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Abstract. Highly integrated and increasingly complex video-based driver assistance systems
are rapidly developing nowadays. Following the trend towards autonomous driving, they have
to operate not only under advantageous but also under adverse conditions. This includes sight
impairments caused by atmospheric aerosols such as fog or smog. It is an important part of
environmental understanding to thoroughly analyze the optical properties of these aerosols.

The aim of this thesis is to develop models and algorithms in order to estimate meteorological
visibility in homogeneous daytime fog. The models for light transport through fog are carefully
derived from the theory of radiative transfer. In addition to Koschmieder’s well-established model
for horizontal vision1, a recursively-de�ned sequence of higher-order models is introduced which
yields arbitrarily good approximations to the solutions of the radiative boundary problem.

Based on the radiative transfer models, visibility estimation algorithms are proposed which are
applicable to data captured by a driver assistance front camera. For any one of these algorithms, the
recording of luminances from objects observed at distinct distances is required. This data can be
acquired from moving objects being tracked as well as from depth-extended homogeneous objects
such as the road. The resulting algorithms supplement each other with respect to di�erent road
tra�c scenarios and environmental conditions. All given algorithms are extensively discussed and
optimized regarding their run-time performance in order to make them applicable for real-time
purposes. The analysis shows that the proposed algorithms are a useful addition to modern driver
assistance cameras.

Kurzfassung. Video-basierte Fahrerassistenzsysteme erfahren derzeit eine rasante Entwicklung
hin zu immer komplexeren und hoch-integrierten Produkten. Einhergehend mit dem Trend
zum autonomen Fahren muss deren Einsatzfähigkeit nicht nur unter vorteilhaften sondern auch
unter schwierigen Bedingungen sichergestellt werden. Dazu gehören auch Sichteinschränkungen,
welche durch atmosphärische Aerosole wie Nebel oder Smog verursacht werden. Es ist ein
wichtiger Teil eines ganzheitlichen Umgebungsverständnisses, diese Einschränkungen sowohl
qualitativ als auch quantitativ zu erfassen.

Das Ziel dieser Arbeit ist die Entwicklung und Untersuchung von Modellen und Algorithmen zur
Sichtweitenschätzung in homogenem Tagnebel. Basierend auf der Strahlungstransporttheorie
wird eine rekursiv de�nierte Folge von Modellen für Lichttransport durch Nebel hergeleitet.
Während das Modell erster Ordnung Koschmieders etabliertem Modell für horizontale Sicht1

entspricht, kann mit den Modellen höherer Ordnung die Lösung des Randwertproblems für
Strahlungstransport beliebig genau approximiert werden.

Basierend auf den Strahlungstransport-Modellen werden Algorithmen zur Sichtweitenschätzung
auf Daten einer automobilen Frontkamera, welche die Leuchtdichte eines oder mehrerer Objekte
erfasst, vorgestellt. Um eine modellbasierte Schätzung zu ermöglichen, müssen diese Objekte
entweder, wie eine Straße, in der Tiefe ausgedehnt sein oder über mehrere Bilder hinweg auf
verschiedenen Distanzen beobachtet werden. Die abgeleiteten Algorithmen unterscheiden sich
vor allem in den zugrunde liegenden Daten, Modellen und Parameter-Schätzmethoden. Um den
Einsatz in sicherheits- und laufzeitkritischen Systemen zu ermöglichen, wird hierbei großer
Wert auf eine e�ziente Parameter-Schätzung gelegt. Insgesamt zeigt sich, dass die vorgestellten
Methoden für den Einsatz in heutigen Fahrerassistenzkameras gut geeignet sind.

1Harald Koschmieder. “Theorie der Horizontalen Sichtweite”. In: Physik der Freien Atmosphäre 12 (1924), 33–55. doi:
10.1007/978-3-663-04661-5_2
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Chapter 1Chapter 1
Motivation

Contents
1.1 Advanced Driver Assistance Systems . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Adverse Weather Conditions in Road Tra�c . . . . . . . . . . . . . . . . . . . 4

1.1 Advanced Driver Assistance Systems

Technologies assisting drivers during the driving process are experiencing a rapid development
nowadays (cf . e.g. [Oku2014]). These so-called advanced driver assistance systems (ADAS) are
designed to actively or passively increase the driver’s and passenger’s safety and comfort, and to
improve the economical and ecological e�ciency of a car. A prerequisite for the development of
such systems is sensors that on the one hand monitor vehicle parameters (such as tire pressure,
steering wheel angle, lateral acceleration, yaw rate, and individual road wheel speeds), and on
the other hand allow for an increasingly precise perception of the vehicle’s environment (such as
the distance to preceding vehicles, and the relative positioning of the lanes).

This trend is further driven by the idea of fully autonomously driving vehicles which are able to
operate even in uncontrolled and unknown environments. Several companies such as Daimler,
Google and Bosch have already developed fully autonomously driving cars for various use cases
and for more or less controlled environments for which detailed maps are available (cf . e.g.
[Zie2014], [Mar2010] and [Bec2014] respectively). Some of the functionalities are almost ready
for series production and can be expected to be found on the roads in a few years, such as a tra�c
jam assistant or highway assistant. Other domains of autonomous driving are still struggling
with too complex and unpredictable environments, such as in urban or o�-road settings, in which
it is hard to replace a human driver’s extensive wealth of experience. Further problems arise from
safety aspects, social acceptance and high sensor costs.

Many successful driver assistance systems have already been established in the automotive market
over the last decades, such as the electronic stability control (ESC) which enormously stabilizes
the vehicle’s behavior when turning and braking. These driver assistance systems are mature
and have a high equipment rate even in the low-price car segment. While they are based on
measurements of the vehicle’s motion parameters only, many of the current and future assistance
systems essentially rely on environmental information:

Parking assist systems use ultrasonic sensors to detect obstacles and measure their distance over a
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range of a few meters around the car. In comparison, radar sensors allow for mid- and long-range
applications, such as adaptive cruise control (ACC) or autonomous emergency braking (AEB).

Another class of active ranging sensors are lidar systems which, similar to radar, use electromag-
netic radiation re�ected by objects to localize them. In contrast to radar, they are not based on
radio waves but on the infrared spectrum. In principle, the use of shorter wavelengths allows for
an increased angular separability and the detection of smaller objects. This bene�t is currently
mainly exploited by laser scanners which are an interesting subform of lidars. They measure
the distance for di�erent directions through controlled steering of laser beams. This is most
often realized by a rotating sensor head which scans its environment line-wisely. Especially
for almost static environments, this allows for remarkably accurate and comprehensive depth
acquisition. Therefore, laser scanners are often an essential part of the current working pro-
totypes of autonomous vehicles. Since highly resolving lidar sensors are, however, still quite
expensive and since infrared sensors in general su�er from absorption during rainfall, they are
not well established for driver assistance. This might change with further decreasing sensor costs,
increasing sensor performance and an increased need for data redundancy and ranging accuracy.

Besides the actively working ultrasonic, radar and lidar systems from above, cameras are a
passively working and more common low-cost class of sensors. They can be used in various
ways: as front cameras pointing along the road ahead, as interior cameras observing the driver’s
condition, or as surround-view cameras observing the maneuvering area around the car. As visual
information is most relevant in road transport (cf . e.g. [Siv1996]), cameras cover the widest range
of driver assistance applications. Current multi-purpose ADAS cameras provide various features,
such as lane departure warning, lane keeping support, intelligent headlight control and road
sign recognition. Furthermore, there are many enhancements of classical cameras, such as stereo
sensors, �sh-eye lenses as well as infra-red or polarization cameras. These extend the capabilities
of classical cameras, adding further powerful features, such as more precise depth estimation, a
larger �eld of view, night vision applications, and glare detection or removal.

While emphasizing the numerous capabilities of cameras, the bene�ts of other sensor technologies
should not be neglected. They provide information a human driver cannot perceive with high
precision on, for example, scene depth, vehicle parameters or relative speed and direction of other
road entities. One could thus argue that they even have better synergy e�ects in cooperation
with a human driver than cameras do. In any case, future driver assistance systems will have to
operate more and more autonomously which requires a comprehensive and redundant sensing
of the environment. To achieve this, many sensors have to work simultaneously and di�erent
sensor concepts have to be combined in order to guarantee a high level of safety. The strengths
and weaknesses of the di�erent sensor concepts have to be taken into account by implementing
improved sensor data fusion. As a part of this future challenge it is important to assess the
operability of each sensor, including the environmental conditions. In this context, fog detection
and quanti�cation, which is addressed in this work, is just one out of many challenges.

1.2 Adverse Weather Conditions in Road Tra�c

Adverse weather in road tra�c, such as rain, snow or fog, can lead to a problematic reduction of
drivers’ visual range and the controllability of vehicles. Water, snow or ice on the road surface
cause diminished tire traction which, obviously, has a disadvantageous impact on the driving
dynamics. This includes dangerous e�ects due to increased braking distances, understeering in
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Figure 1.1: smog in Peking, January 2013 (by courtesy of AFP)

curves or even the absolute loss of braking or steering capabilities in the case of hydroplaning.
Apart from that, adverse weather can strongly impair the visibility conditions, for instance in
cases of dense fog, rain or sandstorms. Although humans are able to recognize these atmospheric
sight impairments, they are basically unable to quantify their own visual range and the relative
speed at which they are moving towards other road users or static objects. Even smog can turn
into a risk for the driver’s health and safety, not only by causing bronchial diseases, but also due
to substantially decreased ranges of visibility (cf . Fig. 1.1).

Many studies show the connection between adverse weather conditions and increased crash and
injury rates. A good summary can be found in the meta-analysis of Qiu and Nixon [Qiu2008]
which not only includes the absolute number of accidents and injuries, but also the tra�c volume
reduction and the sample sizes and variances in order to correctly evaluate the statistical impact
of adverse weather conditions. Studies focusing particularly on the in�uence mechanisms and
statistics of fog regarding tra�c safety can be found in [Cro2003], [Sit2011] and [Bab2011, 1].
Additionally, an interesting and comprehensive overview of weather impact on road accidents is
provided by the U.S. Road Weather Management Program which can be found in [Tra2015].

The di�culties and dangers of adverse weather conditions are addressed by several assistance
systems, such as the ESC which stabilizes vehicle dynamics close to the optimum, or the rain
detector which automatically triggers the windshield wipers. Aside from that, driver assistance
systems based on optical sensors can also be compromised by atmospheric sight impairments.
The more autonomous the vehicles, the more important automated detection of and adaption to
these adverse environmental conditions are. Therefore, fog detection and visibility estimation
is an important challenge for video-based driver assistance systems, and additionally allows for
several new driver assistance applications (cf . Sec. 3.3). This work constitutes one of the �rst
steps of the investigations and developments required in this direction.

Fog as Adverse Weather. Among other adverse weather conditions, fog is a particular challenge
for humans as well as technical systems relying on visual perception. The term fog denotes an
atmospheric aerosol which consists of numerous small water droplets dispersed in the air close
to the Earth’s surface (cf . Sec. 4.1). Light on its path from an object to an observer is scattered
away and partially absorbed whenever it encounters one of these droplets; at the same time,
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Figure 1.2: On its way from an object to an observer through fog, light is scattered away and
simultaneously enriched with surrounding light.

Figure 1.3: daytime fog captured by a driver assistance front camera

surrounding light is scattered into the line of sight (cf . Fig. 1.2). Depending on the surrounding
lighting conditions and the density and homogeneity of the fog, the resulting visual e�ects range
from simple veils or halos to arbitrarily shaped ghost artifacts.

In the case of approximately homogeneous daytime fog, contrast reduction represents the most
dominant visibility-reducing e�ect (cf . Fig. 1.3). This contrast reduction can be modeled as
exponential attenuation over distance with a decay constant K :

Cv(d) = Cv(0)e−Kd,

where Cv(d) denotes the visual contrast at the distance d between an object and an observer
(cf . Sec. 3.1). In practice, the so-called extinction coe�cient K turns out to be the most relevant
parameter for characterizing fog. As it is determined by the scattering and absorbing behavior of
the atmosphere (cf . 4.3.2), K is related to the optical depth of the atmospheric aerosol and thus to
the visual range of observers in foggy environments. This is further speci�ed by the de�nition of
the meteorological visibility dmet in Chap. 3.

A reliable estimation of K would allow for various applications in the context of driver assistance
systems and (semi-)autonomous driving (cf . Sec. 3.3). This motivates a detailed discussion of
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models for light transport through fog (cf . Part II) and the development of K-estimation methods
(cf . Part III), which shall be the subject of this work.





Chapter 2Chapter 2
Contribution and Organization of this Thesis

Meteorological visibility as de�ned in Sec. 3.1 is an established quantity in the context of visibility
assessment, with a history reaching back to the beginning of the 20th Century (cf . e.g. [Kos1924]
or Table 3.1). In daytime fog, it is the distance at which the contrast between a dark object and
the bright horizon falls below a certain perception threshold (cf . Sec. 3.1). Although several
measuring devices for meteorological visibility are available (cf . Sec. 3.2), its estimation based
on images is a comparatively new �eld of work which has emerged with the increased use of
cameras for driver assistance and road tra�c surveillance. This is mainly driven by a greater
interest in achieving a holistic environmental understanding (cf . Chap. 1) and the search for
further video-based driver assistance applications (cf . Sec. 3.3).

An overview of the literature on image-based visibility assessment is provided in Sec. 6.1. While
most of the publications mentioned there aim to gradually assess fog’s density, only a few of
them are based on a well-de�ned physical quantity. The only rigorous method for image-based
estimation of meteorological visibility is described in a series of works by Hautière et al. starting in
2006 (cf . e.g. [Hau2006c]). Based on Koschmieder’s model for horizontal vision, they use the shape
of the vertical luminance curve on the road and the sky to draw inference on the fog’s density.
This is done without taking into account the e�ects from non-horizontal vision; wherefore the
resulting luminance curve model is not capable of describing the real luminance observations (cf .
Chap. 8 and Fig. 8.5).

The measurement of physical quantities, however, relies on a good understanding of the related
physics. This understanding is manifested in reliable models which can be used to infer underlying
physical process parameters from statistical observations (cf . Sec. 6.3). Thus one aim of this
thesis is to carefully derive and discuss models for light transport through fog. Based on these
models, improved and novel approaches for image-based estimation of meteorological visibility are
derived which are applicable to data captured by a driver assistance front camera. In this context,
it is explicitly pointed out which assumptions have to be made for this derivation. As general
feasibility of image-based visibility estimation has already been shown in the literature (cf . Sec.
6.1), the evaluation of algorithms focuses on the in�uence of models on the estimation accuracy.
Furthermore, the resulting approaches are extensively discussed and optimized regarding their
run-time performance in order to make them applicable for real-time purposes.

One should note that this work does not claim to answer all questions regarding visibility assess-
ment. Instead, it should be considered as a �rst systematic and in-depth discussion on the theory
of model-based visibility estimation from camera images, restricted to the case of homogeneous
daytime fog. Nevertheless, several links and ideas are provided on how this work could be followed
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up. Many of them can be found in one of the several remarks (provided in separate “Remark”
environments) or in the outlook on page 157.

This thesis is organized in three parts: the introduction in Part I, which explains the motivation for
using model-based visibility estimation in the context of video-based driver assistance systems;
the theory and models for light transport through fog in Part II, in which the interaction of light
and fog is discussed on the microscopic as well as on the macroscopic scale; and the model-based
visibility estimation in Part III, in which the light transport models are used to introduce novel
algorithms and improve existing algorithms for the estimation of meteorological visibility. Each
part is organized in chapters, which consist of sections and subsections.

While chapters 3, 4 and 6 compile useful background information on the theory of light, fog,
scattering, image-taking and other related topics, the main contribution made by this work can be
found in chapters 5, 7, 8 and 9. In Chap. 5, the radiative transfer theory is used to explicitly derive
arbitrarily accurate models for light transport through fog. The link between the classical and
integral formulation of the radiative boundary problem is rigorously pointed out, and the models
are derived from a �xed-point iteration for the integral operator. To the author’s knowledge, this
work manifests these steps for the �rst time.

The last three chapters 7, 8 and 9 introduce the model-based algorithms. While Chap. 7 describes
a completely novel approach for visibility estimation, Chap. 8 is based on the analysis of road
surface luminance curves (RSLC), as described by Hautière et al. (cf . Sec. 6.1). It is shown that
higher-order RSLC models can be applied to reduce the systematic model error in the visibility
estimation. At the same time, the increased complexity of higher-order models can be broken
down to precomputed look-up tables which can be used for real-time purposes. This is based on
the insight that the fast parameter estimation method on the basis of the RSLC’s in�ection point
is valid not only for Koschmieder’s model as used by Hautière et al. but also for the novel higher-
order models. Chap. 9 provides a sketch of an algorithm which could be a useful supplement to
the algorithms presented in Chap. 7 and Chap. 8. It should be considered more as an outlook than
as a fully evaluated algorithm.

A brief overview regarding motivation, contribution and linking of the chapters, sections and
subsections can also be found in the introductions to Part II and Part III on pages 13 and 61,
respectively.

After a conclusion and summary of the work, the parts are followed by several appendices which
contain additional information provided at the end of the work mainly for reasons of readability.
This includes a comprehensive overview of the notation in Appendix A. The bibliography and
the index can be found at the very end of the document. The index also includes most of the
abbreviations used in this work; further mathematical abbreviations and symbols are listed in
Appendix A. In order to enrich the contents without decreasing the overall readability, several
remarks are added to the end of the sections and subsections.
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Light that propagates through a foggy atmosphere is scattered and absorbed whenever it interacts
with fog droplets or other particles. As pointed out in Sec. 1.2, this leads to a substantial
degradation of visibility. In order to quantitatively assess the reduced visual range caused by
fog, the physical quantity meteorological visibility dmet is introduced in Chap. 3. It is shown how
dmet can be derived from the combination of Duntley’s law and the human’s visual perception
threshold, as a quantity inversely proportional to the extinction coe�cient K . In addition, the
de�nition of the meteorological visibility is discussed regarding its scope, limits and ambiguities
(cf . Sec. 3.1). A rough overview is provided of the most common measuring devices (cf . Sec. 3.2).
In addition, various applications for the camera-based estimation of meteorological visibility are
pointed out (cf . Sec. 3.3).

To implement model-based approaches for visibility assessment, it is important to understand the
microscopic and macroscopic processes of light transport through fog. Therefore, the theoretical
foundations of fog, light, scattering and radiative transfer are discussed in chapters 4 and 5. Based
on this, models can be derived which appropriately describe the overall process of light transport
through fog. They are the basis for the visibility estimation methods introduced in Part III of this
work.

Chap. 4 focuses on the microscopic process of scattering by fog droplets. In Sec. 4.1, fog is
introduced as a dispersed medium that usually consists of numerous tiny water droplets. It is
outlined how the macroscopic properties of fog can be described by the drop-size distribution
without taking into account the exact positions or radii of individual particles. Besides, basic facts
about light are compiled which include the particle and wave properties as well as radiometric and
photometric terms such as radiance and luminance (cf . Sec. 4.2). In Sec. 4.3, the most important
�ndings of the Mie theory are brie�y but carefully brought together. This theory is used to
describe the scattering and absorption of light by single particles as well as in fog volumes. From
this, several useful assumptions can be made about light transport through fog, for instance, about
wavelength independence and perfect scattering (no absorption).

In Chap. 5, the radiative transfer equation (RTE) is introduced and simpli�ed with respect to fog
and its use in the context of video-based driver assistance. Together with appropriate boundary
conditions, the radiative boundary problem can be classically formulated (cf . Sec. 5.2). To
remove the di�cult-to-handle integro-di�erential formulation of the RTE, an integral formulation
is derived and shown to be equivalent to the classical formulation under certain assumptions
(cf . Sec. 5.3). Based on this, models for light transport through fog can be derived which are
approximate solutions to the radiative transfer problem (cf . Sec. 5.4). These models make it
possible to subsequently derive the visibility estimation algorithms. For the case of a plane-parallel
atmosphere, the models are more extensively discussed in Sec. 5.5.

Although there is a lot of literature about the radiative transfer theory in general, one should
note that it is hard to �nd explicit formulations or even proofs that rigorously describe the way
solutions or approximate solutions of the radiative boundary problem are developed from the
RTE. In fact, the author could not �nd any literature on the relation between the classical and
integral formulation of the boundary problem in Sec. 5.3 or the higher-order approximate models
provided in 5.4.2.





Chapter 3Chapter 3
Meteorological Visibility

Contents
3.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Measuring Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Applications of Image-Based Visibility Estimation . . . . . . . . . . . . . . . 19

Fog, smog and other optically dense atmospheric aerosols are a common cause for reduced
visibility. Depending on the size and number of particles per unit volume, light is scattered and
absorbed on its path from an object to an observer (cf . Part II of this work). As a result, object
information carried by the light is more and more disturbed over distance and �nally becomes
imperceptible. As stated in Sec. 1.2, this e�ect can be measured by the loss of contrast. In this
chapter, the meteorological visibility is introduced, the distance at which any contrast comes
below the threshold of human perceptibility. This quantity is of substantial interest for visual
environmental perception and can be used in various driver assistance applications (cf . Sec. 3.3).

3.1 De�nition

Looking back at the history of visibility measurements, di�erent terms and meanings have been
introduced to turn visual range into a well-de�ned quantity. Basically all of them are designed to
describe the maximum distance at which a su�ciently large object can be clearly discerned from
its environment. In this work the current state-of-the-art de�nition is used, which follows the
concept of the visual contrast and the related de�nition of meteorological visibility.

The visual contrast Cv (often referred to as Weber contrast) is de�ned in terms of an isolated object
or feature of luminance L ∈ R≥0 surrounded by a uniform and su�ciently extended background
of luminance Lbg ∈ R≥0 (cf . [Mid1952, 4.1]):

Cv :=
L− Lbg
Lbg

∈ [−1,∞) ∪ {∞} , (3.1)

where luminance denotes the photometric term for brightness (cf . Sec. 4.2), and 0/0 has to be
interpreted as 0. The human perception of this contrast has been shown to be approximately
independent of the luminance level in the case of an unbalanced object-background setting, and
thus constitutes a suitable basis for visibility measures (cf . [Pel1990]).
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Figure 3.1: The de�nition of the meteorological visibility is based on the visual perception thresh-
old of τc = 5%.

One should note that the concept of a signed contrast re�ects the presumed asymmetry between
the foreground and background. For objects brighter than the background the visual contrast
ranges from 0 to∞, while for objects darker than the background, it ranges from 0 to −1. Since
the perceptibility of objects rises with increasing |Cv|, a contrast is said to be larger than another
contrast (of the same sign) whenever this is true for the absolute values.

Caused by atmospheric attenuation, the apparent luminance L(d) of the object depends on the
distance d between the object and observer. According to Duntley’s law the distance-dependent
visual contrast

Cv(d) =
L(d)− Lbg

Lbg

decreases exponentially w.r.t. d (cf . [Mid1952, 4.5]). More precisely, it is

Cv(d) = Cv(0)e−Kd, (3.2)

where K ≥ 0 is an atmospheric parameter referred to as extinction coe�cient. When the subtrac-
tion of Lbg is interpreted as a signal background correction, this equation is equivalent to the
Beer-Lambert law, which is widely used in natural sciences. A comprehensive discussion on the
relation between K and the fog’s drop-size distribution can be found in 4.3.2.

With the help of Duntley’s law (3.2), the meteorological visibility (in the daytime) can now be
de�ned as the distance “at which it is just possible to distinguish a dark object against the horizon”
(cf . [Mid1952, 1.1]). For a perfectly black object, i.e. L(0) = 0, this leads to

τc = |Cv(d)| = e−Kd
τc
met , (3.3)

where the meteorological visibility dτc
met is implicitly de�ned in terms of the extinction coe�cient

K and the visual perception threshold τc ∈ [0, 1]:

dτc
met := − log(τc)

K
. (3.4)

There are two commonly used perception thresholds: 0.02 and 0.05. Some authors de�ne the
meteorological visibility based on the threshold τc = 0.02, such as Middleton in [Mid1952, 6.2.1]
(referred to as meteorological range) and the Verband Deutscher Ingenieure (VDI) in [VDI1983]
(referred to as standard visibility). However, in this work τc = 0.05 is applied to de�ne the
meteorological visibility (illustrated in Fig. 3.1), following the de�nition of the International
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Commission on Illumination CIE (cf . [CIE2012]):

dmet := d0.05
met = − log(0.05)

K
. (3.5)

This decision is further motivated by the increased safety demands in the automotive sector as
well as by the clearly visible trend in the literature (cf . Table 3.1). Nevertheless, as the models and
algorithms in this work are intended to estimate the atmospheric parameter K , the di�erence in
the choice of τc is only of marginal importance.

Remark 1 (Other De�nitions of Contrast). It is interesting to note that a suitable contrast
de�nition essentially depends on the observation setting (cf . [Pel1990]). As stated above, the
visual contrast Cv from (3.1), for example, is useful in scenarios where a small foreground object
or feature is situated in front of a largely extended background. In comparison to this unbalanced
foreground-background setting, the Michelson contrast CM can be applied to more general patterns
in which none of the luminances are preferred. It is given by

CM :=
Lmax − Lmin
Lmax + Lmin

∈ [0, 1],

where Lmin and Lmax denote the minimum and maximum luminance of the pattern, respectively.

Remark 2 (Scope of Meteorological Visibility). It is important to realize that meteorological
visibility as de�ned in (3.5) does not cover non-atmospheric impairments of visibility, such as
adverse illumination conditions (darkness, glare), geometrical blockages in the line of sight (due to
curves, other tra�c participants, dirt on the windshield, etc.), undersized objects or a low original
contrast Cv(0).

Nevertheless, it is still a meaningful visibility measure. For one thing, it is explicitly constructed
to be focused on purely atmospheric impairments. For another thing, especially in the automotive
context where almost all important information is (or should be) provided in a visually well
observable way (concerning size, contrast, line of sight, illumination, etc.), atmospheric sight
reductions form the most important aspects of visibility.

Remark 3 (Wavelength Dependence). The meteorological visibility as de�ned in (3.5) is inde-
pendent of the wavelength of the transmitted light. The actual relation between the extinction
coe�cient and the visibility of an atmosphere, however, slightly depends on the wavelength.
Further discussions and a collection of empirical relations (with a focus on visible and infrared
light) are provided in the highly informative work of Nebuloni [Neb2005].

Remark 4 (Naming Convention). A consistent naming convention for meteorological visibility
has not been established yet. Table 3.1 provides a compendium of the diverse conventions used in
this context.

Remark 5 (Limits of Meteorological Visibility). When working with a de�nition of meteorological
visibility as provided in (3.5), it is important to know the limits of this term. The main practical
restrictions can be found in the assumptions about the homogeneity of fog and the daytime.

In cases of highly non-homogeneous fog, for example, the extinction coe�cient has to be under-
stood as a spatially and temporally varying quantity. Therefore, it is neither useful nor possible
to estimate dmet in those cases. In fact, the problem of visibility estimation can be interpreted as a
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term symbol τc source example

visual range sS ≈ 2 % [Kos1924, (33)]
visibility V 2 % [Kam1952, (2a)]

meteorological range V2 ≈ 2 % [Mid1952, 6.2.1]
visibility range Rv ≈ 2 % [Bur1974, 7.3]

standard visual range V ≈ 2 % [Jiu1974, (1)]
standard visibility VN ≈ 2 % [VDI1983, (2a)]

meteorological visibility distance Vmet 5 % [Hau2006c, (3)]
meteorological optical range P 5 % [Org2008, (9.6)]

meteorological visibility V ≈ 5 % [Hau2011, (3)]
meteorological optical range v 5 % [CIE2012, 17-772]

meteorological visibility v 5 % [CIE2012, 17-773]
meteorological visibility dmet 5 % [Len2013, (1)]

Table 3.1: examples for various conventions to de�ne meteorological visibility

tomographical one, which is hardly accessible by only one camera. For this reason the models and
algorithms proposed in this work are derived from the assumption of a spatially and temporally
homogeneous atmospheric aerosol (cf . Remark 17 on page 69).

For observations of single light sources at night, the meteorological visibility represents a mean-
ingful range quantity (cf . [Org2008, Chapter 9]). However, in road tra�c, several light sources (in
particular the own headlights) illuminate the scene, so visual impairment is dominated by glare
and di�usion instead of by contrast reduction e�ects. Therefore, the de�nition of visibility at
night has to be reconsidered. Although the atmospheric parameter K still plays a central role in
this context, other parameters have also to be taken into account (cf . e.g. [Gal2010a]). Further
literature on visibility assessment at nighttime can be found in 6.1.2.

3.2 Measuring Devices

At present, the most common measuring devices for the extinction coe�cient (and in turn the
meteorological visibility) can be divided into three classes. One class is the transmissometers.
Based on the ratio between the emitted and received light, transmissometers measure the mean
extinction coe�cient between a transmitter and a photodetector over a de�ned distance. By using
modulated light which can be separated from other light sources, such as the sun, this approach
can be used for daytime as well as for nighttime measurements. Sub-types of transmissometers
are single-ended and double-ended devices in which the light is attenuated over a path of single
or double length compared to the transmissometer’s extension, respectively.

The second common class of measuring devices is based on scattering analysis. These devices
include visibility lidars which compute K from the time signal of the backscattered laser beam.
More simple forward and backward scatterometers analyze the amount of light scattered into a
certain angular range. To estimate the extinction coe�cient from the scattered amount of light,
the absorption in fog has to be neglected, which is a common assumption in natural fog (cf . Sec.
4.3 and (4.11)) but may lead to systematic errors in the case of smog.

A less commonly used class of measuring devices is nephelometers. Based on particle analy-
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Figure 3.2: applications for image-based visibility estimation

sis within a small fog volume the drop-size distribution can be estimated. Based on this, all
atmospheric parameters can be derived with the help of classical scattering theory (cf . Chap. 4).

A more comprehensive discussion on the di�erent types of visibility-measuring devices can be
found in [Org2008, Chapter 9] or, alternatively, in [Klo2008, 4.7.3]. One should note that these
established measuring devices su�er from drawbacks in the automotive context (cf . [Pom1997,
1]). That is especially why image-based visibility estimation, which this work focuses on, has to
be considered as a promising new class of visibility-measuring devices.

3.3 Applications of Image-Based Visibility Estimation

Visibility estimation usually is not the main objective of (automotive) camera systems. Nonetheless,
there are diverse applications which justify a closer look at image-based measuring methods for
meteorological visibility (cf . Fig. 3.2). This work will concentrate on the automotive context
with focus on multi-purpose driver assistance cameras. It seems to be a promising option to
extend existing embedded camera systems by adding the functionality of visibility measurement.
Algorithms designed for this scenario should make use of as much available information as
possible to reduce the additional hardware e�ort to a minimum.

Light. One of the classes of driver assistance functions that bene�ts most from a visibility
estimation can be found in the automatic light control. For instance, according to the German
road tra�c regulations (namely StVO §17, Abs. 3) the headlamps have to be switched to dipped
beam (or a comparable combination of two front fog lamps and marker lamps) in situations of low
visibility due to dense fog (even in the daytime). Front fog lamps are only allowed to be turned
on in these situations. Moreover, they explicitly state that rear fog lamps are only permitted to
be turned on in cases of a meteorological visibility below 50 m. All these regulations could be
automatically complied with based on dmet estimations provided by a driver assistance camera
system.

Speed. Another category of driver assistance functions which can be enhanced by visibility
information is speed-related warning or adaption systems. Based on a comparison of the speed-
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dependent stopping distance and the current meteorological visibility, the driver could be informed
about the appropriate speed. Moreover, it could be possible to introduce intelligent speed adaption
(ISA) and intelligent inter-vehicle distance management systems based on the current visibility
conditions (cf . [Hau2007a, 3.2.2]). This is supported by several regulations, such as the German
road tra�c regulations (namely StVO §3, Abs. 1) according to which the vehicle’s speed has to
be adapted to the environmental visibility conditions. For instance, in case of a meteorological
visibility below 50 m, the speed has to be reduced to a maximum of 50 km h−1. Similar to the case
of automatic light control, an automated ful�llment of these regulations requires a quantitative
instead of a qualitative visibility assessment. Further information on the development of visibility-
related speed warning and adaption systems can be found in [Gal2010b] and [Gal2013].

In addition, the measurement of the visibility conditions could also be interesting for static
cameras, such as tra�c surveillance cameras, in order to adjust the speed limit and inform drivers
with variable-message signs.

Computer VisionAlgorithms. The most diverse category of applications for visibility estimation
is algorithmic enhancements within already existing functions for video-based driver assistance
systems.

On the one hand, only the information about reduced visibility enables a�ected computer vision
algorithms to adapt to the current visibility conditions. An example can be found in algorithms
for generic or speci�c object detection. For instance, a meteorological visibility of dmet = 40 m
makes it implausible to �nd an object at 80 m and makes it an unreliable piece of information
that no objects at > 100 m have been found. Many algorithms should thus incorporate the
visibility information to realize an appropriate degradation concept and implement checks for
the plausibility and reliability of their results. In the worst case this could lead to a temporary
shut-down of speci�c functions or the complete driver assistance system, which is supplemented
by a warning to the driver.

In addition, some algorithms could even adapt their operation in order to optimize the performance
in foggy scenarios. The tracking of road signs, for example, could be attuned to color and
luminance changes with respect to the distance through multiple observation. The thresholds for
edge detection could also be adapted to the distance-dependent loss of contrast, which in turn
could lead to an enhanced lane marking or obstacle detection (cf . e.g. [Hau2007d] or [Hau2007a,
3]).

Moreover, the meteorological visibility can be the basis for novel algorithmic approaches to
various computer vision tasks, such as free-space detection (cf . e.g. [Hau2009] and [Hau2014])
or model-based contrast restoration (cf . e.g. [Hau2007c], [Hau2008b], [Hau2010] and [Tar2010]).
Even outside the driver assistance context, meteorological visibility can be applied for, e.g., passive
ranging of �ying objects (cf . e.g. [Bar2012]).

Sensor Data Fusion. Whenever multiple di�erent sensor systems are involved, visibility esti-
mation can optimize the process of sensor data fusion. This is based on the observation that the
attenuation of fog and other atmospheric aerosols substantially di�ers for the di�erent bands
of the electromagnetic spectrum. While fog signi�cantly decreases the range of cameras, it has
almost no impact on the operation of radar or ultrasonic sensors (cf . e.g. [Li2014]). As parts of
the environment are perceived redundantly, one could thus temporarily reduce the con�dence of
environmental information provided by camera systems in fog.

In combination with other sensor systems, the estimation of dmet might even be extendable to
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create a more comprehensive adverse weather detection (cf . [Fol2014]). Based on the observation
of di�erent atmospheric attenuation values for di�erent sensor spectra, it could be possible to
draw inference about the causative weather phenomenon.

Environment. Meteorological visibility in general is an important part of environmental modeling.
The increasingly large number of stationary and mobile camera systems could be used as a network
of low-cost sensors. As an application in the Internet of Things, this data in combination with
data from weather stations could be used by the weather services to derive a more precise, dense
and real-time visibility map. This so-called fog nowcasting can, for example, be useful for local
fog warning with the help of broadcasting or variable-message signs. In addition, a dense fog
map can be used for further research on fog formation and dissipation.
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To understand the visibility impairments caused by fog, it is helpful to take a look into the
microscopic scattering and absorption processes �rst. In this chapter, the most relevant facts
about fog, light and their interaction on the microscopic scale are brought together.

4.1 Fog

Fog is a visibility-reducing atmospheric aerosol that consists of numerous tiny water droplets
or ice crystals dispersed and �oating in the air close to the Earth’s surface. In meteorology, fog
requires a visibility below 1 km at an observation height of 1.8 m above ground (cf . e.g. [Klo2008,
4.4.2]). For visibilities above 1 km these aerosols are called mist or haze. Fog occurs in a wide
variety of conditions. In 1928, Willett [Wil1928] started to categorize fog according to the various
physical processes and environmental conditions causing its formation. This contributed to the
establishment of a number of fog types which were modi�ed and adapted to new �ndings over
the years (cf . [Gul2007]).

In road transport, the most relevant types of fog are those that frequently occur over land.
Two of them are the well-studied categories of radiation and advection fog. In both cases, fog
occurs due to condensation where air of almost 100 % relative humidity is cooled down below
its dew point leading to supersaturation. As a consequence, the surplus water starts to attach to
condensation nuclei (usually < 1 µm, cf . e.g. [Kur1951]) resulting in tiny fog droplets reaching
tens of micrometers in size (cf . [Gul2007, 3.1]).

Radiation fog is caused by nocturnal cooling of the ground and the saturated humid air close to it.
Here, the dominant process of heat exchange is thermal radiation. The radiation fog slowly grows
upwards which requires a low wind speed during its formation. Good conditions can often be
found during autumn and early winter in valleys with high soil moisture. In contrast to the calm
conditions required for radiation fog, advection fog forms when a body of warm and saturated
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Figure 4.1: example for a drop-size distribution

humid air is pushed over a cold landmass such as a windward mountainside especially in coastal
regions. The warm air is suddenly cooled down leading to condensation and a comparatively
quick formation of fog. Besides these two, there are many di�erent circumstances that can lead
to various types of fog, most of which are also based on condensation. A more comprehensive
review on them can be found in [Gul2007, Section 2].

In contrast to fog droplets emerging from condensation, aerosols composed of ice crystals occur
due to sublimation of water vapor in extremely cold environments (usually at < −30 ◦C, cf .
[Gul2007]). Since this so-called ice fog is a di�cult-to-study and rare phenomenon, fog particles
are assumed to consist of only liquid water droplets in this work. Nevertheless, since the exact
knowledge about the microscopic scattering and absorption processes in fog is only of minor
importance for visibility estimation, the algorithms proposed in this work can basically be applied
to ice fog as well.

Due to their small size, the surface tension causes fog droplets to be almost perfectly spherically
shaped. The sphere radii of typical droplets vary from 1 to 50 µm (cf . e.g. [Eld1961], [Klo2008,
4.4.2] or [Gul2007, 2]). In order to exactly describe an aerosol such as fog, actually all radii and
positions of droplets would have to be taken into account. However, since one can expect fog to
contain a su�ciently large number of particles per unit volume, it is reasonable to work with
the distribution of particle radii instead of considering each particle individually. This so-called
drop-size distribution is represented by a measurable and integrable function N : R≥0 → R≥0

(cf . Fig. 4.1), which has to be interpreted as the probability distribution of the radius scaled by
the total number of particles per unit volume

N0 =

∫ ∞
0

N (r)dr.

A typical magnitude of fog particles per m3 is 109 (cf . e.g. Remark 8 on page 35). The exact
distribution of fog droplets in an aerosol signi�cantly depends on the type of fog. Drop-size
distributions have been studied many times and modeled in various ways (cf . e.g. [Gra2012] or
[Dei1964]). One commonly used analytical model for N is the log-normal density function, which
is further discussed in Remark 8 on page 35.
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4.2 Light

Light is one of the most fascinating aspects of physics. In this work, the term light denotes the
visible part of the electromagnetic radiation which approximately covers a spectrum of 380 to
780 nm. Whenever light interacts with surfaces, particles or other objects it changes its properties
by scattering (including re�ection and refraction) and absorption. In this way light serves for
humans as one of the most important sources of environmental information. It is the basis for
any visual perception.

From the early optical experiments of Alhazen in the 11th Century to today’s studies on quantum
entanglement, metamaterials and ultrashort pulse lasers, scientists continue to improve the
understanding of the nature of light and its interaction with matter. Only the most relevant facts
regarding light are outlined in this section. The interested reader is referred to one of the more
comprehensive overviews such as given in [Bey2012] or [Ber2004].

Properties of Light. In general, the properties of visible light do not di�er from the rest of the
electromagnetic spectrum with the exception of being perceivable by the human eye. Therefore,
the physical properties discussed in the following are valid for all types of electromagnetic
radiation.

Light is a wave in the electromagnetic �eld which can be described by Maxwell’s equations. This
wave always has a certain polarization, which describes the orientation of the underlying vector
�eld oscillations with respect to the wave’s direction of propagation. In vacuum the speed of
light has the exact value of 299 792.458 km s−1 which is the maximum speed of information
propagation in the universe.

According to quantum mechanics, the energy of the wave is quantized meaning that it is always
an integral multiple of its energy quantum hf , which is the product of the Planck constant h
and the wave’s frequency f . The particle that represents an electromagnetic oscillation with the
energy of hf is called photon. This particle is used to describe the interaction between matter and
the electromagnetic �eld in terms of their energy: Photons are absorbed or emitted by matter.

Scattering can be regarded as the quasi-simultaneous absorption and emission of a photon with
the traveling direction of the exiting particle randomly deviating from the incident particle’s
direction. The stochastic distribution of the angle between the exit and the incident direction is
determined by the di�raction pattern that results from the light wave interfering with itself in
the presence of the scattering object. Scattering of light at small spherical water droplets plays a
fundamental role in this work, which is why Sec. 4.3 explains this phenomenon in more detail.

Radiance and Luminance. To make light measurable and in turn assessable for any inves-
tigation, meaningful physical quantities have to be de�ned. For the general electromagnetic
spectrum the associated subject area is called radiometry and for visible light photometry. Each
photometric quantity is derived from a corresponding radiometric quantity by a weighting with
the spectral luminous e�cacy η : R>0 → R≥0 representing the sensitivity of a human eye w.r.t.
to the wavelengths (cf . e.g. (4.1)). η has the unit lm W−1 and is integrable over R>0. Since usual
cameras mainly capture the visible part of the electromagnetic spectrum, this work also uses the
photometric quantities in the context of cameras.

In the center of considerations for the theory of radiative transfer and light transport through
fog are the radiometric and photometric quantities radiance and luminance. The spectral radiance
represents the radiation’s power density function w.r.t. the solid angle, the projected area and the
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wavelengths of emitted or received light. To compute, for example, the energy received from light
one not only has to specify a certain time interval, but also the considered solid angle, the range
of wavelengths, and the a�ected area and its positioning relative to the incident light. Its unit is
given by W sr−1 m−2 nm−1. In contrast to this, the term radiance (without “spectral”) describes
the spectral radiance integrated over the wavelength. In this case the unit is W sr−1 m−2.

The spectral radiance can be expressed as a locally integrable function

(R3, S2,R,R>0) 3 (x, σ, t, λ) 7→ Le(x, σ, t, λ) ∈ R≥0,

where x denotes the position, σ the direction, t the time and λ the wavelength. The luminance
Lv can be derived from Le as

Lv(x, σ, t) =

∫ ∞
0

Le(x, σ, t, λ)η(λ)dλ, (4.1)

with a unit lm sr−1 m−2 = cd m−2. In the case of a non-scattering and non-absorbing atmosphere,
the apparent luminance of an object does not depend on the observer’s distance towards the
object. It corresponds to the non-quantitative term brightness, which describes the physiological
sensation light causes in a human observer.

Another radiometric term relevant in the context of image taking, is given by the spectral irradiance
which describes the overall power of light incident on a surface element. It can be derived from
the spectral radiance as

E(x, t, λ) :=

∫
Ω(x)

Le(x, σ, t, λ)〈σ, ν(x)〉dσ

where ν(x) denotes the (inner) unit normal vector of the surface in x, and Ω(x) ⊂ S2 is the set
of all incident light directions at x. Assuming su�ciently small pixels and a linearly operating
sensor the intensity values in images can be considered as linear representation of the incident
irradiance weighted by the camera’s spectral quantum e�cacy (cf . (6.6)). Further assuming a
pinhole camera model makes it plausible to consider E to be proportional to Le (cf . (6.7)). This
leads to an overall camera model where object luminances and image intensities are linearly
related. This is discussed in more detail in Sec. 6.4.

Since furthermore the radiative transfer theory holds true for Le as well as for Lv, it is reasonable
to use only one symbol L in the following. A more comprehensive discussion on radiometry and
photometry can be found in e.g. [Bey2012, 4].

4.3 Scattering and Absorption

The propagation of electromagnetic radiation is a�ected by any change of the medium’s optical
density. In particular, in atmospheric aerosols each particle embodies an optical discontinuity
which causes light to be scattered and absorbed. This process can be described by Maxwell’s
equations, which for arbitrarily shaped particles leads to a not explicitly solvable problem. Based
on a reformulation in spherical coordinates, Mie, at the beginning of the 20th Century, presented
solutions to Maxwell’s equations in the special case of spherical particles (cf . [Mie1908]). These
equations are applicable to the case of fog droplets, as they are approximately spherical due to
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Figure 4.2: complex refractive index of water (for standard atmosphere and 25 ◦C) in the visible
electromagnetic spectrum according to [Hal1973]

their surface tension and small size. This allows for a precise description of the scattering and
absorption processes at single fog droplets (cf . 4.3.1). Combining this microscopic scattering
behavior with drop-size distributions is a reliable way to model the macroscopic scattering
behavior of fog volumes (cf . 4.3.2).

In this section, the terms and concepts of Mie scattering are addressed in a brief overview. More
comprehensive works on Mie’s theory can be found in e.g. [Str1941], [Hul1957], [Boh1998],
[Mis2002b] and [Gra2004]. A discourse on non-spherical particles (such as ice crystals) can, for
instance, be found in [Mis2002b, Chapter 10].

4.3.1 Mie Theory: Scattering by Spherical Particles

According to Mie, the scattering and absorption at a single spherical particle is determined by
basically two parameters. One of them is the dimensionless size parameter

x =
2πr

λ
, (4.2)

where r denotes the sphere’s radius and λ the electromagnetic wavelength. The second dimen-
sionless parameter is given by the complex refractive index of the particle

m = mr + imi (sometimes m = mr − imi)

which is composed of the (lossless) refractive index mr, describing the ratio of speed of light in
vacuum to the speed of light in the particle’s medium; and the absorption index mi, indicating
the amount of absorption loss of light that propagates through the particle. Since fog droplets
almost completely consist of water, its optical properties play an important role for studies on
scattering in fog. The complex refractive index data of water (for the standard atmosphere and
25 ◦C), which is used for Mie computations in this work, is taken from [Hal1973] (cf . Fig. 4.2).

Depending on the size parameter x and the complex refractive index m the complex-valued Mie
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expansion coe�cients (an)n∈N and (bn)n∈N can be introduced as

an(x,m) =
mΨn(mx)Ψ′n(x)−Ψn(x)Ψ′n(mx)

mΨn(mx)ξ′n(x)− ξn(x)Ψ′n(mx)

bn(x,m) =
Ψn(mx)Ψ′n(x)−mΨn(x)Ψ′n(mx)

Ψn(mx)ξ′n(x)−mξn(x)Ψ′n(mx)
,

where Ψn and ξn, n ∈ N, denote the so-called Ricatti-Bessel functions (cf . [Boh1998, (4.56), (4.57)]).
The coe�cients an and bn are helpful in formulating the relation between the set of generating
solutions of the scalar wave equation (given in terms of Bessel functions, Legendre polynomials
and trigonometric functions, cf . [Boh1998, (4.15), (4.16)]) and the far-�eld boundary problem
representing the scattering process. The boundary conditions are determined by x and m.

Some properties of this far �eld are of particular interest for this work. On the one hand, these
are quantities that determine the amount of scattering, absorption and the overall extinction: the
extinction e�ciency

Qext(x,m) =
2

x2

∞∑
n=1

(2n+ 1)< (an(x,m) + bn(x,m)) ,

the scattering e�ciency

Qsca(x,m) =
2

x2

∞∑
n=1

(2n+ 1)
(
|an(x,m)|2 + |bn(x,m)|2

)
and the absorption e�ciency

Qabs(x,m) = Qext(x,m)−Qsca(x,m). (4.3)

They describe the dimensionless ratio of the e�ective cross section to the geometrical cross section
of the particle regarding extinction, scattering and absorption. Due to the very small absorption
index mi < 1.6 · 10−7 of water for the spectrum of visible light (cf . Fig. 4.2), the absorption
e�ciency for fog droplets is also close to 0 (cf . Fig. 4.3).

On the other hand, the full far-�eld solution can be expressed in terms of two complex-valued
scattering functions

[−1, 1] 3 µ 7→ S1(µ;x,m) =
∞∑
n=1

2n+ 1

n(n+ 1)
(an(x,m)πn(µ) + bn(x,m)τn(µ)) ,

[−1, 1] 3 µ 7→ S2(µ;x,m) =
∞∑
n=1

2n+ 1

n(n+ 1)
(bn(x,m)πn(µ) + an(x,m)τn(µ)) ,

where µ denotes the cosine of the scattering angle, and πn and τn the angular eigenfunctions
basically given by Legendre polynomials (cf . e.g. [Wis1980] or [Gra2004]). Based on S1 and S2,
the scattering phase function of a single particle scattering process in the case of unpolarized light
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Figure 4.3: Absorption e�ciency Qabs w.r.t. λ ∈ [0.38 µm, 0.78 µm] (visible light), depicted for
di�erent drop radii r.
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Figure 4.4: Scattering phase function ψ : S2 × S2 → R≥0 . The directions in S2 has always to be
interpreted as pointing in the direction of propagation of the interacting light.

can be computed as

(σ, ω) 7→ ψMie(σ, ω;x,m) =
1

4π

2

x2Qsca(x,m)

(
|S1(〈σ, ω〉;x,m)|2 + |S2(〈σ, ω〉;x,m)|2

)
.

S1 and S2 can also be used to describe the full far-�eld scattering behavior including further
e�ects such as polarization (cf . e.g. [Mis2002b] or [Boh1998, Chapter 13]). These e�ects will be
ignored in this work.

In general, a scattering phase function ψ : S2 × S2 → R≥0 describes the angular distribution of
scattered luminances with exit direction ω ∈ S2 for light incident with a direction σ ∈ S2 (cf . Fig.
4.4); the cosine of the scattering angle is given by µ = 〈σ, ω〉. Since any ψ represents a scattering
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probability distribution on the sphere, it satis�es a normalization property

∀σ ∈ S2 :

∫
S2

ψ(σ, ω)dS(ω) = 1. (4.4)

All phase functions discussed in this work satisfy the assumption that no world direction is
preferred, which apart from volumetric and stochastic arguments (randomly orientated particles)
directly follows from the spherical shape of fog droplets. Hence, all phase functions can be written
in terms of 〈σ, ω〉, which is denoted by the hat notation

ψ̂ : [−1, 1]→ [0,∞), ψ̂(〈σ, ω〉) = ψ(σ, ω).

In particular, the symmetry of 〈·, ·〉 also applies to ψ(·, ·), i.e. ψ(σ, ω) = ψ(ω, σ).

One characterizing parameter for scattering phase functions is given by the asymmetry parameter
g. It is de�ned as the average of ψ weighted by the cosine of the scattering angle (cf . [Boh1998,
Sections 4.3 and 4.5]), i.e. for any σ ∈ S2 one has

g =

∫
S2

ψ(σ, ω)〈σ, ω〉dS(ω).

It describes the relation between forward and backward scattering and varies between g = −1
(perfect backward scattering) and g = 1 (perfect forward scattering). In the case of single spherical
particles with phase function ψMie(·, ·;x,m) it can be computed as

g(x,m) =
4

x2Qsca(x,m)

[ ∞∑
n=1

n(n+ 2)

n+ 1
<
(
an(x,m)an+1(x,m) + bn(x,m)bn+1(x,m)

)
+

∞∑
n=1

n(n+ 2)

n+ 1
<
(
an(x,m)bn(x,m)

)]
.

For numerical simulations of Mie scattering, the implementation of [Mat2002] is used in this work.
To illustrate the terms introduced in this section, some exemplary results are provided in Fig. 4.3,
Fig. 4.5, Fig. 4.6 and Fig. 4.7. As expected, the absorption e�ciency for typical fog droplets of
radius r ∈ [1 µm, 50 µm] and visible light of wavelength λ ∈ [0.38 µm, 0.78 µm] turns out to be
negligibly small compared to the scattering e�ciency (cf . Fig. 4.3 and Fig. 4.5). Furthermore, Fig.
4.5 reveals why fog usually appears gray, which is because Qsca has no systematic bias towards
short or long wavelengths in the case of fog droplets and visible light. This justi�es why in this
work the scattering behavior in fog is assumed to be wavelength-independent in the context of
visibility assessment (cf . 5.1.2). Similarly, Fig. 4.6 shows that the asymmetry parameter g can be
assumed to be independent of λ and mainly lies in the interval [0.8, 0.9].

Remark 6 (Further Notes on the Size Parameter).

(a) As the Mie theory is derived from Maxwell’s equations, it covers all scales of scattering.
For very small particles compared to the wavelength (x� 1) it approaches to the theory of
Rayleigh scattering, and for very large spheres (x� 10) it agrees with classical ray optics
(cf . [Mis2002b]). It represents an important tool for the studies of many scattering e�ects.
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Figure 4.5: Scattering e�ciency Qsca w.r.t. λ ∈ [0.38 µm, 0.78 µm] (visible light), depicted for
di�erent drop radii r.
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Figure 4.6: Asymmetry parameter g w.r.t. λ ∈ [0.38 µm, 0.78 µm] (visible light), depicted for
di�erent drop radii r.
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Figure 4.7: Example of a scattering phase function ψMie of a single spherical particle of radius
r = 1 µm and incident light of wavelength λ = 0.55 µm, i.e. x ≈ 11.42.

(b) Scattering depends on the size parameter x = 2πr/λ, where water droplets in fog range
from 1 µm to 50 µm (cf . Sec. 4.1) and the visible spectrum ranges from 0.38 µm to 0.78 µm
(cf . Sec. 4.2). Therefore, as a rule of thumb, the size parameter in fog lies in the range of

x ∈
[

2π · 1 µm
0.78 µm ,

2π · 50 µm
0.38 µm

]
≈ [8, 800] .

4.3.2 Volume Scattering

The volume scattering behavior of fog can be described as the sum of individual droplet scattering
processes (cf . Fig. 4.8). As introduced in Sec. 4.1, the radius dependent number of particles is
represented by the drop-size distribution N : R≥0 → R≥0 and the total number of particles per
unit volume N0 . Basically all volumetric scattering properties can be derived from the combination
of single particle scattering with a given drop-size distribution (cf . e.g. [Mid1952] or [Gra2012]).

Among them, the most relevant quantities in the study of visibility conditions are the extinction,
scattering and absorption coe�cients as introduced in Sec. 1.2 and Chap. 3. They can be derived
as integral over the e�ective cross sections πr2Q{ext, sca, abs} weighted by the present drop-size
distribution

K(λ) =

∫ ∞
0

πr2Qext(x(r, λ),m(λ))N (r)dr,

Ks(λ) =

∫ ∞
0

πr2Qsca(x(r, λ),m(λ))N (r)dr,

Ka(λ) =

∫ ∞
0

πr2Qabs(x(r, λ),m(λ))N (r)dr,

(4.5)

where x(r, λ) denotes the Mie size parameter as de�ned in (4.2). The average scattering phase
function can be obtained from

ψ(σ, ω;λ) =
1

Ks(λ)

∫ ∞
0

πr2Qsca(x(r, λ),m(λ))ψMie(σ, ω;x(r, λ),m(λ))N (r)dr, (4.6)
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Figure 4.8: From combining a fog’s drop-size distribution with the scattering behavior of single
spherical water droplets (described by Mie theory), one obtains the relevant volumetric
scattering properties of fog, such as the extinction coe�cient K and the scattering
phase function ψ.

and the corresponding average asymmetry parameter can be computed as

g(λ) =
1

Ks(λ)

∫ ∞
0

πr2Qsca(x(r, λ),m(λ))g(x(r, λ),m(λ))N (r)dr. (4.7)

From (4.3), (4.5) and the linearity of integration it directly follows that

K = Ks +Ka. (4.8)

Furthermore, assuming N to be a fog drop-size distribution one can expect the droplets to be
mainly distributed in the interval [1 µm, 50 µm] (cf . Sec. 4.1), i.e.∫ 50 µm

1 µm
N (r)dr ≈ N0 . (4.9)

Combining (4.9) with (4.5), (4.7) and the numerical results for single spherical droplets (cf . Fig.
4.3, Fig. 4.5, and Fig. 4.6) leads to the reasonable assumptions of wavelength independence for K ,
Ks, Ka and g, namely

λ 7→
(
K(λ),Ks(λ),Ka(λ), g(λ)

)
≈ const., (4.10)

and the negligibility of absorption compared to scattering

Ka/Ks ≈ 0 (4.11)

as long as λ ∈ [0.38 µm, 0.78 µm].

In contrast, the average scattering phase function requires a more careful consideration. Without
further assumptions it a-priori can neither be treated as wavelength independent nor as being
of a simple shape. Fortunately, the high complexity and the large number of lobes as well as
the wavelength dependency of the single particle scattering (cf . Fig. 4.7) is reduced a lot by the
radius-related averaging in (4.6). In order to e�ciently model volumetric scattering processes,
analytical approximations for the average phase functions have to be found.

One of the oldest and most popular examples is given by the so-called Henyey-Greenstein phase
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Figure 4.9: Henyey-Greenstein phase functions for di�erent asymmetry parameters g

function (cf . [Hen1941] and Fig. 4.9) which reduces the whole complexity to just the asymmetry
parameter g. It is given as

ψHG(σ, µ; g) =
1

4π

1− g2

(1− 2g〈σ, µ〉+ g2)3/2
. (4.12)

Although it is a quite simplifying model it provides many bene�cial analytical properties and
performs well for many practical applications (cf . e.g. [Ish1978], [Dav2006, 2.3], or [Jar2008, 63–
66]). The discussion on more realistic phase functions can be found in e.g. [Liu1994] or [Shi2006].
However these models are often not only more complex or equipped with additional parameters,
but also su�er from a limited applicability and thus require additional a-priori knowledge on
the actual drop-size distribution. In order to develop highly performant, stable and generally
applicable parameter estimation algorithms, these are important arguments for the use of the
simple Henyey-Greenstein phase function. This is why phase functions are mostly modeled by
(4.12) in this work.

In context of the Henyey-Greenstein phase function, the asymmetry parameter is also often
restricted to the interval [0, 1] and referred to as forward scattering parameter (cf . e.g. [Met2007],
[Len2013]). Moreover, in the context of parameter estimation it is helpful to see that for scattering
of visible light in fog the average asymmetry parameter lies in [0.8, 0.9] (cf . e.g. [Met2007]); this
agrees with the results for single fog droplets (cf . Fig. 4.6).

