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ABSTRACT 
 

Oligodendrocytes are the myelin-forming cells of the white matter of the central 

nervous system (CNS). Oligodendrocytes are derived from Oligodendrocyte 

Progenitor Cells (OPC) or from Neural Stem Cells (NSC) at different development 

stages. Although numerous factors involved in oligodendrocyte production have been 

identified, the transcriptional control of oligodendrocytogenesis remains largely 

unknown. However, the treatment of demyelination diseases like multiple sclerosis 

(MS) and periventricular leukomalacia (PVL) could greatly benefit from this 

knowledge. 

The forkhead (Fox) gene family encodes transcription factors characterized by a DNA 

binding domain with a variant of the helix-turn-helix configuration. Foxb1 encodes a 

forkhead transcription factor expressed in the mouse neural plate and early 

mesoderm in the primitive streak stage. In midgestation, Foxb1 is expressed in 

restricted areas of the neuroepithelium (ventricular zone) as well as the brain 

parenchyma of midbrain, thalamus, hypothalamus, superior and inferior colliculi, pons, 

medulla oblongata and spinal cord. Preliminary work in our lab showed that the 

number of CNS cells belonging to the Foxb1 lineage (i.e. born from Foxb1-expressing 

ventricular zone) is much larger than the number of CNS cells actually express Foxb1 

in the adult mouse. For my PhD work I wanted to know, first, which CNS cells are 

generated by Foxb1-expressing NSC; second, I wanted to learn about the specific 

function of Foxb1 in those cells. 

To approach those questions I analyzed the phenotype of heterozygous (Foxb1Cre/+) 

and homozygous (Foxb1Cre/Cre) mice of the knock in-knock out Foxb1-Cre-EGFP 

mouse line (generated previously in our lab). I found that the Foxb1-expressing 

neuroepithelium generates large numbers of oligodendrocytes (as well as some 

astrocytes and neurons); in mice deficient in Foxb1, immature oligodendrocytes as 

well as OPC are abnormally abundant but can differentiate into oligodendrocytes able 

to produce normal myelin sheaths. I concluded that transcription factor Foxb1 is a 

novel player in the regulation of OPC generation, on which it exerts a potent inhibitory 

function. 
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ZUSAMMENFASSUNG 
 

Oligodendrozyten sind die Myelinscheiden-bildenen Zellen der weißen Substanz des 

zentralen Nervensystems und stammen in Abhängigkeit vom Entwicklungszeitpunkt 

von oligodendrozytären Vorläuferzellen oder neuralen Stammzellen ab. Obwohl 

zahlreiche an der Produktion von Oligodendrozyten beteiligte Faktoren identifiziert 

wurden, sind die molekularen Mechanismen der Oligodendrozytogenese sowie die 

Herkunft oligodendrozyärer Vorläuferzellen noch weitestgehend unerforscht. Die 

Multiple Sklerose (MS) und die periventrikuläre Leukomalazie (PVL) bezeichnen zwei 

wichtige Krankheiten, deren wesentliches pathogenetisches Korrelat die 

Demyelinisierung darstellt.  

Die forkhead (FOX)-Genfamilie kodiert für zahlreiche Transkriptionsfaktoren, welche 

durch eine über die Evolution konservierte DNA-Bindungsdomäne mit einem 

variablen Helix-Turn-Helix-Motiv charakterisiert sind. Foxb1 ist ein essentielles 

Mitglied der forkhead-Genfamilie. Bereits zu einem sehr frühen Zeitpunkt wird es in 

der Neuralplatte und im frühen Mesoderm exprimiert, zur Mitte der Gestation hin 

ferner im Mittelhirn, im Thalamus, im Hypothalamus, in den Colliculi superior und 

inferior, im Pons, in der Medulla oblongata und im Rückenmark. Der Phänotyp von 

homozygoten Foxb1-Knockout-Mutanten zeichnet sich aus durch Störungen des 

räumlichen Gedächtnisses und der Bewegung der hinteren Gliedmaßen, ebenso ist 

bei diesen Individuen die Milchproduktion nicht möglich. Vorangegangene 

Untersuchungen haben gezeigt, dass in homozygoten Foxb1-Knockout-Mutanten 

mehr Zellen der Foxb1-Zell-Linie anfärbbar sind, als in heterozygoten 

Foxb1-Mutanten. Ich wollte nun wissen, was es mit den Zellen der Foxb1-Zell-Linie 

auf sich hat und warum gerade die homozygoten Mutanten mehr Zellen der 

Foxb1-Zell-Linie generierten. Sollte es gelingen, diese Zellen zu charaktiersieren, 

stellt sich weiterhin die Frage, ob die Zellen der homozygoten 

Foxb1-Knockout-Mutanten in ihrer Morphologie und physiologischen Funktion 

beeinträchtigt oder verändert sind.  

In dieser Arbeit habe ich die oben gestellen Fragen beantwortet, indem ich mithilfe 

des Cre-loxP-Rekombinations systems im Foxb1-Genlocus transgene Mäuse 

herstellte und schließlich homozygote Individuen (Foxb1Cre/Cre) mit heterozygoten   

(Foxb1Cre/+) verglich. Ich fand heraus, das seine Subpopulation der Oligodendrozyten 

der Foxb1-exprimierenden Region des Neuroepithels entstammt. 
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Foxb1-exprimierende Oligodendrozyten konnten in vitro kultiviert und mittels 

Entwicklungsstadium-spezifischer Marker angefärbt werden (PDGFRα, NG2, Olig2, 

GalC, Claudin11 und MBP). Zudem generieren die Foxb1-exprimierenden Regionen 

des Neuroepithels auch einige Neurone und wenige Astroyzten. Die 

Oligodendrozyten der Foxb1-Zell-Linie entwickeln sich zu reifen Oligodendrozyten 

und bilden Myelinscheiden, welche unter dem Elektronenmikroskop eine normale und 

pyhsiologische Konfiguration zeigen. Ich habe ferner gezeigt, dass das Ausknocken 

beiden Foxb1-Allele zu einer gesteigerten Proliferation oligodendrozytärer 

Vorläuferzellen im postnatalen Hirn führt. Das lässt darauf schließen, dass Foxb1 

entweder die Prolifertion der oligodendrozytären Zell-Linie reguliert oder das 

Schicksal neuroepithelialer Zellen verändert.  

Diese Arbeit könnte also dazu beitragen, das demyelinisierende Erkrankungen wie 

die MS oder die PVL besser verstanden werden und gegebenenfalls neue 

Therapieansätze entwickelt werden können.  
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CHAPTER 1: INTRODUCTION 
 
Oligodendrocytes are the cells that produce and maintain the myelin sheaths around 

axons of the central nervous system (CNS, including the brain, brainstem and spinal 

cord). Since the myelin sheath is essential for proper neuronal function, 

oligodendrocytes are very important cells. Defects in myelination, the process by 

which oligodendrocytes wrap axons in layers of myelin, cause severe pathological 

conditions in humans. Since myelination occurs mostly during CNS development, my 

research has focused on the development of oligodendrocytes. 

 

1.1. Importance of Oligodendrocyte Development 
 
To emphasize the relevance of oligodendrocyte development to the health of human 

babies, I will briefly introduce here the pathological condition periventricular 

leukomalacia (PVL), characterized, among other abnormalities, by loss of mature and 

abnormal abundance of immature oligodendrocytes (Kohelet et al., 2006). PVL is 

particularly common in preterm newborns, that is, babies born before due date (9 

months). Specifically, most children born with a weight of 1 kg or less suffer from PVL 

and show later in life decreased cognitive abilities ranging from mild learning 

problems to severe mental retardation. Since preterm newborn intensive care has 

steadily improved for the last 60 years, survival is increasing for preterm neonates and 

the prevalence of children with cognitive impairments at school age continues to rise 

(Swaiman, 2012). Up to now, both pathophysiology changes and their relationship to 

neurodevelopmental outcome remain poorly understood. For this reason, strategies 

for identifying and preventing causes of disability in PVL patients are important to both 

physicians and parents (Swaiman, 2012). 

 
1.2. Oligodendrocytes 
 
The adult CNS is composed of three major types of cells; neurons, astrocytes and 

oligodendrocytes. The histology and morphology of oligodendrocytes was described 

in great detail by Spanish neuroscientist Pío del Rio Hortega, a disciple of Santiago 

Ramón y Cajal, in 1921 (Perez-Cerda et al., 2015). The main function of 

oligodendrocytes is to support and insulate axons in the CNS by wrapping them in 
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myelin, a specialized structure formed through the accumulation of layers of lipids and 

specific proteins. One single oligodendrocyte extends its myelinating processes to 

approximately 50 axons and forms a myelin sheath of about 1 μm around each of 

those axons, in this way facilitating saltatory conduction of electric impulses generated 

in the inter-sheath spaces also called Ranvier nodes. In addition, oligodendrocyte can 

also provide trophic support to axons and promote their viability (Carlson and Birkett, 

2013; Emery, 2010; Mitew et al., 2014). 

 
1.2.1. Oligodendrocyte Development 
 

Oligodendrocyte generate from bipolar, migratory oligodendrocyte progenitor cells 

(OPC) that arise from neural stem cells (NSC) residing in specific zones of the 

neuroepithelium (ventricular zone) (McTigue and Tripathi, 2008; Tassetto and Gao, 

2006; Zhou et al., 2000). OPC are identified by the expression of a series of specific 

antigens, including NG2 chondroitin sulfate proteoglycan (NG2), platelet-derived 

growth factor-alpha receptor (PDGFRα), oligodendrocyte transcription factor 2 (Olig2) 

and sex determining region Y-box 10 (Sox10). 

 

CNS neurogenesis has been the object of intensive analysis. However, the production 

of glial cells is less well understood. There are different types of OPC, probably 

heterogeneous in morphology and physiology, and they are generated in specific 

domains distributed along the germinal neuroepithelium (ventricular zone) (de Castro 

et al., 2013; Noll and Miller, 1993). Oligodendrocyte for the spinal cord and hindbrain 

were initially thought to generate only in the ventral side of the neural tube. However, 

later research showed that these cells originate from multiple regions (Davies and 

Miller, 2001; Perez Villegas et al., 1999; Vallstedt et al., 2005; Zannino and Appel, 

2009). OPC are generated in three waves during development (Richardson et al., 

2006). In the mouse telencephalon, the first wave begins in the medial ganglionic 

eminence (MGE) and associated entopeduncular area (AEP) of the ventral side at 

about embryonic (E)12.5 (Mitew et al., 2014; Olivier et al., 2001; Tekki-Kessaris et al., 

2001). At E18.5, the derived OPC have migrated and spread to most of the 

developing telencephalon. The second and third OPC waves start in the lateral and 

caudal ganglionic eminences at E15.5 and, after birth, in the cortex (Kessaris et al., 

2006). The process is different in the spinal cord, since the initial wave of OPC 
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generation begins in the ventral neuroepithelium (at about E12.5), while the second 

comes from more dorsal progenitor domains at E15.5. This is followed by a third wave 

after birth. Although most OPC here are from ventral progenitors, the specific origins 

of the second wave of OPC are still unclear; some of them may be from dorsal 

progenitors (Mitew et al., 2014; Rowitch and Kriegstein, 2010). Therefore, the 

generation of oligodendrocyte and OPC follows a double ventral-to-dorsal and 

caudal-to-rostral gradient (de Castro et al., 2013). 

Once at the final destination, oligodendrocyte mature and acquire the expression of 

specific markers: MBP, PLP, MAG and Claudin11 among others and acquire their 

typical morphology as well as the ability to myelination (de Castro et al., 2013; 

Rowitch, 2004).  
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Figure 1. Schematic illustration of oligodendrocyte development.   
During oligodendrocyte generation, different stages can be characterized by specific antigens. NG2 
and PDGFRα are expressed by proliferating polydendrocytes. Olig2 and Sox10 are expressed 
throughout the whole development, although it is down-regulated in neural stem cells. Both immature 
premyelinating oligodendrocytes and mature myelinating oligodendrocytes are identified by 
Galactocerebroside (GalC) and O4 expression. However, Myelin basic protein (MBP) is only expressed 
when the oligodendrocyte is able to produce myelin. The morphology is also a good reference to 
distinguish the different stages of the oligodendrocyte lineage. Neural stem cells and oligodendrocyte 
progenitor cells are bipolar and show less dendrites. After OPC undergoing differentiation into mature 
oligodendrocytes, they are able to form myelin sheaths and to develop more processes (Kuhlbrodt et 
al., 1998; Meijer et al., 2012; Rivers et al., 2008). (Adapted from Nishiyama et al., 2009) 
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1.2.2 Oligodendrogliogenic Signalling 
 

The migration and differentiation of OPC is precisely regulated by a series of 

positional and signalling factors (de Castro et al., 2013). For instance, insulin growth 

factor (IGF)-1 and fibroblast growth factor (FGF)-2 can specify oligodendroglia 

through activation of the Sonic hedgehog (Shh) pathway. They can also act through 

phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/ERK2) 

downstream of mitogen-activated protein kinase (MAPK) signaling respectively (Hsieh 

et al., 2004; Naruse et al., 2006). 

Activation of the Notch pathway can lead to decreased cyclin dependent kinase 

inhibitor (cdkn1c) activity and increase in OPC differentiation as well as repression of 

neuronal differentiation (Kim et al., 2008; Mitew et al., 2014; Yuelling et al., 2012). 

The formation of ventrally-derived OPCs requires activation of the Shh and bone 

morphogenic protein (BMPs) pathways and relays on transcription factors such as 

Pax6, Olig2, Nkx2.2 and Nkx6.1/6.2 (Vallstedt et al., 2005; Yu et al., 2013). The basic 

helix-loop-helix (bHLH) factor achaete-scute (Asc1/Mash1) plays role in 

oligodendrocyte specification by restricting the expression of the distalless homeobox 

(Dlx) ½ (Petryniak et al., 2007; Silbereis et al., 2014).  

