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1. Introduction

Suppose a certain variable  Xt   is measured at discrete equally spaced time points 

t = 1, … , T and we want to make assertions on the energy distribution of the frequencies in a

harmonic analysis. This energy distribution may for example be used to code the data if Xt is a

speech signal or to make a prediction if the Xt are economic data.

Instead of using a deterministic approach applied scientists usually use a stochastic

approach to model the data and to estimate the energy distribution (e.g. in electrical

engineering, geophysics, economics or neurophysiology). One reason is that in a stochastic

setup certain fluctuations of the Fourier-transform of the data can be interpreted more naturally 

(cp. section 2).

In this paper we discuss the estimation of the energy distribution in a stochastic model

and, more generally, the use of the energy distribution for other purposes, such as the detection

of hidden frequencies, the estimation of parameters in parametric models and the prediction of

the series.

The stochastic framework of this paper is the theory of stationary processes. A stationary

process is a stochastic process whose finite dimensional distributions are time invariant (c.f.

Brillinger, 1981, section 2.4). In particular the mean and the correlation of neighbouring values

of a stationary process remain constant over time.

An important feature of stationary processes is the following spectral representation (cf.

Brockwell and Davies, 1991, Theorem 4.8.2).

(1.1) Spectral representation

Let Xt, t∈Z be a stationary sequence with mean zero. Then there exists a stochastic process

ξ(λ), λ∈[– π,π] with ξ(λ) = ξ(– λ) and orthogonal increaments such that

(1.2)  Xt =  

– π

π

exp(iλt) dξ(λ).

The spectral distribution function F(λ): = E|ξ(λ) – ξ(– π)|
2
 is right-continuous and non-

decreasing.
____________________ 
1 This paper was presented in the final colloquium of the Sonderforschungsbereich 123 “Stochastische
Mathematische Modelle” in Heidelberg, December 12, 1992. 
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The derivative of F (with respect to the Lebesgue measure) is called spectral density and

denoted by f(λ) (provided it exists). If f(λ) > 0 then we also have a representation 

(1.3)  X t =   

– π

π

exp(iλt) A(λ) dξ(λ)

with f(λ) = |A(λ)|
2
 and a process ξ(λ) with orthogonal increaments, which, in addition, fulfills

E|ξ(λ) – ξ(μ)|2 = λ – μ  (λ ≥ μ).

Thus, if we model the observations X1, … , XT  by a stationary process, the estimation

of the energy of the harmonic components means estimation of f(λ) = |A(λ)|
2
. Before dealing

with this problem we give an important example of a stationary process.

(1.4) Autoregressive processes (AR-processes)

Consider the linear recursion (frequently termed as linear difference equation).

(1.5)  ∑
j =0

p

aj Xt–j  =  ε t   (a0 = 1)

where εt are independently and identically distributed random variables with mean zero and

variance σ2. The corresponding homogeneous equation

∑
j =0

p

aj Xt–j  =  0

has a solution of the form

  Xt =  ∑
j =1

l
uj

t  ∑
i =1

mj–1

bij t
i

where

   ∑
j =0

p

aj z
j 

=  ∏
j =1

l
(1 – uj z)

mj uj∈C  .

If uj = θj e
–iμj with θj∈R+ then (1.5) has a stationary causal solution if θj < 1. In this case uj

t

is a damped oscillation with frequency μj. The random shocks εt prevent the series Xt from

tending to zero. The spectral density of this process is
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(1.6) f(λ) = σ
2

2π   | ∑
j =0

p

aj  e
iλj 

|
–2 

=
 σ2

2π  ∏
j =1

l
| 1 – θj e

i(λ – μj)|
–2mj  .

