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Abstract:

We study a method for estimating a density f in Rd under assumptions which are of qualitative

nature. The resulting density estimator can be considered as a generalization of the Grenander

estimator for monotone densities. The assumptions on f are given in terms of the density contour

clusters Γ(λ) = {x : f(x) ≥ λ}. We assume that for all λ ≥ 0 the sets Γ(λ) lie in a given class C of

measurable subsets of Rd. By choosing C appropriately it is possible to model for example

monotonicity, symmetry or multimodality. The main mathematical tool for proving consistency and

rates of convergence of the density estimator is empirical process theory. It will turn out that the

rates depend on the richness of C measured by metric entropy.
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1. Introduction

We provide a method for estimating a density f in Rd under qualitative assumptions like

monotonicity, symmetry, modality. More generally, we assume that the density contour clusters

Γ(λ) = Γf(λ) = {x : f(x) ≥ λ}, λ > 0, all lie in a given class C of measurable subsets of Rd. For

example, if we choose  C = C0 = { [0,x], x ≥ 0 } then the class of densities with Γ(λ) ∈ C0 is the

class of all nonincreasing leftcontinuous densities on the positive real line. Hence, the choice of C

can be interpreted as choosing a statistical model. 

The density estimator studied in this paper is based on estimators of the sets Γ(λ), so that density

estimation as considered here can be viewed as a certain two-step procedure: first estimate the

density contour clusters and then estimate the density by means of the estimated density contour

clusters.   

For the moment consider the special case of estimating a monotone density on the real line. If the

mode is fixed, then the maximum likelihood estimator of a, lets say, decreasing left continuous

density is well known. It is the so-called Grenander estimator which is defined as the slope (more

precisely, the left-hand derivative) of the smallest concave majorant of the empirical distribution

function. Hence, the Grenander estimator is obtained by first estimating the distribution function

under the assumption that it is concave. This estimator is the smallest concave majorant of the

empirical distribution function. Then the density is estimated by the slope of the concave majorant.

It turns out, that for the special choice of C = C0 our density estimator coincides with the

Grenander estimator. The connection of estimating density contour clusters in C0 and the concave

majorant of the empirical distribution function will be given below.  

Another density estimator known in the literature which is also constructed by estimating density

contour clusters has been considered by Sager [12]. In our notation he assumed that all sets Γ(λ),

λ > 0, lie in C d, the class of closed convex sets in Rd. As estimators for Γ(λ) he used minimal

volume sets in Cd. A minimum volume set in Cd to the parameter α is defined to be the smallest set

in Cd which contains at least empirical mass α. Sager constructed a density estimator out of a

nested sequence {Cn} of minimal volume sets by putting slices Cn × [an,bn] one on the top of the

other. The difficulty there is to choose the thickness of the slices, bn - an, in an appropriate way.

However, by construction the estimators {Cn} of the density contour clusters are nested. Note,

that in general this is not the case for minimal volume sets to different parameters α. In general,

minimal volume sets may overlap. They even may not intersect. 
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The density estimators considered in the present paper can also be visualized as putting slices

constructed out of minimum volume sets one on top of the other. But in contrast to the estimator of

Sager the thickness of the slices as well as the parameters α corresponding to the minimum volume

sets depend on the data and come out of the procedure automatically. However, the problem that

the estimators of the density contour clusters may overlap also appears in our context. This will be

discussed below. 

Before we give the organization of the paper we shortly discuss the assumption “Γ(λ) ∈ C ∀ λ >
0”. An equivalent formulation for this assumption is “f ∈ FC”, where

                  FC  =  { f : Rd → [0,∞),  f(x) dx  =  1, Γf(λ) ∈ C ∀ λ > 0}.

First consider the case d = 1. As already mentioned, for C = C0 = { [0,x], x ≥ 0}, FC equals the

class of all monotone decreasing (left-continuous) densities on the real line starting at zero. Let Ik

denote the class which consists of all unions of at most k ≥ 1 closed intervals on the real line. F
I1

defines the class of unimodal densities on the real line. The class F
I2

\ F
I1

 consists of densities

with at most two modes, more general  F
Ik

\ F
Ik-1

 consists of densities with at most k modes. In

order to model modality in higher dimensions there is no such natural choice as the class of

intervals in the one-dimensional case. In principle every class which consists of connected sets can

be used to model unimodality. Standard examples are given by the classes of all closed balls,

ellipsoids and convex sets in Rd, denoted by Bd, E d and Cd, respectively. In the multimodal case

the density contours become more complicated. Here classes which can be constructed out of the

convex sets by means of finitely many set-theoretic operations ∩, ∪, c seem to be appropriate (see

Polonik [10] for a discussion). Taking C as the class of all balls with midpoint zero leads to the

class of spherically symmetric densities on Rd with center zero. 

The paper is organized as follows: In Section 2 we define the estimators of the density contour

clusters and the density estimator itself. Furthermore we show the above mentioned connection to

the Grenander estimator. Section 3 contains asymptotic results about the density estimator. By

means of empirical process theory we show consistency and give rates of convergence. It will turn

out, that C enters the rates through its richness measured by metric entropy. The well known rate

of the Grenander estimator (n-1/3 for a density with no flat part and n-1/2 for an underlying uniform
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distribution) will be re-derived up to a log-term. They come up only through the fact that the

corresponding class C0 is a so called VC-class. After some concluding remarks (Section 4), the

proofs of the results of Sections 2 and 3 are given in Section 5.

2. The density estimator

For any set C let 1C denote the corresponding indicator function. The following equality holds for

any density f:

(2.1) f(x)  =  1Γ(λ)(x) dλ      ∀ x ∈ R.                                               

For many class C there exists an estimator of Γ(λ), denoted by Γn,C(λ), which lies in C (see

Polonik [10, 11]). This estimator is called empirical generalized λ-cluster (in C). (The definition

of Γn,C(λ) will be given below). We define the plug in estimator of f as

(2.2) fn,C(x)  =  1Γn,C(λ)(x) dλ      ∀ x ∈ R.                                     

For d = 1 and C = Ik, k ∈ N, this estimator has implicitly been used by Müller and Sawitzki [7] in

order to determine bootstrap critical values for tests of multimodality. They draw bootstrap samples

out of distributions determined by fn,Ik
.

The empirical generalized λ-clusters in C:

Let F be a distribution on Rd with Lebesgue density f. It is easy to see that Γ(λ) maximizes the

signed measure Hλ = F - λ Leb over all measurable sets, i.e.

 Hλ(Γ(λ))  =  sup { Hλ(C), C measurable }.

As a function of λ the maximal value E(λ) = Hλ(Γ(λ)) is called excess mass functional. It has
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been introduced by Müller and Sawitzki [7] and can be used for investigating the modality of a

distribution (see Müller and Sawitzki[7, 8], Hartigan [4], Nolan [9], Polonik [10]).

Let (Ω, A, P) denote the underlying probability space and let X1, X2,.... be i.i.d. random vectors

in Rd with distribution F. Furthermore, let Fn denote the empirical distribution function of the first

n observations. Define the empirical version of Hλ as

                        Hn,λ = Fn -  λ Leb. 

The supremum of Hn,λ over all measurable sets equals one and is attained at {X1, X2,...,Xn}.

Hence, in order to obtain a reasonable estimator of Γ(λ) by means of Hn,λ one has to restrict the

maximization to certain subclasses C of subsets of Rd. 

Definition:  Let C be a class of measurable subsets of Rd. Any set Γn,C(λ) ∈ C, such that 

                     Hn,λ(Γn,C(λ))  =  sup C∈ CHn,λ(C) 

is called an empirical generalized λ-cluster in C.