The ventrally originated OPC spread out in a ventro-dorsal and medio-lateral 

trajectory in spinal cord (Fogarty et al., 2005; Miller and Ono, 1998). By contrast, they 

show only limited rostro-caudal migration and mostly migrate radially to colonize the 

rhombomere of origin in quail/chick experiments (Olivier et al., 2001).  
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Figure 2. Schematic representation of relevant transcription factors in oligodendrocyte 
proliferation and differentiation.  
During specification and proliferation of oligodendrocyte lineage, several basic helix-loop-helix (bHLH) 
genes, Olig1, Olig2, Ngn2 and Mash1, together with many transcription factors play fundamental roles 
in controlling future gene expression and progenitor differentiation. As OPC undergoing terminal 
differentiation into mature oligodendrocytes, the promyelinating transcription factors are coexpressed 
with transcriptional repressors to retain myelin homeostasis (Dai et al., 2015; Nieto et al., 2001; Ueno et 
al., 2012; Zhou et al., 2000). (Adapted from Mitew et al., 2014). 
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1.2.3 Demyelination and Remyelination 
 

The early OPC lose their connection to the ventricular side of the neuroepithelium 

during maturation and migration. At the end of the migration process, they settle and 

change their morphology from uni or bipolar cell to multiprocessed immature 

oligodendrocytes. A battery of myelin specific genes, such as MBP and PLP, are then 

upregulated in order for the oligodendrocyte to be able to form myelin sheaths (Miller 

and Ono, 1998). 

If the myelin sheath is damaged, the axon will lose trophic support and insulation. 

Consequently, demyelinated axons undergo molecular and physiological changes 

that result in axonal dysfunction, degeneration and loss of function (including for the 

patient loss of sensation, movement and/or cognition abilities) (Alizadeh et al., 2015). 

The two major demyelinating diseases are metachromatic leukodystrophic diseases 

and myelinoclastic diseases (Felts et al., 1997; Konopaske et al., 2008). Their cause 

can be either a genetic mutation affecting oligodendrocyte differentiation and 

generation, or infectious agents which damage oligodendrocytes or impair the 

integrity of the myelin.  

Multiple sclerosis (MS) is mostly caused by inflammation, MS presents demyelination 

and focal neurological lesions because of the inflammation here are thought to be 

caused by both genetic and environmental problems. PVL is another important myelin 

disease, the necrosis and coagulation can be observed near the lateral ventricles. 

PVL is also a risk of the cerebral palsy; the pathological studies show oligodendroglial 

loss and ischaemia or infection. Therefore, the affected PVL individuals have motor 

control problems and delayed development in life (Franklin and Ffrench-Constant, 

2008; Olofsson et al., 2015). Precisely describing the cellular and molecular 

mechanisms of demyelination and remyelination is essential to better understanding 

the possible therapy for MS and PVL. 

Over the past decades, a very large number of regenerative medicine and molecular 

cell biology papers have been published dealing with possible ways to therapeutically 

optimize remyelination.  

Remyelination is the process of OPCs to form new oligodendrocytes to restoring 

myelin sheath, to reinstating saltatory conduction and to resolving functional deficits 

on demyelinated axons (Franklin and Ffrench-Constant, 2008). This process is a 

highly regulated process, and it is efficient in the healthy white matter.  
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Figure 3. Schematic description of demyelination. 
Regardless of which cause, the myelin sheath are damaged by the loss of oligodendrocyte. There are 
two destinations of an axon after demyelination, 1) the normal reaction is autonomous generation of 
myelianting oligodendrocytes from OPC to repair myelin sheath, and 2) in some autoimmune or 
irreversible diseases, mature oligodendrocyte can not be regenerated promptly results in unsuccessful 
remyelination. The failing myelin sheaths recovery leads to the progressive clinical decline of MS and 
PVL (Barrette et al., 2013; Kutzelnigg and Lassmann, 2014; Scheller et al., 2015). (Adapted from 
Franklin and Ffrench-Constant, 2008)  
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OPC and NPC are responsible to generate oligodendrocyte at different ages. 

However, the capability of these cells to remyelinate depends on many other factors. 

For instance, deficiency in certain growth factors can lead to inability to building the 

highly organized myelin sheath, and to cell death and apoptosis of the newly 

generated oligodendrocytes (Alizadeh et al., 2015). Although remyelination generates 

new oligodendrocytes and creates myelin sheath to protect the axons from out of 

order, we would expect this reconstruction to reach the original myelin sheath 

thickness and length. However, research has revealed that, during remyelination, a 

thinner and shorter myelin sheath is built (Franklin and Ffrench-Constant, 2008; 

Ludwin and Maitland, 1984). 

Myelin remodeling in the CNS is independent of cell turnover since it is mainly carried 

out by mature oligodendrocytes (Yeung et al., 2014). There is still no efficient 

treatment to prevent demyelination in the chronic stages of demyelinating diseases, 

although current research is uncovering many possible pathways involved in 

remyelination. 

Remyelination occurs in an environment intrinsically hostile to the oligodendrocyte 

lineage. This is the cause that, for example, when demyelination is induced by 

immune response in the MS and in experimental autoimmune encephalomyelitis 

(EAE), remyelination mechanisms mostly fail (Franklin and Ffrench-Constant, 2008; 

Lasiene et al., 2008). On the contrary, axons undergoing primary demyelination in 

experimental and clinical traumatic injury undergo complete remyelination. 

Transcription factors may be the most important factor to understand how to treat 

demyelinating diseases and to better inducing remyelination. Olig1 and Olig2 have 

been shown to be key factors in developmental myelination. In response to 

demyelination, local OPC are activated and they regulate several genes that encode 

the transcription factors Olig2, Myt1, Sox2 and Nkx2.2 (Fancy et al., 2004; Vana et al., 

2007). It is believed that microglia and astrocyte are also activated by demyelination, 

and they induce the rapid proliferative response of OPC to produce more 

oligdendrocytes for remyelination (Redwine and Armstrong, 1998; Schonrock et al., 

1998). This activation is regulated by the cell cycle regulatory protein p27Kip1, FGF 

and PDGF (Franklin and Ffrench-Constant, 2008; Murtie et al., 2005; Zhou et al., 

2006). The Lingo1, Notch-1 and Wnt-b-Catelin are the pathway that involves 

remyelination. Other factors, such as growth factors IGF-1, Toll-like receptors and 
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some microRNAs could also play a major role in remyelination (Emery, 2010; Patel 

and Klein, 2011). 

 

 

 

 
 
Figure 4. Molecular regulation of remyelination.  
After demyelination, oligodendrocyte debris signals activate astrocyte and microglia. The TNFa and 
IL-1b are stimulated by activation of astrocyte and microglia, and then the oligodendrocyte relevant 
chemokines and growth factors can be regulated by the secreted cytokines. These alteration are 
responsible for OPC proliferation, migration and differentiation into myelinating oligodendrocytes. The 
expression of mature oligodendrocyte antigens, such as PLP, MBP and MOG are regulated by different 
kinds of chemokines, growth factors, and bHLH transcription factors. On the other hand, TLR2 and 
Notch1 inhibit oligodendrocyte progenitor survival. This mechanism may account for the remyelination 
(Aharoni, 2014; Keough and Yong, 2013; Kipp, 2016; Sloane et al., 2010). (Adapted from Patel and 
Klein, 2011)  
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1.3 The Foxb1 Gene  
 

1.3.1 The Structure of the Foxb1 Gene and the Corresponding Protein 
 
Fork head b1 (Foxb1) has also received the names Fkh5, HFH-e5.1, Mf3 and TWH; it 

is a member of the forkhead gene family, which encodes hundreds of transcription 

factors identified by its DNA binding domain with winged helix configuration 

(Alvarez-Bolado et al., 2000a; Carlsson and Mahlapuu, 2002; Weigel and Jackle, 

1990; Zhao et al., 2007). The first member of the forkhead family was discovered as a 

Drosophila gene, which promotes differentiation of the terminal, unsegmented ends of 

the embryo. The structural and functional complexities of the winged helix have been 

reported and several fork head subfamilies have been detected in different species 

(Bilella et al., 2014; Kaestner et al., 1993; Kaufmann and Knochel, 1996; Weigel et al., 

1989). Foxb1 is expressed widespread in the early developing neural tube and is later 

restricted to the ventral and caudal diencephalon. Foxb1 has been studied in spatial 

memory, metabolism, aging, tumorgenesis, immunoregulation, thalamic axon 

guidance and the CNS development (Jonsson and Peng, 2005; Lehmann et al., 2003; 

Zhao et al., 2007).  
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Figure 5. Schematic structure of Foxb1 gene.  
In mouse, Foxb1 located in chromosome 9, and this gene has one transcript (splice variant). It is a 
highly conserved gene between mouse and human. 
(Adapted from http://www.ensembl.org/Mus_musculus/Gene, on 19th.Jan, 2016)  
 

 



-INTRODUCTION- 

13 

 
Figure 6. Overview of Foxb1 phenotype, expression, molecular function and biological 
process. (Adapted from http://www.informatics.jax.org/marker/MGI:1927549 on19th, Jan, 2016) 
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1.3.2 Tissue Distribution and Expression 
 

In primitive streak-stage embryos, Foxb1 labels specific domains in the neural plate 

and early mesoderm. After this stage, Foxb1 is expressed in the thalamus and 

hypothalamus, midbrain, superior and inferior colliculus, pons, medulla oblongata, 

spinal cord and mammary gland epithelium (Alvarez-Bolado et al., 1999; 

Alvarez-Bolado et al., 2000a; Kaestner et al., 1996; Kloetzli et al., 2001; Zhao et al., 

2007). Evidence from Foxb1 mutant studies suggests roles for Foxb1 in the 

development of midbrain, medulla oblongata, hypothalamus and spinal cord, as well 

as in milk generation or ejection (Alvarez-Bolado et al., 2000b; Dou et al., 1997; 

Kloetzli et al., 2001; Labosky et al., 1997; Radyushkin et al., 2005). As it is shown 

above, Foxb1 is expressed in hindbrain and ventral spinal cord at embryonic age in 

mice, raising the possibility that the Foxb1 plays roles in mediating hindbrain 

differentiation (Alvarez-Bolado et al., 1999; Hardy and Friedrich, 1996). The Foxb1 

expression has been described detailedly at different embryonic ages, making it 

appealing candidates for regulating neurons and oligodendrocyte generation. 

Whether Foxb1 regulates the fate decision of neuroepithelium and how it works on 

oligodendrocyte lineage production has not been reported.  
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Figure 7. hPLAP reaction on Foxb1Cre x Z/AP mouse. 
At E10.5, the midbrain, hindbrain and spinal cord are labeled by alkaline phosphatase (our lineage 
reporter). Foxb1 is expressed by neuroepithelial cells, axonal tracts and motor neurons at this age. 
(Adapted from Zhao et al., 2007)  
 

 

 

 

 
Figure 8. Foxb1 expression is detected by in situ hybridization at different development stages. 
The three dimensional image shows Foxb1 is expressed strongly in midbrain and hindbrain, but except 
in forebrain. At E14.5, Foxb1 is detected in the neuroepithelium which may differentiate into OPC. 
(Adapted from http://www.emouseatlas.org)  
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1.4 Hindbrain Anatomy and Function 
 

The hindbrain is a brainstem region including rhombencephalon, pons, medulla 

oblongata and cerebellum. The hindbrain contains many axon tracts between the 

spinal cord and higher CNS levels (thalamus and hypothalamus), and it is the 

destination of many neurons of the reticular formation. In early development, the 

hindbrain is organized in the rostral-caudal axis by segmentation into rhombomeres. 

As development proceeds, longitudinal tracts are formed between vestibular networks, 

the spinal cord and the higher CNS regions (Bosma, 2010). Basically, the hindbrain 

governs the automated body systems, such as heartbeat, breathing, motor control 

and sense of equilibrium. The pons controls facial sensation, expressions and 

movements, eye rotations, breath intensity and frequency, and sense equilibrium. 

Similarly, the medulla forms the base of the brainstem and it is located between the 

pons and spinal cord. It regulates cardiac rate and rhythms, breathing rhythms, 

vasometrics and the reflex actions. 
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Figure 9. Schematic of sagittal view of E15.5 embryonic brain (upper) and P56 adult brain in 
mouse (lower). (Adapted from Allen Brain Atlas, http://www.brain-map.org) 
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1.4.1 The Medulla Oblongata 
 

The medulla oblongata (myelencephalon or simply “medulla”) is the lower part of the 

hindbrain, posterior to the pons and anterior to the cerebellum. The sensory nuclei, for 

instance, the solitary nucleus, the trigeminal nerve nuclei, cochlear and vestibular 

nuclei, the inferior olivary nucleus and the dorsal column nuclei are developed from 

the alar plate (i.e. the dorsal portion) of the embryonic medulla. In contrast, the motor 

nuclei, such as the hypoglossal nucleus, nucleus ambiguus, dorsal nucleus of vagus 

nerve and the inferior salivatory nucleus are produced from the basal plate (i.e. the 

ventral portion). The medulla is responsible for multiple autonomic functions, e.g. the 

control of hearbeat and breathing. In human, the medulla oblongata is also called 

bulbus rachideus, and hence the adjective “bulbar” to refer to this region, especially in 

clinical usage (Carlson, 2013; Ono et al., 1997; Rovainen, 1985). 

 

1.4.2 The Pons 
 

The pons is located between the midbrain and the medulla oblongata, and it is ventral 

to the cerebellum. The pons is a bridge to connecting medulla and cerebellum to 

higher centers (Butler and Hodos, 2005; Ono et al., 1997). The pons is divided into 

basilar part and pontine tegmentum, and it contains a number of nuclei that deal with 

primary reflexes. The pons receives sometimes the name of metencephalon, the 

embryonic brain region that originates it. The V-VIII cranial nerve nuclei are present in 

the pons, and they play roles in sleep, respiration, swallowing, hearing, taste, eye 

movement, bladder control and facial sensation. 
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Figure 10. Sketch of the origins of oligodendrocytes in pons and medulla oblongata. 
The oligodendrocyte lineage was labeled with specific antibodies during different brain development. 
OPC are generated from the neuroectodermal cells of the neural tube, and then migrate to the whole 
pons and medulla oblongata. (Adapted from Hardy and Friedrich, 1996)  
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1.5 Questions and Aims of the Study  
 
Our group has shown that Foxb1 is expressed in specific regions of the developing 

neural tube, for example, diencephalon, midbrain tegmentum, hindbrain and spinal 

cord. The developmental of oligodendrocyte in the hindbrain has not been studied as 

thoroughly as in spinal cord. Since, in the spinal cord, oligodendrocytes arise mostly in 

the ventral ventricular zone adjacent to the floor plate, one could expect them to arise 

from ventral portions of the brainstem too. Indeed, most hindbrain oligodendrocytes 

originate ventrally. However, medulla oblongata oligodendrocytes originate from 

discrete focal clusters around the ventricular or subventricular zones as well (Davies 

and Miller, 2001; Perez Villegas et al., 1999; Vallstedt et al., 2005; Zannino and Appel, 

2009). 
 

