
ELSEVIER 
Journal of Statistical Planning and 

Inference 58 (1997) 333 348 

joumal of 
statistical planning 
and inference 

Optimal smoothing in adaptive location estimation ~ 

Enno Mammen a, Byeong U. Park b,, 
alnstitut fiir Angewandte Mathematik, Ruprecht-Karls-Universit~it Heidelberg, 

Im Neuenheimer Feld 294, 69120 Heidelberg, Germany 
b Department of Computer Science and Statistics, Seoul National University, Seoul 151-742, S.Korea 

Received 26 June 1995; revised 20 December 1995 

Abstract 

In this paper, we consider higher order performance of kernel based adaptive location estimates. 
We show how much one loses in efficiency without knowing the underlying translation density, 
and derive the optimal order of the bandwidths involved in kernel estimation of the efficient 
score function. The optimal order is obtained by minimizing the loss of efficiency in terms 
of estimating the location parameter. The main lesson here is that the optimal order of the 
bandwidths are different from those for optimal estimation of the score function. This implies 
that optimal estimation of the score function does not lead to second order optimal location 
estimation. 
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1. Introduction 

In this paper we consider the problem of  optimal bandwidth choice in kernel-based 

adaptive location estimation. The observations X, 's  are generated by the model  Xi = 

0 + ci (1 ~< i <~n) in which 0 is an unknown parameter  and the e / s  are independent and 

identically distributed errors with an unknown common symmetric density f .  Adaptiv- 

ity means here that without knowing f one estimates 0 asymptotically as well (to first 

order) as one could do when knowing f .  
^ML 

When f is known, the efficient maximum likelihood estimator 0 n fulfills 

n 
O(& ^ML 

-0, ,  ) = 0 .  
i--I 
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Here ip denotes the efficient score function of f ,  i.e. O(x) --- - f ' / f ( x ) .  A one-step 
^ML 

approximation of 0 n is given by 

~APPML n--1 ~ 0 ¢/(~i) , O n = On + (ei) n -~ 
i=1 

(1.1) 

where 0n is a v~-consistent estimator of  0 and di = X / -  0n are the residuals (1 ~< i ~< n). 
n In most applications the term [n-~ ~i=1 ~t / (d i ) ] - - I  in  the definition of 02 pPML is replaced 

by I -~, where I = f ~ 2 f  is the Fisher information. 
When f is unknown, as in the present case, one can get an adaptive estimate by 

plugging a kernel estimate ~ of ~ into the formula (1.1). More precisely, ~ could 

be some modification of - f r ' J j 'h ,  where ]'h(x) = n -1 ~ = ,  K h ( x -  ( ~ -  0n)) and 
Kh(x) = h - lK(x /h ) .  Here K is the kernel function (usually a symmetric probability 

density function), and h and g are the bandwidths that control the smoothing amount of 
the function estimates. In most literature, the choice h = g is taken and there has been 
no discussion on the issue of what is the best rate of  convergence of h(= g)- Recent 
works include Stone (1975), Bickel (1982), Schick (1987), and Hsieh and Manski 
(1987), among others. The first three papers cited above focus on showing the first 

^ML 
order equivalence, to 0 n (adaptivity), of the kernel based method with deterministic 
choices of  h(=  g), and the last one shows that the empirical performance of adaptive 

estimates is highly sensitive to the choice of  h(=  g). 
One of the main strength of this paper is that we derive the optimal orders of  h 

and g in terms of estimation of 0, not ~. It has been believed that the estimation of 
the efficient score function ~p is the crucial step toward adaptiveness of  the location 
estimate. This has motivated many people to consider bandwidth choice in terms of 
estimating ~. See, for example, Park (1993). However, through demonstrating higher 
order performance of the adaptive estimate, our results show that optimal adaptive 
estimation of 0 yields different choices of  h and g (even differing in the rate) from 
those for optimal estimation of the score function 0. This illustrates the fact that 
optimal estimation of ~ does not lead to optimal adaptive location estimation. Since 
choice of  the score function ~ could be interpreted as choice of  the model, our results 
may be interpreted as an example where the following approach fails: first choose 
an "optimal" model, and then use an "optimal" procedure in this fitted model. The 
optimality of  the procedure may get lost by the stochastic nature of  the choice of  the 
model. 

Another important finding in this work is that the optimal rates of convergence of 
h and g are of  different order. It turns out that, with h and g of  the same order, the 

^ML 
minimal relative loss of efficiency (in comparison with 0 n ) is of order n -2/5, but 
with h and g of different order, one can do a lot better: one can achieve 1l -4/7. These 
rates may be compared with the approach based on the optimal estimation of 0. This 
approach leads to much larger relative losses of efficiency. The corresponding rates are 
n -2/7 (for the case g = h and for the case that h and g are allowed to be different). 
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Other related works in adaptive estimation include Faraway (1992) and Jin (1992). 
among others. The cited papers consider spline based estimation of the score func- 

tion, instead of kernel based method, and demonstrate empirical selection rules of the 
smoothing parameter. 

