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Abstract 

Well-known results for sums of independent stochastic processes are extended to processes 

S = CyZI 4in(i), where 4 = (&.) _ ., ._ ,, I<, , < ,, is a collection of independent stochastic processes +ij 
on some set Y-, and I7 is a random permutation of { 1,2, . ., n} such that n, Q, are independent. 
The general results, a uniform Law of Large Numbers and a functional Central Limit Theorem, 
are applied to permutation processes and randomized trials. 

Key words: Random permutation; Symmetrization; Permutation process; Randomized trials; 
Conservative procedures 

AMS Subject Classijications: Primary 60F05, 60F15; Secondary 62G10, 62615. 

1. Introduction 

The starting point of the present paper are results of Alexander (1987) on stochastic 

processes s = (s”((t))r.~ of the form 

with independent processes 61,&z, . . ., & on a set 9. Special cases are empirical 

processes and set-indexed partial sum processes. Another useful reference for this 

topic is Pollard (1990). 

There are various statistical applications involving experimental randomization, in 

which the & can be viewed as a random subsample of a larger family of processes. 

Precisely, let C$ = (4ij)l S i,j S n be a collection of independent stochastic processes 
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~ij on F. Let KI be a uniformly distributed random permutation of { 1,2, . . ., n}, where 

II,4 are independent. In what follows we investigate the stochastic process 

i=l 

Conditional on II, this process S has the same structure as s”, but we are interested in 

its unconditional behavior and thus have to account for the dependence of the 

summands $in(i). At first glance S seems to have a rather special form, but one can 

represent quite different processes in this way. To give a simple example, let M be 

a uniformly distributed random subset of { 1,2, . . ., n) with fixed cardinality #M = m 
such that M and $,,$a_...,$” are independent. Then CicM~i is distributed as 

xi $inci,, if Z($ij) + T(4i) for j I m and 4ij s 0 for j > m. 

An early reference in this context is Hoeffding (1951), who considered statistics of 

the form 1 i Tin(i) with some fixed r = (rij) 1 < i,j 5 n in R”““. His combinatorial central 

limit theorem has been extended by numerous authors. In particular, Chen (1978) 

considers C i Rin(i) with a random n x n matrix R. Classical applications are rank tests 

and permutation tests. 

Section 2 contains general asymptotic results. That means, II, 9, and 4 depend on 

an additional, but hidden index v = 1,2, . . . . and all asymptotic statements refer to 

v + 00 . The results and proofs are similar to parts of Alexander (1987). The main 

contribution is a new method of symmetrization, which is suitable for the present 

situation. Throughout this paper it is assumed that 2 i n = n, -+ cc and that the 

mean function p : .F --* R” “” of 4 exists, namely Ilij(t) := ~~ij(t). An elementary 

calculation shows that 

PS(t) = n-%++(r), (1) 

where Y ++:=~ij~ij,ri+:=~jrijandr+j:=~irijforr~[W”””.TheoremlandCorol- 

lary 1 give sufficient conditions for 

IIS - PSI1 -‘PO’ 

where II f II = II f II .T : = suptes If(r)1 for f: r -+ R. In addition assume the existence 

of the covariance function y : ~7 x .F --f R”” n Of 4, namely yij(S, t) I= COV(+ij(S), 4ij(t)). 

Let 

Gr I= (rij - K’ri+ - K’r+j + n-2r++)l~i,j~n 

and let <r, s) := C’ij rijsij be the usual inner product on 5X”“” . Then standard 

calculations such as in Hoeffding (1951) show that 

Cov(S(s), S(t)) = n- ‘Y+ + (s,t) + (n - I)- ’ <G/&),G/4)). (2) 

Theorem 2 gives sufficient conditions, under which the process S - PS can be 

approximated by a centered Gaussian process having uniformly continuous paths 

with respect to the pseudo-distance p on Y-, which is defined by 

p(S, t)* := n- ‘C P($bij(S) - ~ij(t))’ 2 (1 - n-‘)Var(S(s) - S(t)). 
ij 

(3) 
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Two different applications are given in Sections 3 and 4. The first one is an analysis 

of permutation processes, which arise in connection with certain permutation tests. 

The second one concerns randomized trials, in which subjects with subject- and 

treatment-dependent distributions of responses are randomly assigned to different 

treatments. 

