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The basic idea of the excess mass approach is to measure the amount of probability mass

not fitting a given statistical model. It came up first in the context of testing for a treatment

effect, was later applied to inference about the modality of a distribution and even density

estimation. Recently the framework has been extended to regression problems.

The motivation behind this line of research is an old one. All statistical methods rely on

assumptions about the underlying statistical models. Some of these assumptions cannot be

verified on the basis of empirical observations. Research has been done to weaken those

assumptions for known methods or even to develop new statistical procedures that work

under minimal assumptions. Thus, during the past decades, resampling procedures have

been developed that turn out to work under less severe assumptions than classical methods.

(Some remarkable work in this direction has been done  in this Sonderforschungsbereich

by Enno Mammen who could establish the superiority of certain resampling methods when

the parameter dimension is high (e.g. Mammen (1989, 1992)). A different approach

consists in developing diagnostic procedures that detect violations of the assumptions.

Much of the work of Werner Ehm done in this Sonderforschunsbereich has been devoted

to this problem, mainly in the context of frequency data (Ehm (1991)).

The excess mass approach is a different way of dealing with the problem of hidden

nuisance parameters. It restricts attention to a special class of statistics that do not depend

too heavily on the underlying parameters. The nature of this approach will be described

here.

_______________________
1 Presented as the closing lecture in the final colloquium (“Abschlusskolloquium”) of the

Sonderforschungsbereich 123 “Stochastische Mathematische Modelle” in Heidelberg, December 12, 1992.



1. The origin - a testing problem

Let F, G be distributions of real-valued observables X, Y respectively describing the

situation before and after treatment, with inference about the joint distribution of X and Y

being impossible. (This is often the case when the object under observation is altered, or

even destroyed, in the experiment). Inference will be based on independent samples

x1,...,xn  from F and y1,...,yn  from G. Has there been a treatment effect?

The traditional formulation of this problem is strongly model-dependent. It formulates a

hypothesis that the combined sample comes from the same distribution F = G, and then

derives tests under model assumptions about F and G. Considerable effort has been taken

to construct tests that are robust against violations of those assumptions. Still the success is

not satisfactory.

An entirely different approach consists in measuring the treatment effect (Müller (1980)).

This can be done in the following way. We model the treatment process as a Markov

transition kernel Kx, the distribution of Y given X = x, such that  Kx[Y ≥ x] = 1  for all x.

This kernel refers to a latent structure, the joint distribution of X,Y, which is not

identifiable in our setup. The condition imposed on K just means that there cannot be

negative effects. A measure of the size of the treatment effect would be the proportion of

the population that benefitted from the treatment. This is a quantity that depends on the joint

distribution of X and Y, and thus is not identifiable.

We therefore consider the minimal guaranteed treatment effect, given F and G, i.e. the

minimal proportion π of the population that benefitted from the treatment. Clearly

π = π(F,G) = minK Ws[Y > X]. This is a marginal quantity, depending on F and G alone.

It can be shown that π(F,G) = ||(G-F)+||1. The picture shows this quantity as the content of

the shaded area.
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It would be a natural procedure to estimate π(F,G) by plugging in the empirical

distributions Fn,Gn of F, G respectively. This does not work since, in general, Fn and Gn

will be disjoint measures. The way out is to observe that the L1-norm is a sup over the

class of all measurable sets C of the real axis such that π(F,G) = supC(F-G)(C). This class

being too large we model a smaller class C of possible supports of (G-F)+, assuming that

π(F,G) = sup
C∈C (F - G)(C). In this form we obtain an estimator of π(F,G) by a plug-in:

π(Fn,Gn) = sup
C∈C (Fn - Gn)(C). E.g. one can take C  as the class of all intervals of the

form [t, +∞) (t real), provided that  dG/dF is monotonically increasing. In this case

π(Fn,Gn) = supt(Gn(t) - Fn(t)). Thus π(Fn,Gn) is the well-known Kolmogorov-Smirnov

statistic. More general cases have been treated in Müller (1980).

The quantity ||(G-F)+||1 will be called the "excess mass of G over F". Here F is considered

as a "reference measure".

2. New looks at old problems - investigating multimodality

The new way of thinking - namely using reference measures for statistical inference - has

led to new formulations also for other statistical problems. The problem which we have

looked at first concerns the inference about the number of modes of a distribution.
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Classical methods in this field work via an initial density estimation. They assume a smooth

density in the background and think of modes as zeros of its derivative. In contrast to this,

we measure the modality by measuring mass concentration. Thus we base the statistical

analysis on functionals which reflect the "distinctiveness" of a mode. The literature already

contains a number of related proposals. We just recall a few concepts which have been

introduced in the literature: “modal intervals” by Lientz (1970), “modes with given width”

by Hartigan (1977), “bumps” by Good & Gaskins (1980).