Our assumptions are collected in Section 2. In particular, for technical reasons we 
assume that the density and its higher order derivatives have exponential tails. This 
allows uniform expansions of estimates of the score function. Densities with heavy 
tails (e.g. Cauchy density) are excluded by our assumptions. Section 3 contains some 
preliminary calculations for optimal bandwidth choices. There we make the theoretical 
choice 0n = 0. Section 4 shows that the results of Section 3 remain valid with ,,/n- 

consistent estimates (~n. In Section 5 we confirm the theoretical findings by a simulation 
study. Section 6 contains the proofs of our results. 

2. Assumptions 

(A.I)  XI . . . . .  X, are independent and identically distributed with density f ( x -  0). The 
density f is symmetric: f ( x ) =  f ( - x ) .  

(A.2) There exist positive constants Co, Cl, C2, C3 with 

f(x) <~ Co exp(- CI Ix l), 

],f(k)(x)l ~C3(1 ~-Ixl C2) f(x) 

for 1 ~<k ~< 5 and for all real x. 
(A.3) 0,, is a x/~ consistent estimate of 0, i.e. 0, - 0 = O p ( n - l / 2 ) .  

(A.4) K is a symmetric density function with compact support and it is three times 
continuously differentiable. 

We use the convention that C , C ' , C ' , . . .  denote universal constants (with different 
meanings at different places). 

3. Optimal choice of smoothing parameters: Some preliminary calculations 

Let f x  denote the density of the ~ ' s .  Define fx,  h.i(x), the kernel estimate of f x ( x )  
with leaving out the observation Xi, by 

jx,h,i(x) -- (n - 1) - I  ~-~Kh(x - X/)" (3.1) 
,j¢i 

Here and after, we use the notation Kh(X ) = h-IK(x/h), K~(x) = h-2K'(x/h), and so 
on. We consider the following estimate 0n of 0: 

6n = 0o + Ih,~(0.)-lAh,~(5.),  
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where 
^ /  ^1 

Ah,o(O ) ~_ - -n-  1 ~ f x,~7,i(Xi) - f x,~,i(20 -- Xi) 
i=[ Sn T ~ - ~  f X, h,i(20 -- X#)' 

n 
Z ^I ^1 ^1 ^t 

Ih,g(O) = #2 -1 [ f  x, g,i(Xi) - f x, g,i(20 - Xi)][ f  x, h,i(Xi) - f x, h,i(20 - Xi)] 
i = 1  

x [s, + )CX, h,i(Xi ) + jCx, h,i(20 - X i ) ]  -2. 

Here, sn is a deterministic sequence converging to zero (with a rate discussed below). 
We write 0n(0n) for 0n to indicate the dependence of 0n on 0n. 

Our estimate On is nearly of the type (1.1) with if(x) replaced by the estimate ~(x) = 
- [ y 0 ( x ) -  f~(- -x)][ fh(x  ) + fh(--x)] -1 where fh(x) is the kemel estimate of f ,  the 

density of ¢i s, defined by ~rh(X) = n-1 ~-~j=l K h ( x - - ( X j -  0n)). Note that this definition 

of ~(x) preserves the anti-symmetry of if(x). Also note that f h ( x  -- On) = fx~(X)  and 

fh (0 , - -x )  = ~X,h(20,-x), where ~x~(X) denotes the kernel estimate of f x ( x )  defined 
in the same way as (3.1) but with all observations. 

With this estimate of if(x), three modifications have been made in the definition 
of 0n. First, the constant Sn is introduced in the denominator of ~ to avoid its er- 
ratic behaviour when the denominator has a very small value. The second modifi- 
cation concerns the definition of the kernel estimates. Note that in their definition 
(see (3.1)) terms corresponding to (i=j) are omitted in the summations. This mod- 
ification is crucial. Otherwise we would get nonstochastic terms of the form K(0) 
or K~(0) in the definition of Ih,g(0n) and Ah,a(0n). Finally, i~(x) is estimated by 

[fg(x) - Yg(--x)][Yh(X ) -- fh(--x)][sn + f h ( x ) +  j~h(--X)] -2. This differs from ~(x)  by 
a summand 

+ L'(-x)lts .  + 

This modification is made only for simplification. All our calculations and conclusions 
would go through by inclusion of this additional term. 

