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By using empirical process theory we study a method addressed to testing for multimodality and estimating density

contour clusters in higher dimensions. The method is based on the so-called excess mass over C. Given a probability

measure F and a class of sets C in the d-dimensional Euclidean space, the excess mass over C at a level λ ≥ 0,

denoted by E
C
(λ), is defined as the maximal difference between the F-measure and λ times the Lebesgue measure of

sets in C. E
C

(λ) can be estimated by replacing F by the empirical measure. Those sets which maximize the

corresponding difference of empirical measure and λ times the Lebesgue measure over sets in C can be used for

estimating density contour clusters. Comparing excess masses over different classes C yields information about the

modality of the underlying probability measure. This can be used to construct tests for multimodality. The

asymptotic behaviour of the considered estimators and test statistics is studied for general classes C, including the

classes of balls, ellipsoids and convex sets. 

1. Introduction
 

The excess mass approach which will be studied in this paper by means of empirical process

theory has first been considered independently by Müller and Sawitzki (1987) and Hartigan

(1987). It yields a method for testing for multimodality and estimating density contour clusters in

higher dimensions. For a distribution F on Rd with Lebesgue density f the density contour cluster

(of f) at a level λ ≥ 0 is defined as the set C(λ) = Cf(λ) = {x: f(x) ≥ λ}. Note that Hartigan (1975)

used the notion density contour cluster for the connected components of C(λ), whereas here the

sets C(λ) need not be connected. Müller and Sawitzki defined the excess mass functional as λ →
E(λ) = F(C(λ)) - λ Leb(C(λ)), where Leb denotes the Lebesgue measure (cf. Fig. 2.1 

                           
Research supported by the Sonderforschungsbereich 123 and the Deutsche Forschungsgemeinschaft

American Mathematical Society 1990 subject classifications. Primary 62G; secondary 62H
Key words and phrases. Excess mass, density contour cluster, multimodality, empirical process theory, support
estimation, convex hull

1



below, which motivates the name “excess mass”). Define Hλ = F - λ Leb, then the excess mass

functional which defines a concentration function can be rewritten as E(λ) = sup{Hλ(C), C ⊂ Rd

measurable}. Replacing F by the empirical measure Fn of n i.i.d. observations X1,...,Xn drawn

from F leads to an estimator of the excess mass functional. However, the supremum of Hn,λ(C) =

Fn(C) - λ Leb(C) over all measurable sets equals 1 (take C = {X1,...,Xn}). Hence one has to

restrict the class of sets over which the supremum is extended. Let C denote a class of measurable

subsets of Rd. Generalizing the excess mass functional we define the excess mass over C at a

level λ ≥ 0 by

                                     EC(λ)  =  sup { Hλ(C) : C ∈ C },

Those sets which maximize Hλ over the class C are called generalized λ-clusters in C, i.e. every

set ΓC(λ) ∈ C with 

                                                 EC(λ) = Hλ(ΓC(λ))

is a generalized λ-cluster in C. We always have EC(λ) ≤ E(λ) and if C(λ) ∈ C, then C(λ) is a

generalized λ-cluster and EC(λ) = E(λ). Differences of excess masses over different classes yield

information about modality (Müller and Sawitzki (1987) and Hartigan (1987)). To see this

consider the following univariate situation: Assume that F is a (sufficiently smooth) symmetric

distribution on the real line such that F has exactly m modes. In this case the density contour

clusters C(λ) all lie in Im, m ∈ N, the class of unions of at most m intervals. Hence, E(λ) =

E
Im

(λ) for all λ ≥ 0, and for any k < m there exist levels λ with E(λ) > E
Ik

(λ). Therefore the

maximal difference E
Im

(λ) - E
Ik

(λ) is strictly bigger than zero for all k < m and is equal to zero for

k ≥ m. 

The excess mass over C and the generalized λ-clusters can be estimated from the data. The

corresponding estimators, En,C(λ) and Γn,C(λ), respectively, will be defined by analogy to the

corresponding theoretical quantities by replacing F by the empirical distribution of n i.i.d.

observations (Section 2). Γn,C(λ) defines an estimator for the density contour clusters and the

maximal difference of En,D(λ) - En,C(λ) over appropriately chosen classes C and D will be used as

a test statistic for multimodality.

In this paper we do not restrict ourselves to specific classes C and D, respectively. Using empirical
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process theory we study how the asymptotic properties of the considered empirical quantities

depend on the classes under consideration. All the standard classes, such as the classes of balls,

ellipsoids or convex set, are included in our study. The asymptotic results can be used as hints on

how to choose appropriate classes for special problems. One will have to balance between the

richness of the model (which means richness of the classes under consideration, see below),

desirable statistical properties and the time needed for calculation. 

The assumption C(λ) ∈ C for all λ ≥ 0, or, for short, the choice of a class C, may be interpreted

as the choice of a nonparametric statistical model: the class of all distributions dominated by

Lebesgue measure whose density contour clusters lie in C. In contrast to defining models through

smoothness assumptions on the density it is possible to model certain qualitative aspects, such as

modality, of the underlying distribution through appropriate choices of C. As already mentioned,

the class Im, m ∈  N , of unions of at most m intervals, corresponds to a onedimensional

distribution with at most m modes. Hence, the assumption “C(λ) ∈ Im for all λ ≥ 0” defines the

model  of all univariate distributions with at most m modes. Below we also give multivariate

analogs.

This one-dimensional setup has been considered in Müller and Sawitzki. Hartigan considered the

two-dimensional case. In our terminology he used the excess mass over the class of closed convex

sets in R2, denoted by C2, and compared it with the excess mass over those convex sets lying

exterior to Γn,C2(λ). In a more parametric setup Nolan (1991) considered the case C = Ed, the

class of all closed ellipsoids in Rd. In all these papers it is assumed that the underlying distribution

has density contour clusters C(λ) lying in the class C under consideration. 

The density contour clusters C(λ) themselves contain information about the location of mass

concentration. If C(λ) ∈ C, or in other words, if the chosen model which corresponds to the

choice of C is correct, then the sets C(λ) can be estimated from the data. This could also be done

by first estimating the density by a kernel estimator and then estimating the density contour clusters

by the corresponding density contour clusters of the kernel estimator. The resulting estimator will

be consistent under appropriate smoothness assumptions. However, the kernel estimator approach

does not allow to enclose a prior knowledge about the shape of the density contour clusters (such

as convexity). Furthermore, although one never knows in practice that the density contour clusters

lie in C, the interpretation of the empirical generalized λ-clusters Γn,C(λ) as sets maximizing the

excess mass still holds and therefore they might contain useful information even for finite n. 
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Our paper is organized as follows: The behaviour of En,C(.) is studied in Section 2 and Section 4.

We show that En,C(.) is a consistent estimator for EC(.) and prove asymptotic normality. In the

case where C(λ) ∈ C and "f has no flat part", i.e. F{x: f(x) = λ} = 0 ∀ λ ≥ 0, the limit process is

a Brownian Bridge with transformed time scale (Theorem 4.3). The asymptotic behaviour of the

sets Γn,C(λ) is studied in Section 3. We show the consistency of Γn,C(λ) as an estimator of ΓC(λ)

(Theorem 3.2 and Theorem 3.5) and in the case where C(λ) ∈  C we also give rates of

convergence (Theorems 3.6 and 3.7). As a special case (λ = 0 and C = Cd) we obtain rates of

convergence for the convex hull of the sample as a by-product (Proposition 3.8). In Section 5 we

address questions related to testing. Given two nested classes C and D, the maximal difference of

the empirical excess masses over C and D, i.e. supλ≥0(En,D(λ) - En,C(λ)), can be used for testing

the hypothesis that the density contour clusters lie in the smaller classes C against the alternative

that they lie in D\C. For special choices of C and D this leads to tests for unimodality, as proposed

by Müller and Sawitzki and by Hartigan (see above). The asymptotic distribution of the maximal

difference of the empirical excess masses over C and D is known only for the special case of an

underlying uniform distribution (Theorem 5.4). However, under the null-hypotheses we derive

rates of convergence for general F (Theorem 5.2, Theorem 5.3) which in some special univariate

situations are known to be the exact rates. Section 6 contains the proofs of all the results given in

the previous sections.

