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Abstract. A  general minimum distance estimation procedure is presented for
nonstationary time series models that have an evolutionary spectral representation. The
asymptotic properties of the estimate is derived under the assumption of possible
model misspecification. For autoregressive processes with time varying coefficients the
estimate is compared to the least squares estimate. Furthermore, the behaviour of
estimates is explained when a stationary model is fitted to a nonstationary process. 

1. Introduction.

Stationarity has always played a major role in the theoretical treatment of time series

procedures. For example, the spectral density is defined for stationary processes and the important

ARMA-model is a stationary time series model. Furthermore, the assumption of stationarity is the

basis for a general asymptotic theory: it guarantees that the increase of the sample size leads to

more and more information of the same kind which is basic for an asymptotic theory to make

sense.

On the other hand many series show a nonstationary behaviour (e.g. in economics or sound

analysis). Special techniques (such as taking differences or the consideration of the data on small

time intervalls) have been applied to make an analysis with stationary techniques possible.

If one resigns from stationarity the number of possible models for time series data explodes.

For example, one may consider ARMA models with time varying coefficients. In that case the

time behaviour of the coefficients may again be modeled in different ways. Therefore, we try to

consider in this paper a general class of nonstationary processes together with a general estimation

method which is a generalisation of Whittle's method for stationary processes (Whittle, 1953).

Whittle's method (cf. Dzhaparidze, 1986; Azencott and Dacunha-Castelle, 1986) is based on

minimization of the function

  
LT θ = 1

4π log fθ λ +
IT λ
fθ λ dλ

– π

π
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where fθ(λ) is the model spectral density and IN(λ) is the periodogram. The Whittle estimate is

asymptotically efficient and LT(θ) is (up to a constant) an approximation to the Gaussian

likelihood function. Since LT(θ) may be interpreted as a distance between the parametric spectral

density fθ(λ) and the nonparametric estimate IN(λ), the Whittle-estimate is a minimum distance

estimate. In the case where the model is misspecified minimization of LT(θ) therefore leads to an

estimate of the parameter with the best approximating parametric spectral density. This best

approximating paramter also minimizes the asymptotic Kullback-Leibler information divergence.

For autoregressive processes the Whittle estimate is identical to the Yule-Walker estimate. If a data

taper is applied in the calculation of the periodogram then the estimate also has good small sample

properties (cf. Dahlhaus, 1988). Asymptotic normality of the Whittle estimate also holds for non-

Gaussian processes. However, this requires identifiability of the model which basically only holds

for linear processes.

In this paper we generalise the method of Whittle to processes that only show locally a

stationary behaviour (cp. Definition 2.1). We replace the periodogram IN(λ) in LN(θ) by a local

version and integrate over time (cp. Section 3.1). The resulting estimate again is efficient.

If the model is misspecified the estimate again may be regarded as an estimate for the best

approximating model ('best' in the sense of distances between spectral densities or in the sense of

the Kullback-Leibler information divergence - cp. Section 3). We prove asymptotic normality also

in the misspecified case. In particular we can describe the behaviour of the estimate if a stationary

model is fitted and the true process is nonstationary (Section 5).

Although we use a spectral density approach our goal in this paper is not the estimation of the

spectral density. We mainly are interested in parametric inference for nonstationary time series

models that may be defined purely in the time domain. An example are autoregressive processes

with time varying coefficients. Such models are studied in detail in section 4. In particular, we

give the estimation equations for such models and study the relation of our estimate to the least

squares estimate.

Section 6 contains some practical considerations and a simulation example and Section 7

concluding remarks.

2. Asymptotic theory and locally stationary processes

One of the difficult problems to solve when dealing with nonstationary processes is how to

set up an adequate asymptotic theory. Asymptotic considerations are needed in time series analysis

to simplify the situation since it is usually hopeless to make calculations for a finite sample size.

However, if X1,...,XT are observations from an arbitrary nonstationary process, then letting

T tend to infinity, i.e. extending the process into the future will not give any information on the
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behaviour of the process at the beginning of the time intervall. We therefore need a different

asymptotic concept. 

Suppose for example that we observe

Xt = a(t) Xt–1 + εt   with εt iid N (0,σ2)

for t = 1, … , T. Inference in this case means inference for the unknown function a(t) on the

intervall [1,T]. We have informations on a(t) on the grid {1,2,3, … , T}. Analogously to

nonparametric regression it seems natural to set down the asymptotic theory in a way that we

"observe" a(t) on a finer grid (but on the same intervall), i.e. that we observe the process

(2.1) Xt,T  = a t
T

 Xt–1,T + εt  for t = 1, … , T

(where a is now rescaled to the intervall [0,1]).

To define a general class of nonstationary processes which includes the above example we

may try to take the time varying spectral representation 

(2.2) X t,T =  μ t
T

  +  
 

–π

π

exp(iλt) A( t
T

 , λ) dξ(λ) .

(similar to the analogous representation for stationary processes). However, it turns out that the

equation (2.1) has not exactly but only approximately a solution of the form (2.2). We therefore

only require that (2.2) holds approximately which leads to the following definition.

(2.1) Definition.  A sequence of stochastic processes Xt,T (t = 1, … , T) is called locally

stationary with transfer function Ao and trend μ if there exists a representation

(2.3) Xt,T = μ t
T

  + 
 

–π

π

exp(iλt) At,T°  (λ) dξ(λ)

where

(i) ξ(λ) is a stochastic process on [– π,π] with  ξ(λ) = ξ(– λ) and 

cum{dξ(λ1), … , dξ(λk)} = η( λj∑
j =1

k

) gk (λ1, … , λk–1) dλ1 … dλk
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where cum{ … } denotes the cumulant of k-th order, g1 = 0, g2(λ) = 1, 

|gk(λ1, … , λk–1)| ≤ constk for all k and  η(λ) = δ∑j=– ∞
∞ (λ + 2πj)  is the period 2π 

extension of the Dirac delta function.

(ii) There exists a constant K and a 2π-periodic function A: [0,1] × R →C  with 

A(u,– λ) = A(u,λ) and

(2.4) sup
t,λ

| At,T°  (λ) – A ( t
T

 , λ) | ≤ KT
– 1

for all T. A(u,λ) and μ(u) are assumed to be continuous in u. 

The smoothness of A in u guarantees that the process has locally a "stationary behaviour".

Below we will require additional smoothness properties for A, namely differentiability in both

components. 

In the following we will denote by s and t always time points in the intervall [1,T] while u

and v are time points in the rescaled intervall [0,1], i.e. u = t / T .

(2.2) Examples. (i) Suppose Yt is a stationary process and μ, σ : [0,1] → R are continuous.

Then

  Xt,T = μ t
T + σ t

T Yt

is locally stationary with At,T°  (λ) = A( t
T

 , λ). If Yt  is an AR(2)-process with (complex) roots

close to the unit circle then Yt shows a periodic behaviour and σ  may be regarded as a time

varying amplitude function of the process Xt,T. If T tends to infinity more and more cycles of the

process with u = t / T ∈ [uo - ε, uo + ε ], i.e. with amplitude close to σ(uo) are observed.

(ii) Suppose εt is an iid sequence and 

  
Xt,T = ajΣ

j = 0

∞
t
T εt – j.

Then Xt,T is locally stationary with At,T°  (λ) = A( t
T

 , λ)  =   ajΣ
j = 0

∞ t
T   exp ( – iλj).

(iii) Autoregressive processes with time varying coefficients (cp. Section 4) are locally

stationary. This was proved in Dahlhaus (1994, Theorem 2.3). However, in this case we only

have (2.4) instead of At,T°  (λ) = A( t
T

 , λ).
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The above definition does not mean that a fixed continuous time process is discretized on a

finer grid as T tends to infinity. Instead it means heuristically that with increasing T more and

more data of each local structure are observed. If μ and A
o
 do not depend on t and T then X does

not depend on T as well and we obtain the spectral representation of an ordinary stationary

process. Thus, the classical theory for stationary processes is a special case of our approach.

Letting T tend to infinity no longer means looking into the future. Nevertheless, a prediction

theory within this framework is still possible. One may e.g. assume that Xt,T is observed for t ≤
T/2 (i.e. on the time interval (0,1/2)) and one tries to predict the next observations. A result on the

local prediction error similar to Kolmogorov's formula for stationary processes has been proved in

Dahlhaus (1994, Theorem 3.2).

By f(u,λ) := |A(u,λ)|2 we denote the spectral density of our process. In Dahlhaus (1994,

Theorem 2.2) we show under smoothness conditions on A that

f(u,λ) = 1
2πlim

T→∞
  ∑

s =– ∞

∞
cov(X[uT – s/2],T , X[uT + s/2],T ) exp( – iλs),

where Xs,T is defined by (2.3) (with At,T°  (λ) = A(0,λ)  for t < 1 and At,T°  (λ) = A(1,λ) for 

t > T - with respect to λ the above convergence is in quadratic mean). This means that if there

exists a spectral representation of the form (2.3) with a smooth A(u,λ) then |A(u,λ)|
2
 is uniquely

determined (there may exist several other non-smooth representations). 

There are similarities of our definition to Priestley's definition of an oscillatory process (cf.

Priestley, 1981, chapter 11). However, there is the major difference that we consider double

indexed processes and make asymptotic considerations. 

3. Fitting parametric models to locally stationary processes.

In this section we discuss the fitting of a locally stationary model with time varying spectral

density fθ, θ ∈ Θ ⊂ R
P
 to observations X1,T, … , XT,T. As motivated in the introduction we

obtain the parameter estimate by minimization of a generalisation of the Whittle function where the

usual periodogram is replaced by local periodograms over (possibly overlapping) data segments.