Remark 7 (Normalization of Average Phase Function). As one would expect, the averaging
in (4.5), (4.6) and (4.7) is well normalized, i.e. the normalization is preserved by the volumetric
averaging. As an example, this is shown for the average phase function in this remark. For
reasons of clarity the wavelength λ is hidden in this calculation. Without further explanation the
Fubini-Tonelli theorem is applied for a change of the integration order:∫

S2

ψ(σ, ω)dS(ω) =

∫
S2

[
1

Ks

∫ ∞
0

πr2Qsca(x(r),m)ψMie(σ, ω;x(r),m)N (r)dr

]
dS(ω)

=
1

Ks

∫ ∞
0

πr2Qsca(x(r),m)

∫
S2

ψMie(σ, ω;x(r),m)dS(ω)︸ ︷︷ ︸
=1

N (r)dr
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Figure 4.10: average extinction coe�cient and asymmetry parameters according to Mie theory
and a log-normal drop-size distribution with parameters given in (4.14)
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Figure 4.11: Henyey-Greenstein phase function (red) compared to the log-normal average Mie
phase function (light blue). Setting: λ = 0.55 µm, g = 0.8272, log-normal drop-size
distribution parameters given in (4.14).

=
1

Ks

∫ ∞
0

πr2Qsca(x(r),m)N (r)dr = 1.

Remark 8 (Volume Scattering for a Log-Normal Drop-Size Distribution). The most common
model for drop-size distributions in fog is given by a log-normal density function (cf . e.g. [Gra2004],
[Tai2008, 2.2] or [Gra2012, 1.3, 1.4]). It can be written as

N ln(r; rm, S) =
N0√

2πr log(S)
exp

(
−1

2

(
log(r/rm)

log(S)

)2
)
, (4.13)

where rm and S denote the model parameters. Based on this drop-size distribution and the single
particle scattering theory of Mie, it is possible to compute K and g. Moreover, compared to the
Henyey-Greenstein phase function from (4.12), it is possible to derive a more realistic but also
more complex average phase function from the combination of (4.6) and (4.13).

As an illustration, the resulting K , g and ψ are plotted in Fig. 4.10 and Fig. 4.11 based on the
log-normal parameters

N0 = 109 m−3, S = 1.4241, rm = 2 µm. (4.14)

These parameters are motivated by log-normal �ts to real drop-size distributions in fog (cf .
[Tai2008, 2.2]).
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As one can see, Fig. 4.10 supports the assumption of the wavelength independence of K and
g (cf . (4.10)). The reached range of K ∈ [0.0351 m−1, 0.0366 m−1] corresponds to just a small
variation in dmet between 81.91 m and 85.36 m. However, this �gure also reveals a slightly
increased extinction for longer wavelengths. This explains why objects through fog appear not
only brighter and blurrier, but also slightly blue tinted.

Fig. 4.11 reveals that the Henyey-Greenstein phase function only coarsely represents a realistic
phase function, which especially becomes clear at the maximum peek at 0°. The di�erences in
the backscattering behavior can be expected to be compensated by an averaging over di�erent
wavelengths. In Sec. 8.6, an experiment is provided which addresses the impact of the deviation
depicted in Fig. 4.11 on one of the visibility estimation algorithms from this work.

Remark 9 (Liquid Water Content). Another property of fog volumes which is sometimes used
in the context of visibility assessment is the liquid water content

LWC = ρW
4π

3

∫ ∞
0

r3N (r)dr, (4.15)

where ρW denotes the density of water (cf . e.g. [Tra1901], [Tom1976] or [Kha2012]). As one might
expect, the meteorological visibility and the the liquid water content are not independent of each
other. However, this relation essentially depends on many other conditions such as the speci�c
N (cf . e.g. [Kam1952]). In contrast to the extinction coe�cient, the liquid water content is not
directly motivated by visual considerations and thus the worse choice as visibility parameter in
fog.
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The propagation of radiation through participating media is described by the radiative transfer
theory (RTT). In contrast to the microscopic view of the scattering theory in Chap. 4, it addresses
the interaction of light and fog on a macroscopic scale.

The core of the RTT is the radiative transfer equation (RTE), which is formulated in terms of
spatially and directionally varying radiances (cf . 5.1.2). Equipped with proper boundary conditions
this integro-di�erential equation yields a global problem description, called the radiative boundary
problem (cf . Sec. 5.2). Finding approximate solutions to the integral formulation of the radiative
boundary problems (cf . Sec. 5.3) allows for the derivation of fog models (cf . Sec. 5.4). They are
the foundation for the visibility estimation algorithms proposed in Part III of this work.

5.1 Radiative Transfer Equation

The radiative transfer equation (RTE) is the fundamental equation which governs the propagation
of radiation in scattering, absorbing and emitting media. It can be applied to various domains such
as astrophysics, for the description of radiation received from celestial bodies and nebulae (cf .
e.g. [Ryb1979]); climatology, to model scattering processes in di�erent layers of the atmosphere
(cf . e.g. [Kos2014]); and tomography-based imaging, which can be applied in medicine (cf . e.g.
[Web2002]), material science (cf . e.g. [Mid2009]), geophysics (cf . e.g. [Nol1987]), oceanography
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(cf . e.g. [Mun1988]) or industry (cf . e.g. [Fli1999]). Among many other applications, it is also
applied in computer graphics in form of the rendering equation (cf . e.g. [Kaj1986]); in analytical
chemistry in form of the Beer-Lambert law (cf . e.g. [Har2000, Chap. 10]); in geoscience for remote
sensing (cf . e.g. [Hal1995]); and in the investigation of many high-temperature and plasma-
physical processes, such as the combustion of organic fuels (cf . e.g. [Vis1987]) or in nuclear
science to describe explosion or fusion processes (cf . [Alb2002]).

Motivated by these various applications many publications address the radiative transfer equation.
One of the most important contributions was published by Chandrasekhar in 1960 (cf . [Cha1960]).
Modern overviews can be found in e.g. [Mih1984], [Per2001] or [Sha2003, Chap. 9].

5.1.1 General Radiative Transfer Equation

The RTE is most commonly derived by applying the law of conservation of energy to elementary
volumes on a beam’s propagation path (cf . e.g. [Cha1960] or [Sha2003, Chap. 9]). Alternatively,
the time-independent form of the RTE can also be derived from statistical electromagnetics and
Maxwell’s equations (cf . e.g. [Mis2002a]).

The general radiative transfer equations is an integro-di�erential equation which considers scat-
tering, absorbing and emitting media. The (spectral) radiance function L depends on the position
x ∈ R3, the direction σ ∈ S2, the time t ∈ R and the wavelength λ ∈ R>0:

1

c

∂L

∂t
(x, σ, t,λ) + 〈∇xL(x, σ, t,λ), σ〉 = −K(x, t,λ)L(x, σ, t,λ) + S(x, σ, t,λ)

+Ks(x, t,λ)

∫
S2

L(x, ω, t,λ)ψ(σ, ω, t,λ)dS(ω),
(5.1)

where K , Ks and ψ denote the extinction coe�cient, the scattering coe�cient and the scattering
phase function as introduced in Chap. 4. Additionally, c denotes the speed of light, and S the
emission source term.

The radiative transfer equation states that a beam of radiation loses energy in time and location
through out-scattering and absorption, and gains energy from emitting sources in the medium
and scattered radiation which is directed towards the beam. The out-scattering and absorption
are proportional to the strength of the beam and the medium’s extinction coe�cient K (sum of
absorption and scattering coe�cient, cf . (4.8)). The in-scattering is proportional to the scattering
coe�cient Ks and the amount of ambient radiation weighted with the medium’s phase function
ψ.

Although it is of no importance for this work, it is interesting to note that other light properties
such as polarization can also be covered by the RTE. In this case it becomes a vector equation,
where L is replaced by the stokes vector and ψ by the so-called phase matrix (cf . e.g. [Cha1960,
36] or [Zha2012]).

5.1.2 RTE for Light Transport through Fog

The radiative transfer equation as it is provided in (5.1) is a rather general description of macro-
scopic interactions of radiation and media. In the case of light transport through fog, many
reasonable assumptions help to simplify the equation in order to make it applicable for practical
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purposes.

The �rst assumption is that of an equilibrium scenario, i.e. observations are assumed to be locally
stationary in time. Furthermore, according to Sec. 4.3 and (4.10), the scattering and absorption
process is assumed to be independent of the wavelength (cf . Fig. 4.5). Another assumption is that
of an emission-free atmosphere, which is obviously (approximately) true for visible light.

This leads to the stationary, monochromatic and emission-free version of the RTE:

〈∇xL(x, σ), σ〉 = −K(x)L(x, σ) +Ks(x)

∫
S2

L(x, ω)ψ(σ, ω)dS(ω). (5.2)

One should note that, in the literature, the in-scattered light is often referred to as “emission” and
the in-scattering integral as “source integral”, even in the emission-free case (cf . e.g. [Cha1960,
I.4]).

The version of the RTE that is primarily used to derive fog models in this work is obtained
from additionally assuming a homogeneous (K ≡ const. and Ks ≡ const.) and absorption-
free (K = Ks) atmosphere. This leads to the homogeneous, absorption-free, emission-free,
monochromatic and stationary version of the RTE:

〈∇xL(x, σ), σ〉 = −KL(x, σ) +K

∫
S2

L(x, ω)ψ(σ, ω)dS(ω). (5.3)

According to 4.3.1, in particular Fig. 4.2 and (4.11), the assumption K = Ks is approximately
true for small fog droplets which mainly consist of water. One should note that emission-free
and absorption-free atmospheres are often referred to as “perfect scattering atmospheres”, while
emission-free atmospheres are referred to simply as “scattering atmospheres” (cf . [Cha1960, I.4]).

The assumption of a homogeneous atmosphere is the only serious restriction in the derivation
of (5.3). Unfortunately, without homogeneity the estimation of fog density becomes a full 3-
dimensional tomography problem which is very di�cult to solve. Moreover, in many cases of
dense fog atmospheric homogeneity is a reasonable assumption.

Remark 10 (On the Surface Integral). To explicitly evaluate the surface integral on S2, one has
to apply a parametrization of the sphere. In this work, the sphere’s standard parametrization Φ is
primarily used (cf . Fig. 5.1), which is well-known and combines some advantageous properties:

Φ : [0, 2π)× [0, π]→ S2, (ϕ, θ) 7→

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 . (5.4)

Here, the north pole is given by Φ(0, 0) = (0, 0, 1)T , and the size of the surface element is
determined by

∣∣∣∣∂Φ

∂ϕ
× ∂Φ

∂θ

∣∣∣∣ =

∣∣∣∣∣∣
− sin(θ) sin(ϕ)

sin(θ) cos(ϕ)
0

×
cos(θ) cos(ϕ)

cos(θ) sin(ϕ)
− sin(θ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
− sin2(θ) cos(ϕ)
− sin2(θ) sin(ϕ)
− sin(θ) cos(θ)

∣∣∣∣∣∣
=

√
sin4(θ) + sin2(θ) cos2(θ)

θ∈[0,π]
= sin(θ).

This allows for the rewriting of the surface integral from (5.3) as
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x1

x2

x3

ϕ

θ
Φ(ϕ, θ)

Figure 5.1: Standard parametrization of the sphere.

∫
S2

L(x, ω)ψ(σ, ω)dS(ω) =

∫ 2π

0

∫ π

0
L(x,Φ(ϕ, θ))ψ(σ,Φ(ϕ, θ)) sin(θ)dϕdθ. (5.5)

5.2 Radiative Boundary Problem

To derive models for the light distribution in foggy environments one not only has to describe
the light transport through the atmosphere, but also to specify what happens at the boundaries of
the system. Considering both allows for a well stated problem and proper discussions regarding
existence, uniqueness, regularity, constructability and other properties of the problem’s solutions
(cf . Theorem 2 on page 50). From this, approximate fog models can be constructed as well as
evaluated.

One can think of di�erent ways to describe the boundary behavior in foggy environments (cf .
e.g. [Sha2003, 9.6] or [Has1994]). Very common are Dirichlet-like boundary conditions, where the
radiances at all boundary points and all inward pointing directions are explicitly prescribed.

To rigorously formulate the boundary conditions, let Ω ⊂ R3 be a domain (open and connected)
which represents the environment. For each boundary position x ∈ ∂Ω one can de�ne the set of
boundary directions in x w.r.t. Ω:

S2
x,Ω :=

{
ω ∈ S2 : ∃ε > 0, s.t. x+ ε̂ω ∈ Ω, ∀0 < ε̂ < ε

}
, (5.6)

which represents the set of inward pointing directions at x (cf . Fig. 5.2). Additionally, the following
abbreviatory notation shall denote the directional boundary of Ω× S2:

∂Ω× S2
x,Ω :=

{
(x, ω) ∈ ∂Ω× S2 : ω ∈ S2

x,Ω

}
. (5.7)

Finally, given a boundary function Lb : ∂Ω× S2
x,Ω → R≥0, the Dirichlet-like boundary condition
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∂Ω

Ω
S2x,Ω

∂Ω

Ω

ν(x)

S2x,Ω

Figure 5.2: Boundary directions in a non-smooth and in a locally C1-smooth case.

can be de�ned for each boundary position and each boundary direction:

∀x ∈ ∂Ω,∀σ ∈ S2
x,Ω : L(x, σ) = Lb(x, σ). (5.8)

Combining (5.3) and (5.8) yields the radiative boundary problem:

De�nition 1 (Classical Formulation of the Radiative Boundary Problem). Let Ω ⊂ R3 be a
domain and Lb : ∂Ω × S2

x,Ω → R≥0 be a boundary function. Then, the radiative boundary
problem can be written as:

Find an L ∈ C1(Ω× S2;R≥0), s.t. it solves the radiative transfer equation and the Dirichlet-like
boundary condition:

〈∇xL(x, σ), σ〉 = −KL(x, σ) +K

∫
S2

L(x, ω)ψ(σ, ω)dS(ω), in Ω× S2,

L(x, σ) = Lb(x, σ), on ∂Ω× S2
x,Ω.

(5.9)

Remark 11 (Drawback of the Classical Formulation Regarding Smoothness). The classical for-
mulation of the radiative boundary problem unfortunately excludes very natural situations like
depth edges and non-smooth boundary values, which could cause the solution to be non-smooth
or not even continuous. This is one motivation to reformulate the classical boundary problem
(5.9) to an integral equation (cf . De�nition 2 on page 45). This integral formulation allows for a
more general boundary setting and turns out to be equivalent to the classical formulation under
uniform boundedness and su�ciently smooth data (cf . Theorem 1 on page 47).

Remark 12 (Boundary Directions for C1-Smooth Boundaries). If ∂Ω is C1-smooth in some local
environment of x ∈ ∂Ω, the set of boundary directions in x equals an inner hemisphere bordered
by the a�ne tangent plane in x, i.e.

S2
x,Ω =

{
ω ∈ S2 : 〈ω, ν(x)〉 < 0

}
,

where ν(x) denotes the exterior normal of the boundary in x (cf . Fig. 5.2).

In the case of a globally C1-smooth boundary, one could come up with an idea to avoid the
confusing notation ∂Ω × S2

x,Ω. To achieve this, one could de�ne Lb : ∂Ω × S2
≥0 and combine

it with L with the help of a rotation mapping R−ν(x) that rotates the upper hemisphere to the
inner hemisphere at each x ∈ ∂Ω. As shown in Sec. B.3 in the Appendix it is possible to �nd
such rotations for each x. However, in cases where Ω is topologically equivalent to a sphere, it is
impossible to construct a mapping x 7→ R−ν(x) which is additionally smooth. This would be a
desirable property, since it would allow for the regularity inLb to directly transfer to the boundary
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σ

r = 0 r = d

pobjpobs

σ

r = 0 r → ∞
pobs

Figure 5.3: Line of sight. Top: between object point pobj ∈ R3 and observer at pobs ∈ R3 (d <∞).
Bottom: ray not hitting any objects (d =∞).

regularity of L. Taking a closer look reveals the problem that all approaches collapse at least at
one direction. This can be explained by the hairy ball theorem [Eis1979], which is famously stated
as “you can’t comb a hairy ball �at without creating a cowlick”. The existence of a continuous
mapping S2 3 x 7→ R−ν(x) would imply the sphere’s tangent vector �eld x 7→ R−ν(x)(0, 1, 0)T

to be continuous and never vanishing, a contradiction to the hairy ball theorem.

5.3 Integral Formulation

For visibility estimation based on camera systems, it is essential to understand radiance values
which are measured at given pixel positions. Each pixel position on the image plane corresponds
to a 3-dimensional world direction (determined by the camera parameters and the camera’s
position in the world). Therefore, it is quite natural to interpret the light arriving at one pixel as
the sum of scattering and emitting events on the corresponding line of sight.

At the beginning of this section, the 3-dimensional radiative boundary problem is restricted to
a speci�c line of sight. Assuming the in-scattered light to be given, this leads to an ordinary
di�erential equation which can be solved but still depends on the in-scattering function. Applying
this to all observation points and all observation directions leads to an overall integral formulation
of the radiative boundary problem. It turns out that the classical and the integral formulation are
equivalent (cf . 5.3.2).

The integral formulation plays an important role in this work. It is not only possible to derive
all necessary models for the visibility estimation algorithms presented in Chapters 7, 8 and 9
from this formulation, but also to answer interesting analytical questions on e.g. the existence,
uniqueness or regularity of solutions of (5.9). It is even possible to provide a method for the
iterative construction of solutions, which is of particular practical interest.

5.3.1 RTE on the Line of Sight

An observer’s line of sight

R 3 r 7→ p(r) := pobs − rσ ∈ R3,

is determined by an observer position pobs ∈ R3 and a direction σ = (σ1, σ2, σ3)T ∈ S2 pointing
towards the observer (cf . Fig. 5.3). In the �nite case, the ray of observation hits an object surface
of intrinsic radiance L0 at a distance d. Assuming the in-scattered radiance to be given as Lin,
the radiative transfer equation (5.2) transforms along the line of sight to an ordinary di�erential
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equation in r (cf . Remark 13(a)). Together, one obtains an initial value problem:

dL̃

dr
(r) = K(r)L̃(r)−Ks(r)

∫
S2

Lin(p(r), ω)ψ(σ, ω)dS(ω), (5.10)

L̃(d) = L0, (5.11)

with an abbreviatory notation L̃(·) := L(p(·), σ), K(·) := K(p(·)) and Ks(·) := Ks(p(·)). Since
(5.10) is a �rst-order linear ODE, standard techniques (variation of constants, cf . Sec. B.2 in the
Appendix) can be applied to obtain a solution to (5.10, 5.11):

L̃(r) = L0e
−
∫ d
r K(τ)dτ +

∫ d

r
Ks(s)e

−
∫ s
r K(τ)dτ

∫
S2

Lin(p(s), ω)ψ(σ, ω)dS(ω)ds.

In particular, the radiance reaching the observer from direction σ is given by

L(pobs, σ) = L0e
−
∫ d
0 K(τ)dτ +

∫ d

0
Ks(s)e

−
∫ s
0 K(τ)dτ

∫
S2

Lin(p(s), ω)ψ(σ, ω)dS(ω)ds. (5.12)

In the in�nite case, the observation ray never hits an object and the boundary distance is given by
d =∞. For any d̂ ∈ R and L0 = L̃(d̂) = Lin(p(d̂), σ) one can formulate (5.10, 5.11) analogous
to the �nite case which leads to

L(pobs, σ) = L̃(d̂)e−
∫ d̂
0 K(τ)dτ︸ ︷︷ ︸

=:T1(d̂)

+

∫ d̂

0
Ks(s)e

−
∫ s
0 K(τ)dτ

∫
S2

Lin(p(s), ω)ψ(σ, ω)dS(ω)ds︸ ︷︷ ︸
=:T2(d̂)

,

where T1 and T2 denote abbreviatory notations for the �rst and the second term of this statement,
respectively. Since T1 ≥ 0 and T2 is monotonously increasing in d̂while T1 +T2 remains constant,
the limits limd̂→∞ T1(d̂) and limd̂→∞ T2(d̂) exist. Hence, it is

L(pobs, σ) = lim
d̂→∞

T1(d̂) +

∫ ∞
0

Ks(s)e
−
∫ s
0 K(τ)dτ

∫
S2

Lin(p(s), ω)ψ(σ, ω)dS(ω)ds.

In the case K ≡ 0 it is
lim
d̂→∞

T1(d̂) = lim
d̂→∞

Lin(p(d̂), σ)

which can be treated as 0 from a physical point of view. Assuming K to be constant and > 0 and
Lin to be uniformly bounded on the line of sight, i.e.

∃C > 0, ∀s > 0 : Lin(p(s), σ) ≤ C,

the �rst term becomes 0 as well

lim
d̂→∞

T1(d̂) = lim
d̂→∞

L̃(d̂)e−
∫ d̂
0 K(τ)dτ = lim

d̂→∞
L̃(d̂)︸︷︷︸
≤C

e−Kd̂︸ ︷︷ ︸
→0

= 0.
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Therefore, in the in�nite, homogeneous and bounded case the observed radiance is given by

L(pobs, σ) =

∫ ∞
0

Ks(s)e
−
∫ s
0 K(τ)dτ

∫
S2

Lin(p(s), ω)ψ(σ, ω)dS(ω)ds. (5.13)

Remark 13 (On the Derivation of the Line-of-Sight Formulation).

(a) The line of sight p is parametrized by the arc length (due to |σ| = 1). This is why the
directional derivative in the PDE (5.2) transforms to the r-derivative in the ODE (5.10)
without any scaling factors:

dL̃

dr
(r) =

d

dr
[L(p(r), σ)] = 〈∇xL(p(r), σ), ṗ(r)〉 = −〈∇xL(p(r), σ), σ〉

(b) Given an object point pobj and an observer point pobs one can obtain σ and d from

d = |pobs − pobj|, σ =
pobs − pobj

d
.

(c) In order to derive (5.13), assumptions on Lin and K are introduced. While the requirement
on K to be constant can easily be softened, the uniform boundedness of Lin seems to be
unavoidable. From a theoretical point of view there might exist classical solutions which
increase with an exponential rate to in�nity. These solutions are of no importance for
practical considerations. Therefore, the uniform boundedness requirement for the integral
formulation in 5.3.2 is a very natural one, it does not exclude any relevant solutions of the
radiative boundary problem.

(d) The statement (5.12) is a well-known formulation to describe the transmission of light
over a distance d ([Cha1960, Sec. I.7, I.8]). In some cases the complex radiative boundary
problem can be explicitly solved based on (5.12) and further assumptions on Lin, e.g. for
scattering-free, absorbing and emitting media, for transparent media, or for a constant
in-scattering function (cf . e.g. [Sha2003, Chap. 9] or 5.4.1).

5.3.2 Equivalence of Classical and Integral Formulation

The classical formulation of the radiative boundary problem (5.9) is given by an integro-di�er-
ential PDE and a Dirichlet-like boundary condition. In this section an integral formulation of
(5.9) is introduced which is derived from the line-of-sight formulation in 5.3.1 applied to each
(x, σ) ∈ Ω×S2. In contrast to (5.9) it does not requireC1-smoothness of the boundary or solutions
and can be written as one compact and pure integral equation. It turns out that under certain
assumptions the classical and the integral formulation of the radiative boundary problem are
equivalent. Based on this equivalence, in the following light transport through fog can legitimately
be discussed with the help of the more natural integral instead of the classical formulation.

To derive the integral formulation, the boundary condition has to be taken into account. This
can be done by introducing functions L0 : Ω× S2 → R≥0 and d : Ω× S2 → R≥0 ∪ {∞} which
denote the intrinsic luminance of the border and the distance to the border for each observer
position and direction in Ω× S2 respectively. These functions encode the boundary condition
of the radiative boundary problem, which can be incorporated to the integral formulation in
this way. To clarify the di�erence between Lb and L0, one can think of L0 as radiance function
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Figure 5.4: Setting of d and L0 in (x, σ) ∈ Ω× S2.

on Ω× S2 in the scattering and absorption free situation, while Lb only speci�es the boundary
values on ∂Ω× S2

x,Ω.

De�nition 2 (Integral Formulation of the Radiative Boundary Problem). Let Ω ⊂ R3 be a domain
and d : Ω×S2 → R≥0∪{∞} be the boundary distance function on Ω, i.e. for any (x, σ) ∈ Ω×S2

it is

d(x, σ) = sup {s ∈ R≥0 : x− ŝσ ∈ Ω, ∀ŝ ∈ [0, s]} . (5.14)

The boundary condition shall be encoded by L0 : Ω× S2 → R≥0 which, due to the context, has
to be constant on each line of sight, i.e. ∀(x, σ) ∈ Ω× S2

(0, d(x, σ)) 3 s 7→ L0(x− sσ, σ) ≡ const. (cf . Fig. 5.4). (5.15)

Then, the integral formulation of the radiative boundary problem on the set of bounded and mea-
surable functions B(Ω× S2) is to �nd an L ∈ B(Ω× S2), s.t. ∀(x, σ) ∈ Ω× S2

L(x, σ) = L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

L(x− sσ, ω)ψ(σ, ω)dS(ω)ds. (5.16)

Lemma 1 (Integral Solutions in the Classical Context). Let Ω ⊂ R3 be a domain with C1-
smooth boundary ∂Ω and exterior normal ν : ∂Ω → S2 (which is well-de�ned due to ∂Ω ∈ C1).
Let L ∈ C1(Ω × S2) and d and L0 be given as described in (5.14) and (5.15), s.t. L solves the
corresponding integral formulation of the radiative boundary problem (5.16).

Then, L solves the classical formulation of the radiative boundary problem (5.9)

〈∇xL(x, σ), σ〉 = −KL(x, σ) +K

∫
S2

L(x, ω)ψ(σ, ω)dS(ω), in Ω× S2,

L(x, σ) = Lb(x, σ), on ∂Ω× S2
x,Ω,

where Lb is given by L0 on ∂Ω× S2
x,Ω:

∀x ∈ ∂Ω, ∀σ ∈ S2
x,Ω : Lb(x, σ) := L0(x, σ).

Proof. One �rstly has to realize two facts about the derivations of d and L0 along any line of
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sight: Let (x, σ) ∈ Ω and select an arbitrary ε > 0 s.t. Bε(x) ⊂ Ω, which is possible due to Ω’s
openness. Furthermore, let d(x, σ) <∞. Then, it directly follows from (5.14) and (5.15) that d
and L0 are di�erentiable on each line of sight, where

d

dτ
d(x+ τσ, σ) = lim

h→0,h<ε

d(x+ (τ + h)σ, σ)− d(x+ τσ, σ)

h
= lim

h→0

h

h
= 1,

d

dτ
L0(x+ τσ, σ) = lim

h→0,h<ε

L0(x+ (τ + h)σ, σ)− L0(x+ τσ, σ)

h
= lim

h→0

0

h
= 0.

(5.17)

For the following, one also has to realize that

d

dτ
L(x+ (τ − s)σ, ω)

∣∣∣∣
τ=0

= − d

ds
L(x+ (τ − s)σ, ω)

∣∣∣∣
τ=0

= − d

ds
L(x− sσ, ω). (5.18)

Combining Leibniz’s integral rule, basics facts about directional derivatives, Lebesgue’s dominated
convergence theorem (for interchanging di�erentiation and integration), (5.17) and (5.18) yields

〈∇xL(x, σ), σ〉 =
d

dτ
L(x+ τσ, σ)

∣∣∣∣
τ=0

=
d

dτ

[
L0(x+ τσ, σ)e−Kd(x+τσ,σ)

] ∣∣∣∣
τ=0

+
d

dτ

∫ d(x+τσ,σ)

0
Ke−Ks

∫
S2

L(x+ (τ − s)σ, ω)ψ(σ, ω)dS(ω)ds

∣∣∣∣
τ=0

= 0 · e−Kd(x,σ) −KL0(x, σ)e−Kd(x,σ)

+

∫ d(x,σ)

0
Ke−Ks

∫
S2

d

dτ
[L(x+ (τ − s)σ, ω)]

∣∣
τ=0

ψ(σ, ω)dS(ω)ds

+ 1 ·Ke−Kd(x,σ)

∫
S2

L(x− d(x, σ)σ, ω)ψ(σ, ω)dS(ω)

= −KL(x, σ) +K

∫ d(x,σ)

0
Ke−Ks

∫
S2

L(x− sσ, ω)ψ(σ, ω)dS(ω)ds

−
∫ d(x,σ)

0
Ke−Ks

∫
S2

d

ds
L(x− sσ, ω)ψ(σ, ω)dS(ω)ds

+Ke−Kd(x,σ)

∫
S2

L(x− d(x, σ)σ, ω)ψ(σ, ω)dS(ω),

where partial integration applied to the third term allows to proceed∫ d(x,σ)

0
Ke−Ks

∫
S2

d

ds
L(x− sσ, ω)ψ(σ, ω)dS(ω)ds

= −
∫ d(x,σ)

0

d

ds

[
Ke−Ks

] ∫
S2

L(x− sσ, ω)ψ(σ, ω)dS(ω)ds

+

[
Ke−Ks

∫
S2

L(x− sσ, ω)ψ(σ, ω)dS(ω)

]d(x,σ)

0
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= K

∫ d(x,σ)

0
Ke−Ks

∫
S2

L(x− sσ, ω)ψ(σ, ω)dS(ω)ds

+

[
Ke−Kd(x,σ)

∫
S2

L(x− d(x, σ)σ, ω)ψ(σ, ω)dS(ω)

− K

∫
S2

L(xσ, ω)ψ(σ, ω)dS(ω)

]
,

and thus together

〈∇xL(x, σ), σ〉 = −KL(x, σ) +K

∫
S2

L(x, ω)ψ(σ, ω)dS(ω).

Carefully checking each equation reveals that this remains correct for d(x, σ) =∞.

On the other hand, L ful�lls the boundary condition, since for any x ∈ ∂Ω and σ ∈ S2
x,Ω

L(x, σ) = L0(x, σ)e−K·0 +

∫ 0

0
Ke−Ks

∫
S2

L(x− sσ, ω)ψ(σ, ω)dS(ω)ds

= L0(x, σ) = Lb(x, σ).

Theorem 1 (Equivalence Between Classical and Integral Formulation). Let Ω be a domain with
C1-smooth boundary ∂Ω and exterior normal ν : ∂Ω → S2. Let L ∈ C1(Ω × S2) ∩B(Ω × S2)
and d and L0 be given as described in (5.14) and (5.15), and Lb related to L0 by

∀x ∈ ∂Ω, ∀σ ∈ S2
x,Ω : Lb(x, σ) := L0(x, σ).

Then, L solves the integral formulation of the radiative boundary problem (5.16) if and only if it
solves the classical formulation of the radiative boundary problem (5.9).

Proof. The forward implication is given by Lemma 1; the backward implication is proven in 5.3.1
by applying the line-of-sight formulation to each (x, σ) ∈ Ω× S2. The uniform boundedness of
L required for the backward direction is assured by L ∈ B(Ω× S2).

Remark 14 (Note on (B, ‖ · ‖C0)). One should note that B with maximum norm ‖ · ‖C0 is up
to the discussion on null sets (sets of Lebesgue measure 0) the same as the function space of
essentially bounded and measurable functions L∞ with a.e. maximum norm ‖ · ‖L∞ . For f ∈ L∞
this norm is given by

‖f‖L∞ = ess sup |f | = inf
N is null set

sup
x/∈N
|f(x)|.

5.4 Derived Models for Light Transport through Fog

Without further assumptions, the radiative boundary problem is complicated and without an
explicit solution. Therefore, the prediction of a radiative transfer observation (forward problem)
is a di�cult task which most often can only be realized by numerical methods. Unfortunately,
in order to estimate the atmospheric extinction coe�cient K based on a given observation, one
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even has to solve the inverse problem (cf . Sec. 6.3). Typically, the inverse problem is much more
complex than the forward problem, since multiple forward problems have to be solved to �nd a
parameter setting which explains the observation satisfactorily.

To nonetheless allow for parameter estimation, less complex approximate models for solutions of
the radiative boundary problem with a manageable number of parameters have to be found.

At the beginning of this section, Koschmieder’s model for horizontal vision is introduced, which
for more than 90 years has been the most popular model for light transport through fog (cf .
[Kos1924]). Furthermore, a generic class of models is derived from a �xed-point iteration based
on the integral formulation of the radiative boundary problem (5.16). In this way, approximate
models of arbitrary accuracy are proposed, which can be used for parameter estimation on the
one hand and evaluation on the other hand.

5.4.1 Koschmieder’s Model (for Horizontal Vision)

Koschmieder’s model, originally published in 1924 (cf . [Kos1924]), is, given the complexity of
the radiative transfer equation, a remarkably simple and successful model. The two assumptions
required to derive Koschmieder’s model from the full radiative line-of-sight formulation (5.12) are
a spatially constant in-scattering function

∀ω ∈ S2 : s 7→ Lin(p(s), ω) ≡ const.

and a homogeneous atmosphere

K ≡ const., Ks ≡ const.,

where K and Ks are not necessarily the same. With these assumptions (5.12) becomes

L(pobs, σ) = L0e
−Kd +

∫ d

0
Kse

−Ks
∫
S2

Lin(p(0), ω)ψ(σ, ω)dS(ω)ds

= L0e
−Kd +

[
Ks
K

∫
S2

Lin(p(0), ω)ψ(σ, ω)dS(ω)

] ∫ d

0
Ke−Ksds

= L0e
−Kd +

[
Ks
K

∫
S2

Lin(p(0), ω)ψ(σ, ω)dS(ω)

](
1− e−Kd

)
.

This can be summarized to Koschmieder’s model

L(d) = L0e
−Kd + Lair

(
1− e−Kd

)
, (5.19)

where L(d) is the radiance received from an object with intrinsic luminance L0 at distance d. The
second summand represents in-scattered ambient light, referred to as air light. Lair denotes the
so-called air light parameter

Lair :=
Ks
K

∫
S2

Lin(p(0), ω)ψ(σ, ω)dS(ω). (5.20)

One should note that in a plane-parallel atmosphere the assumptions required to derive Koschmie-
der’s model are true for horizontal vision, since K , Ks and Lin(·, ω) are assumed to be constant
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Figure 5.5: Koschmieder’s model (5.19) can reliably be applied to scenarios of horizontal vision.

on a plane parallel to the ground (cf . Sec. 5.5, (5.23)). For this reason, (5.19) is often referred to as
Koschmieder’s model for horizontal vision in the context of atmospheric physics. In many not too
complex settings horizontal vision is a reasonable assumption (cf . e.g. Fig. 5.5).

5.4.2 Higher-Order Approximate Models

Thanks to the assumption on the in-scattered light Lin, Koschmieder’s model has been derived in
5.4.1 without taking the surrounding light distribution into account. Aside from this restriction
to the line of sight, models for a full light distribution in Ω× S2 are desirable in order to more
appropriately cover cases of, for instance, non-horizontal vision. These models can be derived from
the integral formulation of the radiative boundary problem (5.16) as this formulation describes
the light distribution according to the RTT (cf . Sec. 5.2).

One way to derive an approximate light distribution model (x, σ) 7→ L(x, σ) is to assume the
in-scattered light in (5.16) to be of a constant value Lair, which leads to Koschmieder’s model
applied to the entire Ω× S2:

L(x, σ) = L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

Lairψ(σ, ω)dS(ω)ds

= L0(x, σ)e−Kd(x,σ) + Lair

∫ d(x,σ)

0
Ke−Ksds

∫
S2

ψ(σ, ω)dS(ω)︸ ︷︷ ︸
=1 (cf . (4.4))

= L0(x, σ)e−Kd(x,σ) + Lair
(

1− e−Kd(x,σ)
)
. (5.21)

This motivates the idea to derive more appropriate models by replacing the constant in-scattered
light Lair by more sophisticated in-scattered light distributions. As a �rst step of improvement, it
seems to be a natural approach to use (5.21) as an advanced in-scattered light model. This idea
can be iterated to successively derive higher-order models (Ln)n∈N0 :

L0(x, σ) := Lair

Ln(x, σ) := L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

Ln−1(x− sσ, ω)ψ(σ, ω)dS(ω)ds,

where L1 represents Koschmieder’s model as shown above.
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The following theorem addresses the convergence and further properties of the sequence of
higher-order models. It turns out that (Ln)n∈N0 converges to a solution of the radiative boundary
problem (5.16).
Theorem 2 (Properties of Higher-Order Approximate Models). Let Ω ⊂ R3 be a domain and
d and L0 be given as described in (5.14) and (5.15), where L0 and d are supposed to be Lebesgue-
measurable. Let furthermore

0 ≤ Llow
0 ≤ L0(x, σ) ≤ Lair, ∀(x, σ) ∈ Ω× S2,

be bounds on L0. The right-hand side operator T : B(Ω × S2) → B(Ω × S2) is de�ned on the
space of bounded, measurable functions as

[
T (f)

]
(x, σ) := L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

f(x− sσ, ω)ψ(σ, ω)dS(ω)ds.

Let �nally the sequence of higher-order models be recursively de�ned as

L0 :≡ Lair, Ln := T (Ln−1), n ∈ N. (5.22)

Then, the following holds:

(a) Well-de�nedness. T is well-de�ned.

(b) Uniform Boundedness. For all n ∈ N0 it holds that

Llow
0 ≤ Ln(x, σ) ≤ Lair, ∀(x, σ) ∈ Ω× S2.

(c) Monotonicity. For all n ∈ N it holds that

Ln+1(x, σ) ≤ Ln(x, σ), ∀(x, σ) ∈ Ω× S2.

(d) Pointwise Convergence. There exists a measurable function L∞ : Ω × S2 → R, s.t. for
each (x, σ) ∈ Ω× S2

Ln(x, σ)→ L∞(x, σ), n→∞.

(e) Bounds on L∞. L∞ from (d) is uniformly bounded by

Llow
0 ≤ L∞(x, σ) ≤ Ln(x, σ) ≤ Lair, ∀(x, σ) ∈ Ω× S2,∀n ∈ N0.

(f) Existence. L∞ from (d) is a �xed point of T . In particular, it solves the radiative boundary
problem (5.16):

L∞(x, σ) = L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

L∞(x− sσ, ω)ψ(σ, ω)dS(ω)ds.

(g) Linearity in L0 and Lair. For each n ∈ N0 ∪ {∞} the function Ln changes linearly with
respect to (uniform changes on) the boundary parameters L0 : Ω× S2 → R≥0 and Lair > 0,
more precisely

LnαL0+β,αLair+β = αLnL0,Lair
+ β, ∀α, β > 0,
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where an abbreviatory notation for Ln de�nitions based on di�erent boundary parameters is
used.

(h) Uniform Convergence on Compacta. The sequence (Ln)n∈N converges uniformly to L∞

on any compact subset ΩC ⊂ Ω, i.e.

‖Ln − L∞‖C0(ΩC×S2) → 0, n→∞.

(i) Uniform Convergence with Guaranteed Rate of Convergence on Bounded Domains.
Let further Ω ⊂ R3 be bounded with diam(Ω) <∞. Then, (Ln)n∈N converges uniformly on
C0(Ω× S2) with guaranteed rate of convergence:

‖Ln − L∞‖C0(Ω×S2) ≤
(
1− e−K diam(Ω)

)n
e−K diam(Ω)

(
Lair − Llow

0

)
→ 0, n ∈ N.

Furthermore, the limit function L∞ is the only �xed point of T onB(Ω× S2). In particular,
the radiative boundary problem (5.16) has only one solution.

Proof. In the following, standard notation and basic results from measure theory are applied.
Regarding this topic, the interested reader may wish to consult standard literature such as
[Els2011].

(a) Proof sketch: Let f ∈ B(Ω× S2) be arbitrary with C > 0, s.t. |f | ≤ C on Ω× S2. For any
(x, σ) ∈ Ω× S2 it obviously holds that∣∣Ke−Ksf(x− sσ, ω)ψ(σ, ω)

∣∣ ≤ CKe−Ksψ(σ, ω), ∀ω ∈ S2, s ∈ (0, d(x, σ)),

where x− sσ ∈ Ω for all s ∈ (0, d(x, σ)) due to the de�nition of d. Additionally, all related
functions are measurable, with

C

∫ d(x,σ)

0
Ke−Ks

∫
S2

ψ(σ, ω)dS(ω)︸ ︷︷ ︸
=1

ds = C

∫ d(x,σ)

0
Ke−Ksds

= C(1− e−Kd(x,σ)) ≤ C.

Therefore, (s, ω) 7→ CKe−Ksψ(σ, ω) is an integrable dominating function for (s, ω) 7→
Ke−Ksf(x− sσ, ω)ψ(σ, ω), and thus∣∣∣∣∣

∫ d(x,σ)

0

∫
S2

Ke−Ksf(x− sσ, ω)ψ(σ, ω)dS(ω)ds

∣∣∣∣∣ ≤ C.
Finally, the Fubini-Tonelli theorem allows for any change of integration order, and thus
makes T (f) a well-de�ned uniformly bounded and measurable function:∣∣[T (f)](x, σ)

∣∣ ≤ ∣∣∣L0(x, σ)e−Kd(x,σ)
∣∣∣

+

∣∣∣∣∣
∫ d(x,σ)

0
Ke−Ks

∫
S2

f(x− sσ, ω)ψ(σ, ω)dS(ω)ds

∣∣∣∣∣
≤ Lair + C.



52 II. Light Transport through Fog

(b) Proof by induction: The base case (n = 0) obviously follows from the lemma’s assumptions:

∀(x, σ) ∈ Ω× S2 : Llow
0 ≤ Lair = L0(x, σ) = Lair ≤ Lair.

For the inductive step, it is assumed that for a given n ∈ N0 it holds that

∀(x, σ) ∈ Ω× S2 : Llow
0 ≤ Ln(x, σ) = Lair.

From the properties of ψ, L0 and the integral discussed in (a), the assumption can be proven
to be true for n+ 1 as well:

Ln+1(x, σ) = L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

Ln(x− sσ, ω)︸ ︷︷ ︸
≤Lair

ψ(σ, ω)dS(ω)ds

≤ L0(x, σ)e−Kd(x,σ) + Lair

∫ d(x,σ)

0
Ke−Ks

∫
S2

ψ(σ, ω)dS(ω)︸ ︷︷ ︸
=1

ds

= L0(x, σ)︸ ︷︷ ︸
≤Lair

e−Kd(x,σ) + Lair

∫ d(x,σ)

0
Ke−Ksds︸ ︷︷ ︸

=1−e−Kd(x,σ)

≤ Laire
−Kd(x,σ) + Lair

(
1− e−Kd(x,σ)

)
= Lair,

Ln+1(x, σ) = L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

Ln(x− sσ, ω)︸ ︷︷ ︸
≥Llow

0

ψ(σ, ω)dS(ω)ds

≥ L0(x, σ)e−Kd(x,σ)︸ ︷︷ ︸
≥Llow

0

+Llow
0

(
1− e−Kd(x,σ)

)
≥ Llow

0 .

(c) Proof by induction: The base case (n = 1) obviously follows from (b):

L1(x, σ) ≤ Lair = L0(x, σ).

For the inductive step, it is assumed that for a given n ∈ N it holds that

Ln(x, σ) ≤ Ln−1(x, σ).

Then, taking into account the non-negativity of ψ and the linearity of integration, the
assumption remains true for n+ 1:

Ln(x, σ)− Ln+1(x, σ)

=
[
T (Ln−1)

]
(x, σ)−

[
T (Ln)

]
(x, σ)

=

∫ d(x,σ)

0
Ke−Ks

∫
S2

(
Ln−1(x− sσ, ω)− Ln(x− sσ, ω)

)︸ ︷︷ ︸
≥0

ψ(σ, ω)dS(ω)ds ≥ 0

(d) Due to (b) and (c) (Ln(x, σ))n∈N0 is a monotone and bounded sequence, for each (x, σ) ∈
Ω× S2. As a consequence it is converging (cf . e.g. [Wal2004, 4.7]), and L∞ can be de�ned
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pointwise as
L∞(x, σ) := lim

n→∞
Ln(x, σ).

Since L∞ is the pointwise limit of measurable functions, it is measurable itself.

(e) This is a direct consequence of (b), (c) and (d).

(f) First, for each n ∈ N0 ∪ {∞} and (x, σ) ∈ Ω× S2 an abbreviatory notation is introduced:

Anx,σ : (0, d(x, σ))× S2 → R≥0, Anx,σ(s, ω) := Ke−KsLn(x− sσ, ω)ψ(σ, ω).

As shown in (a), Anx,σ is integrable for each n ∈ N0. Due to (b), for all n ∈ N0 the functions
Anx,σ are dominated by the following integrable function:

Anx,σ(s, ω) ≤ LairKe
−Ksψ(σ, ω).

On the other hand, (Anx,σ)n∈N converges pointwise to A∞x,σ , due to (d). Therefore, from
Lebesgue’s dominated convergence theorem it follows that A∞x,σ is integrable and

L∞(x, σ) = lim
n→∞

Ln(x, σ) = lim
n→∞

[
T (Ln−1)

]
(x, σ) = lim

n→∞
[
T (Ln)

]
(x, σ)

= L0(x, σ)e−Kd(x,σ) + lim
n→∞

∫ d(x,σ)

0

∫
S2

Anx,σ(s, ω)dS(ω)ds

= L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0

∫
S2

A∞x,σ(s, ω)dS(ω)ds

= L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

L∞(x− sσ, ω)ψ(σ, ω)dS(ω)ds.

Due to (d) and (e), the limit function L∞ is also measurable and bounded, and thus a �xed
point of T .

(g) Proof by induction: The base case (n = 0) directly follows from the de�nition of L0:

L0
αL0+β,αLair+β = αLair + β = αL0

L0,Lair + β.

For the inductive step, it is assumed that for a given n ∈ N0 it holds that

LnαL0+β,αLair+β = αLnL0,Lair + β.

The linearity of integration yields the same property for n+ 1:

Ln+1
αL0+β,αLair+β

(x, σ)

= (αL0(x, σ) + β) e−Kd(x,σ)

+

∫ d(x,σ)

0
Ke−Ks

∫
S2

LnαL0+β,αLair+β(x− sσ, ω)ψ(σ, ω)dS(ω)ds

= (αL0(x, σ) + β) e−Kd(x,σ)

+

∫ d(x,σ)

0
Ke−Ks

∫
S2

(
αLnL0,Lair(x− sσ, ω) + β

)
ψ(σ, ω)dS(ω)ds
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= α

[
L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

LnL0,Lair(x− sσ, ω)ψ(σ, ω)dS(ω)ds

]

+ β

[
e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

ψ(σ, ω)dS(ω)ds

]
= αLn+1

L0,Lair
(x, σ) + β

[
e−Kd(x,σ) +

(
1− e−Kd(x,σ)

)]
= αLn+1

L0,Lair
(x, σ) + β.

For n =∞ this directly follows from the linearity of limits.

(h) Since ΩC × S2 is a compact subset of Ω× S2, the pointwise convergence yields the claimed
uniform convergence.

(i) One can prove this with the help of a standard �xed-point argument. First of all one has to
realize that the vector space B(Ω× S2) equipped with its canonical maximum norm C0

becomes a Banach space, since any Cauchy sequence in B(Ω× S2) has a pointwise limit
which is, due to the compactness of Ω× S2, an element of B(Ω× S2) itself. On the other
hand, T is a contraction mapping, i.e. it is Lipschitz continous with constant < 1:

‖T (L1)− T (L2)‖C0(Ω×S2)

= max
(x,σ)∈Ω×S2

∣∣∣∣∣
∫ d(x,σ)

0
Ke−Ks

∫
S2

[L1 − L2] (x− sσ, ω)ψ(σ, ω)dS(ω)ds

∣∣∣∣∣
≤ ‖L1 − L2‖C0(Ω×S2) max

(x,σ)∈Ω×S2

∣∣∣∣∣
∫ d(x,σ)

0
Ke−Ks

∫
S2

ψ(σ, ω)dS(ω)ds

∣∣∣∣∣
≤ ‖L1 − L2‖C0(Ω×S2) max

(x,σ)∈Ω×S2

∣∣∣∣∣
∫ d(x,σ)

0
Ke−Ksds

∣∣∣∣∣
= ‖L1 − L2‖C0(Ω×S2) max

(x,σ)∈Ω×S2

(
1− e−Kd(x,σ)

)
≤
(

1− e−K diam(Ω)
)

︸ ︷︷ ︸
<1, since diam(Ω) <∞

‖L1 − L2‖C0(Ω×S2).

One can apply Banach’s �xed-point theorem (cf . e.g. [Wer2007, IV.7]) which proves that
T has a unique �xed point in B(Ω × S2) given by the C0-limit limn→∞ T n(L0) = L∞.
Furthermore, Banach’s �xed-point theorem guarantees a rate of convergence depending on
the Lipschitz constant

‖Ln − L∞‖C0(Ω×S2) =
∥∥T n(L0)− L∞

∥∥
C0(Ω×S2)

≤
(
1− e−K diam(Ω)

)n
e−K diam(Ω)

∥∥L1 − L0
∥∥
C0(Ω×S2)

≤
(
1− e−K diam(Ω)

)n
e−K diam(Ω)

(
Lair − Llow

0

)
.
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5.5 Plane-Parallel Atmosphere

One way to reduce the complexity of the radiative boundary problem is to assume the atmosphere
to consist of planar horizontal layers with similar atmospheric properties. This applies to �at-
world scenarios, in which the domain Ω is arranged above the ground level

{
x ∈ R3 : x3 = 0

}
with an atmospheric height Hatm ∈ R>0 ∪ {∞}, i.e. Ω = R× R× (0, Hatm). K , Ks and L are
assumed to be constant on planes parallel to the ground, i.e. for all H ∈ [0, Hatm) and σ ∈ S2 it is

R2 3 (x1, x2) 7→ K
(
(x1, x2, H)T

)
= const.,

R2 3 (x1, x2) 7→ Ks
(
(x1, x2, H)T

)
= const.,

R2 3 (x1, x2) 7→ L
(
(x1, x2, H)T , σ

)
= const.

(5.23)

This type of atmosphere is an important and well-known special case, commonly referred to
as plane-parallel atmosphere (cf . e.g. [Sha2003, 9.5], [Cha1960]). In this section, only the case of
K = Ks is considered.

The following transformation reduces the general spatial and directional information to the
relevant part for the case of a plane-parallel atmosphere:

H : R3 × S2 → R, (x, σ) 7→ x3

µ : R3 × S2 → [−1, 1], (x, σ) 7→ σ3
(5.24)

whereH denotes the height above ground and µ the cosine of the angle between the plane normal
(0, 0, 1)T and direction σ (Fig. 5.6).

Furthermore, let L : R× [−1, 1]→ [0, Hatm) be the plane-parallel representation of L according
to (5.24), i.e.

L(x, σ) = L(H(x, σ), µ(x, σ)).

Then, the directional derivative 〈∇xL(x, σ), σ〉 transforms to

〈∇xL(x, σ), σ〉 =
〈
∇xL(H(x, σ), µ(x, σ)), σ

〉
=

〈
∂

∂H
L(H(x, σ), µ(x, σ))∇xH(x, σ), σ

〉
+

〈
∂

∂µ
L(H(x, σ), µ(x, σ))∇xµ(x, σ), σ

〉
= σ3 ∂

∂H
L(H(x, σ), µ(x, σ)) = µ(x, σ)

∂

∂H
L(H(x, σ), µ(x, σ)).

Considering w.l.o.g. σ to have the form

σ =


√

1− µ2

0
µ

 (cf . Remark 15), (5.25)

applying the standard parametrization of the sphere (cf . Remark 10 on page 39) and substituting
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x1x2

x3
L(x, σ):

H(x, σ)
σ

x
µ(x, σ)

ψ(σ, ω):

ωµ̂ θ

σ µ

Figure 5.6: Directional convention for L and ψ with reference to the plane-parallel case.

µ̂ = cos(θ) allows for a reinterpretation of the RTE (5.3) in plane-parallel coordinates

µ
∂

∂H
L(H,µ)

= 〈∇xL(x, σ), σ〉 = −KL(x, σ) +K

∫
S2

L(x, ω)ψ(σ, ω)dS(ω)

= −KL(x, σ) +K

∫ π

0

∫ 2π

0
L (x,Φ(ϕ, θ))ψ (σ,Φ(ϕ, θ)) sin(θ)dϕdθ

= −KL(H,µ) +K

∫ π

0

∫ 2π

0
L(H, cos(θ))ψ


√

1− µ2

0
µ

 ,Φ(ϕ, θ)

 sin(θ)dϕdθ

= −KL(H,µ) +K

∫ 1

−1
L(H, µ̂)ψ(µ, µ̂)dµ̂,

where

ψ(µ, µ̂) :=

∫ 2π

0
ψ


√

1− µ2

0
µ

 ,


√

1− µ̂2 cos(ϕ)√
1− µ̂2 sin(ϕ)

µ̂

 dϕ

=

∫ 2π

0
ψ̂
(
µµ̂+

√
1− µ2

√
1− µ̂2 cos(ϕ)

)
dϕ, (5.26)

where the phase notation ψ(·, ·) = ψ̂(〈·, ·〉) is used.

The integral formulation of the plane-parallel radiative boundary problem corresponding to
De�nition 2 on page 45 is given by

L(H,µ) = L0(µ)e−Kd +

∫ d

0
Ke−Ks

∫ 1

−1
L (H − sµ, µ̂)ψ(µ, µ̂)dµ̂ds, (5.27)

where L0(x, σ) = L0(H(x, σ), µ(x, σ)).

Remark 15 (Selection of σ). Due to symmetry, σ’s �rst and second coordinate are of no impor-
tance in the plane-parallel scenario. This is why σ can be chosen w.l.o.g. as done in (5.25). This
can be formally checked considering an arbitrary σ. It can be written as

σ =


√

1− µ2 cos(ϕ̂)√
1− µ2 sin(ϕ̂)

µ

 ,



5. Radiative Transfer Theory 57

which leads to a general formulation of ψ:

ψ(µ, µ̂) =

∫ 2π

0
ψ̂
(
µµ̂+

√
1− µ2

√
1− µ̂2 [cos(ϕ̂) cos(ϕ) + sin(ϕ̂) sin(ϕ)]

)
dϕ.

It is easy to check that ψ is independent of ϕ̂ and thus consistent to (5.26).

Remark 16 (Alternative Formulations). Depending on the sphere parametrization used for the
transformation of the RTE from the arbitrary (x, σ)- to the plane-parallel (H,µ)-coordinates, the
plane-parallel RTE looks di�erently. For instance, another convenient choice could be the use of
a σ-dependent sphere parametrization Φσ according to Sec. B.3 in the Appendix which leads to
the following plane-parallel formulation

µ
∂

∂H
L(H,µ)

= −KL(x, σ) +K

∫ π

0

∫ 2π

0
L (x,Φσ(ϕ, θ))ψ (σ,Φσ(ϕ, θ)) sin(θ)dϕdθ

= −KL(H,µ) +K

∫ π

0

∫ 2π

0
L
(
H,Φ3

σ(ϕ, θ)
)
ψ̂ (cos(θ)) sin(θ)dϕdθ

= −KL(H,µ) +K

∫ 1

−1

∫ 2π

0
L
(
H,σ3µ̂−

√
1− µ̂2

(
σ1 cos(ϕ) + σ2 sin(ϕ)

))
dϕψ̂ (µ̂) dµ̂

= −KL(H,µ) +K

∫ 1

−1
ψ̂ (µ̂)

∫ 2π

0
L
(
H,µµ̂−

√
1− µ2

√
1− µ̂2 cos(ϕ)

)
dϕdµ̂,

where once again the σ-representation (
√

1− µ2, 0, µ)T is used (cf . Remark 15). The di�erence
to the standard formulation mainly lies in a shifted complexity from the ψ̂ argument to the
L argument. This allows to either remove ψ̂ or L from the inner integral. Depending on the
requirements, either one of both formulations can be used.
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The investigation and measurement of meteorological aspects of visibility has a long history,
reaching back to the beginning of the 20th Century (see Chap. 3). The central element is the
atmosphere’s extinction coe�cient K which represents the optical density of the atmospheric
aerosol; the reduced range of visibility due to this extinction is called meteorological visibility
dmet (cf . Sec. 3.1). Today, all reliable measuring devices estimate K from either scattering or
transmission methods (cf . Sec. 3.2). Only a few works can be found that consider a camera to
be the proper device for meteorological visibility measurements. Remarkably, only one rigorous
method has been published so far, namely [Hau2006c] (and some subsequent works containing
minor extensions), that estimates the extinction coe�cient from road and sky luminances with
the help of a driver assistance camera. Further details can be found in Sec. 6.1. However, this
approach is just a �rst view of the �eld of model-based visibility estimation from camera images
and will be substantially deepened in this work.

In this part di�erent novel methods for camera-based visibility measurement are presented.
Although all approaches are discussed in the context of driver assistance cameras, most of the
algorithms can be used in more general applications as well. All of these algorithms rely on
luminances L observed from objects of comparable intrinsic luminance at di�erent distances d
and models that describe the relation between L and d according to the radiative transfer theory
(cf . Sec. 5.4). Then, the model parameter can be estimated from the observation data by solving
inverse problems (cf . Sec. 6.3) or, in other words, �tting the model to the data. With the objective
of developing real-time applications, a fast parameter estimation is established for each of the
approaches.

Before the novel methods are proposed, Chap. 6 provides a broader literature review on visibility
issues, a speci�cation of the video-based driver assistance setting and a remark on the underlying
measurement principle which is applied for all estimation processes presented here.

Chapters 7 and 8 introduce the two main estimation methods that make use of di�erent data
from the camera image. While the tracking-based approach in Chap. 7 requires objects to be
moved relative to the camera or multiple cameras observing the same objects, the road surface
luminance curve (RSLC) based approach relies on a rather homogeneous road surface as one
depth-extended object. It turns out that not only the type of data but also the model used to
explain the observations has to be chosen di�erently in both cases. While Koschmieder’s model
for horizontal vision applies well to tracking-based observations, e�ects of non-horizontal vision
should be taken into account in the case of road surface luminance curves (cf . Fig. 8.5). This
leads to complex RSLC models (derived from 5.4.2) which only become applicable by utilizing the
relation given in Theorem 2(g) on page 50. It reveals that the idea of linking the RSLC’s in�ection
point to the underlying extinction coe�cient K (originally stated in [Hau2006c]) can be extended
to higher-order approximate fog models, and even to the exact solution of the plane-parallel
radiative boundary problem (cf . Sec. 5.5). In the case of tracking-based visibility estimation, a
maximum likelihood parameter estimation is applied (cf . Sec. 7.3). Here, a dimensional reduction
leads to drastically reduced costs for the related optimization problem.

In Chap. 9 both approaches are combined in a third estimation method. If the RSLC cannot be
extracted to the whole, the remaining part can be used for a fall-back �tting of Koschmieder’s
model. This algorithm is more of practical interest than of scienti�c interest.

The reader should note that part of the content presented here is subject of the publications
[Len2013], [Len2014], the patents [Web2014], [Len2015], [Web2015], and the diploma thesis
[Mar2013].
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6.1 Literature Review

6.1.1 Visibility Assessment at Daytime

During the last century a number of reliable instruments have been developed in order to measure
atmospheric visibility conditions (see Sec. 3.2). However, estimation methods based on ordinary
cameras have been disregarded for a long time. This is changing nowadays, driven by the
rapid development of multi-purpose driver assistance cameras. These systems have to operate
autonomously under the in�uence of various visibility conditions, such as limitations caused by
adverse weather. Despite these urgent needs still only a few visibility assessment approaches are
available.

By far the �rst framework for camera-based visibility assessment was provided in 1997 by
Pomerleau [Pom1997], called the “Rapidly Adapting Lateral Position Handler” (RALPH). He
estimates a visibility value between 0 (no visibility at all) and 1 (clear daytime visibility) using the
attenuation of the contrast along similar road features such as road markings, extracted from a
camera pointing along a road. Due to its construction this approach allows for a general qualitative
evaluation of visibility. However, it neither provides a well-de�ned quantitative assessment of
visibility nor does it distinguish between di�erent cause categories of visibility reduction.

Several years later Hautière, Boussard et al. started to develop more convenient measurement
procedures. They introduced their own visibility measures Vmob and Vmax (cf . e.g. [Hau2005;
Hau2007b]). The “mobilized visibility distance” Vmob denotes the distance to the farthest distin-
guishable feature at the road plane with contrast above the human’s visual perception threshold
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Figure 6.1: The road surface luminance curve (RSLC) is extracted line by line from the segmented
region in the middle of the camera frame.

of 5% (e.g. lane features). Vmax is called the “mobilizable visibility distance” and approximately
equal to the meteorological visibility dmet (which they call Vmet). In the most reasonable scenarios
the following relation holds:

Vmob ≤ Vmax ≈ Vmet = dmet.

Based on these visibility terms the numerous works of Hautière et al. can be categorized into
essentially two approaches for visibility estimation.

One category of procedures combines depth and contrast information of the road with the objective
of estimating the mobilized visibility Vmob. In the �rst works describing this method [Hau2005;
Hau2006a; Hau2006b; Cha2008] the road depth map is obtained from a stereo camera system and
an algorithm called “v-disparity” (cf . [Lab2002]). Boussard, Hautière et al. extended this idea to
monocular cameras in [Bou2007; Bou2008; Bou2010]. Here, the road’s depth map is estimated by
a �at-world assumption and successive image alignment, namely a homography-based structure
from motion approach. Besides the depth, the contrast computation is also discussed carefully,
since camera noise seriously interfere with the measurement of contrast values at the required
level of around 5%. However, while estimating the term Vmob seems to be a natural approach
towards visibility assessment, the value of Vmob is scene dependent and not well motivated by
atmospheric physics. One can easily think of scenarios where Vmob and Vmet strongly di�er, e.g.
in uphill or o�-road scenarios. Once again a fogged-up windshield, or glare from the sun cannot
be distinguished from atmospheric causes of reduced visibility.

The �rst rigorous method to estimate meteorological visibility is that described in the second
category of Hautière et al.’s works (cf . e.g. [Hau2006c]). They segment parts of the road and the
sky and extract line-wise median intensities (linearly related to the observed luminances) from it.
The resulting mapping

v 7→ L(v) := median intensity at (segmented part of) line v

is called road surface luminance curve (RSLC) in this work (cf . Fig. 6.1 and Sec. 8.1). Under the
assumption of a �at and homogeneously dark road surface, Hautière et al. apply Koschmieder’s
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model (cf . 5.4.1) to describe the resulting RSLCs by

v 7→ L(v) =

{
Lair + (L0 − Lair)e

−KHcamf
cos(ξ)

1
v−vh , v > vh

Lair , v ≤ vh
, (6.1)

where Hcam and ξ describe the geometry (height and angle) of a slightly pitched camera installed
above the ground; f denotes the focal length of the camera, vh the horizontal line in the image
(�at-world horizon) and L0 the intrinsic luminance of the road surface.

To utilize the RSLC model for parameter estimation Hautière et al. introduce a remarkable idea.
Instead of classically �tting the model to the data by regression (e.g. by least-square minimization),
they �nd a relation between the curve’s in�ection point vi and the extinction coe�cientK implied
by their model (6.1):

0 = L′′(vi) = (L0 − Lair)K
Hcamf

cos(ξ)

1

(vi − vh)3
e
−KHcamf

cos(ξ)
1

vi−vh

[
−2 +K

Hcamf

cos(ξ)

1

vi − vh

]
which is, for L0 6= Lair, K > 0 and Hcam > 0, equivalent to

K = 2(vi − vh)
cos(ξ)

Hcamf
, or dmet = − log(0.05)

2(vi − vh)

Hcamf

cos(ξ)
.

This relation allows for an easy estimation of dmet just from estimating vi from an RSLC. Although
the drawback of Koschmieder’s model is the tough assumption of horizontal vision, it can be
developed further without loosing the K-vi correspondence (cf . Chap. 8 and [Len2013]). Other
recently published optimized implementation of Hautière’s RSLC algorithm can be found in
[Neg2013] and [Neg2014].

All RSLC-based approaches work on just a single frame. However, they require an in�ection point
model and depend strongly on a speci�c road scenario that does not allow for objects blocking
the view to the horizon.

In addition, both visibility assessment approaches proposed by Hautière et al. can be combined.
This is done in e.g. [Hau2007a; Hau2008b], where not only both algorithms are reviewed in
detail but also further discussions such as a sensitivity analysis, con�dence measures and derived
applications are provided. In [Hau2008a] one can �nd some experimental validation for the new
visibility measures and procedures.

Apart from the attempts of Hautière et al. to quantitatively measure visibility, a couple of qualita-
tive fog detection and classi�cation algorithms can be found in literature by now:

Mori et al. [Mor2006; Mor2007] use cooperating radar and video sensors. With the help of the
radar sensor they detect preceding vehicles (incl. distance) in order to extract visibility features
from the corresponding region in the camera image. Combining the information they detect fog
and classify it in three categories of density (“dense”, “normal”, “light”). It is interesting to note
that the visibility feature is derived from Koschmieder’s model applied on the luminance variance
of the vehicle in front.

In 2009, Bronte et al. [Bro2009] presented another framework for robust fog detection. Similar to
RSLC approaches, they segment parts of the road and the sky in order to investigate the transition
at the horizon. From the vertical positions of the sky, the road and the vanishing point, they
compute a heuristic visibility measure. Combined with a preceding “Sobel based sunny-foggy
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detector” the framework outputs a qualitative fog rating (“low fog and sunny”, “medium fog”,
“high fog”).

Finally, a pure classi�cation approach has been published by Pavlic̀ et al. [Pav2012; Pav2013].
Based on spectral features both daytime and nighttime fog are detected, distinguishing four
categories of fog:

“no fog”: 1000 m < dmet,

“low fog”: 300 m < dmet ≤ 1000 m,
“fog”: 100 m < dmet ≤ 300 m,

“dense fog”: dmet ≤ 100 m.

(6.2)

This is done with a remarkably high accuracy; they out-perform wavelet and Roser features
(originally used for weather classi�cation in [Ros2008]).

Fog detection and classi�cation have become quite sophisticated nowadays. Approaches for
physical visibility estimation (as proposed in this work) and classi�cation approaches are very
well supplementing each other as they su�er from di�erent weaknesses and allow for di�erent
levels of visibility assessment.

6.1.2 Visibility Assessment at Nighttime

Visibility-reducing e�ects of fog at nighttime somewhat di�er from e�ects in the daytime. Without
daylight, blurred light-sources and glare caused by the own headlights are the dominating sight
issues. Daytime algorithms which assume objects to be indirectly illuminated and di�usely
re�ecting are not applicable in these scenarios. Only a few works on nighttime visibility assessment
for driver assistance cameras exist in literature.

One among them is a classi�cation approach based on frequency features [Pav2013], which has
already been mentioned in 6.1.1. In order to adapt to di�erent scenarios, variable sets of features
are proposed. At night they distinguish between low beam and high beam, applying sets of 32
and 7 frequency features respectively. Four classes of fog are discerned (see (6.2)).

The most comprehensive investigations of nighttime visibility assessment during fog come from
Gallen, Dumont, Hautière et al. They carefully discuss fog e�ects at night and introduce a new
nighttime visibility index [Gal2014]. With an intelligent headlamp control in mind (automatic
high-beam/low-beam switching), they specify three classes of fog which have to be distinguished
at night:

“light fog”: 300 m < dmet,

“fog”: 100 m < dmet ≤ 300 m,
“dense fog”: dmet ≤ 100 m.

(6.3)

Besides further discussions on nighttime visibility measures, improved scattering models and
light adaption strategies [Dum2004; Tai2008; Dum2008; Dum2010; Gal2011b; Gal2011c], they
introduce an elaborate framework for fog detection and characterization in [Gal2011a; Gal2014].
Gallen et al. distinguish between two road scenarios which lead to di�erent detection algorithms
(cf . Fig. 6.2). In the presence of external light sources, the main measurable e�ects of fog appear
as luminous regions around the light sources, so-called halos. In order to distinguish between
presence and absence of fog, intensity pro�les of these halos are extracted and analyzed regarding
their smoothness. According to Gallen et al., a further graduation of fog density is an ill-posed
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Figure 6.2: Summarizing �owchart for the nighttime visibility framework from [Gal2014].

problem in this case.

If no external light sources are present in the scene, fog manifests in a backscattered veil caused
by the own headlights. Based on a correlation index, several reference images are compared to
the averaged appearance of the veil. These reference images represent six di�erent densities
of fog (namely 12.6 m, 51.4 m, 91.8 m, 167.8 m, 415.6 m, 2000 m); they are either captured in a
fog chamber or obtained from Monte Carlo simulations considering the full geometrical and
photometrical calibration of the camera and the lighting system. In contrast to [Gal2011a], a
supplementary fog characterization step is added in [Gal2014] and [Gal2015] which allows for a
more precise visibility measurement in this scenario. To achieve this, a correlation score model
is �tted onto the measured correlation scores. In particular, no hard threshold has to be applied
to the correlation results anymore and the resulting fog classes directly follow from (6.3). A
drawback of this correlation method is that for every beam position a separate set of reference
images is needed, which for instance becomes problematic in the application of bending lights or
matrix headlights.

6.1.3 Visibility Assessment for Stationary Cameras

Today, stationary cameras, such as for tra�c surveillance, are already installed densely close to
the highways. These cameras could serve as cheap visibility meters, which results in interesting
applications for road safety or meteorology (cf . Sec. 3.3). However, the setting for visibility
estimation by stationary cameras substantially di�ers from that of mobile driver assistance
cameras. This involves disadvantages and advantages, such as being less �exible or having the
possibility to compare the same static scene over time. Therefore, the estimation approaches
from both settings can only partially be applied to each other. Only a few examples of stationary
approaches for visibility estimation are introduced here.

Various visibility estimation methods for stationary cameras are based on contrast computation
combined with a known depth-map of the road or the whole catchment area. In 1998, Busch et al.
were one of the �rst proposing such an algorithm. In order to overcome the di�cult choice of a
mask-size for the direct local contrast computation (which su�ers from either to much noise, or
bad localization) they introduce a technique for wavelet-based contrast computation. From this,
edges with a local Michelson contrast (cf . Remark 1 on page 17) above 5 % are identi�ed. Another
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contrast-based approach is presented in [Zha2009], where multiple virtual targets at di�erent
distances are de�ned at the road surface. Assuming a constant intrinsic contrast of road features,
the visibility is permanently estimated from �ts of Duntley’s law on the apparent contrast values.

More recent algorithms working with contrast observations are usually also taking the temporal
variation of contrast into account. In [Min2010], for example, the approach of [Zha2009] is further
combined with a temporal stabilization. In [Bab2011] and [Hau2011], another model-driven
approach for stationary outdoor cameras is presented. Assuming a scene where targets are
distributed continuously w.r.t. the distance from the camera, a model for the contrast distance
histogram can be derived. The distribution of targets is estimated from observations in di�erent
weather conditions. From this, the visibility can be estimated from a �t of the resulting model
onto the current contrast-depth histogram.

Since approaches based on road surface luminance curves only rely on one image (cf . 6.1.1 or
Chap. 8), they can be applied to stationary cameras as well. In [Son2012], an RSLC-based fog
detection method is introduced which is specialized to tra�c surveillance cameras. The road
and the sky are segmented with the help of texture analysis and the RSLC is extracted over
multiple frames to mask out non-static tra�c participants. If the resulting luminance curve has
an exponential characteristic, the atmosphere is judged as fog without a detailed estimation of K
or dmet.

Other works dealing with visibility assessment by stationary cameras are based on machine
learning approaches. One of them can be found in [Lag2008], where Gaussian mixture models
are used to detect changes in the spatial and the temporal frequency domain that are caused by
meteorological events. Other features that turn out to be useful in this context can be found in
[Liu2014], where color histograms are applied for fog detection.

Visibility assessment for stationary cameras at nighttime is extensively discussed in [Kwo1998],
[Met2007], and [Gal2010a]. It is mainly based on the temporal comparison of multiple known
light sources at de�ned distances and appropriate scattering and extinction models.

6.2 Setting

Driver Assistance Context. The algorithms presented in Chap. 7, Chap. 8 and Chap. 9 are
mainly discussed in the context of advanced driver assistance systems (ADAS) (cf . Sec. 1.1). They
are designed for and tested on a commercial multi-purpose camera (MPC, cf . Fig. 6.3) mounted
behind the windshield at a height above ground of about 1.25 m and observing the road and tra�c
ahead.

However, most of the models and algorithms presented in this work are not restricted to ADAS
front camera systems. They could also be applied to various other settings, such as static tra�c
or air�eld surveillance cameras (algorithms based on (partial) road surface luminance curves,
cf . Chap. 8, Chap. 9), or mobile cameras in drones or other airborne vehicles (tracking-based
algorithms, cf . Chap. 7).

Monocular Gray-Scale Camera. Bosch’s MPC uses a monocular camera with a high dynamic
range CMOS sensor, a �eld of view of about 45.6° × 23.7°, a frame rate of about 30 frames/s
and a resolution of 1024 px × 512 px (source: personal communication). Although it provides
one non-standard “red pixel” per 2 px× 2 px pattern, no color information (only intensities) are
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Figure 6.3: MPC installed behind the windshield (source: media database “Mediaspace” of the
Bosch business sector Mobility Solutions)

involved in the discussions of this work.

Homogeneous Daytime Fog. Motivated by the pioneering work of Hautière et al. [Hau2006c]
(cf . 6.1.1), this thesis focuses on model-based visibility measurement in homogeneous daytime
fog. Compared to nighttime, daytime scenarios have the bene�t that the atmospheric extinction
coe�cient K is a useful measure for visibility reduction. It can directly be expressed by the
meteorological visibility dmet = − log(0.05)/K (cf . Chap. 3 and 4.3.2). All visibility estimation
methods are exclusively constructed to measure the impact of the foggy atmosphere on the
visibility range. In the context of daytime fog, “visibility” and “meteorological visibility” are
therefore often used as interchangeable terms in this work.

One should note that many of the concepts and algorithms presented in this work can actually
also be applied to other atmospheric phenomena such as sandstorms, rain, smog or snow. In some
of these cases, such as rain, snow or sandstorms, one also has to consider e�ects from water or
dirt on the windshield.

Remark 17 (Homogeneity Assumption). Usually, the density of fog and thus K spatially varies
within a scene. By taking this into account, visibility estimation becomes a tomography-like
problem. This task seems to be impossible to solve for driver-assistance cameras, which can only
take few pictures from a very limited range of viewing angles. Fortunately, only large changes in
the fog’s density, such as fog banks, are a problem for the concept of meteorological visibility.
Smaller inhomogeneities are compensated by the large scale averaging e�ects of light transport.
In these cases, the extinction coe�cient K represents an average density of the atmosphere. This
is similar to the step from single particle scattering to volume scattering in Sec. 4.3.

Lambertian Surfaces. As previously mentioned, visibility estimating algorithms rely on object
observations at di�erent distances, either from widely extended objects or from multiple obser-
vations. In both cases it is very likely that an object is observed from di�erent viewing angles.
Therefore, if not stated otherwise, object surfaces are assumed to be approximately Lambertian,
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so that the light radiated from the objects in the direction of the observer (intrinsic luminance) is
approximately constant for a set of observations from di�erent viewing angles.

Linear Camera Model. In order to apply atmospheric radiance models to measured image
intensities a linear camera model is assumed, i.e. ∃αI, βI ∈ R s.t. an object of luminance L is
represented by the image intensity

I = αIL+ βI, (6.4)

apart from discretization, saturation and spectral e�ects (cf . Sec. 6.4, in particular (6.9)). Here,
the luminance has to be interpreted as the object’s spectral radiance weighted with the spectral
luminous e�cacy of the camera. In the following, the luminance and the image intensity are
usually treated as interchangeable quantities; this is valid since all models applied for visibility
estimation turn out to be invariant under non-trivial linear intensity transformations. The scale
invariance of these models also justi�es that, in the context of visibility estimation, luminance
values and parameters such as Lair and L0 are often treated as dimensionless quantities (cf . e.g.
Chap. 8).

Of course, the assumption (6.4) is only valid in the theoretical case of an ideal linear sensor.
However, transferring the considerations of this work to real CCD or CMOS cameras is a trivial
step as long as the non-linear sensor characteristics (e.g. due to high dynamic range exposures or
other tone mappings) are known.

Tooling. Almost all algorithms and experiments in this work have been implemented in the
prototyping language MATLAB from MathWorks [Mat2012].

6.3 Measuring Principle

Methods to estimate physical quantities always rely on observations. These observation are
almost always the outcome of a stochastic (or su�ciently chaotic) process. In order to establish
an estimation method, a model for the stochastic process is required that depends on the physical
quantity as a model parameter. The problem and process of drawing conclusions from the
observation data with the help of the model is called inverse problem. To guarantee a meaningful
result, one has to care about all three aspects of this principle: the data, the model and the
parameter estimation (cf . Fig. 6.4). This is one of the most important tasks in many branches of
science, such as computer vision, astronomy, machine learning, medical imaging and geophysics.
Much work can be found on this topic (e.g. [Tar2005; Cas2002]).

In this work all algorithms are based on this measuring principle. To estimate the extinction coef-
�cient one has to �nd meaningful types of observations in the camera image. These observations
always consist of luminances and distances of objects and surfaces which somehow allow for an
assumption on constant intrinsic luminances. The models are derived from the radiative transfer
theory discussed in Sec. 5.4. Some of the observed phenomena lead to complex models and lots
of data. This complicates the inverse problem and makes parameter estimation with standard
methods too expensive for real-time purposes. Therefore, e�cient alternative approaches have to
be found for driver assistance cameras which have to combine several complex real-time functions
in a small and economic embedded system.

The focus of this work is to establish models for observations and to optimize the corresponding
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Figure 6.4: Measuring Principle.

parameter estimation. In contrast, the data acquisition from the camera images mainly consists of
standard computer vision problems such as segmentation, tracking and 3D reconstruction. This
is a wide �eld where much work has been done in the past and will be done in the future. It only
plays a minor role in the following.

6.4 Image Acquisition

Before models which describe radiation can be applied to camera images it is important to
understand how the camera images and the real-world radiation are related. Light entering the
camera passes through a number of lenses and is �nally captured and digitized by an image sensor
(imager). This is a complex process where, among others, geometrical, radiometric, stochastic
and discretization aspects have to be taken into account (cf . e.g. [Jah2012]). In this work, the
impact of the camera’s lens system on the image-taking process is, up to the lens transmittance
in (6.7), neglected by assuming an ideal pinhole camera (cf . e.g. [Jah2012, 7.3.1]). The process of
image acquisition can thus be described in terms of the imager which for the camera used in this
work is a CMOS sensor (cf . Sec. 6.2). The EMVA Standard 1288 [Eur2010] describes how image
taking by CMOS sensors can be characterized. In this section, only the most relevant facts about
digital image acquisition based on CMOS sensors are compiled to a brief overview.

Light radiated from objects and scattered by the atmosphere can be understood as light quanta
(photons), each of which has a certain frequency (cf . Sec. 4.2). Photons reaching the camera lens
are partially projected to a 2D image sensor that consists of multiple distinct photosensitive areas
each corresponding to a later picture element (pixel). Exploiting the inner or outer photoelectric
e�ect, these photons induce voltage which can be accumulated and collected periodically. After
digitization this results in a sequence of images, where each image represents the collected image
intensities for all pixel positions. Since an image intensity represents the digitized form of the
accumulated voltage in one pixel, it is also referred to as digital gray value given in DN (digital
number).

Depending on the amount of arriving photons and the sensor’s quantum e�ciency, the number
of counted photons N of a certain frequency within a certain time interval can be considered as a
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Poisson distributed random variable. Therefore, to achieve a given relative measurement accuracy
ε > 0, the expected number of photons (per unit time interval) µp has to be su�ciently large:

ε ≥
√

Var(N)

E(N)
=

√
µp

µp
=

√
1

µp
⇒ µp ≥

1

ε2
.

The stochastic deviation of N to its expected value µp represents the so-called shot noise. Other
sources of temporal noise are speci�c to the construction of the image sensor. Even if no photons
are entering the camera, for instance, the imager generates a temperature dependent noise level.
In this work, the camera noise model is based on the very common assumption of Gaussian noise,
which is motivated by the central limit theorem and the dominating parts of the noise being
Poisson distributed. Due to shot noise and other multiplicative e�ects, the noise’s variance has to
depend on the image intensity. For the camera system described in Sec. 6.2, this variance can be
reliably modeled by a third-order polynomial term

σ2(L) := Var(L) = c3L
3 + c2L

2 + c1L+ c0, (6.5)

where L denotes the image intensity (or luminance, see below).

Other forms of image degeneration arise from spatial (but not temporal) inhomogeneities of the
image sensor (dark signal non-uniformity and photo response non-uniformity) and from the signal’s
digitization rounding error (quantization noise). In this work these e�ects are disregarded since
the camera used is equipped with an automatic non-uniformity correction, and the quantization
is assumed to be negligible. Therefore, in the following the full camera noise model is given by
(6.5).

Apart from noise disturbing the image acquisition, the photon current at a sensor element is
not one-to-one assigned to a pixel’s image intensity I . According to the EMVA Standard 1288
[Eur2010] there is a linear relation between the irradiance E received by the sensor element
and the resulting image intensity I : The expected number µp of photons with frequency f
(or wavelength λ = c/f ) arriving on a given sensor area A during an exposure time texp is
proportional to the incident irradiance E

µp =
Atexp
hf

E =
Atexpλ

hc
E,

where h denotes the well-known Planck constant and c the speed of light in vacuum. The total
quantum e�ciency η(λ) describes the rate between the (expected number of) photons µp and the
(expected number of) induced electrons µe, namely η(λ) = µe/µp. The light induced electrons add
up with thermally generated electrons with expected value µd (dark signal). The resulting voltage
is converted into a digital signal I with expected value µI (image intensity). The conversion is
assumed to be a linear process with a system gain κ which leads to

µI = κ(µe + µd) = κ
(
η(λ)µp + µd

)
= κη(λ)

Atexp
hf

E + κµd.

This is a monochromatic formulation which in the general case has to be interpreted as

µI = κ
Atexp
hc

∫ ∞
0

λη(λ)E(λ)dλ+ κµd. (6.6)
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For all models used in this work the incident irradiance has to be related to the radiances of object
surfaces observed by the camera. Assuming a pinhole camera model and an object of radiance L
that covers a full pixel area, the relation between E(λ) and L(λ) is given by

E(λ) = τ(λ)π
cos4(θ)

4k2(1 +ml)2
L(λ), (6.7)

where τ(λ) is the transmittance of the lens, θ describes the observation angle, k is the focal ratio,
and ml is the magni�cation factor (cf . e.g. [Jah2012, 7.5]).

Combining (6.6) and (6.7) yields

µI = κ
Atexp
hc

π
cos4(θ)

4k2(1 +ml)2

∫ ∞
0

λη(λ)τ(λ)L(λ)dλ+ κµd. (6.8)

That means the expected image intensity is linearly related to the radiance. Since the overall
e�ciency of the camera is more or less similar to the human spectral luminous e�cacy the term∫∞

0 λη(λ)τ(λ)L(λ)dλ is called luminance L in the following, s.t.

I ∼ αIL+ βI +N (0, σ2(L)), (6.9)

where αI, βI ∈ R describe the linear relation given in (6.8). As expounded in Sec. 6.2, in most parts
of the work there is no need to di�erentiate between the image intensity I and the luminance
L. Assuming a radiometrically calibrated camera, the relation between I and L can be given
explicitly.

According to (6.8), the factor βI and in turn the image intensities depend on the angle of ob-
servation θ. In order to provide comparable image intensities over the whole image, this e�ect
can be compensated by a pixel dependent correction factor. In theory, this factor can be easily
computed for intrinsically calibrated cameras. However, since the factor cos4(θ) is derived from
the simplifying pinhole model it is useful to determine the correction factors by experiment (cf .
e.g. [Jah2012, 7.5]). This could in addition allow for a full radiometric calibration.
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Light traveling from an object to an observer is heavily in�uenced by fog. The object light is
absorbed and scattered away by each droplet where at the same time surrounding light is scattered
into the line of sight (cf . Fig. 1.2). This mixing of light leads to a distance dependence of the
perceived brightness for observed objects. Everybody having taken a walk through daytime fog
should have experienced approaching objects to appear whiter at larger than at closer distances.

Based on this observation a novel algorithm for visibility estimation can be introduced which
analyzes object tracks in camera images. With the help of Koschmieder’s model for horizontal
vision (cf . 5.4.1), the luminance values of tracked objects can be described w.r.t. the varying
distances (cf . Fig. 7.1). In order to estimate the extinction coe�cient K from the distance-
luminance data the inverse problem (cf . Sec. 6.3) is tackled by a maximum likelihood approach.
To make this algorithm applicable for real-time purposes, an easy-to-implement and remarkably
fast minimization method for the log-likelihood functional is proposed which exploits the semi-
linear structure of Koschmieder’s model. It is shown that additional information on the air light
parameter Lair can be used to heavily stabilize the tracking-based visibility estimation. Finally,
the approach is tested on real-world sequences as well as on arti�cial images generated by Monte
Carlo simulations.
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Figure 7.1: The luminance of an observed object changes w.r.t. the distance between the object
and the observer. This relation can be described by Koschmieder’s model.

7.1 Data Acquisition

The algorithm proposed in this chapter is based on luminance observations from objects at
di�erent distances to the observer, which requires objects to be moved relative to the camera
or multiple cameras observing the same objects. In this context, the essential part of the data
acquisition consists of the identi�cation and linking of objects in di�erent images, which is
referred to as tracking. In order to apply radiative transfer models, for each of these observations
a luminance value Lmn and a distance value dmn have to be extracted:(

d1
1, L

1
1

)
, . . . ,

(
d1
N1
, L1

N1

)︸ ︷︷ ︸
1st object

, · · · ,
(
dM1 , LM1

)
, . . . ,

(
dMNM , L

M
NM

)︸ ︷︷ ︸
M th object

, (7.1)

where M ∈ N denotes the number of object tracks and Nm ∈ N the length of the mth track,
m ∈ {1, . . . ,M}. Each object is equipped with its own (unknown) intrinsic luminance Lm0 . If the
observation angle changes by a relevant degree during an observation, the method requires the
object surfaces to be approximately Lambertian, so that the light radiated from the objects in the
direction of the observer (intrinsic luminance) is comparable across the observation process (cf .
Sec. 6.2). One should note that many non-natural surfaces such as that of road signs or cars are
actually far from being Lambertian re�ectors. Nevertheless, due to the di�usely in-scattered light
in fog, most of them still can be considered as Lambertian emitters.

Tracking is an important task in many computer vision applications. Especially video-based
driver assistance systems provide numerous useable object tracks, such as on road signs, vehicles,
pedestrians or even generic objects. Temporally linked superpixel or (concatenated) �ow vectors
are further tracks available for tracking-based visibility estimation.

The same applies to the estimation of distances dmn towards the tracked entities, which can be
acquired by various approaches. Most commonly, the scene’s depth is reconstructed with the
help of triangulation on corresponding points in di�erent images of calibrated cameras (multiple
view 3D reconstruction, such as structure from motion or stereo vision, cf . e.g. [Har2004]). Other
approaches based on visual information utilize, among others, the change of region scales (cf . e.g.
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[Wed2006]), images of di�erent focus (cf . e.g. [Das1995]), depth learning on single images (cf .
e.g. [Sax2008]), a-priori knowledge about observed objects (cf . e.g. [Gen2012]), shape collections
(cf . e.g. [Su2014]) or other context information (e.g. simple geometry, such as a �at world). Apart
from camera-based depth estimation, the distances can also be provided from specialized ranging
sensors, such as radar, lidar or ultrasonic systems.

So, there are many approaches to detect and track objects in camera images and to extract the
corresponding depth information. The resulting data quality essentially depends on the available
hardware, on timing constraints and on other related circumstances. Since tracking and depth
reconstruction are fundamental prerequisites for several applications in computer vision, they
are nowadays still in the focus of research. In the next few years, data quality can therefore be
expected to increase considerably.

However, the data acquisition is not a central topic of this work, wherefore the various data
sources described above are not rigorously evaluated and compared. To nevertheless evaluate the
proposed models and parameter estimation methods by feasibility tests on real world data (cf .
Sec. 7.6), the tracking, including the object segmentation, is performed manually. The distance
data dmn is acquired from a simple structure from motion algorithm and bundle adjusted as well as
extrapolated with the help of ESC data regarding the inter-frame travel distance (cf . Remark 18).

Besides the distance values dmn , luminance values Lmn have to be acquired from the tracked objects.
This requires a method to select one representative luminance value Lmn from the luminance
distribution on the whole object segment. Due to imperfect segmentations and various forms of
objects, this luminance distribution can be quite heterogeneous. For reasons of simplicity, in this
work Lmn is simply selected as the mean luminance over the segmented object. This is further
motivated by the fact that Koschmieder’s model (5.19) can be directly transferred from single
luminance values to their mean. However, in cases of low-quality object segmentations, this
luminance selection should be replaced by a more suitable one, e.g. by estimating the mode of the
distribution which is less biased by outliers (cf . e.g. [Bic2002; Bic2006]). Among others, percentile
luminances such as the median luminance could be a useful alternative as well (cf . [Mar2013]).

One should note that the setting required for tracking-based visibility estimation does not include
speci�c road features. This is why, in contrast to the algorithms presented in chapters 8 and 9,
this approach is rather independent of the driver assistance context.

Remark 18 (ESC-Based Bundle Adjustment). Today’s cars are usually equipped with a system
called electronic stability control (ESC). Apart from its stabilizing properties in critical driving
situations it measures as a byproduct the vehicle’s travel distances and provides it to other
components in the car via the vehicle bus and protocols such as the Controller Area Network
(CAN). This information can be used to further improve the tracking distances of static objects,
which (in this work) are acquired with the help of a structure from motion approach. The merging
with ESC data basically is a supported bundle adjustment, which (without ESC data) is commonly
used to retrospectively correct distances emerging from a piecewise estimation algorithm.

The ESC-based distance bundle adjustment is applied to each object track separately. For a given
track of length N the structure from motion distances are denoted by dsfm

1 , . . . , dsfm
N and the ESC

travel distances between consecutive observations n and n+1 are denoted by ln, n = 1, . . . , N−1.

To merge this data, a model for the temporary vehicle trajectory is required. For that, the car
is assumed to move on a planar curve of a constant radius of curvature |R| for the duration of
the track observation, where R ∈ R>0 ∪ R<0 ∪ {∞}. This is satis�ed by cars which move on a
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Figure 7.2: Notation for ESC-based distance bundle adjustment.

constantly bent curve (R ∈ R \ {0}, cf . Fig. 7.2(a)) or straight ahead (R =∞, cf . Fig. 7.2(b)). The
straight-ahead case can be interpreted as limit scenario ofR→∞. It is described in more detail in
[Mar2013, Chapter 3] and shall be ignored at this point. A further improvement might be achieved
by applying even more advanced trajectory models, such as clothoids (cf . e.g. [Gac2010]).

In the following, a positive radius R de�nes a curve with mathematical positive orientation (anti-
clockwise), and a negative radius a curve with mathematical negative orientation (clockwise). The
object position pobj ∈ R3 and the trajectory of the car xR : R≥0 → R3 are given in coordinates
of the �rst observation. Now, xR can be written in terms of the overall travel distance s as

xR(s) = R

 sin (s/R)
1− cos (s/R)

0

 ,

where s/R describes the overall travel angle α (cf . Fig. 7.2(a)). The distance can be modeled with
four parameters R and pobj = (p1

obj, p
2
obj, p

3
obj) as

dR,pobj : R≥0 → R≥0, dR,pobj(s) =

√(
x1
R(s)− p1

obj

)2
+
(
x2
R(s)− p2

obj

)2
+
(
x3
R(s)− p3

obj

)2
.

Computing the overall travel distance of the track by accumulating the inter-frame travel distances

s1 = 0, sn =
n−1∑
k=1

lk, n = 2, . . . , N,

and �tting the distance model to the data with the help of a least-square approach

(
Ropt, p

opt
obj

)
= argmin

(R,pobj)

N∑
n=1

(
dR,pobj(sn)− dsfm

n

)2
,
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leads to the bundle adjusted tracking distances

dn := dRopt,p
opt
obj

(sn), n = 1, . . . , N.

7.2 Model Selection

In order to implement a parameter estimation method based on the tracking data from Sec. 7.1,
an atmospheric fog model is required which describes the relation between the luminances L and
distances d depending on the extinction coe�cient K . In the case of tracking data from a driver
assistance camera that observes objects in front of the car, the assumption of horizontal vision
seems to be natural. As stated in 5.4.1, a reliable model for this scenario is given by Koschmieder’s
model for horizontal vision

L(d) = L0e
−Kd + Lair(1− e−Kd), (7.2)

with parameters K , Lair and L0 representing the atmospheric density, the surrounding lighting
conditions and the intrinsic object luminance, respectively.

It turns out that this model not only adequately describes tracking observations (cf . Sec. 7.6), but
also leads to a likelihood objective function which can elegantly be minimized (cf . Sec. 7.4) for
parameter estimation.

7.3 Optimization Problem

The question of how to interpret the observation data from Sec. 7.1 with the help of Koschmieder’s
model from Sec. 7.2 leads to an optimization problem often referred to as the inverse problem (cf .
Sec. 6.3). The corresponding objective function can be stated as a weighted sum over squared
residuals, where the weights allow for an incorporation of residual uncertainties. Minimizing this
functional constitutes the parameter estimation and a �t of the model on the data (cf . Fig. 7.1(b)).

Each observation (dmn , L
m
n ) in (7.1) is the outcome of a measurement process which can be

interpreted as the sum of one term in accordance with Koschmieder’s model (7.2) and another
term constituting the measurement error. Assuming this error to be unbiased, normally distributed
and solely caused by the the luminance measurement, theLmn values can be seen as the realizations
of a random variable

Lmn ∼ N
(
Lm0 e

−Kdmn + Lair(1− e−Kd
m
n ); (σmn )2

)
. (7.3)

The uncertainty of a measurement Lmn is expressed by its standard deviation σmn (cf . Remark 20).

For M objects, (7.2) provides a distance-luminance model with M + 2 parameters

p = (K,Lair, L
1
0, . . . , L

M
0 ).

A common approach, to infer from some measured data (dmn , L
m
n ) onto the underlying parameters

p is to maximize the likelihood function of the overall observation process (maximum likelihood
problem). It maps p to the value of the overall probability density function fp evaluated in the
observed outcome (L1

1 . . . , L
M
NM

). Assuming the observations Lmn to be independent of each
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other, the likelihood function can be decomposed into the product of probability density functions
of single observations

p 7→ fp(L
1
1, . . . , L

M
NM

) =

M∏
m=1

Nm∏
n=1

f(K,Lair,Lm0 )(Lmn ).

According to (7.3) these are normally distributed with an expected value �tting Koschmieder’s
model in dmn and standard deviation σmn . This leads to the following likelihood function:

p 7→
M∏
m=1

Nm∏
n=1

1√
2πσmn

· exp

1

2

(
Lmn −

[
Lm0 e

−Kdmn + Lair(1− e−Kdmn )
]

σmn

)2
 . (7.4)

In this case, the maximum likelihood problem can more easily be accessed by applying a negative
log to the likelihood function leading to an equivalent but simpli�ed minimization problem:

− log
(
fp(L

1
1, . . . , L

M
NM

)
)

= − log

 M∏
m=1

Nm∏
n=1

1√
2πσmn

· exp

1

2

(
Lmn −

[
Lm0 e

−Kdmn + Lair(1− e−Kdmn )
]

σmn

)2


=

M∑
m=1

Nm∑
n=1

− log
(√

2πσmn

)
+

1

2

(
Lmn −

[
Lm0 e

−Kdmn + Lair(1− e−Kdmn )
]

σmn

)2
 .

Therefore, the likelihood function in (7.4) is maximized if and only if the weighted least-square
functional

p 7→ F(p) :=

M∑
m=1

Nm∑
n=1

1

(σmn )2

([
Lm0 e

−Kdmn + Lair(1− e−Kd
m
n )
]
− Lmn

)2
(7.5)

is minimized.

Remark 19 (Interpretation as Weighted Sum-of-Squares Objective Function). The likelihood
functional de�ned in (7.5) can also be interpreted as a weighted sum-of-squares objective function.
In cases of similar uncertainties, the maximum likelihood problem therefore di�ers only marginally
from the very common least-square problem, which is motivated by the idea that in the ideal
case the observed data can be perfectly described by the model and the set of true atmospheric
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parameters. The resulting residual equations are

object 1:


L1

1 = Lair + (L1
0 − Lair)e

−Kd1
1 ,

...

L1
N1

= Lair + (L1
0 − Lair)e

−Kd1
N1 ,

...

object M :


LM1 = Lair + (LM0 − Lair)e

−KdM1 ,
...

LMNM = Lair + (LM0 − Lair)e
−KdMNM .

(7.6)

Obviously, measurement noise and unsatis�ed model assumptions lead to violations of these
relations. Therefore, an exact solution of (7.6) has to be replaced by a functional that minimizes
the overall error in the equation system. This is usually done by minimizing the sum-of-squares
functional derived as the sum over the squared residua

rmn (K,Lair, L
m
0 ) := Lair + (Lm0 − Lair)e

−Kdmn − Lmn

w.r.t. the selected parameters:

(K,Lair, L
1
0, . . . , L

M
0 ) 7→

M∑
m=1

Nm∑
n=1

(rmn (K,Lair, L
m
0 ))2 .

Choosing σmn ≡ 1, this is a special case of F .
Remark 20 (Assignment of Uncertainties). The use of the standard deviations σmn in (7.5) makes
it possible to incorporate the uncertainties of the acquired data into the visibility estimation
process. To select the σmn in a meaningful way, a good understanding of the stochastic process of
the distance and luminance acquisition is required. If this is di�cult or if all data can be considered
to be more or less of the same weight, it is a valid choice to set σmn ≡ 1 (cf . Remark 19).

In this work, the luminance uncertainty is modeled according to the fact that Lmn represents the
mean over a segmented object area in the image. Assuming the luminances of the segmented
pixels to be i.i.d. and the segmentation error to be negligible, the variance in Lmn is inversely
proportional to the size of the segmented area, i.e.

σmn ∼
(

#object pixels at nth frame of mth track
)− 1

2
. (7.7)

However, it could be useful to incorporate other uncertainties (e.g. from segmentation or tracking,
or from a more sophisticated noise model) in σmn as well.
Remark 21 (2D-Uncertainty Objective Function). Modeling the stochastic process of mea-
surement to be one-dimensionally represented in L does not properly re�ect the actual two-
dimensional measuring process in (d, L). To nevertheless justify the one-dimensional approach
one has to treat the uncertainty of the d measurements as fully included in the uncertainty of L.

Nevertheless, from a measuring theory point of view it is more convenient to derive the pa-
rameter estimation problem from a two-dimensional maximum likelihood approach. Given
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Figure 7.3: Example for the results from geometric �tting, including the ellipses of one standard
deviation. The model parameters are chosen in a way that minimizes the sum of the
squared Mahalanobis distances between the sampling points and the related model
curve.

two-dimensional uncertainties in form of covariance matrices Σm
n ∈ R2×2 and assuming a

Gaussian error model, the resulting objective function can be written as

(K,Lair, L
1
0, . . . , L

M
0 ) 7→

M∑
m=1

Nm∑
n=1

min
d>0

[(
dmn − d

Lmn − LmKos(d)

)T
(Σm

n )−1

(
dmn − d

Lmn − LmKos(d)

)]
, (7.8)

where LmKos(d) is an abbreviatory notation for Koschmieder’s model term

LmKos(d) = Lair + (Lm0 − Lair)e
−Kd.

Each summand represents the minimal squared Mahalanobis distances with covariance matrix
Σm
n (cf . e.g. [Mae2000]) between the data point (dmn , L

m
n ) and its Mahalanobis projection to the

model curve. This is often referred to as geometric �tting (cf . e.g. [Kan2008]). Fig. 7.3 shows an
example of such a �t.

However, this approach is based on a much more complex objective function than the one
proposed in (7.5), since for each evaluation of (7.8) several projection problems have to be solved.
Moreover, it does not lead to a substantially increased estimation performance. Therefore, the
idea of two-dimensional uncertainties is not followed up any further in this work.

7.4 Fast Minimization Approach

There are several well-known approaches to minimize the objective function F : RM+2 → R
from (7.5). A useful overview can be found in, for instance, [Mad2004]. One of the most popular
optimization algorithm is given by the method of gradient descent. Starting at p0 ∈ RM+2 the
approximate minimizer pn is updated by a residuum proportional to the negative gradient of F
in each iteration:

pn+1 := pn − εn∇F(pn),

where the step size factor εn > 0 and the stopping criteria can be chosen in various ways.
Another common optimization algorithm is Newton’s method which aims for solving∇F = 0
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by iteratively solving
[HessF(pn)] (pn+1 − pn) := −∇F(pn).

Newton’s method is converging much faster than gradient descent methods but su�ers from only
a narrow range of convergence (cf . e.g. [Gal2000]).

Since F can be interpreted as a sum-of-squares objective function (cf . Remark 19 on page 80)

F(p) =
N∑
n=1

rn(p)2, N = N1 + · · ·+NM ,

specialized approaches can be used for its minimization. The Gauß-Newton algorithm, for example,
replaces HessF in Newton’s method by a more stable approximation which leads to the iterative
approach [

JTr (pn)Jr(pn)
]

(pn+1 − pn) = −
[
JTr (pn)

]
r(pn),

where r = (r1, . . . , rK) : RM+2 → RK , and Jr denotes the Jacobian matrix of r. To obtain a
reliable and fast optimization approach, the Levenberg-Marquardt algorithm uses an iteratively
adaptive combination of the Gauß-Newton and the gradient descent method. This leads to one of
the most popular non-linear least square algorithms:[

JTr (pn)Jr(pn) + αI
]

(pn+1 − pn) = −
[
JTr (pn)

]
r(pn),

where I denotes the identity matrix, and α > 0 adaptively controls the weight of the gradient
descent method.

However, the optimal choice of the minimization approach substantially depends on the structure
of the objective function. Newton’s method, for example, is always converging for globally convex
functions, and the gradient descent method can be modi�ed in the case of linear least square
functionals such that it converges very e�ciently with the help of optimal step sizes. Since
tracking-based visibility estimation has to be applicable on economic real-time embedded camera
systems it is important to analyze F regarding the optimal choice of the minimizer.

In this section, a highly specialized and e�cient minimization approach is derived from analytical
properties of F . Due to the partially linear character of Koschmieder’s model (cf . Sec. 7.2), it is
possible to analytically �nd the globally optimal parameter choice Lair, L1

0,. . . , LM0 for any K 6= 0
(cf . Lemma 4 on page 86). The minimization of F thus remains a one-dimensional minimization
problem in K . The following analytical discussion follows this idea and provides the necessary
details for an e�cient implementation.

7.4.1 Analytical Discussion

To infer from some observed distance and luminance data onto the underlying model parameters,
the likelihood objective function F (cf . Sec. 7.3) has to be minimized. In general, one cannot
expect this to be explicitly doable. Therefore, it is important to understand F ’s behavior and to
derive suitable methods for approximating its minimum.

In the following, let M ∈ N, Nm ∈ N, dmn ∈ R>0, Lmn ∈ R, σmn ∈ R>0 as described above,
where m = 1, . . . ,M and n = 1, . . . , Nm (cf . Sec. 7.1 and Sec. 7.3). For reasons of readability, an
abbreviatory notation SmΘ is introduced that represents sums over n with summands depending
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on Θ as described in Remark 24 on page 91; quite self-explanatory examples are

Sm1 =

Nm∑
n=1

1

(σmn )2
, SmL =

Nm∑
n=1

Lmn
(σmn )2

, Sme =

Nm∑
n=1

e−Kd
m
n

(σmn )2
, Sm(1-e) =

Nm∑
n=1

(
1− e−Kdmn

)
(σmn )2

,

Smed =

Nm∑
n=1

e−Kd
m
n dmn

(σmn )2
, SmLL =

Nm∑
n=1

Lmn L
m
n

(σmn )2
, SmLed =

Nm∑
n=1

Lmn e
−Kdmn dmn

(σmn )2
, . . . .

(7.9)

Additionally, SΘ :=
∑M

m=1 S
m
Θ denote the sums over all object tracks. Furthermore, the Ko-

schmieder term is abbreviated as

L(K,Lair, L0, d) := e−KdL0 + (1− e−Kd)Lair = Lair + e−Kd(L0 − Lair),

where in unambiguous cases the arguments of L are omitted. To allow for a more comfortable
�ow of reading, the proofs in this section are moved to Appendix D.

To investigate the properties of F one often has to make use of its derivatives. The following
lemma provides several formulations for subsequent use.

Lemma 2 (F and its Derivatives). Let F be as described above. Then, one has

F =
M∑
m=1

Nm∑
n=1

1

(σmn )2

([
Lair + e−Kd

m
n (Lm0 − Lair)

]
− Lmn

)2
=

M∑
m=1

Nm∑
n=1

1

(σmn )2
(L − Lmn )2

= L2
airS(1-e)(1-e) − 2LairSL(1-e) + SLL +

M∑
m=1

[
2LairL

m
0 S

m
e(1-e) + Lm0 L

m
0 S

m
ee − 2Lm0 S

m
Le

]
.

The �rst derivatives are given by

∂F
∂K

= −2
M∑
m=1

Nm∑
n=1

1

(σmn )2
(L − Lmn ) (Lm0 − Lair)e

−Kdmn dmn ,

∂F
∂Lair

= 2

M∑
m=1

Nm∑
n=1

1

(σmn )2
(L − Lmn ) (1− e−Kdmn ),

∂F
∂Lm0

= 2

Nm∑
n=1

1

(σmn )2
(L − Lmn ) e−Kd

m
n , m = 1, . . . ,M,

or in terms of Remark 24 on page 91

∂F
∂K

= 2L2
airSe(1-e)d − 2LairSLed − 2

M∑
m=1

[
Lm0 Lair(S

m
ed − 2Smeed) + Lm0 L

m
0 S

m
eed − Lm0 SmLed

]
,

∂F
∂Lair

= 2LairS(1-e)(1-e) + 2

M∑
m=1

Lm0 S
m
e(1-e) − 2SL + 2SLe,

∂F
∂Lm0

= 2LairS
m
e(1-e) + 2Lm0 S

m
ee − 2SmLe , m = 1, . . . ,M.
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The second derivatives are given by

∂2F
∂K∂K

= 2
M∑
m=1

Nm∑
n=1

1

(σmn )2

[
(Lm0 − Lair)e

−Kdmn dmn
]2

+ 2
M∑
m=1

Nm∑
n=1

1

(σmn )2
(L − Lmn ) (Lm0 − Lair)e

−Kdmn dmn d
m
n ,

∂2F
∂K∂Lair

= −2

M∑
m=1

Nm∑
n=1

1

(σmn )2

(
1− e−Kdmn

)
(Lm0 − Lair)e

−Kdmn dmn

+ 2

M∑
m=1

Nm∑
n=1

1

(σmn )2
(L − Lmn ) e−Kd

m
n dmn ,

∂2F
∂K∂Lm0

= −2

Nm∑
n=1

1

(σmn )2
e−Kd

m
n (Lm0 − Lair)e

−Kdmn dmn

− 2

Nm∑
n=1

1

(σmn )2
(L − Lmn ) e−Kd

m
n dmn ,

∂2F
∂Lair∂Lair

= 2
M∑
m=1

Nm∑
n=1

1

(σmn )2

(
1− e−Kdmn

)2
,

∂2F
∂Lair∂Lm0

= 2

Nm∑
n=1

1

(σmn )2

(
1− e−Kdmn

)
e−Kd

m
n ,

∂2F
∂Lm0 ∂L

l
0

= 2δlm

Nm∑
n=1

1

(σmn )2
e−Kd

m
n e−Kd

m
n ,

or in terms of Remark 24 on page 91

∂2F
∂K∂K

= 2L2
air(2Seedd − Sedd) + 2LairSLedd

+ 2
M∑
m=1

[
LairL

m
0 (Smedd − 4Smeedd) + 2Lm0 L

m
0 S

m
eedd − Lm0 SmLedd

]
,

∂2F
∂K∂Lair

= −4LairSe(1-e)d + 2
M∑
m=1

Lm0 (2Smeed − Smed )− 2SLed,

∂2F
∂K∂Lm0

= 2Lair(2S
m
eed − Smed )− 4Lm0 S

m
eed + 2SmLed,

∂2F
∂Lair∂Lair

= 2S(1-e)(1-e),
∂2F

∂Lair∂Lm0
= 2Sme(1-e),

∂2F
∂Lm0 ∂L

l
0

= 2δlmS
m
ee .

Proof. This follows from straightforward calculations.

It turns out that F is neither convex nor coercive. Therefore, some of the most powerful existence
and convergence theorems cannot be applied here. For later use, it is useful to understand in
which way F is non-coercive.
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Lemma 3 (Non-Convexity and Non-Coercivity ofF ). LetF be as described above. Let furthermore
Fc,L̃ and Fc be de�ned as

K 7→ Fc,L̃(K) := F(K, L̃, . . . , L̃), for any L̃ ∈ R,

which is F restricted to Lair = L1
0 = · · · = LM0 = L̃, and

Fc := Fc,L, where L :=

∑M
m=1

∑Nm
n=1

1
(σmn )2L

m
n∑M

m=1

∑Nm
n=1

1
(σmn )2

=
SL
S1
.

Then:

(a) For any L̃ the function Fc,L̃ is constant, with

Fc ≡ SLL −
S2
L
S1
≤

M∑
m=1

Nm∑
n=1

1

(σmn )2

(
L̃− Lmn

)2
≡ Fc,L̃.

(b) F is not coercive, i.e.

∃(pn)n∈N ⊂ RM+2, ∃C > 0 : |pn| → ∞, n→∞ and |F(pn)| ≤ C, ∀n ∈ N.

(c) F is not globally convex, i.e.

∃p ∈ RM+2, ∃ξ ∈ RM+2 \ {0} : ξT HessF(p)ξ < 0.

Proof. The proof can be found in Appendix D on page 187.

Although F is neither convex nor coercive it provides a property that allows for a massive
dimensional reduction in the search of its minimum. The linearity of Koschmieder’s model (5.19)
in all parameters but K makes it possible to replace the (M + 2)-dimensional minimization by a
1-dimensional problem.

To achieve this, one has to study the behavior of F for arbitrary but �xed K ∈ R. The restriction
of F to the plane

{
x = (x1, . . . , xM+2) ∈ RM+2 : x1 = K

}
is denoted as Ff,K : RM+1 → R

(Lair, L
1
0, . . . , L

M
0 ) 7→ Ff,K(Lair, L

1
0, . . . , L

M
0 ) := F(K,Lair, L

1
0, . . . , L

M
0 ). (7.10)

Lemma 4 (Critical Points of Ff,K ). LetK ∈ R \ {0} and Ff,K be as described above. Then, Ff,K
has one and only one critical point (Lair, L

1
0, . . . , L

M
0 ) ∈ RM+1 given by

Lair =
SL −

∑M
m=1

Sme S
m
Le

Smee

S1 −
∑M

m=1
Sme S

m
e

Smee

,

Lm0 =
SmLe − LairS

m
e(1-e)

Smee
=
SmLeS1 − Sme(1-e)SL +

∑M
l=1

Sle
Slee

[
SlLeS

m
e(1-e) − SleSmLe

]
S1Smee − Smee

∑M
l=1

SleS
l
e

Slee

.
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Furthermore, Ff,K satis�es

∀p ∈ RM+1, ∀ξ ∈ RM+1 \ {0} : ξT HessFf,K(p)ξ > 0.

In particular, Ff,K is strictly convex and uniquely minimized in (Lair, L
1
0, . . . , L

M
0 ).

Let now K = 0. Then, Ff,K = Ff,0 is constant in Lair and (Lair, L
1
0, . . . , L

M
0 ) is a critical point of

Ff,0 if and only if

L1
0 = L

1
:= S1

L/S
1
1 , . . . , L

M
0 = L

M
:= SML /SM1 .

Therefore, Ff,0 has a unique line of critical points, at which it is constant and minimized:

R 3 Lair 7→ (Lair, L
1
, . . . , L

M
) ∈ RM+1.

Proof. The proof can be found in Appendix D on page 188.

Based on Lemma 4 the following functions are well-de�ned:

Lair,min : R \ {0} → R, K 7→ Lair,min(K) :=
SL −

∑M
m=1

Sme SmLe
Smee

S1 −
∑M

m=1
Sme Sme
Smee

,

Lm0,min : R \ {0} → R, K 7→ Lm0,min(K) :=
SmLe − Lair,min(K)Sme(1-e)

Smee
,

Fmin : R \ {0} → R, K 7→ Fmin(K) := F(K,Lair,min(K), L1
0,min(K), . . . , LM0,min(K)).

For later use, Lair,min’s numerator and denominator are denoted by

Lnum
air ∈ C∞(R), Lnum

air := SL −
M∑
m=1

Sme S
m
Le

Smee
=

M∑
m=1

SmL S
m
ee − Sme SmLe
Smee

, (7.11)

Ldenom
air ∈ C∞(R), Ldenom

air := S1 −
M∑
m=1

Sme S
m
e

Smee
=

M∑
m=1

Sm1 S
m
ee − Sme Sme
Smee

, (7.12)

where the C∞-smoothness follows from (D.2) and elementary analysis. The derivatives of these
terms, required in the following, can be found in Appendix E.

Any critical point of F , with K 6= 0, has to lie on the curve

R \ {0} 3 K 7→ (K,Lair,min(K), L1
0,min(K), . . . , LM0,min(K)) ∈ RM+2.

These critical points are minima of F if and only if Fmin is minimized in the associated K (cf .
Lemma 6 on page 90). Therefore, in search ofF ’s minima it is su�cient to understand the behavior
of Fmin; examples for the shape of Fmin can be found in Figures 7.4, 7.5 and 7.6. Based on this
knowledge, it will be possible to implement an e�cient minimization algorithm for F (cf . 7.4.2).

Lemma 5 (Properties of Fmin). Let Fmin be as described above and let some distances dmn1
and dmn2

di�er for at least onem, i.e.

∃m ∈ {1, . . . ,M} , ∃n1, n2 ∈ {1, . . . , Nm} : dmn1
6= dmn2

. (7.13)
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Figure 7.4: Example for Fmin and Fc. The minimum of Fmin lies at aboutK = 0.0335 m−1, which
corresponds to dmet ≈ 89 m.

Then, the following holds:

(a) Fmin is continuous on R \ {0}, where 0 is a removable discontinuity.

(b) Fmin : R→ R can be written as

Fmin =

[
SLL −

M∑
m=1

SmLeS
m
Le

Smee

]
−

(
SL −

∑M
m=1

Sme S
m
Le

Smee

)2

S1 −
∑M

m=1
Sme S

m
e

Smee

,

where

Fmin(0) =

[
SLL −

M∑
m=1

SmL S
m
L

Sm1

]
−

(
SLd −

∑M
m=1

SmL S
m
d

Sm1

)2

Sdd −
∑M

m=1
Smd S

m
d

Sm1

.

(c) Fmin is uniformly bounded by

0 ≤ Fmin ≤ Fc ≡
M∑
m=1

Nm∑
n=1

1

(σmn )2

(
L− Lmn

)2
= SLL −

S2
L
S1
.

(d) Fmin has two horizontal asymptotes:

lim
K→∞

Fmin(K) =

[
SLL −

M∑
m=1

(Lmmin)
2

(σmmin)
2

]
−

(
SL −

∑M
m=1

Lmmin
(σmmin)

2

)2

S1 −
∑M

m=1
1

(σmmin)
2

,

lim
K→−∞

Fmin(K) =

[
SLL −

M∑
m=1

(Lmmax)
2

(σmmax)
2

]
−

(
SL −

∑M
m=1

Lmmax
(σmmax)

2

)2

S1 −
∑M

m=1
1

(σmmax)
2

,

where Lmmin, L
m
max, σ

m
min and σ

m
max correspond to the minimal and maximal dmn values, respec-

tively:

nmmin := argmin
n∈{1,...,Nm}

dmn , Lmmin := Lmnmmin
, σmmin := σmnmmin

,

nmmax := argmax
n∈{1,...,Nm}

dmn , Lmmax := Lmnmmax
, σmmax := σmnmmax

.
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(e) Fmin ∈ C∞(R), where

F ′min(K) =
∂F
∂K

(K,Lair,min(K), L1
0,min(K), . . . , LM0,min(K))

= 2

M∑
m=1

SmLedS
m
LeS

m
ee − SmeedSmLeSmLe
Smee S

m
ee

− 2Lnum
air (K)Lnum ′

air (K)Ldenom
air (K)− (Lnum

air (K))2 Ldenom ′
air (K)(

Ldenom
air

)2
and

F ′min(0) = 2
M∑
m=1

SmLdS
m
L S

m
1 − SmL SmL Smd
Sm1 S

m
1

− Lnum ′
air (0)

6Lnum ′′
air (0)Ldenom ′′

air (0)− 2Lnum ′
air (0)Ldenom ′′′

air (0)

3
(
Ldenom ′′
air (0)

)2
and

F ′′min = 2

M∑
m=1

[−SmLeddSmLeSmee Smee − SmLedSmLedSmee Smee + 4SmLedS
m
LeS

m
eedS

m
ee

Smee S
m
ee S

m
ee

+
2SmLeS

m
LeS

m
eeddS

m
ee − 4SmLeS

m
LeS

m
eedS

m
eed

Smee S
m
ee S

m
ee

]
−
[

2
(Lnum ′

air )2 (Ldenom
air

)2
+ (Lnum

air )2 (Ldenom ′
air

)2
+ Lnum

air L
num ′′
air

(
Ldenom
air

)2(
Ldenom
air

)3
−4Lnum

air L
num ′
air Ldenom

air Ldenom ′
air + (Lnum

air )2 Ldenom
air Ldenom ′′

air(
Ldenom
air

)3
]

and

F ′′min(0) = 2
M∑
m=1

[−SmLddSmL Sm1 Sm1 − SmLdSmLdSm1 Sm1 + 4SmLdS
m
L S

m
d S

m
1

(Sm1 )3

+
2SmL S

m
L S

m
ddS

m
1 − 4SmL S

m
L S

m
d S

m
d

(Sm1 )3

]
−
[

9 (Lnum ′′
air (0))2 (Ldenom ′′

air (0)
)2

+ 12Lnum ′
air (0)Lnum ′′′

air (0)
(
Ldenom ′′
air (0)

)2
9
(
Ldenom ′′
air (0)

)3
+
−12Lnum ′

air (0)Lnum ′′
air (0)Ldenom ′′

air (0)Ldenom ′′′
air (0)

9
(
Ldenom ′′
air (0)

)3
+

4 (Lnum ′
air (0))2 (Ldenom ′′′

air (0)
)2 − 3 (Lnum ′

air (0))2 Ldenom ′′
air (0)Ldenom ′′′′

air (0)

9
(
Ldenom ′′
air (0)

)3
]
.

The required derivatives of Lnum
air and Ldenom

air are given in Appendix E.
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Figure 7.5: Examples for Fmin. For all cases of somehow useful data Fmin is quasiconvex (left).
However, in contrast to the simple standard behavior, Fmin can be almost arbitrarily
shaped whenever the noise on the data largely exceeds the dynamic of the undisturbed
signal (right).

Proof. The proof can be found in Appendix D on page 190.

As mentioned above, the critical points of F can be characterized by critical points of Fmin.
Therefore, the (M + 2)-dimensional exploration of F regarding its minima can be replaced by
a 1-dimensional minimum search on Fmin. The following lemma summarizes the connection
between F ’s and Fmin’s critical points.

Lemma 6 (Characterization of F ’s Critical Points). Let Fmin be as described above. Then, the
following holds:

(a) (K,Lair, L
m
0 , . . . , L

m
0 ) ∈ RM+2 is a critical point of F if and only if

K 6= 0 ∧ F ′min(K) = 0

∧ (Lair, L
1
0, . . . , L

M
0 ) =

(
Lair,min(K), L1

0,min(K), . . . , LM0,min(K)
)

or

K = 0 ∧ (Lm0 , . . . , L
m
0 ) =

(
L

1
, . . . , L

M
)

where L
m

=
SmL
Sm1

∧ Lair

M∑
m=1

[
SmLd −

SmL S
m
d

Sm1

]
=

M∑
m=1

SmL
Sm1

[
SmLd −

SmL S
m
d

Sm1

]
. (7.14)

(b) ForK 6= 0, (K,Lair, L
m
0 , . . . , L

m
0 ) ∈ RM+2 is a (strict) local minimum of F if and only if

F ′min(K) = 0 ∧ F ′′min(K) ≥ 0
(
strict case: F ′′min(K) > 0

)
∧ (Lair, L

1
0, . . . , L

M
0 ) =

(
Lair,min(K), L1

0,min(K), . . . , LM0,min(K)
)
.
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(c) ForK 6= 0, F has no local maximum.

Proof. The proof can be found in Appendix D on page 197.

Remark 22 (Critical Point Constraint for Lair in K = 0). The constraint (7.14) is equivalent to[
SLd −

M∑
m=1

SmL S
m
d

Sm1
= 0 ∧

M∑
m=1

SmL
Sm1

(
SmLd −

SmL S
m
d

Sm1

)
= 0

]

∨

SLd −
M∑
m=1

SmL S
m
d

Sm1
6= 0 ∧ Lair =

∑M
m=1

SmL
Sm1

(
SmLd −

SmL Smd
Sm1

)
∑M

m=1

(
SmLd −

SmL Smd
Sm1

)
 .

Remark 23 (Lair,min at 0). In contrast to L0,min and Fmin, the discontinuity of Lair,min in 0 can
only be removed if and only if

SLd −
M∑
m=1

SmL S
m
d

Sm1
= 0.

This, for instance, is true for Lmn all being equal. However, this is a rare case and cannot be
expected for noisy data.

Remark 24 (Sum Notations SmΘ , SΘ). For the analytical discussion of F and to allow for an
e�cient implementation of the proposed minimization algorithm in 7.4.2, an abbreviatory notation
SmΘ is introduced. The subscript Θ has to be a word over the alphabetA := {1, L, e, (1-e), d}. The
term SmΘ represents a sum over n, where each symbol sk ∈ A in Θ = s1s2 . . . corresponds to a
factor of the summand:

SmΘ = Sms1s2 . . . :=

Nm∑
n=1

f(s1)f(s2) . . .

(σmn )2
,

where

f(1) = 1, f(L) = Lmn , f(e) = e−Kd
m
n , f(1-e) = 1− e−Kdmn , f(d) = dmn .

Additionally, SΘ :=
∑M

m=1 S
m
Θ denote the respective sums over all object tracks. Examples for

sums SmΘ can be found in (7.9).

7.4.2 Derived Algorithms

Based on 7.4.1 it is now possible to derive highly e�cient algorithms for the minimization of F .

Firstly, the so-called fastMLE algorithm is brie�y introduced (already published in [Len2014]). In
order to solve the one-dimensional equation (7.18), Newton’s method is used, which leads to a
simple and quite reliable parameter estimation.

Beyond this naïve approach, a more sophisticated algorithm is introduced which takes advantage of
further insights from 7.4.1. In this way, it is possible to take into account the range of convergence
of Newton’s method and to handle the numerically unstable neighborhood of 0. Although the
so-called advFastMLE algorithm appears to be more complex (cf . Fig. 7.7), the run-time turns out
to be basically equal to the fastMLE’s (cf . Fig. 7.21), which can be explained by a new low-cost
initial Newton step based on the careful discussion of Fmin at 0 (cf . Lemma 5 on page 87).
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Fast Maximum Likelihood Parameter Estimation (fastMLE). Due to Lemma 2 on page 84
and as demonstrated in the proof of Lemma 4 on page 86 (cf . (D.1)), the critical point equations
∇F(K,Lair, L

1
0, . . . , L

M
0 ) = 0 are equivalent to

0 = −1

2

∂F
∂K

= L2
air(Seed − Sed) + LairSLed

+

M∑
m=1

[
LairL

m
0 (Smed − 2Smeed)− Lm0 Smed + Lm0 L

m
0 S

m
eed
]
,

(7.15)

∧


SL
S1

Le
...

SMLe

 =


S1 − Se S1

e . . . SMe
S1

e − S1
ee S1

ee
... . . .

SMe − SMee SMee



Lair
L1

0
...

LM0

 , (7.16)

which for K 6= 0 can be uniquely solved in Lair and Lm0 by successively applying

Lair =
SL −

∑M
m=1

Sme SmLe
Smee

S1 −
∑M

m=1
Sme Sme
Smee

, Lm0 =
SmLe + Lair(S

m
ee − Sme )

Smee
. (7.17)

Substituting Lm0 and Lair in equation (7.15) leads to a one-dimensional equation in K . In terms of
7.4.1 this can be written as

0 = χ(K) := −1

2

∂F
∂K

(K,Lair,min(K), L1
0,min(K), . . . , LM0,min(K)). (7.18)

Therefore, (7.18) is satis�ed for a K 6= 0 if and only if

∃Lair, L
1
0, . . . , L

M
0 : ∇F(K,Lair, L

1
0, . . . , L

M
0 ) = 0.

Assuming a starting value close enough to such a critical point, equation (7.18) can be solved
e�ciently by applying Newton’s method, iterating K ← K − χ(K)/χ′(K) (cf . Algorithm 1).
The starting value is set to K = 10−3 m−1 (dmet ≈ 3000 m) and all meteorological visibilities
above 3000 m are understood as unlimited. The main stopping criterion is the relative change in
the estimated dmet being smaller than 1 %:∣∣dmet − dold

met
∣∣

min
{
dmet, dold

met
} (3.5)

=
|K −Kold|

min {K,Kold}
< 10−2. (7.19)

Although the algorithm usually converges after 3 iterations, a maximum number of 10 iterations
is allowed.

It should also be noted that, in contrast to standard minimization techniques, only one starting
value has to be speci�ed, which simpli�es both implementation and application of fastMLE.

Advanced Fast Maximum Likelihood Parameter Estimation (advFastMLE). Although the
fastMLE algorithm already provides a suitable method for tracking-based visibility estimation, it
still can be improved by making use of further insights from the analytical discussion in 7.4.1.
One of the main problems of fastMLE can be found in the fact that it does not properly handle the
discontinuities of Lair,min, L0,min and in turn Fmin in K = 0. While L0,min’s discontinuity can be
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Algorithm 1 Fast Maximum Likelihood Parameter Estimation
1: procedure fastMLE(dmn , Lmn , σmn )
2: K ← 10−3

3: curIter← 1 . current iteration
4: repeat
5: compute exp(−Kdmn ) . computationally most expensive step
6: compute S∗∗(K) . using exp(−Kdmn ), Lmn , dmn , σmn
7: compute Lair,min(K), L′air,min(K) . using S∗∗(K)
8: compute Lm0,min(K), Lm ′0,min(K) . using Lair,min(K), L′air,min(K), S∗∗(K)
9: compute χ(K), χ′(K) . using Lair,min(K), L′air,min(K),

Lm0,min(K), Lm ′0,min(K), S∗∗(K)
10: Kold ← K
11: K ← Kold − χ(K)/χ′(K)
12: if K < 10−3 m−1 then
13: return 0 . unlimited meteorological visibility
14: end if
15: curIter← curIter + 1
16: until curIter > 10 ∨ |Kold −K| < 10−2 ·min {K,Kold} . cf . (7.19)
17: returnK
18: end procedure

removed in 0, one cannot expect this behavior from Lair,min (cf . Remark 23), i.e. usually one has
|Lair,min(K)| → ∞ for K → 0. This is why line 7 in Algorithm 1 leads to numerical instabilities
close to 0, wherefore fastMLE has to be stopped for K < 10−3 m−1.

In contrast to that, the advFastMLE is directly based on Fmin and its explicit derivatives provided
in Lemma 5 on page 87. It turns out that in this way the numerical instabilities can be reduced to
an about 104 times smaller interval around 0. Running simulations based on double precision
(64bit) �oating-point numbers, the largest observed instability for fastMLE lays at about 10−4 m−1,
whereas for advFastMLE no instability occurred beyond 10−8 m−1.

Another advantage of advFastMLE is a low-cost �rst iteration due to the use of K = 0 as the
starting value. Thanks to Lemma 5(e) on page 88, Fmin(0), F ′min(0) and F ′′min(0) can be computed
explicitly without the need of any exp-evaluations, which usually constitute the computationally
most expensive steps of an iteration. Since Newton’s method is an extremely fast converging
algorithm (usually converges in 3 steps here) even one single low-cost step signi�cantly increases
the performance.

The only assumption that is made to derive the advFastMLE algorithm is Fmin being quasiconvex.
This property can be observed across all reliable examples and is further discussed in 7.4.3. Based
on this assumption, the domain of Fmin can be divided into three disjoint intervals

IL :=
{
K ∈ R : F ′min(K) < 0 ∧ F ′′min(K) < 0

}
,

Imid :=
{
K ∈ R : F ′′min(K) ≥ 0

}
,

IR :=
{
K ∈ R : F ′min(K) > 0 ∧ F ′′min(K) < 0

}
,

(7.20)

where, due to the quasiconvexity of Fmin and its uniform boundedness (cf . Lemma 5(c) on page
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Figure 7.6: Left, middle and right interval for a quasiconvex and uniform bounded Fmin.

88), one has
IL < Imid < IR and IL ∪̇ Imid ∪̇ IR = R,

also cf . Fig. 7.6. Moreover, the setting of quasiconvexity and uniform boundedness in particular
leads to a guaranteed existence of a unique minimum of Fmin.

In order to approximate this minimum by Newton’s method, one has to start within its range of
convergence. Obviously, this range of convergence is a subset of Imid, wherefore advFastMLE
switches to a bisection approach whenever K ∈ IL ∪ IR or the latest Newton iteration has not
been successful. Furthermore, a search range is initially de�ned by a left bound KL := 0 and a
right bound KR := 3 m−1. If the minimum of Fmin is not situated within this search range, the
algorithm returns out of range.

The advFastMLE algorithm in the �rst place tries to start a Newton iteration in KL. However,
within the bisection mode it updates the left and the right side of the search range. Switching
back to the Newton iteration the algorithm continuous its work on the latest updated value KL or
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KR. This is represented by the KΘ notation, where Θ ∈ {L,R}.
Whenever there is no need to, the advFastMLE algorithm avoids the evaluation of Fmin in KR.
However, in some cases Fmin has to be evaluated in KR as this is required to check whether the
minimum of Fmin lies beyond KR and thus not in the search range. To remember whether the
right side of the search range has already been checked, the �ag rsc_flag ∈ {true, false} is
introduced.

All details about advFastMLE can be found in the �owchart Fig. 7.7.

Remark 25 ((7.18) in Terms ofFmin). Although the numerical computation of the Newton step in
fastMLE and advFastMLE are substantially di�erent, they are equivalent from an analytical point
of view. This is due to (D.7), which yields χ(K) = F ′min(K)/2. Therefore, it might be reasonable
to use χ(K) and χ′(K) for K large enough, since their computation is slightly cheaper than the
computation of F ′min and F ′′min.

Remark 26 (Predicted Starting Values). In a sequence of visibility estimations within narrow
time frames it is reasonable to assume a slowly changing atmosphere. Instead of taking the
starting values for fastMLE and advFastMLE as �xed values 10−3 and 0, respectively, one could
thus also use a predicted value based on the preceding observations. Due to inaccuracies of the
estimations and a possible non-smoothness of the atmosphere the best approach is probably to
simply use the latest successful estimation of K as new starting value.

Remark 27 (Case: M = 1). For the case M = 1, many of the terms in the analytical discussion
and the algorithm from above can be rearranged and simpli�ed, such as

Lair,min =
SL −

∑M
m=1

Sme SmLe
Smee

S1 −
∑M

m=1
Sme Sme
Smee

=
SLSee − SeSLe
S1See − SeSe

.

Since single object tracks are a typical scenario, it might be useful to take a closer look at this
case. This could lead to a simpli�ed and deeper analytical discussion as well as a more e�cient
implementation. One can expect some of the open problems in 7.4.3 to be solvable more easily for
this case than for the general case.

7.4.3 Open Questions and Conjectures

Even after the quite deep analytical discussion on F and Fmin in 7.4.1, a number of more or less
relevant open questions are remaining. It is not only an interesting but also a promising task
to take care of these problems in the future. Since some of them might be hidden beneath the
theoretical discussion above, they are pointed out explicitly in the following.

Existence. Although one can �nd explicit bounds (and even explicit asymptotes) on the continuous
function Fmin, a valid argument for the general existence of a local or even global minimum is still
missing. Until now, no case could be observed where the existence assumption has been violated.
Nevertheless, depending on the data it is easily conceivable that e.g. one of the asymptotes is
decreasing to a value below the rest of Fmin, i.e. e.g. limK̂→∞Fmin(K̂) < Fmin(K) for all K ∈ R.
It would be interesting to �nd criteria on the data excluding these cases or even to �nd a general
proof that the existence of a global or local minimum can be guaranteed.
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Uniqueness. As can be seen in Fig. 7.5, there are cases whereFmin shows a quite chaotic behavior
with more than just one local minimum. In all reasonable cases, where the data quality allows for
a useful estimation of K , however, the minimum of Fmin seems to be unique. This is indicated by
tests on the simplicity of Fmin as provided below (cf . e.g. Fig. 7.8). One can observe the chaotic
behavior especially when the noise on the data largely exceeds the dynamic of the undisturbed
signal. Therefore, it might be useful to �nd a criterion on the signal-to-noise ratio that guarantees
a simple unique minimum. Another observation from numerical experiments is that monotonous
data seems to guarantee this simple behavior ofFmin. The use of this observation, however, would
require further investigations on the optimal way to make the data monotone, the impact on the
estimation results and a proof for the implication between monotonicity and uniqueness. This
will not be part of this work.

Quasiconvexity. Another property that can be expected for good-natured data is the quasi-
convexity of Fmin. One should note that quasiconvexity combined with the a-priori bounds
from Lemma 5 on page 87 in particular implies the existence and uniqueness properties from
above. Similar to what has been said for the uniqueness, numerical experiments suggest that
quasiconvexity is a very likely property that might even be given for all cases of monotonous
data or almost monotonous data.

Simplicity. Since the quasiconvexity of Fmin cannot numerically be checked without further ana-
lytical investigations, another property is introduced which can be understood as quasiconvexity
and boundedness (implying uniqueness and existence) of Fmin on a test set of sampling points
chosen as

Scheck :=
{
−1 m−1,−0.99 m−1, . . . , 3.99 m−1, 4 m−1

}
.

According to (7.20), this so-called simplicity of Fmin is formally given whenever there exist
successively arranged intervals IL < Imid < IR, s.t. R = IL ∪̇ Imid ∪̇ IR and for all K ∈ Scheck

K ∈ IL ⇔ F ′min(K) < 0 ∧ F ′′min(K) < 0,

K ∈ Imid ⇔ F ′′min(K) ≥ 0,

K ∈ IR ⇔ F ′min(K) > 0 ∧ F ′′min(K) < 0.

To �gure out in which cases one can or cannot expect the simplicity of Fmin, noise-free arti�cial
distance-luminance data for single objects is created by the simulation framework described in
Fig. 7.20. Afterwards, the luminance signal is disturbed by additive Gaussian noise of a level
relative to the luminance range of the observation, i.e.

Lmnoisy,n ∼ Lmundisturbed,n + noiselevel ·
(

max
n

Lmundisturbed,n −min
n
Lmundisturbed,n

)
· N (0, 1).

A large number of simulations is performed for di�erent values for N , dmet and the noise level.
The results are provided in Fig. 7.8. One can see that up to a noise level of about 20 % one can
reliably expect simplicity.

However, in the work on data automatically extracted from camera images one has to include
the handling of bad corner cases. The algorithm should thus be able to recognize most of those
cases which could otherwise lead to useless and misleading results. To achieve this, one has to
decide directly from the distance-luminance data whether simplicity can be expected. According
to the observations from Fig. 7.8, the noise level could be a good features for a decision like this.
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Figure 7.8: Numerical tests on simplicity for di�erent values for N , dmet and the noise level. The
probability of simplicity is estimated from 2000 simulations for each noise level in
each plot. The number of objects is set to M = 1.

If the noise level relative to the dynamic range of the signal is small enough, one can expect the
resulting Fmin to be simple. Another desirable property of such a feature is the invariance under
linear transformation of the luminance data. The resulting classi�er would thus be independent
of linear transformations due to di�erent camera models or data representations.

One feature satisfying these constraints is the normalized estimated standard deviation (cf .
Appendix C)

fstd =
1

maxn Ln −minn Ln

√√√√ 1

2(N − 1)

N−1∑
n=1

(Ln+1 − Ln)2.

This feature is fast to compute and invariant under linear transformations. Fig. 7.9 shows the
resulting relation between the feature fstd and Fmin’s simplicity for several simulations. A strict
threshold based on this feature could, for instance, be set to the smallest fstd where non-simplicity
occurs. In order to evaluate the usefulness of such a threshold, the number of useful samples has
to be considered as well. In this context, a samples is said to be useful when K can be estimated
up to a relative error of 30 %. The percentage of useful samples for which fstd lies below the
threshold is given in Fig. 7.9. From this, one can see that excluding observations based on fstd
guarantees simplicity in most of the cases, without loosing too much useful information.

Accuracy. In order to assess an estimated meteorological visibility, it is desirable to �nd mean-
ingful error bounds on this value. Since systematic errors in the distance-luminance data are hard
to detect, these absolute error bounds seem to be impossible to achieve (up to trivial bounds).
Therefore, it could be useful to at least implement an estimator for the accuracy which might be
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Figure 7.9: fstd is a feature that could be used to decide whether the tracking data leads to simplicity
of Fmin. The plots show the percentage of simplicity w.r.t. the feature fstd. Each plot is
based on 50000 simulations for randomly varying dmet between 5 m and 1000 m and
noise levels between 0 % and 40 %. The dashed vertical line shows the fstd threshold
where the smallest non-simple sample has been observed. The percentage of useful
samples left of this border are given below the plots; a sample is called useful if K can
be estimated up to a relative error of 30 %.

based on the relative noise level or the residual errors for each data point.

Case: K = 0. The idea of minimizing the one-dimensional Fmin instead of the higher-
dimensional F is essentially based on the equivalence of (strict) local minima shown in Lemma
6(b) on page 90. However, this is so far restricted to K 6= 0. Therefore, questions remain on the
behavior in K = 0, such as whether a local minimum of Fmin in 0 also implies a local minimum
in F .

One should note that many of these problems (namely the existence, uniqueness, quasiconvexity
and the case K = 0) can be avoided by a regularization term as introduced in Sec. 7.5.

7.5 Lair Stabilization

Thanks to the discussion in earlier sections, the minimization of the objective function F has
become relatively e�cient. However, this discussion does not cover the general capabilities of
F in the context of parameter estimation. One experiment on the feasibility of tracking-based
visibility estimation as introduced above can be found in Sec. 7.6. It shows that for a su�ciently
large number of data points a useful value dmet can be estimated.
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Figure 7.10: K , Lair and L0 are estimated from a real data set, whereby the number of data points
taken into account (starting at measurement n = 1) is varied. One can observe
the behavior of Lair and dmet to be strongly correlated. The large variations in the
estimation can be substantially reduced by Lair stabilization, which can be seen in
Fig. 7.12.

Nevertheless, an experiment repeating the parameter estimation on successively reduced data
points reveals that this cannot be expected for shorter tracklengths (cf . Fig. 7.10). With a decreased
number of data points the parameter estimation clearly becomes more and more unstable. On
the one hand, these problems can be reduced by increasing the data quality and length of tracks,
which indeed is one important challenge for the future. On the other hand, short tracks should
not be discarded generally. By combining multiple short tracks (and in turn increasing M ), the
estimation might become more stable as well (cf . Remark 30 on page 104).

Another stabilizing approach arises from the observation that the parameters Lair and K slide to
instability hand in hand (cf . Fig. 7.10). Lair andK are strongly correlated to each other, wherefore
stabilizing Lair would probably lead to a stabilized estimation ofK as well. This of course requires
additional information on Lair which constitutes the major challenge of this idea.

Fortunately, in the context of Koschmieder’s model for horizontal vision, the air light parameter
Lair theoretically corresponds to the luminance which incides to the observer from an in�nite
horizontal direction. This could allow for Lair measurements directly from the camera images.
This is veri�ed by a small experiment illustrated in Fig. 7.11. Based on a reliable Lair estimation
from a long track, the corresponding regions where Lair could have been measured from the
camera image are highlighted.
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Figure 7.11: Highlighting of positions in a camera image that correspond to the Lair estimation.
Dark blue: up to 5% relative di�erence, medium blue: up to 10% relative di�erence,
light blue: up to 20% relative di�erence.

Moreover, extracting the luminance close to the horizon is not the only way to estimate Lair. Since
Lair is a less mutable quantity than dmet, one can expect it to be stable over an extended period of
time. Therefore, former estimations of Lair could be incorporated in a continuous estimation of
Lair.

In the following, the externally measured air light parameter is denoted as L̂air. To incorporate it
into the maximum likelihood parameter estimation, a penalization term (Lair − L̂air)

2 is added to
the objective function F from (7.5). This leads to the stabilized functional

p 7→ F̂(p) := F(p) + wair
(
L̂air − Lair

)2
, p = (K,Lair, L

1
0, . . . , L

M
0 ). (7.21)

The weighting factor wair > 0 should be selected according to the reliability of L̂air. Fortunately,
most of the relevant properties of F remain true for F̂ . Analogously to 7.4.1, one can �nd that F̂
restricted to any hyperplane

{
p ∈ RM+2 : K = const.

}
is strictly convex and has exactly one

minimum given by

L̂air,min : R→ R, K 7→ L̂air,min(K) :=
SL −

∑M
m=1

Sme SmLe
Smee

+ wairL̂air

S1 −
∑M

m=1
Sme Sme
Smee

+ wair
,

L̂m0,min : R→ R, K 7→ L̂m0,min(K) :=
SmLe − L̂air,min(K)Sme(1-e)

Smee
.
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Furthermore, the analogous terms F̂min, L̂num
air , L̂denom

air are de�ned by

K 7→ F̂min(K) := F(K, L̂air,min(K), L̂1
0,min(K), . . . , L̂M0,min(K)),

K 7→ L̂num
air (K) := SL −

M∑
m=1

Sme S
m
Le

Smee
+ wairL̂air = Lnum

air (K) + wairL̂air,

K 7→ L̂denom
air (K) := S1 −

M∑
m=1

Sme S
m
e

Smee
+ wair = Ldenom

air (K) + wair.

In contrast to the wair = 0 case, L̂air,min and L̂m0,min are well de�ned on R including 0. This can be
shown with the help of the Cauchy-Schwarz inequality (analogous to (D.6)):

L̂denom
air (K) = S1 −

M∑
m=1

Sme S
m
e

Smee
+ wair =

M∑
m=1

Sm1 S
m
ee − Sme Sme
Smee

+ wair ≥ wair > 0.

Now, analogous to the proof of Lemma 5 on page 87, F̂min, F̂ ′min and F̂ ′′min can be written as

F̂min = L̂2
air,minL

denom
air − 2L̂air,minL

num
air +

[
SLL −

M∑
m=1

SmLeS
m
Le

Smee

]
,

F̂ ′min = 2L̂air,minL̂
′
air,minL

denom
air + L̂2

air,minL
denom ′
air − 2L̂′air,minL

num
air − 2L̂air,minL

num ′
air

+ 2

M∑
m=1

SmLedS
m
LeS

m
ee − SmeedS

m
LeS

m
Le

SmeeS
m
ee

,

F̂ ′′min = 2L̂′air,minL̂
′
air,minL

denom
air + 2L̂air,minL̂

′′
air,minL

denom
air + 4L̂air,minL̂

′
air,minL

denom ′
air

+ L̂2
air,minL

denom ′′
air − 2L̂′′air,minL

num
air

− 4L̂′air,minL
num ′
air − 2L̂air,minL

num ′′
air

+ 2

M∑
m=1

[−SmLeddS
m
LeS

m
eeS

m
ee − SmLedS

m
LedS

m
eeS

m
ee + 4SmLedS

m
LeS

m
eedS

m
ee

SmeeS
m
eeS

m
ee

+
2SmLeS

m
LeS

m
eeddS

m
ee − 4SmLeS

m
LeS

m
eedS

m
eed

SmeeS
m
eeS

m
ee

]
,

where

L̂′air,min =

[
L̂num

air
L̂denom

air

]′
=
L̂num ′

air L̂denom
air − L̂denom ′

air L̂num
air

L̂denom
air L̂denom

air
=
Lnum ′

air L̂denom
air − Ldenom ′

air L̂num
air

L̂denom
air L̂denom

air
,

L̂′′air,min =
Lnum ′′

air L̂denom
air L̂denom

air − Ldenom ′′
air L̂num

air L̂denom
air

L̂denom
air L̂denom

air L̂denom
air

+
−2Ldenom ′

air Lnum ′
air L̂denom

air + 2Ldenom ′
air Ldenom ′

air L̂num
air

L̂denom
air L̂denom

air L̂denom
air

.

An algorithm similar to fastMLE or advFastMLE (cf . 7.4.2) can be used to minimize F̂min.

For wair →∞ the situation becomes even more elegant from an analytical point of view. Lair,min
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Figure 7.12: Stabilization experiment on real data for wair =∞. K , Lair and L0 are estimated for
a varying number of data points taken into account (starting at measurement n = 1).
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and L0,min are then given by

K 7→ L̂air,min(K) = L̂air, K 7→ L̂m0,min(K) =
SmLe − L̂airS

m
e(1-e)

Smee

and F̂min can simply be written as (cf . proof of Lemma 5 on page 87)

F̂min = L̂2
air

[
S1 −

M∑
m=1

Sme S
m
e

Smee

]
− 2L̂air

[
SL −

M∑
m=1

SmLeS
m
e

Smee

]
+

[
SLL −

M∑
m=1

SmLeS
m
Le

Smee

]
. (7.22)

It turns out that this functional has a simpler and more predictable analytical and numerical
behavior than in the �nite case. An example for the visibility estimation results based on di�erent
values for wair are provided in Fig. 7.13.

The major drawback of wair =∞ can be found in the fact that Lair cannot be estimated anymore.
It has to be determined independently of the visibility optimization. Therefore, errors in L̂air
cannot be compensated by the other data terms. The results of an experiment investigating the
error propagation from L̂air to the estimated dmet can be found in Fig. 7.14. However, this might
be a price worth to be payed compared to the error arising from instabilities occurring otherwise.
In an overall framework, one could continuously switch between di�erent visibility estimation
methods depending on the con�dence of the available data.

Remark 28 (Minima of F̂ and F̂min). Besides the very important stabilizing properties of the
penalization term introduced in (7.21), the global property of F̂ to be convex on each K-plane
guarantees that minima of F̂min correspond to minima of F̂ . Therefore, a di�cult analytical
problem of the relation between Fmin and F at 0 (which could not be solved in Lemma 6 on page
90) can be avoided here (cf . 7.4.3).

Remark 29 (Instability At 0). As stated above, neither F̂min nor L̂air,min or L̂m0,min are su�ering
from singularities at K = 0 anymore. This simpli�es not only the analytical discussion, but also
eliminates the numerical instability at 0 that had to be considered in the fastMLE and advFastMLE
algorithms (cf . 7.4.2). This constitutes another bene�t of the use of an Lair regularization term.

Remark 30 (Special Case: Short Tracks). A reliable parameter estimation for short object tracks
with methods provided in Sec. 7.4 only works in cases of very low noise. However, there are
interesting approaches to discuss for the special cases where N = 2 or N = 3. These approaches
could become useful when low-noise data or large sets of short object tracks (e.g. from an optical
�ow vector �eld) are available. In this remark, only one special case with two observations on one
object and wair =∞ is discussed, for which the minimization problem can be accessed explicitly.

Having two data points and an externally measured Lair = L̂air available, one can minimize F̂min
from (7.22) explicitly. Since F̂min is a sum of positively weighted quadratic terms, it becomes 0 in
(K,L0) if and only if all terms are 0. Denoting Ln := L1

n, dn := d1
n (n ∈ {1, 2}) and canceling

the standard deviations results in

L1 = L̂air + (L0 − L̂air)e
−Kd1 , L2 = L̂air + (L0 − L̂air)e

−Kd2 . (7.23)
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Figure 7.13: Stabilization experiment on real data for di�erent wair.
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Figure 7.14: Example for error propagation from estimation error in L̂air onto estimation error in
dmet. Example parameters: M = 1, N = 30, wair =∞, without noise. The plots are
based on two di�erent example sets of real world data points.

If L1 = L2, the set of solutions of (7.23) is{
(L0,K) : L0 = L̂air,K ∈ R)

}
∪ {(L0,K) : L0 ∈ R,K = 0} ,

so either nothing can be concluded or K = 0. Since objects with intrinsic luminance Lair are very
unlikely, it is reasonable to interpret this situation generally as K = 0, or dmet =∞.

If L1 6= L2, there exist solutions if and only if L1, L2 < L̂air or L1, L2 > L̂air. In all other cases
a solution would lead to a contradiction: Assume (a, b) ∈ {(1, 2), (2, 1)}, (L0,K) a solution to
(7.23), and La ≤ L̂air < Lb. Then,

La − L̂air︸ ︷︷ ︸
≤0

= (L0 − L̂air) e
−Kda︸ ︷︷ ︸
>0

⇒ L0 − L̂air ≤ 0,

Lb − L̂air︸ ︷︷ ︸
>0

= (L0 − L̂air) e
−Kdb︸ ︷︷ ︸
>0

⇒ L0 − L̂air > 0,

a contradiction. Analogously for La < L̂air ≤ Lb. In all other cases where L1, L2 < L̂air or
L1, L2 > L̂air, one can �nd the unique solution for (7.23) by combining both equations

L1 − L̂air
e−Kd1

=
L2 − L̂air
e−Kd2

⇔ L2 − L̂air

L1 − L̂air
=
e−Kd2

e−Kd1
⇔ L2 − L̂air

L1 − L̂air
= eK(d1−d2)

⇔ K =
1

d1 − d2
log

(
L2 − L̂air

L1 − L̂air

)
.

Note that this equation supports the interpretation K = 0 for L1 = L2.

7.6 Further Evaluation

Several examples and experiments are already provided within the above discussion: Examples for
the shape of Fmin can be found in Fig. 7.4 and Fig. 7.5, and the results of an experiment checking
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Figure 7.15: ESC-based bundle adjustment can be used for reliable extrapolation and smoothing of
the structure from motion distances dsfm

n . (a) and (b) provide a comparison between
ESC-based bundle adjustment (R = ∞ model and R ∈ R \ {0} model) and naïve
linear regression. General setting: initial velocity pv = 0.5 m/frame, acceleration
pa = 0.0086 m/(frame)2, ground truth radius R = ∞, Gaussian distance noise 8 %,
p2

obj = −5 m, p3
obj = 0.5 m. Setting in (a): N = 40. Setting in (b): dmet = 50 m,

N ∈ {3, 4, . . . , 50}, 2000 test data sets per N .

the quasiconvexity of Fmin for various synthetic data is given in Fig. 7.8 and Fig. 7.9. In the same
experiment the fastMLE and advFastMLE algorithms (cf . 7.4.2) and their implementations are
extensively tested. Several experiments on the estimation stability with and without the Lair
regularization term are provided in Fig. 7.10, Fig. 7.12 and Fig. 7.13, all of them based on real data.
Other experiments on Lair stabilization can be found in Fig. 7.11 and Fig. 7.14.

In this section, further experiments are carried out which, among others, include Monte Carlo
simulations, estimations on the computational e�ort of fastMLE and advFastMLE, and feasibility
tests on real data.

ESC-Based Bundle Adjustment. ESC-based bundle adjustment can be used to smoothen and
extrapolate distances data (cf . Remark 18 on page 77). Di�erent experiments are provided that
test the performance on synthetic data with ground truth available. The travel distances sn are
computed from an initial velocity pv and a constant acceleration pa:

sn = (n− 1)pv +
(n− 1)2

2
pa.

Fig. 7.15 reveals that the extrapolation and smoothing via ESC-based bundle adjustment outper-
forms the results from a naïve linear regression. Especially for extrapolation and non-constant
velocities, the additional ESC data is bene�cial for distance smoothing and, in turn, for the dmet
estimation based on these distances. Fig. 7.16 compares the zero-curvature (R = ∞) and the
non-zero-curvature (R ∈ R \ {0}) models (cf . Fig. 7.2) for di�erent simulated curve radii. It turns
out that even for curves with a large curvature, the non-zero-curvature model does not have a
substantial advantage over the zero-curvature model. Therefore, it might be useful to always
assume R =∞. This becomes even more reasonable if the ESC yaw rate or the steering angle of
the wheels are used to discard data that is captured in situations where the steering angle exceeds
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Figure 7.16: Mean absolute dmet estimation error for di�erent simulated radii of curvature. Setting:
initial velocity pv = 0.5 m/frame, acceleration pa = 0.0086 m/(frame)2, Gaussian
distance noise 8 %, p2

obj = −5 m, p3
obj = 0.5 m, N ∈ {3, 4, . . . , 50}, 2000 test data

sets per N .

a certain threshold.

Monte Carlo Simulations. To evaluate the model and the estimation capabilities based on
exact ground truth, Monte Carlo simulations are used to provide most realistic images. The
road is assumed to be an in�nitely expanded and perfectly absorbing plane and the sun to be a
uniform light source at a given height level Hatm above the ground. The homogeneous fog in
the atmosphere is represented by a certain extinction coe�cient K and each scattering event is
simulated by the Henyey-Greenstein mean scattering phase function from (4.12) and an asymmetry
parameter of g = 0.85. Each photon travels backwards randomly, starting at the camera, and is
scattered multiple times, a maximum of 300 scatterings is allowed. All details about the Monte
Carlo simulation are provided in 8.6.1.

The framework from 8.6.1 is extended here by virtual targets in front of the camera. In each
simulation one target is situated at a height Htar above the road plane and at a certain distance in
front of the camera. The camera is installed at a height Hcam. Examples for the resulting images
of the target at di�erent distances are shown in Fig. 7.17.

Fig. 7.18 provides the visibility estimation results based on the Monte Carlo images for di�erent
Htar ∈ Hcam + {−1 m,−0.5 m, 0 m, 0.5 m, 1 m}. As expected from 5.4.1, for the case of exact
horizontal vision (Hcam = Htar) the model perfectly �ts the simulated data points, and dmet is
well reconstructed by the tracking-based algorithm. The quality of the dmet estimation increases
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10 m 12 m 14 m 16 m 18 m 50 m

Figure 7.17: Synthetic images from the Monte Carlo simulation. The target is situated at vary-
ing distances from 10 to 50 m. Setting: dmet = 50 m, Htar = Hcam = 1.5 m,
40 000 photons/pixel, Hatm = 4dmet, f = 1200 px, ξ = 0°, half resolution in u
and in v, the target’s diameter is 0.6 m.

as more and more data points are successively taken into account.

In the case of non-horizontal vision (Htar 6= Hcam), a systematic estimation error seems to be
introduced. As expected, this error becomes worse with increasing |Htar −Hcam|. This agrees
with the �ndings from Chap. 8, where luminances at the road surface are used for visibility
estimation, i.e. Htar = 0 m. For these road surface luminance curves, the estimation results are
signi�cantly improved if the e�ects of non-horizontal vision are taken into account. Therefore, it
might be useful to introduce a systematic error correction for the tracking-based algorithm in the
future as well.

Feasibility Experiment on Real Data. To evaluate the tracking-based visibility approach on
real-world data, the objects are manually segmented at the camera images and the distances are
computed with the help of a simple structure-from-motion algorithm (cf . Sec. 7.1). The distance
values are further bundle-adjusted with the help of the ESC data, where the radius of curvature is
assumed to be R =∞ (cf . Remark 18 on page 77 and Fig. 7.15).

Since no reference measurement sensor is available, the estimated meteorological visibility (dtrack
met )

is compared to a coarse estimation from visual inspection of the camera images (dcoarse
met ). If

available, the tracking-based estimation is compared to the RSLC-based estimation as presented
Chap. 8 (dRSLC, 1st

met , dRSLC, 2nd
met ).

The results are provided in Fig. 7.19. It shows that Koschmieder’s model �ts the distance-luminance
data very well. Even large meteorological visibilities are acceptably estimated. In most cases
RSLC-based algorithms are not applicable since the road or the sky is obstructed by, for example,
other tra�c participants, curves or bridges. On the other hand, the tracking-based algorithm
requires observable objects, wherefore both algorithms bene�cially complement each other.

One should note that the results presented here and in Sec. 7.5 only show the general feasibility
of tracking-based visibility estimation on real data. It remains an open task to systematically and
quantitatively check the accuracy of the estimation results. This not only requires a reliable and
mobile reference measurement sensor, but also the use of automated tracking, segmentation and
ranging of objects.

Simulation Framework. In this chapter a large number of synthetic tracks are used for the
discussion and evaluation of the introduced methods. These data points cannot be generated
by sophisticated physical simulations in a tolerable amount of time. Therefore, the ground
truth data is directly generated from Koschmieder’s model for horizontal vision (5.19). This is
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Figure 7.18: Results of Monte Carlo simulations for targets at di�erent heights. Left: Fit of
Koschmieder’s model. Right: Results from tracking-based visibility estimation. Set-
ting: target distances varying from 10 to 50 m, dmet = 50 m, 40 000 photons/pixel,
Hatm = 4dmet, f = 1200 px, ξ = 0°, half resolution in u and in v, the target’s diameter
is 0.6 m.
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Figure 7.19: The meteorological visibility estimated by: the tracking-based algorithm (dtrack
met ), a

coarse visual inspection (dcoarse
met ), the �rst-order RSLC-based algorithm from Sec. 8.2

(dRSLC, 1st
met ), the second-order RSLC-based algorithm from Sec. 8.3 (dRSLC, 2nd

met ). Right:
Fit of Koschmieder’s model to the distance-luminance data.
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indeed a reasonable approach since for horizontal vision Koschmieder’s model represents the full
radiative transfer model under just a few assumptions (cf . the theoretical discussion in 5.4.1, or
the numerical results in Fig. 7.18).

All the other parameters of the simulation are coordinated by a simulation framework presented
in the diploma thesis of Johannes Martini [Mar2013]. He considers di�erent kinds of geometric
scenarios, world positions of the objects, speed vectors of the camera, intrinsic camera parameters
and sizes of objects. Camera-speci�c noise and additional Gaussian noise can be added to the
luminance and distance values. The track lengths and the atmospheric parameters can be chosen
arbitrarily. More details can be found in [Mar2013] and in Fig. 7.20, which summarizes the
work�ow of the framework.

However, for most of the experiments in this work a very simple scenario of objects frontally
heading towards the camera is su�cient. A discussion of all in�uences of the numerous scenario
parameters would go beyond the scope of this thesis. Such a discussion is partially provided in
[Mar2013, Chap. 3].

Computational E�ort. The parameter estimation for tracking-based visibility estimation is one
of the most emphasized topics in this work. It can be approached by the likelihood objective
function F introduced in Sec. 7.3 and the fast minimization methods fastMLE and advFastMLE
provided in Sec. 7.4. For evaluation, these algorithms are compared to standard minimization
techniques as described in the introduction of Sec. 7.4, namely Newton’s method, the Gauß-
Newton method, the gradient descent and the Levenberg-Marquardt algorithm.

It turns out that the Newton and Gauß-Newton methods su�er from an unusably small range of
convergence. Even for slightly disturbed data, K , and in turn dmet, cannot be suitably estimated.
The method of gradient descent is more stable, but also becomes inapplicable due to its extremely
slow convergence (by a factor� 1000). This is why quantitatively fastMLE and advFastMLE are
only compared to the more state-of-the-art Levenberg-Marquardt algorithm (cf . [Mar1963]).

The run-time evaluation is performed by counting the basic operations within optimized imple-
mentations of the three algorithms. Based on the speci�cation of a Cortex-A9 �oating-point unit
(cf . [ARM2010]), these numbers are multiplied with the required number of cycles per operation
and summed up to an overall number of cycles. The number of cycles is further divided by the
FPU’s cycles per second to estimate the computation time of each algorithm. This approach
constitutes only a coarse estimation of the real computation times, but nevertheless should be a
quite fair measure for comparison. This is especially true since the major computation steps in all
algorithms are similar.

Fig. 7.21 shows the results of the comparison. As expected, the fastMLE and advFastMLE are
remarkably faster than the Levenberg-Marquardt algorithm. To achieve a similar accuracy, the
(M+2)-dimensional minimization seems in general to require a much larger number of iterations
than the 1-dimensional approaches from 7.4.2. The fastMLE and advFastMLE converge in a
comparable amount of time. For parameter estimation, one thus has the factual choice between
the easy-to-implement fastMLE and the more complex advFastMLE that provides a better range
of convergence.

Hence, the tracking-based algorithm bene�ts from a well-understood and fast parameter estima-
tion. Together with an increasing quality and variety of distance and luminance data from camera
systems, it constitutes a powerful way of visibility estimation for future driver assistance systems.
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Figure 7.20: Work�ow of simulation framework (based on [Mar2013, Fig. 3.2]). Notation: c =
intrinsic camera parameters; η = luminance noise model; Amobj = 2-dimensional
world object dimension; Amproj = 2-dimensional projected object dimension; v =
velocity; t = trajectory; (xm, ym, zm) = pm1 closest tracking point (zm is chosen
minimally in a way that zm ≥ zmmin and pm1 can be projected to the virtual imager);
Pm = simulated tracking world coordinates; ε = simulated ESC data.
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Figure 7.21: Comparison of computational e�ort for tracking-based parameter estimation. For
each N the experiment is repeated 10000 times. The mean (left) and the maximum
(right) of the computation times are compared. The bottom plots provide a closer
look at the di�erences between fastMLE and advFastMLE.
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One of the most common driving situations consists of a vehicle driving along a long and easily
accessible road without too much tra�c. Especially in dense fog this often allows the driver to
observe the road and the sky touching or even merging at the horizon. Based on this observation
Hautière et al. [Hau2006c] introduced another visibility estimation approach (cf . 6.1.1). In contrast
to the tracking-based algorithm from Chap. 7, not many observations of objects at di�erent
distances are required, but one observation of the homogeneous and depth-extended road. From
this, a luminance curve is extracted from the top to the bottom of the image, called the road surface
luminance curve (RSLC). The parameter estimation can be realized with the help of a relation
between this curve’s in�ection point and the extinction coe�cient K .

The main contribution of this work is to make use of the full potential of the luminance curve
model. Motivated by the �nding that Koschmieder’s model for horizontal vision not satisfactorily
describes real-world RSLC observations, an improved model taking into account e�ects of non-
horizontal vision is introduced (cf . Sec. 8.3). Iterating this idea even leads to higher-order models
that converge to the exact solution of the corresponding radiative transfer problem (cf . Sec. 8.4).
It turns out that especially in dense fog the estimation capabilities of RSLC-based methods can be
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L
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medianmedian

Figure 8.1: The road surface luminance curve (RSLC) is extracted line by line from the segmented
region in the middle of the camera frame.

substantially increased by applying more accurate models.

8.1 Data Acquisition

The observation data that is used for visibility estimation in this chapter consists of a vertical
luminance pro�le of the road and the sky in the camera image. If no objects are blocking the view,
this luminance pro�le can be extracted from the top to the bottom of the image and is called road
surface luminance curve (RSLC). Based on segmented parts of the road and the sky it is obtained
from

v 7→ L(v) := median luminance at (segmented part of) line v (cf . Fig. 8.1).

Some approaches for RSLC acquisition can be found in works presenting frameworks for RSLC-
based visibility assessment, such as [Hau2006c] and [Bro2009]. They basically �nd parts of the
road and the sky by expansion algorithms starting at the bottom of the camera image. However,
RSLC extraction mainly consists of a segmentation problem, which is a well-known and widely
discussed standard task in computer vision. Examples for road and sky segmentation can be
found in [Alv2012] and [Ghe2015], but any other segmentation method could also be discussed in
this context.

As already mentioned, a comprehensive coverage of all possible road and sky segmentation
methods would go beyond the scope of this work. Instead, two purposeful approaches are
employed for RSLC extraction:

In all cases where the visibility measurement quality must not be essentially disturbed by non-
optimal segmentation, the segmentation is done manually. To realize this, a comfortable tool
has been implemented that interpolates labeled points at the roadside and vertically extends its
endpoints to the top of the image (cf . e.g. Fig. 6.1, Fig. 8.1 and Fig. 8.24). Obstructing objects can
be masked out.
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The second segmentation method is a novel and automatic one that is tailored to the RSLC context
and takes into account the requirements of real-time embedded systems. The middle part of the
image is divided into (potentially overlapping) segments and an in some sense optimal path from
the top to the bottom of the image is explored. The resulting segmentation is used for RSLC
extraction afterwards.

The choice in which way the image is divided is essentially in�uenced by the trade-o� between
smaller and larger segments, resulting in either more �exible or more smoothing e�ects. This
decision is up to the developer, who knows the behavior and limits of the camera he is working
with.

In this work, the image is split into rectangles induced by horizontal and vertical lines at positions

1 = vr,0 < · · · < vr,M = vmax, (horizontal)
ur,0 < · · · < ur,N , (vertical)

where vmax denotes the number of rows in the camera image (height). Now, the aim is to select
for each of the M rectangle rows one of the N column tiles such that the overall selection results
in an optimal RSLC. Di�erent criteria can be applied to decide which rectangle path is the optimal
one. Some of them, such as a minimal noise criterion or a monotonicity criterion, can be broken
down to local decisions and thus transformed to a graph-related problem. This will allow for a
fast optimal path selection.

To construct the corresponding weighted and directed graph G = (V, E ,w), each tile (m,n) ∈
{1, . . . ,M}×{1, . . . , N} is assigned to one node vm,n ∈ V . Additionally, a start node S ∈ V and
an end node E ∈ V are introduced, connected to the �rst and the last row, respectively (cf . Fig.
8.2), i.e. (S, v1,n) ∈ E and (vM,n,E) ∈ E for all n ∈ {1, . . . , N}. The remaining edges are directed
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connections between consecutive layers taking into account a path connectivity constraint, i.e.
for all (m,n), (m̂, n̂) ∈ {1, . . . ,M} × {1, . . . , N} one has

(vm,n, vm̂,n̂) ∈ E ⇔ m̂ = m+ 1 ∧ C(n, n̂) = 1,

where C is 1 if and only if column n and column n̂ are allowed to be connected. Unless stated
otherwise, C is chosen to enforce a geometrically connected path in the following. That means
the resulting path is allowed to jump at most one column per row, namely

{1, . . . , N}2 3 (n, n̂) 7→ C(n, n̂) =

{
1 , if |n− n̂| ≤ 1

0 , otherwise
. (8.1)

Now, each path p from the start node S to the end node E corresponds to a valid segmentation
choice

(n1, . . . , nM ) ↔ p = (S, v1,n1 , . . . , vM,nM ,E). (8.2)

In order to �nd an optimal path, one has to specify an objective function �rst. The objective
function proposed here rates the noise and monotonicity of the corresponding RSLC. Based on
Appendix C, the noise variance is estimated from the sum of squared neighbor di�erences

snoise(L) :=
1

2(vmax − 1)

vmax−1∑
v=1

(L(v + 1)− L(v))2 .

The non-monotonicity can be scored by a similar term

smon(L) :=
1

2(vmax − 1)

vmax−1∑
v=1

(max {L(v + 1)− L(v), 0})2 ,

which penalizes any non-decreasing case L(v + 1) > L(v). From this, the overall objective
function can be constructed as

(n1, . . . , nM ) 7→ snoise(Ln1,...,nM ) + smon(Ln1,...,nM ), (8.3)

where Ln1,...,nM denotes the RSLC corresponding to segmentation (n1, . . . , nM ). Based on (8.2),
the minimization of (8.3) can be formulated in terms of graph theory. This results in a classical
shortest path problem which is to �nd a path (S, v1,n1 , . . . , vM,nM ,E) that minimizes the sum
over the path’s edge weights. These edge weights w : E → R≥0 are given in terms of the inner
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node costs εm,n and the intermediate node costs δm,n,m̂,n̂ as

w(S, v1,n) = ε1,n, w(vm,n, vm̂,n̂) = εm̂,n̂ + δm,n,m̂,n̂, w(vM,n,E) = 0 (cf . Fig. 8.3).

In order to represent the objective function (8.3) the inner and intermediate costs are de�ned as

εm,n :=
1

2(vmax − 1)

vr,m−1∑
v=vr,m−1+1

sq (Ln(v + 1)− Ln(v))

+
1

2(vmax − 1)

{
sq (Ln(2)− Ln(1)) , if m = 1

0 , otherwise
,

δm,n,m̂,n̂ :=
1

2(vmax − 1)
sq (Ln(vr,m)− Ln̂(vr,m̂)) ,

where Ln := Ln,...,n denotes the RSLC according to the nth column, and x 7→ sq(x) :=

max
{√

2x, |x|
}2, a modi�ed square operator that allows for the combination of snoise and smon.

The shortest path problem constructed above can e�ciently be solved by a modi�ed Dijkstra
algorithm [Dij1959] that iteratively obtains the shortest paths from the start node to each layer
(cf . Algorithm 2). Examples of the results are shown in Fig. 8.4.

Algorithm 2 Modi�ed Dijkstra Algorithm for Shortest Rectangle Path
1: procedure ShortestRectanglePath(εm,n, δm,n,m̂,n̂)
2: . layer-wise shortest path extraction:
3: C(1, n)← ε1,n . C(m,n)... costs of shortest path from S to vm,n
4: form← 2 to M do
5: for n← 1 to N do
6: cmin ←∞ . currently minimal costs
7: for all np ∈ {1, . . . , N} with C(np, n) = 1 do
8: cthis ← C(m− 1, np) + δm−1,np,m,n . costs of this predecessor
9: if cmin > cthis then

10: cmin ← cthis
11: P (m,n)← np . P (m,n)... shortest path predecessor of vm,n
12: end if
13: end for
14: C(m,n)← cmin + εm,n . node costs εm,n independent of predecessor
15: end for
16: end for

17: . recurse over predecessors to determine shortest path:
18: nM ← argminn=1,...,N C(M,n)
19: form←M − 1 to 1 do
20: nm ← P (m+ 1, nm+1)
21: end for
22: return (n1, . . . , nM )
23: end procedure
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Figure 8.4: Examples for the output of Algorithm 2 using di�erent grid sizes.

Additionally, the outcoming optimal score can further be used as a con�dence measure for the
extracted RSLC. In cases where the noise and non-monotonicity are too high in relation to the
overall dynamic of the luminance curve, the RSLC extraction might have failed and can be rejected.
An anti-con�dence measure could thus look like

L 7→
√
snoise(L) + smon(L)

|L(1)− L(vmax)| . (8.4)

8.2 First-Order: Koschmieder’s Model

To utilize the road surface luminance curve (RSLC) for visibility estimation, a model has to be
found that describes the RSLC in terms of atmospheric parameters (cf . Sec. 6.3). The �rst to
introduce such a model were Hautière et al. [Hau2006c]. Based on the assumption of a �at and
homogeneously dark road, they apply Koschmieder’s model for horizontal vision (cf . 5.4.1)

LKos(v) := e−Kd(v)L0 +
(

1− e−Kd(v)
)
Lair, (8.5)

where L0 represents the constant intrinsic road luminance. The distance d between the camera
and the street at image row v is derived from reasonable assumptions about the camera’s and
world’s geometry:

d(v) =

{
c

v−vh
, if v > vh

∞ , if v ≤ vh
, (8.6)
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Figure 8.5: Koschmieder’s model is not capable of describing real-world RSLCs adequately.

where c represents a camera constant depending on the intrinsic camera parameters, the pitch
angle ξ and the height Hcam of the camera installed above the road plane (cf . Fig. 8.7); vh denotes
the road plane’s horizon in image coordinates.

The key observation for RSLC-based parameter estimation is that LKos has an in�ection point vi
that exactly corresponds to the parameters (K,Lair, L0) in an explicit way (cf . [Hau2006c, (16),
(20) and (21)]), more precisely

(K,Lair, L0)
bijective correspondence↔

(
vi, L

Kos(vi), ∂vL
Kos(vi)

)
. (8.7)

As already mentioned in 6.1.1, K and vi are even linearly related by K = 2(vi − vh)/c.

Hautière et al. provide an explicit method to estimate the meteorological visibility dmet directly
from the RSLC’s in�ection point vi. Therefore, the main computational costs of the entire approach
consists of extracting the luminance curve (cf . Sec. 8.1) and its in�ection point (cf . Sec. 8.5).
However, the overall estimation error is composed of the errors arising not only from the RSLC
and in�ection point extraction, but also from the employed model. In fact, a closer look at the
class of luminance curves v 7→ LKos(v) de�ned in (8.5) and (8.6) reveals that the model is not
capable of su�ciently describing the RSLC observation. In particular, the fact that LKos remains
constant above the horizon does not re�ect reality (cf . Fig. 8.5).

The reason for this is that Koschmieder’s model assumes that the amount of ambient light (or air
light) scattered into the line of sight is constant in direction and location. This is approximately
true for horizontal vision, but changes with the angle of view. This raises the question of how
much improvement in measurement accuracy could be achieved by further developing the RSLC
model, and whether more accurate models are still applicable for driver assistance purposes.
These are the motivating questions for the following sections (cf . Sec. 8.3 and Sec. 8.4).

8.3 Second-Order: Improved Fog Model

According to the radiative transfer theory (cf . 5.3.1), in a perfectly scattering and homogeneous
atmosphere the transmission of light in direction σ = (σ1, σ2, σ3)T ∈ S2 over a distance d ∈ R≥0

can be expressed as

L(σ, d) = e−KdL0 +

∫ d

0
Ke−Ks

∫
S2

Lin(p(s), ω)ψ(σ, ω)dS(ω)ds. (8.8)
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(a) Model based on Koschmieder’s law (�rst-order).

Koschmieder

Air Light

object = point on road surface
(b) Improved Model (second-order).

Figure 8.6: Two models for the transmission of light through fog: While Koschmieder’s model
explains it as an exponential mixing of light, the improved model considers the in-
scattered light to be dependent on location and direction on the line of sight. The
improved model uses Koschmieder’s model to determine the in-scattered light at every
position along the line of sight.

Here, the �rst term represents the exponentially attenuated intrinsic luminance L0, and the
second term represents the air light scattered into the optical path in direction of the observer
pobs ∈ R3. At any point of the line of sight

[0, d] 3 s 7→ p(s) := pobs − sσ ∈ R3, (8.9)

the amount of in-scattered light is determined by the in-scattering luminance Lin weighted by the
phase function ψ and integrated over all directions, namely

∫
S2 Lin(p(s), ω)ψ(σ, ω)dS(ω). It is

easy to see that the light transport model (8.8) turns into Koschmieder’s model if Lin is assumed
to be constant in the spatial domain (cf . 5.4.1).

To derive an improved RSLC model, the in-scattering lightLin has to be chosen more appropriately.
This problem is at least as complex as determining L itself. However, according to 5.4.2, the
radiative transfer relation given in (8.8) leads to an upgraded model compared to the model used
for Lin. So far, the best explicit radiative transfer model is given by Koschmieder, which therefore
is used as the model for the in-scattering function here (cf . Fig. 8.6). In this way, the RSLC model
is improved from the �rst to the second order.
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8.3.1 In-Scattering Luminance Model

In order to model the light Lin that is scattered into the line of sight, the road is assumed to be an
in�nitely expanded plane. Applying Koschmieder’s model (5.19) results in

Lin(p(s), ω) =

Lair , if ω3 ≤ 0

e−K
h(s)

ω3 L0 +

(
1− e−K

h(s)

ω3

)
Lair , if ω3 > 0

, (8.10)

where h(s) denotes the height of p(s) above the ground and ω = (ω1, ω2, ω3)T ∈ S2 the direction
of in-scattered light (cf . Fig. 8.7).

Substituting (8.10) into (8.8), applying the S2 parametrization Φ from Remark 10 on page 39 and
using the fact that the phase function is normalized, (4.4) leads to the second-order model:

L(σ, d) = e−KdL0 +

∫ d

0
Ke−Ks

∫
S2

Lin(p(s), ω)ψ(σ, ω)dS(ω)ds

= e−KdL0 +

∫ d

0
Ke−Ks

∫ π

0

∫ 2π

0
Lin(p(s), ω)ψ(σ,Φ(ϕ, θ)) sin(θ)dϕdθds

= e−KdL0 +

∫ d

0
Ke−Ks

∫ π

π
2

∫ 2π

0
Lairψ(σ,Φ(ϕ, θ)) sin(θ)dϕdθds

+

∫ d

0
Ke−Ks

∫ π
2

0

∫ 2π

0

[
e
−K h(s)

cos(θ)L0

+

(
1− e−K

h(s)
cos(θ)

)
Lair

]
ψ(σ,Φ(ϕ, θ)) sin(θ)dϕdθds

= e−KdL0 + Lair

∫ d

0
Ke−Ks

∫ π

0

∫ 2π

0
ψ(σ,Φ(ϕ, θ)) sin(θ)dϕdθds

+ (L0 − Lair)

∫ d

0
Ke−Ks

∫ π
2

0

∫ 2π

0
e
−K h(s)

cos(θ)ψ(σ,Φ(ϕ, θ)) sin(θ)dϕdθds

= e−KdL0 + Lair

∫ d

0
Ke−Ksds+ (L0 − Lair)TK(σ, d)

= e−KdL0 +
(

1− e−Kd
)
Lair + (L0 − Lair)TK(σ, d), (8.11)

where an abbreviatory notation

TK(σ, d) :=

∫ d

0
Ke−Ks

∫ π
2

0

∫ 2π

0
e
−K h(s)

cos(θ)ψ(σ,Φ(ϕ, θ)) sin(θ)dϕdθds

is introduced. It is interesting to note that the increase of complexity compared to the �rst-order
model lies in exactly the integral term (L0 − Lair)TK(σ, d); the �rst two terms of the improved
model match Koschmieder’s model and are independent of σ.
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h/ω3 to the road surface in direction ω ∈ S2.

Figure 8.7: Notation and geometry.

8.3.2 Geometry

In order to transfer the improved model from world coordinates (x1, x2, x3)T to image coordinates
(u, v)T , the world’s and camera’s geometry have to be speci�ed (cf . Fig. 8.7). As mentioned
before, the road is assumed to be an in�nitely expanded plane; the camera is mounted at height
Hcam above ground and pitched by an angle ξ. In camera coordinates (x̂1, x̂2, x̂3)T , an image
point (u, v)T becomes

(f, u0 − u, v0 − v)T ,

determined by the focal length f and the principle point (u0, v0)T . Furthermore, (u, v)T can be
expressed in world coordinates (x1, x2, x3)T by translation and rotation of the camera coordinates:

pobs +

 cos(ξ) 0 sin(ξ)
0 1 0

− sin(ξ) 0 cos(ξ)

 f
u0 − u
v0 − v

 = pobs −

sin(ξ)(v − v0)− cos(ξ)f
u− u0

cos(ξ)(v − v0) + sin(ξ)f

 .

In particular, σ(u, v) is given by

σ(u, v) =
1√

f2 + (u− u0)2 + (v − v0)2

sin(ξ)(v − v0)− cos(ξ)f
u− u0

cos(ξ)(v − v0) + sin(ξ)f

 . (8.12)

Furthermore, the camera origin in world coordinates is situated at

pobs =

tan(ξ)Hcam
0

Hcam

 .

This allows for determining the height of p(s) above the road (cf . (8.9)):

h(s) = Hcam − sσ3. (8.13)
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The image’s row of the horizon vh is de�ned by σ3(u, vh) = 0, which can be evaluated explicitly:

cos(ξ)(vh − v0) + sin(ξ)f = 0 ⇔ vh = v0 − tan(ξ)f.

Due to (8.13) and for v > vh, the pixel’s distance d(u, v) is determined byHcam−d(u, v)σ3(u, v) =
0 and thus

d(u, v) =

{
∞ , if v ≤ vh
Hcam
σ3(u,v)

, if v > vh
. (8.14)

8.3.3 Second-Order Model

The last step formulating the explicit RSLC model is to choose a phase function ψ. The shape of the
scattering distribution di�ers from particle to particle. Depending on the drop-size distribution,
the macroscopic phase function can be described as an average representation of scatterers (cf .
4.3.2). In the context of fog, the Henyey-Greenstein phase function (4.12) is commonly used to
approximate this average scattering distribution

ψHG(σ, ω) =
1

4π

1− g2

(1− 2g〈σ, ω〉+ g2)
3
2

,

where g ∈ [0.8, 0.9] denotes the asymmetry parameter and σ and ω are directed inwards and
outwards, respectively (cf . Fig. 4.4). One should note that most of the following insights are
independent of the chosen phase function.

Finally, inserting (8.12) and (8.14) in (8.11) yields the improved RSLC model

v 7→ L2nd(v) = Lair + (L0 − Lair)
[
e−Kd(u,v) + TK(σ(u, v), d(u, v))

]
, (8.15)

where

TK(σ, d) =

∫ d

0
Ke−Ks

∫ π
2

0

∫ 2π

0
e
−K h(s)

cos(θ)ψHG(σ,Φ(ϕ, θ)) sin(θ)dϕdθds. (8.16)

This model depends on several parameters; the system parameters Hcam, ξ, f , u0, v0 and u, which
are assumed as being given (e.g. from calibration and algorithms estimating the camera motion);
and the atmospheric parameters K , Lair, L0 and g. Apart from u0 and u, which are ignored in
[Hau2006c] for reasons of simplicity, the parameter g is the only new parameter appearing in the
second-order RSLC model. In the following, an abbreviatory notation L2nd(v; p1, p2, . . . ) is used
whenever L2nd is discussed w.r.t. the parameters p1, p2, . . . , for instance L2nd(v;K,L0, Lair) or
L2nd(v; f,Hcam).

8.3.4 Notes on the Parameter Estimation

K-vi Relation. Similar to Koschmieder’s model, linear transformations applied to the improved
model exactly correspond to changes in the luminance parameters L0 and Lair. On the one hand,
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for all α, β ∈ R and any v one has

αL2nd(v;Lair, L0) + β = α
[
Lair + (L0 − Lair)

[
e−Kd + TK(σ, d)

]]
+ β

= [αLair + β] + ([αL0 + β]− [αLair + β])
[
e−Kd + TK(σ, d)

]
= L2nd(v;αLair + β, αL0 + β).

On the other hand, for any Lair, L0, L̂air and L̂0 (with L0 6= Lair), the corresponding second-order
luminance curves are linearly related; more precisely, L2nd(·; L̂air, L̂0) ≡ αL2nd(·;Lair, L0) + β,
where

α =
L̂air − L̂0

Lair − L0
, β =

L̂0Lair − L̂airL0

Lair − L0
.

This is not only a basic requirement for all models working with intensities instead of luminances
(cf . Sec. 6.4), but also reveals the independence of vi from Lair and L0. Therefore, given all system
parameters, vi only depends on the two remaining atmospheric parameters K and g.

However, there does not seem to be a way to estimate g from an observed luminance curve
without performing a full model �t. In order to avoid this computationally expensive optimization
procedure, the asymmetry parameter is set to a �xed value

g := 0.85.

Fortunately, g’s e�ect on vi seems to be almost negligible compared toK’s. Numerical experiments
suggest that keeping g constant produces a worst-case error of about 3.5 % (cf . Fig. 8.17). Now
that g and all system parameters are �xed, for every K , there exists exactly one vi independent
of Lair and L0. Further experiments support the presumption that K 7→ vi(K) is monotone and
in particular bijective (cf . Fig. 8.15). Therefore, it can be utilized for parameter estimation by
inversion. In contrast to the �rst-order model from Sec. 8.2, the mapping vi 7→ K(vi) cannot be
formulated explicitly. The increased complexity of the new model thus has to be broken down to
precomputed look-up tables (see below).

Similar to (8.7), it is possible to additionally estimate the atmospheric parameters Lair and L0

from (vi, L
2nd(vi), ∂vL

2nd(vi)) via

Lair = L2nd(vi;Lair, L0)−DL2nd(vi; 0, 1), L0 = D + Lair, D :=
∂vL

2nd(vi;Lair, L0)

∂vL2nd(vi; 0, 1)
,

taking advantage of the simplicity of L2nd(vi; 0, 1) (cf . (8.15)):

L2nd(vi; 0, 1) = e−Kd(u,v) + TK(σ(u, v), d(u, v)).

In the following, the in�ection-point-based parameter estimation is referred to as vi-�t.

Inflection Point Estimation from Noisy Observation Data. One necessary part of the param-
eter estimation and data acquisition is the extraction of the in�ection point vi from an observed
road surface luminance curve. This is an important source of error during the overall measurement
of dmet. A further discussion can be found in Sec. 8.5 and 8.6.2 (cf . Fig. 8.16).

Integral Evaluation. The main computational cost for calculating the second-order RSLC model
lies in the triple integral in (8.16). Due to the fundamental theorem of calculus, TK is continuous
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and even di�erentiable in d. Applying further Fubini’s theorem and Lebesgue’s dominated
convergence theorem to TK(σ, d′) for d′ → d allows for replacing of the triple integral with a
numerical more cost-e�ective double integral, even for d =∞:

TK(σ, d) = lim
d′→d
TK(σ, d′)

= lim
d′→d

∫ d′

0
Ke−Ks

∫ π
2

0

∫ 2π

0
e
−K h(s)

cos(θ)ψHG(σ,Φ(ϕ, θ)) sin(θ)dϕdθds

= lim
d′→d

∫ π
2

0

∫ d′

0
Ke−Kse−K

h(s)
cos(θ)ds

∫ 2π

0
ψHG(σ,Φ(ϕ, θ))dϕ sin(θ)dθ

=

∫ π
2

0

∫ d

0
Ke−Kse−K

h(s)
cos(θ)ds

∫ 2π

0
ψHG(σ,Φ(ϕ, θ))dϕ sin(θ)dθ.

To avoid numerical handling of in�nity, the �rst inner integral can be explicitly evaluated for
d =∞:∫ ∞

0
Ke−Kse−K

h(s)
cos(θ)ds = lim

d′→∞

∫ d′

0
Ke−Kse−K

Hcam−sσ3

cos(θ) ds

= e
−K Hcam

cos(θ) lim
d′→∞

∫ d′

0
Ke
−Ks

(
1− σ3

cos(θ)

)
ds

= e
−K Hcam

cos(θ) lim
d′→∞

[
−
(

1− σ3

cos(θ)

)−1

e
−Ks

(
1− σ3

cos(θ)

)]d′
s=0

=

(
1− σ3

cos(θ)

)−1

e
−K Hcam

cos(θ) =
cos(θ)

cos(θ)− σ3
e
−K Hcam

cos(θ) .

(8.17)

One should note that σ3 ≤ 0 for d = ∞ and cos(θ) > 0 on (0, π/2). In the case of d < ∞, a
similar evaluation could be done for the integral, which in contrast to the d = ∞ case would
lead to problems at cos(θ) = σ3. This could be further approached by applying l’Hôspital’s rule,
which in turn leads to an inconvenient numerical case di�erentiation. Therefore, for d <∞ an
numerical evaluation of the integral is preferable.

Quadrature for d < ∞. To evaluate the integrals in TK numerically, Simpson’s rule (also
referred to as three-point Newton-Cotes quadrature rule)∫ x+h

x
f(τ)dτ ≈ h

6

[
f(x) + 4f

(
x+

h

2

)
+ f(x+ h)

]
is applied. Thereby the intervals [0, π/2], [0, d] and [0, 2π] are split up intoNθ ,Ns,Nϕ subintervals
of equal length, respectively, where

hθ :=
π

2Nθ
, hs :=

d

Ns
, hϕ :=

2π

Nϕ
.

For reasons of clarity, let

T1(s, θ) := Ke
−K

(
h(s)

cos(θ)
+s
)
, T2(s, θ) := ψHG(σ,Φ(ϕ, θ)).
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Figure 8.8: Examples for �rst-order and second-order vi-�ts. The second-order model �ts the data
more appropriately than the �rst-order model, but it still leaves room for improvement.
This is addressed by the higher-order models introduced in Sec. 8.4.

Now, repeatedly applying Simpson’s rule to all subintervals yields

TK(σ, d) =

∫ π
2

0

∫ d

0
T1(s, θ)ds

∫ 2π

0
T2(ϕ, θ)dϕ sin(θ)dθ

≈ hθ
6

2Nθ∑
n=0

wθ,n sin(θn)

∫ d

0
T1(s, θn)ds

∫ 2π

0
T2(ϕ, θn)dϕ

≈ hθhshϕ
216

2Nθ∑
n=0

wθ,n sin(θn)

2Ns∑
m=0

ws,mT1(sm, θn)

2Nϕ∑
l=0

wϕ,lT2(ϕl, θn),

where the quadrature weights wθ,n, ws,m and wϕ,l are 1, 4, 2, 4, 2, . . . , 2, 4, 2, 4, 1 and the quadra-
ture interpolation points are given as

θn := n
hθ
2
, sm := m

hs
2
, ϕl := l

hϕ
2
.

Quadrature for d = ∞. The case d = ∞ can be treated analogously to the d < ∞ case,
whereby (8.17) has to be taken into account.

Symmetry in u − u0. As one might expect from the geometry, the model is symmetric in u
around u0, i.e. for any v and u∆

L2nd(v;u = u0 + u∆) ≡ L2nd(v;u = u0 − u∆).

This can easily be proven by a substitution (ϕ, θ)→ (2π − ϕ, θ).

E�cient Look-up Tables. In contrast to the �rst-order model from Sec. 8.2, the relation between
vi and K for the second-order model is not given in an explicit way. Since its computation seems
to be too expensive for an online solution, it is useful to �nd an e�cient way to store vi 7→
K(vi;L0, Lair, Hcam, ξ, f, u0, v0, u, g). The luminance parameters L0 and Lair can be ignored due
to the invariance discussed at the beginning of 8.3.4. The asymmetry parameter g is set to 0.85
as explained above and in Fig. 8.17. f and v0 are intrinsic parameters that are assumed to be
constant here. Furthermore, as shown above, the extinction coe�cient depends on u and u0 only
in the form of |u− u0|.
Therefore, it remains to precompute a look-up table of the form vi 7→ K(vi;Hcam, ξ, |u − u0|).
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This can be done in various ways. One of them shall be demonstrated here for the following test
set:

dmet ∈ {20 m, 30 m, . . . , 490 m, 500 m} ,
Hcam ∈ {1.250 m, 1.255 m, . . . , 1.295 m, 1.300 m} ,

ξ ∈ {0°, 0.1°, . . . , 4.9°, 5°} ,
u ∈ {u0, u0 ± 10 px, . . . , u0 ± 190 px, u0 ± 200 px} .

(8.18)

Since the range of vi varies w.r.t. the system parameters, the look-up table is (counterintuitively)
constructed for the inverse mapping K 7→ vi(K). Another bene�t of this inverse mapping is that
dmet is evenly sampled according to (8.18). The look-up query for given data (vi, Hcam, ξ, |u−u0|)
would thus consist in a simple one-dimensional binary search in the respective K-vi list. For
this naïve look-up table concept 49 · 51 · 11 · 21 vi values have to be stored together with the
49 + 51 + 11 + 21 parameter values described in (8.18) which sums up to 577401 values. This
motivates the idea to further compress the look-up table in order to save memory. This can be
approached in various ways. The compression concept proposed in this work is based on the
observation from 8.6.2 that for a �xed set of parameters the relation vi 7→ K(vi) has a quite linear
character (cf . Fig. 8.15). Therefore, it is useful to formulate the vi-K relation for each parameter
setting (Hcam, ξ, |u− u0|) as

K(vi) = αvi + β − ε(vi),

where ε(vi) denotes the error term and α and β are chosen for the mapping to be exact at
K = 0.15 m−1 (dmet ≈ 20 m) and K = 0.006 m−1 (dmet ≈ 500 m), i.e.

0.15 = αvi(0.15) + β, 0.006 = αvi(0.006) + β.

Furthermore, Fig. 8.18 suggests a quite simple dependency of α and β on the parameters Hcam, ξ,
|u− u0|. This motivates the idea to further approximate the overall vi-K relation by

α(Hcam, ξ, u) =
2∑

nH=0

2∑
nξ=0

2∑
nu=0

cαnH ,nξ,nuH
nH
camξ

nξunu ,

β(Hcam, ξ, u) =
3∑

nH=0

3∑
nξ=0

3∑
nu=0

cβnH ,nξ,nuH
nH
camξ

nξunu .

In order to compensate the slightly non-linear character of the vi-K relation, the error term
ε(vi) can be approximated by a mapping K 7→ εavg(K). For each K from (8.18), this mapping is
computed as the average error term ε over all system parameters. To apply this correction term
to a given vi, one has to compute the linear approximation K lin := αvi + β �rst. The correction
term εavg has then to be applied to K lin in order to achieve a more appropriate estimation of K .

In this way, only 2 · 49 values for εavg and 33 + 43 values for the α-β interpolation coe�cients
have to be stored. For the example given above, this drastically reduces the number of values
to be stored to 189. The maximum relative estimation error in dmet generated by this reduction
technique turns out to be below 0.9 % on the test set (8.18). Without the non-linearity correction
introduced by εavg, this would be more than 7 %.
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8.4 Higher-Order Models

In Sec. 8.3, it has been outlined that based on the radiative transfer theory an existing luminance
model can be improved by utilizing it as the in-scattering luminance model. It stands to reason
that this idea can be iterated in order to incrementally improve the luminance models. More
precisely, one can write

L0(x, σ) := Lair,

Ln+1(x, σ) := L0(x, σ)e−Kd(x,σ) +

∫ d(x,σ)

0
Ke−Ks

∫
S2

Ln(x− sσ, ω)ψ(σ, ω)dS(ω)ds.

These recursively de�ned models are extensively discussed in 5.4.2 and Theorem 2 on page 50.
Among other important properties, convergence of Ln as n→∞ towards the exact solution of
the full radiative boundary problem is shown (see Sec. 5.2). In this sense it becomes clearer why
Hautière et al.’s model (see Sec. 8.2) and the improved model (see Sec. 8.3) can be interpreted as
�rst-order and second-order RSLC models, respectively. It also motivates why the second-order
model is indeed a more appropriate model than the �rst-order one (cf . Fig. 8.8).

Higher-order RSLC models can be derived by applying the recursively de�ned luminance models
to a plane-parallel scenario. According to Sec. 5.5, the plane-parallel radiative boundary problem
can be written as

L(H,µ) = L0(H,µ)e−Kd(H,µ) +

∫ d(H,µ)

0
Ke−Ks

∫ 1

−1
L (H + sµ, µ̂)ψ(µ, µ̂)dµ̂ds, (8.19)

where (H,µ) is related to (x, σ) via the x3-plane-parallel transformation

H : R3 × S2 → R, (x, σ) 7→ x3,

µ : R3 × S2 → [−1, 1], (x, σ) 7→ σ3;

and L denotes the plane-parallel representation of the luminance function

L : [0, Hatm]× [−1, 1]→ [0,∞), L(x, σ) = L(H(x, σ), µ(x, σ));

and ψ denotes the plane-parallel phase function

ψ(µ, µ̂) =

∫ 2π

0
ψ̂
(
µµ̂+

√
1− µ2

√
1− µ̂2 cos(ϕ)

)
dϕ,

where ψ̂(〈ω, ω̂〉) = ψ(ω, ω̂). The boundary conditions at height levels 0 and Hatm (cf . Fig. 8.9)
are given by

∀µ ∈ [0, 1] : L(0, µ) = L0,

∀µ ∈ [−1, 0] : L(Hatm, µ) = Lair,
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Figure 8.9: Plane-parallel boundary conditions.
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L0,0 L0,1 L0,N−1 L0,N
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Hatm = HM
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Figure 8.10: Discrete representation of L on [0, Hatm]× [−1, 1].

which leads to d(H,µ) and L0(H,µ) being given as

L0(H,µ) =

{
Lair , if µ ≤ 0

L0 , if µ > 0
, d(H,µ) =


H−Hatm

µ , if µ < 0

∞ , if µ = 0
H
µ , if µ > 0

.

With each step from the nth-order to the (n+ 1)th-order model, the analytical complexity is sub-
stantially increased. As a consequence, an explicit analytical discussion seems to be impracticable.
Nevertheless, the higher-order models can still be deployed using numerical approximations.

To achieve this, the domain [0, Hatm]× [−1, 1] is equidistantly split up into M ·N rectangles (cf .
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Fig. 8.10):

0 = H0 < · · · < Hm = mhH < · · · < HM = Hatm, hH =
Hatm
M

,

−1 = µ0 < · · · < µn = −1 + nhµ < · · · < µN = 1, hµ =
2

N
.

L is numerically represented by Lh, which is discretely de�ned through Lh(Hm, µn) = Lm,n
and bilinearly interpolated in between, i.e. on [Hm, Hm+1]× [µn, µn+1] it is

Lh(H,µ) = c00 + c10Hrel + c01µrel + c11Hrelµrel,

where the relative representations of H and µ are given by

Hrel =
H −Hm

hH
, µrel =

µ− µn
hµ

,

and the coe�cients cij are derived from

Lm,n = c00 + c10 · 0 + c01 · 0 + c11 · 0 · 0,
Lm+1,n = c00 + c10 · 1 + c01 · 0 + c11 · 1 · 0,
Lm,n+1 = c00 + c10 · 0 + c01 · 1 + c11 · 0 · 1,

Lm+1,n+1 = c00 + c10 · 1 + c01 · 1 + c11 · 1 · 1,

which leads to

c00 = Lm,n, c10 = Lm+1,n − Lm,n, c01 = Lm,n+1 − Lm,n,
c11 = Lm+1,n+1 − Lm+1,n − Lm,n+1 + Lm,n.

To represent the zeroth-order model, all Lm,n have to be set to Lair initially, s.t. Lh ≡ Lair.

In order to derive the approximate higher-order models, Lh is inserted into (8.19). Similar to
8.3.4, the triple integral has to be evaluated numerically. For this, each integration direction is
disassembled into Nµ̂, Ns and Nϕ intervals of equal lengths

hµ̂ =
2

Nµ̂
, hs =

d(H,µ)

Ns
, hϕ =

2π

Nϕ
,

respectively. With the help of Fubini’s theorem and Simpson’s rule, the integral can be numerically
evaluated by∫ d(H,µ)

0
Ke−Ks

∫ 1

−1
L (H + sµ, µ̂)ψ(µ, µ̂)dµ̂ds

=

∫ 1

−1

[∫ d(H,µ)

0
Ke−KsL (H + sµ, µ̂) ds

] [∫ 2π

0
ψ̂
(
µµ̂+

√
1− µ2

√
1− µ̂2 cos(ϕ)

)
dϕ

]
dµ̂

≈ hµ̂hshϕ
216

2Nµ̂∑
nµ̂=0

wµ̂(nµ̂)

[
2Ns∑
ns=0

ws(ns)Q1(ns, nµ̂)

] 2Nϕ∑
nϕ=0

wϕ(nϕ)Q2(nϕ, nµ̂)

 , (8.20)
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where ws, wµ̂, wϕ denote the weights 1, 4, 2, 4, 2, ..., 2, 4, 2, 4, 1 and

Q1(ns, nµ̂) = Ke−Kns
hs
2 Lh

(
H − ns

hs
2
µ,−1 + nµ̂

hµ̂
2

)
,

Q2(nϕ, nµ̂) = ψ̂

µ(−1 + nµ̂
hµ̂
2

)
+
√

1− µ2

√
1−

(
−1 + nµ̂

hµ̂
2

)2

cos

(
nϕ
hϕ
2

) .

To avoid a cumbersome handling of in�nity, the case µ = 0 is specially treated by

L(H, 0) =

∫ ∞
0

Ke−Ksds
∫ 1

−1
L(H, µ̂)ψ(0, µ̂)dµ̂ =

∫ 1

−1
L(H, µ̂)ψ(0, µ̂)dµ̂,

which is numerically approximated analogously to the case µ 6= 0.

Furthermore, it is useful to normalize the discrete ψ̂, motivated by the phase function’s normal-
ization property in the continuous case, which is∫ 1

−1

∫ 2π

0
ψ̂
(
µµ̂+

√
1− µ2

√
1− µ̂2 cos(ϕ)

)
dϕdµ̂ = 1.

This leads to a normalized version of (8.20)∫ 1

−1

[∫ d(H,µ)

0
Ke−KsL(H − sµ, µ̂)ds

] [∫ 2π

0
ψ̂
(
µµ̂+

√
1− µ2

√
1− µ̂2 cos(ϕ)

)
dϕ

]
dµ̂

≈ hs
6

∑2Nµ̂
nµ̂=0wµ̂(nµ̂)

[∑2Ns
ns=0ws(ns)Q1(ns, nµ̂)

] [∑2Nϕ
nϕ=0wϕ(nϕ)Q2(nϕ, nµ̂)

]
∑2Nµ̂

nµ̂=0wµ̂(nµ̂)
∑2Nϕ

nϕ=0wϕ(nϕ)Q2(nϕ, nµ̂)

Since the integrands do not have to be evaluated at any further points, the computational costs for
the normalization are negligible. Moreover, due to the anisotropic shape of ψHG, the normalization
step stabilizes the numerical integration signi�cantly (cf . Fig. 8.23). The explicit normalization
factor ensures the use of valid discrete phase functions and incorporates additional information
to the integration which helps reduce the quadrature error.

Examples for higher-order light distributions are given in Fig. 8.11. From these, one can easily
compute the corresponding RSLCs by positioning a virtual camera (with speci�ed height, pitch
angle and intrinsic camera parameters) within each light distribution (cf . Fig. 8.12). It is interesting
to see that both �gures are consistent with Theorem 2 on page 50: For order 0 the light distribution
and thus the RSLC are constant. For order 1 and order 2 the resulting RSLCs match the explicit
�rst-order and second-order RSLC models derived in Sec. 8.2 and Sec. 8.3, respectively. Despite
the large number of discretizations, these curves perfectly coincide. One can also observe the
predicted monotonicity, boundedness and convergence behavior.
Remark 31 (Parameter estimation based on K-vi relation). Due to Theorem 2(g) on page 50, the
relation between the in�ection point vi of higher-order models and K is independent of Lair and
L0. Hence, similar to the �rst-order and second-order case (cf . 8.3.4), a fast parameter estimation
method based on look-up tables could be implemented. Unfortunately, due to the high complexity
of large-order models, creating look-up tables seems to be an extremely costly task. However,
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order = 0

µ = −1 µ = 1
H = 0m

H = Hatm

order = 1

µ = −1 µ = 1

order = 2

µ = −1 µ = 1

order = 3

µ = −1 µ = 1

order = 50

µ = −1 µ = 1

. . .

Figure 8.11: Higher-order light distributions in H and µ. Setting: dmet = 40 m, L0 = black,
Lair = white, Hatm = 120 m, M = 480, N = 100, Ns = 80, Nµ̂ = 30, Nϕ = 30.

v

L

Hautière’s model
Improved model

Figure 8.12: Higher-order RSLCs extracted from the light distributions in Fig. 8.11 with the help of
a virtual camera, where Hcam = 1.5 m, ξ = 0°, f = 1200 px, u0 = 0 px, v0 = 256 px,
vmax = 512 px.



8. Algorithm Based on Road Surface Luminance Curves 135

even taking the second-order model instead of the �rst-order one is a substantial improvement in
visibility estimation (cf . Fig. 8.19).

8.5 In�ection Point Estimation from Observation Data

The visibility estimation methods proposed in this chapter are mostly based on a mapping from
the RSLC’s in�ection point vi to the corresponding extinction coe�cient K of the atmosphere
(cf . Sec. 8.2 and Sec. 8.3). Therefore, the robust extraction of in�ection points from noisy data is
an important part of the parameter estimation. This requires the search for extrema in the �rst
derivative of the RSLC data. Unfortunately, the estimation of derivatives from noisy signals is
one of the most challenging tasks in the �eld of numerics. A recommendable summary of this
topic can be found in [Kno2012].

The derivative approximations of the noisy data are usually obtained from local �ts of generic
functions, such as polynomials or splines. The major di�culty of selecting the �tting method
and parameters consists in the common trade-o� between smoothing and the extraction of the
signal dynamics. Therefore, the optimal choice substantially depends on the data quality, the
number of data points and the dynamics of the underlying signal. The methods for in�ection point
estimation thus has to be adapted to the speci�c camera system, which, amongst others, includes
its orientation to the world, its resolution, its signal-to-noise ratio and its available computing
capacity.

In this work, splines (cf . e.g. [Boo1978]) are used for the smoothing of the luminance curve, since
splines combine numerical and analytical simplicity with a high �exibility. The non-smooth RSLC
is given by the data points

(1, L1), . . . , (vmax, Lvmax).

The splines are based on an equidistant knot sequence

1 = vk,0 < · · · < vk,Nk = vmax,

s.t. the basic splines Bl,k (B-splines) of order k are recursively de�ned via

v 7→ Bl,1(v) :=

{
1 , v ∈ [vk,l, vk,l+1)

0 , otherwise
,

v 7→ Bl,k(v) :=

[
v − vk,l

vk,l+k−1 − vk,l

]
Bl,k−1(v) +

[
1− v − vk,l+1

vk,l+k−1 − vk,l+1

]
Bl+1,k−1(v).

The splines of order k are de�ned as the linear combination of the kth-order B-splines:

v 7→
Nk−k∑
l=k−1

clBl,k(v), where cl ∈ R.

Now, the smoothing of the RSLC’s data points can be realized with the help of a least-square spline
�t to the data. In order to avoid over�tting, a common approach is to incorporate a penalization
term to the minimization, aiming to keep the derivatives small. One of the most successful
penalization concepts is described by Eilers and Marx [Eil1996], who use penalties based on �nite
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di�erences of the spline coe�cients, leading to the following objective function:

(ck−1, . . . , cNk−k) 7→
vmax∑
v=1

[
Lv −

Nk−k∑
l=k−1

clBl,k(v)

]2

+ wp

Nk−k∑
l=kd+k−1

(
∆kdcl

)2
, (8.21)

where wp denotes the weight of the penalization term and kd the order of coe�cient di�erences.
The �nite di�erences are recursively de�ned via

∆1cl := cl − cl−1, ∆kdcl := ∆kd−1cl −∆kd−1cl−1.

In [Eil1996], it is shown that the minimization problem of (8.21) leads to a linear equation system
that can be solved e�ciently.

For the camera setting used in this work, using 3rd-order splines turns out to be a suitable choice
of parameters, with the number of nodes set to Nk = 50, and a di�erence order of kd = 2. As
proposed by Eilers and Marx, the large number of nodes does not lead to an over�tting, thanks to
the penalty term, which for kd = 2 corresponds to keeping the second derivative of the �tting
curve small. This, of course, also depends on the choice of the penalty weighting wp. For the
experiments in this work, it is chosen by generalized cross-validation (gcv) as presented in [Eil1996,
(29)]. Since this requires several optimization steps, the use of a �xed wp is suggested for real-time
purposes. The optimal choice for wp mainly depends on the signal-to-noise ratio, wherefore it
might be useful to introduce a precomputed optimal SNR-to-wp mapping. This is especially useful
as the gcv measure is not optimized for the purpose of in�ection point extraction. The noise level
could be estimated from the signal with the help of the sum of squared di�erences, as proposed in
Appendix C.

8.6 Further Experiments and Evaluation

Several experiments are already described in the theory part, such as in Fig. 8.4, where examples
for the results of the best rectangle path are provided; in Fig. 8.5, where it can be seen that the
�rst-order model does not satisfyingly �t the RSLC observation data; in Fig. 8.8, where the �rst-
and the second-order model are compared regarding their �tting capabilities, in Fig. 8.11 and
Fig. 8.12, which visualize the convergence of the higher-order approximate luminance and RSLC
models.

In this section, further evaluations on the di�erences between the �rst-order, second-order and
higher-order models are provided. From this, it can be seen that there is a relevant improvement
from taking the e�ects of non-horizontal vision into account (cf . 8.6.1 and 8.6.2). Although the
general feasibility of RSLC-based visibility estimation has already been proven in the literature
(cf . e.g. [Hau2008a]), experimental results based on real-world data are depicted in 8.6.3. Besides
these improvement and feasibility evaluations, further tests on numerical and model issues are
provided.

8.6.1 Monte Carlo Simulation

The higher-order approximate models proposed in Sec. 8.4 are based on the extensive analytical
theory introduced in Chap. 5. It starts with the radiative transfer equation (cf . Sec. 5.1), requires a
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clear concept of the boundary conditions (cf . Sec. 5.2) and an appropriate integral reformulation
(cf . Sec. 5.3), and �nally leads to the analytical form of approximate solutions to the full RTT
boundary problem (cf . Sec. 5.4). Furthermore, to derive higher-order RSLC models, the approx-
imations are transformed to the plane-parallel case (cf . Sec. 5.5). Since an explicit analytical
discussion of the resulting models seems to be impracticable, numerical approximations have to
be used instead (cf . Sec. 8.4). These numerical approximations make use of �ve discretizations,
namely in H , in µ, and in the three integral domains for s, µ̂ and ϕ.

Therefore, it is not evident from the derivation that the resulting higher-order RSLCs still properly
represent the solution of the radiative boundary problem. To examine the quality of the higher-
order models, a Monte Carlo simulation is implemented that, in contrast to the radiative approach,
is based on the particle property of light (cf . Sec. 4.2).

To achieve this, a virtual camera is positioned at a certain height Hcam above the road. The
road is assumed to be an in�nitely expanded plane with a constant albedo between 0 % and
100 %. The road albedo represents the probability for an incident photon to be re�ected instead of
being absorbed by the road surface. The sun is assumed to be a uniform light source at a given
height level Hatm above the ground. The atmosphere between the road surface and the sky plane
is assumed to consist of homogeneous fog with a certain extinction coe�cient K > 0. Each
scattering event is simulated with the help of the Henyey-Greenstein phase function from (4.12)
and an asymmetry parameter g := 0.85.

In order to generate a simulated camera image for this setting, an equal number of photons is
traced back for each pixel direction. Each photon thus travels backwards randomly, starting at the
camera, and is scattered multiple times (maximal 300 scattering events allowed). Each scattering
event is determined by three random numbers that describe the length of the scattering-free path
(plen) and the angle and direction of the next scattering event (µ and ϕ).

The length of the scattering-free path plen can be interpreted as continuous random variable. Due
to the homogeneous atmosphere it is exponentially distributed, s.t. for any d ∈ R≥0 one has

P (plen ≤ d) = 1− exp(−Kd).

The rate parameter is given by the extinction coe�cient K . For the implementation, the random
variable plen can be sampled from a uniform distribution with the help of inversion sampling, i.e.

1− exp(−Kplen) ∼ U(0, 1) or plen ∼ −
log (U(0, 1))

K
.

This can analogously be done for the scattering direction. In the case of the Henyey-Greenstein
phase function, the cosine of the scattering angle µ can be determined by explicit inversion
sampling

µ ∼ 1

2g

[
1 + g2 −

(
1− g2

1− g + 2gU(0, 1)

)2
]
.

Given a speci�c µ, the remaining equally likely directions in S2 lie on a circle orthogonal to the
incident direction of the photon. From another uniformly distributed angle ϕ ∼ U(0, 2π), it is
thus possible to determine the photon’s new three-dimensional direction.

Whenever a backward traveling photon hits the road surface, it is either absorbed or re�ected
according to the albedo. Since up to linear changes the luminances and in turn the RSLCs are
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Hatm
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imager

counted

not counted (absorbed)

Figure 8.13: Virtual photons are traced back from the camera. If they reach the sky plane, they
are counted as originating from the sun.

independent of the road plane’s albedo, it is chosen to be 0 in this implementation. This slightly
speeds up the simulation since the photon’s travel is de�nitely stopped whenever it reaches
the road surface. It is considered to be a photon that does not exist and thus is not counted. In
contrast to that, a backward traveling photon hitting the sky plane is considered to be a photon
that originates from the light source. In this case it is counted. This is depicted in Fig. 8.13.

Fig. 8.14 shows how compatible the higher-order models are to the Monte Carlo results. It reveals
the remarkable consistency between both approaches, which is especially noteworthy due to
the di�erent and non-trivial way both results have been derived. This involves not only that the
Monte Carlo simulation is based on the particle property of light and the higher-order models
are based on the wave property of light. It also validates the extensive theoretical derivation
and numerical approximations (including �ve di�erent discretizations) of higher-order models in
Chap. 5 and Sec. 8.4.

8.6.2 Further Numerical Experiments

K-vi Relation. The base for RSLC-based visibility estimation is the bijective relation between
the luminance curve’s in�ection point vi and the atmosphere’s extinction coe�cient K . To use
this relation for visibility estimation, it is important to have a rough idea of its shape. Fig. 8.15
visualizes examples for theK-vi and the corresponding dmet-vi relations based on the second-order
model and for di�erent parameter setting.

On the one hand, it can be clearly seen from the dmet-vi plots that the estimation accuracy
drastically decreases with increasing meteorological visibility, since vi approaches vh. Above a
certain visibility, the RSLC-based dmet estimation thus becomes impracticable. For the camera
setting and vi estimation used in this work, this threshold is at about 200 m.

On the other hand, Fig. 8.15 also reveals that RSLC-based methods are well-suited for dense fog
(here maybe dmet < 100 m). This is even more true since the data acquisition (RSLC extraction)
and the model assumptions (such as the homogeneous and �at road) are closer to reality in
situations of dense fog. Fortunately, the most accurate visibility estimation is required especially
for dense for at about 50 m in the context of driver assistance application (cf . Sec. 3.3). Moreover,
current driver assistance cameras rarely exceed a range of 200 m, wherefore fog of this density is
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v

L Monte Carlo simulation
higher-order approximation

(a) dmet = 40m, 300 000 photons/pixel, order = 50

v

L Monte Carlo simulation
higher-order approximation

(b) dmet = 50m, 90 000 photons/pixel, order = 50

Monte Carlo
(light = particle) coincide

higher-order theory,
discretizations, . . .

RTT
(light = EM wave)

(c) remarkable consistency of both approaches

Figure 8.14: The RSLC approximations from the Monte Carlo simulation and a 50th-order model
coincide. Detailed setting: Hatm = 6dmet, M = 480, N = 100, Ns = 80, Nµ̂ = 30,
Nϕ = 30, Hcam = 1.5 m, ξ = 0°, f = 1200 px, u0 = u, v0 = 256 px, vmax = 512 px.

just a marginal problem.

However, this is an important �nding on the estimation con�dence and should be taken into
account for the combination with other visibility estimation methods, such as the tracking-based
(cf . Chap. 7) or the pRSLC-based (cf . Chap. 9) approaches.

Robustness to Errors in vi. Motivated by the �nding above, the estimation robustness to errors
in vi shall be studied in a more quantitative way. Fig. 8.16 shows the impact of an error in the vi
estimation on the estimated dmet. As suggested by Fig. 8.15, errors in vi are more tolerable for
dense than for light fog scenarios. Based on what can be seen in Fig. 8.19, this cannot be expected
to be substantially di�erent for higher-order models. The in�ection point is always bounded by
vh.

Fixed g = 0.85. Another experiment is provided that studies the impact of choosing g = 0.85
�xed instead of estimating it together with K . The maximum relative error in dmet caused by the
�xed g is computed on the following test parameter sets:

Hcam ∈ THcam := {1.250 m, 1.255 m, . . . , 1.300 m} ,
ξ ∈ Tξ := {0°, 0.1°, . . . , 5°} ,
u ∈ Tu := {u0, u0 ± 10 px, u0 ± 20 px, . . . , u0 ± 200 px} ,
g ∈ Tg := {0.8, 0.81, . . . , 0.9} ,

(8.22)

while the intrinsic camera parameters f = 1200 px, u0 = 512 px, v0 = 256 px are �xed.
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Figure 8.15: K-vi relation and dmet-vi relation based on the second-order RSLC model and for �xed
system parameters; top: Hcam = 1.25 m, ξ = 0°, f = 1200 px, u0 = u = 512 px,
v0 = 256 px; mid: Hcam = 1.25 m, ξ = 0°, f = 1300 px, u0 = u = 512 px,
v0 = 256 px; bottom: Hcam = 1.25 m, ξ = 5°, f = 1200 px, u0 = u = 512 px,
v0 = 256 px.

Fig. 8.17(a) shows the maximum error w.r.t. dmet. In a non-rigorous notation, one could describe
the plotted relation by

dmet 7→ max
g∈Tg

max
p∈THcam×Tξ×Tu

[
dest

met [vi(dmet, g, p), g = 0.85, p]− dmet
dmet

]
, (8.23)

i.e. for all choices of parameters from the test sets, the vi is computed from the model and used
for the dmet estimation with �xed g = 0.85. It can be seen that the g = 0.85 assumption leads to
an acceptable estimation error of maximally ≈ 3 % for the test set in (8.23).

For the setting causing the largest error, the g dependence is explicitly plotted in Fig. 8.17(b),
namely [0.8, 0.9] 3 g 7→ K(vi; g), where dmet(vi; 0.85) ≈ 110 m.

Dependencies on System Parameters. Except for Lair and L0, the relation vi 7→ K(vi) depends
on all system parameters. Since (Hcam, ξ, f, u0, v0, u) 7→ K(vi;Hcam, ξ, f, u0, v0, u) is di�cult to
visualize, only the one-dimensional relations are plotted here, i.e. p 7→ K(vi; p) or p 7→ dmet(vi; p),
for p ∈ {Hcam, ξ, f, u0, v0, u} and �xed vi. The result can be found in Fig. 8.18.
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Figure 8.16: Estimation robustness to vi perturbations based on the second-order model. Setting:
Hcam = 1.25 m, ξ = 0°, f = 1200 px, u0 = u, v0 = 256 px, g = 0.85.

This gives a rough feeling for the visibility estimation errors arising from perturbations in the sys-
tem parameters. In addition, it indicates that (Hcam, ξ, f, u0, v0, u) 7→ K(vi;Hcam, ξ, f, u0, v0, u)
is a quite smooth mapping, which is advantageous for compact look-up tables as introduced in
8.3.4.

As one could expect, the estimation strongly depends on the parameters ξ and v0, which both
have a signi�cant impact on the important estimation term vh − v0. In contrast, |u− u0| has only
a small impact, which is useful since the road surface luminance curve is extracted from di�erent
columns in the image.

Higher-Order Model Experiments. The validity of higher-order models in general is shown
using the Monte Carlo simulation provided in 8.6.1 and Fig. 8.14. In order to assess how much
the higher-order models improve the visibility estimation, the impact of the model order on the
in�ection point position has to be studied. Fig. 8.19 shows the behavior of vi w.r.t. the RSLC
model’s order for di�erent cases of meteorological visibility. This reveals that the second-order
model already leads to substantially improved estimation results, since by far the largest vi gap
can be found between the �rst-order and the second-order models. This justi�es the use of
second-order models, which combine a good approximation of the correct vi-K relation and a
still practicable way of computation.

Similar to Fig. 8.8, an overall comparison of the �tting to the correct RSLC curve from the Monte
Carlo simulation can be found in Fig. 8.20. It is clearly visible why the in�ection point position is
largely improved by the second-order model. In the left part of the curve (sky luminances), several
iterations are required to approach the Monte Carlo results. On the right side (road luminances),
the models appropriately �t the correct RSLC. Close to the in�ection point, the �rst-order and the
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Figure 8.17: Fixing g = 0.85 corrupts the results only marginally. In (a), the maximum relative
error of visibility estimation (8.23) based on test sets from (8.22) is provided. In (b),
the variation of the estimated dmet w.r.t. varying g is depicted for a �xed setting.
The setting was chosen to represent a case close to the maximum in (a), which is
vi ≈ 273 px, Hcam = 1.25 m, ξ = 0°, f = 1200 px, u0 = u, v0 = 256 px.

second-order models di�er signi�cantly.

First-Order vs. Second-Order. From Fig. 8.19 it can be seen that applying the second-order
model instead of the �rst-order model signi�cantly reduces the systematical model error within
the visibility estimation. To get a feeling of how much the visibility estimation can be improved,
the estimation results have to be compared. Fig. 8.21 shows the results of visibility estimation
based on the �rst-order and the second-order model (left), and their relative di�erence d2nd

met 7→
|d2nd

met − d1st
met|/d2nd

met (right). For all visibilities, one can observe a substantial di�erence between
both estimation results.

Log-Normal Phase Function. A look at Fig. 8.17 reveals that RSLC-based visibility estimation
only marginally depends on the asymmetry parameter g. This enables a valuable simpli�cation of
the approach, since otherwise g would have to be estimated along with K , requiring more than a
precomputed look-up table for the vi-K relation and thus being impracticable.

However, even the Henyey-Greenstein phase function with an optimally chosen parameter g is
only a weak representation of a more realistic scattering phase function in natural fog (cf . Remark
8 on page 35). This motivates the question on the impact of a more realistic phase function on the
RSLC and the vi-K relation. To give a feeling of the severity of this problem, a second-order RSLC
is computed based on the average Mie phase function for a log-normal drop-size distribution as
presented in Remark 8 on page 35. The parameters are chosen as

N0 = 109 m−3, S = 1.4241, rm = 2 µm, (8.24)

and wavelength λ = 0.55 µm. The scattering coe�cient Ks (which approximately equals K), the
average asymmetry parameter g and the liquid water content LWC can be computed with the
help of (4.5), (4.7) and (4.15) as

K ≈ Ks ≈ 0.035 894 m−1, dmet ≈ 83.46 m, g ≈ 0.8272, LWC ≈ 0.059 g m−3.

The resulting average Mie phase function compared to the Henyey-Greenstein phase function
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Figure 8.18: K and dmet w.r.t. di�erent system parameters. Basic setting: dmet = 100 m, Hcam =
1.25 m, ξ = 0°, f = 1200 px, u0 = u, v0 = 256 px, g = 0.85.
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Figure 8.19: Convergence of the in�ection point position for higher-order models. Simulation
parameters: Hatm = 3dmet, M = 200, N = 400, Ns = 80, Nµ̂ = 30, Nϕ = 30.
Setting for virtual camera: Hcam = 1.5 m, ξ = 0°, f = 1200 px, u0 = u, v0 = 256 px.
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Nµ̂ = 30, Nϕ = 30; both: dmet = 40 m, Hcam = 1.5 m, ξ = 0°, f = 1200 px,
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Figure 8.21: Di�erence between �rst-order and second-order estimation. Left: absolute estimation
results. Right: relative di�erence. Setting: top: Hcam = 1.25 m, ξ = 0°, f = 1200 px,
u0 = u = 512 px, v0 = 256 px; mid: Hcam = 1.25 m, ξ = 0°, f = 1300 px,
u0 = u = 512 px, v0 = 256 px; bottom: Hcam = 1.25 m, ξ = 5°, f = 1200 px,
u0 = u = 512 px, v0 = 256 px.
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Figure 8.22: Comparison of RSLCs (and their in�ection points) that di�er in order and phase
function. The setting is given in (8.24) and (8.25).

can be found in Fig. 4.11. From this it becomes apparent that both functions di�er substan-
tially, revealing how much algorithms based on the Henyey-Greenstein phase model might be
improvable.

To get a feeling for the impact of the di�ering phase functions on RSLC-based visibility estimation,
the road surface luminance curves for both phase functions are shown in Fig. 8.22 for a usual set
of camera parameters

Hcam = 1.5 m, ξ = 0°, f = 1200 px, u0 = u = 512 px, v0 = 256 px. (8.25)

Although the resulting second-order RSLCs di�er signi�cantly, the in�ection point positions lie
close together compared to the di�erence to the �rst-order in�ection point:

�rst-order: vi = 288.3 px,
second-order (Henyey-Greenstein): vi = 282.8 px,

second-order (log-normal avg. Mie): vi = 281.8 px.

This once again encourages the use of the second-order model even if the underlying phase
functions are not well known. Moreover, it is still to be clari�ed whether wavelength averaging
and higher-order models might even reduce the error arising from the simplifying use of ψHG.

However, the careful study of more appropriate phase functions leaves room for further improve-
ment of RSLC-based visibility estimation in the future. Fortunately, the theory of second-order
and higher-order RSLC models is independent of the actual phase function. The only problem
arising is the need for �ner discretizations due to the more complexly shaped phase functions.

Quadrature Normalization. The numerical evaluation of higher-order models with the help of
(8.19) requires the computation of an integral term in µ̂, s and ϕ for each luminance computation.
Since an error from the numerical integration directly leads to an error in the luminance, this has
to be done most accurately. To compare the standard quadrature approach (8.20) to its normalized
version, some exemplary second-order luminances Lm,n are computed from a �rst-order light
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Figure 8.23: Maximum and mean error due to numerical integration for Nϕ = Nµ̂ ∈ {1, . . . , 60}.

�eld. For this experiment, the simulation parameters are chosen as

{L0} = 0, {Lair} = 1, dmet = 40 m, Hatm = 120 m, g = 0.85, hH = 0.5 m, hµ =
1

20
.

The number of sub-intervals Nϕ and Nµ̂ are simultaneously increased. Fig. 8.23 shows the
resulting mean error

1

(M + 1)(N + 1)

M∑
m=0

N∑
n=0

∣∣∣Lm,n − L2nd
(Hm, µn)

∣∣∣
as well as the resulting maximum error

max
(m,n)∈{0,...,M}×{0,...,N}

∣∣∣Lm,n − L2nd
(Hm, µn)

∣∣∣ .
From this it can be seen that the numerical integration is remarkably improved by the normal-
ization. At the same time, the additional computational e�ort for the normalization factor is
almost negligible, since the required values Q2(nϕ, nµ̂), nϕ = 0, . . . , Nϕ, nµ̂ = 0, . . . , Nµ̂, are
already available from the standard quadrature. Hence, it is strongly advisable to make use of the
normalized quadrature approach.

8.6.3 Real World Examples

The estimation of meteorological visibility based on road surface luminance curves has been
introduced and further developed by Hautière, Negru et al. in several works, such as [Hau2006c],
[Neg2013] and [Neg2014]. In all cases, the RSLC’s in�ection point position vi is mapped to
the atmosphere’s extinction coe�cient K with the help of Koschmieder’s model. Di�erent
experiments are provided that reveal the feasibility for dmet estimation based on real-world
camera images. In [Hau2008a], even a more exact experiment based on reference targets next
to the road is used to prove the validity of this approach. This is why RSLC-based visibility
estimation can be assumed to be established and reasonably validated not only for synthetic, but
also for real-world data.

The evaluation in this chapter concentrates on the systematic model errors and model validation
with the help of numerical experiments provided in 8.6.1 and 8.6.2. A comprehensive evaluation
of RSLC-based visibility estimation based on reference sensors and a large number of real-world
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sequences goes beyond the scope of this work. However, to give a feeling for the data and for
the comparison with the approaches in chapters 7 and 9, the visibility estimation is done on a
set of real-world sequences as well. The camera images are captured by the driver assistance
front camera presented in Sec. 6.2. The vertical road surface and sky segmentation is performed
manually as described in the beginning of Sec. 7.1. The camera’s pitch angle, and in turn vh, is
computed from the road features’ vanishing point under the assumption of a negligible roll angle.
Fig. 8.24 shows the results for a number of single frames taken from di�erent sequences.

Another experiment is provided in Fig. 8.25, where two sequence of 420 frames each are evaluated
in this way. Without further postprocessing, the estimated dmet �uctuates signi�cantly but
acceptably. Since the estimated pitch angle and the estimated visibility locally correspond to each
other, one can expect some of the �uctuations to arise due to the inaccurate estimation of the pitch
angle. In order to demonstrate at least a most simple temporal �ltering, an exponential smoothing
is applied to the dmet signal with a smoothing factor 0.1, i.e. each new estimation is combined
with the last �ltered estimation by a weighted sum with factors 0.1 and 0.9, respectively. These
experiments demonstrate the robustness of RSLC-based visibility estimation even on real-world
data.
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Figure 8.24: Examples for road surface luminance curves and the RSLC-based estimation results
based on the �rst-order and second-order models. These are the same examples as
later used for Fig. 9.2.
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Figure 8.25: Two sequences of RSLC-based visibility estimations (second-order).
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Especially in dense fog, the road surface luminance curve (RSLC) algorithm as presented in Chap.
8 constitutes a powerful visibility estimation approach. It works on single frames and bene�ts
from a simple data acquisition on static road surveillance as well as driver assistance front cameras.
The major drawback is the requirement of a non-obstructed view up to the horizon. In the case of
obstructed roads, other algorithms such as the tracking-based visibility estimation presented in
Chap. 7 could take the place of the RSLC-based algorithm.

As an alternative, a further algorithm could serve as fall-back solution in cases of obstructed roads.
Taking the non-obstructed part of the road in front of the ego-car to extract at least a partial
road surface luminance curve (pRSLC), Koschmieder’s model can be used for a coarse parameter
estimation (cf . Fig. 9.1). This approach becomes applicable for real time purposes with the help of
the fast parameter estimation method presented in Sec. 7.4. The extraction of the pRSLC can be
the by-product of the RSLC data acquisition and the distances to the road can be taken from a road
surface model, such as a �at-world assumption or more complex models provided by the camera
framework, or from other depth information obtained by for instance stereo vision. Therefore,
this approach represents an ideal addition to a visibility estimation framework that continuously
has to provide visibility information.

However, in contrast to the RSLC-based algorithm, the pRSLC-based approach obviously violates
the horizontal vision assumption and is sensitive to inhomogeneities of the preceding road. It
should thus only be considered as a fall-back solution and not as an equivalent alternative to
RSLC-based visibility estimation.
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Figure 9.1: The pRSLC-based visibility estimation can be used as a fall-back solution for the
RSLC-based algorithm proposed in Chap. 8, in cases of a partially obstructed road.

9.1 Data Acquisition

The data required for this algorithm consist of distance-luminance pairs

(d1, L1) , . . . , (dN , LN ) , (9.1)

describing the luminance and distance to N ∈ N di�erent segments of the unobstructed road
surface. Each segment should approximately have inherently equal distances to the road agreeing
with the actual distance value in (9.1). According to the discussion above the segments can be the
unobstructed road line segments that (partially) de�ne the road surface luminance curve in Sec.
8.1 (cf . Fig. 8.1). The luminance values Ln can be extracted as the median of each road segment.
The distance values dn can be de�ned with the help of a �at-world assumption (cf . (8.14)) or
using a more precise road surface luminance model that might be provided by the camera system.
Alternatively, the road depth could also be obtained from stereo vision or other depth sensors.

Depending on the RSLC extraction method, the partial road surface luminance curve extraction
can be implementeds as a simple extension of the RSLC data acquisition that recognizes the
obstructed road as discontinuity or unde�ned sections in the luminance curve. Then, the smooth
beginning of the curve can be used as pRSLC. This makes the data acquisition of (9.1) a low-cost
by-product of the RSLC algorithm. In particular, if the RSLC extraction fails even though the road
is not completely obstructed, the pRSLC algorithm can still be used for visibility estimation on
the successfully segmented parts of the road.
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9.2 Model Selection

Although the acquisition of road luminances with a driver assistance camera violates the assump-
tion of horizontal vision, Koschmieder’s model (5.19)

L(d) = L0e
−Kd + Lair

(
1− e−Kd

)
is used to describe the distance-luminance pairs from (9.1). This can be justi�ed by the fall-back
character of pRSLC-based visibility estimation and by the need for a real-time capable parameter
estimation (cf . Sec. 9.3). A feasibility experiment in Sec. 9.4 indicates that this model reasonably
�ts the data and delivers acceptable parameter estimation results.

9.3 Optimization Problem

Like the tracking-based algorithm in Chap. 7, the pRSLC-based visibility estimation uses Ko-
schmieder’s model to describe distance-luminance pairs. This leads to an optimization problem
equivalent to that de�ned for the one-object tracking-based approach.

Objective Function. The negative log-likelihood objective function is given by (7.5) in the case
M = 1:

(K,Lair, L0) 7→ F(K,Lair, L0) :=
N∑
n=1

1

(σn)2

([
e−KdnL0 + (1− e−Kdn)Lair

]
− Ln

)2
,

where the standard deviation σn represents the uncertainty of the nth measurement, n ∈
{1, . . . ,N}. In order to maximize the likelihood of (K,Lair, L0) according to the observed distance-
luminance data, the functional F has to be minimized (cf . Sec. 7.3).

Uncertainty Selection. The uncertainties could simply be taken as σn = 1. It might lead to better
results to derive them more sophisticatedly by e.g. taking the interior luminance standard deviation
of the nth segment instead. This could help reduce the statistical weight of the overrepresented
nearby parts of the road, which are more a�ected by road inhomogeneities.

