Asymptotics of set-indexed conditional empirical

processes based on dependent data *

Wolfgang Polonik Qiwel Yao
Institut fur Angewandte Mathematik Institute of Mathematics and Statistics
Universitat Heidelberg University of Kent at Canterbury
Im Neuenheimer Feld 294 Canterbury, Kent CT2 7NF, UK

69120 Heidelberg, Germany

Abstract

We study the asymptotic properties of the conditional empirical process based on

ﬁn(C’|x) = an(Xt - x)I{YtEC}

t=1
indexed by C' € €, where {(X:,Y:),t = 1,...,n} are observations from a strong mixing stochas-
tic process, {w, (Xt — x)} denote some kernel weights, and € is a class of sets. Under the
assumption on the richness of the index class C in terms of metric entropy with bracketing, we
have established uniform convergence, and asymptotic normality for ﬁn(|x) The key tech-
nical result gives rates of convergences for the sup-norm of the conditional empirical process
over a sequence of classes C with decreasing maximum Li-norm. The results are then applied
to derive Bahadur-Kiefer type approximations for a generalized conditional quantile process
which is closely related to the minimum volume sets. The potential applications in the areas of

estimation of level sets and testing for unimodality of conditional distributions are discussed.

Keywords: Bahadur-Kiefer approximation, conditional distribution, covering number, empirical
process theory, generalized conditional quantile, level set, minimum volume predictor, Nadaraya-

Watson regression estimator, nonlinear time series, strong mixing.

*Supported partially by the EPSRC Grants L67561 and 116385, and the EU Human Capital and Mobility
Program ERB CHRX-CT 940693.



1 Introduction

An empirical process indexed by a class of sets or functions is an interesting mathematical model
with various statistical applications (see, for example, Shorack and Wellner 1986). Such a process
defined from independent and identically distributed (i.i.d.) observations has been extensively
studied in literature in past two decades. More recently, empirical processes based on depen-
dent data have been studied under various mixing conditions (e.g. Massart 1987, Andrews and
Pollard 1994, Doukhan, Massart, and Rio 1995). The extension of the above exploration to con-
ditional empirical processes is practically useful and certainly more technically challenging. To
our knowledge, the study so far has been confined to the cases with i.i.d. observations, which
includes, among others, Stute (1986a,b), Horvath (1988), and Bhattacharya and Gangopadhyay
(1990). Conditional quantile processes, which will also play a role in the present paper, are closely
related to conditional empirical processes; for the i.i.d. case see, for example, Bhattacharya and
Gangopadhyay (1990), Mehra et al. (1991), Gangopadhyay and Sen (1993), and Xiang (1995,
1996).

In this paper we study asymptotic properties of set-indexed conditional empirical processes
based on observations from stochastic processes which are strong mixing. The Bahadur-Kiefer
type approximations for a generalized conditional quantile process are derived, which has a direct
bearing on asymptotic properties of minimum volume sets. Although our study is directly moti-
vated by prediction of nonlinear and non-Gaussian time series (Polonik and Yao 1998), we also
briefly discuss potential applications of these results in various other statistical practices such as
level set estimation and testing for unimodality.

Let {(X:,Y;)} be a strictly stationary process, with X; € R? and Y; € RY. Let F(-|z) be
the conditional distribution of Y; given X; = z. Note that for any given measurable set C' C R,
E{lyecy|X: = 2} = F(C|z). This regression relationship suggests the following Nadaraya-

Watson estimator for F(:|z) from the observations {(X, Y:), t =1,...,n}:

~ - (Xi—x "o (X -2
Fn(C|x):ZI{Yt€C}K< ’fh ) ZK( th ) (1.1)

where K (-) > 0 is a kernel function on R%, and h > 0 is a bandwidth. F,(-|z) is called empirical
conditional distribution. In the usual time series context, Y; is a scalar and X consists of its lagged
values. To predict Y; from X; for non-Gaussian time series data, conventional interval predictors
such as the mean plus and minus a multiple of standard deviation are no longer pertinent. The
conditional minimum volume (i.e. Lebesgue measure) predictor could perform substantially better

than the conditional quantile interval. The estimation of the conditional distribution F(C|X; = z)



for C' € €, where € is an appropriate class of measurable sets, plays a key role in deriving minimum
volume predictors (see Polonik and Yao 1998).

The goal of this paper is to study the asymptotic behaviour of the conditional empirical process
C5C = v,(Clz) = Vnhd{ﬁn(ﬂx) — F(Cla)}. (1.2)

The main result Theorem 2.3 essentially deals with the asymptotic behaviour of the modulus of
continuity of v, (-|z). It turns out that this asymptotic behaviour depends on the richness (or
complexity) of the index class €, which is measured in terms of metric entropy with bracketing.
In fact if € is not too rich (see Theorem 2.3 below), the conditional C-indexed empirical process
converges weakly, in the sense of Hoffman-Jgrgensen (c¢f. van der Vaart and Wellner 1996), to
a so-called F(-|z)-bridge. This means that the empirical process behaves like the one based on
i.1.d. observations in term of first order asymptotics, as long as the class € is not too rich. This
phenomenon is not unexpected, since only the observations with X; in a small neighbourhood of
x are effectively used in the estimation (1.1). Those observations are not necessarily close with
each other in the time space. Indeed, they could be regarded as asymptotically independent under
appropriate conditions such as strong mixing.

On the other hand, it remains at least to us as an open problem to identify the maximum rich-
ness of € (under the strong mixing condition) to retain the above i.i.d.-like asymptotic behaviour.
The condition specified in this paper restrains € far from being as rich as in the case of #.i.d.
observations in order to retain the same asymptotic results. Note that the standard conditional
empirical processes indexed by z € R? usually behave asymptotically like those based on i.i.d.
observations. However, the corresponding class C = {(—oc0, 2],z € R} is very “thin”.

As mentioned above, a (generalized) conditional quantile process also plays a crucial role in
the present paper. To this end, we introduce the notion of minimum volume sets (MV-sets) first.