We close the introduction by giving some related work from the literature. There exist some other

nonparametric approaches to measuring mass concentrations and investigating the modality of the

underlying distribution in the literature, which also are based on the idea of comparing the volume

of a certain class of sets with the mass carried by these sets: 

In a fundamental paper Chernoff (1964) considered (in the univariate case) the midpoint x of an

interval with given length l which carries maximal mass among all intervals with the same length

l. If l tends to zero and the distribution is dominated by the Lebesgue measure, then (in regular

cases) x converges to the mode of the density. However, if l is not too small, the midpoint

indicates a location around which a non-negligible portion of the mass is concentrated. Considered

as a function of l the maximal mass α = α(l) becomes the well known concentration function. 

Alternatively, one can consider the inverse problem: Fix the mass α and ask for the interval with

minimal length among all intervals carrying (at least) mass α. Such intervals are called minimal

volume intervals or modal intervals (cf. Lientz (1970), Andrews et al. (1972), Robertson and
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Cryer (1974), Grübel (1988)). 

In these one-dimensional situations it is a "natural" decision to use intervals. However, strictly

speaking, the choice of intervals is natural only if the underlying distribution has a unimodal

Lebesgue density, f. For in this case (under some regularity conditions) the density contour

clusters of f are intervals and maximize the (theoretical) functions in the procedures given above.

This corresponds to the situation “C(λ) ∈ C” in the context of excess masses (see above).

For generalizing the above mentioned procedures to higher dimensions there is no "natural" choice

of a class of sets, even in the unimodal case. One might for example use the classes of all balls,

ellipsoids or convex sets. Sager (1979) for example generalized the method of Robertson and

Cryer by replacing the class of intervals by the class of convex sets. The problem of how to choose

an appropriate class C (especially in higher dimensions) of course also exists in the excess mass

approach. However, as mentioned earlier, since the results in the present paper are given for an

unspecified class C, they can be used as hints on how to choose C in a special problem.

2.  The empirical excess mass over C   

Let (Ω, P) denote the underlying probability space and let X1, X2,..,Xn,.. be i.i.d. random vectors

in Rd with distribution F. In order to obtain an estimator of the excess mass over C we replace the

unknown distribution F by Fn, the empirical distribution of X1,..,Xn. This leads to the empirical

excess mass over C, defined by

                         En,C(λ)  :=  sup { Fn(C) - λ Leb(C) : C ∈ C },    λ ≥ 0.

Let Hn,λ = Fn - λ Leb, λ ≥ 0. A set Γn,C(λ) ∈ C such that  

En,C(λ)  =  Hn,λ(Γn,C(λ)),

is called empirical generalized λ-cluster.

                                      F i g u r e    2.1
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Since the "excess" En,C(λ) (and also EC(λ)) should be non-negative we always assume that ∅ ∈
C. In the following proposition some elementary properties of En,C are summarized. 

Proposition 2.1:  Let ∅ ∈ C. Then we have: 

         (i) 0 ≤ En,C(λ) ≤ 1 for all λ ≥ 0.
         (ii) En,C(.) is monotone decreasing and convex in [0,∞).

         (iii) λ → En,C(λ) is piecewise linear with at most n + 1 changes of slope.

For every distribution F the properties (i) and (ii) also hold for EC(.).

Consistency:

First note, that there exist situations where En,C(λ) contains no information about the underlying

distribution (cf. Hartigan (1987)). Define A = {X1,...,Xn}, then Fn(A) = 1 and Leb(A) = 0 .

Hence, if A ∈ C, then En,C(λ) = 1 for all λ ≥ 0, independent of F. Therefore En,C is in general not

a consistent estimator of EC. The Consistency Lemma 2.2 given below shows that En,C is

consistent if C is a Glivenko-Cantelli-class for F. Given a class C denote || Fn - F ||C = sup { | (Fn

- F) (C) | : C ∈ C }. 

To avoid measurability considerations we define for any function f : Ω → R the measurable cover

function f* as the smallest measurable function from Ω to R lying everywhere above f (see

Dudley (1984)). Furthermore, let P* denote outer probability. 

Definition:  A Glivenko-Cantelli-class (GC-class) for a distribution F, or for short a GC(F)-

class, is a class C of measurable sets such that with probability 1

                                          || Fn - F ||C
* →  0          as n → ∞.
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Consistency Lemma 2.2:  For any class C we have 

                                 supλ≥0 | En,C(λ) - EC(λ) |   ≤   || Fn - F ||C.

Hence, if C is a GC-class for F, then we have that with probability 1

                                 supλ≥0 | En,C(λ) - EC(λ) |*  →  0         as  n → ∞.

It is well known that Vapnic-Cervonencis (VC)- classes are GC-classes for all F if in addition they

satisfy some measurability assumptions. Examples for such classes are the class of all d-

dimensional closed balls, Bd, and the class of all d-dimensional closed ellipsoids, Ed. There also

exist interesting classes which are GC-classes (for certain F) but no VC-classes, as for example the

class of all closed convex sets in Rd, d ≥ 2, denoted by Cd. These are GC-class for all distributions

F which have a bounded Lebesgue density (see Eddy & Hartigan (1977) for a characterization of

the GC-property of Cd). 

                                      F i g u r e    2.2

As mentioned in the introduction, we identify the choice of C with the choice of a statistical model,

which consists of those distributions whose density contour clusters lie in C. In order to model

multimodality, we make the following construction: Given a class C of closed subsets of Rd let

Ck, k ∈ N denote the class of sets which can be written as a union of k (possibly empty) sets in

C, and let

 Nm,k(C)  :=  { ∪
j =1

m
 (Cj\Dj

o
) ,  Cj ∈ C, Dj

o
 ∈ Ck, j = 1,..,m},    m, k ∈ N,

where Dj
o

 denotes the open kernel of Dj. Note that the sets in Nm,k(C) are closed by definition, and

that Cm ⊂ Nm,k(C) ∀ m ≥ 1. The classes Nm,k(Cd) seem to be appropriate to model for example

an underlying mixture of normal distributions (cf. Fig. 2.2 and Fig. 2.3).

                                      F i g u r e    2.3
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The classes Nm,k(C) are special cases of GC-classes which we call k-constructible (Alexander

(1984) used this terminology for VC-classes): A class C in a measurable space (X,A) is called k-

constructible from a GC-class D, if there exists a function ϕ from Dk to A such that C ⊂ ϕ(Dk).

For example, the class C \ C = { C\D: C, D ∈ C} is 2-constructible from C. More generally, the

classes Nm,k(C) are m(k+1)-constructible from C.

If C is a VC-class then classes which are k-constructible from C also are VC-classes, i.e. the VC-

property of C carries over to the classes Nm,k(C). This is well known (Dudley (1978)). The

analogous property also holds for GC-classes (e.g., see Pollard (1984), Theorem 21 and its

proof). Hence we have the following corollary:

Corollary 2.3:  Let C be a GC-class for F. Then we have for every m, k ∈  N , that with

probability 1  

supλ≥0 | En,Nm,k(C)(λ) - ENm,k(C)(λ) |*  →  0         as  n → ∞.

