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Abstract

We consider empirical spectral processes indexed by classes of functions
for the case of stationary point processes. Conditions for the measurability
and equicontinuity of these processes and a weak convergence result are estab-
lished. The results can be applied to the spectral analysis of point processes.
In particular, we discuss the application to parametric and nonparametric
spectral density estimation.

1 Introduction

In the context of spectral analysis of time series, Dahlhaus (1988) introduced empir-
ical processes where the spectral distribution function of a stationary process takes
the part of the probability distribution. The asymptotic theory of these empirical
spectral processes provides a method for proving limit theorems for statistics which
depend on the spectral distribution.

In this paper, we are interested in empirical spectral processes derived from sta-
tionary point processes. Here a point process on R is defined as a random counting
measure N where N(A) denotes the number of point events occuring in some Borel
set A C R [cf. Daley and Vere-Jones (1988)]. In a fundamental paper by Brillinger
(1972), it was shown that the spectral analysis of such processes based on finite
Fourier transforms leads to similar results as in time series analysis. As an impor-
tant difference to the case of time series, we note that the cumulant spectra of point
processes are functions on R which do not vanish for high frequencies and thus are
not L?-integrable.

Consider a stationary point process N on R. If N satisfies certain mixing con-
ditions, the spectral density f, of N exists and is given by

£(\) :/}Rexp(—mu)dc;(u), e R. (1.1)

Here ') denotes the reduced cumulant measure of second order, which is defined by
the equation

cum{N(Al),N(Az)}:/A /A dCh (1, — ty)dts (1.2)
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for all Ay, Ay € B. Now many interesting functionals in spectral analysis can be
written in the form

Aén) = [ GoN) 2NN

with parameter § € © C RP. Examples we have in mind are the spectral dis-
tribution function Fy(a) =[5 f2(A)dA, the covariance density function g¢o(u) =
Jrexp(iud)(f2(X) —p/27)dX and the variance time curve V() = var{N((0,1])} [e.g.
Brillinger (1975)].

If the process has been observed on the interval [0, 7], the spectral density can
be estimated by the periodogram

D) = (201D (0)} 71 dD (A D (=),

where

/ RO () exp(—ir)[dN(8) — pD di]

is the finite Fourier transform of the point process, A7) (t) = h(t/T) is a data taper
with Fourier transforms

/ R (1) exp (—iAt)dt

and
~ I _

is an estimate for the mean intensity p of the process. The taper function h: R — R
is of bounded variation, vanishes outside the interval [0, 1] and should be smooth
with h(0) = h(1) = 0. However, our results also include the classical case where

h(t) = 11 (t). We further define

Hy :/}Rh(t)kdt.

Substituting the periodogram IT) for the spectral density, we obtain as an estimate

for A(¢g)
D) :/]R%()\)](T)

For finitely many 6 such quadratic statistics have been studied e.g. by Brillinger
(1972, 1978) and Tuan (1981). In these papers, the asymptotic normality of the
estimate AT (¢;) has been derived for the nontapered case.

The present paper deals with the case where the parameter space © consists of
infinitely many parameters. More generally, we establish a functional central limit
theorem for the empirical spectral process

9) = VT [ gD = (0 w()dA,



where ¢ : R — C is from a suitable class of functions. The weight function w
introduced for technical reasons should take values in [0, 1] such that high frequencies
are weighted down or cut off. If there exists a smooth function ¢ : R — R with
Fourier transform ¢ such that w(A) = |¢(A)[?, the product f2(A)w(A) can be viewed
as the spectral density of the smoothed stochastic process [i ¢(t — u)dN(u).

In Section 2, we obtain our main result on the weak convergence of Eépw) by
proving the measurability and stochastic equicontinuity of Eépw) and the weak con-
vergence of its finite dimensional distributions. As in Dahlhaus (1988), we use a
proof for the stochastic equicontinuity which is based on uniform bounds for the
moments of the increments of Erfpw). However, our method of deriving these bounds
is different as problems arise from the nonintegrability of point process spectra.
The derivation is technical and therefore put into an appendix. The conditions for
measurability are stated in Theorem 2.2. This result is also valid in the case of
stationary time series.

In Section 3, we give some applications of these results to the statistical analysis
of point processes. In particular, we discuss parametric and nonparametric spectral
density estimates obtained by maximizing an approximation to the log likelihood

function.

