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1 Summary 

Global climate change has significantly impacted the terrestrial ecosystems and water 

cycles over the past century. This dissertation aims to further improve our knowledge 

of the linkages and interactions between vegetation, climate, streamflow, and drought.  

First, the current study investigated long-term variations in vegetation and climatic 

variables and their scale-dependent relationships by using Rhineland-Palatinate 

(Southwest Germany) as a case study area. Based upon the monthly normalized 

difference vegetation index (NDVI), precipitation and temperature data for six 

different vegetation types in two precipitation regimes (low and high precipitation 

regimes) of Rhineland-Palatinate, the temporal trends in the original time series of 

these variables and their relationships were examined. In addition, the further 

objectives were to evaluate which time-scale is dominantly responsible for the trend 

production found in the original data and find out the certain time-scales that represent 

the strongest correlation between NDVI and climatic variables (i.e., precipitation and 

temperature). A combined approach using the discrete wavelet transform (DWT), 

Mann-Kendall (MK) trend test and correlation analysis was implemented to achieve 

these goals. The trend assessment in the original data shows that the monthly NDVI 

time series for all vegetation types in both precipitation regimes have upward trends, 

most of which are significant. The precipitation and temperature data for six 

vegetation types in two precipitation regimes present weak downward trends and 

significant increasing trends, respectively. The most important time-scales 

contributing to the trend production in the original NDVI data are the 2-month and 

8-month events. For precipitation, the most influential ones are 2-month and 4-month 

scales. The 4-month periodic mode predominantly affects the trends in the original 

temperature data. The results indicate temperature is the primary driver influencing 

the vegetation variability over this study area, while there is a negative correlation 

between NDVI and precipitation for all vegetation types and precipitation regimes. 

For the scale-dependent relationships between NDVI and precipitation, the 2-month 
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and 8-month scales generally present the strongest negative correlation. The most 

significant positive correlation between NDVI and temperature is obtained at the 8- 

and 16-month scales for most vegetation types. The results might be valuable for 

water resources management as well as agricultural and ecological development 

planning in Rhineland-Palatinate, and also offer a helpful reference for other regions 

with similar climate condition.  

Then, this study presented a detailed regional investigation of the probabilistic and 

multi-scale relationships between streamflow and hydroclimatic variables 

(precipitation, temperature and soil moisture) and the potential links to large-scale 

atmospheric circulations over Baden-Württemberg, Southwest Germany. First, the 

joint dependence structure between seasonal streamflow and hydroclimatic variables 

was established using copulas. On the basis of the joint dependence structure, this 

study estimated the probability (risk) of hydrological droughts and floods conditioned 

upon two different scenarios of hydroclimatic variables for different seasons over the 

study area. Then, it was evaluated how the relationships between hydroclimatic 

forcings and streamflow vary among different temporal scales using wavelet 

coherence. The results reveal that the strong positive coupling between streamflow 

and both precipitation and soil moisture occurs at most temporal scales, particularly at 

decadal scales, while the multi-scale relationships between temperature and 

streamflow are significantly weak compared to precipitation and soil moisture. The 

connections between streamflow variability and large-scale atmospheric circulations 

were explored by using composite analysis. Although the atmospheric circulation 

patterns vary in different seasons, it can be found that the high streamflow anomalies 

for most seasons over Baden-Württemberg are related to strong westerly atmospheric 

circulations that play an important role in favoring the warm and moist air from the 

North Atlantic Ocean towards the study area and thus enhancing the precipitation. 

Moreover, the low streamflow anomalies are generally linked to the northerly 

circulations that induce the movement of cold air from northern Europe towards this 

study area and thus result in the reduced precipitation. 

Finally, a general probabilistic prediction network was developed in this dissertation 
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for hydrological drought examination and environmental flow assessment. This 

methodology is divided into three major components. First, the joint streamflow 

drought indicator (JSDI) was proposed to describe the hydrological dryness/wetness 

conditions based on the monthly streamflow data. The JSDI relies on a 

high-dimensional (12-d) multivariate probabilistic model to establish a joint 

distribution model. In the second part, the drought-based environmental flow 

assessment method was introduced, which provides dynamic risk-based information 

about how much flow (the environmental flow target) is required for drought recovery 

and its likelihood under different hydrological drought initial situations. The final part 

involves estimating the conditional probability of achieving the required 

environmental flow under different precipitation scenarios according to the joint 

dependence structure between streamflow and precipitation. Two catchments in 

Germany were used to examine the usefulness of this network. The results show that 

the JSDI can provide an overall assessment of hydrological dryness/wetness 

conditions and does well in identifying both drought onset and persistence. The 

method also allows quantitative prediction of targeted environmental flow that is 

required for hydrological drought recovery and evaluates the corresponding risk. In 

addition, the results confirm that the general network can estimate the conditional 

probability associated with the required flow under different precipitation scenarios. 

The presented methodology offers a promising tool for water supply planning and 

management and for environmental flow assessment. The network has no restrictions 

that would prevent it from being applied to other basins worldwide.  

 

Keywords: NDVI; climatic variables; multi-scale relationship; hydrological drought; 

atmospheric circulations; probabilistic prediction network; environmental flow 

assessment; Germany 
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2 Zusammenfassung 

Der globale Klimawandel hat deutlich die terrestrischen Ökosysteme und 

Wasserkreisläufe im vergangenen Jahrhundert beeinflusst. Diese Dissertation zielt 

darauf ab, unsere Kenntnisse über die Zusammenhänge und Wechselwirkungen 

zwischen Vegetation, Klima, Hydrologie, und Trockenheit zu verbessern. 

Der erste Teil  dieser Studie untersuchte die langfristigen Veränderungen der 

Vegetation und der Klimavariablen und ihre maßstabsabhängigen Beziehungen in 

Rheinland-Pfalz (Südwest-Deutschland). Basierend auf dem monatlichen normierten 

Differenzvegetationsindex (NDVI), Niederschlags- und Temperaturdaten für sechs 

verschiedene Vegetationstypen in zwei Niederschlagsregimes (niedrige und hohe 

Niederschlagsregimes), untersuchte diese Studie die zeitlichen Trends in der 

ursprünglichen Zeitreihe dieser Variablen und ihrer Beziehungen. Darüber hinaus 

wurden die verschiedenen Zeithorizonte nach ihrem Einfluss auf die 

Trendentwicklung evaluiert, um hierdurch die stärksten Korrelationen zwischen 

NDVI und den Klimavariablen (u.a. Niederschlag und Lufttemperatur) zu 

identifizieren. Hierfür wurde ein kombinierter Ansatz aus diskreter 

Wavelet-Transformation (DWT), Mann-Kendall (MK) Trendtest und 

Korrelationsanalyse verwendet. Die Trendermittlung im ursprünglichen Datensatz 

zeigt, dass die monatlichen NDVI Zeitreihen für alle Vegetationstypen in beiden 

Niederschlagsregimen statistisch signifikante Aufwärtstrends aufweisen. Die 

Temperatur- und Niederschlagsdaten  beider Niederschlagsregime einen schwachen 

Abwärtstrend bzw. eine signifikante Erhöhung des Trends auf. Die wichtigsten 

Zeitskalen für die Trendentwicklungn der ursprünglichen NDVI-Daten liegen im 

Bereich von 2 bzw. 8 Monaten. Während für den Niederschlag die 2- Monats und 

4-Monats-Skalen am einflussreichsten waren, so zeigte für die Temperatur lediglich 

die 4-Monatsskala einen signifikanten Einfluss. 

Die Korrelationsanalyse zwischen den Klimaparametern und dem NDVI zeigt für alle 

Niederschlagsregime und Vegetationstypen eine positive Korrelation für die 

Temperatur und eine negative für den Niederschlag. Betrachtet man dies auf 



VI 

verschiedenen Zeitskalen, so sind die negativen Korrelationen zwischen Niederschlag 

und NDVI für die 2- und 8-Monatsskalen besonders stark ausgeprägt Die wichtigsten 

positiven Korrelationen zwischen NDVI und Temperatur zeigen die 8- bis 

16-Monatsskalen für die meisten Vegetationstypen.  

Die Ergebnisse der Arbeit können für das Wasserressourcenmanagement in 

Rheinland-Pfalz verwendet werden, und bieten eine hilfreiche Referenz für andere 

Regionen mit ähnlichen klimatischen Bedingungen. 

Im zweiten Teil dieser Studie wurden detaillierte regionale Untersuchungen der 

probabilistischen und multiskalen Beziehungen zwischen Abfluss und 

hydroklimatischen Variablen (Niederschlag, Temperatur und Bodenfeuchte) und 

mögliche Verbindungen zu großräumigen atmosphärischen Zirkulationen über 

Baden-Württemberg, durchgeführt. Zunächst wurde die gemeinsame 

Abhängigkeitsstruktur zwischen saisonalem Abfluss und hydroklimatischer Variablen 

per Copula Methodik analysiert. Auf Grundlage gemeinsamer Abhängigkeitsstrukturn 

konnten in zwei verschiedenen Szenarien, die Wahrscheinlichkeiten (Risiko) für 

hydrologische Dürren und Überschwemmungen anhand hydroklimatischer Variablen 

für verschiedene Jahreszeiten geschätzt werden. Im Anschluss wurden die 

Beziehungen zwischen hydroklimatischem Antrieb und Abflussänderung bei 

unterschiedlichen Zeitskalen-Wavelet-Kohärenzen untersucht. Die Ergebnisse zeigen, 

dass starke positive Kopplungen zwischen Abfluss und sowohl Niederschlag als auch 

Bodenfeuchte auf sämtlichen Zeitskalen aber besonders stark in der dekadischen 

Zeitskal existieren. Im Gegensatz hierzu sind die multiskalen Beziehungen zwischen 

Temperatur und Abfluss deutlich schwächer ausgeprägt.  

Im dritten Teil dieser Arbeit wurden die Verbindungen zwischen 

Abflussschwankungen und großräumigen atmosphärischen Zirkulationen anhand von 

Verbundanalysen untersucht. Als Untersuchungsgebiet diente Baden-Württemberg, da 

hier die Datenverfügbarkeit größer war als im ursprünglichen Untersuchungsgebiet. In 

der Regel werden Abflussanomalien mit hohen Abflüssen mit Großwetterlagen mit 

westlicher Strömung in Zusammenhang gebracht, die warme, feuchte Luftmassen aus 

dem Nordatlantik in Richtung Untersuchungsgebiet bringen und somit zu starken 
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Niederschlagsereignissen führen können. Abflussanomalien mit niedrigen Abflüssen 

sind hingegen mit nördlichen Strömungen n verbunden, die kalte und trockene Luft 

aus Nordeuropa ins Untersuchungsgebiet bringen unzu geringen Niederschlägen 

führen. 

Im letzten Teil der Dissertation wurde ein allgemeiner probabilistischer 

Vorhersageansatz zur Vorhersage von hydrologischen Dürren entwickelt. Dieser 

Ansatz wurde in drei Hauptkomponenten unterteilt. Erstens wurde ein “joint 

streamflow drought indicator” (JSDI) entwickelt um die hydrologischn 

Trocken/Feucht Bedingungen basierend auf monatlichem Abflussdaten zu 

beschreiben. Der JSDI beruht auf einem hochdimensionalen (12-d) multivariaten 

Wahrscheinlichkeitsmodell. Zweitens wurde eine dürrebasiert Bewertungsmethode 

eingeführt, welche dynamische risikobasierte Informationen darüber bietet, wieviel 

Abfluss für eine Minderung bzw. Erholung von einer hydrologischen Dürre benötigt 

wird. Der dritte Teil schätzt die bedingte Wahrscheinlichkeit, ob die erforderlichen 

Abflüsse zur Minderung der hydrologischen Dürre in unterschiedlichen 

Niederschlagsszenarien eintreten werden. Für die Analysen wurden zwei 

Flusseinzugsgebiete in Deutschland verwendet, um die Anwendbarkeit dieses 

Ansatzes zu evaluieren.  

Die Ergebnisse zeigen, dass die JSDI zur  Gesamtbeurteilung der hydrologischen 

Trocken/Feucht Bedingungen geeignet ist und bei der Identifizierung von 

Trockenheitbeginn und –dauer gute Ergebnisse erzielen kann. Das Verfahren 

ermöglicht zudem quantitative Vorhersagen für die benötigten klimatischen 

Rahmenbedingungen zur Erholung von hydrologischen Dürren. Darüber hinaus 

bestätigen die Ergebnisse, dass der Ansatz die bedingte Wahrscheinlichkeit mit der 

erforderlichen atmosphärischen Strömung unter verschiedenen 

Niederschlagsszenarien schätzen kann. Die vorgestellte Methode bietet ein 

vielversprechendes Werkzeug für die Planung und das Management der 

Wasserversorgung. Es bestehen keine Restriktionen, die eine Anwendung auf andere 

Flussgebiete verhindern würde. 
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8 Chapter 1: Introduction 

1.1 General introduction 

Changes in climate have resulted in the altered water cycles on regional and global 

scales, thus directly impacting the ecosystems and socio-economic activities humans 

depend on. It has been widely recognized that vegetation, climate and streamflow are 

crucial components in the water cycle and they are dynamically affected by each other. 

In general, there exists a strong connection between climate and vegetation zones on a 

global scale, such as the dry subtropics related with subtropical deserts, zones of 

temperate climate with temperate/boreal forests, and the humid tropics with the 

tropical forests (Brovkin, 2002). Vegetation covers a major part of the Earth and 

includes all plants from trees to bushes and grass which play a significant role in the 

water cycle. Climate determines the primary types of terrestrial vegetation, e.g., 

coniferous forest, grassland, and desert. Terrestrial vegetation could act as a sensitive 

indicator of climatic and environmental changes at various spatial regions (Chuai et 

al., 2013; Zhang et al., 2003). In turn, vegetation also exerts some degree of impact 

on climate and weather through evapotranspiration, water conductivity, albedo, 

atmospheric gas composition, and physical feature of land surfaces (Brovkin, 2002). It 

is thus desirable to investigate the relationship between vegetation and climate in 

order to provide better understanding of future ecosystem dynamics under varying 

climate conditions, especially considering the disparity in various vegetation types.    

Climate variability also affects the sustainability and availability of the water 

resources on both global and regional scales. Climatic variables can directly be used 

as a significant indictor in capturing the timing and variability of streamflow 

(Intergovernmental Panel on Climate Change (IPCC), 2008). For most watersheds, the 

main impact factor on streamflow is precipitation including the rainfall and snowfall. 

Changes in temperature could also have an important effect on the magnitude and 

temporal characteristics of streamflow, thus impacting the water resources 

management (Luce and Holden, 2009; Ma et al., 2010; Nijssen et al., 2001). Moreover, 
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the climate variability may reduce or enhance the influence of human-involved 

pressures on river and groundwater systems. For instance, extreme low-precipitation 

events may drive human to pump more water from river for agricultural irrigation, 

drinking water supply and other water demands. Thus, in addition to the investigation 

of vegetation-climate connections, the estimation of the potential linkages between 

climate variability and streamflow is also important for efficient water resources 

management.  

Due to climate variation, the development in agriculture and industry and the 

increasing of population, there is a significant increase in the water demand from 

rivers and hydrological drought has become a serious environmental, social and 

economic issue in most regions of the world (Mishra and Singh, 2010). Hydrological 

droughts generally correspond to water deficit in the hydrological cycle such as the 

below-normal discharges in rivers and below-normal water levels in groundwater, 

lakes, and reservoirs (Van Loon, 2015). Hydrological droughts may affect the 

drinking water supply, irrigation, hydropower generation, water quality, disturbed 

riparian habitats, species composition and structure, and other socio-economic sectors. 

Within these issues, there is increasing demand to develop an appropriate indicator or 

methodology for hydrological drought identification and drought-based environmental 

flow assessment, particularly providing the estimation of drought risk and the 

recovery. 

The general goal of this dissertation is to further improve our knowledge of the 

linkages and interactions between vegetation, climate, streamflow, and drought. The 

study areas of the dissertation are located in Germany including Rhineland-Palatinate 

State, Baden-Württemberg State, and two catchments in Germany. The present study 

would be helpful for better water resources management, reasonable agriculture/forest 

strategies, as well as preparations for potential hydrological drought disasters in the 

study areas. Moreover, it has a great potential for providing a valuable reference for 

other regions worldwide.  
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1.2 Objectives of the research 

Therefore, the major objectives of the dissertation are:  

 to identify long-term variations in vegetation and climatic variables and their 

scale-dependent relationships (a case study in Rhineland-Palatinate); 

 to explore the probabilistic and multi-scale correlations between streamflow and 

hydroclimatic variables and the possible linkages to large-scale atmospheric 

circulations (a case study in Baden-Württemberg); 

 to propose a copula-based overall drought indicator to describe the hydrological 

dryness/wetness conditions and assess the environmental flow. 

1.3 Structure of the dissertation 

This dissertation is divided into six chapters. This chapter (Chapter 1) presents a 

general introduction with specific objectives of the study. Chapter 2 gives an overall 

introduction about vegetation, climate factors, streamflow, and drought. Chapter 3 

focuses on investigating long-term variations in vegetation and climatic variables 

(precipitation and temperature) and their scale-dependent relationships in 

Rhineland-Palatinate. Chapter 4 provides a detailed regional examination of the 

probabilistic and multi-scale connections between streamflow and hydroclimatic 

variables (precipitation, temperature and soil moisture) and the potential links to 

large-scale atmospheric circulations over Baden-Württemberg. In Chapter 5, this 

dissertation proposes a general probabilistic prediction network to identify the 

hydrological drought and drought recovery with environmental flow assessment. 

Chapter 6 gives overall conclusions and perspectives about the present research work. 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

9 Chapter 2: Introduction of vegetation and hydroclimatic variables   

2.1 Vegetation  

Vegetation is normally described as the overall characteristics of plant cover in an area. 

On one hand, vegetation plays a very important role in terrestrial ecosystem and is 

affected by a variety of environmental factors (e.g., climate, geomorphic process, and 

biotic process) and human disturbances (Ichii et al., 2002; Piao et al., 2010; Tourre, 

Jarlan et al., 2008; Wang et al., 2011; Zhou et al., 2014). The impact of climate on 

vegetation changes includes rainfall, drought, wind, snow avalanches and drifts, glaze 

storm, fires by lighting, as well as long-term climate variations (Burrows and Colin, 

1990). Geomorphic process includes soil erosion driven by water and wind, soil 

movements due to gravity, flooding, and the spatial characteristics of topography (e.g., 

plains, hills, deserts, rivers, and lakes) (Burrows and Colin, 1990). The influence of 

biotic process on vegetation changes generally refers to the mutual effect between 

different plants, plant disease, and insects. Moreover, the vegetation is also strongly 

impacted by human disturbances. For instance, agricultural lands are planted based on 

an annual plan. The variability in agricultural lands or forests may be disturbed by the 

management strategies taken, e.g., irrigation, adaptation policies, and afforestation. 

On the other hand, vegetation is able to regulate climate via the exchange of energy, 

water vapor, and momentum between land surface and atmosphere (Pielke et al., 

1998). Vegetation also has a significant impact on atmospheric CO2 and absorbs 

around one-third of anthropogenic fossil fuel emissions to the atmosphere by 

vegetation photosynthesis.  