We called those sets generalized because they need not be connected as one perhaps would expect

for “clusters”. 

In the one-dimensional case, more precisely, for C = Ik, Müller and Sawitzki [8] gave consistency

results for the empirical generalized λ-clusters. In a more parametric setting Nolan [9] studied the

sets Γn,C(λ) for C  = E d. She gave consistency results and asymptotic distributions for the

corresponding finite-dimensional parameters. Under more general conditions on C (analogous to

those used in the present paper; see results in Section 3) the empirical generalized λ-clusters

Γn,C(λ) have been studied in Polonik [10, 11]. 

Remark 2.1:  (i)  Note that the empirical generalized λ-clusters Γn,C(λ) are minimum volume

sets in C: by definition they have the smallest volume among all other sets in C which carry the

same empirical mass Fn(Γn,C(λ)). However, this mass itself is also random. 

(ii)  Of course it is necessary for Γn,C(λ) to be a d1-consistent estimator of Γ(λ) that the

maximizing value of Hλ is unique up to F-nullsets. This is the case if and only if f has no flat part
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at the level λ, i.e. if Leb{x: f(x) = λ} = 0. Since we shall use such results about the estimation of

Γ(λ) assumptions about flat parts of f will enter the theorems about rates of convergence of the

density estimator given in Section 3.

The empirical generalized λ-clusters exist for standard classes C like Bd, E d or Cd, which denote

the classes of all closed balls, ellipsoids and convex sets, respectively, in Rd. For the case of

convex sets this can be seen easily, because one only has to consider those convex polygons with

vertices in the observations. And these are (for fixed n) only finitely many. For C = Bd or Ed the

maximization of Hn,λ can also be reduced to a finite class of sets.

We shall assume in all of that what follows that:  

(A)  For all λ ≥ 0 there exist an empirical generalized λ-cluster in C and ∅ ∈ C.

The sets Γn,C(λ) need not be uniquely determined. Note that it even may happen that for a fixed

level λ there exist empirical generalized λ-clusters which carry different empirical mass and

therefore also have different Lebesgue measure. However, the following properties hold: 

Proposition 2.2: 

(a) For each λ ≥ 0 choose a set Γn,C(λ). For each such choice the function λ → Leb(Γn,C(λ)), λ
≥ 0 is monotonically decreasing and piecewise constant with at most n + 1 jumps. Moreover, the

sets Γn,C(λ) can be chosen such that λ → Γn,C(λ) is piecewise constant.

(b) There exists a level λn,max ≥ 0 such that Leb(Γn,C(λ)) = 0 for λ > λn,max 

In order to obtain a reasonable representation for our density estimator we suppose the sets Γn,C(λ)

to be chosen such that:

(α) the function λ → Γn,C(λ), λ  ≥ 0, is piecewise constant. Denote the (random) 

levels where this function has jumps by 0 = λ0 < λ1 <...< λkn
 = λn,max, kn ≤ n. 
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(β) For every fixed μ ≥ 0 the Lebesgue measure of Γn,C(μ) is minimal among all 

empirical generalized μ-clusters.

Furthermore, we define with λn,max of Proposition 2.2 (b):

(γ) Γn,C(λ) = ∅ for λ > λn,max.  

Because of assumption (A) there always exist choices of Γn,C(λ), λ > 0, such that (α) and (β)

are satisfied. This follows from the proof of Proposition 2.2 which is given in Section 5. Note that

(α) and (β) do not affect the results given below, because these results hold for any choice of sets

Γn,C(λ). 

Note that in general the empty set is not an empirical generalized λ-cluster in C for  λ > λn,max.

However, for all standard classes C mentioned in this paper (γ) does also not affect the asymptotic

results given in Section 3 (see Section 4 for more thorough discussion on (γ)).  

(α), (β) and (γ) are supposed to hold in all of that what follows. The next proposition shows that

in many situations fn,C automatically is a probability density.  

Proposition 2.3:   If λn,max > 0, then we have

                                                fn,C(x)  dx  =   Fn(Γn,C(0)).

Remark:  The value of λn,max (especially if it is > 0) depends on the class C, the sample size n and

on the underlying distribution. For example, if C = C2 and n ≤ 3 then λn,max = 0, because for λ =

0 the convex hull of the sample is a empirical generalized λ-cluster, and for λ > 0 we either have a

datapoint itself or a line connecting two datapoints as empirical λ-clusters. Both have Lebesgue

measure zero, and hence, by definition of λn,max we have λn,max = 0. For n ≥ 4 this does not

happen if not three or more points lie on a line. And this in turn happens with probability zero if the

underlying distribution is continuous.  

Because of Proposition 2.2 we call a class C normalizing if Fn(Γn,C(0)) = 1. Examples for

normalizing classes are C = C0, Ik for d = 1, and C =  B d, E d, Cd for higher dimensions. Also
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those classes which can be constructed out of the former classes by finitely many set theoretic

operations ∩, ∪, c are normalizing.    

Under (α), (β), (γ) the density estimator fn,C(x) can be written as 

(2.3)                            fn,C(x)  =  ∑
j = 0

kn

(λj+1 -  λj) 1Γn,C(λj)
(x).                                          

Hence, if in addition the sets Γn,C(λj), j = 0,..., kn are monotonically decreasing for inclusion, i.e.

Γn,C(λj+1) ⊂ Γn,C(λj), then fn,C can be visualized as putting the slices Γn,C(λj) × [λj, λj+1] one on

top of the other. 

However, unfortunately the monotonicity of the empirical generalized λ-clusters need not hold. In

this case the density contour clusters of fn,C need not necessarily lie in C, so that fn,C does in

general not lie in the model class FC. But if the model is correct, i.e. if f ∈ FC, then as we shall

show in Section 3, fn,C converges to f as n tends to infinity, so that at least asymptotically fn,C

does lie in FC. However, there exist situations where the monotonicity of the empirical generalized

λ-clusters holds automatically. For example, consider C = C0 = { [0,x], x ≥ 0}. In this class the

empirical generalized λ-clusters are monotonically decreasing for inclusion, because they all start in

zero and their Lebesgue measures are decreasing (Proposition 2.2 (a)). 

fn,C and the Grenander estimator  

As already mentioned, FC0
 is the class of all monotone decreasing, left-continuous densities on the

real line, starting at zero. In this model there exists a well-known estimator for the density: the

Grenander estimator fn (Grenander [5]), which is the maximum likelihood estimator of f in FC0
. It

has been shown by Grenander that fn is given by the left-continuous of the smallest concave

majorant of Fn, denoted by Fn
*. Surprisingly, in this special situation fn,C0

 and the Grenander

estimator fn coincide. This can be seen as follows. Let

                             Un(λ) := inf{ t ≥ 0 : Fn(t) - λt  is maximal }.

Here Fn(.) denotes the empirical distribution function of n i.i.d.-observations drawn from F. We
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use the symbol “Fn” for the empirical distribution function and for the empirical distribution itself.

Un has the property that

                                         f n(x) ≤ λ   <=>   Un(λ) ≤ x.

(This has already been used in Groeneboom [6]). Furthermore we have Γn,C0
(λ) = [0,tλ] where tλ

= argmaxt≥0{Fn([0,t]) - λLeb([0,t])} = argmaxt ≥ 0{Fn(t) - λt}. Together with (β) it follows that tλ
= Un(λ). Hence, by using the monotonicity of the empirical generalized λ-clusters we obtain that 

          fn,C(x) ≤ λ   <=>   x ∉ Γn,C(λ)   <=>   tλ ≤ x   <=>   Un(λ) ≤ x,

and hence fn,C0
 and fn coincide.

