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Abstract

A de�nition of discrete evolutionary spectra is given that complements the
notion of evolutionary spectral density given by Dahlhaus in ���� For processes

that have a discrete evolutionary spectrum� the asymptotic behavior of linear
functionals of the periodogram is investigated� The results are applied in

a mathematical analysis of Licklider�s theory of pitch perception� A pitch
estimator based on this theory is investigated with respect to the shift of the

pitch of the residue described by Schouten et al� in �	��

� Introduction

In his paper ��� Dahlhaus introduces a new notion of a locally stationary process� His
approach di�ers from the well known one given by Priesley ���	 
�� in being inherently
asymptotic� This enables him to prove strong asymptotic results� Further	 the
spectral representation of a locally stationary process that Dahlhaus postulates is
unique	 in contrast to the one in Priestley�s theory�

Dahlhaus de
nes a process to be locally stationary if it has a certain spectral
representation� Every such process has an evolutionary spectral density� Hence
his theory doesn�t cover the case of a discrete spectrum� In section ��� of this
paper we give a de
nition of a locally stationary process with discrete evolutionary
spectrum and prove a uniqueness result for the spectral representation� In section
��� we discuss the asymptotic behavior of linear functionals of the periodogram of
a process with discrete evolutionary spectrum� Finally we apply these results in
section � to Licklider�s theory of pitch perception �see ����� We give a fast algorithm
for a simpli
ed version of his model and study its asymptotic behavior� A pitch
estimator based on it is investigated with respect to the observations reported by
Schouten et al� in ����

�



� The mathematical theory of discrete evolution�

ary spectra

��� De�nition and some elementary properties

We de
ne a process with discrete evolutionary spectrum as a process that can almost
be written as a sum of pure oscillations� The amplitude	 null�phase and frequency
of every summand may change in time� But like in Dahlhaus� theory this change
becomes slower and slower as the sample size increases� Here is the exact de
nition�

De�nition � A sequence of stochastic processes Xt�T �t � �� � � � � T � is said to have
a discrete evolutionary spectrum if

�� there exists a representation

Xt�T �
X
n�M

A�
n�t�Ta�s�

for some M � Z and

�� for every n �M there exist a complex valued mean � stochastic process An�u�
on ��� �� with a�s� di�erentiable paths and a sequence �n�T �t� �t � �� � � � � T �
such that

�K�t� T
X
n

����A�
n�t�T �An

�
t

T

�
exp�i�n�T �t��

���� � KT�� a�s�

and

��

�K�u
X
n�M

sup
u
jAn�u�j � K a�s� �

�K�u
X
n�M

sup
u
jA�

n�u�j � K a�s� �

��

�u � ��� ��� n �M � EAn�u� � �

�u�� u� � ��� ��� n �� m�n�m �M � Cov�An�u��� Am�u��� � �

and

	� for every n �M there exists a function �n � ��� ��� R such that

�K�t� T� n �M

�����n�T �t�� �n�T �t� ��� �n

�
t

T

����� � KT���

�n has a uniformly 
in n �M� bounded derivative ��n�u�
�u

�
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�n�u� is called an instantaneous frequency of Xt�T at time u� We say that Xt�T has a
spectral line of hight Var �An �u�� at �n�u�� When we deal with real valued processes�
we always assume that �n � M � �n � M� � �� M and �u � ��� ��An �u� � A�n �u�
and �t � T�n�T�t� � ���n�T �t��

Example�

Xt�T �
X
n�M

An

�
t

T

�
exp

�
i �n

�
t

T

�
t
�
�

i�e�	 �n�T �t� � �n�t�T �t	 where �n is twice continuous di�erentiable with bounded
second derivative� Then we have �n�u� � �n�u� � u��n�u�� Note that in general we
cannot choose �n�u� to be �n�u��

Proposition � If Xt�T is a process with discrete evolutionary spectrum as above
then

Cov �Xt���T �Xt�T � �
X
n

Var
�
An

�
t

T

��
exp

�
i��n

�
t

T

��
�R�

where jRj � O
�
������

T

�
�

Proof By � and � of de
niton � we may freely exchange expectations and the
sum in expressions of the form E

P
n�M A � � �� Therefore Xt�T has a mean of order

O���T ��

EXt�TXt���T � E
X

n�m�M

A�
n�t�TA

�
m�t���T

�
X

n�m�M

EA�
n�t�TAm

�
t� �

T

�
exp�i�m�T�t� � �� �R�

�
X

n�m�M

EAn

�
t

T

�
Am

�
t� �

T

�
exp �i ��m�T �t� � �� �n�T �t���

�R� �R��

where jR�j and jR�j are of order � O���T � a�s� by � of de
nition �� Since An

and Am are uncorrelated for n �� m we get�

X
n�M

EAn

�
t

T

�
An

�
t� �

T

�
exp �i ��n�T �t� � �� �n�T �t���

�R� �R�

�
X
n�M

E

����An

�
t

T

������ exp �i ��n�T �t� � �� �n�T �t���

�R� �R� �R��
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R� ��
X
n�M

E

�
An

�
t

T

�
An

�
t� �

T

�
�

����An

�
t

T

������
�

exp �i ��n�T �t� � �� �n�T �t���

jR�j � O
�
�

T

� X
n�M

Esupu �jA
�
n�u�jjAn�u�j�

by the mean value theorem�
The next step illustrates a technique that is central to the theory of discrete

evolutionary spectra� To obtain the result we replace �n�T �t�� ���n�T�t� by ��n�t�T ��
The error we get is

