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This paper analyzes estimation by bootstrap variable-selection in a simple
Gaussian model where the dimension of the unknown parameter may exceed
that of the data. A naive use of the bootstrap in this problem produces
risk estimators for candidate variable-selections that have a strong upward
bias. Resampling from a less overfitted model removes the bias and leads
to bootstrap variable-selections that minimize risk asymptotically. A related
bootstrap technique generates confidence sets that are centered at the best
bootstrap variable-selection and have two further properties: the asymptotic
coverage probability for the unknown parameter is as desired; and the con-
fidence set is geometrically smaller than a classical competitor. The results
suggest a possible approach to confidence sets in other inverse problems where
a regularization technique is used.
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1. Introduction

Certain statistical estimation problems, such as curve estimation, signal
recovery, or image reconstruction, share two distinctive features: the dimen-
sion of the parameter space exceeds that of the data; and each component
of the unknown parameter may be important. In such problems, ordinary
least squares or maximum likelihood estimation typically overfits the model.
One general approach to estimation in such problems has three stages: First,
devise a promising class of candidate estimators, such as penalized maximum
likelihood estimators corresponding to a family of penalty functions or Bayes
estimators generated by a family of prior distributions. This step is some-
times called using a regularization technique. Second, estimate the risk of
each candidate estimator. Third, use the candidate estimator with smallest
estimated risk.

Largely unresolved to date is the question of constructing accurate con-
fidence sets based on such adaptive, regularized estimators. Even obtaining
reliable estimators of risk can be difficult. This paper treats both matters



in the following problem, which is relatively simple to analyze explicitly, yet
sufficiently general to indicate potential directions for other problems that
involve a regularization technique. Suppose that X, is an observation on a
discretized signal ¢ that is measured with error at n time points. The er-
rors are independent, identically distributed, Gaussian random variables with
means zero. Thus, X,, is a random vector whose distribution is N(¢,,021,).
Both &, and o2 are unknown. The problem is to estimate the signal &,.
The integrated squared error of an estimator fAn is

(1.1) L(bn, &) = 07 én — &%,

where | - | is Euclidean norm. Under this loss, Stein (1956) showed that X,
the maximum likelihood or least squares estimator of §,, is inadmissible for
n > 3. Better estimators for £, include the James-Stein (1961) estimator,
locally smoothed estimators such as the kernel variety treated by Rice (1984),
and variable-selection estimators, to be described in the next paragraph.
Each of these improved estimators accepts some bias in return for a greater
reduction in variance.

A variable-selection approach to estimating &, consists of three steps:
first, transform X, orthogonally to X! = OX,; second, replace selected
components of X! with zero; and third, apply the inverse rotation O~! to
the outcome of step two. The vector generated by such a process will be
called a wvariable-selection estimator of &,.

How shall we choose the orthogonal matrix O7 Ideally, the components of
the rotated mean vector O§,, would be either very large or very small relative
to measurement error. The nature of the experiment that generated X,
may suggest that O be a finite Fourier transform, or an analysis of variance
transform, or an orthogonal polynomial transform, or a wavelet transform.
Important though it is, we will not deal further, in this paper, with the choice
of O.

Having rotated X,, how shall we choose which components of X! to
zero out? Thereafter, how shall we construct, around the variable-selection
estimator, an accurate confidence set for £,7 A plausible answer is to com-
pare candidate variable-selections through their bootstrap risks; and then
bootstrap the empirically best candidate estimator to obtain a confidence
set for ¢,. Efron and Tibshirani (1993, Chapter 17) discussed simple boot-
strap estimators of mean squared prediction error. However, Freedman et



al. (1988) and Breiman (1992) showed that simple bootstrap estimators of
mean-squared prediction error can be untrustworthy for variable-selection.

