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This paper analyzes estimation by bootstrap variable�selection in a simple
Gaussian model where the dimension of the unknown parameter may exceed
that of the data� A naive use of the bootstrap in this problem produces
risk estimators for candidate variable�selections that have a strong upward
bias� Resampling from a less over�tted model removes the bias and leads
to bootstrap variable�selections that minimize risk asymptotically� A related
bootstrap technique generates con�dence sets that are centered at the best
bootstrap variable�selection and have two further properties� the asymptotic
coverage probability for the unknown parameter is as desired� and the con�
�dence set is geometrically smaller than a classical competitor� The results
suggest a possible approach to con�dence sets in other inverse problems where
a regularization technique is used�
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�� Introduction

Certain statistical estimation problems� such as curve estimation� signal
recovery� or image reconstruction� share two distinctive features� the dimen�
sion of the parameter space exceeds that of the data� and each component
of the unknown parameter may be important� In such problems� ordinary
least squares or maximum likelihood estimation typically over�ts the model�
One general approach to estimation in such problems has three stages� First�
devise a promising class of candidate estimators� such as penalized maximum
likelihood estimators corresponding to a family of penalty functions or Bayes
estimators generated by a family of prior distributions� This step is some�
times called using a regularization technique� Second� estimate the risk of
each candidate estimator� Third� use the candidate estimator with smallest
estimated risk�

Largely unresolved to date is the question of constructing accurate con�
�dence sets based on such adaptive� regularized estimators� Even obtaining
reliable estimators of risk can be di�cult� This paper treats both matters

	



in the following problem� which is relatively simple to analyze explicitly� yet
su�ciently general to indicate potential directions for other problems that
involve a regularization technique� Suppose that Xn is an observation on a
discretized signal � that is measured with error at n time points� The er�
rors are independent� identically distributed� Gaussian random variables with
means zero� Thus� Xn is a random vector whose distribution is N
�n� ��nIn��
Both �n and ��n are unknown� The problem is to estimate the signal �n�

The integrated squared error of an estimator ��n is

Ln
 ��n� �n� 
 n��j ��n � �nj
��
	�	�

where j � j is Euclidean norm� Under this loss� Stein 
	���� showed that Xn�
the maximum likelihood or least squares estimator of �n� is inadmissible for
n � �� Better estimators for �n include the James�Stein 
	��	� estimator�
locally smoothed estimators such as the kernel variety treated by Rice 
	�����
and variable�selection estimators� to be described in the next paragraph�
Each of these improved estimators accepts some bias in return for a greater
reduction in variance�

A variable�selection approach to estimating �n consists of three steps�
�rst� transform Xn orthogonally to X �

n 
 OXn� second� replace selected
components of X �

n with zero� and third� apply the inverse rotation O�� to
the outcome of step two� The vector generated by such a process will be
called a variable�selection estimator of �n�

How shall we choose the orthogonal matrixO� Ideally� the components of
the rotated mean vector O�n would be either very large or very small relative
to measurement error� The nature of the experiment that generated Xn

may suggest that O be a �nite Fourier transform� or an analysis of variance
transform� or an orthogonal polynomial transform� or a wavelet transform�
Important though it is� we will not deal further� in this paper� with the choice
of O�

Having rotated Xn� how shall we choose which components of X �
n to

zero out� Thereafter� how shall we construct� around the variable�selection
estimator� an accurate con�dence set for �n� A plausible answer is to com�
pare candidate variable�selections through their bootstrap risks� and then
bootstrap the empirically best candidate estimator to obtain a con�dence
set for �n� Efron and Tibshirani 
	���� Chapter 	�� discussed simple boot�
strap estimators of mean squared prediction error� However� Freedman et
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al� 
	���� and Breiman 
	���� showed that simple bootstrap estimators of
mean�squared prediction error can be untrustworthy for variable�selection�

This paper treats variable�selection for estimation rather than prediction
and allows the dimension of the unknown parameter to increase with sample
size n� The second point is very important� A stronger model assumption
used by Speed and Yu 
	���� and others�that the dimension of the param�
eter space is �xed for all n�restricts the possible bias induced by candidate
variable�selections� In such restricted models� variable�selection by Cp does
not choose well� On the other hand� Cp can be asymptotically correct when
the dimension of the parameter space increases quickly with n and the se�
lection class is not too large 
cf� Section ��� Rice 
	���� Section �� and
Speed and Yu 
	���� Section �� discuss other instances and aspects of this
phenomenon�

Section � of this paper proves for our estimation problem that naive
bootstrapping�resampling from a N
Xn� ��n

�In� model� where ��n
� estimates

��n�yields upwardly biased risk estimators for candidate variable�selections�
However� resampling from a N
��n� ��n

�� distribution� where ��n is obtained by
suitably shrinking some of the components of X �

n toward zero� corrects the

bias and generates a good bootstrap variable�selection estimator ��n�B for �n�
Using a related shrinkage bootstrap� Section � then constructs con�dence
sets centered at ��n�B that have correct asymptotic coverage probability for �n
and small geometrical error� Here as well� two plausible but naive bootstrap
algorithms give wrong answers�

�� Bootstrap Selection Estimators

This section proposes bootstrap selection estimators for �n and analyzes
their asymptotic losses 
which equal the asymptotic risks�� The choice of
bootstrap algorithm proves critical to the success of bootstrap selection�
Naive bootstrapping does not work�

The signal vector Xn 
 
Xn��� � � � �Xn�n�� has a N
�n� ��nIn� distribution
on Rn� For brevity� write �n 
 
�n� ��n� and let P��n denote the above normal
distribution� Because the estimation problem is invariant under rotation of
the coordinate system� we will simplify notation by assuming� without any
loss of generality� that the orthogonal matrix O is the identity matrix� Then�
the variable selection is done directly on the components of Xn� Consider

�



candidate estimators for �n that have the form

��n
A� 
 
an��
A�Xn��� � � � � an�n
A�Xn�n�
��
��	�

where A ranges over subsets of ��� 	� and an�i
A� 
 	 if i�
n � 	� � A and
vanishes otherwise� The goal is to choose A� on the basis of the data Xn� so as
to minimize� at least asymptotically� the loss of the corresponding candidate
estimator ��n
A��

Success of this formulation of variable selection appears to require restric�
tions on the possible values of A� In the paper� we assume that A is the union
of m ordered closed intervals�

A 

m�
i��

�t�i��� t�i��
����

where � � t� � � � � � t�m � 	 and m is �xed� The pseudo�distance between
two such sets A and B is de�ned to be

d
A�B� 
 �
A�B��
����

where � is Lebesgue measure� After forming equivalence classes� the collec�
tion S
m� of all subsets having the form 
���� is a compact metric space
under d�

Let A be a compact subset of S
m�� possibly S
m� itself� that contains
the unit interval ��� 	� as an element� Consider the candidate estimators
��n
A� that are generated as A ranges over A� Since ��� 	� is a element of A�
the unbiased estimator Xn is among these candidate estimators� Let Ac be
the complement of A in ��� 	�� The quadratic loss of ��n
A� is then

Ln
��n
A�� �n� 
 n��j��n
A�� �nj
�


 n��
X

i��n����A


Xn�i � �n�i�
� � 	n
A

c��
����

where 	n is the non�negative measure de�ned by

	n
A� 
 n��
X

i��n����A

��n�i�
����

Estimators of this loss or of the associated risk are naturally phrased in
terms of the discrete uniform measure

�n
A� 
 n��
X

i��n����A

	
����

�



and the empirical measure

�
n
A� 
 n��
X

i��n����A

X�
n�i�
����

Consider the following two bootstrap risk estimators�
Naive bootstrap� Suppose ���n is a consistent estimator of ��n� such as the

variance estimators to be discussed in Section �� Let X�
n be a random vector

such that the conditional distribution of X�
n given Xn is N
Xn� ���nIn�� Let

��n
A� denote the recalculation from X�
n of the candidate estimator ��n
A��

Let E� denote expectation with respect to the conditional distribution of X�
n

given Xn� The naive bootstrap risk estimator produced by the scheme is

�Rn�N 
A� ��
�
n� 
 E�Ln
�

�
n
A��Xn�


 E��n
��

X
i��n����A


X�
n�i �Xn�i�

� � n��
X

i��n����Ac

X�
n�i�
����


 ���n�n
A� �
�
n
A

c��

Unfortunately� if 	n converges weakly to 	 and ��n converges to �� as n
increases� then �Rn�N 
A� converges in probability to