For a € [0, 1], the set Me(az) € C satisfying the condition that
Me(a|z) € argmax{Leb(C) : C' € C, F(Clz) > o} (1.3)

is called a conditional MV-set in C at level o, where Leb(-) denotes Lebesgue measure. Anal-
ogously, Me(a|z) denotes an empirical conditional MV-set if F(-|z) in (1.3) is replaced by the

empirical distribution F},(-|2). We denote their volumes as
pe(alz) = Leb(Me(alz))  and  [Jie(alz) = Leb(Me(alz)), (1.4)
respectively. The volume process

o = VahT (fie(al) - pe(ale)) (1.5)



can be considered as a conditional version of a generalized quantile process as defined in Ein-
mahl and Mason (1992). For this process a Bahadur-Kiefer-type approximation is given in §3,
which, in the special case of d = 1 and the observations being independent, improves the result
of Bhattacharya and Gangopadhyay (1990). Polonik (1997) established similar results for an
unconditional volume process based on i.i.d. observations.

The rest of the paper is organized as follows. We present the asymptotic results of the process
{v,(:]z)} in §2. §3 contains the Bahadur-Kiefer approximations for the volume process (1.5). §4
provides a brief discussion on how the results in this paper can be applied to various statistical

applications. §5 contains all the technical proofs.

2 The set-indexed conditional empirical process

In this section, we establish asymptotic properties of the process v, (-|z) defined in (1.2), which
include a Glivenko-Cantelli type result, the asymptotic normality of finite dimensional distribu-
tions, and the asymptotic behaviour of the modulus of continuity. The two latter imply that
v (+]z) converges to a Gaussian process.

Let f(-) be the density function of X;. We always assume that € R? is fixed and f(z) >
0. Further, all the non-deterministic quantities are assumed to be measurable, and we write
dp(jz)(A, B) = F(AAB|z). We use ¢ to denote some generic constant, which may be different at

different places. We introduce some regularity conditions first.

(A1) The marginal density f is bounded and continuous in a neighbourhood of z.
(A2) The kernel density function K is bounded and symmetric, and lim, . ||u||?K (u) = 0.

(A3) f e Cy4(b), where Cy 4(b) denotes the class of bounded real-valued functions with bounded

second order partial derivatives.

(A4) F(-|z) has a Lebesgue-density g(:|z) € C5 4 (b). Moreover, for each C' € C the function
F(C1-) € Cy,4(b) such that supgee

ﬁF(Cu)‘ <oo, V1<i,j<d
(A5) || fvvT K(v) dv]| < oc.

(B1) The joint distribution of (X¢, X;14) has the density function f,, and sup s, [|fyll, < oo for

some p € (2, 00].

(B2) The joint density function of (X, Xy, X, X,) exists and is bounded from the above by a

constant independent of (s,t,q,r).



We call the stationary process {(Xy, Y:)} strong mizing if

a(j) = sup |P(AB) — P(A)P(B)| — 0, asj— oo, (2.1)
AeF?  BEFS®

where F! denotes the o-algebra generated by {(X;,Y;),s < i < t}. We use the term geometrically
strong mixing if a(j) < aj~P for some a > 0 and 8 > 1, and ezponentially strong mixing if
a(k) < by* for some b > 0 and 0 < v < 1. Sometimes the condition of strong mixing can be
reduced to so-called 2-strong mizing, which is defined as in (2.1) with °__ and F ¢ replaced by
o(Xo, Yo) and o(X;,Y;) respectively. We use the terms geometrically or exponentially 2-strong
mixing in the similar manners.

Now we introduce the notion of metric entropy with bracketing which provides a measure of
richness (or complexity) of a class of sets €. This notion is closely related to covering numbers. We
adopt Li-type covering numbers using the bracketing idea. The bracketing reduces to inclusion
when it is applied to classes of sets rather than classes of functions. For each ¢ > 0, the covering

number is defined as

Ni(e,C F(-]z)) = inf{n € N : 3(},...,C, € C such that

VO el 31<,j<nwithC; CC CC; and F(C;\Cilz) <€} (2.2)

The quantity log Ny(¢, €, F'(-|z)) is called metric entropy with inclusion of € with respect to F'(-|z).
A pair of sets (7, C} is called a bracket for C'. Estimates for such covering numbers are known for
many classes. (See, e.g. Dudley 1984.) We will often assume below that either log Ny (¢, C, F'(-|))
or Ny(e, €, F(-]2)) behave like powers of e~! : We say that condition (R.) holds if

log N1(¢,C, F(-|z)) < Hy(¢), forall e>0, (R,)
where
log(Ae™") if v =0,
H,(e) = ‘ (2.3)
Ae™? if v > 0,

for some constants A,r > 0. In fact condition (Rp) holds for intervals, rectangles, balls, ellip-
soids, and for classes which are constructed from the above by performing set operations union,
intersection and complement finitely many times. The classes of convex sets in R? (d > 2) fulfill
condition (R,) with v = (d — 1) /2. This and other classes of sets satisfying (R.) with v > 0 can
be found in Dudley (1987).

Now we are ready to formulate the results on the uniform consistency and the (pointwise)

asymptotic normality of v, (Clz).



Theorem 2.1 (Uniform consistency)

Suppose that conditions (A1), (A2) and (B1) hold, and that {(Xy,Y;)} is geometrically 2-strong
mizing with § > 2(p—1)/(p—2). Let C be a class of measurable sets for which Ni(e,C, F(-|z)) < oo
for any € > 0. Suppose further that ¥V C € C

[F(Cly) fy) = F(Cla) ()] =0 as y — 2. (2.4)
If nh® — oo and h — 0 as n — oo, then

sup |, (Clz) — F(Cla)| L5 0.
cec

Theorem 2.2 (Asymptotic normality)
Let (A2) — (A5) and (B2) hold, and suppose that (B1) holds with p = co. Suppose further that the
process {(Xy, Y1)} is geometrically strong mizing with > 2. Let h = cn_d%l(log logn)~t. Then

asn — oo, form>1and Cy,...,C, € C,
{rn(Cila); i=1,...,m} -5 N(0, %),
where ¥ = (04 )i j=1,...m, and o, ; = {F(C; N C}|z) — F(C;|2)F(C}|z)} [ K?/ ().