2 Weak convergence of the empirical spectral process

For some measurable function w : R — R, let £2 (R) denote the space of all complex
valued functions ¢ on R for which the seminorm

puls) = ([ o Pw()in)"

is finite. Further, if F is a subset of £2(R), let X be the space of all bounded,
complex valued functions on F which are uniformly continuous with respect to
the seminorm. We equip X with the Borel-field By generated by the open sets
corresponding to the uniform norm ||z||. = sup|z(g)| for x € X.

Now, if the spectrum f; is bounded, it follows from the Cauchy-Schwarz in-
equality and the boundedness of /(7 that the sample paths Erfpw) (w, ) are uniformly
continuous with respect to p,. Therein the empirical spectral processes differ from
ordinary empirical processes, which in general have discontinuous sample paths. The
difference is important as we make use of continuity for proving the measurability
of Eépw) with respect to By.

The limit process of Eépw) for T' — oo is defined by its finite dimensional distri-

butions. Therefore, we call a stochastic process Ej(f;u) a spectral process if its sample
paths are in X’ almost surely and its finite dimensional distributions are normal with

mean zero and

cov{ B\ (g), BV (h)}



= T [ OG0 (A=A iy

QHH [ o) (RNw() + R(=Nw(=2)) ()7, (2.1)

_|_

where f; is the cumulant spectrum of order four of the point process N. The higher
order cumulant spectra fi and the corresponding reduced cumulant measures €7,
are defined analogously to (1.1) and (1.2), respectively [cf. Brillinger (1972)].

For the results in this paper, we need to impose conditions on the strength of
the dependence of the data and on the size of the index class F. The latter is
determined by the covering number of F, which we denote by

N(8, pu, F) = inf{m € N3gs,...,9m € LL(R)¥Yg € F: min py(g—gr) <}

1<k<m

[e.g. Pollard (1984)]. If F is a totally bounded subset of £2(R), N (6, p,, F) is finite
for all 6 > 0.

Assumptions

(A1) N is an orderly, stationary point process on R with finite mean intensity p
and reduced cumulant measures €} such that there exists a constant C' with

Lo U DG, < CF

forall j e {1,...,k— 1} and £ > 2.

(A2) h: R — R is a Borel-measurable function of bounded variation with hA(z) =0
for all « ¢ [0, 1].

w : — 1s nonnegative, bounded an -integrable.
A3 R R 1 gati b ded and £'-i grabl

(A4) F is a totally bounded subset of £2(R) such that for all ¢ € F the product

g - w is bounded and the covering numbers of F satisty
1

[ og{N(w, pu, F)? fulPdu < oo,
0

We now state our main theorem.

Theorem 2.1 Suppose that Assumptions (A1) - (A4) hold. Then the empirical

spectral process E;Wu}) (g9), g € F converges weakly on X to the spectral process Ej(f;u) (9),

geF.

PrOOF. We will prove the stochastic equicontinuity and the measurability of the
empirical spectral process and the weak convergence of its finite dimensional distri-

butions to that of Ej(f;u) Then the weak convergence of Eépw) follows by Theorem 10.2
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in Pollard (1990), in which the outer measure P* can be replaced by the measure P
due to the measurability of Erfpw). a

For the proof of the measurability of E}w), let (©2, A, P) be the underlying prob-
ability space.

Theorem 2.2 Suppose that Assumptions (A1) - (A3) hold and let F be a totally
bounded subset of L2 (R). Then the empirical spectral process Erfpw)(-,g), geF isa

measurable mapping into (X, By).

PRrROOF. We first prove the measurability of the finite dimensional projections of the
empirical spectral process. For fixed ¢ € F, we have due to dominated convergence

B g) = Jim [ g()11D(,3) — L)1)

pointwise for all w € €. Thus, it suffices to show measurability of the integrals on the
right hand side. For this, let C'[—k, k] denote the space of all continuous functions on
[—k, k] endowed with the topology of uniform convergence. Then the corresponding
Borel-field Bo_g 4 and the o-field generated by the projections m(x) = #(t) coin-
cide. Hence the periodogram IT) is a measurable mapping into C[—Fk, k] since all
projections IT)(\) are measurable. Further, it follows from the Cauchy-Schwarz
inequality that the mapping

o VT [ e e() — RO

is continuous and thus (Be¢j_g, Be)-measurable where Be is the Borel-field of C.
This now implies the (A, B)-measurability of the above integrals.