��
A� 
 �� � 	
Ac��
����

The actual asymptotic loss or risk of ��n
A� is

�
A� 
 ���
A� � 	
Ac��
��	��

where � is Lebesgue measure� Theorem ��	 below gives details� The upward
asymptotic bias in �Rn�N 
A� ���n� renders it useless for selection among the
candidate estimators�

Shrink bootstrap� Let � � �� denote the positive�part function� The modi�
�ed estimator

�Rn�B
A� ��
�
n� 
 ���n�n
A� � ��
n
A

c�� ���n�n
A
c���
��		�

corrects the asymptotic bias in �Rn�N and converges in probability to �
A��

the correct asymptotic loss of ��n
A�� see Theorem ��	� Moreover� the risk
estimator �Rn�B
A� ���n� can also be viewed as a bootstrap estimator�

�



Let
�sn
A

c� 
 �	� ���n�n
A
c���
n
A

c���
��	��

and de�ne ��n
A� 
 
��n��
A�� � � � � ��n�n
A��� by

��n�i
A� 


��
�
Xn�i if i�
n� 	� � A

�s���n 
Ac�Xn�i if i�
n� 	� � Ac
�
��	��

Let X�
n now be a random vector such that the conditional distribution of X�

n

given Xn is N
��n
A�� ���nIn�� As before� let ��n
A� denote the recalculation

from X�
n of the candidate estimator ��n
A�� Now the bootstrap risk is

E�Ln
�
�
n
A��

��n� 
 E��n
��

X
i��n����A


X�
n�i �X�

n�i� � n��
X

i��n����Ac

�sn
A
c�X�

n�i�


 ���n�n
A� � �sn
A
c��
n
A

c�
��	��


 �Rn�B
A� ��
�
n��

The shrink bootstrap method just described has two notable features� It
depends on the candidate set A� and it shrinks some� but not all� of the
components of Xn towards the origin� In de�ning ��n
A�� we could shrink as
well the components of Xn for which i�
n � 	� � A without changing the
�nal evaluation in 
��	��� In this sense� �Rn�B
A� ���n� is the bootstrap risk
generated by a family of shrink bootstrap algorithms� The shrinkage factor
in 
��	�� corrects the over�tting of �n that occurs in the naive bootstrap�

The idea of bootstrap variable selection is to choose the candidate esti�
mator whose estimated loss is smallest� Thus� let �An�B be any set in A such
that

�Rn�B
 �An�B� ��
�
n� 
 min

A�A

�Rn�B
A� ��
�
n��
��	��

The minimum is achieved because� for each n� �Rn�B
�� ���n� has a �nite number
of possible values� We will call

��n�B 
 ��n
 �An�B�
��	��

a bootstrap selection estimator generated by the candidate estimators f��n
A� �
A � Ag�

Let k�kA denote supremum norm taken over all sets A � A� To study the
locally uniform convergences of �Rn�N and �Rn�B� we introduce two conditions�

�



C	� A is a compact subset of S
m�� in the metric d� that contains ��� 	� as
an element� The sequence f�n 
 
�n� ��n� � n � 	g is such that

lim
n��

k	n � 	kA 
 �� lim
n��

��n 
 ��
��	��

for some bounded� d�continuous� non�negative measure 	 on A and
some �nite positive ���

C�� For every sequence f�n � n � 	g that satis�es condition C	�

plim
n��

���n 
 ���
��	��

Here plim stands for the limit in P�n �n�probability�

Theorem ��� Suppose that conditions C� and C� hold� Then� for every
positive ��

plim
n��

k �Rn�N 
�� ��
�
n�� ��kA 
 �
��	��

where �� is de�ned in ���	
� By contrast�

plim
n��

kLn
��n
��� �n�� �kA 
 �

plim
n��

k �Rn�B
�� ��
�
n�� �kA 
 �
�����

where � is de�ned in �����
� Consequently�

plim
n��

Ln
��n�B� �n� 
 min
A�A

�
A��
���	�

If the limiting loss � has a unique minimizer A� � A� then

plim
n��

d
 �An�B� A�� 
 ��
�����

The theorem proof is in Section �� By equations 
����� and 
���	�� the

limiting loss of ��n�B coincides with the limiting loss of the unrealizable candi�
date estimator that minimizes loss over all selections A in A� In this sense�
the bootstrap selection estimator ��n�B is asymptotically optimal� Because
��� 	� is an element of A�

min
A�A

�
A� � �
��� 	�� 
 ��
�����

�



with equality only in special circumstances 
e�g� 	 
 ��� or �
A�� 
 	�

	
Ac
�� 
 ��� Thus� ��n�B asymptotically dominates the unbiased estimator

Xn�
An alternative to the shrink bootstrap risk estimator �Rn�B replaces the

positive�part function in 
��		� with the identity function� The result is the
risk or loss estimator

�Rn�C
A� ��
�
n� 
 ���n��n
A�� �n
A

c�� � �
n
A
c�


 �
n
A
c� � ���n���n
A�� 	��
�����

Unlike �Rn�B� this risk estimator can assume negative values�

Let �An�C be any value of A � A that minimizes �Rn�C
A� ���n�� We will

call ��n�C 
 ��n
 �An�C� a Cp�estimator generated by the candidate estimators

f��n
A� � A � Ag� This terminology recognizes the analogy between 
�����
and risk estimators discussed by Mallows 
	���� in a di�erent context� Con�

clusions 
������ 
���	� and 
����� remain valid when �Rn�B� �An�B� ��n�B are re�

placed by �Rn�C � �An�C � ��n�C respectively�
Other variable selection criteria� such as Akaike�s 
	���� AIC� Shibata�s


	��	� method� and several competitors discussed by Rice 
	���� Section ���
Speed and Yu 
	���� Section �� might also be used to choose A� Under
Conditions C	 and C�� these methods do not minimize asymptotic loss in
the sense of 
���	��

�� Bootstrap Con�dence Sets

A con�dence ball for �n� centered at an estimator ��n and having radius
�dn� is

Cn
��n� �dn� 
 ft � Rk � j��n � tj � �dng�
��	�

This section studies con�dence balls centered at the bootstrap selection esti�
mator ��n�B� The �rst goal is to devise a bootstrap radius �dn�B such that the

coverage probability P��n�Cn
��n�B� �dn�B� � �n� converges to 
 as n increases�

The second goal is to determine the geometric loss of Cn
��n� �dn� for various

choices of 
��n� �dn��

GLn
Cn� �n� 
 n���� sup
t�Cn

jt� �nj


 n����j��n � �j� n���� �dn�
����

�



Geometric loss measures the error of Cn
��n� �dn� as a set�valued estimator of
�n� It has a projection�pursuit interpretation that stems from the identity
jxj 
 supfu�x� juj 
 	g�

Both the de�nition of ��n�B and the construction of con�dence balls cen�

tered at ��n�B require a good estimator of ��n� One possibility� used in Rice

	����� is

���n�� 
 ��
n� 	����
nX
i��


Xn�i �Xn�i���
��
����

The consistency or asymptotic normality of ���n�� requires that the �rst�order
squared di�erences f
�n�i � �n�i����g be su�ciently small� in a sense that
Condition D	 below makes precise�

A second estimator of ��n works under the assumption that �n lies in a sub�
space of dimension n� � n� Suppose that n� is the integer part of cn� where c
is a fraction strictly between � and 	� By making an appropriate orthogonal
transformation� assume without loss of generality that Xn 
 
Xn� � Yn�n���
where Xn� has a N
�n� � ��nIn�� distribution in n� dimensions� Yn�n� has a
N
�� ��nIn�n�� distribution in n � n� dimensions� and Xn� � Yn�n� are inde�
pendent� In this canonical formulation� a bootstrap selection estimator of �n�

can be formed from Xn� and the variance estimator

���n�� 
 
n� n����jYn�n� j��
����

The distribution of 
n � n�����n����
�
n is chi�squared with n � n� degrees of

freedom�
The essential features of ���n�� and ���n�� are expressed in the following two

assumptions�

D	� The variance estimator ���n�� is de�ned by 
����� The sequence of mean
vectors f�n � n � 	g satis�es

lim
n��

n����
nX
i��


�n�i � �n�i���
� 
 ��
����

D�� The variance estimator ���n�� and Xn are independent random variables�
The distribution of bn���n����

�
n is chi�squared� where fbn � n � 	g is a

sequence of constants such that limn�� bn�n 
 b �	�

�



Under D	 and A	� the asymptotic distribution of n���
���n����
�
n� is N
�� �����

as in Gasser et al� 
	���� or by the reasoning in Section �� Under D� and
A	� the asymptotic distribution of n����
���n�� � ��n� is N
�� �b������

To construct con�dence balls� we begin by �nding the asymptotic distri�
bution of

Dn
�n�Xn� ��
�
n�j� 
 n����Ln
��n�B� �n�� �Rn�C
 �An�B� ��

�
n�j���
����

The quantityDn compares the loss of ��n�B with the simple estimator 
����� of
its risk� On the one hand� the asymptotic distribution of Dn turns out to be
normal with mean zero 
Theorem ��� below�� On the other hand� referring
Dn
�n�Xn� ���n�j� to the 
th quantile of its bootstrap distribution generates

a con�dence ball centered at ��n�B that has asymptotic coverage probability

 for �n 
Theorem ��� below�� There is no apparent advantage to replacing
�Rn�C in 
���� with the more complex bootstrap risk estimator �Rn�B�

In the remainder of the paper� the notation Dj stands for either condition
D	 or D�� according to the value of j�

Theorem ��� Suppose that Conditions C� and Dj hold and that the limiting
loss � has a unique minimum at A� � A� Then

L�Dn
�n�Xn� ��
�
n�j�jP�n�n�
 N
�� � �j 
	� �

�� A����
����

where
� �� 
	� �

�� A�� 
 ��� � �����
A��� 	�� � ���	
Ac
��
����

and
� �� 
	� �

�� A�� 
 ��� � �b�������
A��� 	�� � ���	
Ac
���
����

This result is proved in Section �� The same asymptotic distributions
hold if the bootstrap selection estimator in the de�nition of Dn
�n�Xn� ���n�j�

is replaced by the Cp�estimator ��n�C � Moreover� comparing the proof of The�
orem ��	 with its counterpart for the Cp�estimator establishes the following
asymptotic equivalence in loss�

plim
n��

n���jLn
��n�B� �n�� Ln
��n�C � �n�j 
 ��
��	��

To successfully bootstrap the sampling distribution of Dn
�n�Xn� ���n�j�

requires an algorithm that recognizes both the data�based selection �An�B

	�



and the structure of the variance estimator ���n�j � For every A � A� let

�Dn
�n� A�Xn� ��
�
n�j� 
 n����Ln
 ��n
A�� �n�� �Rn�C
A� ��

�
n�j���
��		�

We consider two cases�
Bootstrapping Dn
�n�Xn� ���n���� Let

�sn 
 �	� ���n���n
 �A
c
n�B���
n
 �A

c
n�B���
��	��

and de�ne ��n 
 
��n��� � � � � ��n�n� by

��n�i 


��
�

Xn�i if i�
n� 	� � �An�B

�s���n Xn�i if i�
n� 	� � �Ac
n�B

�
��	��

Let E�
n 
 
E�

n��� � � � � E
�
n�n� be a random vector such that the conditional

distribution of E�
n given Xn is N
�� ���n��In�� De�ne X�

n 
 
X�
n��� � � � �X

�
n�n�

�

and ���n�� by

X�
n 
 ��n � E�

n

���n�� 
 ���n�� � ��
n� 	����
nX
i��


E�
n�i �E�

n�i���
��
��	��

The partial bootstrap estimator of L�Dn
�n�Xn� ���n���jP�n�n� is then

�Hn�B�� 
 L�Dn
��n� �An�B�X
�
n� �

��
n���jXn��
��	��

Bootstrapping Dn
�n�Xn� ���n���� Rede�ne �sn and E�
n above by replacing

���n�� with ���n��� De�ne ��n by 
��	�� and X�
n as in 
��	��� Let ���n�� be a random

variable such that L�bn���n�����
�
n��jXn� is chi�squared with bn degrees of freedom

and such that ���n��� E
�
n are conditionally independent� given Xn� The actual

construction of ���n�� will normally require a separate bootstrap scheme� The
partial bootstrap estimator of L�Dn
�n�Xn� ���n���jP�n�n� is then

