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� Introduction

A standard method of exploring high�dimensional datasets is to examine various

low�dimensional projections thereof� In fact� many statistical procedures are based

explicitly or implicitly on a �projection pursuit�� cf� Huber �	
��
� Diaconis and

Freedman �	
��
 showed that under weak regularity conditions on a distribution

P � P �q� on Rq� �most� d�dimensional orthonormal projections of P are similar

�in the weak topology
 to a mixture of centered� spherically symmetric Gaussian

distribution on Rd if q tends to in�nity while d is �xed� A graphical demonstration

of this disconcerting phenomenon is given by Buja et al� �	

�
� It should be pointed

out that it is not a simple consequence of Poincar�e�s �	
	�
 Lemma� although the

latter is at the heart of the proof� The present paper provides further insight into this

phenomenon� We extend Diaconis and Freedman�s �	
��
 results in two directions�

Section � gives necessary and su�cient conditions on the sequence �P �q�
q�d such

that �most� d�dimensional projections of P are similar to some distribution Q on

Rd� It turns out that these conditions are essentially the conditions of Diaconis

and Freedman �	
��
� The novelty here is necessity� The limit distribution Q is

automatically a mixture of centered� spherically symmetric Gaussian distributions�

The family of such measures arises in Eaton �	
�	
 in another� related context�

More precisely� let � � ��q� be uniformly distributed on the set of column�wise

orthonormal matrices in Rq�d �cf� Section ���
� De�ning

��P �� LX�P ��
�X


for � � Rd�q� we investigate under what conditions the random distribution ��P

converges weakly in probability to an arbitrary �xed distribution Q as q��� while
d is �xed�

Section � studies the di�erence between P and the empirical distribution bP �bP �q�n� of n independent random vectors with distribution P � Suppose that �P �q�
q�d

�



satis�es the conditions of Section � and � is independent from bP � Then� as n and
q tend to in�nity� the standardized empirical measure n������bP � ��P 
 satis�es a
conditional Central Limit Theorem given the data bP �

Proofs are deferred to Section �� The main ingredients are Poincar�e�s �	
	�


Lemma and a modi�cation of a method invented by Hoe�ding �	
��
 in order to

prove weak convergence of conditional distributions� which is of independent interest�

Further we utilize some results from the theory of empirical processes�

� The Diaconis�Freedman E�ect

Let us �rst settle on some terminology� A random distribution bQ on a separable

metric space �M� �
 is a mapping from some probability space into the set of Borel

probability measures on M such that
R
f d bQ is measurable for any function f �

Cb�M
� the space of bounded� continuous functions on Rd� We say that a sequence

� bQk
k of random distributions on M converges weakly in probability to some �xed

distribution Q if for each f � Cb�M
�Z
f d bQk �p

Z
f dQ as k ���

In symbols� bQk �w�p Q as k � �� We say that the sequence � bQk
k converges

weakly in distribution to a random distribution bQ on M if for each f � Cb�M
�Z
f d bQk �L

Z
f d bQ as k ���

In symbols� bQk �w�L
bQ as k ��� Standard arguments show that � bQk
k converges

in probability to Q if� and only if�

sup
f�FbL

��� Z f d bQk �
Z
f dQ

��� �p � �k ��
�

where FbL stands for the class of functions f �M� ��	� 	� such that jf�x
�f�y
j �
��x� y
 for x� y �M�

Now we can state the �rst result�

�



Theorem ��� The following two assertions on the sequence �P �q�
q�d are equiva�

lent�

�A�� There exists a probability measure Q on Rd such that

��P �w�p Q as q ���

�A�� If X � X�q�� fX � fX�q� are independent random vectors with distribution P �

then

L�q��kXk�
 �w R and q��X�fX �p � as q��

for some probability measure R on ������

�Throughout� kxk denotes Euclidean norm �x�x
����� The limit distribution Q

is equal to the normal mixture

Z
Nd��� �

�I
R�d��
�

Corollary ��� The random probability measure ��P converges weakly to the stan�

dard Gaussian distribution Nd��� I
 in probability if� and only if� the following con�

dition is satis�ed�

�B� For independent random vectors X � X�q�� fX � fX�q� with distribution P �

q��kXk� �p 	 and q��X�fX �p � as q��� �

The implication ��A�
 �� �A	
� in Theorem ��	 as well as su�ciency of con�

dition �B
 in Corollary ��� are due to Diaconis and Freedman �	
��� Theorem 	�	

and Proposition ���
�

Example ��� Conditions �A	��
 are not very restrictive requirements� For in�

stance� suppose that P � L
�
��k � �kZk
��k�q

�
� where �Zk
k�� is a sequence of

independent� identically distributed random variables with mean zero and variance

�



one� and � � ��q� � Rq� � � ��q� � �����q� Then conditions �A	��
 are satis�ed if�
and only if�

�A�
 q��k�k� � �� q��k�k� � r � � and q�� max
��k�q

��k � �

as q��� where R � �r�

� Empirical Distributions

In some sense Theorem ��	 is a negative� though mathematically elegant result� It

warns us against hasty conclusions about high�dimensional data sets after examin�

ing a couple of low�dimensional projections� In particular� one should not believe

in multivariate normality only because several projections of the data �look nor�

mal�� On the other hand� even small di�erences between di�erent low�dimensional

projections of bP may be intriguing� Therefore in the present section we study the

relationship between projections of the empirical distribution bP and corresponding

projections of P �

In particular� we are interested in the halfspace norm

k��bP � ��PkKS �� sup
closed halfspaces H�Rd

j��bP �H
� ��P �H
j
of ��bP � ��P � In case of d � 	 this is the usual Kolmogorov�Smirnov norm of

��bP���P � In what follows we use several well�known results from empirical process

theory� Instead of citing original papers in various places we simply refer to the

excellent treatises of Pollard �	
��
 and van der Vaart and Wellner �	

�
� It is

known that

IE sup
��Rq�d

k��bP � ��PkKS � C�q	n
������	


for some universal constant C� For the latter supremum is just the halfspace norm

of bP � P � and generally the set of closed halfspaces in Rk is a Vapnik�Cervonenkis

�



class with Vapnik�Cervonenkis index k � 	� Inequality ���	
 does not capture the

typical deviation between d�dimensional projections of bP and P � In fact�

sup
��Rq�d

IE k��bP � ��PkKS � C�d	n
����

This implies that

IE k��bP � ��PkKS � C�d	n
��������


where the random projector � and bP are always assumed to be stochastically in�

dependent� The subsequent results imply precise information about the conditional

distribution of n���k��bP � ��PkKS given the data bP � This point of view is natural
in connection with exploratory projection pursuit� It turns out that under condi�

tion �B
 of Corollary ���� this conditional distribution converges weakly in proba�

bility to a �xed distribution� Under the weaker conditions �A	��
 of Theorem ��	 it

converges weakly in distribution to a speci�c random distribution on the real line�

More generally� let H be a countable class of measurable functions from Rd into

��	� 	�� Any �nite signed measure 
 on Rd de�nes an element h �� 
�h
 ��
R
h d


of the space �	�H
 of all bounded functions on H equipped with supremum norm

kzkH �� suph�H jz�h
j� We shall impose the following condition on the class H and

some distribution Q on Rd�

�C�� There exists a countable subset Ho of H auch that each h � H can be repre�

sented as pointwise limit of some sequence in Ho�

�C�� The set H satis�es the uniform entropy conditionZ �

�

q
log�N�u�H
 du � ��

Here N�u�H
 is the supremum of N�u�H� eQ
 over all probability measures eQ on

Rd� and N�u�H� eQ
 is the smallest number m such that H can be covered with m

balls having radius u with respect to the pseudodistance

�eQ�g� h
 �� q
Q��g � h
�
�

�



�C�� For any sequence �Qk
k of probability measures converging weakly to Q�

kQk �QkH � � as k���

An example for conditions �C	��
 is the set H of �indicators of
 closed halfspaces

in Rd and any distribution Q on Rd such that Q�E
 � � for any hyperplane E in

Rd� Here condition �C�
 is a consequence of Billingsley and Topsoe�s �	
��
 results�

Condition �C	
 ensures that random elements such as k��bP���PkH are measur�
able� A particular consequence of �C�
 is existence of a centered Gaussian process

