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Abstract.We extend the class of known fractional ARIMA models to the class of
generalized ARIMA models which allows the generation of long-memory time series
with long-range periodical behaviour at a finite number of spectrum frequences. The
exact asymptotics of the covariance function and the spectrum at the points of peaks
and zeroes are given. For obtaining asymptotic expansions, Gegenbauer polynomials

are used. Consistent parameter estimating is discussed using Whittle’s estimate.
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1. Introduction

Most long-memory time series, i.e. whose covariance function is not absolutely
summable, are characterized by the behaviour of a spectral density like | A |7,
1 >d>0,as A — 0. This means that the spectral density is concentrated at low
frequencies. One such sequence, called fractional differenced noise (or ARIMA (0,
d, 0)), was introduced by Granger and Joyeux (1980) and Hosking (1981). They
proposed the generation of long-memory time series via the fractional ARIMA(p,d,q)

sequence, i.e. stationary solution {X;, ¢t € Z} of the equation
$(B)VIX, = 0(B)es, (1)

where {¢;} is a white noise (0,0?) sequence, and ¢(z) = 1 — ¢12 — ... — $,2F and
6(z) =14 612+ ...+ 0,27 are p-th and g-th degree polynomials. The difference

operator V¢ = (1 — B)?, d > —1 is defined by means of the binomial expansion
vi=> 7B,
7=o0

with

AN _Lk-1-d_ T(-a)
Wf“(‘”(j)‘n ET G+ d(-d)

k=1
where BX; = X,_; is the backshift operator, I'(.) is the gamma function. In the
case when —1/2 < d < 1/2 and ¢(z) # 0 for | z |= 1, a stationary solution of (1)

exists (see Hosking (1981)).



A generalization of fractional ARIMA(p,d,q) models was proposed by Gray,
Zhang and Woodward (1989). They discussed the fractional (GARMA ) noise model

H(B)(1 —2cos\- B+ BHX, = 6(B)e, (2)

(| A|< 7, |d|<1/2) suggested by Hosking (1981), which may exibit long-memory
periodical behaviour at any frequency 0 < A < 7 of the spectrum.

On the other hand, some authors (e.g. Anderson (1979)) introduced the so-called
ARUMA(p,d,q),d =0,1,... sequences defined by the equation

S(B)UY(B)X, = 0(B)e; (3)
with a general nonstationary operator
UB)=1-uB—...—ugB,

with zeroes on the unit circle instead of the nonstationary operator V¥ = (1 — B)?,
d=1,2,...asin the ARIMA(p, d, q) equation.

In this paper we extend equations (2)-(3) for stationary operators having a finite
number of zeroes or singularities of order dy,...,d,, (| d; |[< 1/2) on the unit circle,
which allow the modelling of long -short memory data containing seasonal periodic-
ities. Such time series, as was mentioned by Hosking (1981), exhibit both long-term
persistence and quasiperiodic behaviour; their correlation function resembles a su-
perposition of hyperbolically damped sin waves. Definitions and main properties of
generalized fractional noise are provided in Sections 2-3.

Spectral density of such a time series has a few peaks (zeroes) on [—m,w]. The
asymptotical behaviour of corresponding covariance functions is treated in Section 5.
Similar spectral densities and covariance functions of Gaussian stationary sequences
have been discussed by Rosenblatt(1981) and Giraitis(1983).

Seasonal and non-seasonal models for economical time series based on modified
fractional Gaussian noise were considered by Carlin and Dempster (1989). In fact,
the analysis of dependent data exibiting seasonal behaviour is essential for many

applications.



Concerning the literature about statistical inference for fractional ARIMA se-
quences (1) we refer to Beran (1992). The least squares and maximum likelihood
estimator of differencing degree d at the zero frequency of the spectrum were treated
by Yajima (1985). A class of estimators based on the logarithm of periodogram was
proposed by Janacek (1982) and by Geweke and Porter-Hudak (1983) (d > 0).
Whittle’s (maximum likelihood) estimators for Gaussian and linear time-series were
considered by Fox and Taqqu (1986), Dahlhaus (1989 ), Giraitis and Surgailis (1990).

