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Zusammenfassung In dieser Arbeit untersuchen wir das Elektron-Phonon-System mit

Hilfe von Flussgleichungen f�ur Hamiltonoperatoren. Unter dieser kontinuierlichen Diagonal-

isierung des Hamiltonoperators werden die Einteilchenenergien undWechselwirkungskonstan-

ten in Abh�angigkeit eines Parameters ` transformiert. Dabei variiert ` zwischen Null und

unendlich. Wir zeigen, dass sich f�ur den Fluss der Einteilchenenergien unter der `-induzierten

Transformation asymptotisch f�ur gro�e `

�k(`) = �k(1) + const

2
p
`

ergibt, wobei die Konstante logarithmische Korrekturterme in ` enthalten und von k abh�angen

kann. F�ur dieses asymptotische Verhalten wird der Elektron-Phonon-Hamiltonoperator unter

der Transformation blockdiagonal. Anschlie�end zeigen wir, dass sich die Renormierung

der Phononen gegen�uber den Ergebnissen von Wegner und Lenz nicht ver�andert, wenn bei

diesem Verfahren auch die Verschiebung der elektronischen Einteilchenenergien ber�ucksichtigt

wird. Die Abh�angigkeit der Renormierung der Elektronen vom Abstand zur Fermikante wird

berechnet. Schlie�lich untersuchen wir die Transformation der elektronischen Einteilchenop-

eratoren.

Zum Abschluss der Arbeit wird im Anhang ein rigoroser Beweis f�ur das asymptotische Ver-
halten der Einteilchenenergien gegeben. Es werden logarithmische Korrekturen im asympto-

tischen Verhalten untersucht.

Abstract In this thesis we investigate the electron-phonon-system using the method of

Flow Equations for Hamiltonians. In this continuous diagonalisation process the one particle

energies and interaction constants are subject to a series of transformations, the \ow" of

the Hamiltonian. They depend on a ow parameter ` varying from zero to in�nity. We give
a proof that the asymptotic behaviour of the ow of the one-particle energies for large ` is

given by:

�k(`) = �k(1) + const

2
p
`
,

where the constant may contain terms logarithmic in ` and depends on k. This result is

used to show that the transformation does lead to a blockdiagonal Hamiltonian decoupling

the electron and the phonon subsystems. We obtain the same renormalization of the phonon

energies as Wegner and Lenz, who neglected the shift of the electronic one-particle energies.

The dependency of the renormalization of the electronic energies on the distance to the
fermi surface is calculated. We investigate the transformation of the electronic one-particle

operators.

In the appendix we present a rigorous proof of the asymptotic behaviour. The `-dependency is

changed by including an additional logarithmic factor and this re�ned asymptotic behaviour

is investigated.
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1. Introduction

There is a wide variety of substances for which at low temperatures the most impor-
tant interaction is the one between the electrons and the lattice vibrations, which are
called phonons. In 1952 Fr�ohlich [2] proposed a canonical transformation which elim-
inates the coupling between the phonon and the electron system in �rst order and
instead generates a induced electron-electron interaction. Using the so transformed
Hamiltonian Bardeen, Cooper and Schrie�er [3] were able to explain the phenomena
of superconductivity in 1956.
Since the discovery of high-Tc superconductivity by M�uller/Bednorz [4] in 1986 the cor-
relation of the electron-phonon-interaction with this phenomenon has been discussed
and has drawn new attention to the electron-phonon-problem.

Wegner and Lenz [5] investigated the electron-phonon-Hamiltonian using the newly
introduced method of Hamiltonian ow equations (Wegner [6]).
The method of ow equations for Hamiltonians is a scheme of a continuous diagonal-
isation of the Hamiltonian. The one particle energies and interaction constants are
subject to a series of transformations depending on a ow parameter `, 0 � ` < 1.
A short review of this method is given in chapter 2. For ` ! 1 one has to make
sure that the o�-diagonal interaction vanishes. The change of the one-particle energies
under this `-dependent ow then is the renormalization. In general many interaction
constants decay rapidly, i.e. exponentially in `. Those remaining decay algebraically.
They are responsible for the renormalization of the one-particle energies.

Wegner and Lenz appplied the formalism of Hamiltonian ow equations to the electron-
phonon-problem such that the Hamiltonian is only brought to a block-diagonal form.
Besides the renormalization of the one-particle energies the di�erence of the diagonal-
ized Hamiltonian to a system of free electrons and phonons is an attractive electron-
electron interaction. For the ow of the energies and interaction constants under the
series of `-dependent transformations Wegner and Lenz found a fundamental set of
integro-di�erential equations. This set is the basis of this thesis.
Neglecting any renormalization for the electron energies Wegner and Lenz investigated
the renormalization of the phononic energies and they obtained an improved attractive
mediate electron-electron interaction. Continuing this work Wegner and Ragwitz [7]
calculated the renormalization of the phonon energies and the correlation functions of
the phonons. Once again the electronic energies were taken as constants under the
diagonalisation of the electron-phonon-Hamiltonian.
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1. Introduction

In this thesis we will follow the lines of their work but include the renormalization of
the electronic one particle energies. The result is twofold:
First, we are able to show that the renormalization of the phonons is not changed when
the renormalization of the electrons is included.
Second, we can justify that the renormalization of the electrons due to this transfor-
mation is small compared to the e�ects of the attractive electron-electron-interaction.

The organisation of this thesis is as follows:
In chapter 2 we give a more detailed introduction to the formalism of ow-equations
for Hamiltonians as introduced by Wegner [6] in 1993.
In chapter 3 we introduce the electron-phonon-problem and give a derivation of the
equations for the renormalization of this system as obtained by Wegner and Lenz [5].
We also give a short overview of the results they found in their paper for the attractive
electron-electron interaction.
We �nd in chapter 4 the general behaviour of the asymptotic form (in `) of the electron
and the phonon energies. A rigorous proof for this solution is given in appendix A.
We also show in chapter 4 that indeed the electron-phonon interaction vanishes as the
series of transformations proceed with increasing `. A solution of the fundamental set
of equations is found in the following self consistent way: First certain functions of the
parameter ` for the electron and phonon energies are assumed and then it is prooved
that the fundamental equations are full�lled.
In chapter 5 we look for a solution using a more re�ned dependence on ` for smaller
`-values. In this ansatz we specify some details to reach a fully self-consistent solution
in chapter 6.
The transformation of the electronic one-particle operators under the ` induced ow is
investigated in chapter 7.
The results of the thesis, including a di�erent approach for the exact asymptotic be-
haviour as given in Appendix B, are discussed in chapter 8.
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2. Flow Equations for Hamiltonians

2.1. Transformation of the Hamiltonian

Every quantummechanical system is characterized by a Hamiltonian. The eigenvalues
of this hermitian operator give the energy levels of the system, the corresponding
eigenvectors describe the allowed states. Hence, to investigate a physical system in
quantum mechanics one tries to diagonalize the corresponding Hamiltonian,i.e. one
searches for a unitarian operator U such that

U+HU = D (2.1)

where D has diagonal form.
However, for most systems physics is interested in such a unitarian transformation
cannot be given explicitely. Instead approximation schemes have to be used.

A new method to reach a diagonal Hamiltonian was proposed by Franz Wegner in 1993.
One writes an ensemble of transformations characterized by a parameter `, 0 < ` <1

H(`) = U+(`)H0U(`) U(0) = 1 (2.2)

Here H0 is the Hamiltonian describing the entire system. The subindex 0 is only used to
denote H0 as the starting point of the `-dependent transformation. H0 is not diagonal.
At the start, ` = 0, a basis is chosen which represents the actual physical system in an
approximate way. These approximate states are then transformed by U+(`).
In this approach the Hamiltonian is not diagonalized in one step but for every given `0
one tries to �nd a change dH(`0) such that H(`0 + d`) has smaller o�-diagonal terms
than H(`0). The in�nitesimal change of H(`) is given by:

dH(`)

d`
= [�(`); H(`)] (2.3)

where �(`) = dU+(`)
d`

U(`) is antihermitian. Except for this condition the choice of �
is free. The ensemble of antihermitian matrices is chosen such that H(` = 1) has
diagonal or at least blockdiagonal form and the resulting di�erential equations for the
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2. Flow Equations for Hamiltonians

\ow" of the elements hi;j(`) ofH(`) as a function of ` take a form as simple as possible.
Wegner proposed:

�(`) = [Hd(`); Hr(`)] (2.4)

as a possible choice for �. Hd and Hr are the diagonal and o�diagonal terms of the
Hamiltonian,respectively. The hope is that Hr(`) ! 0 as ` ! 1 for such an �. Un-
fortunately this is not generally true, even if � vanishes with ` tending to in�nity!
Therefore, when applying an � of the form of (2.4) it has to be investigated for each
physical system whether or not Hr does indeed vanish.
Transforming a Hamiltonian within the framework of this formalism of Flow-equations
will, in general, generate terms not present in the original Hamiltonian. In some
exceptional cases it is possible to include all the additional terms in the formalism.
Otherwise, the additional terms can only be treated approximately. The approxima-
tions depend, of course, on the physical system, the corresponding Hamiltonian, the
physical quantities under considerations and the form of the additional terms. The
goal is always to keep the error as small as possible.
The result of the procedure sketched above is a set of coupled di�erential equations
governing the ow of the self-energy of the particles and the interaction constants as a
function of the parameter ` where the interaction constants vanish as `!1.

2.2. Transformation of physical quantities

Actually the Hamiltonian itself does not change under the ` dependent transformation;
for every ` the Hamiltonian is represented in a di�erent basis and the change of the
basis is given by the ensemble of the unitarian transformations. This has to be kept
in mind, if one is interested in physical properties of the quantummechanical system
under investigation. Lets take the expectation value of a hermitian operator O. Then
we have to take O in its transformed representation:

O(`) = U+(`)OU(`) (2.5)

In the limit for which our Hamiltonian is (block-)diagonal, this reads:

hO(1)i = 
U+(1)OU(1)
�

(2.6)

In general we do not know U(1) and have to �nd O(1) by once again applying the ow
equation formalism with the same � as used for the transformation of the Hamiltonian:

dO(`)

d`
= [�(`); O(`)] (2.7)
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3. The Electron-Phonon-Problem

3.1. The Hamiltonian

The Hamiltonian of the electron-phonon problem is given by:

H0 =
X
k

�kc
y
kck +

X
q

!qa
y
qaq +

X
k;q

Mq(a
y
�q + aq)c

y
k+qck (3.1)

Further interactions (e.g. coulomb-interaction) and higher order terms are neglected.
For reasons of simpli�cation we work with electrons of one band only.
The �rst term of (3.1) is the self-energy term of the free electrons.
The second term describes \free" phonons. These characterize the vibrations of the
ions of the lattice. The third term is the electron-phonon-interaction discussed in 3.1.2.

3.1.1. Phonons

The ions of the lattice oscillate around their equilibrium positions1. This leads to
vibrations of the lattice for which the (classical) hamiltonian function is given (up to
second order) by:

H =
X
n;i

M

2
_s2n;i +

1

2

X
n;i

n
0
;i
0

@2V

@Rn;i@Rn
0
;i
0
sn;isn0 ;i0 (3.2)

sn;i is the ith cartesian coordinate of the displacement of the ions of the nth Wigner-
Seitz cell. V is the potential in which the ions move.
We put:

sn;i =
1p
M
un;ie

�i!t,
un;i = cie

iqRn, and

Dn
0
;i
0

n;i = 1
M

@2V
@Rn;i@R

n
0
;i
0 ;

the equation of motion then yields:

!2ci =
X
i
0

8<
:
X
n
0
Dn

0
;i
0

n;i exp[iq(Rn
0 �Rn)]

9=
; ci0 : (3.3)

1For a more detailed introduction of phonons see: [1]
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3. The Electron-Phonon-Problem

The translational symmetry requires that Dn
0
;i
0

n;i does not depend on the cell indices n

and n
0
separately, but can only depend on (n � n

0
). The solution of (3.3) is given by

three di�erent eigenvalues !(j), which depend on q. For each !(j)(q) the components of

the corresponding eigenvector are given by: ci = e
(j)
i (q). These solutions form vectors

e(j)(q), which are orthonormal. As a set of special solutions for the displacements sn(t)
it is possible to use:

s(j)n (q; t) =
1p
M
e(j)(q) exp(i[qRn � !j(q)t]): (3.4)

The general solutions can be constructed by superposition of the special ones:

sn(q; t) =
1p
NM

X
j;q

Qj(q; t)e
(j)(q) exp(iqRn) (3.5)

the time dependency has been included in the factor Qj(q; t) a factor 1p
N

has been

separated out. In the usual way (3.2) can be quantized and written as:

H =
1

2

X
j;q

[ _Q�
j(q; t) _Qj(q; t) + !2

jQ
�
j(q; t)Qj(q; t)]: (3.6)

With the usual transformation (as applied for the harmonic oscillator):

Pj(q; t) = _Qj(q; t),

aq = (2~!(q))�
1
2 (!(q)Qj(q) + iP �(q)) and

ayq = (2~!(q))�
1
2 (!(q)Q�

j(q)� iP (q))

we then �nd the Hamiltonian for the free phonons:

H =
X
j;q

~!j(q)

�
ayj(q)aj(q) +

1

2

�
(3.7)

3.1.2. The electron-phonon-interaction

In this section a short derivation of the interaction electron-phonon-interaction is
given2.
In general the interaction of electrons and ions is given by:

Hel�ion =
X
l;n

Vel�ion(rl �Rn) (3.8)

Here we use Nordheim's rigid ion model in which the interaction depends only on the
separation of electrons and ions; the form of the ions does not change during the motion.
2We closely follow [1] where a more detailed analysis is given
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3.1. The Hamiltonian

Most of the more sophisticated models do not alter the electron-phonon interaction in
a signi�cant way. Therefore, the results of this thesis do not depend on the choice of
the speci�c model.
Let the position of an ion be given by: Rn+ sn. Rn denots the equilibrium position of
the nth ion and sn(t) its displacement from this position. As sn is small compared to
the size of a unit cell we can expand (3.8) to �nd:

Hel�ion =
X
l;n

Vel�ion(rl �Rn) +
X
l;n

~rVel�ion(rl �Rn) � sn (3.9)

= H0
el�ion +Hel�ph: (3.10)

The �rst term describes the interaction of the electrons with the periodic potential of
the ionic background. In this subsection we are interested in the second term which is
the electron-phonon interaction coupling the electrons and the lattice vibrations. Using
normal coordinates for sn gives:

Hel�ph =
X
n;l

1p
NM

X
q;j

Qq;jexp(iq �Rn)e
j(q) � ~rVel�ion(rl �Rn): (3.11)

For every normal coordinate the phonon component

Qq =
�

~

2!q;j

�
(ay�q;j + aq;j)

consists of two parts: One creating a phonon with (pseudo)momentum �q and one
absorbing a phonon with pseudomentum q. This (pseudo)- momentum has to be

delivered by the electrons. We expand ~rV in k-space (N.B. The interaction potential
does not depend on the spins):

~rV =
X
k;k

0
;�

D
k
0
�j~rV jk�

E
cy
k
0
;�
ck;� (3.12)

=
X

k;k
0
;�;�

exp(�i� �Rn)V�
D
k
0
�jexp(�i� � r)jk�

E
cy
k
0
;�
ck;�:

The electrons are described by Bloch functions: jki = un(k; r)e
ik�r. We useP

n exp[i(q� �) �Rn] = N
P

Km
Æq;�+Km

. Here Km �Rn is a multiple of 2� for all n.
Terms with Km 6= 0 describe Umklapp-processes.
As we are interested in the behaviour of the system at low temperatures, i.e. only
phonon-levels with small q are occupied, we restrict our considerations to normal pro-
cesses, i.e. Km = 0.
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3. The Electron-Phonon-Problem

Hel�ph =
X
k;�;j;q

r
N

M
V�iq � ej(q)

s
~

2!q;j

�
Z

u�n(k+ q; r)un(k; r)dr(a
y
�q;j + aq;j)c

y
k+q;�ck;�: (3.13)

We further use a phonon representation which is either purely longitudinal or purely
transverse, i.e. the oscillations are parallel or perpendicular to q. Then only the
longitudinal phonons couple to the electrons. Finally we obtain:

Hel�ph =
X
k;�;q

Mkq(a
y
�q + aq)c

y
k+q;�ck;� (3.14)

with: Mk;q = iVqq
q

N
M

q
~

2!q

R
u�n(k+ q; r)un(k; r)dr

For nearly free electrons the integral is approximately one, yielding:

Mq = iVqq

r
N

M

s
~

2!q
(3.15)

This gives the interaction term of (3.1).

3.2. Applying the Flow Equations to the

Electron-Phonon-Problem

Wegner and Lenz applied the formalism of Flow Equations to the electron-phonon
Hamiltonian (3.1) [5].
They used the following �:

�(`) =

hP
q !q(`) : a

+
q aq : +

P
k �k(`) : c

+
k ck :;

P
k;q

�
Mk;q(`)a

+
�q +Mk+q;�q(`)aq

�
c+k+qck

i
=
P

k;q

�
�k;q(`)Mk;q(`)a

+
�q � �k+q;�q(`)Mk+q;�q(`)aq

�
c+k+qck (3.16)

with:
�k;q = �k+q � �k + !q:

This gives the energy which is needed for or gained by one interaction process. It is
the change of energy of the electron changing its momentum plus the energy put into
the creation of a phonon or gained by its annihilation.
This is the choice of � proposed by Wegner (2.4).
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3.2. Applying the Flow Equations to the Electron-Phonon-Problem

Here
P

q !q(`) : a
+
q aq : +

P
k �k(`) : c

+
k ck :

is the diagonal andP
k;q

�
Mk;q(`)a

+
�q +Mk+q;�q(`)aq

�
c+k+qck is the o�-diagonal part of the Hamiltonian.