Now since F is totally bounded, X" is separable and thus the measurability of the
empirical spectral process follows from the uniform continuity of its sample paths
and the measurability of its finite dimensional projections. O

Note that for the uniform continuity of the sample paths it is sufficient that the

spectrum f3 is bounded. Therefore, the assertion of the theorem holds also in the
case of stationary time series under the assumptions stated in Dahlhaus (1988).

Theorem 2.3 Suppose that Assumptions (A1) - (A4) hold. Then the empirical

spectral process Erfpw)(g), g € F is stochastically equicontinuous, i.e. for each n > 0

and € > 0 there exists 6§ > 0 such that

lim sup P{sup[5]|E£pw)(g —h)|>n}<e

where [6] = {(g,h) € F*| pu(g — h) < &}.

The proof of Theorem 2.3 is technical and therefore put into the Appendix. For
the next theorem, we only require finiteness of the integrals in Assumption (Al).
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Theorem 2.4 Suppose that Assumptions (A1) - (A3) hold. Further, let g1,...,gx €
L2 (R) be such that the products g; - w are bounded. Then

w D w
{ES () Y imk 2 LB (g0} iz,

A similar central limit theorem has been proved in the nontapered case by Tuan
(1981). However, in order to prove the same result in the tapered case, which is of
much practical importance [e.g. Dahlhaus (1990)], we require the concept of L{7)-
functions, which are used to deal with data tapers [cf. Dahlhaus (1983, 1990)]. We
therefore give a sketch of a proof, which is put into the Appendix, as we use the
same techniques as in the proot of Theorem 2.3.

3 Application to the spectral analysis of point processes

In this section, we present some applications of the above results to the statistical
analysis of point processes. Throughout this section, we assume that (A1) and (A2)
hold.

Example 3.1 Let F = {1 y|A € [0, Ag]} and w(A) = 1j5j(A). Then, F satisfies
Assumption (A4) and we obtain a functional limit theorem for the empirical spectral
distribution function on the interval [0, A\g]. More generally, we can set F = {1p|D €
D} where D is a Vapnik-Cervonenkis class [e.g. Génssler (1983), p 22] of subsets

D C [0, Xo] to get the same result for the empirical spectral measure [, f2(A)dA for
all D € D.

Example 3.2 For the estimation of the covariance density of a point process, we
consider

i) = [ expliuA)[TT() = 57 /2x]w(A)ax (3.1)

with symmetric and smooth weight function w such that w(0) = 1 and w(\) =
O({1 + |A|}7?7¢) for some € > 0. Further, we define qgw) by (3.1) with f; and p

substituted for /(™) and p(*), respectively. Then, qgw) is related to the true covariance
density by

() = (20)7 [ = v)aa(v)dv, (32)

where w is the Fourier transform of w. Thus, the weight function in the frequency
domain corresponds to a smoothing kernel in the time domain.

Let F = {gu|u € [0,uo]} with g,(A) = exp(iud). Since py(gu — ¢») < Clu — v
for some constant C' > 0, the class F satisfies Assumption (A4) and therefore by
Theorem 2.1 we obtain the functional convergence

w(u)

VI ) = () = B (9u) + VT =

(1 — p) 2 209 w)




for u € [0, uo], where Z(*)(u) is normally distributed with mean zero and covariance

27 H L
con{Z0(w), 20 (0)} = Tt [ e (A () Fu(V A r)dAdy
2
27TH4 HHuTv Hlu— U
Tt L I

+ H[j]l /]R(emw(v) + e b (u))w(N) f3( X, —=A)dA

+ ;fz(o). (3.3)

As we can see now, the weight function w balances variance and smoothness of the
estimate: As the bandwidth of the smoothing kernel in (3.2) increases, the weight
function gets more concentrated and the variance decreases.

The above result can be used to derive a simultaneous confidence band for qéw)(u),
u € [0,ug). Application of the continuous mapping theorem yields

VT sup | (u) — g ()] B sup (20 (w)).

©€[0,uo] ©w€[0,uo]

Then

CROES s (3.4

UG[O,UO]

is an asymptotic simultaneous confidence band, where z(*) denotes the upper a -
100 percentile point of the limit statistic supuGOu0 |Z)(u)|. The problem now

is to obtain the distribution of sup,ep |Z )(u)|, which appears to be extremely

difficult. However, if we generate realisations Zl(w), ey Z](3w) of the process Z( v) o

a suitably fine grid, we can use the empirical distribution of sup,ep ] |Zb ( )|,
b=1,...,B as an approximation. For this, we have to estimate the covariances
(3.3). For the first integral, a consistent estimator has been presented by Taniguchi
(1982), the other integrals can be estimated similarly.