In Section 4 we discuss and prove consistency of Whittle’s estimators for de-
grees d;,j = 1,...,m and the location of peaks in the spectrum of the generalized

fractional ARIMA model.

2.Generalized fractionally differenced noise

Introduce an operator

i eedm

AMyersdm (1- e B)dj(l _ €_i/\JB)dJ

[

o
Il
—

(1—2cos);- B+ BHb

I
s

=1
by means of expansion
H(l —2cos ;- B+ B .= Z?Tan
J=1 0

in powers of the backshift operator, B. Here, 0 < Ay < ... < A, < 7 are some fixed
frequences of the spectrum, d; # 0 (1 < j < m) are (fractional) differencing degrees

and the coefficients 7, are found from the formula

Ty = Z C,(ﬂ_dl)(cos A1) .. .C,g;dm)(cos Am), (4)
0 S klv"'vkm S n,

where C,gd)(x) are orthogonal Gegenbauer (or ultraspherical) polynomials (see Szegé

(1959)) on [—1, 1] with the weight function (1 —22)?=1/2, defined by their generating



function

(1—2z2+ 2474 = Z C,gd)(w)zk,
k=0
| z|< 1, d # 0. Note that

C(41) = (£1)F ( b=t ) .

We formally define the generalized fractionally differenced noise {X;} or frac-
tional ARIMA(O,dy,...,d,,,0) sequence with parameters dy,...,dyu; A1, ..., A 0

as a stationary solution of the equation
Ay e
V/\ll,...,/\th = &. (5)

The possibility of the generalization (5) was also mentioned by Gray et al.(1989).
An important feature of model (5) is that, as a special case, it includes seasonal

fractionally differenced models (see Porter-Hudak (1990)):
(1-B!X(t)=¢, |d|<1/2.

This follows straightforwardly from the equality
1— 25 = (1—2)(1+ ) TI*7H (1 = e2™/5)(1 — e=278/5) if 5 is odd;
=(1-2) Hgs_l)/z(l — e2mk/9)(1 — ¢=27k/5) if s is even.
We say that {X;} is causal if X, can be represented as the one-sided moving-

average sum

o0
X, =) e,
0
and invertible if the corresponding representation holds for
o0
@ =V Xe=yomiX, (6)
7=0

where

o0 o0
Z¢]2<oo and Z?r]2<oo.
7=0 j=0



In the following theorem existence of a stationary solution of (5) , properties of

the weights {7}, {t,}, spectral density and covariance function are established.

Theorem 1. (i) Let

d; |< 1/2 i 0< A<,
J /4 ifA; =0 orm,

(7)

(d; #£0), 5 =1,...,m. Then there exists a unique stationary solution, X (t) of (5)

which is causal and invertible and has the moving-average representation
- d d
— — U1y
Xi =) tneon = VN e
n=0

The coefficients 1, are given by

¥, = > C,(jl)(cos Al)...C,gim)(cos Am)
Oéklv"'vkménv

and have the asymptotical expansion

_ D(n + d)
=2 X Wi

k: O< A<

cos (Agn + vg)

I'(n + 2dy)
to2 DRy 1)F(;dk)

k: Ap=0 or m

cos Apn + O(n—2+max{d;‘,...,d:‘n})

asn — oo, Here d} =di if 0 < A\, < 7;df =2dy, if \p =0 or m,

m

k-1
l/kI/\kZd]‘—ﬂ'Zdj—dkgv
1 1

and

D(k) = |2sinAg 7% H | 2(cos A — cos A;) 7%, if 0< Mg <7 ;
ik
= H | 2(cos A, — cos A;) | 7%, if A\ =0 or 7.
ik

L(n+dp)/T(n+1) ~n¥ =1 in (9) as n — oo.

(8)

(10)

The same expansion with —dy, ..., —d., instead of dy, ..., d,, in (9) holds for the

weights T, n > 0 in the invertible representation (6) of €, which are given by (4).



