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Zusammenfassung In dieser Arbeit untersuchen wir das Elektron-Phonon-System mit
Hilfe von Flussgleichungen fir Hamiltonoperatoren. Unter dieser kontinuierlichen Diagonal-
isierung des Hamiltonoperators werden die Einteilchenenergien und Wechselwirkungskonstan-
ten in Abhangigkeit eines Parameters ¢ transformiert. Dabei variiert ¢ zwischen Null und
unendlich. Wir zeigen, dass sich fiir den Fluss der Einteilchenenergien unter der /-induzierten
Transformation asymptotisch fir grofie ¢

ex(€) = ex(00) + 22

ergibt, wobei die Konstante logarithmische Korrekturterme in ¢ enthalten und von k£ abhangen
kann. Fur dieses asymptotische Verhalten wird der Elektron-Phonon-Hamiltonoperator unter
der Transformation blockdiagonal. Anschliefend zeigen wir, dass sich die Renormierung
der Phononen gegeniiber den Ergebnissen von Wegner und Lenz nicht verandert, wenn bei
diesem Verfahren auch die Verschiebung der elektronischen Einteilchenenergien berticksichtigt
wird. Die Abhangigkeit der Renormierung der Elektronen vom Abstand zur Fermikante wird
berechnet. Schliellich untersuchen wir die Transformation der elektronischen Einteilchenop-
eratoren.

Zum Abschluss der Arbeit wird im Anhang ein rigoroser Beweis fiir das asymptotische Ver-
halten der Einteilchenenergien gegeben. Es werden logarithmische Korrekturen im asympto-
tischen Verhalten untersucht.

Abstract In this thesis we investigate the electron-phonon-system using the method of
Flow Equations for Hamiltonians. In this continuous diagonalisation process the one particle
energies and interaction constants are subject to a series of transformations, the “flow” of
the Hamiltonian. They depend on a flow parameter ¢ varying from zero to infinity. We give
a proof that the asymptotic behaviour of the flow of the one-particle energies for large ¢ is
given by:

x(f) = ex(00) + nst,

where the constant may contain terms logarithmic in ¢ and depends on k. This result is
used to show that the transformation does lead to a blockdiagonal Hamiltonian decoupling
the electron and the phonon subsystems. We obtain the same renormalization of the phonon
energies as Wegner and Lenz, who neglected the shift of the electronic one-particle energies.
The dependency of the renormalization of the electronic energies on the distance to the
fermi surface is calculated. We investigate the transformation of the electronic one-particle
operators.

In the appendix we present a rigorous proof of the asymptotic behaviour. The /-dependency is
changed by including an additional logarithmic factor and this refined asymptotic behaviour
is investigated.
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1. Introduction

There is a wide variety of substances for which at low temperatures the most impor-
tant interaction is the one between the electrons and the lattice vibrations, which are
called phonons. In 1952 Fréhlich [2] proposed a canonical transformation which elim-
inates the coupling between the phonon and the electron system in first order and
instead generates a induced electron-electron interaction. Using the so transformed
Hamiltonian Bardeen, Cooper and Schrieffer [3] were able to explain the phenomena
of superconductivity in 1956.

Since the discovery of high-T, superconductivity by Miiller/Bednorz [4] in 1986 the cor-
relation of the electron-phonon-interaction with this phenomenon has been discussed
and has drawn new attention to the electron-phonon-problem.

Wegner and Lenz [5] investigated the electron-phonon-Hamiltonian using the newly
introduced method of Hamiltonian flow equations (Wegner [6]).

The method of flow equations for Hamiltonians is a scheme of a continuous diagonal-
isation of the Hamiltonian. The one particle energies and interaction constants are
subject to a series of transformations depending on a flow parameter ¢, 0 < / < oo.
A short review of this method is given in chapter 2. For ¢/ — oo one has to make
sure that the off-diagonal interaction vanishes. The change of the one-particle energies
under this /-dependent flow then is the renormalization. In general many interaction
constants decay rapidly, i.e. exponentially in ¢. Those remaining decay algebraically.
They are responsible for the renormalization of the one-particle energies.

Wegner and Lenz appplied the formalism of Hamiltonian flow equations to the electron-
phonon-problem such that the Hamiltonian is only brought to a block-diagonal form.
Besides the renormalization of the one-particle energies the difference of the diagonal-
ized Hamiltonian to a system of free electrons and phonons is an attractive electron-
electron interaction. For the flow of the energies and interaction constants under the
series of (-dependent transformations Wegner and Lenz found a fundamental set of
integro-differential equations. This set is the basis of this thesis.

Neglecting any renormalization for the electron energies Wegner and Lenz investigated
the renormalization of the phononic energies and they obtained an improved attractive
mediate electron-electron interaction. Continuing this work Wegner and Ragwitz [7]
calculated the renormalization of the phonon energies and the correlation functions of
the phonons. Once again the electronic energies were taken as constants under the
diagonalisation of the electron-phonon-Hamiltonian.



1. Introduction

In this thesis we will follow the lines of their work but include the renormalization of
the electronic one particle energies. The result is twofold:

First, we are able to show that the renormalization of the phonons is not changed when
the renormalization of the electrons is included.

Second, we can justify that the renormalization of the electrons due to this transfor-
mation is small compared to the effects of the attractive electron-electron-interaction.

The organisation of this thesis is as follows:

In chapter 2 we give a more detailed introduction to the formalism of flow-equations
for Hamiltonians as introduced by Wegner [6] in 1993.

In chapter 3 we introduce the electron-phonon-problem and give a derivation of the
equations for the renormalization of this system as obtained by Wegner and Lenz [5].
We also give a short overview of the results they found in their paper for the attractive
electron-electron interaction.

We find in chapter 4 the general behaviour of the asymptotic form (in ¢) of the electron
and the phonon energies. A rigorous proof for this solution is given in appendix A.
We also show in chapter 4 that indeed the electron-phonon interaction vanishes as the
series of transformations proceed with increasing ¢. A solution of the fundamental set
of equations is found in the following self consistent way: First certain functions of the
parameter ¢ for the electron and phonon energies are assumed and then it is prooved
that the fundamental equations are fullfilled.

In chapter 5 we look for a solution using a more refined dependence on ¢ for smaller
{-values. In this ansatz we specify some details to reach a fully self-consistent solution
in chapter 6.

The transformation of the electronic one-particle operators under the ¢ induced flow is
investigated in chapter 7.

The results of the thesis, including a different approach for the exact asymptotic be-
haviour as given in Appendix B, are discussed in chapter 8.



2. Flow Equations for Hamiltonians

2.1. Transformation of the Hamiltonian

Every quantummechanical system is characterized by a Hamiltonian. The eigenvalues
of this hermitian operator give the energy levels of the system, the corresponding
eigenvectors describe the allowed states. Hence, to investigate a physical system in
quantum mechanics one tries to diagonalize the corresponding Hamiltonian,i.e. one
searches for a unitarian operator U such that

UTHU =D (2.1)

where D has diagonal form.
However, for most systems physics is interested in such a unitarian transformation
cannot be given explicitely. Instead approximation schemes have to be used.

A new method to reach a diagonal Hamiltonian was proposed by Franz Wegner in 1993.
One writes an ensemble of transformations characterized by a parameter £, 0 < ¢ < 0o

H(0) = UH(O)HU(¢) U(0) =1 (2.2)

Here Hy is the Hamiltonian describing the entire system. The subindex 0 is only used to
denote Hj as the starting point of the /-dependent transformation. H is not diagonal.
At the start, £ = 0, a basis is chosen which represents the actual physical system in an
approximate way. These approximate states are then transformed by U™ (¢).

In this approach the Hamiltonian is not diagonalized in one step but for every given £,
one tries to find a change dH ({y) such that H({y + d¢) has smaller off-diagonal terms
than H (/). The infinitesimal change of H (/) is given by:

dH (¢)
—— = [n(0), H(0)] (2:3)
dl
where n(l) = ‘WTwU (¢) is antihermitian. Except for this condition the choice of 7

is free. The ensemble of antihermitian matrices is chosen such that H (¢ = oo) has
diagonal or at least blockdiagonal form and the resulting differential equations for the
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“flow” of the elements h; ;(¢) of H(¢) as a function of ¢ take a form as simple as possible.
Wegner proposed:

() = [Ha(C), H (0)] (2.4)

as a possible choice for n. H; and H, are the diagonal and offdiagonal terms of the
Hamiltonian,respectively. The hope is that H,.({) — 0 as ¢ — oo for such an 7. Un-
fortunately this is not generally true, even if 7 vanishes with ¢ tending to infinity!
Therefore, when applying an 7 of the form of (2.4) it has to be investigated for each
physical system whether or not H, does indeed vanish.

Transforming a Hamiltonian within the framework of this formalism of Flow-equations
will, in general, generate terms not present in the original Hamiltonian. In some
exceptional cases it is possible to include all the additional terms in the formalism.
Otherwise, the additional terms can only be treated approximately. The approxima-
tions depend, of course, on the physical system, the corresponding Hamiltonian, the
physical quantities under considerations and the form of the additional terms. The
goal is always to keep the error as small as possible.

The result of the procedure sketched above is a set of coupled differential equations
governing the flow of the self-energy of the particles and the interaction constants as a
function of the parameter ¢ where the interaction constants vanish as ¢ — oo.

2.2. Transformation of physical quantities

Actually the Hamiltonian itself does not change under the ¢ dependent transformation;
for every ¢ the Hamiltonian is represented in a different basis and the change of the
basis is given by the ensemble of the unitarian transformations. This has to be kept
in mind, if one is interested in physical properties of the quantummechanical system
under investigation. Lets take the expectation value of a hermitian operator O. Then
we have to take O in its transformed representation:

o) =UT(0)oU(¢) (2.5)
In the limit for which our Hamiltonian is (block-)diagonal, this reads:
(O(00)) = (U*(00)OU (c0)) (2.6)

In general we do not know U (oo) and have to find O(oc) by once again applying the flow
equation formalism with the same 7 as used for the transformation of the Hamiltonian:

dO(0)

S =), 000) 27)



3. The Electron-Phonon-Problem

3.1. The Hamiltonian

The Hamiltonian of the electron-phonon problem is given by:
Hy = Zekckck +qua aq—i—ZM ) ckJrqc,yC (3.1)

Further interactions (e.g. coulomb—interaction) and higher order terms are neglected.
For reasons of simplification we work with electrons of one band only.

The first term of (3.1) is the self-energy term of the free electrons.

The second term describes “free” phonons. These characterize the vibrations of the
ions of the lattice. The third term is the electron-phonon-interaction discussed in 3.1.2.

3.1.1. Phonons

The ions of the lattice oscillate around their equilibrium positions'. This leads to
vibrations of the lattice for which the (classical) hamiltonian function is given (up to
second order) by:

0*V
H= T s s 3.2
Z 8RnZaR , JS aSTL 3 ( )

I.
n i

Sn, is the ith cartesian coordinate of the displacement of the ions of the nth Wigner-
Seitz cell. V' is the potential in which the ions move.
We put:

1o
nai o _ 1 v .
ni " MOR,iOR ; 1’

the equation of motion then yields:

Z ZD” i exp[iq(R, — Ra)] ¢y (3.3)

'For a more detailed introduction of phonons see: [1]
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The translational symmetry requires that Dzyi’i does not depend on the cell indices n

and n’ separately, but can only depend on (n — n'). The solution of (3.3) is given by
three different eigenvalues w), which depend on q. .For each wl )(q) the components of

the corresponding eigenvector are given by: ¢; = eZ(] )(q). These solutions form vectors
e)(q), which are orthonormal. As a set of special solutions for the displacements s, (#)
it is possible to use:

$0)(q, #) = \/Lﬂem(q) exp(ilaRa — w;(Q)1]). (3.4)

The general solutions can be constructed by superposition of the special ones:

Sn (4,

(q,t)e’(q) exp(iqRy) (3.5)

the time dependency has been included in the factor Q;(q,t) a factor # has been
separated out. In the usual way (3.2) can be quantized and written as:

= % 2>_[05(a,1)Q5(a, 1) + w]Q;(a, )5 (a, 1)) (3.6)

Jd

With the usual transformation (as applied for the harmonic oscillator):

Pi(a.t) = Qj(a.1),
— (2ho(a) "~ (@(a)Qj(a) + iP*(a) and
) = (2hw(a) " (w(@)Q;(a) — iP(a)

we then find the Hamiltonian for the free phonons:

M

1= Y tufa) |alf@)aa) + 3] 1)

Jq
3.1.2. The electron-phonon-interaction
In this section a short derivation of the interaction electron-phonon-interaction is

given?.
In general the interaction of electrons and ions is given by:

el ion Z‘/el zon — ) (38)

Here we use Nordheim’s rigid ion model in which the interaction depends only on the
separation of electrons and ions; the form of the ions does not change during the motion.

*We closely follow [1] where a more detailed analysis is given



3.1. The Hamiltonian

Most of the more sophisticated models do not alter the electron-phonon interaction in
a significant way. Therefore, the results of this thesis do not depend on the choice of
the specific model.

Let the position of an ion be given by: R, +s,,. R,, denots the equilibrium position of
the nth ion and s,(¢) its displacement from this position. As s, is small compared to
the size of a unit cell we can expand (3.8) to find:

el ion Z ‘/el zon - Rn) + Z 6Vvel—ion(rl — Rn) * Sp, (39)

= el —ion + Hel*ph' (310)

The first term describes the interaction of the electrons with the periodic potential of
the ionic background. In this subsection we are interested in the second term which is
the electron-phonon interaction coupling the electrons and the lattice vibrations. Using
normal coordinates for s, gives:

el —ph — Z \/— ZQq,jemp Zq R )6]( ) ' 6Vvel—ion(rl - Rn) (311)

q,j

For every normal coordinate the phonon component

Qq = (sz,j) ( 1-—q,] + a‘ly])

consists of two parts: One creating a phonon with (pseudo)momentum —q and one
absorbing a phonon with pseudomentum q. This (pseudo)- momentum has to be
delivered by the electrons. We expand VV in k-space (N.B. The interaction potential
does not depend on the spins):

VV = Z <k’a|§V|ka> CL, Ck.o (3.12)

Nea

kk o

= Z exp(—ik - Rp) Vi <k’a|exp(—m : r)|ka> CL, Cio-

!
kk o,k

The electrons are described by Bloch functions: |k) = u,(k,r)e’ ™. We use
dYonerplila— k) Ryl = NY k Oqnik,. Here Ky - R, is a multiple of 27 for all n.
Terms with K,, # 0 describe Umklapp-processes.

As we are interested in the behaviour of the system at low temperatures, i.e. only
phonon-levels with small ¢ are occupied, we restrict our considerations to normal pro-
cesses, i.e. K,, =0.
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N | h
Hop= S 1/ viq- o
on = D\ 37 Via ¢ (@) Yo,
k,0,7,9 >
y / (k4 q, P Ok, 1) (al s + g )l (3.13)

We further use a phonon representation which is either purely longitudinal or purely
transverse, i.e. the oscillations are parallel or perpendicular to q. Then only the
longitudinal phonons couple to the electrons. Finally we obtain:

Hypn =Y Myglalq+aq)ch g Cno (3.14)

k,o,q

with: My, = iVag /2 /ﬁ [ ui(k+ q,r)u,(k, r)dr

For nearly free electrons the integral is approximately one, yielding:

) IN | h
q

This gives the interaction term of (3.1).

3.2. Applying the Flow Equations to the
Electron-Phonon-Problem

Wegner and Lenz applied the formalism of Flow Equations to the electron-phonon
Hamiltonian (3.1) [5].
They used the following n:

n(l) =

Sy wa(0) s afag s+ Sy er() s cfen s, Sy (Mig(D)at, + M, o(0)ag) 6 g0k
= Zk,q (ak,q(g)Mk,q(f)atq - ak+q,—q(€)Mk+q,—q(€)aq) C;C:“qck (3.16)
with:
Qkg = €k4q — €k + Wq-
This gives the energy which is needed for or gained by one interaction process. It is
the change of energy of the electron changing its momentum plus the energy put into

the creation of a phonon or gained by its annihilation.
This is the choice of 1 proposed by Wegner (2.4).



