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Abstract

We consider empirical spectral processes indexed by classes of functions

for the case of stationary point processes� Conditions for the measurability

and equicontinuity of these processes and a weak convergence result are estab�

lished� The results can be applied to the spectral analysis of point processes�

In particular� we discuss the application to parametric and nonparametric

spectral density estimation�

� Introduction

In the context of spectral analysis of time series� Dahlhaus ������ introduced empir�
ical processes where the spectral distribution function of a stationary process takes
the part of the probability distribution	 The asymptotic theory of these empirical
spectral processes provides a method for proving limit theorems for statistics which
depend on the spectral distribution	

In this paper� we are interested in empirical spectral processes derived from sta�
tionary point processes	 Here a point process on R is de
ned as a random counting
measure N where N�A� denotes the number of point events occuring in some Borel
set A � R �cf	 Daley and Vere�Jones �������	 In a fundamental paper by Brillinger
������ it was shown that the spectral analysis of such processes based on 
nite
Fourier transforms leads to similar results as in time series analysis	 As an impor�
tant di�erence to the case of time series� we note that the cumulant spectra of point
processes are functions on R which do not vanish for high frequencies and thus are
not L��integrable	

Consider a stationary point process N on R	 If N satis
es certain mixing con�
ditions� the spectral density f� of N exists and is given by

f���� �
Z
R

exp��i�u�dC �
��u�� � � R� ��	��

Here C �
� denotes the reduced cumulant measure of second order� which is de
ned by

the equation

cumfN�A��� N�A��g �
Z
A�

Z
A�
dC �

��t� � t��dt� ��	��
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for all A�� A� � B	 Now many interesting functionals in spectral analysis can be
written in the form

A���� �
Z
R

�����f����d�

with parameter � � � � R
p	 Examples we have in mind are the spectral dis�

tribution function F���� �
R �
� f����d�� the covariance density function q��u� �R

R
exp�iu���f�����p��	�d� and the variance time curve V �t� � varfN���� t��g �e	g	

Brillinger ������	
If the process has been observed on the interval ��� T �� the spectral density can

be estimated by the periodogram

I�T ���� � f�	H�T �
� ���g�� d�T ����d�T ������

where
d�T ���� �

Z
R

h�T ��t� exp��i�t��dN�t�� �p�T � dt�

is the 
nite Fourier transform of the point process� h�T ��t� � h�t�T � is a data taper
with Fourier transforms

H
�T �
k ��� �

Z
R

h�T ��t�k exp��i�t�dt

and
�p�T � � fH�T �

� ���g��
Z
R

h�T ��t�dN�t�

is an estimate for the mean intensity p of the process	 The taper function h � R� R

is of bounded variation� vanishes outside the interval ��� �� and should be smooth
with h��� � h��� � �	 However� our results also include the classical case where
h�t� � �������t�	 We further de
ne

Hk �
Z
R

h�t�kdt�

Substituting the periodogram I�T � for the spectral density� we obtain as an estimate
for A����

A�T ����� �
Z
R

�����I
�T ����d��

For 
nitely many � such quadratic statistics have been studied e	g	 by Brillinger
����� ���� and Tuan ������	 In these papers� the asymptotic normality of the
estimate A�T ����� has been derived for the nontapered case	

The present paper deals with the case where the parameter space � consists of
in
nitely many parameters	 More generally� we establish a functional central limit
theorem for the empirical spectral process

E
�w�
T �g� �

p
T
Z
R

g����I�T ����� f�����w���d��

�



where g � R � C is from a suitable class of functions	 The weight function w
introduced for technical reasons should take values in ��� �� such that high frequencies
are weighted down or cut o�	 If there exists a smooth function � � R � R with
Fourier transform �� such that w��� � j �����j�� the product f����w��� can be viewed
as the spectral density of the smoothed stochastic process

R
R
��t� u�dN�u�	

In Section �� we obtain our main result on the weak convergence of E
�w�
T by

proving the measurability and stochastic equicontinuity of E
�w�
T and the weak con�

vergence of its 
nite dimensional distributions	 As in Dahlhaus ������� we use a
proof for the stochastic equicontinuity which is based on uniform bounds for the
moments of the increments of E�w�

T 	 However� our method of deriving these bounds
is di�erent as problems arise from the nonintegrability of point process spectra	
The derivation is technical and therefore put into an appendix	 The conditions for
measurability are stated in Theorem �	�	 This result is also valid in the case of
stationary time series	

In Section �� we give some applications of these results to the statistical analysis
of point processes	 In particular� we discuss parametric and nonparametric spectral
density estimates obtained by maximizing an approximation to the log likelihood
function	

� Weak convergence of the empirical spectral process

For some measurable function w � R� R� let L�
w�R� denote the space of all complex

valued functions g on R for which the seminorm


w�g� �
� Z
R

jg���j�w���d�
����

is 
nite	 Further� if F is a subset of L�
w�R�� let X be the space of all bounded�

complex valued functions on F which are uniformly continuous with respect to
the seminorm	 We equip X with the Borel�
eld BX generated by the open sets
corresponding to the uniform norm kxk� � sup jx�g�j for x � X 	

Now� if the spectrum f� is bounded� it follows from the Cauchy�Schwarz in�
equality and the boundedness of I�T � that the sample paths E�w�

T ��� �� are uniformly
continuous with respect to 
w	 Therein the empirical spectral processes di�er from
ordinary empirical processes� which in general have discontinuous sample paths	 The
di�erence is important as we make use of continuity for proving the measurability
of E

�w�
T with respect to BX 	
The limit process of E�w�

T for T �� is de
ned by its 
nite dimensional distri�

butions	 Therefore� we call a stochastic process E�w�
f�

a spectral process if its sample
paths are in X almost surely and its 
nite dimensional distributions are normal with
mean zero and

covfE�w�
f�
�g�� E

�w�
f�
�h�g

�



�
�	H�

H�
�

Z
R�

g���w���h���w���f������� ��d�d�

�
�	H�

H�
�

Z
R

g���w���
�
h���w��� � h����w����

�
f����

�d�� ��	��

where f� is the cumulant spectrum of order four of the point process N 	 The higher
order cumulant spectra fk and the corresponding reduced cumulant measures C �

k

are de
ned analogously to ��	�� and ��	��� respectively �cf	 Brillinger ������	
For the results in this paper� we need to impose conditions on the strength of

the dependence of the data and on the size of the index class F 	 The latter is
determined by the covering number of F � which we denote by
N�� 
w�F� � inffm � Nj�g�� � � � � gm � L�

w�R� �g � F � min
��k�m


w�g � gk� � g

�e	g	 Pollard �������	 If F is a totally bounded subset of L�
w�R�� N�� 
w�F� is 
nite

for all  � �	

Assumptions

�A�� N is an orderly� stationary point process on R with 
nite mean intensity p
and reduced cumulant measures C �

k such that there exists a constant C with

Z
Rk��

�� � jujj�jdC �
k�u�� � � � � uk���j 	 Ck

for all j � f�� � � � � k � �g and k 
 �	
�A�� h � R� R is a Borel�measurable function of bounded variation with h�x� � �

for all x �� ��� ��	
�A�� w � R� R is nonnegative� bounded and L��integrable	

�A�� F is a totally bounded subset of L�
w�R� such that for all g � F the product

g � w is bounded and the covering numbers of F satisfy

Z �

�
�logfN�u� 
w�F���ug��du ���

We now state our main theorem	

Theorem ��� Suppose that Assumptions �A�� � �A�� hold� Then the empirical

spectral process E�w�
T �g�	 g � F converges weakly on X to the spectral process E�w�

f�
�g�	

g � F �

Proof� We will prove the stochastic equicontinuity and the measurability of the
empirical spectral process and the weak convergence of its 
nite dimensional distri�
butions to that of E�w�

f�
	 Then the weak convergence of E�w�

T follows by Theorem ��	�

�



in Pollard ������� in which the outer measure P� can be replaced by the measure P

due to the measurability of E
�w�
T 	

For the proof of the measurability of E�w�
T � let ���A�P� be the underlying prob�

ability space	

Theorem ��� Suppose that Assumptions �A�� � �A
� hold and let F be a totally

bounded subset of L�
w�R�� Then the empirical spectral process E

�w�
T ��� g�	 g � F is a

measurable mapping into �X �BX ��

Proof� We 
rst prove the measurability of the 
nite dimensional projections of the
empirical spectral process	 For 
xed g � F � we have due to dominated convergence