(ii) The spectral density fyv of { X} equals

2 0 A4 A
(A = ;T]l;ll | 2sin 5 12 sin —; e

o* 1 2d

=5 H | 2(cos A — cos Aj) |[7°% (11)
7=1
and has asymptotics
2

Fo(A) ~ %D(k)? A=A 725 as A=Ay, k=1,...,m. (12)

(7ii) The covariance function r(n) := EX, Xo, in the case max;—y ., d; > 0 has
asymptotics

r(n)= > ap | n | (cosndg + o(1)) (13)
k=1,....m:dp >0

as n — 0o, withak:a;, z'f/\k:007‘7r;:2a;€, if 0< Ay <,

2
a) = %m —2d3) sin (dim ) D2 (k).

PROOF of THEOREM 1. We shall prove assertion (10) by means of Darboux’s

method. Put A_; = =A;,d_; =d;, j=1,...,m. Let us consider the function

U'dl,...7 H 1 _ 6 1 — e AJ Z)dﬂ7

with zero or singularity points z; = e, j=41,...,4+m on the unit circle | » |= 1.
Denote I(k) :={j : 1 <|j |<m,A; # A_ymod27}. Because of the equality

252,

1—zz; = (1—zz1)(1 + (1—22%)), zz#1

1— 252
the function U9 4m(2) has the representation
Uhentdm () = ephi(1 — 22_4),

in the neighbourhood of the point z; (1 <| k |< m), where

ep = H (1 — Z]‘Zk)dj

J€l(k)



and
* Z]‘Zk

hi(z) = 2% H (1+ N

J€l(k)

z) 4,
— 2%
Expanding hy(z) in powers series about z = 0 we obtain

o0

exhp(z) = Z cf,k)zdz‘i'”,

v=0

where

M =3 I ( ‘jf ) (ﬂ)w
(5) !

F€EI(k) L= 22k
and the sum 37, is taken over all integers 0 < s; < v, j € I(k) such that
Zjel(k)Sj = v. Note that cf,k) = cf,k), where ¢ denotes the cojugate of complex

number c. Therefore, by use of Darboux’s method (see Theorem A, Appendix) the

following general expansion for the weights 7, in (4) can be obtained:

p—1 m
- di + v —p—min{d*,....d5 }—
mzzzci’“( B )+o<n o)), (14)
U:Ok:l

where &) = 2Re(cl(,k)(—e_Mk)") it 0 < Ap < m; 6£,k):Re(cl(,k)(—e_Mk)n) it Ap =0
or T.

If we stop the expansion (14) at the term v = 0 (p = 1), we obtain

m

Ty = Z ( Lik ) 58@ 1+ O(n—Z—min{di‘,...,d:‘n})

k=1
as n — oo, what after easy calculations yields the expansion (10) for the weights 7,
with dy,...,d,, instead of —dy,...,—d,, in (10). Clearly because of symmetry this
yields also asymptotic expansion (10) for 1),.
An application of Stirling’s formula T'(z) ~ (27)/2e=%+1 (2 — 1)*~1/2 2 — oo

leads to the asymptotics
T(n 4 dp)/T(n+ 1) ~ o1 (n — o0)

in (10).
Now we prove that (8) is the unique stationary solution of (5). From (10) and

condition (7) it follows that > 02, ¥2 < oo and > o2 77 < oo. In this case (see

n



Theorem B, Appendix and proof of Theorem 12.4.1, Brockwell and Davis (1987)),
the application of the linear filter (v;,j € Z) to a stationary white noise sequence

{€:} with the spectral representation

gt:/ AW (N) (15)
(=7 .]

gives a well-defined stationary process
> d
XtEV/\ e 7 Zlbnq n

with spectral representation

X, :/ T (=N Y7
(_7T77T]
and spectral density
o2

folz):= g | Ui dn (e 2, (16)

where
[—ds—d H 1 — et (1 —e JZ —di = Z P 2", (17)
=1 n=0

d17 7

Further application of the operator V' d’" to X; shows that Xy is the solution of

