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1 Introduction

A standard method of exploring high-dimensional datasets is to examine various
low-dimensional projections thereof. In fact, many statistical procedures are based
explicitly or implicitly on a “projection pursuit”, c¢f. Huber (1985). Diaconis and
Freedman (1984) showed that under weak regularity conditions on a distribution
P = PW on R?, “most” d-dimensional orthonormal projections of P are similar
(in the weak topology) to a mixture of centered, spherically symmetric Gaussian
distribution on R? if ¢ tends to infinity while d is fixed. A graphical demonstration
of this disconcerting phenomenon is given by Buja et al. (1996). It should be pointed
out that it is not a simple consequence of Poincaré’s (1912) Lemma, although the
latter is at the heart of the proof. The present paper provides further insight into this
phenomenon. We extend Diaconis and Freedman’s (1984) results in two directions.
Section 2 gives necessary and sufficient conditions on the sequence (P(q))qzd such
that “most” d-dimensional projections of P are similar to some distribution ¢ on
R?. It turns out that these conditions are essentially the conditions of Diaconis
and Freedman (1984). The novelty here is necessity. The limit distribution @) is
automatically a mixture of centered, spherically symmetric Gaussian distributions.
The family of such measures arises in Eaton (1981) in another, related context.
More precisely, let I' = I'@ be uniformly distributed on the set of column-wise

orthonormal matrices in R?*? (cf. Section 4.2). Defining
7P = Lxep(y'X)

for v € R¥?, we investigate under what conditions the random distribution I'"P
converges weakly in probability to an arbitrary fixed distribution ¢} as ¢ — oo, while
d is fixed.

Section 3 studies the difference between P and the empirical distribution P =

Pl of o independent random vectors with distribution P. Suppose that (P(q))qzd



satisfies the conditions of Section 2 and I' is independent from P. Then, as n and
g tend to infinity, the standardized empirical measure nl/z(FT]3 — I'TP) satisfies a
conditional Central Limit Theorem given the data P.

Proofs are deferred to Section 4. The main ingredients are Poincaré’s (1912)
Lemma and a modification of a method invented by Hoeffding (1952) in order to
prove weak convergence of conditional distributions, which is of independent interest.

Further we utilize some results from the theory of empirical processes.

2 The Diaconis-Freedman Effect

Let us first settle on some terminology. A random distribution @ on a separable
metric space (M, p) is a mapping from some probability space into the set of Borel
probability measures on M such that ffd@ is measurable for any function f €
Cy(M), the space of bounded, continuous functions on R?. We say that a sequence

(@k)k of random distributions on M converges weakly in probability to some fixed

distribution @ if for each f € Cy(M),

/fd@k 0 /fdQ as k — oo,

In symbols, @k —wp @ as B — oo. We say that the sequence (@k)k converges

weakly in distribution to a random distribution Q on M if for each f € Co(M),

/fd@k e /fd@ as k — oo,

In symbols, @k —rw. L @ as k — oo. Standard arguments show that (@k)k converges
in probability to () if, and only if,

sup | [ dQu— [ 1dQ| =, 0 (k= ),

F€For
where Fyy, stands for the class of functions f: M — [—1, 1] such that |f(x)— f(y)| <

pa,y) for x,y € M.

Now we can state the first result.



Theorem 2.1 The following two assertions on the sequence (P(q))qzd are equiva-

lent:
(A1) There exists a probability measure Q) on R? such that

I'P —,, Q asq— .

(A2) If X = X(q),)? = X@ are independent random vectors with distribution P,
then
'C(q_lHXHz) —w R and q_lXT)? —p 0 asqg— o0

for some probability measure R on [0, oo].

(Throughout, ||z|| denotes Euclidean norm (x'x)"/2.) The limit distribution Q

is equal to the normal mixture
/Nd(o, o2 1) R(do?).

