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We consider a generalized partially linear model E�Y jX� T 	 � GfXT��m�T 	g
where G is a known function� � is an unknown parameter vector� and m is an

unknown function
 The paper introduces a test statistic which allows to decide

between a parametric and a semiparametric model
 �i	 m is linear� i
e
 m�t	 � tT�

for a parameter vector �� �ii	 m is a smooth �nonlinear	 function
 Under linearity

�i	 it is shown that the test statistic is asymptotically normal
 Moreover� it is

proved that the bootstrap works asymptotically
 Simulations suggest that �in small

samples	 bootstrap outperforms the calculation of critical values from the normal

approximation
 The practical performance of the test is shown in applications to

data on East�West German migration and credit scoring


� Introduction

In the analysis of discrete response variables one often models the expected value

of the response as a nonlinear monotone function of a linear combination of the

explanatory variables
 Examples are Probit or Logit models where the nonlin�

ear �link	 function is the cumulative distribution function of a normal or logistic

distribution� respectively� see McCullagh and Nelder �����	
 Then the so�called

generalized linear model has the form

E�Y jZ	 � G�ZT �	 ��
�	

with a known monotone function G and an unknown parameter �
 The model ��
�	

combines computational feasibility �especially for discrete covariates	 with good

interpretability of the �index� ZT � and therefore has found wide application in

all �elds of applied statistics� see e
g
 Fahrmeir and Tutz �����	� Maddala �����	


However� for some applications it may be argued that the assumption of linearity

in ��
�	 is too restrictive
 Indeed it may be not even clear if the relationship

between the in�uential variables and the response is monotone
 A more complex

relationship �allowing also for nonmonotone dependence	 is given by the following

semiparametric generalized partially linear model

E�Y jZ	 � GfXT� �m�T 	g ��
�	

where Z � �X� T 	 is a split of Z into two components X and T � � is an unknown

parameter and m is an unknown smooth function
 For a discussion of model ��
�	

and for further references� see Severini and Staniswalis �����	


�
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Household income -> migration

Figure �� The in�uence m�t	 of household income �transformed to

�� ��	 on migration intention
 Nonparametric �t �thick black line	�
linear �t �thin black dashed line	� and �biased� parametric estimatefm �see ��
�	� thin grey dashed line	� n � ���


As an example for a possible nonlinear dependence consider a model on East�

West German migration in ���� �data from the German Socio�Economic Panel

for Mecklenburg�Vorpommern� a Land of the Federal State of Germany� GSOEP�

����	
 The dependent variable is binary with Y � � �intention to move	 or Y � �

�intention to stay	
 As an explanatory variable serves besides some socioeconomic

factors X � �age� sex� friends in west� city size� unemployment	 the variable T �

household income
 Figure � shows a �t of the function m in the semiparametric

model ��
�	 using a logistic link function G�u	 � ��f�� exp��u	g
 The estimated

function is clearly nonlinear and shows a saturation in the intention to migrate

for higher income housholds
 The question is of course� whether the observed

nonlinearity is signi�cant


In this paper we will discuss tests of the parametric hypothesis ��
�	� i
e


m�t	 � tT� for a vector �� ��
�	

versus the semiparametric alternative ��
�	
 Our tests indicate whether nonlinear

shapes observed in nonparametric �ts of m are signi�cant
 Furthermore� the pro�

�



posed tests complement the work of Severini and Staniswalis �����	� who consider

estimation under model ��
�	
 Optimal rates for the nonparametric component

and e�cient estimation of the parametric component has been discussed in Mam�

men and van de Geer �����	
 With identity link this model has been also analysed

by Green �����	� Speckman �����	 and Robinson �����	
 For a related model

with semiparametric index see Carroll� Fan� Gijbels and Wand �����	
 Most of

the literature in this semiparametric context though was devoted to estimation

and not to testing


Our test is based on ideas of Hastie and Tibshirani �����	
 �For a more general

setup� they propose to apply the likelihood ratio test and to use �� approximations

for the calculation of critical values
 Approximate degrees of freedom are derived

by calculating expectation of asymptotic expansions of the test statistic under the

null hypothesis
 For this approach only heuristic justi�cation has been given
 We

propose the following modi�cations of this approach


First we correct for bias of nonparametric estimates
 Secondly we modify the

test statistic for the reason that di�erent likelihoods �smoothed or unsmoothed

likelihood� respectively� have been used in the calculation of the nonparametric

or parametric component
 For this modi�ed test we can develop an asymptotic

distribution theory
 The test statistic has not an asymptotic �� distribution
 We

propose to use bootstrap for the calculation of critical values and we can show

that bootstrap works


The next Section � introduces estimators of m� � and �
 These estimators

will be used in the construction of the test statistics
 The test and its asymptotic

properties are discussed in Section �
 Section � reports on a small simulation study�

the application to the migration example and another example on credit scoring


Remarks on the computation of the test statistics and proofs of our results are

given in the appendix


�



� Estimation in the Parametric and in the

Semiparametric Model

For the estimation of the parametric component � and the nonparametric compo�

nent m we follow the approach of Severini and Staniswalis �����	
 The method is

based on quasi�likelihood estimation
 The quasi�likelihood function is de�ned as

Q��� y	 �

yZ
�

�s� y	

V �s	
ds

where � is the �conditional	 expectation of Y � i
e
 � � GfXT� � m�T 	g
 It is

assumed here that the conditional variance of Y is 	�V ��	 where 	 is an unknown

scale parameter and V is a known function
 Quasi�likelihood functions are mo�

tivated by exponential families
 Note that the maximum likelihood estimate b��
based on an i
i
d
 sample Y�� 