R� ��
X
n�M

E

����An

�
t

T

������ exp�i��n � t

T

��
�
exp

�
i
���X
k	�

��n�T �t� � � k�� �n�T �t� � � k � ��� �n�t�T ��

�
� �

�

Since �����
���X
k	�

��n�T �t� � � k� � �n�T �t� � � k � ��� �n�t�T ��

�����
is � O���T � �O�� ��T � by � of de
nition � and the mean value theorem we have

jR�j � O

�
� � � �

T

� X
n�M

E

����An

�
t

T

������ �
Therefore we de
ne

De�nition �

F �u� 	� ��
X
n�M

Var �An �u���
�n�u�����	�

is called spectral distribution function of Xt�T �

The spectral distribution function of a process with discrete evolutionary spectrum
is uniquely determined by the covariance structure of the process�

Proposition � Under the assumptions of proposition �


lim
K��

�

�K � �

KX
�	�K

lim
T��

Cov
�
X
uT ����T �X
uT ��T

�
exp��i	� �

�
X
n�M

Var �An �u���f�n�u�g�	�


The convergence is not uniform in 	��

�



Here �x� denotes the greatest integer � x�
Proof

�

�K � �

KX
�	�K

lim
T��

Cov
�
X
uT ����T �X
uT ��T

�
exp��i	� �

�
X
n�M

Var �An �u��
�

�K � �

KX
�	�K

exp�i��n�u�� 	�� �

by proposition �� The last sum is the dirichlet kernel	 which is an approximate
identity�

��� Linear functionals of the periodogram

Let h � R� R be a data taper and

dN �u� 	� ��
N��X
s	�

h
�
s

N

�
X
uT ��N���s���T exp��i	s�

the tapered fourrier transform of a segment of length N around �uT � of the time
series� N is assumed to be even�

Hk�N �	� ��
N��X
s	�

h
�
s

N

�k
exp��i	s��

IN �u� 	� ��
�

�
H��N���
dN �u� 	�dN �u��	��

We investigate the asymptotic behavior of functionals of the form

BN �u� �� ��
Z �

��
IN �u� 	���	�d	�

where � is a continuous �
�periodic function� Let

B�u� �� ��
X
n�M

jAn�u�j
����n�u���

Note that in general B�u� �� is still random and ��
R �
�� ��	�dF �u� 	�� If only the

phase of An�u� is random and the absolute value is deterministic	 then B�u� �� �R �
�� ��	�dF �u� 	��
Assumption A��

�� Xt�T is a process with discrete evolutionary spectrum and

�u � ��� ���n �� m �M �n�u� �� �m�u� ���
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�� � is a bounded	 complex valued	 continuous	 �
�periodic function�

�� The data taper h � R� R is of bounded variation�

�� For the segment length N and the sample size T 	 �N� logN� �T � � and
T�N� � � hold as T �	�

Theorem � Under assumption A� the following holds
 If a�s� there exists a K �	
such that for all u � ��� ��

X
n�	m�M

jAn�u�j jAm�u�j

j�n�u�� �m�u�j
� K ���

then
BN �u� ��� B�u� ��a�s� �

If there exists a K �	 such that for all u � ��� ��

X
n�	m�l�	k�M

jE�An�u�Am�u�Al�u�Ak�u��j

j�m�u�� �n�u�j
� K ���

then
BN�u� ��� B�u� ��

in quadratic mean and in probability� The convergence is uniform in u in both cases�

The rest of this section contains the proof of theorem � and some technical tools
that are needed for it� Let

HN �f�
�� 	� ��
N��X
s	�

f�s� exp��i	s��

L�N �
� ��

	
N� j
j � ��N
��j
j� ��N � j
j � 


and let LN � R� R be the �
�periodic extension of L�N � The following facts about
LN are known form ����

Lemma � ��

�K�N��� �
Z �

��
LN �� � 
�LN �
 � ��d
 � KLN �� � �� logN

�� If h is of bounded variation� then �K such that �N� s � N and �	 we have
jHs�	�j � jHN �	�j � KLN �	��

The next lemma is easily proved by induction on N �
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Lemma �

HN

�
h
�



N

�
g�
�� 	

�
� g�N � ��HN �	� �

N��X
s	�

�g�s�� g�s� ���Hs�	��

Proof of theorem �� We 
rst write dN �u� 	� in a usefull form that makes it easy
to prove the theorem� Using the representation � postulated in de
nition � we get

dN �u� 	� �
N��X
s	�

h
�
s

N

� X
n�M

A�
n�
uT ��N���s���T exp��i	s� a�s� �

First we replace A�
n�
uT ��N���s���T by

An

�
�uT ��N�� � s� �

T

�
exp �i�n�T ��uT ��N�� � s� ���

and then An

�

uT ��N���s��

T

�
by An�u� to get

dN �u� 	� �
N��X
s	�

h
�
s

N

� X
n�M

An�u� exp �i�n�T ��uT ��N�� � s� ���

exp��i	s� �R� �R� a�s� � ���

For the error terms we have

R� ��
N��X
s	�

h
�
s

N

� X
n�M

�
A�
n�
uT ��N���s���T�

An

�
�uT ��N�� � s� �

T

�
exp �i�n�T ��uT ��N�� � s � ���

�
exp��i	s��

jR�j � O�N�T � a�s� by � of de
nition � and

R� ��
N��X
s	�

h
�
s

N

� X
n�M

�
An

�
�uT ��N�� � s� �

T

�
�An�u�

�
exp �i�n�T ��uT ��N�� � s� ��� exp��i	s��

jR�j � O

�
N�

T

� X
n�M

sup
u
jA�

n�u�j � O

�
N�

T

�
a�s�

by the mean value theorem�






The following considerations are the only place in the proof	 where techniques
are used that are not already known from the case of processes with evolution�
ary spectral density� In equation �	 we replace exp �i�n�T ��uT ��N�� � s � ��� by
exp �i�n�T ��uT ��N�� � ��� exp�i�n�u�s�� Now we can �a�s� � write dN �u� 	� asX

n�M

An�u� exp �i�n�T ��uT ��N�� � ���HN �	 � �n�u��

�R� �R� �R�� ���

Here
R� ��

X
n�M

An�u� exp �i�n�T ��uT ��N�� � ���R��n�

and

R��n� ��
N��X
s	�

h
�
s

N

�
exp �i��n�u�� 	�s�

fexp �i ��n�T ��uT ��N�� � s� ��� �n�T ��uT ��N�� � ��

��n�u�s��� �g

� HN

�
h
�



N

�
g�
�� 	 � �n�u�

�
�

where

g�s� �� exp fi ��n�T ��uT ��N�� � s� ��� �n�T ��uT ��N�� � ��

��n�u�s�g � ��

We want to use lemma � to 
nd an upper bound for jR��n�j� Therefore we have to
investigate g� g��� � � and for s � � we have

g�s� � exp
�
i
Ps��

k	� f�n�T ��uT ��N�� � s� � � k��

�n�T ��uT ��N�� � s � k�� �n�u�g�
���

By the mean value theorem there exists a 
nite K such that jg�s�j �

K
���Ps��

k	� f �n�T ��uT ��N�� � s� �� k�� �n�T ��uT ��N�� � s� k�

��n
�

uT ��N���s���k

T

�
�
�
�n
�

uT ��N���s���k

T

�
� �n�u�

�o��� �
By � of de
nition � and the mean value theorem this is � O�N�T � � O�N��T ��
Further	 there exists a K such that

jg�s�� g�s � ��j � K j�n�T ��uT ��N�� � s� �� � �n�T ��uT ��N�� � s�

��n�u�j

� O
�
N

T

�
�

�



Hence jR��n�j � LN �	� �n�u��O�N��T � by lamma � and

jR�j � LN�	 � �n�u��O�N��T �
X
n�M

jAn�u�j�

Further for the main term of dN �u� 	� we have�����X
n�M

An�u� exp �i�n�T ��uT ��N�� � ���HN �	 � �n�u��

�����
� O���

X
n�M

jAn�u�jLN �	� �n�u���

Using the representation ��� of dN �u� 	�	 we now turn to the proof of the theorem�

BN �u� 	� �
X
n�M

jAn�u�j
�
Z �

��

jHN�	 � �n�u��j�

�
H��N���
��	�d	

�R� �R
 �R� a�s� ���

The leading error terms are

R� ��
�

�
H��N���

Z �

��
R�

X
n�M

An�u� exp �i�n�T ��uT ��N�� � ���

HN �	 � �n�u����	�d	 �
�

and

R
 ��
�

�
H��N���

Z �

��

X
n�	m�M

An�u�Am�u�

exp �i ��n�T ��uT ��N�� � ��� �m�T ��uT ��N�� � ����

HN �	� �n�u��HN ��m�u�� 	� ��	�d	�

The other error terms have been put into R�� They are of lower order or can be
treated in the same way as R� and R
�

jR�j � O

�
N�

T

�
O
�
�

N

� X
n�m�M

jAn�u�jjAm�u�jZ �

��
LN �	� �n�u��LN ��m�u�� 	�d	

� O

�
N logN

T

� X
n�m�M

jAn�u�jjAm�u�jLN ��m�u�� �n�u��

� O

�
N� logN

T

�
a�s�

�



jR
j � O
�
�

N

� X
n�	m�M

jAn�u�jjAm�u�jZ �

��
LN �	� �n�u��LN��m�u�� 	�d	

� O

�
logN

N

� X
n�	m�M

jAn�u�jjAm�u�j

j�m�u�� �n�u�j
�

Since jHN ����n�u��j�

��H��N ���
is an approximate identity	 this proves the 
rst part of theorem

�� For the second part we use similar arguments to see that

Var�R
� � O

�
�logN��

N�

� X
n�	m�l�	k�M

���E�An�u�Am�u�Al�u�Ak�u�
���

LN ��m�u�� �n�u��LN ��l�u�� �k�u��

� O

�
�logN��

N

� X
n�	m�l�	k�M

���E�An�u�Am�u�Al�u�Ak�u�
���

j�m�u�� �n�u�j

Remarks�

�� Equation � of assumption A� is restrictive and essential� It excludes e�g�	 that
�n�u� converges to �m�u� �n �� m� as say u � ��� and �n�u� � �m�u� for
u � ���� This example is also excluded by equations � and � in theorem �� If
we want to allow for such examples we have to reformulate those equations�
Equation � could be changed to