2.2 Temperature and precipitation  

Temperature is a key factor in climate system. Numerous scientific evidences have 

shown that the global warming is increasing (IPCC, 2007). Based on the global 

temperature analysis carried out by national aeronautics and space administration 

(NASA)’s scientists, the average global temperature has increased by 0.8 °C since 
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1880. More importantly, two-thirds of this increase has taken place since 1975 

(Hansen et al., 2010). According to IPCC’s report based on climate model projections, 

the global surface temperature during the 21st century is probably to rise a further 0.3 

to 1.7 °C even under their lowest emissions scenario (IPCC, 2013). Although climate 

warming and the relevant impacts may vary from different areas, some direct results 

may include extreme climate events (e.g., drought, food, heavy snow, and heat waves), 

rising sea levels, precipitation patterns, as well as changing glaciers, permafrost and 

sea ice. Moreover, the effects are on vegetation growth and species extinctions. For 

humans, significant impacts may include the food security, migration because of the 

rising sea levels, and indirect mitigation and adaptation policies due to warming.      

Precipitation is a major component in the Earth’s water cycle, and connects the 

atmosphere, lands, and oceans. It is in the form of rain, freezing rain, sleet, and snow, 

but most precipitation falls as rain. As we know, precipitation is unevenly distributed 

over different regions of the Earth. The spatial distribution of precipitation is impacted 

by large-scale atmospheric circulations. In general, the Earth’s atmosphere has zones 

with large-scale rising air and other zones with declining air, which varies by latitude. 

Rising air dominates near the equator and in the multitudes where tend to be wet 

regions, while the declining air is mainly observed in poles and subtropics where tend 

to be dry regions (Rodgers and Streluk, 2003). Moreover, the spatial patterns of 

precipitation are also influenced by topography and large bodies of water (e.g., lakes 

and oceans). In addition to the spatial variation, precipitation also varies over time. 

The temporal variability in global precipitation is strongly connected to the seasonal 

changes in the Earth’s heating and its influence on the movement of global pressure 

systems and air masses (Ritter and Michael, 2006). Also, precipitation has interannual 

variations. It has been well known that the El Niño–Southern Oscillation (ENSO) is a 

significant driver for the interannual variations in global and hemispheric precipitation 

patterns (Arkin, 1982; Bjerknes, 1969). New et al. (2000) documented that ENSO 

contributes around 38% of the interannual variance in globally-averaged land 

precipitation. Moreover, some other climate indices also significantly affect the 

temporal characteristics of precipitation on both local and global scales, e.g., Pacific 
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North American index (PNA) and North Atlantic Oscillation (NAO).  

2.3 Streamflow 

The water from the oceans returns to the Earth in the form of precipitation. Due to 

gravity, a part of the precipitation is taken into the ground as infiltration, and the other 

part directly runs downhill as surface runoff (Horton, 1933). The term “streamflow” 

generally refers to the amount of water flowing in a stream or river. The major effect 

on streamflow variability is precipitation in a basin. The short-term variability in 

streamflow is typically driven by seasonal climatic characteristics and patterns and 

weather conditions in a basin (Gleick, 1993). The streamflow also has a long-term 

trend. The long-term trend in streamflow may lead to permanent changes in 

ecosystem including the plants and animals relying on the river. The natural impacts 

on streamflow include precipitation (e.g., rainfall and snowfall), snowmelt, glaciers, 

permafrost, transpiration by plants, evaporation from soil and water bodies, 

groundwater, etc. Also, there are an amount of human-related impacts, such as 

agricultural and industrial uses, dam construction, water resources plans, and 

alterations of the natural streamflow channels. Moreover, the global warming also 

indirectly impacts the streamflow variability in different rivers.  

2.4 Drought  

Drought simply means the absence of water for a certain long period at a region where 

it is “not normal” as compared to “normal” condition. Drought is a slow-onset natural 

disaster and may last for a few days, months or years. It could take place in all climate 

regions, but its characteristics and influences vary greatly among different areas. The 

main characteristics include the beginning, termination, frequency, severity, and 

duration for a given return period (Mishra and Singh, 2010; Tatli and Türkes, 2011). 

Drought has negative impacts on agriculture, industry, water supply and management, 

ecosystem and social-economical sectors. The definition of drought varies among 

different variables that include hydroclimatic variables (e.g., temperature, 

precipitation, streamflow, and soil moisture), agricultural variables and socioeconomic 

factors. According to different definitions, droughts are commonly classified into five 
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types including meteorological, agricultural, hydrological, and socio-economic 

droughts. Meteorological drought usually refers to below-precipitation over a region 

during a period. Hydrological drought is described as lacking surface and subsurface 

water resources in a hydrological system, including the abnormally low flows in rivers 

and abnormally low levels in groundwater, lakes, and reservoirs (Van Loon, 2015). 

Streamflow data are commonly used for hydrological drought system. Agricultural 

drought is the drought affecting crop growth or the ecology of the range. It is 

generally linked to the declining soil moisture. Socio-economic drought is that a water 

resources system fails to meet water demands for an economic good or social uses.  

In order to examine drought characteristics, drought indices are commonly developed 

for different drought classes, e.g., rainfall anomaly index (RAI; van Rooy, 1965), 

standardized precipitation index (SPI; McKee et al., 1993), the modified standardized 

precipitation index (MSPI; Türkes¸ and Tatli, 2009), surfacewater supply index (SWSI; 

Shafer and Dezman, 1982), crop-specific drought index (CSDI; Meyer and Hubbard, 

1995), Palmer drought severity index (PDSI; Palmer, 1965), soil moisture drought 

index (SMDI; Hollinger et al., 1993), China-Z index (CZI; Wu et al., 2001), 

vegetation condition index (VCI; Liu and Kogan, 1996), and joint deficit index (JDI, 

Kao and Govindara, 2010).  



 

 

10 Chapter 3: Identifying long-term variations in vegetation and 

climatic variables and their scale-dependent relationships: a case 

study in Rhineland-Palatinate 

3.1 Introduction 

It has been well understood that terrestrial vegetation acts as a sensitive indicator of 

climatic and environmental changes at various spatial scales, from regional to global 

(Chuai et al., 2013; Zhang et al., 2003). In recent decades, monitoring vegetation 

dynamics and detecting their responses to climate fluctuations have received a 

significant attention and become an essential aspect of climate change research, 

particular with the help of the satellite-based normalized difference vegetation index 

(NDVI) that is generally used as a proxy of vegetation productivity (Forkel et al., 

2013; Horion et al., 2013; Mao et al., 2012; Miao et al., 2013; 2015; Rees et al., 2001; 

Running and Nemani, 1988; Vicente-Serrano et al., 2008). For instance, Ichii et al. 

(2002) pointed out that there was a strong relationship between NDVI and both 

temperature and precipitation in northern and southern semiarid regions of the Earth 

during the period 1982–1990. They also compared the global NDVI trends and found 

that increasing NDVI trends in the mid- and high latitudinal zones of the Northern 

Hemisphere were connected to the upward temperature trends, while the decreasing 

NDVI trends in southern semiarid regions were attributed to the declining trends in 

precipitation. Several studies suggested that there is an increase in vegetation 

variability during the past two decades in the mid- and high latitudinal regions of East 

Asia dominantly due to the lengthened growing season (Kawabata et al., 2001; Park 

and Sohn, 2010; Zhou et al., 2003). He et al. (2012) examined relationships between 

vegetation (NDVI) and climatic factors on seasonal and inter-annual scales over 

Canadian ecosystems and revealed that temperature was the dominant driver for 

seasonal variability in NDVI and the correlation between precipitation and NDVI is 

weaker but still significant. Udelhovena et al. (2009) evaluated the lag-time 
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correlation between precipitation and NDVI in Spain for the period from 1989 to 1999. 

They presented that a significant lagged correlation between rainfall and NDVI was 

observed in most areas of Spain at 1-month lag time. This study focuses on 

investigating the trends of vegetation and climatic variables as well as their 

relationships in Southwest Germany with the selection of Rhineland-Palatinate state 

as the study area. Rhineland-Palatinate is a typical humid area and this investigation 

may also provide a reference for other regions with close climate features.   

The geographic time series (e.g., NDVI and climatic variables) are generally 

non-stationary and contain different frequency components, e.g., seasonal variations, 

long-term and short-term fluctuations (de Beurs and Henebry, 2005; He et al., 2012). 

Such components could provide detailed multi-scale information that contributes to 

the trend production in different geographic time series and affects their correlations. 

The wavelet transform (WT), which can provide a time–frequency representation of a 

signal, is a quite useful tool to determine multi-scale and non-stationary processes in a 

time series (Martínez and Gilabert, 2009). To date, the WT technique has been 

commonly applied to analyze the non-stationary trends and periodicities in 

hydroclimatic time series (Pisoft et al., 2004). For instance, Jung et al. (2006) 

identified the trends in climatic factors (i.e., temperature and precipitation) over South 

Korea by employing the wavelet-based methods. They found a warming linear trend 

in the winter temperature at decadal and inter-decadal scales. Partal (2010) combined 

WT and the Mann-Kendall (MK) trend test to examine potential trends in streamflow 

data in Turkey. Nalley et al. (2012) used the discrete wavelet transform (DWT) and 

MK test to detect trends in streamflow and precipitation over Canada.  

In order to better understand the temporal variations in vegetation and climatic 

variables over Rhineland-Palatinate (Southwest Germany) and the potential impacts 

of climatic change on vegetation, this study aims to explore the multi-scale trends in 

NDVI and climatic variables and their scale-dependent relationships, particularly with 

different vegetation types and precipitation regimes considered. Therefore, the main 

aims of this chapter are: (1) to examine the trends in monthly NDVI temperature and 

precipitation data at different time-scales for different vegetation types and 

http://onlinelibrary.wiley.com/doi/10.1002/rra.1264/full#bib28
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precipitation regimes in Rhineland-Palatinate, by co-utilizing the DWT technique and 

MK trend test; (2) to determine which time-scale is predominantly responsible for the 

possible trend production in these original time series; (3) to investigate the 

scale-dependent relationships between NDVI and climatic variables for various 

vegetation types and precipitation regimes.   

3.2 Study area and materials  

3.2.1 Study area 

Rhineland-Palatinate state is situated at Southwest Germany (between 

48° 57' –50° 59' N and 6° 5' –8° 31' E), covering an area of 19,853 km
2
 (Fig.3.1). It 

has an average elevation between 400 and 600 m. The largest river is the Rhine River 

which runs through this state from the southeast to the northeast. The northern part of 

this study area is composed of woodlands and cultivated fields which are crossed by 

deeply eroded river valleys. Several mountain chains in north Rhineland-Palatinate 

are separated from each other by some tributaries of the Rhine River. The 

southeastern portion includes Rhine River valley, which is also the main agricultural 

and cultivated area in this state. Rhineland-Palatinate is characterized as a mild 

temperature humid climate with warm summers and no dry season. This region is 

mainly dominated by frequently changing low pressure systems and anticyclones 

(Dong and Menzel, 2016). The state’s mean annual total precipitation varies from 540 

mm in the central part (Rhine valley) to 1,100 mm on the higher regions. The mean 

annual temperature ranges from 6°C (the higher regions) to 10°C (lower valleys). The 

state is dominated by forestland (covering approximate 50% of the entire state), 

followed by cropland, grassland, urban and water area (Hellebrand et al., 2009).  

3.3.2 Meteorological and remote sensing datasets and data pre-processing 

The gridded monthly total precipitation and mean temperature dataset (during 

1982–2006) across Rhineland-Palatinate (1 km×1 km spatial resolution) was obtained 

from Germany's national meteorological service (Deutscher Wetterdienst, DWD) 

(https://werdis.dwd.de/werdis/start_js_JSP.do). This continuous gridded dataset was 

derived from daily observations in the station network of the DWD with high quality. 
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The geographic distribution of the precipitation and temperature stations over this 

study area is showed in Fig. 3.1a.  

The NDVI data were extracted from global inventory modeling and mapping studies 

(GIMMS) dataset derived by the advanced very high resolution radiometer (AVHRR) 

sensor aboard national oceanic and atmospheric administration (NOAA) satellites 

(NOAA-7, 9, 11, 14, 16 and 17) (http://glcf.umd.edu/data/gimms/). This dataset has 

been widely used since 1981 (Townshend 1994; Tucker et al., 2005; Julien and 

Sobrino, 2010). The NDVI dataset is given with a spatial resolution of 8 km and is 

available from July 1981 to December 2006 (the period from January 1982 to 

December 2006 was considered in this study). The monthly NDVI data used in the 

current study were produced from processed 15-day (13–16 days) NDVI composites, 

using the maximum value compositing (MVC) method (Borak et al., 2000; Holben, 

1986; Martínez and Gilabert, 2009; Zhu et al., 2013).  

A landuse/vegetation map in 2000 for Rhineland-Palatinate (the landuse was not 

significantly changed during the past three decades) was applied to identify different 

vegetation types, with a spatial resolution of 1 km (Fig. 3.1b). Six vegetation types 

(i.e., cropland, orchard, grassland, deciduous forest, coniferous forest and mixed 

forest) in this vegetation map were considered in this study excluding the urban land 

and water. To be in agreement with the gridded metrological map and vegetation map, 

the AVHRR-NDVI dataset was simply resampled into a spatial resolution of 1 km.  

To assess the variations of NDV and climatic factors and their relationships in 

different precipitation conditions, this study area was separated into two precipitation 

regimes: the high and low precipitation, based on the mean annual total precipitation 

(828 mm) over this study area (based on the data from 1982 to 2006) (Fig. 3.1c). It 

can be found that the low precipitation regime is dominantly located in valleys and 

low lands and the high precipitation regime is mainly concentrated in up lands. 

According to the vegetation type and precipitation regime maps, NDVI, temperature 

and precipitation values during 1982–2006 for each vegetation type in two 

precipitation regimes were extracted. The spatially-averaged monthly time series of 

NDVI, total precipitation and mean temperature, corresponding to six different 

http://glcf.umd.edu/data/gimms/
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vegetation types in two precipitation regimes, were then generated over the period 

1982–2006, respectively.  

 

Figure 3.1 Locations of DWD meteorological stations and elevation in 

Rhineland-Palatinate, southwestern Germany (a). The map of vegetation types in 

Rhineland-Palatinate (b). The map of two precipitation regimes in 

Rhineland-Palatinate (c). 

 

3.3 Methods and data processing 

3.3.1 Wavelet transform and discrete wavelet transform 

The wavelet transform is a mathematical technique that can decompose a signal into 

multiple lower resolution levels by controlling the scaling and shifting factors of a 

single wavelet function (mother wavelet) (Torrence and Compo, 1998). The wavelet 

transform of a signal produces a number of wavelet coefficients for different 

resolution levels (scales) and detect the periodic components in a signal (Nalley et al., 

2012; 2013). The higher resolution levels (scales) refer to the stretched version of a 

wavelet, and the corresponding wavelet coefficients provide the information about the 

low-frequency components of the signal. The lower resolution levels (scales) are the 

compressed version of a mother wavelet and aim to capture the high-frequency 

components of the signal. Since the wavelet transform can separate the time series 

into short, medium, and long periodic components, it can be used to identify the main 
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components which contribute to producing the trend in a time series (Kim, 2004). The 

wavelet transform generally involves two techniques: continuous wavelet transform 

(CWT) and the discrete wavelet transform (DWT). 

The CWT operates on smooth continuous functions and is able to identify and 

decompose signals at all scales (Kulkarni, 2000; Nalley et al., 2012; Partal and Küçük, 

2006). By contrast, the DWT operates on scales which have discrete number and the 

scales and locations in the DWT are generally based on the integer powers of two (a 

dyadic arrangement). This can simplify the process of transformation (decomposition) 

and reduce flexibility when compared to CWT which generates too much redundant 

information and is more difficult to implement (Percival, 2008). DWT is commonly 

applied in dealing with the signal containing jump or shifts. The wavelet function of 

DWT is expressed as:  
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where   represents the mother wavelet; j and k are integers that determine the 

wavelet dilation (scale factor) and translation, respectively; t represents time and   

is the translation factor (time step) of the wavelet over the time series; the variable s 

indicates the wavelet scale (scale factor); s0 is a specified fixed dilation step greater 

than 1; 0  denotes the location parameter greater than zero (Mallat, 1989). For a 

discrete time series xt, when occurring at a discrete time t (t =0, , 2, . . ., N-1, and N is 

an integer power of 2), the corresponding wavelet coefficient ( ),( kjW ) for the DWT 

is defined as: 
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here, the wavelet coefficient for the DWT is evaluated at scales js 2  and locations 

kj2 . 

Although the CWT has some disadvantages mentioned above, it can locate certain 

events in a signal and is therefore desirable to detect and determine the possible 
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seasonality characteristics (annual cycle) in the times series. The details of the 

calculations and properties of the CWT can be found in Torrence and Compo (1998).  

3.3.2 Mann-Kendal (MK) test and seasonal Mann-Kendal (MK) test 

The Mann-Kendall (MK) test is a non-parametric technique and widely used for the 

trend test in geographic time series (Helsel and Hirsch, 1992; Zhang et al., 2006). It 

does not need the time series to be normally distributed, and is simple to calculate 

(Gan, 1998; Kendall, 1975; Mann, 1945; Qin et al., 2010; Petrow et al., 2009).  

The standardized test statistic Z is calculated by:  
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where the statistic S is distributed approximately normally, n is the amount of tied 

groups, jt is the amount of data in the jth (tied) group, and xk and xi are variables. The 

null hypothesis is rejected at the α=0.05 significance level if 2/|| ZZ  , where 2/Z  

is the standard normal deviate, indicating that Z is statistically significant (Gan, 1998). 

However, the main disadvantage of the original MK test is that it does not consider 

the seasonality patterns which are usually found in the monthly geographic time series 

and could result in inaccurate interpretations of the MK test. To overcome this 

weakness, a modified Mann–Kendall test (an improved version of original MK test) 
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proposed by Hirsch et al. (1982) is able to account for seasonality and serial 

correlation factors in the data. Previous documents have provided the specific 

introduction about these two MK tests and their formulations (Gan, 1998; Hamed and 

Rao, 1998; Hirsch and Slack, 1984; Qin et al., 2010). 

The trend’s significance is evaluated by comparing the Z value (the statistic of the MK 

test) with the standard normal variate at the pre-specified significance level. In this 

study, the absolute value of this Z-value is compared to the critical two-tailed Z-value. 

The Z values in a two-tailed test for  of 5% are 1.96. This means that the absolute 

Z-value from the MK calculation greater than 1.96 shows that the trends are 

significant (Choi et al., 2011; Nalley et al., 2012).   

3.3.3 Data processing  

In DWT, decomposing the signals generates two kinds of coefficients, i.e., the details 

indicating the high-frequency components (noise) of the original signal, and 

approximation indicating the low-frequency components of the original signal. Also, 

the higher detail levels have lower frequencies (Dong et al., 2008; Partal, 2010; Sang 

et al., 2009).  

Wavelet choice, decomposition level, and extension mode (border conditions) are the 

important issues which should be carefully considered when performing the DWT 

(Liu et al., 2014; 2015b; Sang et al., 2013). In this study, the Daubechies (db) 

wavelets, as the widely-used mother wavelets for the DWT analysis in hydroclimatic 

data, were applied, because they have specific characteristics for localizing events in 

time series (Daubechies, 1988; Popivanov and Miller, 2002). 

The maximum decomposition level should be determined based on the specified time 

series (Sang et al., 2012). According to de Artigas et al. (2006) and Nalley et al. 

