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Abstract

A de�nition of discrete evolutionary spectra is given that complements the
notion of evolutionary spectral density given by Dahlhaus in ���� For processes

that have a discrete evolutionary spectrum� the asymptotic behavior of linear
functionals of the periodogram is investigated� The results are applied in

a mathematical analysis of Licklider�s theory of pitch perception� A pitch
estimator based on this theory is investigated with respect to the shift of the

pitch of the residue described by Schouten et al� in �	��

� Introduction

In his paper ��� Dahlhaus introduces a new notion of a locally stationary process� His
approach di�ers from the well known one given by Priesley ���	 
�� in being inherently
asymptotic� This enables him to prove strong asymptotic results� Further	 the
spectral representation of a locally stationary process that Dahlhaus postulates is
unique	 in contrast to the one in Priestley�s theory�

Dahlhaus denes a process to be locally stationary if it has a certain spectral
representation� Every such process has an evolutionary spectral density� Hence
his theory doesn�t cover the case of a discrete spectrum� In section ��� of this
paper we give a denition of a locally stationary process with discrete evolutionary
spectrum and prove a uniqueness result for the spectral representation� In section
��� we discuss the asymptotic behavior of linear functionals of the periodogram of
a process with discrete evolutionary spectrum� Finally we apply these results in
section � to Licklider�s theory of pitch perception �see ����� We give a fast algorithm
for a simplied version of his model and study its asymptotic behavior� A pitch
estimator based on it is investigated with respect to the observations reported by
Schouten et al� in ����

�



� The mathematical theory of discrete evolution�

ary spectra

��� De�nition and some elementary properties

We dene a process with discrete evolutionary spectrum as a process that can almost
be written as a sum of pure oscillations� The amplitude	 null�phase and frequency
of every summand may change in time� But like in Dahlhaus� theory this change
becomes slower and slower as the sample size increases� Here is the exact denition�

De�nition � A sequence of stochastic processes Xt�T �t � �� � � � � T � is said to have
a discrete evolutionary spectrum if

�� there exists a representation

Xt�T �
X
n�M

A�
n�t�Ta�s�

for some M � Z and

�� for every n �M there exist a complex valued mean � stochastic process An�u�
on ��� �� with a�s� di�erentiable paths and a sequence �n�T �t� �t � �� � � � � T �
such that

�K�t� T
X
n

����A�
n�t�T �An

�
t

T

�
exp�i�n�T �t��

���� � KT�� a�s�

and

��

�K�u
X
n�M

sup
u
jAn�u�j � K a�s� �

�K�u
X
n�M

sup
u
jA�

n�u�j � K a�s� �

��

�u � ��� ��� n �M � EAn�u� � �

�u�� u� � ��� ��� n �� m�n�m �M � Cov�An�u��� Am�u��� � �

and

	� for every n �M there exists a function �n � ��� ��� R such that

�K�t� T� n �M

�����n�T �t�� �n�T �t� ��� �n

�
t

T

����� � KT���

�n has a uniformly 
in n �M� bounded derivative ��n�u�
�u

�

�



�n�u� is called an instantaneous frequency of Xt�T at time u� We say that Xt�T has a
spectral line of hight Var �An �u�� at �n�u�� When we deal with real valued processes�
we always assume that �n � M � �n � M� � �� M and �u � ��� ��An �u� � A�n �u�
and �t � T�n�T�t� � ���n�T �t��

Example�

Xt�T �
X
n�M

An

�
t

T

�
exp

�
i �n

�
t

T

�
t
�
�

i�e�	 �n�T �t� � �n�t�T �t	 where �n is twice continuous di�erentiable with bounded
second derivative� Then we have �n�u� � �n�u� � u��n�u�� Note that in general we
cannot choose �n�u� to be �n�u��

Proposition � If Xt�T is a process with discrete evolutionary spectrum as above
then

Cov �Xt���T �Xt�T � �
X
n

Var
�
An

�
t

T

��
exp

�
i��n

�
t

T

��
�R�

where jRj � O
�
������

T

�
�

Proof By � and � of deniton � we may freely exchange expectations and the
sum in expressions of the form E

P
n�M A � � �� Therefore Xt�T has a mean of order

O���T ��

EXt�TXt���T � E
X

n�m�M

A�
n�t�TA

�
m�t���T

�
X

n�m�M

EA�
n�t�TAm

�
t� �

T

�
exp�i�m�T�t� � �� �R�

�
X

n�m�M

EAn

�
t

T

�
Am

�
t� �

T

�
exp �i ��m�T �t� � �� �n�T �t���

�R� �R��

where jR�j and jR�j are of order � O���T � a�s� by � of denition �� Since An

and Am are uncorrelated for n �� m we get�

X
n�M

EAn

�
t

T

�
An

�
t� �

T

�
exp �i ��n�T �t� � �� �n�T �t���

�R� �R�

�
X
n�M

E

����An

�
t

T

������ exp �i ��n�T �t� � �� �n�T �t���

�R� �R� �R��
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R� ��
X
n�M

E

�
An

�
t

T

�
An

�
t� �

T

�
�

����An

�
t

T

������
�

exp �i ��n�T �t� � �� �n�T �t���

jR�j � O
�
�

T

� X
n�M

Esupu �jA
�
n�u�jjAn�u�j�

by the mean value theorem�
The next step illustrates a technique that is central to the theory of discrete

evolutionary spectra� To obtain the result we replace �n�T �t�� ���n�T�t� by ��n�t�T ��
The error we get is