Corollary 2.2 The random probability measure I''P converges weakly to the stan-
dard Gaussian distribution Ny(0, 1) in probability if, and only if, the following con-

dition is satisfied:

(B) For independent random vectors X = X(q),)? = X with distribution P,

' XIIP =, 1 and ¢ XX —p» 0 as g — oo. O

The implication “(A2) = (Al)” in Theorem 2.1 as well as sufficiency of con-
dition (B) in Corollary 2.2 are due to Diaconis and Freedman (1984, Theorem 1.1

and Proposition 4.2).

Example 2.3 Conditions (Al-2) are not very restrictive requirements. For in-
stance, suppose that P = ,C((Mk + O'ka)lskSq), where (Zj)p>1 is a sequence of

independent, identically distributed random variables with mean zero and variance
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one, and y = !9 € R?, ¢ = 0@ € [0, 00[?. Then conditions (A1-2) are satisfied if,
and only if,

(A3) ¢ Mul® = 0, ¢ el® = r>0 and ¢ max op — 0
SRNG

as ¢ — 0o, where R = 4,.

3 Empirical Distributions

In some sense Theorem 2.1 is a negative, though mathematically elegant result. It
warns us against hasty conclusions about high-dimensional data sets after examin-
ing a couple of low-dimensional projections. In particular, one should not believe
in multivariate normality only because several projections of the data “look nor-
mal”. On the other hand, even small differences between different low-dimensional
projections of P may be intriguing. Therefore in the present section we study the
relationship between projections of the empirical distribution P and corresponding
projections of P.
In particular, we are interested in the halfspace norm

ITTP —TTP|ks := sup ITTP(H) —TTP(H)|
closed halfspaces HcR¢

of ITP — T'TP. 1In case of d = 1 this is the usual Kolmogorov-Smirnov norm of
TP —TTP. In what follows we use several well-known results from empirical process
theory. Instead of citing original papers in various places we simply refer to the
excellent treatises of Pollard (1984) and van der Vaart and Wellner (1996). It is
known that

(3.1) E sup |7'P—~"P|gs < C(g/n)?

’VERqu

for some universal constant C'. For the latter supremum is just the halfspace norm

of P — P, and generally the set of closed halfspaces in R* is a Vapnik-Cervonenkis



class with Vapnik-Cervonenkis index k£ + 1. Inequality (3.1) does not capture the

typical deviation between d-dimensional projections of Pand P. In fact,

sup IB|yP—4"Pllks < C(d/n)"2.

,yeRqu

This implies that
(3.2) E|ITP —TP|ks < C(d/n)'?,
where the random projector I' and P are always assumed to be stochastically in-
dependent. The subsequent results imply precise information about the conditional
distribution of nl/QHFTﬁ — I'TP||ks given the data P. This point of view is natural
in connection with exploratory projection pursuit. It turns out that under condi-
tion (B) of Corollary 2.2, this conditional distribution converges weakly in proba-
bility to a fixed distribution. Under the weaker conditions (A1-2) of Theorem 2.1 it
converges weakly in distribution to a specific random distribution on the real line.
More generally, let H be a countable class of measurable functions from R? into
[—1,1]. Any finite signed measure v on R defines an element h + v(h) := [hdv
of the space (o(H) of all bounded functions on H equipped with supremum norm

|2|l% := suppey |2(R)]. We shall impose the following condition on the class H and

some distribution @ on R,

(C1) There exists a countable subset H, of H auch that each h € H can be repre-

sented as pointwise limit of some sequence in H,.

(C2) The set H satisfies the uniform entropy condition

/01 V9og(N(u, H) du < oc.

Here N(u,H) is the supremum of N(u,H, @) over all probability measures Q) on
R¢, and N(u,H, @) is the smallest number m such that ‘H can be covered with m

balls having radius u with respect to the pseudodistance

pglg,h) = Qg —h)?).



(C3) For any sequence (@) of probability measures converging weakly to @,

|Qr — Qllx — 0 as k— oo.

An example for conditions (C1-3) is the set ‘H of (indicators of) closed halfspaces
in R? and any distribution @ on R? such that Q(F) = 0 for any hyperplane F in
R?. Here condition (C3) is a consequence of Billingsley and Topsoe’s (1967) results.