As an illustration, we apply this method to some data which describe the state of
activity of a computer: An event has been recorded whenever the computer changed
its state from busy to idle which was defined by the absence of any user interaction
for more than five minutes. The data set consists of 1539 events which occured in
an interval of length 7' = 1695236s (about 20 days).

Figure 1 shows the covariance density estimate qéw) and the corresponding si-
multaneous confidence band (3.4) with o = 0.05 for the data. Here, the weight
function has been set to w(A) = exp(—A*¢?/2) with ¢ = 500s, which corresponds
to a Gaussian smoothing kernel. The covariance density exhibits two significant
positive peaks: One for time lags smaller than 3h and another for a delay of about
7d. The former peak indicates that the process tends to form clusters, while the
latter suggests some weekly structure in the data.



w
o
s

\
\\\\\

I
|
]
Ny
o
P ,
" Ja o
" s W I ' Vi Vo
e | LN . S\
1\ . ‘ N n ' \ AR
. RV \ v \ \ I
(INRVIN v . R \! A ' ; \ »
X » ' e’y , W /Y \ \ h . AN
\ /
/ [N \ ' S v \ ! Voo
ISR S PN [N . i
o . DA \ .
M
i\ e M
v v [
it
v, '
. i vt /! n
o " PR ' u
v i |
Vi \ 0 v /
;o AN N , ' "
' I ) / Vo

() [0

=
o

0.0
-10F VoS
29 1 2 3 4 5 6 7 8 9

Lag u [days]
Figure 1: Estimated covariance density quw) (solid line) with simultaneous 5% con-

fidence bands (dashed lines) for the computer data.

We now turn to the problem of spectral density estimation. Suppose that N
is a stationary point process with spectral density f5. Given a realization of the
process on the interval [0, 7], we want to fit a spectral density f € Fy to the data.
It is well known [e.g. Brillinger (1972)] that the random variables IT)(27j/T) are
asymptotically independent and exponentially distributed with mean f;(27;j/T).
This suggests approximating the log likelihood function by

. 1 . I /T)
/v‘gw)(f)——f;{logf(%J/T)er}

and estimating f; by maximizing ,Cg\?(f) with respect to f € Fy. This approach
has been proposed by Hawkes and Adamopoulos (1973) and further discussed by
Brillinger (1975) and Tuan (1981) for parametric families, for which the procedure is

a point process version of a procedure suggested by Whittle (1953) for the analysis
of time series.

Subsequently, we will use the following continuous version of Eg\?

£D(f) =~ [ {1og s +

with w : R — R satisfying Assumption (A3) and w()\) = 0 for all A < 0. Let f(*)
denote a sequence of functions maximizing £7). Substituting f; in (3.5) for 17,
we obtain the corresponding theoretical function £(f), which is maximized by f.
The next theorem states the consistency of f(7) as an estimate for f;.

Jw(A)dA (3.5)

Theorem 3.3 Let Fy be a subset of L2 (R) with envelope F' € L2(R) and f5 € Fo.
Then, if F = {f~'f € Fo} satisfies Assumption (A]),

po(fT = )50 as T — .



PROOF. As in Example 3.2 in Dahlhaus (1988), we obtain from Theorem 2.1 and
the Continuous Mapping Theorem [cf. Pollard (1984), Theorem IV.12]

sup [LO(f) — £(F)] = sup [TH2E (£ Lo,

feFo fEF

which implies £( 7)) — L£(f*) 2 0. Now if L(f,) converges to L( f5) for a determin-
istic sequence f,, we obtain with a Taylor expansion that p,(f, — f3) — 0, which
proves the result. O

Uniform convergence of fT) to fy requires further assumptions about Fy. If, for
example, Fy is equicontinuous, then for any compact set K C R

sup [fDN) = (0] 50 as T — .
AEK
In the next example, we present an explicit nonparametric function class which
satisfies the requirements of Theorem 3.3.