�Hn�B�� 
 L�Dn
��n� �An�B�X
�
n� ��

��
n���jXn�
��	��

Theorem ��� Suppose that Conditions C� and Dj hold and that the limiting
loss � has a unique minimum at A� � A� Then

�Hn�B�j 
 N
�� � �j 
	� �
�� A���
��	��

in P�n�n�probability� where �
�
j 
	� �

�� A�� is de�ned by ���

 and ���	
�

		



Both bootstrap algorithms in Theorem ��� shrink toward zero these com�
ponents of Xn that are not selected by ��n�B� The construction 
��	�� of
��n is critical for the weak convergence 
��	��� If we took instead ��n 

Xn� over�tting �n� then the asymptotic variance in 
��	�� would become

� �j 
	 � ���� ��� A��� If we used ��n 
 ��n�B� under�tting �n for bootstrap pur�
poses� the asymptotic variance in 
��	�� would become � �j 
�� �

�� A��� These
conclusions follow by the method used to prove Theorem ���� Thus� neither
of these alternative bootstrap algorithms yield consistent estimators of the
sampling distribution of Dn
�n�Xn� ���n�j��

For 
 strictly between � and 	� let �H��
n�B�j

� be the 
th quantile of

the bootstrap distribution �Hn�B�j de�ned in 
��	�� or 
��	��� Under Con�
dition Dj� de�ne the bootstrap selection con�dence set for �n to be Cn�B�j 


Cn
��n�B� �dn�B�j�� where

�dn�B�j 
 �n �Rn�C
 �An�B� ��
�
n�j� � n��� �H��

n�B�j

��
���
� �
��	��

The following theorem justi�es this con�dence set centered at ��n�B�

Theorem ��� Suppose that Conditions C� and Dj hold and that the limiting
risk � has a unique minimizer A� � A such that �
A�� � �� Then

lim
n��

P�n�n
Cn�B�j � �n� 
 

��	��

and
plim
n��

GLn
Cn�B�j� �n� 
 �����
A���
�����

If �
A�� 
 � then
lim inf
n��

P�n �n
Cn�B�j � �n� � 
�
���	�

Remarks� The exceptional case �
A�� 
 � arises only when �
A�� 

	
Ac

�� 
 �� This occurs when all but an asymptotically vanishing fraction of
the components of �n are zero�

A more familiar con�dence set for �n in the normal model is Cn�F 

Cn
Xn� ��n�

����
n 

��� where �����n 

� is the square root of the 
th quantile

of the chi�squared distribution with n degrees of freedom� Under Conditions
C	 and C��

lim
n��

P�n�n
Cn�F � �n� 
 


plim
n��

GLn
Cn�F � �n� 
 ���
�����

	�



the second convergence relying on 
���� and the normal approximation to
the chi�squared distribution� It follows from 
������ 
����� and 
����� that�
at asymptotic coverage probability 
� the bootstrap�selection con�dence balls
Cn�B�j are both asymptotically smaller than the con�dence ball Cn�F �

As an alternative to bootstrapping� the asymptotic variances in Theorem
��	 may be estimated consistently from the sample� using ���n�j for �� and

��
n
 �Ac
n�B�����n�j�
 �A

c
n�B��� for 	
Ac

��� Equation 
���� below justi�es the second
of these estimators� The estimated normal limit distributions then yield
critical values and con�dence sets for which an analog of Theorem ��� holds�

�� Proofs

The theorem proofs rely on ideas from Beran 
	���� augmented by boot�
strap considerations� Let En�i 
 Xn�i � �n�i and� for every set A � A� de�ne