2. Asymptotic resylts 

In order to avoid measurability problems, we assume that the index sets Y = YY 

are countable; see Pollard (1984) for other conditions that guarantee measurability of 

various suprema. Alternatively one may assume that the underlying probability space 

is discrete (as it is in Section 3). The results are defined in terms of the random 

pseudo-distances d,, dz, dt on Y-, where 

dp(s, tJP = dp(s, t I$in(i): 1 I i I n)” I= 1 1 $inci)(S) - 4in(i)(t)(P, p = I, 2, 

Note that Pd,Z is just p2 as defined in (3). For any pseudo-distance d on 9 define the 

covering numbers 

N(u,Y,d):=min 
i 

#YO:Y,cF, inf d(tO,t)<uVteY . 
taGTo I 

In the sequel {condition) stands for 1 if condition holds and 0 otherwise. 

Theorem 1. Suppose that all +ij are nonnegative and thefollowing conditions are satisfied: 

sup p+ + 0) = O(n); 
te9- 

(4) 

1 p II 4ij II { II $ij II > u> = o(n) VU > 0; 
ij 

N(u, F-, d,*) = O,(l) VU > 0. 

Then 11 S - 5’S 11 tends to zero in probability. 

(5) 

(6) 

Corollary 1. Suppose that (4) and (5) hold with ~(~,I in place of pij. If 

N(u, 5, d,) = O,(l) for arbitrary u > 0, then l/S - P’S 11 tends to zero in probability. 

Corollary 1 follows from Theorem 1, applied to the processes 4s’ := ~ij v 0 and 

4:;’ : = ( - 4ij) v 0 separately, because 
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Theorem 2. Suppose that the following conditions are satisfied; 

SUP 1 P4ij(t)’ = O(n); 
te.F ij 

Cpl14ijli”{ l14ijl12 > u> = o(n) Vu > 0; 
ij 

s a (logN(u, Y, d,))“’ -+pO (v -+ a3 ) w. JO). 

0 

Then 

(7) 

(8) 

(9) 

ll+~%-x~++0 and N(u, Y-, p) = O(1) vu>o, (10) 

sup I(s-PS)(s)-(S-IFPS)(t)J~,O (v+ co,cc~O), (11) 
s.teY: p&t) i: a 

(12) 

Moreover, let a,: F+ R be arbitraryfunctions such that C,,FIaV(t)I = O(1). Then 

D 

where DC;) is any metric on the space of Borel-probability measures on R, which 

metrizes weak convergence. 

Assertion (13) can be deduced from Chen (1978, Theorem 5.1). An alternative proof 

is given below. 

Before proving Theorems 1 and 2 let us describe the symmetrization used here: First 

of all one may assume that 

all numbers n = n, are even. (14) 

For let k be uniformly distributed on {1,2, . . . . n + I} such that 4, II, k are indepen- 

dent. Then 

n(i) if k # i I n, 

n’(i) := , IZ(k) if k<a+l=i, 

n+l if k=i, 

defines a uniformly distributed random permutation II’ of {1,2, . . . . n + I}. With 

~ij := 0 for (i,j)E(l, 2, . . . . n + l}‘\{l, 2, . . . . n]’ one may replace S with 

II+1 
S’:= C ~in’ci, = 

i=l 

S - ,$r {i = k} 6in(i) 3 
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because d(‘,.I4in’(i): 1 I i < n + 1) I d for d = dI, dt, d2, and 

lp /) S 6 S’ 11 I n-2 C [Fo )I $ij )I -+ 0 under (5), 
ij 

PIIS-S’)/‘I~-~CPIJ~~~/~~~O under(g). 
ij 

Inordertobound /lS-PS/),wewriteS=S,+S,c,whereZ:=(1,2,...,n/2},and 

SW := 1 +jn(i)> MC := (192, . . ..H}\M. 
ieM 

for any set M c {I, 2, . . . . n}. Since one may rearrange the processes @ij with respect to 

the first index i, it suffices to bound I( S1 - IF’S1 I(. This process S1 - PS, is symmetrized 

by subtracting a dependent copy rather than an independent one. Namely, we 

consider S, - SF in place of S, - BS,; where 

sT := C 4in(i+nj2). 
iel 

Note that Sr and ST are dependent and identically distributed, while conditional on 

the random set ZZ(Z) they are independent and have different distributions (in general). 

Let E = (pi, c2, . . . ,E,) be a Rademacher sequence, independent from 4 and ZZ. Then 

3(s1 - sF) = Y C &i(4iI7(i) - 4in(i+n,2)) . 