E
�w�
T ��� g� � lim

k��

Z k

�k
g����I�T ���� ��� f�����w���d�

pointwise for all � � �	 Thus� it su�ces to show measurability of the integrals on the
right hand side	 For this� let C��k� k� denote the space of all continuous functions on
��k� k� endowed with the topology of uniform convergence	 Then the corresponding
Borel�
eld BC��k�k� and the ��
eld generated by the projections 	t�x� � x�t� coin�
cide	 Hence the periodogram I�T � is a measurable mapping into C��k� k� since all
projections I�T ���� are measurable	 Further� it follows from the Cauchy�Schwarz
inequality that the mapping

x ��
p
T
Z
��k�k�

g���w����x��� � f�����d�

is continuous and thus �BC��k�k��BC��measurable where BC is the Borel�
eld of C	
This now implies the �A�BC��measurability of the above integrals	

Now since F is totally bounded� X is separable and thus the measurability of the
empirical spectral process follows from the uniform continuity of its sample paths
and the measurability of its 
nite dimensional projections	

Note that for the uniform continuity of the sample paths it is su�cient that the
spectrum f� is bounded	 Therefore� the assertion of the theorem holds also in the
case of stationary time series under the assumptions stated in Dahlhaus ������	

Theorem ��� Suppose that Assumptions �A�� � �A�� hold� Then the empirical

spectral process E
�w�
T �g�	 g � F is stochastically equicontinuous	 i�e� for each � � �

and � � � there exists  � � such that

lim sup
T��

Pfsup���jE�w�
T �g � h�j � �g � �

where �� � f�g� h� � F� j 
w�g � h� � g�

The proof of Theorem �	� is technical and therefore put into the Appendix	 For
the next theorem� we only require 
niteness of the integrals in Assumption �A��	

�



Theorem ��� Suppose that Assumptions �A�� � �A
� hold� Further	 let g�� � � � � gk �
L�
w�R� be such that the products gj � w are bounded� Then

fE�w�
T �gj�gj	������k D� fE�w�

f�
�gj�gj	������k�

A similar central limit theorem has been proved in the nontapered case by Tuan
������	 However� in order to prove the same result in the tapered case� which is of
much practical importance �e	g	 Dahlhaus �������� we require the concept of L�T ��
functions� which are used to deal with data tapers �cf	 Dahlhaus ������ ������	 We
therefore give a sketch of a proof� which is put into the Appendix� as we use the
same techniques as in the proof of Theorem �	�	

� Application to the spectral analysis of point processes

In this section� we present some applications of the above results to the statistical
analysis of point processes	 Throughout this section� we assume that �A�� and �A��
hold	

Example ��� Let F � f������j� � ��� ���g and w��� � ����������	 Then� F satis
es
Assumption �A�� and we obtain a functional limit theorem for the empirical spectral
distribution function on the interval ��� ���	 More generally� we can set F � f�DjD �
Dg where D is a Vapnik�Cervonenkis class �e	g	 G�anssler ������� p ��� of subsets
D � ��� ��� to get the same result for the empirical spectral measure

R
D f����d� for

all D � D	
Example ��� For the estimation of the covariance density of a point process� we
consider

�q
�w�
� �u� �

Z
R

exp�iu���I�T ����� �p�T ���	�w���d� ��	��

with symmetric and smooth weight function w such that w��� � � and w��� �

O�f� � j�jg�
�	� for some � � �	 Further� we de
ne q
�w�
� by ��	�� with f� and p

substituted for I�T � and �p�T �� respectively	 Then� q
�w�
� is related to the true covariance

density by

q
�w�
� �u� � ��	���

Z
R

�w�u� v�q��v�dv� ��	��

where �w is the Fourier transform of w	 Thus� the weight function in the frequency
domain corresponds to a smoothing kernel in the time domain	

