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Abstract

A definition of discrete evolutionary spectra is given that complements the
notion of evolutionary spectral density given by Dahlhaus in [1]. For processes
that have a discrete evolutionary spectrum, the asymptotic behavior of linear
functionals of the periodogram is investigated. The results are applied in
a mathematical analysis of Licklider’s theory of pitch perception. A pitch
estimator based on this theory is investigated with respect to the shift of the
pitch of the residue described by Schouten et al. in [8].

1 Introduction

In his paper [1] Dahlhaus introduces a new notion of a locally stationary process. His
approach differs from the well known one given by Priesley ([6, 7]) in being inherently
asymptotic. This enables him to prove strong asymptotic results. Further, the
spectral representation of a locally stationary process that Dahlhaus postulates is
unique, in contrast to the one in Priestley’s theory.

Dahlhaus defines a process to be locally stationary if it has a certain spectral
representation. Every such process has an evolutionary spectral density. Hence
his theory doesn’t cover the case of a discrete spectrum. In section 2.1 of this
paper we give a definition of a locally stationary process with discrete evolutionary
spectrum and prove a uniqueness result for the spectral representation. In section
2.2 we discuss the asymptotic behavior of linear functionals of the periodogram of
a process with discrete evolutionary spectrum. Finally we apply these results in
section 3 to Licklider’s theory of pitch perception (see [4]). We give a fast algorithm
for a simplified version of his model and study its asymptotic behavior. A pitch
estimator based on it is investigated with respect to the observations reported by
Schouten et al. in [8].



2 The mathematical theory of discrete evolution-
ary spectra

2.1 Definition and some elementary properties

We define a process with discrete evolutionary spectrum as a process that can almost
be written as a sum of pure oscillations. The amplitude, null-phase and frequency
of every summand may change in time. But like in Dahlhaus’ theory this change
becomes slower and slower as the sample size increases. Here is the exact definition:

Definition 1 A sequence of stochastic processes Xy p (t =1,...,T) is said to have
a discrete evolutionary spectrum if

1. there exists a representation

_ 0
Xir = Z An7t7Ta.s.

neM
for some M C Z and

2. for everyn € M there exist a complex valued mean 0 stochastic process A,(u)
on [0,1] with a.s. differentiable paths and a sequence 0, r(t) (t = 1,...,T)

such that
t
EIK‘v’t,TZ A%LT — A, (T) exp(i@mT(t))‘ < KT7 ' a.s.
and
3.
FKYu Y sup [An(u)| < K as.
neM ¥
FKYu Y sup |AL(u)| < K as.
neM Y
4.

Vue[0,1],n e M : EA,(u) =0
Vug,uz € [0,1],n # m,n,m € M : Cov(A,(u1), Am(uz)) =0

and

5. for every n € M there exists a function n, : [0,1] = R such that
[
SKVETon € M |0, 2(t) — 0t — 1) — 2 (?)‘ < KT

nn has a uniformly (in n € M) bounded derivative _angiu)

2



na(u) is called an instantaneous frequency of X 1 at time u. We say that X, 1 has a
spectral line of hight Var (A, (u)) at n,(u). When we deal with real valued processes,
we always assume that Vn € M : —n € M,0 ¢ M and Yu € [0,1] A, (u) = A_,, (u)
and \V/t S T0n7T(t) == —(9_n7T(t).

t t
Xir = Z A, (—) exp (@ vy, (—) t) ,
neM T T
ie., 0,7(t) = v,(t/T)t, where v, is twice continuous differentiable with bounded

second derivative. Then we have n,(u) = v,(u) — uv/), (). Note that in general we
cannot choose 1, (u) to be v, (u).

Example:

Proposition 1 If X, 1 is a process with discrete evolutionary spectrum as above

then
t [
Cov(Xiyrq, Xop) = Var (A” (T)) exP (iTnn (?)) + &,
where |R| < O (#)

Proof By 2 and 3 of definiton 1 we may freely exchange expectations and the
sum in expressions of the form £}, 3 A.... Therefore X;r has a mean of order

O(1/T).

— 0 0
EXthXH'TyT = K Z An,t,TAm,t—I—T,T
n,meM

- 1 .
= Z EA27t7TAm (%) exp(i, r(t + 7)) + Ry

n,meM

- Y B4, (%)Am (t;T)exp(i(@mT(t—l—T)—0n7T(t)))

n,meM

‘I’Rl + R?v

where |Ry| and |Rz| are of order < O(1/T') a.s. by 2 of definition 1. Since A,
and A,, are uncorrelated for n # m we get:

> . (%) A, (t ;7) exp (i (B2t +7) — 6r0(1))
:-631 + R
=3t (e)

+Ry + Ry + Rs,

2

exp (i (Onr(t+7)—0,71(1)))




o= g () b ()

neM

exp (i (01t +7) = (1)
ol < 0(F) X Esup (4@l A w)

neM

)

by the mean value theorem.
The next step illustrates a technique that is central to the theory of discrete
evolutionary spectra. To obtain the result we replace 0, 7 (t4+7)—0, r(t) by Tn,.(t/T).