For θj close to 1 f(λ) has a peak at frequency μj. Figure 1 shows a realisation X1, … , XT of

length T = 128 of (1.5) where the εt are (pseudo-) Gaussian variables with mean 0 and variance

1, p = 4

u1 = 0.9 e
–i 0.12π

  , u2 = u1

u3 = 0.9 e
–i 0.4π  

 , u4 = u3 .
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Fig. 1.  T=128 realisations of an autoregressive process of order 4
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      Fig. 2. True spectrum, periodogram, kernel estimate      Fig. 3. True spectrum with adaptive kernel estimate
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The data clearly show a periodic behaviour at the two frequencies . The dark line in Figure 2 is

the spectral density of this process (all spectra are plotted on a logarithmic scale). In practice

this spectral density is unknown and has to be estimated from the data set X1, … , XT  .

Autoregressive processes are for example frequently used for coding segments of speech

signals. In the engineering literature this method is termed LPC-method (linear predictive

coding).

In this paper we discuss nonparametric and parametric estimates of the spectral density.

Furthermore, we present a bootstrap procedure in the frequency domain and a method for

detecting hidden periodicities in the data.

We focus our presentation on the work done in the Teilprojekt B2 of the SFB 123 from

1988 to 1992. Further techniques in spectral estimation may be found e.g. in the monograph of

Brillinger (1981). 

2. Nonparametric estimation of the spectral density

Equation (1.3) suggests to take the squared inverse Fourier-transform of X1, … , XT as

an estimate of f(λ). This estimate is the periodogram

IT(λ): = 1
2πT

  | ∑
t =1

T
Xt exp( – λt) |

2
 .

The asterisks in Figure 2 are the periodogram ordinates for the process from Figure 1 at

frequencies λj = 
2πj
T

  , j = 1, … , T/2. The values fluctuate around the true (unknown) spectral

density. This is a bit surprising since the original process Xt seems to be quite smooth. In our

stochastic approach this behaviour can easily be explained by the distributional properties of the

periodogram. Under fairly general conditions we have for λ,μ∈(0,π) with λ ≠ μ

E IT(λ) = f(λ) + O(T
–1

)

(2.1) var IT(λ) = f(λ)
2
 + O(T

–1
)

cov (IT(λ), IT(μ)) = O(T
–1

)

(cf. Brillinger, 1981, chapter 5). Moreover, IT(λj)j=1,…,k are asymptotically independent 
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f(λj) χ2
2 /2 variates. These results suggest to plot log IT(λ) instead of IT(λ) (as in Figure 2)

since the log transformation makes the variance of the estimate (asymptotically) independent of

f(λ).

In order to obtain a reasonable estimate of f(λ) we may e.g. smooth the periodogram

ordinates by a weighted moving average (kernel estimate), i.e. we take

(2.2) fT(λ) = 
2π
T

  ∑
j

WT(λ – 
2πj
T

 ) IT(2πj
T

) 

with WT(α): =  1
bT

  W( α
bT

) where ∫ W(α)dα = 1. bT is called the bandwidth. fT(λ) is the dotted

line in Figure 2 (where W is the Bartlett-Priestley kernel and bT = 0.05 – cp. Priestley, 1981,

section 7.5). 

Since IT(λj) / f(λj) are asymptotically iid (for finitely many fixed λj) we take as a measure

for the goodness of fit of a spectral estimate the integrated relative mean squared error

IMSE(fT) : =   

–π

π

E( 
fT(λ)

f(λ)
  – 1)

2
dλ .

Using a second order expansion for the bias (cf. Priestley, 1981, Section 7.5) leads to

bT = T
–1/5

 [ 1
2π  

– π

π

( 
f''(α )
f(α)

 )2dα ]
–1/5

   ( 
∫ W(y)2dy

∫ y2W(y)dy
 )

1/5

as the optimal bandwidth, and to the Bartlett-Priestley kernel

W(y) = 3
4π  (1 – ( y

π  )
2
 ) ,   y∈[–π,π]

as the optimal kernel. Unfortunately, this bandwidth depends on the unknown f. Therefore, the

question for a data driven bandwidth selection arises. 

The presence of sharp peaks and flat regions at the same time causes additional problems.