We will show later 4.4 that for this choice of � the interaction constants Mk;q do indeed
vanish for `!1.
During the transformation process the Hamiltonian is given by:

H(`) =
X
q

!q(`) : a
+
q aq : +

X
k

�k(`) : c
+
k ck :

+
X
k;k

0
;q

Vk;k0 ;q(`) : c
+
k+qc

+

k
0�qck0ck : +E(`) (3.17)

+
X
k;q

�
Mk;q(`)a

+
�q +Mk+q;�q(`)aq

�
c+k+qck

with the initial values:

Mk;q(` = 0) =Mk+q;�q(` = 0) =Mq(0) = Mq = ~c
p
q

Vk;k0 ;q(` = 0) = 0 (3.18)

!q(` = 0) = ~cjqj �k(` = 0) =
k2

2m

These values are those on a lattice with a periodicity tih length a of e.g. cubic form:
�k+2�a = �k. The interaction constant ~c contains a factor 1p

N
. An additional electron-

electron-interaction is generated during the transformation process. This interaction
is attractive and eventually leads to superconductivity3.
Actually, during the transformation more terms than given above are generated. These
additional terms are of higher order, e.g. four particle interactions. It makes some
sense not to keep terms which have originally been considered to be unimportant for
our investigation.
In order to neglect these additional terms and still keep the error in the calculation as
small as possible the Hamiltonian is rewritten in its normal ordered form. Then the
expectation value of the neglected terms with respect to the canonical ensemble is zero.
Changing the Hamiltonian to its normal ordered form yields E(`), the ground state
expectation value of the energy4. In the following we will mostly work in the regime of
zero temperature. The expectation values are consequently taken with respect to the
ground state.

For `!1 we expect to �nd:

H(1) =
X
q

!q(1) : a+q aq : +
X
k

�k(1) : c+k ck :

3See [5]
4Some of the additional terms which would be generated during the transformation can be gotten rid of by
adding small terms to �. For a more detailed analysis see [5].
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3. The Electron-Phonon-Problem

+
X
k;k

0
;q

Vk;k0 ;q(1) : c+k+qc
+

k
0�qck0ck : +E(1):

The ow of the terms in (3.17) is governed by the following set of coupled di�erential
equations5:

dMk;q

d`
= ��2

k;qMk;q

d!q
d`

= 2
X
k

jMk;qj2�k;q(nk+q � nk)

d�k
d`

= �2
X
q

jMk;qj2�k;q(1� nk+q + nq)

+2
X
q

jMk+q;�qj2�k+q;�q(nk+q + nq) (3.19)

dVk;k0 ;q
d`

= �Mk;qMk
0�q;q�k0�q;q �Mk+q;�qMk

0
;�q�k0 ;�q

dE

d`
=

X
k;q

nk+q(jMk;qj2�k+q � jMk+q;�qj2�k+q;�q)

The nk and nq are the occupation numbers of the electronic and phononic states, re-
spectively. To �nd these equations one simply compares the coeÆcients of the operators
in:

dH(`)

d`
= [�(`); H(`)] (3.20)X

q

d!q(`)

d`
: a+q aq : ::: = 2

X
k

jMk;qj2�k;q(nk+q � nk) : a
+
q aq : :::

For T = 0 the nq equal zero as the expectation value to �nd a phonon is 0.
In the subsequent chapters we will use this set of coupled di�erential equations for
T = 0 to investigate the asymptotic behaviour of the one particle energies and the
interaction constants and thus calculate their ongoing renormalization as ` increases.

3.2.1. Results of Wegner and Lenz for this set of equations

Wegner and Lenz used the equations (3.19) to investigate the attractive electron-
electron-interaction and the ow of the phononic energies. Their result for the in-
duced electron-electron interaction is an improvement as compared to the one found
by Fr�ohlich [2]. These expressions are noted here.
The interaction for cooper pairs as found by Fr�ohlich is:

Vk;�k;q = jMqj2 !q
(�k+q � �k)2 � !2

q

(3.21)

5The equations as given above are a simpli�cation made by Wegner and Lenz. Only terms up to second
order in the interaction constant are kept [5].
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3.2. Applying the Flow Equations to the Electron-Phonon-Problem

whereas Wegner and Lenz found:

Vk;�k;q = �jMqj2 !q
(�k+q � �k)2 + !2

q

: (3.22)

In (3.21) their is a singularity and for (�k+q � �k)
2 > !2

q the interaction is repulsive.
The interaction (3.22) is attractive for all cooper pairs and no singularity exists.
For a more detailed analysis see [5].

11



3. The Electron-Phonon-Problem
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4. The General Asymptotic Behaviour

4.1. General Transformations

As a starting point for the search of the asymptotic behaviour consider the equations
(3.19) for T = 0 (i.e. nq = 0):

dMk;q(`)

d`
= ��2

k;q(`)Mk;q(`) (4.1)

d!q(`)

d`
= 2

X
k

jMk;qj2�k;q(nk+q � nk) (4.2)

d�k(`)

d`
= �2

X
q

jMk;qj2�k;q(1� nk+q) (4.3)

+2
X
q

jMk+q;�qj2�k+q;�qnk+q (4.4)

dVk;k0 ;q(`)

d`
= �Mk;qMk

0�q;q�k0�q;q �Mk+q;�qMk
0
;�q�k0 ;�q (4.5)

once again �k;q = �k+q � �k + !q. The initial values are given by (3.18).

In the in�nte volume limit these equations can be written in integral form:

dMk;q(`)

d`
= ��2

k;q(`)Mk;q(`) (4.6)

d!q(`)

d`
= 2

V

(2�)3

Z
B

d3kjMk;qj2�k;q(nk+q � nk) (4.7)

d�k(`)

d`
= �2 V

(2�)3

Z
B

d3qjMk;qj2�k;q(1� nk+q) (4.8)

13



4. The General Asymptotic Behaviour

+2
V

(2�)3

Z
B

d3qjMk+q;�qj2�k+q;�qnk+q (4.9)

dVk;k0 ;q
d`

= �Mk;qMk
0�q;q�k0�q;q �Mk+q;�qMk

0
;�q�k0 ;�q: (4.10)

B is the �rst Brillouin-Zone; we use �(k + q) = (k+q)2

2m
even for (k + q) outside the �rst

Brillouin zone as we will be interested only in the vicinity of the Fermi surface. As

T = 0 nk is given by: nk =

8<
: 1 jkj < kf

0 k > kf
We can integrate (4.6) formally:

Mk;q(`) = Mqe
� R `0 �2k;q;(`0 )d`0 (4.11)

Using this expression the derivatives of !q(`) and �k(`) can be written as:

d!q(`)

d`
= 2�

Z
B

d3k�k;q(`)jMqj2e�2
R `
0
�2k;q(`

0
)d`

0
(nk+q � nk) (4.12)

d�k(`)

d`
= �2�

Z
B

d3q�k;q(`)jMqj2e�2
R `
0 �

2
k;q(`

0
)d`

0
(1� nk+q) (4.13)

+2�

Z
B

d3q�k+q;�q(`)jMqj2e�2
R `
0
�2k+q;�q(`

0
)d`

0
nk+q (4.14)

� := V
(2�)3

.

4.2. Establishing a 1p
`
behaviour

To investigate the equations above we �rst take a look at the integral:Z
B

d3q�k;q(`)jMqj2e�2
R `
0 �

2
k;q(`

0
)d`

0
(4.15)

The integral
R
d3k�k;q(`)jMqj2e�2

R `
0 �

2
k;q(`

0
)d`

0
determining the derivative of !q is treated

in exactly the same way. Hence, we will present the details for the integral (4.15)
only. For a more detailed analysis and the analysis of the integral

R
d3k::: see appendix

A. Our aim is to �nd a self consistent solution of (4.12)and (4.13) for large `. We
assume the asymptotic form of the �k(`) and !q(`) contained in � which we use to �nd
the asymptotic behaviour of an integral of the form (4.15). The integral is then used
to calculate the behaviour of the one particle energies according to equations (4.12),

14



4.2. Establishing a 1p
`
behaviour

(4.13). This has to be in accordance with the original assumption.
We assume the following asymptotic behaviour for the �k's and the !q's:

!q(`) = !q(1) +
bq

2
p
`

(4.16)

and

�k(`) = �k(1) +
bk

2
p
`
: (4.17)

Here the bq and bk are real functions of q resp k, but do not depend on `. The factor
1
2
is chosen for convenience only. This asymptotic behaviour was �rst found for the

spin-boson problem by Kehrein, Mielke and Neu [8] and then used by Lenz and Wegner
for the ow of the phonons. In our case the electronic ow of the energy is taken into
account as well leading to more complicated equations.

We use dk;q := bk+q � bk + bq,

i.e. �k;q(`) = �k;q(1) +
b(k + q)

2
p
`

� b(k)

2
p
`
+

b(q)

2
p
`
= �k;q(1) +

dk;q

2
p
`
: (4.18)

We will use �k;q(`) = �k(q; `) = �q(k; `), as well as dk;q(`) = dk(q; `) = dq(k; `) to
demonstrate which variable is part of the integral. We also put �k;q(1) =: �k;q

To calculate 4.15 we choose appropriate coordinates, i.e. the z-direction in q space is
chosen parallel to k.

R
B
d3q�k;q(`)jMqj2e�2

R `
0 �

2
k;q(`

0
)d`

0

=
R
B
d3qjMqj2

�
�k(q;1) + dk(q)

2
p
`

�
e�2(`�

2
k(q;1)+2�k(q;1)dk(q)

p
`+

d2k(q)

4
ln `):

(4.19)

Here we did not take into account the last term at the lower boundary of the `-integral,

i.e. we put:
R `
0
d2

4
1
`
0 d`

0
= d2

4
ln ` and dropped the term: \ d2

ln 0
". This problem can be

solved by either restricting the `-integral to the asymptotic regime
R `
`0
or by using an

asymptotic behaviour of the kind: dp
`+`0

which will be done in chapter 5.4. Expression

(4.19) gives:

R
B
d3qjMqj2

�
�k(q;1) + dk(q)

2
p
`

�
`�

1
2
d2k(q)e2d

2
k(q)e

�2`(�k(q;1)+
dk(q)p

`
)2

= 2�
R
B
qdqdqzjMqj2

�
�k(q; qz;1) + dk(q;qz)

2
p
`

�
`�

1
2
d2k(q;qz)e2d

2
k(q;qz)e

�2`(�k(q;qz1)+
dk(q;qz)p

`
)2

(4.20)
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4. The General Asymptotic Behaviour

We denote �k(q; qz;1) + dk(q;qz)p
`

as �k(q; qz1) again and obtain

2�

Z
B

qdqdqzjMqj2
�
�k(q; qz;1)� dk(q; qz)

2
p
`

�
`�

1
2
d2k(q;qz)e2d

2
k(q;qz)e�2`(�k(q;qz1))2

) �1

`
�

r
�

2

Z
B

q2dqdqz~c
2dk(q; qz)`

� 1
2
d2k(q;qz)e2d

2
k(q;qz)Æ(�k(q; qz;1)) for `!1:

(4.21)

We used jMqj = ~c
p
q and

R1
�1 e�x

2
dx =

p
�. The above is equivalent to:

��
r
�

2

1

`
~c2
Z
(t)

q2(t)dk(t)`
� 1

2
d2k(t)e2d

2
k(t)

1

j ~r�k(t;1) jdt (4.22)

where (t) is the curve in the q; qz-plane given by �k(q; qz;1) = 0.
We now use this result for (4.15) to write down the derivatives of �k and !q where we
calculate the right hand and left hand side of (4.13) and (4.12) separately1.

d�k
d`

= �b(k)
4

1

`
3
2

= k > kf

=
p
2�

1

`
�

3
2

Z
B

qdqdqz~c
2qdk(q; qz)`

� 1
2
d2k(q;qz)e2d

2
k(q;qz)Æ(�k(q; qz;1))(1� nk+q)

=
p
2��

3
2
1

`
~c2
Z
(t)

dt
1

j~r�(t)j
(dk(t))q

2(t)`�
1
2
d2k(t)e2d

2
k(t)(1� nk+q) (4.23)

d!q
d`

= �b(q)
4

1

`
3
2

=

= �
p
2�

1

`
�

3
2 ~c2
Z
B

kdkdkzqdq(k; kz)`
� 1

2
d2q(k;kz)e2d

2
q(k;kz)Æ(�q(k; kz;1))(nk+q � nk)

= �
p
2�

3
2�~c2q

1

`

Z
(t)

dt
1

j~r�(t)j
(dq(t))k(t)`

� 1
2
d2q(t)e2d

2
q(t)(nk+q � nk) (4.24)

These equations have to be ful�lled in order for our assumption to be self-consistent.
The �rst self consistency test requires the algebraic decay in ` to be the same for the
right hand and left hand side of these equations. This holds, for example, as long as
d(k; q) = 1 8k; q : �k;q(1) = 0. Then we have:

b(q)
1

`
3
2

= 4
p
2�

3
2 e2�~c2q

1

`
3
2

Z
(t)

dt
1

j~r�(t)jk(t)(nk+q � nk)

1For k < kf we have an equivalent equation which is found by simply replacing �k;q by �k+q;�q
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4.3. Showing the inconsistency of other algebraic behaviours

Equations (4.23) and (4.24) take the form:

�b(k)`� 3
2 = ~C(k)`�

3
2 (4.25)

�b(q)`� 3
2 = � ~C(q)`�

3
2 (4.26)

This shows the condition for b(k) and b(q) in order for our assumption on the asymptotic
behaviour to be self-consistent. To investigate this further we will use (4.23) and (4.24)
to calculate ~C(k) and ~C(q) and the b(k) and b(q). The larger part of this thesis will then
deal with the problem of really meeting this second requirement for self consistency.
Before dealing with this main point we make a remark on the algebraic decay.

4.3. Showing the inconsistency of other algebraic behaviours

We show that any algebraic decay other than 1p
`
will fail to meet the �rst requirement

for self consistency.
We assume �k(q; `) to be of the form: �k(q;1) + dk(q)

`
. Here dk(q)

`
is the leading term

in the asymptotic behaviour as (`!1). As soon as  is given the integrals governing
d�
d`

and d!
d`

yield the same asymptotic behaviour in `, this is why we consider only the

integral governing d�
d`
.

We use the same steps as in the case of  = 1
2
to calculate the right hand side of (4.13).

For the four cases  > 1,  = 1, 1 >  > 1
2
, 1
2
>  > 0 we compare the `-dependency

(as `!1) of the left and right hand side of (4.13)
a)  > 1:

1

`+1
versus

1

`+
1
2

(4.27)

b)  = 1:

1

`2
versus

1

`
3
2

(4.28)

c) 1 >  > 1
2

1

`+1
versus

1

`+2
(4.29)

d) 1
2
>  > 0:

1

`+1
versus

1

`+
1
2

e�const�`
1�2

(4.30)
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4. The General Asymptotic Behaviour

We can conclude: The only possible algebraic asymptotic behaviour is given by:

�k;q(`) = �k;q(1) +
dk;q

2
p
`

(4.31)

or:

�k(`) = �k(1) +
bk

2
p
`

(4.32)

!q(`) = !q(1) +
bq

2
p
`

(4.33)

4.4. Decay of the Interaction Constants

In this section we will prove that all parts of the electron-phonon interaction do decay
as `!1. This shows that our choice of �(`) does yield a block-diagonal form of our
Hamiltonian under the ` induced transformation

4.4.1. Exponential Decay away from Resonances

Let q and k be values, such that
j�k;q(1)j = j�k;q(1)� �k(1)+!q(1)j =: ~a 6= 0, where ~a is some constant. Then there
is a `�, such that for all ` > `� we have
j�(`)j = j�(1) + 1

2
p
`
j > ~a

2
. Equations (4.1) and (4.31) show that for a given ` > `�

jMk;q(`)j < jMk;q(0)j � e� ~a
2
(`�`�) (4.34)

4.4.2. Algebraic Decay at resonances

For values of q and k which belong to resonances, i.e. �k;q(1) = 0 we have some `�

such that for all ` > `�: �k;q(`) = 1
2
p
`
. We then integrate (4.1) and �nd

jMk;q(`)j < jMk;q(0)j � e� 1
4
ln ` = jMk;q(0)j � `� 1

4 (4.35)

This shows the decay of all interaction constants under the ` induced transformation.
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5. Further Investigations on the Asymptotic

Behaviour

We have seen in the last chapter that the assumption of a constp
`

behaviour is the only

possible algebraic ow for a self consistent solution. In this chapter we search for the
coeÆcients b(q) and b(k), to �nd a fully self-consistent solution of (4.23) and (4.24).
In the �rst section, we will make some remarks on the behaviour of the �(k) and !(q)
under the ` induced transformation. In the second section we investigate the derivatives
of the !q(`) and �k(`) for b(q) and b(k) being independent of q and k, respectively.
This corresponds to the unperturbed phononic ow. We then evaluate the integrals
determing the b(q) and b(k) under the assumption dk;q = b(k + q) � b(k) + b(q) = 1
in section 5.3. The results give a hint on how to continue our considerations. We are
lead to use a more speci�c ansatz as used by Wegner and Ragwitz [7] who correctly
described the asymptotic behaviour of the phononic ow under the assumption of
constant electronic energies.
In section 5.4 we will use !q(`) = !q(1) + b(q)

2
p
`+`0

and a similar form for the electronic

ow to �nd the form of the b(q) and b(k) for a self consistent solution. In the last
section of this chapter we present a self-consistent solution and discuss its physical
implications.
For T = 0 the important e�ects are going to be those involving small q and values of
k near to kf . For this reason we will expand, if necessary, in terms of q and k � kf .

