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Abstract. The question of recovering a multiband signal from noisy observations
motivates a model in which the multivariate data points consist of an unknown deter-
manistic trend = observed with multivariate Gaussian errors. A cognate random trend
model suggests affine shrinkage estimators =4 and Zp for Z, which are related to an
extended Efron-Morris estimator. When represented canonically, =4 performs componen-
twise James-Stein shrinkage in a coordinate system that is determined by the data. Under
the original deterministic trend model, =4 and its relatives are asymptotically minimax
in Pinsker’s sense over certain classes of subsets of the parameter space. In such fashion,
=4 and its cousins dominate the classically efficient least squares estimator. We illustrate

their use to improve on the least squares fit of the multivariate linear model.

AMS classification: 62H12, 62J05
Keywords and phrases: multivariate linear model, deterministic trend, risk estimator,
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1. Introduction. The least squares fit to a multivariate trend that is observed with
error at many points is unsatisfactory because it emphasizes unbiasedness at the expense
of risk. This paper develops adaptive affine shrinkage estimators that have two advantages:
They asymptotically dominate least squares fits, pointwise in the parameter space; and
they are asymptotically minimax over certain classes of subsets in the parameter space.

Consider the multivariate trend model in which we observe the independent p x 1
random vectors {z;: 1 <t < n}, the distribution of z; being N,(&;,X) with n greater than
p. The px 1 mean vectors {{;: 1 <t < n} are unknown constants, as is the positive definite
p X p covariance matrix X. The observations {z;} are organized into the n X p data matrix

X = (21, 22,...,2,)" whose expectation is the matrix = = EX = (§1,&2,...,&n)".

* Research supported in part by National Science Foundation Grant DMS95-30492 and
by the Alexander von Humboldt Foundation.
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Let = = (51,52,...,£n)' denote any estimator of Z. The quality of

(1>

is assessed

through the quadratic loss

Ln(Z2,2, %) = (np) 't (E - E)ZHE - T)]
1Ny 1,2 (1.1)
=(np) ) (& —&)'S (& - &),

~

where tr denotes the trace operator. The risk R, (=, =, ¥) is the expectation of this loss.
The adaptive estimator Z4 developed in this paper has asymptotic risk as follows.

Let .
V=n1) &4 =n""E'E, W=x12yg/ (1.2)
t=1

and denote the eigenvalues of W by A(W) > ... > A, (W) > 0. We will show, among

other results, that for every finite positive 7,

lim sup |Rn(Z4,Z,Z)—7(W) =0 (1.3)
n—)ookl(W)ST

where

TW)=1-p 'tr[(l, + W) ']<1 VEZX. (1.4)

The quantity A (W) that defines the domain of Z in the supremum is a multivariate
measure of signal-to-noise ratio. The asymptotic risk in (1.3) dominates the risk of the
least squares estimator ELs = X, which is 1 for every value of = and ¥. Moreover, unlike
ELS, the adaptive affine estimator = 4 turns out to be asymptotically minimax over certain
classes of subsets of = centered at = = 0. In this sense, Ea s asymptotically supereflicient
relative to the classically efficient = LS.

The construction of =4 involves the following steps. Let 3 be an independent consis-

tent estimator of ¥ and let

V:n_lzmtm; ~ Y =n"1X'X - %, W =3"12y81/2, (1.5)

Suppose that 5\1 > ... > j\p > —1 are the eigenvalues of W and {#;} are corresponding

eigenvectors. Letting [-]4 denote the positive-part function, define

A= Y05/ + 23 (16)

7=1

The adaptive estimator of = is then

(11>

A= X572 ARY2 (1.7)
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Expressions (1.6) and (1.7) reveal that = 4 carries out componentwise James-Stein shrink-
age in a canonical coordinate system for R? that is estimated from the data. Multiple
shrinkage in a ﬁmed coordinate system was introduced by Stein [17]. Unlike the least
squares estimator Zrg, the affine shrinkage estimator = HA uses W which estimates the
matrix W, in order to reduce asymptotic risk.