3. The empirical generalized λ-clusters

The asymptotic behaviour of the empirical generalized λ-clusters Γn,C(λ) will be studied in this

section. As a measure of distance we use the pseudometric

                                   dF(C,D) := F(C Δ D),     C, D ∈ C,

where Δ denotes the symmetric difference. The empirical generalized λ-clusters exist for

interesting classes C which consist of closed sets, as for example for the classes C = Bd, E d or Cd

and for the corresponding classes Nm,k(C) (defined in Section 2). Therefore we shall assume in all

of that what follows that

C consists of closed sets.

In addition we assume that  
 
(3.1)               Leb{ C(λ) \ C(λ) }  =  0      for all  λ ≥ 0,                             
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and only consider 
               Γ(λ)  :=  C(λ)

the closure of the density contour cluster. Because of (3.1) one can still think of Γ(λ) as the

density contour cluster. (3.1) is trivially satisfied for all upper semicontinuous densities, but of

course many other densities also have this property.

In the sequel the following assumptions are assumed to hold unless stated otherwise: 

General assumptions:

(A1) For all λ  ≥ 0 there exists a generalized and an empirical generalized λ -

cluster. 

(A2) The underlying distribution F on R d  has a Lebesgue density f with 

max{f(x)} = M < ∞. Furthermore, (3.1) holds.  

(A3) All classes C under consideration are GC(F)-classes and consist of closed 

sets. Furthermore we assume that ∅ ∈ C.

As already mentioned, the existence of a set ΓC(λ) is guaranteed if Γ(λ) ∈ C. But this assumption

it is not necessary. For every distribution G which has a strictly positive Lebesgue density and

every fixed λ ≥ 0 the function C → Hλ(C) is upper semicontinuous on (C,dG) (Lemma 6.1).

Hence, if the space (C,dG) is compact, then a generalized λ-cluster ΓC(λ) exists. If in addition we

know a priori that the sets ΓC(λ) are compact, then for every fixed level λ there exists a compact

set K ⊂ Rd, such that we can restrict ourselves to C(K) = {C ∈ C, C ⊂ K}. In this situation the

existence of a generalized λ-cluster is guaranteed if the space (C(K),dG) is compact. The latter

situation holds for example for C = Bd, Ed or Cd.

Consistency:

First we consider the case where Γ(λ) is not necessarily assumed to lie in C, or in other words, we
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consider a situation where the corresponding model (see above) need not necessarily be correct.

Note that the sets ΓC(λ) and Γn,C(λ) need not to be unique. The non-uniqueness of Γn,C(λ) is not

crucial, and the results given below hold for every choice of Γn,C(λ). This will not be mentioned

further in the formulation of the results.

Theorem 3.2:  Let Λ ⊂ [0,∞). Suppose that the following two conditions hold:

(i) For a distribution G with strictly positive Lebesgue density the space 

(C,dG) is quasicompact.

(ii) For every λ ∈ Λ the generalized λ-cluster is unique up to F-nullsets. 

Then we have with probability 1 that

sup λ ∈ Λ  dF(ΓC(λ),Γn,C(λ)) *→ 0        as n → ∞.

Remark:  For the class of all closed convex sets with non empty interior in R2, the consistency of

the empirical generalized λ-cluster (in the Hausdorff metric) was shown by Hartigan (1987) for

fixed λ. Müller & Sawitzki (1991) proved uniform consistency in the one-dimensional case with C

= Ik, where they assumed in addition Γ(λ) ∈ C. Nolan (1991) considered the case C = Ed in a

more parametric setup. 

There are interesting situations where the generalized λ-clusters are not unique. Assume for

example that F is a (smooth) bimodal univariate distribution with density f, symmetric around zero,

where a mode is defined to be a local maximum of f. Then, for some λ large enough, the density

contours cluster is a union of two nonempty intervals, I1 and I2, say. If we choose C as the class

of all intervals, then I1 and I2 both are generalized λ-clusters. 

Let MC(λ) denote the class of all sets at which Hλ attains the supremum over C, i.e.
 
                                  MC(λ) := { Γ ∈ C :  Hλ(Γ) = EC(λ) }.

Note that by (A1) we have MC(λ) ≠ ∅ for all λ ≥ 0. 
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Theorem 3.3:   Suppose that assumption (i) of Theorem 3.2 holds. Then we have for every λ ≥
0 that with probability 1  

                            infΓ∈MC(λ){dF(Γn,C(λ), Γ) }* → 0          as n → ∞.

In the following we shall assume that "Γ(λ) ∈ C". In contrast to the more general case considered

above, this additional assumption allows us to derive explicit upper bounds for dF(Γ(λ),Γn,C(λ)),

which are the key to derive consistency results and rates of convergence in the case “Γ(λ) ∈ C”. 

Proposition 3.4:  Let λ ≥ 0 be fixed and assume that Γ(λ) ∈ C. Then the following inequalities

hold for every η > 0: 

dF(Γ(λ),Γn,C(λ)) ≤ F{x: | f(x) - λ | < η} 

(3.2a) + η-1 M [ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)) ].

Furthermore we have for λ = 0 that

(3.2b) dF(Γ(0),Γn,C(0)) ≤ (Fn - F) (Γn,C(0)) - (Fn - F) (Γ(0)).

The proof of the next theorem follows immediately from (3.2a) together with (A1):

 

Theorem 3.5:  Let Λ be a closed subset of the real line such that Γ(λ) ∈ C for all λ ∈ Λ and

suppose that 

(3.3)                      supλ∈ΛF{x: | f(x) - λ | < η} → 0      as η → 0.

Then we have with probability 1 that

                             supλ ∈ ΛdF(ΓC(λ),Γn,C(λ))* → 0      as  n → ∞.
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Remark:  Condition (3.3) says, that “F has no flat part in Λ”, i.e. F{x : f(x) = λ} = 0 for all λ ∈
Λ. Another equivalent formulation of (3.3) is to say that λ → Γ(λ) is continuous in Λ for the dF-

pseudometric. This follows from F{x: | f(x) - λ | < η} = F((Γ(λ - η)) - F(Γ(λ + η)) - F{x : f(x) =

λ - η}. 

Rates of Convergence

Our two main results on rates of convergence are Theorem 3.6 and Theorem 3.7. The first one

deals with VC-classes C. In the second we also allow more richer classes, where the richness is

measured in terms of the metric entropy with inclusion of C with respect to F, which is defined as

follows: let

NI(ε, C, F) := inf{m ∈ N: ∃ C1,...Cm measurable, such that for every C ∈ C there

                            exist  i, j ∈ {1,..., m} with Ci ⊂ C ⊂ Cj and F(Cj \ Ci)  < ε }, 

then log NI(ε, C, F) is called metric entropy with inclusion of C with respect to F.

For the proofs of the theorems below we shall use results of Alexander (1984) about the behaviour

of the empirical process. For that reason we shall also use some of his terminology. Alexander

considered VC-classes which satisfy a certain measurability condition which he called “n-deviation

measurable”. Here we shall not give this definition and the underlying construction of the empirical

measure, because all the standard VC-classes which we are interested in (the classes of balls,

ellipsoids and finite unions and differences of them) satisfy this measurability condition.

Furthermore, we call C a (v,m)-constructible VC-class, if C is m-constructible (as defined in

Section 2) from a VC-class D whose index is smaller than or equal to k. The index of a VC-class is

defined as the smallest integer k, such that D “shatters” no set which consists of v points. And D

“shatters” a finite set C, iff every B ⊂ C is of the form C ∩ D for some D ∈ D.
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Theorem 3.6:  Let C be a “n-deviation measurable” (v,m)-constructible VC-class and suppose

that for a closed subset Λ of [0,∞) there exist constants γ, C ≥ 0 such that  

(3.5)                        supλ∈ΛF{ x : | f(x) - λ | < η }  ≤  C ηγ.                                       

If Γ(λ) ∈ C ∀ λ ∈ Λ then there exists a constant K = K(M,C, γ, C) such that

        P* ( supλ∈Λ dF(Γ(λ),Γn,C(λ)) > K ( n/log(n) ) −γ/(2+γ) )  →  0    as    n → ∞.