Note that fn,C has jumps at x = tλj
, j = 0,...,kn, where the λ j are defined in (α) above. By

definition of Γn,C(λ) we have tλj
 = Xk for some k = k(j). On the other hand, the Grenander

estimator has jumps at those points where the slope of Fn
* changes, or in other words, where Fn

and Fn
* coincide. Hence, the sets {Γn,C0

(λj), j = 0,..., kn} can be constructed by first deriving Fn
*

and then choosing those points where the slope of Fn
* changes as endpoints of the interval starting

at zero. The corresponding levels λj are given by the (left-sided) derivative of Fn
* in tλj

. 

3.  Asymptotic results  

In this section consistency results and rates of convergence for fn,C will be given in terms of the

L1-distance. Let d1(f,g) denote the L1-distance of two functions, i.e. d1(f,g) = |f(x) - g(x)| dx.

The L1-distance of two sets C, D is defined as the L1-distance of the corresponding indicator

functions, so that d1(C,D) = Leb(C Δ D), where “Δ“ denotes the symmetric difference and “Leb“

the Lebesgue measure. 

In order to avoid measurability considerations we define for any function f : Ω → R  the

measurable cover function f* as the smallest measurable function from Ω to R lying everywhere

above f. Of course, if f is measurable, then f* = f. Furthermore, let P* denote outer probability.

Note that for any α > 0 we have
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                                           P*(f > α)  =  P(f* > α).   

See for example Dudley [2] for more details. We need the following definition:

Definition:  C is called a Glivenco-Cantelli (GC)-class for F, or a GC(F)-class, if with

probability 1
                              supC∈C|Fn(C) - F(C)| *  →  0       as n → ∞.

The classes C = C0, Ik, B d, Ed are GC(F)-classes for all F. The class Cd is a GC(F)-class if for

example F has a bounded Lebesgue density (see Eddy and Hartigan [3] for a characterization of the

GC(F)-property of Cd). Moreover, all classes which can be constructed out of GC-classes by

means of a finite number of the set theoretic operations ∩, ∪, c are GC-classes. As in Alexander

[1] we call such classes k-constructible: more precisely, a class C in a measurable space (X,A) is

called k-constructible from a GC-class D, if there exists a function ϕ from Dk to A constructed

from ∩, ∪, c such that C ⊂ ϕ(Dk). For example, the class of all at most k-sided polygons in R2 is

k-constructible from the class of all halfplanes, since they can be written as an intersection of at

most k halfplanes.

Theorem 3.1 (Consistency):  Suppose that C is normalizing. If f ∈ FC, then there exists a

real-valued (non-random) function A = A(η,L), depending on f, with A(η,L) → 0 as η → 0 and

L → ∞, such that for all L, η > 0 with L ≥ η we have 

(3.1)    d1( fn,C, f )  ≤  2 η−1 
η

L
[ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)) ]  dλ  +  A(η,L).   

Hence, if in addition C is a GC(F)-class then we have with probability 1 that 

                                d1(fn,C, f) *  →  0          as   n → ∞. 

Remark:    It can be seen from the proof of (3.1) that A(η,L) ≤ 4 
0

2η ϕ(λ) dλ  + 2 
L

∞ ϕ(λ) dλ,

where ϕ(λ) := Leb{x : f(x) ≥ λ }. If f is bounded by M, say, then the last integral equals zero for L
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> M (because ϕ(λ) = 0 for λ > M). Hence, if we denote A(η) = A(η,L), L > M, then the behaviour

of A(η) as η → 0 reflects the tail behaviour of f. It will be shown below that this behaviour also is

crucial for the rate of convergence of fn,C. 

Moreover, it can be seen from (3.1) that the convergence is uniform over a certain class of

densities if A(η,L) tends to zero uniformly over this class.

Rates of convergence:

We give rates of convergence for two different types of classes C. The first type are so-called

Vapnik-Cervonenkis (VC)-classes, and the second type are classes which satisfy a certain entropy

condition (see (3.3) below). 

Note that the L1-distance of fn and f can be bound in terms of the L1-distance of the sets Γn,C(λ)

and Γ(λ). We have by means of Fubinis theorem:

         d1(fn,C, f)  =  | 1Γn,C(λ)(x) -1Γ(λ)(x) dλ | dx   ≤  Leb(Γn,C(λ) Δ Γ(λ)) dλ 

(3.2)                                             =  d1(Γn,C(λ), Γ(λ)) dλ.                

Note that this inequality is a equality if the empirical generalized λ-clusters are nested so that they

are density contour clusters of fn,C. 

(3.2) shows, that results about the behaviour of d1(Γn,C(λ), Γ(λ)) can be used to obtain results

about d1(fn,f). Now, estimation of Γ(λ) by Γn,C(λ) is “critical” if f has flat parts at level λ (see

Remark 2.1). Because of (3.2) such levels might also be critical for the estimation of the density

itself. From this point of view we define “critical levels” as follows: Let ϕ(λ) = ϕf(λ) = Leb( Γ(λ) )

= Leb{x: f(x) ≥ λ}.

Definition:  A level λ > 0 is called a critical level (of f), if ϕ is not differentiable at λ.

Note that if f has a flat part at a level λ, i.e. Leb{x: f(x) = λ} > 0, then ϕ is not continuous at λ and

hence such levels are critical.  

Now we consider the case that C is a VC-class. VC-classes are defined through a combinatorical
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property as follows: Let D be a finite set in Rd. A class C is said to “shatter” D iff every B ⊂ D is

of the form C ∩ D for some C ∈ C. If there exists a number k ∈ N, such that C shatters no set

which consists of k elements, then C is called a VC-class and the minimal k with that property is

called the index of C. Examples for VC-classes are the classes of intervals, I1, and more general,

the classes Ik, which consist of all unions of at most k intervals. Every subclass of a VC-class also

is a VC-class as for example the class C0 (as a subclass of I 1) which corresponds to the

Grenander estimator (see above). Examples for VC-classes in higher dimensions are the classes of

all halfplanes and the classes Bd and Ed.

For the proofs of the theorems given below we shall use results of Alexander [1] about the

behaviour of the set- and function-indexed empirical process. For that reason we shall also use

some of his terminology: 

Alexander considers classes of functions or sets, respectively, which satisfy a certain measurability

condition which he called “n-deviation measurable”. Here we shall not give this definition and the

underlying construction of the empirical measure, because all the standard VC-classes which we

are interested in (the classes of balls, ellipsoids in Rd and classes which are k-constructible out of

the former classes as defined above) satisfy this measurability condition. Furthermore, we call C a

(v,k)-constructible VC-class, if C is k-constructible from a VC-class D whose index is smaller

than or equal to v. 

The tail behaviour of the underlying density f is crucial for the rates of convergence of the density

estimator. This tail behaviour will here be measured in terms of the function

                                    Ψ(η)  =  Ψf(η)  =  
0

η
ϕ(λ) dλ.   

Figure 1:  

η

Ψ(η)

12



Theorem 3.2:  Let C be a n-deviation measurable (v,k)-constructible VC-class. Suppose that

sup f(x) < ∞ and that f has at most finitely many critical levels. If f ∈ FC, then we have 

                     d1(fn,C, f) *   =  OP(Ψ(n−1/3 (log n) 1/3))        as n → ∞.