3.2.  Applying the Flow Equations to the Electron-Phonon-Problem

Here Y5 w,(0) s afag - + 3 g en(l) : ¢ :

is the diagonal and

> kg (Miqg(€)at, + Myyq_g(0)ag) ¢y cr is the off-diagonal part of the Hamiltonian.
We will show later 4.4 that for this choice of 7 the interaction constants My, , do indeed
vanish for £ — oo.

During the transformation process the Hamiltonian is given by:

H(l) = wyl) safag: + > ex(l): cfep:

+ > Vi) s 66l e s +E(0) (3.17)
ko' g

+ Z (Mk,q (E)afq + Mk+q,—q(€)aq) ClJcr+qu
k.q

with the initial values:

M q(€ = 0) = Myyq,—(£ = 0) = My(0) = M, = eV
Vig £=0)=0 (3.18)
. k?
w(t=0) =t @(l=0)=
These values are those on a lattice with a periodicity tih length a of e.g. cubic form:
€k+ora = €k- Lhe interaction constant ¢ contains a factor \/LN An additional electron-
electron-interaction is generated during the transformation process. This interaction
is attractive and eventually leads to superconductivity®.
Actually, during the transformation more terms than given above are generated. These
additional terms are of higher order, e.g. four particle interactions. It makes some
sense not to keep terms which have originally been considered to be unimportant for
our investigation.
In order to neglect these additional terms and still keep the error in the calculation as
small as possible the Hamiltonian is rewritten in its normal ordered form. Then the
expectation value of the neglected terms with respect to the canonical ensemble is zero.
Changing the Hamiltonian to its normal ordered form yields E(¢), the ground state
expectation value of the energy*. In the following we will mostly work in the regime of
zero temperature. The expectation values are consequently taken with respect to the
ground state.

For ¢ — oo we expect to find:

H(c0) = qu(oo) Dagag —|—Zek(oo) ooy

3
See [5]
4Some of the additional terms which would be generated during the transformation can be gotten rid of by
adding small terms to n. For a more detailed analysis see [5].
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+ 3 Viw o (00) < b6 crcr s +B(00).
k' q

The flow of the terms in (3.17) is governed by the following set of coupled differential
equations®:

dMj,
o~ Ok
dw
d—; = 2 ; |Mk,q|2ak,q(nk+q — )
do _2Z|Mk Patg,g(1 = ngyq + 1g)
dg p »q »q q q
+2 Z | Mg, ql* Qg q(1q + 1g) (3.19)
q
de k}l
d’f 1= _Mk,qulfq,qaklfq,q - Mk-l-q,—qu',fqak',fq
dE
- an+q(|Mk,q|2ak+q - |Mk+q,—q|2ak+q,—q)

k,q

The ny and n, are the occupation numbers of the electronic and phononic states, re-
spectively. To find these equations one simply compares the coefficients of the operators
in:

dlzy) = [n(0), H(®)] (3.20)
; dwjég) . a;aq . = 2? |Mk’q|2ak’q(nk+q — nk) : a;aq -

For T' = 0 the n, equal zero as the expectation value to find a phonon is 0.

In the subsequent chapters we will use this set of coupled differential equations for
T = 0 to investigate the asymptotic behaviour of the one particle energies and the
interaction constants and thus calculate their ongoing renormalization as ¢ increases.

3.2.1. Results of Wegner and Lenz for this set of equations

Wegner and Lenz used the equations (3.19) to investigate the attractive electron-
electron-interaction and the flow of the phononic energies. Their result for the in-
duced electron-electron interaction is an improvement as compared to the one found
by Frohlich [2]. These expressions are noted here.

The interaction for cooper pairs as found by Frohlich is:
Wy

(€k+q — ) — w?

Vi kg = |M,|? (3.21)

’The equations as given above are a simplification made by Wegner and Lenz. Only terms up to second
order in the interaction constant are kept [5].

10



3.2.  Applying the Flow Equations to the Electron-Phonon-Problem

whereas Wegner and Lenz found:
Wy
(€hyq — )2 + w2

Viohg = —| M| (3.22)

In (3.21) their is a singularity and for (exq — €x)* > w; the interaction is repulsive.
The interaction (3.22) is attractive for all cooper pairs and no singularity exists.
For a more detailed analysis see [5].

11
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12



4. The General Asymptotic Behaviour

4.1. General Transformations

As a starting point for the search of the asymptotic behaviour consider the equations

(3.19) for T =0 (i.e. ny = 0):

dMjq(0)
Weal®) _ oz (00000

dw, (¢
% =2 Z | Mpcq|* 0tk q (g — 121)
k

deg (¢
zé ) = _22 |Mk,q|2ak,q(1 — Ntq)
q

2
+2 E Mg, O rg,—qhtg
q

d‘/k,k' ,q (E)
dr

once again oy, = €444 — € + w,. The initial values are given by (3.18).

= — My, M, — Myyq—gMy _ 0 _,

"—q,¢YK —q,q

In the infinte volume limit these equations can be written in integral form:

dMj, 4(0)

- — g o (0) M q(0)
dw,(£) 14 3 2
C(ZE = 2(27r)3 /Bd k|Mk,q| ak,q(mﬂ_q - nk)
deg (L) V
i _2(27r)3 /Bd3q|Mk,q|2ak,q(1 — Nkyq)

13
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v
i (2m)3 /B d3q|Mk+q,—q|2ak+q,—q”k+q (4.9)
Weksa —  f Mo o Mo Mo o (4.10)
ae kM —q,q%% —q.q kta,=¢k —g" K —q '
B is the first Brillouin-Zone; we use €¢(k + ¢) = —(k;g)z even for (k + ¢) outside the first

Brillouin zone as we will be interested only in the vicinity of the Fermi surface. As
1 |k| < kf
0 k> kf

We can integrate (4.6) formally:

T =0 ny is given by: ng =

!/

Mig(£) = Mye™ o @i (O (4.11)

Using this expression the derivatives of w,(¢) and €;(¢) can be written as:

d Y4 2 74
wc?é ) —or / ko g(0)| M, e 25 Rl (1 — ) (4.12)
B
dey (€ o 1
efzé = —or / @ o o(0)| M, 2200 2O (1) (4.13)
428 [ Bgapsg (O e b (4.14)
B
.= (2‘;)3

4.2. Establishing a ﬁ behaviour

To investigate the equations above we first take a look at the integral:

/ B g g (0)| M, Pe=> 0 ok (4.15)
B

The integral [ d*kay, ()| M,|%e > Js 9.4 Jetermining the derivative of w, is treated
in exactly the same way. Hence, we will present the details for the integral (4.15)
only. For a more detailed analysis and the analysis of the integral [ dk... see appendix
A. Our aim is to find a self consistent solution of (4.12)and (4.13) for large ¢. We
assume the asymptotic form of the € (¢) and w,(¢) contained in o which we use to find
the asymptotic behaviour of an integral of the form (4.15). The integral is then used
to calculate the behaviour of the one particle energies according to equations (4.12),

14



4.2. Establishing a ﬁ behaviour

(4.13). This has to be in accordance with the original assumption.
We assume the following asymptotic behaviour for the €;’s and the w,’s:

wall) = wy(o0) + 1 (4.16)

and

€ (l) = ex(00) (4.17)

Here the b, and by, are real functions of ¢ resp k, but do not depend on ¢. The factor
% is chosen for convenience only. This asymptotic behaviour was first found for the
spin-boson problem by Kehrein, Mielke and Neu [8] and then used by Lenz and Wegner
for the flow of the phonons. In our case the electronic flow of the energy is taken into

account as well leading to more complicated equations.

We use dj, g := bitq — b + by,

b(k+q) b(k)  blg) i q

— + = Qp 4(00) + —=. 4.18
2/l NI 21 ra(20) 21 (4.18)

We will use ay4(0) = ax(q,l) = ay(k,l), as well as dy ,(¢) = di(q,0) = d,(k,?) to
demonstrate which variable is part of the integral. We also put ay 4(00) =: aj,

1.e. Oék,q(f) = Oék,q(OO) +

To calculate 4.15 we choose appropriate coordinates, i.e. the z-direction in ¢ space is
chosen parallel to k.

{ ’ ’
[ Bag 4(0)|M,[2e 2o @ialO%
(4.19)

= [, d®q|M,|? (ak(q, 00) + d;_\(/qz)) 672(4ai(q,oo)+2ak(q,oo)dk(q)\/er@lnl).

Here we did not take into account the last term at the lower boundary of the /-integral,

i.e. we put: foz %Q%,dﬁl = dff In/ and dropped the term: “%”. This problem can be

solved by either restricting the /-integral to the asymptotic regime ffo or by using an

asymptotic behaviour of the kind: ﬁ which will be done in chapter 5.4. Expression

(4.19) gives:

iy a2 ((q. 00) + 0) =it g2t~ entao0rs G2
=27 [ qdqdg: | M, ? (00(q, g, 00) + L ) (H00) a2 enlaaroo) G
(4.20)
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4. The General Asymptotic Behaviour

We denote ax(q, g., 00 d’“(\% =) as ak(q, ¢.00) again and obtain
qdqqu|M | <Oék q,q dk(q’qz)> 0~ 393(0:02) 207 (0,42) p 20 (4,0:00))
Y Z) 2\/@

1 ‘
= —ZW\/g/ ¢*dqdq.éd,(q, qz)ﬁ_%di(q’qz)e%%(q’qz)é(ak(q, q,,00)) for £ — co.
B
(4.21)

We used |M,| =¢é,/g and [ e~ dxr = /r. The above is equivalent to:

7T1~2/ 2 —La2(1) 242 (1) 1
—my\[ 5 -C g~ (t)di(t) 2%\ e\ ————dt 4.22
\f” +(t) (k0 | Va(t, 00) | 2

where 7(t) is the curve in the ¢, ¢,-plane given by ax(q, ¢,, 00) = 0.
We now use this result for (4.15) to write down the derivatives of €, and w, where we
calculate the right hand and left hand side of (4.13) and (4.12) separately'.

do _ b L
e 4

g’/qdqdqzc qdi (g, q.) 0 2@ 20809 § (0 (g, ., 00)) (1 = 1 1)

= k>l€f

= V2l

e\lb—*

1 1 ‘
= ﬁFW%ZEQ/ dt— (di (1)) ()03 RO 2RO (1 — ) (4.23)
v [Va(t)]

dw, _ blg) 1 _
de 4 3

1 L
= —\/§Fz7r352 / kedkdk,qd,(k, k,) 0 2% EE) 200D § (0 (k. k., 00)) (Mg — Tk
B

o 1 1 _1 :
= Vel / o " TFa(p) YR HE0 20O (g — ) (4.24)
vy(t

These equations have to be fulfilled in order for our assumption to be self-consistent.
The first self consistency test requires the algebraic decay in ¢ to be the same for the
right hand and left hand side of these equations. This holds, for example, as long as
d(k,q) =1 Vk,q: oag4(c0) =0. Then we have:

1
dt—
Ve fz 1 [Va(t)]

'For k < k; we have an equivalent equation which is found by simply replacing ., by Qtq,—q

k(8)(nk4q = 1)
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4.3. Showing the inconsistency of other algebraic behaviours

Equations (4.23) and (4.24) take the form:
—b(k)e2 = C (k) > (4.25)

—b(q)t" = —C(g)l (4.26)

This shows the condition for b(k) and b(q) in order for our assumption on the asymptotic
behaviour to be self-consistent. To investigate this further we will use (4.23) and (4.24)
to calculate C' (k) and C'(¢) and the b(k) and b(q). The larger part of this thesis will then
deal with the problem of really meeting this second requirement for self consistency.
Before dealing with this main point we make a remark on the algebraic decay.

4.3. Showing the inconsistency of other algebraic behaviours

We show that any algebraic decay other than ﬁ will fail to meet the first requirement

for self consistency.
di(q) di.(9)

We assume (g, £) to be of the form: a4 (q, 00) + #2%. Here L is the leading term

in the asymptotic behaviour as (¢ — 00). As soon as 7 is given the integrals governing

% and %‘j’ yield the same asymptotic behaviour in ¢, this is why we consider only the

integral governing %.
We use the same steps as in the case of v = % to calculate the right hand side of (4.13).

For the four cases v > 1, v =1,1> v > %, % > v > (0 we compare the /-dependency

(as £ — 00) of the left and right hand side of (4.13)

a)y > 1:
1 1
oy versus Al (4.27)
b) y=1
1 1
73 versus 7 (4.28)
c)l>y>1
1 1
o versus oo (4.29)
d) 3 >v>0:
1 1 1-2
W versus m—+%€_con8t.é ! (430)

17



4. The General Asymptotic Behaviour

We can conclude: The only possible algebraic asymptotic behaviour is given by:

dk,q
ak,q(é) = ak,q(oo) + —2\/Z (431)
(£) = ex(o0) + h (4.32)
€k = €00 2\/@ .
bq
wy(0) = wy(o0) + —~= (4.33)

4.4. Decay of the Interaction Constants

In this section we will prove that all parts of the electron-phonon interaction do decay
as ¢ — oo. This shows that our choice of 1(¢) does yield a block-diagonal form of our
Hamiltonian under the ¢ induced transformation

4.4.1. Exponential Decay away from Resonances
Let ¢ and k be values, such that
|tg,q(00) | = |€k,q(00) — €x(00) +wy(00)| =: @ # 0, where a is some constant. Then there

is a £*, such that for all £ > ¢* we have
la(0)| = |a(o0) + 2#\/2| > §. Equations (4.1) and (4.31) show that for a given £ > ¢*

My (0)] < [Myg(0)] - e 58 (4.34)

4.4.2. Algebraic Decay at resonances

For values of ¢ and k£ which belong to resonances, i.e. oy 4(00) = 0 we have some ¢*
such that for all £ > ¢*: ay ,(¢) = 2%/2. We then integrate (4.1) and find

=

[Miog(0)] < [Myg(0)] - 5™ = | My (0)] - € (4.35)

This shows the decay of all interaction constants under the ¢ induced transformation.
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5. Further Investigations on the Asymptotic
Behaviour

We have seen in the last chapter that the assumption of a CO—\T/‘th behaviour is the only
possible algebraic flow for a self consistent solution. In this chapter we search for the
coefficients b(q) and b(k), to find a fully self-consistent solution of (4.23) and (4.24).
In the first section, we will make some remarks on the behaviour of the ¢(k) and w(q)
under the ¢ induced transformation. In the second section we investigate the derivatives
of the w,(¢) and €, (¢) for b(q) and b(k) being independent of ¢ and k, respectively.
This corresponds to the unperturbed phononic flow. We then evaluate the integrals
determing the b(g) and b(k) under the assumption dy, = b(k + q) — b(k) + b(q) = 1
in section 5.3. The results give a hint on how to continue our considerations. We are
lead to use a more specific ansatz as used by Wegner and Ragwitz [7] who correctly
described the asymptotic behaviour of the phononic flow under the assumption of
constant electronic energies.

In section 5.4 we will use w,(¢) = w,(co) + 2\%1)7&) and a similar form for the electronic

flow to find the form of the b(q) and b(k) for a self consistent solution. In the last
section of this chapter we present a self-consistent solution and discuss its physical
implications.

For T' = 0 the important effects are going to be those involving small ¢ and values of
k near to ks. For this reason we will expand, if necessary, in terms of ¢ and k — ky.

5.1. General Considerations

For the deduction of the general asymptotic behaviour in the last chapter, we used the
assumption (see Appendix A), that during the /-dependent transformation a crossing
of the electronic energy levels does not occur. This means for all ¢:

k>k < e(l) > ey (0)
As the w, are phononic, i.e. bosonic energies we further assume:
wy(€) >0 Ve, q
To obtain oy 4(¢) = €x44(€) — €x(€) + wy(¢) = 0 we then need:

q=0 or |k+q|<k
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5. Further Investigations on the Asymptotic Behaviour

Take a look at the equations (4.12), (4.13) and (4.14). We want to find those parts of
these integrals, which are important for the algebraic decay in the asymptotic regime.
That is, those regions in which oy, 4(c0) = 0, because of the exponential supression for
other a.