Discussion of the asymptotic performance of 0~ is complicated by two facts. 
(1) The summands of Ah,g and Ih,g have random denominators. 
(2) The estimate 0n depends on the preliminary estimate 0n. 
We proceed as follows: First, in the definition of 0n, we replace the preliminary 

estimate 0n by the true underlying location parameter 0 (i.e. we study 0n(0)). Further- 
^ A P P R  

more, for a stochastic approximation O n of 0n(0), we discuss appropriate choices 
of g, h and sn. Then, in the next section, we show that, for these choices of g, h and 

^ A P P R  
sn, the approximation 0 n is accurate enough for 0n(0n). 

We put 

^"P"" r f 4isis, 1-1f 
0 n = 0 -~ [ J  [Sn + 2fh] 2 f J  [ -- 'J Sn + 2fh(X/-- 0) 
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+ - 2 - - ~ , - 4  ( 4 f ' g ( ~  - O)fh(Xi - O) : 4f 'gf~ f '~  
iv/ 1 A ,  i : /  . . . . . . .  2 - 

J \ (sn + 2fh(Xi  - 0)) . [s, + 2fh] 2 ] 

2f~(Xj  - O) H-3Z.~,j,k[K;(~i - - ~ j )  K ; ( 2 0 - ~ i  - z~j)] × + _ i 
sn + 2fh(Xj -- 0) 

× [Kh(L--Xk) + K h ( 2 0 - X ~ - X k )  - 2 f h ( L -  0)][s, + 2fh(Xi - 0)]- 2}. 

Here f h ( x )  = f Kh(x - y ) f ( y ) d y  and 2;4 denotes summation over pairwise different 
indices. 

~APPR 
The asymptotics of 0, is described in the following theorem. 

Theorem 1. Suppose (A.1), (A.2), (A.4) and sn ~ O, h --+ O, 9 -~ O, n - l q  -3 ~-~ O, 
n - l h  - l  ---+ O. Then we have that 

^APPR 
(0, -- O) ---+ N(O,1-1 ) (in distribution). 

ÂPPR 
Furthermore, for  the first two moments o f  O~ we 9et 

~APPR 
E ( o .  ) = o 

f2 
/ (K : )2 (1  + o(1)) ^APPR 1 + 2 n - l g - 3 i - 2  f nVar(0, ) = l -  

(s° + 2 f )  2 

( f , ) 2 f2  
+8n - lh  ' I - 2 J ( s , , + 2 f ) 4  /K2(l+o(l)) 

(fm)2 f ,  f m  2 l 
.: ) ,_ ] 

+1-2 I -- + 2 f ) 2 f  (1 +o(1) ) .  (3.2) 

Here dK = f t2K(t)dt. 

For discussion of Theorem 1, let us first consider the case that f has compact 
support. In this case, f f 2 ( s ,  + 2 f )  -2 = O(1), and for the optimal choice of g we 
get g ~., n -1/7. Under (A.2) we also have f ( f ' ) 2 f 2 ( s n  + 2 f )  -4 = O(1), therefore 
with h ~ n -1/3 (for instance) and sn small enough, the relative loss of efficiency 

1-1 -- nVar((~2 PPR) is of order n -4/7. If we choose g and h of the same order, however, 
the relative loss of efficiency would be of larger order. In fact, the optimal common 
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order o f  g and h is then n -1/5 and this would yield an order of  n -2/5 for the relative 

loss o f  efficiency. 

It is important to note here that optimal kernel-based estimation o f  the score function 

would lead to different choices of  h and g (even differing in the rate). For instance, 

if  we estimate ~b by ~(x) = - [ f x ,  g(O + x) - ~rx, g(O - x ) J [ f  x, h(O + x) + ]'X,h(O -- X) + 
Sn] -~, under appropriate smoothness assumptions we arrive at the following asymptotic 

expansion for the mean integrated squared error E f ( ~ ( x )  - ~ (x ) )2 f (x )dx:  

1 4.2 ~, + ~h4d2C2 _ !h292d2C3 
4g aKt~t 2 

2 f 2  /(K,)2 jr_ 8 ( f t ) 2 f 2  
f (s.+2f)2  .f(s.+ef)zf K2 

with Cl = f ( f , , , / f ) 2  f , C2 = f ( f , / f ) 2 ( f , , / f ) 2  f and C3 = f [ ( f ,  f , ,  f , , , ) / f 3 ] f  . Here, 
if  we insist on h = g, we arrive at optimal bandwidths h,.q ~ n - I / 7 .  For the estimation 

o f  0, this would give a relative loss o f  efficiency of  order n -2/7 (see Theorem 1). On 

the other hand, if we allow h and g to be different, then, if C3 > 0, we get h = 
C~/2C2-1/29(1 + o ( 1 ) ) .  The optimal choice o f  g would be [6 f { f a / ( s ~  + 2 f )  2} f ( K ' ) 2 /  

{nd2(C~ - C~/C2)}] ,/7. Note that in this case h ~ g ~ n -1/7 which leads again to a 

relative loss o f  order n -2/7. These rates are much slower than those achieved above. 