Let F � fguju � ��� u��g with gu��� � exp�iu��	 Since 
w�gu � gv� 	 Cju� vj
for some constant C � �� the class F satis
es Assumption �A�� and therefore by
Theorem �	� we obtain the functional convergence

p
T ��q�w�� �u�� q

�w�
� �u�� � E

�w�
T �gu� �

p
T
�w�u�

�	
��p�T � � p�

D� Z�w��u�

�



for u � ��� u��� where Z�w��u� is normally distributed with mean zero and covariance

covfZ�w��u�� Z�w��v�g �
�	H�

H�
�

Z
R�

eiu��iv
w���w���f������� ��d�d�

�
�	H�

H�
�

Z
R

�ei�u�v�� � ei�u�v���w����f����
�d�

�
H


H�H�

Z
R

�eiu� �w�v� � eiv� �w�u��w���f
������d�

�
�w�u� �w�v�

�	
f����� ��	��

As we can see now� the weight function w balances variance and smoothness of the
estimate� As the bandwidth of the smoothing kernel in ��	�� increases� the weight
function gets more concentrated and the variance decreases	

The above result can be used to derive a simultaneous con
dence band for �q
�w�
� �u��

u � ��� u��	 Application of the continuous mapping theorem yields

p
T sup

u����u��
j�q�w�� �u�� q

�w�
� �u�j D� sup

u����u��
jZ�w��u�j�

Then n
�q
�w�
� �u� T����z�w��

o
u����u��

��	��

is an asymptotic simultaneous con
dence band� where z�w�� denotes the upper � �
��� percentile point of the limit statistic supu����u�� jZ�w��u�j	 The problem now

is to obtain the distribution of supu����u�� jZ�w��u�j� which appears to be extremely
di�cult	 However� if we generate realisations Z�w�

� � � � � � Z
�w�
B of the process Z�w� on

a suitably 
ne grid� we can use the empirical distribution of supu����u�� jZ�w�
b �u�j�

b � �� � � � � B as an approximation	 For this� we have to estimate the covariances
��	��	 For the 
rst integral� a consistent estimator has been presented by Taniguchi
������� the other integrals can be estimated similarly	

As an illustration� we apply this method to some data which describe the state of
activity of a computer� An event has been recorded whenever the computer changed
its state from busy to idle which was de
ned by the absence of any user interaction
for more than 
ve minutes	 The data set consists of ���� events which occured in
an interval of length T � ������� s �about �� days�	

Figure � shows the covariance density estimate �q�w�� and the corresponding si�
multaneous con
dence band ��	�� with � � ���� for the data	 Here� the weight
function has been set to w��� � exp��������� with � � ��� s� which corresponds
to a Gaussian smoothing kernel	 The covariance density exhibits two signi
cant
positive peaks� One for time lags smaller than � h and another for a delay of about
 d	 The former peak indicates that the process tends to form clusters� while the
latter suggests some weekly structure in the data	
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Figure �� Estimated covariance density �q
�w�
� �solid line� with simultaneous �� con�


dence bands �dashed lines� for the computer data	

We now turn to the problem of spectral density estimation	 Suppose that N
is a stationary point process with spectral density f�� 	 Given a realization of the
process on the interval ��� T �� we want to 
t a spectral density f � F� to the data	
It is well known �e	g	 Brillinger ������ that the random variables I�T ���	j�T � are
asymptotically independent and exponentially distributed with mean f�� ��	j�T �	
This suggests approximating the log likelihood function by

L�T �
M �f� � � �

T

MX
j	�

n
log f��	j�T � �

I�T ���	j�T �

f��	j�T �

o

and estimating f�� by maximizing L�T �
M �f� with respect to f � F�	 This approach

has been proposed by Hawkes and Adamopoulos ����� and further discussed by
Brillinger ����� and Tuan ������ for parametric families� for which the procedure is
a point process version of a procedure suggested by Whittle ������ for the analysis
of time series	

Subsequently� we will use the following continuous version of L�T �
M

L�T ��f� � �
Z
R

n
log f��� �

I�T ����

f���

o
w���d� ��	��

with w � R � R satisfying Assumption �A�� and w��� � � for all � � �	 Let f �T �

denote a sequence of functions maximizing L�T �	 Substituting f�� in ��	�� for I
�T ��

we obtain the corresponding theoretical function L�f�� which is maximized by f�� 	
The next theorem states the consistency of f �T � as an estimate for f�� 	

