂw)—%‘(Tay))
Pils,t,y)
8%8% ’
. t
(5.18) Wis.toey) = [ dr [ils e minw) = mi(ry)
azﬁ(87t7x7y)
— T dw.
8%8% “

12



This follows from the additivity of differentiation and of the convolution ®. We will

give only the proof for (5.15). The proof of (5.16) can be done by similar (slightly
simpler) arguments.

Using (Ab5) and Taylor expansions for o;;(7,w) we get

_Doy(1,y) doii(T,y) (
2 1Y

oij(T,w) —oi(T,y) = ( Tyay—w—vy(ﬂt» — o 7 7.1)) + R,
where o
(5.19) R, =2 E:jz Ty/o (1= \)D"03(ry + Mw — y))dA.
Hence

520) (o) = op(roy) A g ITUTI s

<c(i)(7_7 t)v Yy—w— 71/(7—7 t)><c(j)(7_7 t)v Yy—w— 71/(7—7 t)>

HEZEI )| )

(P () o)

{<c(i)(7—7 t)? y—w— 71/(7—7 t)><c(j)(7—7 t)v y—w— 71/(7—7 t)> - cij(Tv t)}
62}5(7—7 tv ) y)
—I—RU 8%8%

where it has been used that

0*p(7, 1, w, B :
pa(w»acw y) = p(Tvtvwvy)' {<c()(77t)7y_w_7y(7—7t)>
i OW;

(D (r,1),y —w =, (r, 1)) — ¢(r,1)].

In what follows we need also the expression for the third derivative of p. Direct calcu-
lations give

aSﬁ(Tvtvwvy) _ = (%) (4)
W - p(Tvtvwv y) [<c (Tvt)v y—w— Vy(Tvt)><c (Tvt)v y—w— 7y(7—7t>>

(5:21) (D(7,0),y —w = 3y(7, 1)) = (7, 0D 1),y —w — (7, 1))
= () (m 1)y —w =y (7, 1) = () (O ),y — w = (1)) ]

Using the last expression and the identity C'(7,¢)C ! (7,t) = I we get for 1 <[ <p

(5.22)  (cuy(7,1), 8% (_8%5;2,:&))
= [(yl —w = (7, ) (7, 1),y — w — Y (T O (7, 1),y — w — 7, (7, 1))

'aﬁ(Tvtvwvy) 48}5(T,t,w,y)
- 512 a - 51]
Wy 8%

—c i (r, )y — wi — (7, 1) | (7o t,w, )
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We define now

. 0
pi(s,t,x,y) = Fpi(S,t,l',y,Z) 5
yl z=y
2
ﬁij(svtvxvy) = Mpi(svtvxvyvz) 5
1OY; 2=y
63
Pij(s, ta,y) = m}%(sat,l‘ay,z) )
1OY; 2=y
64
Pijri(s,t,x,y) = —F——F——F—pi(s,t,z,y,2
J (77 ’ ) ayiayjaykayl (77 Y )Z:y

where
pls,t,x,y,z) = (27)_p/2(det (s, t))_1/2
explogly = =2 OY o)™y = = s D))

Cy(s,t) and ~,(s,t) have been defined in (5.1). Note that p(s,t,2,y,y) = p(s,t,z,y).
We denote the vector [p;;(s,t,2,y)]j=1,.p by pi.(s,t,2,y). Similarly, p;;.(s,t,2,y) de-
notes the vector [p;r(s,t, x,y)|k=1.., and p;;..(s,t,x,y) denotes the matrix
[Pijri(s, b2, y)]ki=1,..p- With

o (I*p(r,t,w,y ~
( 8(@8@ )) = _pij'(Tvtvwvy)
i OW;

ow
we get from (5.20) and (5.22)

azﬁ(Tvtvwvy) _
(523) (0-2](7—7(“)) - Uz](Tv y)) awiawj —
doij(1,y) . doii(1,y) .
<7ay  Dij (T, w,y)) + oy pi(Tt,w,y)

doii(1,y) . doi;(1,y) .
+ oy, pi(T,t,w,y) <7ay (T 1)) P (T, 1, w0, y)

—I_Rcfﬁij(Tv tv ) y)v

where
d5i;(1,y) dai;(1,y) doii(1,y) doii(,y)
—_— = t)—— [ [ .
ay C(1)(T, ) ayl + 0(2)(7—7 ) ayz T+t c(p)( ) ) ayp
Now taking into account (5.23) we get
(5.24) U (r b, y) =1+ 1T+ IIT+1V +V,

where

£ T
e [ [t/ oty
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I = /dr/psr:z;waaw(T y)p(r,t,w,y)dw,

dy;
Il = / dT/p S T, Z, CU 80-”(7— y) ﬁ'(Tvtv(‘U?y)dw?
ay]
B . doii(1,y) 5
v = - dT p(S,T,Jf,w)<T7Vy(Tvt»pw(Tvt?w?y)dw’
s )

t
V = / dT/}5(37T,J},W)Rg};ij(T,t,w;y)dw-

We have to show that for some constants C; and C; the derivatives of these five terms

with respect to ¢ can be bounded by
(5.25) Cip™ doy oy — @)

For the treatment of the first term [ note that I = 31_, I , where

/ dr (chk (1,1 aal]a(yt ikl )/p (s, 7,2, w)pik(T,t,w, y)dw.

