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Abstract. We prove that the distributions of spectral mean estimates from 

linear processes admit Edgeworth expansions. As a consequence, Edgeworth 

expansions are valid for Whittle estimates.

1. Introduction

We consider a real-valued stationary time series {Xt}t∈Z with EX1 = 0 and spectral density f.

Let us denote by 

A(φ,f) ≡ (  

0

π

φ
(1)

(α) f(α) dα , … ,  

0

π

φ
(d)

(α) f(α) dα)'  ( ≡  φf) (1.1)

the spectral mean, where φ
(r)

 are functions of bounded variation for r = 1, … , d. The

canonical estimate of A(φ,f) is

A(φ,IT) ≡ (  

0

π

φ
(1)

(α) IT(α) dα , … ,  

0

π

φ
(d)

(α)IT(α) dα)' ( ≡  φIT) , (1.2)

where IT   is the tapered periodogram, i.e. 

IT(α) ≡ (2π H2,T)
–1

  | ∑
t =1

T

ht Xt exp ( – iαt) |
2
 

(cf. Dahlhaus (1983)).

By a different choice for the function φ we get estimates for the autovariances at different

lags, the spectral distribution function and the spectral density function at a 

________
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finite number of points as well as quantities that are needed to compute the Whittle estimates.

If the underlying process {Xt} is Gaussian, Edgeworth expansions of the statistic in

(1.2) have been given for d = 1 and special φ's in the nontapered case by several authors:

Bentkus (1982) proves an expansion for kernel spectral density estimates and Taniguchi (1991)

shows the validity of Edgeworth expansions of generalized maximum likelihood estimators for

Gaussian ARMA-processes. Bose (1988) drops the assumption of Gaussianity. He gives

higher order approximations for a vector of autocovariances from a linear process. 

In this paper we establish Edgeworth expansions for the distribution of the statistic given

in (1.2) when the process is linear. The expansions are valid for φ's whose Fourier coefficients

decrease exponentially. The data are allowed to be tapered.  As an application of this result we

show that the distributions of the Whittle estimates admit Edgeworth expansions.

The paper is organized as follows: In section 2 we give the main results that include a

basic theorem for Edgeworth expansions for sums of dependent random vectors by Götze and

Hipp (1983). The application of these results to the Whittle estimates is found in section 3. In

order to make the paper more convenient for the reader we have transferred all proofs to section

4.

2. Main results

First we gather the assumptions needed in this paper:

(A1) {Xt}t∈Z is a real-valued linear process such that Xt = ∑u∈Z  au εt–u, 

where εt  are i.i.d. random variables satisfying Eε1 = 0, E ε1
2 = 1, E ε1

3 = 0, 

E ε1
2(s+1) < ∞ for some fixed s ≥ 3.

(A2) (ε1,ε1
2) fulfills Cramér's condition, i.e.∃ δ > 0, d > 0    ∀ ||t|| > d

| E exp(it'(ε1,ε1
2)') | ≤ 1 – δ .

(A3) The filter coefficients au and the Fourier coefficients φ(u) of φ decrease 

exponentially, i.e.

∃ 0 < ρ < 1   ∀ large u   | au| < ρ
|u|

 ,    || φ(u)|| < ρ
|u|

 .
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(A4) The data taper h: R → [0,1] is twice continuously differentiable,

h(x) = 0 for x∉(0,1)   and    H2 ≡  
0

1

h
2
(x)dx > 0.

(A5) ∑  = lim
T→∞

D( T ∫φIT)  is positive definite, where D denotes the dispersion 

matrix.

Remark 2.1. 

(1) The assumption that the third moment of ε1 is zero can be dropped. It is only made for

convenience.

(2) The minimum assumption we need is E ε1
8 < ∞. The reason is that the statistics considered

involve quadratic functions of εt  and Edgeworth expansions for sums of dependent random

vectors require the (s + 1)-th moment of εt
2 with s at least three.

In order to derive our main results we take the help of the following results of Götze and Hipp

(1983) (henceforth referred to as GH).