Theorem ��� Let F� be a subset of L�
w�R� with envelope F � L�

w�R� and f
�
� � F��

Then	 if F � ff��jf � F�g satis�es Assumption �A��	


w�f
�T � � f�� �

P� � as T ���

�



Proof� As in Example �	� in Dahlhaus ������� we obtain from Theorem �	� and
the Continuous Mapping Theorem �cf	 Pollard ������� Theorem IV	���

sup
f�F�

jL�T ��f�� L�f�j � sup
f�F�

jT����E�w�
T �f���j P� ��

which implies L�f �T ���L�f�� P� �	 Now if L�fn� converges to L�f�� � for a determin�
istic sequence fn� we obtain with a Taylor expansion that 
w�fn � f�� � � �� which
proves the result	

Uniform convergence of f �T � to f� requires further assumptions about F�	 If� for
example� F� is equicontinuous� then for any compact set K � R

sup
��K

jf �T ����� f�� ���j P� � as T ���

In the next example� we present an explicit nonparametric function class which
satis
es the requirements of Theorem �	�	

Example ��� Consider the class Fr���S� � Fr���S� c�� � � � � cr� c� of smooth functions
f on S � R such that

jf �i��x�j 	 ci

for � 	 i 	 r and
jf �r��x�� f �r��y�j 	 cjx� yj��

Further� suppose that w�x� 	 C�� � jxj��� where � � ��r � �� � � and r � � � �	
Then Fr���R�� ful
lls Assumption �A��	 This can be seen by constructing an ��
covering of Fr���R�� from �k�coverings of Fr���Ik�� Ik � �k� k � �� with k 	 k� for
some large k� � N	 Using the uniform norm on Ik� the entropy of Fr���Ik� is of

order O������r���k � �cf	 Kolmogorov and Tikhomirov �������	 If we choose �k � �k�

with r � � � � � �� � ���� and k� such that ��� � ��������� 	 k� 	 ������ then �k
increases su�ciently fast to guarantee

logN��� 
w�Fr���R
��� 	 J��

�

r�� �

Now the function class F � ff��jf � Fr���R��� f 
 cg with c � � is itself a
subset of some class �Fr���R�� with di�erent constants� and it therefore also ful
lls
Assumption �A��	

A stronger result than Theorem �	� can be obtained in the case where we 
t a
parametric model given by the class of spectral densities F� � ff�j� � �g	 When
dealing with parametric estimation� a point of view is to regard the parametric
model only as an approximation to the true process	 Therefore� we do not assume
that the true spectral density f�� belongs to the model class F�	 If we measure the
distance between a 
tted model speci
ed by � and the true process by �L���� the
parameter �� which maximizes L��� then determines the best approximation to the
true process	 By maximizing L�T ����� we obtain an estimate ���T � for ��	

Assumptions Let F� � ff�j� � �g be a parametric family	

�



�B�� L��� has an unique maximum �� which is an interior point of � � Rd	

�B�� There exists a compact subset �� of � such that

lim inf
T��

PfL����� inf
���C

�

L�T ���� � ��g � �

for some �� � �	 Further� the functions f���� are continuous in ��� �� � ���R
and there exist constants c�� c� such that � � c� 	 f���� 	 c� � � for all
� � �� and � � R	

�B�� F � ff��� j� � ��g satis
es Assumption �A��	
�B�� f��� admits continuous 
rst and second derivatives with respect to � in a neigh�

borhood U���� of ��� denoted by the vector rf��� and the matrix r�f��� � re�
spectively	 The families frf��� j� � U����g and fr�f��� j� � U����g satisfy
Assumption �A��	

Theorem ��� Assume �B�� to �B
�� Then we have ���T �
P� ��� If additionally �B��

holds	 then p
T ����T � � ���

D� N ���W��
��
 ��W

��
��
��

where

 �� � �	H�H
��
�

Z
R�

rf����
���rf����

����f�� ������ ��w���w���d�d�

� �	H�H
��
�

Z
R

rf����
���rf����

����f�� ���
�w����d�

and

W�� �
Z
R

�f�� ���� f������r�f����
���w���d� �

Z
R

r log f�����r log f������w���d��
Proof� The result follows directly from Theorem �	�	 The proof is similar to that
in Dahlhaus ������	