Let h: R → R be a data taper with h(x) = 0 for x∉[0,1) and (for N even)

dN(u,λ)  =  dN
X (u,λ )  = h s

N∑
s =0

N–1

 X[uT] – N/2+s+1,T  exp (– iλs),
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Hk,N(λ) =  h s
N∑

s =0

N–1
k
 exp (– iλs) ,

IN(u,λ) =  1
2π H2,N(0)

   |dN(u,λ)|2.

Thus, IN(u,λ) is the periodogram over a segment of length N with midpoint [uT]. The shift from

segment to segment is denoted by S, i.e we calculate IN over segments with midpoints 

tj : = S(j – 1) + N/2 (j = 1, … , M) where T = S(M – 1) + N , or, written in rescaled time, at

time points uj : = tj / T. We now set

LT(θ) = 1
4π  1

M
  ∑

j =1

M  

–π

π

{log fθ(uj,λ)  +  
IN(uj,λ)

fθ(uj,λ)
 } dλ

and

   θT = LT(θ)arg min
θ∈Θ

.

The use of a data taper which tends smoothly to zero at the boundaries has two benefits: First

it reduces leakage (as in the stationary case). Second it reduces the bias due to nonstationarity by

downweighting the observations at the boundaries of the segment. It is interesting to see that the

taper does not lead to an increase of the asymptotic variance for overlapping segments (Theorem

3.3). Furthermore, some estimates are even approximately independent of the taper (cp. Theorem

4.2 and the discussion after that theorem).

The above motivation of the function LT (θ) is heuristic. We now give a stronger justification

for the particular form of LT (θ). Suppose f  is the true probability-density of the observations

X1,T,...,XT,T  and f the true spectral-density. Analogously, let fθ  and fθ  be the corresponding

densities of our model. If f  and fθ  are Gaussian distributions with mean zero then we have shown

in Dahlhaus (1994, Theorem 3.4) that the asymptotic Kullback-Leibler information divergence is

  lim
T → ∞

1
T Ef log f / fθ

   
  

= 1
4π log

fθ u,λ
f u,λ +

f u,λ
fθ u,λ – 1 dλ du

– π

π

0

1

 
  

= 1
4π log fθ u,λ +

f u,λ
fθ u,λ dλ du + const

– π

π

0

1

where the constant is independent of the model spectral density. Therefore, we may regard
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L(θ) : =  1
4π 

 

0

1  

–π

π   
log fθ u,λ +

f u,λ
fθ u,λ

 dλ du 

as a distance between the true process with spectral density f(u,λ) and the model with spectral

density   fθ u,λ . The best approximating parameter value from our model class then is

θ0
  : =     argmin

θ∈Θ
L(θ) .

If the model is correct, i.e. f =   fθ* , then it is easy to show that θo = θ*.

The function LT (θ) is now obtained from L(θ) by replacing the unknown true spectral

density f by the nonparametric estimate IN. We conjecture that LT (θ) is an approximation to the

exact Gaussian likelihood function (as in the stationary case - cf. Azencott and Dacunha-Castelle,

1986, Chapter XIII). This means that   θT  is an approximate Gaussian MLE (the benefits of   θT

over the exact MLE are discussed at the end of Section 4).

We now prove convergence of θT to θ0 in the case where the mean is known (i.e. we assume

μ(u) ≡ 0). The situation of an unkonown mean is treated in Theorem 3.6  and Remark 3.7. A key

step in the proof is the use of the more general central limit theorem A.2 which is of independent

interest.

(3.1) Assumption.

(i) We observe the realisation X1,T, … , XT,T of a locally stationary process with true transfer 

function Ao and mean μ(u). The true spectral density is f(u,λ) = |A(u,λ)|2 with A as in 

Definition 2.1. A(u,λ) is differentiable in u and λ with uniformly bounded derivative 

  ∂
∂u

 ∂
∂λ A. g4 is continuous.

(ii) As a model we fit a class of locally stationary processes with spectral density fθ(u,λ), 

θ∈Θ ⊂ R
p
, Θ compact. The fθ(u,λ) are uniformly bounded from above and below. The 

components of fθ(u,λ), ∇fθ(u,λ) and ∇
2
fθ(u,λ) are continuous on Θ × [0,1] × [– π,π] 

(∇ denotes the gradient with respect to θ). ∇fθ0

–1
 and ∇

2
fθ0

–1
 are differentiable in u and λ 

with uniformly bounded derivative  
∂

∂u
  

∂

∂λ
 g where g = 

∂

∂θi

 fθ0

–1
 or g = 

∂

∂θi

 · 
∂

∂θj

  fθ0

–1
 .

(iii) θ0  exists uniquely and lies in the interior of Θ.

(iv) N,S and T fulfill the relations T
1/4

 << N << T
1/2

 / ln T and S = N or S / N → 0.

(v) The data taper h: R → R with h(x) = 0 for all x∉[0,1] is continuous on R and twice 
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differentiable at all x∉P where P is a finite set and sup
x∉P

 |h''(x) | < ∞ .

The assumptions on N,S and h are discussed below Theorem 4.2, in Section 6 and in

Remark A.3.

(3.2) Theorem. Suppose that Assumption 3.1 holds with μ(u) ≡ 0. Then

θT →  θ0

in probability.

Proof. Below we prove that

(3.1) sup
θ

| LT(θ) – L(θ) | → 0

in probability. Since L(θ) is minimized by θ0 we have LT (θT) ≤ LT(θ0)   and   L(θ0) ≤ L(θT)

which implies L(θT) → L(θ0) and therefore also θT →  θ0 in probability. To prove (3.1) we

follow the idea of Hannan (1973, Lemma 1) and approximate the function gθ(u,λ) = fθ(u,λ)
–1

 by

the Cesaro sum of its Fourier series

gθ
(L)(u,λ) : = 1

(2π)2
  

  
∑

,m=–L

L

(1 – 
  | |

L
) (1 – 

|m|
L

  ) gθ( ,m) exp(– i 2π u  – i λ m)

with L such that  sup
θ

| gθ(u,λ) – gθ
(L)(u,λ)| ≤ ε. We obtain

sup
θ

| LT(θ) – L(θ) | ≤ O(M
–1

) + ε 1
4π  1

M
  ∑

j =1

M

 
 

–π

π

{IN(uj,λ) + f(uj,λ)} dλ .

+  1
16π3

  
  
∑

,m=–L

L

(1 – 
  | |

L
 ) (1 –  

|m|
L

 ) sup
θ

 | gθ( ,m) |

· | 1
M

  ∑
j =1

M  

–π

π

exp(– i 2π uj  – iλm) {IN(uj,λ) – f(uj,λ)} dλ | .

By using Lemma A.8 and Lemma A.9 the | … | -term converges for all  and m to zero in
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probability, while 1
M

  ∑ ∫ IN(uj,λ) dλ converges to ∫∫ f(u,λ) dλ du. This proves the result.

(3.3) Theorem. Suppose that Assumption  3.1 holds with μ(u) ≡ 0. Then we have

T(θT  – θ0) →D  N (0,ch Γ
–1

(V + W) Γ
–1

)

with

Γ  =  1
4π  

  

0

1

(f – fθ0
)

–π

π

 ∇2
 fθ0

–1
 dλ du  +  1

4π  
  

0

1

(∇ log fθ0
) (∇ log fθ0

)' dλ
–π

π

 du,

V  =  1
4π  

  

0

1

f2∇fθ0
–1 ∇fθ0

–1

–π

π

 ' dλ du,

W  =  1
8π  

  

0

1

–π

π

f(u,λ) f(u,μ) ∇fθ0
–1(u,λ) ∇fθ0

–1(u,μ)'

–π

π

h(λ, – λ,μ) dλ dμ du,

and ch = H4 / H2
2  if S = N and ch = 1 if S/N → 0.

Proof. We obtain with the mean value theorem

∇LT(θT)i – ∇LT(θ0)i = {∇
2LT(θT

(i)
) (θT – θ0)}i

with | θT
(i)

 – θ0| ≤  |θT – θ0 | (i = 1, … , p). If θT  lies in the interior of Θ, we have ∇LT(θT) = 0.

If θT lies on the boundary of Θ, then the assumption that θ0 is in the interior implies |θT – θ0| ≥ δ

for some δ > 0, i.e., we obtain P( N |∇ LT(θT)| ≥ ε) ≤ P(| θT – θ0| ≥ δ) → 0  for all ε > 0. Thus,

the result follows if we prove 

(i)      ∇
2LT(θT

(i)
)  –  ∇

2LT(θ0) →
p

 0 ;

(ii) ∇
2LT (θ0) →

p
 Γ ;

(iii)       T ∇LT (θ0) →
D

 N (0,ch(V + W)).

We have
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∇LT (θ) = 1
4π  1

M
   ∑

j

 

– π

π

{IN(uj,λ) – fθ(uj , λ)} ∇fθ
–1(uj,λ) dλ

and

0  =  ∇L (θ0) = 1
4π  

0

1

 

– π

π

{f(u,λ) – fθ0
(u,λ)}  ∇fθ0

–1
(u,λ) dλ du.

Therefore

T ∇
 LT (θ0) = T

4π  1
M

  ∑
j

 

– π

π

{IN(uj,λ) – f( uj , λ)} ∇ fθ0

–1(uj , λ) dλ + Ο( T
M

)

which, by using Theorem A.2 implies (iii). Furthermore

∇
2 LT (θ) = 1

4π   1
M

  ∑
j

 

– π

π

{(IN    
– fθ)  ∇

2
fθ
– 1

  –  ∇ fθ ∇fθ
–1}' dλ .

The smoothness conditions and Lemma A.8 and Lemma A.9 imply (i) and (ii).

(3.4) Corollaries and Remarks.