We know that Foxb1 is essential for the survival of specific subpopulations of neurons 

and for appropriate targeting of some major axonal tracts (Alvarez-Bolado et al., 1999; 

Alvarez-Bolado et al., 2000b; Zhao et al., 2008; Zhao et al., 2007). Since we have 

detected Foxb1 expression in portions of the neuroepithelium known to originate OPC, 

here we ask: 

1) Which specific cell types of the CNS are generated by Foxb1-expressing 

ventricular zone (i.e. what is the Foxb1 cell lineage in the brain)? 

2) (since upon answering the first question I found that large numbers of 

oligodendrocytes belong to the Foxb1 lineage) What is the role of Foxb1 in 

oligodendrocyte development? 

 

To trace the progeny of adult Foxb1 cells, I crossed Foxb1-Cre mouse line, carrying a 

knockin-knockout Foxb1 mutation, with the Z/AP mouse reporter line, which 

expresses human placental alkaline phosphatase (hPLAP) as Cre expression reporter. 

For the present thesis I approached the above questions through a combination of 

Foxb1 lineage in vivo and in vitro expression analysis and fate mapping, as well as 

phenotype analysis. 
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CHAPTER 2: MATERIALS AND METHODS 
 
2.1 Materials  
 

2.1.1 Reagents 
 
• Acetic acid (Merck) 

• Acetic anhydride (Sigma) 

• Agarose (Sigma); Alkaline  

• Alkaline phosphatase (New England Biolabs) 

• DAPI (Roth) 

• Distilled water (miliQ water) 

• Dimethyl Sulfoxide (DMSO) (Fisher Scientific) 

• DMEM Medium, high glucose (Gibco) 

• Rnase (Roche) 

• dNTPs (Roche) 

• EDTA (Calbiochem) 

• Ethanol, Pure (Sigma) 

• FBS: Fetal Bovine Serum (PAA) 

• Glucose (Sigma); 

• Glycerol (AppliChem) 

• Go Taq DNA Polymerase (Promega) 

• Go Taq MgCl2 (Promega)  

• PCR buffer (Promega) 

• 37%HCl (Merck) 

• Isoflurane (Baxter) 

• Isopropanol (VWR) 

• Kanamycin (Roth) 

• KCl (Merck) 

• KH2PO4 (Roth) 

• L-Glutamate (PAA) 

• LB powder (Roth) 

• LiCl (Fluka) 

• Methanol (AppliChem) 
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• MgCl2 (AppliChem) 

• Mowiol (Roth) 

• Na2HPO4(AppliChem) 

• NaCl (AppliChem) 

• NaOAc (Merck) 

• NaPO4 (Roth) 

• NBT (Roche) 

• NBT/BCIP (Boehringer Mannheim) 

• Normal Goat Serum (Cell Signaling Technologies) 

• Normal Horse Serum (AbCam) 

• NP40 (Fluka) 

• Nuclear fast red (Sigma) 

• OCT (A. Hartenstein) 

• Paraffin (Langenbrink) 

• PBS (Gibco) 

• Penicilin/Streptomycin (PAA) 

• PFA (Sigma) 

• Poly-L-Lysine (Sigma) 

• Proteinase K (Roche) 

• Skin Antiseptic (Kodan) 

• Softasept (Braun) 

• Penicillin-Streptomycin (Gibco) 

• Sucrose (Sigma) 

• Tris-Sodium citrate dihydrate (Merck) 

• Trypsin (PAA) 

• Tris-Base (Roth) 

• Tris-HCl (Roth) 

• Triton-X-100 (Sigma) 

• Tween-20 (Sigma) 

• Xylene (VWR) 
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2.1.2 Equipments 
 
• Binocular Stereomicroscope (Carl Zeiss Semi 2000-CS)  

• Cell Culture Incubator (HERA Cell 150)  

• Coated Vicryl Suture (Ethicon)  

• Confocal Microscope (Carl Zeiss LSM)  

• Cryostat (Leica CM3050S)    

• Cryotube Vials (Thermo Scientific)  

• Electrophoresis gel chamber (Bio Rad, Sub Cell GT)  

• Falcon tubes 15ml, 50ml (Fisher Brand)  

• Gel documentation system (Bio Rad)  

• Heat block (Eppendorf)  

• Heating pad (Beurer TM 20)  

• Insulin Syringe 0,5ml (BD Micro-Fine)  

• Light Microscope (Leica)  

• Microtome (microTec)  

• Oxygen flask (medical use)    

• Petri dish (Falcon)  

• Pipette Pasteur (Fisher Scientific)  

• Serological Pippettes 2ml, 5ml, 10ml, 25ml (Cellstar)  

• Slides Superfrost plus (Thermo Scientific)  

• Small Animal open circuit anesthetic Machine for Isoflurane (Komensaroff)  

• Software Zen 2010 (Carl Zeiss)  

• Sorvall Centrifuge (Sorvall RC 5B plus)  

• T25 flask (Cellstar)  

• Table Centrifuge (Eppendorf)  

• TECAN rack (TECAN)  

• Thermocycler (VWR)  

• Vortex (NeoLab)  

• Water Bath (Julabo)  

• Water purification system (Millipore)  
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2.1.3 Recipes  
 
10 mM Sodium Citrate Buffer pH=6.0  
2.94 g of Tri-odium Citrate (dihydrate)    

Adjust volume with dH2O to 1 L.  

Adjust pH to 6.0.  

Add 500 μL Tween20 (0,05%).  

 

10×PBS (for 1 L solution)  
1.37 M NaCl  

0.027 M KCl  

0.1 M Na2HPO4  

0.02 M KH2PO4  

Adjust pH to 7.4.  

Add volume with dH2O to 1 L and autoclave.  

 

10×TN (for 1L solution)  
1 M Tris  

1.5 M NaCl  

Adjust pH to 7.5.  

Adjust volume with dH2O to 1 L and autoclave.  

 
PBND buffer (Lysis buffer)  
50 mM KCl  

10 mM Tris; pH=8.3  

(5 ml of 1 M Tris-HCl stock)  

2.5 mM MgCl2 (1.25 ml 1 M of MgCl2 stock)  

0.45% v/v NP-40  

0.45% v/v Tween-20  

Adjust volume with dH2O to 500 ml and autoclave. Store at 4°C  

 

TE buffer pH=8.0  
1 M Tris-HCl; pH8.0  

0.5 M EDTA; pH8.0  
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Tris-EDTA Buffer pH=9.0  
Prepare 1 L of 100 mM Tris-Base pH=9.0 autoclave  

Prepare 1 L of 10mM EDTA pH=8.0 autoclave  

For 1 L Tris-EDTA buffer: add 100 mL Tris stock  

100 mL EDTA stock and fill with miliQ water until 1 L. Check pH (to be 9.0).  

Add 500 µl Tween20 (0.05%)  

 

AP buffer  
100 mM Tris-HCl, pH=9.5,  

100 mM NaCl,  

10 mM MgCl2  

 

NBT/BCIP Staining Buffer  
100 mM Tris-HCl, pH=9.5  

100 mM NaCl,  

50 mM MgCl2,  

0.01% sodium deoxycholate  

0.02% NP-40,  

337 μg/ml NBT and 175 μg/ml BCIP. 
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2.2 Methods 
 
2.2.1 Mutant Mouse Lines 
 

All mouse lines were housed and fed according to the German animal welfare 

regulations (TierSchG) and the European Communities Council Directive in the 

Interfacultary Biomedical Faculty (IBF), University of Heidelberg. The authorization of 

collecting mice brain and handling animal samples were approved by the 

Regierungspraesidium Karlsruhe, Baden-wuerttemberg. Most of the experiments 

were carried out in the Neuroanatomy Department, University of Heidelberg. 

 

To track Foxb1 cell lineage during development, mutant mouse lines were generated 

or obtained from different sources. The details of the mutant sources are summarized 

in table. The Foxb1-Cre mouse was generated by our group (Zhao et al., 2007). In 

order to create Foxb1 mutant allele, iCre-IRES-EGFP in the Foxb1 locus was knocked 

in between exon1 and coding region of exon2. Then we deleted the positive selection 

cassette PGK-Neo by crossing the mutant allele mouse with the FLPeR deleter 

mouse. Therefore, the Foxb1 coding region was replaced by the Cre recombinase 

cDNA. Cre is then expressed under the control of the regulatory sequences of Foxb1. 

Cre recombinase activity can be examined under UV light; the Foxb1 expression 

regions show EGFP fluorescence. In previous studies, our group has shown Foxb1 

expression pattern by in situ hybridization or by observing the EGFP signal 

(Alvarez-Bolado et al., 1999; Zhao et al., 2008; Zhao et al., 2007). The Z/AP was 

explained detailedly as it expresses human placental alkaline phosphatise (hPLAP) 

(Lobe et al., 1999). hPLAP is a GPI-linked cell surface marker and is useful for 

labelling the full extension of axonal processes. After crossing between Foxb1Cre and 

Z/AP mouse lines, hPLAP will be a lineage marker of Foxb1 expression. In Foxb1Cre/+ 

x Z/AP mouse, the Foxb1 expressing cell itself and all the progeny cells of Foxb1 

lineage are detected by hPLAP permanently. In this way, we can detected Foxb1 

lineages by doing hPLAP reaction or by labelled the cells with anti-hPLAP antibody 

(Lobe et al., 1999). 

 

When dealing with antibodies which detect proteins present in the cell nucleus (for 

instance, transcription factors, like Olig2), the use of a lineage reporter also expressed 
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in the cell nucleus makes it easier to ascertain cellular colocalization of both marker 

and reporter. ROSA26R (a gift from Prof. P. Soriano) is such a reporter mouse line (i.e. 

with nuclear expression). In this mouse, β-galactosidase is the reporter gene and it is 

inserted in the ROSA locus downstream of a floxed stop codon. After Cre 

recombination, the stop codon is deleted and β-galactosidase expression is activated; 

detection of this reporter molecule by an anti-β-galactosidase antibody produces a 

characteristic punctate pattern in the cell nucleus (Labosky et al., 1997; Soriano, 

1999). Therefore, we crossed the Foxb1Cre and ROSA26R mouse lines and 

determined that the presence of β-galactosidase in the nucleus of Cre-expressing 

cells is detected initially at E8.5 (Ang et al., 1993; Zhao et al., 2008; Zhao et al., 2007). 

Thus, Foxb1Cre x ROSA26R mouse can be applied to identify Foxb1 cell lineage by 

detecting β-galactosidase expression. 

 

Table 1. Mutant mouse lines  
Name Description Origin 
Foxb1-Cre The Cre recombinase cDNA was 

inserted in the Foxb1 coding region 
between exon1 and exon2 

Gonzalo Alvarez-Bolado 
(Zhao et al., 2007) 

Z/AP hPLAP was inserted into the 
downstream of the loxP-flanked 
βgeo/3xpA and as a reporter of 
Foxb1 lineage after Foxb1Cre:Z/AP  
Cre recombination 

Corrinne Lobe  
(Lobe et al., 1999) 

ROSA26R β-galactosidase is the cell lineage 
marker of 
Foxb1Cre:ROSAloxP-STOP-loxP-LacZ after 
Cre recombination 

Philippe Soriano (Soriano, 1999) 

 

 

2.2.2 Genotyping 
 
2.2.2.1 Lysis Tails 
The adult mouse tails were clipped (about 5 mm length) by the animal caretakers of 

the mouse facility (IBF). I clipped the embryonic tails (2 mm) by my self. For tail lysis, 

300 µl genomic DNA lysis buffer and 60 µg Proteinase K were added to each tube. 

The tails were then incubated at 55°C and mixed for 550 rpm overnight in a heat block. 

The proteinase K was deactivated at 85°C for 1 hour in the next morning. The tails 

were centrifuged shortly and were kept at 4°C. 
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2.2.2.2 Genotyping PCR 
The DNA amplification was performed with the polymerase chain reaction (PCR) 

method. The following primers were used (5’-3’): 

 

Foxb1 

Forward: CAC TGG GAT GGC GGG CAA CGT CTG 

Reverse: CAT CGC TAG GGA GTA CAA GAT GGC 

EGFP: CTC GGC ATG GAC GAG CTG TAC AAG 

 

hPLAP: 

Forward: TTT AAC CAG TGC AAC ACG ACA CGC 

Reverse: CTG TAG TCA TCT GGG TAC TCA GGG 

 

β-galactosidase 

Forward: CGT CAC ACT ACG TCT GAA CGT CG 

Reverse: CAG ACG ATT CAT TGG CAC CAT GC 

 

The PCR master mix was prepared and the programs were used as follows: 

 

PCR master mix                               Volume (µl) 

5 x PCR buffer           5 

25 mM MgCl2           2 

10 mM dNTPs                0.5 

100 mM forward primer         0.125 

100 mM forward primer         0.125 

5 U/µl Taq DNA polymerases       0.125 

Genomic DNA 1 

RNase-free water          to 20 µl 
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PCR conditions: 

Initial denaturation    94 °C   5 min 

 

                      Denaturation                94 °C         20 sec 

                    Annealing      64 °C   30 sec 

   35 cycles           Extension      72 °C   40 sec 

                      Final extention    72 °C   10 min 

                      Cool down      8 °C    Hold 

 
2.2.2.3 DNA Fragments Checking 
After amplification, the samples were run in a 1.5% agarose gel in 1x TAE buffer at 

100V. The gel was then stained in ethidium bromide (EB) solution for 15 min and 

washed in water for 15 min. The specific bands were then observed and recorded 

under UV-light. 