Remarks 3.3:  (i)  If the support of f has finite Lebesgue measure, then Theorem 3.2 gives the

rate n−1/3 (log n) 1/3, because in this case Ψ(η) = O(η) as η → 0. If the support of f has infinite

Lebesgue measure, then Ψ(η) tends to zero (as η → 0) slower than O(η). This leads to slower

rates of convergence of fn,C. For example for the normal distribution in Rd we have Ψ(η) = O(η
(log 1/η)d/2 ). 

(ii)  As already mentioned, C0 is a VC-class. Hence Theorem 3.2 also gives a rate of convergence

for the Grenander estimator: If f has a bounded support, then this rate is n−1/3 (log n) 1/3

(Groeneboom [6] showed that n−1/3 is the exact rate). Hence, although we did not use any special

properties of the Grenander estimator (such as monotonicity for example) we derived the exact rate

up to a log-term by only using the fact that the corresponding class C0 is a VC-class.   

In the following theorem we also allow more richer classes than VC-classes. The richness is

measured in terms of the metric entropy with inclusion of C with respect to F, which is defined as

follows. Let

  NI(ε, C, F) := inf{m ∈ N: ∃ C1,...,Cm measurable, such that for every C ∈ C there

                                    exist  i, j ∈ {1,..., m} with Ci ⊂ C ⊂ Cj and F(Cj \ Ci)  < ε }, 

then log NI(ε, C, F) is called metric entropy with inclusion of C with respect to F.

Theorem 3.4:   Let C be such that there exist constants A, r > 0 with

(3.3)                           log NI(ε, C, F)  ≤  A ε−r        ∀ ε > 0.                                               

Suppose that sup f(x) < ∞ and that f has at most finitely many critical levels. Then we have 

                                  d1(fn,C, f) *   =  OP(Ψ(αn))          as n → ∞ ,
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where

        αn  =  

n−1/(3+r),        r < 1 

n−1/4 log(n),  r = 1 

n−1/2(r+1),      r > 1.

Examples:   Let C = Cd, d ≥ 2. If the support of f is compact and sup{f(x)} < ∞, then (3.3) is

satisfied with r = (d-1)/2 (see e.g. Dudley [2]). Hence it follows from Theorem 3.4 that in this case

d1(fn,Cd, f) *  =  OP*

n−2/7 ,          d = 2 

n−1/4log n,   d = 3 

n -1/(d+1),       d  ≥ 4

.

Under mild conditions on the tail behaviour of f the assumption of a compact support can be

dropped (see Polonik [10]), so that for example these rates also hold for the normal distribution up

to an additional log-term which comes in through the behaviour of Ψ (see Remark 3.3 (i)).

The case of an underlying uniform distribution:

Theorem 3.2 and Theorem 3.4 can of course also be applied to an underlying uniform distribution.

However, there they lead to rates which are far from the optimal. This can be seen in the special

case of the Grenander estimator. The rate of convergence of the Grenander estimator is known to

be n−1/2 in the case of an underlying uniform distribution. However, Theorem 3.2 only gives the

upper bound n−1/3 (log n) 1/3. But we are able to re-derive the correct rate n−1/2 up to a log-term

(see Corollary 3.5 (a) below). 

Theorem 3.5:  Let F be a uniform distribution on a set C with Leb(C) < ∞. Let {βn} be a

sequence of real numbers converging to zero as n → ∞. Suppose that ||Fn - F ||C = OP(βn) as n →
∞. If C ∈ C then we have

 

                      d1(fn,C,f) *   =  OP( βn log (1/βn) )         as n → ∞.
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Corollary 3.6:  Let F be a uniform distribution on a set C with Leb(C) < ∞ and suppose that C

∈  C.

(a)  If C is an n-deviation measurable (v,m)-constructible VC-class then we have 
 
                     d1(fn,C,f) *   =  OP(n−1/2 log n)        as n → ∞.

(b)  If C satisfies the entropy condition (3.3) then we have 

                                  d1(fn,C,f) *   =  OP(αn),            as n → ∞  

where

                            αn  =  

n−1/2 log(n),        r < 1 

n−1/2(log n)2,      r = 1 

n -1/(r+1)log(n),      r > 1.

4. Concluding Remarks 

♦  Computation:  In the one-dimensional case, more precisely, for the case C = Ik, k = 1, 2, 3

there exists a computer program of Müller and Sawitzki [8]) for calculating the empirical

generalized λ-clusters. Since empirical generalized λ-clusters are minimum volume sets (however,

for a random parameter α; cf. introduction and Section 2), it is possible to use algorithms for

calculating minimum volume sets in order to calculate empirical generalized λ-clusters. In higher

dimensions Nolan [9] gave some calculations for the case C = Ed. One first has to calculate all

minimum volume ellipsoids (MVE), i.e. the MVE for all parameters αn = k/n, k = 1,.., n. Then in

a second step it is easy to calculate the empirical generalized λ-clusters in Ed for all λ ≥ 0. For the

case C = C2, Hartigan [4] gave an algorithm for directly calculating a set Γn,C2(λ) for a fixed λ ≥
0. However, for classes C of sets with more complicated shapes there exist no algorithms until

now.

♦  Relaxing the assumptions on critical values: Instead of assuming that f has at most finitely

many flat parts (see Theorem 3.2 and 3.4) one can make the following weaker assumption:  for

each η > 0 there exists a constant Cλ,η < ∞ and a region Λη ⊂ [0,∞) with [0, max(f(x))] \ Λη =

O(η) such that 

                                Leb{x: | f(x) - λ | < η } ≤ Cλ,η η,  ∀ λ ∈ Λη,   
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and that for each η > 0, Cλ,η −1 is integrable over Λη.

♦  The case where f ∉ FC:  This case can be interpreted as a wrong model. Let the sets ΓC(λ) be

defined as those sets which maximize the measure Hλ = F - λ Leb over the class C, i.e. 

                                   Hλ(ΓC(λ))  =  sup C∈ CHλ(C).

This definition is completely analogous to the definition of Γn,C(λ). The sets ΓC(λ) are called

generalized λ-clusters. (Suppose that they exist for each λ > 0 and that they are unique (up to F-

nullsets)). It has been shown in Polonik [10] that for normalizing classes d1(fn,C,fC)* converges

to zero with probability 1, where

                                   fC(x)  =  1ΓC(λ)(x) dλ      ∀ x ∈ R.

Here C has to satisfy some additional assumptions (which all are satisfied for the standard class

I1, B d, Ed and Cd). It is difficult to interpret the function fC. However, it can be shown, that fC
often is a probability density. More precisely, one can show, that the integral of fC over Rd equals

lim δ→0F(ΓC(δ)) (see Polonik [10]). Often this limit equals F(ΓC(0)), and for standard classes C

we often have F(ΓC(0)) = 1.  

♦   Uniform rates of fn,C: The rates given in the Theorems 3.2 and 3.4 also hold uniformly over a

class of densities F if the tail behaviour in this class can be controlled uniformly. More precisely,

let sup f∈F Ψf(η) = ψF(η), then we have 

Theorem 4.1: Let F be a class of densities such that every f ∈ F has at most finitely many

critical levels. Let C be such that (3.3) is satisfied. Then we have that for every ε > 0 there exists a

constant c > 0 such that

                  sup f∈F  P [  d1(fn,C,f) *  ≥  c ψF(αn)  ]  ≤ ε       for all n ≥ n0(ε)

where αn is the same as in Theorem 3.4. If C is an n-deviation measurable VC-class then the

same result holds with αn = n−1/3 (log n) 1/3.
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The proof of Theorem 4.1 is the same as the proofs of Theorem 3.4 and Theorem 3.2,

respectively. One only has to notice, that Proposition 5.2 actually holds uniformly over F (this can

be seen from the proof).