This paper treats variable-selection for estimation rather than prediction
and allows the dimension of the unknown parameter to increase with sample
size n. The second point is very important. A stronger model assumption
used by Speed and Yu (1993) and others—that the dimension of the param-
eter space is fixed for all n—restricts the possible bias induced by candidate
variable-selections. In such restricted models, variable-selection by C, does
not choose well. On the other hand, C, can be asymptotically correct when
the dimension of the parameter space increases quickly with n and the se-
lection class is not too large (cf. Section 2). Rice (1984, Section 3) and
Speed and Yu (1993, Section 4) discuss other instances and aspects of this
phenomenon.

Section 2 of this paper proves for our estimation problem that naive
bootstrapping—resampling from a N(X,, ¢,°I,,) model, where &, estimates
o2—yields upwardly biased risk estimators for candidate variable-selections.
However, resampling from a N(En, &,?) distribution, where ¢, is obtained by
suitably shrinking some of the components of X/ toward zero, corrects the
bias and generates a good bootstrap variable-selection estimator fn,B for &,.
Using a related shrinkage bootstrap, Section 3 then constructs confidence
sets centered at fn,B that have correct asymptotic coverage probability for &,
and small geometrical error. Here as well, two plausible but naive bootstrap
algorithms give wrong answers.

2. Bootstrap Selection Estimators

This section proposes bootstrap selection estimators for £, and analyzes
their asymptotic losses (which equal the asymptotic risks). The choice of
bootstrap algorithm proves critical to the success of bootstrap selection.
Naive bootstrapping does not work.

The signal vector X, = (Xn1,...,Xnn) has a N(§,,021,) distribution
on R™. For brevity, write 8,, = (£,,02) and let Py, denote the above normal
distribution. Because the estimation problem is invariant under rotation of
the coordinate system, we will simplify notation by assuming, without any
loss of generality, that the orthogonal matrix O is the identity matrix. Then,
the variable selection is done directly on the components of X,,. Consider



candidate estimators for ¢, that have the form
(2.1) €a(4) = (an1(A)Xn1, - - nn(A) Xnn),
where A ranges over subsets of [0,1] and a,,(A) = 1if¢/(n+ 1) € A and

vanishes otherwise. The goal is to choose A, on the basis of the data X,,, so as
to minimize, at least asymptotically, the loss of the corresponding candidate
estimator fAn(A)

Success of this formulation of variable selection appears to require restric-
tions on the possible values of A. In the paper, we assume that A is the union
of m ordered closed intervals:

m

(2.2) A= J[t2i1, tail,

=1
where 0 < t; < ... < ty, <1 and m is fixed. The pseudo-distance between
two such sets A and B is defined to be

(2.3) d(A, B) = u(AAB),

where p 1s Lebesgue measure. After forming equivalence classes, the collec-
tion S(m) of all subsets having the form (2.2) is a compact metric space
under d.

Let A be a compact subset of S(m), possibly S(m) itself, that contains
the unit interval [0,1] as an element. Consider the candidate estimators

fn(A) that are generated as A ranges over A. Since [0,1] is a element of A,
the unbiased estimator X, is among these candidate estimators. Let A° be
the complement of A in [0,1]. The quadratic loss of &,(A) is then

LH(EH(A)agn) = n_1|én(A)_€n|2

(24) = n_l Z (Xn,'i - gn,i)z + V"(AC)7
i/(nt1)cA

where v,, is the non-negative measure defined by
(2.5 mA) =0t Y e,
if(nt1)cA

Estimators of this loss or of the associated risk are naturally phrased in
terms of the discrete uniform measure

(2.6) po(A) =0 Y 1

i/(n+1)€A



and the empirical measure

(2.7) Mn(A)=n" Y X2,
i/(n+1)€A

Consider the following two bootstrap risk estimators:
Naive bootstrap. Suppose G2 is a consistent estimator of o2,
variance estimators to be discussed in Section 3. Let X} be a random vector

such that the conditional distribution of X* given X,, is N(X,,621,). Let
&:(A) denote the recalculation from X of the candidate estimator ¢,(A).
Let E, denote expectation with respect to the conditional distribution of X

given X,,. The nawve bootstrap risk estimator produced by the scheme is

such as the

Rn,N(Aaa-i) = E*Ln(é.;(A)JXn)