Parameter Estimation. The minimization of F is extensively discussed in Sec. 7.4. Even for
a large N , these methods allows for a fast parameter estimation, which makes pRSLC-based
visibility estimation applicable for real-time purposes.

9.4 Experimental Results

To compare the results from the pRSLC-based algorithm to the results from the �rst- and second-
order RSLC-based algorithms (cf . Sec. 8.2 and Sec. 8.3), the experiment uses frames that allow for
completely extractable road surface luminance curves. The distance is taken from a �at-world
assumption (cf . (8.14)) and the uncertainties are chosen as σn = 1.

The results of the Koschmieder’s model �t and the estimated visibility distances for di�erent
maximum distances dmax are provided in Fig. 9.2. It can be seen that the pRSLC-based fall-back
approach yields reasonable results if a su�ciently large part of the road is freely accessible.
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In addition, in some examples it can be observed that the data in a range close to the camera
is overrepresented, leading to poor �tting results at larger distances. This problem might be
overcome by a choice of the weights σmn that is inverse proportional to the distance-dependent
data density. One could also think of an Lair stabilization as proposed in Sec. 7.5. However, the
idea of a pRSLC-based fall-back solution shall only be sketchily proposed here. Therefore, tests
on an extended data base or further steps on the optimization of this approach would go beyond
the scope of this work.
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(c) pRSLC: dmet = 123m (for dmax = 50m), 1st-order RSLC: dmet = 85m, 2nd-order RSLC: dmet = 70m
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(d) pRSLC: dmet = 57m (for dmax = 50m), 1st-order RSLC: dmet = 126m, 2nd-order RSLC: dmet = 106m
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(e) pRSLC: dmet = 83m (for dmax = 50m), 1st-order RSLC: dmet = 109m, 2nd-order RSLC: dmet = 91m

Figure 9.2: Page 1/2. Results of pRSLC-based visibility estimation. Left: Partially segmented road
from which the luminances are extracted line by line. The marked area indicates the
image region that is processed in the case of dmet = 50 m. Middle: Fit of Koschmieder’s
model on the distance-luminance values. Right: Visibility estimation results w.r.t. the
maximally considered distances.
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(f) pRSLC: dmet = 76m (for dmax = 50m), 1st-order RSLC: dmet = 122m, 2nd-order RSLC: dmet = 104m
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(g) pRSLC: dmet = 54m (for dmax = 50m), 1st-order RSLC: dmet = 79m, 2nd-order RSLC: dmet = 65m
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(h) pRSLC: dmet = 49m (for dmax = 50m), 1st-order RSLC: dmet = 135m, 2nd-order RSLC: dmet = 115m
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(i) pRSLC: dmet = 59m (for dmax = 50m), 1st-order RSLC: dmet = 68m, 2nd-order RSLC: dmet = 54m
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(j) pRSLC: dmet = 114m (for dmax = 50m), 1st-order RSLC: dmet = 116m, 2nd-order RSLC: dmet = 98m

Figure 9.2: Page 2/2. Results of pRSLC-based visibility estimation. Left: Partially segmented road
from which the luminances are extracted line by line. The marked area indicates the
image region that is processed in the case of dmet = 50 m. Middle: Fit of Koschmieder’s
model on the distance-luminance values. Right: Visibility estimation results w.r.t. the
maximally considered distances.



Conclusions and Outlook

Looking back at the chapters of this work, it can be summarized as a rigorous study of the
quantitative assessment of visibility conditions in homogeneous daytime fog. After setting out
the motivation behind the research and providing an introduction to meteorological visibility,
the transport of light through fog is discussed on a microscopic as well as on a macroscopic
scale. Based on the carefully derived models, di�erent algorithms are introduced which have the
potential to be part of a modern and comprehensive visibility assessment framework for future
driver assistance cameras.

In the following, the major �ndings of this thesis are brought together in a short retrospective
discussion. The models and algorithms are summarized, focusing on their advantages and
disadvantages. Looking ahead, the author’s personal suggestions and expectations with regard to
the future developments within the respective �elds of visibility assessment are incorporated into
this discussion. From this it becomes clear that this work is just one �rst step towards a reliable
visibility estimation based on automotive camera systems.

About Light Transport Through Fog. Part II of this work provides a systematic overview of the
aspects of light transport through fog. The part is introduced with the de�nition and discussion of
the meteorological visibility dmet as the physical quantity which most appropriately describes the
visibility conditions in homogeneous daytime fog (cf . Sec. 3.1). It is shown that surprisingly many
applications could be implemented based on a reliable estimation of dmet (cf . Sec. 3.3). Taking a
look at the ambiguities in the literature regarding the de�nition of visibility (cf . e.g. Table 3.1),
this work hopefully can help to establish one common de�nition that is used in future studies.

In order to assess atmospheric visibility conditions in fog, it is furthermore advisable to compre-
hend not only the macroscopic process of light transport through fog, but also the microscopic
interaction of light and tiny fog droplets. In Chap. 4, the Mie theory is revisited, which most
exactly describes the scattering and absorption of light by single spherical particles as well as
for particle volumes. In this way several common assumptions about microscopic scattering and
absorption in fog are veri�ed. This includes the assumptions that scattering of light in fog does
not depend on the wavelength and is free of absorption. Thanks to the carefully compiled Mie
formulas, it is explicitly shown how the single particle scattering theory and a certain drop-size
distribution can be combined to derive the fog’s volume scattering behavior which is mainly
represented by the extinction coe�cient K and the phase function ψ.

One example for the resulting phase function based on a log-normal drop-size distribution is
provided in Remark 8 on page 35. This experiment has shown that the Henyey-Greenstein phase
function model (4.12) only roughly represents a realistic scattering phase function. Due to its
analytical simplicity and the fact that it only depends on the asymmetry parameter g, it represents
one of the most popular phase function models. For the same reasons, the Henyey-Greenstein
phase function is used throughout this work as well. One experiment is provided in Sec. 8.6.2
and Fig. 8.22 which addresses the impact of this decision on the overall visibility estimation
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results. Although this impact has been revealed to be acceptable compared to other sources of
estimation errors, it should de�nitively be the aim of future investigations to study more realistic
phase function models in the context of visibility estimation. Moreover, it still has to be clari�ed
whether wavelength averaging and the use of higher-order models (cf . Sec. 8.4) could possibly
reduce the error arising from the use of the simple Henyey-Greenstein phase function model.

In Part II of this work, the most relevant chapter regarding visibility estimation is the discussion
on the radiative transfer theory in Chap. 5. Based on the stationary, monochromatic and emission-
free version of the radiative transfer equation (5.2), the classical radiative transfer problem (5.9)
has been formulated to describe the macroscopic process of light transport through fog. It is
shown that this integro-di�erential problem can be replaced by an integral equation (5.16), which
is equivalent to the classical formulation in the space of uniformly bounded and measurable
functions B (cf . Theorem 1 on page 47). From this integral formulation, a sequence of light
transport models is derived, which are the outcome of a �xed-point iteration for the integral
operator T (cf . Sec. 5.4). In Theorem 2 on page 50, it is proven that these higher-order models
satisfy a number of bene�cial analytical properties such as their convergence towards an exact
solution of the radiative transfer problem and their linearity w.r.t. to the luminance parameters
L0 and Lair.

It has also been demonstrated that Koschmieder’s model is equivalent to the �rst of these higher-
order models, which even provides the exact solution to the radiative boundary problem in the
special case of horizontal vision through a plane-parallel atmosphere. One should also note that
Koschmieder’s model only depends on the fog’s extinction coe�cient K , not on the speci�c
volume scattering phase function. Both properties combined with the model’s analytical simplicity
make Koschmieder’s model a reasonable choice for cases of approximately horizontal vision. In
addition, the plane-parallel version of the radiative boundary problem is brie�y revisited in Sec.
5.5 for subsequent use in the context of road surface luminance curves.

About Model-Based Visibility Estimation. Based on the light transport models provided in
Chap. 5, several algorithms for estimating the meteorological visibility with the help of a driver
assistance front camera are introduced in Part III of this work (cf . Fig. ~ on the next page).
These algorithms are organized according to the image content required for the estimation of
the meteorological visibility. This has led to three groups of algorithms: �rstly, making use of
tracked objects (cf . Chap. 7), secondly the road surface luminance curve (cf . Chap. 8) and thirdly
a partial segmentation of the road (cf . Chap. 9). In all approaches, the parameter estimation from
the image data consists in solving the inverse problem (cf . Sec. 6.3) based on the most appropriate
and applicable light transport model.

The �rst and novel visibility estimation approach proposed in this work makes use of luminance
and distance observations on tracked objects in the camera image (cf . Sec. 7.1). Assuming that
these objects mainly originate from horizontal vision, Koschmieder’s model is applied to assess the
tracking observations with a maximum likelihood objective function F (cf . Sec. 7.2 and Sec. 7.3).
Based on a comprehensive analytical discussion of F in Sec. 7.4, it is revealed that the objective
function can be minimized by an easy-to-implement and fast algorithm which is applicable for
real-time purposes. Since this minimization approach clearly outperforms classical methods, such
as the Levenberg-Marquardt method, this may be considered one of the major �ndings of this
work. However, as suggested by the numerical experiments on synthetic and real data, a reliable
and stable visibility estimation based on F requires long and good object tracks. This problem
is addressed by the Lair stabilization, introduced in Sec. 7.5. If additional information on the air
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Figure ~: overview of algorithms for model-based visibility estimation proposed in this work

light parameter Lair was available, which could be directly estimated from the camera image, it
would allow for a substantially stabilized visibility estimation. It thus seems to be the way of
choice to estimate K and Lair simultaneously for a tracking-based visibility estimation in a driver
assistance camera.

Nevertheless, many open issues remain for further developments regarding tracking-based visibil-
ity estimation. Although general feasibility based on the camera data is proven in Sec. 7.6, it has
still to be veri�ed that the tracking data extracted by real-time ADAS algorithms is of su�cient
quality for the visibility estimation. However, it can be assumed that tracking-based visibility
estimation based on camera images is possible, since one can expect current and future driver as-
sistance cameras to provide numerous usable object tracks (e.g. on road signs or vehicles), generic
superpixel tracks, or concatenated �ow vectors of an increasing quality. The main question will
be which of the data or data combinations turns out to be the most suitable for tracking-based
visibility estimation. Further pending points concern the analytical properties of F . They are
summarized in 7.4.3. Solving these questions would mainly allow for the provision of reliable
information on the estimation con�dence, which indeed is highly desirable. Besides, several parts
and potential extensions of the current approach demand further investigations. This mainly
includes the selection of the luminance values from the object segments in Sec. 7.1, the assignment
of the uncertainties in Remark 20 on page 81, the estimation of Lair for the stabilization in Sec. 7.5
and a correction of the systematic error arising from not perfectly horizontal vision (cf . Fig. 7.17).

In Chap. 8, the second approach for visibility estimation is presented. According to the idea
of Hautière et al. in [Hau2006c], the image data used for this algorithm is based on a vertically
connected segmentation of parts of the road and the sky in the image. From this image segment,
the so-called road surface luminance curve (RSLC) can be extracted as the line-wise median of
luminances (cf . Fig. 8.1). Before this work, Hautière et al. already demonstrated in [Hau2006c]
that for Koschmieder’s model the RSLC’s in�ection point position vi uniquely corresponds to
the underlying extinction coe�cient K of the model curve. However, in Fig. 8.5 it is shown that
Koschmieder’s model does not adequately describe real world luminance curve observations since
they crucially violate the assumption of horizontal vision.
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Motivated by this �nding, improved RSLC models are derived from the higher-order light transport
models introduced in Chap. 5. For this derivation, the road is modeled as an in�nitely expanded
and homogeneous plane (cf . Sec. 8.4). Although this seems to be a tough assumption, one has to
keep in mind that it is only used to more appropriately model the in-scattered light on the line of
sight between the camera and the road (cf . Fig. 8.6). Especially in cases of dense fog, this is a
reasonable assumption which can help to replace the air light constancy implicitly assumed by
the use of Koschmieder’s model (cf . 5.4.1).

One of the most crucial �ndings is that, analogous to the �rst-order case, all higher-order models
(and even the exact solution of the plane-parallel radiative boundary problem) still allow for
a unique mapping between vi and K . Even though this relation could not be brought to a
closed-form analytical expression for models of order ≥ 2, it can still be exploited for a fast
online parameter estimation. To achieve this, the increased model complexity is broken down
to precomputed look-up tables. Unfortunately, the generation of such look-up tables based on
the numerical methods introduced in Sec. 8.4 seems to be impracticable. Each higher-order
model evaluation requires an expensive simulation of the full (discretely represented) luminance
distribution. However, at least for the second-order RSLC model, it has been possible to derive an
explicit formulation which allows for a fast computation of the luminance curve and in turn the
required K-vi relation (cf . Sec. 8.3). Moreover, it is shown that the second-order model already
removes most of the systematic visibility estimation errors arising from the horizontal vision
assumption of Koschmieder (cf . 8.6.2 and Fig. 8.19). In addition, Fig. 8.21 demonstrates that
the use of second-order models relevantly improves the visibility estimation results. Therefore,
the major �nding on RSLC-based visibility estimation is that taking into account the e�ects of
non-horizontal vision is feasible as well as bene�cial.

In addition, the extensive experimental evaluations in Sec. 8.6 reveal that the estimation capabilities
of RSLC-based methods in general rapidly decrease when the meteorological visibility increases
(cf . e.g. Fig. 8.15 and Fig. 8.16). Assuming a driver assistance camera similar to the MPC from Sec.
6.2, the border of useful estimation results is about 200 m. This e�ect is reinforced by the fact
that the assumption of a �at and homogeneous road is more acceptable for dense than for light
fog. Even though this limitation seems to be acceptable for driver assistance applications one
should be aware of it when implementing an automatic visibility estimation system based on road
surface luminance curves. Probably, for cases of light fog, an RSLC-based visibility estimation has
to be replaced by di�erent approaches.

The most relevant future challenges of RSLC-based visibility estimation, however, can be found
in an improved in�ection point estimation, an advanced generation of look-up tables, and the
introduction of a road surface depth correction. From the experience in this work the extraction of
an in�ection point from noisy RSLCs is still one of the major sources of visibility estimation errors,
especially in cases of medium or light fog. Furthermore, the generation of look-up tables for
higher-order models is still too expensive. This problem might be solvable by explicit analytical
formulations of higher-order models, similar to the second-order case. Finally, one can expect
the use of depth correction for non-�at road surfaces to be a valuable advancement even if the
in-scattered light is still modeled by the �at-world assumption. Each of these open issues seems
thus to be a promising subject for future investigations.

The last algorithm proposed in this work is presented in Chap. 9. It can be considered to be a
combination of the tracking-based and RSLC-based approaches from chapters 7 and 8. In cases
where the RSLC cannot be extracted to the whole, the remaining road segment is shown to be
useable for a visibility estimation based on Koschmieder’s model. Since this approach disregards
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the e�ects due to non-horizontal vision, it has to be considered to be more a useful fall-back
solution than a fully valuable algorithm. For use in future driver assistance cameras, it seems to
be reasonable to provide this method with reliable road depth information and to improve the
selection of uncertainties σmn in order to reduce the e�ects from currently overrated low-distance
parts of the road.

Finally, there are several improvements which are desirable for all algorithms proposed in this
work. First of all it is always helpful to improve the input data to the algorithms, which includes
not only depth estimations, more accurate object tracks and segmentations, but also the image
quality in general. As it is a crucial assumption, it is extremely important to aim for a most
linear imager characteristic which might require an additional (photometric) calibration. This also
involves the luminous sensitivity having to be constant across the whole imager. Furthermore,
for all algorithms it seems to be helpful to introduce con�dence measures based on experience
or analytical investigations. These measures could be helpful for the combined use of di�erent
visibility estimation approaches.

Combined Approaches. As stated above, the algorithms for model-based visibility estimation
exhibit di�erent advantages and disadvantages. While RSLC-based algorithms, for example,
rely on an unobstructed view up to the horizon, tracking-based algorithms explicitly bene�t
from crowded situations with many trackable objects available. At the same time, tracking-
based algorithms require not only stable object tracks and segmentations, but also reliable depth
estimations, which is a challenging task, in particular for monocular cameras and moving objects.
RSLC-based visibility estimation, however, is inherently restricted to road tra�c scenarios, while
tracking-based approaches can be applied more �exibly. This restriction is further ampli�ed by
the assumption of a �at and homogeneous dark road which should be at least approximately
satis�ed. On the other hand, RSLC-based methods are well-suited for visibility estimation in dense
fog and should thus not be neglected. This is especially true, because tracking-based visibility
estimation only seems to be stable for excellent tracking data or additional information on the air
light parameter. One should also note that, in contrast to the tracking-based approach, algorithms
based on road surface luminance curves only require a single frame for the parameter estimation
and can therefore also be applied to stationary cameras such as those used for tra�c or weather
surveillance.

From this it becomes clear that the di�erent approaches could be a valuable supplement to each
other. In order to design a robust and reliable framework for model-based visibility estimation, the
di�erent algorithms probably have to be combined. Thanks to the di�erent sources of data this
includes not only a higher availability and accuracy, but could also be useful for mutual validation.
Depending on the con�dence of the available data one could, for example, continuously switch
between di�erent visibility estimation methods and provide a joint visibility result together with
a joint con�dence measure. Another important question is whether such a framework should be
combined with an additional fog detection to trigger the visibility estimation in the �rst place.
It is also conceivable that the results from one of the model-based visibility estimators have a
su�ciently high signi�cance to distinguish cases of a clear atmosphere, haze or light fog from
cases of relevantly reduced visibility. The optimal combination of algorithms, however, largely
depends on the camera system used for the estimation of meteorological visibility.

Future Fields of Visibility Assessment. In this work, the assessment of visibility conditions in
homogeneous daytime fog is at the center of considerations. This, of course, is only a �rst step
towards creating a framework for automated and comprehensive weather and visibility recognition
as required for future driver assistance systems and autonomously driving vehicles. The biggest
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challenge of future fog assessment lies in handling nighttime situations and inhomogeneous fog.

In cases of nighttime fog the visibility conditions are not dominated by contrast reduction, as is
the case for daytime fog, but by e�ects of self-glare and di�usion. Therefore, the meteorological
visibility as de�ned in Sec. 3.1 cannot automatically be considered to be an adequate visibility
de�nition for nighttime situations. Furthermore, as stated in [Gal2009], the extinction coe�cient
does not su�ciently describe the grade of visibility reduction due to backscattering and halos. In
order to assess the visibility conditions in nighttime fog based on physical models, one should
�rst of all attempt to de�ne an appropriate visibility measure.

The same is true for substantially inhomogeneous fog and smoke, which su�er from a locally
varying extinction coe�cient. The de�nition of meteorological visibility cannot o�handedly be
applied to these scenarios. In fact, visibility measurement constitutes an ill-posed tomography
problem for severe inhomogeneities. Since fog, however, can never be expected to be perfectly
homogeneous, it should be part of future investigations to identify perturbation results which
provide information on the usability of the de�nition and estimation algorithms for dmet in cases
of slightly disturbed atmospheres.

Other sight impairments which can be caused by di�cult light situations or any disturbances
within the optical path range from glare, snow or wet road surfaces to total darkness and cracks
in the windshield. It is likely that the e�ects of these sight impairments in the camera image
cannot entirely be described by useful physical models as it is the case for homogeneous daytime
fog. Therefore, future work should aim to �nd ways of enhancing gradual blindness detection
based on, for instance, generic image features and machine learning approaches. Another �eld of
study should focus on improving visibility estimation by combining di�erent sensor technologies.

This outlook shows that the area of visibility estimation faces numerous fascinating challenges
and has considerable potential for development. Over the next years one can expect this area
to be further driven by the trend towards autonomous driving and the associated need for an
assessment of the sensor’s operability. This involves providing estimations on as much physical
information related to the environmental conditions as possible. This work makes a valuable
contribution towards achieving this.



Appendix A. Notation

In this work, a number of more or less common mathematical symbols, operators, terms, ab-
breviations and theorems are used, which might not be present to the reader. In order to avoid
ambiguities, the noteworthy notation of this thesis is summarized in the following.

Mathematical Abbreviations.

LHS left hand side (of an equation)

RHS right hand side (of an equation)

PDE partial di�erential equation

ODE ordinary di�erential equation

w.r.t. with respect to

w.l.o.g. without loss of generality

w/ with

w/o without

N/A not available

s.t. such that

i.i.d. identically and independently distributed (in the context of random variables)

i� if and only if

a.e. almost everywhere (measure theory)

∀ for all

∃ there exist(s)

Other abbreviations can be looked up in the Index.

Mathematical Symbols, Operators and their Notation.

N Natural Numbers. N := {1, 2, 3, ...}.
N0 Non-Negative Integers. N0 := N ∪ {0}.
Z Integers. Z := N0 ∪ (−N).

Q Rational Numbers. Q := {p/q : p ∈ Z, q ∈ N}.
R Real Numbers. The real numbers R are de�ned as the metric completion of the

rational numbers Q, which can be constructed as the quotient set

R :=
{

(qn)n∈N ∈ QN : (qn) is a Cauchy sequence
}
/∼,
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where the equivalence relation ∼ is de�ned by

(qn) ∼ (pn) :⇔ |qn − pn| → 0, for n→∞.

R>0 Positive Real Numbers. R>0 := (0,∞) = {x ∈ R : x > 0}.
R≥0 Non-Negative Real Numbers. R≥0 := [0,∞) = {x ∈ R : x ≥ 0}.

i Imaginary Unit. i :=
√
−1.

C Complex Numbers. C := R + iR.

<, = Real/Imaginary Part. For any z ∈ C there exist unique numbers <(z),=(z) ∈ R,
s.t.

z = <(z) + i=(z).

<(z) and =(z) are called the real part of z and the imaginary part of z, respectively.

z Complex Conjugate. For z ∈ C it is z := <(z)− i=(z).

∪̇ Mutually Disjoint Union. For n ∈ N and sets M,M1, . . . ,Mn it is

M1 ∪̇ . . . ∪̇Mn = M :⇔ M1 ∪ · · · ∪Mn = M ∧ ∀k 6= l : Mk ∩Ml = ∅.

G Graph. A weighted and directed graph G = (V, E ,w) consists of a set of nodes or
vertices V , a set of edges E ⊆ V × V and the edge weights w : E → R.

R·×· Matrices. For m,n ∈ N it is Rm×n the set of real m× n matrices.

I Identity Matrix. I denotes a quadratic matrix that is 1 at the (main) diagonal entries
and 0 otherwise. Its size should always be clear from the context.

�,� De�niteness of a Matrix. For n ∈ N and a symmetric matrix M ∈ Rn×n it is

M � 0 :⇔ ∀x ∈ Rn \ {0} : xTMx > 0, (positive de�nite)
M � 0 :⇔ ∀x ∈ Rn \ {0} : xTMx ≥ 0, (positive semi-de�nite)
M � 0 :⇔ ∀x ∈ Rn \ {0} : xTMx ≤ 0, (negative de�nite)
M ≺ 0 :⇔ ∀x ∈ Rn \ {0} : xTMx < 0. (negative semi-de�nite)

det Determinant. For n ∈ N and a matrix M ∈ Rn×n, the determinant of M is written
as det(M).

SO Special Orthogonal Group. For n ∈ N it is

SO(n) := SO(n;R) :=
{
R ∈ Rn×n : RTR = I, det(R) = 1

}
.

To actually make SO(n) an algebraic group, it is equipped with the standard matrix
multiplication.
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〈·, ·〉 Euclidean Scalar Product. For N ∈ N and x, y ∈ RN it is

〈x, y〉 :=

N∑
n=1

xnyn.

| · | Euclidean Norm. For N ∈ N and x ∈ RN it is

|x| :=
√
〈x, x〉.

For z ∈ C it is |z| :=
√
<(z)2 + =(z)2.

B·(·) Open (Euclidean) Ball. For n ∈ N, x ∈ Rn and ε > 0 it is

Bε(x) := {y ∈ Rn : |x− y| < ε} .

Sn Unit Sphere in Rn+1. For n ∈ N it is Sn :=
{
x ∈ Rn+1 : |x| = 1

}
.

Sn>0 Open Upper Unit Hemisphere in Rn+1. Sn>0 := Sn ∩ (Rn × R>0).

Sn≥0 Closed Upper Unit Hemisphere in Rn+1. Sn≥0 := Sn ∩ (Rn × R≥0).

· × · (Gibbs’) Cross Product. For x, y ∈ R3 it is

x× y :=

x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 .

N (·, ·) Normal Distribution. Given an expected value µ, a variance σ2 and a random
variable X , the standard notation X ∼ N (µ, σ2) has to be understood as X being
normally distributed with the corresponding moments.

U(·, ·) Continuous Uniform Distribution. Given an interval [a, b] ⊂ R and a random
variable X , the standard notation X ∼ U(a, b) has to be understood as X being
continuously uniform distributed on [a, b].

δ·· Kronecker Delta. For n,m ∈ N the Kronecker delta indicates whether n and m are
equal:

δmn :=

{
1 , if n = m

0 , otherwise
.

π Pi. An exception can be found in Sec. 4.3, where πn denote angular eigenfunctions
of scattering processes.

e Euler’s Number.

In the following, let M be a set, V be a vector space over a �eld K, d : V × V → R be a metric
on V , and U ⊆ V be any arbitrary but �xed subset of V .

MN Set of Sequences inM . MN := {(mn)n∈N : mn ∈M,∀n ∈ N}. As it is a standard
convention, (mn)n∈N ⊂M will be understood as (mn)n∈N ∈MN.

vn Components Notation. If not stated otherwise, for N ∈ N and v ∈ V N , the nth

component of v is denoted as vn, i.e. v = (v1, . . . , vN ).
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‖ · ‖ Norm on V . Let K ∈ {R,C}. A function ‖ · ‖ : V → R is called norm i�
for all v1, v2 ∈ V and z ∈ K it is ‖v1‖ ≥ 0, and ‖v1‖ = 0 i� v1 = 0, and
‖v1 +v2‖ ≤ ‖v1‖+‖v2‖, and ‖zv1‖ = |z|‖v1‖. An example for a norm on V = Rn,
n ∈ N, is given by the Euclidean norm | · | as de�ned above. A norm always induces
a metric by (x, y) 7→ ‖x− y‖.

sup Supremum. LetM ⊆ R be a subset of the real numbers. Then, there exists a unique
number sup(M) ∈ R ∪ {−∞,∞} satisfying

∀m ∈M : sup(M) ≥ m ∧ ∀x < sup(M), ∃m ∈M : m ≥ x.

This number is called supremum ofM . For a function f : M → R the supremum of
f is de�ned by

sup(f) := sup {f(m) : m ∈M} .

inf In�mum. Let M ⊆ R be a subset of the real numbers. Then, there exists a unique
number inf(M) ∈ R ∪ {−∞,∞} satisfying

∀m ∈M : inf(M) ≤ m ∧ ∀x > inf(M), ∃m ∈M : m ≤ x.

This number is called in�mum ofM . For a function f : M → R the in�mum of f
is de�ned by

inf(f) := inf {f(m) : m ∈M} .

diam Diameter of U . diam(U) := sup {d(u1, u2) : u1, u2 ∈ U}.
U Closure of U (in V ). U := {v ∈ V : ∀ε > 0, ∃u ∈ U , s.t. d(u, v) < ε}.
∂U Boundary of U (in V ). ∂U := U ∩ V \ U .

Topological Terms. In the following, let V be a vector space with a metric d and U ⊆ V .

V is called Banach space i� d is induced by a norm and all Cauchy sequences (vn)n∈N ∈ V N are
converging in V .

U is said to be open (in V ) i�

∀u ∈ U, ∃ε > 0 : {v ∈ V : d(v, u) < ε} ⊆ U.

U is said to be closed (in V ) i� V \ U is an open subset of V .

U is said to be connected i� for all open subsets U1, U2 ⊆ V ,

(U1 ∩ U) ∪̇ (U2 ∩ U) = U ⇒ (U1 ∩ U) = ∅ ∨ (U2 ∩ U) = ∅.

U is called a domain i� U is open, connected and non-empty.

Let K ∈ {R,C}. Then, U is said to be convex i�

∀u, v ∈ U,∀α ∈ (0, 1) : αu+ (1− α)v ∈ U.

U is said to be (sequentially) compact i� for all (un)n∈N ∈ UN there exists a subsequence which
converges in U .
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Note: If not stated otherwise, analytical and topological terms and de�nitions (such as convergence
or Cauchy sequence) that rely on a metric over Qn, Rn or Cn, n ∈ N, shall always be understood
as induced by the Euclidean metric.

Functions and Function Spaces. In the following, let k ∈ N ∪ {∞}, m,n ∈ N and Ω ⊆ Rn be
open. The following standard function spaces are used in this work:

C0 Continuous Functions. The function spaces C0(Ω;Rm) and C0(Ω;Rm) consist of
all continuous functions f : Ω→ Rm and f : Ω→ Rm, respectively. In addition, it
can be abbreviated as C0(Ω) := C0(Ω;R) and C0(Ω) := C0(Ω;R).

‖ · ‖C0 C0 Norm. For f ∈ C0(Ω;Rm) one can de�ne

‖f‖C0 := sup
x∈Ω
|f(x)|.

For Ω bounded, this constitutes a norm onC0(Ω;Rm), which is also calledmaximum
or in�nity norm. For not uniformly bounded functions it takes the value∞. ‖ · ‖C0

can not only be applied to continuous functions. It, for instance, is �nite for arbitrary
uniformly bounded functions.

Ck k-Times Continuously Di�erentiable Functions. The function spaceCk(Ω;Rm) con-
sists of the functions f : Ω → Rm that are k-times di�erentiable with all deriva-
tives of order ≤ k being continuous on Ω. Ck(Ω;Rm) consists of all functions in
Ck(Ω;Rm) that are continuously extendable to Ω for all derivatives of order ≤ k.
In addition, it can be abbreviated as Ck(Ω) := Ck(Ω;R) and Ck(Ω) := Ck(Ω;R).

‖ · ‖Ck Ck Norm. For Ω bounded, a norm on Ck(Ω;Rm) is introduced, which for f ∈
Ck(Ω;Rm) is de�ned as

‖f‖Ck :=

k∑
l1,...,ln=0

l1+···+ln≤k

∥∥∥∥∥
(

∂

∂x1

)l1
. . .

(
∂

∂xn

)ln
f

∥∥∥∥∥
C0

B Bounded and Lebesgue Measurable Functions. The space of uniformly bounded and
Lebesgue measurable functions f : Ω→ R is denoted by B(Ω). Due to the uniform
boundedness, this vector space can be equipped with the maximum norm ‖ · ‖C0 .
It is directly related to the function space of essentially bounded and measurable
functions L∞(Ω), which is described in Remark 14 on page 47.

A function f : Rn → R is said to be coercive i�

∀(xk)k∈N ⊂ Rn : |xk| → ∞ ⇒ f(xk)→∞, k →∞.

Further terms and symbols regarding derivatives of multivariate functions:

∇f Gradient. For n ∈ N, Ω ⊆ Rn open, and f ∈ C1(Ω) it is

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)T
.

x ∈ Ω is called critical point of f i� ∇f(x) = 0.
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Jf Jacobian Matrix. For m,n ∈ N, Ω ⊆ Rn open, f ∈ C1(Ω;Rm) and x ∈ Ω it is

Jf (x) :=


∂f1

∂x1 (x) . . . ∂f1

∂xn (x)
...

...
∂fm

∂x1 (x) . . . ∂fm

∂xn(x)

 .

Hess(·) Hess Matrix. For n ∈ N, Ω ⊆ Rn open, and f ∈ C2(Ω) it is

Hess(f) :=


∂2f

∂x1∂x1 . . . ∂2f
∂x1∂xn...

...
∂2f

∂xn∂x1 . . . ∂2f
∂xn∂xn

 .

Due to the equality of mixed partials (Schwarz’ theorem), this matrix is symmetric.

Convex Functions. Let N ∈ N and Ω ⊆ RN be a convex domain.

A function f : Ω→ R is called convex i�

∀x, y ∈ Ω, x 6= y, α ∈ (0, 1) : f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),

which for f ∈ C2(Ω) is equivalent to

∀x ∈ Ω : Hess f(x) � 0 (positive-semide�nite).

A function f : Ω→ R is called strictly convex i�

∀x, y ∈ Ω, x 6= y, α ∈ (0, 1) : f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

If a function f ∈ C2(Ω) satis�es

∀x ∈ Ω : Hess f(x) � 0 (positive-de�nite),

it is in particular strictly convex.

A function f : Ω→ R is called quasiconvex i�

∀x, y ∈ Ω, x 6= y, α ∈ (0, 1) : f(αx+ (1− α)y) ≤ max {f(x), f(y)} .

A function f : Ω→ R is called strictly quasiconvex i�

∀x, y ∈ Ω, x 6= y, α ∈ (0, 1) : f(αx+ (1− α)y) < max {f(x), f(y)} .

Curves. Let n ∈ N, k ∈ N0 ∪ {∞}, I ⊂ R be an open interval in R. A function γ ∈ C0(I;Rn) is
called curve in Rn. For k-times di�erentiable curves γ ∈ Ck(I;Rn), k ∈ N0, its derivatives can
be written as γ̇, γ̈, . . . , or alternatively γ(l), where l ∈ {1, . . . , k}.
A curve γ ∈ C1(I;Rn) is said to be parametrized by the arc length i� |γ̇| ≡ 1.

Let γ ∈ C2(I;R2), i.e. γ is a two-times di�erentiable and planar curve. Then, there exists a
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theorem example source

Cauchy-Schwarz inequality [Gra1999, 6.2]
Cramer’s rule [Gra1999, 5.5]

Rodrigues’ rotation formula [Dai2015, (11)]
Schwarz’s theorem [Wal2002, 3.3]

product rule [Wal2002, 3.4]
chain rule [Wal2002, 3.10]

Leibniz’s integral rule [Abr1964, 3.3.7]
measure and integration theory [Els2011]

linearity of integration [Els2011, IV, §3]
Lebesgue’s dominated convergence theorem [Els2011, IV, §5]

Fubini’s theorem [Els2011, V, §2]
Fubini-Tonelli theorem [Els2011, V, §2]

Simpson’s rule [Fre2007, 3.1]

Table A.1: standard theorems used in this work

unique function κ : I → R that satis�es(
γ̈1

γ̈2

)
= κ

(
−γ̇2

γ̇1

)
.

κ is called curvature of γ. For t ∈ I the value 1/κ(t) is called the radius of curvature in γ(t).

Error Discussion. In the context of a correct and a disturbed quantity x ∈ R and xerr ∈ R, the
term relative error shall always be understood as∣∣∣∣xerr − x

x

∣∣∣∣ ∈ R≥0 ∪ {∞} ,

where 0/0 has to be interpreted as 0.

Standard Theorems. Table A.1 provides references for established theorems repeatedly referred
to in this work.





Appendix B. Selected Theorems

The following three results, used in this work, can be expected to be well-known but it is di�cult
to �nd reasonable formulations or proofs for them in the literature.

B.1 L’Hôspital’s Rule for Higher-Order Derivatives

The following theorem basically states that discontinuities that can be removed by l’Hôspital’s
rule are as smooth as the numerator and the denominator function allow them to be. Here, the
theorem is given as C∞ formulation.

Theorem 3 (L’Hôspital’s Rule for Higher Order Derivatives). Let I ⊂ R be an open interval,
u, v ∈ C∞(I),M ∈ N0, x0 ∈ I , where v 6= 0 on I \ {x0}, and

∀m ∈ {0, . . . ,M} : u(m)(x0) = v(m)(x0) = 0, and v(M+1)(x0) 6= 0.

Then, the discontinuity of u/v in x0 can be removed in�nitely smooth, i.e.

x 7→ f(x) :=


u(x)
v(x) , x ∈ I \ {x0}
u(M+1)(x0)

v(M+1)(x0)
, x = x0

∈ C∞(I).

Proof. Obviously, from u, v ∈ C∞(I) and 0 /∈ v(I \ {x0}) it follows f ∈ C∞(I \ {x0}).

Let now for all n ∈ N0 the un, vn and Mn be recursively de�ned as

v0 := v, vn+1 := v2
n, u0 := u, un+1 := u′nvn − unv′n, M0 := M, Mn+1 := 2Mn + 1.

Step 1: It is shown for all n ∈ N0 that

f (n)(x) =
un(x)

vn(x)
, ∀x ∈ I \ {x0} . (B.1)

Proof by induction: The base case (n = 0) directly follows from de�nitions:

f (0)(x) = f(x) =
u(x)

v(x)
=
u0(x)

v0(x)
.

For the induction step, assume for a given n ∈ N0 that f (n)(x) = un(x)/vn(x) for all x ∈ I\{x0}.
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Then, (B.1) holds true for n+ 1 as well (by applying the product rule):

f (n+1)(x) =
[
f (n)(x)

]′
=

[
un(x)

vn(x)

]′
=
u′n(x)vn(x)− un(x)v′n(x)

vn(x)2
=
un+1(x)

vn+1(x)
.

Step 2: It is shown for all n ∈ N0 that

∀m ∈ {0, . . . ,Mn} : u(m)
n (x0) = v(m)

n (x0) = 0, and v(Mn+1)(x0) 6= 0. (B.2)

Proof by induction: The base case directly follows from the assumptions on u and v. For the
induction step, let (B.2) be true for an arbitrary n ∈ N0. Then, one can show that it holds true for
n+ 1 as well: From iterating the product rule it follows for any m ∈ N0

u
(m)
n+1(x0) =

m∑
k=0

(
m

k

)[
u(k+1)
n (x0)v(m−k)

n (x0)− u(k)
n (x0)v(m−k+1)

n (x0)
]
. (B.3)

For m ≤Mn+1 − 1 one has

(k + 1) + (m− k) = m+ 1 ≤Mn+1 = 2Mn + 1 ⇒ k + 1 ≤Mn ∨ m− k ≤Mn,

k + (m− k + 1) = m+ 1 ≤Mn+1 = 2Mn + 1 ⇒ k ≤Mn ∨ m− k + 1 ≤Mn.

Therefore, from (B.3) and (B.2) for n it follows u(m)
n+1(x0) = 0. Analogously, for m ≤Mn+1 one

has

v
(m)
n+1 =

m∑
k=0

(
m

k

)
v(k)
n v(m−k)

n = 0.

For m = Mn+1 one has

u
(m)
n+1(x0) =

[(
2Mn + 1

Mn

)
−
(

2Mn + 1

Mn + 1

)]
︸ ︷︷ ︸

=0

u(Mn+1)
n (x0)v(Mn+1)

n (x0) = 0.

Furthermore, one has

v
(Mn+1+1)
n+1 =

2Mn+2∑
k=0

(
m

k

)
v(k)
n v(m−k)

n =

(
2Mn + 2

Mn + 1

)
v(Mn+1)
n v(Mn+1)

n 6= 0.

Step 3: Finally, with the help of (B.1), (B.2) and l’Hôspital’s rule it follows for any n ∈ N

lim
x↗x0

f (n)(x) = lim
x↗x0

un(x)

vn(x)
=
u

(Mn+1)
n (x0)

v
(Mn+1)
n (x0)

= lim
x↘x0

un(x)

vn(x)
= lim

x↘x0

f (n)(x).
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B.2 First-Order Linear Initial Value Problems

The following theorem is so essential that the fact it could only be found in the unpublished
Analysis 2 lecture notes from Hans-Christoph Grunau is especially surprising.

Theorem 4 (Existence, Uniqueness and Explicit Solution). Let I ⊆ R be an open interval and
a, b : I → R be continuous functions. Let further x0, c0 ∈ R. Then, the linear �rst-order initial
value problem

f ′(x) = a(x)f(x) + b(x), x ∈ I, f(x0) = c0 (B.4)

has a unique solution which is explicitly given by

f(x) = c0 exp

(∫ x

x0

a(τ)dτ

)
+

∫ x

x0

b(σ) exp

(∫ x

σ
a(τ)dτ

)
dσ. (B.5)

Proof. Without explicit constants and explicit integral borders in (B.5) this theorem can be found
in several textbooks (cf . e.g. [Nag2011, Theorem 1 on page 51]). The validity of (B.5) can easily be
checked by substituting it into (B.4).

B.3 Sphere Parametrization with Arbitrary Orientation

The standard parametrization Φ of the sphere S2 as provided in Remark 10 on page 39 is given by

Φ : (0, 2π)× (0, π)→ S2, (ϕ, θ) 7→

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 .

In this parametrization, the north pole Φ(0, 0) is given by (0, 0, 1)T . In many applications, such
as the parametrization of a rotated hemisphere or for the use as parametrization in a surface
integral, a sphere parametrization may be required which provides an arbitrary orientation. This
is explicitly discussed in the following.

Let σ ∈ S2 \
{

(0, 0, 1)T , (0, 0,−1)T
}

. To obtain a parametrization Φσ with north pole Φσ(0, 0) =
σ, the standard parametrization is rotated with the help of Rodrigues’ rotation formula (cf . e.g.
[Dai2015, (11)]). The rotation axis is given through the normal vector

ν =

(
0 0 1

)T × σ∣∣∣(0 0 1
)T × σ∣∣∣ =

1√
σ1σ1 + σ2σ2

−σ2

σ1

0

 ,

and the rotation angle θ̂ ∈ [0, π] is represented by its cosine µ

µ := cos(θ̂) =

〈0
0
1

 , σ

〉
= σ3,

√
1− µ2

θ̂∈[0,π]
= sin(θ̂).
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The rotation formula yields

Φσ = µΦ +
√

1− µ2ν × Φ + (1− µ) 〈ν,Φ〉 ν,

and therefore

Φσ =
1

σ1σ1 + σ2σ2

 µ(σ1σ1+σ2σ2)Φ1+
√

1−µ2
√
σ1σ1+σ2σ2σ1Φ3−(1−µ)σ2(−σ2Φ1+σ1Φ2)

µ(σ1σ1+σ2σ2)Φ2+
√

1−µ2
√
σ1σ1+σ2σ2σ2Φ3+(1−µ)σ1(−σ2Φ1+σ1Φ2)

µ(σ1σ1+σ2σ2)Φ3−
√

1−µ2
√
σ1σ1+σ2σ2(σ2Φ2+σ1Φ1)

 .

Together with√
σ1σ1 + σ2σ2 =

√
1− σ3σ3 =

√
1− µ2 and 1− µ

1− µ2
=

1

1 + µ

this leads to

Φσ =

σ1Φ3 + σ3Φ1 − 1
1+µσ

2(−σ2Φ1 + σ1Φ2)

σ2Φ3 + σ3Φ2 + 1
1+µσ

1(−σ2Φ1 + σ1Φ2)

σ3Φ3 − σ2Φ2 − σ1Φ1

 . (B.6)

Treating 0/0 as 0, the parametrization (B.6) even works in the trivial cases

σ ∈
{

(0, 0, 1)T , (0, 0,−1)T
}
.

The corresponding rotation matrix is given by

Rσ =

σ3 + 1
1+µσ

2σ2 − 1
1+µσ

1σ2 σ1

− 1
1+µσ

1σ2 σ3 + 1
1+µσ

1σ1 σ2

−σ1 −σ2 σ3

 ∈ SO(3)

=

 σ3 0 σ1

0 σ3 σ2

−σ1 −σ2 σ3

+
1

1 + µ

 σ2σ2 −σ1σ2 0
−σ1σ2 σ1σ1 0

0 0 0


(B.7)

One should note that for σ = (0, 0,−1)T the matrix Rσ is formally not a rotation matrix, since
det(Rσ) = −1. Due to the hairy ball theorem this cannot be avoided in a closed formulation (cf .
discussion in Remark 12 on page 41).

One special property of the rotated parametrization can be found in its relation to σ:

〈Φσ, σ〉 = σ1σ1Φ3 + σ1σ3Φ1 − 1

1 + µ
σ1σ2(−σ2Φ1 + σ1Φ2)

+ σ2σ2Φ3 + σ2σ3Φ2 +
1

1 + µ
σ2σ1(−σ2Φ1 + σ1Φ2)

+ σ3σ3Φ3 − σ3σ2Φ2 − σ3σ1Φ1

= (σ1σ1 + σ2σ2 + σ3σ3)Φ3 = Φ3 = cos(θ),
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x1
x2

x3

σ

x1

x2

x3

Figure B.1: Example for a (translated) hemisphere with an arbitrary north pole σ.

which can directly be derived from R−1
σ ’s orthogonality

〈Φσ, σ〉 = 〈RσΦ, σ〉 =
〈
R−1
σ RσΦ, R−1

σ σ
〉

=

〈
Φ,

0
0
1

〉 = cos(θ). (B.8)

It also holds that∣∣∣∣∂Φσ

∂ϕ
× ∂Φσ

∂θ

∣∣∣∣ =

∣∣∣∣Rσ ∂Φ

∂ϕ
×Rσ

∂Φ

∂θ

∣∣∣∣ =

∣∣∣∣∂Φ

∂ϕ
× ∂Φ

∂θ

∣∣∣∣ = sin(θ). (B.9)





Appendix C. Fast Noise Variance Estimation
on Smooth Signals

Given a number of independent samples of the same stochastical process, it is well known from
elementary statistics how to estimate their �rst and second moments in terms of sample mean
and sample (co)variance (cf . e.g. [Was2004]). However, in order to estimate the noise’s variance
from samples of a non-constant noisy signal this estimation method cannot be applied. The most
commonly used approaches for noise variance estimation are based on denoising (e.g. by �tting
splines to the data, cf . e.g. Sec. 8.5). Thereby, the noise variance can be estimated directly from
the di�erence of the noisy and noise-free signal (cf . e.g. [Gar2013]).

Here, a much faster and easy-to-implement method for the case of a 1-dimensional underlying
deterministic signal is proposed. With the help of a rough a-priori knowledge regarding the
signal’s smoothness, it is possible to obtain certain bounds on the estimation error.

Let f ∈ C1([a, b]) be a C1-smooth function over an interval [a, b]. Further let N ∈ N, and
x1 < · · · < xN ∈ [a, b], and Y1, . . . , YN i.i.d. random variables, where E(Yn) = 0 and σ2 :=
E(Y 2

n ) <∞ and �nite 3rd and 4th central moments µ3 := E(Y 3
n ) <∞ and µ4 := E(Y 4

n ) <∞.
The noisy data points are given by (xn, yn), where

yn = f(xn) + Yn, n = 1, . . . , N.

The basic idea is to �nd a relation between the sample noise variance of yn − f(xn) and the
sum of squared neighbor di�erences of the yns, which itself is a combined random variable. This

f

a bxn

yn

Yn

Figure C.1: A smooth deterministic signal f is sampled with additive i.i.d. noise.
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reveals a way to access the noise variance without exactly knowing f :

N−1∑
n=1

(yn − yn+1)2 =
N−1∑
n=1

([yn − f(xn)] + [f(xn)− f(xn+1)] + [f(xn+1)− yn+1])2

=
N−1∑
n=1

(yn − f(xn))2 +
N−1∑
n=1

(f(xn)− f(xn+1))2 +
N−1∑
n=1

(f(xn+1)− yn+1)2

+ 2
N−1∑
n=1

(yn − f(xn)) (f(xn)− f(xn+1))

+ 2
N−1∑
n=1

(yn − f(xn)) (f(xn+1)− yn+1)

+ 2
N−1∑
n=1

(f(xn)− f(xn+1)) (f(xn+1)− yn+1)

=

N−1∑
n=1

(yn − f(xn))2 +
N−1∑
n=1

(f(xn)− f(xn+1))2 +
N−1∑
n=1

(f(xn+1)− yn+1)2

+ 2
N−1∑
n=1

([yn − yn+1] + [f(xn+1)− f(xn)]) (f(xn)− f(xn+1))

+ 2
N−1∑
n=1

(yn − f(xn)) (f(xn+1)− yn+1)

=
N−1∑
n=1

(yn − f(xn))2 +
N−1∑
n=1

(yn+1 − f(xn+1))2 −
N−1∑
n=1

(f(xn)− f(xn+1))2

+ 2
N−1∑
n=1

(yn − yn+1) (f(xn)− f(xn+1))

− 2
N−1∑
n=1

(yn − f(xn)) (yn+1 − f(xn+1))

The non-deterministic terms on the RHS can be treated as new random variables Z1, Z2, Z3:

Z1 :=
N−1∑
n=1

(yn − f(xn))2 ,

Z2 :=
N−1∑
n=1

(yn − f(xn)) (yn+1 − f(xn+1)) ,

Z3 :=

N−1∑
n=1

(yn − yn+1) (f(xn)− f(xn+1)) .
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For Z1, one has

E(Z1) =

N−1∑
n=1

E
(

(yn − f(xn))2
)

=

N−1∑
n=1

E
(
Y 2
n

)
= (N − 1)σ2,

Var(Z1) = E

(N−1∑
n=1

(yn − f(xn))2 − (N − 1)σ2

)2


= E

(N−1∑
n=1

(yn − f(xn))2

)2


− 2(N − 1)σ2 E

(
N−1∑
n=1

(yn − f(xn))2

)
︸ ︷︷ ︸

(N−1)σ2

+(N − 1)2σ4

=

N−1∑
n′=1

N−1∑
n=1

E
(

(yn − f(xn))2 (yn′ − f(xn′))
2
)
− (N − 1)2σ4

= 2

N−1∑
n′=1

N−1∑
n=n′+1

E
(

(yn − f(xn))2
)

E
(

(yn′ − f(xn′))
2
)

+
N−1∑
n=1

E
(

(yn − f(xn))4
)
− (N − 1)2σ4

= (N − 1)(N − 2)σ4 +
N−1∑
n=1

E
(

(yn − f(xn))4
)
− (N − 1)2σ4

=
N−1∑
n=1

E
(

(yn − f(xn))4
)

︸ ︷︷ ︸
4th central moment µ4

−(N − 1)σ4 = (N − 1)(µ4 − σ4).

Having the independence of the Yn in mind, the second random variable Z2 can be evaluated
quite simply:

E(Z2) = E

(
N−1∑
n=1

(yn − f(xn)) (yn+1 − f(xn+1))

)
=

N−1∑
n=1

E(Yn) E(Yn+1) = 0,

Var(Z2) = E

(N−1∑
n=1

(yn − f(xn)) (yn+1 − f(xn+1))

)2
 = E

(
N−1∑
n′=1

N−1∑
n=1

YnYn+1Yn′Yn′+1

)

=
N−1∑
n=1

E
(
Y 2
n

)
E
(
Y 2
n+1

)
= (N − 1)σ4.
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The third random variable Z3 gives

E(Z3) =
N−1∑
n=1

(f(xn)− f(xn+1)) E ((yn − yn+1)) =
N−1∑
n=1

(f(xn)− f(xn+1))2

Var(Z3) = E

(N−1∑
n=1

(yn − yn+1) (f(xn)− f(xn+1))−
N−1∑
n=1

(f(xn)− f(xn+1))2

)2


= E

(N−1∑
n=1

(Yn − Yn+1) (f(xn)− f(xn+1))

)2


=
N−1∑
n=1

N−1∑
n′=1

E ((Yn − Yn+1)(Yn′ − Yn′+1)) (f(xn)− f(xn+1))(f(xn′)− f(xn′+1))

=
N−1∑
n=1

E
(
(Yn − Yn+1)2

)
(f(xn)− f(xn+1))2

+

N−2∑
n=1

E ((Yn − Yn+1)(Yn+1 − Yn+2)) (f(xn)− f(xn+1))(f(xn+1)− f(xn+2))

+

N−1∑
n=2

E ((Yn − Yn+1)(Yn−1 − Yn)) (f(xn)− f(xn+1))(f(xn−1)− f(xn))

=

N−1∑
n=1

(
E(Y 2

n ) + E(Y 2
n+1)

)
(f(xn)− f(xn+1))2

− 2

N−2∑
n=1

E(Y 2
n+1)(f(xn)− f(xn+1))(f(xn+1)− f(xn+2))

= 2σ2
N−1∑
n=1

(f(xn)− f(xn+1))2 − 2σ2
N−2∑
n=1

(f(xn)− f(xn+1))(f(xn+1)− f(xn+2)).

De�ning a summarizing random variable based on the appropriately scaled sum of squared
neighbor di�erences

Z :=
1

2(N − 1)

N−1∑
n=1

(yn − yn+1)2,

and combining the overall information reveals the σ2-estimation capabilities of Z :

E (Z) =
1

2(N − 1)

[
2 E(Z1)− 2 E(Z2) + 2 E(Z3)−

N−1∑
n=1

(f(xn)− f(xn+1))2

]

= σ2 +
1

2(N − 1)

N−1∑
n=1

(f(xn)− f(xn+1))2
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Var (Z) = E

((
1

2(N − 1)

N−1∑
n=1

(yn − yn+1)2

−σ2 − 1

2(N − 1)

N−1∑
n=1

(f(xn)− f(xn+1))2

)2
 ,

= E

((
1

2(N − 1)

[N−1∑
n=1

(yn − f(xn))2 − 2

N−1∑
n=1

(f(xn)− f(xn+1))2

+

N−1∑
n=1

(yn+1 − f(xn+1))2

+ 2

N−1∑
n=1

(yn − yn+1) (f(xn)− f(xn+1))

− 2

N−1∑
n=1

(yn − f(xn)) (yn+1 − f(xn+1))

]
− σ2

)2
)

= E

((
1

2

[
1

N − 1

N−1∑
n=1

(yn − f(xn))2 − σ2

]

+
1

2

[
1

N − 1

N−1∑
n=1

(yn+1 − f(xn+1))2 − σ2

]

+
1

N − 1

[N−1∑
n=1

(yn − yn+1) (f(xn)− f(xn+1))−
N−1∑
n=1

(f(xn)− f(xn+1))2

]

− 1

N − 1

[N−1∑
n=1

(yn − f(xn)) (yn+1 − f(xn+1))

])2
)

=
1

2
Var

(
Z1

N − 1

)
+ Var

(
Z2

N − 1

)
+ Var

(
Z3

N − 1

)
+

1

2
E

([
1

N − 1

N−1∑
n=1

Y 2
n − σ2

][
1

N − 1

N−1∑
n=1

Y 2
n+1 − σ2

])

+
1

N − 1
E

([
1

N − 1

N−1∑
n=1

Y 2
n − σ2

][N−1∑
n=1

(Yn − Yn+1) (f(xn)− f(xn+1))

])

− 1

N − 1
E

([
1

N − 1

N−1∑
n=1

Y 2
n − σ2

][N−1∑
n=1

YnYn+1

])

+
1

N − 1
E

([
1

N − 1

N−1∑
n=1

Y 2
n+1 − σ2

][N−1∑
n=1

(Yn − Yn+1) (f(xn)− f(xn+1))

])

− 1

N − 1
E

([
1

N − 1

N−1∑
n=1

Y 2
n+1 − σ2

][N−1∑
n=1

YnYn+1

])

− 2

(N − 1)2
E

([N−1∑
n=1

(Yn − Yn+1) (f(xn)− f(xn+1))

][N−1∑
n=1

YnYn+1

])
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=
1

2
Var

(
Z1

N − 1

)
+ Var

(
Z2

N − 1

)
+ Var

(
Z3

N − 1

)
+

1

2(N − 1)2

N−1∑
n′=1

N−1∑
n=1

E
(
(Y 2
n′ − σ2)(Y 2

n+1 − σ2)
)

+
1

(N − 1)2

N−1∑
n′=1

N−1∑
n=1

(f(xn)− f(xn+1)) E
(
(Y 2
n′ − σ2) (Yn − Yn+1)

)
− 1

(N − 1)2

N−1∑
n′=1

N−1∑
n=1

E
(
(Y 2
n′ − σ2)YnYn+1

)
+

1

(N − 1)2

N−1∑
n′=1

N−1∑
n=1

(f(xn)− f(xn+1)) E
(
(Y 2
n′+1 − σ2) (Yn − Yn+1)

)
− 1

(N − 1)2

N−1∑
n′=1

N−1∑
n=1

E
(
(Y 2
n′+1 − σ2)YnYn+1

)
− 2

(N − 1)2

N−1∑
n′=1

N−1∑
n=1

(f(xn)− f(xn+1)) E ((Yn − Yn+1)Yn′Yn′+1)

=
1

2
Var

(
Z1

N − 1

)
+ Var

(
Z2

N − 1

)
+ Var

(
Z3

N − 1

)
+

1

2(N − 1)2

N−1∑
n′=1

N−1∑
n=1

[
E
(
Y 2
n′Y

2
n+1

)
− σ2 E

(
Y 2
n′
)
− σ2 E

(
Y 2
n+1

)
+ σ4

]
+

1

(N − 1)2

N−1∑
n=1

(f(xn)− f(xn+1)) E
(
(Y 2
n − σ2)Yn

)
− 1

(N − 1)2

N−2∑
n=1

(f(xn)− f(xn+1)) E
(
(Y 2
n+1 − σ2)Yn+1

)
− 1

(N − 1)2

N−1∑
n=1

(f(xn)− f(xn+1)) E
(
(Y 2
n+1 − σ2)Yn+1

)
+

1

(N − 1)2

N−1∑
n=2

(f(xn)− f(xn+1)) E
(
(Y 2
n − σ2)Yn

)

=
1

2
Var

(
Z1

N − 1

)
+ Var

(
Z2

N − 1

)
+ Var

(
Z3

N − 1

)
+

1

2(N − 1)2

N−1∑
n=2

(
µ4 − σ4

)
+

1

(N − 1)2
(f(xN−1)− f(xN ) + f(x2)− f(x1))µ3
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=
1

2

µ4 − σ4

N − 1
+

σ4

N − 1
+

(N − 2)
(
µ4 − σ4

)
2(N − 1)2

+
2σ2

(N − 1)2

N−1∑
n=1

(f(xn)− f(xn+1))2

− 2σ2

(N − 1)2

N−2∑
n=1

(f(xn)− f(xn+1))(f(xn+1)− f(xn+2))

+
µ3

(N − 1)2
(f(xN−1)− f(xN ) + f(x2)− f(x1))

=
µ4

N − 1
− 1

2

µ4 − σ4

(N − 1)2
+

2σ2

(N − 1)2

N−1∑
n=1

(f(xn)− f(xn+1))2

− 2σ2

(N − 1)2

N−2∑
n=1

(f(xn)− f(xn+1))(f(xn+1)− f(xn+2))

+
µ3

(N − 1)2
(f(xN−1)− f(xN ) + f(x2)− f(x1)) .