Examples: Consider a fixed level λ > 0. For levels λ where || grad f(x) || is bounded away from

zero in a neighbourhood of {x: f(x) = λ} we have γ = 1. Let F be a smooth unimodal distribution.

Then, for d = 1, the density contour clusters are intervals so that C = I1 is an appropriate choice.

For d ≥ 2 we assume the density contour clusters to be balls or ellipsoids, i.e. we take C = Bd or

Ed. For these situations we obtain from Theorem 3.6 that

                            dF(Γ(λ),Γn,C(λ)) =  OP*( n-1/3(log n)1/3 ). 

Levels λ where γ < 1 are called critical levels. If for example f has a unique maximum λ0 at the

mode x0 and behaves like a parabola in a neighbourhood of x0, then it can be shown that 

                            F{ x : | f(x) - λ0 | < η } = 
O(η1/2),   for d = 1 

O(η),       for d ≥ 2.

Hence, if f has no other critical levels then we have for Λ = [δ,∞), 0 < δ < λ0, that γ = 1/2 for d =

1 and γ = 1 for d > 1. If we consider the same VC-classes as above, i.e. C = I1 for d = 1 and C =

Bd or Ed for d ≥ 2, then  

                 supλ≥δ dF(Γ(λ),Γn,C(λ)) = 
OP*(n-1/5(log n)1/5),   for d = 1 

OP*(n-1/3(log n)1/3),   for d ≥ 2.
 

If we want to include δ = 0, then additional conditions on the tail behaviour of f are necessary to

control supλ≥0 F{x : | f(x) - λ | < η} as η → 0. 
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Theorem 3.7:  Let C be such that there exist constants A, r > 0 with

(3.6)                            log NI(ε, C, F)  ≤  A ε−r        ∀ ε > 0.

Suppose that there exists a closed subset Λ of [0,∞) such that Γ(λ)∈ C for all λ ∈ Λ and that

(3.5) holds. Then there exist positive constants L(r) = L(r,A,M) such that with probability tending

to one as n → ∞.  

          supλ∈Λ dF(Γ(λ),Γn,C(λ))*  ≤  

L(r) n−γ/(2+ (1+r)γ),    r < 1

L(r) n−γ/2(γ+1) L(n),  r = 1

L(r) n−γ/(γ+1)(r+1),     r > 1

Example:  Let C = C2 and assume that the sets Γ(λ), λ ∈ Λ, all lie in a compact set K. Then we

have r = 1/2 (Dudley (1984). Hence, we obtain from Theorem 3.7 for regular situations where γ =

1 (see above) that dF(Γ(λ),Γn,C(λ)) = OP*(n-2/7). Hartigan (1987) conjectured that for such cases

the rate is OP*(n-2/7(log n)2/7) in the Hausdorff-distance. If such a compact set K does not exist

(for example for a distribution with unbounded support and 0 ∈ Λ), then one in addition needs

conditions on the tail behaviour of F to ensure that r = 1. A sufficient condition is that there exist

constants 0 ≤ η, c, k< ∞ such that f(x) ||x||η ≤ c for ||x|| > k. This is shown in Polonik (1992).

Estimating the support of a density and the case of an underlying uniform distribution:  

Estimating the density contour clusters of a uniform distribution U (for λ bounded away from the

maximum of the density) means estimating the support of U. Since in this situation the quantity

F{x: |f(x) -λ| < η} which appears in (3.2a) is zero for η small enough, we formally have the same

basic inequality as in the case of estimating the support of an arbitrary distribution F (cf. (3.2b)).

Therefore we summarize the results concerning these both cases in Proposition 3.8 below. The

assertion of Proposition 3.8 formally follows from Theorem 3.6 and Theorem 3.7, respectively,

by taking γ = ∞.

As mentioned earlier, the support of f, supp{f}, is a generalized 0-cluster if it lies in C. For C =
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Cd, d ≥ 2, the convex hull of the sample X1,.., Xn, denoted by convn, is an empirical generalized

0-cluster.

Proposition 3.8:  The given results hold with probability tending to one as n → ∞.  

(a)   Let C be a “n-deviation measurable” (v,m)-constructible VC-class and suppose that  supp{f}

∈ C. Then there exists a constant C = C(v,m) such that 

dF(supp{f},Γn,C(0))* <  C n−1 log(n).

(b)   Let the class C satisfy (3.6) and suppose that supp{f} ∈ C. Then there exist constants C(r) =

C(r,A) such that 

dF(supp{f},Γn,C(0))* <   
C(1)  n -1/2log(n),  r = 1

C(r)  n -1/(1+r),       r ≠ 1

Hence, if C = Cd, d ≥ 2, m, k ∈ N and supp{f} is compact then we have 

dF(supp{f},convn)* ≤   
C(1) n -1/2log(n),   d = 3

C(d-1
2

)  n -2/(d+1),    d ≠ 3

(c)  Let U be a uniform distribution on a bounded set S and denote M = 1/Leb(S). If S ∈ C then

the rates given above also hold for supλ< M + δ dU(Γ(λ),Γn,C(λ))*, δ > 0 arbitrary.

Remark:  For an underlying uniform distribution with a compact convex support in Rd which has

a smooth boundary it is known, that n−2/(d+1) is the exact L1-rate of the random quantity

dLeb(supp{f},convn). For d = 2 this is a well known result of Rényi & Sulanke (1964) (cf.

Schneider (1988) for a survey of results in this context). However, also in the case of an

unbounded convex support, Proposition 3.8 (b) gives rates of convergence of the convex hull of

the sample. We only need to control the metric entropy with bracketing of the corresponding class

C. In the example given after Theorem 3.6 we already mentioned, that for C = C2 condition (3.6)

holds with r = 1/2 if a week condition on the tail behavior is satisfied. Hence, in this case

Proposition 3.8 (b) gives dF(supp{f},convn) = OP*(n−2/3).
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4.  The empirical excess mass, revisited

The consistency results and the rates of convergence for the empirical generalized λ-clusters

(derived in the previous chapters) will be used here to study the asymptotic behaviour of the

standardized empirical excess mass, which is defined as

 
                                       Zn,C(λ) := n1/2 ( En,C(λ) - EC(λ) ). 

If we (formally) ignore the estimation of ΓC(λ) and consider En,C(λ) = Hn,λ(ΓC(λ)), then the

difference En,C(λ) - EC(λ) simply equals the difference (Fn - F) (ΓC(λ)) which is of the order

OP(n-1/2). It will turn out, that the random fluctuation which comes in through the estimation of

ΓC(λ) is asymptotically negligible, so that n1/2 is the appropriate normalizing factor. Even in the

case where the generalized λ-clusters ΓC(λ) are not unique, Zn,C(λ) can be approximated by Fn - F

evaluated at the generalized λ-clusters. However, in contrast to the “case of uniqueness”, the

generalized λ-clusters have to be chosen randomly in MC(λ). 

We say that the set-indexed empirical process νn is stochastically equicontinuous in the limit, if

limδ→0limsupn→∞ P*( supdF(C,D) < δ| νn(C) - νn(D) | > η } = 0  for all η > 0.

Theorem 4.1:   Assume that the following two conditions hold:

(i) There exists a distribution G which has a strictly positive Lebesgue 

density such that the space (C, dG) is quasicompact.

(ii) νn indexed by C is stochastically equicontinuous in the limit. 