 

2.2.3 Collection of Tissue Samples 
 
The adult mice were anesthetized with isofluorane or by cervical dislocation. Then I 

cut the mouse head and open the skull to expose brain. The dissected brain was 

processed according to the certain purpose. Different methods for tissue handling will 

be described later. With respect to special antibodies, for instance, NG2 antibody and 

PDGFRa antibody, the mouse should be perfused with 4% PFA. Postnatal mouse 

was anesthetized with isofluorane quickly and was intracardiac perfusion with 4% 

PFA in 37°C PBS buffer which contained 20U heparin per 100g body weight. The 

brain was removed and dissected same as before. For embryos, pregnant mice were 

sacrificed by cervical dislocation. E12.5, E15.5 or E18.5 pups were taken out from the 

uterus and the brains were dissected in cold PBS. The hPLAP can only be detected 

after E9.5 age (Zhao et al., 2007), so I chose E12.5 brains to characterize 

neuroepithelium and Foxb1 lineage. All the procedures were performed according to 

the Animal Welfare Act (Tierschutzgesetz).  

 

2.2.3.1 Paraffin Sections 
1. The brains were fixed in 4% PFA overnight and then were washed in PBS 

sufficiently for 5 hours. 
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2.  The tissue was then dehydrated in different concentration of ethanol    

    solutions serially. The exact protocols are listed as follows: 

 

Table 2. Processing of paraffin blocks 
Reagents E9.5-E15.5 E15.5-E18.5 P0-Adult 
50% Ethanol 
70% Ethanol 
80% Ethanol 
90% Ethanol 
100% Ethanol 
100% Ethanol 
Xylene1 
Xylene2 
Paraffin1 
Paraffin2 

0.5 hour 
0.5 hour 
0.5 hour 
0.5 hour 
1 hour 
1 hour 
0.5 hour 
1 hour 
4 hours 
overnight 

1 hour 
1 hour 
1 hour 
1 hour 
1 hour 
2 hour 
1 hour 
2 hour 
4 hours 
overnight 

2 hours 
4 hours 
2 hours 
2 hours 
2 hours 
2 hours 
2 hours 
4 hours 
overnight 
overnight 

 

3. Turn on the embedding machine and hot plate for 4 hours and clean all the 

mold and tools with 70% ethanol.  

4. Fill the bottom of metal cassette with paraffin liquid firstly, and then orientate 

brains at the right position. 

5. Fill more paraffin liquid until the whole brain was embedded. 

6. Place the mold on cooling plate to accelerate solidification. 

7. After the paraffin was solid thoroughly, turn on the microtome and fill sterile 

dd H2O to water bath, keep the temperature of water bath to 42°C. 

8. Adjust the block and trim tissue, and then use the manual control mode to cut 

the section thickness to 10 µm serially. 

9. Put the sections in water bath and wait until full extension, pick up the 

sections to a SuperFrost slide. 

10. Place the slides horizontally at 42°C overnight. 

11. Store slides at room temperature and keep them from light. 

.  

2.2.3.2 Fixed Frozen Sections 
1. Fix brains in 4% PFA overnight at 4°C; the fixative volume was 30-50 times  

 greater than the size of brain.   

2. Wash samples in PBS for 4 hours at 4°C. 

3. Protect tissues by immersing in 10% and 30% sucrose in PBS until brains  

 sink to bottom. 

4. Mount brains in OCT embedding compound on dry ice and freeze  

 them at -80°C. 
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5. Transfer block at -20°C overnight before cutting. 

6. Section the frozen tissue to 20 µm thickness using cryotome. 

7. Pick up section onto SuperFrost slides and dry the sections overnight at  

 room temperature. 

8. Store sections in a sealed box at -20°C for immunohistochemistry. 

 

2.2.3.3 Fresh Frozen Sections 
    1. After dissection, directly mount brains in OCT embedding compound on dry  

       ice and freeze blocks at -80°C. 

    2. Transfer block at -20°C overnight before cutting. 

3. Section the frozen tissue to 20 µm thickness using crytome. 

4. Pick up section onto SuperFrost slides and dry the sections overnight at  

 room temperature. 

    5. Store sections in a sealed box at -80°C for immunohistochemistry. 

 

2.2.4 hPLAP Reaction  
 

Human placental alkaline phosphatise (hPLAP) is resistant to heat and many 

chemical inhibitors that can inactivate other endogenous alkaline phosphatases in 

mouse. hPLAP has been used widely as lineage marker to label membranes and to 

define the outer surface of transduced cells, as well as neuron processes and axonal 

bundles. To get a primary impression of the Foxb1 lineage, I did phosphatase/NBT 

staining firstly (Gierut et al., 2014; Lobe et al., 1999).  

 

2.2.4.1 Preparation of Tissues and Embryos for hPLAP Staining 
1. Dissect brains or embryos in PBS buffer on ice. 

2. Fix in 4% PFA solution includes 0.02% NP-40 and 0.01% sodium     

  deoxycholate at 4°C for 30 min. 

3. Wash samples in PBS three times for 30min at 4°C. 

     4. Inactivate endogenous alkaline phosphatise in PBS at 72°C for 30 min. 

     5. Rinse in PBS three times for 10 min at room temperature. 

     6. Wash in AP buffer two times for 10 min 

     7. Stain tissues with 100 mg/ml NBT and 50 mg/ml BCIP in AP buffer at 4°C  

        until the optimal results appear.  
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     8. Wash samples in PBS extensively to reduce the background. 

     9. Mount slides in Mowiol mounting medium and observe results under light           

       microscope. 

 

2.2.4.2 Preparation of Sectioned Brains and Tissues 
1. Fix frozen sections in 4% PFA and 0.02% NP-40 in PBS for 1 hour at 4°C. 

2. Rinse sections in PBS three times for 10 min and wash slides in AP buffer for    

  10 min at 4 °C. 

3. Transfer slides to 72 °C PBS for 30 min to inactivate endogenous alkaline  

   phosphatase. 

3. Stain sections with 100 mg/ml NBT and 50 mg/ml BCIP in AP buffer at 4°C  

   until the optimal results appear. 

4. Rinse slides in PBS three times for 5 min and in AP buffer for 10 min at room  

   temperature. 

5. Mount slides in Mowiol mounting medium and sotre slides at 4 °C. 

 

2.2.5 Immunohistochemistry (IHC) 
 

PLAP staining can observe the general expression of Foxb1 lineage, however, the 

cell membranes and processes are not identified well. In addition, some endogenous 

alkaline phosphatase is still activated to influence the hPLAP signal. Therefore, to 

label Foxb1 lineage more clearly, monoclonal antibody specific to PLAP were 

purchased (Sigma, Saint Louis, USA) and were used for immunohistochemistry (De 

Groote et al., 1983; Zoellner and Hunter, 1989). 

hPLAP is expressed in cytoplasm or cell membranes, in contrast, some antigens are 

expressed in nucleus (e.g. Olig2), I used another mouse line Foxb1-Cre x ROSA26R 

to label Foxb1 lineage by β-galactosidase. Frequently, β-galactosidase is expressed 

in nucleus or as a punctate expression as well. It is possible to use this mouse line to 

colocalize nucleus antigens and Foxb1 lineage. 

 

2.2.5.1 Protocol for Paraffin-embedded Brain Sections 
    1. Prepare solutions and make them available before IHC. 

    2. Put slides in two containers of xylene for 10 min each. 

    3. Place slides in two containers of 100% ethanol for 5 min each. 
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4. Place slides in 95%, 90%, 80%, 70% and 50% ethanol gradually for 5 min  

  each. 

    5. Rinse slides in dH2O two times for 5min each to rehydrate sections. 

    6. Remove cross-linked antigens by antigen retrieval in 10 mM sodium citrate  

  buffer. 

a. Place slides in 10mM sodium citrate buffer container. 

b. Put container in a pressure cooker with 500 ml dH2O and heat the    

             water to boiling. 

c. Turn down the power to avoid vigorous boil and heat the slides for  

  10 min more. 

d. Take out slides from cooker and cool for 30 min at room temperature. 

7. Rinse sections in dH2O two times for 1 min each. 

8. Put slides in 3% H2O2 for 15 min at temperature to remove endogenous  

   peroxidise. 

9. Rinse sections in dH2O two times for 5 min each. 

10. Wash sections in PBS three times for 5 min each. 

11. Draw a circle around the tissue by creating a hydrophobic boundary to avoid  

    solutions going out. 

12. Block sections in 10% horse serum in PBS for 1 hour at room temperature.  

13. Remove blocking solution and add 100 µl primary antibody in recommended  

       dilution per section. Incubate slides in a humidified chamber at 4 °C overnight. 

14. Wash slides in PBS three times for 10 min each. 

15. Cover secondary antibody to slides at temperature for 2 hours. 

16. Wash slides in PBS three times for 10 min each. 

17. Control staining with 1:10000 DAPI solution in PBS. 

18. Wash slides in PBS two times for 5 min each. 

19. Rinse slides in dH2O shortly. 

20. Mount sections with Mowiol medium and store slides at 4 °C. 

 

2.2.5.2 Protocol for Frozen Sections 
 

2.2.5.2.1 Fixed frozen sections 
1. Equilibrate the sealed box to room temperature, and then take out the desired  

  sections. 
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2. Fix slides in 4% PFA or cold acetone for 15 min at room temperature. 

3. Wash slides in PBS three times for 5 min each. 

4. Permeate cell membrane in 0.1%-0.5% Triton X-100 in PBS for 15 min (if  

  available). 

5. Wash slides in PBS three times for 5 min each. 

6. Same as step 10 to step 20 in paraffin part. 

 

2.2.5.2.2 Fresh frozen sections 
1. Open sealed box quickly in cooling room, and then take out the desired  

  sections. 

2. Fix slides in 4% PFA or cold acetone for 20 min at room temperature. 

3. Wash slides in PBS three times for 5 min each. 

4. Permeate cell membrane in 0.1%-0.5% Triton X-100 in PBS for 15 min (if    

  available). 

5. Wash slides in PBS three times for 5 min each. 

6. Same as step 10 to step 20 in paraffin part. 



-MATERIALS AND METHODS- 

35 

 

Table 3. Antibody list 
Source Abbreviation 

Name 
Description Dilution Working Conditions 

Sigma  
(A2951) 

hPLAP Monoclonal anti- human placental 
alkaline phosphatase antibody 

1:2000 Paraffin, Fixed and 
Frozen sections. 

Abcam 
(ab9361) 

β-gal Chicken polyclonal to beta 
Galactosidase 

1:200 Fixed frozen 

Abcam 
(ab53041) 

Claudin11 Rabbit polyclonal to oligodendrocyte 
specific protein 

1:500 Fixed frozen 

Chemicon 
(AB142) 

GalC Rabbit polyclonal to 
galactocerebroside 

1:100 Perfused tissue 

Sigma 
(M3821) 

MBP Rabbit polyclonal to myelin basic 
protein 

1:100 Fixed frozen 

BD Pharmingen 
(558774) 

PDGFRα Rat monoclonal anti-mouse CD140a 1:300 Fresh frozen 

Chemicon 
(AB5320) 

NG2 Rabbit polyclonal to NG2 chondroitin 
sulphate proteoglycan 

1:100 Perfused tissue 

Chemicon 
(AB9610) 

Olig2 Rabbit polyclonal to oligodendrocyte 
transcription factor 2 

1:200 Fixed frozen 

Chemicon 
(AB5804) 

GFAP Rabbit polyclonal anti-glial fibrillary 
acidic protein 

1:300 Fixed frozen 

Abcam 
(ab18207) 

β-Tubulin III Rabbit polyclonal to beta III Tubulin 1:600 Fixed frozen 

Abcam 
(ab177487) 

NeuN Rabbit monoclonal to NeuN 
neuronal marker 

1:500 Fixed frozen 

Abcam 
(ab105389) 

Nestin Rabbit monoclonal to nestin 1:200 Fixed frozen 

Chemicon 
(AB1782) 

Glast Guinea pig polyclonal to glutamate 
transporter glial 

1:100 Fixed frozen 

Abcam 
(ab16508) 

NeuroD1 Rabbit polyclonal to NeuroD1 1:100 Fixed frozen 

Abcam 
(ab92547) 

Vimentin Rabbit monoclonal to  1:200 Fixed frozen 

Chemicon 
(ABN14) 

BLBP Rabbit polyclonal to brain lipid 
binding protein 

1:300 Fixed frozen 

Chemicon 
(MAB3222) 

BrdU Mouse monoclonal to 
Bromodeoxyuridine 

1:100 Fixed frozen 

Invitrogen 
(A11012) 

Rabbit  
A-594 

Goat polyclonal anti-rabbit IgG (H+L) 
secondary antibody, 
AlexaFluor@594 conjugate 

1:500 Paraffin, Fixed and 
Frozen sections. 

Invitrogen 
(A11034) 

Rabbit  
A-488 

Goat polyclonal anti-rabbit IgG (H+L) 
secondary antibody, 
AlexaFluor@594 conjugate 

1:500 Paraffin, Fixed and 
Frozen sections. 

Invitrogen 
(A10667) 

Mouse 
A-488 

Goat polyclonal anti-mouse IgG / IgA 
/ IgM (H+L) secondary antibody, 
AlexaFluor@488 conjugate 

1:500 Paraffin, Fixed and 
Frozen sections. 

Invitrogen 
(A11032) 

Mouse  
A-594 

Goat polyclonal anti-mouse IgG 
(H+L) secondary antibody, 
AlexaFluor@594 conjugate 

1:500 Paraffin, Fixed and 
Frozen sections. 

Invitrogen 
(A11006) 

Rat 
A-488 

Goat polyclonal anti-rat IgG (H+L) 
secondary antibody, 
AlexaFluor@488 conjugate 

1:500 Paraffin, Fixed and 
Frozen sections. 