(2012), the highest decomposition level (J) for monthly series was assessed using: 

                          
)2(

)
12

(

Log

k

N
Log

J                     (3.8) 

where N is the number of data in monthly series and k is the number of vanishing 

moments of a db wavelet. In this study, there are 300 data points for the monthly 
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series for the period of 25 years. Daubechies wavelets (db5–db10) were tried for each 

monthly time series. The maximum levels for different Daubechies wavelets 

(db5–db10) were between 3.9 and 5.1 (for monthly time series). Hence, both four and 

five levels were considered in this study.  

In addition, the extension modes (border conditions) should also be considered in 

DWT analysis. Three common extension modes are: zero-padding, periodic extension, 

and symmetrization (Misiti et al., 1997). All modes have individual advantages and 

disadvantages (de Artigas et al., 2006) and were taken into consideration and tried.   

Thereby, for monthly series, four and five levels of decomposition were tried for each 

db wavelet (db5–db10) in three different extension modes. Two criteria were 

employed to determine the appropriate maximum levels, mother wavelets and the 

extension modes to be used in the data analysis for each series.  

The mean relative error (MRE) was firstly used (de Artigas et al., 2006). It is given as: 
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here, N is the length of a given signal (xi), ai is the approximation values of xi after 

decomposition. Furthermore, Nalley et al. (2012) introduced a criterion by using the 

relative error of the MK Z-values between the approximation and original data (er). 

The relative error (er) was computed as:  
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where Z0 is the MK Z-value of the original data and Za is the MK Z-value of the last 

approximation for the decomposition level.  

For all monthly time series of NDVI, precipitation and temperature regarding six 

vegetation types in two precipitation regimes considered in this study, lower MREs 

were obtained for four decomposition levels. Taking precipitation time series as an 

example, the MERs for four and five levels were 0.41–0.45 and 0.69–0.72, 

respectively. Thus, four decomposition levels were applied in the DWT. However, the 

MREs did not show significant difference among the different border conditions and 

db wavelet types used in four decomposition levels. The relative error (er) was further 
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used to assess the border conditions and db types. The border conditions and db 

wavelet types for these original time series of NDVI, precipitation and temperature for 

six vegetation types in two precipitation regimes were determined by their lowest er, 

but this value varies from one time series to another. For instance, the lowest value for 

the NDVI time series of deciduous forest in the high precipitation regime was 

produced when using the periodic border extension with db5 wavelet (er: 0.49), while 

the lowest value for the precipitation time series of coniferous forest in the low 

precipitation regime was obtained when zero-padding border with db8 wavelet used 

(er: 0.34).  

To examine the most dominant periodicities for trend production in a time series, the 

MK Z-value for each of the detail components (Ds) with the corresponding 

approximation (A) added (Ds+A) were compared to the MK Z-value of the original 

data for checking whether they are close (Nalley et al., 2012). 

3.4 Results and discussion  

3.4.1 Wavelet decomposition of original data  

Each original time series of spatially-averaged monthly NDVI, total precipitation and 

mean temperature for two precipitation regimes and six vegetation types was 

decomposed into four details (D1–D4) and an approximation (A4), by using the DWT 

approach. D1, D2, D3, and D4 correspond to the 2-month, 4-month, 8-month, and 

16-month scales, and A4 represents the approximation component of the original time 

series. The examples of applying the DWT approach on monthly NDVI, precipitation 

and temperature series are illustrated in Figs. 3.2, 3.3 and 3.4, respectively. Only the 

time series with deciduous forest in the high precipitation regime are presented due to 

the space limitation.  
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Figure 3.2 The original monthly NDVI time series for deciduous forest in the high 

precipitation regime and its transforms into four decomposition levels (i.e., D1–D4) 

and an approximation (A4) via DWT. 

 

Figure 3.3 The original monthly precipitation time series for deciduous forest in the 

high precipitation regime and its transforms into four decomposition levels (i.e., 

D1–D4) and an approximation (A4) via DWT. 
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Figure 3.4 The original monthly temperature time series for deciduous forest in the 

high precipitation regime and its transforms into four decomposition levels (i.e., 

D1–D4) and one approximation (A4) via DWT. 

 

 

Figure 3.5 Continuous wavelet power spectrum for detecting seasonality patterns in 

the monthly time series of original NDVI (a), precipitation (b) and temperature (c) for 

deciduous forest in the high precipitation regime. The low wavelet power is shown in 

blue and high power in red and orange. The thick contours indicate the 5% 

significance level. The black line indicates the cone of influence (COI) (to reduce the 

edge effect).    

 

To identify the seasonality patterns in monthly NDVI, mean temperature and total 

precipitation time series, the CWT approach was used. According to CWT analysis, 

significant seasonality patterns may exist in a time series when it presents a stably and 
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consistently significant (at the 5% significance level) 1-year cycle (annual cycle) 

during 1982–2006. In addition to these original time series, the time series of wavelet 

components (details and approximations) of original data via the DWT decomposition 

may also present seasonality patterns (Choi et al., 2011). Hence, the seasonality 

patterns of those wavelet components (Ds and A4) and the combinations of the detail 

components with the approximation added (Ds+A4) were also detected by employing 

CWT analysis. A strong and consistent annual cycle is found in the time series of 

original NDVI and temperature, their D3 components and A4+D3 combinations. The 

rest of time series including the original precipitation data do not exhibit an evident 

annual cycle. Examples of applying of the CWT analysis to detect the seasonality 

patterns in the time series are indicated in Fig. 3.5.  

In order to examine trends in the original data (i.e., NDVI, temperature and 

precipitation) and the time series of the different wavelet components and the 

combinations (Ds+A4) obtained from the DWT decomposition, two MK tests as 

mentioned above were employed in this study. The original MK test was applied when 

the time series dose not reveal seasonality patterns and the modified MK test was used 

for the time series with strong seasonality.  

3.4.2 Wavelet-based trend analysis for NDVI, precipitation and temperature  

3.4.2.1 Monthly NDVI  

The MK Z-values of the original NDVI data, their wavelet components (Ds and A4), 

and the combinations (Ds+A4) for six vegetation types and two precipitation regimes 

are shown in Table 3.1. With respect to the original NDVI data, upward trends can be 

found in the monthly time series for all vegetation types in the high precipitation 

regime and three forest types show statistically significant MK Z-values (at the 5% 

significance level): deciduous forest, coniferous forest, and mixed Forest. The original 

NDVI time series for all vegetation types in the low precipitation regime indicate 

significant increasing trends over the 25 years (1982–2006). It is noticeable that the 

cultivated areas (cropland and orchard) in the low precipitation regime (accounting for 

the major part of agricultural areas and irrigated areas in this state) present the 
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strongest positive trends. The results of the MK test on the detail components (D1–D4) 

of each NDVI series indicate that all individual detail components reveal a mixture of 

non-significant positive and negative trends. The detail components reflect the abrupt 

fluctuations which are considered as the noise of the original signal. Although their 

trend directions are ambiguous, these details still imply the basic (detailed) 

information of the trend in the monthly NDVI data at different time-scales (Nalley et 

al., 2012; Partal and Küçük, 2006). When the approximations (A4) were added to the 

detail components (the combinations of Ds+A4), the MK Z-values become higher, 

many of them being statistically significant. Also, the trend directions of the 

combinations are consistent with those of their corresponding original data. This may 

be attributed to the high Z-values of the A4 components. This study focused on the 

detail components with the approximation added which can provide clear information 

to determine the most predominant periodic components responsible for the primary 

trend production in the original data, by comparing the closeness of their MK 

Z-values with those of the original data (Nalley et al., 2012). As shown in Table 3.1, 

although the predominant periodic components are not consistent for different 

vegetation types in both precipitation regimes, the most common one contributing to 

the trend production in the observed data is the D3 plus A4 (D3+A4). This means that 

the trends in the monthly NDVI time series over the study area are mainly affected by 

8-month periodic event. Additionally, D1 (2-month) component (with A4) for the 

grassland and deciduous forest in the high precipitation regime and coniferous and 

mixed forests in the low precipitation regime is observed to be the most influential 

component to affect the trends in the original data. D4 (16-month) component (with 

A4) for mixed forest in the high precipitation domain is found to be the most 

influential one.  
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Table 3.1 Mann-Kendall trend values of all NDVI time series for six vegetation types 

in the high and low precipitation regimes, including original time series, 

approximations (A4), details (D1–D4), and combinations of the details and the 

corresponding approximations. 

Series Cropland Orchards Grassland Deciduous forest Coniferous forest Mixed forest 

(a) High precipitation regime 

Original  0.351 1.835 1.707 3.811* 4.155* 3.952* 

D1 0.055 0.489 0.533 0.615 -0.051 0.467 

D2 0.423 -0.067 -0.075 -0.098 0.264 -0.026 

D3 0.061 1.315 1.288 1.476 0.681 1.517 

D4 1.735 -0.308 -0.356 -0.310 0.790 -0.310 

A4 0.373 1.710 1.354 6.056* 7.977* 7.490* 

D1+A4 1.193 1.086 1.566 4.007* 5.361* 4.671* 

D2+A4 0.788 0.597 0.720 2.753* 3.540* 3.419* 

D3+A4 0.317 2.232* 2.056* 4.241* 4.268* 4.807* 

D4+A4 2.111* 0.527 0.756 3.188* 6.370* 4.029* 

(b) Low precipitation regime 

Original  2.838* 3.034* 2.292* 2.420* 2.367* 2.090* 

D1 0.154 0.075 0.453 0.253 0.274 0.335 

D2 0.070 0.058 -0.003 0.027 -0.058 -0.003 

D3 1.032 0.937 1.045 0.829 1.045 1.099 

D4 -0.134 -0.050 -0.253 -0.304 -0.317 -0.348 

A4 3.290* 3.000* 2.801* 3.161* 3.089* 2.743* 

D1+A4 2.153* 1.940 1.916 2.081 1.876 1.820 

D2+A4 1.812 1.715 1.354 1.614 1.389 1.299 

D3+A4 3.108* 3.149* 2.501* 2.690* 3.027* 2.515* 

D4+A4 1.885 1.693 1.453 1.809 1.511 1.437 

The most influential periodic components for trends in the original data are shown in bold. 

*. The trend is significant at the 5% significance level. 

 

3.4.2.2 Monthly total precipitation  

In two pre-defined precipitation regimes, the original monthly total precipitation time 

series for each vegetation type present a negative MK Z-value, but none of them are 

statistically significant. This suggests that the precipitation may experience a 

decreasing trend in entire Rhineland-Palatinate during 1982–2006. In addition, there 

is no significant difference regarding the trend values in six vegetation types for both 

high and low precipitation regimes. It can be observed that the absolute MK Z-values 

of the A4 components are relatively high and the statistically significant values are 



24  Chapter 3: Identifying long-term variations in vegetation and climatic variables  

 

obtained in some cases of vegetation types, particularly for the high precipitation 

regime (Table 3.2). This also indicates that the trends in decomposed components (via 

DWT) of the original data might reflect some significant characteristics even though 

the original series does not present the significant trends. 

Table 3.2 Mann-Kendall trend values of all precipitation time series for six vegetation 

types in the high and low precipitation regimes, including original time series, 

approximations (A4), details (D1–D4), and combinations of the details and the 

corresponding approximations. 

Series Cropland Orchards Grassland Deciduous forest Coniferous forest Mixed forest 

(a) High precipitation regime 

Original  -0.880 -0.886 -0.879 -0.831 -0.632 -0.815 

D1 -0.302 -0.189 -0.191 -0.242 -0.272 -0.298 

D2 -0.132 -0.236 0.040 -0.196 -0.132 -0.149 

D3 0.042 0.119 0.352 0.003 0.036 0.072 

D4 -0.238 -0.111 -0.949 -0.298 -0.180 -0.150 

A4 -1.911 -1.680 -2.125* -1.928 -1.285 -1.873 

D1+A4 -1.053 -1.002 -1.143 -1.044 -0.809 -0.989 

D2+A4 -1.104 -0.996 -0.915 -1.223 -0.873 -1.107 

D3+A4 -1.526 -1.198 -1.422 -1.698 -1.285 -1.514 

D4+A4 -1.890 -1.370 -2.603* -1.911 -1.414 -1.749 

(b) Low precipitation regime 

Original  -0.796 -0.532 -0.872 -1.044 -0.731 -0.907 

D1 -0.255 -0.189 -0.224 -0.247 -0.253 -0.246 

D2 -0.224 -0.291 -0.192 -0.222 -0.204 -0.251 

D3 0.014 0.109 -0.043 -0.096 0.047 -0.031 

D4 -0.223 -0.142 -0.173 -0.246 -0.143 -0.181 

A4 -1.863 -1.220 -2.038* -2.430* -1.477 -2.075* 

D1+A4 -1.129 -0.803 -1.075 -1.319 -0.943 -1.200 

D2+A4 -0.894 -0.526 -0.960 -1.302 -0.674 -1.059 

D3+A4 -1.141 -0.611 -1.367 -1.528 -1.052 -1.420 

D4+A4 -1.706 -1.254 -1.697 -2.083* -1.273 -1.789 

The most influential periodic components for trends in the original data are shown in bold. 

*. The trend is significant at the 5% significance level. 

 

It is clear to notice that the trend directions of individual detail components become 

consistent with those of their corresponding original data after the addition of the 

approximations (A4). Table 3.2 also shows that the most predominant periodic 

components influencing the production of trends in the monthly total precipitation 

data for different vegetation types are not consistent in the high precipitation regime. 
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Most of the precipitation trend production are determined by the D1 component (with 

A4), except for orchards and grassland where the D2 (with A4) is found as the most 

predominant component. This shows that the prominent periodic components 

influencing the trend production in the original precipitation series are the 2- to 

4-month scales. In the low precipitation regime, the most influential component for all 

vegetation types is the 4-month scale.  

Table 3.3 Mann-Kendall trend values of all temperature time series for six vegetation 

types in the high and low precipitation regimes, including original time series, 

approximations (A4), details (D1–D4), and combinations of the details and the 

corresponding approximations. 

Series Cropland Orchards Grassland Deciduous forest Coniferous forest Mixed forest 

(a) High precipitation regime 

Original  3.607* 3.843* 3.432* 3.647* 3.459* 3.620* 

D1 0.082 0.126 0.060 0.117 0.090 0.074 

D2 -0.192 -0.127 -0.185 -0.166 -0.169 -0.151 

D3 2.757* 2.609* 2.731* 2.677* 2.757* 2.731* 

D4 -0.017 0.011 -0.081 -0.012 -0.065 0.009 

A4 3.957* 4.014* 3.839* 3.976* 3.847* 3.997* 

D1+A4 1.780 1.914 1.665 1.738 1.688 1.809 

D2+A4 1.173 1.248 1.068 1.147 1.079 1.188 

D3+A4 4.065* 4.295* 3.958* 4.065* 4.038* 4.187* 

D4+A4 2.027* 2.249* 1.915 2.016 1.925 2.040* 

(b) Low precipitation regime 

Original  3.418* 3.593* 3.607* 3.418* 3.553* 3.459* 

D1 0.125 0.133 0.101 0.125 0.098 0.111 

D2 -0.134 -0.117 -0.139 -0.124 -0.138 -0.115 

D3 2.542* 2.501* 2.650* 2.569* 2.609* 2.663* 

D4 0.001 -0.010 -0.022 -0.005 0.009 -0.016 

A4 3.598* 3.731* 3.894* 3.688* 3.594* 3.810* 

D1+A4 1.469 1.603 1.681 1.534 1.469 1.595 

D2+A4 0.866 0.962 1.044 0.957 0.896 1.013 

D3+A4 3.877* 4.038* 4.106* 3.931* 3.931* 4.025* 

D4+A4 1.823 1.962* 1.979* 1.869 1.834 1.943 

The most influential periodic components for trends in the original data are shown in bold. 

*. The trend is significant at the 5% significance level. 

 

3.4.2.3 Monthly mean temperature  

For the monthly mean temperature data, the original time series for all vegetation 
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types in two different precipitation regimes show statistically significant ascending 

trends (all MK Z-values greater then 3.4) and the difference of their MK Z-values is 

not apparent. This suggests that the significantly increasing trends could occur across 

the entire study area.  

Table 3.3 shows that the Z-values of individual detail components for six vegetation 

types and two precipitation regimes become higher and the trend directions become 

stable (positive values) and consistent with the respective original temperature data 

after adding approximations (A4). As illustrated in Table 3.3, the D3 component (plus 

A4), representing the 8-month scale is observed to be the most important periodic 

component in impacting the trend production of the original temperature data.  

3.4.3 Lag-times and scale-dependent (wavelet) correlations between NDVI and 

climatic variables  

3.4.3.1 NDVI and precipitation 

To evaluate the response of vegetation dynamics to regional climatic fluctuations in 

Rhineland-Palatinate during the period 1982–2006, this study examined the 

relationships between the NDVI and climatic variables for different vegetation types 

and precipitation regimes. In both precipitation regimes, a statistically significant 

negative correlation (at the 1% level) between NDVI and precipitation (original data) 

can be found in all vegetation types (Table 3.4). It can be inferred that the available 

moisture in both high and low precipitation regimes is sufficient for the vegetation 

growth. However, redundant precipitation or consistent rainy days may decrease the 

temperature, which is not beneficial for the growth of plants and even will prohibit the 

growth (Chuai et al., 2013; Gitelson, 2004; Piao et al., 2006). Moreover, precipitation 

could cause more clouds and thus result in the reduction of incident radiation which 

would hinder photosynthesis of vegetation. These may partially accouter for the 

negative relationship between NDVI and precipitation for most vegetation cases over 

both precipitation regimes. What is more, the significant inverse relationships 

observed in the cultivated vegetation (cropland and orchards) may also be related with 
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the influencing of human disturbance, e.g., the cultivated measures and strategies. To 

detect the potential lagged response of NDVI to climatic variables, the 

cross-correlations between original monthly time series of these variables for six 

vegetation types and two precipitation regimes were carried out at five different 

monthly lags (i.e., 0- to 4-month lags). For each vegetation type in the high 

precipitation regime, the cross-correlations between NDVI and precipitation are 

dominated by slightly negative correlations at most lags and the highest negative 

cross-correlation function (CCF) values for all vegetation types are seen at lag zero 

months (0-month) (Fig. 3.6). Additionally, the precipitation occurred in previous one 

month still has negative influence on vegetation variation in the high precipitation 

regime, although the absolute CCF values are lower than the current month (0-month 

lag) and not statistically significant. With respect to vegetation types in the low 

precipitation regime (Fig. 3.7), the lag-time effect of precipitation on NDVI is quite 

similar to the higher precipitation region.  

 

Figure 3.6 Cross-correlation between NDVI and precipitation for six vegetation types, 

i.e., cropland (a), orchard (b), grassland (c), deciduous forest (d), coniferous forest (e) 

and mixed forest (f) in the high precipitation regime. The CCF values represent 

cross-correlation function values and lag number is by one month. The two solid lines 

represent the upper and lower confidence intervals (95%). The effect of 

autocorrelation has been corrected. 
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Figure 3.7 Cross-correlation between NDVI and precipitation for six vegetation types, 

i.e., cropland (a), orchard (b), grassland (c), deciduous forest (d), coniferous forest (e) 

and mixed forest (f) in the low precipitation regime. The CCF values represent 

cross-correlation function values and lag number is by one month. The two solid lines 

represent the upper and lower confidence intervals (95%). The effect of 

autocorrelation has been corrected. 

 

The scale-dependent relationships between NDVI and climatic variables were further 

investigated by means of DWT technique and Pearson’s correlation analysis, in order 

to determine which periodic component (the detail components with the 

corresponding approximation added) shows the strongest correlation (highest absolute 

Pearson’s correlation coefficients). Table 3.4 shows there is a statistically significant 

negative relationship between NDVI and precipitation for six vegetation types in the 

high precipitation regime at four time-scales. Although the R-values for each 

vegetation types vary from one time-scale to another, the most significant periodic 

components are generally found at 2- and 8-month scales (the D1 and D3 components 

with their A4 added), except for the cropland. In the low precipitation regime (Table 

3.4), all scale-dependent correlations between NDVI and precipitation are dominated 

by negative correlation coefficient for each vegetation type (Table 3.4). The D1 

component, indicating the 2-month scale, has the highest negative R-values among 

those periodic components for most vegetation types, except for the deciduous forest. 
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Table 3.4 Scale-dependent correlation coefficients between NDVI and precipitation 

for various vegetation types in the high (a) and low (b) precipitation regimes, the 

original time series the combinations of the details (D1–D4) and the corresponding 

approximations (A4). The effect of autocorrelation has been corrected. 

Series Cropland Orchards Grassland Deciduous Forest Coniferous forest Mixed Forest 

(a) High precipitation regime 

Original  -0.215** -0.170** -0.203** -0.203** -0.185** -0.199** 

D1+A4 -0.287** -0.254** -0.308** -0.271** -0.290** -0.277** 

D2+A4 -0.058 -0.065 -0.318** -0.065 -0.194** -0.064 

D3+A4 -0.286** -0.197** -0.339** -0.323** -0.163** -0.235** 

D4+A4 -0.377** -0.172** -0.269** -0.301** -0.191** -0.228** 

(b) Low precipitation regime 

Original  -0.210** -0.182** -0.220** -0.209** -0.217** -0.219** 

D1+A4 -0.282** -0.265** -0.282** -0.282** -0.275** -0.283** 

D2+A4 -0.051 -0.048 -0.056 -0.056 -0.057 -0.057 

D3+A4 -0.178** 0.002 -0.238** -0.306** -0.124* -0.267** 

D4+A4 -0.147* 0.032 -0.200** -0.267** -0.100 -0.232** 

The strongest correlation coefficients among different scales are shown in bold. 

**. Correlation is significant at the 1% level (2-tailed). 

*. Correlation is significant at the 5% level (2-tailed). 

 

3.4.3.2 NDVI and temperature 

The correlations between NDVI and temperature in all vegetation types are strong and 

statistically significant at the 1% level in both high and low precipitation regimes over 

the period 1982–2006 (Table 3.5). It can be concluded that the effect of temperature is 

mainly responsible for vegetation variation for all different vegetation types in this 

study area as compared to precipitation. In general, higher temperature provides more 

adequate heat condition which contributes to accelerating the photosynthesis and 

respiration of vegetation and also has positive effect on the length of the growing 

season, which is thereby beneficial for the vegetation growth (Wang et al., 2001; 

Weiss et al., 2004). This result is in agreement with some other studies in humid 

regions, which also found that the temperature is the main driver for the variation of 

NDVI (Cui and Shi, 2010; Guo, 2003). Additional cross-correlation analyses were 

also applied to determine the strength of the lag-time effect on the relationship 

between NDVI and temperature. As shown in Figs. 3.8 and 3.9, it is clear that the 
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most significant lag is obtained at zero months across all vegetation types and 

precipitation regimes considered, suggesting that NDVI provides the strongest 

positive correlation with temperature when no lag-time is involved. In addition, it can 

be found that the vegetation greenness in this study area is also positively sensitive to 

the temperature 1–3 months ahead.  

 

Figure 3.8 Cross-correlation between NDVI and temperature for six vegetation types, 

i.e., cropland (a), orchard (b), grassland (c), deciduous forest (d), coniferous forest (e) 

and mixed forest (f) in the high precipitation regime. The CCF values represent 

cross-correlation function values and lag number is by one month. The two solid lines 

represent the upper and lower confidence intervals (95%). The effect of 

autocorrelation has been corrected. 

 

Figure 3.9 Cross-correlation between NDVI and temperature for six vegetation types, 

i.e., cropland (a), orchard (b), grassland (c), deciduous forest (d), coniferous forest (e) 

and mixed forest (f) in the low precipitation regime. The CCF values represent 
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cross-correlation function values and lag number is by one month. The two solid lines 

represent the upper and lower confidence intervals (95%). The effect of 

autocorrelation has been corrected. 

 

The wavelet correlations between NDVI and temperature were also assessed over 

time-scales ranging from 2- to 16-month for different vegetation types and 

precipitation regimes. The scale-dependent correlations between NDVI and 

temperature are shown in Table 3.5. The strongest positive correlation for different 

vegetation types and precipitation regimes is generally obtained at 8- and 16-month 

scales (D3 and D4 component with approximation added) in the high precipitation 

regime, except for the cropland. There is an apparent increment in R-values for higher 

time-scales when compared to the lower time-scales for most vegetation types. For 

low precipitation regime, the strongest positive correlations between NDVI and 

temperature are generally at the higher periodic modes (i.e., the 8-month or 16-month) 

for most vegetation types.  

Table 3.5 Scale-dependent correlation coefficients between NDVI and precipitation 

for various vegetation types in the high (a) and low (b) precipitation regimes, the 

original time series the combinations of the details (D1–D4) and the corresponding 

approximations (A4). The effect of autocorrelation has been corrected. 

Series Cropland Orchards Grassland Deciduous Forest Coniferous forest Mixed Forest 

(a) High precipitation regime 

Original  0.229** 0.196** 0.239** 0.228** 0.249** 0.204** 

D1+A4 0.225** 0.166** 0.186** 0.181** 0.267** 0.177** 

D2+A4 -0.162** 0.450** 0.470** 0.464** 0.027 0.444** 

D3+A4 0.223** 0.530** 0.500** 0.618** 0.497** 0.631** 

D4+A4 0.216** 0.507** 0.515** 0.597** 0.538** 0.597** 

(b) Low precipitation regime 

Original  0.213** 0.187** 0.214** 0.223** 0.194** 0.211** 

D1+A4 0.170** 0.143* 0.153** 0.166** 0.165** 0.157** 

D2+A4 0.350** 0.345** 0.419** 0.384** 0.444** 0.419** 

D3+A4 0.510** 0.539** 0.504** 0.524** 0.505** 0.495** 

D4+A4 0.492** 0.507** 0.510** 0.521** 0.512** 0.504** 

The strongest correlation coefficients among different scales are shown in bold. 

**. Correlation is significant at the 1% level (2-tailed). 

*. Correlation is significant at the 5% level (2-tailed). 

 

 



32  Chapter 3: Identifying long-term variations in vegetation and climatic variables  

 

3.5 Conclusions  

This chapter examined the temporal trends of NDVI, precipitation and temperature for 

six vegetation types in two precipitation regimes of Rhineland-Palatinate (southwest 

Germany) and their relationships at different time-scales, by jointly utilizing DWT, 

MK tests and correlation analysis. The spatially-averaged monthly NDVI data for all 

vegetation types in both high and low precipitation regimes reveal upward trends 

during the period 1982–2006, most of which show statistically significant (at the 5% 

significance level) increasing trends except for the cultivated vegetations (i.e., 

cropland and orchard) and grassland. The observed monthly precipitation and 

temperature data for each vegetation types in two precipitation regimes indicate weak 

downward trends and statistically significant positive trends respectively. 

Wavelet-involved trend analysis was further conducted to examine the changing 

characterization and trend structures in the NDVI, precipitation and temperature data 

at various time-scales, and to determine the most dominant and effective periodic 

modes which could mainly affect the trends found in the original data. It can be found 

that the trend analysis based on wavelet decomposition clearly present the basic 

structures of trend in the original NDVI, precipitation and temperature data for 

different vegetation types of two precipitation regimes. Despite that the periodic 

modes producing the original trends vary among different vegetation types and 

precipitation regimes, some general conclusions could still be obtained. For instance, 

the 2-month and 8-month periodic modes are seen to be the most prominent 

time-scales in affecting the trends of the NDVI data for different vegetation types in 

both high and low precipitation regimes. For the precipitation data, the most 

influential periodic modes are 2-month and 4-month scales for different vegetations in 

high precipitation regime, and the most important mode is the 4-month event for all 

vegetation types in less precipitation region. The trend production in the observed 

temperature data for each vegetation type over this study area is predominantly 

affected by 8-month periodic event.  

Additionally, the investigation of relationships between NDVI and climatic variables 
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reflects that the original NDVI data of all vegetation types in both high and low 

precipitation regimes exhibit statistically significant negative correlation with 

precipitation. By contrast, there is a statistically significant positive relationship 

between NDVI and temperature for all vegetation types over the study area. It can 

therefore be speculated that the change in temperature plays a more important role in 

affecting the vegetation variability in Rhineland-Palatinate in comparison with 

precipitation. The analyses of cross-correlation present that the lag-times have a 

limited influence on the correlations between NDVI and both precipitation and 

temperature. The scale-dependent correlations between NDVI and climatic variables 

for different vegetation types in two precipitation regimes were also identified at 

various time-scales using DWT approach. For the NDVI-precipitation relationship, 

the most common time-scales with strongest negative correlation are the 2-month and 

8-month time modes. The best correlation between NDVI and temperature is found at 

higher time-scales (i.e., the 8-month and 16-month) in most vegetation cases. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

11 Chapter 4: Investigating the probabilistic and multi-scale 

relationships between streamflow and hydroclimatic variables and 

the possible linkages to atmospheric circulations: a case study in 

Baden-Württemberg 

4.1 Introduction 

Climatic variables such as precipitation and temperature have been widely recognized 

as key parameters in the hydrological cycle. Also, soil moisture affects the process of 

precipitation into streamflow and infiltration and thus largely determines the 

streamflow behavior and variability (Aubert et al., 2003). Understanding the linkages 

between hydroclimatic variables (e.g., precipitation, temperature, and soil moisture) 

and streamflow is significant for water resources planning and adapting appropriate 

practices to deal with the drought and flood risk under extreme conditions, and the 

knowledge obtained may also assist the improvement of hydrological modeling. In the 

past decades, numerous studies have focused on investigating the relationships 

between the variability in streamflow and changes in the hydroclimatic driving 

phenomena over different parts of the world. On the one hand, some researchers 

focused on employing deterministic correlation coefficient and linear statistical 

approaches such as multiple linear regressions to examine the influence of regional 

hydroclimatic variables on streamflow and the potential links between them (Brocca 

et al., 2008; Cayan, 1993; Cunderlik and Burn, 2004; Ficklin et al., 2009; Kletti and 

Stefan, 1997; Penna et al., 2011; Stewart et al., 2005). On the other hand, many 

scholars investigated the hydrological response to climate and environment variability 

based on conceptual or physically-based hydrological models, and also assessed the 

sensitivity of the streamflow to changes in the hydroclimatic drivers (Hamlet et al., 

2007; Jha et al., 2004; Zehe et al., 2010; Zhang et al., 2011). However, few studies 

have focused on building up the joint probabilistic dependence between streamflow 

and hydroclimatic factors and identifying the conditional risk of floods and 
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streamflow deficit events under varying hydroclimatic scenarios, particularly 

regarding the seasonal variation. This risk-based information would be of great value 

for water resources planning and drought and flood prevention. To identify the joint 

probabilistic dependence between streamflow and hydroclimatic variables, copulas 

would be an ideal tool. They have the advantage of allowing the dependence to be 

constructed independently from the marginal distributions, and thus it is possible to 

join different marginal distributions without any transformations (Genest and Favre, 

2007). There have been increasing applications of copulas in hydrological fields 

during the past decade such as flood and frequency analysis, return periods of 

hydrological events, forecasting of drought events, and geostatistical interpolation 

(Bárdossy and Li, 2008; Genest and Favre, 2007; Madadgar and Moradkhani, 2013; 

Salvadori and De Michele, 2004; Zhang and Singh, 2007). The joint probability 

model can pave a way to developing a conditional risk assessment of droughts and 

floods under various hydroclimatic forcings. 

In addition, it would also be beneficial for hydrological prediction to explore the 

temporal variation in the relationships between streamflow and hydroclimatic 

variables at different time scales. This investigation would help to understand how 

these multi-scale relationships evolve over time and at which time scales the 

hydroclimatic drivers may impact the variability in streamflow. The patterns of 

multi-scale relationship between different signals can be detected by various signal 

filtering techniques. Among them, wavelet analysis has recently been reported to be 

an effective way to capture the periodic behaviors within a time series and identify the 

coherence between different time series at various time scales (Mengistu et al., 2013; 

Özger et al., 2009; Sang et al., 2013; Torrence and Compo, 1998).  

In Baden-Württemberg (Southwest Germany), water resources management has been 

and continues to be an important environmental issue. For more effective water 

resources management in Baden-Württemberg, it is necessary to understand how 

streamflow responds to climate change and how streamflow and hydroclimatic factors 

are related, particularly focusing on the risk of flood and low flow under different 

hydroclimatic conditions. Several studies have focused on this topic in the past as a 
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basis for linking the streamflow variability to hydroclimatic changes over some 

specific regions or basins (in Baden-Württemberg) of interest (e.g., Huang et al., 2015; 

Schröter et al., 2013; Warrach-Sagi et al., 2008). However, few efforts have been 

made to identify the probabilistic dependence between streamflow and hydroclimatic 

forcings and the conditional risk of streamflow deficit events and floods under 

different hydroclimatic conditions. Moreover, there remains a lack of insight into the 

question how hydroclimatic factors may impact the changes in streamflow at 

inter-annual and longer-term scales.   

Atmospheric circulations are known to strongly affect precipitation variability and the 

changes in streamflow. There have been many studies focusing on changes in 

atmospheric dynamics and their links to regional hydrological processes and extreme 

flow events in Europe. Jacobeit et al. (2003) detected the connections between flood 

events and atmospheric circulation patterns for the past 500 years in central Europe. 

They described how some specific atmospheric circulation modes (as a dynamic 

factor) significantly influence the incidence of flood events. Bárdossy and Filiz (2005) 

identified the flood-producing atmospheric circulation patterns (CPs) by means of 

large-scale pressure fields over some meso-scale catchments in France and Spain. 

Bouwer et al. (2006) quantitatively assessed the impact of variation in atmospheric 

circulations on the changes in winter streamflow over northwest Europe. They 

reported that the frequency of the western atmospheric circulation over Europe could 

be a useful reference for investigating climate change impacts on streamflow in 

northwest Europe. Ionita et al. (2012) examined the streamflow in the Rhine River 

and the links to large-scale climate anomaly patterns in spring and autumn using 

composite analysis, and concluded that the variability of the atmospheric circulation 

pattern significantly affects the precipitation fluctuations and Rhine streamflow 

variability in both seasons. This study also seeks to explore the possible connections 

between streamflow in Baden-Württemberg and large-scale atmospheric circulations. 

This analysis may provide additional information to understand the streamflow 

variability based on prior knowledge from varying atmospheric circulation patterns.  

Therefore, the objectives of the study in this chapter are threefold. First, the current 
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study aims to quantify the seasonal probabilistic dependence structure between 

streamflow and hydroclimatic factors including precipitation, temperature and soil 

moisture over Baden-Württemberg by using copulas. The established dependence 

structure allows the evaluation of the risk of streamflow deficit events and floods 

conditioned on different hydroclimatic scenarios. Second, this study examines the 

coupling of streamflow and hydroclimatic forcings at different temporal scales based 

on wavelet coherency analysis. Third, this study further identifies the potential links 

between streamflow variability and large-scale atmospheric circulations in various 

seasons. 

4.2 Methodology 

4.2.1 Probabilistic measures of the dependence between streamflow and different 

hydroclimatic variables 

In this chapter, copulas are used to describe the probabilistic relationships between 

different variables. A copula is simply described as a joint distribution function from 

multiple variables (Laux et al., 2011; Madadgar and Moradkhani, 2013; Sklar, 1959). 

Based on Sklar’s theorem (Sklar, 1959), a bivariate distribution ),(, yxF YX for variables 

X and Y can be expressed by a copula that satisfies:  

                   ),())(),((),( 21 uuCyFxFCyxF YX                (4.1) 

C called a copula is the joint cumulative distribution function (CDF) and its form 

reflects the joint dependence structure ( )(1 xFu X  and )(2 yFu Y ).  

Modeling the joint dependence structure requires a well-fitted marginal distribution of 

each variable. To determine the best-fit distribution of the variables, five common 

theoretical probability distributions were compared: normal, gamma, Weibull, 

lognormal and exponential. The parameters of each distribution were estimated by the 

maximum likelihood method (Gyasi-Agyei, 2013). To determine the appropriateness 

of the theoretical distributions and discriminate between them, the chi-square 

goodness-of-fit was employed (Madadgar and Moradkhani, 2013; Massey, 1951). 

This test returns the p value, which should be greater than the significance level (5%) 
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to accept the null hypothesis. The most appropriate distribution was determined by the 

smallest statistics (the corresponding p value should be greater than the significance 

level as well) from the chi-squared test.  

 

Figure 4.1 The joint CDF of variable A fitted by a Frank distribution with the specific 

parameters (i.e., mean = 0, standard deviation = 1) and variable B fitted by normal 

(Gaussian) distribution with the specific parameters (i.e., mean = 1, standard deviation 

= 0) using frank copula with the parameter ( 3 ).   

 

After obtaining the best-fitted marginal distributions, an approximate bivariate copula 

is expected to join the margins and construct the joint dependence. In this study, one 

copula from the elliptical copula family (Gaussian) and two copulas (Clayton and 

Frank) from the Archimedean copula family were considered. The details of these 

copulas used in the current study are given in Appendix A. As an illustration, Fig. 4.1 

depicts the joint CDF of two different variables using a Frank copula.   

To select the copula that best models the dependence of the given data, a parametric 

bootstrapping goodness-of-fit test was used (Genest and Remillard, 2008; Madadgar 

and Moradkhani, 2013). The goodness-of-fit test is called the Cramér-von Mises test 

which computes the Cramér-von Mises statistic nS  as a measure of the distance 
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between the empirical and parametric copulas, given by: 

            
k

udCuCSn

]1,0[

2 )()( k

kuuuu ]1,0[),...,( 21                (4.2a) 

)( CCnC emp                      (4.2b) 

where empC  and C are the empirical and parametric copulas fitted to the given data 

with the size of n. The p values associated with the test statistics were calculated by 

the bootstrap sampling procedure using the Monte Carlo approach (Genest and Favre, 

2007). The null hypothesis ( CCH emp :0 ) is accepted when the p value is above a 

predefined significance level of 5%; otherwise, it is rejected and the copula would not 

be a good selection for the considered significance level. Among several copulas, the 

one with the smallest nS  and highest p value (greater than the significant level as 

well) will be considered the best-fitted copula (Madadgar et al., 2013).  