With a small bandwidth fT(λ) is a reasonable estimate at the peaks but too irregular at the flat

regions. A larger bandwidth leads to a reasonable estimate at the flat regions but the peaks

become to broad . Therefore, a local bandwidth seems preferable. 
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The theoretically optimal local bandwidth is given by the same expression as above where

(f''(α) / f(α))2 is not integrated over α. Again the bandwidth depends on the unknown f and a

data driven local bandwidth selection is even more complicated.

The problem is similar to the problem of bandwidth selection in nonparametric

regression. The latter problem has been studied in detail in the Teilprojekt B1. Gasser, Kneip

and Kohler (1991) have given an adaptive global bandwidth selection procedure and

Brockmann (1992) an adaptive local bandwidth selection procedure for nonparametric

regression.

Since the variance of the periodogram depends on the unknown spectral density these

procedures require some modifications. Figure 3 shows a kernel estimate with the modified

local bandwidth selection of Brockmann (dotted line). This estimator clearly has a better

behaviour, at the peaks and at the flat regions.

On the other hand the mathematical smoothness assumptions needed for the above

optimality properties of kernel estimates can hardly be justified for spectral densities where

typically sharp peaks occur. It seems to be better to use the prior knowledge of the possible

form of the peaks (sharp peaks) in a semiparametric approach where the peaks are modelled

parametrically (e.g. as peaks of an AR-process with coloured noise) and the remainder is

smoothed nonparametrically.

If outlier are present in the periodogram (due to periodic components in the data) a robust

smoothing technique may be preferred. M-estimates in the frequency domain have been studied

by  v. Sachs (1990).

We now study the same estimates if the peaks in the spectrum are stronger. We therefore

generate an AR-process with p = 10 and double roots 

u1 = u2 = 0.9e
–i0.12π  

, u3 = u4 = u1

u5 = u6 = 0.9e
–i0.4π  

, u7 = u8 = u5

and additional single root

u9 = 0.9e
–i0.8π 

, u10 = u9 .
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      Fig. 4. True spectrum, periodogram, kernel estimate      Fig. 5. True spectrum, periodogram, kernel estimate

without data-taper with data-taper

The true spectral density, the periodogram and the adaptive kernel estimate are plotted in Figure

4. We see a strong bias of the periodogram and of the resulting kernel estimate. The true 

spectrum is overestimated. In particular the smaller peak at λ = 0.8π is hidden. This effect is

called leakage effect.

A heuristic explanation is the following. Straightforward calculation gives for the

expectation of the periodogram

(2.3)  E IT(λ) =  

– π

π

f(λ + α) KT(α)dα

where

KT(α) = 1
2πT

   
sin2 (Tα)/2

sin2 α/2

is the Fejér kernel, i.e. the expectation of IT(λ) is the convolution of the unknown f with KT .

Since KT(α) has side maxima at frequencies α = 
(2k + 1)π

T
  (k = 1,2, … ) the energy of f at a

peak leaks in the convolution to other frequencies which explains the behaviour of the estimates

in Figure 4.
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Tukey (1967) suggested the use of data-tapers to improve the behaviour of these

estimates. Prior to the Fourier transformation the data are weighted down at the ends of the

observation domain, i.e. instead of IT(λ) we use

IT
(h)(λ) = 1

2πH2,T(0)
  | ∑

t =1

T
h ( t – 0.5

T
  ) Xt exp(– iλt)|

2

where

Hk,T (λ) = ∑
t =1

T
h ( t – 0.5

T
  )

k
 exp(– λt)

and h(x) is a smooth nonnegative function that has its maximum at x = 1/2 and decays

smoothly to zero as x tends to 0 or 1. fT
(h)(λ)is defined as in (2.2) with IT

(h)  instead of IT  .

A frequently used taper is the Tukey-Hanning taper where the proportion ρ is tapered

with a cosine bell:

hρ(x) =  

1/2[1 – cos(2π x
ρ

)], x∈[0,ρ/2]

1                          , x∈[ρ/2 , 1/2]

hρ(1 – x)             , x∈ (1/2,1] .