BQ having uniformly continuous sample paths with respect to �Q and covariances

IEBQ�g
BQ�h
 � Q�gh
�Q�g
Q�h
�

This is proved via a Chaining argument� In the subsequent theorem we consider a

decomposition of BQ as a sum BQ�� � BQ�� of two independent centered Gaussian

processes on H� With the help of Anderson�s �	
��
 Lemma or further application of
Chaining one can show that BQ�� and BQ�� admit versions with uniformly continuous

sample paths�

Theorem ��� Suppose that the sequence �P �q�
q�d satis�es conditions �A	�
� of

Theorem 
�	� and suppose that conditions �C	��� are satis�ed with Q being the

corresponding limit measure
R Nd��� �

�I
R�d��
� De�ne

B�q�n� ��
�
n������ bP � ��P 
�h
�

h�H
�

and let F be a continuous functional on �	�H
 such that F �B�q�n�
 is measurable

for all q � d and n � 	� Then� as n and q tend to in�nity�

L
�
F �B�q�n�


��� bP � �w�L L
�
F �BQ���BQ��


���BQ��

�
�

where BQ�� and BQ�� are two independent centered Gaussian processes having uni�

formly continuous sample paths with respect to �Q and covariances

IEBQ���g
BQ���h
 � Q�gh
�
Z
Nd��� �

�I
�g
Nd��� �
�I
�h
R�d��


�



�
Z �
Nd��� �

�I
�gh
�Nd��� �
�I
�g
Nd��� �

�I
�h

�
R�d��


IEBQ���g
BQ���h
 �
Z
Nd��� �

�I
�g
Nd��� �
�I
�h
R�d��
�Q�g
Q�h
�

�Thus BQ�� �BQ�� de�nes a version of BQ��

Corollary ��� Suppose that the sequence �P �q�
q�d satis�es condition �B� of Corol�

lary 
�
� and suppose that conditions �C	��� are satis�ed for Q � Nd��� I
� Let F

be as in Theorem ��	� Then� as n and q tend to in�nity�

L
�
F �B�q�n�


��� bP� �w�p L
�
F �BQ


�
� �

The measurability of F �B�q�n�
 can be dropped� provided that our de�nition of

weak convergence of random distributions is suitably extended� see Remark ��� in

Section ��	�

� Proofs

��� Hoe�ding�s ����	
 technique and a modi�cation thereof

In connection with randomization tests� Hoe�ding �	
��
 observed that weak con�

vergence of conditional distributions of test statistics is equivalent to the weak con�

vergence of the unconditional distribution of suitable statistics in R�� His result can

be extended straightforwardly as follows�

Lemma ��� �Hoe�ding
� For k � 	 let Xk� fXk � Xk and Tk � Tk be independent

random variables� where Xk� fXk are identically distributed� Further let �k be some

measurable mapping from Xk 	Tk into the separable metric space �M� �
� and let

Q be a �xed Borel probability measure on M� Then� as k ��� the following two

assertions are equivalent�

�D�
 L
�
�k�Xk� Tk


���Tk� �w�p Q�

�D�
 L
�
�k�Xk� Tk
� �k�fXk� Tk


�
�w Q
Q�

�



An application of this equivalence with non�Euclidean spaces M is given by

Romano �	
�

� We shall utilize Lemma ��	 in order to prove Theorem ��	� In

connection with empirical measures we use the following modi�cation of Lemma ��	�

which is of independent interest�

Lemma ��� For k � f	� �� �� � � �g�f�g letXk�Xk���Xk��� � � � � Xk and Tk � Tk be

independent random variables� where Xk�Xk���Xk��� � � � are identically distributed�

Further let �k be some measurable mapping from Xk 	 Tk into �M� �
� Then� as

k ��� the following two assertions are equivalent�

�E�
 L
�
�k�Xk� Tk


���Tk� �w�L L
�
�	�X	� T	


���T	��
�E�
 For any integer L � 	�

�
�k�Xk��� Tk


�
����L

�L

�
�	�X	��� T	


�
����L

�

Remark ��� �Non�separablity and non�measurability
� Suppose that the met�

ric space �M� �
 is possibly nonseparable� and that the mappings �k� 	 � k �

�� are possibly non�measurable� The implications ��D�
 �� �D	
� and ��E�


�� �E	
� remain valid� provided that the limit distributions Q in Lemma ��	

and L��	�X	� T	

 in Lemma ��� have separable support� if one uses Ho�mann�

Jorgensens notion of weak convergence �cf� van der Vaart and Wellner 	

�� Chap�

ter 	
� The conditional distribution L
�
�k�Xk� Tk


���Tk � tk
�
stands for the outer

measure IP

n
�k�Xk� tk
 � �

o
on M� and L

�
�k�Xk� Tk


���Tk� is said to converge

weakly to Q in probability if for each �xed f � Cb�M
� the real�valued random el�

ement IE

�
f��k�Xk� Tk



���Tk� converges in outer probability to Q�f
� Analogously�
L
�
�k�Xk� Tk


���Tk� converges weakly in distribution to L��	�X	� T	

��� T	� if for

any �xed f � Cb�M
� IE

�
f��k�Xk� Tk



���Tk� converges in distribution �in the sense
of Ho�mann�Jorgensen
 to the random variable IE

�
f��	�X	� T	



���T	��
In this framework the reverse implications ��D	
 �� �D�
� and ��E	
 �� �E�
�

remain valid under some measurability� For instance� these conclusions are correct�






provided that for each k � f	� �� �� � � �g the mapping �k�Xk� Tk
 is measurable with

respect to the ���eld on M generated by closed balls with respect to ��

Given some familiarity with these concepts� one can easily adapt the subsequent

proofs of Lemmas ��	 and ����

Proof of Lemma ���� De�ne Yk �� �k�Xk� Tk
 and eYk �� �k�fXk� Tk
� Suppose

�rst that L�Yk� eYk
�w Q
Q� Then for any f � Cb�M
�

IE
��
IE�f�Yk
 jTk
�Q�f


���
� IE

�
IE�f�Yk
 jTk
�

�
� �Q�f
 IE IE�f�Yk
 jTk
 �Q�f
�

� IE IE�f�Yk
f� eYk
 jTk
� �Q�f
 IE IE�f�Yk
 jTk
 �Q�f
�

� IE�f�Yk
f� eYk

� �Q�f
IE f�Yk
 �Q�f
�

�
Z
f�y
f�ey
Q�dy
Q�dey
�Q�f
�

� ��

Thus L�Yk jTk
�w�p Q�

On the other hand� suppose that L�Yk jTk
 �w�p Q� Then for arbitrary f� g �
Cb�M
�

IE f�Yk
g� eYk
 � IE IE
�
f�Yk
g� eYk
 ���Tk�

� IE
�
IE�f�Yk
 jTk
 IE�f� eYk
 jTk
�

� Q�f
Q�g
�

because IE�h�Yk
 jTk
 �p
R
h dQ and

���IE�h�Yk
 jTk
��� � khk	 � � for each h �
Cb�M
� Thus we know that IEF �Yk� eYk
 � R

F dQ 
 Q for arbitrary functions

F �y� ey
 � f�y
g�ey
 with f� g � Cb�M
� But this is known to be equivalent to weak

convergence of L�Yk� eYk
 toQ
Q� see van der Vaart andWellner �	

�� Chapter 	��
�
�

Proof of Lemma ���� De�ne Yk �� �k�Xk� Tk
 and Yk�� �� �k�Xk��� Tk
� Sup�

pose �rst that �Yk��
����L �L �Y	��
����L for any integer L � 	� For arbitrary �xed

	�



f � Cb�M
�

IE
��
IE�f�Yk
 jTk
� L��

LX
���

f�Yk��

���

� IE IE
��
IE�f�Yk
 jTk
� L��

LX
���

f�Yk��

�� ���Tk�

� IEVar
�
L��

LX
���

f�Yk��

���Tk�

� L��kfk�	�

Thus the sample mean L��
PL

��� f�Yk��
 approximates the conditional expectation

IE�f�Yk
 jTk
 arbitrarily well in quadratic mean� provided that L is su�ciently large�
However� the variable L��

PL
��� f�Yk��
 converges in distribution to L

��PL
��� f�Y	��
�

according to the Continuous Mapping Theorem� Consequently� IE�f�Yk
 jTk
 con�
verges in distribution to IE�f�Y	
 jT	
� whence L�Yk jTk
�w�L L�Y	 jT	
�

On the other hand� suppose that the conditional distribution L�Yk jTk
 converges
weakly in distribution to L�Y	 jT	
� In order to show that �Yk��
����L converges in
distribution to �Y	��
����L one has to show that

IE
LY
���

f��Yk��
 � IE
LY
���

f��Y	��


for arbitrary functions f�� f�� � � � � f� � Cb�M
 �cf� van der Vaart and Wellner� 	

��

Chapter 	��
� But

IE
LY
���

f��Yk��
 � IE IE
� LY
���

f��Yk��

��� Tk� � IE

LY
���

IE�f��Yk
 jTk
�

Thus it su�ces to show that
�
IE�f��Yk
 jTk


�
����L

converges in distribution to�
IE�f��Y	
 jT	


�
����L

� This follows easily from our assumption on L�Yk jTk
 via
Fourier transformation� since for arbitrary 
 � RL�

IE exp
�p�	 LX

���


�IE�f��Yk
 jTk

�
� IE exp

�p�	 IE�F �Yk
 jTk
�
with F ��

PL
��� 
�f� � Cb�M
� �

		



��	 Proofs for Section 	

That � � ��q� is �uniformly� distributed on the set of column�wise orthonormal ma�

trices in Rq�d means that L���
 � L��
 for any �xed orthonormal matrix � � Rq�q�

For existence and uniqueness of the latter distribution we refer to Eaton �	
�
� Chap�

ters 	 and �
� For the present purposes the following explicit construction described

in Eaton �	
�
� Chapter �
 of � is su�cient� Let Z � Z�q� �� �Z�� Z�� � � � � Zd
 be a

random matrix in Rq�d with independent� standard Gaussian column vectors Zj in

Rq� Then

� �� Z�Z�Z
����

has the desired distribution� and

� � q����Z �I �Op�q
����

 as q ������	


This equality can be viewed as an extension of Poincar�e�s �	
	�
 Lemma�

Proof of Theorem ���� Let � � ��Z
 as above� Suppose that Z � Z�q�� X �

X�q� and fX � fX�q� are independent with L�X
 � L�fX
 � P � and let Y� eY be two

independent random vectors in Rd with distribution Q� According to Lemma ��	�

condition �A	
 is equivalent to

�A��


�
��X

��fX
�
�L

�
YeY
�
�

Because of equation ���	
 this can be rephrased as

�A���


�
Y �q�eY �q�

�
��

�
q����Z�X

q����Z�fX
�
�L

�
YeY
�
�

Now we prove equivalence of �A	�
 and �A�
 starting from the observation that

L
��

Y �q�eY �q�

��
� IEL

��
Y �q�eY �q�

� ���X� fX� � IEN�d��� 
�q�
�

where

 �q� ��

�
q��kXk� I q��X�fX I

q��X�fX I q��kfXk� I
�
� R�d��d�

	�



Suppose that condition �A�
 holds� Then  �q� converges in distribution to a

random diagonal matrix

 ��

�
S� I �

� eS� I

�

with independent random variables S�� eS� having distributionR� Clearly this implies

that

IEN�d��� 
�q�
 �w IEN�d��� 
 � L

��
YeY
��

with Q � IEN ��� S�I
� Hence �A	�
 holds�

On the other hand� suppose that �A	�
 holds� For any t � �t��� t
�
�

� � R�d� the

Fourier transform of L��Y �q��� eY �q��
�
 at t equals

IE exp
�p�	 �t��Y �q� � t��

eY �q�

�
� IE exp��t� �q�t	�
 � H�q��a�t

�

where a�t
 ��
�
�kt�k�	���kt�k�	���t��t�

��� R�� and

H�q��a
 �� IE exp
�
a�q

��kXk� � a�q
��kfXk� � a�q

��X�fX�
denotes the Laplace transform of L

��
q��kXk�� q��kfXk�� q��X�fX��� at a � R�� By

assumption� the Fourier transform at t converges to

IE exp�
p�	 t��Y 
IE exp�

p�	 t��Y 
�

Setting t� � � and varying t� shows that the Laplace transform of L�q��kXk�

converges pointwise on ���� �� to a continuous function� Hence q��kXk� converges
in distribution to some random variable S� � �� and Q � IENd��� S