By (5.21) and simple properties of Gaussian densities we have

! - doiy(7, .
I = Ach(ikmﬁﬂ4%%%ﬁ)mﬂnh%y)

=1

We argue now that |d[;/dt| can be bounded by (5.25). This follows from ¢;(¢,1) = 0,

doi; (1)

from the boundedness of the functions oy (t,y), m;(t,y) and =477, and from the
following estimates
de* (s,
au(r ) < C - (t =) | 2D < g0y

For an estimate of the second summand /7 in (5.24) note that

[]—/ dT/p (s,7,2,w) 602]6(7— Y) cpi(Ttw, y)dw
Yi

_ 802] T, Y) ( )
= / dr o9 ay] /p (s, 7,2, w)p(T,t,w,y, z)dw -
do; (T, ,
([ 4290 bty (st = =)

It can be shown by straight forward calculations that |d/I/dt| can be bounded by
(5.25). The third term [11] can be treated as the second term.

For the fourth term I'V in (5.24) we have

1 80-2 T, o ~
IV = _/ d7<#77y(7—7w>/p(‘SvT?x?w)pij(T’t’w’y)dw

= — /: dr<%;’y), Yo (T, 1)) p(s, t 2, y)
(s, t)y = & = 3y (5, D (s, ),y = @ = 3, (5,1)) = (s, 1)

15



Denoting the expression [...] in square brackets by B(s,t,x,y) we get for some con-
stants Cy,...,Cy

drv

(5.26) |~

£ 0oi(1,y) .
‘</5 G drm(1.y) pls. e y) B, )

+ [t OTEI  r0) 5 st ¢ Blss )|

IA

Ci(t—s)-(t —s)™" 2 exp (—02 v = “"2) (t — )™t

e e S [

2
+Cs(t — 8)*(t — 3)_p/2 exp (—C6u) (t—s)7?
< C7P_1¢Cs,p(y — ).

[t remains now to estimate the last summand V' in (5.24). Substituting (5.19) in the
integrand we have

= 2/ 1—)\/d7'/p37':1;w

> Tpu( w0, y) DV oii(T,y 4+ Mw — y)) dwd)
lv|=2 ’
= VI+VII,

where (with B(7,t,w,y) as defined above)

VI = 22/ 1—)\/d7'/p37':1;w 'y)p(r,t,w,y)
lv]=2 ’
B(r,t,w,y) (D7 0ij(T,y + Mw —y)) = D" oij(7,y)) dwd),
VIl = 22/ 1—)\/d7'/p37':1;w 'y)p(r,t,w,y)

lv|=2

B(7,t,w,y) D" o1, y)dwd.
We consider now dV I /dt. For fixed v, |v| = 2, the sequence
5(7—7 tvwv y) = ﬁ(Tv tvwv y)(w - y)yB(Tv tvwv y)

is a d-sequence (with an appropriate normalizing constant) as 7 — t. Therefore for
At — 0, see also Assumption (A5),

2/1— / dr/ Ldw d) = o( A1),
lv|=2 At
We obtain

M:QZ/l— /dr/pSwaw_!y)

v|=2
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(ap(7—7t7w7y)B(T7t7w7y) —I—ﬁ(’]’?t?uj?y)aB(T’t’w’y))

ot ot
(DYoii(1,y + Mw —y)) — D" 0ij(1,y)) dw dA.

With (A5), this gives with constants C1,..., Cg

dvi t
oo [T < e[l [sna o -y

[(t — T)_p/2_1 exp (—02 ly — |

(t —7)7"? exp (—@M) (t — 7')_2] dw

¢ g2
04/ it — 7|72 dr (t— 5)5/2_p/2 exp (—C%Lt _:Z| )

IA

2
< 065_1(t . 8)5/2—])/2 exp (_05 |yt :L'| ) ‘
— 3

Remind that |y;(7,t)| < C(t—s),i = 1,...,p, so to get the desired estimate for dV I1/dt

it is enough to obtain the following estimate for any fixed v with |v| = 2

d oy — ()
(5.28) %/5 dT/ﬁ(S,T,x,w)(w Y V;Yy(ﬂ ) plr,t,w,y)B(r,t,w,y)D"oii(T,y) dw

2
< Cy(t— 3)_p/2 exp (—Cg|yt7$|) )
—s

Denote the nonvanishing coordinates of v by r and ¢, 1 < r < g < p. It is straightfor-

ward to verify the following representation

(5.29) (W =y = %(m. 1)) D7, t,w,y)B(r,t,w,y)

(Bis-(7, 1,0, 9) ) (7, 0), ey (75 1))

g (7,03 (7, 1,0, y) + 8o (i1, w0, y), c(7, 1))

+0;, <ﬁi'(7—7t7w7 Y), C(q)(ﬂt)> + iy <ﬁj'(7—7t7w7 Y), C(r)(ﬂt)>

+8j0 (Pi(Tt,0,9), o) (T,1)) + 8181 (7, 1,0, y) + 6,87, 1,0, y).
where 4;; is Kronecker’s delta. Now we substitute (5.29) into (5.28). Claim (5.28) fol-
lows by interchanging the order of differentiation and integration and by using bounds

on the elements of the matrix C, and its derivatives. This shows that the bound (5.25)
applies for dV I1/dt. 0

Lemma 5.7 The following bound holds:

(5.30) D50 (3), su(k), us )| < Cp M €y — )
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for all 3,k,u and y and for all v with 0 < |v| < 2. Here, p = [s,(k) — 5,(3)]"/? [for
simplicity the indices n,j and k are suppressed in the notation], £,(e) = p~P&(e/p) and

(R
[+ a1 d

{(z) = I

The constant S has been defined in Assumption (A2).

PROOF OF LEMMA 5.7. We note first that p,(s,(j), sn(k),u, e) is the density of the

vector

k-1
u+ fik+ Z UD
i=
where ;) = Zf:_jl At + 1)m{s,(2),y} is deterministic, n; = [A,(¢ + 1)]1/2€n(i +
1),[t=7,....,k—1],and e,(¢ + 1) is a sequence of independent variables with densities

q(sn(2),y,e). Let f,(o) be the density of the normalized sum V]Tkl/Q Zk_jl n; where

1=

k-1
Vie = 2 Auli + 1)E(s0(1), ).
1=y
It follows from (A3) that for some constants ¢q,...,cq > 0 the following inequalities

hold for all  with ||f|| =1 and all j < k

(5.31) cip ! < <Vj7_k1/2(9,(9> < egpt
and
(5.32) csp” P < det Vj;:/Q < eqpP.