Let λ ≥ 0 be fixed. Then there exists a random sequence {ΓC(λ,n), n ∈ N} ⊂ MC(λ) such that

 

                         | Zn,C(λ)  -  n1/2 (Fn - F)(ΓC(λ,n)) |  =  oP*(1)         as n → ∞.
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Corollary 4.2:   Assume that conditions (i) and (ii) of Theorem 4.1 hold. Then we have for

every λ ≥ 0 such that MC(λ) is finite that 

                                              Zn,C(λ)   =  OP*(1)             as n → ∞ .

The rate is exact if F(Γ) > 0 for all Γ ∈ MC(λ).

If the generalized λ-clusters are uniquely determined (up to F-nullsets), then we can proof stronger

results. Let D(Λ) denote the space of all real-valued functions on Λ which are continuous from the

right and have left limits, equipped with the Skorohod topology. 

Theorem 4.3:  Let Λ ⊂ [0,∞) be compact. Assume that the generalized λ-clusters are unique up

to F-nullsets and that the following conditions hold:

(i) supλ∈ΛdF(ΓC(λ)),Γn,C(λ) *→ 0 with probability 1 as n → ∞ and

(ii) νn indexed by C is stochastically equicontinuous in the limit, 

then               sup λ∈Λ | Zn,C(λ)  -  Bn,C(λ) |  =  oP*(1)        as n → ∞,

where Bn,C(λ) = n1/2 (Fn - F)(ΓC(λ)). Moreover, if in addition

(iii) F has no flat part in Λ, i.e. (3.3) holds, and 

(iv) Γ(λ) ∈ C ∀ λ ∈ Λ, 

then
                              Bn,C(λ)  →  B(aF(λ))                      in distribution  as n → ∞

in D(Λ), where B denotes a standard Brownian Bridge and aF(λ) = F(ΓC(λ)).

Suppose the assumptions of Theorem 4.3 are satisfied with Λ = Λ0 = [0,λ0], λ0 ≥ M for C = C2 .

Then we have for every ε > 0 that  

(4.1)        P [ sup λ ∈ Λ0 | Zn,Nm,k(C2)(λ) | ≤ ε ]  →  P [ sup 0 ≤ t ≤ 1 | B(t) | ≤ ε ].                 
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This leads to confidence bands for E(λ). If λ0 has to be chosen smaller than M, as for example in

the case of the uniform distribution, or if λ has to be bounded away from zero, then the right-hand

side in (4.1) is asymptotically larger than the left-hand side (cf. Müller & Sawitzki (1987) for the

onedimensional case).

5.  Tests based on differences of excess masses

The underlying idea for constructing tests based on differences of excess masses has already been

explained in the introduction. In general we study the following testing problem:  Let C, D be two

classes of measurable subsets of Rd with C ⊂ D and let Λ be a subset of [0,∞). We consider the

hypothesis that the generalized λ-clusters in D already lie in the smaller class C, i.e. the problem is

testing

                                     H0 :   MD(λ)  ⊂  C           for all λ ∈ Λ 
versus 
                                     H1 :   MD(λ)  ⊂  D \ C     for some λ ∈ Λ. 

Remember that for every fixed λ ≥ 0, MD(λ) denotes the set of all generalized λ-clusters in D. Of

course we mainly think of cases where the generalized λ-clusters are defined uniquely up to F-

nullsets or where the density contour clusters lie in D. Let Δn(C,D,λ) = En,D(λ) - En,C(λ). As a

test statistic for the above testing problem we consider

                                   Tn(C,D,Λ)  =  sup λ ∈ Λ Δn(C,D,λ) 

This test statistic is a generalization of the test statistics proposed by Müller and Sawitzki (1987)

and Hartigan (1987), respectively, for testing the hypothesis of multimodality.

Δn(C,D,λ) is non-negative for each λ ≥ 0 and large values of this statistic (for some λ) suggest a

violation of the hypotheses H0 (see introduction).

If we consider the univariate case and choose C = I1 and D = I 2, then the above testing problem

can be regarded as looking for unimodality versus bimodality (cf. introduction). For the analogous

problem in two dimensions an appropriate choice is C = C2 and D = N3,2(C2) (cf. Fig. 2.2). Tests

for the hypothesis of “k modes“, k ≥ 2 against the alternative of “m modes“, k < m, can be

constructed analogously. Choosing C as the class of all balls and D as the class of all ellipsoids
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gives a test which may be interpreted as a test for homoscedasticity.  

In the important special case where the (closures of the) density contour clusters are assumed to lie

in D, the testing problem reduces to

                                     H0 :   Γ(λ) ∈  C           for all λ ∈ Λ 
versus 
                                     H1 :   Γ(λ) ∈  D \ C     for some λ ∈ Λ, 

Define       T(C,D,Λ)  =  supλ ∈ Λ Δ(C,D,λ)  =  sup λ ∈ Λ ( ED(λ) - EC(λ) ).  

The following proposition shows that Tn(C,D,Λ) converges stochastically to T(C,D,Λ). The

proof follows immediately by means of the Consistency Lemma 2.2: 

Proposition 5.1:  For every choice of C and D we have 

(5.1)             supλ≥0 | Δn(C,D,λ)  -  Δ(C,D,λ) |  ≤  || Fn - F ||D + || Fn - F ||C.              

Hence, if D is a GC-class for F, then we have for any Λ ⊂ [0,∞) that with probability 1

                                | Tn(C,D,Λ)  -  T(C,D,Λ) |* →  0        as n → ∞.

If in addition H0 holds, then it follows that with probability 1

                                        Tn(C,D,Λ)*  →  0                       as n → ∞.

If ED(λ) - EC(λ) > 0 for some λ ∈ Λ, then it follows from Proposition 5.1 that the power of a test

based on Tn(C,D,Λ) converges to 1 as n tends to infinity. This is the case if the generalized λ-

clusters are unique up to F-nullsets and if F(ΓD(λ) Δ ΓC(λ)) > 0 for some λ ∈ Λ. In general the

condition F(ΓD(λ) Δ ΓC(λ)) > 0 does not follow from ΓD(λ) ≠ ΓC(λ), however, in many standard

situations this is the case. 
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Rates of convergence:

The asymptotic distribution of the proposed test statistic is known only for the case of an

underlying uniform distribution (cf. Theorem 5.4 below). However, rates of the convergence for

the test statistic can be given which give qualitative insight into the behaviour of the test statistic

under various testing problems, i.e. under various classes C, D and sets Λ. In general only upper

bounds for the rates of convergence of the test statistics are given. At least in some univariate

situations these rates are known to be close (up to a log-term) to the exact rates. 

Theorem 5.2:  Let C be a “n-deviation measurable” (v,m)-constructible VC-class and suppose

that (3.5) holds. Then we have under H0 that 

                  Tn(C,D,Λ) = OP*(n−(1+γ)/(2+γ) (log n)γ/(2+γ) )           as n → ∞.

 

Examples:  The interesting situation here is the case Λ = [0,∞), because the supremum of the

density f clearly is unknown. If F is a smooth univariate unimodal distribution whose density

behaves like a parabola near the mode then we have γ = 1/2 (cf. example after Theorem 3.6).

Hence, it follows that 

                                    Tn(C,D,Λ) = OP*(n-3/5 (log n)3/5). 

This rate has already been derived by Müller & Sawitzki (1991) with the help of the “Hungarian

embedding”. In higher dimensions, d ≥ 2, we have in such regular unimodal cases (where the

densities behave like a parabola near the mode), that γ = 1 (see examples given after Theorem 3.6).

Hence, we have in this case that

                                    Tn(C,D,Λ) = OP*(n-2/3 (log n)2/3). 