(i) If the model class contains the true model, then we have fθ0
 = f. In this situation Γ, V and 

W simplify . In particular, we have V = Γ.

(ii) If g4(λ,– λ,μ) = 0 (for example if the process is Gaussian) then W = 0. If in addition 

f = fθ0
 and ch = 1, then

T (θT – θ0) →
D

 N (0,Γ
–1

).

In Dahlhaus (1994, Theorem 3.6) we prove that Γ is the limit of the Fisher information 

matrix. Thus, θT  is (Fisher-) efficient in this situation.

(iii) If the model is stationary (all fθ do not depend on u) then the above theorem gives the 

asymptotic distribution also in the case where the true underlying process is nonstationary 

(cp. section 5).
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(iv) Alternatively, we get the asymptotic distribution if a nonstationary model is fitted to a 

stationary process.

(v) If both the model and the true process are stationary, then the above distribution becomes 

the same as for the classical MLE and the Whittle estimate (cf. Hosoya and Taniguchi, 

1982). We therefore have proved efficiency also for a new estimate (minimum distance fit 

to segment spectral estimates) in the classical stationary situation. 

(3.5) Remark (model selection). In a practical application the problem of model selection

arises. For example we might wish to compare an AR(2)-model where the coefficients are

polynomials in time with a stationary AR(p) model of higher order. We will not solve this problem

satisfactorily in this paper. However, we now give a heuristic derivation of the AIC-criterion

(Akaike, 1974) in this situation. The criterion is used in the example of Section 6.

As a criterion of the quality of our fit we take EL(θT), i.e. we estimate the expected

Kullback-Leibler information divergence between the model and the true process (up to a

constant). A quadratic expansion of L(θ) around θ0 and LT(θ) around θT gives

(3.2) L(θT) ≈ L(θ0) + 1
2

  (θT  – θ0)' ∇2L(θ0) (θT  –  θ0)

and

LT(θ0) ≈ LT(θT) + 1
2

  (θT  – θ0)' ∇2LT(θT) (θT  – θ0).

Since ELT(θ0) ≈ L(θ0), ∇2L(θ0) = Γ and ∇2LT(θT) →
P

 Γ with Γ as in Theorem 3.3 we may now

estimate EL(θT) by

LT(θT) + E(θT  – θ0) Γ (θT  – θ0)   ≈ LT(θT) + 1
T

  tr {Γ
–1

(V + W)}  (if S/N → 0)

with V,W and Γ as in Theorem 3.3. If the model is Gaussian and correctly specified (f = fθ0
),

0then W = 0 and V = Γ, leading to

≈ LT(θT ) + 
p
T

which is the AIC (the AIC is usually 2LT(θT) + 
2p
T

  + const.).

Apart from the crucial assumption f = fθ0
  there is another problem: Inspection of the proof of
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Lemma A.8 shows that

E LT(θ0) – L(θ0) = 0( 1
M

  + 1
N2

  + N
T

  ln N)

which is of a higher order than p/T. To get rid of this problem it may be helpful to look only at the

difference of LT(θT ) for different models as in Findley (1985).

If a stationary model is fitted the above considerations still hold. However, a stationary model

usually is fitted with a different empirical likelihood (e.g. the "exact" stationary Gaussian

likelihood function or with the stationary Whittle function). Those likelihoods will in general not

converge to L(θ) if the true distribution of the process is nonstationary. However, for Yule-

Walker estimates it follows from the proof of Theorem 5.1 that

1
4π  ∫ {log fθ(λ) + 

IT(λ)

fθ(λ)
 } dλ

converges to L(θ) also for nonstationary processes (where IT(λ) is the ordinary periodogramm).

Thus, for AR(k)-processes and Yule-Walker estimates we may take the usual

1
2

  log 
  σk
2

2π  +  1
2

  + k +1
T

and compare it to the above LT (θT) + p/T for a nonstationary fit.

The first term in (3.2)    (L(θ0))  may be regarded as a bias term (between the true f and the

fitted   fθT
) while the second is the variability of the estimate. Thus, minimizing the criterion

LT(   θT ) + p/T means balancing these two terms (for example for a higher model order the first

term usually becomes smaller while the second gets larger).

A careful investigation of the problems arising in model selection go beyond the scope of this

paper. In particular such an investigation would require a different asymptotics where the model

order is allowed to increase with the sample size. 

We now discuss the situation where the mean function μ(u) is unknown and estimated by

  μ t
T

 at points u = t/T. Let

  
I N

μ (u,λ): =
1

2πH2,N(0)
|dN

X – μ(u,λ)|2,
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LT(θ,μ) = 1
4π  1

M
  ∑

j =1

M  

–π

π

{log fθ(uj,λ)  +  
  IN

μ(uj,λ)

fθ(uj,λ)
 } dλ,

  θT
  : =     argmin

θ∈Θ
LT(θ,μ)   and     θT

  : =     argmin
θ∈Θ

LT(θ,μ ).

The asymptotic properties of   θT  follow from Theorem 3.2 and Theorem 3.3.

(3.6) Theorem. Suppose that Assumption 3.1 holds and in addition that

(3.3)   μ t
T – μ t

T = op
N
T

1 / 2

and

(3.4)   μ t
T – μ t

T – μ t – 1
T – μ t – 1

T = op NT –1 / 2

uniformly in t. Then

  T(θT – θT) 0,→P

i.e   θT  is consistent and has the same asymptotic distribution as   θT .

Proof. The result is proved in the appendix.

(3.7) Remark. If the trend function is parametric with parameter τ then conditions (3.3) and

(3.4) are e.g. fulfilled for   μ(u) = μτ(u)  where τ  is the least squares estimate. For a kernel estimate

μ  with bandwidth bT we need a bandwidth bT >> T-1/2. This means that the segment length of the

local periodogram is not long enough for the mean estimate.

4. Fitting autoregressive models with time varying coefficients.

In this section we discuss autoregressive models with time varying coefficients. Such models

have e.g. been studied before by Subba Rao (1970), Grenier (1983), Hallin (1978), Kitagawa and

Gersch (1985) and Melard and Herteleer-de Schutter (1989). For simplicity we assume through-

out this chaper that the mean of the process is zero. Let Xt,T be a solution of the system of differ-
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ence equations

(4.1) aj∑
j =0

p

 ( t
T

  ) Xt–j,T  =  σ( t
T

 ) εt        for t∈Z 

where a0(u) ≡ 1  and the εt are independent random variables with mean zero and variance 1. We

assume that σ(u) and the aj(u) are continuous on R with σ(u) = σ(0), aj(u) = aj(0) for u < 0;  σ(u)

= σ(1) , aj(u) = aj(1) for u > 1, and differentiable for u∈(0,1) with bounded derivatives.The

existence of such a process Xt,T is discussed in Miller (1968). In Dahlhaus (1994, Theorem 2.3)

we have proved that Xt,T is locally stationary with spectral density

f(u,λ )  = 
σ2(u)

2π   | ∑
j =0

P

aj(u) exp(iλj) |
–2

  .

The estimation equations. 

Suppose now that aθ(u) = (a1
θ(u), … , apθ(u)) and σθ

2(u) depend on a finite dimensional

parameter (they may be e.g. polynomials in time). With the above form of the spectrum fθ(u,λ)

and Kolmogorov's formula (c.f. Brockwell and Davis, 1987, Theorem 5.8.1) we obtain after

some straightforward calculations 

LT(θ) = 1
2

  1
M

  ∑
j =1

M

{log σθ
2(uj) + 1

σθ
2 (uj)

  ·

[(∑N(uj)aθ(uj) + CN(uj))' ∑N(uj)
–1

(∑N(uj)aθ(uj) + CN(uj))+ cN(uj,0) – CN(uj)' ∑N(uj)
–1

CN(uj)]}

with

cN(u,j) =  
 

–π

π

IN(u,λ) exp(iλj) dλ

= H2,N(0)
–1

 ∑
s , t=0
s–t=j

N– 1

h( s
N

) h( t
N

) X[Tu] – N/2 + s + 1,T  X[Tu] – N/2 + t + 1,T  ,

CN(u) = (cN(u,1), … , cN(u,p))'  and  ∑N(u) = {cN(u,i – j)}i,j=1, … ,p

(the analogous relation holds for L(θ) with 1
M

 ∑j  replaced by the integral over time and IN(u,λ)
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replaced by the true spectrum f(u,λ)).

A nice explanation of the nature of the estimate   θT  can be obtained from the following

heuristics. The Yule-Walker estimate of a(u) in the segment of length N with midpoint u is 

  aN(u) = – ΣN(u)– 1CN(u)

with asymptotic variance proportional to σ 2(u)Σ(u)-1, and

  σN
2 (u) = cN(u,0) – CN(u)' ΣN(u)– 1 CN(u)

with asymptotic variance 2σ4(u). If the model is reasonably close to the true process we can

expect   σ
θT

2 (u) ≈ σN
2(u).  Since  log x = (x – 1) – 1

2(x – 1)2 + o (x – 1)2  we therefore obtain for

LT(θ) in a neighbourhood of the minimum

   
LT θ ≈ 1

2
1
M 2σN

4 (uj)
– 1∑

j = 1

M

σθ
2(uj) – σN

2 (uj)
2

(4.2) + 
  1

2
1
M aθ(uj) – aN(uj)

' σN
2 (uj)

– 1∑
j = 1

M

ΣN(uj) aθ(uj) – aN(uj) + 
  1

2
1
M log σN

2 (uj) + 1
2.∑

j = 1

M

Therefore,   θT  is (approximately) obtained by a weighted least squares fit of   aθ(u)  and   σθ
2(u)  to

the Yule-Walker estimates on the segments (note that the Yule-Walker estimate with data-taper has

good small sample properties - cf. Dahlhaus, 1988). If the parameters separate, i.e. θ = (τ,ν) with

  aθ(u) =   aτ(u)  and   σθ
2(u) =   σν

2(u) , we can estimate τ and ν separately.

The above representation justifies the use of graphical tools for model selection and

diagnostics on a plot of the Yule-Walker estimate over time.

A weighted least squares fit to a nonparametric estimate of the AR-coefficients weighted by

the asymptotic inverse of the variance has been suggested for time varying AR(1) processes by

Young (1994). He used the estimate as a tool for fitting non linear time series models.

We now give an explicit formula for   θT  if the   aθ(u) are linear in θ and   σ2(u) is constant over

time. Suppose, that some functions f1(u), … , fK(u) are given (e.g. the polynomials fk(u) = uk–1)

and we fit the model aj(u) = ∑k=1
K bjk fk(u) with σ2 constant. Let 

b = (b11, … , b1K, … , bp1, … , bpK)' i.e. θ = (b', σ2
)'. Let further F(u) be the matrix 

F(u) = {fi(u)fj(u)}i,j = 1, … ,K   and f(u) = (f1(u) , … , fK(u))'. If A ⊗ B denotes the left direct

product of the matrices A and B then direct calculations show that the parameters that minimize

LT(θ) are given by
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(4.3) bT = – ( 1
M

  ∑
j=1

M

F(uj) ⊗ ∑N(uj))
–1

 ( 1
M

  ∑
j=1

M

 f(uj) ⊗ CN(uj))

and

(4.4) σT
2
 =  1

M
  ∑

j=1

M

cN (uj,0) + bT
'  1

M
  ∑

j=1

M

f(uj) ⊗ CN (uj)

i.e. we obtain a linear equation system similar to the Yule-Walker equations. In case that the model

is incorrect we obtain the same equations for the parameter θ0 = (b0
' ,σ0

2) where 1
M

  ∑j is replaced

by the integral over time and ∑N and CN are replaced by the corresponding theoretical values. In

particular the  minimizing values θ0 and θN exist and are unique. If σ
2
 is not modelled to be

constant then the estimation equations are not linear.

If different submodels (e.g. polynomials of different orders) are fitted to the aj(u) for different

j, the estimate is obtained as in (4.3) and (4.4) after deleting the corresponding columns and rows

in

1
M

  ∑
j =1

M

F(uj) ⊗ ∑N(uj)

and

1
M

  ∑
j =1

M

f(uj) ⊗ CN(uj) .

Alternatively, one may use a Levinson-Durbin type algorithm as in Grenier (1983).

Least Squares Estimates
We now prove that a weighted least squares estimate is an equivalent estimate for

autoregressive models. Let 
  

fθ (u,λ) =
σθ

2(u)
2π kθ(u,λ)  where

  kθ(u,λ) = | aj
θ(u)Σ

j = 0

p

exp (iλj)|– 2

where   ao
θ(u) ≡ 1,

   L T(θ) = 1
2

1
T log

σθ
2 (t / Τ)

2π + 1
σθ

2 (t / Τ) | aj
θ( t

T)Σ
j = 0

p

Xt – j,T|2Σ
t = p + 1

T

and
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   θT = argmin
θ ∈ Θ

LT(θ).

To derive the asymptotic properties of   θT  we need the following lemma.

(4.1) Lemma. Suppose Xt,T is a locally stationary process with mean μ(u) = 0 and uniformly

bounded spectral density and φ : [0,1] → R is differentiable with bounded derivative. Suppose 

S / N → 0. Then we have for all fixed i, k, to and t1 ∈ No

  1
M

φ(uj) cN(uj,k) –
1
T

φ t
T Xt – i,T∑

t = to

T – t1

Xt + k – i,T∑
j=1

M

 =  Op
N
T + Op

S2

N2 .

If φ = φθ and φθ and   ∂
∂u φθ are uniformly bounded in θ, then the supremum over θ of the above

difference is also of order  Op
N
T + Op

S2

N2 .

Proof. We have with Yj:= Xj,T Xj+|k|,T and  hs = h s
N h s + |k|

N

  1
M

φ(uj) cN(uj,k)∑
j=1

M

= 
  1

M
φ(uj)

1
H2,N(0)∑

j=1

M

hs YS(j – 1) + s + 1∑
s = 0

N – 1 – |k|

= 
  1

M
1

H2,N(0)∑
j=1

M

φ S(j – 1) + s + 1
T

hsYS(j – 1) + s + 1 + Op

N
T∑

s = 0

N – 1 – |k|

= 
  1

MS
φ t

T
Yt ct + Op

N
T∑

t=1

T – |k|

where

  
ct =

S
H2,N(0)

hsΣ
s ∈ St

with St = {t - S(j - 1) - 1|j = 1,...,M} ∩ {0,...,N - 1 - |k|}.

The smoothness properties of h together with h(0) = h(1) = 0 imply

 
ct = 1 + O

S2

N2 uniformly in t.

Therefore, the above expression is equal to
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  1
T

φ t
T

Yt + Op

N
T

+ Op

S2

N2∑
t = 1

Τ – |k|

 = 
  1

T
φ t

T
Xt – i,T Xt + k – i,T + Op

N
T

+ Op

S2

N2∑
t = to

Τ – |t1|

.

(4.2) Theorem. Suppose that Assumption 3.1 holds with μ(u) ≡ 0  and S fulfills TS4 / N4 → 0.

Then

  T θT – θT 0→P

(also in the misspecified case), i.e.   θT  has the same asymptotic distribution as   θT .

Proof. We only give a sketch. We have in the AR-case 

   L T(θ) =
  1

2
1
M log

σθ
2(uj)
2π + 1

σθ
2(uj)

aθ(uj)am
θ (uj)cN(uj, – m)Σ

,m = 0

p

.Σ
j = 1

M

Lemma 4.1 therefore gives

   sup
θ

|LT(θ) – LT(θ)| = op(1)

which implies as in Theorem 3.2 that

  θT →P θo

In the same way we get

   T ∇LT(θo) – ∇LT(θo) = op(1)

and

   sup
θ

|∇2LT(θ) – ∇2LT(θ)| = op(1).

By using the same Taylor expansion for   θT  and   LT  as in the proof of Theorem 3.3 we now obtain

the result..

It is remarkable that Theorem 4.2 holds regardless of the choice of the data taper and for most

of the S and N. The effect of the choice of these parameters can probably only be seen in a higher

order asymptotics. This shows the low sensitivity of   θT  with respect to the choice of S, N and h.
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In the general case it is difficult to calculate   θT . However, in the homoscedastic case

  σθ
2(t /T) ≡ σ2,  i.e.   θ = (σ2,τ)  we obtain

(4.5)
  τT = argmin 1

T aj
τ t

T Xt – j,TΣ
j = 0

p 2

Σ
t = p + 1

T

and

 
  σT

2 = 1
T a

j
τT t

T Xt – j,TΣ
j = 0

p 2

Σ
t = p + 1

T

.

If the   aj
τ  are linear in τ (as in the polynomial case) we therefore have a linear least squares

problem.

We now compare the minimum distance estimate   θT  to the least squares approach in the

heteroscedastic case. Suppose that the parameters separate, i.e. θ = (τ,κ) where   aj
θ(u)  =   aj

τ(u)  and

  σθ
2(u) =   σκ

2(u) . Thus, we have

  
fθ(u,λ) =

σκ
2(u)
2π k τ(u,λ).

Kolmogorov's formula gives

  
log

– π

π

fθ(u,λ) dλ = 2π log
σκ

2(u)
2π .

Therefore,

  
fθ ∇τfθ

– 1dλ
– π

π

= 0

and

  
fθ ∇τ

2 fθ
–1dλ

– π

π

= ∇τlog fθ ∇τ log fθ
' dλ.

– π

π

Similarly, 

  ∇τ log fθ ∇κ log fθ
' dλ = 0.

– π

π
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If the model is correctly specified (   f = fθo
 where θo = (τo,κo)) we therefore obtain for the

minimum distance estimate   θT
= τT,κT

 from Theorem 3.3 that

   T τ
T

– τo →D N O,Vτo

– 1

where

  
Vτo

= V(u)du
0

1

and

  
V(u) = 1

4π ∇τ log fθo
(λ,u) ∇τ log fθo

(λ,u) 'dλ.
– π

π

We now study the behaviour of the least sqares estimate   τT  as defined in (4.5) (κ  may be

estimated afterwards e.g. by some fit of the estimated residuals at time point t/T to   σκ
2 (t / T)). The

following theorem implies that the LSE is less efficient in the heteroscedastic case. For simplicity

we restrict ourselves to the case where the model is correct.

(4.3) Theorem.  Suppose Assumption 3.1 (i) - (iii) holds with μ(u) ≡ 0 and f =   fθo
. Then we

have 

   T τT – τo →D N 0,U

where

  
U = σκo

2 (u) V(u)du
0

1 – 1

σκo
4 (u) V(u)du

0

1

σκo
2 (u) V(u)du

0

1 – 1

.

We have U ≥   Vτo

– 1  with U =   Vτo

– 1  if and only if   σκo
2 (u) is constant.

Proof. We only give a sketch. As in Theorem 4.2 we can show by using Lemma 4.1 that

  
T τT

– τT →P 0  where   τT  minimizes

   
LT(τ) := 1

M
IN(uj,λ)
k τ(uj,λ)

dλ
– π

π

Σ
j = 1

M
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where S = 1 and N and h fulfill Assumption 3.1 (iv) + (v). It is easy to show that τo minimizes

   
L(τ): =

fθo
(u,λ)

k τ(u,λ)
dλ du.