5.1. General Considerations

For the deduction of the general asymptotic behaviour in the last chapter, we used the
assumption (see Appendix A), that during the `-dependent transformation a crossing
of the electronic energy levels does not occur. This means for all `:

k > k
0 , �k(`) > �k0 (`)

As the !q are phononic, i.e. bosonic energies we further assume:

!q(`) � 0 8`; q
To obtain �k;q(`) = �k+q(`)� �k(`) + !q(`) = 0 we then need:

q = 0 or jk + qj < k
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5. Further Investigations on the Asymptotic Behaviour

Take a look at the equations (4.12), (4.13) and (4.14). We want to �nd those parts of
these integrals, which are important for the algebraic decay in the asymptotic regime.
That is, those regions in which �k;q(1) = 0, because of the exponential supression for
other �.
We start with the integral for the evaluation of d!

d`
. The regions over which this integral

is taken, are given by:

nk+q = 1 and nk = 0
or

nk+q = 0 and nk = 1.

In the second case, we would have: �k;q(`) = �k+q(`)� �k(`)+!q(`) > !q(`) > 0, which
leads to a term exponentially decaying, compared to the leading asymptotic behaviour.
The integral in (4.13) di�ers from zero only if nk+q = 0, that is, we have jk + qj > kf .
Let k < kf , this means: �k+q � �k + !q > �kf � �k + !q > const > 0. This integral is
exponentially decaying with ` for all k smaller than kf .
Whereas in (4.14) we have jk + qj < kf and, as the signi�cant region of integration is
given by: �k+q;�q = �k � �k+q + !q = 0, we �nd �k+q;�q > �k � �kf + !q > const > 0
for any k above the fermi surface. And this integral is exponentially decaying for all k
larger than kf .
The parts of the integrals (4.12)-(4.14), which contribute to the algebraic decay, are
given by:

d!q
d`

: jk + qj < kf < k (5.1)

d�k
d`

: k > jk + qj > kf ;
d�k
d`

: k < jk + qj < kf (5.2)

5.2. Example 1: Unperturbed Phononic Flow

To get a feeling for equations (4.12)-(4.14) we discuss a very simple assumption1. Lets
take dk;q to be a constant, i.e. d = b(k + q)� b(k) + b(q) = 1. Then we have (see 4.23
and 4.24)2:

d!q
d`

= �b(q)
4

1

`
3
2

= �
p
2��

3
2 e2~c2q

1

`
3
2

Z
B

kdkdkzÆ(�q(k; kz;1))(nk+q � nk)

1N.B. In general the b(q) and b(k) are two distinct functions
2N.B. None of the remaining integrals is ` dependent
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5.2. Example 1: Unperturbed Phononic Flow

= �
p
2��

3
2 e2~c2q

1

`
3
2

Z
(t)

dtk(t)
1

j~r�(t)j(nk+q � nk) (5.3)

d�k
d`

= �b(k)
4

1

`
3
2

k > kf

=
p
2�e2�

3
2 ~c

1

`
3
2

Z
B

q2dqdqzÆ(�k(q; qz;1))(1� nk+q)

=
p
2�e2�

3
2 ~c

1

`
3
2

Z
(t)

dtq2(t)
1

j~r�(t)j(1� nk+q) (5.4)

We will discuss these equation for very simple forms of the b(k)s and b(q)s. A natural
�rst try is to choose the b(q) and b(k) as constants. As one can see, the derivatives of
the electronic energies change sign at the fermi surface. (4.13)+(4.14). That is why
we assume b(k) to change sign at the fermi surface. For didactical reasons we will also
investigate the case of constant b(k):
I) b(q) = A, b(k) = B k > kf and b(k) = �B k < kf , will be our �rst try.
II) In addition we will take a look at: b(q) = A, b(k) = B
This would mean, the inclusion of the electronic ow does not alter the phononic ow.
As for the phononic ow both these choices yield the same asymptotic behaviour, as
obtained by Wegner and Lenz [5], who neglected the e�ects of the electronic-ow. This
can be described simply by setting B = 0.

We check, whether these assumptions can be self-consistent in our considerations, where
the ow of the electronic energies is included. For the �rst assumption we explicitely
have:

�k(`) = �k(1) +
B

2
p
`
; k > kf

�k(`) = �k(1)� B

2
p
`
; k < kf (5.5)

!q(`) = !q(1) +
A

2
p
`
; k > kf

Consider further the integral governing d!q
d`
. The integral splits into two parts. As we

have argued in (5.1) only one part, given by: jk + qj < kf < k is important for our
investigation of the asymptotic behaviour. This lead to: �k;q(`) = �k;q(1) + �2B+A

2
p
`
,

thus:

d = �2B + A.

Within the region of integration in (5.4), it is easily seen, that jk + qj; k > kf and this
means �k;q(`) = �k;q(1)+ B�B+A

2
p
`
) d = A. Combining both of these conditions gives
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5. Further Investigations on the Asymptotic Behaviour

B = 0. This means d�
d`
= 0, which is not possible.

For the second case, i.e. II) we have A = 1 for all our integrals. But, as argued above,
the resulting derivatives of the electronic energies change sign at the fermi surface.
Further, take a look at the equation (5.4), with jkj only slightly bigger, than kf . For
� to be zero jk+ qj has to be smaller than jkj and at the same time bigger than kf for
(5.4) to be non zero. Thus the set S (zeros of �k;q), i.e. the region of integration over
dt in (5.4), will decline like (k� kf)

2 as k! kf . This contradicts the assumption of B
beeing a constant.

Easy solutions for our set of equations cannot be found, even not in the asymptotic
regime. To get an idea on how to continue our considerations, we will use, d=1 to
calcuate b(q) and b(k).

5.3. First Calculation of the bk and bq

We assume an asymptotic behaviour as given in 4:

!q(`) = !q(1) +
bq

2
p
`

�k(`) = �k(1) +
bk

2
p
`

(5.6)

Instead of assuming bq and bk to be constant we use equations (5.3) and (5.4), in aform,
where the azimuthal symmetry hasn't yet been integrated over, to calculate bq and bk.
As long as: b(k + q)� b(k) + b(q) = dk;q = 1 for all k; q : �k;q = 0 we have:

�b(q)
4

= � 1p
2
�
p
�e2~c2q

Z
B

Æ(�q(k))(nk+q � nk)d
3k (5.7)

and

�b(k)
4

=
1p
2
�
p
�e2~c2

Z
B

qÆ(�k(q))(1� nk+q)d
3q k > kf (5.8)

�b(k)
4

= � 1p
2
�
p
�e2~c2

Z
B

qÆ(�k+q;�q(q))nk+qd3q k < kf (5.9)

To solve these expressions we assume, that �k;q does not change signi�cantly under the
ow of `, this is: Æ(�k;q(1)) = Æ(�k;q(0)).

5.3.1. Evaluation of b(q)

As we have shown in the previous section, our region of integration for (5.7) is given
by:

k > kf > jk + qj; (5.10)
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5.3. First Calculation of the bk and bq

We choose the z-axis of ~k antiparallel to ~q, and with q = jqj we have:

�q(k) =
q2

2m
� kzq

m
+ cq = 0 (5.11)

Setting r2 = k2x + k2y, we evaluate (5.7):

b(q) = 2
p
2�
p
�e2~c2q

Z
B

d3k(nk+q � nk)Æ(�q(k)) =

4
p
2��

3
2 e2~c2q

Z
B

rdrdkz(nk+q � nk)Æ(
q2

2m
� kzq

m
+ cq)

Due to (5.10)

(kz � q)2 + r2 < k2f < k2z + r2 which leads to 0 < kz < kf + q

We split the integral into two parts

4
p
2��

3
2 e2~c2q

R kf
0

Rpk2f�(kz�q)2p
k2
f
�k2z

rdrdkzÆ(
q2

2m
� kzq

m
+ cq)

4
p
2��

3
2 e2~c2q

R kf+q
kf

Rpk2
f
�(kz�q)2

0 rdrdkzÆ(
q2

2m
� kzq

m
+ cq)

As q is small and c is small compared to
kf
m
, the argument of the Æ-function in the

second integral never vanishes . We substitute variables y = kzq

m
and continue the

calculation for the �rst integral:

4
p
2��

3
2 e2~c2q

R kf q
m

0

Rpk2
f
�(m

q
y�q)2r

k2
f
�m2

q2
y2

rdrdym
q
Æ( q

2

2m
� y + cq) =

4
p
2��

3
2 e2~c2m

R kf q
m

0
F (y)dyÆ( q

2

2m
� y + cq)

(5.12)

Straight forward integration over r and then over y yields:

b(q) = 4
p
2��

3
2 e2~c2m2cq (5.13)

i.e. b(q) = const � q (5.14)

where

const = 4
p
2��

3
2 e2~c2m2 (5.15)
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5. Further Investigations on the Asymptotic Behaviour

5.3.2. Evaluation of b(k)

We now want to investigate the behaviour of the electronic energies near the fermi
surface. (Explicitely we only consider values of k > kf).

Again choosing suitable integration variables for our integral, we assume the z-axis of
our q-integral to be parallel to ~k. We then have:

�k(q) =
q2

2m
+ qzk

m
+ cjqj = 0 which requires qz < 0

! jqj = �mc +
p
m2c2 � 2qzk;

(5.16)

The region of integration is limited by:

(1� nk+q) = 1

which givesk2 + 2kqz + q2 > k2f or q2 > k2f � k2 � 2kqz
(5.17)

This condition and �k;q = 0 can only be full�lled as long as qz is smaller than the value
calculated below.

k2f � k2 � 2kqz = q2 = m2c2 +m2c2 � 2kqz � 2mc
p
m2c2 � 2kqz

which leads to

qz =
1
2k
(k2f � k2)� 1

8m2c2k
(k2f � k2)2 := �a

(5.18)

As we are interested in values of k near the fermi surface, the last line can be approx-
imated to yield:
a = (k � kf )

We only have to take into account those parts of the integral with 0 > qz > �a. We
change coordinates of our integral to qz and q. Then the lower boundary llof the q part

is given by the larger value of jqzj and
q
maxf0; k2f � k2 � 2kqzg.

24



5.4. A shifted Asymptotic Behaviour: 1
2
p
`+`0

We proceed with the calculation of (5.4):

� b(k)
4

= 1p
2
�
p
�e2~c2

R
B
d3qqÆ(�k(q))(1� nk+q))

b(k) = �2p2�� 3
2 e2~c2

R 0

�a dqz
R B
ll
dqq2Æ(�k(q; qz;1))

= �2p2�� 3
2 e2~c2

R 0

�a dqz
R B
ll
dqq2 1

( q
m
+c)

Æ(q +mc�
p
m2c2 � 2kqz)

= �2p2�� 3
2 e2~c2

R 0

�a dqz(�mc +
p
m2c2 � 2kqz)

2 m

(
p

m2c2�2kqz)

= �2p2�� 3
2 e2~c2

R 0

�a dqz

�
2m3c2�2mkqzp

m2c2�2kqz
� 2m2c

�

(5.19)

We are interested in the change of the electronic energies near the fermi surface, then
jqzj � a, which itself is of the order of k � kf , is small. Expanding the denominator,
we �nd:

= �2p2�� 3
2 e2~c2

R 0

�a dqz(2m
3c2 � 2mkqz)

1
mc
(1 + k

m2c2
qz +

3
2

k2

m4c4
q2z)� 2m2c

= �2p2�� 3
2 e2~c2

R 0

�a dqz
k2

m2c3
q2z

= �2
3

p
2��

3
2 e2~c2 k2

m2c3
a3

(5.20)

As
a = 1

2
(k2 � k2f) +

1
8m2c2k

(k2f � k2)2 � kf(k � kf),
it is easily seen, that:

b(k) = �const(k � kf)
3 (5.21)

These calculations show, that assuming d = 1 and a behaviour like !; � � constp
`
for all `

would lead to a contradiction as e.g. dk;q ! 0 for j q j! 0. Trying to �x this problem,
we will now take into account a di�erent dependence on ` for smaller values of `.

5.4. A shifted Asymptotic Behaviour: 1

2
p
`+`0

Until now we have assumed the asymptotic forms (4.32) and (4.33) for all values of `,
which gave rise to the singularities discussed in section 4.2. When assuming a shifted
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5. Further Investigations on the Asymptotic Behaviour

asymptotic behaviour, the diÆculty disappears. In the last section we have seen, that
a major problem in obtaining a self consistent solution is the problem of �nding values
of bk and bq, such that dk;q equals one.
This problem exists even if only the phononic ow is considered, i.e. �k(`) = �k(1) =
�k(0). In this case, dq = b(q) = 1 is needed. Wegner and Ragwitz[7] solved this problem
by including the onset of the asymptotic behaviour. Instead of setting

!q(`) = !q(1) +
1

2
p
`

(5.22)

they used:

!q(`) = !q(1) +
1

2
p
`+ `0

(5.23)

where `0 =
1

(4�~c2!q(1)
p

�
2
e2)2

.

As
p
`0 has a pole at q = 0, we loose one power of q in (5.13), which leads to b(q)=d=1,

and thus solves (4.12) self-consistently, as long as the electronic ow is neglected.

The new behaviour of the ow can be interpreted as follows: For small `� `0, the one
particle energies are nearly constant. For ` � `0 there is an intermediate region and
�nally for `� `0 the general asymptotic behaviour is refound.
It makes good sense to assume a very similar asymptotic behaviour for the phononic
ow, even if the e�ects of the electronic ow are included. The change of the electronic
dispersion relation is small and hence. this change does not alter the phononic ow
dramatically. For this reason, we assume the asymptotic behaviour of the phononic
and electronic ow to be of this shifted form.

!q(`) = !q(1) +
bq

2
p
`+ `0(q)

�k(`) = �k(1) +
bk

2
p
` + `�(k)

(5.24)

Still assuming dk;q = 1 8k; q : �k;q(1) = 0, we now do the same calculations as in
chapter 4:

� b(q)
4

1p
`+`0(q)

3 = 2�
R
B
d3k�q(k; `) jMq j2 e�2

R `
0
�2q(k;`

0
)d`

0
(nk+q � nk)

= 2�
R
B
d3k(�q(k;1) +

P
i

bi
2
p
`+`i

) jMq j2 e
�2 R `0 (�q(k;1)+

P
i

bi

2

p
`
0
+`i

)2d`
0

(nk+q � nk)

(5.25)

where we put
`1 := `�(k + q); `2 := `�(k); `3 := `0(q); b1 := b(k + q); b2 := �b(k); b3 := b(q)
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`+`0

We calculate the exponent (using �q;k := �q;k(1)):

�2 R `
0
(�q;k +

P
i

bi

2
p

`
0+`i

)2d`
0

= �2 ��q(k)2`+ 2�q(k)
P

i bi
p
`+ `i � 2�q(k)

P
i bi
p
`i
�

�Pi
1
2
b2i ln (` + `i)� 1

2

P
i6=j bibj ln (`+

1
2
(`i + `j) +

p
`2 + (`i + `j)`+ `i`j)

+1
2

P
i b

2
i ln `i +

1
2

P
i6=j bibj ln (

1
2
(`i + `j) +

p
`i`j)

(5.26)

we set `+ `i � ` and �nd3:

= �2`(�q;k +
P

i
bip
`
)2 + 2(

P
i bi)

2

+4�q;k
P

i bi
p
`i

�Pi
1
2
b2i ln (`)� 1

2

P
i6=j bibj ln (`)

+1
2

P
i b

2
i ln `i +

1
2

P
i6=j bibj ln (

1
4
(`i + `j) +

1
2

p
`i`j)

(5.27)

We set `+ `0 � ` for the left hand side of (5.3) as well and �nd for the phononic ow:

� b(q)
4

1p
`
3 = 2�

R
B
(�q(k) +

P
i

bi
2
p
`
) jMq j2 e�2`(�q(k)+

P
i
bip
`
)2
e2(
P

i bi)
2

�e4�q(k)
P

i bi
p
`i `�

1
2
(
P

i bi)
2Q

i `
b2i
2
i

Q
i6=j(

1
4
(`i + `j) +

1
2

p
`i`j)

1
2
bibj (nk+q � nk) d

3k

(5.28)

We perform the integration over the k-values using the same transformation as in the
previous chapter:

b(q) = 2
p
2�
p
�e2~c2q

R
B
Æ(�q;k)(nk+q � nk)

�Qi6=j(
1
4
(`i + `j) +

1
2

p
`i`j)

1
2
bibj`

1
2
b21

1 `
1
2
b22

2 `
1
2
b23

3 d3k

(5.29)

3This approximation is only true for the asymptotic region. As long as the `0 and `� are no more singular
than a pole, the integral over the region, where we are not in the asymptotic regime, does not contribute
to the leading order.
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5. Further Investigations on the Asymptotic Behaviour

where we used:
P

i bi = dk;q = 1.