In order to formulate the next theorem which provides the information on the asymptotic

behaviour of the modulus of continuity (see remarks below), we need to introduce the following

1/0'210g0% if v =0,

_ 3y—1
max ((02)1Tw , (nhd) 2(3”1)) if v > 0.

function

Ay(0® n) = (2.5)
Theorem 2.3 Suppose that (A2) — (A5) and (B1) hold, and the process {( Xy, Y;) } is exponentially
strong mizing. For each o* > 0, let C, C C be a class of measurable sets with supgee, F(Clz) <
0? < 1, and suppose that C fulfills (R,) with some v > 0. Further we assume that h? — 0 and
nh? — oo as n — oo such that

nh < (A (0% ). (2.6)

d .2 1
nho loga2

Togn)e. 0 00 a8 — 0. Then there exists a constant

For v = 0 we assume in addition that

M > 0 such that ¥V ¢ > 0,
P (sup v (Clz)| > MAW(O'QJZ)) <e
Cels

or all sufficiently large n and all 62 < o2, where o2 > 0 is a constant.
) q 0’ 0



Remark 2.4 (a) Note that A, tends to zero as n — oo provided v < 1/3. In this case, Theo-
rem 2.3 entails the tightness of the conditional set-indexed empirical process. To see this, note that
trivially supe pee |[vn(Cle) — vn(D]2)| < 2 supgee\e |[vn (Blo)| where €\ € = {C'\ D,C, D € C}.
Without the loss of generality, we may assume that () € € such that € C €\ €. Now, it is easy
to see that Ny(e,C, F(:]z)) < Ni(e,C\ €, F(-]2)) < (Ny(e/2,C, F(-|z)))? This implies that (R.)
holds for € if and only if it holds for C\ C. Hence, an application of Theorem 2.3 to the class
C\ C together with Theorem 2.2 entails, by standard arguments, that the set-indexed process
converges in distribution to a so-called F(:|z)-bridge, provided v < 1/3. An F(-|z)-bridge is a
Gaussian process with almost surely continuous sample paths and covariance structure as given
in Theorem 2.2 (e.g. Pollard 1984). Taking into account possible non-measurability the conver-
gence in distribution should be understood in the sense of Hoffman-Jgrgensen (see van der Vaart
and Wellner 1996).
(b) It is well-known in the empirical process theory that an unconditional empirical process based
on i.i.d. observations is tight if (R.) holds with the sharp bound v < 1 (see Alexander 1984).
The same conclusion holds for a conditional empirical process as long as the process is formed
from a set of i.i.d. observations. However, for the empirical processes based on dependent data
under the strong mixing condition, we assume in this paper v < 1/3 to achieve the tightness. It
was indicated on page 128 of Andrews and Pollard (1994) that the tightness of an (unconditional)
empirical process can be established by using the method of Massart (1987) under the condition
that v < 1/4. (Note that the parameter 3 in Andrews and Pollard (1994) is equal to 2+v in our
notation.) Hence, we have enlarged the upper bound from 1/4 to 1/3. However it remains as an
open problem if a further improvement is possible, and if further we can reach the upper bound
1 for strong mixing processes.

(c) To demonstrate that our general results lead to well-known (optimal) rates of convergence
in special cases, we briefly discuss the case v = 0. With 1 = ¢, (%) ¥ , where ¢, — ¢ > 0 as

n — oo, the results below follow from Theorem 2.3 immediately.

(cl) Let 02 = 1, we have that

@ sup |F, (Clz) = F(Cle)| = Op(1),
cel

c2) Let {C,} be a sequence of classes of sets with G, C € and su F(Clz) < 02 < 1. Let

0? = 62 — 0 and for which the conditions of Theorem 2.3 hold. Then



3 Bahadur-Kiefer-type approximations

In this section we study the behaviour of the volume process defined in (1.5), which can be

regarded as a generalized quantile process. Note that fic(a|z) = Leb(ﬁ@(oe|ac))7 and
Me(alz) € argmax{Leb(C) : F,(C|z) > a}.

We assume throughout this section, that empirical MV-sets with finite v-measure exist for every
a € [0,1]. This assumption is satisfied for all standard choices of the class €. Replacing the
Lebesgue measure by a general function A : € — R, the process defined in (1.5) becomes a
conditional version of the generalized quantile function as defined in Einmahl and Mason (1992).
It reduces to the conditional quantile if we let € = {(—o0,z],2 € R} and A((—o0,z]) = z. In
fact we have that the MV-set Me(a]z) = (—oo, F=(a|2)] on the one hand, and the “volume”
fie(a|z) = A((—o0, F ' (a]2)]) = F7 ' (a]z) on the other hand. Hence, a conditional quantile may
be regarded as an MV-sets itself, and as well as its “volume”.

A classical (unconditional) empirical MV-sets is the so-called shorth which is the MV-interval
at the level 1/2. The term ‘shorth’ was first introduced by Andrews et al. (1972) referring to the
mean of the data lying inside the MV-interval at the level 1/2, which is different from current
practice. Rousseeuw (1986) introduced the MV-ellipsoid in the context of robust estimation for
multivariate location and scatter.

A very important type of MV-sets are the so-called level sets defined in terms of probability

density functions. Suppose that F'(-|z) has Lebesgue density g(-|z). Denote
o) (M) = {2z € R 1 g(c|2) > A}, A >0, (3.1)

the level sets of g(-[z). It is easy to see that if I'j(|,)(A) € C, it is an MV-set at the level a) =
Py (Mo,

Theorem 3.1 below presents Bahadur-Kiefer type rates of approximation for the set-indexed
conditional empirical process. Note that Me(a|z) depends on the bandwidth A through F,(-|z),

which is not reflected explicitly in the notation.