Let  {ZT,t}t=1,…,T   be a triangular array of d-dimensional, real-valued random vectors on an

abstract measure space (Ω, A, P) with E ZT,t = 0   ∀t  and

S T  =  cT
–1/2  ∑

t=1

T

ZT,t   , (2.0)

where cT  is a norming constant of order T to be specified. The function ΨT,s represents the

first (s – 1) terms of the Edgeworth expansion of the distribution of ST whenever such an

expansion is valid. For any random vector Z, D(Z) denotes the dispersion matrix of Z. Let ϕ∑
be the normal density with mean zero and dispersion matrix ∑ , and Φ∑ the corresponding

distribution function. c stands for a generic constant.  Let  f: R
d
 → R  be a measurable function

with Mr(f) ≡ sup
x

(1 + ||x||)
–r

|f(x)| < ∞. Define the average modulus of oscillation of f with

respect to a finite measure P by ω (f,ε,P) ≡ ∫ sup
||y– x||≤ε

|f(y) – f(x)| dP(x). 

Let Dj be σ-fields on (Ω,A,P) (write σ ( Dj∪
j=a

b
 ) ≡ Da

b )  and 0 < ρ < 1 such that
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C(1) E ZT,t = 0   ∀t.

C(2) E ||ZT,t||
s+1

 ≤ βs+1 < ∞    ∀t  for some s ≥ 3.

C(3)  ∃ YT,t,m∈D t–m
t+m     with   E ||ZT,t – YT,t,m||  ≤  ρm .

C(4)  ∀A∈D–∞
t

  , B∈Dt+m
∞

      |P(A ∩ B) – P(A) P(B)| ≤ ρm 
.

C(5) ∃ ε,η,ρ > 0    ∀ ||θ|| ≥ ε     ∀ ρ–1 < m < T

 # {t∈{1, … , T}: E | E exp(iθ'(ZT,t–m + … + ZT,t+m) | Dj: j ≠ t)| ≤ 1 – η} ≥ ρT .

C(6)  ∀A∈D t–p
t+p

  ∀t,p,m    E| P(A | Dj : j ≠ t) – P(A | Dj : 0 < |j – t| ≤ m + p)| ≤ ρm .

C(7)  lim
T→∞

D(ST) = ∑   exists and is positive definite.

Remark. 

The Cramér type condition C(5) is a weaker assumption than the condition (2.5) in GH.

Nevertheless, it suffices for the results of GH to hold as is pointed out by remark (3.44) in

GH. The weaker condition C(5) means that Cramér's condition is fulfilled for a sufficiently

large number of t's. Whereas condition (2.5) cannot be fulfilled in the situations we will

discuss, by some effort it is possible to verify C(5).

Let s0 be s or (s – 1) according to s is even or odd.

Theorem 2.1.  

Assume that C(1) – C(7) hold. Then there exists a positive constant δ not depending on f

and Ms0
(f), and for arbitrary κ > 0 there exists a positive constant c depending on Ms0

(f)

but not on f such that

| E f(ST) – ∫ f dΨT,s |  ≤  cω(f,T–κ , Φ∑) + o(T–(s–2+δ)/2) .

The term o(·) depends on f through Ms0
(f) only.
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Corollary 2.2.  

Assume C(1) – C(7). Then the following approximation holds uniformly over convex

measurable C ⊆ R
d
:

P(ST∈C) = ΨT,s(C) + o(T–(s–2)/2) .

To apply GH to the distribution of a spectral mean estimate first of all we have to find a

representation of the statistic of interest in (1.2) as a sum of appropiate random vectors. 

Parseval's identity implies

 

0

π

φ(j)
(α) IT (α) dα =  1

2π  φ
 (j)∑

|r|≤T

 (r) cT(r) ,

where   φ
 (j)

(r)  ≡  
0

π
φ(j)

(α) cos(αr) dα  are the Fourier coefficients of φ
(j)

 and

cT(r)  ≡ H2,T
–1  ht Xt ht+r Xt+r∑1≤ t , r≤T  is the tapered autocovariance estimate of {Xt}.

If φ
(j)

 are even, real-valued functions, we get  φ
 (j)

( r )  =  φ
 (j)

(– r)  for r∈Z (otherwise

consider the even extension of φ
(j) 

).

 

Equally, we have  cT(r) = cT(– r)  for r∈Z .