♦   Remark on assumption (γ):  For many standard classes C we have Fn(Γn,C(λ)) = O(n−1) a.s.

for λ > λn,max as n → ∞. As in Polonik [10] this (weaker) property could be assumed to hold

instead of (γ). However, in this case an additional O(n−1) would enter the calculations. Therefore,

in order to shorten the formulas, we prefer to assume (γ). 

5. Proofs

Proof of Proposition 2.2:  Note that 

                 En,C(λ)  =  sup { (Fn - λ Leb)(C) : C ∈ C }

                               =  maxj ∈ {0,..,n} [ j/n - λ infC(j) ≠ ∅{Leb(C) : C ∈ C } ].

Hence En,C equals the maximum over at most n + 1 (different) linear functions with slope ≤ 0 and

is therefore a monotone decreasing concave function with at most n+1 changes of slope. Choose 0

≤ λ0 < λ1 <...< λkn
, kn ≤ n as those values of λ where the slope of En,C changes. It follows from

the above representation of En,C that for all λ ∉ {λ0, λ1,..., λkn
} Leb(Γn,C(λ)) equals the slope of

En,C at λ. Hence, for these values of λ the monotonicity of Leb(Γn,C(λ)) follows. If however the

monotonicity would be violated for a value λ ∈ {λ0, λ1,..., λkn
} then the above representation of

En,C would easily give a contradiction. This proves the first part of (a). Now it again follows from

the above representation of En,C that every set Γn,C(λj), j = 0,.., kn−1 is an empirical generalized

λ-cluster for all λ ∈ [λj, λj+1]. This proves the second part of (a). 

In order to see (b) first note that Γn,C(λkn
) is an empirical generalized λ-cluster for all λ ≥ λkn

.

Hence we have for every λ ≥ λkn
 that En,C(λ) = Fn(Γn,C(λkn

)) - λ Leb(Γn,C(λkn
)). Since ∅ ∈  C

we have En,C(λ) ≥ 0 and therefore Leb(Γn,C(λkn
)) = 0. Otherwise En,C(λ) would be strictly

smaller than zero for λ large enough which would give a contradiction.
❒

Proof of Proposition 2.3:  Let us first assume that the empirical generalized λ-clusters are
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monotone for inclusion. Below we shall show that the general situation can be reduced to this

“case of monotonicity” via symmetrization arguments.

Let λ j, j = 1,..,kn be the (random) levels of assumption (α) (see Section 2, or proof of

Proposition 2.2 above). Note that the assumption λn,max > 0 is equivalent to kn ≥ 1. For every j ∈
0,...,kn-1 we define 

                                Δn,C(j) := Γn,C(λj) \ Γn,C(λj+1). 

The monotonicity assumption says that Γn,C(λj+1) ⊂≠  Γn,C(λ j), j = 0,...,kn-1. Thus the sets

Δn,C(j), j = 0,..., kn-1, are disjoint and we have

                               ∪
j = 1 

kn-1

Δn,C(j)  =  Γn,C(0) \ Γn,C(λkn
).

Furthermore it follows together with (2.3) that fn,C is constant on Δn,C(j) with fn,C(x) = λj+1 for

all x ∈ Δn,C(j). Hence we have

(5.1)          fn,C(x) dx = ∑
j = 0

kn-1

Δn,C(j)
fn,C(x) dx = ∑

j = 0

kn-1

λj+1 Leb( Δn,C(j) ).                        

Now we derive a representation for λj+1.Together with (5.1) this representation will give the

assertion. Note that for every j ∈ {0,...,kn-1} the empirical generalized λj-cluster also is an

empirical generalized λj+1-cluster (see proof of Proposition 2.2). Hence it follows that for every j

∈ {0,...,kn-1} we have 

           Fn(Γn,C(λj+1)) - λj+1,n Leb(Γn,C(λj+1)) = Fn(Γn,C(λj)) - λj+1 Leb(Γn,C(λj)).

From this equality we obtain that

           λj+1 = [ Fn(Γn,C(λj+1)) - Fn(Γn,C(λj)) ]  /  [ Leb(Γn,C(λj+1)) - Leb(Γn,C(λj)) ].

(5.2)           =  Fn( Δn,C(j) )  /  Leb( Δn,C(j) ).                                                                        

From (5.1) and (5.2) the assertion follows: 
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           fn,C(x) dx  =  ∑
j = 0

kn-1

Fn( Δn,C(j) )  =  Fn(Γn,C(0)) - Fn(Γn,C(λkn
)).

Now we show that the general case, i.e. the case without the monotonicity assumption, can be

reduced to the special case proven above. 

As already mentioned, fn,C(x) can be constructed in the “case of monotonicity” by putting the

slices Sn,C(λj) := Γn,C(λj-1) × [λj,, λj-1], j = 1,...,kn one on the top of the other. However, if we

do this and the sets Γn,C(λj) are not monotone, then the resulting figure in Rd+1 does not equal the

subgraph of fn,C(x), i.e. Sn,C := ∪j = 0

kn
Sn,C(λj) ≠ {(x,y) ∈ Rd × R : 0 ≤ y ≤ fn,C(x), x ∈ Γn,C(0) }.

Nevertheless, in any case, the volume of Sn,C in Rd+1 equals the L1-norm of fn,C(x). 

The volume of Sn,C does not change if some of the Sn,C(λj) are replaced by sets with the same

volume. We shall replace the sets Γn,C(λ) by their so-called “Schwarz symmetrizations” Γn,C(λ).

They are defined as balls with midpoint zero which have the same Lebesgue measure as Γn,C(λ).

The sets Γn,C(λ) are monotonically decreasing (in λ) for inclusion, because the Lebesgue measures

of the empirical λ-clusters are decreasing in λ (Proposition 2.2). Hence, replacing the sets Γn,C(λ)

by Γn,C(λ) and putting the resulting symmetrized slices Γn,C(λj-1,n) × [λj,, λj-1], j = 1,...., kn one

on the top of the other, gives us a function fn,C which has the same properties as fn,C used in the

above proven special case: It is a pure jump function which takes the same constant values λj, j =

0,...,kn-1 as fn,C on sets which have the same Lebesgue measure as the sets Δn,C(j). By

construction fn,C has the same L1-norm as fn,C. This L1-norm can be calculated as in the “case of

monotonicity” treated above.
 ❏

 

Proof of Theorem 3.1:  As mentioned already, we shall use results about the empirical

generalized λ-clusters. One of these results is the following inequality which has been used in

Polonik [10, 11]. (For completeness we give the proof of the inequality below.)  If Γ(λ) ∈ C then

we have for every η > 0 

d1(Γ(λ),Γn,C(λ)) ≤ Leb{x: | f(x) - λ | < η} 

(5.3) + η-1 [ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)) ].               
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For any measurable set Λ ⊂ [0,∞) define

                                fn,C(x, Λ)   :=   
Λ

1Γn,C(λ)(x) dλ.

Analogously we define f(x, Λ) with Γ(λ) instead of Γn,C(λ). We need the following lemma which

will be proven below:

Lemma 5.1:   For every measurable set Λ ⊂ [0,∞) and every normalizing class C we have

              d1( fn,C, f )   ≤    2 
Λ

d1( Γn,C(λ), Γ(λ) ) dλ+  2 f(x, Λc) dx          

where Λc = [0,∞) \ Λ. 

For 0 < η < L let Λη,L := [η, L]. It follows from Lemma 5.1 that 

(5.4)         d1( fn,C, f )  ≤  2 
η

L
d1( Γn,C(λ), Γ(λ) ) dλ  +  2 f(x, Λη,L) dx.          