Note that this rate is faster than the rate for the onedimensional case. This is caused by the

smoothness assumptions, more precisely, by the behaviour of the function Ψ occurring in (3.4). A

detailed explanation for this fact is given in Polonik (1992). For more richer classes than the VC-

classes the following holds:
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Theorem 5.3:  Let C be such that there exist constants A, r > 0 with

                                 log NI(ε, C, F)  ≤  A ε−r               ∀ ε > 0.         

and suppose that (3.5) holds. Then we have under H0 that  

                                Tn(C,D,Λ) = OP*( αn)                    as n → ∞.

where 

           αn  =   

n -(1+ γ)/(2 + (1+r)γ),  r < 1

n -1/2  log(n),          r = 1

n -1/(r+1),                r > 1

Examples:  We also consider the case Λ = [0,∞) and assume that f has no flat parts, is unimodal

and behaves like a parabola near the mode, so that γ = 1 (cf. examples after Theorem 3.7).

Furthermore we assume that the density contour clusters are convex, i.e. we choose C = Cd, d ≥ 2,

so that r = (d-1)/2. Hence, it follows from Theorem 5.3 that 

                            Tn(C,D,Λ)  =  

OP*(n-4/7),            d = 2 

OP*(n-1/2log(n)),  d = 3 

OP*(n-1/(d+1)),      d ≥ 4.

The next theorem shows (together with (5.1)) that for an underlying uniform distribution n-1/2 is

the exact rate for the proposed test statistic under H0 if in addition D is a Donsker class (with the

exception of some degenerate cases, as for example D = {∅}). Classes D are called Donsker

classes for F, if the following two conditions (a) and (b) hold: (a) there exists a D-indexed

Brownian Bridge GD corresponding to F (or in other words, a F-bridge over D, cf. for example

Pollard (1984)), and (b) the D-indexed empirical process νn converges to GD in the sense that || νn

- BD ||D → 0 in outer probability. Note that the D-indexed empirical process is stochastically

equicontinuous in the limit if D is a Donsker classes .
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For a Donsker class D let 

                                 ZD(λ) := supD∈D ( GD(D) - λ Leb(D) ), 

where GD denotes a D-indexed Brownian Bridge corresponding to F. 

Theorem 5.4:  Let F be a uniform distribution on a bounded set C0 ⊂ Rd and let D0 := { D ∩
C0, D ∈ D }. Suppose that  D0 is a Donsker class for F. Then we have for every interval Λ ⊂
[0,∞) with λ0 := 1/Leb(C0) ∈ Λ and every class C ⊂ D0 that

      | n1/2 Tn(C,D,Λ) - sup−∞ < λ < ∞( ZD0
(λ) - ZC(λ) ) |   =   oP*(1)        as n → ∞.

 

Remarks: (i) The assumption that D0 forms a Donsker class for F is fulfilled if D is a Donsker

class of subsets of C0. For example choose C0 as the unit cube in R2 and D as the class of all

circles, ellipses or closed convex sets in C0.

(ii)  If it is known that D is not too rich, such that J =  
0

1
(log NI(η

2,D,F))1/2 dη is finite then the

same holds for D0. This for example holds for D = C2, because it is known (cf. Dudley 1984) that

log NI(η
2,C2,F) ≤ A η−1, for some constant A > 0. The finiteness of J is sufficient for the Donsker

property (Dudley 1984). Hence, in this situation the Donsker property of D carries over to D0. 

For Donsker classes D Proposition 5.1 shows, that for distributions which have no flat part the

generalized λ-clusters are uniformly consistent under H0 (Theorem 3.5). Hence it follows from

Theorem 5.2 that under H0 the test statistic is asymptotically larger under the uniform distribution

than under distributions which have no flat parts. In this situation one could therefore use Monte

Carlo simulations under the uniform distribution to determine a critical value for the test, so that the

significance of the test could be controlled, at least for large n. In the one dimensional case

simulation studies of Müller & Sawitzki (1987) show that this strategy works well for n ≥ 10. For

higher dimensions simulations have not been done yet.
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6. Proofs

Proofs of Section 2:

Proof of Proposition 2.1:  Since ∅ ∈ C (i) follows directly from the definition of the excess

mass. En,C(λ) is a supremum over affine linear functions of λ, which either are constant or have a

negative slope. Hence En,C(.) is monotone decreasing and convex in [0,∞). The assertion (iii)

follows from the fact that the affine linear functions λ → Fn(C) - λ Leb(C), C ∈ C, over which the

supremum in the definition of En,C is extended have at most n+1 different intercepts. .
                                                                                                                                                         ❏

Proof of the Consistency Lemma 2.2:  Using Hn,λ = Hλ + (Fn- F) we get   

               | En,C(λ) - EC(λ) |  =  | supC∈CHn,λ(C) - supC∈CHλ(C) | 

                                              ≤  supC∈C| Hn,λ(C) - Hλ(C) |  =  || Fn - F ||C.
                                                                                                                                                         ❏

Proofs of Section 3:

In order to prove Theorem 3.2 we need two lemmas (Lemma 6.1 and Lemma 6.2) which will be

proved first:

Lemma 6.1:  (Properties of Hλ)

(a) supλ≥0 | Hλ(Γn,C(λ)) - Hλ(ΓC(λ)) |∗  →  0  with probability 1 as n → ∞.

(b) For every distribution G which has a strictly positive Lebesgue density the function C →
Hλ(C), C ∈ (C, dG) is upper semicontinuous.
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Proof:   (a)  From the definition of Γn,C(λ) it follows Hn,λ(Γn,C(λ)) ≥ Hn,λ(ΓC(λ)). Together

with Hn,λ = Hλ + Fn - F  this leads to

(6.1)          0 ≤ Hλ(ΓC(λ)) - Hλ(Γn,C(λ)) ≤ (Fn - F) (Γn,C(λ)) - (Fn - F) (ΓC(λ)),          

and since C is a GC-class for F (general assumption (A1)) the assertion follows.

(b)   First note that F is dominated by G (this follows from (A2)). Therefore it remains to show

that A → Leb(A) is lower semicontinuous for dG. In order to see this let {Kn} be a sequence of

compact sets in Rd with Kn ↑ Rd. Then clearly

                                 Leb(A)  =  supn ∈ NLeb(A ∩ Kn),

and because G has a strictly positive Lebesgue density the functions A → Leb(A ∩ Kn) are

continuous for for dG. Hence, as a supremum over continuous functions, the function A → Leb(A)

is lower semicontinuous.
                                                                                                                                                         ❏

Lemma 6.2:  Let Λ ⊂ [0,∞). Suppose that conditions (i) and (ii) of Theorem 3.2 are satisfied.

Then λ → ΓC(λ) is uniformly continuous in Λ for the dF-pseudometric.

Proof:  Without loss of generality we assume Λ to be compact, because for any λ ≥ M we have

Leb(ΓC(λ)) = F(ΓC(λ)) = 0. (This follows from the fact that EC(λ) = 0 for λ > max{f(x)}). 

Let {λn, n ∈ N} be a sequence in Λ with λn → λ0, λ0 ∈ Λ. Because of the compactness of C we

may assume that {ΓC(λn)} converges to a set D0 ∈ C in the dG-pseudometric. 

First assume λ0 ∈ int Λ, the interior of Λ. Since λn → λ0 we have for a given ε > 0 that  λ0 - ε ≤
λn ≤ λ0 + ε  for large enough n. Remember that Hλ(ΓC(λ)) = EC(λ) and that EC(λ) is

monotonically decreasing (Proposition 2.1). Therefore we get by using the upper semicontinuity of

Hλ (Lemma 6.1) that

     Hλ0+ε(ΓC(λ0+ε)) ≤ limsupn Hλn
(ΓC(λn)) ≤ limsupn Hλ0-ε(ΓC(λn)) ≤ Hλ0-ε(D0).
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Letting ε → 0 we obtain Hλ0
(ΓC(λ0)) ≤ Hλ0

(D0) and the assertion follows from the assumed

uniqueness of the maximum. 