Example 3.4 Consider the class F, ,(5) = F, o(5; co, - - ., ¢, ¢) of smooth functions
fon S C R such that

fO(@)] < e
for 0 <7 <r and
|FO (@) = FOy)] < ele —y|™.

Further, suppose that w(z) < C(1 + |2|)7" where v > 2(r + o) + 1 and r + a > 2.
Then F,(RY) fulfills Assumption (A4). This can be seen by constructing an e-
covering of F, ,(RT) from eg-coverings of F, . (Ix), I = [k, k + 1) with k& < k, for
some large k. € N. Using the uniform norm on [, the entropy of F, (1)) is of
order 0(5;1/(T+a)) [cf. Kolmogorov and Tikhomirov (1961)]. If we choose &), = ek’
with 7 +a < # < (v —1)/2 and k, such that 1/2-e=2/0-D <k, < =Y/ then ¢
increases sufficiently fast to guarantee

log N (&, pu, Fra(RY)) < Je ™77,
Now the function class F = {f7Yf € Fru(RT), f > ¢} with ¢ > 0 is itself a

subset of some class F, ,(R*) with different constants, and it therefore also fulfills
Assumption (A4).

A stronger result than Theorem 3.3 can be obtained in the case where we fit a
parametric model given by the class of spectral densities Fo = {fy4|0 € ©}. When
dealing with parametric estimation, a point of view is to regard the parametric
model only as an approximation to the true process. Therefore, we do not assume
that the true spectral density f; belongs to the model class Fy. If we measure the
distance between a fitted model specified by 6 and the true process by —L(8), the
parameter #y which maximizes £(6) then determines the best approximation to the
true process. By maximizing £)(6), we obtain an estimate 0D for 6.

Assumptions Let Fy = {f4]0 € O} be a parametric family.

9



(B1) £(0) has an unique maximum 6y which is an interior point of © C R¥,
(B2) There exists a compact subset 0, of © such that
lim inf P{L(0o) — eie%ff LE9) > g0} =1

for some g9 > 0. Further, the functions f3(A) are continuous in (6, A) € O, xR
and there exist constants ¢q, ¢y such that 0 < ¢; < fy(A) < ex < oo for all
00O, and A € R.

(B3) F = {f;"0 € 0.} satisfies Assumption (A4).

(B4) f;' admits continuous first and second derivatives with respect to f in a neigh-
borhood U(fy) of 0y, denoted by the vector V f; ' and the matrix V2f; !, re-
spectively. The families {Vf; 110 € U(y)} and {V2f;'|0 € U(6y)} satisfy
Assumption (A4).

Theorem 3.5 Assume (B1) to (B3). Then we have o L g, If additionally (B4)
holds, then

VT(H® —05) B N (0, W S, Wi h),

where
Yo, = 2mHiHy® [ VMOV ) O A pw(Vw()drdy
2 i H;? [ VSOV OV ) () )
and
Wiy = [ (5500 = fu OV (Nw(A)dA + [ log fo, (M) log fi (1) w(A)d.

PRrROOF. The result follows directly from Theorem 2.1. The proof is similar to that
in Dahlhaus (1988). |

Example 3.6 Tuan (1981) suggested to approximate the spectral density by rational
functions of the form

A AP+ N+ Fa,
f@()\):pe( )_ p 1

go(N) 27 A"+ b A+ L+ b,

where 6 = (p,a1,...,a,,b1,...,b,) is the unknown parameter. Suppose the param-
eter space © is compact. Then if py and ¢y have no zeros in R*, the parametric
class Fy satisfies Assumptions (B1) - (B4).

To motivate this remark, consider functions of the form g¢(x,y) = p(z) — yq(x)
where p and ¢ are polynomials of fixed order. Since these functions form a finite di-
mensional vector space, the class of sets {(z,y)|g(x,y) > 0} is a Vapnik-Cervonenkis
(VC) class (cf. Pollard (1984), Lemma I1.18). Then, the graphs G(f; ") form also a
VC-class and the Approximation Lemma (cf. Pollard (1984), Lemma I1.25) yields
(B3). The conditions on the derivatives are checked similarly.

10



Appendix

A key role in our proof of Theorem 2.3 is played by the function LT : R — R,
T € R* which is given by

T _ )T ol <1/T
L )(oz) = { lal, |a|> 1T - (A.1)

A similar, but periodic function was introduced in Dahlhaus (1983) as a tool for
handling the cumulants of discrete time series statistics. The above function L)
is the corresponding version for time-continuous stochastic processes. Its properties
are summarized in the following lemma.