Condition (C1) ensures that random elements such as HFTﬁ— ['TP||3 are measur-
able. A particular consequence of (C2) is existence of a centered Gaussian process

Bg having uniformly continuous sample paths with respect to pg and covariances

IE Bo(g)Bo(h) = Q(gh) — Q(9)Q(h).

This is proved via a Chaining argument. In the subsequent theorem we consider a
decomposition of Bg as a sum Bg + Bg,2 of two independent centered Gaussian
processes on ‘H. With the help of Anderson’s (1955) Lemma or further application of
Chaining one can show that By ; and Bg 3 admit versions with uniformly continuous

sample paths.

Theorem 3.1 Suppose that the sequence (P\9)),s, satisfies conditions (A1-2) of
Theorem 2.1, and suppose that conditions (C1-3) are satisfied with () being the
corresponding limit measure [ N(0,0%I) R(do?). Define
(g:m) . 1/2/rTp _ 1T
B = (nAH(ITP—T P)(h))heH,
and let I' be a continuous functional on (., (H) such that F(B(q’”)) is measurable

tor all ¢ > d and n > 1. Then, as n and ¢ tend to infinity,
L(F(B@)|P) e L(F(Bga+ Baa)|Ban),

where Bg 1 and Bg, are two independent centered Gaussian processes having uni-

formly continuous sample paths with respect to pg and covariances
IE Boa(9)Baah) = Qloh) ~ [ Nul0,0*1)(g) N0, 1) (1) F(dr®)
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_ /(Nd(o, o2 1)(gh) — Nu(0,0°1)(g) Na(0, 0> )(h)) R(do?)
IE Baalg)Boa(h) = [ Nu(0,0*1)(g) Nu(0, 0*1)(h) Rdo*) = Q(g)Q().
(Thus Bg1 + Bg» defines a version of Bg.)
Corollary 3.2 Suppose that the sequence (P9),s, satisfies condition (B) of Corol-
lary 2.2, and suppose that conditions (C1-3) are satisfied for ) = Ny(0,1). Let F
be as in Theorem 3.1. Then, as n and q tend to infinity,
L(F(BO )| P) =y L£(F(Bg)). 0

The measurability of F(B@™) can be dropped, provided that our definition of
weak convergence of random distributions is suitably extended; see Remark 4.3 in

Section 4.1.

4 Proofs
4.1 Hoeffding’s (1952) technique and a modification thereof

In connection with randomization tests, Hoeffding (1952) observed that weak con-
vergence of conditional distributions of test statistics is equivalent to the weak con-
vergence of the unconditional distribution of suitable statistics in R?. His result can

be extended straightforwardly as follows.

Lemma 4.1 (Hoeffding). For k > 1 let Xk,)?k € Xy, and Ty € T} be independent
random variables, where X}, X, are identically distributed. Further let v be some
measurable mapping from X x T} into the separable metric space (M, p), and let
() be a fixed Borel probability measure on M. Then, as k — oo, the following two

assertions are equivalent:

(D2) L((Xn, T, (X Th)) = Q2 Q.



An application of this equivalence with non-Euclidean spaces M is given by
Romano (1989). We shall utilize Lemma 4.1 in order to prove Theorem 2.1. In
connection with empirical measures we use the following modification of Lemma 4.1,

which is of independent interest.

Lemma 4.2 Fork € {1,2,3,...}U{cc} let Xk, Xx1, Xk2,... € Xk and Tx € Tx be
independent random variables, where Xy, Xy 1, Xk 2, ... are identically distributed.
Further let v be some measurable mapping from Xyx x Ty into (M, p). Then, as

k — oo, the following two assertions are equivalent:

(E1) L((Xi T | T) e £(10e(Xeo, Too) | Toc).