( iel 1 

This can be seen by conditioning on the sets {n(i), ZI(i + n/2)}, i E I. Consequently, it 

suffices to bound the supremum norm of 

s; : = C &i 4in(i) 

iel 

The next two lemmata are needed for justifying this symmetrization. The first one is 

about the conditional expectation and Variance of Sr, SF given ZZ(Z), while the second 

one is a modification of the symmetrization lemma in Pollard (1984). 

Lemma 1. Under (14) 

W(SI* - pS,)(r)ln(Z)) = - W(S, - pS,)(r)In(Z)), 

Var(S,(t) + S.?(t)IZZ(Z)) I2(n - 2)-‘(n - l)Var(S(t)) V’te.F-. 

Lemma 2. Let 2, Z* be two independent processes on a countable set 5 Further let 

f be a fixed function on T and 6 > 0 such that 

P{ l(Z* +f)(t)I I S} A P{ ((2 -f)(t) - (Z* + f)(t)) 5 S} 2 q > 0 QtE.T. 
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Then 

wzii >(3/2)(tl+6))1q-lp{1Iz-z*11 >Y> b. 

Proof of Lemma 1. Note first that _Y(S, 1 II(I) = J) is essentially of the same form as 

.9(S) for any fixed set J c {1,2, . . . . n} with # J = n/2; just replace C#J with (~ij)i~r,j~J 

and n with a uniformly distributed random bijection 17’: I -+ J. Furthermore, 

Y(S:)n(l) = J) = Y(S,( n(1) = J”). Now the equality for the conditional means 

follows from routine calculations. In analogy to (2) one obtains 

Var(S,(t) + S:(t)Ifl(Z) = J) = 2n+(yIJ(t,t) + yfJc(t,t)) (15) 

+ (n/2 - l)-‘((G(rJ)~(t),G(‘J)~(t)) 

+ <G”Jc’p(t), G”Jc’p(t))), 

where rlj := Cisl rij, riM := CjeM Yij, rIM I= CieI jEM rij, and 

GcrM)r := ({iEI}{jEM}(rij - 2n-‘r,j - 2n-‘ri, + 4n-2rIM))i<i,j<n 

for r E R”“” and M = J, J ‘. The mapping G defined in the introduction is the 

orthogonal projection from R”“” onto its subspace 

and G’I”’ is the orthogonal projection from R”“” onto 

Since vcrJ ) and I’(‘J”) are orthogonal subspaces of V, the right-hand side of (15) is not 

greater than 

2n-‘y++k t) + (n/2 - l)-l(GAt), G&)X 

and the desired inequality follows from (2). q 

Proof of Lemma 2. Suppose that If(t)] > (r] + 6)/2 for some t E Y. Then 

2 ~i2lf(t)l - l(Z -f)(t) - tz* +.!-)@)I > YI) 

2 P{l@ -f)(t) -e* +f)(t)l I J> 

2 q. 
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On the other hand, suppose that ilf (1 I (q + 6)/2. Let r = r(Z) be a 5random 

variable such that IZ(r)I > (3/2)(y + 6) whenever JIZIJ > (3/2)(~ + 6). Then 

WIZ-Z*ll >YI}~[FD{IZ(~)-Z*(r)l>1? and IZ(r)l>(3/2)(rl+W 

2 P{lZ(r)l - If(r)1 - l(Z* +f)(r)I ’ YI 

and I-W > (3/W + @> 

2 p{I(z* +f)(4l s 6 and IZWI > (3/2)(~ + S)> 

2 4wb)i > (3/2)(~ + 6)) 

= ~IIZII >(3/2)(~ + 8)). 0 

Proof of Theorem 1. According to (5) there exist numbers U, > 0 such that 

Conditions (4) and (6) remain valid if ~ij is replaced with ~ij : = 4ij { 1(4ij (1 _< u,}, and 

the mean of 11 S - xi fin )I is not greater than n-l Cij IFD )I 4ij )I { /I +ij II > u,}. There- 

fore, one may assume that 

As mentioned earlier, it suffices to show that (1 SI - PSI 11 + p 0, where we assume 

(14). One may symmetrize SI - BS, as described earlier. For 

Var(S(t)) I (n - I)-’ 1 p4ij(t)2 I U,(n - I)-‘p+ +(t), 

ij 

and the right-hand side tends to 0 uniformly in t E 9, by (4). Hence, Lemma 1 implies 

that 

sup Var(S,(t) + S_?(t) I n(Z) = .I) = o(1). 
ter, JCjl.2, . . . . ?I): #J=n/z 

Moreover, the processes Z : = SI - PSI and Z * : = SF - PSI are independent condi- 

tional on n(Z), and f := p(Z(ZZ(Z)) equals - p(Z*(n(Z)). Thus, one can deduce from 

Lemma 2 that IIS1 - PSI)1 -+pO, if /lS;il +,O. 