Lemma A.1 Suppose w fulfills Assumption (A3). Further, let o, 3,7,( € R and
p € N. We obtain with constants K, independent of T':

(i) LT ( ) is monotone increasing in T € R and decreasing in o € R*.

(ii) LT ( o) < LD (a) for all ¢ € (0,1].

(iii) LB + a) LT (y = a) < LI LD (y — a) + LO(5 + a) L),
a) (( +a)da < Kylog(T) for T > e.

B+ oz)L(T)(’y —a)w(( + a)da < K, log(T)L(T)(ﬂ + ) for T > e.

oz)pdoz < K,T*~ L

AA/_\/_\

B+ a)P LI (v — a)fda < K,TP" LB + ~)P.

PROOF. The proofs are straightforward and similar to those in Dahlhaus (1983).
But unlike its periodic counterpart, the function L) is not £'-integrable, and the
inequalities (iv) and (v) therefore require an £'-integrable weight function w. O

Using the definition of L"), we can now derive an upper bound for the Fourier
transform of a data taper. Let V(h) denote the total variation of the function h.
Then if h is of bounded variation, simple calculations yield the inequality

S+ ) B0 ) = A< I VYl 4 ). (A2)
From this, we obtain for the Fourier transform of A(")
|Hk ( ) <1/2- / |h(t) t—7r/oz) |dt <1/2- Hth W(h)kr|a)™".

On the other hand, we have |H,£T)(oz)| < ||||¥.T. Hence, we obtain as an upper
bound
[H ()] < KFLD)(a) (A.3)

for all £ € N and a constant K independent of T'.
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For sake of simplicity, we assume for the proof of Theorem 2.3 that the mean
intensity p is known and therefore replace dT)()\) by

dD()) = /]R RO (1) exp(—iM)[dN () — pd].

At the end of the proof, we indicate the modifications needed for the case that p is
estimated by p(7).

The next lemma, which is a slightly stronger version of Theorem 4.1 in Brillinger
(1972), gives an approximation for the cumulants of cZ(T)()\).

Lemma A.2 Under Assumptions (A1) and (A2), there exists a constant ¢ > 0 such
that for all \y,..., Ay € R and k > 2

leum{d D (), dD )Y = o) D w4+ M) fes - )] <
PROOF. The lemmais an immediate consequence of relation (A.2) and Assumption
(A1). |

Note that because of Assumption (Al) we can choose the constant ¢ such that also

|fe(A, - demy)| < ¢ for all k> 2.

PrOOF OoF THEOREM 2.3. We start by proving that there exists a constant ¢y such
that

leumy LB ()} < (2) ek po(9)* (A4)

for all K € N where Cumk{Egpw) (9)} denotes the k-th cumulant of Eépw) (¢9). Using
Lemma A.2 we obtain

i {EE (@)} < VT [ Jg)lw(IEIDA) = f2(A)])
< ERrHNVTY  pulg)pu(l). (A.5)

For k > 2, we find
jcun {£4 (9)}]
< RSP T [ gl -+ gl
 [eum{dD (M) d T (=Ay), ..., d D A)d T (=Ae)}dA - dA. (A.6)
In order to apply the product theorem for cumulants [cf. Brillinger (1981), Theorem

2.3.2], let 3=, denote the sum over all indecomposable partitions Py, ..., P, of the
table

AL =N
A=Ak

12



with p; = [Pj| > 2 as E{dT(\)} = 0. Further if P; = {81y Bip, }, we write
B; = Bj1+ ...+ Bjp,. Then using Lemma A.2, we find for the cumulant in (A.6)

lcum{dT (A )dD (=), ..., dD(A)dD (=2}
< S TL{mm TGy (Bins - Biy) + €,

i.p. j:l

which, by using fr(A1,..., A1) < ¢ and (A.3), is less than

Soem)*rR ST T LT (A7)

ip. JCM jeJ
where M = {1,...,m}. Substituting (A.7) in (A.6), we obtain as an upper bound
Y erertay) T [ H 9O w(A) T LD (Bi)ds - - dg.
i.p. JCM JEJ

For J = (), the integral is equal to
k
([ 1o0lo)dn)" < pulg) pu(1)"

Similarly, if m = 1 and J = {1}, the integral is bounded by T'p,(g)*p.,(1)* since