– π

π

0

1

It now follows in exactly the same way as in the proofs of Theorem 3.2 and 3.3 that

  τT →P τo

and

   T τT – τo →D N 0, Γ– 1
V Γ– 1

where

  
Γ = 1

4π fθo
∇τ

2kτo

– 1 dλ du
– π

π

= 1
2π0

1

σκo
2 (u) V(u) du

0

1

and

  
V = 1

4π fθo

2 ∇τ kτo

2
dλ du

– π

π

= 1
4π2

0

1

σκo
4 (u) V(u) du

0

1

which proves the first part. The matrix

  
σκo

4 (u)V(u)du
0

1

σκo
2 (u)V(u)du

0

1

σκo
2 (u)V(u)du

0

1

V(u)du
0

1

is non-negative definite which leads with Theorem 12.2.21(5) of Graybill (1983) to U ≥   Vτo

– 1 . If

  σκo
2 (u)  is constant we have U =   Vτo

– 1 . Conversely let U =   Vτo

– 1 . Theorem 8.2.1(1) of Graybill

implies that the above matrix is singular, i.e. there exists a vector (x',y') ≠ 0 with

  
σκo

2 (u) x + y '
V(u) σκo

2 (u) x + y du = 0
0

1

Since  V(u)  is positive definite we have   σκo
2 (u) = -yi/xi which implies the result.
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Thus, the least squares estimate is less efficient than the minimum distance estimate   θT  in the

heteroscedastic case. It is heuristically clear that a weighted least squares estimate will be fully

efficient. However, such an estimate has no computational advantages since the weights depend

on the unknown parameters and the estimation equations therefore are nonlinear.

A third candidate for estimation is the exact (Gaussian) maximum likelihood estimate from

which we conjecture that it is also efficient. Since a time varying AR-model can be written in state

space form the MLE can be calculated by using the prediction error decomposition together with a

numerical optimization procedure. However, the system matrices in the state space form are time

varying, which leads to an extremely large computation time. Therefore, the MLE is not a suitable

candidate - in particular if different models are fitted to the data in a model selection process.

The following procedure seems to be reasonable for autoregressive models in a practical

situation: For homoscedastic models  one uses the linear equation system (4.3) and (4.4) together

with the AIC as in Remark 3.5 for model selection and a graphical investigation of the

nonparametric estimate  a(u)  for diagnostic checking. An example is given in Section 6. For

heteroscedastic errors one may minimize the modified likelihood (4.2) which also leads to linear

estimation equations (for models linear in the parameters). The final estimate may be improved by

a one-step MLE. Of course a detailed simulation study is necessary to verify these suggestions.

We finally remark that the minimum distance estimate   θT  can be computed for arbitrary

locally stationary models while for the LSE and the state space representation of the MLE a special

form of the model is necessary.

5. Fitting stationary models to nonstationary processes. 

We now discuss the situation where the fitted model is stationary, i.e. fθ(λ) = fθ(u, λ) does

not depend on u. In this situation we obtain

L(θ) =  
 1

4π
–π

π

{log fθ(λ)  +   

  
f(u,λ) du

0

1

fθ(λ)
  } dλ

and therefore, for θ0 = arg min
θ

L(θ) the equations

 

–π

π

(
 

0

1

f(u,λ)du) ∇fθ0

–1
(λ)dλ  = 

 

–π

π

fθ0
(λ)∇fθ0

–1
(λ) dλ .

Thus θ0 is that parameter for which fθ(λ) approximates the time-integrated true spectrum

  
f(u,λ)du0

1  best.
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In the case of a stationary AR(p)-model the above equations are the (theoretical) Yule-Walker

equations, i.e. we obtain for θ0 = (a0
' ,σ0

2)' with a0 = (a01, … , a0p)'

a0 = – ∑–1
C   and  σ0

2 = c(0) +  a0
' C

with

c(k) = 
 

–π

π

{
 

0

1

f(u,λ)du}  exp(iλk) dλ,

C = (c(1) , … , c(p))' and ∑ = {c(i – j)}i,j=1,…,p .

For θT = (aT
' ,σT

2
)' we obtain the corresponding equations

aT  = –  ∑T
–1

CT      and    σT
2
 = cT(0) +  aT

'  CT

with

cT(k) =  

–π

π

{ 1
M

  ∑
j =1

M

IN(uj,λ)} exp(iλk)dλ = 1
M

  ∑
j =1

M

cN(uj,k),

 CT = (cT(1), … , cT(p))'    and    ∑T = {cT(i – j)}i,j=1,…,p .

The asymptotic distribution of T(θT – θ0) is given in Theorem 3.3. Straightforward calculations

give in this case

Γ  =  

1
σ2

 c0(i – j)i,j=1 ,…, p   0

0   1
2σ0

4

  .

The matrices V and W simplify only minor. (Note, that if the true process is also stationary with

f(λ) ≠ fθ0
(λ) and g4(λ,– λ,μ) is constant, then W disappears - however, this does not hold in the

nonstationary case).

However, θT is not the estimate one would usually use for stationary models. For example,

for AR-processes one would use e.g. (tapered) Yule-Walker estimates, the Burg algorithm or

(Gaussian) maximum likelihood estimates. In the following theorem we prove that Yule-Walker
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estimates have the same asymptotic behaviour as θT if the true process is (possibly) nonstationary.

(5.1) Theorem. Suppose the true process is of the form (2.3) with μ(u) ≡ 0. Let θT = (aT,σ2)

be the Yule-Walker estimate for a stationary AR(p)-model, i.e.

aT  =  – ∑T
– 1

CT ,   σT
2 =  cT(0) + aT

'  CT

with cT(k) = 1
T

  ∑j=1
T– |k| Xj Xj+|k| ,  CT  = (cT(1), … , cT(p))' and  ∑T  = {cT(i – j)}i,j = 1, … , p . If

θT is as in section 3 with S = 1 and N and a taper as in Assumption 3.1, then T(θT – θT)

converges to zero in probability and 

T(θT – θ0) →D  N (0,Γ
–1

(V + W) Γ
–1

)

with Γ as above and V,W as in Theorem  3.3 .

Proof. With θ0 as above we have

– (∑T a0 + CT)  =  ∑T (aT – a0)

and

– (∑T a0  + CT)  =  ∑T (aT  – a0) .

Thus, it is sufficient to prove that T (cT(k) – cT(k)) tends to zero in probability. Since 

cT(k) = 
 1

M ∑
j=1

M

cN(uj,k) this follows from Lemma 4.1.Therefore, the first assertion is proved if

we choose T1/4 <<N<<T1/2. The asymptotic normality then follows from Theorem 3.3 .

For tapered Yule-Walker estimates, i.e. the corresponding estimate with

cT(k) = 1
H2,T

0 (0)
  ∑j=1

T– |k| h0(
j
T

) h0(
j + |k|

T
 ) Xj Xj+|k| (with a taper h0 that may be different from

the taper h used in θT ), we expect the following result: θT will no longer converge to θ0 but to

θ0
'  = arg min 1

4π  
 

–π

π

{log fθ(λ)  +   

  
h

*
(u) f(u,λ) du

0

1

fθ(λ)
   } dλ
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with h*(u) = {
 
h0

2
0
1 (v) dv}–1

 h0
2(u). We conjecture that T(θT – θ0

' )  is asymptotically normal

with Γ,V,W in Theorem 3.3 where 
 
…0

1   du is always replaced by 
 
h

*0
1 (u) … du.

A few remarks on the use of data tapers seem to be necessary. For stationary time series

tapered estimates are less efficient than nontapered estimates or equally efficient if the taper

disappears asymptotically (c.f. Dahlhaus, 1988). On the other hand their small sample behaviour

is very often much better, in particular the resolution problems of the nontapered estimate are

cured. In the situation of this paper Theorem 5.1 says that the asymptotic behaviour of the

nontapered Yule-Walker estimate is the same as of the (tapered) estimate θT . However, for small

samples we conjecture that θT will be much better.

6. A simulation example

We now briefly present a simulation example for the estimate θT in a misspecified situation. If

we have a locally stationary process with smoothly varying characteristics then it is likely that θT

leads to reasonable results for a large sample size, since then the data within each segment are

close to a realisation of a stationary process. The interesting question now is how the estimate

behaves for moderate or small sample sizes, i.e. whether the asymptotics together with the model

of local stationarity yields to a reasonable description also for small data sets.

We have generated T = 128 observations of a time varying AR(2)-process (4.1) with

parameters as described below. Several models were fitted by using the equations (4.3) and (4.4).

The choice of the data taper is different from stationary time series. Theorem 3.3 says that

there is no efficiency loss for overlapping segments. Theorem 4.2 even means that all estimates

are stochastically equivalent to the least squares estimate, regardless of the taper. We have used the

100 % - Tukey Hanning taper h(x) = 1
2

  [1 – cos(2πx)]. This taper has in addition to good bias

properties with respect to leakage also the advantage that the observations at the edge of each

segment are weighted down which makes the estimate heuristically less sensitive against the

instationarity within the segments.

The shift should in general be as small as possible - the theoretical results hold even for S = 1.

However, this choice is very computer intensive. In the simulation we chose S = 2. For the

segment length we chose N = 16 (i.e. M = 57). We also tried other parameters. The results turned

out to be very insensitive to the choice of N, S and h which is in accordance with Theorem 4.2.

As the parameters of the true AR(2)-process we chose σ(u) ≡ 1,

a1(u) =  – 1.8 cos (1.5 – cos 4πu)
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a2(u) = + 0.81

together with Gaussian innovations εt, i.e. for u fixed the roots of the characteristic polynomial are

1
0.9

  exp [± i(1.5 – cos 4πu)] .