Theorem 3.1 (Generalized Bahadur-Kiefer approximation)

Suppose that the conditions of Theorem 2.3 hold. Assume that pe(-|x) is differentiable with
Lipschitz-continuous derivative pp(-|¢), and the condition (R.) holds for C. Let further o € (0, 1)
be fized and suppose that Me(a|z) is unique up to Leb-nullsets, that F(Me(f|z)|z) = B for all
B in a neighborhood of o, and that pp(al|z) > 0. If for h and o? satisfying the conditions of

Theorem 2.3 we have that as n — oo,



dp( ) (Me(alz), Me(alz)) = Op(o?),

then as n — oo,

(F, — F)(Me(alz)) + Ww) |

m(ﬁe(am — ne(elz))| = Op (W

In order to evaluate explicit rates from this theorem, we need to know the rates of convergence
o? for the empirical MV-sets. To this end, we assume that the level sets of the conditional density
are (essentially) unique MV-sets. More precisely, it is assumed that for a € [0, 1] there exists a

level A, such that for any Me(a) we have
dLeb(L'y(12)(Aa); Me(alz)) = 0. (3.2)

This assumption is fulfilled for all « if [y oy(A) € € for all A > 0, and g¢(-|z) has no flat parts
(i.e. Leb{y : g(y|z) = A} =0 ¥V A > 0). In addition we assume that ¢(-|z) is regular at the level
Ao, in the sense that

Leb{y : [g(ylz) = Aol < €} = O(e). (3.3)
Under (3.2) and (3.3) rates of convergence for MV-sets are derived in Polonik and Yao (1998).

Using these rates we obtain the following corollary.

Corollary 3.2 Let conditions (A2) — (A5), (B1) and (B2) hold, and suppose that the process
{(X, Y1)} is exponentially strong mizing. Let o € [0, 1] such that (3.2) and (3.3) hold. Then for

n >0 and

1 1
h = ¢ max (n 4B+, n d+2(37+1)) ,

we have that as n — oo

. A Op (n~ &EFT ) if v < 1/5,
|(Fn = F) (L) (Aa)|2) + Aa(fe(ale) — pelal))| = IR
Op(n 4267+ if v > 1/5.

Finally, we state a theorem giving Bahadur-Kiefer approximations for the more standard

conditional one-dimensional empirical process indexed by y € R.. Let
g(@) = q(alz) = F~(alz)
denote the conditional quantile, and let

gn(alz) = F7 (al2),



where F~! and 77! denote the generalized inverses of F(-|z) and F,(-|2), respectively. Since we
now use the optimal bandwidth, the bias comes into play (see also Lemma 5.2 in the Appendix).
We define

1
()
where V and V? denote gradient and Hessian operator respectively. To simplify notation we write

Wy (y|x) instead of Wy((—o0, y]|z).

Uy (Cla) = <VF(C|9@),/vK(v)(v,(Vf)(x))dv)—l— %/UTWF(GM)UK(U) dv  (3.4)

Corollary 3.3 (Bahadur-Kiefer approximation for the usual conditional empirical process)

Let conditions (A2) — (A5), (B1) and (B2) hold with C = {(—o0,y],y € R}, and suppose that
the process {(Xy,Y:)} is exponentially strong mizing. Suppose further, that for a fized o € (0,1)
the function g(-|x) is continuous at q(a|z) and that g(q(a|z)|z) > 0. Let h = en™"/¥4, Then as

n — oo, it holds almost surely that
(. — P){a(ale)|2) + Walglal) ) + gla(alo)]e) (gu(ale) - alale)] = O (n" T logn ).

Remark 3.4 (a) Although the class € in Corollary 3.3 satisfies (R,) with v = 0, the rates in
Corollary 3.3 are faster than that derived from Corollary 3.2 with v = 0. In fact, the quantiles
converge at the rate of 1/\/W7 whereas the estimators of level sets converge slowerly, although
both of them are MV-sets. Note that quantiles are MV-sets in the class of intervals of the form
(—o0,yl,y € R, which have one fixed end-point at —oo. Hence, the estimation of a quantile
reduces to the estimation of its “length”, which can be fulfilled at the rate of 1/\/W. However,
estimation of a general MV-set is much more involved, and hence the convergence is slower. (It
is well-known that the classical shorth can be estimated at the rate of n=1/3 only, whereas the
length of the shorth can be estimated at the rate of n=/2))

(b) Corollary 3.3 improves a result from Bhattacharya and Gangopadhyay (1990) which dealt
with an i.2.d. case using a uniform kernel with one-dimensional X;, i.e. d = 1. The convergence
rate obtained by Bhattacharya and Gangopadhyay (1990) is O (n_% log n), which is slower than
ours by a factor y/log n.

(c) The above approximation rate is of the form (nh?)=%/*\/log n. Hence, up to a log-factor it
is in alignment with the rates for unconditional (global) quantile process. For example, the almost
sure rate for one-dimensional process (i.e. d = 1) with i.i.d. observations is O(n=%/*(loglog n)>/*)
(Kiefer 1967).

(d) The factor g(¢(e)|z) in Theorem 3.3 corresponds to A, in Theorem 3.1. Note that both
of them have the same geometric interpretation as the values of the (conditional) density at the

boundary of the corresponding MV-set which are I';(.|)(As) and (—oo, g(a|z)], respectively.



4 Discussion

Apart from its direct application in prediction of nonlinear and non-Gaussian time series (Polonik
and Yao 1998, and references therein), a conditional empirical MV-set is also interesting (i) as
an estimator for a level set of a conditional density, and (ii) to be used in tests for unimodality
of conditional distributions. In this section, we discuss how the above theoretical results can be
applied to these two applications.

First, we briefly illustrate how to derive the Li-rate of convergence for a conditional empirical
MV-set by applying Theorem 3.1 iteratively. It can be shown that the I,-distance between the
empirical and the true MV-set can be estimated from above by a sum of several terms including
the difference of the empirical process and the generalized quantile process. (See Polonik and
Yao 1998 for details.) Hence, Bahadur-Kiefer rates derived in Theorem 3.1 are useful. Note,
however, an explicit rate o2 is needed in applying Theorem 3.1, and further, it is not necessary
in Theorem 3.1 to let 0% converge to 0. Now we start with 02 = 1. Then Theorem 3.1 yields
the first Bahadur-Kiefer approximation rate which in turn can be used to derive the first rate o2
for Me(ajz). Further, this rate for Me(a|z) can be plugged into Theorem 3.1 to yield a faster
Bahadur-Kiefer type approximation. This faster Bahadur-Kiefer rate leads to a faster rate of
convergence for ﬁ@(odx) and so on. The iteration will be continued until the rate of convergence

is saturated.