If the mean is unknown we take the same expression for IT
(h) as above with Xt – X  instead of

Xt (we remark that tapering the data prior to the calculation of X is disadvantageous).

The effect of using a data taper is quite dramatic if the true spectrum contains strong

peaks. Figure 5 shows the same estimates as in Figure 4, but with the above Tukey-Hanning

taper where ρ = 1.0.

However, it turned out to be very difficult to describe the leakage effect and the benefits

of data-tapers theoretically. (2.3) still holds where now

KT(α) = {2π H2,T(0)}
–1

 |H1,T(α)|
2  

.

A plot of KT(α) for different data taper shows that it has much smaller side maxima than the

Fejér kernel. In fact, one can prove that

E IT
(h)(λ) = f(λ) + O(T

–2
)
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for a sufficiently smooth data taper while the other properties of (2.1) remain the same (this

result only holds if the mean is known). However, the bias of the resulting kernel estimate fT
(h)

stays the same while the variance of fT
(h) is increased by a constant factor (cf. Brillinger, 1981,

Theorem 5.6.4 and Corollary 5.8.2) which leads to an increase of IMSE(fT): The leakage effect

and the improvement by tapering are small sample effects that disappear in the asymptotic

theory.

To overcome these problems we have suggested a refined criterion to judge the quality of

spectral estimates (Dahlhaus, 1990). Instead of the IMSE(fT) we have studied

sup
XT

 IMSE(fT)

for several estimates where XT is a (with T) increasing class of stochastic processes. By using

an increasing class one requires that the estimate behaves uniformly good over an increasing

number of stochastic processes when the sample size increases. By using such a criterion one

can avoid that certain small sample effects such as the leakage effect disappear asymptotically.

The definition of the class XT can be found in Dahlhaus (1990, Section 2). It contains

processes with spectral densities whose peaks and troughs increase with T, for example AR-

process whose roots uj tend to the unit circle.

By using this approach it is possible to describe several small sample effects, in

particular, to describe the resolution properties of the estimates. The following results hold with

the uniform criterion UMSE(fT): = sup
XT

 IMSE(fT) (cf. Dahlhaus, 1990).

(i) If a smooth data taper and a special local bandwidth is used, we obtain 

UMSE(fT
(h)) = O(T

–4/5
) (Theorem 3.6). This is the optimal rate even for the IMSE.

(ii) If a global bandwidth is used, we obtain UMSE(fT
(h)) ≥ CT

–2/5
 (Theorem 4.1).

(iii) If no data taper is used, we obtain UMSE(fT) ≥ C (Theorem 4.3). This explains 

theoretically the leakage effect and in addition a similar effect called trough effect 

(cp. section 4.3).

(iv) It follows (Section 4.4) that also the variance may decrease with a data taper which is 

contrary to widespread conjectures.

(v) Similar results may be proved for other estimates such as segment estimates (Section 5). 
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Thus, the advantages of data tapers could also be established theoretically. An important

problem is the choice of the taper. No rigorous results exist for this problem. It is obvious, that

the choice depends on the true (unknown) spectral density, in particular on the relation of the

peaks and troughs to each other.

A heuristic advice that works fairly well in practice is the following resampling

procedure. We start by fitting a parametric ARMA-model which catches the important features

of peaks and troughs. It is important that for the estimate in this model a high resolution method

is used (e.g. a maximum likelihood approach or a minimum distance method with a strong data

taper - cp. section 3). Processes of the same length are afterwards generated from the fitted

model and the optimal data taper (together with the optimal bandwidth) can be determined in a

simulation study.

We remark that there exist other spectral estimates that have similar resolution properties

as the tapered periodogram . Those statistics are usually non linear / non quadratic and therefore

very difficult to investigate theoretically. An example is the Capon estimate. Ioannidis (1993)

has derived the asymptotic properties of several Capon type estimates.