(E2)  For any integer L > 1, (’yk(XW,Tk)) -7 (’yoo(Xoox,Too))

1<4<L 1<e< L’

Remark 4.3 (Non-separablity and non-measurability). Suppose that the met-
ric space (M, p) is possibly nonseparable, and that the mappings v, 1 < k <
oo, are possibly non-measurable. The implications “(D2) = (D1)” and “(E2)
— (E1)” remain valid, provided that the limit distributions ) in Lemma 4.1
and L(yoo(Xoo, 1)) in Lemma 4.2 have separable support, if one uses Hoffmann-
Jorgensens notion of weak convergence (cf. van der Vaart and Wellner 1996, Chap-
ter 1). The conditional distribution ,C(’yk(Xk,Tk) ‘ T, = tk) stands for the outer
measure IP*{’yk(Xk,tk) € } on M, and ,C(’yk(Xk,Tk)\Tk) is said to converge
weakly to @ in probability if for each fixed f € Cy(M), the real-valued random el-
ement IE* (f(’yk(Xk, Ty)) ‘ Tk) converges in outer probability to Q(f). Analogously,
,C(’yk(Xk,Tk) \ Tk) converges weakly in distribution to ,C(’yoo (Xoo, To) ‘ Too) if for
any fixed f € Cy(M), IE” (f(’yk(Xk, Ty)) ‘ Tk) converges in distribution (in the sense
T..).

In this framework the reverse implications “(D1) = (D2)” and “(El) = (E2)”

of Hoffmann-Jorgensen) to the random variable IE(f(’yoo (Xeo, Too))

remain valid under some measurability. For instance, these conclusions are correct,



provided that for each k € {1,2,3,...} the mapping y&( Xk, Tx) is measurable with
respect to the o-field on M generated by closed balls with respect to p.
Given some familiarity with these concepts, one can easily adapt the subsequent

proofs of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. Define Y} := (X, Tx) and Y, = ’yk(j(vk,Tk). Suppose
first that ,C(Yk,f/k) —w @ ® Q. Then for any f € C,(M),

E((E(F(Y) | T) - Q())
= B(E((Y) | T)?) = 2Q() BE(f(Y) | T) + Q(f)
= EE(f(Y)(V0)|T) - 2Q) EEF(Y) | Th) + Q)
= B(f(Y) (V) — 2Q(N)E f(Yi) + Q(f)
= [ 10)I®) QUy)Q(d) - Q(f )

)
k)

Thus L(Yy | Th) =wp Q-
On the other hand, suppose that L(Y; |Ty) —wp @. Then for arbitrary f,g €
Co(M),

Ef(Yo)g(Vi) = BE(f(Yi)g(Vi)| 1)
= (V)| T E((V) | Th)
= Q(f)Q9),
because W(h(Yy)| Tx) = [ hdQ and [IE(A(Yi)|T)| < |[h]le < oo for cach h €
Cy(M). Thus we know that IEF(V;,Y;) — [FdQ @ Q for arbitrary functions
F(y,5) = f(y)g(§) with f,g € C,(M). But this is known to be equivalent to weak

convergence of L( Y, f@) to Q@Q); see van der Vaart and Wellner (1996, Chapter 1.4).

O
Proof of Lemma 4.2. Define Yy := 1 (X, Tx) and Yk := v ( Xk, Tx). Sup-

pose first that (Y )i<i<r =2 (Yoo )1<i<r for any integer L > 1. For arbitrary fixed
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f € Cb(M)v
L

(B0 1T~ 7Y S0 )

=1

= BE((E(f(Yi) | Tk) - L ;f YH) | 74)

= EVar(L™ S i) | 74)
=1

< LTSI

Thus the sample mean L™ 5% | f(Yi,) approximates the conditional expectation
IE(f(Yx)|Tx) arbitrarily well in quadratic mean, provided that L is sufficiently large.
However, the variable L=' S°1 | f(Y}.¢) converges in distribution to L™ % f(Ya...),
according to the Continuous Mapping Theorem. Consequently, IE(f(Y%) | 7)) con-
verges in distribution to IE(f(Y.) | Tw), whence L(Yi | Tk) —w.c L(Voo | Two)-

On the other hand, suppose that the conditional distribution L(Y}, | T)) converges
weakly in distribution to £(Y. | T ). In order to show that (Y ¢)i<e<r converges in

distribution to (Y. ¢)1<e<r, one has to show that

L L
ET fo(Yee) = BT fe(Yeer)
=1 =1
for arbitrary functions fi, fa,..., fr € Co(M) (cf. van der Vaart and Wellner, 1996,

Chapter 1.4). But

L
IEHfg Yie) = ]E]E(Hfz Yie) ‘Tk) = H (fe(Yi) | Txo).

=1

Thus it suffices to show that (IE(fg(YkHTk))KKL converges in distribution to
(IE(fg(Yoo) | TOO))1<Z<L' This follows easily from our assumption on L£(Yk|7x) via

Fourier transformation, since for arbitrary A € R,

IE exp(v/~1 Z)\z (L) T) = T exp(VETIE(F(Yi) | Th)

with F := Zé::l )\gfg - Cb(M) O
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4.2 Proofs for Section 2

That I' = '@ is “uniformly” distributed on the set of column-wise orthonormal ma-
trices in R7*? means that £(7T') = £(T') for any fixed orthonormal matrix r € R?*%.
For existence and uniqueness of the latter distribution we refer to Eaton (1989, Chap-
ters 1 and 2). For the present purposes the following explicit construction described
in Eaton (1989, Chapter 7) of I is sufficient. Let Z = 29 := (Z,,Z,,...,Z,) be a
random matrix in R?*? with independent, standard Gaussian column vectors Z; in
R?. Then
[ = Z(Z77)7Y?

has the desired distribution, and
(4.1) I' = ¢Y22(I+0,(¢7V%) as ¢ — .

This equality can be viewed as an extension of Poincaré’s (1912) Lemma.

Proof of Theorem 2.1. Let I' = I'(Z) as above. Suppose that 7 = 79 X =
X@ and X = X@ are independent with L(X) = ,C(j(v) — P, and let V,Y be two
independent random vectors in R? with distribution Q. According to Lemma 4.1,

condition (A1) is equivalent to

(A1) (tx) = (V).

Because of equation (4.1) this can be rephrased as

y (@) EVAD Y
(A1) (W)) = (q—l/zzT}{ TeA\Y )

Now we prove equivalence of (A1”) and (A2) starting from the observation that
y (@) y (2) — @
£l v = BL{| s ‘X,X = EN3q(0,59),

v . q_lﬂXUi[ q_lX:)?] R24x2d
' ' XTXT ¢ Y X|* 1 '

where
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Suppose that condition (A2) holds. Then (9 converges in distribution to a

S*1 0
E‘:( 0 §21)

with independent random variables S, 52 having distribution R. Clearly this implies

random diagonal matrix

that

EN3(0,5@) =, ENu(0,Y) = £ (( § ))

with Q = IEAN(0, 5%1). Hence (A1”) holds.
On the other hand, suppose that (A1”) holds. For any ¢t = (¢],¢])7 € R??, the
Fourier transform of £((Y(@T, ?(q)T)T) at ¢ equals

I exp(V=T1(HYW + YD) = I exp(—t'S@1/2) = HD(a(t)),
T
where a(t) := (—|[t]2/2. —|t2]|>/2,—1]1;) € R, and
H(a) = T exp(arg™ | X|* + azg™" | X|* + asg™ X X))

denotes the Laplace transform ofﬁ((q_IHXHQ, q_lﬂyw, q_lXTj(\) T) at « € R®. By

assumption, the Fourier transform at ¢ converges to
IE exp(v/—1{Y)IE exp(v/—11,Y).