Let ϕ(λ) := Leb(Γ(λ)) = Leb{x : f(x) ≥ λ }, λ ≥ 0. The second integral on the right-hand side in

(5.4) can be written as 2
M

∞ ϕ(λ)dλ + 2
0

η ϕ(λ) dλ. Both integrals can be made arbitrarily small be

choosing L large enough and η small enough, respectively. (Note that 
L

∞ ϕ(λ) dλ = (f(x) - L)+ dx

and  
0

η ϕ(λ) dλ = (η∧f(x)) dx ). As for the first integral on the right-hand side in (5.4) it follows

from (5.3) that

η

L
d1( Γn,C(λ), Γ(λ) ) dλ   ≤  

η

L
Leb{x: | f(x) - λ | < η} dλ 

                                                    +  η−1 
η

L
[ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)) ]  dλ.

Hence we have

 d1( fn,C, f ) ≤  2 η−1 
η

L
[ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)) ]  dλ  +  A(η,L)
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with

           A(η,L)  :=  2 f(x, (Λη,L)c) dx  +  2 
η

L
Leb{x: | f(x) - λ | < η} dλ.

Now we show that A(η,L) → 0 as η → 0 and L → ∞. We already know (see above) that the first

integral in the expression of A(η,L) converges to zero as η → 0 and L → ∞, respectively. Hence it

remains to consider the second integral. Note that for η small enough we have

(5.5)        Leb{x: | f(x) - λ | < η} = ϕ(λ - η) - ϕ(λ + η)  -  Leb{x : f(x) = λ - η}.                  

Since there exist at most countable many levels μ with Leb{x : f(x) = μ} ≠ 0 we have

           
η

L
Leb{x: | f(x) - λ | < η} dλ  =  

η

L
ϕ(λ - η) - ϕ(λ + η) dλ

                                                            =  
0

2η
ϕ(λ) dλ  -  

L  − η

L + η
 ϕ(λ) dλ.

Since f is integrable, both integrals in the last line converge to zero as η → 0, and therefore A(η,L)

→  0 as η → 0 and L →  ∞. To finish the proof of the theorem it remains to show that the

measurable cover of 

                       
η

L
[ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)) ]  dλ 

converges to zero with probability 1 as n → ∞ for every fixed η and L with L > η > 0. But this

follows from the GC(F)-property of C.
                                                                                                                                       ❏

Proof of Theorem 3.2 and Theorem 3.4:  Let αn be as follows:   

                      αn  =  
   n - 1/3 (log n) 1/3  if C is a VC-class      

defined as in Theorem 3.4 if C satisfies (3.3).
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First we give an outline of the proof in some heuristic arguments. In (3.2) we showed that  

(5.6)                          d1(fn,C, f )  ≤  d1(Γn,C(λ), Γ(λ)) dλ.                                                

Therefore we look at the behaviour of d1(Γn,C(λ), Γ(λ)). If ϕ is differentiable at λ then Leb{ x: |

f(x) - λ | < η } = O(η) (cf. (5.5)), and one can show (see Polonik [11]) that in this situation

d1(Γn,C(λ), Γ(λ)) = OP(αn). However, in general these rates do not hold uniform over λ. But we

shall show (Proposition 5.2 below), that there exists a function gn(λ) such that for a “large

enough”(see below) region Λn ⊂ [0,∞) we have

                     sup λ ∈ Λn
 [ gn(λ) d1(Γn,C(λ), Γ(λ)) ]* = OP(αn).

If in addition gn
−1(λ) is integrable over Λn, then it follows that 

                      d1(fn,C, f )*  =   OP( αn 
Λn

gn(λ) −1dλ ).

It will turn out that  αn 
Λn

gn(λ)−1 dλ = Ψ(αn), such that the assertions of Theorem 3.2 and

Theorem 3.4, respectively, follow. Note that in general d1(Γn,C(λ), Γ(λ)) need not converge to

zero at critical levels λ  (cf. Section 3). Therefore, in (5.6), we shall leave out “small”

neighbourhoods around critical levels, such that these neighbourhoods tend to zero fast enough as

n tends to infinity. This leads to the “large enough” region Λn considered above.

As above let ϕ(λ) := Leb(Γ(λ)) = Leb{x : f(x) ≥ λ } and let ϕ' denote the derivative of ϕ with

respect to λ. The proof of the next proposition will be given at the end of Section 5. 

Proposition 5.2:  Suppose that the assumptions of Theorem 3.2 and Theorem 3.4,

respectively, hold. Let αn be as above and let a = an and b = bn, 0 < a < b ≤ ∞, such that the

interval (a - αn, b + αn] contains no critical level. For λ ∈ (a,b) let ξλ,n be defined through the

equation

              Leb{x : | f(x) - λ | < αn }  =  ϕ(λ−αn)  −  ϕ(λ + αn)  =  − 2 ϕ'(ξλ,n) αn.

Then we have as n → ∞ 

              sup λ ∈ (a,b) [ [ |ϕ'(ξλ,n) | ∨ 1]-1 d1(Γn,C(λ), Γ(λ)) ]*  =  OP(αn).
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Let M = sup f(x) < ∞. We obtain from Lemma 5.1 with Λ = (αn,M) that

             d1( fn,C , f )   ≤    2 
αn

M
d1( Γn,C(λ), Γ(λ) ) +  2 

0

αn
ϕ(λ) dλ 

Now we consider the first integral on the right-hand side. To simplify the notation we assume that

f has only one critical level λ0 > 0. (The proof for the case of more than one critical level is

completely analogous). Suppose that λ0 < M, then we have 

         
αn

M
d1(Γn,C(λ), Γ(λ)) dλ = 

αn

λ0 − αn 
d1(Γn,C(λ), Γ(λ)) dλ     

                        +
λ0 − αn

λ0 + αn 
d1(Γn,C(λ), Γ(λ)) dλ  

(5.7)                 +
λ0 + αn 

M
d1(Γn,C(λ), Γ(λ)) dλ.                      

The second integral on the right-hand side of (5.7) is of the order OP(αn), because for any fixed ε
> 0 we have for large enough n (such that αn < ε) that

sup λ ∈ (λ0 - αn,λ0 + αn) d1(Γn,C(λ), Γ(λ))  

                              ≤  sup λ ∈ (λ0 - αn,λ0 + αn) [ Leb(Γn,C(λ))  +  Leb(Γ(λ)) ] 

                              ≤  Leb(Γn,C(λ0 - ε)) + Leb(Γ(λ0 - ε))  

                              ≤  2 Leb(Γ(λ0 - ε)) + OP(1)  =  OP(1).

The second inequality of this chain of inequalities follows from the monotonicity of the functions λ
→ Leb(Γ(λ)) and λ → Leb(Γn,C(λ)) (for the latter see Proposition 2.2) and the third inequality

follows from the consistency of Γn,C(λ) for all λ that are no critical level (Polonik [10, 11]).