This shows that (at least in our set-up) "optimal" estimation o f  the score function 

does not lead to "optimal" adaptive location estimation. 

We now come to the case of  densities with not necessarily compact support. The 

rates o f  convergence o f  the terms in the formula of  Theorem 1 which involves sn are 

described in the next lemma. 

Lemma 1. Assume s. ~ 0 and (A.2). Then 

f f2 
(Sn + 2 f )  2 -- O ( -  log&),  (3.3) 

f (f,)2f2 -- O((-- logsn)2C2+l), (3.4) 
(s, + 2 f )  2 

f 4 ( f ' )  2 
I - -  I f -= O(sn( -  logan) 2C2+1 ). (3.5) 

(Sn + 2 f )  2 J 

Suppose now that sn is o f  order n -p with some p > 0. Then, using Theorem 1 
and Lemma 1, we conclude that the optimal choice o f  g is o f  order (logn)~n -1/7 
with an c~ ~> 0. The terms with h 2 and n-Jh  -1 in the formula o f  Theorem 1 are the 

leading terms which include h. Thus a sensible choice o f  h is o f  order n-~/3(logn) B 
with a fl ~> 0. The value o f  sn may influence the robustness o f  0n. Therefore it may 
not only be chosen so that the loss o f  efficiency is small. Our calculations in the next 
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section require that s n / ( n - l h  -1 ) ~ 4 - ~ .  Furthermore, the last term in the expansion 
of  Theorem 1 should not dominate the g4 and n - 1 9  -3 terms, i.e. s~/n -4/7 --~ O. An 

example of  s~ that suffices these requirements would be sn ~ n -13'2~. For simplicity 

let us fix this rate of  convergence for sn in the next section. 

4. Accuracy of the stochastic approximation in Section 3 

^APPR 
In this section we show that O n works well as an approximation for 0,~ = (},~((~n)- 

For s,,, h and g we assume the rates of  convergence discussed in Section 3. 
(A.5) .% ~ n-13"21(logn) 7, h ~ n- l / '3( logn)  [~ and g ~ n- ] /7 ( logn )  ~ for some constants 

~,/L ;,, >~ 0. 

Theorem 2. Assume  (A.1), (A.2), (A.4) and (A.5). For ever), D > O. the Jollowing 

holds: 

s u p  nl ' /2 lOn(Ot  ) --  0 APPR - -  I 1Fh,~, (0'  - 0)1 - -  o p ( n - 4 " 7 ) ,  (4.1) 
IO'--O[<~Dn-I 2 

where 

Fh4j 

Fh,~l is a quadratic f o r m  with 

E(Fh,g) = O, 

/7 -1 £ ,' At ^; • 
= 2fo(Xi - O)[sn + 2.fh(Xi - O ) ] - 2 [ f X , h , i ( X i  -- O) - } - . f x . h . i ( 2 0  - Ai )]. 

i=1 

Var(Fh,~t) = O(n-2h  3) = O(n l(logn)31~). 

Theorems 1 and 2 imply that, under our assumptions, estimates 0n 

adaptive. We state this as a corollary. 

Corollary 1. Assume  (A.1)-(A.5) .  Then it holds that 

x/n(On((tn) - O) -~ N(O, I  -~ )  (in distribution).  

We come now to the second order performance of  adaptive estimates 0n 

(4.2) 

= 0,,((~n) are 

= f t , (O , , ) .  

For asymptotically linear preliminary estimates 0n, Theorem 2 has the following im- 

plication. 

Corollary 2. Assume  (A . I ) - (A .5 )  and there exists  a func t ion  Z with 

EX(ci) = 0, EX2(ci) < 4-oc, 

0 n = 0 + - Z(ei) 4- op(n -4'7(10gn)-3/~"2). 
17 

i=1 
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Then it holds with a constant 7 > 0 that 

nl/2 ( On( On ) -- On) ----- O p ( n - 4 / 7 ) ,  (4.3) 

n [Var(0n ) ^APPR 1 - -  Var(0 n )J = O(n-l l /14( logn)  ~) = o(n-2/3), (4.4) 

where 

n 
^APPR 

On = On +I-lrh,~ ~ z ( c i ) .  
i=l  

Corollary 2 states that the asymptotic second order performance of the adaptive esti- 

mate 0n(0,) does not depend on the preliminary estimate 0n (under minimal regularity 
conditions on 0n). And it says that nl/2(On(On) - O) admits a stochastic approxima- 
tion, up to oe(n-4/7), which has the same asymptotic second order quadratic risk as 
described in Theorem 1. 

