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Abstract

We study the asymptotic properties of the conditional empirical process based on

bFn�Cjx� �
nX
t��

�n�Xt � x�IfYt�Cg

indexed byC � C� where f�Xt� Yt�� t � �� � � � � ng are observations from a strong mixing stochas�

tic process� f�n�Xt � x�g denote some kernel weights� and C is a class of sets� Under the

assumption on the richness of the index class C in terms of metric entropy with bracketing� we

have established uniform convergence� and asymptotic normality for bFn��jx�� The key tech�

nical result gives rates of convergences for the sup�norm of the conditional empirical process

over a sequence of classes C with decreasing maximumL��norm� The results are then applied

to derive Bahadur�Kiefer type approximations for a generalized conditional quantile process

which is closely related to the minimumvolume sets� The potential applications in the areas of

estimation of level sets and testing for unimodality of conditional distributions are discussed�
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Watson regression estimator� nonlinear time series� strong mixing�
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� Introduction

An empirical process indexed by a class of sets or functions is an interesting mathematical model

with various statistical applications �see� for example� Shorack and Wellner ��	
�� Such a process

de�ned from independent and identically distributed �i�i�d�� observations has been extensively

studied in literature in past two decades� More recently� empirical processes based on depen�

dent data have been studied under various mixing conditions �e�g� Massart ��	� Andrews and

Pollard ����� Doukhan� Massart� and Rio ������ The extension of the above exploration to con�

ditional empirical processes is practically useful and certainly more technically challenging� To

our knowledge� the study so far has been con�ned to the cases with i�i�d� observations� which

includes� among others� Stute ���	
a�b�� Horvath ���		�� and Bhattacharya and Gangopadhyay

������� Conditional quantile processes� which will also play a role in the present paper� are closely

related to conditional empirical processes� for the i�i�d� case see� for example� Bhattacharya and

Gangopadhyay ������� Mehra et al� ������� Gangopadhyay and Sen ������� and Xiang ������

���
��

In this paper we study asymptotic properties of set�indexed conditional empirical processes

based on observations from stochastic processes which are strong mixing� The Bahadur�Kiefer

type approximations for a generalized conditional quantile process are derived� which has a direct

bearing on asymptotic properties of minimum volume sets� Although our study is directly moti�

vated by prediction of nonlinear and non�Gaussian time series �Polonik and Yao ���	�� we also

brie�y discuss potential applications of these results in various other statistical practices such as

level set estimation and testing for unimodality�

Let f�Xt� Yt�g be a strictly stationary process� with Xt � Rd and Yt � Rd� � Let F ��jx� be

the conditional distribution of Yt given Xt � x� Note that for any given measurable set C � R�

EfI�Y�C�jXt � xg � F �Cjx�� This regression relationship suggests the following Nadaraya�

Watson estimator for F ��jx� from the observations f�Xt� Yt�� t � �� � � � � ng�

bFn�Cjx� �
nX
t��

IfYt�CgK
�
Xt � x

h

�� nX
t��

K

�
Xt � x

h

�
� �����

where K��� � � is a kernel function on Rd� and h � � is a bandwidth� bFn��jx� is called empirical

conditional distribution� In the usual time series context� Yt is a scalar and Xt consists of its lagged

values� To predict Yt from Xt for non�Gaussian time series data� conventional interval predictors

such as the mean plus and minus a multiple of standard deviation are no longer pertinent� The

conditional minimum volume �i�e� Lebesgue measure� predictor could perform substantially better

than the conditional quantile interval� The estimation of the conditional distribution F �CjXt � x�

�



for C � C� where C is an appropriate class of measurable sets� plays a key role in deriving minimum

volume predictors �see Polonik and Yao ���	��

The goal of this paper is to study the asymptotic behaviour of the conditional empirical process

C � C � �n�Cjx� �
p
nhdf bFn�Cjx�� F �Cjx�g� �����

The main result Theorem ��� essentially deals with the asymptotic behaviour of the modulus of

continuity of �n��jx�� It turns out that this asymptotic behaviour depends on the richness �or

complexity� of the index class C� which is measured in terms of metric entropy with bracketing�

In fact if C is not too rich �see Theorem ��� below�� the conditional C�indexed empirical process

converges weakly� in the sense of Ho�man�J�rgensen �cf� van der Vaart and Wellner ���
�� to

a so�called F ��jx��bridge� This means that the empirical process behaves like the one based on

i�i�d� observations in term of �rst order asymptotics� as long as the class C is not too rich� This

phenomenon is not unexpected� since only the observations with Xt in a small neighbourhood of

x are e�ectively used in the estimation ������ Those observations are not necessarily close with

each other in the time space� Indeed� they could be regarded as asymptotically independent under

appropriate conditions such as strong mixing�

On the other hand� it remains at least to us as an open problem to identify the maximum rich�

ness of C �under the strong mixing condition� to retain the above i�i�d��like asymptotic behaviour�

The condition speci�ed in this paper restrains C far from being as rich as in the case of i�i�d�

observations in order to retain the same asymptotic results� Note that the standard conditional

empirical processes indexed by x � Rd usually behave asymptotically like those based on i�i�d�

observations� However� the corresponding class C � f��	� x�� x � Rdg is very �thin��

As mentioned above� a �generalized� conditional quantile process also plays a crucial role in

the present paper� To this end� we introduce the notion of minimum volume sets �MV�sets� �rst�

For � � ��� ��� the set MC��jx� � C satisfying the condition that

MC��jx� � argmaxfLeb�C� � C � C� F �Cjx� � �g �����

is called a conditional MV�set in C at level �� where Leb��� denotes Lebesgue measure� Anal�

ogously� cMC��jx� denotes an empirical conditional MV�set if F ��jx� in ����� is replaced by the

empirical distribution bFn��jx�� We denote their volumes as

�C��jx� � Leb�MC��jx�� and b�C��jx� � Leb�cMC��jx��� �����

respectively� The volume process

��
p
nhd �b�C��jx�� �C��jx�� �����

�



can be considered as a conditional version of a generalized quantile process as de�ned in Ein�

mahl and Mason ������� For this process a Bahadur�Kiefer�type approximation is given in x��

which� in the special case of d � � and the observations being independent� improves the result

of Bhattacharya and Gangopadhyay ������� Polonik ����� established similar results for an

unconditional volume process based on i�i�d� observations�

The rest of the paper is organized as follows� We present the asymptotic results of the process

f�n��jx�g in x�� x� contains the Bahadur�Kiefer approximations for the volume process ������ x�
provides a brief discussion on how the results in this paper can be applied to various statistical

applications� x� contains all the technical proofs�

� The set�indexed conditional empirical process

In this section� we establish asymptotic properties of the process �n��jx� de�ned in ������ which

include a Glivenko�Cantelli type result� the asymptotic normality of �nite dimensional distribu�

tions� and the asymptotic behaviour of the modulus of continuity� The two latter imply that