Example ��� Tuan ������ suggested to approximate the spectral density by rational
functions of the form

f���� �
p����

q����
�

p

�	
� �

n � a��
n�� � � � �� an

�n � b��n�� � � � �� bn

where � � �p� a�� � � � � an� b�� � � � � bn� is the unknown parameter	 Suppose the param�
eter space � is compact	 Then if p� and q� have no zeros in R�� the parametric
class F� satis
es Assumptions �B�� � �B��	

To motivate this remark� consider functions of the form g�x� y� � p�x� � yq�x�
where p and q are polynomials of 
xed order	 Since these functions form a 
nite di�
mensional vector space� the class of sets f�x� y�jg�x� y� 
 �g is a Vapnik�Cervonenkis
�VC� class �cf	 Pollard ������� Lemma II	���	 Then� the graphs G�f��� � form also a
VC�class and the Approximation Lemma �cf	 Pollard ������� Lemma II	��� yields
�B��	 The conditions on the derivatives are checked similarly	

��



Appendix

A key role in our proof of Theorem �	� is played by the function L�T � � R � R�
T � R� which is given by

L�T ���� ��

�
T� j�j 	 ��T
��j�j� j�j � ��T

� �A	��

A similar� but periodic function was introduced in Dahlhaus ������ as a tool for
handling the cumulants of discrete time series statistics	 The above function L�T �

is the corresponding version for time�continuous stochastic processes	 Its properties
are summarized in the following lemma	

Lemma A�� Suppose w ful�lls Assumption �A
�� Further	 let �� �� �� � � R and
p � N� We obtain with constants Kp independent of T �
�i� L�T ���� is monotone increasing in T � R� and decreasing in � � R��
�ii� L�T ��c�� 	 c��L�T ���� for all c � ��� ���
�iii� L�T ��� � ��L�T ��� � �� 	 L�T ������ �L

�T ��� � �� � L�T ��� � ��L�T ������ ��

�iv�
Z
R

L�T ����w�� � ��d� 	 K� log�T � for T 
 e�

�v�
Z
R

L�T ��� � ��L�T ��� � ��w�� � ��d� 	 K� log�T �L
�T ��� � �� for T 
 e�

�vi�
Z
R

L�T ����pd� 	 KpT
p���

�vii�
Z
R

L�T ��� � ��pL�T ��� � ��pd� 	 KpT
p��L�T ��� � ��p�

Proof� The proofs are straightforward and similar to those in Dahlhaus ������	
But unlike its periodic counterpart� the function L�T � is not L��integrable� and the
inequalities �iv� and �v� therefore require an L��integrable weight function w	

Using the de
nition of L�T �� we can now derive an upper bound for the Fourier
transform of a data taper	 Let V �h� denote the total variation of the function h	
Then if h is of bounded variation� simple calculations yield the inequality

Z
R

jh�t� u�� � � � h�t� uk�� h�t�kjdt 	 khkk��� V �h��ju�j� � � �� jukj�� �A	��

From this� we obtain for the Fourier transform of h�T �

jH�T �
k ���j 	 ��� �

Z
R

jh�t�k � h�t� 	���kjdt 	 ��� � khkk��� V �h�k	j�j���

On the other hand� we have jH�T �
k ���j 	 khkk�T 	 Hence� we obtain as an upper

bound
jH�T �

k ���j 	 KkL�T ���� �A	��

for all k � N and a constant K independent of T 	

��



For sake of simplicity� we assume for the proof of Theorem �	� that the mean
intensity p is known and therefore replace d�T ���� by

�d�T ���� �
Z
R

h�T ��t� exp��i�t��dN�t�� p dt��

At the end of the proof� we indicate the modi
cations needed for the case that p is
estimated by �p�T �	

The next lemma� which is a slightly stronger version of Theorem �	� in Brillinger
������ gives an approximation for the cumulants of �d�T ����	

