
Supere�cient Estimation of Multivariate Trend

Rudolf Beran�

Department of Statistics

University of California� Berkeley

Berkeley� CA ������	
��� USA

Revised July ���


Abstract� The question of recovering a multiband signal from noisy observations

motivates a model in which the multivariate data points consist of an unknown deter�

ministic trend 
 observed with multivariate Gaussian errors� A cognate random trend

model suggests a�ne shrinkage estimators �
A and �
B for 
� which are related to an

extended Efron�Morris estimator� When represented canonically� �
A performs componen�

twise James�Stein shrinkage in a coordinate system that is determined by the data� Under

the original deterministic trend model� �
A and its relatives are asymptotically minimax

in Pinsker�s sense over certain classes of subsets of the parameter space� In such fashion�
�
A and its cousins dominate the classically e�cient least squares estimator� We illustrate

their use to improve on the least squares �t of the multivariate linear model�

AMS classi�cation� ��H��� ��J��

Keywords and phrases� multivariate linear model� deterministic trend� risk estimator�

minimum CL� adaptive estimator� Efron�Morris estimator� asymptotic minimax� Pinsker

bound�

�� Introduction� The least squares �t to a multivariate trend that is observed with

error at many points is unsatisfactory because it emphasizes unbiasedness at the expense

of risk� This paper develops adaptive a�ne shrinkage estimators that have two advantages�

They asymptotically dominate least squares �ts� pointwise in the parameter space� and

they are asymptotically minimax over certain classes of subsets in the parameter space�

Consider the multivariate trend model in which we observe the independent p � �

random vectors fxt� � � t � ng� the distribution of xt being Np��t��� with n greater than

p� The p�� mean vectors f�t� � � t � ng are unknown constants� as is the positive de�nite

p�p covariance matrix �� The observations fxtg are organized into the n�p data matrix

X � �x�� x�� � � � � xn�
� whose expectation is the matrix 
 � EX � ���� ��� � � � � �n�
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Let �
 � ����� ���� � � � � ��n�� denote any estimator of 
� The quality of �
 is assessed

through the quadratic loss

Ln��
�
��� � �np���tr���
� 
������
 � 
���

� �np���
nX

t��

���t � �t�
�������t � �t��

�����

where tr denotes the trace operator� The risk Rn��
�
��� is the expectation of this loss�

The adaptive estimator �
A developed in this paper has asymptotic risk as follows�

Let

V � n��
nX

t��

�t�
�
t � n��
�
� W � �����V ����� �����

and denote the eigenvalues of W by ���W � � � � � � �p�W � � �� We will show� among

other results� that for every �nite positive r�

lim
n��

sup
���W ��r

jRn��
A�
���� � �W �j � � ���	�

where

� �W � � �� p��tr��Ip �W ���� � � � 
��� �����

The quantity ���W � that de�nes the domain of 
 in the supremum is a multivariate

measure of signal�to�noise ratio� The asymptotic risk in ���	� dominates the risk of the

least squares estimator �
LS � X� which is � for every value of 
 and �� Moreover� unlike
�
LS � the adaptive a�ne estimator �
A turns out to be asymptotically minimax over certain

classes of subsets of 
 centered at 
 � �� In this sense� �
A is asymptotically supere�cient

relative to the classically e�cient �
LS �

The construction of �
A involves the following steps� Let �� be an independent consis�

tent estimator of � and let

�V � n��
nX

t��

xtx
�
t � �� � n��X �X � ��� �W � ������ �V ������� �����

Suppose that ��� � � � � � ��p � �� are the eigenvalues of �W and f��jg are corresponding

eigenvectors� Letting � � �� denote the positive�part function� de�ne

�A �

pX

j��

���j	�� � ��j�����j��
�
j � �����

The adaptive estimator of 
 is then

�
A � X ������ �A������ �����

�



Expressions ����� and ����� reveal that �
A carries out componentwise James�Stein shrink�

age in a canonical coordinate system for Rp that is estimated from the data� Multiple

shrinkage in a �xed coordinate system was introduced by Stein ����� Unlike the least

squares estimator �
LS � the a�ne shrinkage estimator �
A uses �W � which estimates the

matrix W � in order to reduce asymptotic risk�

The estimator �
A is more easily understood in a multivariate random trend model�

Instead of the model described above� suppose that the f�tg are independent random vec�

tors� each having a Np��� V � distribution� Given 
� suppose that the fxtg are conditionally

independent� the conditional distribution of xt being Np��t���� If X is observed and V � �

are known� then the minimum risk predictor of 
 under loss ����� is �
 � X����� �A�����

where
�A � Ip � �Ip �W ��� �W �Ip �W ���� ���
�

When W is nonsingular� it is also true that �A � �Ip �W������ Since �A is a consistent�

positive semide�nite estimator of �A in the random trend model� �
A is the natural empirical

version of the minimum risk predictor for 
� Another consistent estimator of �A is �A �

Ip � �Ip � �W ��� which� unlike �A� need not be positive semide�nite� This generates the

alternative empirical predictor

�
B � X ������ �A����� � X�Ip � n�X �X��� ���� �����

Related predictors� albeit more complex� have been used to analyze multiband satellite

image data �see �����

Up to second�order re�nements� �
A and �
B are multivariate versions of James�Stein

��� estimators for univariate trend� Indeed� when p � �� �W � �n�
����
Pn

t�� x
�
t � � � ���

and ��� � �� Then

�
A � ��� n�
�	
nX

t��

x�t ��X� �
B � ��� n�
�	
nX

t��

x�t �X� ������

Statistical folklore� supported by a growing number of results� posits that procedures

with good behavior in models with many random parameters may also have desirable

properties when those parameters are deterministic� Pfanzagl ��	� discussed one aspect of

the matter� estimation of a real parameter in the presence of many nuisance parameters�

and reviewed earlier contributions to the literature� Another aspect is estimation of the

entire high�dimensional parameter 
 under the deterministic trend model described above�

When � � �� � Ip� Efron andMorris ��� showed that a re�nement of �
B is globally minimax

and dominates �
LS � Bilodeau and Kariya ��� extended both the Efron�Morris estimator

and its global asymptotic minimaxity to the case of unknown �� For details� see �	�����

The aim of this paper is to study the performance of �
A as n tends to in�nity with p

�xed� Section � of the paper draws on Pinsker�s ���� theorem to give an asymptotic minimax

	



bound for the estimation of 
 over a certain rich class of subsets of the parameter space�

The idealized estimator �
� suggested by the random trend model when V � � are known�

is asymptotically minimax in this deterministic setting� unlike the least squares estimator
�
LS � The results of Section 	� on the success of adaptation by minimizing estimated risk�

entail limit ���	� and the asymptotic minimaxity� over designated subsets� of �
A� �
B � and

the extended Efron�Morris estimator� Section � describes how these estimators may used

to improve �tting of the multivariate linear model�

�� Asymptotic Minimax Bound� This section obtains asymptotic minimax bounds

for estimation of 
 over certain subsets of the parameter space and constructs two perti�

nent estimators� The �rst of these is asymptotically minimax for a speci�ed subset of the

parameter space� The second is asymptotically minimax over all subsets of the form con�

sidered but still requires knowledge of � and W � The adaptive estimator to be developed

in Section 	 depends only on the data�

For the purposes of this section� we will reduce the estimation problem to a canonical

form� Let  denote a p�p matrix whose j�th column is an eigenvector ofW corresponding

to the eigenvalue �j�W �� De�ne

yt �  ������xt� �t �  �������t� �����

The distribution of yt is Np��t� Ip� and the fytg are independent random vectors that

de�ne the data matrix Y � �y�� y�� � � � � yn��� Moreover�

n��
nX

t��

�t�
�
t � diagf�j�W �g� �����

Any estimator �
 of 
 induces the estimator

�H � ����� ���� � � � � ��n�
� � �
����� ���	�

of H � ���� ��� � � � � �n�� � 
����� � The correspondence between �
 and �H is one�to�one

as is the correspondence between 
 and H� Risks map through the identity

Ln��
�
��� � Ln� �H�H� Ip� � �np���
nX

t��

j��t � �tj
�� �����

The problem of estimating 
 under loss ����� is therefore equivalent to the simpler problem

of estimating H under quadratic loss� as exhibited in ������

Let M consist of all vectors in Rp whose components fbjg each satisfy � � bj � ��

For every b � M and every r � �� de�ne

D�r� b� � f
� p��
pX

j��

bj�j�W � � rg� �����

�



a subset of the original parameter space for 
� Evidently� 
 � D�r� b� if and only if the

canonical parameter H lies in

E�r� b� � fH� �np���
pX

j��

bj

nX

t��

��t�j � rg� �����

Application of Pinsker�s ���
�� theorem to the canonical estimation problem �see Section

�� yields the asymptotic minimax bound

lim
n��

inf
�H

sup
H�E�r�b�

�np���E
nX

t��

j��t � �tj
� � 
��r� b�� �����

where


��r� b� � p��
pX

j��

���bj�
���� � ���	�� � ���bj �

���� � ���� ���
�

and � � ��r� b� is the unique positive real number such that

p��
pX

j��

��bj	��
��� � bj �� � r� �����

The bound ����� is attained asymptotically by the linear estimator �H� given by ���t �

diagfgjgyt� where gj � �� � ��bj ������ for � � j � p� Let X � �xt� x�� � � � � xn��� For any

symmetric matrix A and positive de�nite matrix S� both of dimensions p� p� let

�
�A�S� � XS����AS���� ������

The image of estimator �H� in the original parametrization is

�H� ����� � X�����A����� � �
�A����� ������

where

A� � A��r� b�W � �  diagfgjg 
�� ������

The discussion in this and the preceding paragraph yields the following asymptotic mini�

max theorem�

Theorem ���� For every b � M� every r � �� and every positive de�nite ��

lim
n��

inf
�	

sup
	�D�r�b�

Rn��
�
��� � 
��r� b� ����	�

and �
�A���� is an asymptotically minimax estimator of 
 in that

lim
n��

sup
	�D�r�b�

Rn��
�A
�����
��� � 
��r� b�� ������

�



A major drawback to the estimator �
�A���� is its dependence on r� b� W � and ��

The second estimator to be discussed in this section dispenses with knowledge of r and b�

though still requiring W and �� and will lead to the fully adaptive estimator �
A that is

treated in Section 	�

Let A denote all symmetric p � p matrices with eigenvalues restricted to ��� ��� Ev�

idently A� � A� Consider the class of candidate estimators f�
�A����A � Ag de�ned

through ������� This class assumes knowledge of �� Let

�A �W �Ip �W ��� � Ip � �Ip �W ���� ������

Using the spectral decomposition W �  ! � yields the spectral decomposition �A �Pp
j����j	�� � �j���j�

�
j�� which shows that �A � A� The risk of the candidate estimator

�
�A��� simpli�es algebraically to

Rn��
�A����
��� � p��tr�A� � �Ip �A��W �

� p��tr��A � �A���Ip �W �� � p��tr�W �Ip �W ����

� ��A�W �� say�

������

It follows from this display that �A � argminA�A ��A�W � and

min
A�A

��A�W � � �� �A�W � � � �W � ������

for � �W � de�ned by ������

Because A� � A�

sup
	�D�r�b�

Rn��
� �A����
��� � sup
	�D�r�b�

Rn��
�A
�����
���� ����
�

This inequality and the limit ������ yield

Corollary ���� For every b � M� every r � �� and every positive de�nite ��

lim
n��

sup
	�D�r�b�

Rn��
� �A����
��� � 
��r� b�� ������

Thus� the estimator

�
� �A��� � X����� �A���� � X �X�Ip ����V ���� ������

which requires knowledge ofW and �� is asymptotically minimax for every choice of b � M

and r � �� The next section devises a fully adaptive asymptotically minimax estimator

that depends only on data�

�



�� Adaptive Estimation� Let �� be a consistent estimator of �� The risk function

��A�W � in ������ is estimated plausibly by

���A� � p��tr�A� � �Ip �A�� �W �� �	���

where �W de�ned in ����� approximates W � By analogy with the construction of �
� �A����

the proposed adaptive estimator of 
 is

�
A � �
� �A� ��� � X ������ �A����� �	���

with �A � argminA�A ���A�� Lemma ��	 in Section � veri�es that �A is given explicitly by

������

The procedure just described is a multivariate version of adaptation by minimizing

CL� a methodology that Mallows ���� �rst discussed critically and connected to Stein

estimation� Li ��� developed properties of minimum CL procedures� relating them to

cross�validation methods� Kneip �
� treated the success of minimum CL for ordered linear

smoothers� On the other hand� Efroimovich and Pinsker ��� and Golubev ��� pioneered

adaptive estimators whose maximum risk converges asymptotically to the Pinsker bound

for each member of a class of ellipsoids in the parameter space� The extensive univariate

literature on such adaptive asymptotically minimax estimators is reviewed by Nussbaum

�����

For every b � M and r � �� the set D�r� b� de�ned in ����� satis�es

D�r� b� 	 f
����W � � prg� �	�	�

This ordering links the results in the next two theorems with the task of proving that �
 is

asymptotically minimax in the sense of Theorem ����

We will impose the following assumption on the estimator �� of �� Note that the

condition includes the case when � is known and �� � �� For any matrix argument� j � j

will denote the Frobenius norm� which is de�ned by jAj� � tr�AA�� � tr�A�A�� We note for

later use that if fAi� � � i � kg are p� p matrices� then jtr�
Qk
i��Ai�j �

Qk
i�� jAij�

Condition C� The estimator �� and X are independent� Let �Z � ����� ������ For

every r � ��

lim
n��

sup
���W ��r

EJ � �� �	���

where J is any one of j �Z�� � Ipj�� j �Z��j�j �Z � Ipj�� or j �Z��j�j �Z�� � Ipj��

The next two theorems� proved in Section �� establish that the estimated risk function

���A� and the adaptive estimator �
A� both de�ned above� serve asymptotically as surrogates

for the true risk function ��A�W � and for �
� �A����

�



Theorem ���� Suppose that Condition C holds� Then� for every r � � and every

positive de�nite ��

lim
n��

sup
���W ��r

E sup
A�A

jLn��
�A� ����
��� � ��A�W �j � � �	���

and

lim
n��

sup
���W ��r

E sup
A�A

j���A� � ��A�W �j � �� �	���

From this result follows

Theorem ���� Suppose that Condition C holds� Then� for every r � � and every

positive de�nite ��

lim
n��

sup
���W ��r

EjT � � �W �j � �� �	���

where T can be any one of Ln��
A�
���� Ln��
� �A����
��� or ��� �A� and � �W � is de�ned

in ���	
�

The convergence ���	� of the risk of �
A is immediate from this result� Another con�

sequence is the following corollary� which establishes the asymptotic minimaxity of �
A�

Corollary ���� Suppose that Condition C holds� For every b � M� every r � �� and

every positive de�nite ��

lim
n��

sup
���W ��r

jRn��
A�
��� �Rn��
� �A����
���j � � �	�
�

and

lim
n��

sup
	�D�r�b�

Rn��
A�
��� � 
��r� b�� �	���

To verify �	�
�� observe that

sup
���W ��r

jRn��
A�
����Rn��
� �A����
���j � sup
���W ��r

EjLn��
A�
����Ln��
� �A����
���j

�	����

which tends to zero by Theorem 	��� Corollary ���� �	�	�� and �	���� then imply �	����

Related to Corollary 	�	 are the following remarks�

a� A uniform integrability argument yields

lim
n��

sup
���W ��r

�np���Ej�������
B � �
� �A�����j� � �� �	����

Consequently� by Corollary ���� the estimator �
B is asymptotically minimax in the

sense �	����






b� Suppose that �� is independent ofX and �m�p����� has aWishart���m� distribution�

Bilodeau and Kariya ��� showed that the extended Efron�Morris estimator

�
EM � X �X��n � p� ���X �X��� � �p � ��Ip	tr�X
�X���� �	����

is then globally minimax� Under the hypotheses just stated� this re�nement of �
B

also has the Pinsker asymptotic minimaxity �	���� provided m tends to in�nity with

n�

c� Specialized to the case p � �� Corollary 	�	 implies that the James�Stein estimator

and the positive�part James Stein estimator are asymptotically minimax over every

ball centered at the origin in the parameter space� Of course� this result also follows

directly from Pinsker�s theorem �see Theorem ���� or by developing ideas sketched in

Stein ���� �see �����

�� Application to the Multivariate Linear Model� This section describes some

implications of �
A and its cousins for improved �tting of the Gaussian multivariate linear

model �see also ����� For the univariate linear model� Rao and Toutenberg ���� reviewed

various biased estimation techniques that have smaller risk than least squares� The multi�

variate case presents the additional possibility of estimating and using information between

response variables�

Consider the multivariate linear model Y � CB � E� where the observation matrix

Y is m � p� the regression matrix C is m � n� the coe�cient matrix B is n � p� and the

rows of the error matrix E are independent Gaussian random vectors with mean � and

covariance matrix �� Here C is a given matrix constant while both B and � are unknown�

We will assume that rank�C� � n � m and that p � n� The problem is to estimate

M � EY � CB�

Reducing this linear model to canonical form enables us to apply the preceding re�

sults on estimation of multivariate trend� Let N be an m � n matrix whose columns are

orthonormal and span the same subspace of Rm as do the columns of C� One possible

algebraic construction of N is through the singular value decomposition of C�

C � NLP � �����

where P is n� n� N �N � P �P � PP � � In� and L � diagflig with l� � l� � � � � � ln � ��

The columns of P are eigenvectors of C �C and li is the positive square root of the i�th

largest eigenvalue�

Having chosen N � construct the m��m�n� matrix "N so that the matrix O � fN j "Ng

is orthogonal� If N comes from the singular value decomposition ������ then the columns

of O are eigenvectors of CC �� ordered in decreasing order of the eigenvalues� Let

X � N �Y� "X � "N �Y �����

�



and de�ne 
 � EX � LP �B� an n � p matrix� Because �X �j "X ��� � O�Y � the rows of X

and "X are independent Gaussian random vectors� each having covariance matrix �� This

structure is a canonical form of the original linear model�

The mapping between 
 andM � CB is one�to�one� becauseM � N
 and 
 � N �M �

The columns of the canonical parameter 
 can take any value in Rn� the columns of the

original parameterM are restricted to the n�dimensional subspace L�C� of Rm spanned by

the columns of C� The same one�to�one mapping exists between any estimator �M � C �B

of CB and the corresponding estimator �
 � N � �M of 
� Because

Lm�n� �M�M��� � �np���tr����� �M �M��� �M �M��

� �np���tr������
� 
����
� 
��
���	�

estimation ofM � CB under the loss to the left is equivalent to estimation of the canonical

parameter 
 under the loss to the right� Denote the corresponding risk by Rm�n� �M�M����

Let �� � �m � n��� "X � "X be the usual estimator of � based upon the rows of "X � In

terms of the original parametrization� �� � �m � n����Y � C �BLS���Y � C �BLS� where
�BLS � �C �C���C �Y is the least squares estimator of B �cf� Mardia� Kent and Bibby �����

chapter ��� De�ne the estimator �
A as in ������ Asymptotic minimaxity of �
A� as stated

in Corollary 	�	� entails asymptotic minimaxity under loss ���	� of the estimator

�MA � N �
A � C �BA� �����

where �BA � NL���
A � NL��X ������ �A������

More precisely� note thatW � de�ned by ������ can be expressed in terms ofM through

W � n�������M �NN �M����� �����

and that 
 � D�r� b� if and only if M � C�r� b�� where

C�r� b� � fM �M � L�C�� p��
pX

j��

bj�j�W � � rg� �����

The estimator �� de�ned above satis�es Condition C with n replaced by m � n� Thus�

����	� and �	��� imply

Corollary ���� Let q � min�n�m � n�� For every b � M� every r � �� and every

positive de�nite ��

lim
q��

inf
�M

sup
M�C�r�b�

Rm�n� �M�M��� � 
��r� b� �����

and

lim
q��

sup
M�C�r�b�

Rm�n� �MA�M��� � 
��r� b�� ���
�

��



Example� Suppose we observe k independent replicates of the deterministic trend

model described in Section �� Equivalent is the multivariate linear model in whichm � kn�

B is n� p� and

C � �InjInj � � � jIn�
�� �����

Thus M � CB � �B�jB�j � � � B���� The singular value decomposition of C has P � In�

N � k�����InjInj � � � jIn��� and L � k���In� Let Y� denote the �rst n rows of Y � Y� the

next n rows� and so forth until Yk� If "Y � k��
Pk

i�� Yi� then the least squares estimator

of B is �BLS � "Y � Consequently� �MLS � �"Y �j "Y �j � � � j "Y ���� X � k��� "Y �

�� � k��
kX

i��

�Yi � "Y ���Yi � "Y �� ������

and �W � kn�� ������ "Y � "Y ������� Ip� By Corollary ���� construction ����� yields a superef�

�cient estimator �MA of M that is asymptotically minimax when k is �xed and n tends to

in�nity� Since 
 � k���B and W � kn�������B�B������ it follows from ���	� and �����

that �MA improves most signi�cantly on �MLS when k is small�

�� Argument Details� This section substantiates various claims made earlier in the

paper�

The Pinsker bound� Suppose we observe u � �u�� u�� � � � � um��� the fuig being

independent random variables and the distribution of ui being N��i� ��� The problem is

to estimate the means � � ���� ��� � � � � �m�� under normalized quadratic loss� The risk of

an estimator �� � ����� ���� � � � � ��m� is

Rm���� �� � m��E
mX

i��

���i � �i�
�� �����

When specialized to this problem� Pinsker�s ���� paper yields two theorems stated below�

We emphasize that these two theorems are useful corollaries to Pinsker�s more general

analysis� Nussbaum�s ���� extensive survey reviews other applications of the Pinsker bound�

Let N � fa � Rm� ai � ������ � � i � mg� De�ne addition� subtraction� multiplica�

tion and division of f and g in Rm by the speci�ed operation on components� as in coding

S�Plus� For instance� fg � �f�g�� f�g�� � � � fmgm�� Let ave�f� � m��
Pm

i�� fi� For every

a � N and r � �� de�ne the ellipsoid

B�r� a� � f� � Rm� ave�a��� � rg� �����

Let ��� � ���aj���������� where � is the unique positive real number such that ave�a���� �

r� De�ne 
m�r� a� � ave����	�� � ����� and f� � ���	�� � �����

��



The �rst theorem drawn from Pinsker�s reasoning treats linear estimators for � of the

form �� � fu�

Theorem ���� For every a � N and every r � ��

inf
f�Rm

sup
��B�r�a�

Rm�fu� �� � 
m�r� a� � sup
��B�r�a�

Rm�f�u� ��� ���	�

The second theorem from the same source shows that the minimax linear estimator is often

asymptotically minimax among all estimators�

Theorem ���� If limm��m
m�r� a� ��� then for every a � N and every r � ��

lim
m��

inf
��

sup
��B�r�a�

�Rm���� ��	
m�r� a�� � �� �����

If limm�� 
m�r� a� � 
� � �� then also

lim
m��

inf
��

sup
��B�r�a�

Rm���� �� � 
�� �����

Proof of 	��
�� The canonical estimation problem of Section �� described in equations

����� through ����� can be re�expressed in the notation above� Form u by stacking vertically

the columns of Y � Similarly� form � and �� by stacking the columns of H and �H � Thus

m � np� Form a by stacking n replicates of b� atop n replicates of b� and so on through

n replicates of bp� With these identi�cations� equation ����� above is equivalent to ������

Lemma ���� The matrix �A � argminA�A ���A� is given explicitly by ����
�

Proof� Let �A � Ip � �Ip � �W ���� As in the second line in �������

���A� � p��tr��A� �A���Ip � �W �� � p��tr� �W �Ip � �W ����� �����

Let S denote the set of all p � p symmetric matrices� From ������ �A � argminA�S ���A��

Write ��j � ��j	��� ��j �� If �! � diagf��jg and � � f���� ���� � � � � ��pg� then �W has the spectral

representation �W � � �!� �� Consequently� �A �
Pp

j�� ��j��j��
�
j � Because ��

��j � �� it follows

that ��j � � but need not be positive� Consequently �A is not� in general� an element of A�

De�ne
�A� �

X

��j��

��j��j��
�
j � �A� �

X

��j��

��j��j��
�
j � �����

noting that �A� � A� �A � �A� � �A�� and �A�
�A� � �� For brevity� put

�K � Ip � �W �

pX

j��

�� � ��j���j��
�
j� ���
�

��



Then

tr��A � �A�� �K� � tr�f�A� �A�� � �A�g
� �K�

� tr��A� �A��
� �K�� tr�A �A� �K�� tr� �K �A�A� � tr� �A�

�
�K��

�����

For every A � A�

�tr�A �A� �K� � �tr�A
X

��j��

��j�� � ��j���j��
�
j �

� �
X

��j��

��j�� � ��j���
�
jA��j � �

������

because A is positive semide�nite and � � ��j � �� Similarly� �tr� �K �A�A� � �� It now

follows from ������ that

tr��A � �A�� �K� � tr��A � �A��
� �K� � tr� �A�

�
�K� ������

for every A � A� This implies that �A � �A�� as was to be shown�

Proof of Theorem ��� We �rst prove �	���� Let zt � �����xt and �t � ������t�

The fzt� � � t � ng are independent randomvectors� the distribution of zt being Np��t� Ip��

If �U � n��
Pn

t�� ztz
�
t and �Z is the matrix de�ned in Condition C� then

�W � �Z�� �U � �Z���� � Ip ������

and
�U �W � Ip � �F � �F � � �G� ����	�

where

�F � n��
nX

t��

�zt � �t��
�
t�

�G � n��
nX

t��

�zt � �t��zt � �t�
� � Ip� ������

By direct calculations� sup���W ��r Ej �F j
� � O�n��� and sup���W ��r Ej �Gj

� � O�n���� con�

sequently

sup
���W ��r

Ej �U �W � Ipj � O�n������ ������

Evidently

���A� � ��A�W � � p��tr��Ip �A��� �W �W ��

� p��tr��Ip �A��f �Z�� �U� �Z���� �W � Ipg�

� p��

X

j��

Tj �

������

�	



where

jT�j � jtr��Ip �A�� �Z�� �Uf� �Z���� � Ipg�j � jIp �Aj�j �Z��jj �U jj �Z�� � Ipj

jT�j � jtr��Ip �A��� �Z�� � Ip� �U �j � jIp �Aj�j �Z�� � Ipjj �U j

jT
j � jtr��Ip �A��� �U �W � Ip��j � jIp �Aj�j �U �W � Ipj�

������

For every A � A� jIp�Aj� � p� Combining the last three displays with Condition C yields

�	����

To verify �	���� write AZ � �ZA �Z�� and observe that

Ln��
�A� ����
��� � �np���
nX

t��

jAZzt � �tj
�

� �np���
nX

t��

jAZ�zt � �t� � �Ip �AZ��tj
�

� p��tr�A�ZAZ�Ip � �G� � �Ip �AZ�
��Ip �AZ�W � ��Ip �AZ �

�AZ �F ��

����
�

Since

jAZ �Aj � jAjj �Z��jj �Z � Ipj� jAjj �Z
�� � Ipj� ������

the limit �	��� follows from the preceding two displays� the statement after ������� and

Condition C�

Proof of Theorem ���� Limit �	��� implies that

lim
n��

sup
���W ��r

Ej��� �A�� �� �A�W �j � � ������

and

lim
n��

sup
���W ��r

Ej��� �A�� �� �A�W �j � �� ������

Since �� �A�W � � � �W �� limit �	��� holds for T � ��� �A� and

lim
n��

sup
���W ��r

Ej�� �A�W �� � �W �j � �� ������

On the other hand� limit �	��� gives

lim
n��

sup
���W ��r

EjLn��
A�
��� � �� �A�W �j � �� ����	�

Combining this with ������ entails �	��� for T � Ln��
A�
���� Finally� taking �� � �

yields �	��� for T � Ln��
� �A����
����

��



�� Discussion� This paper approaches from several directions the a�ne shrinkage

estimator �
A for the multivariate trend 
� In a Gaussian random trend model� �
A is an

estimated minimum risk predictor of 
� For the deterministic trend model used in our

analysis� �
A is that member of a certain class of candidate a�ne shrinkage estimators that

minimizes estimated risk� or equivalently� minimizes the CL criterion� Analysis shows that
�
A is asymptotically minimax in Pinsker�s sense over certain subsets of trends centered at


 � �� The asymptotic maximum risk of �
A over such subsets strictly dominates that of

the least squares trend estimator� Unlike �
�A���� and �
� �A���� the other asymptotically

minimax estimators studied in Section �� the estimator �
A is fully adaptive� depending only

on data� As exhibited in the Introduction� �
A achieves supere�ciency relative to the least

squares estimator by performing componentwise James�Stein shrinkage in a coordinate

system that is estimated from the data� The construction of �
A� applied to the Gaussian

multivariate linear model in canonical form� yields improved regression �ts� These main

results carry over to cousins of �
A such as �
B and the extended Efron�Morris estimator�

The historically distinct ideas of Stein� Mallows� and Pinsker on estimation of a high�

dimensional parameter form the background to this paper�
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