Clearly, we have

ﬁn(sn(.])v Sn(k)v u, .) = det ‘/j;gl/zfn{‘/j;cl/z(. —u—= /“Lj,k)}‘

It follows from (A2) that an Edgeworth expansion holds for f,. This implies the
following expansion for p,(s,(j), s.(k), u, ®) because of (5.31) and (5.32).

(5:33)  Polsn(d); su(k),u,0)

5-3

— det vj;j/Q[Z(k — )PP e, DOV e = u — 1))

r=0

+O(Tk — )72 4 |V 0 — w — ) 157

with standard notation, see Bhattacharya and Rao (1976), p. 53. In particular, P,
denotes a product of a standard normal density with a polynomial that has coefficients

depending only on cumulants of order < r + 2. Expansion (5.33) can be proved along

18



the lines of the proof of Theorem 19.3 in Bhattacharya and Rao (1976). Hence, for C
large enough it holds that

Pu(sn(7), sn(k),u, 0) < C&y(0 — u).
For seeing this note that for all ¢ there exists a constant C” with

1

exp(—c||z||*) < C'w-

This shows the lemma for |v| = 0. For |v| = 1,2 one proceeds as in the proof of
Theorem 19.3 in Bhattacharya and Rao (1976) to obtain Edgeworth expansions for
DY pn($n(g), sn(k), u,y). Proceeding as above one gets (5.30). 0

In the next lemma we compare the infinitesimal operators A, ; and AZ] with the
differential operators L, and LY. We give a bound for the error if, in the definition of

H, . the terms A, ; and AZ] are replaced by L, or f/;, respectively.

Lemma 5.8 The following bound holds with a constant C

|HN(SN(])7 Sn(k)v u, U) - [(71(571(].)7 Sn(k)v u, U) - MN(SH(])v Sn(k)v u, U)|
(5.34) < CAYVZp7' (0 —u)

a

for all j < k,u and v. Here p denotes the term p = [s,(k) — s,(5)]"/%. We write
Co(®) = p7PC(o/p) where
[+ ]~
§(:L') = S—47_4 :
JIE+ P17 du
For 37 <k —1 the function K, is defined as

Ko(30(5)s sn(k),u,v) = (Lo, () — LY, ) f (w),

where f(u) = pn(sn(J), sn(k),u,v). Furthermore, for j <k —1 we define

Moo ()0 =38, + 0 X250 [ " Drg(sui) )0 = u)f

=3 |ul=1

0 : : 1/2 2
JDupn(sn(j + 1), 80 (k) u+00A,(7 4+ 1)/, 0)(1 — §)*dods.

For j =k —1 we define

Ko(8n(7)s sn(k),u,v) = M, (5,(7), sn(k),u,v) = 0.

PROOF OF LEMMA 5.8. For j = k — 1 note that H,(s,(J),sn(k),u,v) = 0. So it
remains to consider the case j < k — 1. Note first that [see (5.2)]

(5.35)  H,(5,(7), 50 (k) u,v) = H(5,(5), 80 (k),u,v) — H2(5,(5), 50(k), u,v),
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where

(5:36)  Hsi()salk)u,v) = AulG+ D)7 [ puluw)
[pn(5a i + 1), 50(), 0,0) = 50+ 1), 0 (), 0, 0)] o

and

(537)  HAsal)salk)w0) = A+ 17 [ 3 (0, w)
[Pr(sn(J + 1), 80(K),w,v) — pu(sn(d + 1), su(k), u,v)] dw.
On the right hand side of (5.36) we use now the substitution § = A, (j + 1)_1/2(w

u) — AN, (5 + 1) 2ms,(5), u}y. With the notation A(w) = p,(s,(5 + 1), s,(k), w,v) and
h(0) = m(s,(5),w)An(5 + 1) + A, (5 + 1)"/? this gives

H,(50(5): su(k),u,v) = An( +1)7 / (sn(7), 1, O)[Mu+ h(0)} — A(u)] db

Remind that ¢(s,(7),u,e) denotes the conditional density of £,(j + 1). We use now

the expansion

h(8)”

V.

h(6)”

vl

Muth(0)}=A(u) = /01(1—5)2(D”)\){u—|—5h(0)} ds.

1<]vl<2

(DYA)(u)+3 >

|v|=3

Using now that £,(j) has conditional mean 0 we get that

(5.38) H,(s0(7), 5n(k),u,0) 1
= N(u)'m(s.(5), )+ Qtr[E{Sn( J)su} A'(u)]
Z_: )(D A (u)+3 3 A+ 1)

=3

// (50(7), 1, ) (9) (1= §)X(D* M) {u + 5h(8)} d§ db.

Note that the first two terms on the right hand side of (5.38) are equal to L f(u) with
flu) = pa(s,t,u,0), s = s,(j + 1) and t = 5, (k).

We treat now the term HZ(s,(7),s.(k),u,v). On the right hand side of (5.37) we
use the substitution § = A,(j + 1)_1/2(w —u)— A(J + 1)1/2m{3n( ),v}. With the
notation ZL(@) = m(s,(7),0) A (G +1)+0A,(j+1)"Y? and f(u) = pa(s,t,u,v) this gives

(5.39) H2 (s,
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It remains to show that there exists a constant C with

(540)  Au(j + D)lm(sa(j). w)” = m(sa(5), )" (D" A)(W)] < CApazp™ (v — u)

for v with |v| = 2 and

(5.41) 3G+ 07 [ [ [ata) 0. 00h0) (DA + 57(0))
—q(sn(7),u,0)h(0)" (D )\){u + Sh(0)}] (1 — 6)* d§ db
M ($0(3), sn(k),u,v)]
< CAinaxp v —u
for v with |v| = 3.