Once the copula-based joint distribution has been obtained, the conditional 

distributions of X under given Y can be generated and thus the conditional distribution 

can be computed. The conditional non-exceedance distribution of X ≤ x given Y= y 

can be given as follows (Zhang, 2005): 
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Given the conditional probability, one can also gain the probability of attaining the 

required streamflow (or the risk of streamflow deficit or flood) under the given 

conditions of hydroclimatic variables. In fact, an )(xFX  event could be defined as 

“dangerous” if )(xFX  exceeds (or never exceeds) a certain threshold (Salvadori and 

De Michele, 2004). The current study deems streamflow to be under a “streamflow 

deficit risk” (i.e., the streamflow drought threshold) if the corresponding streamflow 

value (here the streamflow PC1 value as introduced in Section 4.3) is less than the 

20th percentile of streamflow, denoted as %20)( droughtX
xF . Also, it is possible to 

obtain the conditional exceedance distribution of X > x given Y = y by 



41 

 

computing
)(
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


 . This study considers streamflow to be 

under “flood risk” when the corresponding streamflow value is greater than the 80th 

percentile of streamflow, denoted as %80)( floodX
xF . This study focused on three 

given scenarios of hydroclimatic variables: events at the 30th, 60th and 90th quantiles 

of hydroclimatic variables, denoted as %30)( yF
Y

, %60)( yF
Y

 and 

%90)( yF
Y

. It should be mentioned that one could conduct any scenarios of 

interest for hydroclimatic variables with self-defined streamflow deficit thresholds as 

long as the copula-based joint distribution has been constructed. Based on the joint 

distribution, one can use the probabilistic difference between streamflow and 

hydroclimatic variables to describe the sensitivity of streamflow to different 

hydroclimatic variables. The probabilistic difference is given as follows: 

                      dxyxFyxFDifference yYXyYX ))|()|((
21 ||         (4.4) 

4.2.2 Wavelet coherence  

Wavelet analysis provides a method to identify the information about the time series 

for different frequency intervals and is a powerful tool to analyze a nonstationary time 

series (Özger et al., 2009; Sang et al., 2013; Torrence and Compo, 1998). Wavelet 

coherence (WTC) is able to evaluate the relationships between different time series by 

identifying frequency bands and time intervals where two time series are related 

(Grinsted et al., 2004; Torrence and Webster, 1999). The WTC Rn of two time series is 

written as:  
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where   is a smoothing operator determined by the wavelet type used. )(sW X

n  and 

)(sW Y

n  are the wavelet transform functions of two time series X and Y. )(sW XY

n  is 

the cross-wavelet spectrum of X and Y. The statistical significance level (5%) is 

estimated using Monte Carlo methods (Grinsted et al., 2004). The term “coherence” 
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refers to the squared WTC, ranging from 0 to 1 (1 being the strongest coherence). 

More details of the WTC method can be in from Grinsted et al. (2004). 

4.3 Study area and data sets 

Baden-Württemberg is a federal state located in Southwest Germany with an area of 

35,752 km
2
. The geography varies greatly across this state and it has Germany’s 

largest continuous forest area, i.e., the Black Forest located in west 

Baden-Württemberg. The main rivers include the Rhine, Neckar (a tributary of the 

Rhine) and the Danube. The Black Forest is the main mountain range of the state and 

the Swabian Alps is another important mountain range extending from southwest to 

northeast. In Baden-Württemberg, the mean annual temperature is around 8.1 °C with 

a range between 3.3°C in the highest part of the Black Forest and about 10 .4 °C in the 

Rhine valley. The mean annual precipitation is between 660–2200 mm.  

The monthly streamflow anomalies from 37 streamflow gauges in 

Baden-Württemberg during the period 1948–2003 were provided by Landesverband 

Baden-Württemberg (LVBW). Table 4.1 shows the statistical information of the 

streamflow data. The locations of hydrological stations are shown in Fig. 4.2. The 

dominant patterns of the variability of monthly streamflow anomalies over 

Baden-Württemberg were examined using the empirical orthogonal function (EOF). 

The EOF can identify spatiotemporal modes which are ordered by considering their 

representations of data variance (Liu et al., 2013; Lorenz, 1956). The output of EOF 

analysis includes spatial patterns (EOFs), temporal coefficients (principal components, 

PCs), and eigenvalues (Liu et al., 2013). This analysis is an effective approach to 

examine the spatial and temporal variability of time series covering an area. Table 4.2 

indicates that first five EOF loadings of streamflow anomalies from 37 hydrological 

stations. It can be seen that the first EOF of streamflow has explained around 80% of 

the total variance. The corresponding monthly time series (PC1) of the first EOF were 

used to represent the time series of streamflow anomalies over Baden-Württemberg. 
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Table 4.1 Basic statistical information for the streamflow data. 

 Station Mean Max Min Std. Period 

MengenAddAblach 3.206 12.341 0.740 1.664 1948-2003 

PfaeffingenAmmer 0.955 3.863 0.152 0.560 1948-2003 

GiessenArgen 19.709 64.377 2.587 11.513 1948-2003 

HammereisenbachBreg 4.840 21.167 0.522 3.917 1948-2003 

BergDonau 38.446 152.744 6.103 24.812 1948-2003 

BeuronDonau 11.944 71.572 0.245 12.850 1948-2003 

HundersingenDonau 25.704 115.705 2.577 19.922 1948-2003 

KirchenHausenDonau 13.041 58.849 1.275 10.130 1948-2003 

EbnetDreisam 5.899 23.579 0.111 4.503 1948-2003 

MosbachElz 2.011 15.389 0.205 2.101 1948-2003 

PforzheimEnz 18.165 100.184 4.223 13.121 1948-2003 

RiederichErms 2.982 11.105 0.489 1.627 1948-2003 

PlochingenFils 9.390 55.619 0.530 7.424 1948-2003 

HopfauGlatt 4.112 28.084 0.449 3.753 1948-2003 

DoerzbachJagst 10.199 68.324 0.473 10.071 1948-2003 

JagstzellJagst 3.042 19.504 0.160 2.907 1948-2003 

UntergriesheimJagst 16.472 107.168 1.730 14.745 1948-2003 

HoelzlebruckJosbach 1.408 5.818 0.165 1.028 1948-2003 

SchwaibachKinzig 23.360 111.164 2.440 18.030 1948-2003 

KocherstettenKocher 16.287 100.754 1.100 14.326 1948-2003 

SteinKocher 23.713 134.983 2.971 19.502 1948-2003 

RiegelLeopoldskanal 13.987 74.679 0.002 13.577 1948-2003 

RotenfelsMurg 15.679 65.115 2.892 10.947 1948-2003 

HorbNeckar 14.243 82.322 1.122 11.478 1948-2003 

OberndorfNeckar 7.494 41.537 0.613 5.693 1948-2003 

PlochingenNeckar 47.471 238.673 4.921 33.552 1948-2003 

UntermuenstertalNeumagen 1.662 6.069 0.180 1.123 1948-2003 

BerghausenPfinz 1.855 8.703 0.333 1.252 1948-2003 

NeustadtRems 6.352 34.525 0.795 4.474 1948-2003 

NiederkirchRiss 4.424 11.270 1.464 1.542 1948-2003 

UnterschmeienSchmeie 1.574 6.318 0.168 1.098 1948-2003 

GerbertshausSchussen 10.908 40.013 2.417 6.045 1948-2003 

SennfeldSeckach 2.311 11.153 0.499 1.576 1948-2003 

BadMergentheimTauber 6.213 43.925 0.552 5.938 1948-2003 

ZellWiese 7.778 29.797 0.387 5.765 1948-2003 

PforzheimWuerm 2.804 23.907 0.489 2.121 1948-2003 

OberlauchringenWutach 8.912 44.699 0.575 7.015 1948-2003 
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Figure 4.2 Locations of 37 hydrological stations over Baden-Württemberg. 

 

 

 

 

 

 

 

 

 

Table 4.2 First five EOF loadings of monthly streamflow anomalies from 37 stations. 

Mode PC1 PC2 PC3 PC4 PC5 

Percent variance explained (%) 79.949 5.161 3.015 2.452 1.554 

Cumulative variance (%) 79.949 85.110 88.125 90.577 92.131 
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Figure 4.3 The monthly time series of streamflow PC1 (a), precipitation (b), 

temperature (c) and soil moisture (d).   
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The monthly precipitation, monthly temperature, and modeled monthly soil moisture 

were derived from climate prediction center (CPC) datasets with a spatial resolution 

of 0.5° (available from https://data.noaa.gov/dataset). These gridded products have 

been widely used for many regional hydroclimatic applications (e.g., Fan and van den 

Dool, 2008; Fujinami et al., 2015; Syed et al., 2014; Zhang et al., 2012). The time 

series of temperature, precipitation and soil moisture for Baden-Württemberg were 

gained by spatially averaging the grids over the study area. The monthly anomalies of 

temperature, precipitation and soil moisture were gained by subtracting their 

corresponding monthly means. For the analysis of atmospheric circulation, this study 

used the geopotential height anomalies (Z850), the zonal and the meridional wind (U- 

and V-wind) components at 850 hPa on a 2.5° × 2.5° grid during the period 

1948–2003, from the national centers for environmental prediction/national center for 

atmospheric research (NCEP/NCAR) R1 dataset (Kalnay et al., 1996). The time series 

of these variables are plotted in Fig. 4.3.  

4.4 Results 

4.4.1 Probabilistic relationships between streamflow and hydroclimatic variables 

In this section, this study first examined the joint dependence structure between 

streamflow (PC1 values) and hydroclimatic variables. Then the study identified the 

conditional probability of streamflow under different scenarios of hydroclimatic 

variables based on the established dependence structure. The joint dependence 

structure between streamflow and hydroclimatic variables in different seasons was 

constructed by a proper bivariate copula function through joining their marginal 

distributions. The Cramér-von Mises test was used to test the goodness-of-fit of the 

copulas, as mentioned in Section 4.2.1. Table 4.3 gives the goodness-of-fit statistics 

( nS ) of the Cramér-von Mises test for the dependence between streamflow and other 

hydroclimatic variables (i.e., precipitation, temperature, and soil moisture) in each 

season. Although the best-fitted copula varies in different cases, the Normal copula 

tends to be more appropriate to fit the joint dependence between streamflow and both 

precipitation and soil moisture for most seasons. The Frank copula seems to better 

https://data.noaa.gov/dataset
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join streamflow and temperature. Based on the best-fitted copula, it is also possible to 

obtain the joint CDF of streamflow and different hydroclimatic variables in four 

seasons as illustrated in Fig. 4.4. Once the dependence structure is built up, the 

conditional distributions of streamflow conditioned upon two scenarios (i.e., 

%30)( yF
Y

 and %70)( yF
Y

) of explanatory variables (e.g., precipitation, 

temperature and soil moisture) can be obtained using Equation (4.3). 

Table 4.3 The Cramér–von Mises statistics (Sn) of different copulas (2-dimendional) 

for the dependence between streamflow and precipitation, temperature and soil 

moisture in each season. The Sn statistics that are accepted by the Cramér–von Mises 

test at the significance level of 0.05 are shown in bold. The one with smallest Sn 

statistics is the most appropriate copula among others, indicated by *. 

Variables Copula Spring Summer Autumn Winter 

Precipitation 

Normal 0.028 0.016* 0.020* 0.018* 

Clayton 0.148 0.030 0.095 0.061 

Frank 0.027* 0.021 0.034 0.034 

Temperature 

Normal 0.035 0.044 0.037 0.015 

Clayton 0.065 0.256 0.066 0.066 

Frank 0.030* 0.042* 0.031* 0.015* 

Soil moisture 

Normal 0.017* 0.016* 0.033 0.014* 

Clayton 0.071 0.052 0.029* 0.049 

Frank 0.023 0.025 0.041 0.025 

 

Fig. 4.5 indicates the conditional distributions of streamflow under two given 

scenarios of the hydroclimatic variables in different seasons. In addition, it is also 

possible to gain the probability (the intersections between the dashed line and two 

solid curves) of streamflow deficit events regarding a certain streamflow threshold 

( %20)( droughtX xF ) given the two precipitation conditions in Fig. 4.5. This value 

helps to know about the risk of occurring streamflow deficit occurring for the given 

streamflow thresholds, and smaller values mean a lower deficit risk. For precipitation, 

the risk of streamflow deficit in different seasons is generally around 20–50% under 

the low-precipitation scenario ( %30YF ). The increment of precipitation (i.e., under 

the precipitation scenario %70YF ) indeed has a positive effect on reducing the 

streamflow deficit risk (lower than 10%). This difference between the two curves of 
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conditional distributions also suggests that streamflow in this study area is very 

sensitive to the precipitation in each season. It can be noted that in spring and summer 

the risk of streamflow deficit is weak for the given low-temperature condition. 

However, when the temperature shifts towards a higher condition, the streamflow 

deficit risk turns to be higher, particularly in summer. The streamflow seems 

insensitive to the temperature variability in autumn but the higher temperature results 

in a low streamflow deficit risk in winter, as shown in Fig. 4.5. The soil moisture 

presents a similar pattern of the conditional distribution as compared to precipitation. 

In general, the streamflow deficit risk drops to some extent under the high soil 

moisture conditions. Fig. 4.6 provides the occurrence probability for the given flood 

threshold ( %80)( floodX xF ) conditioned on two given hydroclimatic scenarios. 

Under scarce precipitation and soil moisture conditions, the risk of floods occurring is 

relatively low (below 10%) for each season. The risk apparently increases to some 

extent (between 20–40%) when precipitation and soil moisture become sufficient, 

particularly in autumn. Regarding temperature, the flood risk is below 20% for both 

high and low temperature conditions in most seasons with the exception of winter 

when the risk is around 30% under the high temperature scenario.  
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Figure 4.4 The joint CDF of streamflow PC1 values and different hydroclimatic 

variables in four seasons. 

 

Additionally, this study also examined the probabilistic relationships between 
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streamflow and hydroclimatic variables across different seasons using Equation (4.4). 

As shown in Fig. 4.5, it is evident that the precipitation and soil moisture generally 

present stronger positive probabilistic relationships with streamflow than others in 

each season. There is an inverse probabilistic relationship between streamflow and 

temperature in spring and summer, while the relationship seems to be very weak in 

autumn and turns positive in winter.  

 

Figure 4.5 The conditional non-exceedance distribution of streamflow for different 

seasons under two hydroclimatic scenarios: FY(y) = 30% (red line) and FY(y) = 70% 

(blue line), as well as risk (the intersections between the dashed line and two solid 

curves) of streamflow deficit events concerning a certain streamflow threshold 

( %20)( droughtX
xF ). The blue areas indicate the positive probabilistic relationship, 

while the green areas indicate the inverse probabilistic relationship. The bigger the 

area, the stronger the probabilistic relationship.  
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Figure 4.6 The conditional exceedance distribution of streamflow for different 

seasons under two hydroclimatic scenarios: FY(y) = 30% (red line) and FY(y) = 70% 

(blue line), as well as risk (the intersections between the dashed line and two solid 

curves) of floods concerning a certain streamflow threshold ( %80)( floodX
xF ). 

 

4.4.2 Multi-scale relationships  

To further identify the frequency bands within which the time series of streamflow 

and hydroclimatic variables are co-varying (i.e., the multi-scale relationships), the 

WTC analysis was used in this study. Fig. 4.7 shows the wavelet coherence spectra 

between streamflow and hydroclimatic variables in four seasons. Colors in Fig. 4.7 

illustrate the strength of the coherence, and the red and orange areas within the black 

lines are significant at the 95% level against red noise. For the multi-scale 

relationships between streamflow and precipitation, the significant wavelet coherence 

can be observed in most areas of the spectra for all seasons. The left arrows indicate 

that the phase relations in these sectors with significant coherence are prominently 

in-phase (i.e., positive coupling). This demonstrates that at multi-year scales 
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precipitation generally contributes significantly to the increase of streamflow in this 

study area during most years. However, there is very weak coherence between 

streamflow and both precipitation and soil moisture at some specific time scales, e.g., 

the time scales of 4–8 years during 1950–1980 for spring and around 2–6 years in the 

1980s and 1990s for summer, suggesting that streamflow variability is not always 

sensitive to the changes in precipitation at multi-year scales. It can also be noted that 

at decadal scales streamflow and precipitation have a stable positive relationship 

across all years in both spring and winter.  

Temperature has quite complex wavelet coherence spectra and the significant areas of 

coherence are significantly less than those of precipitation, reflecting the weaker 

influence of temperature on streamflow at multi-year scales in the study area. The 

phase angles with significant power vary among different seasons, indicating the 

ambiguous and unstable phase correlations. In spring, the significant coherence 

between streamflow and temperature occurs at shorter time scales (e.g., 2–4 years). 

The temperature spectra in summer present significant coherence at the time scales of 

10–12 years across almost all years considered. Unlike other variables, the phase 

angles in spring and summer suggest that the streamflow and temperature are 

generally in anti-phase, highlighting the negative relationships between them at 

different time scales, particularly in summer. The wavelet coherence becomes quite 

weak in autumn. In winter, temperature exhibits strong coherence at shorter time 

scales during some specific periods and the time scales of 6–10 years during 

1955–2003. However, the arrows turn to be in-phase, identifying the positive linkages 

between temperature and streamflow at these scales.  
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Figure 4.7 The squared wavelet coherence (WTC) and phase between different 

hydroclimatic variables in four seasons. Figures are color-mapped to show high 

values (1 being the highest coherence) of squared WTC with red and orange, and low 

values in blue. The thick black contour is the 5% significance level, and the black line 

indicates the cone of influence (COI) (to reduce the edge effect). Right-pointing 

arrows denote that the relationships are in-phase (positive) while left-pointing arrows 

are for anti-phase signals. 

 

The significant coherency between streamflow and soil moisture can be found in most 

regions of the WTC maps (Fig. 4.7). In spring, the peak coherence occurs at 4–8 years 

and longer-term scales (e.g., greater than 10 years) across 1950–2003. In summer, at 

the high-frequency scales (e.g., 2–8 years) the relationship between streamflow and 

soil moisture tends to be unstable and the significant coherency differs with time, 
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while at longer-term scales the coherency shifts to be very homogeneous during the 

whole time period considered in this study. Significant coupling occurs across 

periodic components of 2–8 years from 1970–2003 in autumn. Coherency becomes 

strong at the scales of higher than 4 years in winter. The phase angles of the 

significant coherency are dominantly in-phase, reflecting that high soil moisture 

generally produces a positive streamflow response in Baden-Württemberg. 

4.4.3 Linkages between streamflow variability and atmospheric circulations 

In this section, this study investigated the possible physical mechanism of the linkages 

between the streamflow and atmospheric circulations in different seasons. For each 

season, this study used the first principal component of streamflow anomalies over 

Baden-Württemberg (i.e., PC1 values) to build composite anomaly maps of 

geopotential height and wind vectors at 850 hPa for both high and low streamflow 

years. The high and low streamflow events for each season were determined by two 

thresholds: events not exceeding 30% of the streamflow PC1 (low flow) and events 

exceeding 70% of the PC1 (high flow).  

For spring, the composite map of the Z850 anomalies and wind vectors for the years 

with high values of the streamflow anomalies shows a center of positive geopotential 

height anomalies over Greenland and a negative center over northern Europe (Fig. 

4.8). This pattern leads to a strong pressure gradient difference between the positive 

and negative centers. As illustrated in Fig. 4.8, high streamflow anomalies in 

Baden-Württemberg are related to a cyclonic activity over northern Europe leading to 

an eastward shift of the Atlantic jet orientation (the wind vectors) that is beneficial for 

the transport of warm water vapor from the Atlantic Ocean towards Europe, including 

the study area. This could be bring enhanced precipitation in this area thus results in 

high streamflow anomalies. However, an opposite pattern is found in the years with 

low streamflow anomalies (Fig. 4.8b). Northern Europe becomes a center of positive 

geopotential height anomalies. This pressure gradient induces the dry and cold air 

from the Scandinavian Peninsula (see the wind sector) to Baden-Württemberg and 

thus results in reduced precipitation over this region. 
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Figure 4.8 The composite anomaly map of the geopotential height and wind vectors 

(arrows) at 850 hPa in the high (a) and low (b) spring-streamflow years. 

 
Figure 4.9 The composite anomaly map of the geopotential height and wind vectors 

(arrows) at 850 hPa in the high (a) and low (b) summer-streamflow years. 



56  Chapter 4: Investigating the probabilistic and multi-scale relationships 

 

 Fig. 4.9 shows the composite anomaly maps of the geopotential height and the wind 

vectors in the high (a) and low (b) summer-streamflow years. For the years of high 

streamflow anomalies, there is a center of negative geopotential height anomalies over 

central Europe. A positive center is over the Northern Atlantic Ocean. The study area 

is found under a cyclonic region in central Europe, which could induce water vapor 

from the North Atlantic Ocean to Europe including Baden-Württemberg and thus 

result in intensive precipitation and above-normal streamflow. This map also shows 

that central Europe is under the effect of the African jet. The warm and dry air from 

the eastern portion of northern Africa is brought to Europe, but mainly in the southern 

part. During the years of low summer streamflow anomalies, a center of positive 

geopotential height anomalies is located the west of Ireland. The anticyclonic activity 

over this region can result in the reduced precipitation in western Europe, including 

Baden-Württemberg.  

During autumn, the composite map regarding high streamflow anomalies (Fig. 4.10a) 

shows a center of strong negative geopotential height anomalies in northwest Europe, 

while a positive center is located in the Arctic Ocean. This pressure gradient results in 

the movement of moist air from the North Atlantic Ocean towards central Europe, 

which may enhance precipitation over this region (as a result of high streamflow 

anomalies). As shown in Fig. 4.10b, the composite map of low streamflow anomalies 

presents an opposite pattern of the geopotential height anomalies and wind vectors 

over Baden-Württemberg. In winter (Fig. 4.11), the patterns of the geopotential height 

anomalies and the wind vectors for the high streamflow anomalies show a very 

similar structure to that of spring. This pattern induces warm water vapor from the 

tropical North Atlantic Ocean to most European regions. On the contrary, the 

composite map of low streamflow anomalies shows an opposite pattern.  
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Figure 4.10 The composite anomaly map of the geopotential height and wind vectors 

(arrows) at 850 hPa in the high (a) and low (b) autumn-streamflow years. 

 
Figure 4.11 The composite anomaly map of the geopotential height and wind vectors 

(arrows) at 850 hPa in the high (a) and low (b) winter-streamflow years. 
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4.5 Discussion and conclusions 

This study presents a general approach to identify probabilistic and multi-scale 

relationships between streamflow and hydroclimatic variables (precipitation, 

temperature and soil moisture) and the potential connections to large-scale 

atmospheric circulations in Baden-Württemberg, Southwest Germany. First, copulas 

were employed to construct a bivariate probabilistic model to examine the dependence 

between streamflow and hydroclimatic variables. Once a joint distribution has been 

established, the probability of streamflow deficit or flood (defined by certain 

streamflow thresholds) was evaluated conditioned upon two different given scenarios 

of hydroclimatic variables across different seasons. It is thus possible to obtain the 

information about the risk of streamflow deficit events and floods occurring under the 

given conditions of hydroclimatic variables. This risk-based assessment presents 

important additional information for the development of hydrological drought 

mitigation and flood prevention strategies. Based on the established bivariate model, it 

is also possible to provide a visual comparison of the probabilistic relationships 

between streamflow and hydroclimatic variables using a proposed method. Our results 

show that the streamflow is strongly affected by precipitation. According to the 

estimation of probabilistic relationships and wavelet coherence at different time scales, 

precipitation generally has a positive effect on streamflow. 

It is understandable that precipitation plays a positive role in the changes of 

streamflow and is largely responsible for the occurrence of floods in this study area 

(Ruiz-Villanueva et al., 2012). The analysis of the precipitation-streamflow relation 

also indicates the probabilistic and multi-scale relationships between streamflow and 

precipitation vary in different seasons. Our results show that temperature has less 

importance in contributing to changes of streamflow in each season when compared 

to precipitation and soil moisture. For both probabilistic and multi-scale analyses in 

spring and summer, temperature plays an inverse role in the changes of streamflow. 

This is probably attributed to the fact that temperature generally has an influence on 

the initial soil moisture state via evapotranspiration, particularly in summer 



59 

 

(Haslinger et al., 2014). However, this effect is less significant in winter in this study 

area as the rate of evapotranspiration is low. In autumn, the changes in temperature 

have little effect on streamflow, suggesting that precipitation and soil moisture 

probably have a more significant effect on runoff. In winter, temperature provides a 

positive contribution to the changes of streamflow by affecting the occurrence of 

snowfall and snowmelt. A higher temperature generally exacerbates the snowmelt, 

particularly in mountainous regions such as the Black Forest. On the other hand, an 

increase of temperature in winter may result in more precipitation in the form of 

rainfall instead of snowfall, as a consequence of more streamflow.  

Streamflow is also sensitive to the changes in soil moisture and there are positive 

relationships between streamflow and soil moisture across different seasons. However, 

we cannot find a threshold of the soil moisture affecting the streamflow variability 

and conclude the detailed mechanism of soil moisture on runoff generation in the 

study area based on the current data. More extensive studies will focus on this topic 

based on more measured soil moisture data at some specific catchments in 

Baden-Württemberg. In addition, future works will also be extended to investigate the 

influence of spatial variability in climate and soil moisture on runoff generation on a 

catchment scale.   

Wavelet coherency was used to investigate the variability of relationships between 

streamflow and hydroclimatic variables at multi-year scales in four seasons. Despite 

varying significantly, strong positive links between streamflow and both precipitation 

and soil moisture can be found at most temporal scales, particularly at decadal scales. 

This highlights that in general the changes in precipitation and soil moisture 

significantly drive the streamflow variability at multi-year scales in 

Baden-Württemberg. The coupling of temperature and streamflow is not as notable as 

that of precipitation and soil moisture at different temporal scales, and only at some 

specific time scales temperature is strongly coupled with streamflow. In spring and 

summer, these strong relationships are generally opposite, yet turn to be positive in 

winter. 

This study further assessed the connections between streamflow over 
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Baden-Württemberg and large-scale atmospheric circulations based on composite 

analysis. In most seasons the high streamflow anomalies over Baden-Württemberg are 

generally related to westerly atmospheric circulations that can result in the transport 

of warm water vapor from the Atlantic Ocean towards the study area and enhance the 

precipitation. This thus leads to more streamflow (Beurton and Thieken, 2009; Ionita 

et al., 2012a; 2012b; 2015; Petrow and Merz, 2009). It is also possible to find that the 

atmospheric circulation structures in winter and spring are very similar, particularly 

for the years with high streamflow anomalies. This suggests that there might be a 

persistent influence of circulation systems on the climate conditions over 

Baden-Württemberg from winter to spring. In summer, the cyclonic activity over 

central Europe causes increased precipitation and thus high streamflow anomalies. 

The low streamflow anomalies are generally linked to the northerly circulations that 

induce the movement of cold air from the northern Europe towards this study area and 

reduces the precipitation. It has also been well reported that the climate variability in 

Europe is linked to the North Atlantic Oscillation (NAO). The NAO affects the 

intensity and direction of the wind anomalies and interaction between air masses in 

the North Atlantic region. It is also one of the most important teleconnection patterns 

which affects the climate and hydrology over Europe in all seasons (Barnston and 

Livezey, 1987; Hurrell et al., 2003; Kingston et al., 2006), particularly in winter when 

the atmosphere is very active and greatly drives the climate dynamics. Rimbu et al 

(2004) documented that there is generally below-normal precipitation over central 

Europe during the positive phase of the NAO and opposite precipitation conditions 

are found during the negative phase of the NAO. Thus this might also influence the 

streamflow variability over Baden-Württemberg. Moreover, some existing studies 

also pointed out that El Niño–Southern Oscillation (ENSO) events have a significant 

influence on the precipitation and streamflow over Europe. The El Niño events are 

usually associated with the large streamflow in most rivers from Europe while the 

opposite situation happens during La Niña events (Dettinger and Diaz, 2000). Some 

previous studies have reported that there is a significant connection between ENSO 

events and the streamflow variability of the Danube River and Rhine River. Both 
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rivers flow across the study area. The further work will focus on exploring the specific 

connections between climate indices and streamflow variability over 

Baden-Württemberg, particularly on interannual to decadal scales. 



 

 

 

 

 

 

 

 

 



 

 

12 Chapter 5: A probabilistic prediction network for hydrological 

drought identification and environmental flow assessment 

5.1 Introduction 

Drought, or water deficit, is a natural disaster that takes place in all climate zones 

(Wilhite and Buchanan-Smith, 2005; Tatli and Türkes, 2011). Relying on evolution of 

water deficit from precipitation to soil moisture and to streamflow and potential 

socio-economic consequences, drought is generally characterized as meteorological, 

agricultural, hydrological and socio-economic (American Meteorological Society 

(AMS), 2004; Mishra and Singh, 2010; Wilhite and Glantz, 1985). Of these types, 

hydrological drought is described as the abnormally low flow in rivers and 

abnormally low levels in groundwater, lakes, and reservoirs (Tsakiris and Vangelis, 

2004; Van Loon, 2015). Streamflow, which is a key variable for expressing surface 

water resources, has being widely used for hydrological analysis (Mishra and Singh, 

2010; Nalbantis and Tsakiris, 2009). A hydrological drought event can be defined 

according to the streamflow deficit compared to normal conditions. In order to 

quantitatively assess hydrological droughts and to identify their features (e.g., severity, 

intensity, temporal duration and spatial distribution), several hydrological drought 

indices based on streamflow have been developed, such as the surface water supply 

index (SWSI) (Shafer and Dezman, 1982) and the standardized runoff index (SRI) 

(Shukla and Wood, 2008). Recent developments in characterizing drought status have 

involved the extraction of information from multiple sources and temporal scales by 

building up a joint probability distribution model (Hao and Singh, 2015). Copulas 

could be an ideal tool for this task, because they are flexible to construct the joint 

dependence structure without any restrictions on the marginal distributions (Nelsen, 

2006; Salvadori and De Michele, 2004). In the past few years, copulas have gained 

popularity in the probabilistic modeling of various hydrological phenomena (Bárdossy 

and Pegram, 2013; Favre et al., 2004; Li et al., 2013a; 2013b; 2014; Madadgar and 

Moradkhani, 2013; Maity et al., 2013), including hydrological drought identification 
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and assessment (e.g., the joint deficit index (JDI) and multivariate standardized 

drought index (MSDI)) (Hao and AghaKouchak, 2013; Kao and Govindaraju, 2010). 

However, most studies in hydrology involving copulas generally focused on two- to 

three-dimensional parametric copula models or empirical copulas because the direct 

extension of parametric copulas is very limited at higher dimensions (Hao and Singh, 

2013; Lopez-Paz et al., 2013). Recent efforts in copula theory have resulted in new 

approaches, such as vine copulas for modeling the joint dependence structure between 

different variables. Vine copulas focus on problems with large dimensions. They are 

based on hierarchical structures that construct a higher-dimensional copula by 

sequentially employing bivariate copulas as the basic blocks. This has enabled a 

significant progress in modeling joint distributions from complex multivariate data 

(Kurowicka and Cooke, 2006; Liu et al., 2015a).  

Today, there are increasing recognitions and desires for water resources managers, 

governments, and decision-makers to consider the water flows required for water 

resources development and management (e.g., the drinking water supply, irrigation, 

industrial water demands, drought preparedness, and hydropower generation), and for 

maintaining the health and ecological functioning of a river ecosystem (including 

essential ecosystem processes, water quality, disturbed riparian habitats, and species 

composition and structure) (Mathews and Richter, 2007; Tharme, 2003). This thus 

results in accelerated development of the approach of environmental flow assessment. 

Environmental flow assessment is generally defined as an assessment of the certain 

volume of water required in a river in order to sustain specific and valued features of 

the ecosystem (King et al., 2003; Tharme and King, 1998). In recent years, a growing 

variety of methodologies have been developed to assess the environmental flows for 

different rivers (Mathews and Richter, 2007; Richter et al., 1997; Tharme, 2003; Yin 

et al., 2011). The simplest environmental flow assessment methodologies focus on 

using the hydrological data to establish a certain flow rate that should be exceeded or 

exceeding percentiles from a flow duration curve, based on statistical evaluation of 

historical monthly or daily flow records. They often refer to the minimum flows 

indicating that the river ecosystem is at an acceptable level (Cavendish and Duncan, 
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1986; Tennant, 1976). Later on, other elements of a flow regime that may impact the 

river ecosystem are considered for the environmental flow assessment such as low 

and medium flows as well as floods (Hill and Platts, 1991; Junk et al., 1989; Yin et al., 

2011). Some methodologies tend to combine the observed hydrological data and use 

certain hydrological indices and ecological data to examine the environmental flow 

(Dunbar and Acreman, 2001; Hughes, 2001; Richter et al., 1996). Moreover, several 

methodologies take a broad understanding of the river ecosystem and provide the 

environmental flow assessment based on hydrological, hydraulic rating and biological 

response data (King et al., 2003; Swales and Harris, 1995; Yin et al., 2011). This study 

seeks to provide an environmental flow assessment method by integrating the concept 

of hydrological drought. This method involves providing dynamic risk-based 

information on how much flow is required for drought recovery and the likelihood of 

the event under different hydrological drought conditions. Given the required flow for 

drought recovery, it would also be interesting to investigate how possible to obtain 

this specific flow under various precipitation scenarios, considering that precipitation 

generally is the main driver of variability in streamflow. In other words, it involves 

assessing the conditional risk associated with the expected flow for drought recovery 

under future possible precipitation scenarios. To achieve this, it is necessary to 

properly account for the joint dependence structure between streamflow and 

precipitation. 

Therefore, the main aim of the study in this chapter is to present a general 

probabilistic prediction network for hydrological drought examination and 

environmental flow assessment. This objective is three-fold: (1) to present a 

copula-based overall drought indicator to describe the hydrological dryness/wetness 

conditions using high-dimensional vine copulas; (2) to provide a drought-based 

environmental flow assessment that involves deriving the required flow needed to 

recover from certain drought conditions, and estimate the associated exceedance 

probability of this event based on the historical streamflow observations; (3) to 

quantify the conditional probability associated with the expected streamflow for 

drought recovery under various precipitation scenarios by building up an appropriate 
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joint dependence structure between streamflow and precipitation. 

5.2 Theoretical background 

Although the definition of copula for two variables was given in Chapter 4, this 

chapter focuses on higher-dimensional (>2-d) copulas. A n-dimensional multivariate 

joint distribution function F  for n-dimensional given random variables 

  nxx ,...,1  can be expressed by a copula that satisfies the following condition:  

                                    

),...,())(),...,((),,...,( 1111 nnnn uuCxFxFCxxF                (5.1) 

where iF , denoted by ui (i=1,…, n), represents the marginal cumulative distribution 

function (CDF) of the ith variable. The function C is called a copula function, and its 

form reflects the joint dependence structure. Two most frequently-used copula 

families are elliptical copulas and Archimedean copulas.  

Elliptical copulas are simply the copulas of elliptically contoured (or elliptical) 

distributions. Let H be the multivariate CDF of an elliptical distribution, iF  be CDF 

of the ith margin and 1

iF be the corresponding inverse function (quantile function), 

i=1,…, n (Yan, 2007). The elliptical copula can be written by:  

                  )](),...,([),...,( 1

1
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The most popular elliptical copula is the Gaussian copula. A detailed description of 

the Gaussian copula is given in Appendix A.  

The Archimedean family is very commonly used in hydrological applications due to 

ease of construction and the variety of choices for the strength of dependence 

structures (Khedun et al., 2014; Maity et al., 2013).  The general form of an 

Archimedean copula is defined by: 

                )]()([),...,( 1

1

1 nn uuuuC                      (5.3) 

where the function   is a continuous, strictly decreasing function from [0, 1] to [0, 

 ], named the generator of the copula ( )0(  and 0)1(  ). Its inverse 1  is 
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completely monotonic on [0,  ]. A generator uniquely (up to a scalar multiple) 

determines an Archimedean copula (Joe, 1997; Maity et al., 2013; Nelsen, 2006). The 

details of the Archimedean copulas (i.e., Frank, Gumbel and Joe) used in the current 

study are given in Appendix A.  

Elliptical copulas and Archimedean copulas are quite useful for modeling the 

two-dimensional joint distribution. However, for higher dimensional applications, the 

number and expressiveness of families of parametric copulas are more limited by 

parameter restrictions and computationally intensive formulations (Lopez-Paz et al., 

2013). Vine copulas offer a way to solving this issue (Joe, 1997; Kurowicka and 

Cooke, 2006). 

Vine copulas model multivariate data using bivariate copulas as building (basic) 

blocks. Vine copulas decompose an n-dimensional multivariate density into n(n-1)/2 

bivariate copula densities (Liu et al., 2015a). In vine structures, n(n-1)/2 bivariate 

pair-copulas are arranged into n-1 trees (Brechmann et al., 2013; Kurowicka and 

Cooke, 2006). This provides great flexibility for modeling multivariate data, as each 

of the bivariate copulas in the decomposition can belong to a different parametric 

copula model (Lopez-Paz et al., 2013). Canonical vines (C-vines) and drawable vines 

(D-vines) are two popular vine copulas. This study uses C-vines for constructing the 

joint distribution (Aas et al., 2009; Brechmann et al., 2013; Liu et al., 2015a).  

The joint density of the n-dimensional C-vine is given by:  
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where the kf  (k = 1,…, n) indicate the marginal densities, and )1(:1|,  ijiic  denote the 

bivariate copula densities. The outer product in the second term runs over the n-1 trees 

and root nodes i, whereas the inner product refers to the n-i pair copulas in each tree i 

= 1,…, n-1 (Liu et al., 2015a).  

As an example, a structure of a five-dimensional C-vine is illustrated (Fig. 5.1). The 

multivariate density of x1, x2, x3, x4, and x5 can be written as follows:  
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123|4512|3512|341|251|241|23151413125432112345 ccccccccccffffff       (5.5) 

where ))(),,(( 22112,1 xFxFc  is simply written as 12c .  

This study considered a copula (Gaussian) from the elliptical copula family and four 

copulas (Clayton, Frank, Gumbel and Joe) from the Archimedean copula family as the 

potential bivariate pair-copulas (building blocks) used to establish the C-vine model 

(the bivariate copulas are given in Appendix A). The appropriate model structure for 

the C-vine was determined using R package CDvine (Schepsmeier and Brechmann, 

2015).  

 

Figure 5.1 Graphical structure of C-vine for five variables with four trees. The node 

names are shown in circles, and the edge names appear close to the edges in the trees. 
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5.3 Case study and data 

This study considered two catchments in Germany to demonstrate the performance of 

the presented methodology. The first catchment (CM I) is the Treene River Basin, 

which has a size of 481 km² (Guse et al., 2014). The second catchment (CM II) has an 

area of 1092 km² and is part of the Glan River Basin (Hellebrand et al., 2009). The 

locations of theses catchments are shown in Fig. 5.2. The choice of these catchments 

was determined by the need to conduct hydrological drought studies for regions where 

streamflow was minimally affected by human activities.   

 

Figure 5.2 Locations of the two catchments used for this study. 

 

Monthly streamflow data covering the period 1974–2013 for CM I was provided by 

the department of hydrology and water resources management, Kiel University. For 

CM II, monthly streamflow records available from 1957 to 2012 were obtained from 

Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz. 

Monthly catchment-averaged precipitation time series for each catchment were 
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extracted from a 1 km gridded precipitation dataset available from the Deutscher 

Wetterdienst (DWD).  