The testing for modality of conditional distribution is an interesting and challenge problem in
statistics. It has been observed that the conditional distribution of (nonlinear) time series given
its lagged values could be multimodal. Further, the number of modes may vary over different
places in the state space. Polonik and Yao (1998) proposed a heuristic device to detect the
possible multimodality based on coverage probabilities of not necessarily connected regions. A
more rigorous statistical test can be constructed as follows based on conditional MV-sets. We
only consider a special case when Y is univariate (i.e. d' = 1).

To predict Y from X, the best predictive region among a candidate class € is the MV-set of €
in the sense that the MV-set has the minimum Lebesgue measure. Obviously this best predictor
depends on the choice of the class C. In view of simple prediction, there is strong temptation to
let € be the class of all intervals Z;. However, such a € is only pertinent when the conditional
density ¢(-|z) is unimodal. Indeed, if ¢(-|z) is, for example, bimodal, we should let € = Z; which
is the class of unions of at most two intervals. In this case, the MV-set of Z; may have much larger
Lebesgue measure than that of Z;. Hence, the comparison of the volumes (Lebesgue measures)

for the MV-sets in different set classes gives us the information on the modality of the underlying

10



conditional distribution. This idea has been explored by Polonik (1997) in testing the modality
for unconditional distribution.
To test the null hypothesis that ¢(-|z) is unimodal, we define the statistic
Tral@) = sup(fiz, (alz) = fiz, (af2)) (4.1)
1S
where A C [0, 1]. Obviously, we may replace Z; and Z, in the above expression by appropriate € and
D (with € C D) respectively for testing different hypotheses. Now, it follows from Theorem 3.1
and its proof that under the null hypothesis

ﬂf2 (04|$) = HI, (04|$) + :u/IQ (O‘|x) ((Fn - F) (Fg(|x)(/\a)|x) + (nhd)_l/zwl/n,IQ (0721)) + Ry,

where Wy, 7, denotes the modulus of continuity of v, 7, which is the conditional empirical process
indexed by T, and o2 denotes the L-rate of convergence of Mz, (a|z) to ['y(|z)(Aa). The remainder
term R, is of smaller order. The analogous expansion also holds for fi7, (a]z). Since under the null
hypothesis uz, (a|z) = puz, (@|z), the statistic T}, ,)(x) converges to 0 under the null hypothesis
and the rate of convergence is (nhd)_l/le,nl2 (02). The rates given in Corollary 3.2 for v = 0
are explicit rates for this quantity for some particular .. Since the statistic 7', 4 is defined as a
supremum, we need to show that the results in Theorem 3.1 and Corollary 3.2 hold uniformly for
«a € A, which can be validated at least for A C [¢,1 — €](e > 0) under appropriate conditions on
the smoothness of ¢(-|z) (see Polonik 1997 for the global i.i.d. case).

The idea of excess mass provides an alternative approach to test the unimodality. The excess
mass approach was introduced independently by Miiller and Sawitzki (1987) and Hartigan (1987).
(For further work see Nolan 1991, and Polonik 1995a,b). Adapted to the conditional empirical
processes, the basic statistic is of the form I, e(A|z) = supcee(ﬁn (Clz) — A Leb(C')), which might
be called a conditional empirical excess mass functional. As a function of A it contains information
about mass concentration of the underlying distribution. Similar to the above, we compare the
functionals under different classes C. Namely, we define the test statistic

To(e) = sup(Enz, (Al2) — En 1, (Al2)),
A>0
which is a conditional version of the test statistic proposed by Miiller and Sawitzki (1987, 1991).

The rates of convergence of T),(z) under the hypothesis of unimodality can be derived from
Theorem 2.3. Tt can be shown that v/nh T}, () can be estimated from above by sup (v (Tp.z, (A)]2) —
Vi (Ly(lzy(A)]2)). Here I'y 7, (A)|z) € Zz denotes the conditional empirical A-cluster which is the
maximizer of the excess mass statistic £, 7, (A|z) defined above. See Polonik (1995a) for uncondi-

tional cases with 7.i.d. observations. If L;-rates of convergence o2 for the sets I',, 7, (A) to Lyi1z)(A)
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can be derived, then we have v/nh T, (z) < Op(w., -, (07)), and rates of convergence of the quan-
tity on the right-hand side of the last inequality immediately follow from Theorem 2.3.The rates
o2 can be derived by using ideas from Polonik (1995) and the results of the present paper.
Finally, we point out that the above test can be generalized to tests for other null hypotheses
if we replace Z; and Zy by € and D (with € C D) in the definition of the test statistic. This
generalization can be treated analogously, provided information about the metric entropy with

bracketing of D (and hence also about €) is known. This shows the actual strength of Theorem 2.3.

5 Appendix: Proofs

Throughout the proofs we use the notation:

on(Cl) hd ZI{Yt € VK (th_ 96) , (5.1)

and define
Xt — $

(5.2)

fn(2) hd Z K(
The corresponding theoretical functions are ¢(Clz) = F(Clz)f(z) and f(z) itself. We write

Kp(y) = 72K (¥) . Moreover, unless stated otherwise z is assumed to fixed such that f(z) > 0.

Let us first introduce two technical lemmas without proofs:

Lemma 5.1 Suppose that f is continuous at x. Suppose further that f is bounded, and that (2.4)
holds. Then we have ¥ C' € C that as n — oo

|E(pal(Cl2)) = 2(Cla)| = op(1), and |E(F,(C|z)) = F(C|z)| = op(1).
If (2.4) holds uniformly over C' € C so are the assertions.

In the following lemma we give the exact asymptotic behaviour of the bias terms. Its proof

consists of tedious, but straightforward calculations using Taylor expansions. Details are omitted.

Lemma 5.2 Suppose that (A2) — (A5) hold. Let ¥, (Clz) = (VF(C|a), [ vK(v){v, Vf(z))dv)+
Li(@) [vIVEF(Cla)vK (v) dv + SF(Cle) [vTV2f(z)vK (v) dv and let Wy as defined in (3.4).

Then we have for each x as n — oo that uniformly in C' € €
(i) b2 (Ben(Clz) — o(Clz)) — Wi (Cla)

(1) h~2EF,(Cle) — F(C|z)) = W3(Cla).