Wn��
A� �n� 
 n����
X

i��n����A


E�
n�i � ��n�

Wn��
A� �n� 
 n����
X

i��n����A

�n�iEn�i�
��	�

Let D
A� denote the set of all bounded functions having at most jump dis�
continuities on the compact set A� Metrize D
A� by supremum norm k � kA�
The ��algebra is that generated by open balls� Under Condition C	� the two
processes Wn�j
�n� 
 fWn�j
A� �n� � A � Ag are random elements of D
A��

Let Bj 
 fBj
A� � A � Ag be two independent Gaussian processes on A
with mean zero and covariance structure

Cov�B�
A�� B�
A
��� 
 �
A �A��

Cov�B�
A�� B�
A
��� 
 	
A �A��
����

where � is Lebesgue measure and 	 is the bounded non�negative measure
de�ned in Condition C	� Both processes are random elements of D
A� that
have d�continuous sample paths�

Lemma � Suppose that Condition C� holds� Then the bivariate processes
f
Wn��
�n��Wn��
�n�g converge weakly as random elements of D
A��D
A�
to the process 
������B�� �B���
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Convergence of the �nite�dimensional distributions is straightforward�
For tightness� see LeCam 
	���� Lemma �� or Alexander and Pyke 
	����
Section ���

Proof of Theorem ���� The de�nitions 
����� 
���� and 
��	� entail

�
n
A� 
 	n
A� � ���n�n
A� � n����Wn��
A� �n� � �n����Wn��
A� �n��
����

Consequently� by Lemma 	�

plim
n��

k�
n
��� �	
�� � ���
���kA 
 ��
����

Then 
��	�� and the second convergence in 
����� follow from 
����� Condition
C�� and the de�nitions 
����� 
��		� of �Rn�N and �Rn�B�

On the other hand� by 
���� and 
��	��

Ln
��n
A�� �n� 
 	n
A
c� � ��n�n
A� � n����Wn��
A� �n��
����

The �rst convergence in 
����� follows from Lemma ��	�

De�nition 
��	�� of ��n�B� 
������ and the triangle inequality imply

plim
n��

�Rn�B
 �An�B� ��
�
n� 
 min

A�A
�
A�
����

and
plim
n��

� �Rn�B
 �An�B� ��
�
n�� Ln
��n�B� �n�� 
 ��
����

Conclusion 
���	� thus follows�
Limit 
���� and the second limit in 
����� imply that

plim
n��

�
 �An�B� 
 �
A���
����

where A� is the unique minimizer of � over A� Suppose that 
����� does
not hold� By considering a subsequence� we may assume without loss of
generality that convergence 
���� occurs almost surely while

P�n�n�d
 �An�B� A�� � �� � �
����

for some positive � and �� Because � is d�continuous on the compact A and
A� uniquely minimizes � over A� the almost sure version of 
���� implies

	�



that d
 �An�B� A�� 
 � with probability one� This contradicts 
����� thereby
proving 
������

Proof of Theorem ���� As above� the de�nitions 
���� and 
����� of
Ln and �Rn�C respectively entail that

Ln
��n�B� �n� 
 	
 �Ac
n�B� � ��n�n
 �An�B� � n����Wn��
 �An�B� �n�
��	��

and

�Rn�C
 �An�B� ��
�
n�j� 
 	n
 �A

c
n�B� � ��n�n
 �A

c
n�B� � n����Wn��
 �A

c
n�B� �n�

��n����Wn��
 �A
c
n�B� �n� � ���n�j��n
 �An�B�� �n
 �A

c
n�B���
��		�

Consequently�

Dn
�n�Xn� ��
�
n�j� 
 n����Ln
��n�B� �n�� �Rn�C
 �An�B� ��

�
n�j��


 Wn��
 �An�B� �n��Wn��
 �A
c
n�B� �n�� �Wn��
 �A

c
n�B�
��	��

�n����
���n�j � ��n����n
 �An�B�� 	��

Under Condition D	�

���n�� 
 ����
n� 	���
nX
i��


E�
n�i � E�

n�i����

�
n� 	���
nX
i��

En�iEn�i�� � op
n
�����


 ��n � ���fWn��
���
n� 	�� 	�� �n� �Wn��
��� 
n� 	��
n � 	��� �n�g
��	��

�
n� 	���
nX
i��

En�iEn�i�� � op
n
������

The argument for Lemma 	 and the martingale central limit theorem� applied
to the quadratic term in the last line of 
��	��� which is uncorrelated with
Wn���Wn��� imply that

n���
���n�� � ��n�
 ������B�
��� 	�� � ��Z�
��	��

where Z is aN
�� 	� random variable such thatB��B� and Z are independent�
Moreover�

Dn
�n�Xn� ��
�
n��� 
 Sn
En� �n� �

�
n� � op
	��
��	��
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where Sn
En� �n� �
�
n� is de�ned by substituting 
��	�� into 
��	�� and dropping

the remainder term�
The d�continuity of � and 	 together with the convergence 
����� imply

that plimn�� �
 �An�B� 
 �
A�� and that plimn�� 	
 �An�B� 
 	
A��� The
foregoing considerations yield

Sn
En� �n� �
�
n� 
 ������B�
A��� ����B�
A

c
��� ��B�
A

c
��

����
A��� 	������B�
��� 	�� � Z����
��	��

For j 
 	� the weak convergence 
���� follows from 
����� 
��	�� and 
��	���
We will use 
��	�� again to prove Theorem ����

Under Condition D�� ���n�� is independent of Xn and

n���
���n�� � ��n�
 ����b������Z�
��	��

where Z again is a N
�� 	� random variable such that B�� B� and Z are
independent� Because of 
��	��� 
����� and Lemma 	�

Dn
�n�Xn� ��
�
n��� 
 ������B�
A��� ����B�
A

c
��� ��B�
A

c
��

����
A��� 	�����b������Z�
��	��

which establishes 
���� for j 
 ��

Proof of Theorem ���� Suppose that f	ng� f��ng� and fAn � Ag are
such that

lim
n��

k	n � �	k�� lim
n��

��n 
 ��� lim
n��

d
An� A�� 
 �
��	��

and �	 is d�continuous� By the reasoning for Theorem ��	�

�Dn
�n� An�Xn� ��
�
n��� 
 �Sn
En� An� �n� �

�
n� � op
	��
�����

where �Sn
En� An� �n� �
�
n� is obtained from the de�nition of Sn
En� �n� �

�
n� by

replacing �An�B with An� As in Theorem ��	�

L� �Sn
En� An� �n� �
�
n�jP�n�n�
 N
�� � �� 
�	� �

�� A���
���	�

and
L� �Dn
�n� An�Xn� ��

�
n��jP�n�n�
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�	� �
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Next� consider the empirical measure

�	n
A� 
 n��
X

i��n����A

���n�i


 �
n
A � �An�B� � �sn�
n
A � �Ac
n�B��
�����

Under either Condition D	 or D�� it follows from 
���� and 
����� that

plim
n��

k�	n � �	kA 
 �� plim
n��

���n�j 
 ���
�����

where �	 is the measure on A de�ned by

�	
A� 
 	
A �A�� � ���
A � A��

�s�	
A �Ac
�� � ���
A �Ac

���
�����

s 
 	
Ac
����	
A

c
�� � ���
Ac

����

For the case j 
 	� 
��	�� and the reasoning for 
����� entail that

Dn
��n� �An�B�X
�
n� ��

��
n��� 
 �Sn
E

�
n�

�An�B� ��n� ��
��
n����
�����

Consequently� by 
������ 
����� and 
���	��

�Hn�B�� 
 N
�� � �� 
�	� �
�� A���
�����

in P�n�n�probability� This limit law agrees with 
��	�� because �	
Ac
�� from


����� equals 	
Ac
�� in 
�����

For the case j 
 �� 
������ 
����� and 
����� yield

�Hn�B�� 
 N
�� � �� 
�	� �
�� A����
�����

which agrees with 
��	�� because �	
Ac
�� from 
����� again equals 	
Ac

�� in

�����

Proof of Theorem ���� This result follows from Theorems ��	 and ����
The argument parallels the proof of Theorem ��� in Beran 
	�����
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