Figure 1 below shows the observations. As it could be expected from the above parameters they

show a periodic behaviour with time varying period-length. The left picture of Figure 2 shows the

true time varying spectrum of the process. We have fitted a time varying AR-model of order p to

the data where the coefficients were modeled as polynomials with different orders. Thus, we have

fitted the model

aj(u) =  
 

∑
k=0

Kj

bjk uk–1 (j = 1, … , p)

   σ2 = c

to the data. The model orders p, K1, … , Kp were chosen by minimizing the AIC-criterion

AIC(p, K1, … , Kp) = log σ2
(p, K1, … , Kp) + 2 (p + 1 + ∑

j =1

p

Kj) / T.

Table 1 shows these values for p = 2 and different K1 and K2 . The values for other p turned out

to be larger. Thus, a model with p = 2, K1 = 6, K2 = 0 was fitted.

The corresponding spectrum is the right picture of Figure 2. The difference to the true

spectrum is plotted in Figure 3. The function a1(u) and its estimate are plotted in Figure 4. For

a2(u) we obtained 0.71 (a constant was fitted because of K2 = 0) while the true a2(u) was 0.81.

Furthermore, σ2
 = 1.71 while σ2 = 1.0.

The quality of the fit is remarkable. However, two negative effects can be observed. The fit

of a1(u) becomes rather bad outside u1 = 0.063 and uM = 0.938. This is not surprising, due to the

behaviour of a polynomial and the fact that the use of LT(θ) as a distance only punishes bad fits

inside the interval [u1,uM]. This end effect vanishes if one chooses K1 = 8 instead of K1 = 6. A

better way seems to be to modify LT(θ) and to include periodograms of shorter lengths at the end

points (e.g. IN/2 (N/(4T),λ)). The second effect is that in the frequency representation the peak is

underestimated. This is due to the non-stationarity of the process on the intervals (uj – N/(2T), uj

+ N/(2T)] where IN(uj,λ) and cN(uj,k) are calculated. 

We finally remark that this example is typical. The same properties can be observed for other
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realisations. Even for T = 64 the results turned out to be quite good. 

Figure 1.  T=128 realisations of a time varying AR-model

K1
K2

4 5 6 7 8 9

0 0.929 0.888 0.669 0.685 0.673 0.689

1 0.929 0.901 0.678 0.694 0.682 0.698

2 0.916 0.888 0.694 0.709 0.697 0.712

  Table 1.  Values of AIC for p = 2 and different polynomial orders

Figure 2.   True and estimated spectrum of a time varying AR - process
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0.2                         frequency                              3.0                 

Figure 3.   Difference of estimated and true spectrum 
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                 Figure 4.  True and estimated time varying coefficient a (u)
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7. Concluding remarks.

In this paper we have presented an asymptotic theory for processes that have an evolutionary

spectral representation. We have derived the asymptotic behaviour of minimum distance estimates

in the spectral domain and of least squares estimates for time varying autoregressive processes.

The results also hold when the model is incorrect, i.e. when it does not contain the true process. 

The theory leads to a new estimate for various nonstationary models. Simulations show that

this estimate works quite well in practice. It is attractive that the classical stationary ARMA model

can be included as a special case (as for AR-models in the simulation example). Furthermore, the

AIC criterion seems to work reasonably well in this situation (although a strict theoretical
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justification is still missing). In particular, the AIC can be used to decide between stationary and

nonstationary models (as in the example where the stationary model corresponds to K1 = K2 = 0).

The parameter estimates are minimum distance estimates in the spectral domain. Since our

distance function is an approximate Gaussian likelihood the results can in principle only apply to

models whose parameters can be identified from this distance function, i.e. to time varying linear

models. Here are the limitations of the approach-although it may be possible to derive similar

results with other distance functions for nonlinear models.

As any asymptotic theory our approach simplifies the situation (for example, time varying

AR-processes have locally the spectral density of a stationary AR-process). The benefit of this

simplification is a framework for such processes which makes theoretical results for parameter

estimates possible. It is obvious that it is (in principle) possible to study the behaviour of other

estimates (e.g. exact MLE'S or local Burg estimates) within this framework. Furthermore, one

may look for modifications of the suggested procedures, e.g. with better bias properties (cp.

Remark A.3) and better edge properties. For stationary models our asymptotic theory is the same

as the classical asymptotic theory.

On the other hand one could argue that with the simplification important features of a

nonstationary process are lost, e.g. the special form of   At,T°  for a time varying AR-process (cf.

Mélard and Herteller-de Schutter, 1989). However, one may use this theory also to study some of

these effects. For example, one could study the asymptotic properties of the modified estimator for

AR-models with |   At,T° (λ)|
2
 instead of |A(u,λ)|

2
 in L(θ) and LT(θ). 

Appendix: A central limit theorem. 

This appendix contains the technical details of the proof of Theorem 3.2 and Theorem 3.3. It

basically consists of the proof of the following Theorem A.2. This theorem is of independent

interest. It has applications that go beyond the scope of this paper.

Suppose S, M, N, tj, uj and In(u,λ) are defined as in section 3. For 

φ: [0,1] × [–π,π] → C we set

JT(φ) : =  
 1

M ∑
j=1

M

–π

π

φ(uj,λ) IN(uj,λ) dλ

and

J(φ) : =  
 

0

1  

–π

π

φ(u,λ) f(u,λ) dλ du .

To prove asymptotic normality for T(JT(φ) – J(φ)) we need the following assumptions.
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(A.1) Assumption.

(i) Let Xt,T be a locally stationary process with mean μ(u) = 0 as in Definition 2.1. Suppose 

that the functions A(u,λ) (from Definition 2.1) and φj(u,λ) (j = 1, … , k) are 2π-periodic

 in λ and the periodic extensions are differentiable in u and λ with uniformly bounded 

derivative  
∂

∂u
   

∂

∂λ
 A (φj respectively). g4 is continuous.

(ii) The parameters N,S and T fulfill the relations T
1/4

 << N << T
1/2

 / ln T and S = N or 

S / N → 0.

(iii) The data taper h: R → R with h(x) = 0 for all x∉[0,1] is continuous on R and twice 

differentiable at all x∉P where P is a finite set and sup
x∉P

| h''(x) | < ∞ .

(A.2) Theorem. Suppose X1,T, … , XT,T are realisations of a locally stationary process and

Assumption A.1 is fulfilled. Then

T(JT(φj) – J(φj))j=1,…,k  →
D

  (ξj)j=1,…,k

where ξ is a Gausssian random vector with mean zero and

cov(ξi, ξj) = 2π ch 

 

0

1

[ 
 

–π

π

φi(u,λ) { φj(u,λ) + φj(u,– λ) }  f(u,λ)
2
 dλ

+  
 

–π

π

φi(u,λ) φj(u,– μ)  f(u,λ) f(u,μ) h4(λ, – λ, μ) dλ dμ] du

with  ch = (
 

0

1

h(u)
4
du) / (

 

0

1

 h(u)
2
 du)

2
 if S = N and ch = 1 if S/N → 0.

(A.3) Remarks. The conditions on M, S and, in particular, on N seem to be restrictive.

However, we regard it as remarkable that T consistency holds at all. Most of the restrictions on

N result from the T-unbiasedness (Lemma A.8). Inspection of the proof leads to the conjecture

that it is not possible to relax these conditions (apart from some log-terms). This can be made clear

by some heuristics: with the periodogram over the first segment we estimate f at time  N
2T

 . To

conclude from this to f at zero T - consistently we need N
T

 → 0. On the other hand the bias of

the periodogram (with a data taper) is O(N
–2

) which leads to the condition T
N2

 → 0. We conjecture
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that the rate O(N
–2

) cannot be improved with a periodogram type estimator. A periodogram

without taper would lead to a bias of O(N
–1

) and therefore to T
N

 → 0 which contradicts N
T

  →  0.

Thus, without taper it is not possible to achieve T-consistency at all. It is noteworthy that the use

of a data taper does not lead to an increase of the variance if S / N →  0 . However, this is

heuristically clear since in this case all observations are used "equally often" (as T → ∞). Note the

similarity of the covariance structure to an analogous result in the stationary case (cf. Brillinger,

1981, Theorem 7.6.1).

Theorem A.2 is proved by proving the convergence of the cumulants of all orders (Lemma

A.8, Lemma A.9 and Lemma A.10). A key role in the proofs is played by the following function.

Let LT: R → R, T∈R
+

, be the periodic extension (with period 2π) of

 LT (α):=  
T  , |α| ≤ 1/T
1 / |α| , 1/T ≤ |α| ≤ π .

(A.4) Lemma. Let k, l , S, M, N, T∈N,   α, β, ν, μ, x∈R and ∏ : = (– π,π]. We obtain with

a constant K independent of T:

(a) LT(α) is monotone increasing in T and decreasing in α∈[0,π].

(b) ∫∏
 LT(α)

k
 dα ≤ KT

k–1
  for all k > 1.

(c) ∫∏
 LT(α) dα ≤ K ln T for T > 1 .

(d) |α| LT(α) ≤ K .

(e) ∫∏
 LT(β – α)

 
LT(α + γ) dα ≤ K LT(β + γ) ln T .

(f) LT(ν)
k  

LT(μ)
l
 ≤ LT( v – μ

2
 )

k   
LT(μ)

l  
 +  LT(ν)

k   
LT( v – μ

2
 )

l 
.

(g) LT(cα) ≤ KC LT(α)  for |cα| ≤ π .

(h) ∫∏
 LN(α)

l
 LM(S(α – β))

k
 dα ≤ K N

l Mk– 1

S
   ln M {k = 1} ln S {l = 1}.
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(i) ∫∏
LN(λ – x)LN(x – μ)LM(S(α – x)) LM(S(x – β))dx ≤ KN

S
lnMlnS LN(λ – μ) LM(S(α – β)).