N(B)=T. For J #0 and m > 1, we split {1,...,k} into disjoint sets I and ¢
and J into disjoint sets Jy and J§ to be selected later. Using the Cauchy-Schwarz
inequality, the integral now is less than

(/ TT 1900 Py TT wr) T £5(5;)%dA, -- d)\k)m

J€l jEIC jeJ§&

(/]R IT 19O 1P TT wry) TT 25(8))2d) - dAk)m. (A.8)

jelc jel j€Jo

Now we have to make a suitable choice for I, ¢, Jy and JS. Since J is not empty,
we can define Jy = {jo} for some arbitrary jo € J. Then there exists ¢o such that
Aig OF — A, is in P;;, and we can set [ = {ig}. We obtain with Lemma A.1 (vi) and
(vii) for the first integral in (A.8)

[ o) P ZO{/]RMHw ) I 2D TT dpax,

IC EJC iEIC

< / 900 )Pl {Jleoll1" o (1 GHDR TV
= {ku"’“ DT
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where we have used the indecomposability of the partition. Similarly, the second
integral in (A.8) is equal to

for I |g<Aj>|2w<Aj>{ JRESCIERTINS ) £

eI

< pulg) I JwlZ K T

Thus, we obtain as an upper bound for Cumk{Eé"u})}

> 2 @K H TR, (g) pu (1)F w22 K2

_ FS Y (o)

ip. JCM

which implies (A.4) since the sums include at most 2* subsets of M and (2k)!2*
indecomposable partitions.

Analogously to the proof of the stochastic equicontinuity in Dahlhaus (1988),
(w)

relation (A.4) leads to an uniform bound for the moments of £}, from which we
obtain the exponential inequality

P{IES (g — B)| > npulg — h)} < 96exp(—/n/D)

with a constant D for all g,h € F and n > 0. Application of a chaining argument
now yields the assertion of the theorem.
In the general case where p is estimated by pT), we have

dD\) = dDN) — HPHD (0)71d T (0). (A.9)
Therefore, we obtain by using Lemma A.2

cum{dD(\y),... d(T)()‘k)}

S SN SHRORED (I

SC{1,...k} JES

< (2m) D s 4 s FrXsits -, Asicr) + R,

where |R| < (2¢)F uniformly in Ay, ..., Ay and As; = A; 1go(j). Because of Lemma
A.1 (ii) and (iii), the sum over all subsets S of {1,...,k} is bounded by

2m) " HTR () KPR LD (A + .+ M),

Thus, the cumulant in (A.6) with d™) substituted for d™) has again an upper bound
of the form (A.7) with different constants. The case k = 1 is treated similarly. O

ProoF or THEOREM 2.4. We prove the convergence of the cumulants of first,
second and higher order to the corresponding cumulants of the limit distribution.

14



For the first cumulant, E{Eépw)(g)} = o(1) is an immediate consequence of (A.5)
and Lemma A.1 since (A.9) yields

eum {d(A), d(1)} = cum{d® (), dD ()} + O(T LN LD (1)),

A similar equation with remainder of order O(L(T)()\) + L(T)(,u)) holds for the cumu-
lant cum{dT(X), dD)(=X),dD) (1), d™)(—p)}. Thus we find by using the product

theorem for cumulants and Lemma A.2

COV{ErEpw)(gi)a E’SFW)(QJ')}
= T [Tl [0, A )

+ (@ + ) + @ (A = ) fa(N) folp)]| dXdps + o(1), (A.10)

where CI)(QT)()\) = HQ(T)()\)HQ(T)(—)\)/[ZWHf)(O)]. Now, it follows from the convolu-
tion properties of H,ET) and Lemma A.1 (vi) that CI)(QT) is an approximate identity
and thus we have for f,g € £2(R)

[, FO0w)g ()@ (3 = pydddn = [ F(AgN)w(N)2dA + of1).

Therefore, (A.10) converges to (2.1).
For the cumulants of higher order, we obtain by using (A.7), which holds also
for d) as noted before,

leurn{ B (g1), ..., ¥ (i)}

< Xy or ’“”/HLC/J M) TT ED(B)dA - - - dAg.

ip. JCM jed
With Lemma A.1 (iv) and (v), the integral now is of order O(T log(T)1=1) if |J| = m
and of order O(log(T)M) if |.J| < m. Thus, the cumulant converges to zero. i
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