Invitrogen 
(A11039) 

Chicken 
A-488 

Goat polyclonal anti-chicken IgY 
(H+L) secondary antibody, 
AlexaFluor@488 conjugate 

1:500 Paraffin, Fixed and 
Frozen sections. 

Invitrogen 
(A11076) 

Guinea pig  
A-594 

Goat polyclonal anti-guinea pig IgG 
(H+L) secondary antibody, 
AlexaFluor@594 conjugate 

1:500 Paraffin, Fixed and 
Frozen sections. 
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2.2.6 Proliferation Assay 
 
For proliferation studies, 50 mg/kg of BrdU in dH2O were injected into P10 mice 

intraperitoneally three times, at four hour intervals (Bu et al., 2004). Mice were 

sacrificed 2 hours after the last injection. The brains were dissected and fixed in 4% 

PFA overnight at 4 °C. In the next morning, brains were washed in PBS buffer for 4-6 

hours and then were cryoprotected in 0.1 M PBS containing 15% sucrose and 30% 

sucrose gradullay until the tissue are sinked. The brains were then embedded in OCT 

compound on dry ice. Tissues were strored at -80 °C. To do immunohistochemistry of 

BrdU and Olig2, fixed frozen blocks were transferred to -20 °C overnight. Sections of 

20 µm thickness were cut. Sections were then fixed in cold acetone for 15 min at room 

temperature. Slides were washed for three times 10 min each. The sections were 

incubated in 1 M HCl for 10 min on ice and this is followed by 2 M HCl for 30 min at 37 

°C. After HCl incubation, sections were neutralized by putting the samples in 0.1 M 

sodium borate buffer three times each 5 min at room temperature. The unspecific 

antigens were blocked in 10% horse serum in 0.3% Triton X-100 PBS for 1hour at 

room temperature. BrdU immunohistochemistry was done with standard staining 

procedure as described in above protocols. 

 

2.2.7 Cell Culture and Immunocytochemistry (ICC) 
 
Tissues from newborn pups have been used to cultivate primary neurons and glia 

from different regions of CNS (Kaech and Banker, 2006). All the instruments and 

materials were sterilized. The detailed protocols are following: 

 

2.2.7.1 Primary Cell Culture of Hindbrain 
1. Prepare culture dish and coverslips with 0.001% poly-l-lysine in dH2O and 

incubate in 5% CO2 at 37 °C cell culture incubator for 1 hour. 

2. Rinse petra dish and 24-well plate with dH2O after coating. Put coverslips in 

24-well plate and dry them under clean bench. 

3. Newborn Foxb1-Cre x Z/AP mice were anesthetized by Isoflurane prior to 

decapitate animals. Hindbrain was isolated and dissected under sterile 

conditions, washed in PBS without Ca2+ and Mg2+. 
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4. The meninges were removed carefully to exclude fibroblast contamination. 

The brain tissue was minced into small pieces and pipetted for 30-50 times 

up and down in DMEM. 

5. Digest the cell cluster to single cell in 0.05% trypsin and 0.02% EDTA solution 

and incubate in 5% CO2 at 37 °C cell culture incubator for 30 min. 

6. Stop digestion by adding 10% FBS in DMEM. Centrifuge at 1500 rpm for 5 min, 

and then discard supernatant. 

7. Suspend cells in 10% FBS, 1x penicillin-streptomycin in high glucose-DMEM 

at desity of 5 x 106 cells/ml, and seed cells in petri dish and 224-well plate. 

8. Refresh half medium at time points of 72 hours and 144 hours. Stop cell 

culture at day 9. 

 

2.2.7.2 Immunocytochemistry (ICC) 
1. Wash coverslips in 37 °C PBS for three times 5 min each. 

2. Fix cells in 4% PFA for 30 min at room temperature 

3. Wash cells in PBS for three times 5 min each. 

4. Penetrate cell membrane by adding 0.1% Triton X-100 in PBS for 15 min at 

room temperature. 

5. Block cells in 10% horse serum in PBS for 1 hour at room teperature 

6. Incubate cells in diluted primary antibodies overnight at 4 °C. 

7. Wash coverslips in PBS for three times 10 min each. 

8. Add secondary antibodies on coverslips and incubate for 1 hour at room 

temperature. 

9. Wash coverslips in PBS for three times 10 min each. 

10. Add 1:10000 DAPI to stain nuclei for 5 min. 

11. Wash in PBS for two times 5 min each. 

12. Rinse in dH2O shortly and mount coverslips to slides with Mowiol mounting 

medium. 
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2.2.8 Confocal Microscope and Electron Microscope 
 
2.2.8.1 Confocal Microscope 
The results were observed and analyzed under fluorescent microscope (Zeiss Axiover 

200M) and confocal laser-scanning microscope (Zeiss LSM 510). The software what I 

used is ZEN 2010. 

 

2.2.8.2 Electron Microscope 
To observe whether or not myelination is normal in Foxb1Cre/Cre mouse, the 

transmission electron microscope was used. The samples were processed according 

to the general guidelines of electron microscope. 

1. Dissect Foxb1Cre/Cre hindbrain and cut tissue to about 1mm3 size. 

2. Fix small sample in 4% PFA overnight at 4 °C and Immerse samples in 2.5%  

glutaraldehydefor 4 hours at room temperature. 

3. Wash sample in 0.1 M cacodylate buffer three times (each 5 min duration). 

4. Postfix sample in 1% osmium tetroxide in cacodylate buffer for 1 hour at room   

temperature. Wash in cacodylate buffer for 3 times 5 min each. 

5. Dehydrate tissue in 50% ethanol, 70% ethanol, 80% ethanol, 95% ethanol,   

100% ethanol, 100% ethanol and propylene oxide for 15 min each  

solution gradully. Place sample in 1:1 propylene oxide/Epon resin overnight. 

6. Immerse sample with Epon for 4 hours and Embed in fresh Epon. Place mold   

containing sample at 60 °C for 24 hours. 

7. Take ultra thin sections and place them on grids and stain grids in uranyl     

acetate for 2 hours and in lead citrate for 5 min. 

8. Observe ultra sections under electron microscope. 

9. Analyze images and calculate G-ratio. 

 

The G-ratio is the relationship between axon diameter and myelin sheath thickness. It 

is expressed by the diameter of the axon divided by the diameter of the myelin sheath 

(Liu and Schumann, 2014; Paus and Toro, 2009). Therefore, G-ratio is defined as the 

inner axonal diameter divided by the total outer fiber diameter (axon plus myelin). The 

optimal range of the G-ratio is studied from 60% to 75% (Chomiak and Hu, 2009; 

Goldman and Albus, 1968; Paus and Toro, 2009). An increase in G-ratio suggests a 

reduction in the thickness of the myelin sheath.  



-MATERIALS AND METHODS- 

39 

 

2.2.9 Statistical Analysis  
 
Three mice of each genotype were chosen for cell counting. Thickness of section was 

20 µm. Sagittal sections were cut in four series (A, B, C and D) from an area spanning 

the middle (rostro-caudally) of the hindbrain. Eight sections were counted per mouse. 

The counting bin for marker-labeled cells was 600 µm x 600 µm in medulla oblongata. 

The counting bin for Olig2 plus BrdU was 0.1 mm2 in medulla oblongata. The 

localization of the bins were chosen randomly. 

Statistical assessment was performed with Prism 5 software (GraphPad Software, 

San Diego, CA, USA). To compare the difference between two groups, the 

Mann-Whitney test was used. This is a nonparametric test to compare the hypothesis 

that two groups from the same population against the alternative hypothesis, 

particularly if a population tends to have larger values than the other. A p-value ≤ 0.05 

is considered statistically significant.  
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CHAPTER 3: RESULTS 
 

3.1 The Foxb1 Lineage in the CNS Produces Abundant Oligodendrocytes 
 
Since Foxb1 is expressed in extensive regions of the neuroepithelium (ventricular 

zone) (Alvarez-Bolado et al., 1999), first of all I asked which cell types of the CNS are 

generated in Foxb1-expressing neuroepithelium, and in which regions these cells 

resided; that is, my first question was: what is the cell lineage of Foxb1 in the brain. 

I used a mouse with lineage-labeling capabilities in order to learn the cell generation 

capabilities of Foxb1-expressing neural stem cells of the neuroepithelium as well as 

their distribution in vivo. For this purpose I examined the brains of mice heterozygous 

for Foxb1-Cre-EGFP x Z/AP. The Foxb1-heterozygotes specifically lack a neuronal 

nucleus called the mammillary body of the hypothalamus, and they lack as well 

certain motoneurons corresponding to hindleg muscles (Alvarez-Bolado et al., 2000a; 

Alvarez-Bolado et al., 2000b; Dou et al., 1997). Otherwise they are normal and will be 

used here as proxies for the wild type. Careful analysis of a developmental series of 

brain sections from these mice stained with antibody against hPLAP (lineage marker 

for Foxb1), showed, as expected, labeling of cells in the early neuroepithelium (Fig. 1 

A). Intriguingly, however, the antibody labelled extensive areas of the diencephalon 

and brainstem as well (Fig. 1 B to I). As postnatal development proceeded, these 

areas gradually resolved into large but discrete groups of cells with a “fluffy” 

appearance (Fig. 1 A-I).  

 

Next, I wanted to identify these cells, which under the microscope appeared to be the 

most abundant cellular component of the Foxb1 lineage in the brain. The “fluffy” 

morphology of most hPLAP-labeled cells suggested that these cells could be 

oligodendrocytes. In order to confirm this impression, I stained sections of adult 

Foxb1Cre/+ brains with antibodies against hPLAP as well as with antibodies against 

one of the best known markers of mature oligodendrocytes, myelin basic protein or 

MBP (Barratt et al., 2016; Lourenco et al., 2016; Martenson et al., 1969; Poduslo and 

Braun, 1975). The abundance of MBP in adult brain tissue, however, as well as the 

abundance of hPLAP-labeled cells, produced results that were interesting but difficult 

to interpret accurately (Fig. 2). 
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Figure 1. “Fluffy cells” of the Foxb1 lineage labeled with anti-hPLAP antibody during 
development in Foxb1Cre/+ x Z/AP mouse. 
(A) E12.5 coronal section through the 4th ventricular zone showing radial glial like cells of Foxb1 lineage 
as visualized by immunofluorescence. 
(B-H) Representative images of Foxb1 lineage cells at different ages after birth.  
The Foxb1 cells are clustering after birth as arrows pointing to cell bodies at P0 (B), P7 (C) or P21 (D). 
The hPLAP+ cells show larger size and “fluffy” morphology in adult mice at different ages from P56 to 
P180 (E-H).  
(I) Higher magnification views of P60 medulla showing hPLAP+ cells morphology could be 
oligodendrocyte lineage. 
(A-H) Same magnification. Scale bars=50 µm. 
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Figure 2. Mature myelin membrane marker is colocalized with Foxb1 lineage reporter. 
(A-H) Immunofluorescence on Foxb1Cre/+ x Z/AP mouse medulla sections showing that Foxb1 lineage 
cells (green, A and E) colocalizes the myelin membrane and cytoplasmic side of myelin marker MBP 
(red, B and F). White arrows indicate colocalization of myelin and Foxb1 lineage reporter in merged 
image (yellow color in C and G). The nuclei are stained by DAPI (D and H). Scale bars=50 µm. 
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Another known marker of mature oligodendrocytes is Claudin 11 (Anitei et al., 2006; 

Bronstein et al., 2000; Bronstein et al., 1997; Bronstein et al., 1996; Morita et al., 

1999). Many of the cells labeled by the anti-hPLAP antibody were also labeled by an 

anti-Claudin 11 antibody on sections (Fig. 3 A, B). Claudin 11-positive (Claudin 11+) 

structures were long and resembled as expected myelin sheaths along axons (Fig. 3 

A, B). On these structures, Claudin 11 and hPLAP labeling often overlapped (arrows 

in Fig. 3 B). However, in the same tissue regions, extensive hPLAP+ structures did 

not overlap with Claudin 11 labeling (arrowheads in Fig. 3 B). While it was possible 

that both markers labeled different subcellular compartments in one single cells, it 

could also be that the markers were expressed by different but closely apposed cells. 

Therefore, for final proof of the expression of hPLAP by oligodendrocytes, I labeled 

primary cultures of Foxb1-heterozygous brainstem cells with anti-Claudin 11. The 

results showed numerous double-labeled cells with definite mature oligodendrocyte 

morphology, including their myelinating processes, with characteristic wide shape 

(Ness et al., 2005; von Budingen et al., 2015) (arrowheads in Fig. 3 C). 

 

Finally, I colocalized hPLAP with a marker of mature and immature oligodendrocytes, 

GalC (Miller, 2002; Nishiyama et al., 2009; Raff et al., 1978; Ranscht et al., 1982; 

Rapport et al., 1964; Steiner et al., 2014; Woodruff et al., 2001). The results (Fig. 4) 

showed numerous GalC+ cell bodies overlapping areas of hPLAP expression (arrows 

in Fig. 4 A). Under higher magnification, AP and GalC seemed to find themselves in 

different subcellular compartments. While the cell nucleus occupied the center of the 

round or oval gaps which are characteristic of the hPLAP-expressing tissue in these 

mice (arrowheads in Fig. 4 B), the cell body was also part of it (arrows in Fig. 4 B), 

while hPLAP expression seemed confined to a region beyond the cell body and 

presumably corresponding to a region of very dense and thin processes (Fig. 4 B). On 

primary cultures of Foxb1Cre/+ brainstem cells I found abundant unequivocal images of 

double-labeled oligodendrocytes (Fig. 4 C). I concluded that oligodendrocytes are a 

very abundant cellular component of the Foxb1 lineage. 