With   ψ(j)
(0) ≡ φ

 (j)
(0)   and    ψ(j)

(r) ≡ 2φ
 (j)

(r)    for r ≠ 0   we obtain further

 1
2π

  ψ(j)
(r)∑

r=0

T

 cT(r) =  (2π H2,T )
–1 ∑

r=0

T

ψ(j)
(r) ht Xt ht+rXt+r∑

t =1

T

=  (2π H2,T)
–1

 ψ(j)
(r)∑

r=0

T

∑
t =1

T

 ht ht+r Xt Xt+r ,

since h(r) = 0  for |r| > 1. Let

UT,t   ≡ ( ψ∑
r=0

T

 
(j)

(r) ht ht+r Xt Xt+r  )
'
j=1,…,d  (write ψ∑

r=0

T

(r) ht ht+r Xt Xt+r ), (2.1)
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 ZT,t   ≡ UT,t – E  UT,t (2.2)

and cT
–1/2 ≡ T1/2 / (2π H2,T). (2.3)

Then the standardized version of (1.2), i.e.

T(  

0

π

φ(α) IT(α) dα  –  E  

0

π

φ(α) IT(α) dα)

may be rewritten as

ST ≡ cT
–1/2 ZT,t∑

t=1

T

 .  (2.4)

We now state our main theorem.

Theorem 2.3. 

Under conditions (A1) – (A5) theorem 2.1 and corollary 2.2 hold for ST defined in (2.4).

Remark 2.4. 

(1) As in Theorem 2.10 of Götze and Hipp (1983) we can replace the Cramér condition (A2) by

smoothness conditions of the function to be integrated to get the expansion of Theorem 2.1.

Further, we have the analogous result to Theorem 2.11 of Götze and Hipp about the tail

behaviour without Cramér's condition (A2).

(2) Usually, tapering causes a lot of technical trouble (cf. Dahlhaus (1983)). The proofs of the

results given here need no special effort concerning tapering.

(3) Whereas in the cases of the estimates for the autocovariances (at different lags) and the

Whittle estimates it is not difficult to fulfill the assumptions (A1) - (A5), in the cases of the

estimates for the spectral distribution function and the spectral density function the assumption

(A3) is hardly to verify. It is an open question if the assumption that the Fourier coefficients

have to decay exponentially can be weakened and so Edgeworth expansions are valid at least

for modified versions of the estimates mentioned (e.g. for smoothed versions and special

kernels).
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3. Whittle estimates

Consider a linear process {Xt}t∈Z whose spectral density fθ can be parametrized by θ lying

within a compact set Θ ⊂ R (e.g. ARMA-processes). Assume that Kolmogorov's formula

holds, i.e.

 

–π

π

log fθ(α) dα = 2π log σ2

2π  , (3.1)

where σ2 represents the innovation variance. For sake of simplicity we assume σ2 to be

known. Let θ0∈ Int Θ be the true, unknown parameter. Minimization of the function

LT(θ) ≡  

0

π

fθ
–1

 (α) IT(α) dα (3.2)

yields the well-known Whittle estimate θ for θ0. (cf. Dzhaparidze and Yaglom (1983)).

We give the Edgeworth expansion of the distribution of θ up to second order and prove

its validity.

First we set down the assumptions needed additional to the general assumptions (A1) to

(A5).

(A6) The set of parameter Θ  ⊂ R  is compact. The parameters are identifiable, 

i.e. θ1 ≠ θ2 implies fθ1
 ≠ fθ2

 on a set with positive Lebesgue measure.

The spectral density fθ(α) is four times continuously differentiable with respect to 

θ∈Θ and is two times continuously differentiable with respect to α∈[0,π]. fθ(α) 
and its derivatives are uniformly bounded, 

i.e. ∃  0 < c ≤ c < ∞  ∀ θ∈Θ  , α∈[0,π] c ≤ fθ(α) ≤ c , | 
∂

∂θ(i)
 fθ

–1(α)  | ≤ c, 

i = 1, …, 4  and |
∂

∂α(j)
 fθ(α)| ≤ c , j = 1,2. Let φ θ  = (φθ

(1)
,φθ

(2)
,φθ

(3)
) with 

φθ
(i)

  ≡  
∂

∂θ(i)
 fθ

–1
   , i = 1,2,3 . There exists d0 > 0 such that

L
(2)

(θ) ≡  
0

π
φθ

(2)
(α) fθ(α) dα ≥ d0   for all θ∈Θ  . 
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We now state the theorem.

Theorem 3.1. 

Assume that (A1) - (A6) hold. Let α be an arbitrary fixed number such that 0 < α < 1/4.

(i) There exists a statistic θ  which solves

 

0

π
∂

∂θ
  fθ

–1
(α) IT(α) dα = 0 (3.3)

such that for some d1 > 0

Pθ0
(| θ – θ0 | < d1 T

α–1/2
 ) = 1 – o(T

–1/2
) (3.4)

uniformly for θ0∈Θ.