Clearly, ) S;(s) - S;(t) I I dr (s, t) for arbitrary s, t E 7. Since all 4ij are nonnegative, 

one may write 

dl(st t, = C (4i17(i)(S)1’z + 4in(i)(t)“2) I+iU(i)(S)l’z - 4iTTCi)(t)1’21 

I 

I (s(s)“2 + S(t)““)d,*(S, t) 

I 2 /I s /I 1’2 d,*(s, t), 
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where the first inequality follows from the Cauchy-Schwarz and triangle inequalities. 

Hence fp( /I Sf (/ > 2y ) II, 4) is not greater than 

and for arbitrary t E F and y > 0, 

YlS#)l > 9lK4) I2exp - Y’ 
( ‘( 

2 1 cPiII(i)tt12 5 2 exp( - vl’/Ck II S II )L 

is1 

according to Hoeffding’s (1963) inequality. Consequently, it suffices to show that (I S /( 

is bounded in probability. 

We now apply LeCam’s (1983) square root trick: Let A4 := {i: Ei = l}. Since 

II S I/ I /I SM II + /I SMcll, and since S M, SMc are identically distributed, it suffices to 

show that 

II SM II 1/Z = /l SZ’ /( = O,(l). 

Conditional on (E, Ii’(M)) the two processes S$‘, S,$ are independent with 

sup P(S,#l&, n(M)) = (# M=)-l sup 1 Pijtt) 

1e.F tsF ieMC,js17(MC) 

I(#Mc)-lsup/L++(t) 

tsr 

= O,(1), 

because of (4) and # M “/n --) p l/2. Hence, one can apply the symmetrization lemma in 

Pollard (1984), and it suffices to show that 

I/ S‘Z’ - s$ I( = O,(l). 

However, 

l(SZ” - S$)(s) - (S‘$’ - S$)(t)l 

I IS$“(s) - s;2(t)l + l@(s) - S$(t)l 

I d,*(s, t\4in(i): REM) + dt(S,tl@in(i): ieM”) 

I 2 1’2 d,* (s, t). 

Thus, P ( /( S,$ - S$II > 2~ ( ZI,C#I) is not greater than 

N(2-“2i7,Y, d;) sup P(((S$’ - S$)(t)l > ~(17, 4) 
1E.F 

= O,(l) sup P(l(S, - s‘w=)(t)l > (So” + sm)rlK 4) 
ifs- 

I O,(l) sup P(l(S, - S,c)(t)l > s(t)“2 r?lfl, 4)> 
ter 
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and for all tEF and q >O, 

P(l(S, - S,c)(t)I ’ S(t)“2YIIn> 4) 

<2ex*( -gzSli)/(Z~~injil(i)‘))i2eX~(-02,(2u,))~0, 

by Hoeffding’s (1963) inequality. 0 

Before proving Theorem 2 let us mention an auxiliary result, which follows from 

oeffding (1951, Theorem 3), by a simple truncation argument. 

Lemma 3. Let Y = Y, E R” ‘” such that 

(r,r) = O(n) and c r,${rI?j > 1.4) = o(n) Vu > 0. 
ij 

Then 

Proof of Theorem 2. The arguments of Alexander (1987) carry over with only few 

modifications: We define processes $ij on F x F via 

$ijts> t, := +ij(S) - +ij(t). 

Then di(s, t) = Citj&cij(S, t) and p2 = Pdi. Note that 

N(u, Y X F-, d%(‘, . I~i2n(i): 1 < i I n)) I N(u/~, F, d2)’ = O,(l) VU > 0, 

because of (9) and 

d;((s, t), (s’, t’) 1 $i’,c,: 1 I i I n) I dZ(S, s’) + dz(t, t’). 

Moreover, 

SUP C P$ij(S,t)’ 5 4 SUP C P4ij(t)’ = O(n), 
s,re.T ij te_T ij 

~~ll~~II~~~~ll~i:.ll~x~ >U} 14CPJl~ijl/2{Jl~ij/Iz >“/4}=O(n) VU >O. 

ij ij 

Consequently, the first half of (10) follows from Theorem 1 applied to $6 in place of 

4ij. This, together with (9), yields the second half of (10). 

In order to prove stochastic equicontinuity of S - PS, assertion (ll), one may 

assume (14) and symmetrize as in the proof of Theorem 1. Thus, it suffices to show that 

sup I%(s) - %@)I -+P 0 whenever E(V) 10. 
s,teF. p&f) c E(Y) 
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Since d; is a uniformly consistent estimator of p2, one may replace p with d2. But then 

the assertion follows from Hoeffding’s (1963) inequality and the Chaining lemma in 

Pollard (1984) applied to the conditional distribution of S,E given 4 and n. 

Let F(U) be a subset of 5 such that # S(u) = N(u,F, p) and inf,.,(,, p(s, t) I u 

for all teF_. By (lo), # S(U) = O(l), and thus I(S - PS(/,,,, = O,(l), according to 

(7). But (11) implies that for any E > 0 there is a u > 0 such that 

I( S - PSI/ > 11 S - PS I/ scuj + 1 with asymptotic probability at most E. This yields 

(12). 
As for assertion (13), one can easily show that (7) and (8) remain valid, if y is 

replaced with the singleton {a,} and ~jj(U,,) := Cte__ a,,(t) +jj(t). Elementary calcu- 

lations show that these conditions can be reformulated as follows: 

<~(a,), ~(a”)> = o(n) and C Clij(a,)2 {CLij(a,)’ > u) = o(n) VU > 0, (16) 
ij 

r++(4 = W) and ~++(a,14 = o(n) Vu > 0, (17) 

where yij(a,) := Var(4ij(a,)) and Yij(a,IU) stands for p($ij - pij)(av)’ 

{(~jj - cljj) (a,)’ > u). In fact, the second half of (16) follows from the following simple 

inequality for integrable real random variables Y: 

PY{Y>U}2PY{PY>2U)/2 vu>o. (18) 

NOW write (S - PS)(a,,) as the sum of S’(U,) := Ci(4jn(j) - pj,(j,)(uy) and 

M(u,) : = 2 i (G~(U,))j,, . It follows from Lemma 3 and (16) that 

~W(M(a~)), Jr/-(O,(n - 1))‘(G&,)> G&v)>))+ 0. 

Since Var(S(u,)) equals n-‘y, + (a,) + (n - 1)-r (Gp(u,), Gp(u,,)) and M(u,) de- 

pends only on 17, it suffices to show that 

~(~(SO(~,)l~),~(O,~-'Y++(~,~))~,O. 

But this is a consequence of Lindeberg’s central limit theorem. For 

CYin(i)(K) = n-‘y++(%) + O,(l), 

The latter two claims follow from (17) because ln’Ci Yinci)(a,(u) equals n-‘y+ +(u,Ju), 

while Var(C, Yinci,(av) - Cj 4in(i)( a u VI )) . IS not greater than (n - 1) ’ uy+ + (a,). 0 

3. Permutation processes 

Let 5 = (cij)i s j,j s n be a collection of fixed points tij in some set X, and let F be 

a family of real-valued functions on X such that its envelope T(x) : = ~up~~~ 1 t(x)] is 
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finite for all x E X. For some constant c > 0 we define 

i.e. each ~ij is a nonrandom function on y. We now consider the asymptotic behavior 

of S = xi ~inci,, where n, t, c depend on v with n + cc as v -+ cc, while r is fixed. S is 

regarded as a random variable with values in the Banach space (I,(y)), I/. [I) of 

bounded functions on 5. Let 

N(u, F) : = sup N(u Q(T), y-, d,), 

where the supremum is over all discrete measures Q on X such that Q(T) < cc , and 

d, (s, t) : = Q ( ) s - t ( ). A useful inequality is 

N(u, F) < ACB VUE(0, l] 

for Vapnik-Cervonenkis subgraph classes y (A, B > 0); see Pollard (1984, Lemma 

11.25). 

Theorem 3. Suppose that the following conditions are satisjed: 

C2 C T(5ij)2 = O(n); (19) 
ij 

C2 C T((ij)2 {C’ T((ij)2 > U} = o(n) VU > 0; (20) 
ij 

s 

1 

(log N(u’, 5))“’ du < cc ; (21) 
0 

for some function I? on F x F-, 

IICov(S) - Rll.W+ 0. (22) 

Then F is totally bounded with respect to the pseudodistance 

p”(s, t) : = (IQ, s) + K”(t, t) - 2K”(s, t))l’2. 