(5).
We omit the proof of the uniqueness, which is based on Theorem B, Appendix
and is the same as that of Theorem 12.4.1, Brockwell and Davis (1987).
Proof that X (¢) is invertible can be easily derived using similar arguments.
The asymptotics (13) for the covariance function r(n) = £X,X¢ follows imme-

diately from Lemma 3 and Corollary 1, Section 5. O

3. Fractional ARIMA(p,dy,...,d,,q) sequences

Let us formally define a fractional ARIMA(p,ds,...,d,q) sequence as a sta-

tionary solution of the difference equation



¢(B)V;l11’7'.'.'.’7i’:; X, =60(B)e, teZ. (18)

Clearly {X,} is a fractional ARIMA(p,ds,...,dn,q) sequence if and only if the

sequence 7; := Vill’:::’i’ant is an ARMA(p, q) sequence, i.e.

The solution of (18) yields similar results to that found by Hosking (1981, The-
orem 5) or Brockwell and Davis (1987, Theorem 12.4.2).

Theorem 2.Suppose that the degrees d; # 0 (j = 1,...,m) satisfy condition (7)
and the polynomials ¢(z) and 6(z) have no common zeroes.
(a) If §(2) # 0 for | z |= 1, then there exists a unique stationary solution of (18)

given by

_ —dy,e—d
X = Z G Vxl,...,xm "€,
N/

where (; are determined by the Laurent expansion

d G = o)

N/ (Z

-

in some annulus of | z |= 1.

X, has the spectral representation

_ i 0(e™) —dyyes—dim [ —iX
Xt_/(_m]e eV (=MW (A) (19)

and the spectral density of { X} is of the form

O(e)
p(e™)

where fg(+) is the spectral density (16), the function U~%~dm (%) is defined by (17)

fA) =]

* fe(N), (20)

and dW () denotes the random spectral measure from the spectral representation
(15) of the WN sequence €;;
(b) {X.} is causal if and only if ¢(z) # 0 for | z |< 1;

10



(c) {X.} is invertible if and only if 8(z) # 0 for | z |< 1;

(d) the covariance function of X, has the same asymptotics as in Theorem 1
e(e—mk)
(b(e_i)‘k)

with the weights aj, =| |2 ay instead of a, (1 <k <m) in (13).

PROOF of THEOREM 2. The statements (a),(b), (c¢) follow from the same
arguments as in the proof of Theorem 12.4.2 by Brockwell and Davis (1987).

dm

The spectral representation (19) for the solution X; = (b(B)_lO(B)V;ldln’.&’ €

of (18) can be readily derived using Theorem B, Appendix. Obviously, (19) yields
(20).

The asymptotics (d) of the covariance function can be obtained in the same way

as (iii) in Theorem 1. O

4. Parameter estimators for ARIMA(p,dy,...,d,,q) model

In the following section we deal with parameter estimators for the fractional
ARIMA(p,dy,...,dn,q) sequence (18) introduced in Section 3. The considered
model includes (unknown) parameters ¢ (scale parameter); A = (Aq,...,A,), d
= (dy,...,dy) (frequences A; of peaks and zeroes and differencing degrees d;); co-
efficients ¢ = (¢1,...,¢,) and 8 = (0;,...,0,) of the polynomials ¢(-) and 8(-). We
assume that the orders p and ¢ of the polynomials and the number m of peaks (ze-
roes) are fixed. Partial cases of this problem are well investigated (see Introduction),
but many aspects are yet to be explained.

In this section we shall turn our attention to Whittle’s estimators for the men-
tioned parameters. Two important problems appear in this connection, namely: (a)
consistency of the estimators , (b) description of their asymptotic distribution. We
deal mainly with the first problem (when the spectrum has peaks), which is relatively
simpler and comparatively general results can be obtained (an essential use is made
of the method by Hannan(1973)). The problem (b) is currently under investigation.
It is more complicated and involves most likely appearance of non-Gaussian limit

distributions. A related question for Gaussian and moving-average sequences with

11



the peak at the zero frequence in the spectrum was considered by Fox and Taqqu
(1986), Dahlhaus (1989 ), Giraitis and Surgailis (1990).
Let { X, } denote the fractional ARIMA(p, dy,...,dn, q) sequence (18) with spec-
tral density (20):
0(6_”)
o flx, ) = 2 fy(a), 21
(2,9) |¢(€_m)| (x) (21)

where 0 and ¥ = (A, d,¢,0) = (A, .., 05 di,.. o dim; G1 oo 0p; 01,...,0,) are

unknown parameters lying in an open and relatively compact set ¥ X @, ,, C
(0,00) x R2mHr+a,