Our approach can be briefly described as follows: let F be a probability distribution on ℜd,

with a continuous density f. The reference measures to which f will be compared are

multiples of Lebesgue measure. Thus the “excess mass” will be

E(λ) = ||(F - λ ⋅Leb)+||1 

= ∫(f(x) - λ)+dx

where λ is a free parameter controlling the size of mass concentration. Historically the first

references are Müller (1981), Müller & Sawitzki (1987), Müller & Sawitzki ICOSCO

çesme (1987), Hartigan (1987).

It will be noted that

E(λ) = ∫∪Ij(λ)
(f(x) - λ) dx,

where Ij(λ) are the connected components of [f ≥ λ] ("λ-clusters") (cp. “density contour
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clusters” introduced by Hartigan(1975)). Thus, for f with at most M modes E(λ) can be

written as

sup ∫∪Ij(l): j=1,…,M 
(f(x) - λ) dx,

where the sup is extended over Ij, j = 1,…,M, pairwise disjoint connected sets, i.e.

E(λ) = ∑j=1,…,M (F - λ Leb)(Ij), 

a form suitable for estimation by the plug-in method!

3. Concept

The general framework can be described thus: 

there is a class C of (measurable) subsets of ℜd (the “support” class), 

and it is assumed that for the underlying density f one has C(λ) ≡ [f ≥ λ] ∈ C (λ ≥ 0).

(There is a development which works without this assumption, see Polonik (1992); the

complications to which it leads do not make it look suitable for presentation here).

The following quantities will be of interest.

(a) The level measure Hλ = F - λ ⋅Leb 

and its empirical counterpart Hn,λ = Fn - λ ⋅Leb, 

where Fn denotes the empirical measure.

(b) The excess mass functional E(λ) = supC∈C Hλ(C) 

and its empirical counterpart En(λ) = supC∈CHn,λ(C).  

Then E(λ) = Hλ(C(λ)) and En(λ) = Hn,λ(Cn(λ)) where Cn(λ) = argmax Hn,λ.
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3.a Example (d=1)

Let C = CM be the family of all unions of at most M intervals of the line. 

For testing unimodality versus bimodality one considers the excess mass difference

D(λ) = EC2
(λ) - EC1(λ), in particular maxλD(λ). For a bimodal distribution F this is just

the total variation difference to the closest unimodal distribution. With its empirical

counterpart  Dn(λ) = En,C2
(λ) - En,C1(λ) this suggests maxλDn(λ) as test statistic for

unimodality versus bimodality. 

Here is a data example.

Eruption length (in minutes) of 107 eruptions of Old Faithful Geyser
(Source: Silverman (1986), Table 2.2)

For these data, the curves En,C1
(λ) versus En,C2

(λ) and En,C2(λ) versus En,C3
(λ) are

plotted in the following figure. The value assumed by maxλD(λ) is 0.1667.

 uni /b imodal bi / t r imodal

1 /2 :0 .1667
2/3 :0 .0574

1/3 :0 .1854

Excess mass curves En,C1
(λ),  En,C2

(λ) and En,C3
(λ), for the Old

Faithful Geyser Data

It is desirable to infer the true value of maxλD(λ) from the observed value of maxλDn(λ).

This is an unsolved problem! Since nothing is known about the distributional properties of

this quantity so far, attention should be restricted to simpler questions first, such as this: is
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the observed value a large one, possibly giving hints that the underlying distribution is

indeed multimodal?

For judging the observed value, the “zero-effect” of the statistic should be known. This

means the distribution of the statistic should be studied under some unimodal distributions,

and the observed value should be compared to these distributions. 

(At first sight, this procedure might resemble what is called hypothesis testing in the

decision-theoretic formulation of statistics. As already mentioned above, it is of an entirely

different nature and avoids the well-known drawbacks of the decisions-theoretic approach.

In statistical practice one rarely fixes the level of a test in advance and does not exclude the

possibility of accepting  a hypothesis. Rather one wants to measure the degree of violation

of a hypothesis (e.g., see Martin-Löf (1974)). In contrast to the classical formulation, our

statistic is not derived as the result of some optimality problem, but introduced by the need

for giving questions like “how many cases fit the hypothesis” a mathematical formulation.

Moreover, really, no decision is intended. Rather, the need for a quantitative support of the

statisticians´s judgement is widely felt. 