The error we get is
2 . 1
e (imn (7))

mo= el (r)
(exp (@f Opr(t+7—k)—Opr(t+7—k—1)— nn(t/T))) - 1)

k=0
Since .
XX&¢a+r—m—ama+r—k—m—wmwﬂﬂ
k=0

is <O(r/T) + O(72/T) by 5 of definition 1 and the mean value theorem we have

<o (555) ¥ pla(7)

neM

2

Therefore we define
Definition 2

Flu, M) := 3 Var(A, () 1w .m(0)

neM
is called spectral distribution function of X, r.

The spectral distribution function of a process with discrete evolutionary spectrum
is uniquely determined by the covariance structure of the process:

Proposition 2 Under the assumptions of proposition 1:

1 K ] ]
Z lim Cov (X[uT]+T7T,X[uT]7T) exp(—iAT)

im —
K—oo 2K + 1 P T—o0

= > Var(A, (u)) L p(A)

neM

(The convergence is not uniform in X.)
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Here [2] denotes the greatest integer < z.
Proof

1 K

Y Z Th_r}{)lo Cov (X[uT]_|_T7T, X[uT],T) exp(—iAT)
T=—K

1 K

= 3 Var (A, () =g 2 explilnau) = A7)

neM T=—K

by proposition 1. The last sum is the dirichlet kernel, which is an approximate
identity. [ ]

2.2 Linear functionals of the periodogram

Let h: R — R be a data taper and

N-
Z ( ) [WT]=N/24s+1,T €XP(—iAs)

the tapered fourrier transform of a segment of length N around [uT] of the time
series. IV is assumed to be even.

Hin(A) = Z__;) h (%)kexp(—i)\s),
In(u,A) = md]\r(u,)\)d]\r(u, —A).

We investigate the asymptotic behavior of functionals of the form

Bl ) i= [ I, oA,
where ¢ is a continuous 2m-periodic function. Let

B Z|A |¢77n( ))

neM

Note that in general B(u, ) is still random and # ["_ ¢(A)dF (u, ). If only the
phase of A, (u) is random and the absolute value is deterministic, then B(u,¢) =

JZr p(A)dE (u, ).
Assumption Al:

1. X, 1 is a process with discrete evolutionary spectrum and

Vu € [0,1]Vn #m e M n,(u) # 1, (u) (1)



2. ¢ is a bounded, complex valued, continuous, 27-periodic function.
3. The data taper h: R — R is of bounded variation.

4. For the segment length N and the sample size T, (N?log N) /T — 0 and
T/N* — 0 hold as T' — oo.

Theorem 1 Under assumption Al the following holds: If a.s. there exists a K < oo
such that for all u € [0, 1]

| An(u)| [ Am (u)
nEmeM |77n(u) - nm(u)

: <K (2)

then
By (u,¢) = B(u,¢)a.s. .

If there exists a K < oo such that for all u € [0,1]

£ ( A (1) Ao (1) Ar(w) Ag ()|
n;ém,%e:keM |7 (1) — ()]

<K (3)

then
BN(U, Qb) — B(uv qb)

in quadratic mean and in probability. The convergence is uniform in u in both cases.

The rest of this section contains the proof of theorem 1 and some technical tools
that are needed for it. Let

N-1

Hy(F().0) = 32 f(s)exp(—ids).

s=0

L[N, Jal<yN
LN<“>"{1/|a|, N <Ja| <n

and let Ly : R — R be the 2m-periodic extension of Lj,. The following facts about
Ly are known form [1]:

Lemma 1 1.

AKVN, 3,~ i Ly —a)ly(a—v)da < KLy(8 —v)log N

—T

2. If h is of bounded variation, then 3K such that YVN,s < N and YA we have
(0] < [Hy (V)] < KLy ().

The next lemma is easily proved by induction on V:
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Lemma 2

Proof of theorem 1. We first write dy(u,A) in a usefull form that makes it easy
to prove the theorem. Using the representation 1 postulated in definition 1 we get

N-—

Z (N) Z An [wT] N/2—|—s—|—1TeXp(_Z)\S)

= neM

First we replace Ag,[uT]—N/Q-I—S-I—l,T by

A ([UT]—N/2—|-8—|-1
T

) exp (10, 7([ul] — N/2 4+ s+ 1))

and then A, (M) by An,(u) to get

dy Z h( ) S Au(u) exp (i r([uT] = N/2 4 s + 1))
exp(—z)\s) 4+ By + Ryas. . (4)

For the error terms we have

N-1 S o
Z—;) h (N) Z (An,[uT]—N/Q—I—s—I—l,T_

neM

[ul']—N/24+s+1
(Y

) exp (10, r([ul] — N/2 4+ s+ 1)))
exp(—iAs),

|R1| < O(N/T) a.s. by 2 of definition 1 and
N-1 o,
mo= X h(y) 2

A [ulT] — N/2+s+1 _ A (u)
éxiue”([ﬁ]f(zv/z( bt 1>>T pws)? )

|Ry| < O(]f) > sup | Al (u)] <O(T2) a.s.

neM ¥

by the mean value theorem.