We assume that for any ¢ € 0, ,, , the following conditions are satisfied:
(w.1) the degrees d; > 0, j = 1,...,m are positive and satisfy condition (7);
(w.2) the polynomials ¢(-) and 6(-) have no common zeroes, ¢(z) # 0 and 6(z) # 0
for | z |< 1

(w.3) the polynomials ¢(-) and 6(-) satisfy the normalization condition

In this section we suppose that the white noise sequence {¢,} in (18) is an i.i.d.
sequence with Fe; = 0, E€? = o2
From assumptions (w.1) -(w.2) it follows that the solution { X, } of (18) is causal

(see Theorem 2, Section 3). Therefore, it has a one-sided moving-average represen-

tation
o0

Xn = Z Oé(j, 19)€n—j

0

with corresponding weights a(j,?), which in addition, satisfy the normalization

condition introduced by Hannan (1973):

Lemma 1.Under condition (w.3),
a(0,9) =1, (22)

and, equivalently,

i log 27 f(z,¥)dz = 0. (23)

—T

12



PROOF of LEMMA 1. The equivalence of (22) and (23) is well-known (see
Hannan (1973), Fox and Taqqu (1986)). (22) means that the one-step prediction
standard deviation of the sequence {c71X, } does not depend on the parameter 4.

We prove (23). On account of (21),
2 dog2m f(w,W)dw = [T log | 0(e™) |* dv — [ log | ¢(e™**) |* da

+ ZIOg(iva(x))dx. (24)
We observe that under condition (w.1) the spectral density fv(z) of the moving-
average process (8) (see Theorem 1) is suitably normalized: from (9) it follows that
o = ¥(0,9)=11n (8).

Therefore,

/W log( 22 fo ())di = 0.

—r o
On the other hand, we have that the function % | 8(e=™") |? is the spectral

density of the sequence

q
Yn = O(B)Gn = ZOjGn_j,
7=0

and, moreover, y = 1 according to (w.3). Hence, [” log | #(e™*) |? dz = 0. In a
similar manner we obtain that [ log | ¢(e=%) |? do = 0. Thus, the right hand side

of (24) equals zero. O

As usual the Whittle’s estimate (&y, ) of the true parameter (g, ?g) is ob-
tained by minimizing the quadratic form
1 N
Ly(X1,...,Xn30,0) = 50_2 Z b(t —s,0) X Xs+ Nlogo
t,5=1
in ¢ and ¥, where

bt,0) = (27)2 [ f N e, 0)e e da.

-7
We assume that
(w.4) the parameters (o, 9) determine the spectral density (21) uniquely.
Concerning the notation we recall that

&N = (XgN)7 AR X%V); JgN)7 AR d(gfb\f)‘ &gN) MR &ZgN); §§N)7 AR é((JN))7

9

13



Yo =(AY, .., A0 df, ... d0: Y .. -7¢2§ 69, .. .,qu), and assume that true parameter

(00, Yp) lies in the interior of ¥ X Oy, ;4.

Theorem 3. Let conditions (w.1)-(w.4) be satisfied.
Then

5’N—>O'0 and 1§N—>190
almost surely as N — oc.

PROOF THEOREM 3 is based on the general inferential theory for linear time-
series constructed by Hannan (1973, Theorem 1). The conditions required by Han-
nan (1973) including (23) are naturally satisfied. O

An advantage of this approach is that besides of the long-term or short-term
persistence, the parameter estimators for the generalized fractional ARIMA model
can also be readily obtained.

When the spectrum contains both peaks and zeroes, problem (a) (and b) is more

difficult and will be considered elsewhere.

5. The asymptotic covariances of a process with spectral density

having peaks.