(ii) For θ satisfying (3.4)

sup
x∈R

|Pθ0
((TK(θ0))

1/2
(θ – θ0) ≤  x) –  

– ∞

x

(1 + T
–1/2

p3(y) dΦ(y)| = o(T
–1/2

) (3.5)

uniformly for θ0∈Θ, where p3(x) denotes a polynomial in x whose coefficients are 

continuous functions of the approximate cumulants of UT(θ0) (defined in (4.30)) of 

order three or less.

Remark 3.2. 

(1) This result generalizes Theorem 3.2.1 by Taniguchi (1991) from Gaussian to linear

processes.

(2) The Edgeworth expansion is valid up to higher order than given above 

(cf. Taniguchi (1991)).

(3) The generalization to the multivariate case is not difficult, but requires cumbersome

notations.
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4. Proofs 

Proof of Theorem 2.3. 

Conditions C(1) – C(7) have to be verified. With Dj = σ(εj)  C(1), C(4) and C(6) hold trivially.

C(7) is assumption (A5).  C(2) follows from

 (E || UT,t ||
s+1

)
1/(s+1)

≤   ||ψ(r)||∑
r=0

T

  |ht ht+r | |at–u | |at+r–v|∑
u,v∈Z

  (E |εu εv |
s+1

 )
1/(s+1)

≤  2 ||φ(r)||∑
r∈Z

  ( |au|∑
u∈Z

 )
2
  (E |ε1|

2(s+1)
)
1/(s+1)

  < ∞

by the assumptions (A1) and (A3).

To prove C(3) define YT,t,m∈D t–m
t+m  by

YT,t,m   ≡ ψ(r)∑
r=0

m

 ht ht+r  ∑
|t–u|≤m
|t–v|≤m

at–u  at+r–v  εu εv . (4.1)

It suffices to show

(E ||UT,t – YT,t,m||
2
)
1/2

 ≤ ρ
m

  . (4.2)

 

First notice that the sum in the definition (2.1) of UT,t can be restricted to the indices 

{0, … , [m/2]}, since

(E || ψ(r)∑
r>[m/2]

 ht ht+r  Xt Xt+r||
2
)
1/2

 

≤  2 ||φ(r)||∑
r>[m/2]

  ( |au|∑
u∈Z

)
2
 (E |ε1|

4
)

1/4

≤  1
2

  ρ
m

with  0 < ρ < 1 (4.3)

by  assumption  (A1) and the exponential decay of the coefficients ||φ(r)|| (see (A6)).
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Next, we compute the difference between the restricted sum, UT,t,m say, and YT,t,m  .

(E || UT,t,m  – YT,t,m ||
2
)

1/2   

≤ 2 ||φ(r)||∑
r=0

[m/2]

 (E |ε1|
4
)
1/4( |at–u|∑

|t–u|≤m

 |at+r–v|∑
|t–v|>m

 + |at–u|∑
|t–u|>m

  |ar+t–v|∑
v∈Z

 )

≤ 2 ||φ(r)||∑
r=0

[m/2]

 (E  |ε 1 |
4
)

1/4 ( |au|∑
u∈Z

|av|∑
|v|>[m/2]

 +  |au|∑
|u|>m

 |av|∑
v∈Z

 )  ≤  1
2
 ρ

m

(4.4)

by the assumption (A1) and the exponential decay of the coefficients |au| ((A3) ). (4.3) and (4.4)

implies (4.2). It remains to check the Cramér type condition C(5).

UT,j∑
| t – j | ≤m

 =  εuεv∑
u,v∈Z

  ψ∑
r=0

T

∑
| t – j | ≤m

 (r)  hj hj+r aj–u aj+r–v

 =  εt AT,t,m  + εt
2 BT,t,m  +  ζ  , (4.5)

where

AT,t,m  ≡ ψ(r) ht+j ht+j+r∑
r=0

T

∑
|j|≤m

 ( aj at+j+r–v∑
v≠t

  εv  +  aj+r at+j–u∑
u≠ t

  εu ) , (4.6)

BT,t,m  ≡ ∑
|j|≤m

∑
r=0

T

ψ(r) ht+j ht+j+r aj aj+r (4.7)

and ζ denotes a random vector stochastically independent of εt. Note that AT,t,m  and εt are also

independent for all t. Let {εj
*} be i.i.d. rvs, {εj

*} and {εj} independent and 

εj
*  =

D
 εj . Define  AT,t,m

*  as AT,t,m with  εj's  replaced by  εj
*'s .
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Thus, with θ∈R
d