The following considerations are the only place in the proof, where techniques
are used that are not already known from the case of processes with evolution-
ary spectral density. In equation 4, we replace exp (16, 7([uT] — N/2 4+ s+ 1)) by
exp (10, 7([uT] — N/2 4+ 1)) exp(in,(u)s). Now we can (a.s. ) write dy(u, A) as

3 Au(u)exp (16, ([uT] — N/2 + 1)) Hy (A = n,(u))

:-631 + Ry + Rs. (5)
Here
Ry := Y An(u)exp (10, r([uT] — N/2 + 1)) Ry(n)
and
Ri(n) := > h (%) exp (¢(nn(u) — A)s)
{exp (i (O r([uT) = N/2+s+1) =0, 7([uT] — N/24+1)
—n(u)s)) — 1}
= iy () 902 = mal).
where

g(s) = exp{i(0pr([ul]—N/24+s+1)—0,7([ul]— N/2+1)
—na(u)s)} = 1.

We want to use lemma 2 to find an upper bound for |R4(n)|. Therefore we have to
investigate ¢g. g(0) = 0 and for s > 0 we have

g(s) = exp(isizh  {Our([ul] = N/2+ s+ 1—k)—

1 O 1([uT] = NJ2+ s — k) = na(u)})

By the mean value theorem there exists a finite K such that |g(s)| <

Opr([ul]—N/2+s+1—Fk)—0,7([uT]— N/2 —|— s —k)
_— ([uT]—N/;+s+1—k) + (77n ([uT]—N/j%+s+1 k) )H

By 5 of definition 1 and the mean value theorem this is < O(N/T) + O(N?/T).
Further, there exists a K such that

l9(s) —g(s = )| < K0, 7([uT] = N/2+ 5+ 1) = 0, p([ul] = N/2 + s)
— 1 (w)]|

o(7)-

IA



Hence |R4(n)| < Ly(A — nu(u))O(N?*/T) by lamma 2 and

|[Ral < Lv(A = na(u)O(N*/T) 3 [An(u)

neM

Further for the main term of dy(u, \) we have

3 Au(u)exp (i, r([uT] — N/2 + 1)) Hy (A = n,(u))

1) Y7 [An(w)|[ Ly (A = na(u)).

neM

Using the representation (5) of dy(u, A), we now turn to the proof of the theorem.

By(u,d) = 3 [Au(u |/_W 'HN%HZZ 1;)”2(/5@)@

neM
+Rs + Rs + Rr a.s. (6)
The leading error terms are
= Al (0, T — N/2+1
By = o7 [T X A exp (r([u] - /24 1)
Hy (A = na(u)) d(A)dA (7)
and
R = / A
6 27TH2N n;ﬁ%M )
exp (i <en, () = NJ2 +1) = Oprl[uT] = NJ2 + 1))

Hiy (A = () Hy (nn () = X) 6(A)dA.

The other error terms have been put into R;. They are of lower order or can be
treated in the same way as K5 and Rs.

ml = 0(5)o(5) T el

[ O = ) L () = M)A

< (NlogN) 5 1Al A ) ) = )

< ( 2logN)




Bl < 0(5) X lAuwlidn(o)

nEmeM

/_7; L\ = 0 (1) L (i () = A)dA
<0 (log N) 5 |An(u)||Am(u)|'

[H v (A=nn(w)) 2
27TH27N(0)

1. For the second part we use similar arguments to see that

Since is an approximate identity, this proves the first part of theorem

Var(Rs) < O (ao]g%)?) ) % M\E(AH(U)A—M(U)E(U)Ak(u)\

LM (w) — () Ly (mi(w) — ne(u))
O(M) s [T A A

N n#m,I2keM |17 () — 1 ()]

Remarks:

1. Equation 1 of assumption Al is restrictive and essential. It excludes e.g., that
na(u) converges to n,(u) (n # m) as say u — 1/2 and n,(u) = 9y, (u) for
u > 1/2. This example is also excluded by equations 2 and 3 in theorem 1. If
we want to allow for such examples we have to reformulate those equations.
Equation 2 could be changed to

A, A,
Yue 013K <o 3 | A ()] | A (u)
(s )imn (@) #Enm () |11 () = ()

: < Ka.s.

and equation 3 similarly. Then By(u,\) converges (a.s. or in quadratic mean
respectively) to

BN+ > (A An(w)éln(u)
nZEmmn (w)=nm(u)
Jim exp (i (B (7] = N/2+1) = 0 2([uT] = N/2+ 1))
provided this limit exists. Even if it exists it is not real in general. The

convergence is no longer uniform in u. This shows that the interaction of very
closely adjacent spectral lines can cause a lot of trouble.