Now we consider the first and the third integral on the right-hand side of (5.7). They both are of

the form  
a

b
d1(Γn,C(λ), Γ(λ)) dλ, where a and b fulfill the requirements of Proposition 5.2. Hence

it follows from Proposition 5.2 and the definition of ξλ,n that as n → ∞
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a

b
d1(Γn,C(λ), Γ(λ)) dλ  ≤   OP*(αn)  

a

b
[ |ϕ'(ξλ,n)| ∨ 1] dλ

≤   OP*(αn)  [ (b + αn - a) + 
a

b
|ϕ'(ξλ,n)| dλ ]

=   OP*(αn) + OP*(
a

b
ϕ(λ − αn) − ϕ(λ + αn)  dλ )

=   OP*(αn) + OP*(
a−αn

a+αn
ϕ(λ) dλ  −  

b−αn

b+αn
ϕ(λ) dλ )

≤   OP*(αn) + OP*(
a−αn

a+αn
ϕ(λ) dλ  )

The last inequality holds since ϕ is decreasing. Now we apply these upper bounds to the first and

the third integral on the right-hand side of (5.7). This gives 

λ0 + αn 

M
d1(Γn,C(λ), Γ(λ)) dλ  ≤  OP*(αn) + OP*(

λ0

λ0 + 2αn
ϕ(λ) dλ  )  =  OP*(αn),

and

αn

λ0 − αn 
d1(Γn,C(λ), Γ(λ)) dλ  ≤  OP*(αn) + OP*(

0

 2αn
ϕ(λ) dλ  )  =  OP*(Ψ(αn)).

The assertion of the theorems follow by collecting the just derived upper bounds of the three

integrals on the right-hand side of (5.7). 

For λ0 = M we of course split the integral on the left-hand side into two integrals extended over

(αn, λ0 - αn) and (λ0 - αn, λ0), respectively. Upper bounds for these two integrals can be

obtained analogously to the one given above. They lead to the same results.

                                                                                                                                       ❏
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Proof of Theorem 3.5:  Let M = M(C) = 1/ Leb(C). First we show that                  

(5.8)              [ M - λ ]  [ Leb(C Δ Γn,C(λ)) ]  ≤  2 supC∈C|Fn(C) - F(C)| .                        

This can be seen as follows: 

Hλ(ΓC(λ)) - Hλ(Γn,C(λ)) = [ F(C) - λ Leb(C) ] − [ F(Γn,C(λ)) - λ Leb(Γn,C(λ)) ] 

                       = [ 1 - λ(Leb(C) ] - [ Leb(Γn,C(λ)) / Leb(Γn,C(λ)) - λ Leb(Γn,C(λ)) ] 

                       = [ 1 / Leb(C) - λ ]  [ Leb(C) - Leb(Γn,C(λ)) ] 

                       = [ M - λ ]  [ Leb(C Δ Γn,C(λ)) ].

Hence  
                   [ M - λ ]  [ Leb(C Δ Γn,C(λ)) ]  ≤  (Fn - F) (Γn,C(λ)) - (Fn - F) (C).
  

This proves (5.8). An application of Lemma 5.1 with Λ = [0, M] together with (5.8) gives

d1( fn,C, f ) ≤  2 
0

M
Leb(Γn,C(λ) Δ C) dλ  

        = 2 [ 
0

M-βn
+ 

M-βn

M
] Leb(Γn,C(λ) Δ C) dλ 

      = OP(βn) 
0

M-βn
(M(C) - λ)-1 dλ + 

M-βn

M
Leb(Γn,C(λ) Δ C) dλ 

Now, the first term in the last line is of the order OP(βn) O(log 1/βn). It remains to show that the

second integral in the last line is not of slower order. Actually we have

                    
M-βn

M
Leb(Γn,C(λ) Δ C) dλ    = OP(βn).

This follows from supM-βn < λ < M Leb(Γn,C(λ) Δ C) = OP(1), which in turn can be proven by

analogous arguments as given after (5.7) above.
                                                                                                                                                         ❏
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Proof of Corollary 3.6:  By taking α = 1/2 it follows from Theorem 5.3 that in the situation of

(a), || Fn - F ||C = OP(n−1/2), and in the situation given in (b) we have  

                   || Fn - F ||C = OP

n−1/2 ,          r < 1 

n−1/2log n,   r = 1 

n -1/(r+1),        r > 1

.

Now the assertions follow directly from Theorem 3.5. 
                                                                                                                                                         ❏

Proofs of Section 5:   

Proof of inequality (5.3):  First note that 

         Hλ(Γ(λ)) - Hλ(C)  =  
Γ(λ)

( f(x) - λ ) dx - 
C

( f(x) - λ ) dx

=  
Γ(λ)\C

( f(x) - λ ) dx - 
C \Γ(λ)

( f(x) - λ ) dx

=  
Γ(λ)ΔC

| f(x) - λ | dx.                                                     

To shorten the notation we denote Dn,C(λ) = Γn,C(λ) Δ ΓC(λ), so that Leb(Dn,C(λ)) = d1(Γn,C(λ),

ΓC(λ)). Write Leb(Dn,C(λ)) as a sum of two terms:

Leb(Dn,C(λ))

               = Leb(Dn,C(λ) ∩ {x: | f(x) - λ | < η}) + Leb(Dn,C(λ) ∩ {x: | f(x) - λ | ≥ η}).

The first term on the right-hand side is dominated by F{x: | f(x) - λ | < η}. As for the second term

we have

                  Hλ(Γ(λ)) - Hλ(Γn,C(λ))  =  
Dn,C(λ)

| f(x) - λ | dx 
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                                                          ≥ η Leb( Dn,C(λ) ∩ {x: | f(x) - λ | ≥ η } ).

It remains to show that

                     Hλ(Γ(λ)) - Hλ(Γn,C(λ)) ≤ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)).

But this easily follows from 0 ≤ Hn,λ(Γn,C(λ)) - Hn,λ(Γ(λ)) by using the fact that Hn,λ = Hλ + Fn -

F.  

                                                                                                                                                         ❏

Proof of Lemma 5.1:    For every given set Λ  ⊂ [0,∞) it follows immediately from the

definition of f(x, Λ) that f(x) = f(x, Λ) + f(x, Λc). The analogous decomposition holds for fn,C.

Hence,

    d1( fn,C,f )   ≤  | fn,C(x, Λ) - f(x, Λ) | dx  +  fn,C(x, Λc) dx  +  f(x, Λc) dx 

(5.9)                =     d1( fn,C(., Λ), f(., Λ) )   +  fn,C(x, Λc) dx  +  f(x, Λc) dx.             

Now consider the second integral in the last line. Since fn,C(x) dx = 1 (Proposition 2.3) we have:

         fn,C(x, Λc) dx   =  1   -  fn,C(x, Λ) dx

                                     =  f(x) dx   -  fn,C(x, Λ) dx

                                     =  f(x, Λ) - fn,C(x, Λ)  dx  +  f(x, Λc) dx 

                                     ≤  d1(fn,C(.,Λ), f(., Λ) )  +  f(x, Λc) dx. 

Together with (5.9) the assertion follows.  
                                                                                                                                                         ❏
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Proof of Proposition 5.2:  The idea of the proof is the same as for the proof of Theorems 3.6

and 3.7 in Polonik [11]. However, since here we have to use the function-indexed empirical

process (and not only the set-indexed empirical process as in Polonik [11]) we need several new

arguments and therefore we give the complete proof.  