12



Proof of Theorem 2.1: We use the following decomposition:

1 Fu(Cl)
f(2) f(2)

JFrom this it is easy to see that we only need to show that as n — oo

F(Clz) = F(Cle) = ——(#a(Cl2) = ¢(Cl2)) - (fa(2) = f(2)). (5-3)

supcee lpn(Cle) — (Cla)[ = op(1)  and (5.4)
|[fu(2) = f(2)] = op(1). (5.5)

(5.5) is well known to hold under the present conditions (cf. Bosq 1996). That for every fixed
C' € € we have |¢, (Clz) — ¢(Clz)| = op(1) can be shown by similar arguments, and is omitted
here. We just show, how to conclude uniform consistency from this by using finite metric entropy
with inclusion. Fix ¢ > 0 . For C' € € let C*,C} be a bracket for C, ie. C, C C' C C* and
F(C*\Cy|z) < €. There exist finitely many such sets. Since for A C B we have ¢, (A|z) < ¢, (B|z)
and also p(A|z) < ¢(Blz) it follows

supcee(pn(Cl2) — @(Cle)) < glé%(%(C*lw)) — p(Cila))
< sup (pn (C7|2) — @(C7[a)) + sup (p(C7[z) = p(Cl2))
cet cect
= sup(n (C7[2) = p(C7|2)) 4 sup F(C™\ Cilz) f(x)
c* cect
< sup(pn (C7|2) — o(C7[2)) + f(2) € (5.6)

An analogous lower bound holds with C* replaced by C,. Since the first term in the last line
is a supremum over finitely many sets (for fixed ¢ > 0) it follows from pointwise consistency of
¢, that this term is op(1), and hence we finally obtain (5.4).

g.e.d.

Proof of Theorem 2.2: The proof of this theorem nowadays has become more or less standard.

We just outline the main steps and for details we refer to Bosq (1996). Using the fact that under

the given conditions f,(z) is consistent we have

F(Clz)
f(z)

Using the notation b,(C) = I{Y; € C}HK (£72) we obtain

(Cl) = VT (S (00(Cla) = 2(Cla)) = S fule) = F0)) 1+ op(1). (57)

h(Cle) = an—g i (Cla) (5:8)
Wy f(lx( — o)) -V Fjﬁf'y (BEW(Xi—2) = f@@),  (5.9)



where Wi, (Cla) = 55 (b(C) = Ebi(C)) — T (K (X, — 2) = BK(X, - 2)). Tt is well known
that under the assumptions of the theorem the bias of f, converges to zero at a rate h?. The
same holds for the bias of ¢, (C') (Lemma 5.2). Hence, the assumptions on h assure that the
terms in (5.9) are asymptotically negligible. It remains to show that the right-hand side in (5.8)
is asymptotically normal with the given variance. To see this, the proof of Theorem 2.3 of Bosq
(1996) can easily by adapted. ! As for adapting the estimates given there one can use the fact
that b,(C) < K(X:=2). Calculation of the asymptotic variance-covariance matrix is lengthy but

straightforward.

g.e.d.

Proof of Theorem 2.3: For the proof we adapt the chaining idea (well-known from empirical
process theory) to the present situation, and use exponential inequalities for strong mixing pro-
cesses that we take from Bosq (1996).

We start with the decomposition of v, (C|z) given in (5.7) above. Since under the present assump-
tions Vnhi(f,(z) — f(z)) = Op(1) (e.g. Bosq 1996), the second summand of the main term in
(5.7) is of the order Op(c?). It remains to show, that \/Wsupceeo(cpn(CM) — ¢(C|z)) is of the
desired order. To see this first note that E,(C|z) — ¢, (C|z) is of the (uniform) order Op(h?).
Hence, the assumption Vnhd h? < A, (02, n) ensures that the bias-terms is of the required order.
Therefore, with 7, (C|z) = Vnh? (¢,(C|z) — E,(C|z) it remains to show that the assertion of

the theorem holds with v, replaced by 7,.

The exponential inequality stated in the following lemma is used frequently in the sequel. It is

heavily based on an exponential inequality which can be found in Bosq (1996).

Lemma 5.3 Under the present assumptions for each € > 0 and each integer r € [1,n/2] there

exist positive constants ¢, ¢y, co such that for C € C, and large enough n

2
P(7(Cla)] > ) < dexp [ -
c (02 +4/7a f)
n n
+exp [—CIF‘I_CQ (logr—l— (0Vlog W))] . (5.10)
The proof of this lemma is given below. The remainder of the proof of Theorem 2.3 follows the
lines of the proof of Theorem 2.3 of Alexander (1984) (and the corresponding Correction (1987)).

Therefore some details are omitted.

Remember that for > 0 and each C' € € there exist brackets C,,C* € € with C,, C C C C*

'In the proof of Theorem 2.3 of Bosq (1996) r®/* has to be replaced by r°/* in the formula preceding (2.40).
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and F(Cy \ C*|z) < n. Let B(n) denote a collection of brackets with (finite) minimal number of
sets, such that |B(n)| = Ni(n, C,, F(:|2)). By definition of H. we trivially have under R(y) that
log |B(n)| < H ().

Now, let 8¢ > &, > ... > dn and 19, 1, ..., 9y be positive real numbers defined below. For
dj let €., C7 denote the brackets for ¢" € C at the level 5]2«, which means (.. C C C C7 and
F(C*\ Cju|x) < 82, Let further ¢, B > 0 such that

N eB
g n; < —, (5.11)
— 8
7=0
then it is easy to see that:

P(sup |7,(C|z)| > B)
CeC,

B3] sup P17 (Cla)| > (1= )B)

IN

N-1
+ > IB(5?)|IB(5?+1)IP(CS£ |0 (Cl) = 70 (Clgrul)| > 1))
i=o o

~ - €
+ P(sup [ (Cy<|2) = 2u(Cl2)] > 2B + 1)
cee,

= (I)+ (II)+ (II1). (5.12)
Expressions (1) - (III) are now estimated separately. As for (I) we choose &y to satisfy

1 (1-£)*B?
H’V((Sg) = 5 k 1—-$)B
2¢\ 524 ;Lz_d ( rg)

with ro = /4% (1—%)B such that H.(d) = %ﬁ. Using the exponential inequality (5.10)

with r = rg leads to

(I) < 4 exp l—ﬂ] (5.13)

4co?