2. Theorem 1 can be extended to the case of mixed evolutionary spectra. Assume
that
Xer = X/'r + X1
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where XffT has a discrete evolutionary spectrum F¢(u, \) and X{r has evo-
lutionary spectral density f°(u,A). Then under Al and the assumptions of
theorem 1 on X/ and assumption A.1 of [1] on X, we have

By(w\) = [ Fo(u, Nd(N)dA + Blu, \)

-7
in probability as T — co. The convergence is uniform in w.

. The theory of discrete evolutionary spectra can be extended to allow for finitely
many discontinuities in A, (u) and n,(u). Assume for simplicity that A,(u)
and n,(u) have a single jump of finite hight at v = w for some n, where
ug is independent of n. Then By (u,A) still converges to B(u, A) for u # wuy.
Bn(ug, A) converges to

1/2h2(

R " o o))+
fahte)de )

f h2(v)dv n§4| ot | ¢ (n(uot))

a.s. or in quadratic mean, if a.s. there exists a K such that for every u

Ry e
n%%mm Py
—)A,, (u—l—)|
Py |nm< Sty <K e
Z | AL (u+)A,, (u—l—)| <K

o [ (ut) = ma(ut)| —

or if there exists a K such that for every u

| (A (u—) A (u—) Ay (u—) Ag(u—))|
n;é%:l;ﬁk [7m (w—) — 7 (=)

< K

— Y

|E(An(u—)An(ut)A(u—)Ar(u4t))|
n#m Itk |7 (ut) — 7 (u—)]

A A AT Ao _
ntm itk |7 (ut) — 7 (ut)] N

< K and

respectively.
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Remark 1 is immediate from the proof of theorem 1. The proof of remark 2 is
more technical than that of theorem 1. In addition to the methods presented here,
it uses techniques from the theory of evolutionary spectral densities. We omit it
here.

The main idea in the proof of remark 3 is to (a.s. ) write dy(u, A) as

Z An(u_) eXp(i9n7T([ut] - N/2 + 1))HN/2()\ — nn(u—)) +

neM

S An(ut) exp(itr([uf] = N/2+1))

neM

(Hx(\ = na(ut)) = Hypa(X = na(ut))) + R

where R is of reduced order. The details are technical and we omit them here.

3 Application to Licklider’s theory of pitch per-
ception

In 1951 Licklider proposed a theory of pitch perception ([4]), that will be called
correlogram in the sequel. Because of its high computational costs not many sounds
could be analyzed at that time using this model. In the last years the interest in
the correlogram grew again (s. e.g. [5, 10]) because the computational capabilities
had increased drastically. Slaney and Lyon were able to compute it in real time for
the first time ([10]).

Here we investigate a somewhat simplified version of this model on the basis of
the theory of discrete evolutionary spectra. First Licklider’s theory is described.
Then we discuss the asymptotics of the correlogram and present an algorithm, that
computes this simplified version of the model much faster than the algorithm used by
Slaney and Lyon ([11, 10]). Finally a simple pitch estimator based on the correlgram
is investigated. We analyze its asymptotic behavior and how it works on processes
with discrete evolutionary spectra that are very similar to amplitude modulated
sounds. We are especially interested in the effect of the shift of the pitch of the
residue described by Schouten et al. in [8].

3.1 The correlgram
3.1.1 Informal description

When we hear a sound the soundwave has traveled through our outer ear to hit the
eardrum. From there, the vibrations were transferred to the cochlea (or inner ear)
by three small ossicles in the middle ear.
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The inner ear is a bony snail-like structure. If we uncoil it, it becomes a long
straight tube that is partitioned by the basiliar membrane, that extends almost the
entire length of the cochlea. When the sound enters the inner ear, a traveling wave
on the basiliar membrane is caused. The place, where this wave has its maximum
amplitude depends on the frequency of the sound. Now the movement of the basiliar
membrane causes the hair cells to release a chemical transmitter that generates nerve
impulses in the auditory nerve. Because the movement of the basiliar membrane
is different at different places depending on the frequency of the sound, different
groups of hair cells are activated by different frequencies. The distribution of the
energy of the sound among different frequencies is mapped to the distribution of
haircell activities at different places in the cochlea.

These facts about hearing seem to be uncontroversial and more information may
be found in textbooks such as [3]. Now Licklider’s assertion is, that in the brain
for every place in the cochlea or every group of hair cells an autocorrelation of the
neural activity caused by that group is computed. This will become clearer as soon
as we describe the correlgram mathematically.