It is easily seen, that for k > kf the derivatives for the electronic energies are given by:

� b(k)
4

1p
`
3 = �2� R

B
d3q�k(q; `) jMq j2 e�2

R `
0 �

2
k(q;`

0
)d`

0
(1� nk+q)

)
b(k) = �2p2�p�e2~c2p` R

B
j q j dk(q)`� 1

2
d2k(q)Æ(�k(q))(1� nk+q)

�Qi6=j(
1
4
(`i + `j) +

1
2

p
`i`j)

1
2
bibj`

1
2
b21

1 `
1
2
b22

2 `
1
2
b23

3 d3q )
b(k) = �2p2�p�e2~c2 R

B
j q j Æ(�k(q))(1� nk+q)

�Qi6=j(
1
4
(`i + `j) +

1
2

p
`i`j)

1
2
bibj`

1
2
b21

1 `
1
2
b22

2 `
1
2
b23

3 d3q

(5.30)

For k < kf we �nd:

� b(k)
4

1p
`
3 = 2�

R
B
d3q�k+q;�q(`) jMq j2 e�2

R `
0 �

2
k+q;�q(`

0
)d`

0
nk+q

)
b(k) = 2

p
2�
p
�e2~c2

R
B
j q j Æ(�k+q;�q(q))nk+q

�Qi6=j(
1
4
(`i + `j) +

1
2

p
`i`j)

1
2
bibj`

1
2
b21

1 `
1
2
b22

2 `
1
2
b23

3 d3q

(5.31)

where for this last case
`1 := `�(k); `2 := `�(k + q); `3 := `0(q); b1 := b(k); b2 := �b(k + q); b3 := b(q)

Using the experience we have gathered in the proceeding sections (e.g. equations ((5.14)
and (5.21)), we make the following ansatz:

b(q) = 1 + A1 j q j b(k) = B � (k � kf)� j k � kf j
andp

`0(q) =
D�1
jqj +D0

p
`�(k) = E1f(k � kf )

(5.32)

We are interested in the behaviour of our system for small q and near the fermi surface,
i.e. k� kf small. In this regime jjk + qj � kf j is small as well. In this sense we neglect
terms of higher order in q and k � kf .
In (5.32) f is an arbitrary function of k � kf . We only assume, that the behaviour of
1
f
for k ! kf can be no more singular than a pole.
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5.4.1. Calculation of b(q)

In this realm we �nd for (5.29):

b(q) = 2
p
2�
p
�e2~c2q

R
B
Æ(�q(k))(nk+q � nk)

�p`1b
2
1
p
`2

b22
p
`3

b23
Q

i<j(
1
4
(`i + `j) +

1
2

p
`i`j)

bibj d3k

= 2
p
2�
p
�e2~c2 j q j R

B
d3kÆ(�q(k)) (nk+q � nk)

�
�
D�1
jqj +D0

�1+2A1jqj

� (E1f(j k + q j �kf ))B
2(jk+qj�kf)4 � (E1f(k � kf ))

B2(k�kf )4

�
�
1
4
(E2

1f
2(j k + q j �kf ) + (D�1jqj +D0)

2)

+1
2
(E1f(j k + q j �kf ))(D�1jqj +D0)

�(1+A1jqj)(B(jk+qj�kf )jjk+qj�kf j)

�
�
1
4
(E2

1f
2(k � kf) + (D�1jqj +D0)

2)

+1
2
(E1f(k � kf))(

D�1
jqj +D0)

��(1+A1jqj)(B(k�kf )jk�kf j)

� �1
4
(E2

1f
2(j k + q j �kf ) + E2

1f
2(k � kf))

+1
2
(E1f(j k + q j �kf ))(E1f(k � kf))

��(B(k�kf )jk�kf j)(B(jk+qj�kf )jjk+qj�kf j)

= 2
p
2�
p
�e2~c2q

�
D�1
q

+D0

�1+2A1jqj

� R
B
Æ(�q(k)) (nk+q � nk) d

3k(1 +O(q2; (k � kf)
2)

(5.33)

With O(q2; (k � kf)
2) we denote terms of order q2, (k � kf )

2, q(k � kf) or higher as
q ! 0 and k ! kf , eventually multiplied with a logarithmic divergence of the type ln 1

f
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for k ! kf

These terms of higher order can be found by noting for example:

h(q; k � kf )
(1+A(jqj))(B(jk+qj�kf )jjk+qj�kf j+B(k�kf )jk�kf j) =

1 + (lnh(q; k � kf))(B(j k + q j �kf ) jj k + q j �kf j +B(k � kf) j k � kf j))

+h:o:T:

(5.34)

h(q; k � kf) denots any of the brakets of the last terms in (5.33).
As long as h(q; k � kf) is continouos or has poles for k ! kf , it is readily seen, that
the second term of (5.34) vanishes like o(q) and o(k � kf).
We use the same manipulations as in (5.19), to continue from (5.33):

b(q) = 4
p
2��

3
2 e2~c2m �

�
D�1
jqj +D0

�1+2A1jqj

� R
q
k2
f
� q2

4
�m2c2+qmcq

k2f� q2

4
�m2c2�qmc

(1 +O(q2; (k � kf)
2))rdr

= 4
p
2��

3
2 e2~c2m

�
D�1
jqj +D0 + A1 ln (

D�1
jqj +D0)q +O(q2)

�
(mcq +O(q3))

(5.35)

Finally our considerations yield:

b(q) = 4
p
2��

3
2 e2~c2m2c(D�1 +D0q) +O(q2) (5.36)

We now choose

D�1 =
1

4
p
2��

3
2 e2~c2m2c

and D�
0 = D0=D�1: (5.37)

Then we have:

b(q) = 1 +D�
0q +O(q2) (5.38)

this means:

A1 = D�
0 (5.39)
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5.4.2. Calculation of b(k)

We now calculate the b(k) for k > kf . The results for k < kf are found analogously.

b(k) = �2p2�p�e2~c2 R
B
j q j Æ(�k(q))(1� nk+q)

�p`1b
2
1
p
`2

b22
p
`3

b23
Q

i<j(
1
4
(`i + `j) +

1
2

p
`i`j)

bibj d3q

(5.40)

= �4p2�� 3
2 e2~c2

R 0

�a dqz
R
dqq2 1

q
m
+c
Æ(jqj+mc�

p
m2c2 � 2qzk)

�
�
D�1
jqj +D0

�1+A1jqj

+h:o:T:

(5.41)

where the higher order terms are again of the form as in (5.34). For the q integration we
have omitted the boundaries (they are the same as given in 5.19), it is only important
to note, that the lower boundary is less than zero and the upper boundary is larger
than zero. We can write the expression (5.41) as:

�4p2�� 3
2 e2~c2

R 0

�a dqz
R
dqq2 1

q
m
+c
Æ(q +mc�

p
m2c2 � 2qzk)

�
�
D�1
jqj +D0

�
(1 + ln(D�1jqj +D0)A1q) + h:o:T:

(5.42)

= �4p2�� 3
2 e2~c2

R 0

�a dqz
R
dq 1

q
m
+c
Æ(jqj+mc�

p
m2c2 � 2qzk)

�(D�1q) + h:o:T:

= �4p2�� 3
2 e2~c2

R 0

�a dqz
mp

m2c2�2qzk

�
D�1(

p
m2c2 � 2qzk �mc) + h:o:T:

�

= �4p2�� 3
2 e2~c2

R 0

�a dqzD�1
�

k
mc2

�
qz + h:o:T:

= �4p2�� 3
2 e2~c2D�1 k

2mc2
a2 + h:o:T:

(5.43)
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As shown in (5.18) a is given by (k � kf) and we �nd:

b(k) = �4
p
2��

3
2 e2~c2D�1

kf
2mc2

(k � kf)
2 (5.44)

Inserting D�1 as given in (5.37), the expression above gives:

b(k) = � kf
2m3c3

(k � kf)
2 (5.45)

which means

B = � kf
m3c3

(5.46)

5.4.3. Discussion

Using the asymptotic behaviour for the one-particle energies as given in (5.24) and the
assumptions as made in (5.32), we have shown, that equations (5.25) and (5.30) are
solved self-consistently. There is only one assumption left, we have to consider. This
is d = 1, where � = 0.
For d(k; q) we now have d = 1 +A1q +B(jk + qj � kf)2� b(k � kf). This obviously is
not constantly equal one. In the following section we will investigate the case, where
�(1) is shifted from �(0), such that fopr the relevant region of integration d indeed
equals one. In the next chapter we will then take a look on equations (5.25) and the
second line of (5.30), when d is non constant.

5.5. A Self Consistent Solution

We now have to show, that our ansatz is indeed self-consistent.
Here we investigate the form of dk;q, as is needed for the calculation of the integral in
(5.30):

dk;q = bk+q � bk + bq = 1 (5.47)

as long as

�k;q(1) = 0 (5.48)

where � has the extensive form:

�k;q(1) = �k+q(1)� �k(1) + !q(1)

= �k+q(0)� B(jk+qj�kf )2
E1jjk+qj�kf j � �k(0) +

B(k�kf )2
E1jk�kf j + !q � 1+A1q

D�1
q

+D0+D1q

(5.49)
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The �rst equation (5.47) is easily seen to yield

dk;q = B(j k + q j �kf )2 �B(k � kf)
2 + 1 + A1q

= B j k + q j2 �Bk2 � 2Bkf(j k + q j �k) + 1 + A1q

(5.50)

Using (5.49) we can now transform this expression to:

2mB(�cq + B
E1
(j k + q j �k) + 1

D�1
q)� 2Bkf(j k + q j �k) + 1 + A1q =

1� 2mcBq + 2mB
D�1

q + A1q +
2mB2

E1
(j k + q j �k)� 2Bkf(j k + q j �k)

(5.51)

Choosing E1 =
mB
kf

this means:

dk;q = 1� (2mcB +
2mB

D�1
+ A1)q (5.52)

In order for this expression to be one, we can put:

A1 = �2mB(c +
1

D�1
) (5.53)

This not only proves the self consistency of our assumptions, but just as well leaves us
with a possibility to calculate the constants.

5.5.1. Discussion

We have shown in this section, that - with a shifted asymptotic behaviour - we can in-
deed �nd a dk;q, which self-consistently solves equations (5.30). Looking at the solution
of this section, however, one sees the following:

�k(1) =
1

2m
k2 � kf

m
(k � kf) (5.54)

This leads to a fermi velocity, given by:

vf =
d�kf
dk

= 0 (5.55)

The fermi velocity vanishes, which cannot be justi�ed physically. Hence, we do not
continue on this way to �nd a self-consistent solution. In the next chapter we turn to
a non-constant dk;q.
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6. General equations for the shift of the

asymptotic behaviour

6.1. General Remarks and Outline

In this chapter we will continue evaluating the integrals in (5.25) and (5.30) for the
more general case, where dk;q is a function of k; q and not necessarily constant for all
those values of k; q, where �k;q = 0. Hence, we start with expressions (5.29) and (5.30):

b(q) = 2
p
2�
p
�e2~c2q

p
`
R
B
Æ(�q(k))(nk+q � nk)`

� 1
2
d2q(k)

�Qi6=j(
1
4
(`i + `j) +

1
2

p
`i`j)

1
2
bibj`

1
2
b21

1 `
1
2
b22

2 `
1
2
b23

3 d3k

(6.1)

and

b(k) = �2p2�p�e2~c2qp` R
B
Æ(�k(q))(1� nk+q)`

� 1
2
d2
k
(q)

�Qi6=j(
1
4
(`i + `j) +

1
2

p
`i`j)

1
2
bibj`

1
2
b21

1 `
1
2
b22

2 `
1
2
b23

3 d3q

(6.2)

To continue we set:

F (k; q) :=
Q

i6=j(
1
4
(`i + `j) +

1
2

p
`i`j)

1
2
bibj`

1
2
b21

1 `
1
2
b22

2 `
1
2
b23

3

C := 2
p
2�
p
�e2~c2

(6.3)

We now have:

b(q) = Cq
p
`

Z
B

Æ(�q(k))(nk+q � nk)Fq(k)`
� 1

2
d2q(k)d3k (6.4)

b(k) = �C
p
`

Z
B

Æ(�q(k))(1� nk+q)qFk(q)`
� 1

2
d2k(q)d3q (6.5)
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6. General equations for the shift of the asymptotic behaviour

To evaluate an integral of this type we will proceed similar to the way given in appendix
A. First we investigate the behaviour of d2k;q and show, that is given by an expression
of the form 1 + gk;q where the latter is strictly positive. Then we use

lim
`!1

�R
B
Æ(�q;k)(nk+q � nk)Fq(k)e

�gq(k) ln `d3k
�

=
p
�
R
B
Æ(�q(k))Æ(gq(k))(nk+q � nk)Fq(k)d

3k

(6.6)

to continue the transformation of our integrals (6.4), (6.5). We start the next section
by investigating g(q,k).

6.2. Calculating the general expression

6.2.1. Investigation of the exponential

We will use the results of the last chapter to �nd the Ansatz for g(q; k)

b(k) = Bjk � kf j(k � kf); (6.7)

as B is negative, this is negative for k > kf and positive for k < kf .
and we put

b(q) = 1 + Aq2 (6.8)

Note: The Ansatz in the last line is not exactly the one of the last chapter. At this
point the choice is for mathematical convenience only.

As in (6.1) dk;q is given by:

dk;q = 1 + aq2 +B jjk + qj � kf j (jk + qj � kf)� Bjk � kf j(k � kf) (6.9)

We want to investigate expressions containing terms of the type: e�
1
2
d2k;q ln `. To do so

we need to �nd those values of q and k, for which g(q; k) := d2(q; k) � 1 equals zero.
We also have to show, that g(k; q) � 0 for all values of q and k. We are only interested
in the \relevant" values of q and k, i.e. those values, where �(q; k;1) � 0.
We start by investigating gq(k), as is needed for the evaluation of equation (6.4). For
the relevant region of integration in (6.4) we have: jk + qj < kf < k.

gq(k) = d2q(k)� 1 = 2Aq2 � 2B(jk + qj � kf)
2 � 2B(k � kf)

2 (6.10)
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6.2. Calculating the general expression

For �xed q the k values relevant in the integration (6.4) are de�ned by:

� = 0 : kzq

m
+ q2

2m
+ cq = 0

jk + qj =
p
k2 + 2kzq + q2

=
p
k2 � 2mcq � k � mc

k
q

(6.11)

We �nd for gq(k) :

2Aq2 � 2B
�
k � kf � mcq

k
� m2c2q2

2k3

�2
� 2B (k � kf)

2

= 2Aq2 + 4B(k � kf)
�
mcq

k

�� 2Bm2c2q2

k2
f

� 4B(k � kf)
2

+2
�
A�Bm2c2

k2

�
q2 + 4B(k � kf)

mc
k
q

(6.12)

Terms of higher order in q and (k � kf ) are neglected here, as well as in subsequent
calculations.

We set �k := (k � kf) and use k � kf :

2

 
A�B

m2c2

k2f

!
q2 + 4B(�k)

mc

kf
q � 4B(�k)2 (6.13)

Note: B < 0. We write for (6.13):

�4B
�
(�k)� 1

2

mc

kf
q

�2

+ (2A� B
m2c2

k2f
)q2 (6.14)

This function of �k is a parabel with minimum at
�
1
2
mc
kf
q=(2A� Bm2c2

k2
f

)q2
�
. To have

gq(k) to equal zero at the minimum, we choose:

A =
1

2
B
m2c2

k2f
(6.15)

Then we �nd the desired:

gq(k) = �4B
�
(�k)� 1

2

mc

kf
q

�2

(6.16)
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6. General equations for the shift of the asymptotic behaviour

For the evaluation of (6.5) we consider:

gk(q) = 2Aq2 +B(jk + qj � kf)
2 � B(k � kf)

2 (6.17)

Here we are interested in the values of q, for wich:

�k(q) =
kqz
m

+
q2

2m
+ cq = 0 i.e. qz < 0 : q = �mc +

p
m2c2 � 2kqz � � k

mc
qz

(6.18)

then we �nd:

jk + qj � k + qz � k � mc

kf
q (6.19)

We now continue with:

gk(q) = 2Aq2 +B ((k � kf) + qz)
2 �B(k � kf)

2

= 2Bq2z + 2Bqz(k � kf)

(6.20)

where for the last line we used (6.15) and (6.18). We have found a parabel with
maximum at:

��1
2
�k=� 1

2
B(�k)2

�
. As we will show later, this means gk(q) equals

zero at the boundary of the integration values of the integral in (6.5).

6.2.2. Evaluation of the Integrals

We now calculate b(q) and b(k) using (6.4) and (6.5), respectively. We change coordi-
nates in the �rst equation
(kx; ky; kz) ! (k; kz; �) and perform the integration over the azimuthal symmetry. In
the following we closely follow the calculation as given in 5.3.1. Note: the function F
is not equivalent to the one used in equation (5.12).

b(q) = 2�Cq
p
`
R
B2 kdkdkz(nk+q � nk)Fq(k; kz)

�e� 1
2
ln `� 1

2
gq(k) ln `Æ

�
q2

2m
� kzq

m
+ cq

�

= 2�Cq
Rpk2

f
�q2�2kzq
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kdk

R kf
0
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�

q2

2m
� kzq

m
+ cq

�
F (k; kz)e

� 1
2
gq(k) ln `

= 2�Cm
Rpk2

f
+2mcq

kf
kfdkF (k; kz = � q

2
�mc)e

2B

�
(�k)� 1

2
mc
kf

q

�2
ln `

(6.21)
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6.3. Logarithmic Counter Terms

We use similar arguments as in chapter 4 and in appendix A to �nd this expression to
equal:

b(q) = 2�
3
2Cmkf

1p�2B Fq(k = kf +
1

2

mc

kf
q; kz = �q

2
�mc)

1p
ln `

(6.22)

We now calculate b(k). We use the constant a = (k � kf) as calculated in (5.18) and

we use the approximation: q = �mc +
p
m2c2 � 2kqz = � k

mc
qz. In addition we use

k � kf .

b(k) = �2�Cp` R
B2 dqzdqq

2Æ(�k(q))Fk(q; qz)e
� 1

2
ln `� 1

2
gk(q) ln `

= �2�C R 0

�a dqz
R
dqq2 1

q
m
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Æ(q +mc�

p
m2c2 � 2kqz)Fk(q)e

� 1
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gk(q) ln `

= �2�C R 0

�a dqz
k2f

m2c3
q2zFk(q = � k
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qz; qz)e

�(Bq2z+Bqz(k�kf )) ln `

(6.23)

At both boundaries, we now have an integral of the type:R1
0
e�const�qz ln `dqz. For `!1 this is readily seen to yield 1

const�ln `
We now �nd:

b(k) = �2�C 1
(�B)(k�kf )

�
�n

k2f
m2c3

q2zFk(q = � k
mc
qz; qz)

o
qz=0

+
k2f

m2c3
(k � kf)

2Fk(q = � k
mc
qz; qz = (k � kf))

i
1
ln `

(6.24)

6.3. Logarithmic Counter Terms

To continue evaluating (6.22) and (6.24), we �rst need to get rid of the logarithmic
factors. This can be done be adding an additional term to our Ansatz for the ow of
the one particle energies:

!q(`) = !q(1) +
bq

2
p
`+ `0(q)

+
eq

2
q
`+ ~̀

0(q) ln(`+ ~̀
0(q)

(6.25)

�k(`) = �k(1) +
bk

2
p
`+ `�(k)

+
ek

2
q
`+ ~̀

�(k) ln(`+ ~̀
�(k)

(6.26)
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6. General equations for the shift of the asymptotic behaviour

As before we have �k;q(1) := �k+q(1)� �k(1) + !q(1) and we de�ne:
dk;q := bk+q � bk + bq, in addition we also set: ek;q := ek+q � ek + eq.

In the same way as in chapter 5, see equations (5.25) and (5.30), we have to solve

equations for b(q) and b(k) containing expressions of the kind e�2
R `
0 �

2
k;q(`

0
)d`

0
. We start

by calculating

R `
0
�2
k;q(`

0
)d`

0

= `�2 + 2�dk;q
p
`+ 2�ek;q

p
`

ln `

�2�Pi bi
p
`i � 2�

P
i ei

p
~̀
i

ln ~̀
i
+

d2k;q
4
ln `+ 1

2
dk;qek;q ln ln `

+f(k; q)

(6.27)

where we set: `1 = `k+q, `2 = `k, `3 = `q
and b1 = bk+q, b2 = �bk, b3 = bq, with analogous de�nitions for the ei and ~̀

i.
We neglected terms of order

R
1p

`
0 ln2 `0

d`
0
and terms like

1
ln `

; and we used: `+ `i � `, as well as `+ ~̀
i � `.

As the second line of (6.27) does not contribute (� � 0), f(k; q) includes all the e�ects

of the `i and ~̀
i. If one negelcts the dependency on ~̀

i alltogether we have:

e�2f(k;q) = F (k; q) (6.28)

where F is the function as de�ned in (6.3).
We now have:

�2 R `
0
�2
k;q(`

`)d`
0
=

�2`
�
�k;q +

dk;qp
`
+

ek;qp
` ln `

�2

+2d2k;q +O
�

1
ln2 `

�� d2k;q
2
ln `� dk;qek;q ln ln `� 2f(k; q)

(6.29)

We insert expression (6.29) into the equations, which determine the b(q) and b(k), i.e.
(5.25) and (5.30). We use (6.28)
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6.3. Logarithmic Counter Terms

b(q) = �8�e2~c2q` 32 R
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Once again using as transformation as in chapter 4 and appendix A, these equations
become:
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(6.31)

We follow the same way as in (6.2.2) to transform these expressions to:

b(q) = 2�
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6. General equations for the shift of the asymptotic behaviour

Fq(k; kz) and Fk(q; qz) can be seen as one function of F (q; k; jk + qj). In addition we
choose the eq = 1 and ek = �sgn(k � kf)

1
4

We insert our assumptions b(q) = 1 and b(k) = B(k � kf)
2 into (6.32), which we then

rewrite:

1 = 2�
3
2Cmkf

1p�2BF (q; k = kf +
1
2
mc
kf
q; jk + qj = kf � 1

2
mc
kf
q)

B2(k � kf)
2 = 2�C 1

c

�n
q2Fk(q =

kf
mc
(k � kf); k; jk + qj = k)

o
q=0

+
k2f

m2c3
(k � kf)

2Fk(q =
kf
mc
(k � kf); k; jk + qj = kf)

i
(6.33)

These two equations can be seen as fundamental set of equations for the investigation
of the shift of the asymptotic behaviour or more general for the dependency of the
one-particel energies on ` before the onset of the asymptotic behaviour.

6.3.1. Discussion

In this chapter we have continued our investigation of equations (5.25) and (5.30). It
is necessary to have d2k;q > 1 for all values of q and k which belong to resonances

and d2k;q to equal one, at least at one \relevant" point in every region of integration
of the integrals in (5.29) and (5.30). Here we have assumed the most general form
possible. This has led to an additional Æ function, as well as terms logarithmic in `,
when evaluating equations(6.4) and (6.5). By adding terms of higher order in ln ` to
the asymptotic ow of the one-particle energies, we were able to �nd counter terms
and re�nd the leading order of our asymptotic behaviour.
We then found equations, which can be used to determine the q and k dependency of
the shift in the asymptotic behaviour.
Taking a look at (6.33) it is easily seen, that F (q; k; jk + qj) has to depend, not only
on q, but on k; jk + qj, as well. As F is given by (6.3), this means, that the `� have
to contribute. As was seen in (5.32), this does not happen, if they behave no more
singular, than poles at the fermi surface. Hence, we are led to assume a behaviour of
the `�(k) like:

`�(k) = e
1

(k�kf )n (6.34)
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7. Transformation of the One-Particle

Operators

7.1. General Remarks

In this chapter we calculate the transformation of the one-particle electron opera-
tors. The transformation is similar to the one of the phonon-operators, investigated by
Wegner and Ragwitz in [7]. They used their results to calculate the phonon-correlation
function.
In 2.2 we gave the general behaviour of any abitrary operator under the `-induced
transformation. One can consider the formalism of Hamiltonian Flow Equations as
an implicit, continuous transformation of the basis, where for `!1 an eigenbasis of
the Hamiltonian is found. For every ` any operator has to be presented in the basis
corresponding to this very `.
According to (2.7) the change of the electronic creation operators c+k are governed by:

dc+k (`)

d`
=
�
�(`); c+k (`)

�
(7.1)

where �(`) is given by (3.16):X
k;q

�
�k;q(`)Mk;q(`)a

+
�q � �k+q;�q(`)Mk+q;�q(`)aq

�
c+k+qck (7.2)

7.2. Di�erential Equations for the Electron Operators

7.2.1. Electron-Creation-Operators

For the form of the electronic creation operators under the ` induced transformation
we make the following Ansatz:

c+k (`) = u+k (`)c
+
k +

X
q

u+k;q(`)a
+
�qc

+
k+q +

X
q

uk;q(`)aqc
+
k+q (7.3)

Here u+k (`); u
+
k;q(`) and uk;q(`) are ` dependent functuions, with thye starting values:

u+k (0) = 1; u+k;q(0) = uk;q(0) = 0. In (7.3) higher order terms, i.e. normal ordered
multiples of creation and annihilation operators are neglected.
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7. Transformation of the One-Particle Operators

To �nd the di�erential equations as induced by (7.1) and (7.2), we need to calculate
the following commutators:

[
X
k
0
;q

Mk
0
;q�k0 ;qa

+
�qc

+

k
0+q

ck0 ; c
+
k ] =

X
q

Mk;q�k;qa
+
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+
k+q (7.4)

[�
X
k
0
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k
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+
k ] =

X
q

�Mk+q;�q�k+q;�qaqc+k+q (7.5)

[
X
k
0
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0
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0
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0�k0 ;q0a

+
�q0 c

+
k
0+q0
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+
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+
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X
q
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+
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+
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(7.6)

[�Pk
0
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k
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+
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+
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+
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�Pk
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+
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P
q
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+
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+

k+q+q
0

(7.7)

[
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k
0
;q
0 Mk

0
;q
0�k0 ;q0a
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�q0 c
+

k
0+q0

ck0 ; aqc
+
k+q]

=Mk+q;�q�k+q;�qnk+qc+k +Mk+q;�q�k+q;�qnqc+k

�Pk
0 Mk

0
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+
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k
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P
q
0 Mk+q;q
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+

�q0aq : c
+
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(7.8)

[�Pk
0
;q
0 Mk

0
+q
0
;�q0�k0+q0 ;�q0aq0 c

+

k
0
+q
0ck0 ; aqc

+
k+q]

=
P

q
0 �Mk+q+q

0
;�q0�k+q+q0 ;�q0aqaq0 c

+
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(7.9)
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7.3. Solving the Di�erential Equations

This yields the following set of di�erential equations:

du+
k
(`)

d`
= �PqMk;q(`)�k;q(`) (1� nk+q)u

+
k;q(`)�

P
qMk;q(`)�k;q(`)n�qu+k;q(`)

+
P

qMk+q;�q(`)�k+q;�q(`)nk+quk;q(`) +
P

qMk+q;�q(`)�k+q;�q(`)nquk;q(`)

(7.10)

du+k;q(`)

d`
= +Mk;q(`)�k;q(`)u

+
k (`) (7.11)

duk;q(`)

d`
= �Mk+q;�q(`)�k+q;�q(`)u+k (`) (7.12)

We work in the regime T = 0, where the expectation value to �nd a phonon is zero
and, hence, we have nq = 0.

7.2.2. Electron-Annihilation Operators

Similarily the Ansatz for the transformation of the electron-annihilation operators is
given by:

ck(`) = u+k
�
(`)ck +

X
q

u+k;�q
�
(`)a+�qck�q +

X
q

u+k;�q
�
(`)aqck�q (7.13)

and one �nds a set of di�erential equations equivalent to: (7.10)-(7.12).

7.3. Solving the Di�erential Equations

We now solve the di�erential equations governing the transformation of the electron-
creation-operators. First we insert equations (7.11) and (7.12) in (7.10), which gives:

du+
k
(`)

d`
= �PqMk;q(`)�k;q(`) (1� nk+q)

R `
0
Mk;q(`

0
)�k;q(`

0
)u+k (`

0
)d`

0

�PqMk+q;�q(`)�k;q(`)nk+q
R `
0
Mk+q;�q(`

0
)�k+q;�q(`

0
)u+k (`

0
)

(7.14)

In addition equations (4.6)-(4.9) hold, of course.
Just as in our discussion in section 5.1, we �nd, that for k > kf only the �rst term of this
integro-di�erential equation is of importance, i.e. the second term decays exponentially,
whereas for k < kf only the second term has to be considered. Here we explicitely solve
equation (7.14) for k > kf only. The case k < kf can be handled in exactly the same
way.

We know the asymptotic behaviour of �k;q(`) to be of the form:
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7. Transformation of the One-Particle Operators

�k;q(`) = �k;q(1) + b(k+q)�b(k)+b(q)
2
p
`+`0

We use this form, and not the more re�ned one as given in (5.24), for reasons of clear-
ness, only. The calculation for the more re�ned case is done in a completly analogous
way.
Note: for the following we assume b(k + q)� b(k) + b(q) = 1 for all values of k and q
within the region of integration with: �k(q;1) = 0. For a more detailed discussion on
this assumption see section 5.4 and 6.

Using (4.6), we have:

du+k (`)

d`
= �~c2Pq

R `
0
u+k (`

0
)e

� R `00
 
�k(q;1)+ 1

2

p
`
00
+`0
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00 �

�k(q;1) + 1

2
p

`
0
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�
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2
p
`�+`0

�2
d`� �

�k(q;1) + 1
2
p
`+`0

�
(1� nk+q)

(7.15)

where as before jMqj2 = ~c2q

In the asymptotic regime, we assume u+k (`) to show an algebraic behaviour of the kind
~bk(`+ ~̀

0(q))
� . For the following we can neglect `0(q) as ` � ~̀

0 and we divide both
left and right hand side of equation (7.15) by ~bk. We replace the summation over k by
an integration.

��~c2 R
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�
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�
(1� nk+q)d

3q

(7.16)
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7.3. Solving the Di�erential Equations

We calculate the exponent in this equation:

� R `0
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�
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00+`0

�2

d`
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0
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(7.17)

As the relevant values of q are given by: �k(q;1) � 0 we can neglect the term
2�k(q)

p
`0.

We insert this expression in (7.16):

= ��e~c2 R `
0

R
k
`
0�

q`
1
2
0

�
�k;q(1) + 1

2
p

`
0+`0

��
�k;q(1) + 1

2
p
`+`0

�

`�
1
4 `
0� 1

4 e
�(`+`0 )

 
�k;q+

p
`+`0+

p
`
0
+`0

`+`
0

!2

e
2`0

`+`
0 +

2
p
`+`0

p
`
0
+`0

`+`
0 (1� nk+q)d

3qd`
0

(7.18)

For `!1, this expression is transformed as in 4.23. We �nd:
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(7.19)

We are in the asymptotic regime and choose ` such that ln ` � `0;
1 in leading order

1As we have `0(q) �
1
q2
, this is only true for the larger part of the region of integration. We neglect e�ects

due to the region of integration, where q > 1p
ln `
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7. Transformation of the One-Particle Operators

expression (7.19) is equivalent to:
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(7.20)

We can now use `+ `0 � ` and `
0
+ `0 � `

0
, to �nd:
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We exchange the integrals to �nd:

�2�� 3
2 e~c2

R
B2 Æ(�k(q))q

2`
1
2
0 (1� nk+q)dqdqz

� R `
ln `

`
0�
�
�

p
`+
p

`
0

`+`0
+ 1

2
p

`
0

��
�

p
`+
p

`
0

`+`0
+ 1

2
p
`

�
`�

1
4 `
0� 1

4 1p
`+`

0 e
2
p
`

p
`
0

`+`
0 d`

0

(7.22)

We now use the equivalent to the second line of (5.30):

b(k) = �4
p
2�
p
�

3
2 e2~c2

Z
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q2Æ(�q(k))`
1
2
0 (1� nk+q)dqdqz (7.23)

and �nd:
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(7.24)
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7.3. Solving the Di�erential Equations

We set: x = `
0

`
and the expression becomes:
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(7.25)

As we are interested in the asymptotic behaviour for `!1 we could replace ln `
`
by 0

at the lower boundary of our integral. We can now insert u+k (`) into the left hand side

of (7.24), b(k) = � k3
f

2m3c3
(k � kf)

2 from equation (5.45) into the right hand side and
write Int instead of the integral. We then �nd:

�`�1� = �
�

1

2
p
2e

k3f
2m3c3

(k � kf)
2 � Int

�
`��1 (7.26)

The `-dependency of the left and right-hand side of this equation is the same and we
can use this equation to determine :

 =

�
1

2
p
2e

k3f
2m3c3

� Int()
�
(k � kf)

2 (7.27)

where we have written Int() to show, that the integral itself does depend on . For
small values of  this dependency, however, is relatively small, as compared to the
(k � kf)

2-dependency. Numerical calculations yield:
 = 0 : Int = �0:129
 = 0:01 : Int = �0:240
 = 0:05 : Int = �0:349
This means, we �nd:

 � �(k � kf)
2 (7.28)

7.3.1. Discussion

One would actually expect to �nd (7.28) without a minus sign. Then the spreading out
of the electronic one-particle operators would depend on the distance of these electrons
to the fermi surface, with the spreading out becoming slower and slower as k approaches
the fermi surface.
In this form, however, (7.28) shows a contradiction. We assumed u+k (`) to depend on
` like `�. (7.28) describes a growing u+k (`), which is clearly not possible.
Hence, the transformation of the electron-one-particle operators is not given by an
algebraic form.
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8. Conclusion

In this thesis we have investigated the electron-phonon-Hamiltonian (3.1) using the
method of Hamiltonian Flow Equations. Starting point of our analysis was the funda-
mental set of coupled integro-di�erential equations, as found by Wegner and Lenz [5].
This set of equations governs the ow of the interaction constants and the one particle
energies under the `-induced transformation. Very little experience exists how to han-
dle these equations. Therefore, this work has partly the character of a mathematical
study rather then attempting to calculate physical quantities. Several mathematical
results have been obtained.
The renormalization of the energies is given by the di�erence of the one particle ener-
gies at the start of the transformation (` = 0) and its end (`!1). In a �rst step we
have proved that the inclusion of the electronic ow into the set of di�erential equations
does not alter the behaviour of the phononic ow in the asymptotic regime. For large
values of ` the ow of the one particle energies is given by

!q +
b(q)

2
p
`

; �k +
b(k)

2
p
`

for the phonons and electrons respectively. The b(q) and b(k) remain to be determined,
from the di�erential form of the ow equations. Other algebraic behaviours, i.e. a ow
of the type const

`
, with  6= 1

2
are not possible. Using this result, it was seen that the

interaction constants do decay as ` ! 1; most of them exponentially, only for those
values of q and k for which we have resonances, i.e.
�k;q := �k+q � �k + !q � 0 the decay is given by

Mk;q(`) � `�
1
4 :

In a second step we have investigated the functions b(q) and b(k). One is led to shift
the asymptotic behaviour in the same way as in the work of Wegner and Ragwitz [7].
We chose the form

!q +
b(q)

2
p

`+`0(q)
; �k +

b(k)

2
p

`+`�(k)

for the ow of the one particle energies.
The `0 is found to equal the one Wegner and Ragwitz found for the case where the
electronic ow is neglected. The `�(k) remain undetermined at this point.

This shifted asymptotic behaviour yields b(q) = 1 and b(k) = � kf
m3c3

(k� kf)
2. A result
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8. Conclusion

like this is necessary, as the fundamental set of equations leads to a contradiction, if
dk;q := b(k + q)� b(k) + b(q) 6= 1 for values of q and k which belong to resonances.
In chapter 5 we searched for a solution with dk;q equal to one on the line of resonances.
Such a solution could be found; the physical use, however, seems doubtfull, as the fermi
velocity would vanish.
In the subsequent chapter we have investigated an Ansatz using a non constant dk;q.
This has led to terms logarithmic in `, violating the self-consistency of the Ansatz. To
re�nd a const

2
p
`
asymptotic behaviour in the leading term, we introduced an additional

term const

2
p
` ln `

for the asymptotic behaviour of the electronic and phononic energies. We

found an equation for the shift of the asymptotic behaviour. This equation has been
discussed, but remains to be fully solved. Using the additional term in the ow of the
one-particle energies as a hint, we changed - in appendix B - the asymptotic behaviour
of the electrons to

�k(`) = �k(1) + 1
2
p
`+`� ln(`+`�)

The leading term of the phononic ow was refound, as well as the absolut value of the
leading terms of the electronic energies. The �nal equation of chapter 6 suggested a
singular behaviour of `�(k) at the fermi surface.

`�(k) = e
1

(k�kf )n n > 0

A similar behaviour for the `�(k) was assumed for our investigations in appendix B.
The renormalization of the electronic energies found in chapter 5:

��k = �k(1)� �k(0) =
�b(k)

2
p

`�(k)

yielded the renormalization near the fermi surface:

��k = const � (k � kf)
2 � e�

1

(k�kf )2

for the constellation discussed in chapter 6. The renormalization drops to zero exponen-
tially as k approaches the fermi surface. Comparing this result to a standard text-book
(e.g. [9]) shows a large discrepancy. This, however, is explained easily: We have not
included the attractive electron-electron-interaction of the transformed Hamiltonian in
our mathematical study. On the other hand this interaction is the major source of the
renormalization of the electrons.

In the last chapter of this thesis, chapter 7, we have calculated the transformation of
the electronic one-particle operators

c+k (`) := u+k (`)c
+
k +

P
q u

+
k;q(`)a

+
�qc

+
k+q +

P
q uk;q(`)aqc

+
k+q.
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The assumption of an algebraic decay of u+k lead to a contradiction. Hence, we got an
indication, that the decay is not purely algebraically.
In principle the results of the electronic one particle transformation can be used to cal-
culate the electronic correlation function. This, as well as a solution of the fundamental
equations of chapter 6, requires considerable additional e�ort.
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A. Mathematical proof

In this appendix we give a proof for the calculations of the type as given in chapter 4.
I.e. we show:

for `!1

R
B3 d

3q�k;q(`)jMqj2e�2
R `
0
�2k;q(`

0
)d`

0

behaves like

const
`

R
fk(q)`

(bk+q�bk+bq)2Æ(�k(q))d3q +O( ln `p
`
3 )`d

2
min

(A.1)

and

R
B3 d

3k�k;q(`)jMqj2e�2
R `
0 �

2
k;q(`

0
)d`

0

behaves like

const
`
jMqj2

R
fk(q)`

(bk+q�bk+bq)2Æ(�q(k))d3q +O( ln `p
`
3 )`d

2
min

(A.2)

where

�k;q(`) = �k+q(`)� �k(`) + !q(`) (A.3)

depends only on `; k; q; jk + qj

dk;q = bk+q � bk + bq

dmin is the minimum of this function within the region of integration
and:

�k(`) = �k(1) + bk
2
p
`

!q(`) = !q(1) + bq

2
p
`
;

(A.4)

as long as ` > `0 and �k;q(`) is a smooth and bounded function for all ` < `0

fk(q) = dk(q)jM(q)j2e�2�k(q;`�)`
1
2
d2
k
(q)

0 e2d
2
k(q) and
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A. Mathematical proof

fq(k) = dq(k)e
�2�q(k;`��)`

1
2
d2q(k)

0 e2d
2
q(k) are smooth functions. (`�) (`��) are �xed values

between 0 and `0.
B3 is the �rst Brillouin zone and jMqj2 = ~c2q. N.B. in the following we will use B to
denote the bound of the Brillouin zone and B2 to denote the Brillouin zone, when the
variables are transformed to cylindrical coordinates and the integral over the azimuth
is performed. Further we set: ~c = 1.
The �rst integral is needed to �nd the derivative of the ow of the electronic one particel
energies, the second for the ow of the phononic one particle energies.
Here we explicitely prove only the behaviour of the integrals in (A.1) and (A.2) under
the assumption (A.4). Other algebraic decays of the one particle energies would lead
to similar equations and the behaviour of the integrals (A.1) and (A.2) is found and
proven in a similar way, as well. In the following we will �rst give the proof for (A.1),
(A.2) will be proven in the second section.

A.1. The Algebraic Decay of the Integral governing the

Electronic Flow

To show more clearly which of the variables are integrated over, we rewrite the integral
of the �rst line of (A.2) as:Z

B3

d3q�k(q; `)jqje�2
R `
0 (�k(q;`

0
))2d`

0
(A.5)

with
�k(q; `) = �k(q;1) + dk(q)

2
p
`

in the asymptotic regime.
We de�ned b(k + q)� bk + b(q) =: dk(q).

To deal with the integral above, we make the following
Assumptions:
a) �k(q;1) 2 C1 and j�k(q;1)j bounded by Q.
b) �(k;1) and !(q;1) are strictly monotonuos increasing functions of k resp. q.

c)

���� @2�@k2

���
k=k0

���� >
���� @2!@q2

���
q=q0

���� 8k0; q0.
d) The b(k) and b(q) are 2 C1 and dk(q) is bounded by D.
e) The `-dependency of � is given by (A.4) for all values of `: ` > `0.
f) For all ` �k(q; `) depends only on jkj; jqj and jk + qj.1

As k is �xed in the integral (A.5) we can transform to cylindrical coordinates, i.e.

(q1; q2; q3) ! (q?; qz; �), where the z � axis; (0; qz; 0) is chosen parallel to ~k. We can

1Not all of these assumptions are necessary for the following proof. Some of them are made for convenience
only. From a physical point they do make sense.
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now perform the integration over the angle:Z
B3

d3q�k(q; `)jqje�2
R `
0
(�k(q;`

0
))2d`

0
(A.6)

= 2�

Z
B2

dqzdq? q?q�k(qz; q?; `)e�2
R `
0
(�k(qz;q?;`

0
))2d`

0
(A.7)

here B2 denotes the transformed Brillouin zone of qz; q? and q = jqj .

Lemma 1

The set of all elements in the qz; q? plane such that �k(qz; q?;1) = 0,
S := f(q?; qz)j�k(q?; qz;1) = 0g, is either a regular one dimensional compact mani-
fold, or S = f(0; 0)g
Proof:
a) The set S := f(q?; qz)j�k(q?; qz;1) = 0g is compact: As B2 is bounded, S is
bounded as well. As B2 is closed and �k(q?; qz;1) is continuous, S is closed. Thus S
is compact.
b) We show, that S = f(0; 0)g or S does not contain isolated points. A point in S can
only be isolated, if it is a local minimum or maximum of �k(q?; qz;1),

i.e. @�k(q?;qz;1)
@q?

= @�k(q?;qz;1)
@qz

= 0. This is seen easily using the theorem on implicit
functions.
To investigate whether isolated points exist we take a look at the �rst derivatives. As
@�
@q?

= q?( @�@x
1

(k+qz)2+q2?
+ @!

@x
1p
q2z+p

2
) 8q? 6= 0, (see Assumption b))

we only have to consider points in S \ f(qz; 0)g. At those points, we have
�k(qz; 0;1) = �(k + qz) + !(jqzj)� �(k), where k is parallel to qz.
Without loss of generality we assume k > 0 and we �nd
@�
@qz

= @�
@x

��
x=jk+qzj sign(k + qz) +

@!
@x

��
x=jqzj sign(qz).

Hence, this derivative can only be zero on the interval qz 2 [�k; ::; 0].
We have �k(qz = 0; 0; `) = 0. At this point (qz = 0) �(k; q) is not di�erentiable, be-
cause !(qz; ` = 0) is a function of jqzj. Instead we simply use right hand and left hand
derivatives.
The right hand derivative is always positive.
@�
@qz

is monotonously increasing on [0;1[. If the left hand derivative at qz = 0 is

� 0, then we have a local minimum at this point (0; 0). It follows immediately, that
S = f(0; 0)g. If, on the other hand, the left hand derivative at qz = 0 is > 0, we can
use �k(0; B;1) � 0 to show, that there is a q�z < 0 such that �k(0; qz;1) < 0 on
]q�z ::0[ and �k(q

�
z ; 0;1) = 0. As the derivative at this point is di�erent from 0, there

are no isolated points in S.
c) We show that S is connected. As �k(qk0 ; q?;1) is strictly monotonous increasing
with jq?j and �k(qz; 0;1) � 0 8qz 2 [q�z ; ::; 0] and bigger than 0 outside of this interval,
S is connected (unless cut into parts by the region of integration).
The above proves Lemma 1
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For the following we restrict ourselves to the case, where S 6= f(0; 0)g

We now show, that we can restrict ourselves to a small surrounding of this one-
dimensional-manifold in evaluating our integral.

Lemma 2

Let Æ > 0, then we have for `!1:

2�

Z
B2

dqzdq? q?q�k(qz; q?; `)e�2
R `
0
(�k(qz;q?;`

0
))2d`

0
= (A.8)

2�

Z
j�k(qz;q?;1)j�Æ

dqzdq? q?q�k(qz; q?; `)e�2
R `
0 (�k(qz;q?;`

0
))2d`

0
+O(e�`) (A.9)

Proof:
Let (qz; q?) be outside the region of integration of the second integral
(i.e. j�k(q?; qz;1)j > Æ, than we can choose `1 > `0 such that d

2
p
`
< Æ

2
8` > `1,

meaning that
j�k(q?; qz;1)+dk(qz)

2
p
`
j > Æ

2
. Note that the region of integration is de�ned by �k(�; �;1) <

Æ and in the integrand we have �k(�; �; `0); `0 < `.
We have:

j R
B2nf(q?;qz);j�k(qz;q?;1)j�Æg dqzdq? q?q�k(qz; q?; `)e�2

R `
0
(�k(qz;q?;`

0
))2d`

0 j

< jB2jQqBe�Æ(`�`1)
(A.10)

wher Q is the upper bound of �k;q(1) (A.1) and qB is the upper bound for q in B3

This proves Lemma 2.

Using our assumptions on the asymptotic behaviour of �k(qz; q?; `) for `� `0, we can
perform:
Calculation 1

R `
0
�k(qz; q?; `

0
)2d`

0
=
R `0
0
[�k(qz; q?; `

0
)2 � �k(qz; q?;1)2]d`

0

+
R `
0
�k(qz; q?1)2d`

0
+
R `
`0

dk(qz;q?)p
`
0 �k(qz; q?;1)d`

0
+
R `
`0

d2k(qz;q?)
4`0

(A.11)
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= �k(qz; q?;1)2`+ 2dk(qz; q?)�k(qz; q?;1)
p
`+ d2k(qz; q?)

1
4
ln `

�2dk(qz; q?)�k(qz; q?;1)
p
`0 � d2k(qz; q?)

1
4
ln `0

+[�k(qz; q?; `�)2 � �k(qz; q?;1)2]`0

(A.12)

here `� is given by
R `0
0
�k(qz; q?; `

0
)2d`

0
= �k(qz; q?; `�)2`0, which is simply the mean

value theorem of integration calculus.
This leads to:

exp
�
�2 R `

0
�k(qz; q?; `

0
)2d`

0
�

= exp
�
�2`(�k(qz; q?;1) + dk(qz;q?)p

`
)2
�

`�
1
2
d2k(qz;q?)

� exp (�2[�k(qz; q?; `�)2 � �k(qz; q?;1)2]`0)

� exp 2(2dk(qz; q?)�k(qz; q?;1)
p
`0 + d2k(qz; q?)

1
4
ln `0) exp 2d

2
k(qz; q?)

(A.13)

In the asymptotic regime the integral (A.5) takes the form:

R
B
d3q�k(q; `)jM(q)j2e�2

R `
0
�2k(q;`

0
)d`

0

= 2�
R
j�k(qz;q?)j�Æ dqzdq? q?q�k(qz; q?; `)e�2

R `
0 (�k(qz;q?;`

0
))2d`

0

= 2�
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j�k(qz;q?;1)j�Æ dqzdq? q?q

�
�k(qz; q?;1) + dk(qz;q?)

2
p
`

�

� exp
�
�2`(�k(qz; q?;1) + dk(qz;q?)p

`
)2
�

`�
1
2
d2k(qz;q?)

� exp (�2[�k(qz; q?; `�)2 � �k(qz; q?;1)2]`0)

� exp 2(2dk(qz; q?)�k(qz; q?;1)
p
`0 + d2k(qz; q?)

1
4
ln `0) exp 2d2k(qz; q?)

(A.14)

We now introduce a transformation of variables.
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A. Mathematical proof

Let the regular one-dimensional-manifold S of �k(q?; qz;1) = 0 be given by:

� : t! �(t), where we have chosen the parametrisation, such that: jd�(t)
dt
j = 1.

As new coordinates, we introduce t along �k(�; �;1) = 0 and u in the direction of the
gradient of �k(�; �;1) by: qz; q? ! t; u. The transformation of our integral is then
given according to [10]:

Z
B2

f(qz; q?)dqzdq? =

Z
A

f(g(t; u))jJg(t; u)jdtdu (A.15)

The functional determinant Jg(t; u) is one, because we perform a orthonormal trans-
formation.

For our integral we now have:

2�
R
j�k(t;u;1)j�Æ dtduq?(t; u)q(t; u)

�
�k(t; u;1) + dk(t;u)

2
p
`

�

� exp
�
�2`(�k(t; u;1) + dk(t;u)p

`
)2
�

`�
1
2
d2k(t;u)

� exp (�2[�k(t; u; `�)2 � �k(t; u;1)2]`0)

� exp 2(2dk(t; u)�k(t; u;1)
p
`0 + d2k(t; u)

1
4
ln `0) exp (2d2k(t; u))

(A.16)

Note �k(t; 0;1) = 0 8t by de�nition.
We continue by investigating the integral over u.
As ~r�k(t; 0;1) = @�

@u
(t; 0;1) 6= 0 �k(t; u;1) is strictly monotonous in a surround-

ing of (t; 0). Hence, we can now substitute u by �k(t; u;1) := z. As all functions
are bounded within the region of integration, they will also be bounded after this
substitution. We �nd:

2�
R
B
dt
R
z�Æ dzq?(t; z)q(t; z)

1
@�
@u

j(t;z)
(z + dk(t;z)

2
p
`
)

� exp
�
�2`(z + dk(t;z)p

`
)2
�

`�
1
2
d2k(t;z) exp (�2[�k(t; z; `�)2 � z2]`0)

� exp 2(2dk(t; z)z
p
`0 + d2k(t; z)

1
4
ln `0) exp 2d2k(t; z)

(A.17)

Note that the evaluation of 1
@�
@u

j(t;z) is by no means trivial, but the expression is well

de�ned as function of t and z.
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As a �nal substitution we now use z
0
= z + dk(t;z)p

`
and �nd for (A.17):

2�
R
B
dt
R
jz0� dk(t;z)p

`
j�Æ dz

0
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`
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`
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`
)(z
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`
)
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`
)1
4
ln `0)
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�
2d2k(t; z

0 � dk(t;z)p
`
)
�

(A.18)

All the functions under the integral sign are continuous and bounded. To continue we
will use Lemma 3 and Lemma 4 to be prooved later.

Lemma 3

Let F2(t; z); dk(t; z); c2(t; z) be bounded functions with bounded �rst derivatives, let
Æ1(t), Æ2(t) be functions with Æ1(t); Æ2(t) > c� > 0 for all t, then we have:���RB dt R Æ2(t)�Æ1(t) dzF2(t; z � c2(t;z)p

`
)z`

� 1
2
d2
k
(t;z� c2(t;z)p

`
)
e�2z

2`

���
� const � ln `

`
3
2

R
B
`�

1
2
d2min(t)dt

(A.19)

where dmin is the minimum of dk(t; z) on B � [0; Æ1].

and

Lemma 4

Let F1(t; z); c1(t; z) and d(t; z) be bounded functions with bounded derivatives, further
let Æ1(t); Æ2(t) � a > 0 8t and B a one-dimensional compact connected region of
integration, then we have:

R
B
dt
R Æ2(t)
�Æ1(t) dzF1(t; z � c1(t;z)p

`
)`
� 1

2
d2k(t;z�

c1(t;z)p
`

)
e�2z

2`

= 1
p
�p
2`

R
B
dtF1(t)`

� 1
2
d2k(t) +O( ln `

`
)
R
B
dt`�

1
2
d2min(t)

(A.20)

where we set F1(t) := F1(t; 0) and d2min is the minimum of d2k(t; z) on B � [�Æ1; Æ2]
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A. Mathematical proof

Before giving the proof of Lemma 3 and 4 we �nish our evaluation of (A.5) by �rst
unsing Lemma 3 to �nd (A.21) and then Lemma 4 to reach (A.22):

R
B3 d

3q�k(q; `)jqje�2
R `
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0
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0
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`
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4
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(A.21)

= � 1p
2
�

3
2
1
`

R
B
dt q?(t)q(t) 1

@�
@u

j(t;0)
`�

1
2
d2
k
(t)

� exp�2[�k(t; `�)2]`0 exp (d2k(t)12 ln `0) exp 2d2k(t)
(A.22)

Note: As Lemma 4 allows us to replace F1(t; z� cp
`
) by F1(t; 0) under the integral sign,

we have 1

1+ 1p
`

@dk
@z

! 1 and for the remaining integral we have z = z
0
+ cp

`
= 0. This is

why, we can rewrite this expression and change the variables back to the original ones:

� 1p
2
�

3
2

R
B

R
dtdzÆ(z)

h
q?(t; z)q(t; z) 1

@�
@u

j(t;z)

� exp�2[�k(t; z; `�)2]`0 exp (d2k(t; z)12 ln `0) exp 2d2k(t; z)
� (A.23)

z!u
= � 1p

2
�

3
2

R
B

R
dtduÆ(u)

� �q?(t; u)q(t; u) exp�2[�k(t; z; `�)2]`0 exp (d2k(t; u)12 ln `0) exp 2d2k(t; u)�
(A.24)
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t;u!q?;qz
= � 1p

2
�

3
2

R
B2 dq?dqzÆ(�(q?; qz))

� �q?q exp�2[�k(q?; qz; `�)2]`0 exp (d2k(q?; qz)12 ln `0) exp 2d2k(q?; qz)�
(A.25)

This prooves conjecture (A.1).

We now give the proofs of Lemma 3 and 4

Proof of Lemma 3:

Without loss of generality Æ1(t) � Æ2(t) for all t.
Integral (A.19) can be written as:
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(A.26)

The second term obviously is smaller than const � e�2`c�2 . We continue with the �rst
term (A.26):
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(A.27)

here for every z, z� 2 [0; z] such that

@(F2 � `� 1
2
d2k)

@z
jt;z� � z =

�
F2(t; z) � `� 1

2
d2k(t;z) � F2(t; 0) � `� 1

2
d2k(t;0)

�
(A.28)

Let d2min be the minimum of d2k(t; z) on B � [0; Æ1] and let M be the upper bound of
@F2
@z

and F2 � @dk@z � dk, then the absolut value of the above is less than:
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(A.29)

q.e.d.
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Proof of Lemma 4:

It is easily seen, that:

1
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thus we consider the di�erence of the left hand side and the �rst term of the right hand
side of (A.20):���RB dt R Æ2(t)�Æ1(t)
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(A.31)

Here z� is given by the mean value theorem for di�erentiable functions:

F1(t; z � c1(t;z)p
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e�2z

2` � F1(t)`
� 1

2
d2k(t)

= @
@z

n
F1(t; z)`

� 1
2
d2k(t;z)

o
j(t;z�)

�
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� (A.32)

All the functions and their derivatives are bounded: jF1(t; z)j by MF , j@F1(t;z)@z
j by M1,

jdk(t; z)j by D, j@dk(t;z)
@z

j by D1 and c1(t; z) by Mc. Our integrand is then bounded by:R
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R Æ2(t)
�Æ1(t) (M1 + ln `D1DMF ) `
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as d2k is bounded from below by d2min this expression is bounded by:

(M1 + ln `D1DMF ) (1 +Mc

p
�p
2
)
1

`

Z
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`�
1
2
d2mindt (A.34)

q.e.d.

A.2. The Algebraic Decay of the Integral governing the Phononic

Flow

For the derivatives of the !q's we have to study the behaviour of:Z
B

d3k�k;q(`)jMqj2e�2
R `
0
�2k;q(`

0
)d`

0
(A.35)
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In this case we assume the following:

Assumptions 1'

a) �q(k;1) 2 C1 and bounded by Q.

b) �(k;1) and @�(jkj)
@jkj are strictly monotonuos increasing functions of k, !(q;1) is

strictly bigger than zero.
c) The c(k) and a(q) are 2 C1 and dk(q) is bounded by D.
d) For the moment, the asymptotic behaviour is assumed to set in at all points within
the region of integration before ` reaches `0.

This case can be handled in the same way as the q integration in A.1. The only minor
di�erence occurs, when proving the analogon to Lemma 1. We will use Lemma 1'
prooved at the end of this section.

The set of all elements in the kz; k? plane such that �q(kz; k?;1) = 0,
S := f(kz; k?)j�q(kz; k?;1) = 0g, is a regular one dimensional compact manifold.

We have: R
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0 �
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(A.36)

From second to third line we introduced cylindrical coordinates with q beeing the z-
axis and performed the integration over the angle; from third to fourth line we used
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Lemma 2; from fourth to �fth line we wrote �q(kz; k?; `) explicitely in the asymptotic
regime as de�ned in (A.3).
We now use Lemma 1' to again introduce a transformation of variables (kz; k?)! (t; u).
Once again we �nd 1 for the jacobian determinant. For our integral we then have,
rewriting k? = ~k(t; u):
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(A.37)

We now have an integral of exactly the same form as before and, hence, continue
analogously:
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(A.38)
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= 2�jMqj2
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(A.39)

= � 1p
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= � 1p
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d2q(t)

� exp�2[�q(t; `�)2]`0 exp (d2q(t)12 ln `0) exp 2d2q(t)
(A.41)

This proves the second part of (A.2)

In order to justify the above Lemma 1' remains to be proven:

Lemma 1'

The set of all elements in the kz; k? plane such that �q(kz; k?;1) = 0,
S := f(kz; k?)j�q(kz; k?;1) = 0g, is a regular one dimensional compact manifold.

Proof:
a) The set S := f(kz; k?)j�q(kz; k?;1) = 0g is compact: As B2 is bounded, S is
bounded as well. As B2 is closed and �q(kz; k?;1) is continuous, S is closed. Thus S
is compact.
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b) We show, that S does not contain isolated points. A point in S can only be isolated,
if it is a local minimum or maximum of �k(p; q;1),

i.e. @�q(kz;k?;1)
@kz

= @�q(kz;k?;1)
@k?

= 0. This can be proved very easily using the theorem
on implicit functions.
To investigate, whether isolated points exist, we take a look at the �rst derivatives: As
@�q
@kz

= @�
@x

��
x=
p

(kz+q)2+k2?
� kz+qp

(kz+q)2+k2?
� @�

@x

��
x=
p

k2z+k
2
?
� kzp

k2z+k
2
?
.

It is easily seen, that: �q(kz; k?; `) > 0 8`; kz > 0. Further @�
@kz

> 0 and �q < kz < 0

(as @�
@x

> 0). We now use our assumption, that @�
@x

is strictly monotonuosly increasing

and the fact, that:

���� kz+qp
(kz+q)2+k2?

���� >
���� kzp

k2z+k
2
?

���� kz < �q. This immediately shows:

@�q(kz;k?;1)
@kz

> 0 and kz < �q. Thus S cannot contain isolated points.

As �q(kz; k
0
?1) is strictly monotonously increasing with kz 8kz < 0 and thus in the

entire region, where �q(kz; k?;1) � 0, S is connected (unless cut into parts by the
region of integration).
The above proves Lemma 1'
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B. A more re�ned asymptotic Behaviour

B.1. General Remarks and Outline

In this appendix we investigate the equations (4.12)-(4.14), using a di�erent Ansatz for
the ow of the electronic energies in the asymptotic regime. The asymptotic behaviour
for the ow of the phonons remains unchanged in leading order. We have shown,
that a 1

`
behaviour in the asymptotic is only possible as long as  = 1

2
, we have not

investigated a 1

`
1
2 ln `

behaviour. This we do here.

We set:

!(`) = !(1) +
1

2
p
`+ `0(q)

+
e(q)

2
p
`+ `1(q) ln(`+ `1(q))

(B.1)

and

�(`) = �(1) +
e(k)

2
p
`+ `�(k) ln(`+ `�(k))

(B.2)

as before we have:

�k;q(`) := �k+q(`)� �k(`) + !q(`)

= �k;q(1) + e(k+q)

2
p

`+`�(k+q) ln(`+`�(k+q))
� e(k)

2
p

`+`�(k) ln(`+`�(k))

+ 1

2
p

`+`0(q)
+ e(q)

2
p

`+`1(q) ln(`+`1(q))

(B.3)

we will continue to use � := �k;q := �k;q(1); �(`) := �k;q(`)
For the electrons the decay under the ` induced ow is now only given by a 1p

` ln `
term.

We also introduce one additional change in this chapter. Up to now we have always
assumed, that the asymptotic behaviour has already set in, we only have the case,
where ` � `0, and we have always assumed ` + `i to equal `. O� course, this is right
for the left hand side of (4.12-4.14), as we are investigating the asymptotic case. But
on the right hand side the integrals contain regions, where `0 is larger than `. To deal
with this problem we assume the above asymptotic behaviour for ` > `i. For the case
` < `1(q) we assume the phononic energies to be given by:

!(`) = !(1) +
1

2
p
`+ `0(q)

+
eq

2
p
2`1(q) ln(2`1(q))

(B.4)
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B. A more re�ned asymptotic Behaviour

For ` < `� the electronic energies are given by:

�(`) = �(1) +
e(k)

2
p
2`�(k) ln(2`�(k))

(B.5)

Using this Ansatz for the asymptotic behaviour and its onset the integrals for the
calculation of d!q

d`
und d�k

d`
are given by three parts:

d!q
d`

=

Z
`>`�(k)

`>`�(k+q)

�(`)jMqj2e�2
R `
0
�2(`

0
)d`

0
(nk+q � nk)d

3k

+

Z
`<`�(k)

`>`�(k+q)

�(`)jMqj2e�2
R `
0 �

2(`
0
)d`

0
(nk+q � nk)d

3k (B.6)

+

Z
`>`�(k);
`<`�(k+q)

�(`)jMqj2e�2
R `
0
�2(`

0
)d`

0
(nk+q � nk)d

3k

and for the electrons:

d�k
d`

=

Z
`>`1(q)

`>`�(k+q)

�(`)jMqj2e�2
R `
0 �

2(`
0
)d`

0
(1� nk+q)d

3q

+

Z
`0<`<`1(q);
`>`�(k+q)

�(`)jMqj2e�2
R `
0
�2(`

0
)d`

0
(1� nk+q)d

3q (B.7)

+

Z
`>`0(q)

`<`�(k+q)

�(`)jMqj2e�2
R `
0
�2(`

0
)d`

0
(1� nk+q)d

3q

The idea is, of course, to choose the expression of the left hand side to be of its
asymptotic form. As the integrand for the integrals governing the derivatives of the
phononic and electronic energies is the same, we evaluate this integrand in the next
section. We then calculate the derivatives of the phononic and electronic energies in the
two subsequent sections. It �nally turns out, that a self-consistent solution for constant
e(k) and e(q) cannot be found1. Nevertheless, using the asymptotic behaviour only for
` larger than a certain threshold and an even faster decay of the electronic energies
makes the e�ort worthwhile.

B.2. The Integrand

For the calculation of d!
d`

and d�
d`

(see (B.6) and (B.7)) the integrand is given by:

�k;q(`)jMqj2e�2
R `
0 �

2
k;q(`

0
)d`

0
(B.8)

1This does not, however, show, that no solution with varying e(k) and e(q) exists.

70



B.2. The Integrand

For the evaluation we use Ansatz (B.1) and (B.2). Later we put e(q) = 0, e(k) = 0
or e(k + q) = 0 to also evaluate those regions of the integrals, where the asymptotic
behaviour has not yet set in for all terms contained in �.

In a �rst step we now calculate the integral:

R `
0
�(`

0
)2d`

0

=
R `
0

�
�(1) + 1

2
p

`
0+`0(q)

+ e(k+q)

2
p

`
0+`�(k+q) ln(`

0+`�(k+q))

� e(k)

2
p

`
0+`�(k) ln(`

0+`�(k))
+ e(q)

2
p

`
0+`1(q) ln(`

0+`1(q))

�2

d`
0

= �2`+ 2�
p
`+ `0(q)� 2�

p
`0(q) + 2e(k + q)�

p
`+`�(k+q)

ln(`+`�(k+q))
� 2e(k + q)�

p
`�(k+q)

ln(`�(k+q))

�2ek�
p

`+`�(k)

ln(`+`�(k))
+ 2ek�

p
`�(k)

ln(`�(k))
+ 2eq�

p
`+`1(q)

ln(`+`1(q))
� 2eq�

p
`1(q)

ln(`1(q))

+1
4
ln(`+ `0(q))� 1

4
ln `0(q) +

e(k+q)
2

ln ln(`+ `�(k + q))� e(k+q)
2

ln ln(`�(k + q))

� ek
2
ln ln(`+ `�(k)) +

ek
2
ln ln(`�(k)) +

eq
2
ln ln(`+ `1(q))� eq

2
ln ln(`1(q))

+
P

i;j eiej

4
( 1
ln `+`?

� 1
ln `?

)

(B.9)

where we neglected terms of the order of:
R

1p
`
0+`i ln2(`

0+`i)
d`

0
. In the last line we

understand the ei to equal our e(q), �e(k) or e(k + q). For convenience we will also

use `i instead of `1 or `�. The constant `? depends on `0 and `�. As e
1
ln ` ! 1 as `!1

we will subsequently drop this term alltogether.
We also approximated:

Z
1p

`0 + `0(q)
p
`0 + `�(k) ln(`0 + `�(k))

d`
0

by ln ln(`+ `�(k)) (B.10)

Because we discuss equation (B.9) in the asymptotic region only, we can set: 1p
`+`i

= 1p
`

and 1p
`+`j ln(`+`j)

= 1p
` ln `

and the expression simpli�es to:
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B. A more re�ned asymptotic Behaviour

`
h
� + 1p

`
+ (e(k+q)�e(k)+e(q))p

` ln(`)

i2
� 1

�2�
�p

2`0 + e(k + q)

p
`�(k+q)

ln(`�(k+q))
� ek

p
`�(k)

ln(`�(k))
+ eq

p
`�(q)

ln(`�(q))

�

+1
4
ln(`)� 1

4
ln(`0(q))

+ (e(k+q)�e(k)+e(q))
2

ln ln(`)� e(k+q)
2

ln ln(`�(k + q)) + ek
2
ln ln(`�(k))� eq

2
ln ln(`1(q))

(B.11)

As the integrals in (B.6) and (B.7) are con�ned to � � 0 the second line is of no
importance and can be omitted, and we �nd for the integrand:

�(`)jMqj2e�2
R `
0
�2(`

0
)d`

0

= ~c2q
�
� + 1

2
p
`
+ e(k+q)�e(k)+e(q)

2
p
` ln(`)

�

�e�2`
h
�+ 1p

`
+ (e(k+q)�e(k)+e(q))p

` ln(`)

i2
e2 1p

`

p
`0(q)

�(ln(`)) (e(k+q)�e(k)+e(q))2 (ln(`�(k + q)))�ek+q(ln(`�(k)))ek(ln(`1(q)))�eq

(B.12)

where we used again: Mq = ~c
p
q

later we will also use: !q(0) = cq.

B.3. Derivative of the phononic energies

We now calculate the derivative of the phonon-energies:
We use: 1p

`+`0
= 1p

`
we set ek;q = �e(k + q)� e(k) + e(q)

then we have:
d!q(`)

d`
= 2

X
k

jMk;q(`)j2�k;q(`)(nk+q � nk)

= 2�

Z
Bz

jMq(`)j2�k;q(`)e�2
R `
0
�2(`

0
)d`

0
(nk+q � nk)

As in previous chapters we integrate over the azimuthal variable and as argued in
section 5.1 the region of integration given by: nk+q = 0; nk = 1 contributes only an
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B.3. Derivative of the phononic energies

exponentially decaying term to the asymptotic behaviour and is omitted as before, the
relevant region of integration is the same as in section 5.3.1. We use the result to write
the integral as:

4��~c2qe2
Rp(kf )2�2kzq�q2
kf

dkk
R � q

2

�k dkz

�
�� 1

2
p
`
� ek;q

2
p
` ln (`)

�
e�2l�

2

1p
`

p
`0 (ln(`))

�(e(k+q)�e(k)+e(q)) (ln `�(k + q))e(k+q) (ln `�(k))
�ek (ln `1(q))

eq

(B.13)

N.B. As discussed above the value of ek+q and ek depend on the corresponding region
of integration in (B.6). E.g. for `�(k) > ` we set ek = 0, as �k(`) does not contain a
`-dependent term for ` < `�(k).

We change variables: � = kzq

m
+ q2

2m
+ cq

4��~c2me2
Rp(kf )2�2kz(�)q�q2
kf

dkk
R cq
� kq

m
+ q2

2m
+cq

d�
�
�� 1

2
p
`
� ek;q

2
p
` ln (`)

�
e�2l�

2

1p
`

p
`0 (ln(`))

�(e(k+q)�e(k)+e(q)) (ln `�(k + q))e(k+q) (ln `�(k))
�ek (ln `1(q))

eq

(B.14)

As
kfq

m
� q2

2m
+ cq, we can use the same arguments as in Chapter 4 and in Appendix A

to proceed:

2
p
2�

3
2�~c2me2 1

`

Rp(kf )2�2kz(0)q�q2
kf

dkk
R1
�1 d�Æ(�)

�
� 1

2
p
`
� ek;q

2
p
` ln (`)

�

�p`0 (ln(`))�(e(k+q)�e(k)+e(q)) (ln `�(k + q))e(k+q) (ln `�(k))
�ek (ln `1(q))

+eq

(B.15)

It has to been discussed, whether we can simply drop the constant term added to � in
equations (B.4) and (B.5) when performing the calculation of our integral above. In
chapter 5 (except for section 5.5) we have always replaced �k;q(1) by �k;q(1), when
evaluating our Æ(�) function. This is justi�ed as we do not expect the form of � to
change signi�cantly under the `-dependent transformation. Hence, to proceed the same
way for this calculation remains justi�ed.

We have: jk + qj =
p
k2 + q2 + 2kzq =

p
k2 � 2mcq + 2m�; for � = 0, this turns out

to be
p
k2 � 2mcq.
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B. A more re�ned asymptotic Behaviour

For the constants we now make the following Ansatz for mathematical convenience:

`0(q) =
D2
�1
q2

`1(q) = e
1
q2 `�(k) = e

1

(k�kf )2

e(k) = 1
2
sgn(k � kf); (ek = 0; `�(k) > `; ek+q = 0; `�(k + q) > `);

e(q) = 1

(B.16)

Now the three parts of our integral are given by:

2
p
2�

3
2�~c2me2D�1

q
1
`

Rq(kf� 1p
ln `

)2+2mcq

kf+
1p
ln `

dkk
R1
�1 d�Æ(�)

�
� 1

2
p
`

�

�
�

1
(jk+qj�kf)2

�� 1
2
�

1
(k�kf )2

�� 1
2
�

1
q2

� (B.17)

+2
p
2�

3
2�~c2me2 1

`

D�1
q

R kf+ 1p
ln `

kf
dkk

R1
�1 d�Æ(�)

�
� 1

2
p
`
� 1

2

2
p
` ln (`)

�

� (ln(`))�
1
2

�
1

(jk+qj�kf)2
�� 1

2
�

1
q2

� (B.18)

+2
p
2�

3
2�~c2me2 1

`

D�1
q

Rpk2f+2mcqq
(kf� 1p

ln `
)2+2mcq

dkk
R1
�1 d�Æ(�)

�
� 1

2
p
`
� 1

2

2
p
` ln (`)

�

� (ln(`))�
1
2

�
1

(k�kf )2
�� 1

2
�

1
q2

� (B.19)

We present the calculation of these three terms in the following three subsections.

B.3.1. Region of integration: jk + qj < kf � 1p
ln `

and k > kf +
1p
ln `

We now start by evaluating the �rst of the integrals given above in line (B.17):

�p2� 3
2�~c2me2 1

`
3
2

D�1
q3

� R
q
(kf� 1p

ln `
)2+2mcq

kf+
1p
ln `

dkk
R1
�1 d�Æ(�)jjk + qj � kf j(k � kf)

(B.20)
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= �p2� 3
2�~c2me2 1

`
3
2

D�1
q3

� R
q
(kf� 1p

ln `
)2+2mcq

kf+
1p
ln `

dkkj
p
k2 � 2mcq � kf j(k � kf)

(B.21)

As q is small compared to kf and k � kf we have:
p
k2 + 2mcq � k + mcq

k
� k + mcq

kf
:

= �p2� 3
2�~c2me2 1

`
3
2

D�1
q3

kf

� R (� 1p
ln `

)+mcq
kf

1p
ln `

d�k
���(�k � mcq

kf
)
��� (�k)

= �p2� 3
2�~c2me2 1

`
3
2

D�1
q3

kf

�
�����
h
1
3
(�k)3 � 1

2
mcq

kf
(�k)2

i(� 1p
ln `

)+mcq
kf

1p
ln `

�����
= �p2� 3

2�~c2me2 1

`
3
2

D�1
q3

kf

�
�
+1

6
(mc
kf
)3q3 � mc

kf

q

ln `
+ 2

3
1p
ln `

3

�

= �
p
2
6
�

3
2�~c2m

4c3

k2
f

e2D�1 1

`
3
2
+ hoT

(B.22)

As in (5.37) we can again choose D�1 such that b(q) = 1 + h:o:T:. But now D�1
contains another factor of

k2f
m2c2

i.e. without the counter factor D�1 the above is a lot
smaller than the expression in (5.36).
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B. A more re�ned asymptotic Behaviour

B.3.2. Region of integration: kf � k < kf +
1p
ln `

For the second integral (B.18) we have:

2
p
2�

3
2�~c2me2 1

`

D�1
q

R kf+ 1p
ln `

kf
dkk

R1
�1 d�Æ(�)

�
� 1

2
p
`
� 1

2

2
p
` ln (`)

�

� (ln(`))�
1
2

�
1

(jk+qj�kf)2
�� 1

2
�

1
q2

�

= �p2� 3
2�~c2me2 1

`
3
2

D�1
q

�
1
ln `

+
1
2p
ln `

3

�

� R kf+ 1p
ln `

kf
dkk

R1
�1 d�Æ(�) jjk + qj � kf j

= �p2� 3
2�~c2me2 1

`
3
2

D�1
q

�
1
ln `

+
1
2p
ln `

3

�

� R kf+ 1p
ln `

kf
dkk

���(pk2 � 2mcq � kf)
���

(B.23)

We once again use the approximations
p
k2 + 2mcq � k + mcq

k
� k + mcq

kf
and k � kf .

�p2� 3
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`
3
2

D�1
q
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+
1
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3

�
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���(k � mcq

kf
� kf)

���
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�
1
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+
1
2p
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3
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D�1
q
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+
1
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�
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(B.24)
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= �p2� 3
2�~c2me2 1
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�
1
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+
1
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ln `
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3

�
+ h:o:T:

(B.25)

B.3.3. Region of integration: kf � jk + qj > kf � 1p
ln `

By straightforward calculation or by arguments of symmetry it is immediately seen,
that this integral (B.19) yields the same result as the previous one.
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(B.26)

B.3.4. The derivative of the Phononic Energies

Combinig the three results form above we have:
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(B.27)

77



B. A more re�ned asymptotic Behaviour

B.3.5. Discussion

This result is interesting, as D�1 can still be chosen such that the leading term of
(B.27) equals �1

4
p
`
, the right leading term for the ow of the phononic energies. It is not

suprising that the terms of higher logarithmic order in ` are not given correctly, the
onset of the asymptotic behaviour at ` = `� is a very crude assumption. In addition
the `� can still be re�ned by using additional constants, i.e.:

`�(k) = const1e
const2
(k�kf )2 .

B.4. Change of the Electronic Energies

Using the results of B.2, we now calculate the derivatives of the electronic energies, in
exactly the same way as for the phonons:

d�k(`)
d`

= �2� R �k;q(`)jMq(`)j2(1� nk+q)d
3q

= �2�~c2 R q�k;q(`)e�2 R `0 �2k;q(`0 )d`0 (1� nk+q)d
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= �4��~c2
 R k�kf

0
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R q
�q dqz +

R D
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2
R q
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f
�k2�q2
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dqz

!�
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�2 R `0 �2k;q(`0 )d`0�
(B.28)

where D is the upper limit of the Brillouin zone. Inserting (B.12), gives:

d�k(`)
d`

= �4��~c2e2
 R k�kf

0
dqq2

R q
�q dqz +

R D
k�kf dqq

2
R q
k2
f
�k2�q2
2k

dqz

!

�
h�
�� 1

2
p
`
� ek;q

2
p
` ln (`)

�
e�2l�

2

� 1p
`

p
`0 (ln(`))

�ek;q (ln `�(k + q))e(k+q) (ln `�(k))
�ek (ln `1(q))

eq
i

(B.29)

where ek;q = e(k + q)� e(k) + e(q) and, as before, � := �k;q(1).
We set:
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~C := 4��~c2e2 and

~I :=
1p
`

p
`0 (ln(`))

�ek;q (ln `�(k + q))e(k+q) (ln `�(k))
�ek (ln `1(q))

eq (B.30)

And we change variables: qz ! � = k
m
qz +

q2

2m
+ cq to write the two terms as:

� ~C

 R k�kf
0

dqq2
R k

m
q+ q2

2m
+cq

� k
m
q+ q2

2m
+cq

d�m
k
+
R D
k�kf dqq

2
R k

m
q+ q2

2m
+cq

k2
f
�k2+2cmq

2m

d�m
k

!

�
�
�� 1

2
p
`
� ek;q

2
p
` ln (`)

�
~Ie�2l�

2

(B.31)

For all those values of q, for which the �-integral does not contain � = 0, the latter
integral is going to decay exponentially. For the �rst term of (B.31) we have:

� k
m
q + q2

2m
+ cq < 0 and k

m
q + q2

2m
+ cq > 0, but for the second part we can drop those

parts of the q-integral,where:
k2f�k2+2cmq

2m
> 0, i.e. q =

k2�k2f
2mc

is e�ectively the upper
boundary to the q-integral.
For smaller q the range of the �-integration contains � == 0 and hence any negative
lower and positive upper boundary can be used for ` large enough.

� ~C
R k2�k2

f
2mc

0
dqq2

R k
m
q+ q2

2m
+cq

� k
m
q+ q2

2m
+cq

d�m
k

�
�� 1

2
p
`
� ek;q

2
p
` ln (`)

�
~Ie�2l�

2 (B.32)

For increasing ` we have:

I.e.
R a
�b f(�; q; `)

p
`e�2`�

2
d� =

p
�p
2

R1
�1 f(�; q; `)Æ(�)d�, with a; b abitrary positive real

numbers.
Thus:

d�k(`)
d`

= �2p2� 3
2�~c2e2 1p

`

R k2�k2
f

2mc

0
q2m

k

�
� 1

2
p
`
� ek;q

2
p
` ln (`)

�
~Idq (B.33)

We insert the values of the e(k); e(q); `� as given in (B.16) in the equation given above
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and the integral splits into three parts:

d�k(`)
d`

=
p
2�

3
2�~c2e2 1

`
3
2

R k2�(kf+ 1p
ln `

)2

2mc
1p
ln `

q2m
k

�
1 + 1

ln `

�

�D�1
q

(ln `)�1
�

1
(jk+qj�kf)2

� 1
2
�

1
(k�kf )2

�� 1
2
�

1
q2

�
dq

+
p
2�

3
2�~c2e2 1

`
3
2

R 1p
ln `

0 q2m
k

D�1
q

�
1

(jk+qj�kf)2
� 1

2
�

1
(k�kf )2

�� 1
2

dq

+
p
2�

3
2�~c2e2 1

`
3
2

R k2�k2
f

2mc

k2�(kf+ 1p
ln `

)2

2mc

q2m
k

�
1 +

1
2

ln `

�

�D�1
q

(ln `)�
1
2

�
1

(k�kf )2
�� 1

2
�

1
q2

�
dq

(B.34)

For the second term in this equation we have assumed that the constp
`+`0

term in the

asymptotic behaviour is present for all values of q in (B.4). This is possible without
any error in the leading order as the only part where `0 > ` is given by: q < 1p

`
and

leads to an integral bounded like:
R 1p

`

0 . This leads to terms decaying faster than const
`2

.
We now continue our evaluations for the three parts of this equation seperately:

B.4.1. Central Region of Integration

We can write the �rst of the three terms as:

p
2�

3
2�~c2e2m

k
D�1(k � kf )

1

`
3
2 ln `

�
1 + 1

ln `

�

� R k2�(kf+ 1p
ln `

)2

2mc
1p
ln `

dq 1
q

��� 1
(jk+qj�kf)

���
(B.35)

For � = 0, we have jk + qj =
p
k2 � 2mcq � k + mcq

k
� k � mcq

kf
, as both k � kf and q

are small. This yields:
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p
2�

3
2�~c2e2m

k
D�1(k � kf )

1

`
3
2 ln `

�
1 + 1

ln `

�

� R k2�(kf+ 1p
ln `

)2

2mc
1p
ln `

dq 1
q

�
1

(k�kf�mcq
kf

)

�

=
p
2�

3
2�~c2e2m

k
D�1(k � kf)

1

`
3
2 ln `

�
1 + 1

ln `

�

� 1
k�kf

R k2�(kf+ 1p
ln `

)2

2mc
1p
ln `

dq

�
1
q
+

mc
kf

(k�kf�mcq
kf

)

�

(B.36)

We simplify the upper boundary of the integral ((k + kf) � 2kf and 1
ln `
� 1p

ln `
) and

�nd:

=
p
2�

3
2�~c2e2m

k
D�1 1

`
3
2 ln `

�
1 + 1

ln `

� R kf
mc

(k�kf� 1p
ln `

)

1p
ln `

dq

�
1
q
+

mc
kf

(k�kf�mcq
kf

)

�

=
p
2�

3
2�~c2e2m

k
D�1 1

`
3
2 ln `

�
1 + 1

ln `

� h
ln q � ln(k � kf � mcq

kf
)
i kf
mc

(k�kf� 1p
ln `

)

1p
ln `

=
p
2�

3
2�~c2e2m

k
D�1 1

`
3
2 ln `

�
1 + 1

ln `

� h
ln(

kf
mc
(k � kf))� 2 ln 1p

ln `
+ ln(k � kf)

i

=
p
2�

3
2�~c2e2m

k
D�1 1

`
3
2 ln `

�
1 + 1

ln `

� h
ln(

kf
mc
) + 2 ln(k � kf) + ln ln `

i

(B.37)

=
p
2�

3
2�~c2e2

m

k
D�1

1

`
3
2 ln `

ln ln `+ h:o:T: (B.38)

This results shows that the solution is not truely self consistent. However, the ln ln `
term can be canceled by inserting an additional term of the form eq

2
p
` ln ` ln ln `

and
ek

2
p
` ln ` ln ln `

into the asymptotic behaviour of the phononic and electronic energies in

equations (B.1) and (B.2).
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B.4.2. Region of integration: 0 < q < 1p
ln `

The second part of (B.34) is given by:

p
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3
2�~c2e2m
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D�1 1

`
3
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�
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ln (`)

� R 1p
ln `
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=
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� R 1p
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�

1
(jk+qj�kf )

�

=
p
2�

3
2�~c2e2m

k
D�1(k � kf)
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`
3
2

�
1 + 1

ln (`)

� R 1p
ln `

0 dqq

�
1

(k�kf�mcq
kf

)

�
(B.39)

Using 1
k�kf� mc

kf

p
ln `

= 1
k�kf the integral is readily evaluated and we �nd:

1p
2
�

3
2�~c2e2

m

k
D�1

1

`
3
2

1

ln `
+ h:o:T: (B.40)

B.4.3. Region of integration: kf < jk + qj < kf +
1p
ln `

Now only the third part of (B.34) remains to be calculated:

p
2�

3
2�~c2e2m

k
D�1(k � kf )

1

`
3
2
p
ln `

�
1 + 1

ln (`)

� R k2�k2f
2mc

k2�(kf+ 1p
ln `

)2

2mc

dq 1
q

(B.41)

We use
R kf

mc
(k�kf )

kf
mc

(k�kf� 1p
ln `

)

1
q
dq = ln(

kf
mc
(k � kf))� ln(

kf
mc
(k � kf)� 1p

ln `
)

= � ln
�
1� 1

(k�kf )
p
ln `

�
� 1

(k�kf )
p
ln `

to �nd:

p
2�

3
2�~c2e2

m

k
D�1

1

`
3
2 ln `

+ h:o:T: (B.42)

B.4.4. The Derivative of the Electronic Energies

We have thus found - taking into account the e�ects of the terms: eq

2
p
` ln ` ln ln `

and
ek

2
p
` ln ` ln ln `

in (B.1) and (B.2)-:

d�k(`)

d`

82



B.4. Change of the Electronic Energies

=
p
2�

3
2�~c2e2m

k
D�1 1

`
3
2 ln `

+
p
2�

3
2�~c2e2m

k
D�1 1

`
3
2 ln `

1
ln ln `

h
(ln(

kf
mc
) + 2 ln(k � kf)) +

3
4

i

+h:o:T:

(B.43)

B.4.5. Discussion

In this appendix we have investigated an Ansatz for �k(`) and !q(`) given in (B.1) and
(B.2). The Ansatz could very well be re�ned by inserting constants into the values of

`1 and `� in (B.16), e.g. `1 = const1e
const2
q2 . Even if these constants are set to equal one

we do re�nd the right leading order when evaluating the derivatives of the electronic
and phononic ow according to (B.6) and (B.7).
Still the following contradiction appears: In (B.16) we have assumed e(k) to be positive
for k > kf . That means e(k) has the same sign, as the leading constp

`+`0
term in (B.1).

But, comparing the results in (B.27) and the �rst line of (B.16) shows, that this cannot
be full�lled.

83



B. A more re�ned asymptotic Behaviour

84



Bibliography

[1] O. Madelung. Introduction to Solid-State Theory, Springer Verlag
(1978)

[2] H. Fr�ohlich, Proc. Roy. Soc. A 215, 291 (1952)

[3] J. Bardeen, L.N. Cooper, J.R. Schrie�er, Phys. Rev. 108, 1175
(1957)

[4] J.G. Bednorz, K.A. M�uller, Z. Phys B 64 189 (1986)

[5] P. Lenz, F. Wegner, Nucl. Phys. B 482[FS], 693 (1996)

[6] Franz Wegner 1993

[7] M. Ragwitz, F. Wegner, Eur. Phys. J.B 8, 9 (1999)

[8] S.K. Kehrein, A. Mielke, P. Neu, Z. Phys. B 99, 269 (1996)

[9] N.W. Ashcroft, N.D. Mermin Solid State Physics, Saunders (1976)

[10] C. Blatter Analysis II, Springer Verlag (1992)

85





DANKSAGUNG

Mein Dank gilt Herrn Professor Wegner f�ur die Betreuung dieser Doktorarbeit.

Herrn Professor Dr. Hans Arwed Weidenm�uller danke ich f�ur die Zweitbetreuung und

ganz besonders f�ur das Interesse, das er mir und dieser Arbeit entgegengebracht hat.

Seine Aufmunterung hat mit dazu beigetragen, dass ich diese Arbeit durchgezogen

habe.

Interessante Diksussionen habe ich mit Professor Andreas Mielke, Dr. J�urgen Stein,

Tobias Stauber und Markus Keil gehabt, daf�ur an dieser Stelle mein Dank.

Ganz besonders danke ich all denen, die an mich geglaubt und mir den R�ucken gest�arkt

haben auch dann, wenn ich mit meiner Arbeit am verzweifeln war.

Mein Vater hat durch das intensive Korrekturlesen dieser Arbeit ganz erheblich zu

ihrer gelungenen Form beigetragen.

Diese Arbeit g�abe es ohne meine Familie, insbesondere ohne meine Eltern nicht. Auf

ihre Unterst�utzung konnte ich mich immer verlassen. Daf�ur haben sie mehr verdient

als das ganz herzliche Danke Sch�on, welches hier steht.