The following theorem summarizes the new estimation method:

Theorem 5 (Noise Variance Estimation by Squared Neighbor Di�erences (SND)). Let f be a
function over an interval [a, b]. Further let N ∈ N, and x1 < · · · < xN ∈ [a, b], and Y1, . . . , YN
i.i.d. random variables, where E(Yn) = 0 and σ2 := E(Y 2

n ) < ∞ and �nite 3rd and 4th central
moments µ3 := E(Y 3

n ) < ∞ and µ4 := E(Y 4
n ) < ∞. (xn, yn) shall denote noisy data points,

where
yn = f(xn) + Yn, n = 1, . . . , N.

Let Z denote the scaled sum over squared neighbor di�erences between the mean-shifted random
variables yn, namely

Z =
1

2(N − 1)

N−1∑
n=1

(yn − yn+1)2.

Then, the realization of Z approximates the variance of Yn in the following sense:

(a) The expected value of Z is given by

E (Z) = σ2 +
1

2(N − 1)

N−1∑
n=1

(f(xn)− f(xn+1))2 .

(b) The variance of Z is given by

Var(Z) =
µ4

N − 1
− 1

2

µ4 − σ4

(N − 1)2
+

2σ2

(N − 1)2

N−1∑
n=1

(f(xn)− f(xn+1))2

− 2σ2

(N − 1)2

N−2∑
n=1

(f(xn)− f(xn+1))(f(xn+1)− f(xn+2))

+
µ3

(N − 1)2
(f(xN−1)− f(xN ) + f(x2)− f(x1)) .
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(c) In the case of normally distributed Yn the variance can be further evaluated:

Var(Z) =
3σ4

N − 1
− σ4

(N − 1)2
+

2σ2

(N − 1)2

N−1∑
n=1

(f(xn)− f(xn+1))2

− 2σ2

(N − 1)2

N−2∑
n=1

(f(xn)− f(xn+1))(f(xn+1)− f(xn+2)).

(d) If f ∈ C1([a, b]), upper bounds on the error terms can be found:

1

N − 1

N−1∑
n=1

(f(xn)− f(xn+1))2 ≤ h2

N − 1

N−1∑
n=1

max
[xn,xn+1]

|f ′|2 ≤ h2 max
[a,b]
|f ′|2,

and

1

N − 2

∣∣∣∣∣
N−2∑
n=1

(f(xn)− f(xn+1))(f(xn+1)− f(xn+2))

∣∣∣∣∣ ≤ h2

N − 2

N−2∑
n=1

max
[xn,xn+2]

|f ′|2

≤ h2 max
[a,b]
|f ′|2,

where |xn − xn+1| ≤ h, ∀n ∈ {1, . . . , N − 1}.
(e) If f ∈ C1([a, b]), the variance of Z decreases w.r.t. to the number of data points, namely

Var(Z)→ 0, for N →∞.

Together with Chebychev’s inequality (cf. e.g. [Was2004]) this yields convergence of Z in
probability to its expected value.

Proof. (a) and (b) have been proved previously.

(c) This directly follows from the central moments for zero-mean normally distributed random
variables, µ3 = 0, µ4 = 3σ4.

(d) According to the mean value theorem, there exist x̂n ∈ (xn, xn+1), s.t.

1

N − 1

N−1∑
n=1

(f(xn)− f(xn+1))2 =
1

N − 1

N−1∑
n=1

(xn+1 − xn)2f ′(x̂n)2.

The upper bounds follow immediately.

(e) Since [a, b] ⊂ R is compact and f ∈ C1([a, b]), one can �nd an M > 0, s.t. |f ′| < M on
[a, b]. With h = [a, b] it follows from (d)

Var(Z) ≤ µ4

N − 1
− 1

2

µ4 − σ4

(N − 1)2
+

4σ2(b− a)2M2

(N − 1)
+

2(b− a)Mµ3

(N − 1)2
→ 0, N →∞.

For evaluation, the proposed SND (Squared Neighbor Di�erences) approach is compared against
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Figure C.2: As input for the algorithm evaluation a sinus curve and a sigmoid curve are disturbed
by zero-mean additive Gaussian noise.

EVAR SND perfect

N σ2
comp.

time (µs)
mean

error (%)
max

error (%)
comp.

time (µs)
mean

error (%)
max

error (%)
comp.

time (µs)
mean

error (%)
max

error (%)

10

0.1 1995 4371 5900 2.2 2933 4090 3.6 36.9 239.4
0.5 2363 160.8 673.8 2.9 119.5 609.7 4.8 37.0 283.8
1 1978 53.1 391.0 2.1 51.5 393.9 3.4 36.9 252.3
2 1826 41.2 258.5 2.1 43.9 438.5 3.5 36.3 287.3

100

0.1 1551 21.0 100.0 2.3 27.6 113.4 3.7 11.3 60.6
0.5 1587 15.8 180.0 2.3 13.8 90.0 3.7 11.2 66.6
1 1543 21.7 119.4 2.3 13.9 85.6 3.7 11.3 60.5
2 1571 14.5 97.2 2.3 13.8 77.2 3.9 11.5 58.3

500

0.1 1857 6.9 28.7 3.3 6.2 40.0 5.2 5.1 29.2
0.5 2165 5.7 26.2 5.0 6.2 36.1 7.0 5.0 27.7
1 2214 5.5 37.4 4.4 6.2 33.2 7.6 5.1 23.7
2 1702 5.4 26.4 3.4 6.1 33.1 5.3 5.0 24.8

Table C.1: Comparison of SND (proposed), EVAR ([Gar2013]) and the perfect estimation on the
sinus function.

the EVAR algorithm (cf . [Gar2013]) and a perfect estimation by ordinary empirical variance
estimation assuming the deterministic signal to be known. The deterministic signals f are chosen
to be a sinus curve and a sigmoid function (cf . Fig. C.2). Since EVAR relies on Gaussian additive
noise and evenly-gridded data, the yn are generated according to these requirements. Table C.1
and Table C.2 provide some results of the experiments, taking 10000 tests per con�guration into
account. While EVAR and SND have similar estimation accuracies and both are even close to the
perfect results, the SND computation is more than a factor 500 faster than EVAR and even slightly
faster than the perfect estimation (tested in MATLAB [Mat2012]).

The results prove that the proposed SND approach is a considerable alternative to classical noise
estimation methods. It is easy to implement, does not restrict to Gaussian noise and is very fast.
Drawbacks are the systematical error and the restriction to one dimension. As future work, one
can consider introducing a correction term to reduce the bias, and an extension to more than one
dimension based on higher-dimensional neighbor di�erences.
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EVAR SND perfect

N σ2
comp.

time (µs)
mean

error (%)
max

error (%)
comp.

time (µs)
mean

error (%)
max

error (%)
comp.

time (µs)
mean

error (%)
max

error (%)

10

0.1 1642 67.7 264.5 2.1 120.1 497.0 3.5 36.6 337.0
0.5 1590 51.8 288.5 2.0 43.1 363.6 3.4 37.2 282.4
1 1675 45.7 354.9 2.1 43.9 463.9 3.5 37.2 374.1
2 1570 42.0 215.1 2.1 43.4 310.6 3.5 37.2 261.3

100

0.1 1620 14.1 88.2 2.2 13.8 81.1 3.7 11.3 63.8
0.5 1622 13.2 87.9 2.3 13.7 72.7 3.8 11.3 57.9
1 1669 13.0 98.9 2.4 13.8 75.7 3.9 11.4 63.3
2 1680 12.3 98.0 2.3 13.8 83.1 3.7 11.1 65.4

500

0.1 1606 5.4 25.1 3.2 6.2 33.4 5.4 5.1 24.0
0.5 1508 5.3 24.6 3.3 6.2 32.3 5.2 5.1 23.8
1 1505 5.2 23.5 3.2 6.1 32.4 5.2 5.0 24.1
2 1558 5.2 23.9 3.3 6.2 31.4 5.3 5.1 23.8

Table C.2: Comparison of SND (proposed), EVAR ([Gar2013]) and the perfect estimation on the
sigmoid function.



Appendix D. Proofs from the Analytical
Discussion of F

Proof of Lemma 3 on page 86: Non-Convexity and Non-Coercivity of F .

(a) It is easy to see that for any L̃ and any K ∈ R

Fc,L̃(K) =

M∑
m=1

Nm∑
n=1

1

(σmn )2

(
L̃− Lmn

)2
,

since L is a convex combination of Lair and L0. Elementary analysis reveals that this term
is uniquely minimized in L:

d

dL̃

M∑
m=1

Nm∑
n=1

1

(σmn )2

(
L̃− Lmn

)2
∣∣∣∣
L̃=L

= 2S1L− 2SL = 2S1
SL
S1
− 2SL = 0.

Finally, one has

Fc =
M∑
m=1

Nm∑
n=1

1

(σmn )2

(
L− Lmn

)2
=
S2

L
S2

1
S1 − 2

SL
S1
SL + SLL = SLL −

S2
L
S1
.

(b) This directly follows from (a), choosing for instance pn := (Kn, L, . . . , L) and C := Fc(0),
where (Kn)n∈N ⊂ R can be chose as an arbitrary sequence that satis�es Kn → ∞, for
n→∞.

(c) Let ξ = (1, 0, . . . , 0)T . Let furthermore (L1
0, . . . , L

M
0 ) ∈ RM be an arbitrary set of parame-

ters and Lair > maxn,m L
m
n . One obviously can �nd a K > 0, s.t. for any K > K

2(Lair − Lm0 )e−Kd
m
n︸ ︷︷ ︸

→0, for K → 0

+Lmn − Lair︸ ︷︷ ︸
<0

< 0.

Therefore, for any K > K one has (cf . Lemma 2 on page 84)

∂2F
∂K∂K

= 2
M∑
m=1

Nm∑
n=1

1

(σmn )2 (Lair − Lm0 ) e−Kd
m
n (dmn )2

︸ ︷︷ ︸
>0

·
[
2(Lair − Lm0 )e−Kd

m
n + Lmn − Lair

]
︸ ︷︷ ︸

<0

< 0.
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Hence for p = (K,Lair, L
1
0, . . . , L

M
0 ), where K > K , it holds

ξT HessF(p)ξ =
∂2F
∂K∂K

(p) < 0.

In particular, F is not convex at such a p.

Proof of Lemma 4 on page 86: Critical Points of Ff,K .

Unique Critical Point: (Lair, L
1
0, . . . , L

M
0 ) ∈ RM+1 is (by de�nition) a critical point of F if

and only if it solves 0 = ∇Ff,K = ∇Lair,L1
0,...,L

M
0
F , which, due to Lemma 2 on page 84, can be

written as equation system

0 = 2
M∑
m=1

Nm∑
n=1

1

(σmn )2
(L − Lmn ) (1− e−Kdmn ),

0 = 2

Nm∑
n=1

1

(σmn )2
(L − Lmn ) e−Kd

m
n , m = 1, . . . ,M,

which is equivalent to the system

0 =
M∑
m=1

Nm∑
n=1

1

(σmn )2
(L − Lmn ) , 0 =

Nm∑
n=1

1

(σmn )2
(L − Lmn ) e−Kd

m
n , m = 1, . . . ,M.

This can be written as linear equation system
SL
S1

Le
...

SMLe

 =


S(1-e) S1

e . . . SMe
S1

e(1-e) S1
ee

... . . .
SMe(1-e) SMee



Lair
L1

0
...

LM0

 . (D.1)

For any m ∈ {1, . . . ,M}, one has

Smee =

Nm∑
n=1

1

(σmn )2
e−2Kdmn > 0. (D.2)

Since dmn > 0 and K 6= 0, one has

S(1-e) =
M∑
m=1

Nm∑
n=1

1

(σmn )2

(
1− e−Kdmn

){> 0 , if K > 0

< 0 , if K < 0

}
6= 0.

Therefore, the rows of the matrix in (D.1) are linearly independent and in turn the system uniquely
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solvable. Ignoring the �rst line, the equation system can be rewritten asS
1
ee

. . .
SMee


 L1

0
...

LM0

 =

S
1
Le
...

SMLe

− Lair

S
1
e(1-e)
...

SMe(1-e)

 .

Therefore,

∀m ∈ {1, . . . ,M} : Lm0 =
SmLe − LairS

m
e(1-e)

Smee
, (D.3)

which can be substituted into the �rst row of (D.1) to additionally obtain Lair (in di�erent formu-
lations):

SL = LairS(1-e) +
M∑
m=1

Sme L
m
0 = LairS(1-e) +

M∑
m=1

Sme
SmLe
Smee
− Lair

M∑
m=1

Sme
Sme(1-e)
Smee

⇔ Lair =
SL −

∑M
m=1

Sme SmLe
Smee

S(1-e) −
∑M

m=1

Sme Sme(1-e)
Smee

⇔ Lair =
SL −

∑M
m=1

Sme SmLe
Smee

S1 −
∑M

m=1
Sme Sme
Smee

. (D.4)

The Lm0 can be obtained by substituting (D.4) into (D.3):

Lm0 =
SmLe − LairS

m
e(1-e)

Smee
=

SmLe −
SL−

∑M
l=1

SleS
l
Le

Slee

S1−
∑M
l=1

SleSle
Slee

Sme(1-e)

Smee

=
SmLe

(
S1 −

∑M
l=1

SleS
l
e

Slee

)
− Sme(1-e)

(
SL −

∑M
l=1

SleS
l
Le

Slee

)
S1Smee − Smee

∑M
l=1

SleS
l
e

Slee

=
SmLeS1 − Sme(1-e)SL − SmLe

∑M
l=1

SleS
l
e

Slee
+ Sme(1-e)

∑M
l=1

SleS
l
Le

Slee

S1Smee − Smee
∑M

l=1
SleS

l
e

Slee

=
SmLeS1 − Sme(1-e)SL +

∑M
l=1

Sle
Slee

[
SlLeS

m
e(1-e) − SleSmLe

]
S1Smee − Smee

∑M
l=1

SleS
l
e

Slee

.

Convexity: One has (cf . Lemma 2 on page 84)

HessFf,K = 2


S(1-e)(1-e) S1

e(1-e) . . . SMe(1-e)
S1

e(1-e) S1
ee

... . . .
SMe(1-e) SMee

 .

To show the convexity inequality one should have in mind the following estimation:

∀a, b ∈ R : a2 + ab+ b2 =
a2 + b2

2
+

(a+ b)2

2
≥ a2 + b2

2
. (D.5)



190

Let now ξ = (ξ1, . . . , ξM+1)T ∈ RM+1 \{0} arbitrary but �xed. FromK 6= 0 and (D.5) it follows

ξT HessFf,Kξ = 2ξ1ξ1S(1-e)(1-e) + 2

M∑
m=1

ξ1ξm+1Sme(1-e) + 2

M∑
m=1

ξm+1ξm+1Smee

= 2
M∑
m=1

Nm∑
n=1

1

(σmn )2

[
ξ1ξ1

(
1− e−Kdmn

)2
+ ξm+1ξm+1

(
e−Kd

m
n

)2

+ ξ1ξm+1e−Kd
m
n

(
1− e−Kdmn

)]

≥
M∑
m=1

Nm∑
n=1

1

(σmn )2

[
ξ1ξ1

(
1− e−Kdmn

)2

︸ ︷︷ ︸
>0, since Kdmn 6= 0

+ ξm+1ξm+1
(
e−Kd

m
n

)2

︸ ︷︷ ︸
>0

]

≥ |ξ|2 min
m∈{1,...,M}

min
n∈{1,...,Nm}

1

(σmn )2

{(
1− e−Kdmn

)2
,
(
e−Kd

m
n

)2
}
> 0.

Therefore, Ff,K is strictly convex and the unique critical point is a minimum.

K = 0: Obviously, Ff,0 is constant in Lair, since

Ff,0 =
M∑
m=1

Nm∑
n=1

1

(σmn )2
(Lm0 − Lmn )2.

The remaining critical point equations in L1
0, . . . , L

M
0 can once again be written asS

1
1

. . .
SM1


 L1

0
...

LM0

 =

 S1
L
...

SML

 ,

which is uniquely solved in (L
1
, . . . , L

M
), independent of the speci�c Lair. Furthermore, Ff,0 is

convex (and even strictly convex in (L1
0, . . . , L

M
0 )), which implies the unique minimization at the

critical line.

Proof of Lemma 5 on page 87: Properties of Fmin. The matrix in the linear equation system (D.1),
which leads to the de�nition of Lair,min and Lm0,min, is continuous in K . Furthermore, Cramer’s
rule shows that an inverse matrix is a continuous function of the matrix entries. Therefore, on
R \ {0} the functions Lair,min and Lm0,min are continuous. So does Fmin which is a composition
of continuous functions now. This partially implies (a). To also show that 0 is a removable
discontinuity one has to write out Fmin in full:

Fmin =

M∑
m=1

Nm∑
n=1

1

(σmn )2

((
1− e−Kdmn

)
Lair,min + e−Kd

m
n L0,min − Lmn

)2

=
M∑
m=1

Nm∑
n=1

1

(σmn )2

((
1− e−Kdmn

)
Lair,min + e−Kd

m
n
SmLe − Lair,minS

m
e(1-e)

Smee
− Lmn

)2
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=

M∑
m=1

Nm∑
n=1

1

(σmn )2

((
1− e−Kdmn −

Sme(1-e)
Smee

e−Kd
m
n

)
Lair,min + e−Kd

m
n
SmLe
Smee
− Lmn

)2

=

M∑
m=1

Nm∑
n=1

1

(σmn )2

((
1− Sme

Smee
e−Kd

m
n

)
Lair,min + e−Kd

m
n
SmLe
Smee
− Lmn

)2

= L2
air,min

M∑
m=1

Nm∑
n=1

1

(σmn )2

(
1− Sme

Smee
e−Kd

m
n

)2

+ 2Lair,min

M∑
m=1

Nm∑
n=1

1

(σmn )2

(
1− Sme

Smee
e−Kd

m
n

)(
e−Kd

m
n
SmLe
Smee
− Lmn

)

+
M∑
m=1

Nm∑
n=1

1

(σmn )2

(
e−Kd

m
n
SmLe
Smee
− Lmn

)2

= L2
air,min

[
S1 − 2

M∑
m=1

Sme S
m
e

Smee
+

M∑
m=1

Sme S
m
e S

m
ee

SmeeS
m
ee

]

+ 2Lair,min

[
M∑
m=1

SmLeS
m
e

Smee
− SL −

M∑
m=1

SmLeS
m
e S

m
ee

SmeeS
m
ee

+

M∑
m=1

SmLeS
m
e

Smee

]

+

[
M∑
m=1

SmLeS
m
LeS

m
ee

SmeeS
m
ee
− 2

M∑
m=1

SmLeS
m
Le

Smee
+ SLL

]

= L2
air,min

[
S1 −

M∑
m=1

Sme S
m
e

Smee

]
− 2Lair,min

[
SL −

M∑
m=1

SmLeS
m
e

Smee

]
+

[
SLL −

M∑
m=1

SmLeS
m
Le

Smee

]

=

[
SLL −

M∑
m=1

SmLeS
m
Le

Smee

]
−

(
SL −

∑M
m=1

Sme SmLe
Smee

)2

S1 −
∑M

m=1
Sme Sme
Smee

.

This not only proves (b) but also allows for a discussion of the discontinuity in 0: In terms of
(7.11) and (7.12), Fmin can be written as

Fmin =

[
SLL −

M∑
m=1

SmLeS
m
Le

Smee

]
− (Lnum

air )2

Ldenom
air

,

where Ldenom
air (0) = 0 as well as Lnum

air (0) = 0. With the help of Appendix E and constraint (7.13)
it can be shown that furthermore

Ldenom ′
air (0) = 0,

and

Ldenom ′′
air (0) = 2

M∑
m=1

SmddS
m
1 − Smd Smd
Sm1

= 2

[
Sdd −

M∑
m=1

Smd S
m
d

Sm1

]
∗
> 0.

Therefore, Ldenom
air has a double root in 0 and (Lnum

air )2 at least a double root in 0, which makes the
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discontinuity removable. L’Hôspital’s rule even makes it possible to compute Fmin(0):

Fmin(0) =

[
SLL −

M∑
m=1

SmL S
m
L

Sm1

]
−
[
(Lnum

air )2
]′′

(0)

Ldenom ′′
air (0)

=

[
SLL −

M∑
m=1

SmL S
m
L

Sm1

]
−

(
SLd −

∑M
m=1

SmL Smd
Sm1

)2

Sdd −
∑M

m=1
Smd Smd
Sm1

,

where [
(Lnum

air )2
]′

= 2Lnum
air Lnum ′

air = 0,[
(Lnum

air )2
]′′

= 2
(
Lnum ′

air
)2

+ 2Lnum
air Lnum ′′

air ,[
(Lnum

air )2
]′′

(0) = 2
(
Lnum ′

air (0)
)2

+ 0
(
Lnum ′′

air (0)
)

= 2

(
M∑
m=1

SmLdS
m
1 − SmL Smd
Sm1

)2

= 2

(
SLd −

M∑
m=1

SmL S
m
d

Sm1

)2

.

Proof of ∗: Based on the Cauchy-Schwarz inequality and (7.13) one can see that

Sdd −
M∑
m=1

Smd S
m
d

Sm1
> 0,

as described in the following: For each m ∈ {1, . . . ,M} one can rewrite

SmddS
m
1 − Smd Smd = |am|2|bm|2 − (〈am, bm〉)2,

where
am =

(
dmn
σmn

)
n=1,...,Nm

, bm =

(
1

σmn

)
n=1,...,Nm

.

The Cauchy-Schwarz inequality shows that

|am|2|bm|2 − (〈am, bm〉)2 ≥ 0,

where the equality is achieved if and only if am and bm are linearly dependent. Furthermore, one
has S1 > 0. Therefore, the term of interest is a sum over non-negative terms:

Sdd −
M∑
m=1

Smd S
m
d

Sm1
=

M∑
m=1

SmddS
m
1 − Smd Smd
Sm1︸ ︷︷ ︸
≥0

≥ 0. (D.6)

Obviously, the sum is 0 if and only if all summands are 0. Due to Cauchy-Schwarz, this is the
case if and only if for each m the vectors am and bm are linearly dependent. This is equivalent to

∀m ∈ {1, . . . ,M} , ∃αm ∈ R : dmn = σmn

[
dmn
σmn

]
= σmn

[
αm

1

σmn

]
= αm,
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which is again equivalent to ¬(7.13). Therefore,

(7.13) ⇔ Sdd −
M∑
m=1

Smd S
m
d

Sm1
> 0.

Regarding (c): This directly follows from Lemma 3(a) on page 86 and the de�nition of Fmin, since
for any K ∈ R \ {0}

Fmin(K) = min
{
F(K,x) : x ∈ RM+1

}
≤ F(K,L, . . . , L) = Fc(K) = SLL −

S2
L
S1
.

Regarding (d): Let dmmin := dmnmmin
and dmmax := dmnmmax

. Then, one has

SmLeS
m
Le

Smee
=

∑Nm
k=1

∑Nm
l=1

Lmk L
m
l

(σmk )2(σml )2 e
−K(dmk +dml )∑Nm

n=1
1

(σmn )2 e−2Kdmn

=

∑Nm
k=1

∑Nm
l=1

Lmk L
m
l

(σmk )2(σml )2 e
−K((dmk −dmmin)+(dml −dmmin))∑Nm

n=1
1

(σmn )2 e
−2K(dmn −dmmin)

,

where dmn − dmmin > 0 for all n 6= nmmin and dmn − dmmin = 0 for n = nmmin. Therefore, all but one
summands of the numerator and the denominator converge to 0, for K →∞, more precisely

SmLeS
m
Le

Smee
→

LmminL
m
min

(σmmin)2(σmmin)2

1
(σmmin)2

=
(Lmmin)2

(σmmin)2
, for K →∞.

Analogously one obtains

SmLeS
m
Le

Smee
→ (Lmmin)2

(σmmin)2
, for K →∞, SmLeS

m
Le

Smee
→ (Lmmax)2

(σmmax)2
, for K → −∞,

SmLeS
m
e

Smee
→ Lmmin

(σmmin)2
, for K →∞, SmLeS

m
e

Smee
→ Lmmax

(σmmax)2
, for K → −∞,

Sme S
m
e

Smee
→ 1

(σmmin)2
, for K →∞, Sme S

m
e

Smee
→ 1

(σmmax)2
, for K → −∞.

This implies

Fmin(K)→
[
SLL −

M∑
m=1

(Lmmin)2

(σmmin)2

]
−

(
SL −

∑M
m=1

Lmmin
(σmmin)2

)2

S1 −
∑M

m=1
1

(σmmin)2

, for K →∞,

Fmin(K)→
[
SLL −

M∑
m=1

(Lmmax)2

(σmmax)2

]
−

(
SL −

∑M
m=1

Lmmax
(σmmax)2

)2

S1 −
∑M

m=1
1

(σmmax)2

, for K → −∞.

Regarding (e): Obviously, Fmin’s formulation in (b) and the discussion above allow to apply
Theorem 3 on page 171 (cf . Appendix B), hence Fmin ∈ C∞(R). From Lemma 4 on page 86 and
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the de�nition (7.10) one obtains, for any K 6= 0,

∂F
∂Lair

(K,Lair,min(K), L1
0,min(K), . . . , LM0,min(K))

=
∂Ff,K
∂Lair

(Lair,min(K), L1
0,min(K), . . . , LM0,min(K)) = 0,

∂F
∂Lm0

(K,Lair,min(K), L1
0,min(K), . . . , LM0,min(K))

=
∂Ff,K
∂Lm0

(Lair,min(K), L1
0,min(K), . . . , LM0,min(K)) = 0, ∀m ∈ {1, . . . ,M} .

Therefore, the de�nition of Fmin and the chain rule yield

F ′min(K) =
d

dK

[
F(K,Lair,min(K), L1

0(K), . . . , LM0 (K))
]

=
∂F
∂K

+ L′air,min
∂F
∂Lair︸ ︷︷ ︸

=0

+
M∑
m=1

Lm ′0,min
∂F
∂Lm0︸ ︷︷ ︸

=0

=
∂F
∂K

(K,Lair,min(K), L1
0(K), . . . , LM0 (K)).

(D.7)

Furthermore, F ′min can be computed as

F ′min =
d

dK

[
SLL −

M∑
m=1

SmLeS
m
Le

Smee
− (Lnum

air )2

Ldenom
air

]

= 2
M∑
m=1

SmLedS
m
LeS

m
ee − SmeedS

m
LeS

m
Le

SmeeS
m
ee

− 2Lnum
air Lnum ′

air Ldenom
air − (Lnum

air )2 Ldenom ′
air(

Ldenom
air

)2 .

To evaluate F ′min in K = 0, one once again has to make use of l’Hôspital’s rule and Appendix E.
Some preparatory computations are required. The derivatives of the denominator are[

(Ldenom
air )2

]′
= 2Ldenom

air Ldenom ′
air ,[

(Ldenom
air )2

]′′
= 2Ldenom ′

air Ldenom ′
air + 2Ldenom

air Ldenom ′′
air ,[

(Ldenom
air )2

]′′′
= 6Ldenom ′

air Ldenom ′′
air + 2Ldenom

air Ldenom ′′′
air ,[

(Ldenom
air )2

]′′′′
= 6Ldenom ′′

air Ldenom ′′
air + 8Ldenom ′

air Ldenom ′′′
air + 2Ldenom

air Ldenom ′′′′
air .

The derivatives of the numerator are[
2Lnum

air Lnum ′
air Ldenom

air − (Lnum
air )2 Ldenom ′

air
]′

= 2
(
Lnum ′

air
)2
Ldenom

air + 2Lnum
air Lnum ′′

air Ldenom
air − (Lnum

air )2 Ldenom ′′
air ,
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[
2Lnum

air Lnum ′
air Ldenom

air − (Lnum
air )2 Ldenom ′

air
]′′

= 6Lnum ′
air Lnum ′′

air Ldenom
air + 2

(
Lnum ′

air
)2
Ldenom ′

air + 2Lnum
air Lnum ′′′

air Ldenom
air

+ 2Lnum
air Lnum ′′

air Ldenom ′
air − 2Lnum

air Lnum ′
air Ldenom ′′

air − (Lnum
air )2 Ldenom ′′′

air ,[
2Lnum

air Lnum ′
air Ldenom

air − (Lnum
air )2 Ldenom ′

air
]′′′

= 6
(
Lnum ′′

air
)2
Ldenom

air + 8Lnum ′
air Lnum ′′′

air Ldenom
air + 12Lnum ′

air Lnum ′′
air Ldenom ′

air

+ 2Lnum
air Lnum ′′′′

air Ldenom
air + 4Lnum

air Lnum ′′′
air Ldenom ′

air

− 4Lnum
air Lnum ′

air Ldenom ′′′
air − (Lnum

air )2 Ldenom ′′′′
air ,[

2Lnum
air Lnum ′

air Ldenom
air − (Lnum

air )2 Ldenom ′
air

]′′′′
= 20Lnum ′′

air Lnum ′′′
air Ldenom

air + 18
(
Lnum ′′

air
)2
Ldenom ′

air + 10Lnum ′
air Lnum ′′′′

air Ldenom
air

+ 12Lnum ′
air Lnum ′′

air Ldenom ′′
air + 2Lnum

air Lnum ′′′′′
air Ldenom

air + 24Lnum ′
air Lnum ′′′

air Ldenom ′
air

+ 6Lnum
air Lnum ′′′′

air Ldenom ′
air + 4Lnum

air Lnum ′′′
air Ldenom ′′

air − 4
(
Lnum ′

air
)2
Ldenom ′′′

air

− 4Lnum
air Lnum ′′

air Ldenom ′′′
air − 6Lnum

air Lnum ′
air Ldenom ′′′′

air − (Lnum
air )2 Ldenom ′′′′′

air .

Making use of
Lnum

air (0) = 0, Ldenom
air (0) = 0, Ldenom ′

air (0) = 0,

one obtains [
(Ldenom

air )2
]′

(0) = 0,
[
(Ldenom

air )2
]′′

(0) = 0,
[
(Ldenom

air )2
]′′′

(0) = 0,

[
(Ldenom

air )2
]′′′′

(0) = 6
(
Ldenom ′′

air (0)
)2

= 24

(
Sdd −

M∑
m=1

Smd S
m
d

Sm1

)2
∗
> 0

and [
2Lnum

air Lnum ′
air Ldenom

air − (Lnum
air )2 Ldenom ′

air
]′

(0) = 0,[
2Lnum

air Lnum ′
air Ldenom

air − (Lnum
air )2 Ldenom ′

air
]′′

(0) = 0,[
2Lnum

air Lnum ′
air Ldenom

air − (Lnum
air )2 Ldenom ′

air
]′′′

(0) = 0,[
2Lnum

air Lnum ′
air Ldenom

air − (Lnum
air )2 Ldenom ′

air
]′′′′

= 12Lnum ′
air (0)Lnum ′′

air (0)Ldenom ′′
air (0)− 4

(
Lnum ′

air (0)
)2
Ldenom ′′′

air (0).

Hence,

F ′min(0) = 2

M∑
m=1

SmLdS
m
L S

m
1 − Smd SmL SmL
Sm1 S

m
1

− Lnum ′
air (0)

6Lnum ′′
air (0)Ldenom ′′

air (0)− 2Lnum ′
air (0)Ldenom ′′′

air (0)

3
(
Ldenom ′′

air (0)
)2 .
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The second derivative F ′′min can be computed analogously as

F ′′min = 2
M∑
m=1

[−SmLeddS
m
LeS

m
eeS

m
ee − SmLedS

m
LedS

m
eeS

m
ee + 4SmLedS

m
LeS

m
eedS

m
ee

SmeeS
m
eeS

m
ee

+
2SmLeS

m
LeS

m
eeddS

m
ee − 4SmLeS

m
LeS

m
eedS

m
eed

SmeeS
m
eeS

m
ee

]
−
[

2
(Lnum ′

air )2 (Ldenom
air

)2
+ (Lnum

air )2 (Ldenom ′
air

)2
+ Lnum

air Lnum ′′
air

(
Ldenom

air
)2(

Ldenom
air

)3
−4Lnum

air Lnum ′
air Ldenom

air Ldenom ′
air + (Lnum

air )2 Ldenom
air Ldenom ′′

air(
Ldenom

air
)3

]
.

To compute F ′′min(0), the second term’s numerator and denominator have to be derived up to the
sixth order. The derivatives of the denominator are[

(Ldenom
air )3

]′
= 3

(
Ldenom

air

)2
Ldenom ′

air ,[
(Ldenom

air )3
]′′

= 6Ldenom
air

(
Ldenom ′

air

)2
+ 3

(
Ldenom

air

)2
Ldenom ′′

air ,[
(Ldenom

air )3
]′′′

= 6
(
Ldenom ′

air

)3
+ 18Ldenom

air Ldenom ′
air Ldenom ′′

air + 3
(
Ldenom

air

)2
Ldenom ′′′

air ,[
(Ldenom

air )3
]′′′′

= 36
(
Ldenom ′

air

)2
Ldenom ′′

air + 18Ldenom
air

(
Ldenom ′′

air

)2

+ 24Ldenom
air Ldenom ′

air Ldenom ′′′
air + 3

(
Ldenom

air

)2
Ldenom ′′′′

air ,[
(Ldenom

air )3
]′′′′′

= 90Ldenom ′
air

(
Ldenom ′′

air

)2
+ 60

(
Ldenom ′

air

)2
Ldenom ′′′

air

+ 60Ldenom
air Ldenom ′′

air Ldenom ′′′
air + 30Ldenom

air Ldenom ′
air Ldenom ′′′′

air

+ 3
(
Ldenom

air

)2
Ldenom ′′′′′

air ,[
(Ldenom

air )3
]′′′′′′

= 90
(
Ldenom ′′

air

)3
+ 360Ldenom ′

air Ldenom ′′
air Ldenom ′′′

air + 90
(
Ldenom ′

air

)2
Ldenom ′′′′

air

+ 60Ldenom
air

(
Ldenom ′′′

air

)2
+ 90Ldenom

air Ldenom ′′
air Ldenom ′′′′

air

+ 36Ldenom
air Ldenom ′

air Ldenom ′′′′′
air + 3

(
Ldenom

air

)2
Ldenom ′′′′′′

air ,

which at K = 0 leads to[
(Ldenom

air )3
]′

(0) = 0,
[
(Ldenom

air )3
]′′

(0) = 0,
[
(Ldenom

air )3
]′′′

(0) = 0,[
(Ldenom

air )3
]′′′′

(0) = 0,
[
(Ldenom

air )3
]′′′′′

(0) = 0,
[
(Ldenom

air )3
]′′′′′′

(0) = 90
(
Ldenom ′′

air (0)
)3
.

The derivatives of the numerator are very complex. Therefore, only the relevant evaluations in
K = 0 are given here:[

2
(
Lnum ′

air
)2 (

Ldenom
air

)2
+ · · · − (Lnum

air )2 Ldenom
air Ldenom ′′

air

]′
(0) = 0,
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[
2
(
Lnum ′

air
)2 (

Ldenom
air

)2
+ · · · − (Lnum

air )2 Ldenom
air Ldenom ′′

air

]′′
(0) = 0,[

2
(
Lnum ′

air
)2 (

Ldenom
air

)2
+ · · · − (Lnum

air )2 Ldenom
air Ldenom ′′

air

]′′′
(0) = 0,[

2
(
Lnum ′

air
)2 (

Ldenom
air

)2
+ · · · − (Lnum

air )2 Ldenom
air Ldenom ′′

air

]′′′′
(0) = 0,[

2
(
Lnum ′

air
)2 (

Ldenom
air

)2
+ · · · − (Lnum

air )2 Ldenom
air Ldenom ′′

air

]′′′′′
(0) = 0,[

2
(
Lnum ′

air
)2 (

Ldenom
air

)2
+ · · · − (Lnum

air )2 Ldenom
air Ldenom ′′

air

]′′′′′′
(0)

= 90
(
Lnum ′′

air (0)
)2 (

Ldenom ′′
air (0)

)2
+ 120Lnum ′

air (0)Lnum ′′′
air (0)

(
Ldenom ′′

air (0)
)2

− 120Lnum ′
air (0)Lnum ′′

air (0)Ldenom ′′
air (0)Ldenom ′′′

air (0) + 40
(
Lnum ′

air (0)
)2 (

Ldenom ′′′
air (0)

)2

− 30
(
Lnum ′

air (0)
)2
Ldenom ′′

air (0)Ldenom ′′′′
air (0).

This leads to F ′′min(0) as claimed.

Proof of Lemma 6 on page 90: Characterization of F ’s Critical Points.
Regarding (a): One has to check both implications:

“⇒”: Let (K,Lair, L
1
0, . . . , L

M
0 ) ∈ RM+2 be a critical point of F . Then, Ff,K has a critical point

in (Lair, L
1
0, . . . , L

M
0 ) (due to its de�nition (7.10)).

CaseK 6= 0: Due to Lemma 4 on page 86 this requires

(Lair, L
1
0, . . . , L

M
0 ) = (Lair,min(K), L1

0,min(K), . . . , LM0,min(K)).

Now, from∇F = 0, the de�nition of Fmin and the chain rule it follows

F ′min(K) =
d

dK

[
F(K,Lair,min(K), L1

0,min(K), . . . , LM0,min(K))
]

=
∂F
∂K︸︷︷︸
=0

+L′air,min
∂F
∂Lair︸ ︷︷ ︸

=0

+
M∑
m=1

Lm ′0,min
∂F
∂Lm0︸ ︷︷ ︸

=0

= 0

CaseK = 0: From∇Ff,0 = 0, and the second part of Lemma 4 on page 86 it follows that
Lm0 = L

m. ∂F/∂K = 0 and Lemma 2 on page 84 lead to the constraint (7.14):

0 =
∂F
∂K

(0) = −2LairSLd − 2

M∑
m=1

[Lm0 Lair(−Smd ) + Lm0 L
m
0 S

m
d − Lm0 SmLd]

= −2Lair

(
SLd −

M∑
m=1

L
m
Smd

)
− 2

M∑
m=1

[
L
m
L
m
Smd − L

m
SmLd
]

= −2Lair

(
SLd −

M∑
m=1

SmL S
m
d

Sm1

)
+ 2

M∑
m=1

SmL
Sm1

[
SmLd −

SmL S
m
d

Sm1

]
.
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“⇐”: CaseK 6= 0: Let

F ′min(K) = 0 ∧ (Lair, L
1
0, . . . , L

M
0 ) = (Lair,min(K), L1

0,min(K), . . . , LM0,min(K)).

Then, ∇Ff,K = 0 at this point (cf . Lemma 4 on page 86) and ∂F/∂K = F ′min = 0 (cf .
Lemma 5(e) on page 88). Hence,∇F = 0.

CaseK = 0: This works analogously to the forward implication.

Regarding (b): One has to check both implications:

“⇒”: Let p = (K,Lair, L
1
0, . . . , L

M
0 ) ∈ RM+2 be a (strict) local minimum of F . In particular

∇F(p) = 0.

Due to (a), it remains to show d2Fmin/(dK)2 ≥ 0 (strict case: > 0). This can be done
with the help of Lemma 2(a) on page 90, the chain rule and the equality of mixed partials
(Schwarz’s theorem):

F ′′min(K) =
d2

dKdK

[
F(K,Lair,min(K), L1

0,min(K), . . . , LM0,min(K))
]

=
d

dK

[
∂F
∂K

+ L′air,min
∂F
∂Lair

+
M∑
m=1

Lm ′0,min
∂F
∂Lm0

]

=
∂2F
∂K∂K

+ L′air,min
∂2F

∂K∂Lair
+

M∑
m=1

Lm ′0,min
∂2F

∂K∂Lm0

+ L′′air,min
∂F
∂Lair︸ ︷︷ ︸

=0

+L′air,min
∂2F

∂K∂Lair

+
(
L′air,min

)2 ∂F
∂Lair∂Lair

+ L′air,min

M∑
m=1

Lm ′0,min
∂2F

∂Lair∂Lm0

+

M∑
m=1

Lm ′′0,min
∂F
∂Lm0︸ ︷︷ ︸

=0

+

M∑
m=1

Lm ′0,min
∂2F

∂K∂Lm0

+ L′air,min

M∑
m=1

Lm ′0,min
∂2F

∂Lair∂Lm0
+

M∑
m=1

M∑
l=1

Lm ′0,minL
l ′
0,min

∂2F
∂Lm0 ∂L

l
0

= ξTmin HessF(p)ξmin,

where
ξmin :=

(
1, L′air,min, L

1 ′
0,min, . . . , L

M ′
0,min

)T 6= 0.

In the case of a local minimum HessF(p) is positive semi-de�nite, in particular

F ′′min(K) = ξTmin HessF(p)ξmin ≥ 0;

in the case of a strict local minimum it is even positive de�nite and thus F ′′min(K) > 0.

“⇐”: Let
(Lair, L

1
0, . . . , L

M
0 ) = (Lair,min(K), L1

0,min(K), . . . , LM0,min(K))
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and K 6= 0 be a (strict) local minimum of Fmin, i.e.

F ′min(K) = 0, ∧ F ′′min(K) ≥ 0 (strict case: F ′′min(K) > 0).

Assume p := (K,Lair, L
1
0, . . . , L

M
0 ) ∈ RM+2 not to be a (strict) local minimum of F . In

this case, there exist a ξ ∈ RM+2 and an ε > 0 s.t.

∀s ∈ (0, ε) : F(p+ sξ) ≤ F(p) (strict case: F(p+ sξ) < F(p)).

Because Ff,K is strictly convex (cf . Lemma 4 on page 86) it has to be ξ1 6= 0. Therefore,
one has

∀s ∈ (0,min {ε, |K|}) : Fmin(K + sξ1) ≤ F(p+ sξ)
(<)
≤ F(p) = Fmin(K),

which is a contradiction to K (strictly) locally minimizing Fmin. Therefore, p is a (strict)
local minimum of F .

Regarding (c): Assume p = (K,Lair, L
1
0, . . . , L

M
0 ) ∈ RM+2 is a local maximum of F , where

K 6= 0. Then, it is in particular a critical point of F and thus, according to (a),

(Lair, L
1
0, . . . , L

M
0 ) =

(
Lair,min(K), L1

0,min(K), . . . , LM0,min(K)
)
,

which is a strict global minimum ofFf,K (cf . Lemma 4 on page 86). Hence, for all x ∈ RM+1 \{0}
one has

F(p) = Ff,K(Lair, L
1
0, . . . , L

M
0 ) < Ff,K(Lair + x1, L1

0 + x2, . . . , LM0 + xM+1) = F(p+ (0, x)).

This is a contradiction to the local maximality of F in p.





Appendix E. Derivation of Lair,min’s
Numerator and Denominator

In order to implement the parameter estimation method proposed in Sec. 7.4 for tracking-based
visibility estimation, the restricted objective function Fmin has to be computed up to the second
derivative. According to Lemma 5 on page 87 this requires the derivation of Lair,min’s numerator
Lnum

air (see (7.11)) and denominator Ldenom
air (see (7.12)) up to the 3rd and 4th order respectively. This

can be done by straightforward calculations. Moreover, all terms have to be evaluated in 0. As it
is useful for the implementation, they are provided in the notation of Remark 24 on page 91.

E.1 Numerator Derivatives

Lnum
air and Lnum

air (0) are given by

Lnum
air =

M∑
m=1

SmL S
m
ee − SmLeS

m
e

Smee
, Lnum

air (0) = 0.

Lnum ′
air and Lnum ′

air (0) are given by

Lnum ′
air =

M∑
m=1

SmLedS
m
eeS

m
e − 2SmLeS

m
eedS

m
e + SmLeS

m
eeS

m
ed

(Smee )2 ,

Lnum ′
air (0) =

M∑
m=1

SmLdS
m
1 − SmL Smd
Sm1

.

Lnum ′′
air and Lnum ′′

air (0) are given by

Lnum ′′
air =

M∑
m=1

−SmLeddS
m
eeS

m
eeS

m
e + 4SmLedS

m
eedS

m
eeS

m
e − 2SmLedS

m
eeS

m
eeS

m
ed

(Smee )3

+

M∑
m=1

4SmLeS
m
eeddS

m
eeS

m
e − 8SmLeS

m
eedS

m
eedS

m
e + 4SmLeS

m
eedS

m
eeS

m
ed − SmLeS

m
eeS

m
eeS

m
edd

(Smee )3 ,

Lnum ′′
air (0) =

M∑
m=1

−SmLddS
m
1 S

m
1 + 2SmLdS

m
d S

m
1 + 3SmL S

m
ddS

m
1 − 4SmL S

m
d S

m
d

(Sm1 )2 .
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Lnum ′′′
air and Lnum ′′′

air (0) are given by

Lnum ′′′
air =

M∑
m=1

SmLedddS
m
eeS

m
eeS

m
eeS

m
e − 6SmLeddS

m
eedS

m
eeS

m
eeS

m
e + 3SmLeddS

m
eeS

m
eeS

m
eeS

m
ed

(Smee )4

+

M∑
m=1

−12SmLedS
m
eeddS

m
eeS

m
eeS

m
e + 24SmLedS

m
eedS

m
eedS

m
eeS

m
e − 12SmLedS

m
eedS

m
eeS

m
eeS

m
ed

(Smee )4

+

M∑
m=1

3SmLedS
m
eeS

m
eeS

m
eeS

m
edd − 8SmLeS

m
eedddS

m
eeS

m
eeS

m
e + 48SmLeS

m
eeddS

m
eedS

m
eeS

m
e

(Smee )4

+

M∑
m=1

−12SmLeS
m
eeddS

m
eeS

m
eeS

m
ed + 24SmLeS

m
eedS

m
eedS

m
eeS

m
ed − 48SmLeS

m
eedS

m
eedS

m
eedS

m
e

(Smee )4

+

M∑
m=1

−6SmLeS
m
eedS

m
eeS

m
eeS

m
edd + SmLeS

m
eeS

m
eeS

m
eeS

m
eddd

(Smee )4 ,

Lnum ′′′
air (0) =

M∑
m=1

SmLdddS
m
1 S

m
1 S

m
1 − 3SmLddS

m
d S

m
1 S

m
1 − 9SmLdS

m
ddS

m
1 S

m
1 + 12SmLdS

m
d S

m
d S

m
1

(Sm1 )3

+
M∑
m=1

−7SmL S
m
dddS

m
1 S

m
1 + 30SmL S

m
ddS

m
d S

m
1 − 24SmL S

m
d S

m
d S

m
d

(Sm1 )3 .

E.2 Denominator Derivatives

Ldenom
air and Ldenom

air (0) are given by

Ldenom
air =

M∑
m=1

Sm1 S
m
ee − Sme Sme
Smee

, Ldenom
air (0) = 0.

Ldenom ′
air and Ldenom ′

air (0) are given by

Ldenom ′
air =

M∑
m=1

−2SmeedS
m
e S

m
e + 2SmeeS

m
edS

m
e

(Smee )2 , Ldenom ′
air (0) = 0.

Ldenom ′′
air and Ldenom ′′

air (0) are given by

Ldenom ′′
air =

M∑
m=1

4SmeeddS
m
eeS

m
e S

m
e − 8SmeedS

m
eedS

m
e S

m
e + 8SmeedS

m
eeS

m
edS

m
e

(Smee )3

+

M∑
m=1

−2SmeeS
m
eeS

m
eddS

m
e − 2SmeeS

m
eeS

m
edS

m
ed

(Smee )3 ,

Ldenom ′′
air (0) =

M∑
m=1

2SmddS
m
1 − 2Smd S

m
d

Sm1
.
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Ldenom ′′′
air and Ldenom ′′′

air (0) are given by

Ldenom ′′′
air =

M∑
m=1

−8SmeedddS
m
eeS

m
eeS

m
e S

m
e + 48SmeeddS

m
eedS

m
eeS

m
e S

m
e − 24SmeeddS

m
eeS

m
eeS

m
edS

m
e

(Smee )4

+

M∑
m=1

−48SmeedS
m
eedS

m
eedS

m
e S

m
e + 48SmeedS

m
eedS

m
eeS

m
edS

m
e − 12SmeedS

m
eeS

m
eeS

m
eddS

m
e

(Smee )4 ,

+

M∑
m=1

−12SmeedS
m
eeS

m
eeS

m
edS

m
ed + 2SmeeS

m
eeS

m
eeS

m
edddS

m
e + 6SmeeS

m
eeS

m
eeS

m
eddS

m
ed

(Smee )4 ,

Ldenom ′′′
air (0) =

M∑
m=1

−6SmdddS
m
1 S

m
1 + 18SmddS

m
d S

m
1 − 12Smd S

m
d S

m
d

(Sm1 )2 .

Ldenom ′′′′
air and Ldenom ′′′′

air (0) are given by

Ldenom ′′′′
air =

M∑
m=1

16SmeeddddS
m
eeS

m
eeS

m
eeS

m
e S

m
e − 128SmeedddS

m
eedS

m
eeS

m
eeS

m
e S

m
e

(Smee )5

+

M∑
m=1

64SmeedddS
m
eeS

m
eeS

m
eeS

m
edS

m
e − 96SmeeddS

m
eeddS

m
eeS

m
eeS

m
e S

m
e

(Smee )5

+

M∑
m=1

576SmeeddS
m
eedS

m
eedS

m
eeS

m
e S

m
e − 384SmeeddS

m
eedS

m
eeS

m
eeS

m
edS

m
e

(Smee )5

+

M∑
m=1

48SmeeddS
m
eeS

m
eeS

m
eeS

m
eddS

m
e + 48SmeeddS

m
eeS

m
eeS

m
eeS

m
edS

m
ed

(Smee )5

+

M∑
m=1

384SmeedS
m
eedS

m
eedS

m
eeS

m
edS

m
e − 384SmeedS

m
eedS

m
eedS

m
eedS

m
e S

m
e

(Smee )5

+

M∑
m=1

−96SmeedS
m
eedS

m
eeS

m
eeS

m
eddS

m
e − 96SmeedS

m
eedS

m
eeS

m
eeS

m
edS

m
ed

(Smee )5

+

M∑
m=1

16SmeedS
m
eeS

m
eeS

m
eeS

m
edddS

m
e + 48SmeedS

m
eeS

m
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m
eeS

m
eddS

m
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(Smee )5
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−2SmeeS
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m
eeS

m
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m
eddddS
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e − 8SmeeS

m
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m
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edddS
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+
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m=1

−6SmeeS
m
eeS

m
eeS

m
eeS

m
eddS

m
edd

(Smee )5 ,

Ldenom ′′′′
air (0) =

M∑
m=1

14SmddddS
m
1 S

m
1 S

m
1 − 56SmdddS

m
d S

m
1 S

m
1 − 54SmddS

m
ddS

m
1 S

m
1

(Sm1 )3

+
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m=1

192SmddS
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d S
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d S

m
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d S
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d S
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d

(Sm1 )3 .





Bibliography

[Abr1964] Milton Abramowitz and Irene A. Stegun. “Handbook of Mathematical Functions
With Formulas, Graphs, and Mathematical Tables”. 55. 9th printing. Courier Corpo-
ration, 1964.

[Alb2002] Ferran Albajar, Marino Bornatici and Folker Engelmann. “Electron Cyclotron Ra-
diative Transfer in Fusion Plasmas”. In: Nuclear Fusion 42.6 (2002), 670–678. doi:
10.1088/0029-5515/42/6/305.

[Alv2012] José M. Álvarez, Theo Gevers, Yann LeCun and Antonio M. López. “Road Scene
Segmentation from a Single Image”. In: Computer Vision – ECCV 2012. Vol. 7578.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, 376–389. doi:
10.1007/978-3-642-33786-4_28.

[ARM2010] ARM. “Speci�cation of Cortex-A9 Floating-Point Unit (1.5 GHz), Revision: r2p2”.
2010.

[Bab2011] Raouf Babari, Nicolas Hautière, Éric Dumont, Roland Brémond and Nicolas Pa-
paroditis. “A Model-Driven Approach to Estimate Atmospheric Visibility with
Ordinary Cameras”. In: Atmospheric Environment 45.30 (May 2011), 5316–5324.
doi: 10.1016/j.atmosenv.2011.06.053.

[Bar2012] Žarko P. Barbarić, Boban P. Bondžulić and Srđjan T. Mitrović. “Passive ranging
using image intensity and contrast measurements”. In: Electronics Letters 48.18 (Aug.
2012), 1122–1123. doi: 10.1049/el.2012.0632.

[Bec2014] Jan Becker, Maria-Belen Aranda Colas, Stefan Nordbruch and Michael Fausten.
“Bosch’s Vision and Roadmap Toward Fully Autonomous Driving”. In: Road Vehicle
Automation. Ed. by Gereon Meyer and Sven Beiker. Lecture Notes in Mobility.
Springer, 2014, 49–59. doi: 10.1007/978-3-319-05990-7_5.

[Ber2004] Ludwig Bergmann and Clemens Schaefer. “Lehrbuch der Experimentalphysik, Band
3, Optik – Wellen- und Teilchenoptik”. Ed. by Heinz Niedrig. 10th ed. Walter de
Gruyter, Berlin, 2004.

[Bey2012] Jürgen Beyerer, Fernando Puente-León and Christian Frese. “Automatische Sichtprü-
fung: Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung”.
Berlin Heidelberg: Springer, 2012. doi: 10.1007/978-3-642-23966-3.

[Bic2002] David R. Bickel. “Robust estimators of the mode and skewness of continuous data”.
In: Computational Statistics & Data Analysis 39.2 (2002), 153–163. doi: 10.1016/
S0167-9473(01)00057-3.

[Bic2006] David R. Bickel and Rudolf Frühwirth. “On a fast, robust estimator of the mode: Com-
parisons to other robust estimators with applications”. In: Computational Statistics
& Data Analysis 50.12 (2006), 3500–3530. doi: 10.1016/j.csda.2005.07.011.

http://dx.doi.org/10.1088/0029-5515/42/6/305
http://dx.doi.org/10.1007/978-3-642-33786-4_28
http://dx.doi.org/10.1016/j.atmosenv.2011.06.053
http://dx.doi.org/10.1049/el.2012.0632
http://dx.doi.org/10.1007/978-3-319-05990-7_5
http://dx.doi.org/10.1007/978-3-642-23966-3
http://dx.doi.org/10.1016/S0167-9473(01)00057-3
http://dx.doi.org/10.1016/S0167-9473(01)00057-3
http://dx.doi.org/10.1016/j.csda.2005.07.011


206

[Boh1998] Craig F. Bohren and Donald R. Hu�man. “Absorption and Scattering of Light
by Small Particles”. Originally published in 1983. Wiley, 1998. doi: 10.1002/
9783527618156.

[Boo1978] Carl de Boor. “A Practical Guide to Splines”. 1st ed. Vol. 27. Applied Mathematical
Science. Springer, 1978.

[Bou2007] Clément Boussard, Nicolas Hautière and Brigitte d’Andréa-Novel. “Vision guided
by vehicle dynamics for onboard estimation of the visibility range”. In: Intelligent
Autonomous Vehicles. Vol. 6. 1. 2007, 324–329.

[Bou2008] Clément Boussard, Nicolas Hautière and Brigitte d’Andréa-Novel. “Vehicle Dy-
namics Estimation for Camera-based Visibility Distance Estimation”. In: Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE.
Sept. 2008, 600–605. doi: 10.1109/IROS.2008.4650756.

[Bou2010] Clément Boussard, Nicolas Hautière and Brigitte d’Andréa-Novel. “Visibility Dis-
tance Estimation based on Structure from Motion”. In: 11th International Confer-
ence on Control Automation, Robotics and Vision. IEEE. Dec. 2010, 1416–1421. doi:
10.1109/ICARCV.2010.5707416.

[Bro2009] Sebastián Bronte, Luis Miguel Bergasa and Pablo Fernandez Alcantarilla. “Fog
Detection System Based on Computer Vision Techniques”. In: Proceedings of the
12th International Conference on Intelligent Transportation Systems. IEEE. Oct. 2009,
1–6. doi: 10.1109/ITSC.2009.5309842.

[Bur1974] Burle Industries Incorporated. “Electro-optics Handbook”. Burle Industries Incor-
porated, Tube Products Division, 1974.

[Cas2002] George Casella and Roger L. Berger. “Statistical Inference”. 2nd ed. Duxbury Press,
California, 2002.

[Cha1960] Subrahmanyan Chandrasekhar. “Radiative Transfer”. Dover Publications, 1960.
[Cha2008] Pierre Charbonnier, Valérie Muzet, Philippe Nicolle, Nicolas Hautière, Jean-Philippe

Tarel and Didier Aubert. “Stereovision applied to road scene analysis”. In: Bulletin
des Laboratoires des Ponts et Chaussées 272 (Oct. 2008). Originally published in
French as “La stéréovision appliquée à l’analyse de scènes routières”, 57–73.

[CIE2012] CIE. “Termlist”. 2012. url: http://eilv.cie.co.at/ (visited on 03/15/2013).
[Cro2003] Paul J. Croft. “Fog. Encyclopedia of Atmospheric Sciences”. 2003.
[Dai2015] Jian Sheng Dai. “Euler-Rodrigues formula variations, quaternion conjugation and

intrinsic connections”. In: Mechanism and Machine Theory 92 (2015), 144–152. doi:
10.1016/j.mechmachtheory.2015.03.004.

[Das1995] Subhodev Das and Narendra Ahuja. “Performance Analysis of Stereo, Vergence,
and Focus as Depth Cues for Active Vision”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 17.12 (Dec. 1995), 1213–1219. doi: 10.1109/34.
476513.