3.1.2 The mathematical model

A model of the outer, middle and inner ear has been proposed in [9]. We use the
linear part of it to define a simplified correlogram. For details see [9].

The effect of the outer and middle ear on the soundwave are described by a linear
filter. So the incoming sound is filtered first.

Next, the mapping of the energy distribution among frequencies to the distribu-
tions of basiliar membrane movement at different places of the cochlear is modelled
by a filterbank. The cochlea is partitioned into 86 sections. For each sections there
is a linear bandpass filter in the filterbank. The frequency responses of the individ-
ual filters are rather broad and have one peek. They differ in the position of the
peek and their bandwidth: The higher the frequency of the peek is, the broader
is the bandwidth. The frequency responses overlap strongly. The output of the
outer-middle-ear-filter is filtered in every filter of the filterbank separatly. So we get
a vector of 86 time series.

While Slaney and Lyon model the strongly nonlinear effects of the haircells, we
leave this step out.

Now, for every such time series, the (empirical) autocovariance function is com-
puted.

Let (¢y;)j,(p =1,...,86) be the impulse response of the filter (of the filterbank)
corresponding to section p of the cochlea convolved with the impulse response of the
outer-middle-ear-filter. Further let (X;):=1 1 be the digitized input sound. Then
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the p-th component of the output vector of the filterbank is
=0

and the correlgram can be written as

KORZ (7, p,u) = /T D (u, N) exp(idr)dA

—T

where []}\/fp (u, A) is the tapered periodogram of a segment of Y, ;. In fact, this is
exactly what the algorithm given by Slaney and Lyon does, if we use it to compute
our simplified correlgram. The incoming sound is filtered in the time domain (using
the difference equations that describe the filters), then the periodogram is computed
and the result is subjected to an inverse fourrier transform. This algorithm takes a
lot of computing time, since for every section of the cochlea, a periodogram and an
inverse fourrier transform have to be computed.

If we could do the filtering in the frequency-domain, we would be much faster,
since we would have to compute the periodogram and the inverse fourrier transform
only once for every u. But since we use a segmentwise periodogram and we cannot
expect Y, ; to be stationary, it is not clear that this will lead to the same result as
the procedure given above. In the next subsection we will show, that in fact we can
do the filtering in the frequency-domain if X, = X, 1 has a discrete evolutionary
spectrum.

3.2 Linear filters and discrete evolutionary spectra

Let X1 be a process with discrete evolutionary spectrum F* (u, \) and (¢);eN be
the impulse response of a linear filter. Assume that

> e = k(o) = 5

where a and b are polynomials with real coefficients and b(z) # 0 for every complex
number z such that |z]| < 1.

Theorem 2 Then .
Yir:=Y ¢Xijr

i=0

can be written as

Yir= 3 A, (%) exp(ifh, (1)) k (exp (=in, (1/T))) + R a.s. |

neM
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where |R| < O (%) ... Hence Y, 1 has spectral distribution function
FY(u, ) = |k (exp (=i (¢/T) £ (u, ).
Proof

o0
Yir = Z ¢; Z A%t_LT a.s. .

7=0 neM

Again we replace A%t_LT by A, (t%) exp(tf, r(t — j)) and A, (Tj) by A, (%),

making errors Ry and Ry with

| Ry

IA

1 o]
O(—) le;| a.s.
1y &
Bl < 0(5) X illas
J=0

0o _ Ok(=z
Now ijo JC = —3;

Vi = 3 A () esplitr(t)

nEM

at z =1 and hence converges absolutely. We have

Zc]exp (Onr(t—J)—0,7(1))) + R + Ry as. .

Replacing 60, 7(t — j) — 0,7(t) by jn. (t/T) we get the result, making an error Rs

such that .
Rs| < O (%) S i as. .
7=0
But . ,
S e, = 0k(z) N 0%k(z)
= 0z (0z)2
at z = 1 and therefore converges absolutely. ]

Remark: An analogous result holds for processes with mixed evolutionary spec-
tra. The results cease to hold, if the spectrum has discontinuities in wu.

3.3 The asymptotic behavior of the correlgram and a fast
algorithm

From theorem 1 we see that if the input-sound has an evolutionary spectrum,

KORr(rp,u)i= [ I (u, ) [k (exp (=iX)) [ exp(iAr)dA,

—T

where |k, (exp(—i)\))|2 is the frequency response of filter (¢, ;); converges to the
same quantity as KOR%(7, p,u) does.
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Definition 3 This quantity

KOR(r.p,u) i= 3 [Au(t) [k, (exp (=ina(u)) [ explina (u)7)

neM
is called theoretical linear correlogram.

We have:

Theorem 3 Under assumption Al and the assumptions of theorem 1, KORy(T, p,u)
and KORG(7,p,u) both converge to KOR(7,p,u) a.s. or in quadratic mean respec-
tively.