We start with the integral for the evaluation of ‘fi—‘g. The regions over which this integral
is taken, are given by:

Ngtqg =1 and n, =0
or
Ngtq =0 and ng = 1.

In the second case, we would have: oy 4(¢) = €x44(0) — €, (£) +wy(€) > wy(¢) > 0, which
leads to a term exponentially decaying, compared to the leading asymptotic behaviour.
The integral in (4.13) differs from zero only if n;,, = 0, that is, we have |k + ¢| > k.
Let k£ < ky, this means: €,yq — € + wy > €kp — € +wq > const > 0. This integral is
exponentially decaying with ¢ for all £ smaller than k.

Whereas in (4.14) we have |k + ¢| < k; and, as the significant region of integration is
given by: opyg_q = €k — €hrq +wy = 0, we find apig_q > € — €kp +wy > const >0
for any k above the fermi surface. And this integral is exponentially decaying for all k
larger than k.

The parts of the integrals (4.12)-(4.14), which contribute to the algebraic decay, are
given by:

dw,

— k+ k k 5.1

70 k+q| <kp< (5.1)
dek dﬁk
— + : — + 2
a0 k> |k+q| > ky; 2 k<I[k+q| <k (5.2)

5.2. Example 1: Unperturbed Phononic Flow

To get a feeling for equations (4.12)-(4.14) we discuss a very simple assumption®. Lets
take dj, to be a constant, i.e. d = b(k+ q) — b(k) + b(q) = 1. Then we have (see 4.23
and 4.24)%

dwg __blg) 1

dt 4 g3

1
= —\/§F7r36252q£—3/ kdkdk,o(ay(k, k., 00))(Ng1+q — Nk)
> JB

IN.B. In general the b(q) and b(k) are two distinct functions
’N.B. None of the remaining integrals is ¢ dependent

20



5.2.  Example 1: Unperturbed Phononic Flow

1 1
= —\/§F7r36262q—/ dtk(t)— Ngig — N 5.3
2 O s g =) 5.3
dey, b(k) 1
— = k >k
dl 4 3 >
1
= ﬂFeQW%cg—g/ ¢*dqdq.6(cu (g, ¢z, 00)) (1 = nyg)
2 JB
1 1
= \/§F627T%5—/ dtq*(t)— 1—n 5.4
2, e ) (5.4

We will discuss these equation for very simple forms of the b(k)s and b(g)s. A natural
first try is to choose the b(q) and b(k) as constants. As one can see, the derivatives of
the electronic energies change sign at the fermi surface. (4.13)+(4.14). That is why
we assume b(k) to change sign at the fermi surface. For didactical reasons we will also
investigate the case of constant b(k):

I)b(q) =A, b(k) =B k>kfand b(k) =—B k < kg, will be our first try.

IT) In addition we will take a look at: b(q) = A, b(k) = B

This would mean, the inclusion of the electronic flow does not alter the phononic flow.
As for the phononic flow both these choices yield the same asymptotic behaviour, as
obtained by Wegner and Lenz [5], who neglected the effects of the electronic-flow. This
can be described simply by setting B = 0.

We check, whether these assumptions can be self-consistent in our considerations, where
the flow of the electronic energies is included. For the first assumption we explicitely
have:

B
Gk(g) = Gk(OO)—FQ—\/Z, k>kf
() = en(o0) — %, k <k (5.5)
we(l) = wy(oo) + 21\%’ k> ky

Consider further the integral governing %. The integral splits into two parts. As we
have argued in (5.1) only one part, given by: |k + ¢| < k; < k is important for our
investigation of the asymptotic behaviour. This lead to: ay4(¢) = ay 4(c0) + _é%A,

thus:

d=—2B + A.
Within the region of integration in (5.4), it is easily seen, that |k + ¢|,k > ks and this
means oy 4(¢) = ag4(00) + B_Zigf‘ = d = A. Combining both of these conditions gives
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5. Further Investigations on the Asymptotic Behaviour

B = 0. This means % = 0, which is not possible.

For the second case, i.e. IT) we have A = 1 for all our integrals. But, as argued above,
the resulting derivatives of the electronic energies change sign at the fermi surface.
Further, take a look at the equation (5.4), with |k| only slightly bigger, than k;. For
« to be zero |k + ¢| has to be smaller than |k| and at the same time bigger than &, for
(5.4) to be non zero. Thus the set S (zeros of ay,), i.e. the region of integration over
dt in (5.4), will decline like (k — k;)* as k — k. This contradicts the assumption of B
beeing a constant.

Easy solutions for our set of equations cannot be found, even not in the asymptotic
regime. To get an idea on how to continue our considerations, we will use, d=1 to
calcuate b(q) and b(k).

5.3. First Calculation of the b, and b,
We assume an asymptotic behaviour as given in 4:
b
Wy () = wy(oc0) + —= €x(l) = ex(o0) + —= 5.6
()=o) + S alt) = alo0) + (55)

Instead of assuming b, and by to be constant we use equations (5.3) and (5.4), in aform,
where the azimuthal symmetry hasn’t yet been integrated over, to calculate b, and by.
As long as: b(k +q) —b(k) +b(q) =dky =1 for all k,q: ag, =0 we have:

blg) 1 22 3
- = —ﬁFﬁe ¢ q/Bé(aq(k))(an —ng)d’k (5.7)
and
_@ - %Fﬁe%Z/Bq(s(ak(Q))(l —ngrg)d’q k> ky (5:8)
_@ - _%F\/EQ%Z/B‘]&(C%H,q(q))nk+qd3q k <ky (5.9)

To solve these expressions we assume, that oy, does not change significantly under the
flow of ¢, this is: 0(ay 4(00)) = 0(a4(0)).

5.3.1. Evaluation of b(q)

As we have shown in the previous section, our region of integration for (5.7) is given
by:

k>l€f> |k+q|, (510)
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5.3.  First Calculation of the by, and by

We choose the z-axis of & antiparallel to ¢, and with ¢ = |g| we have:

2

¢ kg
qu(k):%— m +cq:0

Setting r* = k2 + k., we evaluate (5.7):

b(q) = 2\/§F\/7_re262q/3d3k(nk+q —ng)d(ay(k)) =

2 k
4\/§F7r36252q/ rdrdk,(Ngq — nk)é(q— _ R4 +cq)
m

B 2m

Due to (5.10)
(ke — q)* +1° < k7 < kZ+r* which leads to 0 <k, <kf+q
We split the integral into two parts

k2_ kz_ 2 2
42075 €282 Okf f\/—ka*fk(? ? rdrdk,o(3— — % + cq)
4\/§F7T%€252q f:ffﬂ fo\/kf*(ka) rdrdkzé(% B % + cq)

ky

(5.11)

As ¢ is small and c is small compared to -, the argument of the J-function in the

second integral never vanishes . We substitute variables y = % and continue the

calculation for the first integral:

a2 (Zy—q)?
4\/§F7T%€262q fokfgl J ka (;i g Tdrdy%&(% —y+cq) =
g2

VR Gy
42T 13 e%m fokf% F(y)dyé(% —y+cq)

Straight forward integration over r and then over y yields:

b(q) = 422 e?Pmieq

ie. b(q) = const - q
where

const = 4\/§F7r% e2é?m?

(5.12)

(5.13)

(5.14)

(5.15)
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5. Further Investigations on the Asymptotic Behaviour

5.3.2. Evaluation of b(k)

We now want to investigate the behaviour of the electronic energies near the fermi
surface. (Explicitely we only consider values of k > k).

Again choosing suitable integration variables for our integral, we assume the z-axis of
our g-integral to be parallel to k. We then have:

a(q) = % + % +clgl=0 which requires ¢, <0
(5.16)

— |q| = —mec+ /m2c? — 2q,k,

The region of integration is limited by:

(1 —=npsg) =1

which givesk? 25 k2 25 j2 2 — 17
givesk® + 2kq, +q° >k} or ¢° >k} —k* — 2kq,

This condition and oy, = 0 can only be fullfilled as long as g, is smaller than the value
calculated below.

kF — k* = 2kq, = ¢ = m*c® + m*c® — 2kq. — 2mey/m2c? — 2kq,

which leads to (5.18)
q; = ﬁ(k}% - k2) — _8m2102_k (k]% — k2)2 = —a

As we are interested in values of k near the fermi surface, the last line can be approx-
imated to yield:
a= (k—ky)

We only have to take into account those parts of the integral with 0 > ¢, > —a. We
change coordinates of our integral to ¢, and ¢. Then the lower boundary [;of the ¢ part

is given by the larger value of |¢,| and \/max{O, k? — k2 — 2kq. }.

24



. . . X 1
5.4. A shifted Asymptotic Behaviour: O/

We proceed with the calculation of (5.4):

—b(4—k) = %Fﬁe%Z [ Paqd (i (q)) (1 — ngyq) =
b(k) = — 921222 fi)a dq, ff dqq*(ax(q, q.,0))

= —2V2mee?@ [° dg. [, daq? (' 0(q + me — \/m2 = 2kq.) (5.19)

= —2\/20'n3 2> fi)a dq,(—mc + y/m2c? — 2kq,)? Uz

(v/m?e®—2kq.)

_ 2 9~9 0 2m3c?—2mkq. 2
= AT [, da. (ﬁ - C)
We are interested in the change of the electronic energies near the fermi surface, then

lg:| < a, which itself is of the order of k£ — ky, is small. Expanding the denominator,
we find:

= 227322 f dq.(2m3c? — 2mqu) (14 — C2qz + 2m42c4qz) — 2m?c

= 233 [° dg, K (5.20)

_ 2 2 2~ k2 3
3\/§F7r2e 550

As
:%(k2_k?) 8m QCQk(kZ_kZ) Nkf(k—kf),
it is easily seen, that:

b(k) = —const(k — k;)* (5.21)

These calculations show, that assuming d = 1 and a behaviour like w, € ~ %jt for all ¢

would lead to a contradiction as e.g. di, — 0 for | ¢ | = 0. Trying to fix this problem,
we will now take into account a different dependence on ¢ for smaller values of /.

5.4. A shifted Asymptotic Behaviour: 2\/++—&)

Until now we have assumed the asymptotic forms (4.32) and (4.33) for all values of ¢,
which gave rise to the singularities discussed in section 4.2. When assuming a shifted
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5. Further Investigations on the Asymptotic Behaviour

asymptotic behaviour, the difficulty disappears. In the last section we have seen, that
a major problem in obtaining a self consistent solution is the problem of finding values
of by and b,, such that dj, , equals one.

This problem exists even if only the phononic flow is considered, i.e. €x(f) = €;(00) =
€,(0). In this case, d, = b(¢) = 1 is needed. Wegner and Ragwitz[7] solved this problem
by including the onset of the asymptotic behaviour. Instead of setting

wq(l) = wy(o0) + 2%/2 (5.22)
they used:
n(0) = y(00) + 5r (5.23)
where ¢, =

(4T wgq (00 \/_ez
As /7 has a pole at ¢ = 0, we loose one power of ¢ in (5.13), which leads to b(q)=d=1,
and thus solves (4.12) self—consistently, as long as the electronic flow is neglected.

The new behaviour of the flow can be interpreted as follows: For small / < ¢, the one
particle energies are nearly constant. For ¢ ~ {, there is an intermediate region and
finally for ¢ > {;, the general asymptotic behaviour is refound.

It makes good sense to assume a very similar asymptotic behaviour for the phononic
flow, even if the effects of the electronic flow are included. The change of the electronic
dispersion relation is small and hence. this change does not alter the phononic flow
dramatically. For this reason, we assume the asymptotic behaviour of the phononic
and electronic flow to be of this shifted form.

b ex(0) = €x(00) + — 2%

T3 T+ 0o(q) 2/C + (k) 524

Still assuming dy, = 1 Vk,q : ag4(0c0) = 0, we now do the same calculations as in
chapter 4:

l
S L = oD [y dhay(k, 0) | My P e 2R eiO (ny )
£+Lo(q)

3 b; 2 Jo@alboo 2, 2/ +t;
:2Fde k(aq(k,oo)+zz W\/’T&) | Mq | (& +h (nk+q—nk)
(5.25)

where we put
El = ge(k + q),fg = Ef(k),gg = EU(Q), by b(k + CI) by = —b(k), by := b(Q)
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5.4. A shifted Asymptotic Behaviour: Nﬁ
We calculate the exponent (using oy = ayx(00)):
l b; ’
—2 [ (g + >, Z\/T—&)ng
= =2 (ag(k)20 + 204 (k) >, bi/ T+ 0 — 204 (k) 3, b/ ;)
(5.26)
= 50i I (04 €)= 557, by In (04 564 €5) 4+ /02 + (0 + ;)0 + £:L;)
g 2 Il + 5 37, biby In (54 + £) + \/1:E;)
we set ¢+ ¢; ~ ¢ and find?:
= =200k + > %)2 +2(32; b))
+4aq7k Zl bl\/zl
(5.27)

-2 %b? In () — %Zi;&j bib; In (£)

t b nbi+ D iz bibjIn (106 + 4;) + 2:/4:L)
We set £ + {y = ( for the left hand side of (5.3) as well and find for the phononic flow:

b ; —20(ag(k)+3; 2)? )2
U = 20 [ (k) + i 5l) | My [P e e 2t

o7
xedra M ibivl =5 00? IL ¢ Hz’;éj(i(gi +4) + 5 gifj)%bibj (g — 1) Ak
(5.28)

We perform the integration over the k-values using the same transformation as in the
previous chapter:

b(q) = 2v20/7e*Eq [ 6(ag) (g — nr)
(5.29)
X [y (30 + 0) + /GO0 027 037037 dP

3This approximation is only true for the asymptotic region. As long as the ¢, and £. are no more singular

than a pole, the integral over the region, where we are not in the asymptotic regime, does not contribute
to the leading order.
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5. Further Investigations on the Asymptotic Behaviour

where we used: Y. b; = dj, = 1.

It is easily seen, that for & > k; the derivatives for the electronic energies are given by:
? ’ ’
_@ﬁ = =20 [, d®qap(q,0) | M, |* e 2)o RO (T — )
=

b(k) = —2V20/me?eVE [, | q | di(q)0 3% D5 (e (g)) (1 = ngg)
1 1 Lo p30i p3b3 9303 33 (5-30)
XHz’;éj(Z(Ei—i_gj)_Ff Kifj)2liél EQ €3 dq:>

b(k) = —QﬂFﬁe252 fB | q | (5(Oék(q))(1 — nk+q)
T es )+ TR B o,

For k < ky we find:

! !

—orta2
_@ﬁ =2r fB d*qrgyq,—g(0) | My |* € 2Jo g g ()it Nk 4q

=
(k) = 2V /T2 [, | q | S(0ksg,o())nsg (5.31)

1p2 1p2 1
X Ty (L6 + ) + S BG) 3% g

where for this last case

01 = Le(k), by = Ce(k + q), 05 == Lo(q); by == b(k), by := —b(k + q), bs := b(q)

Using the experience we have gathered in the proceeding sections (e.g. equations ((5.14)
and (5.21)), we make the following ansatz:

blg) =14+ A1 |q| bk)=B-(k—Fks) |k—Fky|
and (5.32)

Vi@ = 24+ Dy IR = B f(k — ky)

We are interested in the behaviour of our system for small ¢ and near the fermi surface,
i.e. k— kg small. In this regime ||k + ¢| — kf| is small as well. In this sense we neglect
terms of higher order in ¢ and & — ky.

In (5.32) f is an arbitrary function of k — k;. We only assume, that the behaviour of
% for K — k; can be no more singular than a pole.