[Dav2006] Anthony B. Davis. “E�ective Propagation Kernels in Structured Media with Broad
Spatial Correlations, Illustration with Large-scale Transport of Solar Photons
Through Cloudy Atmospheres”. In: Computational Methods in Transport. Vol. 48.
Lecture Notes in Computational Science and Engineering. Springer Berlin Heidel-
berg, 2006, 85–140. doi: 10.1007/3-540-28125-8_5.

http://dx.doi.org/10.1002/9783527618156
http://dx.doi.org/10.1002/9783527618156
http://dx.doi.org/10.1109/IROS.2008.4650756
http://dx.doi.org/10.1109/ICARCV.2010.5707416
http://dx.doi.org/10.1109/ITSC.2009.5309842
http://eilv.cie.co.at/
http://dx.doi.org/10.1016/j.mechmachtheory.2015.03.004
http://dx.doi.org/10.1109/34.476513
http://dx.doi.org/10.1109/34.476513
http://dx.doi.org/10.1007/3-540-28125-8_5


Bibliography 207

[Dei1964] Diran Deirmendjian. “Scattering and Polarization Properties of Water Clouds and
Hazes in the Visible and Infrared”. In: Applied Optics 3.2 (Feb. 1964), 187–196. doi:
10.1364/AO.3.000187.

[Dij1959] Edsger Wybe Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:
Numerische Mathematik 1.1 (1959), 269–271. doi: 10.1007/BF01386390.

[Dum2004] Éric Dumont and Viola Cavallo. “Extended Photometric Model of Fog E�ects on
Road Vision”. In: Transportation Research Record: Journal of the Transportation Re-
search Board 1862.1 (2004), 77–81. doi: 10.3141/1862-09.

[Dum2008] Éric Dumont, Roland Brémond and Nicolas Hautière. “Night-time visibility as
a function of headlamp beam pattern and pavement re�ection properties”. In:
International Congress VISION. 2008.

[Dum2010] Éric Dumont, Nicolas Hautière and Romain Gallen. “A Semi-Analytic Model of
Fog E�ects on Vision”. In: Atmospheric Turbulence, Meteorological Modeling and
Aerodynamics (May 2010), 635–670.

[Eil1996] Paul H. C. Eilers and Brian D. Marx. “Flexible Smoothing with B-Splines and
Penalties”. In: Statistical Science 11.2 (May 1996), 89–102. doi: doi:10.1214/ss/
1038425655.

[Eis1979] Murray Eisenberg and Robert Guy. “A Proof of the Hairy Ball Theorem”. In: The
American Mathematical Monthly 86.7 (1979), 571–574.

[Eld1961] Ralph G. Eldridge. “A Few Fog Drop-Size Distributions”. In: Journal of Meteorology
18.5 (Oct. 1961), 671–676. doi: 10.1175/1520-0469(1961)018<0671:AFFDSD>
2.0.CO;2.

[Els2011] Jürgen Elstrodt. “Maß- und Integrationstheorie”. 7th ed. Springer Berlin Heidelberg,
2011. doi: 10.1007/978-3-642-17905-1.

[Eur2010] European Machine Vision Association. “EMVA Standard 1288, Standard for Charac-
terization of Image Sensors and Cameras”. 2010. url: http://www.emva.org.

[Fli1999] Alexander Flisch, Joachim Wirth, Robert Zanini, Michael Breitenstein, Adrian Rudin,
Florian Wendt, Franz Mnich and Roland Golz. “Industrial Computed Tomography
in Reverse Engineering Applications”. In: Proceedings of Computerized Tomography
for Industrial Applications and Image Processing in Radiology. Mar. 1999, 45–53.

[Fol2014] Johannes Foltin and Stephan Lenor. “Verfahren und Vorrichtung zum Erkennen
eines Wetter-Phänomens”. DE Patent App. DE201,310,210,890. Dec. 2014. url:
http://www.google.com/patents/DE102013210890A1.

[Fre2007] Roland W. Freund and Ronald W. Hoppe. “Stoer/Bulirsch: Numerische Mathematik
1”. 10th ed. Springer, 2007. doi: 10.1007/978-3-540-45390-1.

[Gac2010] Christina Gackstatter, Patrick Heinemann, Sven Thomas and Gudrun Klinker. “Sta-
ble Road Lane Model Based on Clothoids”. In: Advanced Microsystems for Automo-
tive Applications. VDI-Buch. Springer, Feb. 2010, 133–143. doi: 10.1007/978-3-
642-16362-3_14.

[Gal2000] Aurel Galántai. “The theory of Newton’s method”. In: Journal of Computational and
Applied Mathematics 124.1 (2000), 25–44. doi: 10.1016/S0377-0427(00)00435-
0.

http://dx.doi.org/10.1364/AO.3.000187
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.3141/1862-09
http://dx.doi.org/doi:10.1214/ss/1038425655
http://dx.doi.org/doi:10.1214/ss/1038425655
http://dx.doi.org/10.1175/1520-0469(1961)018<0671:AFFDSD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1961)018<0671:AFFDSD>2.0.CO;2
http://dx.doi.org/10.1007/978-3-642-17905-1
http://www.emva.org
http://www.google.com/patents/DE102013210890A1
http://dx.doi.org/10.1007/978-3-540-45390-1
http://dx.doi.org/10.1007/978-3-642-16362-3_14
http://dx.doi.org/10.1007/978-3-642-16362-3_14
http://dx.doi.org/10.1016/S0377-0427(00)00435-0
http://dx.doi.org/10.1016/S0377-0427(00)00435-0


208

[Gal2009] Romain Gallen, Nicolas Hautière and Éric Dumont. “Static Estimation of the Mete-
orological Visibility Distance in Night Fog with Imagery”. In: IAPR Conference on
Machine Vision Applications (MVA’09). 2009.

[Gal2010a] Romain Gallen, Nicolas Hautière and Éric Dumont. “Static Estimation of the Me-
teorological Visibility Distance in Night Fog with Imagery”. In: Transactions on
Information and Systems, IEICE 93.7 (2010), 1780–1787. doi: 10.1587/transinf.
E93.D.1780.

[Gal2010b] Romain Gallen, Nicolas Hautière and Sébastien Glaser. “Advisory Speed for Intelli-
gent Speed Adaptation in Adverse Conditions”. In: Intelligent Vehicles Symposium
(IV). IEEE. June 2010, 107–114. doi: 10.1109/IVS.2010.5548035.

[Gal2011a] Romain Gallen, Aurélien Cord, Nicolas Hautière and Didier Aubert. “Towards Night
Fog Detection through use of In-Vehicle Multipurpose Cameras”. In: Intelligent
Vehicles Symposium (IV). IEEE. June 2011, 399–404. doi: 10.1109/IVS.2011.
5940486.

[Gal2011b] Romain Gallen, Éric Dumont and Nicolas Hautière. “A conventional approach to
nighttime visibility in adverse weather conditions”. In: International Symposium on
Automotive Lighting (ISAL’11). 2011.

[Gal2011c] Romain Gallen, Nicolas Hautière, Éric Dumont and Michèle Colomb. “Introducing
Forward Scattering in Adaptive Rear Lighting Systems”. In: 27th Session of the CIE.
July 2011, 704–713.

[Gal2013] Romain Gallen, Nicolas Hautière, Aurélien Cord and Sébastien Glaser. “Supporting
Drivers in Keeping Safe Speed in Adverse Weather Conditions by Mitigating the
Risk Level”. In: Transactions on Intelligent Transportation Systems, IEEE 14.4 (Dec.
2013), 1558–1571. doi: 10.1109/TITS.2013.2262523.

[Gal2014] Romain Gallen, Aurélien Cord, Nicolas Hautière, Éric Dumont and Didier Aubert.
“Nighttime Visibility Analysis and Estimation Method in the Presence of Dense
Fog”. In: Transactions on Intelligent Transportation Systems, IEEE PP.99 (2014), 1–11.
doi: 10.1109/TITS.2014.2331177.

[Gal2015] Romain Gallen, Aurélien Cord, Nicolas Hautière, Éric Dumont and Didier Aubert.
“Nighttime Visibility Analysis and Estimation Method in the Presence of Dense
Fog”. In: Transactions on Intelligent Transportation Systems, IEEE 16.1 (Feb. 2015),
310–320. doi: 10.1109/TITS.2014.2331177.

[Gar2013] Damien Garcia. “Variance Estimation”. 2013. url: http://www.biomecardio.
com/matlab/evar.html (visited on 09/24/2014).

[Gen2012] Wei Geng, Xiaobo Lu, Li Yang, Wujun Chen and Yang Liu. “Detection Algorithm of
Video Image Distance based on Rectangular Pattern”. In: 5th International Congress
on Image and Signal Processing. IEEE. Oct. 2012, 856–860. doi: 10.1109/CISP.
2012.6469874.

[Ghe2015] Ionut Gheorghe, Weidong Li, Thomas Popham and Keith J. Burnham. “Superpixel
based semantic segmentation for assistance in varying terrain driving conditions”.
In: Progress in Systems Engineering. Vol. 1089. Advances in Intelligent Systems and
Computing. Springer International Publishing, 2015, 691–698. doi: 10.1007/978-
3-319-08422-0_98.

http://dx.doi.org/10.1587/transinf.E93.D.1780
http://dx.doi.org/10.1587/transinf.E93.D.1780
http://dx.doi.org/10.1109/IVS.2010.5548035
http://dx.doi.org/10.1109/IVS.2011.5940486
http://dx.doi.org/10.1109/IVS.2011.5940486
http://dx.doi.org/10.1109/TITS.2013.2262523
http://dx.doi.org/10.1109/TITS.2014.2331177
http://dx.doi.org/10.1109/TITS.2014.2331177
http://www.biomecardio.com/matlab/evar.html
http://www.biomecardio.com/matlab/evar.html
http://dx.doi.org/10.1109/CISP.2012.6469874
http://dx.doi.org/10.1109/CISP.2012.6469874
http://dx.doi.org/10.1007/978-3-319-08422-0_98
http://dx.doi.org/10.1007/978-3-319-08422-0_98


Bibliography 209

[Gra1999] Hans Grauert and Hans-Christoph Grunau. “Lineare Algebra und Analytische
Geometrie”. Oldenbourg, 1999.

[Gra2004] Roy Gordon Grainger, Jonathan Lucas, Gareth Eython Thomas and Graham B. L.
Ewen. “Calculation of Mie derivatives”. In: Applied Optics 43.28 (2004), 5386–5393.
doi: 10.1364/AO.43.005386.

[Gra2012] Roy Gordon Grainger. “Some Useful Formulae for Aerosol Size Distributions and
Optical Properties”. In: Lecture Notes, University of Oxford (2012).

[Gul2007] Ismail Gultepe et al. “Fog Research: A Review of Past Achievements and Future
Perspectives”. In: Fog and Boundary Layer Clouds: Fog Visibility and Forecasting.
Ed. by Ismail Gultepe. Pageoph Topical Volumes. Birkhäuser Basel, 2007, 1121–1159.
doi: 10.1007/978-3-7643-8419-7_3.

[Hal1973] George M. Hale and Marvin R. Querry. “Optical Constants of Water in the 200-nm
to 200-µm Wavelength Region”. In: Applied Optics 12.3 (Mar. 1973), 555–563. doi:
10.1364/AO.12.000555.

[Hal1995] Forrest G. Hall, John R. Townshend and Edwin T. Engman. “Status of Remote Sensing
Algorithms for Estimation of Land Surface State Parameters”. In: Remote Sensing of
Environment 51.1 (1995), 138–156. doi: 10.1016/0034-4257(94)00071-T.

[Har2000] David Harvey. “Modern Analytical Chemistry”. McGraw-Hill, 2000. doi: 10.1021/
ed077p705.2.

[Har2004] Richard I. Hartley and Andrew Zisserman. “Multiple View Geometry in Computer
Vision”. 2nd ed. Cambridge University Press, 2004.

[Has1994] Richard C. Haskell, Lars O. Svaasand, Tsong-Tseh Tsay, Ti-Chen Feng, Matthew S.
McAdams and Bruce J. Tromberg. “Boundary Conditions for the Di�usion Equation
in Radiative Transfer”. In: Journal of the Optical Society of America. A, Optics and
Image Science 11.10 (Oct. 1994), 2727–2741. doi: 10.1364/JOSAA.11.002727.

[Hau2005] Nicolas Hautière, Raphaël Labayrade and Didier Aubert. “Detection of Visibility
Conditions Through use of Onboard Cameras”. In: Intelligent Vehicles Symposium
(IV). IEEE. June 2005, 193–198. doi: 10.1109/IVS.2005.1505101.

[Hau2006a] Nicolas Hautière, Raphaël Labayrade and Didier Aubert. “Estimation of the Visibility
Distance by Stereovision: a Generic Approach”. In: IEICE Transactions on Informa-
tion and Systems 89.7 (2006). Presented �rst at the Conference on Machine Vision
Applications, May 16–18, 2005, Japan, 2084–2091. doi: 10.1093/ietisy/e89-
d.7.2084.

[Hau2006b] Nicolas Hautière, Raphaël Labayrade and Didier Aubert. “Real-Time Disparity
Contrast Combination for Onboard Estimation of the Visibility Distance”. In: Trans-
actions on Intelligent Transportation Systems, IEEE 7.2 (June 2006), 201–212. doi:
10.1109/TITS.2006.874682.

[Hau2006c] Nicolas Hautière, Jean-Philippe Tarel, Jean Lavenant and Didier Aubert. “Automatic
Fog Detection and Estimation of Visibility Distance through use of an Onboard
Camera”. In: Machine Vision and Applications 17.1 (2006), 8–20. doi: 10.1007/
s00138-005-0011-1.

[Hau2007a] Nicolas Hautière. “Arti�cial Perception under Adverse Conditions: the Case of
the Visibility Range”. In: (2007). Young Researchers Seminar, FERSI FEHRL ECTRI,
Brno, Czech Republic.

http://dx.doi.org/10.1364/AO.43.005386
http://dx.doi.org/10.1007/978-3-7643-8419-7_3
http://dx.doi.org/10.1364/AO.12.000555
http://dx.doi.org/10.1016/0034-4257(94)00071-T
http://dx.doi.org/10.1021/ed077p705.2
http://dx.doi.org/10.1021/ed077p705.2
http://dx.doi.org/10.1364/JOSAA.11.002727
http://dx.doi.org/10.1109/IVS.2005.1505101
http://dx.doi.org/10.1093/ietisy/e89-d.7.2084
http://dx.doi.org/10.1093/ietisy/e89-d.7.2084
http://dx.doi.org/10.1109/TITS.2006.874682
http://dx.doi.org/10.1007/s00138-005-0011-1
http://dx.doi.org/10.1007/s00138-005-0011-1


210

[Hau2007b] Nicolas Hautière, Didier Aubert and Éric Dumont. “Mobilized and Mobilizable
Visibility Distances for Road Visibility in Fog”. In: 26th session of the CIE, Beijing,
China 2 (2007), 92–95.

[Hau2007c] Nicolas Hautiere, Jean-Philippe Tarel and Didier Aubert. “Towards Fog-Free In-
Vehicle Vision Systems through Contrast Restoration”. In: Computer Vision and
Pattern Recognition (CVPR). International Conference on. IEEE. June 2007, 1–8. doi:
10.1109/CVPR.2007.383259.

[Hau2007d] Nicolas Hautière, Jean-Philippe Tarel and Roland Brémond. “Perceptual Hystere-
sis Thresholding: Towards Driver Visibility Descriptors”. In: Intelligent Computer
Communication and Processing (ICCP), International Conference on. IEEE. Sept. 2007,
89–96. doi: 10.1109/ICCP.2007.4352146.

[Hau2008a] Nicolas Hautière, Didier Aubert, Éric Dumont and Jean-Philippe Tarel. “Experimen-
tal Validation of Dedicated Methods to In-Vehicle Estimation of Atmospheric Vis-
ibility Distance”. In: IEEE Transactions on Instrumentation and Measurement 57.10
(Oct. 2008), 2218–2225. doi: 10.1109/TIM.2008.922096.

[Hau2008b] Nicolas Hautière, Raphaël Labayrade, Clément Boussard, Jean-Philippe Tarel and
Didier Aubert. “Perception through Scattering Media for Autonomous Vehicles”.
In: Autonomous Robots Research Advances. Ed. by Weihua Yang. Hauppauge, NY:
Nova Science Publishers, Inc., Apr. 2008. Chap. 8, 223–267.

[Hau2009] Nicolas Hautière, Jean-Philippe Tarel and Didier Aubert. “Free Space Detection
for Autonomous Navigation in Daytime Foggy Weather”. In: IAPR Conference on
Machine Vision Applications (MVA’09). May 2009, 501–504.

[Hau2010] Nicolas Hautière, Jean-Philippe Tarel and Didier Aubert. “Mitigation of Visibility
Loss for Advanced Camera-Based Driver Assistance”. In: Intelligent Transportation
Systems, IEEE Transactions on 11.2 (June 2010), 474–484. doi: 10.1109/TITS.2010.
2046165.

[Hau2011] Nicolas Hautière, Raouf Babari, Éric Dumont, Roland Brémond and Nicolas Paparo-
ditis. “Estimating Meteorological Visibility Using Cameras: A Probabilistic Model-
Driven Approach”. In: Computer Vision – ACCV 2010. Vol. 6495. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, 243–254. doi: 10.1007/978-
3-642-19282-1_20.

[Hau2014] Nicolas Hautière, Jean-Philippe Tarel, Houssam Halmaoui, Roland Brémond and
Didier Aubert. “Enhanced Fog Detection and Free-Space Segmentation for Car
Navigation”. In: Machine Vision and Applications 25.3 (2014). Online published in
2011, 667–679. doi: 10.1007/s00138-011-0383-3.

[Hen1941] Louis George Henyey and Jesse Leonard Greenstein. “Di�use Radiation in the
Galaxy”. In: Astrophysical Journal 93 (1941), 70–83. doi: 10.1086/144246.

[Hul1957] Hendrik Christo�el van de Hulst. “Light Scattering by Small Particles”. Dover
Publications, 1957.

[Ish1978] Akira Ishimaru. “Wave Propagation and Scattering in Random Media”. Vol. 2.
Academic Press New York, 1978.

[Jah2012] Bernd Jähne. “Digitale Bildverarbeitung”. 7th ed. Springer, 2012. doi: 10.1007/978-
3-642-04952-1.

http://dx.doi.org/10.1109/CVPR.2007.383259
http://dx.doi.org/10.1109/ICCP.2007.4352146
http://dx.doi.org/10.1109/TIM.2008.922096
http://dx.doi.org/10.1109/TITS.2010.2046165
http://dx.doi.org/10.1109/TITS.2010.2046165
http://dx.doi.org/10.1007/978-3-642-19282-1_20
http://dx.doi.org/10.1007/978-3-642-19282-1_20
http://dx.doi.org/10.1007/s00138-011-0383-3
http://dx.doi.org/10.1086/144246
http://dx.doi.org/10.1007/978-3-642-04952-1
http://dx.doi.org/10.1007/978-3-642-04952-1


Bibliography 211

[Jar2008] Wojciech Jarosz. “E�cient Monte Carlo Methods for Light Transport in Scattering
Media”. PhD thesis. University of California, San Diego, 2008.

[Jiu1974] James E. Jiusto. “Remarks on Visibility in Fog”. In: Journal of Applied Meteorology
13.5 (1974), 608–610. doi: 10.1175/1520-0450(1974)013<0608:ROVIF>2.0.
CO;2.

[Kaj1986] James T. Kajiya. “The Rendering Equation”. In: Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques. Vol. 20. SIGGRAPH
’86 4. ACM, Aug. 1986, 143–150. doi: 10.1145/15886.15902.

[Kam1952] H. J. aufm Kampe and H. K. Weickmann. “Trabert’s Formula and the Determination
of the Water Content in Clouds”. In: Journal of Meteorology 9.3 (1952), 167–171.
doi: 10.1175/1520-0469(1952)009<0167:TFATDO>2.0.CO;2.

[Kan2008] Kenichi Kanatani. “Statistical Optimization for Geometric Fitting: Theoretical Accu-
racy Bound and High Order Error Analysis”. In: International Journal of Computer
Vision 80.2 (2008), 167–188. doi: 10.1007/s11263-007-0098-0.

[Kha2012] M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera and
R. Nebuloni. “Empirical Relations for Optical Attenuation Prediction from Liquid
Water Content of Fog”. In: Radioengineering 21.3 (2012), 911–916.

[Klo2008] Brigitte Klose. “Meteorologie: Eine interdisziplinäre Einführung in die Physik der
Atmosphäre”. German. Springer, 2008. doi: 10.1007/978-3-662-43578-6.

[Kno2012] Ian Knowles and Robert J. Renka. “Methods for Numerical Di�erentiation of Noisy
Data”. In: Proceedings of the Variational and Topological Methods: Theory, Applica-
tions, Numerical Simulations, and Open Problems. Electronic Journal of Di�erential
Equations: Conference 21 (2014). June 2012, 235–246.

[Kos1924] Harald Koschmieder. “Theorie der Horizontalen Sichtweite”. In: Physik der Freien
Atmosphäre 12 (1924), 33–55. doi: 10.1007/978-3-663-04661-5_2.

[Kos2014] Panagiotis Kosmopoulos, Stelios Kazadzis, Helena A. Flocas, Eleni Marinou, Vassilis
Amiridis, Michael Taylor and C. P. Jacovidis. “A 3D aerosol climatology in the atmo-
sphere of Greece by remote sensing & radiative-transfer modeling techniques”. In:
12th International Conference on Meteorology, Climatology & Atmospheric Physics.
Vol. 2. 2014.

[Kur1951] Daisuke Kuroiwa. “Electron-Microscope Study of Fog Nuclei”. In: Journal of Me-
teorology 8.3 (June 1951), 157–160. doi: 10.1175/1520-0469(1951)008<0157:
EMSOFN>2.0.CO;2.

[Kwo1998] Taek Mu Kwon. “An Automatic Visibility Measurement System Based on Video
Cameras”. In: (Sept. 1998).

[Lab2002] Raphael Labayrade, Didier Aubert and Jean-Philippe Tarel. “Real Time Obstacle
Detection in Stereovision on Non Flat Road Geometry Through “V-Disparity” Rep-
resentation”. In: Intelligent Vehicle Symposium (IV). Vol. 2. IEEE. 2002, 646–651. doi:
10.1109/IVS.2002.1188024.

[Lag2008] Andrea Lagorio, Enrico Grosso and Massimo Tistarelli. “Automatic Detection of
Adverse Weather Conditions in Tra�c Scenes”. In:Advanced Video and Signal Based
Surveillance, 2008. AVSS ’08. IEEE Fifth International Conference on. IEEE. Sept. 2008,
273–279. doi: 10.1109/AVSS.2008.50.

http://dx.doi.org/10.1175/1520-0450(1974)013<0608:ROVIF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1974)013<0608:ROVIF>2.0.CO;2
http://dx.doi.org/10.1145/15886.15902
http://dx.doi.org/10.1175/1520-0469(1952)009<0167:TFATDO>2.0.CO;2
http://dx.doi.org/10.1007/s11263-007-0098-0
http://dx.doi.org/10.1007/978-3-662-43578-6
http://dx.doi.org/10.1007/978-3-663-04661-5_2
http://dx.doi.org/10.1175/1520-0469(1951)008<0157:EMSOFN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1951)008<0157:EMSOFN>2.0.CO;2
http://dx.doi.org/10.1109/IVS.2002.1188024
http://dx.doi.org/10.1109/AVSS.2008.50


212

[Len2013] Stephan Lenor, Bernd Jähne, Stefan Weber and Ulrich Stopper. “An Improved Fog
Model for Estimating the Meteorological Visibility from a Road Surface Luminance
Curve”. In: Pattern Recognition. Vol. 8142. Lecture Notes in Computer Science. 35th
GCPR 2013, Saarbrücken. Springer Berlin Heidelberg, Sept. 2013, 184–193. doi:
10.1007/978-3-642-40602-7_19.

[Len2014] Stephan Lenor, Johannes Martini, Bernd Jähne, Ulrich Stopper, Stefan Weber and
Florian Ohr. “Tracking-Based Visibility Estimation”. In: Pattern Recognition. Lecture
Notes in Computer Science. 36th GCPR 2014, Münster. Springer International
Publishing, Sept. 2014, 365–376. doi: 10.1007/978-3-319-11752-2_29.

[Len2015] S. Lenor. “Verfahren und Vorrichtung zur bildbasierten Sichtweitenschätzung”.
DE Patent App. DE201,410,208,271. Nov. 2015. url: http://www.google.com/
patents/DE102014208271A1.

[Li2014] Yunlong Li, Peter Hoogeboom and Herman W.J. Russchenberg. “Radar Observa-
tions and Modeling of Fog At 35 GHz”. In: Antennas and Propagation (EuCAP), 8th
European Conference on. IEEE. Apr. 2014, 1053–1057. doi: 10.1109/EuCAP.2014.
6901948.

[Liu1994] Pingyu Liu. “A new phase function approximating to Mie scattering for radiative
transport equations”. In: Physics in Medicine and Biology 39.6 (1994), 1025–1036.
doi: 10.1088/0031-9155/39/6/008.

[Liu2014] Chunxue Liu, Xiaobo Lu, Saiping Ji and Wei Geng. “A Fog Level Detection Method
Based on Image HSV Color Histogram”. In: Progress in Informatics and Computing
(PIC), International Conference on. IEEE. May 2014, 373–377. doi: 10.1109/PIC.
2014.6972360.

[Mad2004] Kaj Madsen, Hans Bruun Nielsen and Ole Tingle�. “Methods for Non-Linear Least
Squares Problems”. 2nd ed. Lecture Notes, IMM. Technical University of Denmark,
Apr. 2004.

[Mae2000] Roy De Maesschalck, Delphine Jouan-Rimbaud and Désiré Luc Massart. “The Maha-
lanobis distance”. In: Chemometrics and Intelligent Laboratory Systems 50.1 (2000),
1–18. doi: 10.1016/S0169-7439(99)00047-7.

[Mar1963] Donald W. Marquardt. “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters”. In: Journal of the Society for Industrial and Applied Mathematics 11.2
(1963), 431–441. doi: 10.1137/0111030.

[Mar2010] John Marko�. “Google Cars Drive Themselves, in Tra�c”. In: New York Times
(Oct. 10, 2010), A1.

[Mar2013] Johannes Martini. “Tracking-basierte Nebelerkennung und Sichtweitenschätzung
für mobile Mono-Kamerasysteme bei Tag”. German. Supported by Robert Bosch
GmbH, Stephan Lenor. Diplomarbeit. Karlsruher Institut für Technologie, Aug. 31,
2013.

[Mat2002] Christian Mätzler. “MATLAB Functions for Mie Scattering and Absorption”. In:
Research Report at Institut für Angewandte Physik, Bern 8 (June 2002).

[Mat2012] The MathWorks Inc. “MATLAB version 8.0.0.783 (R2012b)”. Natick, Massachusetts,
2012.

http://dx.doi.org/10.1007/978-3-642-40602-7_19
http://dx.doi.org/10.1007/978-3-319-11752-2_29
http://www.google.com/patents/DE102014208271A1
http://www.google.com/patents/DE102014208271A1
http://dx.doi.org/10.1109/EuCAP.2014.6901948
http://dx.doi.org/10.1109/EuCAP.2014.6901948
http://dx.doi.org/10.1088/0031-9155/39/6/008
http://dx.doi.org/10.1109/PIC.2014.6972360
http://dx.doi.org/10.1109/PIC.2014.6972360
http://dx.doi.org/10.1016/S0169-7439(99)00047-7
http://dx.doi.org/10.1137/0111030


Bibliography 213

[Met2007] Samy Metari and François Deschenes. “A New Convolution Kernel for Atmospheric
Point Spread Function Applied to Computer Vision”. In: Computer Vision (ICCV).
IEEE 11th, International Conference on. IEEE. Oct. 2007, 1–8. doi: 10.1109/ICCV.
2007.4408899.

[Mid1952] William Edgar Knowles Middleton. “Vision Through the Atmosphere”. University
of Toronto Press, 1952. doi: 10.1002/qj.49708134734.

[Mid2009] Paul A. Midgley and Rafal E. Dunin-Borkowski. “Electron tomography and holog-
raphy in materials science”. In: Nature Materials 8.4 (Apr. 2009), 271–280. doi:
10.1038/nmat2406.

[Mie1908] Gustav Mie. “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”.
In: Annalen der Physik 330.3 (1908), 377–445. doi: 10.1002/andp.19083300302.

[Mih1984] Dimitri Mihalas and Barbara Weibel Mihalas. “Foundations of Radiation Hydrody-
namics”. Oxford University Press, 1984.

[Min2010] An Ming-wei, Guo Zong-liang, Li Jibin and Zhou Tao. “Visibility Detection Based
on Tra�c Camera Imagery”. In: Information Sciences and Interaction Sciences (ICIS),
2010 3rd International Conference on. IEEE. June 2010, 411–414. doi: 10.1109/
ICICIS.2010.5534795.

[Mis2002a] Michael I. Mishchenko. “Vector radiative transfer equation for arbitrarily shaped and
arbitrarily oriented particles: a microphysical derivation from statistical electromag-
netics”. In: Applied Optics 41.33 (2002), 7114–7134. doi: 10.1364/AO.41.007114.

[Mis2002b] Michael I. Mishchenko, Larry D. Travis and Andrew A. Lacis. “Scattering, Ab-
sorption, and Emission of Light by Small Particles”. Cambridge University Press,
2002.

[Mor2006] Kenji Mori, Terutoshi Kato, Tomokazu Takahashi, Ichiro Ide, Hiroshi Murase,
Takayuki Miyahara and Yukimasa Tamatsu. “Visibility Estimation in Foggy Con-
ditions by In-vehicle Camera and Radar”. In: Innovative Computing, Information
and Control, 2006. ICICIC’06. First International Conference on. Vol. 2. IEEE. 2006,
548–551. doi: 10.1109/ICICIC.2006.373.

[Mor2007] Kenji Mori, Tomokazu Takahashi, Ichiro Ide, Hiroshi Murase, Takayuki Miyahara
and Yukimasa Tamatsu. “Recognition of foggy conditions by in-vehicle camera and
millimeter wave radar”. In: Intelligent Vehicles Symposium (IV). IEEE. June 2007,
87–92. doi: 10.1109/IVS.2007.4290096.

[Mun1988] Walter H. Munk and Peter F. Worcester. “Ocean Acoustic Tomography”. In:Oceanog-
raphy 1 (1 1988), 8–10. doi: 10.1088/1742-6596/118/1/012002.

[Nag2011] Richard Kent Nagle, Edward B. Sa� and Arthur David Snider. “Fundamentals of
Di�erential Equations”. 8th ed. Pearson, 2011.

[Neb2005] Roberto Nebuloni. “Empirical relationships between extinction coe�cient and
visibility in fog”. In: Applied Optics 44.18 (June 2005), 3795–3804. doi: 10.1364/
AO.44.003795.

[Neg2013] Mihai Negru and Sergiu Nedevschi. “Image Based Fog Detection and Visibility Esti-
mation for Driving Assistance Systems”. In: Intelligent Computer Communication
and Processing (ICCP), International Conference on. IEEE. Sept. 2013, 163–168. doi:
10.1109/ICCP.2013.6646102.

http://dx.doi.org/10.1109/ICCV.2007.4408899
http://dx.doi.org/10.1109/ICCV.2007.4408899
http://dx.doi.org/10.1002/qj.49708134734
http://dx.doi.org/10.1038/nmat2406
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1109/ICICIS.2010.5534795
http://dx.doi.org/10.1109/ICICIS.2010.5534795
http://dx.doi.org/10.1364/AO.41.007114
http://dx.doi.org/10.1109/ICICIC.2006.373
http://dx.doi.org/10.1109/IVS.2007.4290096
http://dx.doi.org/10.1088/1742-6596/118/1/012002
http://dx.doi.org/10.1364/AO.44.003795
http://dx.doi.org/10.1364/AO.44.003795
http://dx.doi.org/10.1109/ICCP.2013.6646102


214

[Neg2014] Mihai Negru and Sergiu Nedevschi. “Assisting Navigation in Homogenous Fog”. In:
Computer Vision Theory and Applications (VISAPP), 9th International Conference on.
2014, 619–626. doi: 10.5220/0004740006190626.

[Nol1987] Guust Nolet. “Seismic Tomography: With Applications in Global Seismology and
Exploration Geophysics”. 1st ed. Vol. 5. Modern Approaches in Geophysics. Springer,
1987. doi: 10.1007/978-94-009-3899-1.

[Oku2014] Ryosuke Okuda, Yuki Kajiwara and Kazuaki Terashima. “A Survey of Technical
Trend of ADAS and Autonomous Driving”. In: VLSI Technology, Systems and Appli-
cation (VLSI-TSA), Proceedings of Technical Program– 2014 International Symposium
on. IEEE. Apr. 2014, 1–4. doi: 10.1109/VLSI-TSA.2014.6839646.

[Org2008] World Meteorological Organization. “"Guide to Meteorological Instruments and
Methods of Observation (CIMO guide)"”. 7th ed. 2008.

[Pav2012] Mario Pavlić, Heidrun Belzner, Gerhard Rigoll and Slobodan Ilić. “Image based
fog detection in vehicles”. In: Intelligent Vehicles Symposium (IV). IEEE. June 2012,
1132–1137. doi: 10.1109/IVS.2012.6232256.

[Pav2013] Mario Pavlić, Gerhard Rigoll and Slobodan Ilić. “Classi�cation of Images in Fog and
Fog-Free Scenes for Use in Vehicles”. In: Intelligent Vehicles Symposium (IV). IEEE.
June 2013, 481–486. doi: 10.1109/IVS.2013.6629514.

[Pel1990] Eli Peli. “Contrast in complex images”. In: Journal of the Optical Society of America
A 7.10 (Oct. 1990), 2032–2040. doi: 10.1364/JOSAA.7.002032.

[Per2001] Annamaneni Peraiah. “An Introduction to Radiative Transfer: Methods and appli-
cations in astrophysics”. Cambridge University Press, 2001.

[Pom1997] Dean Pomerleau. “Visibility Estimation from a Moving Vehicle using the RALPH Vi-
sion System”. In: Proceedings of the Conference on Intelligent Transportation System.
IEEE. Nov. 1997, 906–911. doi: 10.1109/ITSC.1997.660594.

[Qiu2008] Lin Qiu and Wilfrid A. Nixon. “E�ects of Adverse Weather on Tra�c Crashes:
Systematic Review and Meta-Analysis”. In: Transportation Research Record: Journal
of the Transportation Research Board 2055 (2008), 139–146. doi: 10.3141/2055-16.

[Ros2008] Martin Roser and Frank Moosmann. “Classi�cation of Weather Situations on Single
Color Images”. In: Intelligent Vehicles Symposium (IV). IEEE. June 2008, 798–803.
doi: 10.1109/IVS.2008.4621205.

[Ryb1979] George B. Rybicki and Alan Paige Lightman. “Radiative Processes in Astrophysics”.
Wiley, 1979. doi: 10.1002/9783527618170.

[Sax2008] Ashutosh Saxena, Sung H. Chung and Andrew Y. Ng. “3-D Depth Reconstruction
from a Single Still Image”. In: International Journal of Computer Vision 76.1 (2008),
53–69. doi: 10.1007/s11263-007-0071-y.

[Sha2003] Eugene A. Sharkov. “Passive Microwave Remote Sensing of the Earth: Physical
Foundations”. Springer Praxis Books / Geophysical Sciences. Springer, 2003.

[Shi2006] Richard C. Shirkey and David H. Tofsted. “High Resolution Electro-Optical Aerosol
Phase Function Database PFNDAT2006”. Tech. rep. DTIC Document, Aug. 2006.

http://dx.doi.org/10.5220/0004740006190626
http://dx.doi.org/10.1007/978-94-009-3899-1
http://dx.doi.org/10.1109/VLSI-TSA.2014.6839646
http://dx.doi.org/10.1109/IVS.2012.6232256
http://dx.doi.org/10.1109/IVS.2013.6629514
http://dx.doi.org/10.1364/JOSAA.7.002032
http://dx.doi.org/10.1109/ITSC.1997.660594
http://dx.doi.org/10.3141/2055-16
http://dx.doi.org/10.1109/IVS.2008.4621205
http://dx.doi.org/10.1002/9783527618170
http://dx.doi.org/10.1007/s11263-007-0071-y


Bibliography 215

[Sit2011] Hu Sitao, Dai Chuchu, Wang Xuemei and Zhu Jing. “In�uence Mechanism of
Mass Fog on Highway Tra�c Safety”. In: Transportation, Mechanical, and Electrical
Engineering (TMEE), International Conference on. IEEE. Dec. 2011, 791–794. doi:
10.1109/TMEE.2011.6199321.

[Siv1996] Michael Sivak. “The information that drivers use: is it indeed 90 % visual?” In:
Perception 25.9 (1996), 1081–1089. doi: 10.1068/p251081.

[Son2012] Hongjun Song, Yangzhou Chen and Yuanyuan Gao. “Homogenous Fog Condition
Recognition based on Tra�c Scene”. In: Proceedings of the International Conference
on Modelling, Identi�cation and Control. IEEE. June 2012, 612–617.

[Str1941] Julius Adams Stratton. “Electromagnetic Theory”. Vol. 33. McGraw-Hill, 1941.
[Su2014] Hao Su, Qixing Huang, Niloy J. Mitra, Yangyan Li and Leonidas Guibas. “Estimating

Image Depth Using Shape Collections”. In: Transactions on Graphics 33.4 (July 2014).
doi: 10.1145/2601097.2601159.

[Tai2008] Frédéric Taillade, Etienne Belin and Éric Dumont. “An analytical model for backscat-
tered luminance in fog: comparisons with Monte Carlo computations and experi-
mental results”. In: Measurement Science and Technology 19.5 (2008), 055302. doi:
10.1088/0957-0233/19/5/055302.

[Tar2005] Albert Tarantola. “Inverse Pproblem Theory and Methods for Model Parameter
Estimation”. Society for Industrial and Applied Mathematics, 2005. doi: 10.1137/
1.9780898717921.

[Tar2010] Jean-Philippe Tarel, Nicolas Hautière, Aurélien Cord, Dominique Gruyer and Hous-
sam Halmaoui. “Improved Visibility of Road Scene Images under Heterogeneous
Fog”. In: Intelligent Vehicles Symposium (IV). IEEE. June 2010, 478–485. doi: 10.
1109/IVS.2010.5548128.

[Tom1976] Claudio Tomasi and Francesco Tampieri. “Features of the proportionality coe�cient
in the relationship between visibility and liquid water content in haze and fog”. In:
Atmosphere 14.2 (1976), 61–76. doi: 10.1080/00046973.1976.9648403.

[Tra1901] Wilhelm Trabert. “Die Extinktion des Lichtes in einem trüben Medium (Sehweite
in Wolken)”. German. In: Meteorologische Zeitschrift, Wien 18 (1901), 518–524.

[Tra2015] U.S. Department of Transportation. “Road Weather Management Program – How
Do Weather Events Impact Roads?” Last modi�ed on April 9, 2015. 2015. url:
http://www.ops.fhwa.dot.gov/weather/q1_roadimpact.htm (visited on
10/10/2015).

[VDI1983] VDI-Kommission Reinhaltung der Luft. “VDI 3786 part 6: Meteorological Measure-
ments of Air Polution, Turbidity of Ground-Level Atmosphere, Standard Visibility”.
1983.

[Vis1987] Raymond Viskanta and M. P. Mengüç. “Radiation Heat Transfer in Combustion
Systems”. In: Progress in Energy and Combustion Science 13.2 (1987), 97–160. doi:
10.1016/0360-1285(87)90008-6.

[Wal2002] Wolfgang Walter. “Analysis 2”. 5th ed. Springer, 2002. doi: 10.1007/978-3-642-
55922-8.

[Wal2004] Wolfgang Walter. “Analysis 1”. 7th ed. Springer, 2004. doi: 10.1007/3-540-
35078-0.

http://dx.doi.org/10.1109/TMEE.2011.6199321
http://dx.doi.org/10.1068/p251081
http://dx.doi.org/10.1145/2601097.2601159
http://dx.doi.org/10.1088/0957-0233/19/5/055302
http://dx.doi.org/10.1137/1.9780898717921
http://dx.doi.org/10.1137/1.9780898717921
http://dx.doi.org/10.1109/IVS.2010.5548128
http://dx.doi.org/10.1109/IVS.2010.5548128
http://dx.doi.org/10.1080/00046973.1976.9648403
http://www.ops.fhwa.dot.gov/weather/q1_roadimpact.htm
http://dx.doi.org/10.1016/0360-1285(87)90008-6
http://dx.doi.org/10.1007/978-3-642-55922-8
http://dx.doi.org/10.1007/978-3-642-55922-8
http://dx.doi.org/10.1007/3-540-35078-0
http://dx.doi.org/10.1007/3-540-35078-0


216

[Was2004] Larry Wasserman. “All of Statistics: A Concise Course in Statistical Inference”.
Springer, 2004. doi: 10.1007/978-0-387-21736-9.

[Web2002] Andrew G. Webb. “Introduction to Biomedical Imaging”. IEEE Press Series on
Biomedical Engineering. Wiley, 2002.

[Web2014] Stefan Weber, Stephan Lenor and Ulrich Stopper. “Verfahren und Vorrichtung zum
Bestimmen einer Sichtweite bei Nebel am Tag”. DE Patent App. DE201,310,204,597.
Sept. 2014. url: http://www.google.com/patents/DE102013204597A1.

[Web2015] Stefan Weber, Stephan Lenor, Ulrich Stopper and Johannes Martini. “Verfahren
und Vorrichtung zur Tracking-basierten Sichtweitenschätzung”. DE Patent App.
DE201,410,208,272. Nov. 2015. url: http://www.google.com/patents/DE
102014208272A1.

[Wed2006] Andreas Wedel, Uwe Franke, Jens Klappstein, Thomas Brox and Daniel Cremers.
“Realtime Depth Estimation and Obstacle Detection from Monocular Video”. In:
Pattern Recognition. Vol. 4174. Lecture Notes in Computer Science. Springer, 2006,
475–484. doi: 10.1007/11861898_48.

[Wer2007] Dirk Werner. “Funktionalanalysis”. 6th ed. Springer Berlin Heidelberg, 2007.
[Wil1928] Hurd Curtis Willett. “Fog and Haze, Their Causes, Distribution, and Forecasting”.

In: Monthly Weather Review 56.11 (Nov. 1928), 435–468. doi: 10.1175/1520-
0493(1928)56<435:FAHTCD>2.0.CO;2.

[Wis1980] Warren J. Wiscombe. “Improved Mie scattering algorithms”. In: Applied Optics 19.9
(May 1980), 1505–1509. doi: 10.1364/AO.19.001505.

[Zha2009] Chen Zhao-zheng, Li Jia and Chen Qi-mei. “Real-Time Video Detection of Road
Visibility Conditions”. In: Computer Science and Information Engineering, 2009 WRI
World Congress on. Vol. 5. IEEE. Mar. 2009, 472–476. doi: 10.1109/CSIE.2009.
169.

[Zha2012] Junming Zhao, Jianyu Tan and Linhua Liu. “On the derivation of vector radiative
transfer equation for polarized radiative transport in graded index media”. In:
Journal of Quantitative Spectroscopy and Radiative Transfer 113.3 (2012), 239–250.
doi: 10.1016/j.jqsrt.2011.11.002.

[Zie2014] Julius Ziegler et al. “Making Bertha Drive—An Autonomous Journey on a Historic
Route”. In: Intelligent Transportation Systems Magazine, IEEE 6.2 (2014), 8–20. doi:
10.1109/MITS.2014.2306552.

http://dx.doi.org/10.1007/978-0-387-21736-9
http://www.google.com/patents/DE102013204597A1
http://www.google.com/patents/DE102014208272A1
http://www.google.com/patents/DE102014208272A1
http://dx.doi.org/10.1007/11861898_48
http://dx.doi.org/10.1175/1520-0493(1928)56<435:FAHTCD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1928)56<435:FAHTCD>2.0.CO;2
http://dx.doi.org/10.1364/AO.19.001505
http://dx.doi.org/10.1109/CSIE.2009.169
http://dx.doi.org/10.1109/CSIE.2009.169
http://dx.doi.org/10.1016/j.jqsrt.2011.11.002
http://dx.doi.org/10.1109/MITS.2014.2306552


Index

L, see luminance, see radiance
Lair, see air light parameter
Sn, see sphere
Lv, see luminance
Le, see radiance
vi-�t, 126
3D reconstruction, 71, 76

absorption, 13, 25, 27, 33, 38, 39, 157
absorption coe�cient, 32, 38
absorption e�ciency, 28, 32
absorption index, 27
ACC, see adaptive cruise control
accidents, 5
accuracy, 48, 98, 109, 138, 161
adaptive cruise control, 4
ADAS, see advanced driver assistance systems
advanced driver assistance systems, 3, 5, 68, 76
advantages, 161
advection fog, 23
adverse weather, 4
advFastMLE, 92, 96, 102, 112
AEB, see autonomous emergency braking
air light, 48, 121, 122, 160
air light parameter, 48–50, 75, 84, 86, 91, 92, 100,

123, 126, 130, 132, 154, 159
albedo, 137
ambient light, see air light
analytical discussion, 83, 95
applications, 19
asymmetry parameter, 30, 33, 34, 125, 126, 137,

139, 142
asymptote, 88, 95
atmospheric aerosol, 5, 15, 23
atmospheric parameters, 125
attenuation, 6, 16, 20, 63
autonomous driving, 3, 162
autonomous emergency braking, 4

backscattered veil, 67

backscattering, 18, 67, 162
backward scattering, 30
Banach space, 166
basic splines, 135
beam of radiation, 38
Beer-Lambert law, 16, 38
bisection, 94
blindness detection, 162
boundary, 166
boundary condition, 40, 44
boundary directions, 40
boundary distance function, 45
boundary function, 40
boundary problem, see radiative boundary prob-

lem
brightness, 15, 26, 75
bundle adjustment, 77, 107, 109

camera, 4, 25, 68
driver assistance, 9, 61, 63
embedded, 19
front, 4, 6, 9, 68
multi-purpose, 19, 68
stationary, 67
surround-view, 4
tra�c surveillance, 20, 67, 68

camera characteristics, 70
camera image, 71
camera noise model, 72
camera parameters, 121
CAN, see Controller Area Network
Cauchy-Schwarz inequality, 102, 169
chain rule, 169
classical formulation, 41, 44, 45
classi�cation, 66
closure, 166
CMOS, 68, 71
coercive, 86, 167
color, 20, 68
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combined approaches, 161
compact, 166
complex numbers, 164
computational e�ort, 112, 147
computer vision, 20, 71, 76, 116
condensation, 23
condensation nuclei, 23
conservation of energy, 38
continuous uniform distribution, 165
contrast, 6, 15, 63, 162
contrast restoration, 20
Controller Area Network, 77
convergence, 50, 93, 112, 130
convex, 86, 87, 101, 166, 168

quasi-, 93, 97, 168
strictly, 168
strictly quasi-, 168

convexity, 189
Cramer’s rule, 169
crash rate, 5
critical point, 86, 87, 90, 167, 188, 197
cross product, 165
curvature, 77, 107, 169
curve, 168

dark signal, 72
dark signal non-uniformity, 72
data acquisition, 71, 76, 116, 152
data quality, 77, 100, 135, 161
de�nite

negative, 164
negative semi-, 164
positive, 164
positive semi-, 164

denominator, 87, 202
depth, see distance
derivatives, 84, 135, 171, 201, 202
dew point, 23
diameter, 166
di�usion, 162
digital gray value, 71
digital number, 71
dipped beam, 19
directional boundary, 40
disadvantages, 161
discontinuity, 191
distance, 61, 64, 70, 76, 77, 152
distance-luminance pairs, 152

DN, see digital number
domain, 166
driver assistance system, see advanced driver

assistance systems
driving dynamics, 4
drop-size distribution, 13, 16, 19, 24, 32, 35, 142
droplets, 13, 23
Duntley’s law, 16

edge weights, 118, 164
edges, 117, 164
e�ective cross section, 28
electromagnetic �eld, 25
electromagnetic radiation, 25, 26
electromagnetic spectrum, 20
electronic stability control, 3, 77, 107, 109
emission, 25, 39
emission source term, 38
environment, 3, 21
equilibrium, 39
ESC, see electronic stability control
estimation error, 177
Euclidean norm, 165
Euclidean scalar product, 165
existence, 50, 95, 173
experiments, 65, 106, 138, 147, 153, 160
explicit solution, 173
exposure time, 72
extinction coe�cient, 6, 13, 16, 17, 32, 38, 61, 65,

69, 75, 79, 115, 137, 138, 159
extinction e�ciency, 28, 32

fastMLE, 92, 102, 112
feasibility, 99, 109, 147
�eld of view, 4, 68
�rst-order linear ODE, 43, 173
�sh-eye, 4
�xed point, 48, 51
�at-world assumption, 55, 64, 123, 152, 160
�oating-point unit, 112
focal length, 65, 124
fog, 5, 9, 13, 23, 38, 69, 157
fog detection, 5
fog droplets, 5, 13, 26
fog lamps

front, 19
rear, 19

fogged-up windshield, 64
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forward problem, 47
forward scattering, 30
forward scattering parameter, see asymmetry

parameter
FPU, see �oating-point unit
frame rate, 68
free-space detection, 20
frequency, 25, 66, 71
Fubini’s theorem, 169
Fubini-Tonelli theorem, 169

Gauß-Newton algorithm, 83, 112
general radiative transfer equation, 38
geometric �tting, 82
geometrical cross section, 28
geometry, 124
glare, 4, 17, 64, 66, 162
gradient, 167
gradient descent, 82, 112
graph, 117, 164
ground truth, 109

halos, 66, 162
haze, 23, 161
headlamps, see headlights
headlights, 4, 18, 19, 66
hemisphere, 41, 165
Henyey-Greenstein phase function, 34, 125, 137,

142, 157
Hess matrix, 168
high beam, 66
high dynamic range, 68, 70
higher-order models, 10, 49, 61, 115, 141, 158
highway assistant, 3
homogeneous atmosphere, 39, 48, 69, 157
horizontal line, 65
horizontal vision, 49, 79, 121, 153, 159
humidity, 23

ice crystals, 23, 27
ice fog, 24
image acquisition, 71
image intensity, 70, 73
image plane, 42
image sensor, see imager
imager, 71, 161
imaginary unit, 164
in�mum, 166

in�ection point, 65, 115, 121, 125, 126, 135, 138,
141, 159

infrared, 4, 17
initial value problem, 43, 173
injury rate, 5
integers, 163
integral formulation, 10, 42, 45, 56
Internet of Things, 21
intrinsic luminance, 44, 48, 76, 120, 122
inverse matrix, 190
inverse problem, 48, 61, 70, 75, 79, 158
inversion sampling, 137
irradiance, 26, 73

Jacobian matrix, 83, 168

Koschmieder’s model, 49, 61, 65, 75, 79, 83, 100,
109, 115, 120, 153, 158

Koschmieder’s model for horizontal vision, see
Koschmieder’s model

Kronecker delta, 165

l’Hôspital’s rule, 171
Lambertian surface, 69, 76
lane departure warning, 4
lane keeping support, 4
laser scanner, 4
least-square problem, 80
Lebesgue Measurable, 167
Lebesgue’s dominated convergence theorem, 169
Leibniz’s integral rule, 169
Levenberg-Marquardt algorithm, 83, 112
lidar, 4, 77
light, 13, 19, 25, 42
light control, 4, 19
light transport, 10, 13, 38, 48, 157
light transport models, see radiative transfer

model
likelihood function, 80
likelihood objective function, 83, 158
line of sight, 6, 42, 44, 121, 122
linearity, 50, 70, 86, 161
linearity of integration, 169
liquid water content, 36, 142
log-normal drop-size distribution, 24, 35, 142,

157
look-up tables, 128, 141, 160
low beam, 66



220

luminance, 13, 15, 26, 61, 70, 73, 76, 77, 152
luminance model, 130
LWC, see liquid water content

Mahalanobis distance, 82
mathematical positive orientation, 78
MATLAB, 70
maximum likelihood problem, 79
maximum norm, 54
Maxwell’s equations, 25, 26, 38
measure and integration theory, 169
measuring devices, 13, 18, 61
measuring principle, 70
meteorological visibility, 6, 9, 13, 15–17, 19, 61,

64, 69, 109, 121, 157
Michelson contrast, 17, 67
Mie expansion coe�cients, 28
Mie scattering, see Mie theory
Mie theory, 13, 27, 142, 157
minimization, 82, 87, 91, 99, 104, 112
mist, see haze
model �t, 76, 79, 126, 153
model-based algorithms, 10, 61, 158
monochromatic, 39
monotonicity, 50, 97, 118
Monte Carlo, 67, 75, 108, 137
MPC, see multi-purpose camera
multi-purpose camera, 19, 68

natural numbers, 163
nephelometer, 18
Newton’s method, 82, 91, 92, 112
Newton-Cotes rule, see Simpson’s rule
night-view, 4
nighttime, 18, 66, 162
nodes, 117, 164
noise, 71, 177
noise estimation, 177
noise level, 72, 97
noise variance, 72, 118, 177
non-coercive, 86, 187
non-convex, 86, 187
non-homogeneous fog, 17, 69, 162
non-linear least square, 83
norm, 166
normal distribution, 79, 165
normalization, 30, 34, 133, 146
nowcasting, 21

numerator, 87, 201
numerical instabilities, 93
numerical integration, see quadrature

object detection, 20
object tracks, 75, 76, 95, 104, 158
objective function, 79, 80, 101, 118, 136, 153
observations, 70
open ball, 165
open questions, 95, 159
optimization algorithm, 82
ordinary di�erential equation, 42, 173

parameter estimation, 48, 61, 70, 79, 81, 91, 99,
101, 112, 121, 125, 126, 133, 135, 153,
201

parking assist system, 3
partial road surface luminance curve, 151, 160
particle properties, 13
penalization term, 101, 135
perfect scattering, 13, 39
phase function, 28, 32, 34, 38, 57, 122, 125, 133,

142
phase matrix, 38
photo response non-uniformity, 72
photoelectric e�ect, 71
photometry, 25
photon, 25, 71, 137
pitch angle, 121, 124, 148
pixel, 42, 71
Planck constant, 25, 72
plane-parallel atmosphere, 13, 48, 55
plane-parallel radiative boundary problem, 56,

61, 130
plane-parallel radiative transfer equation, 56
pointwise convergence, 50
Poisson distribution, 72
polarization, 4, 25, 38
principal point, 124
product rule, 169
pRSLC, see partial road surface luminance curve

quadrature, 127, 132, 146
quantization noise, 72
quantum e�ciency, 71
quantum mechanics, 25

radar, 4, 20, 65, 77
radiance, 13, 25, 73
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radiation fog, 23
radiative boundary problem, 10, 13, 37, 41, 45,

47, 130
radiative transfer equation, 13, 37, 39, 41, 42
radiative transfer model, 10, 13, 48, 76, 122, 158
radiative transfer problem, 13, 115
radiative transfer theory, 10, 37, 70, 121, 130, 158
radiometric calibration, 73
radiometry, 25
radius of curvature, 77, 169
range of convergence, 83, 91, 94, 112
rate of convergence, 51
rational numbers, 163
Rayleigh scattering, 30
real numbers, 163
real-time, 9, 117, 153, 158
re�ection, 25
refraction, 25
refractive index, 27
regularization term, 99
relative error, 169
removable discontinuity, 88, 190
residuum, 81
resolution, 68, 135
Ricatti-Bessel functions, 28
road plane, 108, 121, 160
road sign recognition, 4, 76
road surface luminance curve, 10, 61, 64, 68, 109,

115, 116, 120, 146, 151, 159
Rodrigues’ rotation formula, 169, 173
rotation, 41, 124, 173
RSLC, see road surface luminance curve
RSLC model, 10, 61, 65, 120, 122, 125, 130, 137,

146, 160
RTE, see radiative transfer equation
RTT, see radiative transfer theory

sample covariance, 177
sample mean, 177
scattering, 6, 13, 18, 25, 27, 38, 108, 137, 157
scattering atmospheres, 39
scattering coe�cient, 32, 38
scattering e�ciency, 28, 32
scattering phase function, see phase function
scatterometer, 18
Schwarz’s theorem, 169
segmentation, 71, 77, 116, 152, 158
self-glare, 162

sensor data fusion, 4, 20, 162
shortest path, 118
shot noise, 72
sight impairments, 5, 23, 162
signal, 72, 97, 135, 177
signal-to-noise ratio, 97, 135, 136
simplicity, 97
Simpson’s rule, 127, 132, 169
simulation framework, 112
size parameter, 27, 30
smooth boundary, 41
smoothing, 77, 135, 148
SND, see squared neighbor di�erences
special orthogonal group, 164
spectral irradiance, see irradiance
spectral luminous e�cacy, 25, 70, 73
spectral radiance, see radiance
speed

adaption, 19
warning, 19

speed of light, 25, 38, 72
sphere, 24, 39, 41, 57, 165, 173
splines, 135, 177
squared neighbor di�erences, 118, 177, 183
stabilized estimation, 100, 154, 159
standard deviation, 98, 153
stationary, 21, 39, 67, 158
stereo vision, 4, 76
stokes vector, 38
stopping criterion, 82, 92
structure from motion, 76, 109
sublimation, 24
sum notation, 83, 91
sum-of-squares objective function, 80, 83
superpixel, 76
supersaturation, 23
supremum, 166
surface integral, 39
synthetic tracks, 109
system gain, 72
system parameters, 125, 140

temporal noise, 72
time-independent RTE, 38
tracking, 20, 71, 75, 76, 159
tracking-based approach, 61, 109, 158
tra�c jam assistant, 3
tra�c safety, 5
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tra�c surveillance, 67
transmissometer, 18
travel angle, 78
travel distance, 78
two-dimensional uncertainties, 81

ultrasonic sensor, 3, 20, 77
uncertainty, 79, 81, 153, 159
uniform boundedness, 44, 47, 50, 88, 93
uniform convergence, 51
uniform distribution, 137
uniqueness, 87, 97, 173, 188
unit sphere, see sphere

vanishing point, 65, 148
vehicle bus, 77
vehicle parameters, 3
vehicle trajectory, 77
vertices, see nodes
visibility, 15, 23, 63, 69, 157
visibility assessment, 9, 63, 157
visibility estimation, 5, 9, 13, 36, 42, 61, 75, 104,

115, 120, 135, 152, 153, 158
visibility lidar, 18
visible spectrum, 25
visual contrast, 6, 15, 17
visual perception, 25
visual perception threshold, 13, 16, 63
volume scattering, 32

wave properties, 13, 25
wavelength, 17, 27
wavelength independence, 13, 30, 33, 36
Weber contrast, see visual contrast
well-de�nedness, 50, 87
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