Proof of (5.40). Because of assumption (A3) we have that for a constant C' it holds
that [m(s,(7), )" —mu(s.(7),v)"| < Cllu—wv|. Claim (5.40) follows from Lemma 5.7,
monotonicity of ((x) and (A4).

Proof of (5.41). Note that for |v|

Il
e

CAZG+1) (L+ 01,
CAZG+ 1) (L4 101)* [lu = ol

max{[h(0)"], [h(0)"[}

<
[h(0)" = h(0)] <

So for |v] = 3 the left hand side of (5.41) does not exceed the following sum

(542) CALGG +1) [ Il = olP0(0) (14 [01)° [(D"X){u + 5h(0)} ] do
FOAG+1) [ llu = ol00) (1+ 101 [(D"X) {u + 0h(0)}] do
FONLG+1) [ 6(0) (14 01)° (DN {u + 6h(0)} — (D" )+ 5T(0)} ] do.

We use now the following simple estimate. For an ¢ > 0 suppose that ||y|| <e. Then

1 1 1 2
< < <
Loyl = L lllel —cle = 14 (i = 1 e

2

for ||z]| > 2¢ and

1 Jy o2yl
L+ =z +yl° L+ |=]]*
for ||z]| < 2e. Hence,
1
(5.43) < Cls:e)

Lz +ylls = 1T+ ]l=]

with C'(s,e) = max{2°, (2¢)* + 1} for all .
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From assumptions (A2), (A4), (5.31), (5.32) and (5.33) it follows that for |v| =3

(D" M){u + 0h(0)}]

v—u—0m(s,(7),u)A,(J+ 1) —00A,(5 + 1)% HS}_I-

Sep 14|
p

Similarly we get that

(D" M) {u + 8h(0)}]

v—u—0m(s,(7),)A(J+1)—05A,(j + 1)% HS}_I-

Sep 14
p

Applying (5.43) with y = [dm(s.(7),2)An(J + 1) + 05A.(J + 1)%]/,0, z = u or v, and
e = CAL(j+ 1)z + ||0]| we get [note that ||y|| < ¢] for |v| = 3 with a constant C(s)
depending on s

Cs)(L+[10]°)

(5.44) max{|(D"X\){u + 6h(0)}, |(D"\){u + Sh(0)}} < cp=™° N

Note now that for v with |v| = 4 and for £ with |k| < 1 we have [because of |6h(8) +
RO(h(0) = h(0))] < CALG+1) +[10]]An(y +1)2]

s C)A A 101°)

(5.45) (D" M) {u 4 h(0) + £6(h(0) — h(0)}] < ep =T

Furthermore we get for the difference in the integrand of the third term in (5.42) that

(5.46) (D" M) {u+ §h(0)} — (D X){u + 5h(0)}]
Cs)(L+J19]°)

< ep PTG+ D)ju— v =T
P

Substituting (5.44), (5.46) into (5.42) and taking s = 5 — 3 (see (A2)) we get that the
left hand side of (5.41) does not exceed

C AR uaap™ (0 — ).

Lemma 5.9 The following bound holds with a constant C

(5.47) | Ko (50(7), s0(K),u,v)| < Cp™t (,(v —u),
(5.48) | Hou(50(5), $a(k),u,0)] <0 Cp™h Golv — ),
(5.49) | Mo (50(7), sn(k), u,0)] < Cp™h (v — ),

for all § < k,u and v. Here again, p = [s,(k) — 5,(5)]"/%. The function (, has been
defined in Lemma 5.8.
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PROOF OoF LEMMA 5.9. Note first that (5.48) follows from (5.47) with Lemma 5.8
and (A4). Claim (5.49) follows from the fact that A,,., < ¢p for a constant ¢ and from

simple estimates. It remains to show (5.47). We have that

(5.50) [Ko(s0) sulBw )] < 17/) fm(sa(G).w) = m(sa(). o)

el IA (), )

Al @A), ) + Al (), )]
where (1) = fn(50(j + 1), (k). u, v). It follows from (A2) and (A3) that for C” large

enough
[o — uf

(5.51) (oo = s (7, 0] < 1=

and

(5.52) A0 = Msul ol < =y

Now the lemma follows from Lemma 5.7, (5.50) - (5.52) and (A4). O

Lemma 5.10 There exists a constant Cy (that does not depend on x and y) such that
the following inequality holds:

7’-|—1 r
. . p
P @ H (50(5), 8a(k). 2,y)] € =,y — )
L+5)""
for 0 < j <k <n, where

14 [|z]25' -2
x(z) = [ H !S’—Q L

JI A [[u*5 =271 du

and p = [su(k) — 5, ()2,

PrROOF OF LEMMA 5.10. With the help of Lemmas 5.9 and 5.7 [note that £/( is
bounded] we get

[P0 @n Hu($0(5), 80 (k) 2, )|

< _Z_; A7+ 1)/Rpﬁn(sn(j),sn(i),x,v)|Hn(5n(i),Sn(k),v,z)| dv
< CUE A+ Dlsa(k) = (i) - ),

where we put

(5.53) CH9¥(x) = max{Cy .ok Gule) o1 2 0,y 2 0,07 4.+ pF = 7).
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Here (, denotes the §-function. We use now that Y%=} A+ D)[sn(k) — Sn(i)]_1/2 <

=7

L6, (k) — 0] 72 dv = pB(1,1), where B(a, ) = [} *='(1 — t)°~" dt is the beta

function. We get

(5.54) e O Halsald), k)., 2)]) € CB(L )¢z — )

Using (5.54) and (5.48) we get

B @ HP (50(7), 50 (k) 2, 2)|
k—1

<3 A+ /Rp Pn @ Ho(50(5)s 50(0), 2, )|

| Hy(8n(1), 80(k), v, 2)| dv
. 1 31
< (B 2Bk, 4 2 1

where it has been used that f;:((]ﬁ)[sn(k) — ]2 — 5, (5)]7Y? dv = p*B(2,1). Using

iteratively similar bounds we get

(5.55) B @ HO (52(5), 50(k), 2, 2)|
| 1
< O - 0B
31 rl 1
B(2.2)x...xB o).