In our situation of the multimodality problem the simplest question is, whether the

observed value of the statistic should be judged large in comparison with the values

normally occurring in standard unimodal situations. Simulation results for such situations

would be a first step. Such results are reported in Müller & Sawitzki (1991) for the

Cauchy, Gauss, and uniform distributions. The results for the Gauss and uniform

distribution and a bimodal mixture of two uniform distributions are displayed in the exhibit.

In all simulation runs the uniform case has proved to be the stochastically largest. As

follows from Hartigan & Hartigan (1985) this cannot be true in general, however! It is

expected that some asymmetric “almost bimodal”  distributions (e.g. certain bi-uniforms)

could prove to be counterexamples. While such a behaviour seems to be restricted to

“pathological” cases, it is legitimate to take the uniform as a conservative “standard”). 
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Simulated distribution functions under the Gauss and uniform distri-
butions, and under a bimodal test distribution

For the present data the empirical excess mass difference 0.1667 is well above the 99% -

quantile, calculated under the uniform distribution, thus strongly supporting the hypothesis

of multimodality.

3.b Mathematical explanation

Under bimodal distributions, the excess mass difference statistic tends to be larger than

under unimodal distributions. No mathematical statement is known making this sufficiently

precise. Still, there is a weak explanation in terms of asymptotic rates. There is a difference

in rates between the “regularly” unimodal, the uniform and the multimodal situations. The

following theorem refers to the “regularly” unimodal case.
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Theorem (Müller & Sawitzki (1991)).

Let the density f of  F be unimodal with f´(x) = 0 only if f(x) = 0  or x=x0. Let f´

beultimately monotone in the tails and  f´´´ bounded in a neighborhood of x0, with

f´´(x0) < 0. 

Then

(i) Dn(f(x0)) = OP(n-3/5),

(ii) max
λ ≤ f(x0)-ε

Dn(λ) = OP(n-2/3log2/3 n) (ε > 0),

(iii) maxλDn(λ) = O
P
(n-3/5 log3/5 n).

As (i) shows in contrast with (ii), the essential contribution to maxλDn(λ) comes from the

mode (3/5 < 2/3). The rate is due to the elliptical behaviour of the density near the mode. It

varies with the degree of flatness and becomes maxλDn(λ) = OP(n-1/2) in the extreme case

of the uniform distribution. The slower rate can partially explain why maxλDn(λ) appears

stochastically largest among the standard unimodal distributions considered. On the other

hand, the difference in order is n1/10, small enough for decent sample sizes 

(501/10 = 1.47...) to provide a partial justification for considering the uniform case as a

conservative unimodal “standard”. Clearly, for multimodal distributions, maxλDn(λ) stays

away from zero.

It has turned out that maxλDn(λ) is equivalent to Hartigan´s DIP-statistic. Therefore the

above result can be regarded as an extension of the asymptotic results of Hartigan &

Hartigan (1985). 

3.c The general case (d ≥ 1)

We consider two classes of sets C1 ⊂ C2 such that [f ≥ λ] ∈ C1 for all real λ. In this

general setup the excess mass difference process is λ → Dn(λ) = En,C2
(λ) - En,C1

(λ).

While for d = 1 the only interesting support classes are made up of intervals, the choice will

be more delicate in higher dimensions. The basic distinction emerges from empirical

process theory: there are
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(i) “poor” classes like Vapnik-Cervonenkis-classes

(with small covering dimension);

(ii) “rich“ classes like conv2, the class of all convex subsets of the plane

(this case has found special attention in Hartigan (1987)).

The results for d = 1 were obtained essentially via Hungarian embeddings, which are not

available for larger d. For higher dimension Polonik(1992) has developed a completely

different method. He observed that the problem can be reduced to estimating the size of 

Cdiscrep(λ) ≡ C(λ)ΔCn(λ). Here is Polonik´s inequality:

Leb{Cdiscrep(λ)} ≤ Leb{x: |f(x) - λ| < ε} + ε-1{(Fn - F) (Cn(λ)) - (Fn - F)(C(λ))}

This inequality accentuates analytical properties of the density f (1st term) and the

oscillation of the empirical process Fn-F (2nd term) and separates both factors.

This is Polonik´s proof. 
First one notes that H

λ
 has density f - λ. Then one considers the integral

∫
Cdiscrep(λ) 

|f - λ| dx = H
λ
(C(λ)) - H

λ
(Cn(λ))

= Hn,λ(C(λ)) - (Fn - F)(C(λ)) - Hn,λ(Cn(λ)) + (Fn - F) (Cn(λ))

≤ 0 + (Fn - F) (Cn(λ)) - (Fn - F) (Cn(λ)).

Obviously, a lower bound of the integral is ε Leb{Cdiscrep(λ)∩{x: |f(x)-λ| ≥ ε}}. 