R� ��
X
n�M

E

����An

�
t

T

������ exp�i��n � t

T

��
�
exp

�
i
���X
k	�

��n�T �t� � � k�� �n�T �t� � � k � ��� �n�t�T ��

�
� �

�

Since �����
���X
k	�

��n�T �t� � � k� � �n�T �t� � � k � ��� �n�t�T ��

�����
is � O���T � �O�� ��T � by � of denition � and the mean value theorem we have

jR�j � O

�
� � � �

T

� X
n�M

E

����An

�
t

T

������ �
Therefore we dene

De�nition �

F �u� 	� ��
X
n�M

Var �An �u���
�n�u�����	�

is called spectral distribution function of Xt�T �

The spectral distribution function of a process with discrete evolutionary spectrum
is uniquely determined by the covariance structure of the process�

Proposition � Under the assumptions of proposition �

lim
K��

�

�K � �

KX
�	�K

lim
T��

Cov
�
X
uT ����T �X
uT ��T

�
exp��i	� �

�
X
n�M

Var �An �u���f�n�u�g�	�


The convergence is not uniform in 	��

�



Here �x� denotes the greatest integer � x�
Proof

�

�K � �

KX
�	�K

lim
T��

Cov
�
X
uT ����T �X
uT ��T

�
exp��i	� �

�
X
n�M

Var �An �u��
�

�K � �

KX
�	�K

exp�i��n�u�� 	�� �

by proposition �� The last sum is the dirichlet kernel	 which is an approximate
identity�

��� Linear functionals of the periodogram

Let h � R� R be a data taper and

dN �u� 	� ��
N��X
s	�

h
�
s

N

�
X
uT ��N���s���T exp��i	s�

the tapered fourrier transform of a segment of length N around �uT � of the time
series� N is assumed to be even�

Hk�N �	� ��
N��X
s	�

h
�
s

N

�k
exp��i	s��

IN �u� 	� ��
�

�
H��N���
dN �u� 	�dN �u��	��

We investigate the asymptotic behavior of functionals of the form

BN �u� �� ��
Z �

��
IN �u� 	���	�d	�

where � is a continuous �
�periodic function� Let

B�u� �� ��
X
n�M

jAn�u�j
����n�u���

Note that in general B�u� �� is still random and ��
R �
�� ��	�dF �u� 	�� If only the

phase of An�u� is random and the absolute value is deterministic	 then B�u� �� �R �
�� ��	�dF �u� 	��
Assumption A��

�� Xt�T is a process with discrete evolutionary spectrum and

�u � ��� ���n �� m �M �n�u� �� �m�u� ���
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�� � is a bounded	 complex valued	 continuous	 �
�periodic function�

�� The data taper h � R� R is of bounded variation�

�� For the segment length N and the sample size T 	 �N� logN� �T � � and
T�N� � � hold as T �	�

Theorem � Under assumption A� the following holds If a�s� there exists a K �	
such that for all u � ��� ��

X
n�	m�M

jAn�u�j jAm�u�j

j�n�u�� �m�u�j
� K ���

then
BN �u� ��� B�u� ��a�s� �

If there exists a K �	 such that for all u � ��� ��

X
n�	m�l�	k�M

jE�An�u�Am�u�Al�u�Ak�u��j

j�m�u�� �n�u�j
� K ���

then
BN�u� ��� B�u� ��

in quadratic mean and in probability� The convergence is uniform in u in both cases�

The rest of this section contains the proof of theorem � and some technical tools
that are needed for it� Let

HN �f�
�� 	� ��
N��X
s	�

f�s� exp��i	s��

L�N �� ��

	
N� jj � ��N
��jj� ��N � jj � 


and let LN � R� R be the �
�periodic extension of L�N � The following facts about
LN are known form ����

Lemma � ��

�K�N��� �
Z �

��
LN �� � �LN � � ��d � KLN �� � �� logN

�� If h is of bounded variation� then �K such that �N� s � N and �	 we have
jHs�	�j � jHN �	�j � KLN �	��

The next lemma is easily proved by induction on N �
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Lemma �

HN

�
h
�



N

�
g�
�� 	

�
� g�N � ��HN �	� �

N��X
s	�

�g�s�� g�s� ���Hs�	��

Proof of theorem �� We rst write dN �u� 	� in a usefull form that makes it easy
to prove the theorem� Using the representation � postulated in denition � we get

dN �u� 	� �
N��X
s	�

h
�
s

N

� X
n�M

A�
n�
uT ��N���s���T exp��i	s� a�s� �

First we replace A�
n�
uT ��N���s���T by

An

�
�uT ��N�� � s� �

T

�
exp �i�n�T ��uT ��N�� � s� ���

and then An

�

uT ��N���s��

T

�
by An�u� to get

dN �u� 	� �
N��X
s	�

h
�
s

N

� X
n�M

An�u� exp �i�n�T ��uT ��N�� � s� ���

exp��i	s� �R� �R� a�s� � ���

For the error terms we have

R� ��
N��X
s	�

h
�
s

N

� X
n�M

�
A�
n�
uT ��N���s���T�

An

�
�uT ��N�� � s� �

T

�
exp �i�n�T ��uT ��N�� � s � ���

�
exp��i	s��

jR�j � O�N�T � a�s� by � of denition � and

R� ��
N��X
s	�

h
�
s

N

� X
n�M

�
An

�
�uT ��N�� � s� �

T

�
�An�u�

�
exp �i�n�T ��uT ��N�� � s� ��� exp��i	s��

jR�j � O

�
N�

T

� X
n�M

sup
u
jA�

n�u�j � O

�
N�

T

�
a�s�

by the mean value theorem�






The following considerations are the only place in the proof	 where techniques
are used that are not already known from the case of processes with evolution�
ary spectral density� In equation �	 we replace exp �i�n�T ��uT ��N�� � s � ��� by
exp �i�n�T ��uT ��N�� � ��� exp�i�n�u�s�� Now we can �a�s� � write dN �u� 	� asX

n�M

An�u� exp �i�n�T ��uT ��N�� � ���HN �	 � �n�u��

�R� �R� �R�� ���

Here
R� ��

X
n�M

An�u� exp �i�n�T ��uT ��N�� � ���R��n�

and

R��n� ��
N��X
s	�

h
�
s

N

�
exp �i��n�u�� 	�s�

fexp �i ��n�T ��uT ��N�� � s� ��� �n�T ��uT ��N�� � ��

��n�u�s��� �g

� HN

�
h
�



N

�
g�
�� 	 � �n�u�

�
�

where

g�s� �� exp fi ��n�T ��uT ��N�� � s� ��� �n�T ��uT ��N�� � ��

��n�u�s�g � ��

We want to use lemma � to nd an upper bound for jR��n�j� Therefore we have to
investigate g� g��� � � and for s � � we have

g�s� � exp
�
i
Ps��

k	� f�n�T ��uT ��N�� � s� � � k��

�n�T ��uT ��N�� � s � k�� �n�u�g�
���

By the mean value theorem there exists a nite K such that jg�s�j �

K
���Ps��

k	� f �n�T ��uT ��N�� � s� �� k�� �n�T ��uT ��N�� � s� k�

��n
�

uT ��N���s���k

T

�
�
�
�n
�

uT ��N���s���k

T

�
� �n�u�

�o��� �
By � of denition � and the mean value theorem this is � O�N�T � � O�N��T ��
Further	 there exists a K such that

jg�s�� g�s � ��j � K j�n�T ��uT ��N�� � s� �� � �n�T ��uT ��N�� � s�

��n�u�j

� O
�
N

T

�
�

�



Hence jR��n�j � LN �	� �n�u��O�N��T � by lamma � and

jR�j � LN�	 � �n�u��O�N��T �
X
n�M

jAn�u�j�

Further for the main term of dN �u� 	� we have�����X
n�M

An�u� exp �i�n�T ��uT ��N�� � ���HN �	 � �n�u��

�����
� O���

X
n�M

jAn�u�jLN �	� �n�u���

Using the representation ��� of dN �u� 	�	 we now turn to the proof of the theorem�

BN �u� 	� �
X
n�M

jAn�u�j
�
Z �

��

jHN�	 � �n�u��j�

�
H��N���
��	�d	

�R� �R �R� a�s� ���

The leading error terms are

R� ��
�

�
H��N���

Z �

��
R�

X
n�M

An�u� exp �i�n�T ��uT ��N�� � ���

HN �	 � �n�u����	�d	 �
�

and

R ��
�

�
H��N���

Z �

��

X
n�	m�M

An�u�Am�u�

exp �i ��n�T ��uT ��N�� � ��� �m�T ��uT ��N�� � ����

HN �	� �n�u��HN ��m�u�� 	� ��	�d	�

The other error terms have been put into R�� They are of lower order or can be
treated in the same way as R� and R�

jR�j � O

�
N�

T

�
O
�
�

N

� X
n�m�M

jAn�u�jjAm�u�jZ �

��
LN �	� �n�u��LN ��m�u�� 	�d	

� O

�
N logN

T

� X
n�m�M

jAn�u�jjAm�u�jLN ��m�u�� �n�u��

� O

�
N� logN

T

�
a�s�

�



jRj � O
�
�

N

� X
n�	m�M

jAn�u�jjAm�u�jZ �

��
LN �	� �n�u��LN��m�u�� 	�d	

� O

�
logN

N

� X
n�	m�M

jAn�u�jjAm�u�j

j�m�u�� �n�u�j
�

Since jHN ����n�u��j�

��H��N ���
is an approximate identity	 this proves the rst part of theorem

�� For the second part we use similar arguments to see that

Var�R� � O

�
�logN��

N�

� X
n�	m�l�	k�M

���E�An�u�Am�u�Al�u�Ak�u�
���

LN ��m�u�� �n�u��LN ��l�u�� �k�u��

� O

�
�logN��

N

� X
n�	m�l�	k�M

���E�An�u�Am�u�Al�u�Ak�u�
���

j�m�u�� �n�u�j

Remarks�

�� Equation � of assumption A� is restrictive and essential� It excludes e�g�	 that
�n�u� converges to �m�u� �n �� m� as say u � ��� and �n�u� � �m�u� for
u � ���� This example is also excluded by equations � and � in theorem �� If
we want to allow for such examples we have to reformulate those equations�
Equation � could be changed to