(1-22B  VabT o )
+ exp [ 40402 - (1- )28 + ey (logn+ (0Vlog hd(l——i)zB?) . (5.14)

Since rg has to lie between 1 and n/2 we obtain the following two conditions

B> (1—¢/4) o/t and (5.15)
B < fo*Vnh? (5.16)

Now, (5.13) becomes small if B/o becomes large. To get (5.14) small we need that for some
M > 0 large enough f—; — 7%202 < —M logn. This is equivalent to the condition

B* 4+ M B*c*logn < Vnh? o' (5.17)
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As for the estimation of (/1) define s = 4&% and with ép from above choose N and §;, j > 1,

as 0j41 = s Vsup{z < 7] : H(¢®) > 2 H,(82)}, and N = min{j : §; = s}. We only consider the

case

s < (So (518)

such that N > 1. This is the more difficult case. The case s > g follows more easily by arguments

analogous to the one given in the Correction of Alexander (1984). We choose for j =0,..., N
n; = V20 cd; (5]24-1)
With this choice it is easy to see that Zé\le n; < V20232 fjo \/Hy(2?) dz. Hence, in view of

condition (5.11) we require
do
B> M/ JH,(2?) de (5.19)

for M > My > 0. (5.10) is now applied to each summand of (/1) separately. To that end we choose

quantities r;,7 = 0,..., N — 1, analogously to rg. Observing that F'(C; . AC;1; «]z) < 2 5]2+1 we

SN S (5.20)
"= 57, Vhd |

To apply (5.10) with r = r; we need 1 < r; < n/2. That r; > 1 for large enough n can be seen

choose

easily. Since r; is increasing in j it remains to assure that 1 < ry < n/2. This leads to the

conditions
H,(s%)
5.21
> o) (5.21)
1
B<on ThT5H(s). (5.22)

Now, plugging the above quantities into (5.10) we obtain

N-1 2
(I < 4% exp [41{(5]11) il ]

7=0 4 65]2+1
vnhd 5.
—I—Zexp 4 H,(6%,) — _Vnh? 9 + e logn—l—(O\/long)

- ! H,(62,,) hen;

J=0 Y\Y541 J
N-1

< 4Y o[- Hy ()] (5.23)

7=0

= Vnht §; n
+ exp |4 H,(02,,) — c1———= + ¢ (logn + (0 V log 7)) (5.24)
J=0 [ o Hw(5]2+1) hds? I, (s?)

Using the fact that [1,(02,,) > 2 H,(67) the term in (5.23) can be shown to be (at least) of the

same order as (5.13). As for the term (5.24) note that the assumptions assure that log #(2) =
S ~y\Ss
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O(logn). In order to get (5.24) small we need that for all j=0,1,...,N —1

Vnht §;

(52

4 Hw(5]2+1) -G
j+1)

+ czlogn < —A;(n) (5.25)

for some real valued functions A; such that Eé\le exp(—A4;(n)) < oco. Since the left-hand side of

(5.25) is increasing in j it suffices to choose An(n) satisfying (5.25), which means that we need
1
44/ H(s?) (H(sz) + cslogn + AN(n)) < (nhd) ‘VB, (5.26)

satisfying in addition

N exp(—An(n)) < oo. (5.27)

It remains to consider (/7). Using Lemma 5.2 and arguments as in (5.6) we obtain

7 (Clr) < 0 (C7|2) + Vbt (Egn(C™la) — Ben(Clz)) (5.28)
< Vbt (9o(Ca) = Epn(C72)) + O (Viht h2) +Vaht f(a)n,.  (5.29)

Analogously, we have an estimate of p,(Cl|z) from below by replacing C* by C, in (5.28) and
(5.29). Hence, we obtain
(I11) < P(sup |5, (Cz) — 5 (C|2)] > gB + v — Vot f(2)dn — e Vnh? h?)
Celys
€
< P(sup [7(Ciele) = 7 (CRI)| > SB+ iy — exV/ah f(2)d)

cee, 8
< P(Osug 00 (Cr s|2) = 0 (Cyl2) [ > ) (5.30)
cCs

For the second inequality we used the fact that A% = O(8y) or equivalently
B? > M nh®*® (5.31)
for some M > 0. Hence, (I11) can be treated as (/1) above.

Now we consider the different cases of v and check the above conditions on B. Below we frequently
use M to denote a positive constant which has to be chosen appropriately (usually large enough),
and which usually is different at different places.

As for v = 0 we have fjo \/IMTQ) dz = O (JW) . In view of (5.13) we make the
Ansatz B? = ¢2D(0?) with D(0?) — oo as 0* — 0. Using (5.19) leads to the choice B =
M\/@. Note that here N can be chosen as N = O(loglogn), such that Ay (n) =logn is
a valid choice. With these choices, all the conditions given above are satisfied under the present

assumptions: Condition (5.15) is satisfied automatically for large enough n, and (5.16) holds

if = > 4M Ryrther, (5.17) holds for large enough n if loi”md — 00 as n — 0o. (5.22)

10g0_2 = nhd’ gcl—210gn
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nhio? log 2 P

follows automatically, and (5.21) holds if —egnz > M > 0. Inequality (5.31) follows from the
assumption that vnhit® = O(Ag(c?,n)). Finally (5.26) follows from
nhio?log U%
(log n)®

— 00 as n — o0,

which is the strongest condition.