5 .  S i m u l a t i o n s  

In this section, we confirm by simulation the theoretical findings that one can do 
better by choosing h and 9 of  different order. We compare the two approaches, one 
using two different bandwidths h and 9, and the other using h = 9. For these compar- 
isons, we use the theoretically optimal bandwidths obtained by the formula in Theorem 

1. First, consider the case h ~ 9. For each selected value of sn, we use the optimal 
bandwidth g which trades off the two terms involving g in (3.2). Likewise, we use the 
optimal h obtained in the same way. For the case h = 9, we trade off the n-19 -3 and 
the h 2 terms in (3.2) since the other terms involving h and 9 are negligible in this 

c a s e .  

Note that these optimal bandwidths are of  the form (constant) x n-~(e > 0), and the 

constant factor depends on the unknown error density f .  For practical implementation 
the f-dependent constant should be estimated. The problem of estimating this constant 
would be interesting. However, we do not attempt to deal with this problem here, but 
simply use the theoretical constant, obtained by plugging the underlying f into the 
formula, since the main purpose in this section is to see how the asymptotic benefit of  
using different bandwidths comes into effect in finite sample cases. 

The underlying error distributions chosen in this comparison are the standard normal 
N(0, 1), the standard Cauchy C(0, 1) and Student's t with 3 degrees of  freedom t(3) 
as an intermediate of  the first two. For the trimming constants, the selected values 
of  sn are 0.001 and 0.01. In the simulations we have used an additional trimming 
constant d,.  This constant is used as follows. In the definitions of  ZJh,o(O) and Ih,o(O), 
the summation runs only over the observations with IXi - 0] ~<dn. The value of dn 
used in the simulation is 2. In fact, for dn ~ ec as n ---+ oc, one can show that the 
conclusions in Sections 3 and 4 remain valid by the arguments parallel to those without 
dn. In particular, this additional trimming may be appropriate in case of  heavier tailed 
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distributions such as Cauchy which our assumption (A.2) excludes. As kernel function, 
we use the quartic kernel K(x) = (15 / 16)( 1 - x 2 )2i[_ 1,1](x). The preliminary estimator 

0n is the sample median. 
The means of comparison is the mean squared error (MSE): 

MSE = E(0, - 0) 2. 

Table 1 contains the Monte Carlo approximation of MSE based on 500 pseudo samples 

of size 100 and 400. 
In the table, MSEI means the mean squared error of the estimator when the two 

different bandwidths h and g, which are optimally chosen, are used. MSE2 represents 
the mean squared error corresponding to the optimally chosen bandwidth h(= g). For 
comparison of MSE1 and MSE2 the table gives the ratio MSE1FMSE2. Furthermore, the 
table contains the values of the optimal h and y, denoted by hop t and gopt respectively, 
and the values of the common optimal bandwidth h(=  9) denoted by (h = 9)opt. Note 

that the three bandwidths always satisfy the ordering hopt < (h = g)opt < ,(/opt. 
From the table, one can see that the gains obtained by using h # g are small in the 

standard normal case and the improvement is not great even when the sample size is 
increased to 400. However, in the cases of  t(3) and the standard Cauchy, one can find 
drastic changes in the ratios of MSE's as the sample size increases. This illustrates 
the fact that the benefit of using different bandwidths comes into effect rapidly as the 
sample size gets larger. 

6. Proofs 

Without loss of generality, for simplification of notation, we assume 0 = 0. 

~APPR 
Proof  of Theorem 1. We start by showing the asymptotic normality of 0 n . 
purpose note that 

[i 4 . .  1 [  ,<> ,<>x, = [s,, + 2fh] 2f - -n -SZ 77~ + 2fh--7~, ) 
i#j 

+op(n -1/2) 

I J 4flgflh 1 1{__ #I ' S ~ <  1 
[Sn + 2fh] 2 f~ i : ,  an - - - j  r l , ~ - l ) j  

+Op(n -1/2) 

= _i- in  -1 ~ "  / ~'i=1 f() i~i~ mr- Op(n--l"2)" 

For this 
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Here the equalities follow by calculation of second moments of the differences be- 
tween the terms. For the second equality see formula (6.2). Asymptotic normality of 

^APPR 
the last term implies asymptotic normality of 0 n . 

For the proof of (3.2) we show here two details of the proof and we give a hint 
why the leading g term is of order g4. The other calculations are of similar type. We 

prove here equations (6.1) and (6.2): 

i 4fgf'h = l + g 2 2 d K i  f f [ s .+2 f ] -2 f  
[Sn + 2fh] 2 f ' '" 

-~'4~4 i ftf(5)/f +h2dK[~ f f/f/H/f_ i(ft)2ftl/f2] 
+ +.,,-2,_.],, +o,,. 