Setting ¢ = 0 and varying ¢; shows that the Laplace transform of L£(¢™!||X|*)
converges pointwise on | — oo, 0] to a continuous function. Hence ¢7*|| X ||* converges
in distribution to some random variable S* > 0, and ) = IEN;(0, S?I). Therefore,

if 52 denotes an independent copy of 52, we know that H@(a(t)) converges to
IE exp(a;(t)S*)IE exp(ay(t)S?) = IE exp(al(t)52 + az(t)§2 + as(?) - 0).
A problem at this point is that for dimension d = 1 the set {a(t) : t € R*'} C R?

has empty interior. Thus we cannot apply the standard argument about weak
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convergence and convergence of Laplace transforms. However, letting ¢, = +¢; with

|t1]]*/2 = 1, one may conclude that for arbitrary e,r > 0,

0 = lim (HW(=1,—-1,-2) + H(=1,-1,2) — 2H")(~1,0,0)?)

q—>00

= lim (HO(=1,—1,-2) + HO(=1,-1,2) = 2IE exp(—¢ | X || — ¢~ X))

q—>00

_ : -1 2 12 -1vTyvy
= 2 lgm IEeXp( g X — ¢ HXH)(Cosh(Zq X'X) 1)

> 2exp(—2r)(cosh(2¢) — 1) -
- lim sup IP{q_lﬂXHz <r g YX|? <r gt XTX] > 6}
q—>00
> 2exp(—2r)(cosh(2¢) — 1) lim sup(P{|q_1XTY| >} —2P{q7 | X|* > r})
q—+00

> 2exp(—2r)(cosh(2¢) — 1)(lim sup P{|¢7 ' XX | > ¢} — 2IP{5? > r}),
q—>00

whence
limsup IP{|¢g"' XX | > ¢} < 2IP{S%>r}.
q—>00
Consequently, q_lXTY —p 0. O

Proof of equivalence of (A1-2) and (A3). Proving that (A3) implies (Al-
2) is elementary. In order to show that (A1-2) implies (A3) note first that condi-
tions (A1-2) for the distributions P{?) imply the same conditions for the symmetrized

distributions
P, =P = Lz pap(X —X) = L((or(Zk = Zysr)i<iz).
Condition (A2) for these distributions reads as follows.
g
(4.2) £(q Z (Zk = Zypr)?) —w Ro=R*R and
q :
(4.3) Z (Zk = Zgi)(Zagen — Zagrn)  —p 0.

The summands ¢ o7 (2 — Zy11 ) ( Zagrk — Zager ), 1 < k < g, in (4.3) are independent

and symmetrically distributed. Therefore one can easily deduce from (4.3) that
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g ! maxi<i<g o7 — 0. But then

q
Z Zowi)® = 2¢7 o |I* + op(1 + 7l o]),

(q)H2

and one can deduce from (4.2) that ¢~!||e converges to some fixed number r; in

particular, R = d,. Now we return to the original distributions P. Here the second

half of (A2) means that
k
TS (e 08 Z8) (1 4 0k Zyrk)
k=1

q q
= ‘]_IH/«‘H2 +q! Z Lrok( Ly + Zyvr) + g " Z U,szZ(H_;g

k=1 k=1
= op(1).

Since

1 2

(( Z ROk ( Zk‘|‘Zq-I—k)) ) = 22/«%% = o(q™ ||ull*),
— q 2
(( Z 012 q+k)) = q_zzaﬁ — 0,
k=1 k=1

it follows that ¢=*|u||* — 0. 0

4.3 Proof of Theorem 3.1

Let (D@ ))g>1 be a sequence of independent copies of I' which is stochastically inde-

pendent from P. Define

B(q’n’é) — (nl/Z(F(q,Z)Tﬁ o F(qu)TP)(h)) .
heH

The B9 ¢ > 1, are dependent copies of B4™. Further consider independent
processes B, B, BS), ... and Bg, with £(BS)) = L(Bo,) and L£(Bg,) as
described in Theorem 3.1. According to Lemma 4.2 it suffices to show that for any
fixed integer L > 1 and A :={1,2,..., L}, the random elements

plan) . (B(q’n’é)(h))(z,h)eAxH
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converge in distribution in (., (A x H) to
3o (0
B = ((Byh+Ba2)M) e

as ¢ — oo and n — oco. For that purpose it suffices to verify the following two

claims.
(F1) As ¢ — oo and n — oo, the finite-dimensional marginal distributions of the

process Blan) converge to the corresponding finite-dimensional distributions of B.