The definition of KORyp(7, p,u) gives us an algorithm that is much faster than
the one proposed by Slaney and Lyon. But note, that they aim at computing a
nonlinear correlogram that can’t be computed with the algorithm presented here.

3.4 Visualizing sounds with correlograms

The correlogram and hence also its input-sound may be visualized as a movie. The
time wu is represented by itself: KORy(7,p,u) is shown at time [uT]. For a fixed u
KORyz (7, p, u) is presented as a two-dimensional picture. For every 7 and p we have
one pixel. 7 is plotted on the horizontal and p on the vertical axis. If KORz (7, p,u) <
0 the pixel (7, p) is red, else it is grey.! The bigger |[KORy(7, p, u)| is, the darker is
the pixel.

It turned out, that for most sounds a few cochlea-sections are so predominant,
that the biggest part of the picture is white. Therefore the information contained
in the correlogram is conveyed much better, if it is rescaled. We do the rescaling in
exactly the same way as Slaney and Lyon:

KORT(Tvpv u)

KORRy(7, p,u) := KORy (0. p, )07

The scaling with KORr(0, p,u)>™ seems to be ad hoc. 0.75 is the exponent that
made the correlogram look best. Note that we could not have used KORz(0, p, u)
because then the differences between the cochlea-sections had been lost.

In [10] many correlgrams of interesting sounds are shown. Figure 1 presents a
(rescaled) correlogram of the phoneme /A/? computed with the algorithm given in
[11]. Since this is a stationary sound, all pictures look equal.

Figure 2 presents one computed with our algorithm:

Tf you have not printed this paper on a color printer, you see the absolute value of the cor-
relogram in figure 2. This paper is available as postscript file with color via anonymous ftp from
statlab.uni-heidelberg.de.

2The transcription is according to the ARPAbet. See [2].
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Figure 1: A correlogram of the phoneme /A/, computed with the algorithm given
by Slaney and Lyon.

».u‘¢ - % . B e -
- - - -

Figure 2: A correlogram of the phoneme /A/, computed with our algorithm. Note
that if you don’t have color, you only see a representation of the absolute value of
the correlgram.

Differences along the vertical axis show us differences in the activity of different
cochlea-sections and hence in the magnitude of energy in different frequency bands.
Since the filters of the cochlea filterbank are tuned broadly, this gives us information
about a strongly smoothed version (or the envelope) of the spectrum of the input-
sound. Dark horizontal bands in the correlgram therefore indicate frequency bands
with strong energy. In the context of speech-analysis they are often called formants.

In contrast, the correlation plotted on the horizontal axis reacts to the fine-
structure of the spectrum of the input-sound. Assume e.g., the sound is a real valued
locally stationary process, that has a discrete spectrum with lines at say n;,7n_1 and
integer multiples. Then the correlation will be big at the lag corresponding to 1y,
indicating the fundamental frequency of the sound. Therefore, dark vertical bands
in the correlogram show pitch-information.

3.5 Pitch estimation

The last remark indicates that we can try to estimate the pitch of a sound by
summing up the correlogram along the vertical axis (i.e., along the cochlea-sections)
and looking for the maximum.

17



Definition 4

86
SUMKOR7(r,u) := > KOR¢(1,p, u)

p=1
is called empirical summary correlgram.
PITCHPERIODr(u) := argmaz, o .., SUMKOR7(T,u),

where T and T constitute some reasonable bound for the pitch period.

86
SUMKOR(r,u) :=>_ KOR(t,p,u)

p=1
is called theoretical summary correlgram.
PITCHPERIOD(u) := argmaz,, <, ., SUMKOR(7, u).

Proposition 3 If the assumptions of theorem 1 and A1 hold, SUMKORy(7,u) con-
verges to SUMKOR(7,u) and PITCHPERIODy(u) to PITCHPERIOD(u) a.s. or in

probability respectively.

The proof of the first part of the proposition is trivial. The second part may be
proved by arguments that are well known from consistency proofs for minimum
distance estimators. An example of such a proof may be found in [1]. We therefore
omit it.

Much more interesting than these theoretical results is the question, how good
the pitch estimator describes real pitch perception by humans. A lot of psychopysical
data about pitch perception is known. We want to test our pitch estimator against
the observations about the pitch of the residue described by Schouten et al. in [8].