In this Section we present asymptotical formulas for cov( Xy, Xg) of a stationary

sequence { X} with the spectral density of the form

s(A) = F(Mg(N) (25)
where
J) = Jo(h) = 0 [ Umhminenity 2 (26)

is the spectral density (11) of the sequence (8). We deal with the case when fy has
peaks (max;—; ., d; > 0) and the powers 0 # d;, i = 1,...,m satisfy condition (7),
and we assume that ¢ : [-7, 7] — [0,00] is a real even function, slowly varying at

the peak- points A; (such that d; > 0), j = 1,...,m in the manner of Zygmund, i.e.

14



(g.1) for any 6 > 0, g(\) | A= A; |® is an increasing (decreasing) and  g()\) |
A — ;|78 is a decreasing (increasing) function in some right-neighbourhood (left-
neighbourhood) of A;,
and
(2.2) ¢ has bounded variation on the set [0, 7]\ U2, [A; — ¢, A; + ¢] for any ¢ > 0.
A function ¢ slowly varying at 0 in Zygmund’s sens satisfies the condition
g(tz)/g(t) — 1 (t — 0) V2 > 0, i.e. it is slowly varying in the manner of Karamata.
We assume that the function g is extended with period 27 to the real line.

First we discuss the case when the spectral density f has one peak at the point

A=0,1ie.

~ 0-2

f(z) = f(z,d)

. 2
5 | 1 — e '™ |—2d: ;7 | QSing |—2d7
T T

0 < d < 1/2. Then from Theorem 2.24 Zygmund(1959) (see also Corollary of

Theorem 2, Samarov and Taqqu (1988)) it follows

Lemma 2. Let

s(2) = f(@)i(z) asz € [0,a),
0 < a < 7 where | is slowly varying in Zygmund’s sens and has bounded variation

on (€,a) for any 0 < € < a. Then, as n — oo,

/Oa s(z)cos(zn)dx ~ ;jr | n 241 l(%)r(l — 2d)sin(7d),
/Oa s(z)sin(zn)dx ~ ;; | n |241 l(%)r(l — 2d) cos(nd).

In the case of a few peaks the following result may be stated:

Lemma 3. Let s(A) = f(A)g(A) be the spectral density in (25), where the degrees
d; and the function g satisfy the conditions mentioned thereafter. Further suppose

that
9=+ M) ~g(z +Ap) (2 —0) (27)

ifd,>0,1<k<m.

15



Then as n — oo

* 1
r(n) = Z ag | n |2dk_1 g(—— + Ag)(cosnA, 4 o(1)) (28)
k=1,...,m: di>0 K

where ay and dj, are defined in Theorem 1.

PROOF of LEMMA 3. Assume without restriction of generality that degrees d;

are positive and 0 < A; < 7, j = 1,...,m, and split the interval [0, 7] into segments
Ao Appals B = 1,...,m, where Ay = 0; Ay = (Ae + Ag1)/2, b = 2,...,m — 1
A =T,

Then

/r () =23 /?;““ s(A) cos(An)dA. (29)
k=1 Ay

—T

We separate the following integral into two parts:

!

/\k+1 (Art1—2%)/2
// s(A)cos(An)du = / s(u — Ag)cosn(u — Ag)du
A 0

k
(Ag—Ag—1)/2
+ / s(u+ Ag)cosn(u + Ag)du
0
= i+
(30)

Since cos(A — A') = cos Acos A" + sin Asin A, Lemma 2 yields

, (Arg1—Ak)/2
i, = / flu = Ap)g(u — Ag)(cos nu cos nAg + sin nusin nAy )du
0
2
1
- Z | n |21 g(= = A)D(1 — 2dy)(sin wdy, cos nAy, + cos Tdy sin n A, + o(1))
T n
and
" 0'2 d 1
— P | n 2% g(= + Ap)T(1 = 2dy)(sin wdy cos n Ay — cos wdy, sin nAy, 4 o(1))
T n

as n — oo0. Therefore, (28) holds because of (29), (30) and (27). O

It can be readily shown that a sufficient condition for the function ¢ to be slowly

varying at x = 0 in Zygmund’s sense is the existence of a derivative g such that

g (x)

9()

—0 as x—0. (31)

16



Moreover, it is well-known that the class of functions g slowly varying at infinity
(Zygmund’s), i.e. ¢g(1/x) is slowly varying at & = 0, coincides with a class of nor-

malized functions which can be represented as

l(z) = ag exp{/j €(uu)du}

where 0 < ap < 00, ¢ > 0 and €(z) — 0 as @ — oo; €(2) = xll(—g) almost surely. (see

Bingham, Goldie and Teugels, 1987).