5.4 Model development and results  

In this section, this study first illustrates the definition of the joint streamflow drought 

indicator (JSDI). This involves data preprocessing, determining the marginal 

distributions, estimating an appropriate high-dimensional vine copula parameter to 

establish the joint distribution, and the Kendall distribution transformation. A 

schematic diagram of this general probability prediction network is summarized in Fig. 

5.3.   

 

Figure 5.3 Schematic diagram of the probabilistic prediction network for identifying 

hydrological drought and drought-based environmental flow assessment. 

 

5.4.1 Data preprocessing  

Referring to the definition of the SI (the version of this algorithm for streamflow is 

called the standardized streamflow index, simply SSI), the concept of the time 
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window length is also used to generate the monthly streamflow time series with a 

given k-month time window (Kao and Govindaraj, 2010; Mirabbasi et al., 2013). Let 

S(t) be the observed monthly streamflow at time t (∆t=1 month); the averaged value 





t

kti

k kiStX
1

/)()( indicates the mean streamflow for a given k-month time window 

corresponding to time t. Before calculating the drought indicator, this study 

investigated two important characteristics of the monthly streamflow time series with 

a given k-month time window. First of all, there may be strong seasonal patterns in the 

original streamflow time series. To illustrate this, this study used the continuous 

wavelet transform (CWT), which is widely used to detect the periodic features of 

hydroclimatic variables (Liu et al., 2013; 2015c; Özger et al., 2009; Zhao et al., 2012). 

As shown in Fig. 5.4, a significant annual periodic pattern can be observed for both 

catchments used in the current study.  

 

Figure 5.4 Continuous wavelet power spectrum for detecting seasonality patterns in 

the monthly streamflow time series of CM I (a), and CM II (b). The low wavelet 

power is shown in blue and high power in red and orange. The thick contours indicate 

the 5% significance level. The black line indicates the cone of influence (COI) (to 

reduce the edge effect).    

 

In addition, the averaged method may result in the overlap of the generated time series 

for a given k-month time window. For example, the X4 (4-month window) of May 

2000 has 3 months in common with X4 of April 2000 (i.e., February, March and April 

2000). The overlap may lead to significant auto-correlation within the time series. 

With an increased width for the time windows, this problem will be accumulated and 
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become more severe. This study examined the auto-correlation of the monthly 

streamflow time series with a given k-month time window for each of the two 

catchments (the results are given in Table 5.1. It can be found that significant 

auto-correlation indeed exists in the samples and higher auto-correlation coefficients 

can be observed in larger time windows.  

Table 5.1 Autocorrelation of the mean streamflow time series with the time windows 

from 1- to 12-months for each catchment.   

lag 

months 

1- 

month 

2 

-month 

3 

-month 

4- 

month 

5- 

month 

6 

-month 

7 

-month 

8 

-month 

9 

-month 

10 

-month 

11 

-month 

12 

-month 

 CM I 

1 0.629 0.804 0.856 0.883 0.898 0.909 0.922 0.936 0.949 0.961 0.972 0.977 

2 0.376 0.454 0.556 0.616 0.658 0.695 0.738 0.788 0.836 0.881 0.917 0.934 

3 0.110 0.151 0.195 0.273 0.342 0.415 0.496 0.589 0.689 0.780 0.848 0.879 

4 -0.103 -0.113 -0.099 -0.058 0.029 0.131 0.250 0.387 0.535 0.672 0.773 0.817 

5 -0.277 -0.311 -0.310 -0.278 -0.212 -0.097 0.047 0.216 0.398 0.568 0.693 0.749 

6 -0.362 -0.399 -0.395 -0.367 -0.311 -0.218 -0.072 0.105 0.299 0.478 0.613 0.676 

7 -0.302 -0.338 -0.338 -0.317 -0.270 -0.196 -0.087 0.069 0.244 0.410 0.536 0.600 

8 -0.134 -0.157 -0.163 -0.149 -0.116 -0.066 0.005 0.101 0.231 0.360 0.463 0.520 

9 0.062 0.066 0.074 0.083 0.098 0.121 0.151 0.191 0.244 0.319 0.388 0.436 

10 0.236 0.285 0.305 0.313 0.313 0.307 0.298 0.288 0.280 0.282 0.312 0.350 

 CM II 

1 0.540 0.768 0.842 0.873 0.893 0.906 0.919 0.932 0.945 0.958 0.970 0.976 

2 0.286 0.394 0.533 0.610 0.660 0.702 0.743 0.789 0.837 0.884 0.922 0.940 

3 0.099 0.131 0.183 0.283 0.365 0.440 0.521 0.610 0.707 0.799 0.869 0.900 

4 -0.085 -0.086 -0.072 -0.030 0.068 0.176 0.296 0.433 0.578 0.713 0.812 0.856 

5 -0.197 -0.239 -0.245 -0.221 -0.160 -0.036 0.117 0.289 0.470 0.635 0.755 0.810 

6 -0.260 -0.306 -0.318 -0.296 -0.243 -0.147 0.013 0.200 0.394 0.569 0.699 0.762 

7 -0.228 -0.269 -0.273 -0.250 -0.196 -0.113 0.004 0.173 0.355 0.522 0.648 0.713 

8 -0.115 -0.128 -0.121 -0.090 -0.043 0.023 0.105 0.209 0.352 0.492 0.603 0.665 

9 0.060 0.080 0.109 0.140 0.175 0.213 0.258 0.312 0.381 0.476 0.561 0.616 

10 0.237 0.311 0.351 0.377 0.394 0.405 0.414 0.426 0.443 0.468 0.519 0.567 

 

However, in the traditional SI model, the seasonal differences and significant 

auto-correlation that would cause the fitting of probability distributions to be biased 

were not considered (the SI model fits the whole series of Xk(t) using a gamma 

distribution, as given by McKee et al. (1993). With these issues considered, the Xk 

values were further grouped by their ending months m (month of S(t)) to form m

kX  
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sub-series (m indicates January, February, …, December) (Kao and Govindaraj, 2010; 

Kuhn et al., 2007; Mirabbasi et al., 2013). Eventually, the series Xk(t) were subdivided 

into 12 sub-series using: 

            )())1(12()( tXmyXyX kk

m

k                    (5.6) 

where y is the year index, y=1, 2,…, m=1 (January), 2 (February), …, 12 (December) 

is the month index, and t is the time index t=12(y–1)+m. For instance, NovemberX 4  

indicates the 4-month (time window) mean streamflow averaged from August to 

November. In this way, samples in each m

kX  set are grouped annually and will be 

non-overlapping when k ≤ 12 (note that longer time windows, i.e., k ＞ 12, are not 

considered in the current study, because the adopted samples will start to overlap with 

each other and are no longer independent). By conducting this data preprocessing, the 

samples in the same group m

kX  are subjected to the same seasonal effects (spanning 

for the same months of the year), and the seasonal variation could be reflected (Kuhn 

et al., 2007). Moreover, the auto-correlation within the samples is considerably 

reduced.  

5.4.2 Marginal distribution selection  

For probabilistic drought analysis, the first step is to fit the marginal distributions to 

each group in m

kX  (namely,  

)( January

kX

January

k xFu January
k

 , )( February

kX

February

k xFu February
k

 , …, 

)( December

kX

December

k xFu December
k

 ). Several probability distributions that are widely used in 

hydro-meteorology were considered in this study: normal, gamma, Weibull, 

lognormal and exponential. The method of maximum likelihood estimation was 

employed to estimate the parameters of each distribution (Gyasi-Agyei, 2013). In 

order to test the appropriateness of the probability distributions, two formal 

goodness-of-fit tests were performed: the Kolmogorov-Smirnov test (K-S test) and the 

chi-squared test (chi2 test) (more details about these tests can be found in 
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(Bagdonaviciu and Nikulin, 2011; Khedun et al., 2014; Massey, 1951). The K-S test 

and chi2 test return the p value, which should be greater than the significance level of 

α (herein α=0.05) to accept the null hypothesis (passing the test). For each catchment, 

there are 144 sub-series (cases) of m

kX to be fitted, relating to 12 different ending 

months (m=January, February, …, December) and 12 time integration windows (k = 1, 

2,…, 12). The total sum of individual numbers of cases that passed the K-S and chi2 

tests were obtained. The theoretical distribution with the highest sum was considered 

to be the most appropriate. As illustrated in Table 5.2, the gamma distribution was 

identified to be the most appropriate distribution for both catchments, and was hence 

adopted. With the fitted distributions (i.e., the m

ku ) for each group m

kX , one can 

calculate the improved SSI values similar to original SSI (McKee et al., 1993), 

namely imp

kSSI . This can be obtained by deriving the inverse normal according 

to: )(1 m

ku : ))(()( 11 m

kX

m

k

imp

k xFuSSI m
k

   .  

Table 5.2 Goodness-of-fit tests of different theoretical distributions for each 

catchment. Numbers of cases that are accepted by the K-S test and the chi-squared test 

at the 5% significance level are given. The distributions with the maximum total 

numbers are shown in bold. 

Distribution 

CM I CM II 

K-S Chi-squred 
in 

total 
K-S Chi-squred 

in 

total 

Gaussian 142 124 266 136 119 255 

Gamma  144 125 269 143 129 272 

Weibull  143 122 265 142 128 270 

log-normal 144 107 251 144 127 271 

exponential  0 142 142 0 93 93 

 

Nonetheless, it can be found that both the lognormal and Weibull distributions also 

perform well in comparison to the gamma distribution. This study will discuss the 

effects of different theoretical distributions on the performance of the JSDI in Section 

5.4.6.  

5.4.3 Joint distribution and copula parameter estimation  
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The JSDI involves evaluation of the overall hydrological drought condition, and it 

aims to capture drought features at various temporal resolutions. Unlike the single 

imp

kSSI  (e.g., SSI 1-month or 6-month), this is done without focusing on a certain 

time window. This means that all different time windows from 1- to 12-months (i.e., 

the impSSI1 , impSSI2 ,... impSSI12 ) are considered together when developing the JSDI. A 

copula-based joint distribution paves the path for this achievement. Therefore, in this 

study, a 12-dimensional joint function is modeled to join the multivariate margins for 

all time windows ( imp

ku , k=1, 2, ..., 12) based on the copula algorithm. First, the 

margins imp

ku (herein, impu1  is the union of { DecemberFebruaryJanuary uuu 111 ,...,, }, …, impu12  is 

the union of { DecemberFebruaryJanuary uuu 121212 ,...,, }) for a given k-month window can be given 

by the corresponding )( imp

kSSI  values. This study then used the C-vine copulas to 

construct the joint dependence of the multivariate margins with window sizes from 

1-month to 12-months. In order to build up the C-vine copula, Gaussian, Clayton, 

Frank, Gumbel, and Joe copulas were used as the potential pair-copulas. Based on 

well-fitted marginal distributions, a 12-d C-vine copula was employed to join the 

margins and fit the joint dependence. This was determined by using a approach 

introduced by Schepsmeier and Brechmann (2015) (i.e., the CDvine package), as 

mentioned above. Figs. 5.5 and 5.6 show the graphical mode of the 12-d C-vine 

model for each catchment.  
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Figure 5.5 The 12-d C-vine for CM I, with the well-fitted bivariate copulas and the 

corresponding parameters. The numbers 1–12 denote the improved SSI time series on 

the time windows of 1–12 months, respectively. C, F, G, J, and N denote Clayton, 

Frank, Gumbel, Joe, Normal (Gaussian) bivariate copulas with their associated 

parameters. 
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Figure 5.6 The 12-d C-vine for CM II, with the well-fitted bivariate copulas and the 

corresponding parameters. The numbers 1–12 denote the improved SSI time series on 

the time windows of 1–12 months, respectively. C, F, G, J, and N denote Clayton, 

Frank, Gumbel, Joe, Normal (Gaussian) bivariate copulas with their associated 

parameters. 

 

5.4.4 Kendall distribution transformation 

So far, the well-fitted C-vine copula 
1221 ,...,, UUUC  for each catchment has been obtained, 

which is the cumulative joint probability suUuUuUP impimpimp  ],...,,[
1221 1221 for 

given 12-variate margins (i.e., impu1 , impu2 , ..., impu12 ). Following Kao and Govindaraj 

(2010), the distribution function of copulas, Kendall distribution function CK , was 

used to generate the probability measures of the copula values less than or equal to a 

given s (i.e., ]),...,,([)( 1221,...,, 1221
sUUUCPsK UUUC  ) (Nelsen et al., 2003; Nelsen, 

2006).  
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Although an analytical expression of CK  might not exist for vine copulas, it is 

possible to use the empirical Kendall distribution function CK . An explicit 

description of the empirical Kendall distribution function can be found in Genest et al. 

(2011) and Nelsen et al. (2003). This study computed the empirical Kendall 

distribution function CK  by using the R function Kn in the copula package (Hofert 

et al., 2013). The empirical Kendall distribution function )(sKC  based on 

streamflow margins { impu1 , impu2 , ..., impu12 } for each catchment is shown in Fig. 5.7. 

Similar to the definition of SI (McKee et al., 1993), the JSDI can be computed by 

taking the inverse normal ))((1 sKC

 . Then, the definition of JSDI can be given as 

follows:  

                         ))((1 sKJSDI C

                      (5.7) 

here, negative JSDI values ( 5.00  CK ) indicate the overall dryness status, zero 

values ( 0CK ) represent normal status, and positive JSDI values ( 15.0  CK ) 

represent overall wetness status. The JSDI evaluates the overall dryness/wetness 

status based on the dependence structure of streamflow margins regarding different 

temporal windows.   

 

Figure 5.7 Kendall distribution functions of the 12-d C-vine copulas for CM I (a) and 

CM II (b). 
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5.4.5 JSDI performance 

According to the calculation procedure above, this study obtained the monthly JSDI 

time series that identify the hydrological drought conditions for each catchment. Fig. 

5.8 illustrates the visual comparison of the monthly time series of JSDI, improved 

1-month ( impSSI1 ) and 12-month ( impSSI12 ) SSI with the corresponding observed 

streamflow time series at the two catchments. As shown in Fig. 5.8 it appears that the 

JSDI generally combines the strengths of the short-term drought index (e.g., the 

impSSI1 ) in capturing the drought onset and long-term drought index (e.g., the impSSI12 ) 

in reflecting the drought duration or persistence. Therefore, it provides a more 

comprehensive evaluation of drought and could be more competitive than other 

traditional hydrological drought indices (e.g., the SSI). This attractive feature is 

attributed to the fact that the JSDI describes the overall drought conditions based on 

the joint temporal dependence structure. Another advantage of the JSDI compared to 

the SSI is that it provides a month-by-month potential assessment for drought-based 

environmental flow assessment due to the property of the joint dependence structure. 

This will be further explored in Section 5.4.7.  
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Figure 5.8 Time series of monthly streamflow, improved SSI 1-month, 12-month and 

JSDI for each catchment: CM I (a), and CM II (b). The yellow diamond-shapes 

indicate the selected events for the analyses in Table 5.3. 

 

5.4.6 Sensitivity of marginal distributions 

When computing the JSDI presented above, the gamma distribution was used to 

model the margins. As shown in Table 5.2, it can also be seen that the Weibull and 

log-normal distributions provide close performance to gamma. This evokes an 

investigation of interest that involves the examining of the sensitivity of varying 

marginal distributions in evaluating the hydrological drought status using the JSDI. 

This study therefore fitted the margins using the Weibull and log-normal separately. 

Again, C-vine copulas were used to construct the joint dependence of the margins. Fig. 

5.9 shows a comparison of various JSDI curves generated by varying copulas with 

Weibull and log-normal marginal distributions for each catchment. It can be seen that 

the JSDI time series using the Weibull and log-normal distributions are in close 
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agreement with those of using gamma, while it seems there is a slight difference to 

evaluate the extreme conditions. 

 

Figure 5.9 Comparison of the monthly JSDI time series generated from different 

marginal distributions for each catchment: CM I (a), and CM II (b). 

  

5.4.7 Drought-based environmental flow assessment  

This section illustrates the drought-based environmental flow assessment method 

based on the JSDI model, which refers to producing dynamic information on how 

much environmental flow (the required mean flow of the future n-month) is required 

for drought recovery and the likelihood of the occurrence of this event under different 
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initial drought situations. It should be mentioned that the environmental flow here is 

dynamic and referred to the required flow to recover from various initial drought 

situations to expected hydrological dryness/wetness conditions. 

Table 5.3 Required average flow in the future 1 to 12 months in order to reach normal 

conditions (Kc=0.5) and moderate wet conditions (Kc=0.7) for the selected events, and 

the corresponding probabilities of these events for each catchment. 

  

Selected 

events 

1 

month 

2 

months 

3 

months 

4 

months 

5 

months 

6 

months 

7 

months 

8 

months 

9 

months 

10 

months 

11 

months 

12 

months 

    CM I 

Target flow 

for normal 

condition  

1977/09 

8.660 7.150 7.390 7.890 8.210 8.090 7.990 7.550 7.100 6.700 6.440 6.252 

Probability 0.127 0.360 0.448 0.515 0.513 0.551 0.520 0.518 0.515 0.519 0.505 0.500 

Target flow 

for moderate 

wet condition  

16.180 10.680 9.740 9.900 9.630 9.610 9.330 8.600 8.150 7.610 7.330 7.166 

Probability 0.003 0.091 0.191 0.270 0.318 0.332 0.309 0.332 0.314 0.332 0.315 0.300 

    CM II 

Target flow 

for normal 

condition  

1972/03 

50.050 28.440 20.590 16.070 13.560 11.690 10.340 9.320 9.200 8.970 9.130 9.269 

Probability 0.000 0.002 0.004 0.008 0.013 0.024 0.052 0.114 0.230 0.380 0.463 0.500 

Target flow 

for moderate 

wet condition  

66.420 36.040 25.950 20.450 16.810 14.280 12.680 11.540 11.340 10.970 10.930 11.130 

Probability 0.000 0.000 0.000 0.001 0.002 0.005 0.012 0.032 0.087 0.192 0.275 0.300 

Target flow 

for normal 

condition  

 2006/04 

21.480 12.760 9.650 7.980 6.620 6.080 5.920 6.410 7.260 8.090 8.910 9.260 

Probability 0.011 0.043 0.087 0.131 0.222 0.309 0.419 0.540 0.569 0.577 0.537 0.500 

Target flow 

for moderate 

wet condition  

38.400 20.910 15.010 11.790 10.070 8.530 8.090 8.480 9.360 10.060 10.710 11.142 

Probability 0.000 0.001 0.005 0.013 0.028 0.084 0.155 0.270 0.320 0.353 0.340 0.300 

 

 As an illustration (Table 5.3), this study considered two expected conditions: a 

normal condition ( 5.0CK ) and a moderate wet condition ( 7.0CK ) in the current 

study (note that it is flexible to consider any expected hydrological condition of 

interest). The detailed algorithms and procedures for this computation are described in 
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Appendix B.  