To shorten the notation let gn(λ) = (|ϕ'(ξλ,n)| ∨ 1)−1, λ ∈ (a,b). Choose η = αn in (5.3). Then, by

definition of ξλ,n, multiplication of (5.3) by gn(λ) leads to

gn(λ) d1(Γn,C(λ), Γ(λ)) ≤  2 αn +  αn
−1 gn(λ) [ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)) ]

Hence, we obtain

d1(gn(λ) Γn,C(λ), gn(λ) Γ(λ))

                       ≤ 2 αn +  αn
−1 [ (Fn - F) (gn(λ) Γn,C(λ)) − (Fn - F) (gn(λ) Γ(λ)) ],

(5.10)            = 2 αn +  αn
−1  (Fn - F) [  gn(λ) ( Γn,C(λ) \ Γ(λ)  −  Γn,C(λ) \ Γ(λ) )  ] 

 

where we identify sets with their indicator functions and for any measure F and any integrable

function g we denote F(g) = g dF. Let GC = { r(C\D - D\C), r ≤ 1, C, D ∈ C} and for a sequence

{δn} of positive real numbers define 

An = { sup λ ∈ (a,b) d1(gn(λ) Γn,C(λ), gn(λ) Γ(λ)) > 3 δn }   and 

 

Bn = { ∃ g ∈ GC, such that || g ||1,Leb > 3 δn and  

                                                            || g ||1,Leb  ≤  2 αn +  2 αn
−1   | (Fn - F) (g) | }

where for any measure G on Rd, || . ||1,G denotes the L1-norm with respect to G. Then, since for

C, D ∈ C and 0 < r < 1 we have d1(rC,rD) = ||r(C\D - D\C)||1,Leb it follows from (5.10) that An ⊂
Bn. Hence, in order to prove Proposition 5.2 we have to show that there exists a constant C > 0

such that for δn = C αn/3 we have P*(Bn) → 0 as n → ∞. Note that with this choice of δn we have

Bn ⊂ Cn, where

Cn = { ∃ g ∈ GC, such that || g ||1,Leb > C αn and  

                                                            1  ≤  2|C +  2 αn
−1   | (Fn - F) (g) | | || g ||

1,Leb
 }
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We shall show that P*(Cn) → 0 as n → ∞. In order to prove this it suffices to show that there

exists a constant C > 4 such that  

    P*(supg∈GC : || g ||1,Leb > 3 Cαn  |(Fn - F) (g)| | || g ||
1,Leb

 > αn
 / 4 )  → 0    as    n → ∞.

In the following the supremum is always extended over g ∈ GC which satisfy a certain condition.

To shorten the notation we omit “g ∈ GC“. We have 

P*(sup ||g||1,Leb > Cαn  |(Fn - F) (g)| | || g ||
1,Leb

 > αn
 / 2 )  

                     ≤  ∑
j = 0

∞

P*( sup  || g ||1,Leb ≤ C2j αn
  | (Fn - F) (g) | > C 2j−1 αn

2 ) 

                     ≤  ∑
j = 0

∞

P*( sup  || g ||1,Leb ≤ C2j αn
  | νn(g) |  > C 2j−1 n1/2 αn

2 )

                     =  ∑
j = 0

∞

pn,j,

where νn = n1/2(Fn - F). In order to prove that the last sum converges to zero as n tends to infinity,

we shall use results of Alexander [1]. For the case that C is a VC-classes his results can be used

directly. However, for the case that C satisfies (3.3) we need to extend his results from the set-

indexed to the function-indexed empirical process. We formulate this extension (Theorem 5.3,

below) for a special case such that we can use it directly. For a class G of functions with G ⊂ Lp(F)

let

Np,B(ε, G, F) := inf{m ∈ N: ∃ g1,...,gm measurable, such that for every g ∈ G

                             there exist  i, j ∈ {1,..., m} with gi ≤ g ≤ gj and || gj - gi ||p,F < ε }, 

where || . ||p,F denotes the Lp-norm with respect to F. Then log Np,B(ε, G, F) is called metric

entropy with bracketing of G in Lp(F).

Theorem 5.3 (Alexander):  Let G be  a class of functions with 0 ≤ g ≤ 1. Let L(x) = log(x ∨
e), n ≥ 1, α  ≥ supg∈G var νn(g), with νn = n1/2(Fn - F) and define Ψ(L,n,α) = L2 / 2α(1 +

L/3n1/2α )
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Part I:  Suppose that G is a n-deviation measurable class of functions such that the graph region

class { {(x,t), g(x) ≥ t ≥ 0}, g ∈ G } is a (v,k)-constructible VC-class. There exist constants Ki =

Ki(v,k), i = 1,2, such that if 

L ≥ α1/2 

and L > K1 n−1/2 L(n)

and L > K2 ( α L(1/α) )1/2, 

then 
P*(supg∈G   | νn(g) |  > L )   ≤   5  exp{ -1/2  Ψ(L,n,α) }.

Part II:  Suppose that 

       log N1,B(ε, G, F)  ≤  A ε−r        ∀ ε > 0.

Then there exist constants Ki = Ki(r,A), i = 1,2,3, such that if 

L  ≥  

K1α (1 − r)/2   if  r  <  1

K2 L(n)        if  r  =  1

K3n (r − 1)/2(r+1)    ∀r   

then 
P*(supg∈G   | νn(g) |  > L )   ≤   5  exp{ -1/2  Ψ(L,n,α) }.

Part I of Theorem 5.3 directly follows from Theorem 2.8 of Alexander [1]. The proof of part II

essentially is the same as the proof of Corollary 2.4 of Alexander [1]. The changes that have to be

made will be outlined below after the proof of Proposition 5.2. 

Remember that M = sup {f(x)} < ∞. Let C > 0 be a constant. It will turn out that C can be chosen

to be bigger than 2 as required. Define

                    GC,n,j = { g ∈ GC:  ||g||1,F  <  M C 2j αn }, 

then we have       pn,j   ≤  P*( sup F n,j 
 | νn(f) | >  C 2j−1 n1/2 αn

2 ).
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Note that for any g ∈ GC we have var( νn(g) ) ≤ || g ||22,F ≤ || g ||1,F ≤ M || g ||1,Leb, so that  

                  sup g∈GC,n,j 
 var( νn(g) ) ≤ M C 2j αn.

We now want to apply Theorem 5.3 for fixed n and j with α = M C 2j αn and L = C 2j−1 n1/2 αn
2.

First note, that if log N1(ε,C,F) = O(ε−r), then log N1,B(ε,GC,F) is of the same order. This is easy

to verify. Now one has to check that the conditions of Theorem 5.3 are satisfied with this choice of

α and L. This is an easy calculation, which in addition shows, that the conditions are satisfied for

all C > C0,  C0 large enough, independent of n and j. Hence, as required, C can be chosen to be

bigger than 2. It follows that 

           ∑
j = 1

∞

pn,j  ≤  5 ∑
j = 1

∞

exp{ -1/2  Ψ(C 2j−1 n1/2 αn
2, n, M C 2j αn) }  

                        =  5 ∑
j = 1

∞

exp{ − (C 2j n αn
3) /  (8M (1+ αn/6M) }.

Since αn → 0 as n → ∞ and n αn
3 ≥ log n it follows that ∑

j = 1

∞

pn,j → 0 as n → ∞. 

                                                                                                                                                         ❏

  

Remarks on the proof of Theorem 5.3, Part II:  The proof of Alexander [1], Corollary

2.4, goes through almost word by word, if one replaces δj by δj
2 and uses L1-bracketing functions

instead of L2-bracketing functions. (In constructing the δj one has to use Lemma 3.1 with H(x) =

log N1,B(x2,G,F) instead of H(x) = log N2,B(x,G,F) ).

Alexander formulated this result only for the case that G is a class of sets, where he gave the

condition on the metric entropy in terms of the L2-bracketing numbers. However, for classes of

sets one has || g ||22,F = || g ||1,F, so that N2,B(ε, G, F) = N1,B(ε2, G, F). Hence, for classes of sets it

does in principle no matter if the conditions are formulated in L1-or in L2-bracketing numbers.

However, for function classes G with 0 ≤ g ≤ 1 for all g ∈ G one has || g ||22,F ≤ || g ||1,F, so that,

heuristically speaking, in order to control the L1- as well as the L2-norm of functions in G, one has

to give conditions in terms of the L1-norm. 

                                                                                                                                                         ❏
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