+O(g 4 + h 2 ), (6.1) 

where eK = f t4K(t)dt, 

Var(T) = n-~ g-3 f f2  i (s. + 2 f )  22 (K')2(1 + o(1)), 

where 

r /_3/2~# g~(x i -- ~ )  -- K ~ ( - X /  - ~ )  
T = i,i s. + 2fh(Xi) 

_n_l/2 ~ 2f~(~)  
i=~ sn + 2 f h ( ~ ) "  

(6.2) 

Proof of (6.1). Note that 

f~(x) = f (x) + ~92dKft"(x) + ~--~ff4eKf(5)(~(X)), 

fh(X) = ft(x) + l h2dxfmOl(x)), 

fh(x) = f(x)  + 2h2dKf"(~(x)), 

where I~(x)-xl ~ Cy, [r/(x)-x I ~< Ch, and f ( x ) - x  I ~< Ch. Now we put these expressions 
into the left-hand side of formula (6.1) and we expand the denominator of the integrand. 
For (6.1) it remains to show things of the following type: 

f 4f(x)f(s)(~(x))(s. + 2 f ) - 2 f  > if'f(5)/f. (6.3) 
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For (6.3) it suffices to show that the integrand of the left-hand side is absolutely 
bounded (uniformly in n) by an integrable function. This can be done easily by using 

(A.2) as follows: 

14 f'(x)f{sl(~.(x))(s, + 2 f(x))-2 f(x)l 

<~ C]f'(x)f~s)(~(x))f-I(x)l 

<~C(1 + IxlC2)(1 q - I ~ ( x ) ] C 2 ) e x p ( - C l l ~ ( x ) l )  

~< C exp(-Clxl) .  

Proof of (6.2). The variable T can be written as 

r = rl 3 " 2 ~ w ( X i , X j )  - rt -3/2 2 f g ( , )  
" i=t s'~ + 2fh(A~) 

where 

K~(X/-  Xj) - K~( -Xi - Xy) - 2.1/,(~ ) 
w ( X i , & )  = 

s, + 2,/'h(X, ) 

Now with E(w(Xi,Xi)IXj) = E(w(Xi,Xj)IX,.) = 0 and Ew(Xi,Xy) 2 = .f(K~(x y ) -  
K~(-x - y))a(sn + 2fh(x))-2f(x) f(y)dxdy(l  + o(l)) ,  the formula (6.2) follows. 

Let us shortly comment why the g 2 terms cancel in (3.2). For seeing this it suffices 

to consider the variance of 

I J' 4f~J"h j ' ]  - l n - ' ' 2  L 2J:(xi) 
[ S ' ~ 2 ~ h ] 2  ] i= ,  s.  + 2fh(Xi)" 

n " ,z .t • - 2  • • . 2Jh] J .  It The variance of n -1;2 ~i=1 2f'g(Xi)/[s, + 2jh(X,-)] is J 4 , / j u [ s .  + can 
easily be seen that the 92 terms cancel if this expression is divided by the square of 
the right-hand side of (6.1). 

Proof of Lemma 1. We will give here only the proof of (3.5). The formula (3.3) and 
(3.4) can be shown similarly• Let I(A) denote the indicator defined by I(A) = 1 if A 
is satisfied and I(A) = 0 otherwise. Then we get 

I 

t 2 • 3 I 

f ,/ 2 ,--1 ~<C ( J ) j  l ( Ix l>~-Dlogsn)  

l ( f ' ) 2 f  21(Ix I < -Dlogsn) +Csn 
I 

with a constant D chosen below. Note that (A.2) implies 

( f , ) 2 f  l(x)~<C,(l + Ixl2C2)exp(_Cllxt)<~C,,exp(_C,,,txl), 

• ~ 2 , -2  .< C m (  (J ) y (x).~ 1 + Ixl 2c:). 
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for D large enough. [] 

<. C .  / e x p ( - C ' " l x [ ) l ( I x  [ >~ - D logsn) 

+ C s . / ( 1  + [xJZC2)l([xl < - D l o g s . )  

= O ( s n ( - -  l O g S n )  2C2+1 ) 

Proof of Theorem 2. We divide the proofs into two parts. [] 

Proposition 1. 

sup nl/21On(Ot) - -  On(O) --  I - 1 F h , ~ O ' [  = op(n-4/7). 
Io'l <~Dn- 1.2 

Proposition 2. 

nl/2(0.(0) AAPpR --  O n ) = Op(n-4/7). 

Proposition 1 follows from the following three lemmas. 

Lemma 2. 

sup [Ih,o(O t) -- Ih,g(0)[ : op(n-4/7). 
I0'1 <~On- 1,,2 

Lemma 3. 

sup nU21Ah,g(O ') --  Ah,9(O ) --  z~,g(O)O' I = Op(r/-4/7). 
IO, l <~Dn-I.'2 

Lemma 4. 

A~,g(O) + Ih,g(O) = Fh,o + 0p(rt-4/7). 

For Proposition 2 it suffices to show the following two lemmas. 

Lemma 5. 