(2.8) = E.n™ Z (X:,i_Xn,i)z—l'n_l Z st]
i/(nt1)eA i/ (nt1)e Ac
— G2n(A) 1 A (4%),

Unfortunately, if v, converges weakly to v and o2 converges to o® as n

increases, then R, y(A) converges in probability to
(2.9) p(A4) = o + v(4°).
The actual asymptotic loss or risk of {,(A) is
(2.10) p(A) = o”p(A) + (A%,

where p 1s Lebesgue measure. Theorem 2.1 below gives details. The upward
asymptotic bias in J%H,N(A,&i) renders it useless for selection among the
candidate estimators.

Shrink bootstrap. Let [-], denote the positive-part function. The modi-
fied estimator

(2.11) Rp5(4,67) = 67pn(A) + [Aa(A%) = 67pn(A%)]4

corrects the asymptotic bias in RH,N and converges in probability to p(A4),
the correct asymptotic loss of ¢,(A); see Theorem 2.1. Moreover, the risk
estimator R, g(A,2) can also be viewed as a bootstrap estimator:
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Let

(2.12) Sn(A%) = [1 = 62un(A%) An(A%)]4

and define &,(A) = (€n1(A),...,&nn(A)) by

2.13) £ (A)— { X ifi/(n+1)€ A |
812(AX,; ifi/(n+1)c A°

Let X now be a random vector such that the conditional distribution of X
given X, is N(¢.(A),621,). As before, let £(A) denote the recalculation
from X of the candidate estimator ¢,(A). Now the bootstrap risk is

BLn(&(A), &) = Eufn™ Y (Xp,—X2)+nt Y sa(A9)X2]]
i/(nt1)€A i/(nt1)€AC
(2.14) = 620n(A) + 3, (A% (A°)
= R,.p(A,52%).

The shrink bootstrap method just described has two notable features: It
depends on the candidate set A; and it shrinks some, but not all, of the
components of X,, towards the origin. In defining EH(A), we could shrink as
well the components of X, for which ¢/(n + 1) € A without changing the
final evaluation in (2.14). In this sense, RH,B(A,&i) is the bootstrap risk
generated by a family of shrink bootstrap algorithms. The shrinkage factor
in (2.13) corrects the overfitting of &, that occurs in the naive bootstrap.

The idea of bootstrap variable selection is to choose the candidate esti-
mator whose estimated loss is smallest. Thus, let AH,B be any set in A such
that

(215) Rn,B(An,B;a' ) IIIGIJILthnB(A (3'721)

The minimum is achieved because, for each n, ]:Zn,B(-, 62) has a finite number
of possible values. We will call

(2.16) €np = én(Anp)
a bootstrap selection estimator generated by the candidate estimators {EH(A) :
Ae A}

Let ||-||.4 denote supremum norm taken over all sets A € A. To study the

locally uniform convergences of Rn ~ and Rn B, we introduce two conditions:



Cl. Ais a compact subset of S(m), in the metric d, that contains [0,1] as
an element. The sequence {8, = ({,,02) : n > 1} is such that

(2.17) lim ||t —v||la=0, lim o2 =0

n— 00

for some bounded, d-continuous, non-negative measure v on 4 and

some finite positive o2.

C2. For every sequence {6, : n > 1} that satisfies condition C1,

(2.18) plimé?2 = o2

n— 00

Here plim stands for the limit in Py, ,-probability.

Theorem 2.1 Suppose that conditions C1 and C2 hold. Then, for every
positive €, )
(2.19) plim | By (-,62) — pila = 0

where p is defined in (2.9). By contrast,

PlimHLn(én(');gn)_pHA =0

n— 00

(2.20) plim || Rn5(-,82) —plla = 0

n— 00

where p 1s defined in (2.10). Consequently,

(2.21) plim Ln(é,5, €x) = min p(A4).

n— 00

If the limiting loss p has a unique minimizer Ag € A, then

A

(2.22) plimd(A4, B, Ag) = 0.

The theorem proof is in Section 4. By equations (2.20) and (2.21), the
limiting loss of fn,B coincides with the limiting loss of the unrealizable candi-
date estimator that minimizes loss over all selections A in A. In this sense,
the bootstrap selection estimator fn,B is asymptotically optimal. Because
[0,1] is an element of A,

(2.23) min p(4) < p([0,1]) = o



with equality only in special circumstances (e.g. v = o?u or p(4o) = 1,
v(A§) = 0). Thus, fn,B asymptotically dominates the unbiased estimator
Xn.

An alternative to the shrink bootstrap risk estimator RH,B replaces the
positive-part function in (2.11) with the identity function. The result is the
risk or loss estimator

Roc(A,52) = 62[un(A) = il A)] + An(A°)
(2.24) = 3a(A%) + 62[2u(4) — 1]

Unlike ]%n B, this risk estimator can assume negative values.

Let Anc be any value of A € A that minimizes Rnc(A 62). We will
call fnc = fn( nc) a Cp-estimator generated by the candidate estimators
{fn( ): A € A}. This terminology recognizes the analogy between (2.24)
and risk estimators discussed by Mallows (1973) in a different context. Con-
clusions (2.20), (2 21) and (2.22) remain valid when RHB, AnB,an are re-
placed by Rn,C; A, Cs fn ¢ respectively.

Other variable selection criteria, such as Akaike’s (1974) AIC, Shibata’s
(1981) method, and several competitors discussed by Rice (1984, Section 3),
Speed and Yu (1993, Section 4) might also be used to choose A. Under
Conditions C1 and C2, these methods do not minimize asymptotic loss in
the sense of (2.21).

p

3. Bootstrap Confidence Sets

A confidence ball for &,, centered at an estimator fn and having radius
azn, 18
(3.1) Cp(bn,dp) = {t € R* : |&, —t| < d,}.
This section studies confidence balls centered at the bootstrap selection esti-
mator an The first goal is to devise a bootstrap radius dnB such that the
coverage probability Py ,[C (an, nB) > &,] converges to a as n increases.

The second goal is to determine the geometric loss of Cp, (fn, ) for various
choices of (fn, n):
GLn(Cpé) = n V2sup |t — &,
teCn

(3.2) = nY2E, — €|+ n V2,
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Geometric loss measures the error of Cn(fn, Jn) as a set-valued estimator of
&n. It has a projection-pursuit interpretation that stems from the identity
|z| = sup{v'z: [u| = 1}.

Both the definition of fn,B and the construction of confidence balls cen-
tered at én,B require a good estimator of o2. One possibility, used in Rice

(1984), is
(3.3) 62, = [2(n — 1)) (Xnj — Xnioa)

i=2
The consistency or asymptotic normality of ?7,21,1 requires that the first-order
squared differences {(&.; — &ni1)?} be sufficiently small, in a sense that
Condition D1 below makes precise.

A second estimator of o2 works under the assumption that &, lies in a sub-
space of dimension n’ < n. Suppose that n' is the integer part of cn, where ¢
is a fraction strictly between 0 and 1. By making an appropriate orthogonal
transformation, assume without loss of generality that X, = (X, Ya_n),
where X, has a N(&uv,021,) distribution in n’ dimensions, Y,_, has a
N(0,021,_,) distribution in n — n’ dimensions, and X, Y, . are inde-
pendent. In this canonical formulation, a bootstrap selection estimator of &,
can be formed from X, and the variance estimator

(3.4) 6hy=(n—n) Y ul

The distribution of (n — n')é2,/02 is chi-squared with n — n’ degrees of
freedom.

The essential features of 67, and &2 , are expressed in the following two
assumptions:

D1. The variance estimator 62 ; is defined by (3.3). The sequence of mean
vectors {&, : m > 1} satisfies

n

(3.5) lim n ™23 (n; — €nio1)? = 0.

n—oo ‘
1=2

D2. The variance estimator 672 , and X, are independent random variables.
The distribution of 5,62 ,/02 is chi-squared, where {b, : n > 1} is a
sequence of constants such that lim, . b,/n = b < co.



Under D1 and A1, the asymptotic distribution of n'/?(62 ,—02)is N(0,30%),
as in Gasser et al (1986) or by the reasoning in Section 4. Under D2 and
A1, the asymptotic distribution of n=/2(42 2 —02)is N(0,2b1a0?).

To construct confidence balls, we begin by finding the asymptotic distri-
bution of

(3.6)  Du(bn, Xn,62;) = n"/*[Lu(€np, bn) — Ruc(Ans,62;)].

The quantity D, compares the loss of fn,B with the simple estimator (2.24) of
its risk. On the one hand, the asymptotic distribution of D,, turns out to be
normal with mean zero (Theorem 3.2 below). On the other hand, referring

D, (én, X, nJ) to the ath quantile of its bootstrap distribution generates

a confidence ball centered at fn,B that has asymptotic coverage probability
a for ¢, (Theorem 3.3 below). There is no apparent advantage to replacing
Rn,c in (3.6) with the more complex bootstrap risk estimator RH,B.

In the remainder of the paper, the notation Dj stands for either condition
D1 or D2, according to the value of j.

Theorem 3.1 Suppose that Conditions C1 and Dj hold and that the limating
loss p has a uniqgue minimum at Ag € A. Then

(3'7) [ (gm n nJ)|P9n n] = N(07TJ'2(V7 027A0))7
where

(3.8) 72(v,0°, Ao) = 20* + o*[2u(Ao) — 1)% + 4o v( AS)
and

(3.9) 72(v, 0%, Ag) = 20* + 2b7 1 0*[2u( Ao) — 1] + 4o?v(A5).

This result is proved in Section 4. The same asymptotic distributions
hold if the bootstrap selection estimator in the definition of Dy (&,, Xy, 62 )

nyYn,g
is replaced by the Cp-estimator fn,c- Moreover, comparing the proof of The-
orem 3.1 with its counterpart for the Cp-estimator establishes the following
asymptotic equivalence in loss:

(3.10) phimn'?|Ln(€n5,6n) = La(€nc,én) = 0.

n— 00

To successfully bootstrap the sampling distribution of D, (&, X, nJ)

N

requires an algorithm that recognizes both the data-based selection A, p
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and the structure of the variance estimator 62 .. For every A € A, let

(3'11) (gm m 7213) 1/2t (gn( )gn)_ nC(A7 n])]

We consider two cases:
Bootstrapping Dp(én, Xn, 62 ;). Let

(3.12) bn = 1= 67 11n( A5, 5) [ An(A5, 5)]4
and define &, = (En,l, . ,En,n) by
_ Xpi  ifif(n+1) € Anp
(3.13) €i = e
8% X, ifif(n+1)€ Asp
Let E; = (E;,,...,E,) be a random vector such that the conditional

distributlon of E} given X, is N(0,62,I,). Define X} = (X},,...,
and 0}% by

Xon)

X, = &L+ E;

(3-14) ‘7;,21 = ‘}721,1 + [Z(n - 1)]_1 Z(E* E:z 1) .
=2

The partial bootstrap estimator of L[Dp(én, Xn, 67 1)|Ps,n] is then

(315) f{n,B,l :'C[Dn(gnaAn,B7 1:7 nl)tX]

Bootstmppmg D, (&,, n,&iz) Redefine §,, and E} above by replacing

62, with 62 ,. Define £, by (3.13) and X* as in (3.14). Let ox2 be a random
variable such that L[bno72, /62 51 Xn] is chi-squared with b, degrees of freedom
and such that 0;22, E? are condltlonally independent, given X,,. The actual
construction of ¢*2, will normally require a separate bootstrap scheme. The

partial bootstrap estlmator of L[Dn(ény Xn,625)|Po,n] is then

(316) f{n,B,2 = ‘CtD"(&h AH,B7X1:7 A;22)|Xﬂ]

Theorem 3.2 Suppose that Conditions C1 and Dj hold and that the limating
loss p has a uniqgue minimum at Ag € A. Then

A~

(317) Hn,B,j = N(O,sz(l/, 027A0))
in Py, n-probability, where 7}(v, 0%, Ao) is defined by (3.8) and (3.9).
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Both bootstrap algorithms in Theorem 3.2 shrink toward zero these com-
ponents of X, that are not selected by fn,B. The construction (3.13) of
¢, is critical for the weak convergence (3.17). If we took instead bn =
Xy, overfitting ¢,, then the asymptotic variance in (3.17) would become
sz(z/ + o2u,0?, Ag). If we used n = fn,B, underfitting £, for bootstrap pur-
poses, the asymptotic variance in (3.17) would become 77(0, 0%, Ao). These
conclusions follow by the method used to prove Theorem 3.2. Thus, neither
of these alternative bootstrap algorithms yield consistent estimators of the
sampling distribution of Dp(én, Xn, 62 ).

For a strictly between 0 and 1, let ﬁ;}g,j(a) be the ath quantile of
the bootstrap distribution ﬁn,B,j defined in (3.15) or (3.16). Under Con-
dition Dy, define the bootstrap selection confidence set for ¢, to be C, g ; =

Cn(fn,B, dn B,j), Where
(3.18) dnj = [nBoc(An5,07,5) + ' PH ()i
The following theorem justifies this confidence set centered at fn,B.

Theorem 3.3 Suppose that Conditions C1 and Dj hold and that the limating
risk p has a unique minimizer Ag € A such that p(Ag) > 0. Then

(3.19) nll_)rglo Pen,n(Cn,B,j > §n) =«
and
(3.20) plim GLn(Cr,B 5, &n) = 20"*(Ao).

If p(Ao) = 0 then
(321) hmiangmn(Cn,B,j > gn) > o

n— 00

Remarks. The exceptional case p(Ao) = 0 arises only when u(Ay) =
v(A§) = 0. This occurs when all but an asymptotically vanishing fraction of
the components of £, are zero.

A more familiar confidence set for &, in the normal model is Cp, 5 =
Cr(Xn, 6nx:*(a)), where x;/?(a) is the square root of the ath quantile
of the chi-squared distribution with n degrees of freedom. Under Conditions

C1 and C2,

Iim Py, n(Crp36n) = o
(3.22) plim GL,(Cpnr,én) = 20,

12



the second convergence relying on (3.2) and the normal approximation to
the chi-squared distribution. It follows from (2.23), (3.20) and (3.22) that,
at asymptotic coverage probability «, the bootstrap-selection confidence balls
Cy,B,; are both asymptotically smaller than the confidence ball Cy, 7.

As an alternative to bootstrapping, the asymptotic variances in Theorem
3.1 may be estimated consistently from the sample, using &721,1' for 02 and
[j‘n(A;,B)_&i,jM(A;,B)]-I- for v(Af). Equation (4.4) below justifies the second
of these estimators. The estimated normal limit distributions then yield
critical values and confidence sets for which an analog of Theorem 3.3 holds.