�n��jx� converges to a Gaussian process�

Let f��� be the density function of Xt� We always assume that x � Rd is �xed and f�x� �

�� Further� all the non�deterministic quantities are assumed to be measurable� and we write

dF ��jx��A�B� � F �A�Bjx�� We use c to denote some generic constant� which may be di�erent at

di�erent places� We introduce some regularity conditions �rst�

�A�� The marginal density f is bounded and continuous in a neighbourhood of x�

�A�� The kernel density function K is bounded and symmetric� and limu�� jjujjdK�u� � ��

�A�� f � C��d�b�� where C��d�b� denotes the class of bounded real�valued functions with bounded

second order partial derivatives�

�A�� F ��jx� has a Lebesgue�density g��jx� � C��d��b�� Moreover� for each C � C the function

F �Cj�� � C��d�b� such that supC�C
��� ��

�xi�xj
F �Cjx�

��� �	� 
 � � i� j � d�

�A�� jj R vvTK�v� dvjj �	�

�B�� The joint distribution of �Xt� Xt�q� has the density function fq� and supq�� jjfqjjp �	 for

some p � ���	��

�B�� The joint density function of �Xs� Xt� Xq� Xr� exists and is bounded from the above by a

constant independent of �s� t� q� r��

�



We call the stationary process f�Xt� Yt�g strong mixing if

��j� � sup
A�F�

�� �B�F�
j

jP �AB� � P �A�P �B�j � �� as j �	� �����

where F t
s denotes the 	�algebra generated by f�Xi� Yi�� s � i � tg� We use the term geometrically

strong mixing if ��j� � a j�� for some a � � and 
 � �� and exponentially strong mixing if

��k� � b �k for some b � � and � � � � �� Sometimes the condition of strong mixing can be

reduced to so�called ��strong mixing� which is de�ned as in ����� with F��� and F�
j replaced by

	�X�� Y�� and 	�Xj� Yj� respectively� We use the terms geometrically or exponentially ��strong

mixing in the similar manners�

Now we introduce the notion of metric entropy with bracketing which provides a measure of

richness �or complexity� of a class of sets C� This notion is closely related to covering numbers� We

adopt L��type covering numbers using the bracketing idea� The bracketing reduces to inclusion

when it is applied to classes of sets rather than classes of functions� For each � � �� the covering

number is de�ned as

NI���C� F ��jx�� � inffn � N � � C�� � � � � Cn � C such that


 C � C � � � i� j � n with Ci � C � Cj and F �Cj n Cijx� � �g� �����

The quantity logNI���C� F ��jx�� is called metric entropy with inclusion of C with respect to F ��jx��

A pair of sets Ci� Cj is called a bracket for C� Estimates for such covering numbers are known for

many classes� �See� e�g� Dudley ��	��� We will often assume below that either logNI���C� F ��jx��

or NI���C� F ��jx�� behave like powers of ��� � We say that condition �R�� holds if

logNI���C� F ��jx�� � H����� for all � � �� �R��

where

H���� �

����	 log�A ��r� if � � ��

A ��� if � � ��
�����

for some constants A� r � �� In fact condition �R�� holds for intervals� rectangles� balls� ellip�

soids� and for classes which are constructed from the above by performing set operations union�

intersection and complement �nitely many times� The classes of convex sets in Rd �d � �� ful�ll

condition �R�� with � � �d� ���� This and other classes of sets satisfying �R�� with � � � can

be found in Dudley ���	��

Now we are ready to formulate the results on the uniform consistency and the �pointwise�

asymptotic normality of �n�Cjx��

�



Theorem �	� �Uniform consistency�

Suppose that conditions �A��� �A�� and �B�� hold� and that f�Xt� Yt�g is geometrically ��strong

mixing with 
 � ��p����p���� Let C be a class of measurable sets for which NI���C� F ��jx�� �	
for any � � �� Suppose further that 
 C � C

jF �Cjy�f�y�� F �Cjx�f�x�j � � as y � x� �����

If nhd � 	 and h� � as n�	� then

sup
C�C

j bFn�Cjx�� F �Cjx�j P�� ��

Theorem �	� �Asymptotic normality�

Let �A�� � �A�� and �B�� hold� and suppose that �B�� holds with p � 	� Suppose further that the

process f�Xt� Yt�g is geometrically strong mixing with 
 � �� Let h � cn�
�

d�� �log logn���� Then

as n�	� for m � � and C�� � � � � Cm � C�

f�n�Cijx�� i � �� � � � � mg d�� N ������

where � � �	i�j�i�j�������m� and 	i�j � fF �Ci  Cj jx�� F �Cijx�F �Cj jx�g R K�f�x��

In order to formulate the next theorem which provides the information on the asymptotic

behaviour of the modulus of continuity �see remarks below�� we need to introduce the following

function

���	
�� n� �

������	
q
	� log �

��
if � � ��

max


�
	�
� ���

� �

nhd

� ����
�������

�
if � � ��

�����

Theorem �	� Suppose that �A�� � �A�� and �B�� hold� and the process f�Xt� Yt�g is exponentially
strong mixing� For each 	� � �� let C� � C be a class of measurable sets with supC�C� F �Cjx� �
	� � �� and suppose that C ful�lls �R�� with some � � �� Further we assume that hd � � and

nhd �	 as n� 	 such that

nhd�� �

���	�� n�

��
� ���
�

For � � � we assume in addition that
nhd�� log �

��

�logn�	 � 	 as n � 	� Then there exists a constant

M � � such that 
 � � ��

P



sup
C�C�

j�n�Cjx�j �M ���	�� n�

�
� �

for all su�ciently large n and all 	� � 	��� where 	
�
� � � is a constant�

�



Remark �	� �a� Note that �n tends to zero as n � 	 provided � � ��� In this case� Theo�

rem ��� entails the tightness of the conditional set�indexed empirical process� To see this� note that

trivially supC�D�C j�n�Cjx� � �n�Djx�j � � supB�CnC j�n�Bjx�j where C n C � fC nD�C�D � Cg�
Without the loss of generality� we may assume that � � C such that C � C n C� Now� it is easy

to see that NI���C� F ��jx�� � NI���C n C� F ��jx�� � �NI����C� F ��jx����� This implies that �R��

holds for C if and only if it holds for C n C� Hence� an application of Theorem ��� to the class

C n C together with Theorem ��� entails� by standard arguments� that the set�indexed process

converges in distribution to a so�called F ��jx��bridge� provided � � ��� An F ��jx��bridge is a