 

 

 

 

 



-RESULTS- 

44 

 
 
Figure 3. Mature oligodendrocyte specific protein is colocalized with Foxb1 lineage reporter. 
(A-H) Confocal images showing hPLAP+ expression (green, A and E) are also labeled by mature 
oligodendrocyte marker Claudin11 (red, B and F) on P56 Foxb1Cre/+ x Z/AP medulla. Boxed areas in 
(A-C) are shown at higher magnification in (E-H). White arrows indicate the coexpression between 
Claudin11 and hPLAP (yellow, G). Arrowheads indicate not all hPLAP+ positive cells are Foxb1 lineage 
(green+red-, E-H). Nuclei are illustrated by DAPI (blue, D and H). 
(I-L) Immunocytochemistry on adherent monolayer primary cell cultures of newborn Foxb1Cre/+ x Z/AP 
mice brain using antibodies against mature oligodendrocyte Claudin11 (red, J) and Foxb1 lineage 
marker hPLAP (green, I). Arrowheads indicate the lamella extension of mature oligodendrocyte, which 
allows oligodendrocyte to myelinate multiple axons (J). The merged image shows coexpression of 
Claudin11 and hPALP (yellow, K).  
Nucleus marker is DAPI (blue, L). Scale bars=50 µm. 
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Figure 4. Colocalization of hPLAP and GalC are observed in both immature and mature 
oligodendrocytes. 
(A-H) Confocal images showing immature oligodendrocyte and mature oligodendrocyte marker GalC 
(red, B and F) are immunoreactive to hPLAP on P56 Foxb1Cre/+ x Z/AP medulla sections (green, A and 
E). The details of immuno reaction are shown at higher magnification in (E-H). GalC is expressed in 
cytoplasm and cell membrane (F), but hPALP is expressed majorly outside of cell body (E). The 
merged images show hPLAP and GalC immunoreactivity in the same cell as arrow indicated (C and G).  
(I-L) Immunocytochemistry on primary cell culture of newborn Foxb1Cre/+ x Z/AP mouse hindbrain. 
Arrows indicate a typical morphology of oligodendrocyte which is labeled by GalC (red, J and K). The 
Foxb1 lineage maker is also stained after immuno reaction (green, I and K). The merged image shows 
colocalization of oligodendrocyte marker and hPLAP in vitro (yellow, K). 
Nuclei are labeled by DAPI (blue, D, H and L). Scale bars=50 µm. 
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3.2 The Foxb1 Lineage in the CNS Includes Neurons and Astrocytes 
 
In order to identify if other cell types belong to the Foxb1 lineage, I colocalized cell 

type-specific markers with the lineage marker hPLAP at P56, when the cells appeared 

most differentiated and could be expected to show their most distinctive 

characteristics. First, I colocalized neuron-specific markers β-tubulin-III and NeuN 

(Alexander et al., 1991; Caccamo et al., 1989; Eriksson et al., 1998; Ferreira and 

Caceres, 1992; Fortino et al., 2014; Ikeda and Ikeda, 2015; Magavi et al., 2000; 

Mullen et al., 1992; Sarnat et al., 1998; Vanella et al., 2015; Wolf et al., 1996) with 

hPLAP (Fig. 5 A-C, D-F). Both antibodies labeled cell bodies inside the typical gaps or 

openings in the hPLAP pattern (arrows in Fig. 5 A-C, D-F) present in the AP+ regions 

(arrowheads in Fig. 5 A-C, D-F), making it difficult to ascertain if one single cell was 

labeled in two different compartments or if on the contrary the image corresponded to 

two different cells in tight contact with each other. Using anti-hPLAP and anti- β 

-tubulin-III antibodies on primary cultures of postnatal day zero (P0) brainstem cells 

(Fig. 5 G-I) I could confirm that, although most neurons are not hPLAP+, a few of them 

certainly are (arrow in Fig. 5 G-I). 

 

Next, I asked if the Foxb1 lineage includes astrocytes. Colocalizing astrocyte-specific 

protein glial fibrillary acidic protein (GFAP) (Borit and McIntosh, 1981; Cobb et al., 

2016; Cohen et al., 1979; Duffy, 1982; Jessen and Mirsky, 1980; Lolait et al., 1983) 

with hPLAP also showed a small number of Foxb1-lineage astrocytes on sections (Fig. 

6 A-D) as well as on primary cultures of Foxb1Cre/+ brainstem cells (Fig. 6 E-H). As 

expected, no anti-hPLAP-labeled cells colocalized with microglial marker IBA1, since 

microglia originates in very early embryonic hematopoietic sites outside the brain (Fig. 

6 I-L) (Ginhoux et al., 2013; Ito et al., 2001; Kadowaki et al., 2007; Meyer et al., 2015; 

Shapiro et al., 2009). 
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Figure 5. Some neuronal markers positive cells and hPLAP are coexpressed in P56 Foxb1Cre/+ x 
Z/AP mouse. 
(A-G) Colocalization of neuronal markers (NeuN and β–Tubulin III) with hPLAP. 
Images of hPLAP+ cells (green, A and C) are immunoreactive to NeuN (red, B and C). Arrows indicate 
hPLAP and NeuN are coexpressed in a same cell (A-C). Another neuronal marker β–Tubulin III is 
expressed in cytoplasm and cell membrane (red, E and F). Arrows indicate the β–Tubulin III+ cells 
belong to Foxb1 lineage (D-F). Arrowheads in (D-F) show cell boundary of Foxb1 lineage. 
(G-I) Immunocytochemistry on primary cell culture of newborn Foxb1Cre/+ x Z/AP mouse brain show 
some neuron is Foxb1 lineage (arrows in G-I). However, some neurons are still not coexpressed with 
Foxb1 lineage marker (arrowheads in G-I). 
Nuclei are labeled by DAPI. Scale bars=50 µm. 
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Figure 6. Few astrocytes are Foxb1 lineage, but no microglia is coexpressed with Foxb1 lineage 
marker in hindbrain. 
(A-C) Colocalization of astrocyte marker GFAP and Foxb1 lineage marker hPLAP. 
Arrows indicate coexpressed astrocytes (red, B and C) and hPLAP (green, A and C) in P56 Foxb1Cre/+ x 
Z/AP mouse medulla (yellow, C). 
(E-F) Immunocytochemistry on primary cell culture of newborn Foxb1Cre/+ x Z/AP mouse brain show few 
GFAP+ cells is colocalized with hPLAP (arrows in E-H). Arrowheads indicate not all Foxb1 lineage cells 
are labeled by GFAP (green, E and G). 
(I-K) Confocal images show there is no microglia (green, I and K) labeled by hPLAP (red, J and K). 
Arrows indicate the hPLAP negative microglia (I-L). 
Nuclei are labeled by DAPI (blue, D, H and L). Scale bars=50 µm. 
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Finally, since I based this analysis on the detection of the enzyme hPLAP, an alkaline 

phosphatase, it was in principle possible that I was detecting different kinds of cells 

expressing an endogenous form of alkaline phosphatase unrelated to the Foxb1 

lineage. Fortunately, the Z/AP mouse line (Lobe et al., 1999; Nagy et al., 1993) has a 

built-in control for specificity of labeling. This consists of a floxed β-galactosidase 

gene followed by three STOP cassettes inserted upstream the alkaline phosphatase 

reporter gene. In that way, cells expressing the Cre recombinase (i.e., in our case, 

cells expressing Foxb1) will delete the control insertion (β-galactosidase plus STOP 

cassettes) and express alkaline phosphatase reporter. Contrariwise, cells no 

expressing Cre (i.e. not expressing Foxb1), will not only not express the alkaline 

phosphatase reporter, but they will indeed express β-galactosidase. That is, the cells 

of our mutant mice will express either hPLAP or β-galactosidase. Performing both 

staining on sections of heterozygote brains showed as expected no overlap between 

areas expressing β-galactosidase and areas expressing hPLAP (Fig. 7). Additionally, 

I never detected any staining by the hPLAP antibody in brain regions where Foxb1 is 

normally not expressed, like the telencephalon (not shown). 

 
Figure 7. Verification of experimental animals. 
(A-D) Specificity of Foxb1Cre/+ x Z/AP mouse. Cre-lox recombination is a site-specific recombinase 
technology, the cells are only labeled by β-gal (red, B and C) if Cre recombinase is inactive. After Cre 
recombination, Loxp sites are excised that leads to hPLAP expression. hPLAP (green, A and C)and 
β-gal (red, B and C) are exclusively expressed in hindbrain.   
Nuclei are labeled by DAPI (blue, C and D). Scale bars=50 µm. 
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3.3 Some Oligodendrocyte Progenitor Cells (OPC) Belong to the Foxb1 Lineage 
 

Since I identified numerous Foxb1-lineage oligodendrocytes, I reasoned that I should 

be able to find OPC expressing the AP reporter in our heterozygotes. To identify them 

I colocalized hPLAP and OPC-specific markers on brain sections of postnatal 

heterozygous mice of the Foxb1-Cre line. One such marker is the α subunit of the 

platelet-derived-growth-factor receptor (PDGFRα) (Boulanger and Messier, 2014; 

Hart et al., 1989; Hill and Nishiyama, 2014; Hill et al., 2014; Motomura et al., 2012; 

Nishiyama et al., 2009; Pringle et al., 1989; Pringle et al., 1992; Rivers et al., 2008; 

Wilson et al., 2006). The “patches” of brain tissue expressing the hPLAP reporter 

contained cells labeled also by anti-PDGFRα antibody (Fig. 8 A-D). Another key 

marker of OPC is NG2 (Baracskay et al., 2007; Bu et al., 2004; Dimou and Gallo, 

2015; Hill and Nishiyama, 2014; Kucharova and Stallcup, 2010; Nishiyama, 2007; 

Nishiyama et al., 2009; Nishiyama et al., 2002; Sakry and Trotter, 2015). However, 

NG2 is also expressed by endothelial cells of the capillaries found in the brain 

(Chekenya et al., 2002; Grako and Stallcup, 1995; Guichet et al., 2015; Pouly et al., 

2001). Therefore, first I developed a protocol to detect NG2 in OPC efficiently. To test 

it, I colocalized NG2 with PDGFRα (Fig. 8 E-H); this first experiment demonstrated 

that my protocol reliably identifies NG2-expressing OPC on brain sections. Then I 

colocalized NG2 with hPLAP on similar brain sections (Fig. 8 I-L). These results 

demonstrated, as expected, that a number of OPC belong to the Foxb1 lineage. 

Finally, I confirmed this result on primary cultures of Foxb1Cre/+ hindbrain cells (Fig. 8 

M-P). 

 

Olig2, a transcription factor protein specific of OPC (Douvaras and Fossati, 2015; 

Emery and Lu, 2015; Kuspert and Wegner, 2015; Li and Richardson, 2015; Ligon et 

al., 2006; Miller, 2005; Motomura et al., 2012; Nishiyama et al., 2009; Parras et al., 

2007; Ross et al., 2003; Takebayashi et al., 2002; Zhou and Anderson, 2002; Zhou et 

al., 2000), was also present in the nucleus of some hPLAP-expressing cells. Since 

hPLAP, however, seems to label a cytoplasmic compartment, while Olig2 is localized 

in the nucleus, I wanted to identify our Foxb1-lineage cells by a different reporter (not 

hPLAP) expressed also in the nucleus. To this effect, I generated crossed our 

Foxb1-Cre mice with the ROSA26R mouse line, generating Foxb1-Cre-ROSA26R 

mice. In these mice, the reporter is LacZ (β-galactosidase), which is expressed as a 
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punctate nuclear pattern. By treating sections of Foxb1-Cre-ROSA26R brains with 

anti-Olig2 and anti-β-galactosidase antibodies, I detected colocalization of both 

markers in brain cell nuclei (Fig. 8 O-T). 
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Figure 8. Some oligodendrocyte progenitor cells generated from Foxb1 lineage. 
(A-D) Colocalization of OPC specific marker PDGFRα and hPLAP. OPCs are labeled with PDGFRα 
antibody in Foxb1Cre/+ x Z/AP medulla oblongata (green, B and C). The merged images show 
colocalization of PDGFRa and hPLAP (arrows indicate in C). Arrowhead indicates that not all PDGFRα 
cells are Foxb1 lineage (PDGFRα+hPLAP-, A-C). 
(E-F) The intracellular proteins NG2, a chondroitin sulfate proteoglycan is specific marker to identify 
OPC and pericyte in brain. Nevertheless, PDGFRa is a well known marker to characterize OPC in 
mouse brain. To test the specificity of NG2 staining in OPC, PDGFRα (green, E and G) and NG2 (red, 
F and G) are co-stained for identifying OPC. The merged image shows colocalization between the two 
antibodies which is indicated with arrows (G). 
(I-L) Immunofluorescence microscopy of Foxb1Cre/+ x Z/AP medulla oblongata, staining for hPLAP (red, 
I and K) and NG2 (green, J and K). Arrows show colocalized cells with both antibodies. Arrowheads 
indicate some NG2+ OPC are not Foxb1 lineage. Double arrowheads indicate the endothelial cells are 
labeled only with NG2, but not with hPLAP (I-K). 
(M-P) Immunocytochemistry of primary cell culture from newborn Foxb1Cre/+ x Z/AP medulla oblongata. 
Arrows indicate the Foxb1 lineage OPCs (M-O); arrowheads show OPC are not of Foxb1 lineage (O). 
(Q-T) Verification of Foxb1 lineage with the other mouse line Foxb1Cre/+ x ROSA26 mouse. In order to 
colocalize Foxb1 lineage cells with the nuclei staining antibody, β-gal is the lineage marker in Foxb1Cre/+ 
x ROSA26 mouse line. Arrows indicate many cells of coexpression between Olig2 (green, R and S) and 
β-gal (red, Q and S) antibodies. However, some Olig2+ cells don’t belong to Foxb1 lineage which are 
indicated with arrowheads (Q-S).   
Nuclei are counterstained with DAPI (D, H, L, P and T). Scale bars=50 µm. 
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3.4 Foxb1-lineage Neuroepithelium 
 
The presence of Foxb1-lineage oligodendrocytes as well as OPC indicated that there 

must be stem cells in the neuropithelium (ventricular zone) belonging to this lineage 

as well. In order to confirm this hypothesis I first labeled sections of embryonic heads 

by means of a histochemical reaction which detects alkaline phosphatase activity. The 

results showed a restricted pattern of alkaline phosphatase activity in a paired region 

of the ventral side of the neuroepithelium of the fourth ventricle (Fig. 9 A-C). I 

proceeded to investigate this region by colocalizing several general ventricular zone 

markers with hPLAP by means of antibodies (Fig. 9 D-L). The three markers (vimentin, 

Fig. 9 D-F; nestin, Fig. 9 G-I; NeuroD1, Fig. 9 J-L) showed abundant double-labeled 

cells. This indicated that, as expected, abundant neuroepithelial cells in a specific 

region of the neural tube belong to the Foxb1 lineage. 