The estimator =4 is more easily understood in a multivariate random trend model.
Instead of the model described above, suppose that the {{;} are independent random vec-
tors, each having a N,(0, V') distribution. Given =, suppose that the {z;} are conditionally
independent, the conditional distribution of z; being N, (&, X). If X is observed and V, X
are known, then the minimum risk predictor of = under loss (1.1) is == X2 124312

where

A=I,— (I, + W) ' =W(I, + W)™ (1.8)

When W is nonsingular, it is also true that A= (I, + W=1)~1. Since Ais a consistent,
positive semidefinite estimator of 4 in the random trend model, = 4 is the natural empirical
version of the minimum risk predictor for Z. Another consistent estimator of A is A=
I, — (I, + W)_l which, unlike A, need not be positive semidefinite. This generates the

alternative empirical predictor
Ep = XL V2482 = X[I, - n(X'X) 1] (1.9)

Related predictors, albeit more complex, have been used to analyze multiband satellite
image data (see [6]).

Up to second-order refinements, =4 and Zp are multivariate versions of James-Stein
7] estimators for univariate trend. Indeed, when p = 1, W = (ng?)™! bz —1= A1
and 43 = 1. Then

Ea=[1-n6*/) 24X, Ep=[1-né"/) =}|X. (1.10)
t=1 t=1

Statistical folklore, supported by a growing number of results, posits that procedures
with good behavior in models with many random parameters may also have desirable
properties when those parameters are deterministic. Pfanzagl [13] discussed one aspect of
the matter, estimation of a real parameter in the presence of many nuisance parameters,
and reviewed earlier contributions to the literature. Another aspect is estimation of the
entire high-dimensional parameter = under the deterministic trend model described above.
When ¥ = 3 = I,,, Efron and Morris [4] showed that a refinement of = p is globally minimax
and dominates Z1s. Bilodeau and Kariya [2] extended both the Efron-Morris estimator
and its global asymptotic minimaxity to the case of unknown ¥. For details, see (3.12).

The aim of this paper is to study the performance of =4 as n tends to infinity with p

fixed. Section 2 of the paper draws on Pinsker’s [14] theorem to give an asymptotic minimax
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bound for the estimation of = over a certain rich class of subsets of the parameter space.
The idealized estimator Z, suggested by the random trend model when V| 3 are known,
i1s asymptotically minimax in this deterministic setting, unlike the least squares estimator
Z5s. The results of Section 3, on the success of adaptation by minimizing estimated risk,
entail limit (1.3) and the asymptotic minimaxity, over designated subsets, of EA, EB, and
the extended Efron-Morris estimator. Section 4 describes how these estimators may used

to improve fitting of the multivariate linear model.

2. Asymptotic Minimax Bound. This section obtains asymptotic minimax bounds
for estimation of = over certain subsets of the parameter space and constructs two perti-
nent estimators. The first of these is asymptotically minimax for a specified subset of the
parameter space. The second is asymptotically minimax over all subsets of the form con-
sidered but still requires knowledge of ¥ and W. The adaptive estimator to be developed
in Section 3 depends only on the data.

For the purposes of this section, we will reduce the estimation problem to a canonical
form. Let I' denote a p X p matrix whose j-th column is an eigenvector of W corresponding

to the eigenvalue A;(WW). Define
Y = FIE_1/2$~¢, T = FIE_1/2€~¢. (21)

The distribution of y; is Np(n¢,Ip) and the {y;} are independent random vectors that
define the data matrix Y = (y1,92,...,yn)’. Moreover,

S e} = diag{A;(W)}. (2.2)

(1

Any estimator = of = induces the estimator

f{ = (ﬁ17ﬁ27"'7ﬁ’n)l = 22_1/2]:‘ (23)

of H=(n1,m2,...,7m) = ZX"/2T. The correspondence between = and H is one-to-one

as 1s the correspondence between = and H. Risks map through the identity
Ln(é,E,E) :Ln(ﬁaﬂajp) = (np)_lzmt _7775|2' (24)
=1

The problem of estimating = under loss (1.1) is therefore equivalent to the simpler problem
of estimating H under quadratic loss, as exhibited in (2.4).

Let M consist of all vectors in RP? whose components {b;} each satisfy 1 < b; < 0.
For every b € M and every r > 0, define

D(r,b) = {=:p! ijxj(W) <r}, (2.5)
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a subset of the original parameter space for =. Evidently, = € D(r,b) if and only if the

canonical parameter H lies in
P n
E(r,b) = {H:(np) ™" Y ;Y 7, < (2.6)
7=1 t=1
Application of Pinsker’s (1980) theorem to the canonical estimation problem (see Section
5) yields the asymptotic minimax bound
lim inf sup (np) 'E e — M¢|* = vo(r, b), 2.7
lim i sup Z| 2 = w(r,b) 27)
where ,
DY [(uby) TP =10 /(L4 [(pby) M2 - 1)) (2.8)
j=1
and p = p(r,b) is the unique positive real number such that
P
P (/)P =]y = (2.9)
For any

7=1
The bound (2.7) is attained asymptotically by the linear estimator H* given by 7;
= (z¢, 22,...,2n)".

(2.10)

diag{g;}y:, where g; = [1 — (ub;)*/?]4 for 1 < j < p. Let X
symmetric matrix A and positive definite matrix S, both of dimensions p X p, let

XS5 1/2481/2,

=(4,8) =
The image of estimator H* in the original parametrization is
HT'RY? = Xu~124*91/2 = 5(4%, %) (2.11)
where
A* = A*(r,b,W) = I'diag{g; }I"'. (2.12)
The discussion in this and the preceding paragraph yields the following asymptotic mini-
max theorem.
Theorem 2.1. For every b € M, every r > 0, and every positive definite 3,
lim inf sup R, (&,H,E) = vo(r, b) (2.13)
n—oo ': HED(’!‘ b)
(2.14)

(A*,X) s an asymptotically minimaz estimator of Z in that
e R.(E(4%,%),E,%) = vo(r, b).

and =
lim



A major drawback to the estimator E(A*, Y)) is its dependence on 7, b, W, and X.
The second estimator to be discussed in this section dispenses with knowledge of r and b,
though still requiring W and 3, and will lead to the fully adaptive estimator =4 that is
treated in Section 3.

Let A denote all symmetric p X p matrices with eigenvalues restricted to [0,1]. Ev-
idently A* € A. Consider the class of candidate estimators {Z(4,X): A € A} defined
through (2.10). This class assumes knowledge of . Let

A=W, +W) =1, - (I, + W)™ (2.15)

Using the spectral decomposition W = T'AI" yields the spectral decomposition A =
:;:1[)\]-/(1 + A;)]757;], which shows that A € A. The risk of the candidate estimator
E(A, ¥) simplifies algebraically to
Rn(E(4,%),5,%) = p ttr[A2 + (I, — A)®W]
(A — AP (T, - W) W, W)Y (216)
= p(4, W), say.

It follows from this display that A = argmin 4 4 p(A, W) and

min p(4, W) = p(4, W) = 7(W) (2.17)
for 7(W) defined by (1.4).
Because A* € A,
sup Rn(2(4,%),E5,8) < sup Rn(E(4%,%),E,%). (2.18)
E€D(r,b) E€D(r,b)

This inequality and the limit (2.14) yield
Corollary 2.2. For every b € M, every r > 0, and every positive definite X,

lim sup Rn(E(4,%),E,%) = wo(r,b). (2.19)

n=0 g e D(r,b)

Thus, the estimator
2(A,%) = X2 VAR = X — X(I, + 271V) 71, (2.20)

which requires knowledge of W and %, is asymptotically minimax for every choice of b € M
and r > 0. The next section devises a fully adaptive asymptotically minimax estimator

that depends only on data.



3. Adaptive Estimation. Let 3 be a consistent estimator of . The risk function
p(A, W) in (2.16) is estimated plausibly by

p(A) = p~ x4 + (I, — AW, (3.1)

where W defined in (1.5) approximates W. By analogy with the construction of E(A, %),

the proposed adaptive estimator of = is

(11>

A=E(4,3) = X272 A51/2 (3.2)

with A = argmin 4 4 p(A). Lemma 5.3 in Section 5 verifies that Ais given explicitly by
(1.6).

The procedure just described is a multivariate version of adaptation by minimizing
Cr, a methodology that Mallows [10] first discussed critically and connected to Stein
estimation. Li [9] developed properties of minimum Cp procedures, relating them to
cross-validation methods. Kneip [8] treated the success of minimum C, for ordered linear
smoothers. On the other hand, Efroimovich and Pinsker [5] and Golubev [6] pioneered
adaptive estimators whose maximum risk converges asymptotically to the Pinsker bound
for each member of a class of ellipsoids in the parameter space. The extensive univariate
literature on such adaptive asymptotically minimax estimators is reviewed by Nussbaum
[12].

For every b € M and r > 0, the set D(r,b) defined in (2.5) satisfies

D(r,b) C {=: (W) < pr}. (3.3)

This ordering links the results in the next two theorems with the task of proving that = is
asymptotically minimax in the sense of Theorem 1.1.

We will impose the following assumption on the estimator 3 of ¥. Note that the
condition includes the case when ¥ is known and £ = 3. For any matrix argument, |-
will denote the Frobenius norm, which is defined by |A|? = tr[AA’] = tr[A’A]. We note for
later use that if {A4;:1 <17 < k} are p X p matrices, then |tr[Hf:1 Al < Hle | A;l.

Condition C. The estimator ¥ and X are independent. Let Z = N~1/2%1/2 For
every r > 0,

lim sup EJ =0, (3.4)
7n— 00 Al(W)ST

where J is any one of |27 — L]2, |Z7|Z — L%, or |21 2|27 — L2

The next two theorems, proved in Section 5, establish that the estimated risk function
p(A) and the adaptive estimator = 4, both defined above, serve asymptotically as surrogates

for the true risk function p(A, W) and for E(A, ¥).
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Theorem 3.1. Suppose that Condition C holds.
positve definite X,

Then, for every r > 0 and every

lim sup Esup |Ln(é(A, f]), =3 —p(4, W) =0 (3.5)
NN (W)<r  AEA
and
lim sup Esup |p(4) —p(4,W)| =0.
NN (W)<r  AEA

(3.6)
From this result follows

Theorem 3.2. Suppose that Condition C holds.
positve definite X,

Then, for every r > 0 and every
lim sup E|T —7(W)| =0, (3.7)
7n— 00 Al(W)ST
where T' can be any one of Ln(éA,E,E), Ln(é(A,E),E,E) or /3(1[1) and 7(W) s defined

The convergence (1.3) of the risk of =4 is immediate from this result. Another con-
sequence is the following corollary, which establishes the asymptotic minimaxity of = 4.

Corollary 3.3. Suppose that Condition C holds. For every b € M, every r > 0, and
every positive definite X,

lim sup |Rn(Z24,5,%) — Ra(E(4,%),5,%) =0 (3.8)
7n— 00 Al(W)ST
and
lim  sup Rn(éA,E,E) = vp(r, b). (3.9)
N0 5e D(r,b)
To verify (3.8), observe that
sup  |Rn(Z4,5, 3
AL (W) <r

) - Rn(é(Aa 2)7 E; 2)| S

(3.10)
which tends to zero by Theorem 3.2. Corollary 2.2, (3.3), and (3.10) then imply (3.9).
Related to Corollary 3.3 are the following remarks:
a) A uniform integrability argument yields
lim sup (np)_1E|E_1/2(EB — E(A, )2 =0
7n— 00 Al(W)ST

: (3.11)
Consequently, by Corollary 2.2, the estimator
sense (3.9).

Ep is asymptotically minimax in the



b) Suppose that 3 is independent of X and (m—l—p—l—l)ﬁ] has a Wishart (%, m) distribution.
Bilodeau and Kariya [2] showed that the extended Efron-Morris estimator

Epm =X —X[n—p—-1)(X'X)" 4+ (p— 1), /tr(X' X)) (3.12)

is then globally minimax. Under the hypotheses just stated, this refinement of Ep
also has the Pinsker asymptotic minimaxity (3.9), provided m tends to infinity with
n.

c) Specialized to the case p = 1, Corollary 3.3 implies that the James-Stein estimator
and the positive-part James Stein estimator are asymptotically minimax over every
ball centered at the origin in the parameter space. Of course, this result also follows
directly from Pinsker’s theorem (see Theorem 5.2) or by developing ideas sketched in
Stein [16] (see [1]).

4. Application to the Multivariate Linear Model. This section describes some
implications of 24 and its cousins for improved fitting of the Gaussian multivariate linear
model (see also [2]). For the univariate linear model, Rao and Toutenberg [15] reviewed
various biased estimation techniques that have smaller risk than least squares. The multi-
variate case presents the additional possibility of estimating and using information between
response variables.

Consider the multivariate linear model Y = CB + E, where the observation matrix
Y is m X p, the regression matrix C is m X n, the coefficient matrix B is n X p, and the
rows of the error matrix E are independent Gaussian random vectors with mean 0 and
covariance matrix 3. Here C is a given matrix constant while both B and ¥ are unknown.
We will assume that rank(C) = n < m and that p < n. The problem is to estimate
M =EY =CB.

Reducing this linear model to canonical form enables us to apply the preceding re-
sults on estimation of multivariate trend. Let N be an m X n matrix whose columns are
orthonormal and span the same subspace of R™ as do the columns of C. One possible

algebraic construction of N is through the singular value decomposition of C,
C=NLP (4.1)

where Pisn xn, NNN = P'P=PP' =1,,and L = diag{l;} with l; > 1, > ... > 1, > 0.
The columns of P are eigenvectors of C'C and [; is the positive square root of the i-th
largest eigenvalue.

Having chosen N, construct the m x (m —n) matrix N so that the matrix O = {N|N}
is orthogonal. If N comes from the singular value decomposition (4.1), then the columns

of O are eigenvectors of CC’, ordered in decreasing order of the eigenvalues. Let

X =N'Y, X =N'Y (4.2)



and define = = EX = LP'B, an n X p matrix. Because (X'|X')' = O'Y, the rows of X
and X are independent Gaussian random vectors, each having covariance matrix X. This
structure is a canonical form of the original linear model.

The mapping between = and M = C B is one-to-one, because M = NZ and Z = N'M.
The columns of the canonical parameter = can take any value in R™; the columns of the
original parameter M are restricted to the n-dimensional subspace £(C) of R™ spanned by
the columns of C. The same one-to-one mapping exists between any estimator M =CB

of C'B and the corresponding estimator = = N'M of Z. Because

h
3
2
=
=
e

[
3
=

|

o
=

o

=,

|
=
<

|
=

(4.3)

estimation of M = C' B under the loss to the left is equivalent to estimation of the canonical
parameter = under the loss to the right. Denote the corresponding risk by Rm,n(M, M, ¥).

Let 3 = (m —n)71X'X be the usual estimator of ¥ based upon the rows of X. In
terms of the original parametrization, Y = (m —n) Y — CBLS)'(Y — CBLS) where
Brs = (C'C)1C'Y is the least squares estimator of B (cf. Mardia, Kent and Bibby [11],
chapter 6). Define the estimator H4 as in (1.7). Asymptotic minimaxity of 4, as stated

in Corollary 3.3, entails asymptotic minimaxity under loss (4.3) of the estimator
My =NZ,=CBy, (4.4)

where By = NL™124 = NLT' XS 1245172,
More precisely, note that W, defined by (1.2), can be expressed in terms of M through

W=n'S V2 M'NN' Mx~1/? (4.5)

and that = € D(r,d) if and only if M € C(r,b), where

C(r,b) = {M: M € L(C), p~! zp:bj)\j(W) <r}. (4.6)

The estimator 3 defined above satisfies Condition C with n replaced by m — n. Thus,
(2.13) and (3.9) imply
Corollary 4.1. Let ¢ = min(n,m — n). For every b € M, every r > 0, and every
positve definite X,
lim inf sup Rm,n(M,M,E) = vo(r, b) (4.7)
97 M Meo(r,b)

and

lim  sup Rm,n(MA, M,¥) = vo(r,b). (4.8)
97 M eO(r,b)
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Example. Suppose we observe k independent replicates of the deterministic trend
model described in Section 1. Equivalent is the multivariate linear model in which m = kn,

B is n x p, and
C = (1| .. |I.)". (4.9)

Thus M = CB = (B'|B'|...B’)'. The singular value decomposition of C' has P = I,
N = k_1/2(1n|fn| ... |In), and L = k'/21,. Let Y; denote the first n rows of Y, Y3 the
next n rows, and so forth until ¥;. If Y = k1 Zle Y, then the least squares estimator
of Bis Bys =Y. Consequently, Mys = (YY'|...|Y"), X = k'/?Y,

(Yi-Y)'(Yi -Y), (4.10)

1

Y=k !

k
and W = kn 137127y 5-1/2 I,. By Corollary 4.1, construction (4.4) yields a superef-
ficient estimator M4 of M that is asymptotically minimax when k is fixed and n tends to

infinity. Since = = k'/2B and W = kn"'X71/2B'B%~1/2 it follows from (1.3) and (1.4)
that MA improves most significantly on MLS when k is small.

5. Argument Details. This section substantiates various claims made earlier in the

paper.

The Pinsker bound. Suppose we observe u = (uj,us,...,um)’, the {u;} being
independent random variables and the distribution of u; being N(6;,1). The problem is
to estimate the means 8 = (0,02, ...,60,) under normalized quadratic loss. The risk of
an estimator § = (él,éz, . ,ém) is

Rm(6,0) =m™'E) (6; — 6:)*. (5.1)
=1

When specialized to this problem, Pinsker’s [14] paper yields two theorems stated below.
We emphasize that these two theorems are useful corollaries to Pinsker’s more general
analysis. Nussbaum’s [12] extensive survey reviews other applications of the Pinsker bound.

Let = {a € R™:a; € [1,],1 <1 < m}. Define addition, subtraction, multiplica-
tion and division of f and g in R™ by the specified operation on components, as in coding
S-Plus. For instance, fg = (f191, f292, - fmgm). Let ave(f) = m™* > " f;. For every
a € N and » > 0, define the ellipsoid

B(r,a) = {8 € R™: ave(af?) < r}. (5.2)

Let 82 = [(na;)™*/? —1]4, where p is the unique positive real number such that ave(af2) =

r. Define vp,(r,a) = ave[63/(1 + 62)] and fo = 62/(1 + 62).
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The first theorem drawn from Pinsker’s reasoning treats linear estimators for 6 of the

form 6 = fu.
Theorem 5.1. For every a € N and every r > 0,

inf  sup Rum(fu,0) =vm(r,a) = sup Run(fou,b). (5.3)
FER™ 6cB(r,a) 6cB(r,a)

The second theorem from the same source shows that the minimax linear estimator is often

asymptotically minimax among all estimators.

Theorem 5.2. If im0 mvm(r,a) = 0o, then for every a € N and every r > 0,

lim inf sup [Rm(8,6)/vm(r,a)] = 1. (5.4)
M= § 9cB(ra)

If imy,—s 00 Ym(r,a) = vo > 0, then also

~

lim inf sup R.,(0,6)=ro. (5.5)
m—o0 § gcB(r,a)

Proof of (2.7). The canonical estimation problem of Section 2, described in equations
(2.1) through (2.7) can be re-expressed in the notation above. Form u by stacking vertically
the columns of Y. Similarly, form 6 and 6 by stacking the columns of H and H. Thus
m = np. Form a by stacking n replicates of b; atop n replicates of b, and so on through

n replicates of b,. With these identifications, equation (5.5) above is equivalent to (2.7).
Lemma 5.3. The matriz A = argmin 4 4 p(A) 1s given explicitly by (1.6).
Proof. Let A = I, — (I, + W)_l. As in the second line in (2.16),

p(A) = ptxl(A — AP (L, + W)+ p tx[W (L, + W) 1), (5.6)

Let S denote the set of all p X p symmetric matrices. From (5.6), A= argmin 4 g p(A).
Write 1, = A;/(1+X;). If A = diag{};} and ' = {%1,92,...,9,}, then W has the spectral
representation W = I'AI". Consequently, 4 = Z:;?:l 7;9;7;- Because 1 —|—5xj > 0, it follows
that 7; <1 but need not be positive. Consequently A is not, in general, an element of A.

Define
Av = Y ®%%, Ao =) RAAL (5.7)

frj >0 frj <0

noting that fL_ €A, A= fL_ + A_, and fL_A_ = 0. For brevity, put

K=I+W=> (1+X)3% (5.8)



Then

br[(4 — A)?R] = te[{(A - A;) - A_}2R] (5.9)
= tr[(4 — zi L )?K) —tr[AA_K] — tr[KA_A] + tr[ A2 K]. |

For every A € A,
—tr[AA_K] = —tx[A Y #;(1 + A;j)F;%]]
ir; <0
(5.10)
= - Z TrJ ’YJA’YJ Z O
because A is positive semidefinite and 1 + j\j > 0. Similarly, —tr[f(f\i_A] > 0. It now
follows from (5.10) that

v

tr[(4 — A)?K] > tr[(4 — 44 )? K] + tr[ A2 K] (5.11)

for every A € A. This implies that A = fL_, as was to be shown.

Proof of Theorem 3.1 We first prove (3.6). Let z; = Y12z, and { = D1/2¢,.
The {2;:1 <t < n} are independent random vectors, the distribution of z; being N, ((:, I).
If 7 =n='37 | 22 and Z is the matrix defined in Condition C, then

W=2z10zZ"Y-1I, (5.12)
and
U=W+IL,+F+F +G, (5.13)

where

nY (-0 G=nTt) (z = )z = G) — Iy (5.14)

By direct calculations, Squl(W)grE|F|2 = O(n™!) and supkl(W)STE|CA¥|2 = O(n™1); con-

sequently
sup E|U —W — I,| = O(n"%/2). (5.15)
AL (W) <r
Evidently
p(A) — p(A, W) = ptx[(I, — A)*(W — W)]
-1 27 5—177( 5
=y tel(, — AP{Z(2 7YY - W - L)
’ (5.16)
S P_l Z TJ7
=1



where

|ﬂV:WK%—AV2*ﬁH2”Y—I}H<U'—AWZ*WﬂW‘V—QI

[ Te| = |tx[(Z, — A)*(Z~ )ﬁ]l <|Ip = APIZ7! - L|[U] (5.17)
|Ts| = |tx[(I, — A)*(U — DI < I, — AP|U - W — L.

For every A € A, |I, — A|? < p. Combining the last three displays with Condition C yields

(3.6).
To verify (3.5), write Az = ZAZ~" and observe that

Ln(2(4,%),5,3) = (np) " ) _ [Azz — G
t=1

= () Az (s — G) — (T, — A (518)

i=1

= p tr[AYAz(I, + Q) + (I, — Az) (I, — Az)W —2(I, — Az) Az F).

Since

[Az — Al <|AIZ7H|Z - L] + |AlIZ7" - L), (5.19)
the limit (3.5) follows from the preceding two displays, the statement after (5.14), and
Condition C.

Proof of Theorem 3.2. Limit (3.6) implies that

lim sup E|p(4) —p(4, W) =0 (5.20)
7n— 00 Al(W)S"'

and

lim sup E|p(A) — p(4,W)| =0. (5.21)
N0 N (W)<r

Since p(A, W) = 7(W), limit (3.7) holds for T = /3(1[1) and

lim sup E|p(4,W)—7(W)|=0. (5.22)
7n— 00 Al(W)S"'

On the other hand, limit (3.5) gives

~

lim sup E|L, (HA,H, ¥) —p(4,W)] =0. (5.23)
nO0 A (W) <

Combining this with (5.22) entails (3.7) for T = n(éA,E,E). Finally, taking ¥ = ¥
yields (3.7) for T = Ln(Z(4,%),E,%).
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6. Discussion. This paper approaches from several directions the affine shrinkage
estimator éA for the multivariate trend =. In a Gaussian random trend model, éA is an
estimated minimum risk predictor of =. For the deterministic trend model used in our
analysis, = 4 is that member of a certain class of candidate affine shrinkage estimators that
minimizes estimated risk, or equivalently, minimizes the C, criterion. Analysis shows that
H 4 is asymptotically minimax in Pinsker’s sense over certain subsets of trends centered at
= = 0. The asymptotic maximum risk of =4 over such subsets strictly dominates that of
the least squares trend estimator. Unlike E(A*, ¥) and E(A, Y), the other asymptotically
minimax estimators studied in Section 2, the estimator 24 is fully adaptive, depending only
on data. As exhibited in the Introduction, Z4 achieves superefficiency relative to the least
squares estimator by performing componentwise James-Stein shrinkage in a coordinate
system that is estimated from the data. The construction of éA, applied to the Gaussian
multivariate linear model in canonical form, yields improved regression fits. These main
results carry over to cousins of EA such as EB and the extended Efron-Morris estimator.
The historically distinct ideas of Stein, Mallows, and Pinsker on estimation of a high-

dimensional parameter form the background to this paper.
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