Moreover, S - PS converges in distribution in 1, (F) to a centered Gaussian process 

@ = (@w),,T having uniformly continuous paths with respect to p, and Cov( @) = I?. 

An important special case is that 5ij = (vi, zj) E Y x 2 and y = F x $9 with families 

9 and Y of functions on Y and Z, respectively; we identify a pair (f; g)Ey with the 

function f x g(y, z) : =f(y)g(z), SO that ~ij(f; 9) = cf (yi)g(Zj). Processes of this type 

appear in various statistical applications. In the context of generalized bootstrap 

methods, Praestgaard and Wellner (1993) consider the case that %’ consists of one 

indicator function. Applications to the changepoint problem are given by Roman0 

(1989), Lausen and Schumacher (1992) and Diimbgen (1992). There zj = j/n and 

9 = ({. _< r): r E [O, l] >. If one wants to extend these methods to generalized 
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changepoint models such as in Carlstein and Krishnamoorthy (1992), one has to 

consider ZjE Rd and more general classes Y. 

Condition (21) is satisfied if 

s 

1 
(log N(u’, 9-))“’ du + r (log N(t.?, 9))“’ du < cc . 

0 s 0 

For let F and G be the envelopes of 5 and 3, respectively, and let Q be any discrete 

measure on Y x 2 such that Q(F x G) < co. Then 

Q(lfx g -f’ xs’l) I Q'(lf-f'l) + Q"(ls - s’l) vf,f’~F Vg, de%, 

where Q’(.) := Q(. x G) and Q”(.) := Q(F x .). Since Q’(F) = Q”(G) = Q(F x G), 

one can easily deduce that N(u, y) I N(u/2, F) N(u/2,%). 

To give a specific example, let Y = 2 = R and Zj := j/m with 1 I m < n. Further, 

suppose that the points yi = yi,v and m = m, satisfy 

Cyi=O and Cyf=n Vv, 
I 1 

1 y?{y2 > urn} = o(n) Vu > 0. 

Then the process (m-1’2 xi yi{zn(i) < r})rEIO, II converges in distribution to the stan- 

dard Brownian bridge if m = n and to the standard Brownian motion on [0, l] if 

m + co and m/n -+ 0. This is an extension of Billingsley (1968, Theorem 24.1), which 

follows from Theorem 3 and the subsequent remarks, when 9 = (y by} and 

% = {{. 5 r>: re[O, l]>. 

Proof of Theorem 3. One can write S - P’S as xi tiincij, where ~ij(t) := (G4(t))ij. We 

now show that the assumptions of Theorem 2 hold with these functions *ij in place of 

$ij. This implies Theorem 3, because 

p(s, t)’ = (1 - n-‘)n Var(S(s) - S(t)) 

converges to p(s, t)2 uniformly in s, try-, according to (22). 

With the measure qij : = 6,=ij + K~C,(~,~, + Sckj) + n-2 ~~~~~~~ one can write 

$ij(t) = qij(fijt) with a density fij E [ - C, c]. Then the Cauchy-Schwarz inequality 

yields 

Together with (18) one can deduce from (19) and (20) that 

c2q++(T2) = O(n) and c2 C qij(T2){C2qij(T2) > U} = O(n) VU > 0, (23) 
ij 
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which certainly implies (7) and (8). The random distance dZ(s, t)’ is not greater than 

Q(1.s - tl), where 

Q(.) I= 8c2 C qittci,(T.). 

Thus N(u, y-, d2) 5 N(u’/Q(T), .F), and (9) follows from (21) and Q(T) = O,(l). The 

latter fact is a consequence of (23). Cl 

4. Randomized trials 

Suppose that one is interested in the influence of different treatments (e.g. medical 

drugs) b = 1, 2, . . . . B on a group of subjects that are indexed by i = 1,2, . . ., n. Often it 

is not possible to expose one subject to several treatments, and one picks disjoint 

subsets D1, D2 ,..., DB of {1,2 ,..., n> randomly, where all subjects in D, receive 

treatment b. The assignment D := (Dl, . . . . DB) is uniformly distributed under the 

restriction that # D, = nb for all b = 1,2, . _ ., B with fixed integers nb 2 2. Then one 

observes the response Yi of subject i for all i E u b Db 

We assume that for each subject i there are distributions Pil, Pi*, . . . . Pis on 

a measurable space Y such that for given assignment D the Yi are independent 

random variables with 

S?(Yi[D) = Pib VieD,. 