 

3. Parametric models

An alternative to nonparametric spectral density estimation is the fitting of a parametric

spectral density. As an example we now discuss the fitting of an AR-model as in (1.1). In this

case the coefficients a1, … , ap and σ2 have to be estimated. (1.6) with the estimated

parameters then gives the spectral estimate.

One possible approach is to minimize a distance between the theoretical parametric

density and the periodogram with respect to the parameters. A natural distance function comes

from considering the asymptotic Kullback-Leibler information divergence. It is possible to

prove (cf. Parzen, 1983 ) that the asymptotic information divergence of a process with true

spectral density f and a Gaussian model with spectral density fθ is

(3.1) L(θ): =  1
4π    

–π

π

{log fθ(λ) + 
f(λ)

fθ(λ)
 } dλ + constant .

Since f is unknown we use the periodogram instead and obtain as an empirical distance
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(3.2) LT(θ) : =  1
4π    

–π

π

{log fθ(λ) + 
IT(λ)

fθ(λ)
  } dλ

which is the so called Whittle function (Whittle, 1953). Minimizing LT(θ) with respect to θ

gives the Whittle estimate θT . θT converges to θ0 - the value which minimizes L(θ), i.e. the

best theoretical fit.

For AR processes fθ is given by (1.6). In this case θT  is identical to the solution of the

classical Yule-Walker equations (cf. Brockwell and Davies, 1991). It has been known for a

long time that Yule-Walker estimates are not very good - in particular the resolution properties

are quite bad.

From our discussion it is obvious that an improvement of the nonparametric periodogram

in (3.2) will also lead to an improvement of the resulting parameter estimate θT . Since in (3.2)

the periodogram is integrated the use of a smoothed version (kernel estimate) does not lead to

any improvement at all. This can be seen in simulations and from theoretical consideration.

However, the use of data tapers can have a dramatic effect.

In Figure 6 parametric estimates are plotted for the same series as in Figure 4. The dark

line again is the true spectral density (unknown in practice). The light dotted line is the classical

estimate θT  without data-taper while the dark dotted line shows the estimate with a data taper.

Again we see the dramatic improvement due to tapering. Furthermore, the special form of the

parametric model leads to sharp peaks - no bandwidth is needed. The data-taper may be

selected as suggested in Section 2.
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         Fig. 6. True spectrum, parametric estimate with      Fig. 7. True spectrum and detection of hidden

and without data-taper periodic components
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Fig. 8.  T=128 realisations of an autoregressive process of order 2 with additional periodic component

Although the nontapered estimate (Yule Walker estimate) has been known for a long

time, the knowledge on the benefits of data taper is quite new. This is due to the fact that  Yule

Walker estimates usually are defined via moment equations and not by the above minimum

distance equation. Tapered Yule-Walker estimates were introduced by Dahlhaus (1984). As in

the nonparametric case it is very difficult to prove the advantages of data tapers for parametric

estimates theoretically. This was done in Dahlhaus (1988) by a similar approach as for the

nonparametric case.

We now show by a simulation example how these considerations may be used to

improve the prediction of a time series. Figure 9 shows an AR(6) series similar to the one from

above. The true spectrum with the nontapered and the tapered estimate are plotted in Figure 10.

The series contains two periodicities at frequencies which corresponds to a period of 7 and 30

days which is typical in economic data. Due to leakage the nontapered estimate can only resolve

the peak at the frequency that corresponds to the seven days period while the other is hidden. 

            
    Fig. 9. 128 realisations of an autoregressive process of order 6   Fig. 10. True spectrum, spectral estimate
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Fig. 11. Autoregressive process with 100 predictions based on a nontapered Yule-Walker estimate

     
Fig. 12. Autoregressive process with 100 predictions based on a tapered Yule-Walker estimate

The optimal prediction of XT+1 based on X1, … , XT is for an AR-process given by the

equation (1.5) with εt = 0, namely by

XT+1 = – ∑
j =1

p

aj XT+1–j

(cp. Brockwell and Davies, 1991 , chapter 5.5). The optimal prediction of XT+n is given by the

same equation where now the unknown Xt are replaced by their (previous) predictors. To

calculate the predictions we now replace the unknown aj in the prediction equation by their

estimates.