Therefore, the function

0(6_21/\) |2
Ple=)
with polynomials 8 and ¢, where ¢(z) # 0 as | z |= 1, has bounded derivative and

g(A) = (32)

is slowly varying at any point 0 < A < 7 such that g(\) # 0.
This leads to the following result:

Corollary 1. Suppose that in Theorem 1 the function g is defined by (32) and
Oe= ™) £ 0 ifdy, >0, k=1,....,m. Then

0 —ZAk
cov(X,, Xo) = Z | (e

2 2 a | 0 |P%Y (cosnAg 4 o(1))
¢(6—2Ak)
k=1,...,m: dp >0

as n — 0.

6. Remarks

6.1 The models with finite number of zeroes or peaks in the spectrum require a
different approach in order to obtain the asymptotics (9) for the weigths ; (and
7;) than the model with one peak/zero investigated by Gray et al. (1989). We have
used the Darboux method (see Szegd (1959)).

6.2 Limit theorems for functionals of stationary Gaussian sequences with a sim-
ilar covariance and spectral density function were studied by Rosenblatt (1981) and
Giraitis (1983). The long-memory of these sequences means that the resulting limits

can be non-Gaussian (self-similar processes).

17



6.3 The covariance asymptotics provided by Gray et al. (1989 , Theorem 3 (c))
(in case m = 1) is different from that in Lemma 3 because of a misprint of the sign
on the third line, p. 241 of the paper mentioned.

6.4 The further properties of the estimators for Aq,..., A, and dy,...,d,, are

currently investigated.
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APPENDIX

In this section we present a classical theorem or Darboux’s method, which leads
to asymptotical expansions for classical orthogonal polynomials (see Szegd (1959)),
and a theorem concerning the spectral repesentation of stationary process trans-

formed by linear filters ( Brockwell, Davis (1987)).

Theorem A (Szegé (1959), Theorem 8.4). Let h(z) be regular for | z |< 1, and

let it have a finite number of singularities
e et i 'Pk £ gidm (k#m)

on the unit circle | z |= 1. Let

h(z)= 3" W (1 = zemryhtbe g1 ]

v=0
in the vicinity of €'®%, where by, > 0. Then the expression
l
.- k[ de+vbe N\ _ign
PP R C
v=0 k=1
furnishes an asymptotical expansion of the coefficient of 2" in h(z) in the following

sense: if () is an arbitrary positive number , and if a sufficiently large number p of

terms is taken in the sum > 72, we obtain an expression which approximates the
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coefficient q, in expansion h(z) = 3.°% q,2" with an error equal to O(n™¢), i.e.

p—1 1 d 1 b '
Gn = Z ch(,k) ( k k ) (—e_msk)n + O(n_Q), n — oo.

n
v=0k=1

A simple discussion shows that it suffices to stop at the term v = p — 1 of the

sum, where p is a positive integer such that

> ~lrg — —
p_lrggglbk {@ — Re(dy) — 1}

(see Szegd (1959)).

Theorem B (Brockwell and Davis (1987), Theorem 4.10.1). Let {X;} be a

zero-mean stationary process with spectral representation

Xt = / €itdeX(l/)
(_7T77T]

and spectral distribution function Fx(.), where Zx(.) is an orthogonal-increment

process, Z(—m) = 0. Suppose {h;,j € Z} is a sequence such that the series

S i, hjeT converges in L*(Fx) norm to h(e™") as n — oo. Then the process
Y = Z h; Xy ;
j€eZ

is stationary with zero mean, spectral distribution function

FO)= [T P )

and spectral representation
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