28



. . . . 1
5.4. A shifted Asymptotic Behaviour: O/

5.4.1. Calculation of b(q)

In this realm we find for (5.29):

bg) = 2VATV/7e2q [, Doy (k) (s — i)
X\/E—lb%\/g—;é\/g—;é Hi<j(i(€i+£j)+% gigj)bibj Bk
— 2VALVFEE | g | [y PR30 (k)) (s — i)

(D1+D

14+2A1 \q\
lal )

X (Byf(lk+q|—Fkp))" “krd=kn* (g f(k — K ))BQ(Ic—kf)4
x (HBR 72 k4 g | =kp) + (B2 + Do)

(5.33)

) (I+Ala))(B(|k+al=kg)|[k+al—ky])
LB ( B+ | —kp) (B + Do) )

x (L(BS2(k — ) + (5 + Do)?)
%(Elf(k kf))( Ly DO))—(1+A1|q|)(B(k—kf)k—kf)
x (F(Bf2(1 k+q | —kp) + EPf2(k = ky))
%(E1f(| k+q| —kf))(Elf(k . kf)))—(B(k—kf)Ik—kfl)(B(\kJrq\—kf)\\k+q\—kf\)
= 2T rerdtg (2 + DO)HM”’
% [y 8(ag(k)) (g — ) (1 + O, (k = ky)?)

With O(¢?, (k — ks)?) we denote terms of order ¢%, (k — ks)?, q(k — ky) or higher as
g — 0 and k — ky, eventually multiplied with a logarithmic divergence of the type ln%
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5. Further Investigations on the Asymptotic Behaviour

for k — k;

These terms of higher order can be found by noting for example:

h(q, k — k) (- AGaD)(BUk-al—kp) -hal—ks [+ Bk lk—hsl)

L (nha.k— k) (B k+q | k) |k +q| kg | +Bk—kp) [k = ke ) (5:39)

+h.o.T.

h(q,k — k¢) denots any of the brakets of the last terms in (5.33).

As long as h(q,k — ky) is continouos or has poles for & — ky, it is readily seen, that
the second term of (5.34) vanishes like o(¢) and o(k — k).

We use the same manipulations as in (5.19), to continue from (5.33):

>1+2A1q

b(q) = 42072 e2m - (% + Dy

k2—£—m2c2+ mc
VEEomie ey oG, (k — kp))rdr

X
\/kftqu —m2c2—qme

(5.35)
— 4203 2Pm (DW + Do+ AyIn (% + Dy)g + 0(q2))
(meg + O(q?))
Finally our considerations yield:
b(q) = 42T r2e2Pm2c(D_1 + Doq) + O(q?) (5.36)
We now choose
1
D_, = and Dy = Dy/D_;. 5.37
! 42072 e282m?2c ‘ o/ Do (5:37)
Then we have:
b(q) =1+ Djg + O(¢?) (5.38)
this means:
Ay =Dj (5.39)
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. . . . 1
5.4. A shifted Asymptotic Behaviour: il

5.4.2. Calculation of b(k)

We now calculate the b(k) for k > k;. The results for k < k; are found analogously.

b(k) = =2v20/7e*@ [, [ ¢ | 00 (@)) (1 = 1)

(5.40)
X\/g_lbf\/gbg\/g—gbg Hi<j(i(£i+€j)+% gigj)bibj d3q
= —4\/§F7r%e252 fi)a dqudqq2 114_05(|q| + mc — \/M)
D_ 1+A1g|
% (ITII + DO) (5.41)

+h.0.T.

where the higher order terms are again of the form as in (5.34). For the ¢ integration we
have omitted the boundaries (they are the same as given in 5.19), it is only important
to note, that the lower boundary is less than zero and the upper boundary is larger
than zero. We can write the expression (5.41) as:

— 42072623 [° dg, [ dgq®<=0(q + me — \/m2c — 2¢,k
a +c

q
m

(5.42)

|al

X (b + D0> (1+ (55 + Do) Avg) + h.o.T.

= —4\/51—‘71'%6252 fi)a dQZqu

1
—0(lg| +me — \/m2c? — 2¢.k)

a
m

><(D_1q) + h.o.T.
= —4/2T72e2 [° dg,——2 (D_,(v/m22 — 2¢,k — me) + h.o.T. 5.43
a \/m2c2—2q.k
= —4\/2T 73 e2¢2 fi]a dg,D_4 (#) q, + h.o.T.

— —4\/2T72e2D_ ka2 + h.o.T.

2mc?
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5. Further Investigations on the Asymptotic Behaviour

As shown in (5.18) a is given by (kK — k) and we find:
ky

mc?

b(k) = —4\/§F7T%6252D,12 (k — ky)? (5.44)

Inserting D_; as given in (5.37), the expression above gives:

kf 2
which means
kg

B=-
m3c3

(5.46)

5.4.3. Discussion

Using the asymptotic behaviour for the one-particle energies as given in (5.24) and the
assumptions as made in (5.32), we have shown, that equations (5.25) and (5.30) are
solved self-consistently. There is only one assumption left, we have to consider. This
is d =1, where a = 0.

For d(k,q) we now have d =1+ Ayq¢+ B(|k + ¢| — k7)2 — b(k — kf). This obviously is
not constantly equal one. In the following section we will investigate the case, where
a(00) is shifted from «(0), such that fopr the relevant region of integration d indeed
equals one. In the next chapter we will then take a look on equations (5.25) and the
second line of (5.30), when d is non constant.

5.5. A Self Consistent Solution

We now have to show, that our ansatz is indeed self-consistent.

Here we investigate the form of dj ,, as is needed for the calculation of the integral in
(5.30):

Aig = bprg — b + 04 =1 (5.47)
as long as
Qg q(00) =0 (5.48)
where « has the extensive form:

kg (00) = €h44(00) — €x(00) + wy(00)

(5.49)

B(|k+q|—ky)* B(k—ky)* 1+A;q
= €4+4¢(0) — = —Z — € (0 Wy — p————
k+0(0) = FTmagryr — & (0) + Fmir P Do+ D1g
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5.5. A Self Consistent Solution

The first equation (5.47) is easily seen to yield

drg=B(| k+q|—k)? — Bk —kf)> + 1+ Aig

(5.50)
=B lk+q|*—Bk*—2Bki(| k+q|—k)+ 14+ Aiqg
Using (5.49) we can now transform this expression to:
2mB(—cq+ £-(1k+q| —k) + 5=q) = 2Bks(| k+q | —k) + 1+ Aiqg =
(5.51)
1—2meBq+ 28q+ Ayq+ 2 (| k+ q | —k) — 2Bk(| k+q | —k)
Choosing F; = "];—;3 this means:
2mB
drg=1— (2meB + == + A})q (5.52)
-1
In order for this expression to be one, we can put:
1
A = —2mB(c+ —) (5.53)

D_,
This not only proves the self consistency of our assumptions, but just as well leaves us

with a possibility to calculate the constants.

5.5.1. Discussion

We have shown in this section, that - with a shifted asymptotic behaviour - we can in-
deed find a dj, 4, which self-consistently solves equations (5.30). Looking at the solution
of this section, however, one sees the following:

1 k
= k- Lk —k 5.54
ex(00) = 5k = Lk — y) (554
This leads to a fermi velocity, given by:
dekf

The fermi velocity vanishes, which cannot be justified physically. Hence, we do not
continue on this way to find a self-consistent solution. In the next chapter we turn to
a non-constant dy, .
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5. Further Investigations on the Asymptotic Behaviour
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6. General equations for the shift of the
asymptotic behaviour

6.1. General Remarks and Outline

In this chapter we will continue evaluating the integrals in (5.25) and (5.30) for the
more general case, where dy, , is a function of %, ¢ and not necessarily constant for all
those values of k, ¢, where oy, = 0. Hence, we start with expressions (5.29) and (5.30):

b(q) = 2V/2T/T2PqV/T [ 6(ag(k)) (ngsq — ny) 7350

(6.1)
Lo;b; p3bT y3b3 5303
X Hz#](i(& + éj) + % gigj)2blb]€1 EZ €3 d*k
and
b(k) = —2v20/7e2qVe [ 6(ar(q)) (1 — npg) 2%
(6.2)
Lp;b; p3b7 303 )33
X HZ#](i(EZ + g]) + % &&')2(%1)761 62 63 d3q
To continue we set:
F(h,a) = Mgy (36 6) + 3V P 0
(6.3)
C := 2V/2'\/7e?&?
We now have:
blq) = C’q\/z/ 6 (cvg(k)) (1grq — nk)Fq(k)f_%dg(k)d?)k (6.4)
B
b0 = ~OVE [ 80 () (1~ necJaFila)t HE0 g (65
B
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6. General equations for the shift of the asymptotic behaviour

To evaluate an integral of this type we will proceed similar to the way given in appendix
A. First we investigate the behaviour of dz’q and show, that is given by an expression
of the form 1 + g, , where the latter is strictly positive. Then we use

im ([ () (Mg — 1) Fy(k)e~9aRneg3E)

L— o0

(6.6)
= 7 [ 8 (00 (k) (g0 () (i — i) Ey ()R

to continue the transformation of our integrals (6.4), (6.5). We start the next section
by investigating g(q,k).

6.2. Calculating the general expression

6.2.1. Investigation of the exponential

We will use the results of the last chapter to find the Ansatz for g(q, k)
b(k) = Bk — k(K — k), (6.7)

as B is negative, this is negative for £ > k; and positive for k < ky.
and we put

b(q) =1+ Ag® (6.8)
Note: The Ansatz in the last line is not exactly the one of the last chapter. At this

point the choice is for mathematical convenience only.

As in (6.1) di, is given by:
deg=1+aq’ + Bllk+q| = k| (1k + | = ky) = Blk = ky|(k —k;)  (6.9)

We want to investigate expressions containing terms of the type: e~2%4m¢ To do so
we need to find those values of ¢ and k, for which g(q, k) := d*(q,k) — 1 equals zero.
We also have to show, that g(k,¢) > 0 for all values of ¢ and k. We are only interested
in the “relevant” values of ¢ and k, i.e. those values, where a(q, k, 00) ~ 0.

We start by investigating g,(k), as is needed for the evaluation of equation (6.4). For
the relevant region of integration in (6.4) we have: |k +¢| < k; < k.

9q(k) = d2(k) — 1 = 2A¢" — 2B(|k + q| — ky)* — 2B(k — ky)* (6.10)
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6.2. Calculating the general expression

For fixed ¢ the k values relevant in the integration (6.4) are defined by:

|k +aql = /K2 + 2k.q + ¢ (6.11)

= \k? = 2meq = k — Tq

We find for g, (k) :

2,.2.2

2 2
2Aq2—23(k—kf—m—mcq) — 2B (k - k)

k 2k3

2.2 2

= 2Aq* + 4B(k — ky) (™4) — 2Bt

— AB(k — ky)? (6.12)

+2 (A . Bm:;2> ¢® + 4B (k — ky)meq

Terms of higher order in ¢ and (k — ky) are neglected here, as well as in subsequent
calculations.

We set Ak := (k — kf) and use k =~ ky:

2.2
2 (A - B ) @+ 4B(AK) 2 — AB(AK)? (6.13)
Note: B < 0. We write for (6.13):
1me \° m?c?
—4B | (Ak) — ==—q) + (24— B—)¢" (6.14)
2 k; K

This function of Ak is a parabel with minimum at (

%’;‘_fcq/(QA — B%)ﬁ). To have

gq(k) to equal zero at the minimum, we choose:

1 _m?2c?
A= —-B—— 1
2" (6-15)
Then we find the desired:
1 mc 2
gq(k) = —4B | (Ak) — ——¢q (6.16)
2 ky
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6. General equations for the shift of the asymptotic behaviour

For the evaluation of (6.5) we consider:
gr(q) = 24¢" + B(|k + q| — ky)* — B(k — ky)? (6.17)

Here we are interested in the values of ¢, for wich:

kq. q2 . k
ap(q) = +—+cqg=0ie. ¢ <0: qg=—-mc+\/m?>?—2kq, x ——q,
m 2m mc
(6.18)
then we find:
mc
f

We now continue with:

ae(q) = 2A¢% + B ((k — ky) + ¢.)* — B(k — ky)?
(6.20)
= 9Bq? + 2Bq.(k — ky)

where for the last line we used (6.15) and (6.18). We have found a parabel with
maximum at: (—4$Ak/ — $B(Ak)?). As we will show later, this means gx(q) equals
zero at the boundary of the integration values of the integral in (6.5).

6.2.2. Evaluation of the Integrals

We now calculate b(q) and b(k) using (6.4) and (6.5), respectively. We change coordi-
nates in the first equation

(kg, ky, k) — (k, k., ¢) and perform the integration over the azimuthal symmetry. In
the following we closely follow the calculation as given in 5.3.1. Note: the function F'
is not equivalent to the one used in equation (5.12).

b(q) = 27qu\/Z fB2 kdkdkz(nk+q - nk:)Fq(ka kz)

1 1 2
Xefélnlfégq(k)lnl5 (Qq_m . k;nq + Cq)

(6.21)
= 27TCq fk\f/kf*q —2kzq Ldk fokf dkzé (% _ % 4 C(]) F(k, kz)e_%gQ(k)lné

/k2 1 2me _1me 2n
= 2nCm [V kpdk PGk, k )623(‘“’ TORL

_ q
z——E—mC
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6.3. Logarithmic Counter Terms

We use similar arguments as in chapter 4 and in appendix A to find this expression to
equal:

1 me
-9, kz —

F,(k=k — —= .22

— mc)

3 1

We now calculate b(k). We use the constant a = (k — ky) as calculated in (5.18) and

we use the approximation: ¢ = —mc + /m?c? — 2kq, = —%qz. In addition we use

b(k) = —2wCV [, da.daqS(an(q)) Filg, g.)e 5=t bon(@int

= 2nC fi)a dq, [ dqq® 1+c(5(q +me — \/m?c? — 2qu)Fk(q)e—%9k(q) In¢ (6.23)

aq
m

0 k% _ £ N n
— —27TC f_a dQZmTfCquFk(q = —%qz,qz)e (BQE‘FB‘]Z(IC kf))l /

At both boundaries, we now have an integral of the type:
fooo e—const-a:Inliy  For ¢ — oo this is readily seen to yield
We now find:

B S
const-Inf

k2
X |:{mch3ngk(q = —ﬁqz,qz)}q i (6.24)

k2
+odz(k—kp)?Folg = —Lq.,q. = (k- kf))] W

6.3. Logarithmic Counter Terms

To continue evaluating (6.22) and (6.24), we first need to get rid of the logarithmic
factors. This can be done be adding an additional term to our Ansatz for the flow of
the one particle energies:

b e
wq(£) = wy(o0) + : + d (6.25)
2V (@) 20/ 1 By(q) In(0 + Go(q)
ex(0) = € (00) b (6.26)

+ + —
2\/C + (k) 2\/£ + 0e(k) In(€ + Cc(K)
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6. General equations for the shift of the asymptotic behaviour

As before we have ay ,(00) := €44(00) — €(00) + w,(00) and we define:
di,q := br1q — b, + by, in addition we also set: ey, := €p1q — € + €.