As for vy > 0 a crucial condition again is (5. 26) This condition can be seen to holds if B >

(nhd) ey . For 0 < v < 1 we have féo \/ Hy(22) do = ( W) Using the definition of &g
and (5.19) we obtain B > M (o ) Slmllarly we obtain for v = 1 that B > M logn, and for

y—=1

v > 1that B > (nhd) 7, Hence, we choose

B (max ((gz)l%” (nn?) ™ >)) 5.52)

Note further that with this choice of B we may assume N = O(logn), such that again Ay(n) =
log n is a valid choice, satisfying (5.27). With these choices all the above conditions on B are
1—
satisfied under the present assumptions. To see this first assume that (02)77 ( hd) 37“) ,
1—
such that B = M (02)77 . In this case (5.15) hold automatically for large n, and (5.16) follows
1
from o2 > M (nhd) " Further, (5.17) holds if vnh4 (UQ)M > M logn. (5.21) reads as
1—ry __1 34~ d(1—v)
B > (nhd) T , which means here o2 > M (nhd) . (5.22) reads as B < n? G0 B )
which of course is satisfied here since ¢? < 1. Last but not least, the assumption s < §y means
1 __1
B < (nhd) 2R (0?)7#2 . Pluggin in our choice of B again leads to 02 > M (nhd) 7 Summing
1= 3 1
up, all these conditions are satisfied automatically if (%) 2 > ( hd) o . It remains to

consider the case
1—
(3) 7 < ()T (5.3

such that B = M (nhd)%. Here (5.15) holds automatically for large n, because o? < 1.
Conditions (5.16) and (5.17) lead to lower estimates for o which do not conflict with (5.33).
(5.21) and (5.22) are also seen easily to be satisfied. Finally inequality (5.31) follows for the same
reasons as given above in the case v = 0.

g.e.d.

Proof of Lemma 5.3: We use an exponential inequality for strong mixing processes given in
Bosq (1996), Theorem 1.3. This is applied to 2, (C|z) = Vnh® L 377 (b(C) — Eby(C)), where as
above b, (C') = I{Y; € C}K,(X; — ). Since |b;(C)| < Myh~%, for some constant M; > 0 this gives

fore >0
Pl > = P (JenClo) = Pen(Clo)] > —=)
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er 4 My nl/2 12 n
<texp(- ) +22 (1 ) ra((5]) 6s0

where here [2] denotes integer part of z, a(-) denotes the strong mixing coefficient defined in (2.1),

and r is an integer with 1 < r < n/2. Further,

20) = Lot 4 e
and o*(r)y =0 (s Var(bi(C)) + s SZ_: Cov (b1(C), bk+1(C))) ,
k=1

where s = n/2r. The crucial point now is to get a good estimate for Cov (b1(C), br+1(C)) and

with that for o%(r) for an appropriately chosen r.
Now, let p be from assumption (B1), and let ¢ € N be such that ]l)—l— % = 1. Let further p',¢' € N
also satlsfymg -+ , = 1. Then it follows:

Cov (b1(0)7 bk+1(0)) S /I{Yl € C}I(}L(Xl - $)I(}L(Xk+1 — $)dP

/ (1{r1 € 3 (3, - x))p/ dp)l/p/ : (/ (K7 (X1 = ) K (X — x))q/ dP)l/QI

o) (1) (=)™ (st ]

(
= (F(Cla)f(e) +0(nd)"" O (hitatilas) .o (ntsass)
(F(Clo) f(x) + o(h2))1/p'0 (h—duﬁ(l_%))
= (F(C|x))1/p'o (h—db)

IA
TN

IN

where b = 14+ -5 (1 - —) Since ¢ < 2 we have b < 1. Using this estimate and arguing as in Bosq
(1996), proof of Lemma 2.1, we obtain that

pz_: Cov (b (C), brs1(C)) = o(h=®(F(Cla))/* log n). (5.35)

Furthermore, it is well known that h?Var(by(C)) = F(C|z) f(z) [ K*+O(h?), such that by choos-

ing p’ sufficiently large we obtain
o%(r) = O(sh @ F(C|z)) = O(sh™%c?). (5.36)

This leads to the estimate

v*(r) =0 (s_lh o+ (5.37)

7o)

Plugging this estimate into (5.34) we obtain for some constant ¢ > 0

€ n\ 2
P(|7,(Clz)| > €) <dexp | — + 22 (1 +de /= ) ryt. (5.38)
(o245 ¢ hi
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Using r < n/2 we obtain for the last term the following estimate which completes the proof:

1/2
22 (1—|—4e_1,/}?—d) / ry® <exp [—%log%—l—logg—l—ngQ—l—%log <1+4e_1,/%)]
< exp [_Clg + ¢ (logq—l— (0V log #))] .

g.e.d.

Proof of Theorem 3.1: Let ¢,(a) = Vnh %(ﬁdah) — ,ue(oe|x)). It is easy to see
k
(using analogous arguments as in Polonik (1997), proof of Lemma 7.1) that on the set B, =

{dF(.|x)(ﬁ@(oe|x),M@(oe|x)) <ol u{lat —a| < o?}u{at € (0,1)) we have

1 _ 1
Vhd m(ue(% ) = pe(alz)) < ga(a) < Vnhd m(uemm — pe(ale))  (5.39)
where
of = a+ ((F, - F)(Me(alz)|z) + w,, (z)(0?). (5.40)

and w,, (.)(€) = supsc pee: dp(1e) (C,D)<e} |V, (Cl2) — v, (D]x)| denotes the modulus of continuity
of the conditional empirical process v, (Clz) = Vnh? (F,(Clz) — F(Cla)). ;From (5.39) and
(5.40) together with the fact that P(B,) — 0 as n — oo the assertion follows by applying a
one-term Taylor expansion.

g.e.d.

Proof of Theorem 3.3: First note that all the results proven above hold analogously if we
choose € = {(—o0,y] : y € R} and replace Leb by the function v defined through v((—o0, y]) = v.
A first application of Theorem 2.3 with 0 = 1 shows that supy,cgy Vnhd |E (y|2) — F(y|z)| =

Op(1) as n — oo (cf. Remark 2.4, (c1)). ;From this it follows that as n — oo
|Fulgn(al2)|2) = F(gu(al2)|2)| = Op ((nh?)72),
and since F, (¢, (a|z)|z) = F(g(alz)|z) + op(1/nh?) we obtain
|F(ga(al2)]2) — F(g(al2)]2)| = Op ((nh")~1/2).

Observing |F(g, (a|z)|z) — F(q(a|z)|z)| = dr((—o0, g, (|2)], (—o0, ¢(a]z)]), and applying Theo-
rem 3.1 a second time, but now with o2 = (nhd)_l/z7 gives the asserted stochastic rate by choosing
h = n~ 1. Note that here we also have to take into account the bias which for this choice of
h does not vanish (cf. Lemma 5.2). The resulting rate also holds almost surely. This follows
by applying Borel-Cantelli-Lemma, and becomes clear from the estimates derived in the proof of
Theorem 3.1.

g.e.d.
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