If λ0 ∈ Λ \ Λ, where Λ denotes the closure of Λ then omit the ε on the obvious side in the above

inequalities.
                                                                                                                                                         ❏

Proof of Theorem 3.2 (cf. Müller & Sawitzki (1991b)) and Theorem 3.3:

First we prove the special case that Λ consists of a single point λ. In this case the proof of very

short and shows the main idea.

We may assume that a given realization of the random sequence {Γn,C(λ), n ∈ N} converges to a

set D0 ∈ C in the dG-pseudometric. Hence it follows from Lemma 6.1 (a) and (b) that with

probability 1

                              Hλ(ΓC(λ)) = lim supn Hλ(Γn,C(λ))* ≤ Hλ(D0)

and from the assumed uniqueness of the maximum the assertion follows. 

Now we consider the general case where Λ ⊂ [0,∞) is an arbitrary closed set. We need to show

that for every sequence {λn ∈ Λ} we have dF(ΓC(λn),Γn,C(λn)) → 0 with outer probability 1 as n

→ ∞. It can be assumed that λn → λ0, λ0 ∈ Λ ∪ {∞}. 

Since the function λ → ΓC(λ) is continuous for the dF-pseudometric (Lemma 6.2), it is enough to

show that with probability 1

                                     F(Γn,C(λn) Δ ΓC(λ0))*  →  0   as  n → ∞. 

For λ0 < ∞ the proof is much the same as the proof of the continuity of λ → ΓC(λ). The only

difference is, that here in addition the random quantity Hλ(Γn,C(λ)) comes in. However,

Hλ(Γn,C(λ)) can uniformly be approximated by the non-random quantity Hλ(ΓC(λ)) with outer

probability 1 (Lemma 6.1 (a)).

It remains to consider the case λ0 = ∞. Assume that limsupn F(Dn,C(λn) ) = limsupnF(Γn,C(λn)) >

0. Then it follows that limsupn Leb(Γn,C(λn)) > 0 (because of the bounded Lebesgue density).

Hence, for large enough n, i.e. for large enough λn, we have λn Leb(Γn,C(λn)) > 1. On the other
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hand we have 0 ≤ En,C(λn) = Fn(Γn,C(λn)) - λn Leb(Γn,C(λn)), and hence λn Leb(Γn,C(λn)) ≤ 1.

This is a contradiction.

The proof of Theorem 3.3 is the same as the proof of Theorem 3.2 given for the case Λ = {λ}. 
                                                                                                                                                         ❏

Proof of Proposition 3.4:  First note that 

         Hλ(Γ(λ)) - Hλ(C)  =  
Γ(λ)

( f(x) - λ ) dx - 
C

( f(x) - λ ) dx

=  
Γ(λ)\C

( f(x) - λ ) dx - 
C \Γ(λ)

( f(x) - λ ) dx

(6.2) =  
Γ(λ)ΔC

| f(x) - λ | dx.                                                     

Inequality (3.2b) follows directly from identity (6.2). To shorten the notation we write Dn,C(λ) =

Γn,C(λ) Δ ΓC(λ), so that F(Dn,C(λ)) = dF(Γn,C(λ), ΓC(λ)). In order to proof (3.2a) we write

F(Dn,C(λ)) as a sum of two terms:

  F(Dn,C(λ)) = F(Dn,C(λ) ∩ {x: | f(x) - λ | < η}) + F(Dn,C(λ) ∩ {x: | f(x) - λ | ≥ η}).

The first term on the right-hand side is dominated by F{x: | f(x) - λ | < η}. As for the second term,

(6.1) says that 

                     Hλ(Γ(λ)) - Hλ(Γn,C(λ)) ≤ (Fn - F) (Γn,C(λ)) - (Fn - F) (Γ(λ)).

Thus, because of f ≤ M, (3.2a) follows from

                  Hλ(Γ(λ)) - Hλ(Γn,C(λ))  =  
Dn,C(λ)

| f(x) - λ | dx 

                                                          ≥ η Leb( Dn,C(λ) ∩ {x: | f(x) - λ | ≥ η } ).
                                                                                                                                                         ❏

26



Proofs of Theorem 3.6, Theorem 3.7:   Let {δn}, {ηn} be sequences of positive real

numbers and define 

           Bn  =  { ∃ C, D ∈ C such that dF(C,D) > δn and     

                                      dF(C,D) ≤  C ηn
γ + ηn

-1 M [ (Fn - F) (D) - (Fn - F) (C) ]}.

Then it easily follows from (3.2a) that for all sequences {δn}, {ηn} we have

                        P*[ supλ∈ΛdF(Γn,C(λ),Γ(λ)) > δn ]  ≤  P*( Bn ). 

Hence, we shall look for the “smallest” sequence {δn} such that P*( Bn ) → 0. Now we have

P*( Bn ) 

≤ P*( supdF(C,D) > δn
| ( C ηn

γ + ηn
-1 M [ (Fn - F) (D) - (Fn - F) (C) ] ) / dF(C,D) | > 1)

≤     P*( sup dF(C,D) > δn
 | [ (Fn - F) (D) - (Fn - F) (C) ] / M ηn dF(C,D) |  > 1/2 )  

                     +  P*( sup dF(C,D) > δn
 | C ηn

γ / dF(C,D) |  > 1/2 )     =     I  +  II.

If we choose ηn = δn
1/γ / 2C then II equals zero and it remains to determine {δn}such that (with

this choice of ηn) I tends to zero as n → ∞. Note that 

                     {dF(C,D) > δn}   =   ∪
k = 0

kn

{2k δn < dF(C,D) ≤ 2k+1 δn },

where kn is chosen as the smallest integer such that 2kn+1 δn ≥ 1. Since the right-hand side is a

union of disjoint sets it follows that

I   ≤ ∑
k = 0

kn
P*( sup dF(C,D) ≤ 2k+1δn

 | (Fn - F) (D) - (Fn - F) (C) |  > 2k δn
(1+γ)/γ / 4 M C) 

      ≤ ∑
k = 0

kn
P*( sup A ∈ (C\C)n

 | νn(A) |  >  2k+1 n1/2 δn
(1+γ)/γ / 16 M C)    =   ∑

k = 0

kn
pn,k 

where we define (C\C)n = { C\D, C, D ∈ C, F(C\D) < 2k+1 δn }. Now we seek for conditions to
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ensure that the last sum converges to zero (as n → ∞). The probabilities pn,k are exactly of the

form which is considered in Alexander (1984). For VC-classes C  he derives exponential

inequalities of the form

                    P*( sup A ∈ C | νn(A) |  >  N)  ≤ 16 exp( - (1-ε) Ψ(N,n,α) ),

where α ≥ sup A ∈ C { F(A) (1 - F(A) } and Ψ has to lie in a certain class of functions, including

Ψ (N,n,α) = Ψ 2(N,n,α) = N2 / 2α  ( 1 + N/3n1/2α), which corresponds to “Bernstein’s

inequality” (which holds for a single A). Now we fix C = (C\C)n, ε = 1/2, Ψ = Ψ2. For any k and

n we have 2k+1 δn > supA∈(C\C)n
F(A) ≥ supA∈(C\C)n

{ F(A) (1 - F(A) }. Therefore we take α =

2k+1 δn, and by definition of pn,k the quantity N corresponds to 2k+1 n1/2 δn
(1+γ)/γ / 16 M C. 