4. Proofs
The theorem proofs rely on ideas from Beran (1994) augmented by boot-
strap considerations. Let E,; = X, ; — &, and, for every set A € A, define

Wn,l(A7 011) = n—1/2 Z (Efb,z - O-’EL)
i/(nt+1)eA

(41) Wn,g(A,Hn) == n_1/2 Z gn,iEn,i-
i/(n+1)eA

Let D(A) denote the set of all bounded functions having at most jump dis-
continuities on the compact set .A. Metrize D(.A) by supremum norm || - || 4.
The o-algebra is that generated by open balls. Under Condition C1, the two
processes W, ;(0,) = {W, ;(A,0,) : A € A} are random elements of D(.A).

Let B; = {Bj(A): A € A} be two independent Gaussian processes on .4
with mean zero and covariance structure

CovlB(A), Bi(A")] = w(An A)
(4.2) Cov[By(A), Bo(A)] = v(ANn A"
where p is Lebesgue measure and v is the bounded non-negative measure

defined in Condition Cl. Both processes are random elements of D(.A) that
have d-continuous sample paths.

Lemma 1 Suppose that Condition C1 holds. Then the bivariate processes
{(Wp1(6n), Wpa(6n)} converge weakly as random elements of D(A) x D(A)
to the process (2'/202 By, 0 By).

13



Convergence of the finite-dimensional distributions is straightforward.
For tightness, see LeCam (1983, Lemma 4) or Alexander and Pyke (1986,
Section 4).

Proof of Theorem 2.1. The definitions (2.5), (2.7) and (4.1) entail
(4.3)An(A) = vn(A) + 62 un(A) + 0 V2W, 1 (A, 0,) + 2072 W, 5(A, 6,).
Consequently, by Lemma 1,

(4.4) plim|[A,(-) — [v() + o?u(-)]la = 0.

n— 00

Then (2.19) and the second convergence in (2.20) follow from (4.4), Condition
C2, and the definitions (2.8), (2.11) of R, x and R, p.
On the other hand, by (2.4) and (4.1),

(45)  La(€alA),6n) = valA°) + 02un(A) + 172 Wiz (A, 6,).

The first convergence in (2.20) follows from Lemma 4.1.
Definition (2.15) of ¢, g, (2.20), and the triangle inequality imply

. al “ A2\ .
(4.6) plim R, 5(An,5, 6,) = min p(4)
and ) ) )
(47) plim[Rn,B(An,By 6-721) — Ln(&n,B; gn)] = 0.

Conclusion (2.21) thus follows.
Limit (4.6) and the second limit in (2.20) imply that

(4.8) plim p(An,5) = p(Ao),

where Ap is the unique minimizer of p over A. Suppose that (2.22) does
not hold. By considering a subsequence, we may assume without loss of
generality that convergence (4.8) occurs almost surely while

A

(49) Pgmn[d(An,B,Ao) > E] > 6

for some positive € and §. Because p is d-continuous on the compact A and
Ao uniquely minimizes p over A4, the almost sure version of (4.8) implies
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that d(An,B,AO) — 0 with probability one. This contradicts (4.8), thereby
proving (2.22).

Proof of Theorem 3.1. As above, the definitions (2.4) and (2.24) of
L, and R, ¢ respectively entail that

(4.10)  La(bnp,én) = v(AS 5) + 020n(Anp) + 0 2 Wri(An 5, 65)

and

~ A

Rno(Anp,6%,) = va(A5p) + onin(A5, p) + 07 Wai (A7 5, 6n)

(4.11) +20 72 Wo o (A5 5, 0n) + 67, i Anp) — in( A7, B)].
Consequently,

(gm n; ’rLJ) = nl/z[ (gnBagn)_ n,C (AnBa n])]
(4.12) = Wai(Anp,0n) = Wan(4] 5, 0n) — 2Waa( 47 p)

N

VA5 — 02) 2pn( Ans) — 1]
Under Condition D1,

opy = 27(n—=1)7" 3 (B, + B, y)l

=2

‘I’(n_]- ZETLZETLZ 1‘|’0( 1/2)

=2

(4.13) = o2 +27H{Wau([2/(n + 1),1],8,) + Waa ([0, (n — 1)/(n +1)],6.)}
+(n— 1)1 Z E..E.i 1+ op(n_l/z).