�u � ��� ���K �	
X

�n�m���n�u��	�m�u�

jAn�u�j jAm�u�j

j�n�u�� �m�u�j
� Ka�s�

and equation � similarly� Then BN �u� 	� converges �a�s� or in quadratic mean
respectively� to

B�u� 	� �
X

n�	m��n�u�	�m�u�

�
An�u�Am�u����n�u��

lim
T��

exp �i ��n�T ��uT ��N�� � �� � �m�T ��uT ��N�� � ����
�
�

provided this limit exists� Even if it exists it is not real in general� The
convergence is no longer uniform in u� This shows that the interaction of very
closely adjacent spectral lines can cause a lot of trouble�

�� Theorem � can be extended to the case of mixed evolutionary spectra� Assume
that

Xt�T � Xd
t�T �Xc

t�T

��



where Xd
t�T has a discrete evolutionary spectrum F d�u� 	� and Xc

t�T has evo�
lutionary spectral density f c�u� 	�� Then under A� and the assumptions of
theorem � on Xd

t�T and assumption A�� of ��� on Xc
t�T we have

BN �u� 	��
Z �

��
f c�u� 	���	�d	 �B�u� 	�

in probability as T �	� The convergence is uniform in u�

�� The theory of discrete evolutionary spectra can be extended to allow for 
nitely
many discontinuities in An�u� and �n�u�� Assume for simplicity that An�u�
and �n�u� have a single jump of 
nite hight at u � u� for some n	 where
u� is independent of n� Then BN �u� 	� still converges to B�u� 	� for u �� u��
BN �u�� 	� converges toR ���

� h��v�dvR �
� h

��v�dv

X
n�M

jAn�u���j� � ��n�u���� �

R �
��� h

��v�dvR �
� h

��v�dv

X
n�M

jAn�u���j� � ��n�u���� �

a�s� or in quadratic mean	 if a�s� there exists a K such that for every u

X
n�	m

jAn�u��Am�u��j

j�m�u��� �n�u��j
� K�

X
n �	m

jAn�u��Am�u��j

j�m�u��� �n�u��j
� K and

X
n �	m

jAn�u��Am�u��j

j�m�u��� �n�u��j
� K

or if there exists a K such that for every u

X
n�	m�l �	k

jE�An�u��Am�u��Al�u��Ak�u���j

j�m�u��� �n�u��j
� K�

X
n�	m�l �	k

jE�An�u��Am�u��Al�u��Ak�u���j

j�m�u��� �n�u��j
� K and

X
n �	m�l�	k

jE�An�u��Am�u��Al�u��Ak�u���j

j�m�u��� �n�u��j
� K

respectively�

��



Remark � is immediate from the proof of theorem �� The proof of remark � is
more technical than that of theorem �� In addition to the methods presented here	
it uses techniques from the theory of evolutionary spectral densities� We omit it
here�

The main idea in the proof of remark � is to �a�s� � write dN �u� 	� asX
n�M

An�u�� exp�i�n�T ��ut��N�� � ���HN���	 � �n�u��� �

X
n�M

An�u�� exp�i�n�T ��ut��N�� � ����
HN �	 � �n�u����HN���	� �n�u���

�
�R

where R is of reduced order� The details are technical and we omit them here�

� Application to Licklider�s theory of pitch per�

ception

In ���� Licklider proposed a theory of pitch perception �����	 that will be called
correlogram in the sequel� Because of its high computational costs not many sounds
could be analyzed at that time using this model� In the last years the interest in
the correlogram grew again �s� e�g� ��	 ���� because the computational capabilities
had increased drastically� Slaney and Lyon were able to compute it in real time for
the 
rst time �������

Here we investigate a somewhat simpli
ed version of this model on the basis of
the theory of discrete evolutionary spectra� First Licklider�s theory is described�
Then we discuss the asymptotics of the correlogram and present an algorithm	 that
computes this simpli
ed version of the model much faster than the algorithm used by
Slaney and Lyon ����	 ����� Finally a simple pitch estimator based on the correlgram
is investigated� We analyze its asymptotic behavior and how it works on processes
with discrete evolutionary spectra that are very similar to amplitude modulated
sounds� We are especially interested in the e�ect of the shift of the pitch of the
residue described by Schouten et al� in ����

��� The correlgram

����� Informal description

When we hear a sound the soundwave has traveled through our outer ear to hit the
eardrum� From there	 the vibrations were transferred to the cochlea �or inner ear�
by three small ossicles in the middle ear�

��



The inner ear is a bony snail�like structure� If we uncoil it	 it becomes a long
straight tube that is partitioned by the basiliar membrane	 that extends almost the
entire length of the cochlea� When the sound enters the inner ear	 a traveling wave
on the basiliar membrane is caused� The place	 where this wave has its maximum
amplitude depends on the frequency of the sound� Now the movement of the basiliar
membrane causes the hair cells to release a chemical transmitter that generates nerve
impulses in the auditory nerve� Because the movement of the basiliar membrane
is di�erent at di�erent places depending on the frequency of the sound	 di�erent
groups of hair cells are activated by di�erent frequencies� The distribution of the
energy of the sound among di�erent frequencies is mapped to the distribution of
haircell activities at di�erent places in the cochlea�

These facts about hearing seem to be uncontroversial and more information may
be found in textbooks such as ���� Now Licklider�s assertion is	 that in the brain
for every place in the cochlea or every group of hair cells an autocorrelation of the
neural activity caused by that group is computed� This will become clearer as soon
as we describe the correlgram mathematically�

����� The mathematical model

A model of the outer	 middle and inner ear has been proposed in ���� We use the
linear part of it to de
ne a simpli
ed correlogram� For details see ����

The e�ect of the outer and middle ear on the soundwave are described by a linear

lter� So the incoming sound is 
ltered 
rst�

Next	 the mapping of the energy distribution among frequencies to the distribu�
tions of basiliar membrane movement at di�erent places of the cochlear is modelled
by a 
lterbank� The cochlea is partitioned into �� sections� For each sections there
is a linear bandpass 
lter in the 
lterbank� The frequency responses of the individ�
ual 
lters are rather broad and have one peek� They di�er in the position of the
peek and their bandwidth� The higher the frequency of the peek is	 the broader
is the bandwidth� The frequency responses overlap strongly� The output of the
outer�middle�ear�
lter is 
ltered in every 
lter of the 
lterbank separatly� So we get
a vector of �� time series�

While Slaney and Lyon model the strongly nonlinear e�ects of the haircells	 we
leave this step out�

Now	 for every such time series	 the �empirical� autocovariance function is com�
puted�

Let �cp�j�j� �p � �� � � � � ��� be the impulse response of the 
lter �of the 
lterbank�
corresponding to section p of the cochlea convolved with the impulse response of the
outer�middle�ear�
lter� Further let �Xt�t	��			�T be the digitized input sound� Then
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the p�th component of the output vector of the 
lterbank is

Yp�t ��
�X
j	�

cp�jXt�j

and the correlgram can be written as

KOR�
T ��� p� u� ��

Z �

��
I
Yp
N �u� 	� exp�i	� �d	

where I
Yp
N �u� 	� is the tapered periodogram of a segment of Yp�t� In fact	 this is

exactly what the algorithm given by Slaney and Lyon does	 if we use it to compute
our simpli
ed correlgram� The incoming sound is 
ltered in the time domain �using
the di�erence equations that describe the 
lters�	 then the periodogram is computed
and the result is subjected to an inverse fourrier transform� This algorithm takes a
lot of computing time	 since for every section of the cochlea	 a periodogram and an
inverse fourrier transform have to be computed�

If we could do the 
ltering in the frequency�domain	 we would be much faster	
since we would have to compute the periodogram and the inverse fourrier transform
only once for every u� But since we use a segmentwise periodogram and we cannot
expect Yp�t to be stationary	 it is not clear that this will lead to the same result as
the procedure given above� In the next subsection we will show	 that in fact we can
do the 
ltering in the frequency�domain if Xt � Xt�T has a discrete evolutionary
spectrum�

��� Linear �lters and discrete evolutionary spectra

Let Xt�T be a process with discrete evolutionary spectrum FX�u� 	� and �cj�j�N be
the impulse response of a linear 
lter� Assume that

�X
j	�

cjz
j � k�z� �

a�z�

b�z�
�

where a and b are polynomials with real coe�cients and b�z� �� � for every complex
number z such that jzj � ��

Theorem � Then

Yt�T ��
�X
j	�

cjXt�j�T

can be written as

Yt�T �
X
n�M

An

�
t

T

�
exp�i�n�T �t�� k �exp ��i�n �t�T ��� �R a�s� �
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where jRj � O
�
�
T

�
a�s� � Hence Yt�T has spectral distribution function

F Y �u� 	� � jk �exp ��i�n �t�T ���j
� FX�u� 	��

Proof

Yt�T �
�X
j	�

cj
X
n�M

A�
n�t�j�T a�s� �

Again we replace A�
n�t�j�T by An

�
t�j
T

�
exp�i�n�T �t � j�� and An

�
t�j
T

�
by An

�
t
T

�
	

making errors R� and R� with

jR�j � O
�
�

T

� �X
j	�

jcjj a�s�

jR�j � O
�
�

T

� �X
j	�

jjcjj a�s�

Now
P�

j	� jcj �
�k�z�
�z

at z � � and hence converges absolutely� We have

Yt�T �
X
n�M

An

�
t

T

�
exp�i�n�T �t��

�X
j	�

cj exp�i��n�T �t� j�� �n�T �t��� �R� �R� a�s� �

Replacing �n�T �t � j� � �n�T �t� by j�n �t�T � we get the result	 making an error R�

such that

jR�j � O
�
�

T

� �X
j	�

j�jcjj a�s� �

But
�X
j	�

j�cj �
�k�z�

�z
�
��k�z�

��z��

at z � � and therefore converges absolutely�
Remark� An analogous result holds for processes with mixed evolutionary spec�

tra� The results cease to hold	 if the spectrum has discontinuities in u�

��� The asymptotic behavior of the correlgram and a fast

algorithm

From theorem � we see that if the input�sound has an evolutionary spectrum	

KORT ��� p� u� ��
Z �

��
IXN �u� 	� jkp �exp ��i	��j

� exp�i	� �d	�

where jkp �exp ��i	��j
� is the frequency response of 
lter �cp�j�j converges to the

same quantity as KOR�
T ��� p� u� does�
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De�nition � This quantity

KOR��� p� u� ��
X
n�M

jAn�u�j
� jkp �exp ��i�n�u���j

� exp�i�n�u�� �

is called theoretical linear correlogram�

We have�

Theorem � Under assumption A� and the assumptions of theorem �� KORT ��� p� u�
and KOR�

T ��� p� u� both converge to KOR��� p� u� a�s� or in quadratic mean respec�
tively�

The de
nition of KORT ��� p� u� gives us an algorithm that is much faster than
the one proposed by Slaney and Lyon� But note	 that they aim at computing a
nonlinear correlogram that can�t be computed with the algorithm presented here�

��� Visualizing sounds with correlograms

The correlogram and hence also its input�sound may be visualized as a movie� The
time u is represented by itself� KORT ��� p� u� is shown at time �uT �� For a 
xed u
KORT ��� p� u� is presented as a two�dimensional picture� For every � and p we have
one pixel� � is plotted on the horizontal and p on the vertical axis� If KORT ��� p� u� �
� the pixel ��� p� is red	 else it is grey�� The bigger jKORT ��� p� u�j is	 the darker is
the pixel�

It turned out	 that for most sounds a few cochlea�sections are so predominant	
that the biggest part of the picture is white� Therefore the information contained
in the correlogram is conveyed much better	 if it is rescaled� We do the rescaling in
exactly the same way as Slaney and Lyon�

KORRT ��� p� u� ��
KORT ��� p� u�

KORT ��� p� u��	��

The scaling with KORT ��� p� u��	�� seems to be ad hoc� ��
� is the exponent that
made the correlogram look best� Note that we could not have used KORT ��� p� u�
because then the di�erences between the cochlea�sections had been lost�

In ���� many correlgrams of interesting sounds are shown� Figure � presents a
�rescaled� correlogram of the phoneme �A�� computed with the algorithm given in
����� Since this is a stationary sound	 all pictures look equal�

Figure � presents one computed with our algorithm�

�If you have not printed this paper on a color printer� you see the absolute value of the cor�
relogram in �gure �� This paper is available as postscript �le with color via anonymous ftp from
statlab�uni�heidelberg�de�

�The transcription is according to the ARPAbet� See ����
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Figure �� A correlogram of the phoneme �A�	 computed with the algorithm given
by Slaney and Lyon�

Figure �� A correlogram of the phoneme �A�	 computed with our algorithm� Note
that if you don�t have color	 you only see a representation of the absolute value of
the correlgram�

Di�erences along the vertical axis show us di�erences in the activity of di�erent
cochlea�sections and hence in the magnitude of energy in di�erent frequency bands�
Since the 
lters of the cochlea 
lterbank are tuned broadly	 this gives us information
about a strongly smoothed version �or the envelope� of the spectrum of the input�
sound� Dark horizontal bands in the correlgram therefore indicate frequency bands
with strong energy� In the context of speech�analysis they are often called formants�

In contrast	 the correlation plotted on the horizontal axis reacts to the 
ne�
structure of the spectrum of the input�sound� Assume e�g�	 the sound is a real valued
locally stationary process	 that has a discrete spectrum with lines at say ��� ��� and
integer multiples� Then the correlation will be big at the lag corresponding to ��	
indicating the fundamental frequency of the sound� Therefore	 dark vertical bands
in the correlogram show pitch�information�

��� Pitch estimation

The last remark indicates that we can try to estimate the pitch of a sound by
summing up the correlogram along the vertical axis �i�e�	 along the cochlea�sections�
and looking for the maximum�

�




De�nition �

SUMKORT ��� u� ��
�
X
p	�

KORT ��� p� u�

is called empirical summary correlgram�

PITCHPERIODT �u� �� argmax�������SUMKORT ��� u��

where �� and �� constitute some reasonable bound for the pitch period�

SUMKOR��� u� ��
�
X
p	�

KOR��� p� u�

is called theoretical summary correlgram�

PITCHPERIOD�u� �� argmax�������SUMKOR��� u��

Proposition � If the assumptions of theorem � and A� hold� SUMKORT ��� u� con�
verges to SUMKOR��� u� and PITCHPERIODT �u� to PITCHPERIOD�u� a�s� or in
probability respectively�

The proof of the 
rst part of the proposition is trivial� The second part may be
proved by arguments that are well known from consistency proofs for minimum
distance estimators� An example of such a proof may be found in ���� We therefore
omit it�

Much more interesting than these theoretical results is the question	 how good
the pitch estimator describes real pitch perception by humans� A lot of psychopysical
data about pitch perception is known� We want to test our pitch estimator against
the observations about the pitch of the residue described by Schouten et al� in ����

Schouten et al� presented amplitude modulated signals of the form

s�x� � ���m sin��
�f � g�x� � sin��
fx� � ���m sin��
�f � g�x�

to their listeners who judged the pitch of the signal by adjusting a matching signal�
This matching signal was of the form

���m sin��
�n� ���g�x� � sin��
n�g�x� � ���m sin��
�n� ���g�x�� ���

for some integer n	 where � was the parameter that could be adjusted by the listeners�
The sound of interest was said to have pitch �g� for a subject	 if the subject judged
this sound to have the same pitch as the matching sound with parameter �� Thus the
pitch was given as a frequency in Hz� See ��� for more details� Schouten et al� used
the values m � ��� and g � g� � ���Hz and started with a value of f � f� � ng�
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where n is a natual number	 typically n � ��� Then they shifted f up and down in
steps of �� Hz� The result was	 that for f � f� the pitch was g�� As f was shifted	
the pitch changed linearly as long as f was close enough to f� i�e�	 jf � f�j � g�� A

rst approximation is

P � g� ��f
g�
f�
� �for j�f j � g���

where P is the pitch �in Hz� and �f � f � f�� This is called the �rst e�ect of pitch
shift� If one looks closer	 one sees that the slope of the pitch as function of f is
actually steeper� It can better be described as

P � g� ��f
g��� � b�

f�
� �for j�f j � g���

where b depends on the indiviual subject that listens�� A typical value is b � �����
This result is called the second e�ect of pitch shift�

Now s�x� is a deterministic signal and not a locally stationary process� Therefore
we use a somewhat di�erent but similar signal� Let

s��x� � ���m cos��
�f � g�x� ��l� � cos��
fx� ��c� � ���m cos��
�f � g�x� ��r�

where ��l� �
�
c� �

�
r are independent identically distributed random phases� If s is dig�

itized at a sampling rate � we may view it as a process with discrete evolutionary
spectrum�

fs��t� T � � Al

�
t

T

�
exp��i�l�t�� �Al

�
t

T

�
exp�i�l�t�� �

Ac

�
t

T

�
exp��i�c�t�� �Ac

�
t

T

�
exp�i�c�t�� �

Ar

�
t

T

�
exp��i�r�t�� �Ar

�
t

T

�
exp�i�r�t��

where
�l�u� � �
�f � g���
�c�u� � �
f��
�r�u� � �
�f � g���
�l�t� � t�l
�c�t� � t�c
�r�t� � t�r
Al�u� � ��� exp�i�l�
Ac�u� � ����� exp�i�c�
Ar�u� � ����� exp�i�r��

�Here we do not consider a change of g as Schouten et al� did�
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�l� �c� �r are independent identically distributed according to the uniform distribu�
tion on ��
� 
�� We use these processes with the values ����	 ����	 ����	 ����	 ����	
����	 ���� and ���� Hz for f and ��� Hz for g�

In fact	 the di�erence between these signals and those used by Schouten et al� is
not signi
cant� It is theoretically insigni
cant	 because we can develop an asymp�
totic theory for almost periodic deterministic signals that is completely analogous
to the theory of locally stationary processes with discrete spectra� Just let A and
A� be deterministic	 leave out � and replace almost sure convergence by normal con�
vergence in de
nition �� Then we can prove analogous results and the theoretical
summary correlogram for fs��t� T � is the same as for the analogous deterministic sig�
nal with �l � �c � �r � �� The di�erence also seems to be practically insigni
cant	
since for both signals the pitch estimates are exactly the same�

In addition we present a signal fs��t� T �	 where the center frequency f is changed
continuously from ���� to ���� Hz� Here

�l�u� � �
�f � g � u���Hz���
�c�u� � �
�f � u���Hz���
�r�u� � �
�f � g � u���Hz���
�l�t� � �
t�f � g � t

�T ���Hz���
�c�t� � �
t�f � t

�T
���Hz���

�r�t� � �
t�f � g � t
�T
���Hz���

Al�u� � ��� exp�i�l�
Ac�u� � ����� exp�i�c�
Ar�u� � ����� exp�i�r��

We analyze the sounds with the pitch estimator described above and with an
even simpler one	 that is just the argmax of the estimated covariance function of
the signal�

PITCHPERIOD�T �u� �� argmax�������

Z �

��
IN �u� 	� exp�i	� �d	�

It turns out that both estimators PITCHPERIODT and PITCHPERIOD�T produce
exactly the same result� Obviously the in�uence of the cochlear 
lters on pitch
estimation is small in our examples�

The results for fs� are shown in table � and 
gure �� In 
gure � the estimated
pitches are shown as dots� The upper line is the line described by the 
rst e�ect of
pitch shift for f� � ����Hz	 the lower line for f� � ����Hz� We have translated the
pitch periods �lag � � into frequncies in Hz �P � by the formula P � ��� 	 where �
is the sampling rate of the signal� Hence P is the frequency of the pure oscillation
�discretized with sampling rate �� with period � � A theoretical justi
cation for this
formula will be given below �p� ���� Further	 for the relavant values of P 	 the pitch
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f in Hz pitch in Hz
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� ��
�
��

Table �� Estimated pitches of fs��

Figure �� The estimated pitch of fs� vs� the center frequency plotted as dots� The
lines show the 
rst e�ect of pitch shift for f� � ����Hz �upper line� and f� � ����Hz
�lower line��
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estimate our estimators give for �a discretized version of� the matching signal ���
with �g� � P 	 is the � given by the above formula�

The 
rst � pitch values almost lie on a line with a slope of approximatly g��f��
Then a jump occurs and for the last � the slope is less steep� The 
rst � values
show almost exactly the behavior predicted by the 
rst e�ect of pitch shift for
f� � ����Hz� But then the jump occurs too soon� The second � again show the
behavior predicted by the 
rst e�ect of pitch shift but not for f� � ����Hz but for
f� � ����Hz instead� The second e�ect of pitch shift is not visible at all�

For the simple estimator PITCHPERIOD�T this behavior is also theoretically
clear� PITCHPERIOD�T is the maximum of the empirical �tapered� covariance
function of a segment of length N around uT of the input signal� By theorem � it
converges to

c�u� � � ��
X
n�M

jAnj
� exp�i��n�u���

In our case	 c�u� � � is the theoretical covariance function and one can easily check	
that it is an amplitude modulated pure oscillation�

c�u� � � � ���� cos���
�f � g���� � cos���
f���

����� cos���
�f � g����

� �� � ��� cos��
�g���� cos��
�f���

with carrier frequency f and modulation frequency g� In fact	 c�u� � � is �up to
a constant factor� the theoretical summary correlogram of fs�	 when all the linear

lters are replaced by the identity transformation� Figure � shows it�

We call cos��
�g��� the modulating oscillation	 ����� cos��
�g��� the envelope
and cos��
�f��� the carrier oscillation of c�u� � ��

Now if f � g	 then c�u� � � has it�s maximum at that peek of the carrier oscillation
that is the nearest one to a peek of the modulating oscillation or the envelope� The
peeks of the carrier are at � � k��f� k � Z and the peeks of the modulating
oscillation and the envelope are at � � l��g� l � Z� Since the envelope of the
empirical covariance function and also of the empirical summary correlogram falls
o�	 as can be seen in 
gure �	 we take into account only l � �� Now let us assume
that we start with f � f� � ng� �n � N� and g � g�� Then we clearly 
nd the
maximum of c�u� � � at

� �
�

g�
�

�f��g���

f�
�

i�e�	 k � f��g� � n� If we now shift f upwards by an amount of �f 	 still the �same�
peek �k � f��g�	 � � f���g��f� ��f�� of the carrier will be the nearest to ��g� as
long as

�

g�
�

�f��g���

f� ��f
�

��f��g�� � �� �

f� ��f
�

�

g�
�
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Figure �� Theoretical covarianc function c�u� � � of fs�� The theoretical summary
correlograms typically look very similar to this function� In fact	 c�u� � � is �up to
a constant factor� the theoretical summary correlogram of fs�	 when all the linear

lters are replaced by the identity transformation�

i�e�	 �f � g���� When �f becomes � g���	 the argmax jumps to

� �
��f��g�� � ���

f� ��f

�k � �f��g�� � ��� Generally we see that

argmax���g��������g�c�u� � � �
round�f�g���

f
�

where

round�x� ��


���

�x�� x� �x� � ���
�x� � �� x� �x� � ���
unde
ned� x� �x� � ���

Now these considerations also show	 that a version of the matching signal ���
that is discretized at a sampling rate � would be judged to have the pitch period

� �
n�

n�g�
�

�

�g�

Hence PITCHPERIOD� would judge	 that fs��t� has pitch P � �g� if

�

�g�
�

round�f�g���

f
�
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Figure �� A typical empirical summary correlogram of fs��
This is equivalent to

P � �g� �
f

round�f�g��
� g� �

�f � round�f�g��g��

round�f�g��

and for f� �� round�f�g��g� and �f � f � f� this is the 
rst e�ect of pitch shift

P � �g� � g� ��f
g�
f�
�

We also see why the estimated pitch jumps to a lower value at a carrier frequency
of ���� Hz� Then f � ����Hz � ���Hz � g��� � ���Hz and round�f�g�� jumps to
��	 while it was �� as long as f � ����Hz�

For fs� the result looks very similar to that for fs�� It is plotted in 
gure �� Again
the straight lines represent the 
rst e�ect of pitch shift�

Summarizing our results we may say	 that the pitch estimators analyzed here
almost perfectly describe the 
rst e�ect of pitch shift� The second e�ect is not
visible at all� Further	 since there is no mechanism that penalizes discontinuous
behavior in PITCHPERIODT and PITCHPERIOD�T 	 the range near j�f j � g���	
where the pitch is ambiguous according to the observations of Schouten et al� is
much smaller �only one point� for our pitch estimators then for human listeners�
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