Schouten et al. presented amplitude modulated signals of the form

s(x) = 0.5msin(2r(f — g)x) + sin(2w fx) + 0.5m sin(27(f + g)x)

to their listeners who judged the pitch of the signal by adjusting a matching signal.
This matching signal was of the form

0.5m sin(2m(n — 1)vgox) + sin(2rnygox) + 0.5m sin(27w(n — 1)ygox), (8)

for some integer n, where v was the parameter that could be adjusted by the listeners.
The sound of interest was said to have pitch ygg for a subject, if the subject judged
this sound to have the same pitch as the matching sound with parameter . Thus the
pitch was given as a frequency in Hz. See [8] for more details. Schouten et al. used
the values m = 0.9 and g = go = 200H z and started with a value of f = fy = ngo
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where n is a natual number, typically n = 10. Then they shifted f up and down in
steps of 50 Hz. The result was, that for f = fy the pitch was go. As f was shifted,
the pitch changed linearly as long as [ was close enough to foi.e., |f — fo] < go. A
first approximation is

P:go—l—Af”;]C—o, (for |Af| < g0),
0

where P is the pitch (in Hz) and Af = f — fo. This is called the first effect of pitch
shift. If one looks closer, one sees that the slope of the pitch as function of f is
actually steeper. It can better be described as

go(1+0)
Jo

where b depends on the indiviual subject that listens.®> A typical value is b = 0.35.
This result is called the second effect of pitch shift.

Now s(x) is a deterministic signal and not a locally stationary process. Therefore
we use a somewhat different but similar signal. Let

P=g+Af , (for |Af] < go),

si(x) = 0.5mcos(2n(f — g)x + ¢)) + cos(2m fx + ¢.) + 0.5m cos(27(f + g)x + ¢..)

where ¢}, ©., ¢! are independent identically distributed random phases. If s is dig-
itized at a sampling rate o we may view it as a process with discrete evolutionary
spectrum.

ST = X,(%) exp(—ibi(t)) + Ay (%) explifi(1)) +
i (%) exp(—if.(t)) + A. (%) exp(if.(1)) +
i (%) exp(—if,(1)) + A, (%) exp(i0, (1))
where

m(u) = 2n(f—g)/o

ne(u) = 2nf/o

m(u) = 2r(f+g)/o

Hl(t) = tm

0.(t) = 1tn.

0.(t) = tn,

Al(u) = 0.5exp(ip)

A 0.225 exp(ip.)

O
e
<
~—
Il

0.225 exp(ip,).

S
pa—
I

3Here we do not consider a change of g as Schouten et al. did.
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1, Ye, @ are independent identically distributed according to the uniform distribu-
tion on [—m, w]. We use these processes with the values 1950, 2000, 2050, 2100, 2150,
2200, 2250 and 2300 Hz for f and 200 Hz for g.

In fact, the difference between these signals and those used by Schouten et al. is
not significant: It is theoretically insignificant, because we can develop an asymp-
totic theory for almost periodic deterministic signals that is completely analogous
to the theory of locally stationary processes with discrete spectra. Just let A and
A® be deterministic, leave out 4 and replace almost sure convergence by normal con-
vergence in definition 1. Then we can prove analogous results and the theoretical
summary correlogram for s1(¢,7T) is the same as for the analogous deterministic sig-
nal with ¢; = ¢. = ¢, = 0. The difference also seems to be practically insignificant,
since for both signals the pitch estimates are exactly the same.

In addition we present a signal s3(¢,7"), where the center frequency f is changed
continuously from 1950 to 2200 Hz. Here

2n(f — g + u250Hz) /o
27(f + u250Hz) /o
(
[

=
O
—~
<
e
Il

ne(u) = 2n(f+ g+ u250Hz)/0

0i(t) = 2nt(f—g+ %250Hz)/a

0.(t) = 2mt(f+ %250Hz)/0

0.(t) = 2mt(f —I—.g + %250Hz)/0
(u) = 0.5exp(iy;)

0.225 exp(ip.)
= 0.225exp(i,).

<
e e’

We analyze the sounds with the pitch estimator described above and with an
even simpler one, that is just the argmax of the estimated covariance function of
the signal:

PITCHPERIOD27(u) := argmax, <, <, / In (u, X) exp(iAT)dA.
It turns out that both estimators PITCHPERIOD; and PITCHPERIOD2 produce
exactly the same result. Obviously the influence of the cochlear filters on pitch
estimation is small in our examples.

The results for s7 are shown in table 1 and figure 3. In figure 3 the estimated
pitches are shown as dots. The upper line is the line described by the first effect of
pitch shift for f, = 2000Hz, the lower line for fy = 2200Hz. We have translated the
pitch periods (lag 7) into frequncies in Hz (P) by the formula P = o/7, where o
is the sampling rate of the signal. Hence P is the frequency of the pure oscillation
(discretized with sampling rate o) with period 7. A theoretical justification for this
formula will be given below (p. 23). Further, for the relavant values of P, the pitch
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fin Hz | pitch in Hz
1950 195.122
2000 200.000
2050 205.128
2100 210.526
2150 195.122
2200 200.000
2250 205.128
2300 207.792

Table 1: Estimated pitches of s7.

Pitch

230

220

210}

200

190

£

" 2000 2050 2100 2150 2200 2250 2300

Figure 3: The estimated pitch of s7 vs. the center frequency plotted as dots. The
lines show the first effect of pitch shift for fo = 2000Hz (upper line) and f, = 2200Hz

(lower line).
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estimate our estimators give for (a discretized version of) the matching signal (8)
with ygo = P, is the 7 given by the above formula.