� Yn from an exponential family� is given by

nX
i��

�

��
Q��i� Yi	 � �


In our model the quasi�likelihood function is given as

L�m� �	 �
nX
i��

Q��i� Yi	 ��
�	

where �Y�� X�� T�	� 
 
 
 � �Yn� Xn� Tn	 is a sample of independent observations and

�i � GfXT
i � � m�Ti	g
 The parameter � is supposed to lie in B � IRp
 The

covariates Xi� Ti are IR
p and IRq valued
 We assume that the response variable Yi

is real valued
 Multidimensional responses can be treated similarly


For the estimation of the nonparametric component m we make use of the

following smoothed quasi�likelihood

LS�m�
	� �	 �
Z nX

i��

Kh�t� Ti	 Q�GfXT
i � �m�t	g� Yi� dt� ��
�	

where Kh�u	 � �h� � 
 
 
�hq	��K�h��
� u�� 


� h

��
q uq	 is a kernel �de�ned on IRq	 with

bandwidth �vector	 h � �h�� 


� hq	
 Following Severini and Staniswalis �����	�

�



Severini and Wong �����	 we put for � � B

bm� � argmax
m

LS�m� �	� ��
�	b� � argmax
�

L� bm�� �	� ��
�	

bm � bmb� 
 ��
�	

In ��
�	 minimization runs over functions m�
	
 Because an integral is minimized

by minimizing its integrand the value � � bm��t	 is de�ned as the minimizer of

the �local likelihood�
Pn

i��Kh�t � Ti	 Q�GfXT
i � � �g� Yi�� see ��
�	
 Without

loss of generality we always assume that the constant vector is not contained in

the design space
 An intercept is automatically modelled by the nonparametric

component
 Under this assumption the minimization in ��
�	 and ��
�	 is unique


For a discussion of these estimates see Severini and Staniswalis �����	


Our test will be based on a comparison of the semiparametric estimates with

the estimators �e�� e�	 in the parametric model

�e�� e�	 � argmax
���

LP ��� �	
 ��
�	

Here LP ��� �	 is the quasi�likelihood function in model ��
�	

LP ��� �	 �
nX
i��

QfG�XT
i � � TT

i �	� Yig
 ��
�	

The scale parameter 	 can be estimated by

b	� �
�

n

nX
i��

�Yi � b�i	��V �b�i	� ��
�	

where b�i � GfXT
i
b� � bm�Ti	g


A direct comparison of bm�t	 and tT e� may be misleading because bm has a

smoothing bias which is typically nonnegligible
 This holds also if the hypothesis of

linearity is true
 To avoid this e�ect we will add to tT e� a bias which will compensate

for the bias of bm�t	
 This will be done by �smoothing� of the function t � tT e�

For this purpose we consider the arti�cial data set f �Yi� Xi� Tig 
 i � �� 
 
 
 � n where
�Yi � G�XT

i
e��TT

i e�	 is the parametric �t of E�YijXi� Ti	
 The function em is de�ned

by the following smoothing step


em � argmax
m

Z nX
i��

Kh�t� Ti	Q�GfXT
i
e� �m�t	g� �Yi� dt
 ��
�	

�



In the appendix we will show that under the hypothesis em�t	 is asymptotically

equivalent to tT e�� the bias of bm�t	
 Therefore in the di�erence bm�t	 � em�t	 the

bias cancels asymptotically


� Testing the Parametric versus the Semi�

parametric Model

Our test procedures are based on the comparison of the parametric estimates e�� em
with the semiparametric estimates b�� bm
 A natural approach would be based on

the likelihood ratio statistic L� bm� b�	 � L� em� e�	
 Unfortunately� this test statistic

does not work because in the construction of bm and b� two di�erent likelihood

functions �smoothed and unsmoothed	 have been used
 �A Taylor expansion of

the test statistic� in particular of the i�th summand into ci
i � di

�
i with 
i �

XT
i �
b� � e�	 � bm�Ti	� em�Ti	� does not lead to a quadratic form
� This cannot be

repaired by using the smoothed quasilikelihood LS instead of L


We propose the following test statistic


R� � ��
nX
i��

Q�e�i� b�i	� ��
�	

with e�i � GfXT
i
e� � em�Ti	g and b�i � GfXT

i
b� � bm�Ti	g for i � �� 
 
 
 � n


Note that for the case that the variance function V is constant R� is equal

to
nP
i��

�e�i � b�i	��V 
 In general� R� is equal to
nP
i��

�e�i � b�i	��V ���i	� where ��i is a

point between e�i and b�i
 Therefore R� can be interpreted as a weighted quadratic

deviation


If the distribution of Y does not belong to an exponential family� the calcu�

lation of R� involves evaluation of n integrals
 In these cases the following two

modi�cations of R� are easier to compute
 They are motivated by a Taylor expan�

sion of R�


R� �
nX
i��

�G�fXT
i
b� � bm�Ti	g��

V �GfXT
i
b� � bm�Ti	g�

n
XT
i �
b� � e�	 � bm�Ti	� em�Ti	

o�

 ��
�	

�



and

R� �
nX
i��

fG��XT
i
e� � TT

i e�	g�
V fG�XT

i
e� � TT

i e�	g
n
XT
i �
b� � e�	 � bm�Ti	� em�Ti	

o�

 ��
�	

Theorem �
� discusses asymptotics of these test statistics
 The test statis�

tics are asymptotically equivalent on the null hypothesis and have an asymptotic

normal distribution


Theorem ���

Suppose that the assumptions �A�� � �A�� �see Section A�	 apply
 Then on the

hypothesis m��t	 � tT��� it holds that

�i� R� � R� � op�vn	 � R� � op�vn	�

�ii� v��
n �R� � en	

D�� N��� �	�

where en is a sequence with en � h��
prod

R
K�u	� du �� � O�h�maxh

��
prod	 and v�n

is de�ned by v�n � �h��
prod

R
K����u	� du ��
 Here we use the notation hmax �

maxfh�� 
 
 
 � hqg and hprod � h� � 
 
 
 � hq
 The kernel K��� is the convolution of K

with itself
 Furthermore�

�� � E
E
h
���X�T �G�����

V ��G���� jT
i

E
h
G�����

V �G���� jT
i p�T 	���

�� � E
E
h
���X�T �G�����

V ��G����
jT
i�

E
h
G�����

V �G���� jT
i� p�T 	��


where 	��X� T 	 is the conditional variance of Y � given �X� T 	 and where � �

XT���TT��
 If the conditional variance 	��X� T 	 is correctly speci�ed by 	�V �G��		

then �� is equal to �� and 	���� � 	���� is the Lebesgue measure of the support

ST of T 


Note in particular� that
R
K�u	�du �� R fK����u	g�du
 Therefore for the case

that �� � ��� Theorem �
� implies that a �� approximation is not appropriate for

�



the distribution of R�
 The reason is that for kernel smoothing operators K it does

not hold that KK � K
 This is in contrast to projection operators like B�splines�

see Buja� Hastie and Tibshirani �����	
 In particular� �� � �� holds if Q�y��	 is

the log�likelihood
 Then R� is a modi�cation of the log likelihood test


For the asymptotic mean en an explicit formula can be given that contains

conditional expectations of smoothed functions
 Because it is rather lengthy it is