~ 4  IX, / 
l h , g ( O ) = n  -1  f g ( i ) f h ( X i )  

i:I [Sn + 2fh(X/)] 2 

I ^ I  ^ /  

4-n-I 2 f g ( X i ) [ f  x,,h,i (Xi) -- f x, h,i(--Xi) -- 2g(Xi)  ] 4_ op(n-4/7). 
i=1 [S n 4- 2fh (g / ) ]  2 
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Lemma 6. 

^l h/ 

#'/1"2 (Zlh,g(O) -t- R-1 ~ fx"a'i(Xi)-fx'g'ii-Xi) 
i=l Sn + 2 f h ( X i )  

-n - ~ < + , , ~ < i x , - x , ) - < t - ~ - ~ . ) l  

× [Kh (Xi  - Xk  ) + Kh  ( - X i  - Xk  ) - 2 f h  iX,- )] [s. + 2 f h  iX ,  • )] 2) 

= o p ( n  - 4 / 7  ). 

The proofs of  Lemmas 2-6  are based on very lengthy calculations using higher order 
stochastic expansions of  Ah,g(0), A~,o(0), and so on. Because of  the similarities of  the 
calculations we omit the proofs of  Lemmas  5 and 6. 

Proof  of L e m m a  2. We show 

I~,,q(0) = Op(n-l!14), 

I[£,g( 0 )l Op(rt3/7 ) • sup It I 

[O'l <~Dn - I 2 

First. note that l~.g(0) consists of  three summands. We treat only the term 

T = n - 3 E ¢ . k [ K ' ( X i  - X j )  - K ~ ( - X , .  - Xj)] 2 [ - K ~ ' ( - X i  - Xk)] 14, ,q 

x [ s .  + ]h , i ix , )  + f h . i i - x , ) ]  -e .  

Expansion of  the denominator gives: T = TI + T2 + 7"3, where 

-3 # t i 
T, = n Nid.k[K'g(Xi - X j )  - K ~ ( - X i  - Xj)] 

x 2 [ - K ~ ' i - X i  - X k ) ] [ s .  + 2fhiXi)]  -2, 

7"2 = - 2 n  3,Y~,k[K;iX , - Xj) - K ~ i - X  ,- - Xj)] 

x 2 [ - K ~ ' ( - X ,  - Xk)][& + 2fh(Xi)]  -3 

x []~x,h,i(Xi) + ]cx, h , i ( -X , .  ) - 2fh(Xi)],  

r3 = 3 . - ' Z ~ , . , [ K ; i X ,  - X;)  - K; i -X~  - Xj)] 

× 2 [ - K ~ ' ( - X / -  X k ) ] [ &  + 2fh(X/)]  -4 

x w i [ j 'x ,h , i (Xi  ) + J 'x ,h , i ( - -Xi  ) --  2fh(Xi )]2, 

(6.4) 

(6.5) 
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m a x  [w i - 1[ ~< CA, 
I <~i<~n 

A = max I [j°X,h,i(X~) +fcx,  h,i(--X~ ) -- 2fh(X~)] [sn + 2fh(X~)] -~ [. 
l <~i<~n 

One can show T1 = op(n -1/14) and 7"2 = Op( r / -1 /14)  by calculation of  the second 
moments. For the treatment of  7"3, note that for 2 large enough 

P ( m a x  IX/l~<21ogn)--+l as n - - + ~ .  
l <~i<~n 

This implies, that with probability tending to one, 

^ l  ^ 1  ^ l l  

T3 = 3n -1 li[f~;o,i(Xi) - fx,.q,i(--Xi)](--2)fX, h,i(--Xi)[Sn + 2fh(X/)] -4 
i=1 

X Wi[?X,h,i(Xi ) -[- ?X,h , i ( - -Xi  ) -- 2fh(Xi)] 2, 

(6.6) 

where li = I([X/[ ~<21ogn). We apply now that for every bandwidth b with b( logn)  --+ 
0 and nb ~ oQ the following two formulas hold: 

^(j) 
sup ] f  x, b,i(x) -- f ~ ) ( x ) l [ n - l b  - l  logn V f ( x ) ]  -1/2 

Ixl ~ log n,1 <~i<~n 

~--- Op(n-l/2b-(2j+l)/2(logn)l/2) (j" ~--- 0, l . . . .  ), 

where c V d denotes the maximum of  c and d, 

I f b ( x )  sup - - - - 1  --~0. 
ixr<~).logn f ( x )  

(6.7) 

(6.8) 

The statements (6.7) and (6.8) will be proved below. Note that (6.6) and (6.7) imply 

A = Op(n-~/42(log n)C). (6.9) 

With (6.7), (6.8) and (6.9) we get an upper bound of  IT31 as follows: 