(j) ∫∏
 LN(λ – x)

 
 LN(x – μ) LM(S(α – x)) dx ≤ K N

S
  ln M ln S LN(λ – μ) .

Proof. The proofs are technical but straightforward. Some of them may be found in Dahlhaus

(1983) or Dahlhaus (1985). (f) is proved by considering the cases |ν| ≥ 
|v – μ|

2
  and |μ| ≥ 

|v – μ|
2

 .

(e) is a consequence of (f) and (g) . (h) is proved by splitting the integral into ∫|α| ≤ 1/S
…  and 

∫|α| ≥ 1/S
… = ∑j ∫[j/S, (j+1)/S] …  . (i) and (j) then follow from (f) and (h).

For a complex-valued function f we define

HN(f(·),λ) : = ∑
s =0

N– 1

f(s) exp(– iλs)

and, for the data taper h(x)

Hk,N(λ) : = HN(h
k
 

·
N

 , λ) 

and HN(λ) = H1,N(λ) .

Direct calculation gives

 

– π

π

Hk,N(β – α) Hl,N(α – γ) dα = 2π Hk + l,N(β – γ) .

(A.5) Lemma:  Let N,T∈N . Suppose h fulfills Assumption A.1(iii) and ψ: [0,1] →  R is

differentiable with bounded derivative. Then we have for 0 ≤ t ≤ N

    HN(ψ ·
T

 h 
·
N

 , λ) = ψ t
T

 HN(λ) + O(   |ψ'sup
u

(u)| N
T

  LN(λ))

= O( |ψ(u)|sup
u≤N/T

 LN(λ) + |ψ 'sup
u

(u) | LN(λ)) .
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The same holds, if  ψ ·
T

  is replaced on the left side by numbers  ψs,T  with 

|ψs,Tsup
s

 – ψ s
T

 | = O(T
–1

).

Proof. Summation by parts gives

HN(ψ ·
T

  h 
·
N

 , λ) – ψ t
T

 HN(λ)  = ∑
s =0

N– 1

{ψ s
T

 – ψ t
T

 }  h s
N

 exp(– i λ s)

     =  –  ∑
s =0

N– 1

{ψ s
T

  – ψ 
s – 1

T
  } Hs(h 

·
N

 , λ) + {ψ N – 1
T

 – ψ t
T

 }  HN(h 
·
N

 , λ) .

We now have (again with summation by parts, c.f. Dahlhaus, 1988, Lemma 5.4)

| Hs(h 
·
N

 , λ)| ≤ K Ls(λ) ≤ K LN(λ)

uniformly in s ≤ N which gives the result with the mean value theorem.

We remark that Lemma A.5 also holds under weaker assumptions on the data taper (e.g. if h

is of bounded variation).

(A.6) Lemma.  Let ψ be differentiable with bounded derivative and tj = S(j – 1) + N/2 , 

uj = tj / T with N,M,S and T as in Assumption A.1(ii). Then

| ψ(uj)∑
j =1

M

  exp(iλSj)| ≤ K( |ψ(u)|sup
u

 + |ψ'(u)|sup
u

 ) LM(Sλ) .

Proof.   Similar to the above proof.

(A.7) Lemma.  Suppose h fullfills Assumption A.1(iii). Then

| HN(λ) | ≤ K N
–1

 LN(λ)
2
 .

Proof. Repeated summation by parts (cf. Lemma 5.4 in Dahlhaus, 1988).



34

(A.8) Lemma.   Suppose Assumption A.1 holds. Then

E JT(φ) = J(φ) + o(T
–1/2

) .

Proof. We have

E JT(φ) = 
  

1
M

φ
–π

π

(uj,λ)
1

2πH2,N(0)
cum dN uj,λ ,dN uj,– λ dλ∑

j=1

M

.

Since

  
cum Xs,T,Xt,T = exp iγ (s – t) As,T

o (γ) At,T
o (γ) dγ

– π

π

the above expression is equal to

  
1
M

φ
–π

π

(uj,λ)
1

2πH2,N(0)∑
j=1

M

 HN (   Atj
°

–N/2+1+ ·,T  (γ) h 
·
N

 , λ – γ) 

 HN

   
(Atj – N / 2 + 1 + · ,T

° (γ) h
·
N

 , γ – λ) dγ dλ.

Application of Lemma A.5 and A.6 shows that this is equal to

  
1
M

φ
–π

π

(uj,λ) f(uj ,γ)∑
j=1

M

 
|HN(λ – γ)|2

2π H2,N(0)
  dγ dλ + O 

  1
T LN λ 2 dλ

– π

π
.

Let g(u,λ) =  
 

–π

π
φ(u,λ + γ) f(u,γ) dγ . Since φ and f are both differentiable g is twice

differentiable in λ with bounded second derivative (partial integration). Thus the above expression

is with Lemma A.4(b) and Lemma A.7 equal to

(A.1)

  
1
M

g(uj,λ)
–π

π
|HN(λ)|2

2π H2,N(0)
dλ∑

j=1

M

 +  O(N
T

 ln N)

=  1
M

  g∑
j=1

M

(uj,0) + O(
  
|λ|2

|LN(λ)|4

N3
dλ

–π

π

) + O(N
T

 ln N)
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= J(φ) + O(M
–1

) + O(N
–2

) + O(N
T

 ln N ).

(A. 9) Lemma. Suppose Assumption A.1 holds. Then

T cov (JT(φ1), JT(φi)) = cov(ξi,ξj) + o(1)

with ξi as in Theorem A.2.

Proof.   We set i = 1 and j = 2.

(A.2) T cov (JT(φ1), JT(φ2)) = T
(2π M H2,N(0))2

 ∑
j ,k=1

M   
φ1

–π

π

(uj, λ) φ2(uk,μ)

· [ cum (dN (uj, λ) , dN(uk,– μ))  cum (dN (uj, – λ) , dN(uk, μ) )

+ cum (dN (uj, λ) , dN(uk, μ))  cum (dN (uj, – λ) , dN(uk , – μ))

+ cum (dN (uj, λ) , dN (uj, –λ) , dN (uk , μ) , dN (uk ,– μ)) ] dλ dμ .

We study the behaviour of the three terms separately. The first term is with similar arguments as in

the proof of Lemma A.8

 
HN

–π

π

(Atj
°  – N/2 + 1 + · , T (γ1) h 

·
N

 ,  λ – γ1) HN (   Atk – N / 2 +1 + ⋅,T° γ1  h 
·
N

 , – μ + γ1)

HN (Atj
°  – N/2 + 1 + · , T  (γ2) h 

·
N

 , – λ – γ2) HN (   Atk – N / 2 +1 + ⋅,T° γ1  h 
·
N

 , μ + γ2 )

· exp {i(γ1 + γ2) (tj – tk)} dγ2 dγ1

which, by using Lemma A.5 , is equal to

(A.3)
 

A
–π

π

 (uj,γ1) A(uk, – γ1) A(uj,γ2) A(uk, – γ2) ·

· HN(λ – γ1) HN(γ1 – μ) HN(μ + γ2) HN(– γ2 – λ) exp{i(γ1 + γ2) (tj – tk)} dγ2 dγ1
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plus a remainder term Rj,k with

(A.4) | φ1∑
j ,k=1

M

(uj,λ) φ2(uk,μ) R j,k| 

≤ K M N
T

 
 

LN

–π

π

 (λ – γ1) LN(γ1 – μ) LN(μ + γ2) LN(– γ2 – λ) LM (S(γ1 + γ2)) dγ2 dγ1

since, by Lemma A.6

φ1∑
j =1

M

(uj,λ)  A(uj,γ1)  A(uj,γ2 ) exp{i S(γ1 + γ2) j} = O(LM(S(γ1 + γ2)).

From Lemma A.4 (j) follows that (A.4) is bounded by

K M N
T

  · N
S

  (ln M) ln S ln N LN(λ – μ)
2
 .

Integration over λ and μ gives with the constants the upper bound K N
T

 (ln M) (ln S) (ln N) which

tends to zero. We now replace φ1(uj , λ)  by  φ1(uj , γ1) and then φ2(uk , μ) by  φ2( uk ,γ1).

Lemma A.6  gives

| (∑
j =1

M

φ1(uj , λ) –  φ1(uj , γ1)) Α(uj , γ1) A(uj , γ2) exp(i( γ1 +  γ2) tj) |

≤ K |λ –  γ1| LM(S(γ1 + γ2))

and therefore we obtain for the corresponding difference term the upper bound

K T
M2 N2

  
 

–π

π

LN(γ1 – μ) LN(μ + γ2) LN( – γ2 – λ) LM(S(γ1 + γ2))
2
 dγ2 dγ1 dλ dμ

≤  K T
M2 N2

   ln
2
 N N M

S
  ln S ≤ K ln

2N
N

  ln S →  0

where the integration is done in the order λ, γ2, μ . Thus, the first term of (A.2) is equal to
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T
{M H2,N(0)}2

  ∑
j ,k=1

M   
φ1

–π

π

(uj , γ1) φ2(uk,γ1) A(uj , γ1) A(uk , – γ1) A(uj , γ2) A( uk  , – γ2) 

|H2,N (γ1 + γ2)|
2
 exp{i(γ1 + γ2) (tj – tk)} dγ1 dγ2 + o(1) .

Similarly, we now replace A(uj , γ2) by A(uj , – γ1) and  A(uk , – γ2) by A(uk ,γ1). Afterwards

we substitute α = γ1 + γ2, γ = γ1 and obtain with hi(u,γ) = φi(u,γ) f(u,γ) for the above expression

T
{MH2,N(0)}2

 
 

–π

π

∑
r,s=0

N–1

∑
j,k=1

M

h
2
 r

N
 h

2 s
N

 h1(uj,γ) h2(uk,γ)
 
exp

–π

π

{iα(r – s)+iαS(j – k)} dαdγ+o(1).