Radial glial cells are essential components of the ventricular zone (neuroepithelium) 

since they divide to generate most neurons and glia (Dimou and Gotz, 2014; Dromard 

et al., 2007; Hartfuss et al., 2001; Jakovcevski et al., 2009; Kessaris et al., 2008; 

Malatesta et al., 2003; Mo and Zecevic, 2009). Therefore, I colocalized hPLAP with 

several specific markers for radial glial cells (GLAST, GFAP and BLBP) in the ventral 

neuroepithelium of the fourth ventricle (Fig. 10). Again, the three markers showed 

abundant radial glial cells belonging to the Foxb1-lineage (Fig. 10). 
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Figure 9. Different orientation of E12.5 Foxb1Cre/+ mice after hPLAP staining. 
Colocalization of neuroepithelial markers with hPLAP in the 4th ventricular zone. 
(A-C) Different orientation of hPLAP staining on E12.5 Foxb1Cre/+ x Z/AP mouse brain. Black arrows 
indicate Foxb1 lineage cells are stained in purple color after hPLAP reaction (A-C). The positively 
reacted region will develop into hindbrain. The metencephalon are shown in horizontal (A) and coronal 
(B) orientation. The longitudinal brain sections reveal the pre-medulla are stained by hPLAP (C).  
(D-L) Colocalization of neuroepithelial markers (Vimentin, Nestin and NeuroD1) with hPALP in the 
ventricular zone of E12.5 Foxb1Cre/+ x Z/AP mouse 4th ventricle. White arrows indicate this group of 
neuroepithelium are Foxb1 lineage. 
Nuclei are counterstained with DAPI (F, I and L). Scale bars=50 µm. 
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Figure 10. Colocalization of radial glial markers with Foxb1 lineage marker at E12.5 ventricular 
zone. 
(A-I) Immunohistochemistry of radial glial markers (Glast (red, B and C), GFAP (red, E and F), BLBP 
(red, H and I)) with hPLAP (green, A, B and G) on Foxb1Cre/+ x Z/AP brain sections. The Foxb1 lineage 
neuroepithelium are indicated with white arrows (yellow, C, F and I). 
Nuclei are counterstained with DAPI (C, F and I). Scale bars=50 µm. 
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3.5 Foxb1-lineage OPC are More Abundant in Null Mutants 
 
In order to learn about the possible function of Foxb1 in the oligodendrocyte lineage, I 

used hPLAP labeling on the hindbrain of Foxb1Cre/Cre mutants. Simple examination of 

the sections under the microscope showed that the labeled regions were much more 

extensive than in of Foxb1Cre/+ brains (Fig. 11, compare A, B to C, D and E, F to G, H).  

Next, I used antibodies to colocalize Foxb1-lineage reporter hPLAP with the same 

markers used previously for the analysis of heterozygotes (Figs. 3, 4, 5, 6, 8). Cell 

countings and statistical analysis (Figs. 12a and 12b, summarized in Fig. 13) showed 

clear differences between the heterozygous and the homozygous brains. The OPC 

triplicate their number in the Foxb1Cre/Cre mutants (Fig. 12a G-H and Fig. 12b A-C), as 

do the immature oligodendrocytes (i.e. those cells expressing GalC but not Claudin11) 

(compare Fig. 12a A to D). The increase is not only in absolute number of cells per 

counting bin, but also in the proportion of Foxb1-lineage cells that are OPC or 

immature oligodendrocytes (Fig. 13). Mature oligodendrocytes, on the contrary, are 

increased in absolute number (Fig. 12a A) but reduced in percent of total hPLAP+ 

cells (Fig. 12a C and Fig. 13). The absolute number of astroglia are also increased in 

Foxb1 homozygous hindbrain (Fig. 12b G, I and Fig. 13). Finally, in homozygotes, 

neurons are reduced in absolute numbers as well as in percent of all hPLAP+ cells 

(Fig. 12b D, F). A last class of cells, belonging to the Foxb1 lineage but not expressing 

any of the markers I used (black portions of the columns in Fig. 13), increased also in 

proportion in Foxb1Cre/Cre mutants. 

These results indicate that, in mice deficient in transcription factor Foxb1, the 

Foxb1-expressing proliferating cells of the nervous system are strongly biased 

towards oligodendrocyte production. 



-RESULTS- 

57 

 
Figure 11. More cells are labeled by Foxb1 lineage marker in Foxb1Cre/Cre mice. 
White arrows indicate the Foxb1 lineage cells in pons (A-C) and medulla oblogata (G-I) of adult 
Foxb1Cre/+ x Z/AP mouse. There are more hPLAP+ cells in adult Foxb1Cre/Cre x Z/AP pons (D-F) and 
medulla (J-L) than in adult Foxb1Cre/+ x Z/AP mouse. 
Nuclei are stained with DAPI (C, F, I and L). Scale bars=50 µm. 
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Figure 12a. Increased oligodendrocyte numbers in the pons and medulla of Foxb1 mutant mice. 
Quantification of the number of cells expressing different markers in hindbrain. 
(A) There are more Claudin11+hPLAP+ mature oligdodendrocytes in Foxb1 homozygotes than in 
Foxb1 heterozygotes. However, the proportion of mature oligodendrocytes in Foxb1 lienage is less in 
Foxb1 homozygotes (C). 
(D) Foxb1 homozygous hindbrain has more GalC+hPLAP+ immature and mature oligodendrocytes 
which belong to Foxb1 lineage. The proportion of GalC+ in Foxb1 lineage are also increased in 
homozygotes (F). 
(G-I) PDGFRa+hPLAP+ OPC has more absolute number in Foxb1 homozygous hindbrain. The 
proportion of Foxb1-lineage OPC are also more in homozygotes than in heterozygotes (I). 
The absolute hPLAP+ cell numbers are shown in (B, E and H). It reveals there are significantly more 
Foxb1 lineage cells in homozygotes hindbrain. 
(For all quantifications, 10 sections per animal and 3 mice each group were counted. All sections were 
cut sagitally and serially. Mean ± SD; *p<0.05, **p<0.01, ***p<0.005; Nonparametric Mann-Whitney 
test). 
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Figure 12b. Increased OPC numbers in the pons and medulla of Foxb1 mutant mice 
(A-I) Quantification of the number of cells expressing different markers (NG2+ (A-C), β-Tubulin III+ (D-F) 
and GFAP+ (G-I)) in hindbrain. 
(A) There are moreNG2+hPLAP+ OPC in Foxb1 homozygotes than in Foxb1 heterozygotes. The 
proportion of mature oligodendrocytes in Foxb1 lienage is more in Foxb1 homozygotes (C). 
(D) Foxb1 homozygous hindbrain has less β-Tubulin III+hPLAP+ neurons. The proportion of β-Tubulin 
III+ in Foxb1 lineage also declines in homozygotes (F). 
(G-I) GFAP + hPLAP+ astrocyte has more absolute number in Foxb1 homozygous hindbrain. However, 
the proportion of Foxb1-lineage astrocytes is less in homozygotes than in heterozygotes (I). 
The absolute hPLAP+ cell numbers are shown in (B, E and H). It reveals there are significantly more 
Foxb1 lineage cells in homozygotes hindbrain. 
(For all quantifications, 3 mice each group were counted. All sections were cut sagitally and serially. 
Mean ± SD; *p<0.05, **p<0.01, ***p<0.005; Nonparametric Mann-Whitney test). 
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Figure 13. Deficiency of Foxb1 in hindbrain expands the oligodendrocyte lineage. 
Graphical illustration of the proportion of Foxb1 cell lineage in heterozygous and homozygous pons and 
medulla oblongata. 
Five colors represent populations of cells that belong to mature oligodendrocyte (blue), mature and 
immature oligodendrocyte (blue and red), neuron (green), astrocyte (yellow) and OPC (purple). 
Unidentified cells are represented in black color. 
It shows more immature oligodendrocytes in Foxb1 homozygotes. The proportion of OPC is also 
increased in homozygous mice. In contrast to oligodendrocyte lineage, neurons (green) percentage of 
hPALP+ cells is less in Foxb1 homozygous hindbrain. 
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3.6 Foxb1-lineage OPC Proliferate More in Null Mutants 
 
I reasoned that the increase in OPC and in oligodendrocytes could be due to an 

increase in proliferation by OPC. To test this hypothesis, I performed intraperitoneal 

injections of proliferation marker bromo-deoxy-uridine (BrdU) into P10 Foxb1Cre/+ and 

Foxb1Cre/Cre mutants (see Material and Methods for details). Then I used antibodies to 

colocalize BrdU and Olig2 on sections of medulla oblongata of these mice (Fig. 14 A-F) 

and counted the double labeled cells (see Material and Methods for details). Our 

results show an increase in the number of proliferating OPC in homozygotes (Fig. 14 

G-I). 
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Figure 14. Foxb1 inactivation increases the proliferating OPC populations. 
(A-F) Proliferation of oligodendrocyte lineage in P10 medulla oblongata. BrdU was injected 
intraperitoneally to label the proliferating cells (green, A and D). The oligodendrocyte lineage are 
labeled with Olig2 by immunohistochemistry method (red, B and E). The heterozygous results are 
shown in (A, B and C), and the homozygous proliferation of OPC are shown in (D, E and F). Arrows 
indicate Olig2+BrdU+ proliferating OPC (yellow, C and F). Both BrdU+ proliferating cells (G) and Olig2+ 
oligodendrocyte lineage cells (H) are more in homozygous than in heterozygous hindbrain. 
There are significantly more proliferating OPC in Foxb1 homozygotes than in heterozygotes. The 
coexpressed Olig2+BrdU+ cells are also increased in homozygotes (I).  
(For all quantifications, 10 sections per animal and 3 mice each group were counted. All sections were 
cut sagitally and serially. Mean ± SD; *p<0.05, **p<0.01, ***p<0.005; Nonparametric Mann-Whitney 
test). 
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3.7 Myelination in the Hindbrain of Null Mutants Appears Normal 
 

Next, I would like to know if the oligodendrocytes produced in these mice could fulfil 

normally their main function, i.e. myelination. The G-ratio is the ratio between axon 

diameter and axon plus myelin sheath diameter, and it is considered a valuable 

parameter to determine normal myelination function (Chomiak and Hu, 2009; 

Hildebrand and Hahn, 1978; Little and Heath, 1994; Rushton, 1951; Stidworthy et al., 

2003). The normal G-ratio is between 60 and 75% (Chomiak and Hu, 2009; Goldman 

and Albus, 1968; Jin et al., 2015; Rushton, 1951). Accordingly, I performed electron 

microscopy analysis on ultrathin sections of the hindbrain of adult (P60) Foxb1Cre/Cre 

mutant mice and found that the mean G-ratio is 69.99 ± 12.07, which is well inside the 

normal parameters (Fig. 15). This indicates that there is no major loss of function in 

the oligodendrocytes of the Foxb1Cre/Cre mutant mice. 
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Figure 15. Foxb1 deficiency doesn’t alter the myelination potential of oligodendrocyets. 
The morpholgy of Foxb1Cre/Cre x Z/AP medulla are presented in details by electro microscope. The 
myelination are observed in transverse (A) and longitudinal (B) orientation. To evaluate the myelin 
thickness, G-ratio (axonal diameter divide whole diameter of axon plus myelination) is calculated. The 
mean G-ration is 69.99% and standard deviation is 12.07%. The value is in the normal range of G-ratio 
(60%-75%) in wild type mouse. 
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CHAPTER 4: DISCUSSION 
 

Pathological conditions affecting the maturation of the brain white matter in premature 

infants are on the rise, and their most common result is mental retardation. The 

mechanisms regulating the proliferation and differentiation of oligodendrocytes, the 

cells responsible for the formation of the white matter, are currently under intense 

scrutiny. Here I approach this “hot area” of investigation through the analysis of a 

mouse genetic mutation affecting the maturation and proliferation of oligodendrocytes. 

My research uncovers the transcription factor Foxb1 involved in oligodendrocyte 

development and shows that this regulator inhibits the production of oligodendrocyte 

progenitor cells (OPC) and biases neuroepithelial stem cells in the direction of 

producing more neurons in detriment of the oligodendrocyte lineage. 

 

Some of my conclusions are relevant to our understanding of how genes and in 

particular Forkhead transcription factors regulate the generation, maturation and 

function of specific cell classes in the brain. Some other conclusions are relevant to 

the OL and as a consequence to therapeutic possibilities for patients with white matter 

degeneration (see Introduction for details). 

 

Therefore, in what follows I will discuss these points: 

• the known functions of Foxb1 and the novel function uncovered here 

• Fox genes as regulators of oligodendrocyte development 

• Fox genes as regulators of cell proliferation 

• Foxb1 in the context of the transcriptional regulation of oligodendrocyte 

proliferation and differentiation 

• Foxb1 in the context of the upstream regulators of OL proliferation and 

differentiation 

• the Foxb1 lineage in the context of the heterogeneity of OL in the CNS 
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4.1 Known Functions of Foxb1 

 
First of all, I will try to place the regulation of the expansion of the OPC compartment 

into the framework of the known functions of Foxb1. Foxb1 is essential for the 

perinatal survival of the cells of one hypothalamic nucleus, the mammillary body 

(Alvarez-Bolado et al., 1999; Alvarez-Bolado et al., 2000a; Alvarez-Bolado et al., 

2000b; Zhao et al., 2008; Zhao et al., 2007); previous to their death by apoptosis, the 

axons of mammillary neurons are unable to specifically branch into the 

mammillothalamic bundle (Alvarez-Bolado et al., 2000b). Lack of a mammillary body, 

in turn, results in working memory alterations (Radyushkin et al., 2005). Foxb1 is also 

essential for the survival of a subset of spinal cord motoneurons necessary for the 

appropriate function of the hind legs (Dou et al., 1997). Finally, Foxb1 is required for 

the development of the milk ejection reflex (Kloetzli et al., 2001; Labosky et al., 1997). 