A natural estimator for the average distribution Pb := n-l xi Pib is given by 

and one easily verifies that it is unbiased. The question is, how good these estimators 

are. More precisely, let F be a family of measurable functionsf: Y + R. Then we are 

interested in the behavior of the process S - P’S on F := 9 x {1,2, . . . . B), where 

s(f; b) : = n;” &(f). 

This example fits into our general framework as follows: Let Y = (Y,j)l S i,j~ ,, 

consist of independent Y-random variables Yij such that 

c!Z(Yij)=Pib vjEJb:= 1 Fl,<j< 
1 sc<b 

Further, let Y and n be independent. Then S can be represented as Ii $in(i), where 

~ij(f; b) I= tub “2f( Yij) {jE Jb}. 

In other words, we define Yi := Yinci, and Db := L’-‘( Jb). 
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An often made assumption is that 

(iid) Pi,= Pb Vi Qb. 

This can be justified if n is huge compared to n, + n2 + . . . + nB. Under (iid) the 
empirical processes ((S - PS)(f, b))fE9, 1 I b I B, are independent, whereas in 
general they are dependent. However, it is shown below that under (iid) the process 
S is maximally dispersed in a certain sense. 

Here (Gp(f, b))ij equals PI; 112 (Pi, - Pb) (f) ( {j E Jb} - n,/n), and one can derive 
from (2) that 

Cov(S) = V - d, 

where 

V((_C bL(g, 4) := {b = c> (Pb(fd - f’df)Pdd) 

+ ib = C> (n(n - l))-’ C (Pa - Pb)(f)(Pib - Pb)(g) 

= COVciid)(S(f; b), S(g, ~1) + {b = c> nb ’ A ((A b), (9, b)), 

The function A is nonnegative definite, i.e. Cs,teF a(s (s, t) is nonnegative for all 
a E [WY such that a(t) = 0 for all but finitely many t E F. Since each subject gets only 
one treatment, one cannot expect to find a consistent estimator for A without special 
assumptions. However, let 

c((f; b),(s,c)) := {b = c}(~ - l)-‘nJ~b(fg) - pb(f) @b(g)). 

Under (iid), p is an unbiased estimator for the covariance function of S. The 
remarkable thing is that in general, 

PP= v. (24) 

We now analyze the asymptotic behavior of S and punder the assumption that the 
number B of treatments and the (countable) family 9 with envelope F are fixed, while 
nb = nb,” 4 co for all b, and the averages Pb may also depend on v. Further, we 
assume that 

c P,(F ‘) = o(l), 
b 

(25) 

FP,(F’{F’ >nbu))+o Vu >O, (26) 

s 1 

(logN(m’, F))“’ du < a. (27) 
0 
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Under these conditions, 

II v- CoV~iid)(S)IIYx.T = OCn-‘) and IId llFx~ = 

Hence Cov(S) can be approximated by COv(iid)(S) - A, where A is negligible, if 

rib/n -+ 0 for all b. In what follows let B, and IF’* denote inner and outer probability, 

respectively. For A c l,(y) let B(A,s) be the set of all x~l,(S) such that 

inf,,, l/x - a/1 < F. 

Theorem 4. Suppose that conditions (25)-(27) hold. Then the conditions of Theorem 

2 are satisjied, and 

/I f- VII P-X9-‘PO. (28) 

Further, for arbitrary comex and symmetric sets C, c 1, (y )), 

[FD*{S- PSEB(C,,E)} > ~~id){S- PSEC,} + O(l) VE >O. (29) 

For instance, if Y = [w, one can compute simultaneous Kolmogorov-Smirnov 

confidence bands for the distribution functions of Pi, P2, . . ., Pg. Namely, let CI E (0,l) 

and R(a) > 0 such that 

Pill WOll [O. 11 I R(a)} = (1 - WB, 

where IV0 is a standard Brownian bridge on [0, 11. Then Theorem 4 and classical 

results for empirical distribution functions together imply that 

limsupP{IIS-PSI/ kR(a)}Ia, 

where 9 : = { {. I r} : r E R}. This is a new example for the phenomenon that standard 

procedures, which are motivated by assumption (iid), are still reliable and often 

conservative in the general case. Some other references for this topic are Neyman 

(1923, 1990) Copas (1973), Robins (1988) or Freedman et al. (1991, Chapter 27.3). 