Now we split the proof. First we consider the situation of Theorem 3.6. It is easy to see that with

δn = (n / log n)γ/(2+γ) conditions (2.20), (2.22), (2.23) of Alexander are fulfilled. Hence, Theorem

2.8 of Alexander (1984) gives the following bound for pn,k:

                     pn,k ≤  16 exp{ - 2k n δn
(2+γ)/γ / 64 M2 (1 + δn

1/γ / 24 M) }.     
 
Hence, for large enough n 

             ∑
k = 0

kn
pn,k ≤  16 ∑

k = 1

kn
 exp{ - 2k log n / 64 M2  } 

which converges to zero as n → ∞. This proves Theorem 3.6. To finish the proof of Theorem 3.7

we use Corollary 2.4 of Alexander (1984). It is easy to check, that if we choose δn as the asserted

rates of Theorem 3.7, then condition (2.7) of Alexander is fulfilled. The rest of the proof is the

same as above in the situation of Theorem 3.6.
                                                                                                                                                         ❏

Proof of Proposition 3.8:  The idea of the proof is exactly the same as for the proofs of the

Theorems 3.6 and 3.7 given above. The only difference is, that here we use inequality (3.2b)

instead of (3.2a). Note that for the uniform distribution supλ<M−δF{ x: |f(x) - λ| < η } = 0 for η =

η0 < δ. Hence (3.2a) reduces to (3.2b) with an addition multiplicative constant M η0
−1. Hence we

define for a sequence {δn} of positive real numbers
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             Bn = { ∃ C, D ∈ C such that dF(C,D) > δn and 

                                            dF(C,D) ≤ M η0
−1 [(Fn - F) (D) - (Fn - F) (C)]}.

where η0 = 1 for the case of the support estimation (part (a) and (b)). With this definition of Bn the

proof works as the proofs of the Theorems 3.6 and 3.7. One has to show, that 

       ∑
k = 0

kn
P*( sup A ∈ (C\C)n

 | νn(A) |  >  2k+1 n1/2 δn η0/ 8 M)  → 0    as n → ∞   

if we choose δn as the rates asserted in Proposition 3.8. Here again one can use results of

Alexander (1984) in ecaxtly the same way is the proofs of Theorems 3.6 and 3.7. 
                                                                                                                                                         ❏

Proofs of Section 4:

Proof of Theorem 4.1: Remember that for every λ ≥ 0 we have

En,C(λ) = Hn,λ(Γn,C(λ)) = Fn(Γn,C(λ)) - λ Leb(Γn,C(λ)). 

From Theorem 3.3 we obtain that for every choice of the empirical generalized λ-clusters Γn,C(λ)

there exists a sequence {ΓC(λ,n), n ∈ N} ⊂ MC(λ) such that dF(Γn,C(λ),ΓC(λ,n))* →  0 with

probability 1. 

Since every set ΓC(λ,n) is a generalized λ-cluster it follows with En,C(λ) := Hn,λ(ΓC(λ,n)) =

Fn(ΓC(λ,n)) - λ Leb(ΓC(λ,n) that

n1/2 ( En,C(λ) - EC(λ) ) = n1/2 (Fn - F)(ΓC(λ,n)).

It remains to show that | n1/2 (En,C(λ) - En,C(λ)) |  =  oP*(1) as n → ∞. We have

                0 ≤ En,C(λ) - En,C(λ)

                = Hλ(Γn,C(λ)) - Hλ(ΓC(λ,n)) + (Fn - F)(Γn,C(λ))  - (Fn - F)(ΓC(λ,n))

  ≤  (Fn - F)(Γn,C(λ))  - (Fn - F)(ΓC(λ,n)).                                             
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Since dF(Γn,C(λ),ΓC(λ,n))* → 0 with probability 1 the assertion follows from the equicontinuity

of the empirical process indexed by C.
                                                                                                                                                         ❏

Proof of Theorem 4.3:  As in the proof of Theorem 4.1 it follows with En,C(λ ) =

Hn,λ(ΓC(λ)) that

                   | Zn,C(λ)  -  Bn,C(λ) |  =  | n1/2 ( En,C(λ) - En,C(λ)) ) |  

                                                       ≤  (Fn - F)(Γn,C(λ))  - (Fn - F)(ΓC(λ)).

From the stochastic equicontinuity of νn the first assertion follows. 

Bn,C( . ) is a random element in D(Λ) because the sets Γ(λ) are closed. The convergence of the

finite dimensional distributions follows immediately from the multidimensional central limit

theorem. The tightness follows from the continuity of λ → Γ(λ) (which is (3.3); see remark after

Theorem 3.5) together with the asymptotic stochastic equicontinuity of νn indexed by C.
                                                                                                                                                         ❏

Proofs of Section 5:

Proof of Theorem 5.2 and Theorem 5.3:  First we proof that under H0 we have

(6.3)          En,D(λ)  -  En,C(λ)  ≤   (Fn - F) (Γn,D(λ))  +   (Fn - F) (Γ(λ))                       

Since under H0 every set ΓD(λ) is a generalized λ-cluster for C and D, we have:

                    En,D(λ) - Hλ(ΓD(λ)) = Hλ(Γn,D(λ)) - Hλ(Γ(λ)) 

                                                           + (Fn - F) (Γn,D(λ))   ≤  (Fn - F) (Γn,D(λ))

and

                    En,C(λ) - Hλ(Γ(λ)) = Hn,λ(Γn,C(λ)) - Hλ(Γ(λ)) 

                                                            ≥ Hn,λ(Γ(λ)) - Hλ(Γ(λ))  =  (Fn - F) (Γ(λ)),
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and (6.3) follows. Because of (6.3) we have for any real numbers βn and δn that

{ n1/2 sup λ ∈ Λ Δn(C,D,λ) > βn} ∩ { supλ∈Λ dF(Γ(λ),Γn,C(λ)) ≤ δn } 

                                                                   ⊂  { sup A ∈ (C\C)n
 | νn(A) | > 2 βn},

where (C\C)n = { C\D, C, D ∈ C, F(C\D) < δn }. As in the proofs of Theorem 3.6 and Theorem

3.7 the assertions of Theorem 5.2 and Theorem 5.3 now follow by means of Theorem 2.8 and

Corollary 2.4, respectively, of Alexander (1984).
                                                                                                                                                         ❏

Proof of Theorem 5.4:  Without loss of generality we assume Leb(C0) = 1, so that F(D) =

Leb(D) for all D ∈ D0. We have for any class C that

                     n1/2 En,C(λ)  =  sup C ∈ C( νn(C) -  n1/2(λ - 1)Leb(C) ). 

Define  Zn,C(λ)  =  sup C ∈ C( GC(C) -  n1/2(λ - 1)Leb(C) ). Then we have  

             supλ ∈ Λ | n1/2 (En,D0
(λ) - Zn,D0

(λ)) | ≤ supD ∈ D0
| νn(D) -  BD0

(D) | 

and it follows

  

                  | n1/2 Tn(C,D
0
,Λ) - supλ ∈ Λ ( Zn,D0

(λ) - Zn,C(λ) ) | 

        =        | n1/2 supλ ∈ Λ (En,D0
(λ) - En,C(λ)) - supλ ∈ Λ ( Zn,D0

(λ) - Zn,C(λ) ) | 

        ≤        supD ∈ D0
| νn(D) -  BD0

(D) |  +   supC ∈ C | νn(C) -  BC(C) | .

The assertion now follows by means of a continuity argument from the identity  

          supλ ∈ Λ ( Zn,D0
(λ) - Zn,C(λ) )  =  supλ ∈ Λn ( ZD0

(λ) - ZC(λ) )

where Λn = [  n1/2(λ0 - 1),  n1/2(λ1 - 1)  ]  and  Λ = [λ0, λ1]. 
                                                                                                                                                         ❏
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