Finally one decomposes Cdiscrep(λ) according as |f(x) - λ| ≥ ε or |f(x) - λ| < ε.■

With the help of this inequality, Polonik arrives at the following theorem.
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Theorem (Polonik (1992)).

Let  f  be regularly unimodal (i.e.elliptical at the mode x0 , rapidly decreasing in the tails,

and satisfying further regularity conditions). Then

(i) (C2 a Vapnik-Cervonenkis class) 

(d = 1) maxλDn(λ) = OP(n-3/5log3/5n), 

(d > 1)  maxλDn(λ) = O
P
(n-2/3log2/3n). 

(ii) (C2 the family of finite unions of differences of conv2)

maxλDn(λ) = OP(n-4/7).

It is noteworthy that for d > 1 there is no essential contribution by the modes:  

Leb{x: |f(x) - f(x0)| < ε} ≈ ε1/2
 (d = 1), ≈ ε

p 
with p ≥ 1 (d > 1).

Again, the (multivariate) uniform distributions supported by bounded regions represent

separate cases yielding special rates OP(n-1/2) so that for Vapnik-Cervonenkis-classes the

exponents differ by at most 1/6 (50
1/6

=1.919...).

4. Unfoldment

The idea of excess mass estimation has given rise to various extensions and new

developments such as 

(a) Excess mass ellipsoid estimation (Nolan (1992)) - this is the problem of

estimating C(λ) by Cn(λ) in the class C of all ellipsoids; 

(b) Density contour estimation - this is the problem of nonparametric estimation

of C(λ) in general classes of sets (Polonik (1992));

(c) Density estimation - to explain the relation to density estimation we write f(x)

as 

f(x) = ∫
x∈C(λ) dλ .
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For a given bound M (assuming f ≤ M < ∞) we form the plug-in-estimator

f*n(x) = ∫
x∈Cn(λ),λ≤M

 dλ 

(called “silhouette” by Müller & Sawitzki (1987)). For the Old Faithful Geyser data a

grafical display of this estimator is shown in the figure.

densitogram 11.3nm Old Faithful Geyser  

min: 1.6700      n= 107    max: 4.9300

The silhouette for the Old Faithful Geyser data.

(c.i) Relatives

The silhouette estimator f*n turns out to be a natural generalization of known nonparametric

devices. It reduces to the Grenander estimator for monotone densities, d=1 (Polonik

(1992)). 

(c.ii) Rates 

Thus the theory developed in Polonik (1992) naturally extends the asymptotic results

obtained for the Grenander estimator (e.g. Groeneboom (1985)). Let C be a class of sets

such that [f ≥ λ] ∈ C for all real λ, and consider the function Ψ(t) = ∫min(f(x),t) dx. Then

(i) f*n(x) - f(x) = OP(Ψ(n-1/3 log1/3n)) in L1

(for certain “regular” Vapnik-Cervonenkis-classes C - see Polonik (1992)) and

(ii) f*n(x) - f(x) = OP(Ψ(n-2/7)) in L1  (for C =conv2).
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(d) Regression

Is there an excess mass analogue in regression? We approach this question by asking, for a

given regression function, how much probability mass will not fit this model. Suppose we

are looking for the conditional α-quantile function gα of a distribution P on the space 

ℜd
 × ℜ1

,  i.e. 

P[y < gα| x] = α for all x ∈ ℜd
. 

To fix ideas, we suppose here d=1 and look for a linear fit of gα (for more general models

see (Müller (1992)). The model of a linear regression function not being true exactly, let us

assume it to be concave, say.

The mass not fitting the linear curve e is 

E(α,e) = P[y lies between gα(x) and e(x)]. 

Indeed this quantity constitutes a certain analogue of the excess mass where the line e plays

the role of the level parameter λ. Again we assume a “support class” C, namely a class

fulfilling 

{x: e(x) < gα(x)} ∈ C (e linear) 

and thus modelling the expected deviations of e from gα. In the present simple case C will

be class of all intervals. How to estimate E(α,e)? According to the procedure described
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above we write E(α,e) as the supremum of an integral over C∈C:

E(α,e) = supC∈C  E sign(C) signα{y > e(x)}

(Müller (1992)). Here signα denotes a the skew sign function defined as 

signα(C) = (sign(C) -1)/2 + α. This quantity can be interpreted as the maximal correlation

of the (“skew”) residual pattern and the class C. A plug-in of the empirical distribution

leads to a natural estimator (Müller (1992)). This estimation method thus consists in

minimizing the maximal correlation of the residual pattern with the class C (the “badness-

of-fit method”).
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