omitted here


Theorem �
� states that the test statistics R�� R� and R� are asymptotically

equivalent on the hypothesis
 By standard arguments of asymptotic decision the�

ory the asymptotic equivalence remains valid for contiguous alternatives �i
e
 n����

neighbored alternatives	
 In a parametric setting this would imply that these three

tests have asymptotic equivalent power
 However� in our nonparametric setup the

tests will have nontrivial power �power bounded away from the level and from �	

only for noncontiguous alternatives
 Therefore� power functions may behave quite

di�erently
 A comparison of power functions based on simulations can be found in

the next section


��� Bootstrap tests

For two points sn and tn the nonparametric estimates bm�sn	 and bm�tn	 are asymp�

totically independent if the supports of the kernels Kh��� sn	 and Kh��� tn	 are

disjoint
 This may explain why� asymptotically� R� behaves approximately like a

sum of O�h��
� � 
 
 
 � h��

q 	 independent summands and has an asymptotic normal

limitc
 Because� typically� h��
� � 
 
 
 � h��

q is not very large� it can be suspected that

normal approximations do not work well for R�� see H�ardle and Mammen �����	

for a related discussion
 Therefore� for the calculation of quantiles� we advise not

to use normal approximations
 Instead� we propose to use the bootstrap
 We

discuss here three versions of bootstrap
 The �rst version is Wild Bootstrap which

is related to proposals of Wu �����	 �see also Beran �����	 and Mammen �����	�

and which was �rst proposed by H�ardle and Mammen �����	 in nonparametric

setups
 Note that in our model the conditional distribution of Y is not speci�ed

besides �A�	 and �A�	


The Wild Bootstrap procedure works as follows


�



Step �
 Calculate residuals  �i � Yi �G�XT
i
b� � bm�Ti		


Step �
 Generate n i
i
d
 random variables ���� 
 
 
 � �
�
n with mean �� variance � and

which ful�ll for a constant C that j��i j 	 C �a
s
	 for i � �� 
 
 
 � n


Step �
 Put Y �
i � G�XT

i
e� � TT

i e�	 �  �i�
�
i for i � �� 
 
 
 � n


Step �
 Calculate estimates b��� bm�� e��� e��� em� based on the bootstrap samples �X�� T�� Y
�
� 	�


 
 
� �Xn� Tn� Y
�
n 	
 Furthermore� calculate test statistics R�

�� R
�
� and R�

�
 The

�� � �	 quantiles of the distributions of R�� R�� and R� can be estimated

by the �� � �	 quantiles of the conditional distributions of R�
�� R

�
� or R�

��

respectively


Under the additional model assumption

V ar�Y jX� T 	 � 	�V �G�XT�� � TT��		

we propose the following modi�cation of the resampling
 In Step � put Y �
i �

G�XT
i
e��TT

i e�	� 	V fG�XT
i
b�� bm�Ti	�g�����i for i � �� 
 
 
 � n where  	� is a consistent

estimate of 	�
 In this case the condition that j��i j is bounded can be weakened to

the assumption that ��i has subexponential tails� i
e
 for a constant C it holds that

E�e�j	
�
i j�C		 	 C for i � �� 
 
 
 � n �compare �A�	�


In the special situation that Q�y��	 is the log�likelihood �a semiparametric

generalized linear model	� the conditional distribution of Yi is speci�ed by �i �

G�XT
i � � TT

i �	
 Then we recommend to generate n independent Y�� 
 
 
 � Yn with

distributions de�ned by G�XT
�
e� � TT

� e�	� 
 
 
 � G�XT
n
e� � TT

n e�	� respectively
 This

is a version of parametric bootstrap
 E
g
 in the binary response example that

we considered above� Yi is a Bernoulli variable with parameter �i � G�XT
i � �

TT
i �	
 Hence� here it is reasonable to resample from the Bernoulli distribution

with parameter e�i � G�XT
i
e� � TT

i e�	

Theorem �
� shows that these three bootstrap procedures work �for their cor�

responding models	


Theorem ���

Suppose that the assumptions of Theorem 

� hold
 In case of application of the

second or third version of bootstrap assume that the just mentioned additional

�



model assumptions hold
 Then it holds for j � �� �� �� that

dK�L��R�
j 	�L�Rj		

P�� �

where L�Rj	 is the distribution of Rj� L��R�
j	 is the conditional distribution of

R�
j �given the sample	� and dK denotes the Kolmogorov distance� which is for two

probability measures � and � �on the real line� de�ned as

dK��� �	 � sup
t�IR

�����X 	 t	� ��X 	 t	
���


Application of these three versions of bootstrap for � has been discussed in

Mammen and van de Geer �����	
 There the nonparametric component has been

estimated by splines
 The statement of the theorem does also hold if the residuals

are de�ned as  �i � Yi�G�XT
i
e��TT

i e�	
 We have seen in our simulations for binary

responses that the normal approximation in Theorem �
� �ii	 is indeed inaccurate

for small sample sizes� see Section �� but that critical values are estimated quite

well by bootstrap


Our test statistic depends on the choice of the bandwidth h
 Di�erent values of

h may lead to di�erent observed signi�cance levels� see Section �
 Small values of h

have been motivated by asymptotic minimax theory � see Ingster �����	 and Lepski

and Spokoiny �����	
 In particular� the bandwidths proposed in these papers are

of smaller order than optimal bandwidths for nonparametric estimation
 However�

it is di�cult to adapt their abstract assumptions to practical settings


We suggest to apply the test for di�erent choices of h
 Di�erences in observed

critical values can be interpreted
 Whereas test statistics with small choices of

h look more for the appearance of wiggles of small length� large choices of h

may detect better global deviances from linearity
 So the inspection of the test

statistic for di�erent h gives an impression in which respect the function m di�ers

signi�cantly from linear functions


��� Testing average linearity

In case that our test has rejected the hypothesis of linearity it may be of interest

to get more insights about the reasons of the rejection
 For the case of d � �

��



we propose to test for average linearity in the direction of one covariate
 For a

given weight function w�t�� 
 
 
 � tq	 with
R
w�t�� 
 
 
 � tq	dt� � � �dtq � � we consider

the hypothesis thatZ
m�t�� 
 
 
 � tq	w�t�� 
 
 
 � tq	dt� � � �dtq � �� �t� for all t� and for �xed � and �


��
�	

Testing average linearity of m in t� is in particular appropriate in the following