(F2) As g — oo, n — o0 and 6 | 0,
B0 (g) — BUmO(h)| =, 0.

max sup
CEA g heMtipg(g,h)<s

In order to verify assertions (F1-2) we consider the conditional distribution of

Blan) given the random matrix

f = f(q) = (F(q71)7 F(%Q)7 el F(q,L)) e quLd‘

In fact, if we define
fzh(v) = h(ve) forov= (vlT, .. .,UDT € RLd7

then
B (h)y = nMYAHTTP —TTP)(fun).

Thus E(E(q’”) | f) is essentially the distribution of an empirical process based on
n independent random vectors with distribution TP on RE and indexed by the
family H = {ﬁ,h e N heH}.

The multivariate version of Lindeberg’s Central Limit Theorem entails that for
large ¢ and n the finite-dimensional marginal distributions of g(q’”), conditional on
f, can be approximated by the corresponding finite-dimensional distributions of a
centered Gaussian process on A X H with the same covariance function, namely

Cov (B0 (g), B (k) |T)
FTP(fug fmi) = TP (fea) TTP( ).

SO ((£,9), (m, b)) o=
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It follows from equality (4.1) and the proof of Theorem 2.1 that
[P =, Q := /NLd(O,O'QI) R(do?) as q — oc.

This implies that the conditional covariance function ¥(9 converges pointwise in

probability to the covariance function ¥, where

2((6.9) (m,h) 2= Qlfeafonn) = Qfeg) Q)
= [ Nal0.0) o o) R(do?) = Qo)Q(h)
_ { [ Nul0. o) (gh) B(da®) = Qo)Q(h) i £=m.
[ X002 (N0, 0%)(h) B(do?) = Qo)Q(R) if £ # m.
= Cov((BY) + Baa)(9), (BSY + Baa)(h)

as ¢ — oco. If we can show that even the supremum of |%(?) — %] over (A x H)? tends
to zero in probability, then assertion (F1) follows.

As mentioned in Section 2, weak convergence in probability is metrizable. There-
fore there exist events A(® depending only on ['(@ such that for arbitrary f €
Cb(RLd),

IP(A(q)) 5 1 and sup /fdpr_/fd@‘ — 0 as g — oc.
Ald)

It was shown by Billingsley and Topsoe (1967) that condition (C3) is equivalent to

(4.4) lim sup Q{y eRY: sup |h(z) = h(y)| > 6} = 0 forany ¢ > 0.
840 hen zi||z—ylI<s

Note that the d-dimensional marginal distributions of Cj are just (). Therefore one

can easily deduce from (4.4) that

lim sup Cj{v e RM:  sup |§f_£(w) — g’ﬁ(v)| > 6} = 0 forany ¢ > 0.
510 s Al
g.heH willw—v|| <8
Now a second application of Billingsley and Topsoe (1967) shows that
(4.5) sup sup |fTP(§ﬁ) — Q(gﬁﬂ — 0 as ¢ — oo.

Al gReH
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We assume without loss of generality that H (and thus 7—7) contains the constant
function 1. Then fact (4.5) clearly implies uniform convergence of (%) to ¥ on A x H
as ¢ — oo in probability.
As for assertion (F2), it is well-known from empirical process theory that condi-
tions (C1-2) imply that for arbitrary fixed € > 0 and ¢ € A,
(4.6) 1P sup B0 (g) = BU™O(h)| > ¢|T) =, 0
g hEH (90 (g,h) <6

as ¢ — oo, n — oo and 4 | 0. Here

PN h) = TP — Ji)?).

But it follows from (4.5) that

sup sup |p'"9(g,h)* — polg,h)*| — 0
Al g,heH

as ¢ — oo, for any fixed ¢ € A. Hence one may replace p(**) in (4.6) with pg and

obtains assertion (F2). O
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