Lemma A�� Under Assumptions �A�� and �A�	 there exists a constant c � � such
that for all ��� � � � � �k � R and k 
 �

jcumf �d�T ������ � � � � �d�T ���k�g � ��	�k��H�T �
k ��� � � � �� �k�fk���� � � � � �k���j 	 ck�

Proof� The lemma is an immediate consequence of relation �A	�� and Assumption
�A��	

Note that because of Assumption �A�� we can choose the constant c such that also
jfk���� � � � � �k���j 	 ck for all k 
 �	

Proof of Theorem ���� We start by proving that there exists a constant c� such
that

jcumkfE�w�
T �g�gj 	 ��k�!ck�
w�g�

k �A	��

for all K � N where cumkfE�w�
T �g�g denotes the k�th cumulant of E�w�

T �g�	 Using
Lemma A	� we obtain

jcum�fE�w�
T �g�gj 	

p
T
Z
R

jg���jw���jEI�T ���� � f����jd�
	 c�f�	H�

p
Tg��
w�g�
w���� �A	��

For k 
 �� we 
nd

jcumkfE�w�
T �g�gj

	 ��	H�T �
� �����kT k��

Z
Rk
jg����jw���� � � � jg��k�jw��k�

� jcumf �d�T ����� �d�T ������� � � � � �d�T ���k� �d�T ����k�gjd�� � � � d�k� �A	��

In order to apply the product theorem for cumulants �cf	 Brillinger ������� Theorem
�	�	��� let

P
i�p� denote the sum over all indecomposable partitions P�� � � � � Pm of the

table
�� ���
			

			
�k ��k

��



with pj � jPjj 
 � as Ef �d�T ����g � �	 Further if Pj � f�j��� � � � � �j�pjg� we write
"�j � �j�� � � � �� �j�pj 	 Then using Lemma A	�� we 
nd for the cumulant in �A	��

jcumf �d�T ����� �d�T ������� � � � � �d�T ���k� �d�T ����k�gj
	 X

i�p�

mY
j	�

n
��	�pj��jH�T �

pj
� "�j�jjfpj��j��� � � � � �j�pj���j� cpj

o
�

which� by using fk���� � � � � �k��� 	 ck and �A	��� is less than

X
i�p�

��	��kc�kK�k
X
J�M

Y
j�J

L�T �� "�j� �A	�

where M � f�� � � � �mg	 Substituting �A	� in �A	��� we obtain as an upper bound
X
i�p�

X
J�M

��	c�K�H��
� �k T�k��

Z
Rk

kY
j	�

jg��j�jw��j�
Y
j�J

L�T �� "�j�d�� � � � d�k�

For J � �� the integral is equal to
� Z
Rk
jg���jw���d�

�k 	 
w�g�
k
w���

k�

Similarly� if m � � and J � f�g� the integral is bounded by T
w�g�
k
w���

k since
L�T �� "��� � T 	 For J �� � and m � �� we split f�� � � � � kg into disjoint sets I and IC

and J into disjoint sets J� and JC
� to be selected later	 Using the Cauchy�Schwarz

inequality� the integral now is less than

�Z
Rk

Y
j�I

jg��j�j�w��j�
Y
j�IC

w��j�
Y
j�JC

�

L�T �� "�j�
�d�� � � � d�k

����

�
�Z

Rk

Y
j�IC

jg��j�j�w��j�
Y
j�I

w��j�
Y
j�J�

L�T �� "�j�
�d�� � � � d�k

����

� �A	��

Now we have to make a suitable choice for I� IC� J� and JC
� 	 Since J is not empty�

we can de
ne J� � fj�g for some arbitrary j� � J 	 Then there exists i� such that
�i� or ��i� is in Pj� � and we can set I � fi�g	 We obtain with Lemma A	� �vi� and
�vii� for the 
rst integral in �A	��

Z
R

jg��i��j�w��i��
� Z

Rk��

Y
i�IC

w��i�
Y
j�JC

�

L�T �� "�j�
�
Y
i�IC

d�i

�
d�i�

	
Z
R

jg��i��j�w��i��
n
kwkjJj��� 
w���

��k�jJj��KT �jJj��
o
d�i�

� 
w�g�
�
n
kwkjJj��� 
w���

��k�jJj��KT �jJj��
o

��



where we have used the indecomposability of the partition	 Similarly� the second
integral in �A	�� is equal to