E | E exp (i θ'  ∑
|t–j|≤m

ZT,j| Dj : j ≠ t)|

= E | E exp (i εt θ' AT,t,m + i  εt
2θ' BT,t,m | Dj : j ≠ t) |

= E | E  exp(i εt θ' AT,t,m
*  + i εt

2 θ'BT,t,m) |

≤ (1 – δ) P( || θ' AT,t,m
*  , θ'BT,t,m ||  ≥  d) 

+ P( || θ ' AT,t,m
*  , θ' BT,t,m || < d) (4.8)

by Cramér's condition on (εt,εt
2 ) (see (A2)).

Hence C(5) will follow if constants d, d1, η > 0 exist such that for ||θ|| ≥ d1

P(||θ 'AT,t,m
* , θ' BT,t,m || ≥ d) > η

holds for a sufficiently large number of t's. This is verified, if there exists ε, η > 0 such that for

all ||θ|| = 1,

P(|| θ'AT,t,m , θ'BT,t,m ||  ≥  ε) > η (4.9)

holds. But this is lemma 4.2. Thus C(5) is fulfilled and the theorem follows. ❐

First, we set down another lemma which will be needed.

Lemma 4.1. 

Assume the conditions of Theorem 2.3. Then

(i) cT
–1 ∑

t =1

T

D(AT,t,m)  →  D(A) for  m < T  and  m → ∞,

where   A  ≡ 2 
H4

1/2

H2
  ∑u≠0 εu ∫ φ (α) f(α) cos (αu) dα,
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(ii) D(A) = 2 (∑ + C0 N  )

 where    C0 ≡ 1 – E  ε1
4 < 0,

N ≡  H4

H2
2

  ∫  φ  f  ∫  φ ' f

  and ∑  ≡  H4

H2
2

  · 2π ∫ φ φ' f
2
 + (E ε1

4 – 3) N .  

(iii) 1
2πH2,T

   ∑
t =1

T

BT,t,m  BT,t,m
'

   → N   for  m < T and m → ∞ .

Proof.  

Ad (i). First, we give a simplification for AT,t,m  .

aj ∑
v ≠ t

at+j+r–v   εv  +  aj+r  ∑
u≠ t

 at+j–u εu

=  aj Xt+j+r  +  aj+r  Xt+j – 2aj aj+r εt

= aj ∑
u∈Z

 aj+r–u   εt+u  +   aj+r   ∑
u∈Z

aj–u  εt+u  – 2aj aj+r εt

=  ∑
u≠0

εt+u (aj aj+r–u  +   aj+r    aj–u ) .

Thus

AT,t,m    = ψ(r)∑
r=0

T

∑
|j|≤m

 ht+j ht+j+r  ∑
u≠0

εt+u (aj aj+r–u  +   aj+r   aj–u )

   = ∑
u≠0

εt+u   ψ∑
r=0

T

(r) ( aT,t,m
– (r,u)  +  aT,t,m

+ (r,u)) , (4.10)

where

      aT,t,m
– (r,u) ≡ ∑

|j|≤m

ht+j  ht+j+r  aj aj+r–u , (4.11)
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     aT,t,m
+  (r,u) ≡ ∑

|j|≤m

ht+j  ht+j+r  aj+r aj–u   . (4.12)

Next, we calculate products of the terms in (4.11) and (4.12). We have

aT,t,m
o (r,u) aT,t,m

Δ (s,u)∑
t=1

T  
= (H4,T + O( |r| + |s| )) (c(r ° u) c(s Δ u) + O(ρ

m
)), (4.13)

where   c(u) = ∑j∈Z aj
 
aj+u and o, Δ∈{ + , – } .

We consider the case o = – , Δ = + .

aT,t,m
– (r,u) aT,t,m

+ (s,u)∑
t=1

T

 =  aj aj+r–u ak+s  ak–u ∑
|j|,|k|≤m

 ht+j ht+j+r ht+k ht+k+s∑
t=1

T

=  aj aj+r–u ak+s  ak–u ∑
|j|,|k|≤m

 (H4,T + O(|j| + |k| + |r| + |s| ))

by lemma P 4.1 in Brillinger (1981).

Now (4.13) follows from assumption (A3) on the coefficients {aj}. 