IT31 ~ Cn - I  ~ li[]f'g(Xi)[ + U , ( f ( X i )  V n - l o  -1 logn)l/Zn-1/29-3/2(logn)l/2 ] 
i=1 

X [  I f  h X,i )l -~ Vn(f  (Xi ) V n - l  h -1 log n )l/2n-1/Z h-5/2(log n ) 1/2] 

x [Sn + 2 f (X i ) ] -4 [Wn( f (X i )  V n - l h  -1 logn)l/2n-1/2h-1/2(logn)l/2]2, 

where Un, Vn, W, are positive random variables of  order Op(1). An evaluation of  the 
summands gives now 

±[ 1] 
IT3] = Op(n-~/14(logn)-l) "n -1 li 1 + ~ . 

i=1 

Since E(l i [1 + 1 / f (Xi) ] )  = O(logn),  this shows 7"3 = o p ( n - 1 / 1 4 ) .  
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It remains to show (6.7) and (6.8). First, (6.8) follows from the following inequality 
for x, 3: 

I log a) 1 = [ log f ( x  + 6) - log f(x)[ = + 3*) / f ( x  + b*)l 
f ( x  + I 

~6f ' (x  
f ( x )  

~Ctal(1 + Ix + 6*lc~)~<cla[(l + Ixl < + 16"1<), 

where 6" is chosen such that 13" [ -..<13[. Let us prove (6.7) now. Because f~J) x,b,, has a 
derivative which is bounded by a deterministic constant which increases polynomially 
in n, it suffices to prove (6.7) with the supremum taken over a grid with a polynomially 
increasing number of points. For simplicity, we consider here ]'x.v instead of .i'xj, i. 
Put, for L large enough, 

c. = Ln- l/2b-(2j+l)/2(log n) 1/2, 

d~ = nl/2b (2j+l)/2(lOg n) 1/2, 

b,(x)  = [n - lb - l ( l ogn )  V f (x)]  -1/2. 

Then ]n- ld ,b , (x )K~)(y) l  is bounded by Kj = sup, jKO)(u)]. One gets 

= P(bn(x)n -1 ~ [ K y ' ( X i  -- x ) -  f~ ) (X) l  ~Cn) 
i=1 

~< E exp (b . ( x )d . .  n -I  ~ [K}J)(x/-x) - f~)(x)])  exp( -d .c . )  
i 1 

= {E exp(b.(x)dn,  n-I[K~)(X1 - x) - f~J)(x)l)}" exp( -d .c . )  

1 2 2 --2 (j)  <~ 1 + ~ b . ( x )  a . , ,  E l K ;  (X~ - ~) - fb°)(x)] 2 

, }° 
+~ exp(~cj)b.(x)ad3n-3ElK~)(X1 - x) - f~)(x)] 3 exp( -d .c . )  

<~ exp(Clogn - Llogn)<~n p(L), 

with an increasing function p. 

Proof of Lemma 3. It suffices to show 

sup IA'h',.o(O')l = ov(n-1/14). 
]O']~Dn t2 

(6.10) 

Claim (6.10) can be shown by calculations similar to the proof of Lemma 2. 
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Proof  of  L e m m a  4. We will show that 

n 2 ^" 
n-~ i~  1 f x, o,i( -Xi ) 

.. '= Sn -~- JcX, h,i(Xi ) -~ fX,  h,i(--X/) = 0P(/7-4/7)" (6 .11)  

The other summands of A~,g(0) + lh,o(O) can be treated similarly. Again, we expand 
the random denominators as in the proof of  Lemma 2. An expansion of the left-hand 
side of  (6.11 ) up to the Rth term involves terms of type 

All 
f x, g , i ( -Xi  ) ^ X, ^ X, - Sr=n-l /'~ (sn ~ ~ r + l  [fx, h,i( i) ~- f X ,  h,i(-- i )  2 f h ( ~ i ) ]  r, 

i : l  

(r---0 . . . . .  R - l ) .  

The remainder in this expansion, denoted by SR, suffices 

^ II 

[ f  x, o, i(_Xi)l  [)cX, h,i(~.)q_ fX ,  h,i(_Xi ) -- 2 f h ( ~ . ) [  R [SR[ <~ Cn - I  li (s n + 2 f h(Xi))  R+I 
i=l 

with probability tending to one. Here again li -- l([Xt[~<21ogn) as in the proof of  
Lemma 2. An expansion of order R = 25(!) will work here. The fact that Sr -- 
ov(n -4/7) for r = 0, . . .  , R -  1 can be shown by calculation of the second moments. By 
use of  (6.7) and (6.9), [SR[ can be bounded as follows: 

[SR[ ~<C-Op(1)-  n -1 ~ lif(Xi)-ln-25/42(logn) c''. 
i=l 

Now, E 1 if(Xi ) -  1 = O(log n) implies SR ---- op (n-4/7). 
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