In the same way as in chapter 5, see equations (5.25) and (5.30), we have to solve

) N
equations for b(¢) and b(k) containing expressions of the kind e=2/ %)% We start
by calculating

Y4 ’ ’
Jo o (€)dl
= lo? + 2adk,q\/z + 2aek,q£

(6.27)

7 2
203, bivVli =20y, ez‘\/{_i + d'fl—’q In ¢+ 3dy gepqInin ¢

In/;

+f(k,q)

where we set: 01 = Uy g, Uy = Ui, U3 =1,
and by = byyq, bo = —by, b3 = by, with analogous definitions for the e; and [72
We neglected terms of order [ L__d¢ and terms like
\/é_lan 14 B
Flz; and we used: {4+ (; ~ (, as well as £ + {; ~ /.
As the second line of (6.27) does not contribute (o & 0), f(k,q) includes all the effects

of the ¢; and /;. If one negelcts the dependency on ¢; alltogether we have:

e 210D = B (k, q) (6.28)

where F'is the function as defined in (6.3).
We now have:

—2 [l (£)dl =

0

2
—9/ (ak,q + d’“w + j;;l_,) (6.29)
d2
+2d} ,+ O (ﬁ) — 2200l — dygepqInlnl — 2f(k, q)

We insert expression (6.29) into the equations, which determine the b(q) and b(k), i.e.
(5.25) and (5.30). We use (6.28)
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6.3. Logarithmic Counter Terms

b(q) = _8F€252q£% I (aq(k, 00) + dg\(/]%) + 2%(1124) (Mk+q — Tk)

o b Iy £)~duea®) B ()~ (oo 47
(6.30)

b(k) = 8Te*&ql> |, (ak(q, 00) + [12’“—\(/%) + —2%;}3» (1 = ngsq)

2
) SB@ (I 0y d@er) f ()2 (0 TP IT) T g

Once again using as transformation as in chapter 4 and appendix A, these equations
become:

b(a) = 2V20V7EEGVE [y (dy(k) + S8 ) (s — )

N LAL) nt(|p g)—dq(k)eq(k)Fq(k) 0(cy(k))d’k
(6.31)

b(k) = —2v/201e*ql fB (dk(q) + elkn(z)) (1 — ngiq)

xe 3 B@ eIy () ~d@e @D Fy (q)  5(cu(q))dPq

We follow the same way as in (6.2.2) to transform these expressions to:

bla) = 2m2 Cmky A Fy(k = by + 5850, ke = =4 — m)
x(Ing) bR kg

qz=

kz
X |:{m203quk( %anqZ)} 0 mgc;; (k kf)QFk( %qz,qz frd (l{; — kf))

X (].n g)_l_ek(q:_%q:ﬂz:(k—kf)
(6.32)
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6. General equations for the shift of the asymptotic behaviour

F,(k,k,) and Fy(q,q.) can be seen as one function of F(q,k, |k + ¢|). In addition we
choose the ¢, = 1 and e, = —sgn(k — ky);

We insert our assumptions b(¢) = 1 and b(k) = B(k — k;)? into (6.32), which we then
rewrite:

3 mc mc
1 =212 Cmky 25 F (. k = ky + 55%5q, [k +al = kg — 539)

B (k — ky)? = 2nC1 [{q2Fk(q = K (b — k) [kt q| = k)} 0 (6.33)
q:
i 2 _ ks _
s (s — k2Pl = 22 (k — kp) B, [k + g] = ky)|

These two equations can be seen as fundamental set of equations for the investigation
of the shift of the asymptotic behaviour or more general for the dependency of the
one-particel energies on ¢ before the onset of the asymptotic behaviour.

6.3.1. Discussion

In this chapter we have continued our investigation of equations (5.25) and (5.30). It
is necessary to have dz’q > 1 for all values of ¢ and k£ which belong to resonances
and dz’q to equal one, at least at one “relevant” point in every region of integration
of the integrals in (5.29) and (5.30). Here we have assumed the most general form
possible. This has led to an additional § function, as well as terms logarithmic in /,
when evaluating equations(6.4) and (6.5). By adding terms of higher order in In/ to
the asymptotic flow of the one-particle energies, we were able to find counter terms
and refind the leading order of our asymptotic behaviour.

We then found equations, which can be used to determine the ¢ and k£ dependency of
the shift in the asymptotic behaviour.

Taking a look at (6.33) it is easily seen, that F(q,k, |k + ¢|) has to depend, not only
on ¢, but on k, |k + ¢|, as well. As F is given by (6.3), this means, that the ¢, have
to contribute. As was seen in (5.32), this does not happen, if they behave no more

singular, than poles at the fermi surface. Hence, we are led to assume a behaviour of
the . (k) like:

0u(k) = e® " (6.34)
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7. Transformation of the One-Particle
Operators

7.1. General Remarks

In this chapter we calculate the transformation of the one-particle electron opera-
tors. The transformation is similar to the one of the phonon-operators, investigated by
Wegner and Ragwitz in [7]. They used their results to calculate the phonon-correlation
function.

In 2.2 we gave the general behaviour of any abitrary operator under the /-induced
transformation. One can consider the formalism of Hamiltonian Flow Equations as
an implicit, continuous transformation of the basis, where for / — 0o an eigenbasis of
the Hamiltonian is found. For every ¢ any operator has to be presented in the basis
corresponding to this very /.

According to (2.7) the change of the electronic creation operators ¢; are governed by:
de;f (0)
e = 5(0), i (0) (71)
where n(¢) is given by (3.16):
Z (O‘k,q(g)Mk,q(g)airq - ak+q,fq(€)Mk+q,fq(£)aq) Cl:+qck (7.2)

k,q

7.2. Differential Equations for the Electron Operators

7.2.1. Electron-Creation-Operators

For the form of the electronic creation operators under the ¢ induced transformation
we make the following Ansatz:

e (0) = uf (O + Z u;ci—,q(é)ai—qcl-c:»q + Z uk,q(é)aqcl—;rq (7.3)

q q

Here u; (£), u; ,(¢) and uy4(¢) are £ dependent functuions, with thye starting values:

ug (0) = 1,u,(0) = u4(0) = 0. In (7.3) higher order terms, i.e. normal ordered
multiples of creation and annihilation operators are neglected.
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7. Transformation of the One-Particle Operators

To find the differential equations as induced by (7.1) and (7.2), we need to calculate
the following commutators:

+ 4+ _ +
[ E Mk/’qakf’qa_qck,ﬂckf, = E My gan g0t .0, (7.4)
K ,q q

+ +] — +
[— § :Mk’+q,—qak’+q,—qaqck'+qck’aCk] = § :_Mk+q,—qak+q,—qaqck+q (7.5)
k',q q

E + .t + .+ — E RS P L,
[ Mk',q' ak',q, (Liq, Ck/+q, Cr' aiquJrq] = Mk+q,q' ak+q,q' . afqaiq, : Ck+q+q' (76)
k’,q, ql

— + + .+
[ Zkl7ql Mk,+q',fq' ak'+q,,fq, (Lq/ Ck'+q, Ck”a—qck-i-q]

_ + +
= —Mp g0q (1 — Npig) ¢ — Mg qn—qcy,

— . At + . L+ Lo+
PN, My a0 —gq: C ok Chtq Zq/ Myt d Chsged =g OqOy Cot gt
(7.7)
+ .t +
Dow ¢ My gy g A_yCr v Gk AqCrq)
_ + +
= Miyq,—qOktq,—qTh+qCr, + Mitq—qQktq,—qTqCk (7.8)

c ot ) Lo+ e
— > My o g ChrgChl Ok + Zq’ My od Chrgd al Gg i Cp L

[— zkl’ql Mk’+q,,fq, Ozkl+quiq/ aql C;+q’ Ck/ R aqclj—l—q]
(7.9)

_ +
- Zq’ Mk+q+q’ ,*q, ak+q+q' ﬁq' a’qa’q, Ck+q+q’

44



7.3.  Solving the Differential Equations

This yields the following set of differential equations:

wt(e
Wl — S My (D)g(0) (1= nprg) uf ,(0) = 3, Mig(O)aug o (On_qu, ()

(7.10)
+ Zq Mk+q’_q(E)ak"'q’_q(g)nkﬂuk:q(g) + Zq Mk+q,—q(g)alcﬂ,—q(g)nquk,q(g)
du;q(é) B .
a0 = tMialOw, (O () (7.11)
duig(0) )
Y7 My g,—g(O) kg, (O (€) (7.12)

We work in the regime T' = 0, where the expectation value to find a phonon is zero
and, hence, we have n, = 0.

7.2.2. Electron-Annihilation Operators

Similarily the Ansatz for the transformation of the electron-annihilation operators is
given by:

cp(0) = O)ey, +Zu,~c g (Oat o g+ Zuk _; Dager—q (7.13)

and one finds a set of differential equations equivalent to: (7.10)-(7.12).

7.3. Solving the Differential Equations

We now solve the differential equations governing the transformation of the electron-
creation-operators. First we insert equations (7.11) and (7.12) in (7.10), which gives:

!

O 3, Micg (O (0) (1= 1) fy Mg (€ Yo (€Y (€) 0
(7.14)

4 ' / /
- Zq Mitq,-q(€) g (€)1 g fo Mi+q,-q(€ ) Othg—g (€ g, (£)

In addition equations (4.6)-(4.9) hold, of course.

Just as in our discussion in section 5.1, we find, that for & > ky only the first term of this
integro-differential equation is of importance, i.e. the second term decays exponentially,
whereas for k& < k; only the second term has to be considered. Here we explicitely solve
equation (7.14) for k > ks only. The case k < ky can be handled in exactly the same
way.

We know the asymptotic behaviour of ay 4(¢) to be of the form:

45



7. Transformation of the One-Particle Operators

b(k+q)—b(k)+b
0k q(€) = g (00) + LRI

We use this form, and not the more refined one as given in (5.24), for reasons of clear-
ness, only. The calculation for the more refined case is done in a completly analogous
way.

Note: for the following we assume b(k + q) — b(k) + b(q) = 1 for all values of k£ and ¢
within the region of integration with: ay(g, 00) = 0. For a more detailed discussion on
this assumption see section 5.4 and 6.

Using (4.6), we have:

(7.15)

where as before |M,|* = ¢*q

In the asymptotic regime, we assume u; (¢) to show an algebraic behaviour of the kind
bi(£ + Lo(q)) ™. For the following we can neglect y(q) as £ > £ and we divide both

left and right hand side of equation (7.15) by b,. We replace the summation over k by
an integration.

D (a (,00)+—~ )de”—f‘ 1 (4,00) 52 e
_T¢2 fB foﬂgf 'qu 0 b 24/ 0" 444 0( * % +‘0)
(7.16)

1 / 1 3
X (ak(Qa 00) + 2m> dl <ak(Qa 00) + 2\/e—+7&)> (1- nk—l—q)d q
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7.3.  Solving the Differential Equations

We calculate the exponent in this equation:

!

2 2
¢ " Y4 *
- (ak’Q(oo) * 2 ;’JrlO) = (ak’q( )+ 2\/41”0) dt

=—a} (0 + 1) = 204 (VT+ by + VT + ) + 4oy /Ty
—LIn(0+ ) = LIn (€ + &) + L 1n (£) (7.17)

2
_ ' VIl 1 +4o 20 2Vl+00\/ 1 +Lo
——(f—i-g)(ak,q‘i‘ﬂ—é/) +1+H—2'+T

+ag /Ty — LIn (0 + 6) — LIn (€ + £y) + L1n (¢)

As the relevant values of ¢ are given by: «g(g,00) =~ 0 we can neglect the term

2040 (q)V/ 1.

We insert this expression in (7.16):

A
= —Tec [} [, € q3 (ak,q(oo) + 2\/2,+—&)> (Ozk,q(oo) + ﬁ)

(7.18)
; 2
L1 (z+z')<ak,q+”+“f{ M’) MJ+2M\/‘7,+ZO )
il ‘e * et+t e+l (1 = npyq)d®qdl
For ¢/ — oo, this expression is transformed as in 4.23. We find:
L o rt =Y 3
= —Im2ec® [ [0 " 0(ouw(q))qls
% VI L + 1 VIV 41
o+0 /0 +o e+0 20T+, (7.19)

L1 200 +2‘/1+z0\/1’+z0 /
x0~il A et e+t (1 — ngyq)d®qdl

VAN

We are in the asymptotic regime and choose ¢ such that In¢ > {y;! in leading order

! As we have £o(q) ~ q%, this is only true for the larger part of the region of integration. We neglect effects
1

due to the region of integration, where g > Tt
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7. Transformation of the One-Particle Operators

expression (7.19) is equivalent to:

—oP7sed [, [l "6(ak(q))*3

X(_\/E-I-Eo-i-\/é’-l-éo_'_ 1 )(_\/f-l-fo-l-\/é'-i-fo_'_ 1 )

o400 N/ET o+l 2v/0+0o

o oty 2R (ot ,
xf{~if * 1 el+l vy (1 - nk‘H])dqdqzdg

i+t

We can now use ¢+ ly ~ ¢ and ¢ + (y = (', to find:

—ormted [L, [, 0T 6 (on(a)) P08

o+

vy 2\/[/ \/ﬂ

(7.20)

1 2ff
X( NI/ )( VI )zz T oot (1 — npyy)dqdg.dl

We exchange the integrals to find:

—oI'72ec? [ 0((9)) %03 (1 — 1) dgdq,

L+L

ey f+\/_ 1 Ve Sl 2L
Xflnlg ( ) <_ 7 +2_\/Z>€ af 4é—+é6 e+l dl

e+t 2\/_
We now use the equivalent to the second line of (5.30):
b(k) = ~tVIDVER [ @8(ay(R)6 (1 = neso)dad
B2

and find:
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7.3.  Solving the Differential Equations

U
We set: z = % and the expression becomes:

b(k) El*yf[—’y—z (Lv/Ey2_1

2
0 (- =

Jite exp(3}5

2 e virs OP(TH) (7.25)

ﬁ)d

1 1 1..—y-3
1 o mexp(1+x)+4x 4mexp( x

As we are interested in the asymptotic behaviour for £ — oo we could replace = It hy 0
at the lower boundary of our integral. We can now insert u; () into the left hand side

of (7.24), b(k) = 2m3c3(k — ky)? from equation (5.45) into the right hand side and
write Int instead of the integral. We then find:
o (LR e ) e (7.26)
2/2¢ 2m3c3 .

The (-dependency of the left and right-hand side of this equation is the same and we
can use this equation to determine 7y:

1k}
v = (2\/_6 Py - Int(y )) (k — ky)? (7.27)
where we have written Int(vy) to show, that the integral itself does depend on ~y. For
small values of ~ this dependency, however, is relatively small, as compared to the
(k — ky)*-dependency. Numerical calculations yield:

vy=0: Int=-0.129

v=0.01: Int=-0.240

v=0.05: Int=-0.349

This means, we find:

O (% (7.25)

7.3.1. Discussion

One would actually expect to find (7.28) without a minus sign. Then the spreading out
of the electronic one-particle operators would depend on the distance of these electrons
to the fermi surface, with the spreading out becoming slower and slower as k£ approaches
the fermi surface.

In this form, however, (7.28) shows a contradiction. We assumed u; (¢) to depend on
0 like £77. (7.28) describes a growing u; (¢), which is clearly not possible.

Hence, the transformation of the electron-one-particle operators is not given by an
algebraic form.
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8. Conclusion

In this thesis we have investigated the electron-phonon-Hamiltonian (3.1) using the
method of Hamiltonian Flow Equations. Starting point of our analysis was the funda-
mental set of coupled integro-differential equations, as found by Wegner and Lenz [5].
This set of equations governs the flow of the interaction constants and the one particle
energies under the /-induced transformation. Very little experience exists how to han-
dle these equations. Therefore, this work has partly the character of a mathematical
study rather then attempting to calculate physical quantities. Several mathematical
results have been obtained.

The renormalization of the energies is given by the difference of the one particle ener-
gies at the start of the transformation (¢ = 0) and its end (£ — o0). In a first step we
have proved that the inclusion of the electronic flow into the set of differential equations
does not alter the behaviour of the phononic flow in the asymptotic regime. For large
values of / the flow of the one particle energies is given by

b(q) b(k)
Wq + 2_ﬂ ) €r + 2_\/2

for the phonons and electrons respectively. The b(¢) and b(k) remain to be determined,
from the differential form of the flow equations. Other algebraic behaviours, i.e. a flow
of the type C"EZ“, with v # % are not possible. Using this result, it was seen that the
interaction constants do decay as ¢ — 0o; most of them exponentially, only for those
values of ¢ and k for which we have resonances, i.e.

Qg = €p1q — €k + wy = 0 the decay is given by

1

Mk,q(g) ~ {77,

In a second step we have investigated the functions b(q) and b(k). One is led to shift
the asymptotic behaviour in the same way as in the work of Wegner and Ragwitz [7].
We chose the form

wq + ) — , € +

24/0+0o(q)
for the flow of the one particle energies.
The ¢, is found to equal the one Wegner and Ragwitz found for the case where the

electronic flow is neglected. The /.(k) remain undetermined at this point.
This shifted asymptotic behaviour yields b(¢) = 1 and b(k) = ——z (k — kr)?. A result

m3¢3
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8. Conclusion

like this is necessary, as the fundamental set of equations leads to a contradiction, if
diq = b(k +¢q) — b(k) + b(q) # 1 for values of ¢ and k which belong to resonances.

In chapter 5 we searched for a solution with dj , equal to one on the line of resonances.
Such a solution could be found; the physical use, however, seems doubtfull, as the fermi
velocity would vanish.

In the subsequent chapter we have investigated an Ansatz using a non constant dj .
This has led to terms logarithmic in ¢, violating the self-consistency of the Ansatz. To

refind a C;—\”/szt asymptotic behaviour in the leading term, we introduced an additional

term fo"%f 7 for the asymptotic behaviour of the electronic and phononic energies. We

found an equation for the shift of the asymptotic behaviour. This equation has been
discussed, but remains to be fully solved. Using the additional term in the flow of the
one-particle energies as a hint, we changed - in appendix B - the asymptotic behaviour
of the electrons to

e (0) = €(20) + 57Ty

The leading term of the phononic flow was refound, as well as the absolut value of the

leading terms of the electronic energies. The final equation of chapter 6 suggested a
singular behaviour of ¢.(k) at the fermi surface.

l(k) = e®kp" n>0

A similar behaviour for the ¢ (k) was assumed for our investigations in appendix B.
The renormalization of the electronic energies found in chapter 5:

Aer = €x(00) — €(0) = —b(k)

yielded the renormalization near the fermi surface:

I
Aej, = const - (k — k)2 -e k)

for the constellation discussed in chapter 6. The renormalization drops to zero exponen-
tially as k approaches the fermi surface. Comparing this result to a standard text-book
(e.g. [9]) shows a large discrepancy. This, however, is explained easily: We have not
included the attractive electron-electron-interaction of the transformed Hamiltonian in
our mathematical study. On the other hand this interaction is the major source of the
renormalization of the electrons.

In the last chapter of this thesis, chapter 7, we have calculated the transformation of
the electronic one-particle operators

ey (0) == uf (O)cf + > u;’q(é)achf;rq +> uk,q(é)aqc,irq.
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The assumption of an algebraic decay of u; lead to a contradiction. Hence, we got an
indication, that the decay is not purely algebraically.

In principle the results of the electronic one particle transformation can be used to cal-
culate the electronic correlation function. This, as well as a solution of the fundamental
equations of chapter 6, requires considerable additional effort.
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A. Mathematical proof

In this appendix we give a proof for the calculations of the type as given in chapter 4.

I.e. we show:

for ¢/ — o0

{ 2 ! /
fB3 d3qak7q(£) |Mq|2672 Jo o ()l
behaves like

P [ filq) Ot 6 (0 (q))dPq + O( L) Emin

SE

and

Jis P o (0)| My P2 i a1
behaves like

SEM P [ i) 00005 (g (k) )P + O(B5) ¢nin

%\N

where

kg (£) = €ryq(0) — €x(£) + wy(0)

depends only on ¢, k, q, |k + ¢

dk,q = bk+q — by + bq

dpmin is the minimum of this function within the region of integration
and:

e () = er(00) + 2

wg(6) = wy(00) + 22

as long as ¢ > (o and ay 4(¢) is a smooth and bounded function for all £ < ¢,

fe(q) = di(q)| M (q) |Pe~ 2% (0" gz )02d%(0) and

(A.2)
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A. Mathematical proof

L
fq(k) = dq(k)e*hq(’“’z**)ﬁgdé(k)eng(k) are smooth functions. (£*) (¢**) are fixed values
between 0 and /.

B3 is the first Brillouin zone and [M,|* = ¢?q. N.B. in the following we will use B to
denote the bound of the Brillouin zone and B? to denote the Brillouin zone, when the
variables are transformed to cylindrical coordinates and the integral over the azimuth
is performed. Further we set: ¢ = 1.

The first integral is needed to find the derivative of the flow of the electronic one particel
energies, the second for the flow of the phononic one particle energies.

Here we explicitely prove only the behaviour of the integrals in (A.1) and (A.2) under
the assumption (A.4). Other algebraic decays of the one particle energies would lead
to similar equations and the behaviour of the integrals (A.1) and (A.2) is found and
proven in a similar way, as well. In the following we will first give the proof for (A.1),
(A.2) will be proven in the second section.

A.1. The Algebraic Decay of the Integral governing the
Electronic Flow

To show more clearly which of the variables are integrated over, we rewrite the integral
of the first line of (A.2) as

| @aonla,0lgle 2o (A.5)

with

ak(qa E) = ak(qa OO) + ko\(/qz)

in the asymptotic regime.

We defined b(k + q) — b, + b(q) =: di(q).

To deal with the integral above, we make the following
Assumptions:
a) ax(g,00) € C* and |ag(q, o0)| bounded by Q.
b) (k o0) and w(q, 00) are strictly monotonuos increasing functions of k resp. q.
9w

) 8k2 o | Vko,qo.
a=qo

d) The b( ) and b(q) are € C* and di(q) is bounded by D.
e) The (-dependency of « is given by (A.4) for all values of ¢: £ > /.
f) For all £ ax(q, () depends only on |k|, |q| and |k + ¢|.!

o

As k is fixed in the integral (A.5) we can transform to cylindrical coordinates, i.e.
(q1,2,93) — (q1,q., ), where the z — axis, (0, q,,0) is chosen parallel to k. We can

INot all of these assumptions are necessary for the following proof. Some of them are made for convenience
only. From a physical point they do make sense.
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A.1. The Algebraic Decay of the Integral governing the Electronic Flow

now perform the integration over the angle:

| oo, 0lgfe? Eiena (A.6)

—on / da,da.  quqop(as, qu, 0)e~2 s (@ramand))dl (A7)
BQ

here B? denotes the transformed Brillouin zone of ¢,, ¢, and ¢ = |q| .

Lemma 1

The set of all elements in the ¢,, ¢, plane such that ax(q.,q,,00) =0,

S = {(q1,9.)|ox(qL,q,,00) = 0}, is either a regular one dimensional compact mani-
fold, or S = {(0,0)}

Proof:

a) The set S := {(q1,q.)|or(qL,q:,00) = 0} is compact: As B? is bounded, S is
bounded as well. As B? is closed and ay(q.,q,,00) is continuous, S is closed. Thus S
is compact.

b) We show, that S = {(0,0)} or S does not contain isolated points. A point in S can
only be isolated, if it is a local minimum or maximum of ay(q, ¢, 0),

i.e. aak(%éfz’oo) = aak(qéfllqz’oo) = 0. This is seen easily using the theorem on implicit
functions. h

To investigate whether isolated points exist we take a look at the first derivatives. As

;Toi — QL(%W + g_‘; —qgl+p2) Vg, # 0, (see Assumption b))

we only have to consider points in S N {(g,,0)}. At those points, we have
(qz,0,00) = €(k + q,) + w(|g.|) — €(k), where k is parallel to g,.

Without loss of generality we assume k£ > 0 and we find

g;‘z = %‘I:“qu' sign(k + q,) + 8—;’ o=la.| sign(q,).

Hence, this derivative can only be zero on the interval ¢, € [k, ..,0].

We have ag(q, = 0,0,¢) = 0. At this point (¢, = 0) a(k,q) is not differentiable, be-
cause w(q,, ¢ = 0) is a function of |¢,|. Instead we simply use right hand and left hand
derivatives.

The right hand derivative is always positive.

9a is monotonously increasing on [0,00[. If the left hand derivative at ¢, = 0 is

0
gq 0, then we have a local minimum at this point (0,0). It follows immediately, that
S = {(0,0)}. If, on the other hand, the left hand derivative at ¢, = 0 is > 0, we can
use (0, B,00) > 0 to show, that there is a ¢ < 0 such that ay(0,q,,00) < 0 on
J¢t..0[ and ay(¢f,0,00) = 0. As the derivative at this point is different from 0, there
are no isolated points in S.

c) We show that S is connected. As ay(qy,,q1,00) is strictly monotonous increasing
with |¢, | and ax(g,,0,00) < 0 Vg, € [¢F, ..,0] and bigger than 0 outside of this interval,
S is connected (unless cut into parts by the region of integration).

The above proves Lemma, 1
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A. Mathematical proof

For the following we restrict ourselves to the case, where S # {(0,0)}

We now show, that we can restrict ourselves to a small surrounding of this one-
dimensional-manifold in evaluating our integral.

Lemma 2

Let 6 > 0, then we have for / — oc:

2T /32 dg.dq quOék(CIzaQL,5)672fé(ak(q“”’é,)yﬂl = (A.8)

2”/ dg.dg,  qugon(ge,qu, Qe 2Jolnaan)l L o=ty (A 9)
|ak(Qp’QJJ )‘<6

Proof:
Let (g.,q1) be outside the region of integration of the second integral
(i.e. |og(q1,q.,00)| > 0, than we can choose ¢; > {5 such that 2;\‘1/2 < g Ve >/,

meaning that
|l (gL, q., oo)+d;$i) > 2. Note that the region of integration is defined by ay(+, -, 00) <

6 and in the integrand we have ay(-,-, ), < ¢.
We have:

) ’ ’
| Lo\ (o (@ ooy <oy 2001 01900k (gz g, e 2 o erlam0 00740 |
(A.10)

< |B*|Qqpe~ 1)

wher @ is the upper bound of ay ,(c0) (A.1) and ¢p is the upper bound for ¢ in B?
This proves Lemma, 2.

Using our assumptions on the asymptotic behaviour of ay(q,,q,¢) for £ > ¢y, we can
perform:
Calculation 1

IOE ak(qza q., E )2d€ - [ak(qza qi, E ) - ak(qza qi, 00)2]d€’
(A.11)

+f v (qz, gL 00)?dl +fé Mak(Qz,QL, 4 +f ‘LyQ.L)

NG
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A.1. The Algebraic Decay of the Integral governing the Electronic Flow

= ak(qza q1, 00)26 + 2dk(qza QL)ak(Qza qi, OO)\/Z + dz(‘]za qL)i In/
_Qdk(QZa qJ_)ak (QZa q1, 00)\/5_0 - dz(qza QJ_)i In 60 (A12)

—l—[Oék(CIz, q1, E*)2 — Qg (QZa qli, OO)Q]KO

here ¢* is given by f(fo (s, qu, 0)2dl = oy(q., qu, £F)?ly, which is simply the mean
value theorem of integration calculus.
This leads to:

exp <_2 foe A (QZa qi, 6,)2d€’)

= exp (—20(ox(ge, 41, 00) + L)) iR

(A.13)
X exp (—2[Oék (Qz, qi, g*)? - ak(qz, q1, 00)2]60)

X exp 2(2dy(qz, ¢ )k (g2, 41, 00)Vlo + d2(qs, g1 )1 In lo) exp 2d2 (g2, 41 )

In the asymptotic regime the integral (A.5) takes the form:

[ Paar(q, O)|M (q)Pe= o et @O
L 1o e ’
=27 ‘f‘ak(QzﬂL)‘S(; dq.dq,  qiLqay (qz, qi, 6)6*2 Jo (ar(gz,q.,0 )2 de

dr(qz,
=27 ﬁak(qz,qlpo)‘gg dq.dq.  qiq (ak(qza qL,00) + 7'?(5\/%&))

(A14)

v
x exp (—2[a (g2, g1, 0*)* — (2, g1, 00)?]lo)

X exp 2(2dy(qz, ¢ )k (qz, 41, 00)V 0o + di (g, 91 )1 Inlo)  exp 2di(q.,q.1)

We now introduce a transformation of variables.
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A. Mathematical proof

Let the regular one-dimensional-manifold S of ay(q., ¢.,o0) = 0 be given by:

¢ :t — ¢(t), where we have chosen the parametrisation, such that: |%§t)| = 1.

As new coordinates, we introduce ¢ along (-, -, 00) = 0 and u in the direction of the
gradient of ag(-,-,00) by: ¢.,,q1 — t,u. The transformation of our integral is then
given according to [10]:

| #aandad. = [ Flattaplae, v (A.15)

The functional determinant .J,(¢,u) is one, because we perform a orthonormal trans-
formation.

For our integral we now have:

di(t,u
27 f‘ak(t’u’m)‘g dtduq (t,u)q(t, u) (ak(t, u, 00) + ’;(—t\/z))

X exp <—2€(ak(t, u,00) + dk\%u))2> /-2 (tu)
(A.16)

x exp (—=2[a(t, u, %)% — ap(t, u, 00)?]lo)

x exp 2(2dy,(t, u)ay(t, u, 00)v/lo + di(t,u) 1 Inly)  exp (2di(t, u))

Note ag(t,0,00) = 0 V¢ by definition.

We continue by investigating the integral over w.

As Vag(t,0,00) = 9a(t,0,00) # 0 ay(t,u,00) is strictly monotonous in a surround-
ing of (¢,0). Hence, we can now substitute u by ay(t,u,00) := z. As all functions
are bounded within the region of integration, they will also be bounded after this
substitution. We find:

21 [t [,5d2qu(t, 2)q(t, 2) L (24 d;%))

%
au I(t,2)

X exp (—24(,2 + ngh?) 0350 exp (=2 (t, 2, 0) — 22)p) (A.17)

X exp 2(2dy,(t, 2) 2/l + di(t, 2) 1 Inly)  exp 2di(t, 2)

Note that the evaluation of ﬁ() is by no means trivial, but the expression is well
Du I(t,z
defined as function of ¢ and z.
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A.1. The Algebraic Decay of the Integral governing the Electronic Flow

As a final substitution we now use ' = z + d’“}z and find for (A.17):

/ o M r_ di(t,2) 1
2 o dt g 47 0 (b2 = 275l 2 = 205) T

L s
Xa%l(m) z NG ) exp( 20z )
1 I dy(t,z)
ngzdi(t, - kﬂ )exp <—2[Ozk(t,2 E*) ( dk\(}téz))g]£0> (A.IS)
x exp 2(2dy(t, 2 — LU (2 — L0 /T 4 (1,2 — 20 Lin )

X exp (de(t, — d’“\%”))

All the functions under the integral sign are continuous and bounded. To continue we
will use Lemma 3 and Lemma 4 to be prooved later.

Lemma 3

Let Fy(t, z),dg(t, 2), ca(t, 2) be bounded functions with bounded first derivatives, let
01(t), d2(t) be functions with 6,(t), d2(t) > ¢* > 0 for all ¢, then we have:
‘fB dtf dZFQ t, 2z — \(/Z ‘))Zg_%d%(t’z_L\/tZ;Z))e’ZZ%

(A.19)
In/ —142
< const - W [5t 3dmin ()
where d;,, is the minimum of dj(t, z) on B x [0, 0,].
and

Lemma 4

Let Fi(t,2),c1(t, 2) and d(t, 2) be bounded functions with bounded derivatives, further
let 01(t),d2(t) > a > 0 Vt and B a one-dimensional compact connected region of
integration, then we have:

[ dt f dZF1 _Cl\%z) )[%di(W*Lj{N))e—u?e

(A.20)
= WE [ dtF (03RO 4 O(18L) [ dte=3 %

where we set Fy(t) := Fy(t,0) and d?

2 . 1s the minimum of d2(¢, 2) on B X [—dy, do]
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A. Mathematical proof

Before giving the proof of Lemma 3 and 4 we finish our evaluation of (A.5) by first
unsing Lemma 3 to find (A.21) and then Lemma 4 to reach (A.22):

Jis Pacui(g, 0)]gle2 i erat )7l

! ! _ M ! _ dk(taz) 1
21 [ dt f(z'—Lj{))Sﬁ dz q, (t, 2 )t ) T

1 dk(t’zl_dk\(/tz;z)) N2
X - exp —2/¢
g_zh,u(t,/_d (t,z)) 2\/2 ) Xp (Z )
v (A.21)
_1lg2(4, —dr(t:2) / /
x/{ sz (62 i )exp —2[ak(t, 5 — dk\(/téz),g*y . (Z - dk\(/téZ))Z]go
x exp2(2dy(t, 2 — BU) (2 — SO /T 4 B2 (t, 2 — 202 L in )
x exp 2d2(t, 2 — —d’“\(;l;z))
3 1
=571 [pdt aut)g(t) mm— 240
(A.22)

x exp —2[oy (t, £*)%]y exp (dj(t) 5 In ly) exp 2d3 (t)

Note: As Lemma 4 allows us to replace F(t,z— ﬁ) by Fi(t,0) under the integral sign,

we have j — 1 and for the remaining integral we have z = 2" + ﬁ = 0. This is

Vi Oz
why, we can rewrite this expression and change the variables back to the original ones:

— Lt [ [dtdz0() (it 2)at ) o

da
aule.s)
(A.23)
x exp —2[ay(t, z, %)) by exp (d3(t, z) 5 In o) exp 2d3(t, z)]
- %ﬂ'% [ [ dtdud(u)
(A.24)

X [q. (t,w)q(t, u) exp —2[a(t, z, 0*)*]€o exp (di(t, u) 3 Inby) exp 2d(t, u)]
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A.1. The Algebraic Decay of the Integral governing the Electronic Flow

tiu—q ,qz

— %7{% fB2 dQquz(S(a(qLa qZ))
(A.25)

x [qrqexp —2[a(qu, g., 0*)*lo exp (di(q1,q.)5 Inlo) exp 2d3(q1, q.)]

This prooves conjecture (A.1).

We now give the proofs of Lemma 3 and 4

Proof of Lemma 3:

Without loss of generality d;(t) < dy(t) for all ¢.
Integral (A.19) can be written as:

Syt 7 [Fot, = — 2020 305 — By, —p — alld) bR S o2t g

C2(t=2))
Vi

f dt f |:F2 t Z — cz(t2) )6_%di(t’z+ 2672&2 dz

Vi
(A.26)

The second term obviously is smaller than const - e~2(¢"”  'We continue with the first
term (A.26):

f dtf {[8F2 (t,2%) ((Z _ 02\(;,;)) + (Z + 02\(;%z))>:| eféd%(t,Z*)lnl

(A.27)
here for every z, z* € [0, 2] such that
O(Fy - 2% )
%W 2= (FQ(t, 2) - 73Ryt 0) . o3 °>) (A.28)

Let d?,;, be the minimum of di(¢,2) on B X [0,d;] and let M be the upper bound of

min

% and F; - % - di, then the absolut value of the above is less than:

I dtf 2M (1 +In £)0=2%min 227262 I,
(A.29)

< M(1+1n0)|B|6,0 meﬁ
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A. Mathematical proof

Proof of Lemma 4:

It is easily seen, that:

1\/7_r/ _lgp _1l.p 02(1) 9,2 _

N [ dtF (1) 2 %O :/th 1)l zdk(t)/ e dz +O(e™" A.30
75t s 1(t) i, 1(t) o (™) (A.30)
thus we consider the difference of the left hand side and the first term of the right hand
side of (A.20):

Y LA =
‘detf (Fltz— 2y

Fi(t)e—= ﬂt)) e 22

‘f dtf {FI (t,2)0" zd%(t’z)} |(t,2%) (Z — —01\(;’;)> e‘QZQEdz‘

‘f dtf (aF1 t) — lné%km*)dk(t, 2*)F (t, z*)) LA (z — —Cl(t’z)) 22y

Vi
(A.31)
Here 2* is given by the mean value theorem for differentiable functions:
Fl (t, P Cl\(}f))ﬁf%d%(tazf Cl\(/tz’,z))e—%?é _ Fl (t)f’%di(t)
(A.32)

= 2Rt 2)0 10} | (2 - 22)
All the functions and their derivatives are bounded: |Fi(¢,2)| by Mp, |‘9F1 2| by M,
|di(t, 2)| by D, |8d’c 2| by Dy and ¢, (¢, z) by M,. Our integrand is then bounded by:

[ dt f_? ) (My +In{D, DMr) (3= (|z| + %) e 2"z (A.33)
as d2 is bounded from below by d2 . this expression is bounded by:
\/_ 1 _lg2
(My +IntDyDMp) (1 4+ M,~=)- [ (7 2%mindt (A.34)
V2t /g

A.2. The Algebraic Decay of the Integral governing the Phononic
Flow

For the derivatives of the w,’s we have to study the behaviour of:

/ 0¥k g (0)| M, 2200 ka0 (A.35)
B
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A.2. The Algebraic Decay of the Integral governing the Phononic Flow

In this case we assume the following:

Assumptions 1’
a) ay(k,00) € C* and bounded by Q.

b) €(k,00) and a;(‘\:“) are strictly monotonuos increasing functions of k, w(q,00) is
strictly bigger than zero.

¢) The ¢(k) and a(q) are € C* and dj(q) is bounded by D.

d) For the moment, the asymptotic behaviour is assumed to set in at all points within

the region of integration before ¢ reaches ;.

This case can be handled in the same way as the ¢ integration in A.1. The only minor
difference occurs, when proving the analogon to Lemma 1. We will use Lemma 1’
prooved at the end of this section.

The set of all elements in the k., k£, plane such that o, (k,, k., 00) =0,
S = {(k;, k1)|ay(k,, ki, 00) = 0}, is a regular one dimensional compact manifold.

We hayve:
L o ’ ’
i Pl g (0)| My |2e2Jo o)

= [ CPhay(k, ()| M,|*e™? Jo (aa(k,)yal

!

= 27 | M, 2 [ dbodly  kyag(hs, ko, €)e2J0 @alkekr €))de

= 2m|M,|* [, dhodk s kyag(ks, ko, 0)e2 o (@alhe ki)l

kZJCJ_aOO)'S(S

(A.36)

= 2| M,|* |, dk.dk. ki (%(kz,m,oo) N dq(kz,kJ_))

O‘Q(kmklpo)‘g(s 2\/2

. 12
x exp —20(ay(ky, ko, 00) + M\/gﬁl))% 3dq(kzsk1)
X exp —2[ag(ky, ki, 0%)? — ay(ks, k1, 00)?]l

X eXp (2(2dq(kz; kj_)aq(kz; kJ_a OO)\/K_O + dz(kza kJ_)i In 60)) exp ng(kza kJ_)

From second to third line we introduced cylindrical coordinates with ¢ beeing the z-
axis and performed the integration over the angle; from third to fourth line we used
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A. Mathematical proof

Lemma 2; from fourth to fifth line we wrote o, (k,, k1, ¢) explicitely in the asymptotic
regime as defined in (A.3).

We now use Lemma 1’ to again introduce a transformation of variables (k,, k1) — (¢, u).
Once again we find 1 for the jacobian determinant. For our integral we then have,
rewriting &, = k(t,u):

2| M, [, dtdu (aq(t,u, 00) + M) i (t,u)

21

tu,00)| <6

coxp 2oyt u,00) + Sl b
(A.37)

X exp —2[a (t, u, £%)% — ay(t, u, 00)?]¢y

x exp (2(2dy (t, u)org(t, u, 00)\/ o + da(t,u) 1 Inly))  exp 2d2(t, u)

We now have an integral of exactly the same form as before and, hence, continue
analogously:

dg(t,2)\ 7.
2w\ M, [t [,y dz gapt—(z+ L)1, 2)

X exp —20(z 4 %Uz))2 gy dit2)

(A.38)

X exp —2[a,(t, 2, £*)* — 2214y

x exp (2(2dy(t, 2)2v/lo + d2(t, z) 1 Inby))  exp 2d2(t, z)
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A.2. The Algebraic Decay of the Integral governing the Phononic Flow

’
= 27T|Mq|2fB dtf(zlidq(taﬂ))<5 dz 1L Bdi Oa :
7T )< Y105 o)y 0w bt - 2282,

< oxp 2oy (1,2 — Bl gy () Ay,

x exp 2(2d,(t, 2 — G2 (2" — BUE) /Ty 4 d2(t, 2 — B0 Inby) exp 2d2(t, 2 — )

Ve Ve q Ve (A l)
.39
= R ML [ PRo(ag(R)  [dy(R)E 380
(A.40)
x exp —2[ag(k, €%)?)lg exp (d2(k)5 In £y) exp 2d3(k)]
=~ M fpdt gt (d Ok A0
(A.41)

x exp — 2oy (t, 0)?)0g exp (dZ(t)5 Inlo) exp 2d2(t)

This proves the second part of (A.2)

In order to justify the above Lemma 1’ remains to be proven:

Lemma 1’

The set of all elements in the k., k£, plane such that «,(k,, k., c0) =0,
S = {(k;, k1)|ay(k., ki, 00) =0}, is a regular one dimensional compact manifold.

Proof:

a) The set S := {(k,,k.)|ay(k., k1 ,00) = 0} is compact: As B? is bounded, S is
bounded as well. As B? is closed and «,(k., %k, 00) is continuous, S is closed. Thus S
is compact.
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A. Mathematical proof

b) We show, that S does not contain isolated points. A point in S can only be isolated,

if it is a local minimum or maximum of ax(p, ¢, 00),
ie. 90alkzki00) _ Oag(ksski,00)
L Ok . Ok 1

on implicit functions.

To investigate, whether isolated points exist, we take a look at the first derivatives: As
Oag __ de k:+q O¢ k

Ok. 3m‘w=\/(kz+q)2+ki % V(k=ta)2 k2 %‘F\/k%ki % \/ic2+k2L

It is easily seen, that: ag(k,, k.,¢) > 0 V¢, k, > 0. Further ggﬁ >0and —g <k, <0
Oe -

5= 1s strictly monotonuosly increasing

= 0. This can be proved very easily using the theorem

(as 2 > 0). We now use our assumption, that

and the fact, that: ke g >

k.
(ko +a)2 k2 NGRS

> 0 and k, < —q. Thus S cannot contain isolated points.

k, < —q. This immediately shows:

Oag (k= k1 ,00)
ok
As ay(k,, k% 00) is strictly monotonously increasing with &, Vk, < 0 and thus in the

entire region, where «a,(k,, k,,00) < 0, S is connected (unless cut into parts by the
region of integration).
The above proves Lemma 1’
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B. A more refined asymptotic Behaviour

B.1. General Remarks and Outline

In this appendix we investigate the equations (4.12)-(4.14), using a different Ansatz for
the flow of the electronic energies in the asymptotic regime. The asymptotic behaviour

for the flow of the phonons remains unchanged in leading order. We have shown,

that a ziv behaviour in the asymptotic is only possible as long as v = %, we have not

investigated a zll behaviour. This we do here.

21Int
We set:
1 e(q)
w(l) = w(oco) + + B.1
(£) = w(o0) 20+ 0o(q)  2\/C+ 0i(q) In(L + 41(q)) (1)
and
€(l) = e(00) + (t) (B-2)
2/ 0+ L (k) In(l + L.(K))
as before we have:
g (€) 1= €xiq(£) — €x(€) + wy(0)
. e(k+q) _ e(k)
= Qg (00) + 2/ t+Lc(k+q) In(0+Lc(k+q)) 24/ t+Lc(k) In(t+Lc (k) (B-3)

1 e(q)
* 24/t+40(q) + 24/+01(q) In(£+41(q))

we will continue to use o := ay 4 := g 4(00); a(l) = ay 4(¢)

For the electrons the decay under the ¢ induced flow is now only given by a \/len ; term.
We also introduce one additional change in this chapter. Up to now we have always
assumed, that the asymptotic behaviour has already set in, we only have the case,
where ¢ > (,, and we have always assumed ¢ + /; to equal /. Off course, this is right
for the left hand side of (4.12-4.14), as we are investigating the asymptotic case. But
on the right hand side the integrals contain regions, where ¢, is larger than ¢. To deal
with this problem we assume the above asymptotic behaviour for ¢ > ¢;. For the case
¢ < l1(q) we assume the phononic energies to be given by:

w(f) = w(oo) + ! + <
20+ lo(q)  2/20:(q) In(261(q))

(B.4)
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B. A more refined asymptotic Behaviour

For ¢ < /. the electronic energies are given by:

e(k)
21/20. (k) In(2¢, (k)

e(l) = e(o0) + (B.5)

Using this Ansatz for the asymptotic behaviour and its onset the integrals for the
calculation of % und ‘% are given by three parts:

dwg 2 2 [La2(d)dl 3
. st ()| M,|"e™" o (Mg — 1)K

0>l (k+q)

Y ’ ’
O M,Pe 2O ()R (B.6)

— —

<Le (k)
>Le(k+q)

a(O)[M, e 2l O ()b
L>Le(k),
L<le(k+q)

_l’_
—

and for the electrons:

dek I BTV,
- /l>l " a(€)|Mq|26 2 [y @?(€)de (1— nk+q)d3q
> e (kta)
9t Val
+ ﬁ <t<ti(q) a(£)|M(I|2€ 2Jo ettear (1 - nk+l1)d3q (B.?)
I>te (kg
o rt a2 Var
+ t>t0(0) O‘(£)|Mq|26 2Jo o (it (1-— nk+q)d3q
t<teChta)

The idea is, of course, to choose the expression of the left hand side to be of its
asymptotic form. As the integrand for the integrals governing the derivatives of the
phononic and electronic energies is the same, we evaluate this integrand in the next
section. We then calculate the derivatives of the phononic and electronic energies in the
two subsequent sections. It finally turns out, that a self-consistent solution for constant
e(k) and e(q) cannot be found'. Nevertheless, using the asymptotic behaviour only for
¢ larger than a certain threshold and an even faster decay of the electronic energies
makes the effort worthwhile.

B.2. The Integrand
For the calculation of %/ and % (see (B.6) and (B.7)) the integrand is given by:

0 g (0)| M 2625 oF.0( ) (B.8)

!This does not, however, show, that no solution with varying e(k) and e(g) exists.
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B.2. The Integrand

For the evaluation we use Ansatz (B.1) and (B.2). Later we put e(q) =0, e(k) =0
or e(k + ¢) = 0 to also evaluate those regions of the integrals, where the asymptotic
behaviour has not yet set in for all terms contained in «.

In a first step we now calculate the integral:

iy a(f)y2ar

e 1 (k+q)
fo (a(oo) + 2/0 +€0(q) * 2/ +€.(k+q) In(€ +£c(k+q))

2
e(k) e(q) dr
20 (k) In(l 14 2\/5 +01(q) In(€' +£1(q))

= a2€—|—2a\/£—|—€0 —QCY\/EU +26 k+q j:j( ))) (k+q) (E((::_j)))

% er ey 1\/l+l + % er ey 1‘/ +2 \/Z‘Fll _9 (g

(0. eVt (q) )) 1% () ))

FEIn(C+ Lo(q)) — Inbo(g) + E I n(C + Lo (k + q)) — EL InIn(l(k + q))

—%Inln(l + L(k)) + % Inln(l(k)) + S Inln(f + £1(q)) — % Inln(4(q))

i 1 1
+=0 : (lné—l—é? o m)
(B.9)
where we neglected terms of the order of: [ md(’. In the last line we

understand the e; to equal our e(q), —e(k) or e(k + ¢). For convenience we will also
use /; instead of ¢; or /.. The constant ¢» depends on ¢/, and /.. As en — 1 as f — 0o
we will subsequently drop this term alltogether.

We also approximated:

dl by Inln(l+ (k) (B.10)

1
/ VO +G(q) /U + (k) In(¢ + £.(k))

Because we discuss equation (B.9) in the asymptotic region only, we can set: ﬁ = ﬁ

and L = \/len 7 and the expression simplifies to:

T+6; In(0+4;)
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B. A more refined asymptotic Behaviour

2
1 (e(k+q)—e(k)+e(q)) |~ _
¢ [a Tt Viin(l) 1

(k+Q) \ Zf(k:) Ze(‘])
—2a {V 2l + e(k + ) pFigre) — S mEE) T eqln(&(q»]
+11In(0) — $1n(ly(q))

b B relD) 1y 1y () — DEED 1y In(l (k + ) + % Inln(le(k)) — % Inln(4 (¢))
(B.11)

As the integrals in (B.6) and (B.7) are confined to @ ~ 0 the second line is of no
importance and can be omitted, and we find for the integrand:

a(€)|Mq|2672f0l a2(0)de

_ =2 1, elk+q@)—e(k)+e(q)
=9 (a + Ve ™ 2/ 1In(£) )
(B.12)

_ (e(k+q)—e(k)+e(q))
2Z[a+\[+ VZ1n(¢) ] e2

xe lo(q)

N

(e(k+q)—e(k)+e(q))
x(In(0) 5 (In(Ce(k + q))) %+ (In(£e (k)% (In (€1 (q)))
where we used again: M, = ¢,/q
later we will also use: w,(0) = cg.

B.3. Derivative of the phononic energies

We now calculate the derivative of the phonon-energies:

We use: \/ZL—% = ﬁ we set e, = —e(k 4+ ¢q) —e(k) +e(q)

then we have:

dwq(
q —22|qu [ g (0) (g — 1)

=oF [ |My(0)Parg(0)e 25O (0 — )
B,

As in previous chapters we integrate over the azimuthal variable and as argued in
section 5.1 the region of integration given by: n,., = 0,n; = 1 contributes only an
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B.3. Derivative of the phononic energies

exponentially decaying term to the asymptotic behaviour and is omitted as before, the
relevant region of integration is the same as in section 5.3.1. We use the result to write
the integral as:

47T qe

2 \/m dkk [ dkz( Ltk )e*w

YT Vi T im0
(B.13)

LT (In(0)) " CEFO=WHD) (1n g, (k + ¢)“ " (In £ (k)™ (In €2(g))

N.B. As discussed above the value of e;,, and e, depend on the corresponding region
of integration in (B.6). E.g. for (.(k) > ¢ we set e, = 0, as € (¢) does not contain a
(-dependent term for ¢ < { (k).

We change variables: o = & 1+ q + cq

AT me

2 \/(kf)2_2kZ(a)q_q ( 1 €k,q ) —2la?
ky dkkf kq+2m+cha o 2

21 2V/EIn(0)
(B.14)

L5V (In(0)) CEFD- D) (1n g (4 ¢) " (In £ (k) (In €2(g))™

As qu > 5 —|— cq, we can use the same arguments as in Chapter 4 and in Appendix A
to proceed

2/2riTmet [V g 1% das(a) (5 — sk

T Vi 2V/in(0)
(B.15)

x/To (In(¢)) DO (In g (k 4 ) " (In (k) (Inb1(q)) "

It has to been discussed, whether we can simply drop the constant term added to « in
equations (B.4) and (B.5) when performing the calculation of our integral above. In
chapter 5 (except for section 5.5) we have always replaced oy ,(00) by ay 4(00), when
evaluating our d(«) function. This is justified as we do not expect the form of « to
change significantly under the /-dependent transformation. Hence, to proceed the same
way for this calculation remains justified.

We have: |k + q| = /k? + ¢% + 2k,q = \/k? — 2mcq + 2ma; for a = 0, this turns out

to be \/k? — 2mcq.
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B. A more refined asymptotic Behaviour

For the constants we now make the following Ansatz for mathematical convenience:

2 1
D=2, =

1
Eg(q) = gl(q) = gea® ge(k) — e(k—kfﬂ

e(k) = %sgn(k —ky); (e =0, L(k)>¢ €hrqg =0, Le(k+q)>{);

e(q) =1
(B.16)
Now the three parts of our integral are given by:
. B m %0
2\/§7r21"02m62DT% fkf+ﬁm dkk [~ dod(a) (—2%/2)
(B.17)
_1 _1
1 2 1 (4
X ((\HQ\*’W)?) ((k*ka) (‘1_2>
3 D_q kﬂ“% 00 1
+2v/272 F02m62% 7 fkf Vint dkk; f,oo dad(a) (_QL\/Z o 2\/Zin(é)>
(B.18)
1
_% 1 2 1
x (In(£)) ((\HQ\*’W)?) (‘12>
3.9 91 D1 ,/k/%+2mcq o0 1 3
—|—2\/§7T2FC me-g q f (kf7\/11r17)2+2mcq dkk ffoo da5(a) <_2_\/Z B 2‘/2?“(6))
(B.19)

M

e () (2)

We present the calculation of these three terms in the following three subsections.

B.3.1. Region of integration: |k +¢| < k; — \/ﬁ and k > k; + ﬁ

We now start by evaluating the first of the integrals given above in line (B.17):

3~
—V2r2T&me? L 2=t

0z @
(B.20)
(ks — )2+2meq 0o
Xhﬁﬁgﬁ dkk [, dad(a)|[k + q| — kg|(k — k)
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B.3. Derivative of the phononic energies

3 1~ ~
= 212 &me? L 22

R
(B.21)
k
x kV(f " dkk| /K = 2meq — ky|(k — ky)
AN

As ¢ is small compared to ky and k ~ ky we have: \/k? 4+ 2mcq =~ k+ 52 ~ k + mcq :

21 —1
—_ — 71'2 e
\/— ['éme R kf

1 mcq

(= )+
s [T dAk‘(Ak— met) | (Ak)
Int
= /2731 me2f%Dq3lkf
1 3 1meg 2] 11“)+n’z;q B.22
Int

D
:—\/_ﬂ'ZPC me? - —ky
IR

(e - gt + i)
= ﬁﬂ'EFNQmC 2D 1 +h0T

6

As in (5.37) we can again choose D_4 such that b(q) = 1+ h.o.T.. But now D_4

contains another factor of 2 = 1.e. without the counter factor D_; the above is a lot
smaller than the expression in (5.36).
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B. A more refined asymptotic Behaviour

B.3.2. Region of integration: k; < k <k + \/%_z

For the second integral (B.18) we have:

2o me St [ bk [ dad(a) (— 5 — A )

q
_1
(wesatm)
([k+ql—kg)?

3 1
_ 3ms9 91 Dy (1 3
= —\2m2[&me R (_mé + 3)

M

x (In(€))”

(B.23)

koo —L_ 00
x [V dkk [, dad(a) [k + g — kyl

o 30 91 Doy (1 3
= \/§7T2che R 7T 3

x ol dik (/R =2meg — ky)|

We once again use the approximations \/k% + 2meq ~ k + 2 ~ k + mcq and k = k.

D_1
—\/_7('2FC me? 13
2

—_
=]

1 3
<W+ Zze’)

% [T g (b — 5t — )|
k¢ k¢ f

o | —

:—\/_Trchme D- k( +

1
Z ‘g
X fo‘/F dAk |(Ak — 52)

)

[V

(B.24)

1
= —\/§W%F52m62LD_lkf <ﬁ + 2 3)

3

X [[3(AR)? = 2L AR
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B.3. Derivative of the phononic energies

1

_ 1 D_ 1 5 11 meq 1
— 2 _ - — —_ = —1
V2riTéme g% i (W + 1né‘°’> ( 2t T ks \/lnff)

(B.25)

_—\/ﬁﬂ%FézmeZZL%D ==Lk mk;q (ﬁ—%ﬂ_ ) + h.o.T.

B.3.3. Region of integration: k; > |k +q| > k; — o=

By straightforward calculation or by arguments of symmetry it is immediately seen

that this integral (B.19) yields the same result as the previous one.
+2mcq ) 1

3.9 21D
_|_2\/§7r2rc me - f 2+2mcq

— (o] =

(B.26)

T <<sz>2>‘% ()

_ 21 D_17, meq < 1 1 1 )
—\2r3Tme k¢ — — =
\/_ Z% kf Int 2‘/111[0’

B.3.4. The derivative of the Phononic Energies

Combinig the three results form above we have

(B0~ Bl + )
(B.27)

B 21 D1p (meg g 11
2\/_7T2FC me E% ° kf ( kg In? 2 lné3>

—V2riT@me LD kg (L(2)?

1 1)
3lnﬂ3

C»JI»—A

g1 1
_'_ - =
f2f
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B. A more refined asymptotic Behaviour

B.3.5. Discussion

This result is interesting, as D_; can still be chosen such that the leading term of
(B.27) equals 4_—\/12, the right leading term for the flow of the phononic energies. It is not
suprising that the terms of higher logarithmic order in ¢ are not given correctly, the
onset of the asymptotic behaviour at ¢ = /, is a very crude assumption. In addition
the ¢, can still be refined by using additional constants, i.e.:

consty

l(k) = constye "7,

B.4. Change of the Electronic Energies

Using the results of B.2, we now calculate the derivatives of the electronic energies, in
exactly the same way as for the phonons:

dey (€)
dl

= 28 [ g (O) [ My(OP (1 — mig)dq

= 9T [ qagg(0)e 20 2 (1 — ., i

-~ _ [a2 roor
= —4nT'¢? (fok *daq? [, dg. + [, dag? [l e d(h) (ang(O)e™ho oEalO2)

2k

(B.28)
where D is the upper limit of the Brillouin zone. Inserting (B.12), gives:
€ ~ k—k D
d;lgf) = —4xlé2e? (fo " dqq? ffq dq, + fkfkf dqq? fkqj%_kz_qQ dqz)
W i
1 ek, ~2la? (B.29)
x [(a T 2\/21;11(4)> ¢

x L/l (In(0)) ™ (In Le(k + )"+ (In £(k)) ™ (In £3(q))*

where e, , = e(k + ¢) — e(k) + e(¢q) and, as before, o := ay 4(c0).
We set:
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C = 47T¢2 and

Ii= %ﬂ (In(6)) ™ (In €e(k + )" (In £e(k)) ™ (In 6y (q)) (B.30)

And we change variables: ¢, — o = %qz + % + cq to write the two terms as:

k—k 2 mq+ m+—q m ata +—q m
~C (fo " dqq I +2 e da™ + [ i, dag? ka W T da?>
W

(B.31)

€k, 7. —2la?
X (a - W - 2\/21;11(4)) Ie

For all those values of ¢, for which the a-integral does not contain o« = 0, the latter
mtegral is going to decay exponentlally For the first term of (B.31) we have

q + 5=+ eq <0 and £ =g+ 4=+ cq > 0, but for the second part we can drop those

k k2+2 k?—k7
parts of the g-integral,where: Kph t2ema > 0, ie q=

boundary to the ¢-integral.
For smaller q the range of the a-integration contains &« == 0 and hence any negative
lower and positive upper boundary can be used for ¢ large enough.

is effectively the upper

2m

k2 —k2

Tmﬁ m(H' -l—cq m 1 €k,q 7 —2la?
~C e daa? [ kgt og 1K (O‘ e mln(ﬂ)) Le (B:32)

For increasing ¢ we have:
Le. [ f(a, q, )V le 2 doy = % [22, f(a,q,0)8(a)dev, with a, b abitrary positive real
numbers.

Thus:

k2 k2

— s 1 2mc 2m 1 Ck,q T .

We insert the values of the e(k), e(q), £ as given in (B.16) in the equation given above
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and the integral splits into three parts:

[NIE
/N
=
B
)
N———
|
u
Q
—~
oy,
w
H~
~—

1
2px2.21 [Vnl ,2mD-1 1
2 — e
+V2maTee 05 fU 7% 4 ((|k+(1|—kf)2>

k2 — k2
N N 2 (14 %)

2mc

x Bt () ((k%w)_% () da

For the second term in this equation we have assumed that the &‘2”—5; term in the

asymptotic behaviour is present for all values of ¢ in (B.4). This is possible without
any error in the leading order as the only part where ¢, > /¢ is given by: ¢ < % and

const

1
leads to an integral bounded like: fo‘/z. This leads to terms decaying faster than <7
We now continue our evaluations for the three parts of this equation seperately:

B.4.1. Central Region of Integration

We can write the first of the three terms as:

3r2 2m
V2Tt Dy (k — k) r— (1+ 1)
(B.35)

1
q | (lk+aql—Fky) ‘

For a = 0, we have |k +¢| = k> = 2meq = k+ T2 =~ k — m‘;q as both k — k; and ¢
are small. This yields:
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2 142
k2 —(kyp+ ﬁlnz)

mc 1 1
<[ dg (W)

Int

(B.36)
= VTP R D oy (k — ky) 1 (14 1)
K=kt 1=)? me
I N Ty a— 1 kg
=y T dq (q T (lckf";;q)>
We simplify the upper boundary of the integral ((k + ky) ~ 2ky and ; z < \/—) and
find:
\/_ Iée2 2mD 1 1 %(kfkffx/ﬁ) d 1 %fc
— 2m21'c%e 14314(4‘@)]‘\/% q E+W
Lo )
= VIrTEe D o (14 ) [Ing = In(k — ky — 20| ™ Vit
e (B.37)
= VATITEAR D (14 ) [m(’“f (k — k) = 2In o + In(k - kf)]
= V2T Dl (14 L) [In(E) + 2In(k — ky) + Inin (|
1
= \/§7T%P5262mD_1 - Inln?+ h.o.T. (B.38)
k 3 1n/

This results shows that the solution is not truely self consistent. However, the Inln /¢

. . o . e
terme can be canceled by inserting an additional term of the form VAT, and
k

CN/ATYITYTY, into the asymptotic behaviour of the phononic and electronic energies in
equations (B.1) and (B.2).
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Region of integration: 0 < ¢ < -

B. A more refined asymptotic Behaviour

M

\/T 1 2 1 B
)fo " dag <(|k+(1|—kf) ) ((k—kf)2>

B.4.2.
The second part of (B.34) is given by

(B.39)

\/_FZPCZGZmD_l s (
7t 1
Jo” dqq(|k—+q|—kf>>

(k= k) (14 tp)
1
__TZ;‘I)

= \2m:T@e? D
)f\/ﬁ dqq<(

<1 + lnl(ﬁ)

1

(k= k)

= 2m:T@e? ™D
the integral is readily evaluated and we find
(B.40)

1 _ 1

Using == v Rk
1 1

22 p = T hoT.

1
_ QF _
T2l Cce I

V2

Region of integration: ky < |k + ¢| < k; + Y

(B.41)

1

sz(kf+\/1lnl>2 qq
2me

B.4.3.
Now only the third part of (B.34) remains to be calculated
K2 -k}

(14 5) [,

k—kf)—=
1k —kp) =

V2riT&e* ™D
7t

)ldq—ln< (k — k) = In(EL (k — ky) —
kf)F to find:

(k—kj)

f’“f (k— kf
(B.42)

We use

:—ln( s kf

1
13 + h.oT.
l21nl

\/iw%F(é?e?%D .

and

€q

The Derivative of the Electronic Energies
2v/Z1In¢Inln¢

B.4.4.
We have thus found - taking into account the effects of the terms

(B.1) and (B.2)-:
dék(g)
dl

(27
2V€InlInln¢
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= \/577'% FéZeZ%D_I

3
£2 Int

V2@ Doy i | (In(GE) +21n(k — ky)) + (B.43)

+h.0.T.

B.4.5. Discussion

In this appendix we have investigated an Ansatz for ¢,(¢) and w,(¢) given in (B.1) and
(B.2). The Ansatz could very well be refined by inserting constants into the values of

const
¢y and /. in (B.16), e.g. {1 = constleq—Qz. Even if these constants are set to equal one
we do refind the right leading order when evaluating the derivatives of the electronic
and phononic flow according to (B.6) and (B.7).
Still the following contradiction appears: In (B.16) we have assumed e(k) to be positive

for £ > ky. That means e(k) has the same sign, as the leading \%LTSZO term in (B.1).

But, comparing the results in (B.27) and the first line of (B.16) shows, that this cannot
be fullfilled.
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