From (4.10) and (4.13) we get

cT
–1 ∑

t=1

T

 D(AT,t,m)

=  cT
–1 ∑

t=1

T

∑
u,v≠0

E εt+u εt+v ∑
r,s=0

T

ψ(r) ψ '(s) (aT,t,m
– (r,u) + aT,t,m

+ (r,u)) 

(aT,t,m
– (s,v) + aT,t,m

+ (s,v))

=  cT
–1∑

u≠0
∑

r,s=0

T

ψ(r)ψ '(s) ∑
t=1

T

(aT,t,m
– (s,u) + aT,t,m

+ (r,u))(aT,t,m
– (s,u) + aT,t,m

+ (s,u))
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=  H4,T cT
–1  ∑

u≠0

φ∑
|r|≤T

 (r) (c(r + u) + c(r – u)) φ∑
|s|≤T

 '(s)(c(s + u) + c(s – u)) + O(ρ
m 

)

→  H4

H2
2

  ∑
u≠0

∫ φ(α) f(α) (e
iαu

 + e
–iαu

)dα ∫φ'(α) f(α) (e
iαu

 + e
–iαu

)dα (4.14)

for  m < T  and  m → ∞  by Parseval's identity.

Ad (ii).

        D(A)  = 4 H4

H2
2

  ∑
u,v≠0

∫ φ(α) f(α) cos (αu) dα ∫ φ' (α) f(α) cos (αu) dα E εu εv

=  4 H4

H2
2

   ( ∑
u∈Z

∫ φ(α) f(α) cos (αu) dα  ∫ φ' (α) f(α) cos (αu) dα

– ∫ φ(α) f(α) dα  ∫ φ ' (α) f(α) dα )

= 2 · H4

H2
2

  ( 2π∫ φ (α)φ '(α)f
2
(α)dα – 2 ·∫φ(α) f(α)dα∫φ '(α)f(α)dα )

by Parseval's identity.

Ad (iii). 

The proof is analogous to (i) , but much simpler, and therefore omitted. ❐

Lemma 4.2. 

Assume the conditions of Theorem 2.3. Then

∃ ε, η,ρ > 0   ∀ ||θ|| = 1    ∀ ρ–1 < m < T

# { t∈{1, … , T}:   P(|| θ'AT,t,m , θ'BT,t,m ||  ≥  ε) > η}  ≥ ρT .

Proof. 

From the compactness of the unit ball, it suffices to show that there is such a choice of ε and η
for every fixed θ. Choose such a θ and write θ = θ1 + θ2, where θ1 is orthogonal to θ2 and θ1

= c ∫ φ(α) f(α) dα for some c. Fix α > 0 (to be chosen).
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Case 1. 

||θ1|| ≥ α . Then

||θ ' AT,t,m
  , θ 'BT,t,m || ≥ |θ 'BT,t,m | .

By Cauchy-Schwartz inequality we find a positive constant a only depending on the coefficients

{aj} and {||ψ(r)||} with

| θ 'BT,t,m |
2
 ≤  a (4.15)

Lemma 4.1 (iii) delivers

1
2π H2,T

  ∑
t=1

T

| θ 'B T,t,m |
2 

=   θ '  1
2π H2,T

   ∑
t=1

T

BT,t,m  BT,t,m
'

  θ

→
m→∞

θ'  N  θ

=  H4

H2
2

  | θ1
'  ∫φ  f |2

≥ α2 
H4

H2
2

  ||∫ φ  f ||2 ≡  b > 0 . (4.16)

Assume w.l.o.g.  a ≥ max (b,1). Let c = ba  ≤ 1 and ρ = 
c – ε
1 – ε

  . If less than ρ · T terms had the

property |θ'BT,t,m|
2
 ≥ ε, we could bound the left-hand side of (4.16) by

   1
2πH2,T

  |θ' BT,t,m|2∑
t =1

T

 <  (1 – ρ) ε + ρ a

  ≤  a((1 - ρ) ε + ρ)

=  a(ε + (1 – ε)ρ)   

=  b ,

which is a contradiction to (4.16). 



16

Case 2. 

||θ1|| ≥ 1 – α. In this case

 

|| θ ' AT,t,m , θ ' BT,t,m || ≥ |θ ' AT,t,m | .

Cauchy-Schwartz inequality provides for

E | θ ' AT,t,m  |
2
 ≤ a (4.17)

with a being a positive constant only depending on the coefficients {aj}, {||ψ(r)||} and E ε1
2 .