model
 In this model it is assumed that there is no interaction term of t� and

�t�� 
 
 
 � tq	


m�t�� 
 
 
 � tq	 � m��t�	 �m��


�q�t�� 
 
 
 � tq	 for some functions m�� m��


�q


��
�	

For a discussion of this additive model see Buja et al
 �����	 and Hastie and

Tibshirani �����	
 In this model� hypothesis ��
�	 reduces to

m��t�	 � � � �t� for all t� and for �xed � and �
 ��
�	

Deviance from average linearity can be measured by the following test statistic

R
 � min
a�b

nX
i��

�G�fXT
i
b� � bm�Ti	g��

V �GfXT
i
b� � bm�Ti	g�

f bm��Ti	� a� bTig� � ��
�	

where bm��t�	 �
R bm�t�� 
 
 
 � tq	w�t�� 
 
 
 � tq	dt� � � �dtq
 For the additive model ��
�	�

the nonparametric estimate bm� of the additive component m� has been consid�

ered in Linton and Nielsen �����	� Tj!stheim and Auestad �����	� Chen� H�ardle�

Linton and Severance�Lossin �����	� and Fan� H�ardle and Mammen �����	
 In a

modi�ed de�nition� the �marginal integration� in the calculation of bm� is replaced

by a �marginal summation�
 For generalized additive models� asymptotics for the

estimate bm� is developed in H�ardle� Huet� Mammen and Sperlich �����	
 Further�

more a proof for asymptotic normality and consistency of bootstrap for the test

statistic R
 can be found there


� Simulations and Application

To verify the properties of our test procedure we have run a small simulation study


The following model was used to simulate data from a generalized �partially	 linear

��



model

E�Y jX � x� T � t	 � P �Y � �jx�� x�� t	 � Ff�x� � x� �m�t	g�

where F is the standard logistic distribution function F �u	 � ����� e�u	
 X��X�

and T are independent
 X� and T have a uniform distribution on ���� ��
 The

variable X� is discrete and takes �ve values in ���� ��


We performed simulations under the linearity hypothesis using m�t	 � t
 The

sample size was n � ���� ��� and ��� and the number of replications in the

bootstrap resampling was n� � ���
 The simulation results are based on ���

replications
 For smoothing in this section the quartic kernel K�u	 � ��
���� �

u�	�I�juj 	 �	 was used


Table � summarizes the results for m�t	 � t
 As can be seen bootstrap seems

to work quite accurate for all three test statistics� at least for � 
 �
��


As expected the normal approximation of Theorem �
� can be quite inaccurate

for small sample sizes and it should not be used for the calculation of critical values

of the test statistics R�� R�� R�
 This can be seen from Table �


The values in Table � concern only the tail of the distributions of R�� R�� and

R� and of the normal limit� given in Theorem �
�
 In the central region there are

much larger di�erences between the distributions of R�� R�� and R� and the normal

limit� given in Theorem �
�� as can be seen in Figure �
 There� density estimates for

R�� R�� R� �using the ��� Monte Carlo replications under the linear modelm�t	 � t�

are plotted together with the limiting normal density
 The normal limit and the

distributions of the test statistics are nearly separated
�The density estimates for

R�� R�� R� are kernel estimates with bandwidth according to Silverman�s rule of

thumb� i
e
 h � �
��� �
��� b	�n���� for the quartic kernel
 For better comparison�

the normal density has been analogously convoluted with a quartic kernel
� Similar

plots can be found in H�ardle and Mammen �����	 where a related test statistic

has been discussed for testing parametric versus nonparametric regression


Finally we have run our simulations with a function m consisting of a convex

combination of the linear function m�t	 � t and the nonlinear function m�t	 �

cos��t	
 Figure � shows the power functions of R� for these alternatives �black

lines	
 The power has been plotted for four di�erent signi�cance levels
 The power

functions for R� and R� are almost the same and therefore they have been omitted
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� �
�� �
�� �
�� �
�� �
��

LR�p	 �
��� �
��� �
��� �
��� �
���

LR�sp	 �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

n � ���� h � ���

LR�p	 �
��� �
��� �
��� �
��� �
���

LR�sp	 �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

n � ���� h � ���

LR�p	 �
��� �
��� �
��� �
��� �
���

LR�sp	 �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

n � ���� h � ���

Table �� Relative number of rejections for the test statistics R�� R�
and R� using the bootstrap method with n� � ���
 Compared with
relative number of rejections for parametric LR statistic ��LR�p		
and semiparametric LR statistic using approximative degrees of
freedom ��LR�sp		
 ��� Monte Carlo replications


The dashed lines in Figure � show �simulated	 power functions for a parametric

likelihood�ratio test LRp
 The hypothesis �m�x� t	 � Ffc � x� � t�g for some �

and �� is tested against the alternative
 �m�x� t	 � Ffc�x� � t��� cos��t	g for
some c� �� � and ��
 In this setup R� achieves nearly the power of the parametric

test LRp
 In other models we observed larger losses


For comparison we have also included a likelihood ratio test LRsp of the para�

metric against semiprametric hypothesis
 Critical values have been calculated

using �� approximations and the de�nition of approximative degrees of freedom
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� �
�� �
�� �
�� �
�� �
��

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

n � ���� h � ���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

n � ���� h � ���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

n � ���� h � ���

Table �� Relative number of rejections using normal approxima�
tions
 ��� Monte Carlo replications


of �Hastie and Tibshirani� ����	
 A more detailed description of this test can be

found in M�uller �����	
 The grey curves in Figure � show the power of this test
 It

achieves a similiar power as R�
 However it does not hold the nominal signi�cance

level under the hypothesis� see Table �


Let us now return to our introductory example on East�West German migra�

tion
 Our interest in this subject has been inspired by an analysis of Burda �����	


His paper considers a sample of ���� East Germans� which have been surveyed

in ���� in the German Socio�Economic Panel� see GSOEP �����	
 Among other

questions the East German participants have been asked� if they can imagine to

move to the Western part of Germany or West Berlin
 As in Burda�s study we give

the value � for those who responded positive and � if not
 The economic model

is based on the idea that a person will migrate if its utility �wage di�erential	

will exceed the costs of migration
 Of course� neither variable� wage di�erential

or costs� is directly available
 Hence proxy variables need to be used
 The origi�

nal data set of Burda �����	 contains �� explanatory variables� with four of them

continuous �age� income� rent� job tenure	
 The remaining variables are dummy

variables �sex� partner� homeowner� family"friends in west� and further variables

��
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Figure �� Density estimates for R� �thick line	� R� �thin solid line	�
R� �thin dashed line	 and normal density �grey line	
 n � ���� ����
��� �upper to lower plot	
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Figure �� Power functions of test R� for � � ����� ����� ����� ����
�black solid lines	
 x� t � 
��� �� and m�t	 � ����	t�� cos��t	� � �

�� ��� n � ���� h � ���
 Compared to the power of the parametric
LR test LRp �dashed lines	 and power of the semiparametric LR
test LRsp using approximate degrees of freedom �grey lines	


on occupation� city size� region� education	
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Yes No �in �	

Y migration intention ��
� ��
�

X� family�friends in west ��
� ��
�

X� unemployed�job loss certain ��
� ��
�

X� city size �������������� ��
� ��
�

X
 female ��
� ��
�

Min Max Mean S
D


X� age �years� �� �� ��
�� ��
��

T houshold income �DM� ��� ���� ����
�� ���
��

Table �� Descriptive statistics for migration data
 Sample from
Mecklenburg�Vorpommern� n � ���


It turns out� that regional variables have an important impact on the responses


For instance� the estimation is particularly di�cult for East Germans living in

East Berlin� since obviously other reasons may in�uence the intention to migrate

than only the wage di�erential compared to costs
 Also� the variables� which

are most important� di�er slightly between the �ve Eastern German states �plus

East Berlin	
 Unemployment� for example� plays a stronger role in the Northern�

less industrialized part of East Germany
 In the following we give the estimation

results for Mecklenburg�Vorpommern �in the very North of Eastern Germany	

which leads to a sample size of n � ���
 We have summarized some descriptive

statistics in Table �


Table � shows the results of a logit �t� using a subset of covariates which have

been chosen previously by a model selection procedure based on logit models
 For

simplicity both continuous variables �age� household income	 have been linearly

transformed to ��� ��
 The migration intention is de�nitely determined by age


However� also unemployment� city size and household income are highly signi�cant


A further analysis of this data set by a generalized additive model �keeping

the logit link� but generalizing the in�uence of the age and income variables to

nonparametric functions	 showed that the age has a nearly perfect linear in�uence


Because of this relation� we modelled only the in�uence of household income as a

nonparametric function
 The coe�cients for the parametric covariates are given

��



Coe�
 �t�value	 Coe�
 �t�value	

const	 ��
��� ���
��	 � �

family�friends in west �
��� � �
��	 �
��� � �
��	

unemployed�job loss certain �
��� � �
��	 �
��� � �
��	

city size �������������� �
��� � �
��	 �
��� � �
��	

female ��
��� ���
��	 ��
��� ���
��	

age ��
��� ���
��	 ��
��� ���
��	

household income �
��� � �
��	 � �

Linear �logit	 Part
 Linear

Table �� Logit coe�cients and coe�cients in a generalized par�
tially linear model for migration data
 Sample from Mecklenburg�
Vorpommern� n � ���� h � ���


in Table �
 The resulting �t bm �using bandwidth h � �
�	 for the function m is

that shown in Figure � together with the linear �t �thin black dashed line	 and

the �biased� parametric �t em �see ��
�� thin grey dashed line	
 Recall that the

estimate em is expected to be approximately equal to the sum of the parametric

estimate and the bias of bm
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Figure �� The in�uence m�t	 of household income on migration
intention
 Nonparametric �t �thick black line	� linear �t �thin black
dashed line	� and �biased� parametric estimatefm �thin grey dashed
line	
 n � ���� bandwidths h � ��� �left	 and h � ��� �right	
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In Figure � we show the functions bm and em �together with the linear �t	 for

bandwidths h � �
� and h � �
�
 The nonparametric estimate bm in the migration

example seems to be an obvious nonlinear function
 However� it is di�cult to

judge the signi�cance of the nonlinearity
 In general� it cannot be excluded that

the di�erence between the nonparametric and the linear �t may be caused by

boundary and bias problems of bm


h �
� �
� �
� �
� �
�

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

R� �
��� �
��� �
��� �
��� �
���

LR �sp	 �
��� �
��� �
��� �
���

Table �� Observed signi�cance levels for linearity test for migration
data� n � ���
 n� � ��� bootstrap replications


Table � shows the results of the application of our tests from Section �
 The

number of bootstrap simulations is always chosen as n� � ���
 We observe that

all three tests R�� R� and R� show nearly the same behaviour
 The observed

signi�cance levels are given for di�erent choices of the bandwidth h
 Linearity

is rejected �at �# level	 only for bandwidths �
�� �
�
 The di�erent behaviour of

the test for di�erent h give some indication on possible deviance of m from linear

functions
 The appearance of wiggles of small length is not signi�cant� see Figure �

�left panel	
 However� the global shape of m seems to be not well approximable

by linear functions
 This result is in accordance with the estimate in Figure � and

Figure � �right panel	� where a saturation of the intention to migrate appears for

the upper third of the data


At the end of this section we will shortly present the application of our test

statistic in a binary choice regression with a two�dimensional nonparametric func�

tion m
 The data are a subsample from a training dataset on credit scoring� see

Fahrmeir and Tutz �����	 and Fahrmeir and Hamerle �����	
 The interest con�

sists in �nding how some factors are related to credit worthiness
 We used the

subsample of loans for cars� which has a sample size of n � ��� out of ����
 Some

descriptive statistics for this subsample and a selection of covariates can be found

in Table �
 The covariate �previous credit o
k
� indicates that previous loans

were paid without problems or that there were no previous loans
 The variable

��



�employed� takes value � if the person taking the loan is employed with the same

employer for at least one year
 In the following statistical analysis we took loga�

rithms of �amount� and �age� and transformed these values linearly to the interval

��� ��


Yes No �in �	

Y credit worthy ��
� ��
�

X� previous credits o	k	 ��
� ��
�

X� employed ��
� ��
�

Min Max Mean S
D


X
 duration �months� � �� ��
�� ��
��

T� amount �DM� ��� ����� ����
�� ����
��

T� age �years� �� �� ��
�� ��
��

Table �� Descriptive statistics for credit data
 Sample for credits
for cars� n � ���


A parametric logit model leads to the parameter estimates listed in Table �


The in�uence of employment� duration and amount of credit have the expected

sign
 The negative in�uence of �previous credits o
k
� is a bit astonishing� but

may be explained that also people without previous loan fall in this category
 The

age variable shows a �global	 positive in�uence in the logit �t� this will change

together with the amount variable in the semiparametric �t
 Note also� that both

coe�cients for �amount� and �age� are not signi�cant at ��# level


In a next step we �tted a generalized partially linear model to the data
 In�u�

ence of �amount� and �age� has been �tted nonparametrically
 The other variables

have been modelled as linear covariates
 For �duration� this has been done be�

cause� typically� it is divisible by � months
 Figure � shows a scatterplot of the

two variables �amount� and �age� on the left panel and the two�variate estimatebm �using a bandwidth h � �
� in both dimensions	 on the right panel
 It is di��

cult to check bm graphically for signi�cant deviances from linearity
 The big peak

of bm is caused by only a few observations �as can be seen from the scatterplot�


For a closer inspection of bm Figure � shows the in�uence of �amount� and �age�

separately
 In both plots of Figure � one variable is held �xed at levels �
� �short

dashes	� �
� �thick line	 and �
� �long dashes	
 For �age� these levels correspond

��



Coe�
 Std
Err
 P � jzj Coe�


const	 �
��� �
��� �
���� �

previous credits o	k	 ��
��� �
��� �
��� ��
���

employed �
��� �
��� �
��� �
���

duration ��
��� �
��� �
��� ��
���

amount ��
��� �
��� �
��� �

age �
��� �
��� �
��� �

Linear �logit	 Part
 Linear

Table �� Logit coe�cients and coe�cient in partially linear �t for
credit scoring� n � ���


to ��
�� ��
��� and ��
�� years� respectively
 For credit amounts the correspond�

ing original values are DM ����
��� DM ����
��� and DM ����
��� respectively


So obviously� a higher amount of credit seems to get more risky in conjunction

with higher age
 Also� younger people seem to get less risky with increasing credit

amount
 Both of these possible conclusions could not be seen from the parametric

logit �t
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Figure �� Scatterplot for amount of credit and age �left panel	

In�uence cm�t�� t�	 of amount and age on credit worthiness �right
panel	� n � ���


Table � gives the observed signi�cance levels of our test statistics for the credit

data
 For the tests R� and R� linearity is rejected at level �
�� for h 	 �
�
 For

��
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Figure �� In�uence of amount on credit worthiness for �xed age
�left panel	
 In�uence of age on credit worthiness for �xed amount
�right panel	
 n � ���


h � �
� the rejection has even higher signi�cance
 This suggests that deviances

from linearity are more locally concentrated
 Our inference in both applications

was based on inspection of several tests
 For getting a resulting p�value one could

consider a combination of the test statistics for several bandwidths and one could

calculate critical values for this combined statistic again by bootstrap


h �
� �
� �
� �
� �
�

R� �
�� �
�� �
�� �
�� �
��

R� �
�� �
�� �
�� �
�� �
��

R� �
�� �
�� �
�� �
�� �
��

Table �� Observed signi�cance levels for linearity test for credit
scoring� n � ���
 ��� bootstrap replications


A� Computational Remarks

In this section we indicate how the estimates in ��
�	 and ��
�	 can be numerically

computed
 The following algorithm corresponds to that proposed in Severini and

Staniswalis �����	� Example �� for the special case of a logistic link function


��



Put �j��	 � bm��Tj	 and

Li�u	 � QfG�u	� Yig
 �A�
�	

Note� that we have

L�
i�u	 �

Yi �G�u	

V �G�u		gG
��u	 �A�
�	

L��
i �u	 � fYi �G�u	g

�
G���u	

V �G�u		

� V ��G�u		 G��u	�

V �G�u		�

�
� G��u	�

V �G�u		

 �A�
�	

Then maximizing the smoothed quasi�likelihood ��
�	 requires to solve

� �
nX
i��

L�
ifXT

i � � �j��	gKh�Ti � Tj	
 �A�
�	

Di�erentiation of �A�
�	 leads to � �
nP
i��

L��
i fXT

i ���j��	gKh�Ti�Tj	fXi��
�
j��	g


This gives

��j��	 �

�
nP
i��

L��
i fXT

i � � �j��	gKh�Ti � Tj	Xi

nP
i��

L��
i fXT

i � � �j��	gKh�Ti � Tj	

 �A�
�	

For � � b� it holds that

� �
nX
i��

L�
ifXT

i � � �i��	g fXi� ��i��	g
 �A�
�	

Equations �A�
�	� �A�
�	� �A�
�	 suggest the following iterative Newton�Raphson

type algorithm to �nd b� and bm�Tj	� j � �� 
 
 
 � n


� Start with b�� � e�� b��j � TT
j e�


� The iteration k � k � � is determined by the stepwise application of the

following two equations


� �
nX
i��

L�
i�X

T
i
b�k � b�kj 	Kh�Ti � Tj	 � L��

i �X
T
i
b�k � b�kj 	Kh�Ti � Tj	�b�k
�

j � b�kj 	
� �

nX
i��

L�
i�X

T
i
b�k � b�k
�

i 	 eXk
i � L��

i �X
T
i
b�k � b�k
�

i 	 eXk
i
eXkT

i �e�k
� � e�k	�
��



where eXk
j � Xj �

Pn
i�� L

��
i �X

T
i
b�k � b�k
�

j 	Kh�Ti � Tj	XiPn
i�� L

��
i �X

T
i
b�k � b�k
�

j 	Kh�Ti � Tj	



Then bmk�Tj	 � b�kj 

Alternatively� the functions L��

i �u	 can be replaced by their expectations �G��u	��V fG�u	g
to obtain a Fisher scoring type procedure


A� Assumptions

We state now the assumptions used in the results in Section �
 In the following�

the underlying parameters are denoted by ��� �� and m�
 We use the notation

hmax � maxfh�� 
 
 
 � hqg�

hprod � h� � 
 
 
 � hq�
� � h�max � �nhprod	

�����

� � hmax � �nhprod	
����


For the asymptotic expansions we make the following assumptions


�A�	 �X�� T�� Y�	� 
 
 
 � �Xn� Tn� Yn	 are i
i
d
 tuples with values in IRq � IRp � IR


�A�	 E�YijXi� Ti	 � GfXT
i �� �m��Ti	g with �� � IRp
 The conditional variance

V ar�YijTi � t	 has a bounded second derivative
 Furthermore the Laplace

transform E exp tjYij is �nite for t � � small enough


�A�	 XT
i �� � m��Ti	 has compact support S
 Xi and Ti have compact convex

support SX � ST 
 Ti has a twice continuously di�erentiable density fT with

inf
t�ST

fT �t	 � �


�A�	 There exists an 
 � � such that G�k��u	� k � �� 
 
 
 � � and G��u	�� are

bounded on u � S� � fv 
 �v� � S with jv� � vj 	 
g
 Furthermore V ��� V �

and V �� are bounded on G�S�	


��



�A�	 The kernel K is a product kernel K�u	 � K��u�	 � 
 
 
 �Kq�uq	
 The kernels

Kj are symmetric probability densities with compact support ����� ��� say	�
j � �� 
 