�u � ��� ���K �	
X

�n�m���n�u��	�m�u�

jAn�u�j jAm�u�j

j�n�u�� �m�u�j
� Ka�s�

and equation � similarly� Then BN �u� 	� converges �a�s� or in quadratic mean
respectively� to

B�u� 	� �
X

n�	m��n�u�	�m�u�

�
An�u�Am�u����n�u��

lim
T��

exp �i ��n�T ��uT ��N�� � �� � �m�T ��uT ��N�� � ����
�
�

provided this limit exists� Even if it exists it is not real in general� The
convergence is no longer uniform in u� This shows that the interaction of very
closely adjacent spectral lines can cause a lot of trouble�

�� Theorem � can be extended to the case of mixed evolutionary spectra� Assume
that

Xt�T � Xd
t�T �Xc

t�T

��



where Xd
t�T has a discrete evolutionary spectrum F d�u� 	� and Xc

t�T has evo�
lutionary spectral density f c�u� 	�� Then under A� and the assumptions of
theorem � on Xd

t�T and assumption A�� of ��� on Xc
t�T we have

BN �u� 	��
Z �

��
f c�u� 	���	�d	 �B�u� 	�

in probability as T �	� The convergence is uniform in u�

�� The theory of discrete evolutionary spectra can be extended to allow for nitely
many discontinuities in An�u� and �n�u�� Assume for simplicity that An�u�
and �n�u� have a single jump of nite hight at u � u� for some n	 where
u� is independent of n� Then BN �u� 	� still converges to B�u� 	� for u �� u��
BN �u�� 	� converges toR ���

� h��v�dvR �
� h

��v�dv

X
n�M

jAn�u���j� � ��n�u���� �

R �
��� h

��v�dvR �
� h

��v�dv

X
n�M

jAn�u���j� � ��n�u���� �

a�s� or in quadratic mean	 if a�s� there exists a K such that for every u

X
n�	m

jAn�u��Am�u��j

j�m�u��� �n�u��j
� K�

X
n �	m

jAn�u��Am�u��j

j�m�u��� �n�u��j
� K and

X
n �	m

jAn�u��Am�u��j

j�m�u��� �n�u��j
� K

or if there exists a K such that for every u

X
n�	m�l �	k

jE�An�u��Am�u��Al�u��Ak�u���j

j�m�u��� �n�u��j
� K�

X
n�	m�l �	k

jE�An�u��Am�u��Al�u��Ak�u���j

j�m�u��� �n�u��j
� K and

X
n �	m�l�	k

jE�An�u��Am�u��Al�u��Ak�u���j

j�m�u��� �n�u��j
� K

respectively�

��



Remark � is immediate from the proof of theorem �� The proof of remark � is
more technical than that of theorem �� In addition to the methods presented here	
it uses techniques from the theory of evolutionary spectral densities� We omit it
here�

The main idea in the proof of remark � is to �a�s� � write dN �u� 	� asX
n�M

An�u�� exp�i�n�T ��ut��N�� � ���HN���	 � �n�u��� �

X
n�M

An�u�� exp�i�n�T ��ut��N�� � ����
HN �	 � �n�u����HN���	� �n�u���

�
�R

where R is of reduced order� The details are technical and we omit them here�

� Application to Licklider�s theory of pitch per�

ception

In ���� Licklider proposed a theory of pitch perception �����	 that will be called
correlogram in the sequel� Because of its high computational costs not many sounds
could be analyzed at that time using this model� In the last years the interest in
the correlogram grew again �s� e�g� ��	 ���� because the computational capabilities
had increased drastically� Slaney and Lyon were able to compute it in real time for
the rst time �������

Here we investigate a somewhat simplied version of this model on the basis of
the theory of discrete evolutionary spectra� First Licklider�s theory is described�
Then we discuss the asymptotics of the correlogram and present an algorithm	 that
computes this simplied version of the model much faster than the algorithm used by
Slaney and Lyon ����	 ����� Finally a simple pitch estimator based on the correlgram
is investigated� We analyze its asymptotic behavior and how it works on processes
with discrete evolutionary spectra that are very similar to amplitude modulated
sounds� We are especially interested in the e�ect of the shift of the pitch of the
residue described by Schouten et al� in ����

��� The correlgram

����� Informal description

When we hear a sound the soundwave has traveled through our outer ear to hit the
eardrum� From there	 the vibrations were transferred to the cochlea �or inner ear�
by three small ossicles in the middle ear�

��



The inner ear is a bony snail�like structure� If we uncoil it	 it becomes a long
straight tube that is partitioned by the basiliar membrane	 that extends almost the
entire length of the cochlea� When the sound enters the inner ear	 a traveling wave
on the basiliar membrane is caused� The place	 where this wave has its maximum
amplitude depends on the frequency of the sound� Now the movement of the basiliar
membrane causes the hair cells to release a chemical transmitter that generates nerve
impulses in the auditory nerve� Because the movement of the basiliar membrane
is di�erent at di�erent places depending on the frequency of the sound	 di�erent
groups of hair cells are activated by di�erent frequencies� The distribution of the
energy of the sound among di�erent frequencies is mapped to the distribution of
haircell activities at di�erent places in the cochlea�

These facts about hearing seem to be uncontroversial and more information may
be found in textbooks such as ���� Now Licklider�s assertion is	 that in the brain
for every place in the cochlea or every group of hair cells an autocorrelation of the
neural activity caused by that group is computed� This will become clearer as soon
as we describe the correlgram mathematically�

����� The mathematical model

A model of the outer	 middle and inner ear has been proposed in ���� We use the
linear part of it to dene a simplied correlogram� For details see ����

The e�ect of the outer and middle ear on the soundwave are described by a linear
lter� So the incoming sound is ltered rst�

Next	 the mapping of the energy distribution among frequencies to the distribu�
tions of basiliar membrane movement at di�erent places of the cochlear is modelled
by a lterbank� The cochlea is partitioned into �� sections� For each sections there
is a linear bandpass lter in the lterbank� The frequency responses of the individ�
ual lters are rather broad and have one peek� They di�er in the position of the
peek and their bandwidth� The higher the frequency of the peek is	 the broader
is the bandwidth� The frequency responses overlap strongly� The output of the
outer�middle�ear�lter is ltered in every lter of the lterbank separatly� So we get
a vector of �� time series�

While Slaney and Lyon model the strongly nonlinear e�ects of the haircells	 we
leave this step out�

Now	 for every such time series	 the �empirical� autocovariance function is com�
puted�

Let �cp�j�j� �p � �� � � � � ��� be the impulse response of the lter �of the lterbank�
corresponding to section p of the cochlea convolved with the impulse response of the
outer�middle�ear�lter� Further let �Xt�t	��			�T be the digitized input sound� Then
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the p�th component of the output vector of the lterbank is

Yp�t ��
�X
j	�

cp�jXt�j

and the correlgram can be written as

KOR�
T ��� p� u� ��

Z �

��
I
Yp
N �u� 	� exp�i	� �d	

where I
Yp
N �u� 	� is the tapered periodogram of a segment of Yp�t� In fact	 this is

exactly what the algorithm given by Slaney and Lyon does	 if we use it to compute
our simplied correlgram� The incoming sound is ltered in the time domain �using
the di�erence equations that describe the lters�	 then the periodogram is computed
and the result is subjected to an inverse fourrier transform� This algorithm takes a
lot of computing time	 since for every section of the cochlea	 a periodogram and an
inverse fourrier transform have to be computed�

If we could do the ltering in the frequency�domain	 we would be much faster	
since we would have to compute the periodogram and the inverse fourrier transform
only once for every u� But since we use a segmentwise periodogram and we cannot
expect Yp�t to be stationary	 it is not clear that this will lead to the same result as
the procedure given above� In the next subsection we will show	 that in fact we can
do the ltering in the frequency�domain if Xt � Xt�T has a discrete evolutionary
spectrum�

��� Linear �lters and discrete evolutionary spectra

Let Xt�T be a process with discrete evolutionary spectrum FX�u� 	� and �cj�j�N be
the impulse response of a linear lter� Assume that

�X
j	�

cjz
j � k�z� �

a�z�

b�z�
�

where a and b are polynomials with real coe�cients and b�z� �� � for every complex
number z such that jzj � ��

Theorem � Then

Yt�T ��
�X
j	�

cjXt�j�T

can be written as

Yt�T �
X
n�M

An

�
t

T

�
exp�i�n�T �t�� k �exp ��i�n �t�T ��� �R a�s� �
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where jRj � O
�
�
T

�
a�s� � Hence Yt�T has spectral distribution function

F Y �u� 	� � jk �exp ��i�n �t�T ���j
� FX�u� 	��

Proof

Yt�T �
�X
j	�

cj
X
n�M

A�
n�t�j�T a�s� �

Again we replace A�
n�t�j�T by An

�
t�j
T

�
exp�i�n�T �t � j�� and An

�
t�j
T

�
by An

�
t
T

�
	

making errors R� and R� with

jR�j � O
�
�

T

� �X
j	�

jcjj a�s�

jR�j � O
�
�

T

� �X
j	�

jjcjj a�s�

Now
P�

j	� jcj �
�k�z�
�z

at z � � and hence converges absolutely� We have

Yt�T �
X
n�M

An

�
t

T

�
exp�i�n�T �t��

�X
j	�

cj exp�i��n�T �t� j�� �n�T �t��� �R� �R� a�s� �

Replacing �n�T �t � j� � �n�T �t� by j�n �t�T � we get the result	 making an error R�

such that

jR�j � O
�
�

T

� �X
j	�

j�jcjj a�s� �

But
�X
j	�

j�cj �
�k�z�

�z
�
��k�z�

��z��

at z � � and therefore converges absolutely�
Remark� An analogous result holds for processes with mixed evolutionary spec�

tra� The results cease to hold	 if the spectrum has discontinuities in u�

��� The asymptotic behavior of the correlgram and a fast

algorithm

From theorem � we see that if the input�sound has an evolutionary spectrum	

KORT ��� p� u� ��
Z �

��
IXN �u� 	� jkp �exp ��i	��j

� exp�i	� �d	�

where jkp �exp ��i	��j
� is the frequency response of lter �cp�j�j converges to the

same quantity as KOR�
T ��� p� u� does�
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De�nition � This quantity

KOR��� p� u� ��
X
n�M

jAn�u�j
� jkp �exp ��i�n�u���j

� exp�i�n�u�� �

is called theoretical linear correlogram�

We have�

Theorem � Under assumption A� and the assumptions of theorem �� KORT ��� p� u�
and KOR�

T ��� p� u� both converge to KOR��� p� u� a�s� or in quadratic mean respec�
tively�

The denition of KORT ��� p� u� gives us an algorithm that is much faster than
the one proposed by Slaney and Lyon� But note	 that they aim at computing a
nonlinear correlogram that can�t be computed with the algorithm presented here�

��� Visualizing sounds with correlograms

The correlogram and hence also its input�sound may be visualized as a movie� The
time u is represented by itself� KORT ��� p� u� is shown at time �uT �� For a xed u
KORT ��� p� u� is presented as a two�dimensional picture� For every � and p we have
one pixel� � is plotted on the horizontal and p on the vertical axis� If KORT ��� p� u� �
� the pixel ��� p� is red	 else it is grey�� The bigger jKORT ��� p� u�j is	 the darker is
the pixel�

It turned out	 that for most sounds a few cochlea�sections are so predominant	
that the biggest part of the picture is white� Therefore the information contained
in the correlogram is conveyed much better	 if it is rescaled� We do the rescaling in
exactly the same way as Slaney and Lyon�

KORRT ��� p� u� ��
KORT ��� p� u�

KORT ��� p� u��	��

The scaling with KORT ��� p� u��	�� seems to be ad hoc� ��
� is the exponent that
made the correlogram look best� Note that we could not have used KORT ��� p� u�
because then the di�erences between the cochlea�sections had been lost�

In ���� many correlgrams of interesting sounds are shown� Figure � presents a
�rescaled� correlogram of the phoneme �A�� computed with the algorithm given in
����� Since this is a stationary sound	 all pictures look equal�

Figure � presents one computed with our algorithm�

�If you have not printed this paper on a color printer� you see the absolute value of the cor�
relogram in �gure �� This paper is available as postscript �le with color via anonymous ftp from
statlab�uni�heidelberg�de�

�The transcription is according to the ARPAbet� See ����
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Figure �� A correlogram of the phoneme �A�	 computed with the algorithm given
by Slaney and Lyon�

Figure �� A correlogram of the phoneme �A�	 computed with our algorithm� Note
that if you don�t have color	 you only see a representation of the absolute value of
the correlgram�

Di�erences along the vertical axis show us di�erences in the activity of di�erent
cochlea�sections and hence in the magnitude of energy in di�erent frequency bands�
Since the lters of the cochlea lterbank are tuned broadly	 this gives us information
about a strongly smoothed version �or the envelope� of the spectrum of the input�
sound� Dark horizontal bands in the correlgram therefore indicate frequency bands
with strong energy� In the context of speech�analysis they are often called formants�

In contrast	 the correlation plotted on the horizontal axis reacts to the ne�
structure of the spectrum of the input�sound� Assume e�g�	 the sound is a real valued
locally stationary process	 that has a discrete spectrum with lines at say ��� ��� and
integer multiples� Then the correlation will be big at the lag corresponding to ��	
indicating the fundamental frequency of the sound� Therefore	 dark vertical bands
in the correlogram show pitch�information�

��� Pitch estimation

The last remark indicates that we can try to estimate the pitch of a sound by
summing up the correlogram along the vertical axis �i�e�	 along the cochlea�sections�
and looking for the maximum�

�




De�nition �

SUMKORT ��� u� ��
�X
p	�

KORT ��� p� u�

is called empirical summary correlgram�

PITCHPERIODT �u� �� argmax�������SUMKORT ��� u��

where �� and �� constitute some reasonable bound for the pitch period�

SUMKOR��� u� ��
�X
p	�

KOR��� p� u�

is called theoretical summary correlgram�

PITCHPERIOD�u� �� argmax�������SUMKOR��� u��

Proposition � If the assumptions of theorem � and A� hold� SUMKORT ��� u� con�
verges to SUMKOR��� u� and PITCHPERIODT �u� to PITCHPERIOD�u� a�s� or in
probability respectively�

The proof of the rst part of the proposition is trivial� The second part may be
proved by arguments that are well known from consistency proofs for minimum
distance estimators� An example of such a proof may be found in ���� We therefore
omit it�

Much more interesting than these theoretical results is the question	 how good
the pitch estimator describes real pitch perception by humans� A lot of psychopysical
data about pitch perception is known� We want to test our pitch estimator against
the observations about the pitch of the residue described by Schouten et al� in ����

Schouten et al� presented amplitude modulated signals of the form

s�x� � ���m sin��
�f � g�x� � sin��
fx� � ���m sin��
�f � g�x�

to their listeners who judged the pitch of the signal by adjusting a matching signal�
This matching signal was of the form

���m sin��
�n� ���g�x� � sin��
n�g�x� � ���m sin��
�n� ���g�x�� ���

for some integer n	 where � was the parameter that could be adjusted by the listeners�
The sound of interest was said to have pitch �g� for a subject	 if the subject judged
this sound to have the same pitch as the matching sound with parameter �� Thus the
pitch was given as a frequency in Hz� See ��� for more details� Schouten et al� used
the values m � ��� and g � g� � ���Hz and started with a value of f � f� � ng�
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where n is a natual number	 typically n � ��� Then they shifted f up and down in
steps of �� Hz� The result was	 that for f � f� the pitch was g�� As f was shifted	
the pitch changed linearly as long as f was close enough to f� i�e�	 jf � f�j � g�� A
rst approximation is

P � g� ��f
g�
f�
� �for j�f j � g���

where P is the pitch �in Hz� and �f � f � f�� This is called the �rst e�ect of pitch
shift� If one looks closer	 one sees that the slope of the pitch as function of f is
actually steeper� It can better be described as

P � g� ��f
g��� � b�

f�
� �for j�f j � g���

where b depends on the indiviual subject that listens�� A typical value is b � �����
This result is called the second e�ect of pitch shift�

Now s�x� is a deterministic signal and not a locally stationary process� Therefore
we use a somewhat di�erent but similar signal� Let

s��x� � ���m cos��
�f � g�x� ��l� � cos��
fx� ��c� � ���m cos��
�f � g�x� ��r�

where ��l� �
�
c� �

�
r are independent identically distributed random phases� If s is dig�

itized at a sampling rate � we may view it as a process with discrete evolutionary
spectrum�

fs��t� T � � Al

�
t

T

�
exp��i�l�t�� �Al

�
t

T

�
exp�i�l�t�� �

Ac

�
t

T

�
exp��i�c�t�� �Ac

�
t

T

�
exp�i�c�t�� �

Ar

�
t

T

�
exp��i�r�t�� �Ar

�
t

T

�
exp�i�r�t��

where
�l�u� � �
�f � g���
�c�u� � �
f��
�r�u� � �
�f � g���
�l�t� � t�l
�c�t� � t�c
�r�t� � t�r
Al�u� � ��� exp�i�l�
Ac�u� � ����� exp�i�c�
Ar�u� � ����� exp�i�r��

�Here we do not consider a change of g as Schouten et al� did�
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�l� �c� �r are independent identically distributed according to the uniform distribu�
tion on ��
� 
�� We use these processes with the values ����	 ����	 ����	 ����	 ����	
����	 ���� and ���� Hz for f and ��� Hz for g�

In fact	 the di�erence between these signals and those used by Schouten et al� is
not signicant� It is theoretically insignicant	 because we can develop an asymp�
totic theory for almost periodic deterministic signals that is completely analogous
to the theory of locally stationary processes with discrete spectra� Just let A and
A� be deterministic	 leave out � and replace almost sure convergence by normal con�
vergence in denition �� Then we can prove analogous results and the theoretical
summary correlogram for fs��t� T � is the same as for the analogous deterministic sig�
nal with �l � �c � �r � �� The di�erence also seems to be practically insignicant	
since for both signals the pitch estimates are exactly the same�

In addition we present a signal fs��t� T �	 where the center frequency f is changed
continuously from ���� to ���� Hz� Here

�l�u� � �
�f � g � u���Hz���
�c�u� � �
�f � u���Hz���
�r�u� � �
�f � g � u���Hz���
�l�t� � �
t�f � g � t

�T ���Hz���
�c�t� � �
t�f � t

�T
���Hz���

�r�t� � �
t�f � g � t
�T
���Hz���

Al�u� � ��� exp�i�l�
Ac�u� � ����� exp�i�c�
Ar�u� � ����� exp�i�r��

We analyze the sounds with the pitch estimator described above and with an
even simpler one	 that is just the argmax of the estimated covariance function of
the signal�

PITCHPERIOD�T �u� �� argmax�������

Z �

��
IN �u� 	� exp�i	� �d	�

It turns out that both estimators PITCHPERIODT and PITCHPERIOD�T produce
exactly the same result� Obviously the in�uence of the cochlear lters on pitch
estimation is small in our examples�

The results for fs� are shown in table � and gure �� In gure � the estimated
pitches are shown as dots� The upper line is the line described by the rst e�ect of
pitch shift for f� � ����Hz	 the lower line for f� � ����Hz� We have translated the
pitch periods �lag � � into frequncies in Hz �P � by the formula P � ��� 	 where �
is the sampling rate of the signal� Hence P is the frequency of the pure oscillation
�discretized with sampling rate �� with period � � A theoretical justication for this
formula will be given below �p� ���� Further	 for the relavant values of P 	 the pitch
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f in Hz pitch in Hz
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� ��
�
��

Table �� Estimated pitches of fs��

Figure �� The estimated pitch of fs� vs� the center frequency plotted as dots� The
lines show the rst e�ect of pitch shift for f� � ����Hz �upper line� and f� � ����Hz
�lower line��
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estimate our estimators give for �a discretized version of� the matching signal ���
with �g� � P 	 is the � given by the above formula�

The rst � pitch values almost lie on a line with a slope of approximatly g��f��
Then a jump occurs and for the last � the slope is less steep� The rst � values
show almost exactly the behavior predicted by the rst e�ect of pitch shift for
f� � ����Hz� But then the jump occurs too soon� The second � again show the
behavior predicted by the rst e�ect of pitch shift but not for f� � ����Hz but for
f� � ����Hz instead� The second e�ect of pitch shift is not visible at all�

For the simple estimator PITCHPERIOD�T this behavior is also theoretically
clear� PITCHPERIOD�T is the maximum of the empirical �tapered� covariance
function of a segment of length N around uT of the input signal� By theorem � it
converges to

c�u� � � ��
X
n�M

jAnj
� exp�i��n�u���

In our case	 c�u� � � is the theoretical covariance function and one can easily check	
that it is an amplitude modulated pure oscillation�

c�u� � � � ���� cos���
�f � g���� � cos���
f���

����� cos���
�f � g����

� �� � ��� cos��
�g���� cos��
�f���

with carrier frequency f and modulation frequency g� In fact	 c�u� � � is �up to
a constant factor� the theoretical summary correlogram of fs�	 when all the linear
lters are replaced by the identity transformation� Figure � shows it�

We call cos��
�g��� the modulating oscillation	 ����� cos��
�g��� the envelope
and cos��
�f��� the carrier oscillation of c�u� � ��

Now if f � g	 then c�u� � � has it�s maximum at that peek of the carrier oscillation
that is the nearest one to a peek of the modulating oscillation or the envelope� The
peeks of the carrier are at � � k��f� k � Z and the peeks of the modulating
oscillation and the envelope are at � � l��g� l � Z� Since the envelope of the
empirical covariance function and also of the empirical summary correlogram falls
o�	 as can be seen in gure �	 we take into account only l � �� Now let us assume
that we start with f � f� � ng� �n � N� and g � g�� Then we clearly nd the
maximum of c�u� � � at

� �
�

g�
�

�f��g���

f�
�

i�e�	 k � f��g� � n� If we now shift f upwards by an amount of �f 	 still the �same�
peek �k � f��g�	 � � f���g��f� ��f�� of the carrier will be the nearest to ��g� as
long as

�

g�
�

�f��g���

f� ��f
�

��f��g�� � �� �

f� ��f
�

�

g�
�
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Figure �� Theoretical covarianc function c�u� � � of fs�� The theoretical summary
correlograms typically look very similar to this function� In fact	 c�u� � � is �up to
a constant factor� the theoretical summary correlogram of fs�	 when all the linear
lters are replaced by the identity transformation�

i�e�	 �f � g���� When �f becomes � g���	 the argmax jumps to

� �
��f��g�� � ���

f� ��f

�k � �f��g�� � ��� Generally we see that

argmax���g��������g�c�u� � � �
round�f�g���

f
�

where

round�x� ��


���
�x�� x� �x� � ���
�x� � �� x� �x� � ���
undened� x� �x� � ���

Now these considerations also show	 that a version of the matching signal ���
that is discretized at a sampling rate � would be judged to have the pitch period

� �
n�

n�g�
�

�

�g�

Hence PITCHPERIOD� would judge	 that fs��t� has pitch P � �g� if

�

�g�
�

round�f�g���

f
�
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Figure �� A typical empirical summary correlogram of fs��
This is equivalent to

P � �g� �
f

round�f�g��
� g� �

�f � round�f�g��g��

round�f�g��

and for f� �� round�f�g��g� and �f � f � f� this is the rst e�ect of pitch shift

P � �g� � g� ��f
g�
f�
�

We also see why the estimated pitch jumps to a lower value at a carrier frequency
of ���� Hz� Then f � ����Hz � ���Hz � g��� � ���Hz and round�f�g�� jumps to
��	 while it was �� as long as f � ����Hz�

For fs� the result looks very similar to that for fs�� It is plotted in gure �� Again
the straight lines represent the rst e�ect of pitch shift�

Summarizing our results we may say	 that the pitch estimators analyzed here
almost perfectly describe the rst e�ect of pitch shift� The second e�ect is not
visible at all� Further	 since there is no mechanism that penalizes discontinuous
behavior in PITCHPERIODT and PITCHPERIOD�T 	 the range near j�f j � g���	
where the pitch is ambiguous according to the observations of Schouten et al� is
much smaller �only one point� for our pitch estimators then for human listeners�
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