By lemma 4.1 (i) and (ii) we have

cT
–1 ∑

t=1

T

E  | θ ' AT,t,m  |2  
=  θ ' cT

–1 ∑
t=1

T

D(AT,t,m ) θ

      →
m→∞

 θ' D(A) θ

=  2 θ'( ∑ + C0 N) θ .

Let λ1 be the smallest eigenvalue of ∑ (λ1 > 0!). Then we can continue

≥  2(λ1 – |C0|θ'N  θ ) ≥ λ1  >  0 , (4.18)

if |C0|  θ 'N   θ  ≤ λ1.

But, by Cauchy Schwartz inequality

 |C0| θ ' N   θ = H4

H2
2

   |  θ1
' ∫φ f |

2

   ≤ α2 |C0|  
H4

H2
2

   ||∫φ f||
2
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and thus (4.18) holds with an α chosen sufficiently small. Now the assertion follows from

(4.17) and (4.18) as in case 1. This proves the lemma. ❐

Before proving Theorem 3.1, we state some preparations and several lemmas. We set

down

 L
(i)

(θ) ≡  

0

π

φθ
(i)

(α) fθ(α) dα (4.19)

 LT
(i)(θ) ≡  

0

π

φθ
(i)

(α)IT(α) dα (4.20)

   Zi(θ) ≡ T (LT
(i)(θ) – E LT

(i)(θ) ) (4.21)

for i = 1,2,3.

Lemma 4.3. 

Under (A1), (A3), (A4) and (A6)

(i)  Eθ LT
(i)(θ) = L

(i)
(θ) + o(T

–1
) , i = 1,2,3

(ii) Eθ(Z1(θ))
2
  = H4

H2
2

  2π  

0

π

(φθ
(1)

 (α) fθ(α))
2
 dα + o(1)

(iii) Eθ(Z1(θ) Z2(θ)) = H4

H2
2

  2π  

0

π

φθ
(1)

(α) φθ
(2)

(α) fθ
2(α) dα + ο(1)

(iv) T Eθ(Z1(θ))
3
 = H6

H2
3

  8π2
  

0

π

(φθ
(1)

 (α) fθ(α))
3
 dα + ο(1)

uniformly for θ∈Θ.
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For the proof we refer to Dahlhaus (1983). 

Lemma 4.4. 

Under (A1) – (A6), for every α > 0 and some d2 > 0, we have

Pθ(| Zi(θ) | > d2 T
α
) = o(T

–1/2
) , i = 1,2,3

uniformly for θ∈Θ.

The lemma is a direct consequence of Theorem 2.3.

The following result is due to Chibisov (1972). 

Lemma 4.5. 

Let YT be a random variable which has the stochastic expansion

YT = YT
(3) + T

–1
 ξT , (4.22)

where the distribution of YT
(3) has the Edgeworth expansion:

P(YT
(3) ≤ x) =  

0

x

(1 + T
–1/2

 p3(y)) dΦ(y) + o(T
–1/2

) (4.23)

Also ξT satisfies

P( |ξT) > ρT T ) = o(T
–1/2

), (4.24)

where ρT → 0, ρT T → ∞ as T → ∞. Then

P(YT ≤ x) =  

– ∞

x

(1 + T
–1/2

 p3(y)) dΦ(y) + o(T
–1/2

).
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We return to the proof of (i) in Theorem 3.1.

Proof of (i) in Theorem 3.1. 

We use the argument similar to that of Taniguchi (1991). Consider the equation

0  =  LT
(1)(θ0) + LT

(2)(θ0) (θ – θ0) + 1
2

  LT
(3)(θ0) (θ – θ0)

2
 + RT(θ), (4.25)

where

|RT(θ)| ≤  1
6

   · sup
|θ '– θ|≤ |θ– θ0|

| LT
(4)(θ')|  |θ – θ0 |

3
 . (4.26)

For every α > 0 there exists a positive constant d4 such that

Pθ0
(|RT(θ)| >|θ – θ0 |

3
 d4 T

α
) = o(T

–1/2
) (4.27)

For the proof of (4.27) notice

Pθ0
(sup

θ∈Θ
| LT

(4)(θ)| > dΤ
α
)

≤  Pθ0
( sup

λ∈[0,π]
sup
θ∈Θ

| 
∂

∂θ4
  fθ

–1
 (λ) | IT

0

π

(λ) dλ > dΤ
α
)