Gaussian process with almost surely continuous sample paths and covariance structure as given

in Theorem ��� �e�g� Pollard ��	��� Taking into account possible non�measurability the conver�

gence in distribution should be understood in the sense of Ho�man�J�rgensen �see van der Vaart

and Wellner ���
��

�b� It is well�known in the empirical process theory that an unconditional empirical process based

on i�i�d� observations is tight if �R�� holds with the sharp bound � � � �see Alexander ��	���

The same conclusion holds for a conditional empirical process as long as the process is formed

from a set of i�i�d� observations� However� for the empirical processes based on dependent data

under the strong mixing condition� we assume in this paper � � �� to achieve the tightness� It

was indicated on page ��	 of Andrews and Pollard ������ that the tightness of an �unconditional�

empirical process can be established by using the method of Massart ���	� under the condition

that � � ��� �Note that the parameter 
 in Andrews and Pollard ������ is equal to �� in our

notation�� Hence� we have enlarged the upper bound from �� to ��� However it remains as an

open problem if a further improvement is possible� and if further we can reach the upper bound

� for strong mixing processes�

�c� To demonstrate that our general results lead to well�known �optimal� rates of convergence

in special cases� we brie�y discuss the case � � �� With h � cn

��

n

� �
d��

� where cn � c � � as

n�	� the results below follow from Theorem ��� immediately�

�c�� Let 	� � �� we have that

n
�

d�� sup
C�C

j bFn�Cjx�� F �Cjx�j � OP ����

�c�� Let fCng be a sequence of classes of sets with Cn � C and supC�Cn F �Cjx� � 	�n � �� Let

	� � 	�n � � and for which the conditions of Theorem ��� hold� Then

�
n

	�n

� �
d��

sup
C�Cn

j bFn�Cjx�� F �Cjx�j � OP �
p

logn ��






� Bahadur�Kiefer�type approximations

In this section we study the behaviour of the volume process de�ned in ������ which can be

regarded as a generalized quantile process� Note that b�C��jx� � Leb�cMC��jx��� and

cMC��jx� � argmaxfLeb�C� � bFn�Cjx� � �g�

We assume throughout this section� that empirical MV�sets with �nite ��measure exist for every

� � ��� ��� This assumption is satis�ed for all standard choices of the class C� Replacing the

Lebesgue measure by a general function � � C � R� the process de�ned in ����� becomes a

conditional version of the generalized quantile function as de�ned in Einmahl and Mason �������

It reduces to the conditional quantile if we let C � f��	� x�� x � Rg and ����	� x�� � x� In

fact we have that the MV�set cMC��jx� � ��	� bF��
n ��jx�� on the one hand� and the �volume�

b�C��jx� � ����	� bF��
n ��jx��� � bF��

n ��jx� on the other hand� Hence� a conditional quantile may

be regarded as an MV�sets itself� and as well as its �volume��

A classical �unconditional� empirical MV�sets is the so�called shorth which is the MV�interval

at the level ��� The term  shorth! was �rst introduced by Andrews et al� ����� referring to the

mean of the data lying inside the MV�interval at the level ��� which is di�erent from current

practice� Rousseeuw ���	
� introduced the MV�ellipsoid in the context of robust estimation for

multivariate location and scatter�

A very important type of MV�sets are the so�called level sets de�ned in terms of probability

density functions� Suppose that F ��jx� has Lebesgue density g��jx�� Denote

"g��jx���� � fx � Rd� � g��jx�� �g� � � �� �����

the level sets of g��jx�� It is easy to see that if "g��jx���� � C� it is an MV�set at the level �� �

F �"g��jx����jx��

Theorem ��� below presents Bahadur�Kiefer type rates of approximation for the set�indexed

conditional empirical process� Note that cMC��jx� depends on the bandwidth h through bFn��jx��

which is not re�ected explicitly in the notation�

Theorem �	� �Generalized Bahadur�Kiefer approximation�

Suppose that the conditions of Theorem ��� hold� Assume that �C��jx� is di	erentiable with

Lipschitz�continuous derivative ��
C
��jx�� and the condition �R�� holds for C� Let further � � ��� ��

be �xed and suppose that MC��jx� is unique up to Leb�nullsets� that F �MC�
jx�jx� � 
 for all


 in a neighborhood of �� and that ��
C
��jx� � �� If for h and 	� satisfying the conditions of

Theorem ��� we have that as n�	�





dF ��jx��cMC��jx��MC��jx�� � OP �	���

then as n� 	�

j� bFn � F ��MC��jx�� #
�

��
C
��jx�

�b�C��jx�� �C��jx��j � OP



���	

�� n�

�nhd��	�

�
�

In order to evaluate explicit rates from this theorem� we need to know the rates of convergence

	� for the empirical MV�sets� To this end� we assume that the level sets of the conditional density

are �essentially� unique MV�sets� More precisely� it is assumed that for � � ��� �� there exists a

level �
 such that for any MC��� we have

dLeb�"g��jx���
��MC��jx�� � �� �����

This assumption is ful�lled for all � if "g��jx���� � C for all � � �� and g��jx� has no �at parts

�i�e� Lebfy � g�yjx� � �g � � 
 � � ��� In addition we assume that g��jx� is regular at the level

�
� in the sense that

Lebfy � jg�yjx�� �
j � �g � O���� �����

Under ����� and ����� rates of convergence for MV�sets are derived in Polonik and Yao ����	��

Using these rates we obtain the following corollary�

Corollary �	� Let conditions �A�� � �A��� �B�� and �B�� hold� and suppose that the process

f�Xt� Yt�g is exponentially strong mixing� Let � � ��� �� such that 
���� and 
���� hold� Then for

� � � and

h � c max

�
n
� �

d������ � n
� �

d��������

�
�

we have that as n�	

j� bFn � F ��"g��jx���
�jx� # �
�b�C��jx�� �C��jx��j �

����	 OP �n
� �

d��������� if � � ���

OP �n
� �

d�������� � if � � ���

Finally� we state a theorem giving Bahadur�Kiefer approximations for the more standard

conditional one�dimensional empirical process indexed by y � R� Let

q��� � q��jx� � F����jx�

denote the conditional quantile� and let

qn��jx� � bF��
n ��jx��

	



where F�� and bF��
n denote the generalized inverses of F ��jx� and bFn��jx�� respectively� Since we

now use the optimal bandwidth� the bias comes into play �see also Lemma ��� in the Appendix��

We de�ne

$��Cjx� �
�

f�x�
hrF �Cjx��

Z
vK�v�hv� �rf��x�id vi#

�

�

Z
vTr�F �Cjx�vK�v� d v �����

where r and r� denote gradient and Hessian operator respectively� To simplify notation we write

$��yjx� instead of $����	� y�jx��

Corollary �	� �Bahadur�Kiefer approximation for the usual conditional empirical process�

Let conditions �A�� � �A��� �B�� and �B�� hold with C � f��	� y�� y � Rg� and suppose that

the process f�Xt� Yt�g is exponentially strong mixing� Suppose further� that for a �xed � � ��� ��

the function g��jx� is continuous at q��jx� and that g�q��jx�jx� � �� Let h � cn��	d��� Then as

n�	� it holds almost surely that

j� bFn � F ��q��jx�jx� # $��q��jx�jx� # g�q��jx�jx��qn��jx�� q��jx��j � O

n�

�
d��
p

log n
�
�

Remark �	� �a� Although the class C in Corollary ��� satis�es �R�� with � � �� the rates in

Corollary ��� are faster than that derived from Corollary ��� with � � �� In fact� the quantiles

converge at the rate of �
p
nhd� whereas the estimators of level sets converge slowerly� although

both of them are MV�sets� Note that quantiles are MV�sets in the class of intervals of the form

��	� y�� y � R� which have one �xed end�point at �	� Hence� the estimation of a quantile

reduces to the estimation of its �length�� which can be ful�lled at the rate of �
p
nhd� However�

estimation of a general MV�set is much more involved� and hence the convergence is slower� �It

is well�known that the classical shorth can be estimated at the rate of n��		 only� whereas the

length of the shorth can be estimated at the rate of n��	���

�b� Corollary ��� improves a result from Bhattacharya and Gangopadhyay ������ which dealt

with an i�i�d� case using a uniform kernel with one�dimensional Xi� i�e� d � �� The convergence

rate obtained by Bhattacharya and Gangopadhyay ������ is O

n�

�

 logn

�
� which is slower than

ours by a factor
p

log n�

�c� The above approximation rate is of the form �nhd��		�
p

logn� Hence� up to a log�factor it

is in alignment with the rates for unconditional �global� quantile process� For example� the almost

sure rate for one�dimensional process �i�e� d � �� with i�i�d� observations is O�n�		��log log n�		��

�Kiefer ��
��

�d� The factor g�q���jx� in Theorem ��� corresponds to �
 in Theorem ���� Note that both

of them have the same geometric interpretation as the values of the �conditional� density at the

boundary of the corresponding MV�set which are "g��jx���
� and ��	� q��jx��� respectively�

�



� Discussion

Apart from its direct application in prediction of nonlinear and non�Gaussian time series �Polonik

and Yao ���	� and references therein�� a conditional empirical MV�set is also interesting �i� as

an estimator for a level set of a conditional density� and �ii� to be used in tests for unimodality

of conditional distributions� In this section� we discuss how the above theoretical results can be

applied to these two applications�

First� we brie�y illustrate how to derive the L��rate of convergence for a conditional empirical

MV�set by applying Theorem ��� iteratively� It can be shown that the L��distance between the

empirical and the true MV�set can be estimated from above by a sum of several terms including

the di�erence of the empirical process and the generalized quantile process� �See Polonik and

Yao ���	 for details�� Hence� Bahadur�Kiefer rates derived in Theorem ��� are useful� Note�

however� an explicit rate 	� is needed in applying Theorem ���� and further� it is not necessary

in Theorem ��� to let 	� converge to �� Now we start with 	� � �� Then Theorem ��� yields

the �rst Bahadur�Kiefer approximation rate which in turn can be used to derive the �rst rate 	�

for cMC��jx�� Further� this rate for cMC��jx� can be plugged into Theorem ��� to yield a faster

Bahadur�Kiefer type approximation� This faster Bahadur�Kiefer rate leads to a faster rate of

convergence for cMC��jx� and so on� The iteration will be continued until the rate of convergence

is saturated�

The testing for modality of conditional distribution is an interesting and challenge problem in

statistics� It has been observed that the conditional distribution of �nonlinear� time series given

its lagged values could be multimodal� Further� the number of modes may vary over di�erent

places in the state space� Polonik and Yao ����	� proposed a heuristic device to detect the

possible multimodality based on coverage probabilities of not necessarily connected regions� A

more rigorous statistical test can be constructed as follows based on conditional MV�sets� We

only consider a special case when Y is univariate �i�e� d� � ���

To predict Y from X � the best predictive region among a candidate class C is the MV�set of C

in the sense that the MV�set has the minimum Lebesgue measure� Obviously this best predictor

depends on the choice of the class C� In view of simple prediction� there is strong temptation to

let C be the class of all intervals I�� However� such a C is only pertinent when the conditional

density g��jx� is unimodal� Indeed� if g��jx� is� for example� bimodal� we should let C � I� which

is the class of unions of at most two intervals� In this case� the MV�set of I� may have much larger

Lebesgue measure than that of I�� Hence� the comparison of the volumes �Lebesgue measures�

for the MV�sets in di�erent set classes gives us the information on the modality of the underlying

��



conditional distribution� This idea has been explored by Polonik ����� in testing the modality

for unconditional distribution�

To test the null hypothesis that g��jx� is unimodal� we de�ne the statistic

Tn�A�x� � sup

�A

�%�I���jx�� %�I���jx�� �����

where A � ��� ���Obviously� we may replace I� and I� in the above expression by appropriate C and

D �with C � D� respectively for testing di�erent hypotheses� Now� it follows from Theorem ���

and its proof that under the null hypothesis

%�I���jx� � �I���jx� # ��I���jx�

� %Fn � F ��"g��jx���
�jx� # �nhd���	���n�I� �	�n�

�
# Rn�

where ��n�I� denotes the modulus of continuity of �n�I� which is the conditional empirical process

indexed by I�� and 	�n denotes the L��rate of convergence ofcMI���jx� to "g��jx���
�� The remainder

term Rn is of smaller order� The analogous expansion also holds for %�I���jx�� Since under the null

hypothesis �I���jx� � �I���jx�� the statistic Tn�f
g�x� converges to � under the null hypothesis

and the rate of convergence is �nhd���	���n�I� �	�n�� The rates given in Corollary ��� for � � �

are explicit rates for this quantity for some particular h� Since the statistic Tn�A is de�ned as a

supremum� we need to show that the results in Theorem ��� and Corollary ��� hold uniformly for

� � A� which can be validated at least for A � ��� �� ���� � �� under appropriate conditions on

the smoothness of g��jx� �see Polonik ��� for the global i�i�d� case��

The idea of excess mass provides an alternative approach to test the unimodality� The excess

mass approach was introduced independently by M&uller and Sawitzki ���	� and Hartigan ���	��

�For further work see Nolan ����� and Polonik ����a�b�� Adapted to the conditional empirical

processes� the basic statistic is of the form En�C��jx� � supC�C� bFn�Cjx���Leb�C��� which might

be called a conditional empirical excess mass functional� As a function of � it contains information

about mass concentration of the underlying distribution� Similar to the above� we compare the

functionals under di�erent classes C� Namely� we de�ne the test statistic

Tn�x� � sup
��

�En�I���jx��En�I���jx���

which is a conditional version of the test statistic proposed by M&uller and Sawitzki ���	� ������

The rates of convergence of Tn�x� under the hypothesis of unimodality can be derived from

Theorem ���� It can be shown that
p
nhTn�x� can be estimated from above by sup����n�"n�I����jx��

�n�"g��jx����jx��� Here "n�I����jx� � I� denotes the conditional empirical ��cluster which is the

maximizer of the excess mass statistic En�I���jx� de�ned above� See Polonik �����a� for uncondi�

tional cases with i�i�d� observations� If L��rates of convergence 	�n for the sets "n�I���� to "g��jx����

��



can be derived� then we have
p
nh Tn�x� � OP ���n�I� �	�n��� and rates of convergence of the quan�

tity on the right�hand side of the last inequality immediately follow from Theorem ����The rates

	�n can be derived by using ideas from Polonik ������ and the results of the present paper�

Finally� we point out that the above test can be generalized to tests for other null hypotheses

if we replace I� and I� by C and D �with C � D� in the de�nition of the test statistic� This

generalization can be treated analogously� provided information about the metric entropy with

bracketing of D �and hence also about C� is known� This shows the actual strength of Theorem ����

� Appendix� Proofs

Throughout the proofs we use the notation�

�n�Cjx� �
�

nhd

nX
t��

IfYt � CgK
�
Xt � x

h

�
� �����

and de�ne

fn�x� �
�

nhd

nX
t��

K�
Xt � x

h
�� �����

The corresponding theoretical functions are ��Cjx� � F �Cjx�f�x� and f�x� itself� We write

Kh�y� � �
hd
K
� y
h

�
� Moreover� unless stated otherwise x is assumed to �xed such that f�x� � ��

Let us �rst introduce two technical lemmas without proofs�

Lemma �	� Suppose that f is continuous at x� Suppose further that f is bounded� and that �����

holds� Then we have 
 C � C that as n�	

jE��n�Cjx��� ��Cjx�j � oP ���� and jE� bFn�Cjx��� F �Cjx�j � oP ����

If ����� holds uniformly over C � C so are the assertions�

In the following lemma we give the exact asymptotic behaviour of the bias terms� Its proof

consists of tedious� but straightforward calculations using Taylor expansions� Details are omitted�

Lemma �	� Suppose that �A��� �A�� hold� Let $��Cjx� � hrF �Cjx��
R
vK�v�hv�rf�x�id vi#

�
�f�x�

R
vTr�F �Cjx�vK�v� d v # �

�F �Cjx�
R
vTr�f�x�vK�v� d v and let $� as de�ned in ������

Then we have for each x as n�	 that uniformly in C � C

�i� h���E�n�Cjx�� ��Cjx�� � $��Cjx�

�ii� h���E bFn�Cjx�� F �Cjx�� � $��Cjx��

��



Proof of Theorem �	�
 We use the following decomposition�

bFn�Cjx�� F �Cjx� �
�

f�x�
��n�Cjx�� ��Cjx���

bFn�Cjx�

f�x�
�fn�x�� f�x��� �����

'From this it is easy to see that we only need to show that as n�	

supC�C j�n�Cjx�� ��Cjx�j � oP ��� and �����

jfn�x�� f�x�j � oP ���� �����

����� is well known to hold under the present conditions �cf� Bosq ���
�� That for every �xed

C � C we have j�n�Cjx�� ��Cjx�j � oP ��� can be shown by similar arguments� and is omitted

here� We just show� how to conclude uniform consistency from this by using �nite metric entropy

with inclusion� Fix � � � � For C � C let C�� C� be a bracket for C� i�e� C� � C � C� and

F �C�nC�jx� � �� There exist �nitely many such sets� Since for A � B we have �n�Ajx� � �n�Bjx�

and also ��Ajx� � ��Bjx� it follows

supC�C��n�Cjx�� ��Cjx�� � sup
C�C

��n�C�jx��� ��C�jx��

� sup
C�C

��n�C�jx�� ��C�jx�� # sup
C�C

���C�jx�� ��C�jx��

� sup
C�

��n�C�jx�� ��C�jx�� # sup
C�C

F �C� n C�jx�f�x�

� sup
C�

��n�C�jx�� ��C�jx�� # f�x� �� ���
�

An analogous lower bound holds with C� replaced by C�� Since the �rst term in the last line

is a supremum over �nitely many sets �for �xed � � �� it follows from pointwise consistency of

�n that this term is oP ���� and hence we �nally obtain ������

q�e�d�

Proof of Theorem �	�
 The proof of this theorem nowadays has become more or less standard�

We just outline the main steps and for details we refer to Bosq ����
�� Using the fact that under

the given conditions fn�x� is consistent we have

�n�Cjx� �
p
nhd

�
�

f�x�
��n�Cjx�� ��Cjx��� F �Cjx�

f�x�
�fn�x�� f�x��

�
�� # oP ����� ����

Using the notation (bt�C� � IfYt � CgK�Xt�x
h � we obtain

�n�Cjx� �
�p
nhd

nX
t��

Wtn�Cjx� ���	�

#
p
nhd

�

f�x�


E�n�C�� ��C�

�
�
p
nhd

F �Cjx�

f�x�
�EKh�Xt � x�� f�x�� � �����

��



where Wtn�Cjx� � �
f�x��

(bt�C� � E(bt�C�� � F �Cjx�
f�x� �K�Xt � x��EK�Xt� x��� It is well known

that under the assumptions of the theorem the bias of fn converges to zero at a rate h�� The

same holds for the bias of �n�C� �Lemma ����� Hence� the assumptions on h assure that the

terms in ����� are asymptotically negligible� It remains to show that the right�hand side in ���	�

is asymptotically normal with the given variance� To see this� the proof of Theorem ��� of Bosq

����
� can easily by adapted� � As for adapting the estimates given there one can use the fact

that (bt�C� � K�Xt�x
h �� Calculation of the asymptotic variance�covariance matrix is lengthy but

straightforward�

q�e�d�

Proof of Theorem �	�
 For the proof we adapt the chaining idea �well�known from empirical

process theory� to the present situation� and use exponential inequalities for strong mixing pro�

cesses that we take from Bosq ����
��

We start with the decomposition of �n�Cjx� given in ���� above� Since under the present assump�

tions
p
nhd�fn�x�� f�x�� � OP ��� �e�g� Bosq ���
�� the second summand of the main term in

���� is of the order OP �	��� It remains to show� that
p
nhd supC�C���n�Cjx�� ��Cjx�� is of the

desired order� To see this �rst note that E�n�Cjx�� �n�Cjx� is of the �uniform� order OP �h���

Hence� the assumption
p
nhd h� � ���	�� n� ensures that the bias�terms is of the required order�

Therefore� with (�n�Cjx� �
p
nhd ��n�Cjx�� E�n�Cjx� it remains to show that the assertion of

the theorem holds with �n replaced by (�n�

The exponential inequality stated in the following lemma is used frequently in the sequel� It is

heavily based on an exponential inequality which can be found in Bosq ����
��

Lemma �	� Under the present assumptions for each � � � and each integer r � ��� n�� there

exist positive constants c� c�� c� such that for C � C� and large enough n

P �j(�n�Cjx�j � �� � � exp

��� ��

c

	� #

q
n
hd

�
r

�
�A

# exp

�
�c�n

r
# c�

�
log r # �� � log

n

hd��
�

��
� ������

The proof of this lemma is given below� The remainder of the proof of Theorem ��� follows the

lines of the proof of Theorem ��� of Alexander ���	�� �and the corresponding Correction ���	���

Therefore some details are omitted�

Remember that for � � � and each C � C there exist brackets C�� C� � C with C� � C � C�

�In the proof of Theorem �� of Bosq ��

�� r
��� has to be replaced by r


�� in the formula preceding �����

��



and F �C� n C�jx� � �� Let B��� denote a collection of brackets with ��nite� minimal number of

sets� such that jB���j � NI���C�� F ��jx��� By de�nition of H� we trivially have under R��� that

log jB���j � H�����

Now� let �� � �� � � � � � �N and ��� ��� � � � � �N be positive real numbers de�ned below� For

�j let Cj��� C�
j denote the brackets for C � C at the level ��j � which means Cj�� � C � C�

j and

F �C�
j n Cj��jx� � ��j � Let further �� B � � such that

NX
j��

�j � �B

	
� ������

then it is easy to see that�

P � sup
C�C�

j(�n�Cjx�j � B�

� jB�����j sup
C�C�

P �j(�n�Cjx�j � ��� �

�
�B�

#
N��X
j��

jB���j �jjB���j���jP � sup
C�C�

j(�n�Cj��jx�� (�n�Cj����jx�j � �j�

# P � sup
C�C�

j(�n�CN��jx�� (�n�Cjx�j � �

	
B # �N�

�� �I� # �II� # �III�� ������

Expressions �I� � �III� are now estimated separately� As for �I� we choose �� to satisfy

H������ �
�

� c

�B� ��� �
���B�

	� #
q

n
hd

��� �
�
�B

r�

�CA
with r� � �

��

q
n
hd

��� �
��B such that H����� � ����	���B�

� c �� � Using the exponential inequality ������

with r � r� leads to

�I� � � exp

�
���� �

���B�

� c 	�

�
������

# exp

�
��� �

���B�

� c 	�
� c�

p
nhd 	�

��� �
���B�

# c�



log n # �� � log

n

hd��� �
���B�

�

��
� ������

Since r� has to lie between � and n� we obtain the following two conditions

B � ��� ����� 	�
q

hd

n and ������

B � �
�	

�
p
nhd ����
�

Now� ������ becomes small if B	 becomes large� To get ������ small we need that for some

M � � large enough B�

��
�

p
nhd ��

B� � �M logn� This is equivalent to the condition

B� # M B�	� log n �
p
nhd 	�� �����

��



As for the estimation of �II� de�ne s �
q

�B

�
p
nhd

and with �� from above choose N and �j � j � ��

as �j�� � s � supfx � �j
� � H��x�� � � H����j �g� and N � minfj � �j � sg� We only consider the

case

s � �� ����	�

such that N � �� This is the more di)cult case� The case s � �� follows more easily by arguments

analogous to the one given in the Correction of Alexander ���	��� We choose for j � �� � � � � N

�j �
p

�� c �j
q
H����j��� �

With this choice it is easy to see that
PN

j�� �j �
p

�� c �		�
R ��
s

q
H��x�� dx� Hence� in view of

condition ������ we require

B �M

Z ��

s

q
H��x�� dx ������

for M �M� � �� ������ is now applied to each summand of �II� separately� To that end we choose

quantities rj � j � �� � � � � N � �� analogously to r�� Observing that F �Cj���Cj����jx� � � ��j�� we

choose

rj �
�

� ��j��

r
n

hd
�j� ������

To apply ������ with r � rj we need � � rj � n�� That rj � � for large enough n can be seen

easily� Since rj is increasing in j it remains to assure that � � rN � n�� This leads to the

conditions

B � H��s��p
nhd

������

B � �

�
n

�
�h�

d
�H�s��� ������

Now� plugging the above quantities into ������ we obtain

�II� � �
N��X
j��

exp

�
�H����j���� ��j

� c ��j��

�

#
N��X
j��

exp

���H����j���� c�

p
nhd �jq
H����j���

# c�



logn # �� � log

n

hd��j
�

���
� �

N��X
j��

exp
h
�H����j���

i
������

#
N��X
j��

exp

���H����j���� c�

p
nhd �jq
H����j���

# c�



logn # �� � log

n

hds�H��s��
�

����������

Using the fact that H����j��� � � H����j � the term in ������ can be shown to be �at least� of the

same order as ������� As for the term ������ note that the assumptions assure that log n
hds�H��s��

�

�




O�logn�� In order to get ������ small we need that for all j � �� �� � � � � N � �

� H����j���� c�

p
nhd �jq
H����j���

# c	 logn � �Aj�n� ������

for some real valued functions Aj such that
PN

j�� exp��Aj�n�� � 	� Since the left�hand side of

������ is increasing in j it su)ces to choose AN �n� satisfying ������� which means that we need

�
q
H�s��


H�s�� # c	 logn # AN �n�

�
� c�


nhd

��
�
p
B � ����
�

satisfying in addition

N exp��AN�n�� �	� �����

It remains to consider �III�� Using Lemma ��� and arguments as in ���
� we obtain

(�n�Cjx� � (�n�C�jx� #
p
nhd �E�n�C�jx�� E�n�C�jx�� ����	�

�
p
nhd ��n�C�jx��E�n�C�jx�� # O

p
nhd h�

�
#
p
nhd f�x��n� ������

Analogously� we have an estimate of (�n�Cjx� from below by replacing C� by C� in ����	� and

������� Hence� we obtain

�III� � P � sup
C�C�

j(�n�CN��jx�� (�n�C�
N jx�j � �

	
B # �N �

p
nhd f�x��N � c	

p
nhd h��

� P � sup
C�C�

j(�n�CN��jx�� (�n�C�
N jx�j � �

	
B # �N � c�

p
nhd f�x��N�

� P � sup
C�C�

j(�n�CN��jx�� (�n�C�
N jx�j � �N� ������

For the second inequality we used the fact that h� � O��N � or equivalently

B� �M nhd�
 ������

for some M � �� Hence� �III� can be treated as �II� above�

Now we consider the di�erent cases of � and check the above conditions on B� Below we frequently

use M to denote a positive constant which has to be chosen appropriately �usually large enough��

and which usually is di�erent at di�erent places�

As for � � � we have
R ��
s

q
H��x�� dx � O

�q
��� log �

���

�
� In view of ������ we make the

Ansatz B� � 	�D�	�� with D�	�� � 	 as 	� � �� Using ������ leads to the choice B �

M
q
	� log �

��
� Note that here N can be chosen as N � O�log log n�� such that AN �n� � log n is

a valid choice� With these choices� all the conditions given above are satis�ed under the present

assumptions� Condition ������ is satis�ed automatically for large enough n� and ����
� holds

if ��

log �
��

� �M
nhd

� Further� ����� holds for large enough n if
p
nhd

log �
��

logn
� 	 as n � 	� ������

�



follows automatically� and ������ holds if
nhd�� log �

��

�logn�� � M � �� Inequality ������ follows from the

assumption that
p
nhd�� � O����	

�� n��� Finally ����
� follows from

nhd	� log �
��

�logn��
�	 as n�	�

which is the strongest condition�

As for � � � a crucial condition again is ����
�� This condition can be seen to holds if B �
M


nhd

� ����
������� � For � � � � � we have

R ��
s

q
H��x�� dx � O


�����

�
� Using the de�nition of ��

and ������ we obtain B � M
�
	�
� ���

� � Similarly we obtain for � � � that B � M log n� and for

� � � that B �

nhd

� ���
��

� Hence� we choose

B � M



max



	�
����

�
�

nhd

� ����
�������

��
� ������

Note further that with this choice of B we may assume N � O�logn�� such that again AN �n� �

log n is a valid choice� satisfying ������ With these choices all the above conditions on B are

satis�ed under the present assumptions� To see this �rst assume that
�
	�
� ���

� �

nhd

� ����
�������

�

such that B � M
�
	�
� ���

� � In this case ������ hold automatically for large n� and ����
� follows

from 	� � M

nhd

�� �
���

� Further� ����� holds if
p
nhd

�
	�
�� � � M logn� ������ reads as

B �

nhd

�� ���
������ � which means here 	� � M


nhd

�� �
��� � ������ reads as B � n

���
������ h

� d�����
������

which of course is satis�ed here since 	� � �� Last but not least� the assumption s � �� means

B �

nhd

� �
������ �

	�
� �
��� � Pluggin in our choice of B again leads to 	� �M


nhd

�� �
���

� Summing

up� all these conditions are satis�ed automatically if
�
	�
� ���

� �

nhd

� ����
������� � It remains to

consider the case 
	�
� ���

�
�

nhd

� ����
�������

� ������

such that B � M

nhd

� ����
������� � Here ������ holds automatically for large n� because 	� � ��

Conditions ����
� and ����� lead to lower estimates for 	� which do not con�ict with �������

������ and ������ are also seen easily to be satis�ed� Finally inequality ������ follows for the same

reasons as given above in the case � � ��

q�e�d�

Proof of Lemma �	�
 We use an exponential inequality for strong mixing processes given in

Bosq ����
�� Theorem ���� This is applied to (�n�Cjx� �
p
nhd �

n

Pn
t���bt�C��Ebt�C��� where as

above bt�C� � IfYt � CgKh�Xt�x�� Since jbt�C�j �M�h
�d� for some constant M� � � this gives

for � � �

P �j(�n�Cjx�j � �� � P

�
j�n�Cjx�� E�n�Cjx�j � �p

nhd

�

�	



� � exp

� ��r

	nhdv��r�

�
# ��



� #

� M� n
�	�

hd	��

��	�

r �

��
n

�r

��
������

where here �x� denotes integer part of x� ���� denotes the strong mixing coe)cient de�ned in ������

and r is an integer with � � r � n�� Further�

v��r� �
	r�

n�
	��r� #

c�
�n�	�h	d	�

�

and 	��r� � O



s Var�b��C�� # s

s��X
k��

Cov �b��C�� bk���C��

�
�

where s � n�r� The crucial point now is to get a good estimate for Cov �b��C�� bk���C�� and

with that for 	��r� for an appropriately chosen r�

Now� let p be from assumption �B��� and let q � N be such that �
p # �

q � �� Let further p�� q� �N

also satisfying �
p� # �

q� � �� Then it follows�

Cov �b��C�� bk���C�� �
Z
IfY� � CgKh�X� � x�Kh�Xk�� � x�dP

�
�Z 

�fY� � CgK�	p�

h �X� � x�
�p�

dP

��	p�

�
�Z 

K
�	q�

h �X� � x�Kh�Xk�� � x�
�q�

dP

��	q�

�

F �Cjx�f�x� # O�h��

��	p� � �Z fpk

��	q�p

�
�Z

Kq
h�u� x�du

��	q�q �Z
Kq�q
h �u� x�du

��	q�q
�


F �Cjx�f�x� # O�h��

��	p�
O

h�d	q

��d	q�q
�
�O


h�d�d	q

�q
�

�

F �Cjx�f�x� # O�h��

��	p�
O

�
h
�d��� �

q�
��� �

q
�
�

� �F �Cjx���	p
�

O

h�db

�
where b � � # �

q� ��� �
q �� Since q � � we have b � �� Using this estimate and arguing as in Bosq

����
�� proof of Lemma ���� we obtain that

p��X
k��

Cov �b��C�� bk���C�� � o�h�db�F �Cjx���	p
�
logn�� ������

Furthermore� it is well known that hdVar�b��C�� � F �Cjx�f�x�
R
K�#O�h��� such that by choos�

ing p� su)ciently large we obtain

	��r� � O�sh�dF �Cjx�� � O�sh�d	�n�� ����
�

This leads to the estimate

v��r� � O

�
s��h�d	�n #

�p
nh	d

�
� �����

Plugging this estimate into ������ we obtain for some constant c � �

P �j(�n�Cjx�j � �� � � exp

��� ��

c

	�n #

q
n
hd

�
r

�
�A# ��

�
� # ����

r
n

hd

��	�

r �s� ����	�

��



Using r � n� we obtain for the last term the following estimate which completes the proof�

��

� # ����

q
n
hd

��	�
r �s � exp

�
� n

� r
log

�

�
# log

n

�
# log �� #

�

�
log

�
� # ����

r
n

hd

��
� exp

�
�c�n

r
# c�

�
log q # �� � log

n

hd��
�

��
�

q�e�d�

Proof of Theorem �	�
 Let qn��� �
p
nhd f�x�

��k�
jx�
b�C��jx� � �C��jx�

�
� It is easy to see

�using analogous arguments as in Polonik ������ proof of Lemma ��� that on the set Bn �

fdF ��jx��cMC��jx��MC��jx�� � 	�g � fj�	n � �j � 	�g � f�	n � ��� ��g we have

p
nhd

�

��k��jx�


�C���n jx�� �C��jx�

�
� qn��� �

p
nhd

�

��k��jx�


�C���n jx�� �C��jx�

�
������

where

�	n � �� �� bFn � F ��MC��jx�jx� # ��n��jx��	
��� ������

and ��n��jx���� � supfC�D�C� dF ��jx��C�D���g j�n�Cjx� � �n�Djx�j denotes the modulus of continuity

of the conditional empirical process �n�Cjx� �
p
nhd � bFn�Cjx� � F �Cjx��� 'From ������ and

������ together with the fact that P �Bn� � � as n � 	 the assertion follows by applying a

one�term Taylor expansion�

q�e�d�

Proof of Theorem �	�
 First note that all the results proven above hold analogously if we

choose C � f��	� y� � y � Rg and replace Leb by the function � de�ned through ����	� y�� � y�

A �rst application of Theorem ��� with 	� � � shows that supfy�Rg
p
nhd j bFn�yjx��F �yjx�j �

OP ��� as n�	 �cf� Remark ���� �c���� 'From this it follows that as n�	

j bFn�qn��jx�jx�� F �qn��jx�jx�j � OP


�nhd���	�

�
�

and since bFn�qn��jx�jx� � F �q��jx�jx� # oP ��nhd� we obtain

jF �qn��jx�jx�� F �q��jx�jx�j � OP


�nhd���	�

�
�

Observing jF �qn��jx�jx�� F �q��jx�jx�j � dF ���	� qn��jx��� ��	� q��jx���� and applying Theo�

rem ��� a second time� but now with 	� � �nhd���	�� gives the asserted stochastic rate by choosing

h � n�
�

d�� � Note that here we also have to take into account the bias which for this choice of

h does not vanish �cf� Lemma ����� The resulting rate also holds almost surely� This follows

by applying Borel�Cantelli�Lemma� and becomes clear from the estimates derived in the proof of

Theorem ����

q�e�d�

��



References

Alexander K�S� ���	��� Probability inequalities for empirical processes and a law of the iterated
logarithm� Ann� Probab� �� �������
� Correction Ann� Probab� �� ��	�����

Andrews� D�F�� Bickel� P�J�� Hampel� F�R�� Huber� P�J�� Rodgers� W�H�� and Tukey� J�W� ������
Robust estimation of location� survey and advances� Princeton Univ� Press� Princeton� N�J�

Andrews W�K� and Pollard� D� ������� An introduction to functional central limit theorems for
dependent stochastic processes� Inst� Stat� Review �� �������

Bhattacharya� P�K� and Gangopadhyay� A�K� ������� Kernel and nearest neighbor estimation of
a conditional quantile� Ann� Statist� �� ����������

Bosq� D� ����
�� Nonparametric statistics for stochastic processes� Lecture Notes in Statistics
No� ���� Springer� New York�

Doukhan� P�� Massart� P� and Rio� E� ������� Invariance principles for absolutely regular empir�
ical processes� Ann� Inst� Henri Poincar�e �� ������

Dudley� R�M� ������ Metric entropy of classes of sets with di�erentiable boundaries� J� Approx�
Theorie � �����
�

Dudley� R�M� ���	��� A course in empirical processes� Ecole dEte de Probabilites de Saint Flour
XII������ Lecture Notes in Math� ��� ������ Springer� New York�

Einmahl� J�H�J� and Mason� D�M� ������� Generalized quantile processes� Ann� Statist� ��
��
����	�

Gangopadhyay A�K� and Sen� P�K� ������� Contiguity in Bahadur type representation of a condi�
tional quantile and application in conditional quantile process� In Statistics and Probability�
A Raghu Raj Bahadur Festschrift� J�K� Gosh� S�K� Mitra� K�R� Parathasarathy and B�L�S�
Prakasa Rao 
eds�� ��� � ���� Wiley Eastern Limited� Publishers

Hartigan� J�A� ���	�� Estimation of a convex density contour in two dimensions� J� Amer�
Statist� Assoc� �� �
����

Horvath� L� ���		�� Asymptotics of conditional empirical processes� J� Multivariate Analysis ��
�	� � ��


Hyndman� R�J� ������� Forecast regions for non�linear and non�normal time series models� Int�
J� Forecasting� ��� ��������

Hyndman� R�J� ����
�� Computing and graphing highest density regions� Ameri� Statist� ��
�
���
��

Kiefer� J� ���
�� On Bahadur!s representation of sample quantiles� Ann� Math� Statist� ��

����������

Lientz� B�P� ������ Results on nonparametric modal intervals� SIAM J� Appl� Math� ��
��
��



Massart� P� ���	�� Invariance principles for empirical processes� the weakly dependent case�
PhD�Thesis� Paris�Sud

��



Mehra� K�L�� Sudhakara Rao� M�� and Upadrasta� S�P� ������� A smooth conditional quantile
estimator and related applications of conditional empirical processes� J� Multivariate Anal�
�� ������

M&uller� D�W� and Sawitzki� G� ���	�� Using excess mass estimates to investigate the modality
of a distribution� Preprint No� ��	� SFB ���� Universit&at Heidelberg

M&uller� D�W� and Sawitzki� G� ������� Excess mass estimates and tests of multimodality� J�
Amer� Statist� Assoc� �� �	��


Nolan� D� ������� The excess mass ellipsoid� J� Multivariate Anal� �� ��	���

Polonik� W� �����a�� Measuring mass concentration and estimating density contour clusters �
an excess mass approach� Ann� Statist� �� 	���		�

Polonik� W� ������� Density estimation under qualitative assumptions in higher dimensions� J�
Multivariate Anal� �� 
�� 	�

Polonik� W� ������ Minimum volume sets and generalized quantile processes� Stoch� Processes
and Appl� �� ����

Polonik� W� and Yao� Q� ����	�� Conditional minimum volume predictive regions for stochastic
processes� �Submitted��

Shorack G�R� and Wellner� J�A� ���	
�� Empirical processes with applications to statistics� Wiley�
New York�

Stute� W� ���	
a�� Conditional empirical processes� Ann� Statist� �� 
�	�
��

Stute� W� ���	
b�� On almost sure behaviour of conditional empirical distribution functions�
Ann� Probab� �� 	�������

van der Vaart A� and Wellner J�A� ����
� Weak convergence and empirical processes� Springer�
New York�

Xiang� X� ������� On Bahadur�Kiefer representation of a kernel conditional quantile estimator�
Nonparametric Statistics � ����	

Xiang� X� ����
�� A kernel estimator of a conditional quantile� J� Multivariate Anal� �� ��
���


��


