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ABSTRACT. Constrained smoothing splines are discussed under order restrictions on the

shape of the function m. We consider shape constraints of the type m(r)> 0, i.e. positivity,

monotonicity, convexity, . . .. (Here for an integer r > 0, m(r) denotes the rth derivative of m.)

The paper contains three results: (1) constrained smoothing splines achieve optimal rates in

shape restricted Sobolev classes; (2) they are equivalent to two step procedures of the

following type: (a) in a ®rst step the unconstrained smoothing spline is calculated; (b) in a

second step the unconstrained smoothing spline is `̀ projected'' onto the constrained set. The

projection is calculated with respect to a Sobolev-type norm; this result can be used for two

purposes, it may motivate new algorithmic approaches and it helps to understand the form

of the estimator and its asymptotic properties; (3) the in®nite number of constraints can be

replaced by a ®nite number with only a small loss of accuracy, this is discussed for estimation

of a convex function.

Key words: convexity, monotonicity, rates of convergence, shape restrictions, smoothing

splines

1. Introduction

In this paper, constrained smoothing splines are discussed under restrictions on the shape

of the underlying function m of the form m(r) > 0 (or m(r) < 0). [Here for an integer

r > 0, m(r) denotes the rth derivative of m.] In particular, this includes positivity,

monotonicity and convexity constraints. Shape restrictions of this type arise in many

applications. The constraints may be given by the context, e.g. convexity for production

functions or Engel curves, monotonicity of failure rates. Often, inference on the qualitative

shape of a curve may be based on the comparison of constrained and unconstrained

estimators. An overview on curve estimation under shape restrictions can be found in

Delecroix & Thomas-Agnan (1997). Constrained spline estimates are considered in Villa-

lobos & Wahba (1987) and Utreras (1985). For a discussion of unconstrained splines, see

e.g. Eubank (1988) and Wahba (1990).

We consider the regression model:

Yi � m0(xi)� Ei, (1)

where m0: [0, 1]! R is an unknown regression function, xi 2 [0, 1] are deterministic

design points [x1 < � � � < xn], Ei are independent errors with expectation E(Ei) � 0 for

i � 1, . . ., n.

Under the constraint m(r)(x) > 0 for x 2 [0, 1], estimation of m may be done by the

constrained smoothing spline m̂ of order k. For an integer k > 1, a constant 0 , D <1 and a

sequence of penalty weights ën . 0 this estimate is de®ned as the solution of the optimization

problem:
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m̂CS
n,D � arg min

m2M k, r(D)

1

n

Xn

i�1

(Yi ÿ m(xi))
2 � ën

�1

0

m(k)(x)2 dx

" #
, (2)

where the argmin runs over all functions m that lie in the following function class

M k,r(D):

M k,r(D) � fm: m(rÿ1) exists a.s. and is monotone, jm(rÿ1)j < D,

m(kÿ1) exists and is absolutely continuous with�
m(k)(x)2 dx ,1g if r > 1, (3)

M k,r(D) � fm: m is positive,

m(kÿ1) exists and is absolutely continuous with�
m(k)(x)2 dx ,1g if r � 0:

We write M k,r for M k,r(1). For n . k the argmin in (2) is uniquely de®ned, see Utreras

(1985). For simplicity of notation, the dependence of m̂CS
n,D on r and k will not be indicated

in the notation. We write m̂CS
n for m̂CS

n,1.

The asymptotic behaviour of this estimate will be studied in the next section for different

choices of k and r. It will be shown that this estimate achieves optimal rates of convergence if

ën is chosen of an appropriate order.

Furthermore, when k > r � 1, we will show that the estimate coincides with the uncon-

strained smoothing spline with probability tending to one. In the case k � r, the differences

between the constrained and unconstrained estimate do not vanish asymptotically.

In section 3, we show that the constrained smoothing spline is equivalent to the projection

(with respect to a Sobolev-type norm) of the unconstrained smoothing spline onto the

constrained set. This result helps to understand the asymptotic results of section 2. Furthermore,

it can be used to discuss the relation of the constrained smoothing spline to a modi®ed estimator

proposed in Delecroix et al. (1996). Constrained smoothing splines with in®nitely many

constraints [like m(r)(x) > 0 for all x] are dif®cult to compute (see Elfving & Anderson, 1988,

for k � 2, r < 2). We will show that these constraints can be replaced by ®nitely many

constraints without a large loss of accuracy in the calculation of m̂CS
n . Proofs of the results can

be found in section 4.

2. Rates of convergence

In this section, we show that the constrained smoothing spline m̂CS
n,D achieves optimal rates

of convergence in constrained Sobolev classes. Our ®rst result (proposition 1) gives the

rates of the constrained smoothing spline. Our second result (proposition 2) shows that

these rates cannot be improved by other estimates. It will turn out that for k > r the

optimal rates for the constrained and the unconstrained case coincide. Furthermore, for

k < r, we get the same optimal rate as if only the shape restriction m(r) > 0 is assumed

[and no smoothness assumptions
� 1

0
m(k)(x)2 ,1 are made.] For k . r the constrained

smoothing spline and the unconstrained smoothing spline coincides with probability tending

to one if mr(x) 6� 0 for all x 2 [0, 1]. This is the content of proposition 3. The limiting

case k � r is considered in proposition 4 for k � r � 2. It will be shown that for this case

there is a ®rst order difference between the constrained smoothing spline and the

unconstrained smoothing spline.
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We will measure the accuracy of curve estimates by the L2-distance and by the empirical

norm:

i gi2

n �
1

n

Xn

i�1

g2(xi):

We will assume that the underlying true regression function m0 lies in the restricted

Sobolev class M k,r, see (3). For the error distributions we suppose that they have

(uniform) subexponential tails, i.e. there exist constants C ,�1 and t0 . 0 with

E(exp tjEij) , C for 0 , t , t0, 1 < i < n, n > 1: (4)

Proposition 1

For an integer r > 0 and an integer k > 1, assume model (1.1) with m0 in M k,r and

subexponential error distribution (see (4)). Put p � max(k, r). The penalty weight ën is

assumed to be a random sequence of order nÿ2 p=(2 p�1) (i.e. ën � O P(nÿ2 p=(2 p�1)) and

ëÿ1
n � O P(n2 p=(2 p�1))).

Then, for D ,1 large enough, we get:

i m̂CS
n,D ÿ m0 i n � O P(nÿ p=(2 p�1)) (5)

and �1

0

@ k

(@x)k
m̂CS

n,D(x)

( )2

dx � O P(1): (6)

For the case r < k, (5) and (6) hold with m̂CS
n,D replaced by m̂CS

n .

This proposition can easily be shown using empirical process methods developed e.g. in

van de Geer (1990). For details see section 4. Proposition 1 can be generalized to the case

that the underlying regression function m0 depends on n. Then the statement of proposition

1 remains valid if
� 1

0
m

(k)
0 (x)2dx and supxjm(rÿ1)

0 (x)j are uniformly bounded for all n. This

shows that the rate nÿ p=(2 p�1) is uniformly attained over classes M k,r(A, D) [see (7),

below]. For another generalization one can consider the case that shape constraints of

different order are assumed at the same time (e.g. estimation of a convex monotone

function). In particular, the statement of proposition 1 remains valid if the set M k,r is

replaced by M k,r \ fm: m(s) is monotone for s 2 Ig, where I is a subset of f0, . . ., r ÿ 2g.
Furthermore, proposition 1 can be applied to the case of random design: Yi � m0(X i)� Ei

with independent tuples (X 1, E1), . . ., (X n, En) where E(EijX i) � 0. For this purpose it

suf®ces to replace assumption (4) by supx,1<i<n E(exp tjEijjX i � x) , C (a.s.) for 0 , t , t0.

Then the statement of proposition 1 follows for this model of random design by a simple

conditioning argument.

Proposition 1 generalizes a result of Utreras (1985) where this rate of convergence has been

shown for the uniform design for k > r. We show now that the rate O P(nÿ2 p=(2 p�1)) cannot be

improved. For A . 0 and D . 0, we consider constrained Sobolev balls:

M k,r(A, D) � m 2M k,r(D):

�1

0

m(k)(x)2dx < A

( )
: (7)

The optimal rate for estimation of m in M k,r(A, D) is nÿ p=(2 p�1). This follows from the

following proposition and from proposition 1 [note also that proposition 1 holds for regression

functions m0 in M k,r(A, D) that may depend on n, see the remark after proposition 1].
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Proposition 2

Assume model (1) with m0 2M k,r(A, D) and with normal i.i.d. errors E1, . . . En. Suppose

that with x0 � 0 and xn�1 � 1

lim inf
n!1 inf

0<i<n
njxi�1 ÿ xij. 0

and

lim sup
n!1

sup
0<i<n

njxi�1 ÿ xij,1:

Then there exists no estimate with faster rate than nÿ p=(2 p�1), i.e.

lim inf
n!1 n2 p=(2 p�1) inf

~mn

sup
m02M k, r(A,D)

Em0
i ~mn ÿ m0 i2

n . 0 (8)

and

lim inf
n!1 n2 p=(2 p�1) inf

~mn

sup
m02M k, r(A,D)

Dm0

�1

0

j~mn(x)ÿ m0(x)j2 dx . 0, (9)

where the in®mum runs over all curve estimates ~mn based on Y1, . . . Yn.

The rate of unconstrained smoothing splines is O P(nÿ2k=(2k�1)). Propositions 1 and 2 imply

that no faster rates can be achieved by adding shape constraints as long as r < k. Furthermore,

for r > k, the constrained smoothing spline achieves the same rate as a shape restricted least

squares estimate (rates of shape restricted least squares estimates have been considered in

Mammen, 1991). Here, no faster rate is achieved by the additional smoothness assumption�
m

(k)
0 (x)2 dx ,1.

For r , k, shape restrictions have a negligible in¯uence. The following proposition states that

constrained and unconstrained smoothing splines coincide with probability tending to one for

the case that r , k and m
(r)
0 (x) 6� 0.

Proposition 3

Suppose r , k and assume model (1) where the regression function m0 ful®lls that�
m

(k)
0 (x)2 dx is ®nite and that m

(r)
0 (x) 6� 0 for x 2 [0, 1]. Furthermore, it is assumed that

sup1<i , n(xi�1 ÿ xi) � o(1) and that errors have subexponential tails (see (4)). Then, if ën

is a random sequence of order nÿ2k=(2k�1), we get:

P(m̂CS
n (x) � m̂S

n(x)8x 2 [0, 1])! 1:

Here m̂S
n is the unconstrained smoothing spline:

m̂S
n � arg min

m2H k

1

n

Xn

i�1

(yi ÿ m(xi))
2 � ën

�1

0

m(k)(x)2dx

" #
, (10)

where H k � fm: m(kÿ1) exists and is absolutely continuous with
� 1

0
m(k)(x)2 dx ,1g.

We consider now the case k � r. We will show that, if k � r � 2, there is with positive

probability a non-negligible difference between the constrained and the unconstrained smooth-

ing spline. The proof of this result makes use of the asymptotic representation of smoothing

splines as linear kernel smoothers for k � 2 given in Silverman (1982). We conjecture that our

result holds also for other choices of k � r. For a proof of this conjecture generalizations of the

results in Silverman (1982) for other choices of k are required. A discussion of such general-

izations can be found in Messer (1991) and Nychka (1995).
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Proposition 4

Suppose r � k � 2 and assume model (1) with Gaussian i.i.d. errors. The empirical distribu-

tion function Fn of the design points x1, . . ., xn is assumed to converge to a distribution

function F:

n1=5 sup
x2[0,1]

jFn(x)ÿ F(x)j ! 0:

The derivative f of F is assumed to be bounded away from 0 and to have an absolutely

bounded derivative. Then, if ën is a deterministic sequence of order nÿ4=5 and D <1,

there exists ä. 0 such that

lim inf
n!1 P(i m̂CS

n,D ÿ M̂ S
n i n .änÿ2=5) . 0:

3. Modi®cations of constrained smoothing splines

In this section we show that for the constrained smoothing spline m̂CS
n the following holds

m̂CS
n � arg min

m2M k, r

im(x)ÿ m̂S
n(x)i2

n � ën

�1

0

m(k)(x)ÿ @ k

(@x)k
m̂S

n(x)

 !2

dx

24 35: (11)

The estimate m̂S
n is the unconstrained smoothing spline, see (10). The equivalence (11) is

stated in the following proposition 5.

Proposition 5

The relation (11) holds.

Equation (11) has the following interpretation. The estimate m̂CS
n is a two steps estimate:

1. In a ®rst step the unconstrained smoothing spline m̂S
n (see (10)) is calculated.

2. In a second step this estimate is `̀ projected'' onto the constrained set. The projection is

calculated with respect to the Sobolev-type norm i gi2

n � ën

� 1

0
fg(k)(x)g2 dx, see (11).

For a similar result on a general class of constrained smoothers, see Mammen et al. (1998).

In Delecroix et al. (1996), another two steps estimate ~mCS
n has been proposed:

~mCS
n � arg min

m2M k, r

�1

0

fm(x)ÿ m̂S
n(x)g2dx� ën

�1

0

m(k)(x)ÿ @ k

(@x)k
m̂S

n(x)

( )2

dx

24 35:
[To be more precise, in Delecroix et al. (1996), a discretized version of the constraints was

used for computational simpli®cations]. Our proposition 5 shows now that ~mCS
n is similarly

de®ned as m̂CS
n , the only difference being that the integrated norm

� 1

0
g2(x) dx is replaced

by the empirical norm i gi2

n. This difference is asymptotically negligible for equidistant

design, as is shown in the following corollary.

Corollary 1

Suppose that xi � (iÿ 1=2=n), that k > 2, and that the assumptions of proposition 1 hold,

then we get:

i m̂CS
n ÿ ~mCS

n i2

n � O P(nÿ6k=(2k�1)) (12)

and
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�1

0

(m̂CS
n (x)ÿ ~mCS

n (x))2 dx � O P(nÿ6k=(2k�1)): (13)

Computation of constrained estimates can be speeded up by restricting the constraints to a

discrete set. For k � r � 2, we consider the following discretized modi®cation of m̂CS
n . For a

grid Tn � ft1, . . . tsg � [0, 1], with t1 � 0, ts � 1, we de®ne

m̂RCS
n � arg min

m

1

n

Xn

i�1

(Yi ÿ m(xi))
2 � ën

�1

0

m(k)(x)2dx

" #
,

where the argmin runs over all functions m whose restrictions to Tn are convex. Arguing

as in the proof of proposition 5 one can show that

m̂RCS
n � arg min

m
im(x)ÿ m̂S

n(x)i2

n � ën

�1

0

(m(k)(x)ÿ @ k

(@x)k
m̂S

n(x))2 dx

" #
,

where again the argmin runs over all functions m whose restrictions to Tn are convex. The

next proposition describes how far away m̂RCS
n is from the class of functions that are

convex on the whole interval [0, 1].

Proposition 6

Suppose the conditions of proposition 1, that k > 2 and that for a än with än ! 0, it

holds that supi jti�1 ÿ tij � O (än). Then we get that

inf
m convex

�1

0

fm(x)ÿ m̂RCS
n (x)g2 dx � O P(ä4

n):

4. Proofs

Proof of proposition 1. The proposition can be proved similiarly as th. 6.2 in van de Geer

(1990), th. 5 in Mammen & van de Geer (1997a), and lem. 3.1 in Mammen & van de

Geer (1997b). We give here the basic idea. Denote by h, in the scalar product correspond-

ing to the norm i i n, i.e. hg, hin � nÿ1
Pn

i�1 g(xi)h(xi). We write P ?s,n for the orthogonal

complement of the set of all polynomials of degree (sÿ 1) [with respect to the scalar

product h, in]. First note that for

M 0 � fm: m(rÿ1)monotone, jm(rÿ1)j < 1g \ P ?r,n

and

M 1 � fm:

�1

0

m(k)(x)2 dx < 1g \ P ?k,n

we have the following bounds for entropies with bracketing:

log N2,B(ä, i:i n, M 0) < C0ä
ÿ1=r, (14)

log N2,B(ä, i:i n, M 1) < C1ä
ÿ1=k , (15)

where C0 and C1 are positive constants and r, k > 1. N2,B(ä, i:i n, M i) denotes the

smallest number N of pairs (g1, j, t2, g): j � 1, . . ., N with (i) i g1, j ÿ g2, j i n < ä, (ii)

g1, j, g2, j 2M i, (iii) for every g 2M i there exists a j with g1, j < g < g2, j. Equations

(14) and (15) follow from Birman & Solomjak (1967), see van de Geer (1990, 1993) and

Mammen (1991).
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We de®ne now M to be the intersection of M 0 and M 1 if r . k and M �M1 if r < k.

Then we have

log(N2,B(ä, i � i n, M) < C2ä
ÿ1= p (16)

for a C2 . 0. Inequality (16) implies:

sup
m2M

jnÿ1=2
Pn

i�1 m(xi)Eij
[minfimi n, nÿ[ pÿ2]=[2 p]g]2 p=[2 pÿ1]

� O P(1) (17)

[For errors with subGaussian tails this has been stated in lem. 3.5 in van de Geer (1990).

For errors with subexponential tails this follows from an additional application of a result

in BirgeÂ & Massart (1993), see van de Geer (1995).] For the proof of equations (5) and

(6) one proceeds as in Mammen & van de Geer (1997a, b).

Proof of proposition 2. We choose I � I n as the largest integer < n1=(2 p�1). For i � 1, . . ., I,

we consider the intervals: Ri,n � [(iÿ 1)=I n, i=I n]. We choose a function g: [0, 1]! R�

which is p times continuously differentiable and with g(s)(0) � g(s)(1) � 0 for s � 0, . . ., p and� 1

0
g(x)2 dx . 0. For è 2 f0, 1gI we put

mè(x) � ax r � bèi n
ÿ p=(2 p�1) gfI[xÿ (iÿ 1)=I n]g

for x 2 Ri,n, where a, b are chosen such that mè 2M k,r(A, D) for è 2 f0, 1gI. For the

proof of (9) one notes ®rst that

inf
~mn

sup
m02M k, r(A,D)

Em0

�1

0

j~mn(x)ÿ m0(x)j2 dx > inf
~mn

sup
è2f0,1g I

Emè

�1

0

j ~mn(x)ÿ mè(x)j2 dx, (18)

where the in®mum runs over all curve estimates ~mn based on Y1, . . . Yn. The right hand

side of (18) can be bounded from below by standard techniques based on Assouad's

lemma. We refer to sect. 2.6 and 2.7 in Korostelev & Tsybakov (1993) where this has been

done for HoÈlder function classes. This shows (9). The proof of (8) follows analogously.

Proof of proposition 3. It suf®ces to show that

P
@ rÿ1

(@x)rÿ1
m̂S

n is monotone

 !
! 1:

Because under our assumptions m
(r)
0 is continuous and therefore bounded away from 0, this

follows from

sup
x

���� @ r

(@x)r
m̂S

n(x)ÿ m
(r)
0 (x)

���� � oP(1): (19)

It remains to show (19). From proposition 1, we know that

i m̂S
n ÿ m0 i n � oP(1)

and �
@ k

(@x)k
m̂S

n(x)

( )2

dx � O P (1):

Because of
�

m
(k)
0 (x)2 dx ,1 and supi(xi�1 ÿ xi) � o(1) this implies

�
(m̂S

n(x) ÿ
m0(x))2 dx � oP(1). The interpolation inequality (see Agmon, 1965) gives for 0 , è, 1

with a constant C . 0 for 1 < q < k:
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�
@q

(@x)q
m̂S

n(x)ÿ m
(q)
0 (x)

� �2

dx > Cèÿ2q

�
fm̂S

n(x)ÿ m0(x)g2 dx

� Cè2kÿ2q

�
@ k

(@x)k
m̂S

n(x)ÿ m
(k)
0 (x)

( )2

dx: (20)

Application with q � r and q � r � 1 gives for Ä(x) � (@ r=(@x)r)m̂S
n(x)ÿ m

(r)
0 (x) that� jÄ9(x)j2 dx � O P(1) and

�
Ä(x)2 dx � oP(1). Because of

� jÄ9(x)j2 dx � O P(1), application

of an embedding theorem (see Adams, 1975, p. 97) gives

sup
x, y

jÄ(x)ÿ Ä(y)j=jxÿ yj1=2 � O P(1):

This equality and
�
Ä(x)2 dx � oP(1) implies sup jÄ(x)j � oP(1). This shows (19).

Proof of proposition 4. For simplicity we consider only the case var Ei � 1, ën � nÿ4=5 and

D � 1. For the proof we make use of the following lemma.

Lemma 1

For a subset X of R and a point x0 2 X we put X ÿ � fx 2 X : x < x0g and

X � � fx 2 X : x . x0g. We consider a Hilbert space H of functions h: X ! R with

norm ihi2 � � X h(x)2 dx and scalar product hh1, h2i �
�

X h1(x)h2(x) dx. For a function

g 2H we de®ne:

gI � arg minfihÿ gi: h 2H , h increasingg,
gPC � arg minfihÿ gi: h 2H , h is constant on X ÿ and on X �g,

gPCI � arg minfihÿ gPC i: h 2H , h increasingg:
With these de®nitions the following holds

i g ÿ gI i > i gPC ÿ gPCI i: (21)

The proof of lemma 1 will be given after the proof of proposition 4. For the proof of

proposition 4 we apply the lemma for 1 < j < 0:5n1=5 with

X ÿ � X ÿ
j � [0:25� ( jÿ 1)nÿ1=5, 0:25� ( jÿ 1=2)nÿ1=5],

X � � X �
j � (0:25� ( jÿ 1=2)nÿ1=5, 0:25� jnÿ1=5],

X � X j � X ÿ
j [X �

j ,

norm ihi2 � � X j
h(x)2 dx, and g � g j equal to (@=@x)m̂S

n(x) restricted to X j. Lemma 1

implies that�1

0

@

@x
m̂S

n(x)ÿ @

@x
m̂CS

n (x)

� �2

dx >
X

1< j<0:5n1=5

�
X j

@

@x
m̂S

n(x)ÿ @

@x
m̂CS

n (x)

� �2

dx

>
X

1< j<0:5n1=5

�
X j

fg j(x)ÿ g j, I (x)g2 dx

>
X

1< j<0:5n1=5

�
X j

fg j,PC(x)ÿ g j,PCI (x)g2 dx

� S, (22)
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where

S � n1=5
X

1< j<0:5n1=5

Z2
j,�,

Z j � m̂S
n(0:25� ( jÿ 1)nÿ1=5)� m̂S

n(0:25� jnÿ1=5)ÿ 2m̂S
n(0:25� ( jÿ 1=2)nÿ1=5),

Z j,� � Zj1(Z j > 0):

We will show that for C9 . 0 small enough

ES > C9nÿ2=5: (23)

We apply now the interpolation inequality (20). With

è2 � min
1

2
,

R1

2CR2

� �
,

R0 �
�1

0

fm̂S
n(x)ÿ m̂CS

n (x)g2 dx,

R1 �
�1

0

@

@x
m̂S

n(x)ÿ @

@x
m̂CS

n (x)

� �2

dx,

R2 �
�1

0

@2

(@x)2
m̂S

n(x)ÿ @2

(@x)2
m̂CS

n (x)

( )2

dx

this gives

R0 > min
R1

4C
,

R2
1

4C2 R2

� �
:

The inequalities (22) and (23) and R2 � O P(1) imply the statement of proposition 4.

Proof of (23). We write mS
n(x) � Em̂S

n(x): Because spline smoothing is linear in the

observations, the following holds:

mS
n � arg min

m

1

n

Xn

i�1

(m0(xi)ÿ m(xi))
2 � ën

�1

0

m 0(x)2 dx

" #
:

This shows�1

0

@2

(@x)2
mS

n(x)

( )2

dx <
1

nën

Xn

i�1

(m0(xi)ÿ mS
n(xi))

2 �
�1

0

@2

(@x)2
mS

n(x)

( )2

dx < r, (24)

where r � � 1

0
m 00(x)2 dx. Put r j �

�
X j
f(@2=(@x)2)mS

n(x)g2 dx. Inequality (24) impliesP
1< j<0:5n1=5r j < r. This shows that the set J n � f1 < j < 0:5n1=5: r j < 4nÿ1=5rg has at

least 0.25 n1=5 ÿ 1 elements. We show now that there exist positive constants C1 and C2

such that for j 2 J n

jEZ jj < C1 nÿ2=5, (25)

var Z j > C2 nÿ4=5: (26)

Because Z j has a Gaussian distribution this implies

min
j2J n

EZ2
j,� > C3 nÿ4=5,
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for C3 . 0 small enough. This shows (23). It remains to prove (25), (20), and lemma 1.

Proof of (25). We get for j 2 J n

jEZ jj � jmS
n(0:25� ( jÿ 1)nÿ1=5)� mS

n(0:25� jnÿ1=5)

ÿ 2mS
n(0:25� ( jÿ 1=2)n1=5)j

�
�����

X �
j

@

@x
mS

n(x) dxÿ
�

X ÿ
j

@

@x
mS

n(x) dx

����
<

�
X ÿ

j

�x�0:5nÿ1=5

x

���� @2

(@u)2
mS

n(u)

���� du dx

<

�
X ÿ

j

�
X j

���� @2

(@u)2
mS

n(u)

����2 du

" #1=2
1

2
nÿ1=5

� �3=2

dx

<
1

2
r1=2

j nÿ3=10 < r1=2 nÿ2=5:

Proof of (26). According to th. A in Silverman (1984) we have under our conditions

m̂S
n(s) � 1

n

Xn

i�1

Gn(s, xi)Yi,

with a function Gn that ful®lls

supjnÿ1=5 f (x)ÿ1=4Gn(x� nÿ1=5 f (x)ÿ1=4 t, x)ÿ k(t) f (x)ÿ1j ! 0:

Here for a sequence än with n1=5än !1 and än ! 0, the supremum runs over all t and x

with x� nÿ1=5 f (x)ÿ1=4 t 2 [0, 1] and x 2 [än, 1ÿ än]. The function k is de®ned as

k(t) � 1

2
exp(ÿjuj=

���
2
p

) sin(juj=
���
2
p
� ð=4):

Put Ln(x) � fi: 1 < i < n, xi 2 [än, 1ÿ än], jxÿ xij < nÿ1=5 f (xi)
ÿ1=4]g. From this result

we get for j 2 J n:

n4=5 var Z j � nÿ6=5
Xn

i�1

fGn(( jÿ 1)nÿ1=5, xi)� Gn( jnÿ1=5, xi)ÿ 2Gn(( jÿ 1=2)nÿ1=5, xi)g2

> nÿ6=5
X

i2Ln( jnÿ1=5)

fGn(( jÿ 1)nÿ1=5, xi)� Gn( jnÿ1=5, xi)ÿ 2Gn(( jÿ 1=2)nÿ1=5, xi)g2

� nÿ4=5
X

i2Ln( jnÿ1=5)

�
k[( jÿ 1ÿ n1=5xi) f (xi)

1=4]� k[ jÿ n1=5xi) f (xi)
1=4]:

ÿ2k jÿ 1

2
ÿ n1=5xi

� �
f (xi)

1=4

� ��2

f (xi)
ÿ3=2 � o(1)

�
�1

ÿ1

k[(uÿ 1)ô1=4
j ]� k[uô1=4

j ]ÿ 2k uÿ 1

2

� �
ô1=4

j

� �� �2

duôÿ1=2
j � o(1),

where ô j � f ( jnÿ1=5). This inequality shows claim (26).

It remains to show lemma 1.
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Proof of lemma 1. For a closed convex cone C denote the projection onto C by PC. The polar

cone C� of C is de®ned by C� � fv: PC(v) � 0g. Lemma 1 is a consequence of the following

geometric property.

Lemma 2

If C is a closed convex cone and L a linear subspace, then the following two conditions

are equivalent:

iPC(PL(v))i < iPC(v)i for all v, (27)

PL(C�) � C�: (28)

For the proof of lemma 1 it is enough to apply lemma 2 to the cone C� equal to the set of

increasing functions of H and to the subspace L equal to the set of functions of H constant on

X � and X ÿ. It remains to check that the projection of an increasing function onto L is

increasing. However, this is clear because in the projection the values of the function on both

intervals are replaced by the interval averages.

We come now to the proof of lemma 2.

Proof of lemma 2. Although this lemma is quite simple we are not aware of a reference in the

literature on convex analysis.

We show ®rst that (27) implies (28). If (27) holds, and PCv � 0 we have

iPC PLvi < iPCvi � 0,

so that PC PLv � 0, i.e. (28) holds.

Conversely, assume now that (28) holds. Then for all v, because of PL PC�v 2 C�, it holds

that PC PL PC�v � 0. This and v � PCv� PC�v implies

iPC PLvi � iPC PL PCv� PC PL PC�vi � iPC PL PCvi < iPCvi,

i.e. (27) holds.

Proof of proposition 5. Note that for all functions g with
�

g(k)(x)2 dx ,1 we have

1

n

Xn

i�1

(m̂S(xi) ÿ Yi)
2 � ën

�
m̂

(k)
S (x)2 dx <

1

n

Xn

i�1

(g(xi)ÿ Yi)
2 � ën

�
g(k)(x)2 dx: (29)

For all functions m with
�

m(k)(x)2 dx ,1 we get by application of (29) for g �
m̂S � á(m̂S ÿ m) with á! 0

1

n

Xn

i�1

(m̂S(xi)ÿ m(xi))(m̂S(xi)ÿ Yi)� ën

�
m̂

(k)
S (x)(m̂

(k)
S (x)ÿ m(k)(x)) dx � 0: (30)

Equation (30) shows

1

n

Xn

i�1

(m(xi)ÿ Yi)
2 � ën

�
m(k)(x)2 dx � 1

n

Xn

i�1

(m̂S(xi)ÿ m(xi))
2 � ën

�
(m̂

(k)
S (x)ÿ m(k)(x))2 dx

� 1

n

Xn

i�1

(m̂S(xi)ÿ Yi)
2 � ën

�
m̂

(k)
S (x)2 dx

� i m̂S ÿ mi2

n � ën

�
(m̂

(k)
S (x)ÿ m(k)(x))2 dx� C(Y ),
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where C(Y ) is a quantity that does not depend on m. This shows the statement of the

proposition.

Proof of corollary 1. For m̂CS
n , we have

i m̂CS
n ÿ m0 i2

n � O P(nÿ2k=(2k�1)):

Because of
�f(@ k=(@x)k)m̂CS

n (x)g2 dx � O P(1) and
�fm

(k)
0 (x)g2 dx ,1, this implies�fm̂CS

n (x)ÿ m0(x)g2 dx � O P(nÿ2k=(2k�1)). The interpolation inequality (30) implies for

q < 2,�1

0

@q

(@x)q
m̂CS

n (x)ÿ m
(q)
0 (x)

� �2

dx � O P(nÿ(2kÿ2q)=(2k�1)): (31)

Similarly one gets for q < 2,�1

0

@q

(@x)q
m̂S

n(x)ÿ m
(q)
0 (x)

� �2

dx � O P(nÿ(2kÿ2q)=(2k�1)): (32)

Equations (31) and (32) imply for q < 2,�1

0

@q

(@x)q
m̂CS

n (x)ÿ @q

(@x)q
m̂S

n(x)

� �2

dx � O P(nÿ(2kÿ2q)=(2k�1)): (33)

We apply now that for a function h and for C . 0 large enough it holds for our choice of

xi, i � 1, . . ., n that�����1

0

h(x) dxÿ 1

n

Xn

i�1

h(xi)

���� < Cnÿ2

�1

0

jh9(x)j � jh 0(x)j dx:

(This follows from�����b

a

h(x) dxÿ fbÿ agfh(a)� h(b)g=2

���� < C9fbÿ ag2

�b

a

jh 0(x)j dx,

�����b

0

h(x) dxÿ bh(b)

���� < C9b2jh9(b)j � C9b2

�b

0

jh 0(x)j dx

< C9b2

�1

0

jh9(x)j � 2jh 0(x)j dx,

�����1

a

h(x) dxÿ f1ÿ agh(a)

���� < C9f1ÿ ag2

�1

0

jh9(x)j � 2jh 0(x)j dx

for C9 large enough.) With h � g2 this gives�����1

0

g(x)2 dxÿ i gi2

n

���� < Cnÿ2

�1

0

���� @2(g2)

(@x)2
(x)

����� ���� @(g2)

@x
(x)

����
 !

dx:

Using the Cauchy±Schwarz inequality one can show for C 0 large enough
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�����1

0

g(x)2 dxÿ i gi2

n

���� < C 0nÿ2

�1

0

g9(x)2 dx�
���������������������������������������������1

0

g(x)2 dx

�1

0

g 0(x)2 dx

s0@

�
��������������������������������������������1

0

g(x)2 dx

�1

0

g9(x)2 dx

s 1A: (34)

Because of (33) this shows for g � m̂CS
n ÿ m̂S

n����i m̂CS
n ÿ m̂S

n i2

n ÿ
�1

0

fm̂CS
n (x)ÿ m̂S

n(x)g2 dx

���� � O P(nÿ6k=(2k�1)): (35)

By de®nition of ~mCS
n and because of ën � O P(nÿ2k=(2k�1)) we have�1

0

f~mCS
n (x)ÿ ~mS

n(x)g2 dx� ën

�1

0

@ k

(@x)k
~mCS

n (x)ÿ @ k

(@x)k
m̂S

n(x)

( )2

dx

<

�1

0

f~mCS
n (x)ÿ ~mS

n(x)g2 dx� ën

�1

0

@ k

(@x)k
m̂CS

n (x)ÿ @ k

(@x)k
m̂S

n(x)

( )2

dx

� O P(nÿ2k=(2k�1)):

For g � ~mCS
n ÿ m̂s

N this shows
�

g(x)2 dx � O P(nÿ2k=(2k�1)) and
�

g(k)(x)2 dx �
O P(nÿ2k=(2k�1)). With interpolation inequality (20) this gives for q < 2,

� 1

0
g(q)(x)2 dx

� O P(n(2kÿ2q)=(2k�1)). Using (34) again we get����i ~mCS
n ÿ m̂S

n i2

n ÿ
�1

0

f~mCS
n (x)ÿ m̂S

n(x)g2 dx

���� � O P(nÿ6k=(2k�1)): (36)

Using (35) and (36) one can show (12) and (13) by a geometrical argument.

Proof of proposition 6. Choose �g as the linear interpolant of m̂RCS
n with interpolation points

t1 , � � � , ts. We will show that�1

0

f ĝ(x)ÿ m̂RCS
n (x)g2 dx � O P(ä4

n):

Proceeding as in the proof of proposition 2, we get that
� 1

0
f(@2=(@x)2)m̂RCS

n (x)g2 dx �
O P(1). Put Ä(u) � m̂RCS

n (u)ÿ �g(u). Note that Ä(ti) � 0 for i � 1, . . ., s. For ti , x , ti�1

(note that for all i there exists a ui with Ä9(ui) � 0), we get

jÄ9(x)j <
� ti�1

ti

jÄ 0(u)j du < (ti�1 ÿ ti)
1=2

� ti�1

ti

Ä 0(u)2 du

( )1=2

:

This gives

jÄ(x)j < (ti�1 ÿ ti)
3=2

� ti�1

ti

Ä 0(u)2 du

( )1=2

and � ti�1

ti

Ä2(u) du < jti�1 ÿ tij4
� ti�1

ti

Ä 0(u)2 du < ä4
n

� ti�1

ti

Ä 0(u)2 du:

Because of
� 1

0
f(@2=(@x)2)m̂RCS

n (x)g2 dx � O P(1), this shows the statement of the proposition.
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