≤ Pθ0
( IT

0

π

(λ) dλ > d
c
  Τ

α
)

by (A6). But the last term is of the order o(T
–1/2

) by Theorem 2.3. Therefore, on a set having

Pθ0
-probability at least 1 – o(T

–1/2
), for some constants d5 > 0 and d4 > 0 we can rewrite

(4.25) as 

θ – θ0 = (I(θ0) + ηT)
–1

(δT + 1/2 LT
(3)(θ0) (θ – θ0)

2
 + d5 |θ – θ0|

3
 ξT) (4.28)
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where ηT and δT are random variables whose absolute values are less than d6 T
–1/2+α

 and ξT is

a random variable whose absolute value is less then d4 Tα. There exist a sufficiently large 

d7 > 0 and an integer T0 such that if T > T0 and |θ – θ0| ≤ d7T
–1/2+α

 (0 < α < 1/4) , the right-

hand side of (4.28) is less than d7T
–1/2+α

. Applying the Brower fixed point theorem to the

right-hand side of (4.28) we have proved (i) of Theorem 3.1.  ❏

Now we set down

VT  ≡  T(θ – θ0) (4.29)

and

UT(θ) = – 
Z1(θ)

L(2)(θ)
  + 1

T
  

Z1(θ)

L(2)(θ)
  

Z2(θ)

L(2)(θ)
  –  1

2 T
  
L(3)(θ)

L(2)(θ)
 ( Z1(θ)

L(2)(θ)
 )

2
(4.30)

Lemma 4.6. 

Under (A1) – (A6) we have the following stochastic expansion

T(θ – θ0) = UT(θ) + T
–1

 ξT ,

where ξT  satisfies Pθ0
 (|ξT| > ρT T ) = o(T

–1/2
) for some sequence ρT → 0, ρT T → ∞ as

T → ∞ .

Proof.  

From the equation LT
(1)(θ) = 0, we have

0 = T LT
(1)(θ0) + 1

T
  Z2(θ0)VT + Eθ0

LT
(2)(θ0) VT + 1

2 T
 LT

(3)(θ0)VT
2 + 1

6T
 LT

(4)(θ)VT
3 (4.31)

where | θ – θ0| ≤ | θ – θ0| .

We rewrite (4.31) as



21

V T  = – 
TLT

(1)(θ0)

Eθ0LT
(2)(θ0)

   –  1

Eθ0LT
(2)(θ0) T

  Z2(θ0) VT   –  
LT

(3)(θ0)

2Eθ0LT
(2)(θ0) T

  VT
2

–  
LT

(4)(θ)

6Eθ0LT
(2)(θ0)T

  VT
3  . (4.32)

Noting (3.4), (4.27) and Lemma 4.4 with 0 < α < 1/10, we can write (4.32) as

VT = – 
TLT

(1)(θ0)

Eθ0LT
(2)(θ0)

   +  1
T

 ξT   , (4.33)

where Pθ0
(| ξT | > d8 T2α) = o(T

–1/2
) for some d8 > 0.

Substituting (4.33) for the right-hand side of (4.32) and noting that

Eθ0LT
(1)(θ0) = o(T

–1
) and Eθ0LT

(2)(θ0) = L
(2)

(θ0) + o(T
–1

) by Lemma 4.3(i)

we have 

V T  = – 
Z1(θ0)

L(2)(θ0)
  + 1

T
 
Z1(θ0)

L(2)(θ0)
  

Z2(θ0)

L(2)(θ0)
 –  1

2 T
 
L(3)(θ0)

L(2)(θ0)
  ( Z1(θ0)

L(2)(θ0)
 )

2
 +  1

T
  ξT ,

where Pθ0
(|ξT | > d9 T3α) = o(T

–1/2
), for some d9 > 0.

Since 0 < α < 1/10, we have the desired result. ❐

Proof of (2) in Theorem 3.1. 

By Lemma 4.6 the Edgeworth expansion for T(θ – θ0)  (up to order T
–1/2

) is equal to that of

UT(θ0). Thus we have to derive the Edgeworth expansion for UT(θ0). Since UT(θ0) is a

smooth function of Z1(θ0) and Z2(θ0) this expansion follows from the expansion of the vector

(Z1(θ0),Z2(θ0)) by the well-known Transformation-Lemma (cf. Bhattacharya and Ghosh

(1978)). ❐
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