Z
Rk��

Y
j�IC

jg��j�j�w��j�
�Z

R

w��i��L
�T �� "�j��

�d�i�

� Y
i�IC

d�i

	 
w�g�
��k���

n
kwk��K T

o
�

Thus� we obtain as an upper bound for cumkfE�w�
T g

X
i�p�

X
J�M

��	c�K�H��
� �kT �jJj�k���
w�g�

k
w���
kkwkk��� K jJ j��

	 
w�g�
k
X
i�p�

X
J�M

�c����
k�

which implies �A	�� since the sums include at most �k subsets of M and ��k�! �k

indecomposable partitions	
Analogously to the proof of the stochastic equicontinuity in Dahlhaus �������

relation �A	�� leads to an uniform bound for the moments of E
�w�
T � from which we

obtain the exponential inequality

PfjE�w�
T �g � h�j � �
w�g � h�g 	 �� exp��

q
��D�

with a constant D for all g� h � F and � � �	 Application of a chaining argument
now yields the assertion of the theorem	

In the general case where p is estimated by �p�T �� we have

d�T ���� � �d�T ���� �H
�T �
� ���H

�T �
� ����� �d�T ����� �A	��

Therefore� we obtain by using Lemma A	�

cumfd�T ������ � � � � d�T ���k�g
�

X
S�f������kg

����jSjH�T �
� ����jSj

Y
j�S

H
�T �
� ��j�

� ��	�k��H�T �
k ��S�� � � � �� �S�k�fk��S��� � � � � �S�k��� �R�

where jRj 	 ��c�k uniformly in ��� � � � � �k and �S�j � �j �SC �j�	 Because of Lemma
A	� �ii� and �iii�� the sum over all subsets S of f�� � � � � kg is bounded by

��	�k��H�k
� ��c�kK�kL�T ���� � � � �� �k��

Thus� the cumulant in �A	�� with d�T � substituted for �d�T � has again an upper bound
of the form �A	� with di�erent constants	 The case k � � is treated similarly	

Proof of Theorem ���� We prove the convergence of the cumulants of 
rst�
second and higher order to the corresponding cumulants of the limit distribution	

��



For the 
rst cumulant� EfE�w�
T �g�g � o��� is an immediate consequence of �A	��

and Lemma A	� since �A	�� yields

cumfd�T ����� d�T ����g � cumf �d�T ����� �d�T ����g�O�T��L�T ����L�T ������

A similar equation with remainder of order O�L�T �����L�T ����� holds for the cumu�
lant cumfd�T ����� d�T ������ d�T ����� d�T �����g	 Thus we 
nd by using the product
theorem for cumulants and Lemma A	�

covfE�w�
T �gi�� E

�w�
T �gj�g

�
�	H�

H�
�

Z
R�

gi���w���gj���w���
h
f������� ��

�
�
#
�T �
� ��� �� � #

�T �
� ��� ��

�
f����f����

i
d�d� � o���� �A	���

where #�T �
� ��� � H

�T �
� ���H�T �

� �������	H�T �
� ����	 Now� it follows from the convolu�

tion properties of H�T �
k and Lemma A	� �vi� that #�T �

� is an approximate identity
and thus we have for f� g � L�

w�R�Z
R�

f���w���g���w���#�T �
� ��� ��d�d� �

Z
R

f���g���w����d� � o����

Therefore� �A	��� converges to ��	��	
For the cumulants of higher order� we obtain by using �A	�� which holds also

for d�T � as noted before�

jcumfE�w�
T �g��� � � � � E

�w�
T �gk�gj

	 X
i�p�

X
J�M

O�T�k���
Z
Rk

kY
j	�

jgj��j�jw��j�
Y
j�J

L�T �� "�j�d�� � � � d�k�

With LemmaA	� �iv� and �v�� the integral now is of order O�T log�T �jJj��� if jJ j � m
and of order O�log�T �jJj� if jJ j � m	 Thus� the cumulant converges to zero	
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