�I
� Therefore�

if eS� denotes an independent copy of S�� we know that H�q��a�t

 converges to

IE exp�a��t
S
�
IE exp�a��t
S

�
 � IE exp
�
a��t
S

� � a��t
 eS� � a��t
 � �
�
�

A problem at this point is that for dimension d � 	 the set fa�t
 � t � R�dg 
 R�

has empty interior� Thus we cannot apply the standard argument about weak

	�



convergence and convergence of Laplace transforms� However� letting t� � �t� with
kt�k�	� � 	� one may conclude that for arbitrary �� r � ��

� � lim
q�	

�
H�q���	��	���
 �H�q���	��	� �
� �H�q���	� �� �
�

�
� lim

q�	

�
H�q���	��	���
 �H�q���	��	� �
� � IE exp��q��kXk� � q��kfXk�
�

� � lim
q�	

IE exp
�
�q��kXk� � q��kfXk���cosh��q��X�fX
� 	�

� � exp���r
�cosh���
� 	
 �
� lim sup

q�	
IP
n
q��kXk� � r� q��kfXk� � r� jq��X�fXj � �

o
� � exp���r
�cosh���
� 	
 lim sup

q�	

�
IPfjq��X�fXj � �g � � IPfq��kXk� � rg

�
� � exp���r
�cosh���
� 	


�
lim sup
q�	

IPfjq��X�fXj � �g � � IPfS� � rg
�
�

whence

lim sup
q�	

IPfjq��X�fX j � �g � � IPfS� � rg�

Consequently� q��X�fX �p �� �

Proof of equivalence of �A�	�� and �A��� Proving that �A�
 implies �A	�

�
 is elementary� In order to show that �A	��
 implies �A�
 note �rst that condi�

tions �A	��
 for the distributions P �q� imply the same conditions for the symmetrized

distributions

Po � P �q�
o �� L

�X�eX��P
P
�X � fX
 � L

�
��k�Zk � Zq�k
��k�q

�
�

Condition �A�
 for these distributions reads as follows�

L
�
q��

qX
k��

��k�Zk � Zq�k

�
�
�w Ro � R � R and����


q��
qX

k��

��k�Zk � Zq�k
�Z�q�k � Z�q�k
 �p ������


The summands q����k�Zk�Zq�k
�Z�q�k�Z�q�k
� 	 � k � q� in ����
 are independent

and symmetrically distributed� Therefore one can easily deduce from ����
 that

	�



q��max��k�q ��k � �� But then

q��
qX

k��

��k�Zk � Zq�k

� � �q��k�k� � op�	 � q��k�k�
�

and one can deduce from ����
 that q��k��q�k� converges to some �xed number r� in
particular� R � �r� Now we return to the original distributions P � Here the second

half of �A�
 means that

q��
kX

k��

��k � �kZk
��k � �kZq�k


� q��k�k� � q��
qX

k��

�k�k�Zk � Zq�k
 � q��
qX

k��

��kZkZq�k

� op�	
�

Since

IE
��
q��

qX
k��

�k�k�Zk � Zq�k

���

� q��
qX

k��

��k�
�
k � o�q��k�k�
�

IE
��
q��

qX
k��

��kZkZq�k

���
� q��

qX
k��

�	k � ��

it follows that q��k�k� � �� �

��� Proof of Theorem ���

Let ���q���
��� be a sequence of independent copies of � which is stochastically inde�

pendent from bP � De�ne
B�q�n��� ��

�
n������q����bP � ��q����P 
�h
�

h�H
�

The B�q�n���� � � 	� are dependent copies of B�q�n�� Further consider independent

processes B���
Q��� B

���
Q��� B

���
Q��� � � � and BQ�� with L�B���

Q��
 � L�BQ��
 and L�BQ��
 as

described in Theorem ��	� According to Lemma ��� it su�ces to show that for any

�xed integer L � 	 and ! �� f	� �� � � � � Lg� the random elements

�B�q�n� ��
�
B�q�n����h


�
���h��
�H

	�



converge in distribution in �	�!	H
 to
�B ��

�
�B

���
Q�� �BQ��
�h


�
���h��
�H

as q � � and n � �� For that purpose it su�ces to verify the following two
claims�

�F�� As q � � and n � �� the �nite�dimensional marginal distributions of the
process �B�q�n� converge to the corresponding �nite�dimensional distributions of �B�

�F�� As q ��� n�� and � � ��

max
��


sup
g�h�H��Q�g�h���

���B�q�n����g
�B�q�n����h

��� �p ��

In order to verify assertions �F	��
 we consider the conditional distribution of

�B�q�n� given the random matrix

�� � ���q� �� ���q������q���� � � � ���q�L�
 � Rq�Ld�

In fact� if we de�ne

�f��h�v
 �� h�v�
 for v � �v�� � � � � � v
�
L

�� RLd�

then

B�q�n����h
 � n������� bP � ���P 
��f��h
�

Thus L� �B�q�n� j ��
 is essentially the distribution of an empirical process based on
n independent random vectors with distribution ���P on RLd and indexed by the

family �H �� f�f��h � � � !� h � Hg�
The multivariate version of Lindeberg�s Central Limit Theorem entails that for

large q and n the �nite�dimensional marginal distributions of �B�q�n�� conditional on

��� can be approximated by the corresponding �nite�dimensional distributions of a

centered Gaussian process on !	H with the same covariance function� namely

 �q�
�
��� g
� �m�h


�
�� Cov

�
B�q�n����g
� B�q�n�m��h


��� ���
� ���P ��f��g �fm�h
� ���P ��f��g
��

�P ��fm�h
�

	�



It follows from equality ���	
 and the proof of Theorem ��	 that

���P �w
�Q ��

Z
NLd��� �

�I
R�d��
 as q ���

This implies that the conditional covariance function  �q� converges pointwise in

probability to the covariance function  � where

 
�
��� g
� �m�h


�
�� �Q��f��g �fm�h
� �Q��f��g
�Q��fm�h


�
Z
NLd��� �

�
��f��g �fm�h
R�d�
�
�Q�g
Q�h


�

��	�

Z
Nd��� �

�
�gh
R�d��
�Q�g
Q�h
 if � � m�Z
Nd��� �

�
�g
Nd��� �
�
�h
R�d��
�Q�g
Q�h
 if � �� m�

� Cov
�
�B

���
Q�� �BQ��
�g
� �B

�m�
Q�� �BQ��
�h


�
as q��� If we can show that even the supremum of j �q�� j over �!	H
� tends
to zero in probability� then assertion �F	
 follows�

As mentioned in Section �� weak convergence in probability is metrizable� There�

fore there exist events A�q� depending only on ���q� such that for arbitrary �f �
Cb�RLd
�

IP�A�q�
 � 	 and sup
A�q�

��� Z �f d���P �
Z
�f d�Q

��� � � as q���

It was shown by Billingsley and Topsoe �	
��
 that condition �C�
 is equivalent to

lim
���

sup
h�H

Q
n
y � Rd � sup

z�kz�yk��
jh�z
� h�y
j � �

o
� � for any � � ������


Note that the d�dimensional marginal distributions of �Q are just Q� Therefore one

can easily deduce from ����
 that

lim
���

sup
	g�	h� 	H

�Q
n
v � RLd � sup

w�kw�vk��
j�g�h�w
� �g�h�v
j � �

o
� � for any � � ��

Now a second application of Billingsley and Topsoe �	
��
 shows that

sup
A�q�

sup
	g�	h� 	H

j���P ��g�h
� �Q��g�h
j � � as q�������


	�



We assume without loss of generality that H �and thus �H
 contains the constant
function 	� Then fact ����
 clearly implies uniform convergence of  �q� to  on !	H
as q�� in probability�

As for assertion �F�
� it is well�known from empirical process theory that condi�

tions �C	��
 imply that for arbitrary �xed � � � and � � !�

IP
�

sup
g�h�H���q����g�h���

���B�q�n����g
 �B�q�n����h

��� � �

��� ��� �p �����


as q��� n�� and � � �� Here

��q����g� h
 ��
q
���P ���f��g � �f��h
�
�

But it follows from ����
 that

sup
A�q�

sup
g�h�H

j��q����g� h
� � �Q�g� h

�j � �

as q � �� for any �xed � � !� Hence one may replace ��q��� in ����
 with �Q and

obtains assertion �F�
� �
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