=2

The argument for Lemma 1 and the martingale central limit theorem, applied
to the quadratic term in the last line of (4.13), which is uncorrelated with
Whn1, Wh,2, imply that

(4.14) nt/?(52

n,l

o2) = 21262 B,([0,1]) + 022,

where Z is a N(0, 1) random variable such that B;, By and Z are independent.
Moreover,

(4.15) D, (én, Xn, nl) Sn(En,&n, n)‘|'0p(1)
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where Sn(En, &, 02) is defined by substituting (4.13) into (4.12) and dropping
the remainder term.
The d-continuity of u and v together with the convergence (2.22) imply

A N

that plim,_,  p(A4npB) = p(Ao) and that plim, ,  v(Anp) = v(As). The

foregoing considerations yield

Sn(En,én,02) = 2Y262By(Ag) — 22 By(AS) — 20 By(AS)
(4.16) —[2u(Ao) — 1][2"2B4([0,1]) + Z]o?.

For 7 = 1, the weak convergence (3.7) follows from (4.2), (4.15) and (4.16).
We will use (4.16) again to prove Theorem 3.2.
Under Condition D2, 67 , is independent of X, and

(4.17) n'?(62, — o2) = 2% %52 7,

where Z again is a N(0,1) random variable such that By, B, and Z are
independent. Because of (4.12), (2.22) and Lemma 1,

Du(&n, X, 62,) = 2Y20°Bi(Ao) — 2'/2B,(A5) — 20 By( AS)
(4.18) —[2u(Ao) — 121267252 7,

which establishes (3.7) for j = 2.

Proof of Theorem 3.2. Suppose that {v,}, {¢2}, and {4, € A} are
such that

(4.19) lim [|v, — 7|, lim o2 = o?, lim d(A,, 40) =0

n— 00 n— 00

and 7 is d-continuous. By the reasoning for Theorem 3.1,
(4.20) Di(ny Ay Xy 62.1) = Sp(En, An,y by 02) + 0p(1),

where S’n(l?'n, Ay, &n,02) is obtained from the definition of S, (En,&,,02) by
replacing A, p with A,. As in Theorem 3.1,

(4.21) L[Sn(Ep, Ap, €n, 02)| P, n] = N(0,72(5,02, Ao))
and )
(4.22) L[Dn(bny Any Xy 62, Po, ] = N(0,72(5,0%, Ao)).

16



Next, consider the empirical measure

m(A) = n7t )] 572”

i/(nf1)eA
(4.23) = (AN Anp) + 8. 0(ANAS ).
Under either Condition D1 or D2, it follows from (4.4) and (2.22) that

2 _ 2
ng — 7>

(4.24) plim |7, — 7|4 =0, plimo

n— 00

where 7 is the measure on A defined by

7(A) = v(ANA)+*u(AN A)
(4.25) +s[v(ANAS) + o?u(AN AF))
s = u(AD)IV(AS) + oPu(AS)].

For the case j = 1, (3.14) and the reasoning for (4.20) entail that
(4.26) Du(bny Anp, X5, 672) = Su( B, Anp, &n, 6723).
Consequently, by (4.24), (2.22) and (4.21),

(4.27) Hopy = N(0,72(7,0% Ag))
in Py, ,-probability. This limit law agrees with (3.17) because 7(A§) from
(4.25) equals v(A§) in (3.8).

For the case j = 2, (4.24), (2.22) and (4.22) yield

(4.28) Hup2 = N(0,73(7,0% Ao)),

which agrees with (3.17) because 7(A§) from (4.25) again equals v(A§) in
(3.9).

Proof of Theorem 3.3. This result follows from Theorems 3.1 and 3.2.
The argument parallels the proof of Theorem 3.2 in Beran (1994).
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