For general Y and P one can estimate ~(iid)(S - P) consistently by the bootstrap 

estimator LZ’(s^ - SI D, Y), which is constructed as follows: 

S(f, b) : = il, 1’2 i$b.f( fiX 

where the random variables pl, p2, . . ., pn are conditionally independent given (D, Y), 

and 

Corollary 2. Suppose that (25)-(27) are satisjed. Then for arbitrary sets A, c 1, (y ), 

pJid){S- ~SEA,) 5 P(S-SEB(A,,E))D, Y) + O,(I), 

~(s^- SEA,I D, Y) I IFP*(iid)rS- ~SEB(A,,E)) + op(l) VE >O. 
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Theorem 4 and Corollary 2 together extend recent results of Liu and Singh (1992) 

who demonstrated that standard bootstrap methods typically yield conservative 

confidence sets, if applied to independent, but not identically distributed observations. 

Proof of Theorem 4. We first check the conditions of Theorem 2. One can easily show 

that (25) and (26) imply (7) and (8). Moreover, N (u, Y-, d,) I C, N(u, % x {b}, d2), and 

for any fixed b, 

dz((.L b),(g, b))’ = P^Af- g)‘) I 2k(Flf- gl) vf, gE%. 

Hence N(u, % x {b), d,) I N(u2/(2Pb(F2)), %), and condition (9) follows from (25) 

and (27). 

One may assume without loss of generality that 06%. Then one can deduce (28) 

from (lo), (12) and (25). For (P^,, - Pb)(fg) can be written as 

((d: - $)((f; b),(O, b)) + (dz’ - P2)((g>b)>(0,b)) - (d2’ - p2)((f,b),(g,b)))/2> 

while 

IPb(f)P&) - Pb(f)P&)l I K’ IIS - PSl12 + 2P*(P)n,1’2 IIS - PSII. 

It remains to prove inequality (29). Note that (25)-(27) involve only 9 and the 

averages P,,. Likewise p((f, b), (g, c))” = P,,(f’) + PJg’) - 2{b = c} Pb(fg) depends 

only on Pl,P2, . . . . P,. Thus (11) implies that for any 6 > 0 there is a sequence of sets 

Y0 = YO,, c % and mappings y = yy from % onto Y0 such that # To = O(1) and 

limsupP*{I(S’-S’oyll 26}<6, 

lim SUP Pgid){ I/ S’ - S’ o y /( 2 6} < 6, 

where S’ := S - PS. But (13) implies that _Y(S’l/,) and ~~iid)(S’I~.o) can be approx- 

imated by centered Gaussian distributions Q = QY and Q (iid) = Q (iid), y on I, (50 ) with 

covariance functions ( V - A) Jr0 x y. and VI,, x Y0 , respectively. Further, the mapping 

1,(%~)3xo++Txo:= x,, 0 y E 1, (S) is linear and isomorphic. Hence, 

p&i) (S’ E C,} I [FD(ijd){S’ ’ y E B(C,, S)} + 6 

= ~~iid)(S’(~oEr_lB(C,,6)) + 6 

i Qciid)(P - ’ B(C,, 26)) + 26 

for sufficiently large v. Since P -‘B(C,, 26) is also convex and symmetric, and since 

Al F0 XrO is nonnegative definite, Corollary 3 of Anderson (1955) implies that 

Q~iid)(r-‘B(Cv, 26)) I Q(r-‘B(Cv, 26)) 

I P{S’I,,Er-‘B(C,,36)} + 6 

I P,(S’EB(C,,~~)} + 26 

for sufficiently large v. Letting 6 3_ 0 yields (29). q 
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Proof of Corollary 2. Note that L?(s^lO, Y) is the same as $Pciid)(S) with pt, in place of 

Pb. Moreover, the pseudodistance p corresponding to S has to be replaced with d,, 

and 

Cov(S^(f,~),S(g,c)lR Y) = (% - l)n,’ Wx(s,c)). 

Now conditions (25) and (26) hold in probability, because 

PC, &(F2) = CbPb(F2) = O(1) and P&P^t,(F2{F2 > QU)) = o(l) for all u > 0. 

Since IId2’ - p2 l/~x~ jp 0 and II v - Covtiid)(S) II 9 x F -+ p 0, Theorem 2 implies that 

P 
( 

sup &S)(s)-(S-S)(t)/ >E 
s,teF:p(s,t) s a 

+po(v’ co,aJO) V&>O, 

and 

D 
(( 

3’ 1 a,(t)(S - S)(t) 
fEd 

for arbitrary functions a, : Y + R such that Ctsy lay(t)1 = O(1). Now the assertion of 

Corollary 2 follows with similar arguments as in the proof of (29). 0 
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