Figure 11 shows the series with the predictions if the nontapered Yule-Walker estimate is

used. To show the quality of the prediction we have added a moving average over 7

consecutive values. Due to the bad resolution properties of the estimate only the 7-days cycle is

predicted while the 30-days cycle is missing in the prediction. If we use the tapered parameter

estimate (Figure 12) also the 30-days cycle is predicted sufficiently. (For reasons of clarity we

have omitted the confidence bounds of the prediction - in a practical analysis these bounds

should be calculated and plotted). 
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We finally remark that there exist also other parametric estimates that have good

resolution properties. Examples are the exact (Gaussian) maximum likelihood estimate and the

popular Burg algorithm (Burg, 1967). Hainz (1992) has recently calculated the asymptotic

distribution and the asymptotic bias of the Burg estimate. We remark that these estimates can

not be improved by using data tapers.

4. Estimation- and detection procedures based on the periodogram

The distributional properties of the periodogram may be used in several directions for

statistical problems.

One application is the detection of periodic components in the data. In this case the

observations are for example of the form

(4.1)  Xt = A cos(ωt + ø) + Yt

where Yt is a stationary process with spectral density f(λ). The periodogram of the series Xt

has an outlier at frequency ω (in fact also neighboring values are influenced). At frequencies

different from ω the asymptotic distribution of IT(λ) / f(λ) is χ2
2 /2. One may use this property

to conclude to a periodic component if the value of IT(λ)/f(λ) lies e.g. outside the 95%

confidence interval of the  χ2
2/2 distribution. The problem is that f(λ) is unknown and has to be

estimated by some estimate fT(λ). If one uses the kernel estimate fT(λ) from section 2 the whole

procedure does not work since fT(λ) itself is corrupted by the outlier. However, if one uses the

robust estimate of v. Sachs (1991) the whole procedure becomes a powerful tool for detecting

hidden periodicities.

Figure 8 shows a series of the form (4.1) with ω = 0.4π and an AR(2)-process Yt with

roots u = 0.9
–i0.12π

  and u . In Figure 7  IT(λ) / fT(λ) is plotted with the robust estimate fT(λ)

of v. Sachs and a threshold which is the 95% confidence bound of the supremum of T/2 iid

χ2
2/2 random variables. At  λ = 0.4π  IT(λ) /fT(λ) exceeds the threshold and the periodic

component is detected. In the plot of the series the periodic behaviour at λ = 0.12π  (resulting

from the root of the AR-part) seems to be even stronger. However, the procedure finds

correctly the true periodic component. The same method with an ordinary kernel estimate or

without a data taper fails.

Another application is a bootstrap procedure in the frequency domain. Figure 2 shows

how the values of the periodogram fluctuate randomly around the (unknown) spectral density.

One may use this fact to create more "periodogram samples" of the same kind by resampling in
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a suitable manner from IT(λ) / fT(λ) where fT(λ) is e.g. a kernel estimate. These additional

samples may be for example used to get information on the distributional properties of

estimates that are functionals of the periodogram. Franke and Härdle (1992) use such an

approach to determine an adaptive bandwidth for a kernal estimate which has certain optimality

properties. 

Janas (1992) has constructed a wild bootstrap (cp. Mammen, 1992) which emulates also

the fourth order moment structure of the estimates. He also proved that the classical bootstrap

leads to a better approximation of the distribution of so called "ratio statistics" than the classical

normal approximation does.

Although some of the procedures discussed above seem to be natural from our

knowledge of the behaviour of iid-data, the weak dependence of the periodogram ordinates

causes serious trouble in the exact proof of the results.
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