If S = N    this is equal to

2π TH4,N(0)

{M H2,N(0)}2
 

 

–π

π

∑
j=1

M

h1(uj,γ) h2(uj,γ) dγ +o(1) = 
2πH4

H2
2

  

0

1

φ1
–π

π

(u,γ) φ2(u,γ) f(u,γ)
2
dγdu+o(M

–1
)

where Hk = 
 

0

1
h(u)

k
 du. If S ≤ N the above expression is equal to

2πT

{M H2,N(0)}2
    

– π

π

h1∑
j ,k=1

|j– k|< N
S

M

(uj,γ) h2(uk,γ) h2( r
N

)∑
r,s=0

r– s = S(k – j)

N– 1

 h
2
( s
N

) dγ + o(1) .

Straightforward calculations show that this is equal to

2π 
 

0

1

–π

π

φ1(u,γ) φ2(u,γ) f(u,γ)
2
 dγ du + o(1) .

With the substitution μ →  – μ we see that the second term of (A.2) converges to the same

expression with φ2(u,–γ) instead of φ2(u,γ). An analogous derivation for the third term of (A.2)

leads to the result . 
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(A.10) Lemma.  Suppose Assumption A.1 holds. Then

T 
/2

 cum (JT(φ1), … , JT(φ  )) = o(1) .

Proof.  Let ∏ = (– π,π], λ = (λ1, … , λ  )

T  /2 cum(JT(φ1), … , JT(φ  )) = T  /2 {2π M H2,N(0)}
– 

 
  
∑

j1, … ,j –1 = 1

M

 

   

Π

{    
Π
ν=1

φν(ujν , λν)} cum(dN(uj1
,λ1) dN(uj1

, – λ1), … , dN (uj , λ  ) dN (uj  ,– λ ) λ (dλ) .

Using the product theorem for cumulants (cf. Brillinger, 1981, Theorem 2.3.2) we have to sum

over all indecomposable partitions {P1, … , Pm} with |Pi| ≥ 2 of the scheme

a1 b1

al bl

where ai and bi stand for the position of dN(uji 
, λi) and dN(uji 

, – λi) respectively. This sum will

be denoted by ∑ip. The elements of a set Pi from such a partition are assumed to be in a fixed

order, so that the following definitions are reasonable. If Pi = {c1, … , ck} we set 

Pi: = {c1, … , ck–1}, βPi : = (βc1
, … , βck–1

) and βck 
= – ∑j=1

k–1 βcj. Furthermore, let m be the

size of the corresponding partition and β := (β
P1

  , … ,β
Pm

 ). Using this notation we obtain as in

the proof of Lemma A.8 (i) for the above expression

=  T /2{2π M H2,N(0)}
– 

 ∑ip 
   
∑

j1,…,j =1

M

Π

{ φν(ujν,λν)}Π
ν=1

   { HNΠ
ν=1

Π2 –m

(Atjν
°

–N/2+1+ · ,T (βaν
)h 

·
N

 , λν – βaν
) HN(Atjν

°
–N/2+1+ · ,T (β

bν
)h 

·
N

 , – λν – β
bν

)}
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{ 
  

gΠ
ν=1

m

|Pν|
 (β

Pν
)} exp(i

   
tjν∑

ν=1

 (βaν
 + βbν

)) λ2 –m
 (dβ) .

As in Lemma A.9 we now replace successively all HN(Atjν
° (β) h 

·
N

 , λ – β) by the corresponding

A(ujν
,β) HN(λ – β) terms. We get for example as an upper bound for the error with Lemma A.5

K 
  T / 2

M N
   ∑ip

   

Π

M
N
T

Π2 –m

 {
   Π

ν=1
LN(λν – βaν) LN(– λν – βbν)} {

   Π
ν=2

LM(S(βaν + βbν))}  

λ2 –m
 (dβ) λ (dλ) .

The special structure of a partition is expressed in the structure of the corresponding β. Every βc ,

c∈ Pk∪k=1
m   is contained in     LNΠν=1

(λν – βaν
) LN(– λν – βbν

) exactly twice as an argument,

once with positive and once with negative sign. We therefore have    ∑ν=1
(– β aν

 – β bν
)  = 0

while every partial sum is different from 0 by the indecomposability of the partition.

Integration over all λν and afterwards over all β (starting with   βa1
) gives as an upper bound 

K 
  T / 2

M N
  MN

T
  (ln N)   

  N

S –1
 (ln M)  

–1
 (ln S)  

–1
 ≤ K 

  T / 2

T – 1
  N

T
 (ln N ln M ln S) → 0.

Similarly, the resulting main term is bounded by

K 
  T / 2

M N
  ∑ ip

   

Π Π2 –m

{
   

∏
ν=1

LN(λν – βaν) LN(– λν – βbν) LM(S(βaν + βbν))} λ2 –m
(dβ) λ

(dλ)

≤  K 
  T / 2

M N
   

  N

S –1
  M (ln M ln S ln N)  ≤ K  

  T / 2

T – 1
 (ln M ln S ln N)  → 0

which proves the result.

Proof of Theorem 3.6. Consistency of   θT  follows with the proof of Theorem 3.2 if we show

that
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   sup
θ

|L T (θ,μ) – L T (θ,μ)| 0→p

i.e. if we show

  
sup

θ
| 1

M IN
μ uj,λ – IN

μ uj,λ
– π

π

Σ
j = 1

M

φθ uj,λ dλ | 0→p

where   φθ uj,λ  =   fθ uj,λ
– 1

. This will be proved below. A Taylor expansion then gives

   T ∇LT θT,μ – ∇LT θ0,μ = ∇2LT θ,μ T θT – θ0

with |θ  –    θ0 | ≤ |   θT – θ0 |. As in the proof of Theorem 3.3 we obtain  T    ∇LT θT,μ   0→p
. In the

proof of Theorem 3.3 we showed that 

 T    ∇L T   θ0,μ + Γ  T   θT – θ0
  0→p

i.e. the result follows if we prove that

 T    ∇L T
  θ0,μ  –   T    ∇L T   θ0,μ   0→p

and

   ∇2L T θ,μ   Γ→p
.

Together with the proof of Theorem 3.3 the result therefore follows if we show that 

(A.5)
  

T 1
M IN

μ uj,λ – IN
μ uj,λ

– π

π

Σ
j = 1

M

φθo
uj,λ dλ 0→p

for   φθ (u,λ ) = ∇fθ(u,λ )-1 and

(A.6)
  

sup
θ

| 1
M IN

μ uj,λ – IN
μ uj,λ

– π

π

Σ
j = 1

M

φθ uj,λ dλ | 0→p

for   φθ (u,λ ) = fθ(u,λ )-1  and   φθ (u,λ ) = ∇2fθ(u,λ )-1. The last expression is equal to 

  
sup

θ
| 1
M φθ uj,λ

– π

π

2πH2,N(0) – 1Σ
j = 1

M
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(A.7)   dN
X – μ uj,λ dN

μ – μ uj, – λ + dN
μ – μ uj,λ dN

X – μ uj, – λ + dN
μ – μ uj,λ dN

μ – μ uj, – λ dλ|

which by means of the Cauchy-Schwarz inequality is with

  δT: = 1
M 2πH2,N(0) – 1

– π

π

dN
μ – μ uj,λ

2
dλΣ

j = 1

M

bounded by

  
|φθ(u,λ)|sup

θ,u,λ
2 1

M IN
μ uj,λ dλ

– π

π

Σ
j = 1

M 1 / 2

⋅ δT
1 / 2 + δT .

Since 
  1

M IN
μ uj,λ dλ

– π

π

Σ
j = 1

M

is bounded in probability (Theorem A.2) and

  
δT = 1

M H2,N(0)– 1Σ
j = 1

M

μ
tj – N / 2 + s

T – μ
tj – N / 2 + s

T

2

= oP
N
TΣ

s = 1

N

(A.6) is proved. To prove (A.5) we note that   TδT → 0. Since   TδT
1 / 2 →/ 0  we need a better

estimate for the first and second term of (A.7). Summation by parts gives with

  cT: = T 2π M H2,N(0) – 1 ,   Ht,N(λ): = h S
NΣ

s = 0

t – 1

exp – iλs  and  tj = tj – N / 2

  
T 1

M φθo
uj,λ

– π

π

2πH2,N(0) – 1dN
X – μ uj,λ dN

μ – μ uj, – λ dλΣ
j = 1

M

= 
  

cT μ
tj + t + 1

T – μ
tj + t + 1

TΣ
t = 0

N – 1

⋅ φθo
uj,λ

– π

π

dN
X – μ uj,λΣ

j = 1

M

   Ht + 1,N( – λ) – Ht,N( – λ)   dλ

= 
  

– cT μ
tj + t + 1

T – μ
tj + t + 1

T – μ
tj + t

T – μ
tj + t

TΣ
t = 0

N – 1

Σ
j = 1

M

⋅

  ⋅ φθo
uj,λ

– π

π

dN
X – μ ujλ Ht,N( – λ) dλ

  
+ cT μ

tj + N
T – μ

tj + N
T ⋅ φθo

uj,λ
– π

π

dN
X – μ uj,λ HN,N( – λ) dλΣ

j = 1

M

Summation by parts implies   Ht,N( – λ) ≤ KLN(λ) uniformly in t. We now can prove by similar

methods as in the proof of Lemma A.9 that 
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var φθo

uj,λ
– π

π

dN
X – μ uj,λ Ht,N( – λ) dλ = O(N)

uniformly in uj and t. Since   E dN
X – μ uj,λ = 0 the whole expression tends to zero in probability.

The second term of (A.7) is treated in the same way which proves the result.
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