For the moderate-dryness initial situation (e.g., the selected event in September 1977 

at CM I), the environmental flow target (8.66 m
3
/s) to recover from the drought to the 

normal condition ( 5.0CK ) in the future 1 month was obtained and the 

corresponding exceedance probability shows the chance of this event is low (lower 

than 0.2). However, the risk of drought is decreasing for longer future months and 

becomes very stable three months later. It is expected that the amount of 

environmental flow target is higher for achieving the moderate wet level ( 7.0CK ) 

when compared to the normal condition and the probability thus is much lower 

(higher risk of drought). With respect to the extreme-dryness initial situation, there 

was a severe drought at CM II in March 1972 (see Fig. 5.8b) and it thus needs to 

receive a large amount of flow (50.05 m
3
/s) to drive the drought to normal condition 

in the next month. The exceedance probability clearly shows that the possibility of 

drought recovery in next month at this catchment is close to zero based on the 

historical streamflow data. The actual streamflow in April 1972 was only 6.28 m
3
/s 

(see Fig. 5.8), which confirms the persistence of drought. The required monthly mean 

flow is generally dropping. The potential for drought recovery is slowly rising as the 

months increase but still seems significantly low (lower than 0.1) even after seven 

months. It could be understood that the chance to achieve wetter conditions ( 7.0CK ) 

is almost impossible during the following months. In April 2006 at CM II, there was a 

prolonged drought. It required a flow amount of 21.48 m
3
/s in order to reach normal 

status in the following 1 month. The corresponding exceedance probability indicates 

that it is very unlikely to happen. For the future four months, the chance of drought 

recovery is still less than 20%. This suggests that it is very likely that this catchment 

could persistently suffer the very dry condition in the coming four months, but the 

probability is getting higher after four months later. As expected, the possibility to 

reach the defined moderate wet level is much lower in the following months 

compared to the expected normal condition. In this manner, the copula-based 
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prediction algorithm provides a feasible way to dynamically measure the quantitative 

environmental flow targets and account for the risk.  

5.4.8 Conditional dependence between streamflow and precipitation 

This study has so far investigated the probability of the required flow for 

drought-based environmental flow assessment in the future months based on the 

historical streamflow data. Generally, precipitation has a significant influence on 

streamflow, and one might also be interested in knowing how possible it is that the 

required flow can be obtained for drought recovery ( 5.0CK  or JSDI=0) under 

different precipitation scenarios. In this section, the current study first examined the 

joint dependence structure between precipitation and streamflow. Then, this study 

identified the conditional probability under different precipitation scenarios based on 

the established dependence structure. Note that the precipitation data used here are the 

time series of catchment-averaged monthly precipitation as introduced in Section 5.3.  

5.4.8.1 Bivariate dependence structure between streamflow and precipitation 

To model the joint dependence between streamflow and precipitation, the current 

study first grouped the observed time series of monthly precipitation (P(t)) and 

streamflow (S(t)) according to the base month (the given month to be assessed to form 

individual sub-series over future 12 months). That is to say, the observed monthly 

precipitation series P(t)) were subdivided into 12 sub-series using: 

))1(12()(
1

ibmonthyPyP
fmonth

i

fmonth

bmonth  


 (where y=1, 2, …, is the year index, 

bmonth=1 (January), 2(February),…, 12(December), is the base month to be assessed, 

and fmonth=1, 2, …, 12, is the number of the future months). For the observed 

monthly streamflow (S(t)), the sub-series are 

fmonthibmonthySyS
fmonth

i

fmonth

bmonth /))1(12()(
1

 


, which relates to the mean 

streamflow in the following future months. For instance, 3

10P  denotes the future 

3-month accumulated precipitation starting from November (base month is October), 
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and 11

4S represents the future 11-month mean streamflow starting from May (base 

month is April). As an illustration, this study selected one event from the Table 5.3, 

i.e., the event in March 1972 (extreme-dryness initial situation) at CM II. Taking this 

event as an example, the corresponding precipitation sub-series with the given base 

month (March) and the number of future months (e.g., future three months) is 3

3P , 

and the streamflow sub-series with the same base month and future three months is 

3

3S . Before identifying the bivariate distribution ( ),( sp uuC ) between these two 

groups of sub-series, it is important to fit appropriate marginal functions to the 

precipitation ( pu ) and streamflow ( su ) sub-series. Again, the five theoretical 

probability distributions as mentioned in Section 5.4.2 were compared. The most 

appropriate one for each sub-series was determined by the smallest statistics (the 

corresponding p value should be greater than the significance level of α as well) from 

the chi-squared test. Once the best fitting marginal distributions are obtained, a proper 

bivariate copula function is needed to join the margins and model the joint 

dependence structure. Five bivariate copulas (i.e., Gaussian, Clayton, Frank, Gumbel, 

and Joe copulas) mentioned above were tested for this low-dimensional (i.e., 2-d) 

application. The Cramér-von Mises approach was used to test the goodness-of-fit of 

the copulas considered. This goodness-of-fit test computes the Cramér-von Mises 

statistics nS  as a measure of distance between the empirical and parametric copulas. 

More details about this test can be found in Chapter 4.  Table 5.4 gives the 

goodness-of-fit statistics ( nS ) of different 2-d copulas for this selected event over the 

future 1 to 12 months.  
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Table 5.4 The Cramér–von Mises statistics (Sn) of different copulas (2-dimendional) 

for a selected event (in March 1972) at CM II in the following 1 to 12 months. The Sn 

statistics that are accepted by the Cramér–von Mises test at a significance level of 5% 

are indicated by *. The one with smallest Sn statistic (shown in bold) is the most 

appropriate copula.   

Copula 
1 

month 

2 

months 

3 

months 

4 

months 

5 

months 

6 

months 

7 

months 

8 

months 

9 

months 

10 

months 

11 

months 

12 

months 

Clayton 0.201 0.110 0.072 0.063 0.026* 0.039* 0.050* 0.076 0.089 0.103 0.064 0.078 

Frank 0.049* 0.046* 0.038* 0.022* 0.025* 0.022* 0.028* 0.031* 0.027* 0.019* 0.016* 0.016* 

Gumbel 0.026* 0.024* 0.023* 0.022* 0.031* 0.038* 0.040 0.023* 0.031* 0.012* 0.018* 0.024* 

Joe 0.022* 0.023* 0.041* 0.060 0.088 0.114 0.111 0.060 0.077 0.024* 0.056 0.060 

Gaussian 0.045 0.034 0.027* 0.016* 0.015* 0.015* 0.022* 0.020* 0.026* 0.017* 0.013* 0.020* 

 

5.4.8.2 Risk estimation of streamflow deficit under varying precipitation scenarios 

Once the copula-based joint distribution ( ),( sp uuC ) has been obtained, the 

conditional distributions of streamflow under given precipitation scenarios can be 

examined. The conditional CDF of S ≤ s (streamflow) given P = p (precipitation) can 

be expressed as follows (Zhang et al., 2007): 

                      
p

ps

pPsS
u

uuC
psF






),(
),(|                 (5.9) 

Then, the conditional probability of reaching or exceeding the required mean flow 

(obtained from Section 5.4.7) under given precipitation scenarios can be calculated by 

)
),(

1(
p

ps

u

uuC




 . Therefore, one can now know the probability of attaining the 

required flow under the given precipitation conditions for the study catchments. Three 

given precipitation scenarios corresponding to three thresholds were considered in this 

study: events at the 20th, 50th and 80th quantiles of the precipitation data (i.e., 

%20Pu , %50Pu  and %80Pu ). Note that any precipitation scenario of interest 

can be considered, as long as the copula-based joint distribution has been established. 

Fig. 5.10 shows the exceedance probabilities (the intersections between the red line 

and three blue curves) associated with individual required flow values (the red line) 

for drought recovery ( 5.0CK  or JSDI=0), conditioned upon three given 
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precipitation scenarios (blue curves) for the considered event (the event in March 

1972 at CM II) in the future 1–12 months. In this figure, it can be seen that 

streamflow is sensitive to the changes in precipitation scenarios (the difference 

between three blue curves), although the sensitivity varies for different future months. 

These exceedance probabilities help to identify the possibility of reaching the required 

flow for drought recovery (i.e., the condition of JSDI=0) under different precipitation 

conditions. Thus, it also provides a risk estimation of hydrological drought. For 

instance, even given a potentially abundant precipitation scenario ( %80Pu ) in the 

future five months for the considered event at CM II (Fig. 5.10), one can find out that 

the probability of gaining the required mean flow that would bring dry condition to 

normal is still very low (close to zero). This information would be important for 

developing appropriate water supply planning in order to balance the water demand in 

the following months at this catchment. It can also be seen (Fig. 5.10f–l) that there is a 

very low probability of getting the required flow for drought recovery in the following 

6–12 months under the scarce precipitation condition ( %20Pu ). For the potentially 

more sufficient precipitation scenarios ( %50Pu  and %80Pu ), the chance of 

obtaining the required flow increases. Moreover, it should be mentioned that different 

initial conditions and catchments could reflect varying risk patterns.  
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Figure 5.10 The conditional probability of streamflow for the future 1 to 12 months 

(a-l) under three precipitation scenarios: %20Pu , %50Pu  and %80Pu , as 

well as the specific required flow for drought recovery ( 5.0CK  or JSDI=0), for 

CM II with the selected event (in March 1972). 

 

5.5 Summary and conclusions 

This chapter presents a general probabilistic prediction network for hydrological 

drought identification and drought-based environmental flow assessment by 

exploiting the strength of a copula-based joint distribution model. This general 

network is comprised of three major parts. First, the JSDI was presented to describe 

the hydrological dryness/wetness conditions based on the monthly streamflow data. 

The development of JSDI involves grouping the original streamflow data on various 

time windows from 1- to 12-months, determining the marginal distributions, the 

establishment of the joint distribution model, and Kendall distribution transformation. 

This study proposed using high-dimensional (12-d) vine copulas to build up the joint 

dependence structure between 12 different margins. This drought indicator provides 
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an overall description of the hydrological dryness/wetness status based on various 

temporal resolutions. The second part of the network is to expand the application 

domain of the JSDI for drought-based environmental flow assessment. Based on the 

joint dependence, the JSDI is capable of dynamically predicting the required flow for 

drought recovery under different drought conditions and giving the associated 

exceedance probability that shows the likelihood of this event. Finally, the third part is 

to estimate the conditional probability of streamflow deficit under varying 

precipitation scenarios by establishing the joint dependence structure between 

streamflow and precipitation. In this part, the idea of copula (bivariate copula) was 

used again to model this bivariate joint dependence structure. According to the 

conditional probability analysis that relies on the historical precipitation and 

streamflow data, one can assess the chance of gaining the required environmental 

flow for drought recovery under the different precipitation scenarios.  

To demonstrate the usefulness and applicability of this network, this study used the 

streamflow and precipitation data from two different catchments in Germany. Our 

results show that the vine copulas could account for the multivariate joint distribution 

model well in developing the JSDI. The JSDI provides a very applicable algorithm for 

assessing hydrological dryness/wetness conditions and it is able to effectively capture 

drought onset and persistence. It could thus be more competitive and flexible than 

other conventional hydrological drought indices (e.g., the SSI). In addition, the results 

also confirmed that the presented network can allow for estimating the amount of 

environmental flow required for drought recovery in the future months and 

interpreting the risk of this event based on the historical observed streamflow. By 

constructing the joint dependence between precipitation and streamflow, one can 

derive the probability of obtaining the required flow conditioned upon on different 

precipitation scenarios.  

This general network can potentially help decision-makers in water resources 

management by providing valuable insight toward assessing hydrological drought 

status. Moreover, the generated risk-evaluation information based on this network can 
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be useful for developing appropriate water supply plans for environmental flow 

assessment by integrating the drought information. This approach is also promising 

for use in other basins worldwide under different climate regimes. Future efforts could 

extend this network by incorporating more hydrological variables (e.g., soil moisture) 

and constructing the conditional dependence with both precipitation and soil moisture 

in order to better address hydrological droughts.   



 

 

13 Chapter 6: Overall conclusions and perspectives  

In this dissertation, an assessment of the linkages and interactions between vegetation, 

climate, streamflow, and drought was addressed. To achieve this, a three-step strategy 

with individual specific objectives was applied. First, this study evaluated the 

long-term variations in vegetation and climatic variables and their scale-dependent 

relationships by using Rhineland-Palatinate as a case study area with a classification 

of different vegetation types and precipitation regimes. This was accomplished in 

Chapter 3. In this chapter, a hybrid approach by combining the DWT and MK trend 

tests was implemented to examine the temporal trends in the time series of NDVI, 

temperature and precipitation in Rhineland-Palatinate and their coherence at various 

time-scales. On the basis of this combined method, one can obtain which time-scales 

are dominantly responsible for the trends found in the original data and find out the 

certain time-scales which represent the strongest correlation between NDVI and both 

temperature and precipitation. In this case study, the proposed DWT-MK approach 

indeed paves a way to extracting time-scale information in the original NDVI and 

climatic parameters. This is beneficial for understanding the scale-dependent 

characteristics and trend structures of those variables and identifying how the 

correlations between NDVI and climatic parameters were affected by different 

time-scales. The results provided detailed information about the dominant periodic 

modes affecting the trends in the NDVI and climatic variables and presented their 

correlations at different time-scales, which would be valuable for forecasting future 

hydroclimatic and vegetation conditions and helpful for making efficient water 

resources management and reasonable agricultural strategies. However, several 

limitations of this study should also be mentioned. For instance, other climatic 

variables (i.e., the maximum temperature, minimum temperature, and relative 

humidity) closely related to vegetation growth have not been examined, and 

correlations between vegetation and climatic variables in growing season were not 

investigated.     
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In the second step, this study presents an investigation of the probabilistic and 

multi-scale relationships between streamflow and hydroclimatic variables 

(precipitation, temperature and soil moisture) over Baden-Württemberg based on their 

joint dependence structure constructed by copula functions. In light of this, one can 

gain the information about the risk of occurring streamflow deficit events and floods 

under the different conditions of hydroclimatic variables. This is given in Chapter 4. 

Moreover, the multi-year relationships between streamflow and hydroclimatic 

variables were detected by the means of wavelet coherency technique, which 

generates a visual and clear map of coherence pattern between those variables. This 

chapter further explored the potential links of streamflow variability and large-scale 

atmospheric circulations in this study area. It can be inferred that the high streamflow 

anomalies over Baden-Württemberg are generally related to strong westerly 

atmospheric circulations that play an important role in inducing the warm and moist 

air from the North Atlantic Ocean towards the study area and thus enhancing the 

precipitation, while the low streamflow anomalies are generally related to the 

northerly circulations. These findings would provide useful knowledge for 

understanding the seasonal streamflow variability and the prediction of streamflow in 

Baden-Württemberg. This probability-based analysis method is also applicable for 

other regions worldwide.    

This final step involves proposing a general probabilistic prediction network to 

identify the hydrological drought and drought recovery and environmental flow 

assessment, as shown in Chapter 5. This network first presented a multivariate 

streamflow drought index (i.e., the JSDI) for describing the hydrological droughts 

using high-dimensional copula functions. It can provide a risk-based assessment for 

the drought recovery. This chapter used the data from two different catchments in 

Germany to demonstrate the usefulness and applicability of this framework. The 

results indicate that the proposed methodology can effectively capture drought onset 

and persistence in the hydrological droughts as compared to traditional hydrological 

drought indices (e.g., the SSI). Moreover, by using this network, one can also know 

the amount of environmental flow required for drought recovery in the future months 
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and how possible is it. The general probabilistic network can potentially facilitate the 

decision-makers in water resources management by providing a valuable insight 

toward assessing hydrological drought status. Moreover, the generated risk-evaluation 

information based on this network can be helpful for developing appropriate water 

supply plans to reduce the drought risk likely to occur in future. This prediction 

framework is also promising for application to other basins worldwide under different 

climate regimes. Future efforts could extend this network by joining more 

hydrological variables (e.g., the soil moisture) and constructing the conditional 

dependence with both precipitation and soil moisture in order to better address 

hydrological droughts.   

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

14 Appendix A 

This appendix lists the bivariate copulas employed in the current study in detail. They 

are given for the bivariate case (Mendes and Souza, 2004). 

1. Gaussian (Normal) copula  

The Gaussian copula is an elliptical copula and can be written by: 
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where 1u  and 2u are the margins of random variable varying from 0 to 1. 
1

  

denotes the inverse of the standard Gaussian distribution function and  is the copula 

parameter (the linear correlation coefficient).   

 

2. Clayton copula 

 The Clayton copula is given as:  

                     /1
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The generator is   /)()(  .  

where   ( ),0(  ) is the copula function parameter and   is Kendall’s 

coefficient between two variables.   

 

3. Frank copula (Zhang and Singh, 2007) 

The Frank copula can be formulated as:  
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where   is the copula function parameter and t is the specific values of  1u  or 2u  

varying from 0 to 1. Note that the parameters 1u  , 2u  and   will have the same 
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definitions in the following copula function.   

                                                                      

4. Gumbel copula 

 The Gumbel copula (i.e., Gumbel-Hougard copula) is given by:  

         ),1[,])ln()ln[(exp),( /1

2121   uuuuc             (A4) 

with the generator:  )ln()( tt  . 

 

5. Joe copula  

The formulation of Joe copula is expressed as follows:  

1,])1()1()1()1[(1),( /1
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with the generator: ])1(1ln[)(  tt   

 



 

 

15 Appendix B  

Algorithm and procedure for computing the required flow (the environmental flow 

target) and the associated exceedance probability based on vine copulas. 

The consideration of high-dimensional margins in the JSDI computations provides a 

way to examining the month-by-month future environmental flow assessment. f

nS  is 

defined as the future n-month mean flow (n=1,…12), and p

gS  indicates the historical 

monthly flow for the past g months. It should be emphasized that, based on the 

definition of JSDI, this study focuses on evaluating the mean flow of the future 

n-month rather than the individual flow in each future n-month which will require to 

make more extra assumptions. For instance, to obtain the required flow in the future 

second month (n=2), it is necessary to assume a value of prior flow in the future first 

month (n=1) because the JSDI is calculated based on the average values of flow for a 

given n-month time window as described in Section 5.4.1. To assess f

nS , it is 

necessary to obtain the past 12–n months observations pS1 ,…, p

nS 12 , considering that 

the maximum temporal length of JSDI is 12 months. Kao and Govindaraju (2010) 

described the main procedure to compute the expected f

nS  based on empirical 

copula, and here this study introduces the vine copulas to achieve this computation 

instead of the original empirical joint function.   

1. Assume an initial guess of f

nS . 

2. Compute the flow margins m

nu by the assumed f

nS , m

nu 1 by ( f

nS + pS1 ), .., and mu12  

by ( f

nS +





n

i

p

i nS
12

1

)12/( ). The month when f

nS occurs is the ending month used in the 

improved SSI procedure.  

3. Following the Section 5.4.3 and 5.4.4, use the vine copulas to model the joint 
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dependence structure of  ),...,( 12,..., 12

mm

nUU uuC
n

 and the associated CK .   

4. Reset the f

nS  and repeat step 2, and 3 until 5.0CK  (normal condition) or 

7.0CK (moderate wet condition). One can pre-define a range of flow values for 

f

nS  based on historical observations, in order to reduce computation time and effort.  

5. If 5.0CK (normal condition) or 7.0CK (moderate wet condition), the obtained 

f

nS  represents the required mean flow corresponding to a certain environmental flow 

target over the following n months. (1− m

nu ) will be the associated exceedance 

probability of this event.  

It is worth emphasizing that, because there are no extra assumptions about the future 

flow, it is inevitable that a truncated dependence model ),...,( 12,..., 12

mm

nUU uuC
n

 are 

adopted to compute the corresponding JSDI values in the study. When n reaches 12, 

copula )( 1212

m

U uC  and CK will decay to the margin mu12  because no available 

historical monthly flow joins the computation. Thereby, fS12  refers to 0.5 (for the 

targeted normal condition) and 0.7 (for the targeted moderate wet condition) of mX
F

12
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