1

1 .
< Cr+1r(_)rpr§7’+17]7k(z . x)m
2

- 2
For the statement of the lemma it suffices to show that [1 + ||z /p||?¥=2]p?¢ 195 () is

bounded by (C’)"*! for a constantC’. For this purpose note that due to our choice of
S’ see Assumption (A2), with constants Cp, Cy

Ch u

2pS7 S 02 H )\(xz)a

= T

where A(z) = [1 4+ 22 {J[1 + u?>']7" du}~". This shows that for p1, ..., prg1, p? + ... +
pry1 =P,

P
(5.56) Cor * wve % oy (2) < C5F T ),

=1
where n(u) = A, * ... % A, (u). Let us denote the Fourier transform of a function
by 4(t) = [exp(itu)y(u) du. Furthermore, here ||o]|, is the usual L;—norm in R'. We
will show that
(5.57) 171, < ¢35,

where n*(u) = [1 + (u/p)**~?]n(u) and where Cs5 is a constant that does not depend
on the special choice of py, ..., p.11. [Note that the function n* is in Ly(R"'), and that

for this reason its Fourier transform is well defined.]
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From (5.57) we get by the Fourier Inversion Theorem
Cr—l—lp—l
T (ufp

n(u)] <

Because of

ﬁ 1 < Cy
I A T [
[with some constant (4] we get therefore from (5.56) that
1

Lt Jl/pl|*

with some constant Cs, i.e. (5.57) holds and the lemma is proved.

(T () < O3t

It remains to show claim (5.57).

Proof of (5.57). Note first that

A% A 1 ~ 25/—2
(5.58) i il + 5 =2
where 7(?¥=2) means the derivative of order 25" — 2 of the Fourier transform # of 7.
We show now that
(5.59) Il < -+ D137 4]

For the proof of claim (5.59) note first that there exists an i. with p? > p?/(r + 1).
We get the following inequality:

Nt dt

IA

I
\\

Ator)|- ..~ [Altpy)|dt

tpl*
1/2 —1/|)\ |dt

Note now that [ |A(#)|dt is bounded, see Lemma 5.9. This shows (5.59).

IA

To estimate |72, note first that |A,,(£)| = |A(pit)] < 1 and

3 (k k k
MO < ot [ Ju Mu)du < oo

for k =1,...,25" — 2. Furthermore, for 3% = 25" — 2 we have with some constants
Cg and C
(5.60) /Wi) (6)] .- A ()] dt
< 0o I o /|)\ ()] di
1E Tk
. 959 kiy 3 dt
< gt [l A )] =

< CpHp A
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Using Leibnitz formula for n(u) = A, *...x X, _ (u) we get the following estimate from
(5.60) with a constant Cj

Go = (] e ).

It is well known that H)\ H is uniformly bounded for ¢ = 0,1,...,25" — 2, see
e.g. Lemma 1 in Gel’fand and Shllov (1958), p. 236. Claim (5.57) follows now from
(5.58)—(5.61). 0

Lemma 5.11 For 0 < j < k < n the following formula holds:

k—j

Pal(5a(3), salk),u,v) = 3 (Pr @0 (M + K0)) (50 (5), (k) u,0) + R,

r=0
where

IR| < C A%, (v — u)

for some constant C'. The function x has been defined in Lemma 5.10. Here again
p = [snlk) = sal(§)]'/2.

Proor or LEMMA 5.11. By Lemma 5.1 we have that

k—j

pn(sn(j),sn(k),u,v) = Z(ﬁn G, Hér))(SN(j)vsn(k)vuvv)'

r=0

For r = 0 we have that
(B ©@n H)(50(7)s 0(k), w0,0) = (P @ (M + K) ) (80(5), 50(K), u, 0),
by definition. For r = 1 we have by Lemmas 5.7 and 5.8 that

(Pr @n H)(0(3), 50 (K), 1w, 0) = (Br @n (M 4 1)) (8,(3), 50 (k) u,0) + By,

where
(5.62) Ri| < ZA @+1)/ Bn(5n(5), 5n(3), u, w)

|H, — M, —Kn|(sn(') sn(k),w,v) dw

< OB —w)AY? ZA (i+1)p

maxr

where the function ("% was defined in (5.53). For the proof of (5.62) we use Lemma
5.8. We apply now that

> Ali+ D) = 5,7 < [ k) = o

i=j n(J)

= p B(1,1/2).
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Therefore we get from (5.62) that
Ry < O3 (0 — w)Aduap B(1,1/2).
With similar arguments we get
(Pr @n HD)(80(5)s 50 (k) 1,0) = (P @ (My 4+ Ko) D) (5,(5), 50 (), w,0) + R,

where

[Ro| < 20°C*H (0 — w)Afuaap® B(1,1/2)B(3/2,1/2).
For arbitrary r it holds that

(Pr @n H)(50(), 50 (K), 1, 0) = (Br @n (M 4+ K) D) (50(5), 80 (K), w,0) + Re,

where

« N
Rr < Cr+1 r+1,7,k o A?nax [ Sl S A

In the proof of Lemma 5.10 we have shown that
1
L [l(o = u) /ol

§r+1’j’k(1} o u) < Cr+1 —p

This gives
k—j
Pu($n(g)s sn(k),u,v) = Zﬁn @n (M, + Kn)(r)(sn(j), sn(k),u,v) + R,
r=0
where

L+ 0= w)/pl* ) 1R < [1+Hv—u/,oH25 R

_p ['(1/2)"
S B Z M +3/2)

L 1[Ms

1
Because this is bounded by C'AZ,.:p~" for some constant C', this shows the statement

of the lemma. O
We come now to the proof of our theorem.

PRrROOF OF THEOREM 2.1. From Lemmas 5.2 and 5.3 we get for sufficiently large n

n . 2
(563) p(87t7u7v) - Z(ﬁ % H(r))(svtvuvv) + O(Alln/z?x exXp ( : HU UH ))

r=0 t_S

Furthermore, Lemma 5.11 implies that

n

(5.64) Pa(0, L, v) = 3 (Pp @n (M, + K,)U)(0,1,u,0)

r=0

+O(AYZ !

L+ |lv—u

HQS’—Q)'
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Because of (5.63) and (5.64) for the statement of the theorem it remains to show
that

(5.65) S (5o HO0,1,2,y) = po @0 (M, + K,)(0,1, 2, y))‘
r=0
1
_ 1/2 ‘
( max1 + HU . UH2S —2)

For the proof of (5.65) note that
(5.66) |55 © HOW, 1 2.y) = o @, (M, + K,)00,1,2.y)
r=0
< \anﬁ @ HO(0,1,2,y) = p @0 HO(0,1,2,9)|
r=0
S P HOW. 1 2y) 0, (Mo + HYO0, L2,y)|
r=0

H[30 D @n (M + HYD(0,1,2,y) = p @ (M + K)(0,1,2,9)|

r=0

D5 @ (M + K) (0, 1,,y) = po @ (M, + K,)0(0,1,2, )|
r=0

= T+ 1T+ T15+1T1;.

For T1,T,,T5 and Ty we will show the following estimates

1
T+ ly—a

(567) Tk - O(Alln/a?x H25/—2)7

where k =1,...,4. This shows (5.65). It remains to show (5.67).

Proof of (5.67) for k = 1. We have

no< Y
r=1

1
/ dSr/\I/,,(O,ST,J},U)H(ST,1,U,y)dv
0

n—1

— Z An(] + 1)/\I}r(073n(j),$,U)H(3n(j), 17U7y)dv

=0

n

+2

r=2

S AG 4D [ (0,52, 2.0) = (00 2,0)) 5 ), 1 v, )

i=0

where W, is defined in (5.13) and where

qllA(Ov‘SN(j)vxvv) = ﬁ(o,sn(i),l‘,v),

W20,5,(5),2,v) = S OAL(i+ 1)/\I/,,A_l((),Sn(i),x,w)H(sn(i),sn(j),w,v)dw,
for r > 2.
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Denote A,(0,0,z,v) =0 and
sn (k)

A (0,s,(k),x,v) = / ds,,/\I/,,(O,Sr,x,w)H(sr,sn(k),w,v)dw
0
k-1

> A +1) /\Il (0,5,(7), 2,w)H(8:(7), $n(k),w, v)dw.

7=0

Then we can rewrite our inequality in the form
(5.68) Ty < Z; 14,(0,1, 2, y)| + Z; (v, —w2) @, 1) (0,1,2,y)].
Note that for r > 2
(5.69)  W,(0,5,(7),z,v) — W20, 5,(j), x,v)

= A,,_I(O,sn(]),x,v)—l— (o = 02,) @0 H) (0,5,(5), 2,v).
We apply now Lemma 5.6 to estimate A, (0, s,(7),x,v). Let us consider the function
A () = /\I/,,(O,T,:z:,w)H(T,S,w,v)dw.
Let 7,7 + A7 € [0, s]. We have by Lemmas 5.4, 5.6 and 5.3 for A7 > 0
IA-(T+ AT) = A (7 )|

= A7 | // 0,7 + hAT, 2, w)H (T + hAT, s, w,v)|dhdw |

= A7

/ dh [/ H(T—I-hAT,S,w,U)ag\I/r(O,T—I-hAT,l',w)
0 T

+U,.(0,7 + hAT, x,w)gH(T + hAT, s, w, v)dw]

or

—I—hAT) 7 -1-% Cy |<,u—:]c|2
< A / dh /CT T e —
" { L(1 4 55%) eXp( T+ hAT

(s r AT E e (- el
S T T exXp S_T_hAT

CT(T-I-hAT)Tgl 7 Cs |w — z|?
X _—
Tora+5h) P T 4+ hAT

2
Ce(s —T — hAT)_g_% exp (——Scj |:_ ;:17_) dw}

[N

CsAT Co v —z|*\ /! _s _z
_ms p exp(—ﬁ /Odh((s—T—hAT) 2+ (7 + hAT) 2).

This gives

AT+ AT) = A (7)]
cr ~ Co v —z|*\ [ A7 AT
< 8 p/2 _ 9
ST+ 50" eXp( s ) (73/2+(8—T—AT)3/2)
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and hence (with s = s,(k))

[ e = 8+ DA )

n(J)

. A7) = Arlsa )] d
max A7) — A (s, T
sn(j)  TE[sn(d),sn(341)] J

G gy [ Cole e\ (A2GEY A4
: PL+54) " (%) p( sn(k) )( s () (Sn(k)—sn(j—l—l))?)/z)'

Suppose now that s, (k) > 2AY2 . We put

max*

B = [0,AV2] U [su(k) = Amax, su(K)]

B, = {5:0<s,(j) < AYZ or 5,(k) — Amax < 50(5) < sulk)}.
Then
sn (k) e .
(5:70) 400k, o) = | [ Ar)dr = 3 AL+ DA (sa(5)
7=0

< /B|A,,(7-)|dr—|- > A+ 1) A (sa(9))]

J€Bn

g /2 Cg|v—:1;|2
k ———— (ST + 52+ 55+ S
—|-F(1+r;1)3n (k)exp 5o () (S1+ 52+ 53+ 54),
where
AL +1)
Si = > TR
(G:AME < () <salR)y 5" ()
A5 +1)
Sy, = Z T3/2, 4 0
alicommealsy 5 U)
AL +1)
53 = Z L . 1 3/27
{:0<sn (j+1) <sm (k) — Aty (Sn( )_Sn(]—l_ ))
AZ(7+1
o > k (J . )1 -
{Gi5n (k)= Al <o (j41) <sn (k)= Amax} (sn(k) = sl + 1))
We have
(5.71)  Si < ARYEAnasa(k) = A2, (k),
(5.72) S < ARALLALL = o(ANZ),
(5.73) Sy < ARYEAnasa(k) = AY2s,(k),
A (7+1
(574) 54 = Amax Z (]—I_ ) 3/2
{j:sn(k)—Alln/sXSSn(j+1)§5n(k)—Amax} (Sn(k) - Sn(.] + 1))
Sn(k)_Amax
Sa— (5n(k) = 0)dv < CLAILZ,
sn(k)—AL2

max
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From the estimates of Lemma 5.3 we obtain (remind that now s, (k) > 2Al/2)

Cr Cylv — 2|
(5.75) /A Vdr < — 1 gmer2, (—7
| ( | T (1 +_r 1)8 ( )exp Sn(k)
1p
( —7)" 1/2,(r= 1/2d7+/ (Sn(k)—T)_l/sz)
Amax
Cylv — 2| _
-p/2 2 b 1/2 O0A(r—3/2)
= F(l _I_ r— 1)8 (k) exp ( Sn(k) ) Amax n(k) ?

IA

G () exp (_M) S ALG+1)

J€Bn

P (k) exp (_ Cy v — ) A2 g ()ON=5/2),

IA

max

We get now from (5.70)—(5.76) for » > 1
G AW s

< Cg 3_p/2(k) exp _02 |U - $|2 A1/2 n(k)O/\(r—S/?)‘
STaran™ sy )

It follows from the inequalities of Lemma 5.3 that the same estimate (5.77) holds for
sn(k) < 2A12  Now, iterative application of (5.68) and (5.69) gives

(5.78) Z_; (. = w2) @, H) (0, 1,2,y)]
< ig:\(fl 20 HO) (0,1, 2,y).

From (5.77) just as in Lemma 5.10 we obtain
(5.79) S [(Ar @ HOY (0, 1,2, y)]
o0 Cr ©0 (71
< —) ( —) exp (~Caly — )?) AV2,
(Eriig) Emig)owov-2)
The desired estimate for T} follows from (5.68), (5.77), (5.78) and (5.79).
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Proof of (5.67) for k =2. For r =1 we have
P @n HUNO0, s, (k) 2,y) — p @p (M, + H)(0, s,(k), z,y)
= p @ MU0, 5, (k), 2, y)
k-1
=2 A+ D730 30 ai),
7=0

lul=1 [v|=3

where

1
@) =3 [ [ P05 2 w) Dy a5 v Oy = )
0 v . . 1/2 2
Jprn(Sn(] + 1), 80(k),w+ 80A,(7 + 1) 7%, y)(1 = §)°dédl dw.

We consider the index sets J;1 = {7 < k:s,()) < su(k)/2} and Jy = {7 < k:s,.(5) >
sn(k)/2} For j € J; we get the following bound for a,,(j) with constants 7, Cy and
with % = 5,(k), \* = s, (k) — 5,.(4)

4 < o [ PO s () w0y = w) du
< Cz)\_Zfﬁ(y_x)-

This gives with a constant (s

Do AGHDTERT T (i)

jEJl |p,|:1 |l/|:3

< O3 30 A+ D) P[su(k) = sa(3)] " Culy — )

JEN
sn(k)/2
< Oy =) [ [salk) — ] d
< G [2Caly — @) In(sa(k)) — In(sa(k)/2)]
< CyIn(2)AL2Z (20k(y — ),

maxr

We consider now a,,(j) for 7 € Jy. Denote the index [ with y; = 1 by (). We
consider first the case that 1) < 3. Then there exists an [ # l(p) with v > 1.
Define vj = v for [ # I* and vf = vy — 1 for [ = [*. By integration by parts we get

nl i) =3 [ [ [ 500 D50 )9 0) = )

0" e : : 1/2 2
JDw Pu(sn(d + 1), 80(k),w+ 00,5+ 1)/, y)(1 — 8)*dédo dw.

Using this equation we get the following bound for a,,,(j) [with v, < 3]

. Jd . : _
4] < O [ Gomp(0sa ). 0] Gy = w0) do,

where (4 is a constant and where again A* = s, (k) — s,(7).
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By calculating 9/0w;p(0, s,(7), x,w) using the explicite definition (5.1) one can
show that
| (7)) < Cse ATy — ),
where (5 is a constant and where (* = s,(j) and again A\* = s,(k) — s,(j). For
a definition of (*°* see (5.53). For a,,(j) with 1) = 3 note that after partial

integration a,,(j) is of the form

[ 12)299(2) dz.

By integration by parts one gets under conditions on the tails of f and g that
[ 12)269:) dz = [ )220 = 39D (e)] d= = = [ F(2)l(z9(2) =39/ (2)] dz.
By application of this equality one can show that for a constant Cg
()] < Co |72 407N (20K (y — a).
Application of these bounds gives for j € J; with some constant C

STAGHD YT Y au()

JEJ2 |u|=1 |v|=3

< C7A1/2 Sn(k)—l/ZCZ,O,k(y . l’)

maxr

This gives that for » = 1 it holds with some constant Cg

B @n HO0, 52(k),2,y) = p @n (My + H)(0, 5,(k), 2, y)|
< CoALsalk) RO y — ),

maxr

We claim now that for » > 1 it holds that
(5.80) 5 @n HO0, 50(k),2,y) = p @n (Mo + H)(0, 5,(k), 2, y)|

CT’
< 78A1/2 . k (r—2)/2 r+1,0,k _ )

This claim can be proved similarly as for the case r = 1. An essential tool is Lemma

5.5. The first statement of this lemma implies the following bound
o Cs+1/is—1<=s+1,0,k(w o x)
—(p @, HN0, s,,(k), z,w) < =2

for s < r. This inequality can be shown by iterative application of integration by parts.
With the help of this inequality and with Lemma 5.9 claim (5.80) follows with similar

arguments as in the proof of Lemma 5.11.

Proof of (5.67) for k = 3. First note that our conditions imply that (formal)
differentiation with respect to u up to second order is possible in both sides of (5.33).

After calculations similar to the ones presented in the proof of Lemma 5.9 this gives

(5.81) [H (50 (i), 50 (k) us y) = Ko(sn(1), sn(k), u, y)]
< OAa(salk) = 5a ()2 (y — w).
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Proceeding as in the proof of Lemma 5.10 we get with a constant C' [in the following

arguments we will suppose that C is sufficiently large]

(5:82)  [p@n [(H + My) — (K + My))(0, 5,(k), 2, )]

= ;An(wr 1)/ﬁ(0,sn(j),x,v)(H— K (80(5), 8n(k), 0, y)dv

k—1
< ORI AL+ D (salk) = sa(5) T2y — )

i=0

< CALs P (R)B(1L,1/2) % (y — 2).

max-—n

Now

(5.83) P @ (H+ M,) @, (H+ M,)(0,5,(k), z,y)
—P @ (K + M) @ (K, + M) (0,8,(k), 2, y)
= (pDp H = p @y K) @ (K, + M0, 5,(k), 2z, y)
45 O (H 4+ M) @, (H — K,)(0, 8, (k), 2, y)
— [+ 11

From (5.82) and (5.47) we get

(5.84) 1< COABO2) T A+ DG 0F) — )y )

< CSAI/Q

max

B(1,1/2)B(3/2,1/2)s, (k)(***(y — o).

Proceeding as in the proof of Lemma 5.10 and using Lemma 5.3 instead of Lemma 5.9
we have analogously to (5.55)

(5.85) 11| < CPAMZT?(1/2)s, (k)R (y — ).

max

From (5.83), (5.84) and (5.85) we get
(5.86) 1P @n (H + M,) @, (H + M,)(0, 5, (k), 2, y)
=P @n (K + M) @n (Ko 4 Mo )(0,5,(k), 2, )]
< (20)AYRB(L1/2)B(3/2,1/2)s, (k)(**(y — @).
[terative application of analogous arguments gives
(5.87)  p@n (H 4+ M,)(0,5,(k), 2, y)
—p @ (Ko + M)(0, 5,(k), )
= (p@u (H+ M) =@y (Ko + M) ) @0 (Ko + Ma)(0,50(k), 2,y)
+5 @ (H + M)V @, (H = K,)(0, 5, (), 2, y),

where

(5.88)  |p@u (H + M) @, (H = K,)(0,50(k), 2, y)| <
< 20PN (1/2)sUH (k)T (y — @) /T((r 4 2)/2)

max
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and

(5.89)

(h @n (H + M) = @, (K + M) D) @, (M, + K,)(0,5,(k), 2, )|
< 27CTHAN2 B(1,1/2)..B((r + 1)/2,1/2)st/2 (k) T0k (y — ).

max

Claim (5.67) follows from (5.87) - (5.89).

Proof of (5.67) for k = 4. We have

r=0
with
(5.90) p(0,5,(1), x,v) = det 2;1/299(2;1/2(1) —x—my)),

where ¢ is a standard normal density and where
Y :/ Y(r,v)dr, m, :/ m(7,v)dr.
0 0
In notations of Lemma 5.7 we can write p,(0, s,(7), x,v) in the form

ﬁn(ov Sn(i)v Z, U) = det %;1/2fn(%;1/2(v —T—= M07i))‘

Note that Vg, and po,; are integral sums for ¥; and m;, respectively. By (A5) we easily
get
(591) HMO,i - mzH S CYAmax7 H‘/O,z - ZZH S CYAmax-

We introduce also

(0,5, (i), 2,0) = det Vo 2oV P (0 — & — o).

3

Note that [p — pu| < |p — pu| + [Pn — Pu| = I + 11. We estimate first the second term
I1.

It follows from the proof of Lemma 5.7 (see (5.33)) and from Condition (A4) that

(5.92) B = o] < CTV(0 =) S CAYZT2(0)Co(0 — @),

max n

Mimicking the proof of Lemma 5.10 with (5.92) instead of Lemma 5.7 we get

(Bn = ) @ (M + K,)(0, 1,2, y)|
< CTHAV2 B(1/2,1/2)B(1,1/2)...B(r/2,1/2)(" 10 (y — 2)

which immediately gives

o0

S (o — Pn) @n (M, + K,)(0,1, 2, y)

r=0

(5.93) <C- AV [+ ly -2
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Differentiating with respect to covariances and means we also get

|(}5 - ﬁn)(()vSN(i)vva” <C- AmaxCﬁ(U - J})

and again as in Lemma 5.10 we have

o0

(5.94) |3(p = pn) @0 (M, + K,)(0,1, 2, y)

r=0

<O Dpar [L 4y =]

From (5.93) and (5.94) we get claim (5.67) for k = 4.
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