The first 4 pitch values almost lie on a line with a slope of approximatly go/ fo.
Then a jump occurs and for the last 4 the slope is less steep. The first 4 values
show almost exactly the behavior predicted by the first effect of pitch shift for
fo = 2000Hz. But then the jump occurs too soon. The second 4 again show the
behavior predicted by the first effect of pitch shift but not for fo = 2000Hz but for
fo = 2200Hz instead. The second effect of pitch shift is not visible at all.

For the simple estimator PITCHPERIOD27 this behavior is also theoretically
clear: PITCHPERIOD27 is the maximum of the empirical (tapered) covariance
function of a segment of length N around uT' of the input signal. By theorem 1 it

converges to
c(u,7):= > |AuP exp(iTna(u)).
neM
In our case, ¢(u,7) is the theoretical covariance function and one can easily check,
that it is an amplitude modulated pure oscillation.

c(u,7) = 045cos(m2n(f —g)/o) + cos(m2n f /o)
+0.45 cos(m2n(f + g)/0o)
= (14 0.9cos(2n7g/0))cos(2n7 /o)

with carrier frequency f and modulation frequency g¢. In fact, ¢(u,7) is (up to
a constant factor) the theoretical summary correlogram of s7, when all the linear
filters are replaced by the identity transformation. Figure 4 shows it.

We call cos(2n7g/0) the modulating oscillation, 140.9 cos(2r7g/0) the envelope
and cos(277 f /o) the carrier oscillation of ¢(u, ).

Now if f > g, then ¢(u, 7) has it’s maximum at that peek of the carrier oscillation
that is the nearest one to a peek of the modulating oscillation or the envelope. The
peeks of the carrier are at 7 = ko/f, k € Z and the peeks of the modulating
oscillation and the envelope are at 7 = lo/g, | € Z. Since the envelope of the
empirical covariance function and also of the empirical summary correlogram falls
off, as can be seen in figure 5, we take into account only [ = 1. Now let us assume
that we start with f = fo = ngo (n € N) and ¢ = go. Then we clearly find the
maximum of ¢(u, 7) at

_ (fo/g0)o

T=— =

9o Jo
ie., k = fo/go = n. If we now shift f upwards by an amount of Af, still the "same”
peek (k= fo/g0, T = foo/go(fo + Af)) of the carrier will be the nearest to o/go as

long as
o (Jo/g)o _ ((fo/g) +1)o o

g fot+Af Jot+Af 9’
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Figure 4: Theoretical covarianc function ¢(u,7) of s;. The theoretical summary
correlograms typically look very similar to this function. In fact, ¢(w,7) is (up to
a constant factor) the theoretical summary correlogram of s7, when all the linear
filters are replaced by the identity transformation.

ie., Af < go/2. When Af becomes > ¢o/2, the argmax jumps to

~ ((fo/go) + 1)
fo+ Af

(k= (fo/90) +1). Generally we see that

round(f/go)o

argmaXO'/ZgOSTSSO'/ZgOC(u7 T) = —f )
where

[x] + 1, x—[z] > 0.5
undefined, a — [z] =0.5

round(z) :=

{ [x], r—[z] <0.5

Now these considerations also show, that a version of the matching signal (8)

that is discretized at a sampling rate o would be judged to have the pitch period
no o
T = = —

nYg 9o
Hence PITCHPERIOD2 would judge, that s1(¢) has pitch P = vgq if

o round(f/go)o
790 f '
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Figure 5: A typical empirical summary correlogram of sj.

This is equivalent to

/ (f — round(f/go)go)

P = = - =
790 round(f/go) Jo round(f/go)
and for fo :=round(f/go)go and Af = f — fy this is the first effect of pitch shift
Yo

P=vg=g0+Af.
fo

We also see why the estimated pitch jumps to a lower value at a carrier frequency
of 2150 Hz. Then f —2000Hz = 150 Hz > ¢o/2 = 100 Hz and round(f/go) jumps to
11, while it was 10 as long as f < 2100 Hz.

For s; the result looks very similar to that for s7. It is plotted in figure 6. Again
the straight lines represent the first effect of pitch shift.

Summarizing our results we may say, that the pitch estimators analyzed here
almost perfectly describe the first effect of pitch shift. The second effect is not
visible at all. Further, since there is no mechanism that penalizes discontinuous
behavior in PITCHPERIOD¢ and PITCHPERIOD27, the range near |Af| = go/2,
where the pitch is ambiguous according to the observations of Schouten et al. is
much smaller (only one point) for our pitch estimators then for human listeners.
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Figure 6: The estimated pitches of s3. Like in figure 3 the lines represent the first
effect of pitch shift.
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