In conclusion, none of the previously published functions of Foxb1 has a direct 

relation to oligodendrocytes or to the control of cell proliferation. Therefore, in the 

present work I uncover a novel function for this gene. 

 

4.2 Forkhead Genes as Regulators of Oligodendrocyte Development 
 
The development and maturation of OL is tightly regulated. It responds to a battery of 

humoral factors as well as a series of transcription factors. All of these regulators act 

in a specific temporal sequence taking the OPC and their derivatives through a known 

series of morphological and biochemical changes ending in the mature OL able to 

myelinating axons. Although up to now forkhead genes have not been revealed to 

have important functions in OL development, at least two of them have to my 

knowledge some involvement, be it indirect or marginal, in this process: 

- Foxa2 is responsible for differentiation of the floor plate and maintenance of Shh 

expression by the floorplate; as a consequence, its deficiency in zebrafish results in 

failure in the induction and/or differentiation of oligodendrocytes (as well as other cell 

types) in the ventral zebrafish CNS (Norton et al., 2005). 

- Foxg1 stimulates the expansion of the neural stem cell compartment as well as 

inhibiting the glial fate choice (including oligodendroglia) (Brancaccio et al., 2010). 

However, Foxb1 is the first forkhead gene specifically expressed in a subpopulation of 

OL and with specific functions in their development (this report). 



-DISCUSSION- 

67 

 

4.3 Regulation of Cell Proliferation by Fox Genes 
 

Additionally, my work here uncovers a novel function of Foxb1 in restricting the 

expansion of the OPC compartment. Control of cell proliferation, be it positive or 

negative, is not a novel function for Fox genes. This superfamily of transcription factor 

genes have several different roles in the developing embryo as well as in the 

maintenance of the internal milieu of the adult (Lam et al., 2013). Paradoxally, FOX 

proteins, which show high sequence conservation in the core forkhead motifs, often 

control divergent processes. Sometimes it is even the case that different FOX proteins 

control opposing cell fate decisions. They do this by regulating genetic cascades 

upstream processes like proliferation, indeed, and differentiation, metabolism, aging, 

survival and apoptosis. Additionally, FOX proteins can act as so-called „pioneer 

factors“, i.e. proteins able to decondense chromatin facilitating in this way the action of 

other specific transcription factors. I will briefly discuss here two cases in point: the 

Foxo subfamily and Foxm1. 

 

The case of the Foxo genes. The Foxo subfamily of forkhead genes consists of key 

negative regulators of cell proliferation and survival. They not only repress the activity 

of genes crucial for cell cycle progression (like cyclin D1 and cyclin D2), but they also 

induce the expression of genes with specific cell cycle-inhibition functions like p21, 

p27, p15 and p19. Additionally, Foxo genes regulate G2/M checkpoint genes like 45A, 

cyclin G2 and PLK1 (Dong et al., 2006; Lam et al., 2013; McGovern et al., 2009; Myatt 

and Lam, 2007; Paik et al., 2007). Additionally, it is known that Foxo1 regulates the 

proliferation and differentiation of neural stem cells through its interaction with the 

Notch pathway (Hoeck et al., 2010; Kitamura et al., 2007). 

The case of Foxm1. The main function of Foxm1 is the regulation of the cell cycle. 

Additionally, Foxm1 interacts with β-catenin enabling it to translocate to the nucleus, 

in this way regulating stem cell maintenance: the expression of downstream Wnt 

target genes that are key for the survival of stem cells (Francis et al., 2009; 

Karadedou et al., 2012; Zhang et al., 2011). 

 

In conclusion, the control of OPC proliferation by Foxb1 is in line with previously 

known important functions of the Fox superfamily of transcription factors. The fact that 
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this control is exerted on such a major cellular component of the CNS as the 

oligodendrocytes is however novel. 

 

4.4 Foxb1 in the Transcriptional Regulation of OPC Proliferation 

 

OPC proliferation during development and in the adult is tightly regulated; the length 

of the OPC cell cycle shows differences related to developmental age and region of 

origin. Proliferation of OPC becomes slower as the CNS develops, from a few hours at 

early embryonic stages to 1 day per cell cycle perinatally (Calver et al., 1998) and 

even 1 to 5 weeks per mitosis at P60 (Young et al., 2013) and several months per 

mitosis in the cortex of very old mice (Psachoulia et al., 2009). Differences in 

proliferation rate are also pronounced between regions. For instance, OPC 

proliferation is faster in the corpus callosum than in the cortex, and there are marked 

differences between CNS axonal bundles. For instance, the OL in the white matter of 

the spinal cord proliferate faster than those of the optic nerve (Young et al., 2013).  

 
My results here show that Foxb1 deficiency results in an increase of the proliferation 

of OPC; this indicates that Foxb1 represses proliferation. If this is by a direct 

mechanism, i.e. by repressing genes required for replication (forkhead factors act 

transcriptional repressors in some models) or indirectly is not yet known. 

Another known major repressor of OPC expansion is Sirt1. Inactivation of Sirt1 leads 

to a similar expansion of the OPC compartment in mice (Rafalski et al., 2013). 

Interestingly, Sirt1 acts in other systems through activation of Fox genes (through 

deacetylation), so that its inactivation would amount to an inactivation of Fox genes 

downstream (see below).  

 

4.5 Upstream of Fox Genes in the OPC Lineage 
 
This brings us to the next question and opens up a future avenue for research: does 

Sirt 1 act by deacetylating (activating) Foxb1 in OPC? Interaction between sirtuins and 

Forkhead genes (although not with Foxb1 or other members of the Foxb subfamily) 

has been described. The deacetylation of FOXO transcription factors by SIRT1 is a 

specifically required step for the transcription of certain genes regulating stress 

resistance, such as genes that control the repair of damaged DNA (GADD45) and a 
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regulation of Foxo genes by Sirt proteins has been well documented in different model 

systems ever since it was first found (Araki et al., 2004; Brunet et al., 2004; Calnan 

and Brunet, 2008; Cohen et al., 2004; Daitoku et al., 2004). This means that a 

decrease in Sirt1 results in a decrease in Foxo activity. Another case of Sirt1 involved 

in Fox gene regulation results in the inactivation of Foxp3 through degradation in the 

proteasome (van Loosdregt et al., 2011; van Loosdregt and Coffer, 2014). 

To summarize, although at this point I do not know which upstream regulators control 

the activity of Foxb1 in OPC, the known functions of Sirt1 make it a key candidate for 

this function. 
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Figure1. The Foxo family participates in cell proliferation and cancer progression. (Adapted from 
Lam et al., 2013) 
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4.6 Foxb1 in the Transcriptional Regulation of OPC Differentiation 
 
The development of the ventral spinal cord and brainstem (and of the corresponding 

OL) is orchestrated first of all by diffusible signals and among them very particularly by 

the morphogenetic protein Sonic hedgehog (Shh), secreted by the notochord and 

floor plate at the ventral midline. Shh acts through the Gli family of transcription factors 

to stimulate expression of different sets of lineage-determining transcription factor 

genes. In the pMN neuroepithelial domain, Shh induces the basic helix – loop – helix 

(bHLH) transcription factor Olig2, required for the sequential production of MNs and 

OPC. OPC are also generated in the ventrally adjacent p3 neuroepithelial domain, 

characterized by Nkx2.2 expression. (Agius et al., 2004; Briscoe and Ericson, 2001; 

Lu et al., 2002; Mekki-Dauriac et al., 2002; Miller et al., 2004; Orentas and Miller, 

1996a, b; Poncet et al., 1996; Pringle et al., 1996; Takebayashi et al., 2002; Zhou and 

Anderson, 2002)  

(Although Shh is the model of all diffusible factors, there are many others that have 

been shown to influence aspects of OL development, especially PDGF and several 

Fgf family members. The review of these is out of the scope of this work and has been 

abundantly reviewed elsewhere.) 

After being specified to the OL lineage, OPC specifically express a number of 

transcription factors as they migrate to colonize the CNS and produce OL. Essentially, 

we can say that there are three phases in the development of OL (OPC, 

premyelinating OL and myelinating OL) and that each of these phases is associated 

with intense expression of specific sets of transcription factors. In OPC, transcription 

factors known to inhibit differentiation and myelination are expressed (i.e. Hes5, Id2, 

Id4, Sox5, and Sox6). These are strongly downregulated as the cells become (or 

generate) premyelinating OL. However, some level of expression of Olig1 and 2 

remain in this second phase, as do Sox10, Nkx2-2, Sox6. Genes newly expressed by 

premyelinating OL are Tcf7l2, Zfp488 and Myrf (Cahoy et al., 2008). Myrf remains in 

the final, myelinating OL phase, and Zfhx1b, Smad7, and Nkx6-2 appear first or are 

strongly upregulated in this phase. 

After detailed review of current knowledge of transcriptional regulation of OL 

productoin, I can say that, previous to the present work, no forkhead transcription 

factor has ever been included in these regulatory cascades. 
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4.7 Heterogeneity in Oligodendrocytes 
 
The question of the possible heterogeneity of OPC and, therefore, OL is very current 

because of its relevance for replacement therapy (are there different kinds of OL born 

from different places in the neuroepithelium? are they interchangeable?). My work 

here uncovers a specific subpopulation of OPC and OL originated in the ventral 

brainstem and characterized by belonging to the Foxb1 lineage and whose 

proliferation is specifically controlled by Foxb1. Nevertheless, my data indicate they 

not all OL in the brainstem belong to the Foxb1 lineage. 

 

(According to data from our group not shown in the present work, some forebrain 

oligodendrocytes, restricted to the dorsal thalamus and the mammillary body of the 

hypothalamus, belong to the Foxb1 lineage also).  

 

Already at the end of the XXth century several different morphological classes of OL 

had been described; these myelinate preferentially either several axons of small 

caliber or only one or two axons of large calibre (Anderson et al., 1999; Bjartmar et al., 

1994; Butt et al., 1998a). Certain molecular differences have also been described 

between OL subpopulations (Butt et al., 1998b; Kleopa et al., 2004). Nevertheless, it 

is not clear that those differences arise as a consequence of differential site of origin, 

i.e., we still do not know if differential markers and eventually functional properties 

respond to differential place of origin or are shared „transversally“ by OL originated in 

various points of the ventricular zone. 

In the rodent CNS, OPC originate in discrete loci in the ventral neuroepithelium during 

mid-gestation. In the spinal cord, they emerge between E12.5 and E14.5 from the 

pMN and the p3 domains. A few days later, OPC are generated from the dorsal 

neuroepithelium of the brainstem (Huang et al., 2013; Rowitch, 2004; Woodruff et al., 

2001). That is, in spinal cord and braistem we have dorsal vs ventral domains. In the 

developing forebrain, OPC originate sequentially in different domains as well. First 

they appear in the neuroepithelium of the medial and lateral ganglionic eminences 

and then, perinatally, in the dorsal neuroepithelium (Kessaris et al., 2006; Rowitch and 

Kriegstein, 2010).  
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Are the heterogeneous populations of OL functionally interchangeable? Experiments 

in which OL from a certain neuroepithelial origin (in the forebrain) have been 

genetically eliminated show that OL from other regions invade the OL-less areas and 

repopulate them in days or weeks without apparent problem (no abnormal phenotype 

develops) (Kessaris et al., 2006). Although spinal cord dorsal and ventral OL seem to 

be somewhat more specialized (Tripathi et al., 2011; Zhu et al., 2011), these results 

argue in principle against strong differences between OL lineages, or at least they 

indicate that the OL have enough plasticity to become functionally identical with those 

of a different lineage in response to new environments. Moreover, dorsally and 

ventrally derived OL seem undistinguishable electrophysiologically and antigenically 

(Clarke et al., 2012; Tripathi et al., 2011).  

No functional differences have been found postnatally among OPC cells and OL 

originated in different neuroepithelial domains. OPC and OL derived from ventral and 

dorsal germinal zones exhibit similar proliferation rates, cell cycle times, and passive 

membrane properties, and there are no differences in their response to 

neurotransmitters GABA and glutamate (Psachoulia et al., 2009; Tripathi et al., 2011). 

 

Future research will tell if OPC or OL of the Foxb1 lineage present any particular 

characteristics that can be distinguished from those of other lineages. 

 

4.8 Foxb1 in the Differentiation of OL (myelination) 
The main function of OL is myelination. Since deficiency in Foxb1 has uncovered a 

role of this transcription factor in OPC proliferation, a myelination phenotype could in 

principle be expected. We did not find, however, an alteration of the G-ratio in the 

brainstem. The Foxb1 null mutant phenotype has been studied before 

(Alvarez-Bolado et al., 1999; Alvarez-Bolado et al., 2000a; Alvarez-Bolado et al., 

2000b; Dou et al., 1997; Kloetzli et al., 2001; Labosky et al., 1997; Radyushkin et al., 

2005; Wehr et al., 1997; Zhao et al., 2008; Zhao et al., 2007) and nothing seems to 

point towards myelination alterations. Neurological signs to be expected after 

demyelination (like ataxia, unsteady gait, ocular paralysis, weakness and loss of 

sensation) have not been observed by us or other authors in these mutants. My 

conclusion here is that Foxb1-deficient OPC produce functionally normal OL. 
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Figure 2. Comparison of Foxb1-lineage OL morphology to schematic oligodendrocyte 
development in vitro. 
Foxb1 lineage OL and precursors show similar morphology to that reported in the literature. (Schematic 
image are adapted from Jackman, Ishii and Bansal, 2009) 
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Conclusions 

• Foxb1-expressing neuroepithelial cells contribute abundant OPC and OL to the 

mouse brain. 

• The function of Foxb1 consists of inhibiting the proliferation of OPC and biasing 

the production of the Foxb1-expressing neuroepithelium towards neurons and 

astrocytes. 

• Foxb1-lineage OL are a novel subpopulation of these cells whose specific 

properties as well as their ability to replace other subpopulations (for instance, 

telencephalic OL) as part of a therapeutic approach are from this moment on 

open questions.  

• Foxb1 is a novel and important player in the development of the 

oligodendrocyte lineage. 
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