 
 � q


�A�	 The estimate b� is de�ned as arg max
��k����k��

L� bm�� �	
 For a 
n with 
n � �

the estimate bm��t	 is de�ned as arg max
��j��m��t�j��n

nP
i��

Li�X
T
i �� �	Kh�Ti� t	


�A�	 E
h
L��
�fXT

� �� �m��T�	gjT� � t
i
and E

h
L��
�fXT

� �� �m��T�	gX�jT� � t
i
are

twice continuously di�erentiable functions for t � ST 


�A�	 hprod n
����logn	�� �
 and hmax � o�n�����logn	���
	


A� Proofs

In this section we always assume that �A�	 � �A�	 hold
 The following lemmas give

the stochastic expansions for b� and bm
 Recall that the set ST was the �compact	

support of Ti
 We denote S�
T � ft � ST 
 t � � � ST for all � with j�jj 	 hj�j �

�� 
 
 
 � q	g and Sh
T � ST n S�

T 
 Furthermore� de�ne

Si�� � L�
ifXT

i �� �m��Ti	g� Si�� � L��
i fXT

i �� �m��Ti	g�
eXi � Xi � fE�Si��jTi�g��E�Si��XijTi��

wi�t	 � Kh�t� Ti	
n
n��

nX
j��

Kh�t� Tj	
o��




Lemma A���

�i� For all C � � it holds that

sup
t�S�

T
k����k�C�

����� bm��t	�
�
m�t	� fE�S���jT� � t	g��

h �
n

nX
i��

wi�t	L
�
ifXT

i �� �m��t	g

�E�S���X
T
� jT� � t	�� � ��	

i������ � Op��
� logn	


��



�ii� The supremum in �i� taken over t � Sh
T � k����k 	 C� is of stochastic order

Op��
�	


Proof

We prove only statement �i	
 Choose C � �
 We have for t � S�
T � k� � ��k 	 C�

nX
i��

L�
ifXT

i � � bm��t	gKh�t� Ti	 � �
 �A�
�	

This follows from

sup
nX
i��

L��
i �X

T
i � � �	Kh�t� Ti	 � � �A�
�	

with probability tending to one� where the supremum runs over j� � m��t	j 	

n� t � S�

T � and � with k� � ��k 	 C�


Note that �A�
�	 implies that� if we �nd an ���t	 with j���t	�m��t	j 	 
n and

nX
i��

L�
ifXT

i � � ���t	gKh�t� Ti	 � ��

then with probability tending �uniformly	 to one we get bm��t	 � ���t	
 Inequality

�A�
�	 can be shown by using that for 
 � � small enough

sup��I �n���I ��n �t�I ���

����� �n
nX
i��

L��
i fXT

i � � �gKh�t� Ti	

�E
h
L��
i fXT

i � � �gKh�t� Ti	
i��� � oP ��	 �A�
�	

sup
��i�n

sup
u�S��t�IRq

jL���
i �u	Kh�t� Ti	j � OP �h

��
prod log n	� �A�
�	

sup
��i�n

sup
u�S��t�IRq

kL���
i �u	K

�
h�t� Ti	k � OP �h

��
prodh

��
max logn	� �A�
�	

where the supremum in �A�
�	 runs over grids I �� I �� and I ��� with polynomially

many elements
 Equality �A�
�	 follows by application of the Markov inequality


Note that Yi has bounded Laplace transform� see Assumption �A�	
 Equalities

�A�
�	 � �A�
�	 follow from max��i�n jYij � OP �logn	
 This can be shown again

by using that Yi has bounded Laplace transform
 For the proof of claim �A�
�	

one applies

E
h
L��
i fXT

i � � �gKh�t� Ti	
i
� �E G�fXT

i � � �g�
V �GfXT

i � � �g� 


��



Equation �A�
�	 implies

� �
�

n

nX
i��

wi�t	L
�
ifXT

i �� �m��t	g �A�
�	

�
�

n

nX
i��

wi�t	L
��
i fXT

i �� �m��t	g f bm��t	�m��t	 �XT
i �� � ��	g

�R���� t	
h
f bm��t	�m��t	g� � ��

i
with

sup
t�S�

T
k����k�C�

jR���� t	j 	 C� �a
s	

for a constant C� � � for n large enough
 Furthermore� we have j bm��t	�m��t	j 	

n � �� see �A�	
 This implies

bm��t	 � m��t	�
�
�

n

nX
i��

wi�t	L
��
i fXT

i �� �m��t	g
���

�A�
�	�
�

n

nX
i��

wi�t	L
�
ifXT

i �� �m��t	g� �

n

nX
i��

wi�t	L
��
i fXT

i �� �m��t	gXT
i �� � ��	

�

�R���� t	 �
� logn�

where

sup
t�S�

T
k����k�C�

jR���� t	j � Op��	


For �A�
�	 it has been used that

sup
t�S�

T

����� �n
nX
i��

wi�t	L
�
ifXT

i �� �m��t	g
����� � Op��

p
logn	


This follows from

sup
t�S�

T

����� �n
nX
i��

Kh�t � Ti	
h
L�
ifXT

i �� �m��t	g � L�
ifXT

i �� �m��Ti	g
i����� � Op��	

and

sup
t�S�

T

����� �n
nX
i��

Kh�t� Ti	L
�
ifXT

i �� �m��Ti	g
����� � Op��

p
logn	


��



Recall that E
h
L�
ifXT

i �� �m��Ti	gjXi� Ti
i
� �
 For the statement of the lemma

it remains to show

sup
t�S�

T

����� �n
nX
i��

wi�t	L
��
i fXT

i �� �m��t	g � E�S���jT� � t	

����� �A�
�	

� Op��
p
log n	

sup
t�S�

T

����� �n
nX
i��

wi�t	L
��
i fXT

i �� �m��t	gXT
i � E�S���X

T
� jT� � t	

����� �A�
�	

� Op��
p

logn	


For the proof of �A�
�	 note �rst that

sup
t�S�

T

����� �n
nX
i��

wi�t	
h
L��
i fXT

i �� �m��t	g � L��
i fXT

i �� �m��Ti	g
i����� � Op��	�

see �A�	
 With the help of �A�	 one shows

sup
t�S�

T

����� �n
nX
i��

wi�t	L
��
i fXT

i �� �m��Ti	g �E�S���jT� � t	

����� � Op��
p
logn	


Equation �A�
�	 can be shown similarly


Lemma A���

�i� For all C � � it holds that

sup
t�S�

T
k����k�C�

����� bm��t	

��
� fE�S���jT� � t	g��E�S���X�jT� � t	

���� � Op��
p
logn	


�ii� The supremum in �i� taken over t � Sh
T � k����k 	 C� is of stochastic order

Op��	


Proof

Lemma A�
� can be proved similarly as Lemma A�
�
 One uses that
nX
i��

L��
i fXT

i � � bm��t	gKh�t� Ti	
�

��
bm��t	 �A�
��	

�
nX
i��

L��
i fXT

i � � bm��t	gXiKh�t� Ti	 � �


��



Lemma A���

For the estimate b� the following stochastic expansion holds

b� � �� � fE�S���
eX�
eXT
� 	g�� �

n

nX
i��

Si�� eXi �Op��
� logn	


Proof

We show that with probability tending to one there exists a solution � with k� �
��k 	 � of the following equation and that �with probability tending to one	 this

solution is unique

�

��

nX
i��

LifXT
i � � bm��Ti	g � �
 �A�
��	

Expansion of the left hand side of �A�
��	 gives with the help of Lemma A�
�

� �
�

n

nX
i��

L�
ifXT

i � � bm��Ti	g
�
Xi �

�

��
bm��Ti	

	
�A�
��	

�
�

n

nX
i��

L�
ifXT

i �� �m��Ti	g
�
Xi �

�

��
bm��Ti	

	

�
�

n

nX
i��

L��
i fXT

i �� �m��Ti	g eXiX
T
i �� � ��	

�
�

n

nX
i��

L��
i fXT

i �� �m��Ti	g eXi � bm��Ti	�m��Ti	� � Op��
� logn	


This expansion holds uniformly for � with k�� �ok 	 �
 For instance� it has been

used that

sup
t�S�

t
k����k��

j bm��t	�m�t	j � Op��
p
log n	


This follows by standard techniques from Lemma A�
�
 By expansion of �A�
��	

it can be shown that

�

n

nX
i��

L�
ifXi�� �m��Ti	g

�
Xi �

�

��
bm��Ti	

	

�
�

n

nX
i��

L�
ifXT

i �� �m��Ti	g eXi � Op��
�	


Plugging this into the right hand side of �A�
��	 and replacing averages by their

expectations gives that �with probability tending to one	 there exists a solution

��



� � � of �A�
��	 with

� � �� � fE�S���
eX�
eXT
� 	g�� �

n

nX
i��

Si�� eXi � Op��
� logn	


Because of � � �� � Op�n
����	� we have � � b� �with probability tending to one	


This shows Lemma A�
�


With the help of Lemmas A�
� and A�
� we get for the estimate bm the following

expansion


Corollary A���

�i� For the estimate bm the following stochastic expansion holds�

sup
t�S�

T

����� bm�t	� fm�t	 � fE�S���jT� � t	g��E�S���X
T
� jT� � t	

f�S���
eX�
eX�	g�� �

n

nX
i��

Si�� eXig
����� � Op��

�
p
log n	�

with m�t	 � m��t	 � E�S���jT� � t	�� �
n

nP
i��

wi�t	L�
ifXT

i �� �m��t	g


�ii� The supremum in �i� taken over t � Sh
T is of stochastic order Op��

�	


In particular� we get supt�S�
T
j bm�t	 �m�t	j � Op�n����	 and supt�Sh

T
j bm�t	 �

m�t	j � Op��
�	
 Also supt�S�

T
j bm�t	 �m�t	j � Op��

p
log n	 and supt�Sh

T
j bm�t	 �

m�t	j � Op��	


In Section � we introduced in ��
�	 the modi�cation em�t	 of the parametric estimate

tT e�
 The purpose of this modi�cation was to compensate for the bias of bm�t	 when

comparing em�t	 and bm�t	
 The next lemma shows that this modi�cation works


Lemma A���

Suppose that the hypothesis ��
�� holds� i
e
 m��t	 � tT��


sup
t�S�

T

��� em�t	� tT �e� � ��	�Efm�t	jX�� T�� 
 
 
 � Xn� Tng
��� � Op��

�
p
log n	


��



Proof

The proof uses similar expansions as above
 In particular it uses the fact that with

probability tending to one
nX
i��

Kh�t� Ti	
Gfe�i�t	g � G�XT

i
e� � TT

i e�	
Gfe�i�t	g��� Gfe�i�t	g� G�fe�i�t	g � ��

where e�i�t	 � XT
i
e� � em�t	


Proof of Theorem �
�

Application of the foregoing expansions for the parametric and semiparametric

estimates gives


sup
t�S�

T

��� � bm�t	� em�t	�� �m�t	�Efm�t	jX�� T�� 
 
 
 � Xn� Tng�
��� � Op��

�
p
logn	�

sup
t�S�

T

���m�t	�Efm�t	jX�� T�� 
 
 
 � Xn� Tng
��� � Op��nhprod	

����
p
logn	�

These equalities together with the expansions for the suprema over S�
T imply

for j � �� �� �

Rj � R� Op�n�
��nhprod	

���� log n	�

R �
nX
i��

G���i	�

G��i	f�� G��i	g fm�Ti	�E �m�Ti	jX�� T�� 
 
 
 � Xn� Tn�g� �

where �i � XT
i �� � TT

i �� for i � �� 
 
 
 � n
 Under our assumptions� we have n��

�nhprod	���� logn � o�h
����
prod 	 � o�vn	
 This shows statement �i	
 For statement

�ii	 note that� conditionally givenX�� T�� 
 
 
 � Xn� Tn� the statistic R is a U �statistic


Proceeding as in H�ardle and Mammen �����	 one can verify de Jong�s �����	

conditions for asymptotic normality of U �statistics


Proof of Theorem �
�

As in the proof of Theorem �
� one shows for j � �� �� � that

dKfR�
j � N�en� v

�
n	g �� � �in probability	
 �A�
��	

�Recall that en and vn have been introduced in Theorem �
�
	 For this purpose

one notes �rst that for all three versions of bootstrap jY �
i j has bounded conditional

Laplace transform �in a neighborhood of ��
 This has been shown in the proof of

Theorem �
� in Mammen and van de Geer �����	
 For the proof of �A�
��	 one

proceeds now as in the proof of Theorem �
�


��
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